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Abstract 

Nitrous oxide (N2O) is an important greenhouse gas that can deplete the ozone layer. 

Microbial nitrification and denitrification have been long considered as the major contributors 

of soil N2O production. However, the mechanisms responsible for N2O production from 

nitrification are still not fully understood. The current understanding is that there are mainly 

two routes responsible for the N2O production from nitrification: biological ammonia (NH3) 

oxidation and nitrifier denitrification of nitrite (NO2
-). However, so far it has been neglected 

that abiotic processes could also play an important role in the N2O production during 

nitrification, involving the two reactive N intermediates hydroxylamine (NH2OH) and NO2
- 

via coupled biotic-abiotic mechanisms of N2O production. While the abiotic N2O production 

from NO2
- has been studied in the last decades, the abiotic N2O production involving NH2OH 

has long been ignored. One possible reason could be that NH2OH was not detected in soils in 

previous research. In addition, the release of NH2OH during NH3 oxidation in pure cultures of 

ammonia oxidizers has not been studied previously, which would be the prerequisite of 

abiotic N2O production involving NH2OH. Therefore, the aim of the present thesis was to 

study the relevance and mechanisms of coupled biotic-abiotic N2O formation from NH2OH 

and NO2
- during nitrification in different soils.  

By studying different types of ammonia oxidizers (ammonia-oxidizing bacteria (AOB), 

ammonia-oxidizing archaea (AOA), and complete ammonia oxidizers (comammox)), this 

thesis demonstrates NH2OH release during NH3 oxidation of various ammonia oxidizers. 

However, the NH2OH:final product release ratios were different between the different 

microbial strains studied, ranging from 0.24% to 1.92%, and were also dependent on initial 

NH3 concentrations in the medium. The presence of NO2
- decreased the abiotic NH2OH decay 

rate in the medium but increased abiotic N2O production involving NH2OH. The calculated 

fraction of NH4
+ converted to N2O via NH2OH release during incubations ranged from 0.05% 

to 0.14%, which was consistent with published NH4
+-to-N2O conversion ratios for certain 

ammonia oxidizers.  

Hydroxylamine could not only be detected in pure cultures, but also be determined in natural 

soils by developing and applying a highly sensitive method using extraction under acidic 

conditions and oxidation of NH2OH to N2O with Fe3+. The determined NH2OH content in 

spruce forest soil samples ranged between 0.3 and 34.8 μg N kg-1 dry soil, which was 

consistent with the magnitude of NO2
- contents reported for forest soils. This thesis further 

shows a positive spatial correlation between NH2OH concentrations and aerobic N2O 



 

iv 

 

production in Norway spruce forest soil, although aerobic N2O production was also correlated 

with other soil basic properties, such as soil pH, NO3
-, Mn, and soil organic carbon (SOC) 

content. Similar hotspots were identified for aerobic N2O production itself as well as for the 

contribution of NH2OH to aerobic N2O production. The incorporation of the NH2OH 

information largely improved the estimation of aerobic N2O production in the study area.  

In a systematic experiment with artificial soil mixtures with the aim to test the relevance of 

the control parameters identified in the forest soil study, the abiotic conversion of NH2OH to 

N2O was strongly dependent on soil organic matter (SOM) content, pH, and MnO2 content. 

More NH2OH was chemically converted to N2O at low SOM content, low pH, and high MnO2 

content. Based on these results, the thesis presents a model to estimate abiotic NH2OH-to-N2O 

conversion in soils by considering the SOM and MnO2 content as well as pH. It should be 

noted that not only the quantity, but also the quality of SOM, e.g. certain functional groups, 

such as carbonyl groups, can affect the abiotic conversion of NH2OH to N2O. 

The thesis further explored the contribution of the two reactive N species NO2
- and NH2OH to 

abiotic N2O production in different soils after oxic and anoxic pre-incubation. NO2
- played the 

most important role in N2O production in grassland soil, followed by the soils of upland forest, 

a riparian area, and cropland. Abiotic processes contributed about 10-40% to the conversion 

of NO2
- to N2O, but no significant factors responsible for the N2O production from NO2

- could 

be identified. N2O production from NH2OH played an important role in grassland and 

cropland soils, as well as partly in the forest soil. In contrast to NO2
-, the conversion of 

NH2OH to N2O was mostly (>80%) abiotic and was correlated significantly with soil pH, 

MnO2 and SOC content. After anoxic incubation, the contribution of NO2
- to aerobic N2O 

production increased, while the contribution of NH2OH decreased depending on SOC content.  

Finally, a close relationship was found between pulse N2O production after rewetting of air-

dried soils and concentration of NO2
- accumulated in the dry soils. Abiotic processes 

contributed 10-70% of N2O production after rewetting of forest soil, but were even 

considerably higher in the grassland soil after gamma radiation.  

In summary, this thesis describes the coupled biotic-abiotic mechanisms of N2O production 

during nitrification in detail by studying the processes related to abiotic N2O production from 

NH2OH systematically with a series of experiments, and by exploring the contribution of 

NO2
- and NH2OH to abiotic N2O production under various environmental conditions and for 

different soil types. The results of the thesis improve the understanding of the mechanisms as 

well as the quantification of aerobic N2O production in soils, and could contribute to 
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developing more effective N2O mitigation measures, such as increasing soil pH and adding 

organic soil amendments with appropriate functional groups that can react chemically with 

NH2OH. 

 

Zusammenfassung 

Lachgas (N2O) ist ein bedeutendes Treibhausgas, welches zum Abbau der Ozonschicht 

beitragen kann. Mikrobielle Nitrifikation und Denitrifikation wurden lange als die 

Hauptquellen der N2O-Produktion im Boden angesehen. Allerdings sind die Mechanismen, 

welche für die N2O-Produktion während der Nitrifikation im Boden verantwortlich sind, noch 

nicht vollständig entschlüsselt. Bisher ist man davon ausgegangen, dass hauptsächlich zwei 

Komponenten zur N2O-Produktion während der Nitrifikation beitragen: biologische 

Ammoniak-(NH3)-Oxidation und Nitrifizierer-Denitrifikation von Nitrit (NO2
-). Allerdings 

könnten auch abiotische Prozesse eine wichtige Rolle in der N2O-Produktion während der 

Nitrifikation spielen, und zwar durch einen gekoppelten biotisch-abiotischen Mechanismus, 

ausgehend von den zwei reaktiven Zwischenprodukten Hydroxylamin (NH2OH) und NO2
-. 

Obwohl die abiotische N2O-Produktion aus NO2
- in den letzten Jahrzenten untersucht wurde, 

wurde die abiotische N2O-Produktion aus NH2OH bisher nicht beachtet. Eine mögliche 

Ursache könnte sein, dass in bisherigen Studien NH2OH in Böden nicht nachgewiesen wurde. 

Ebenso wurde die Freisetzung von NH2OH während der NH3-Oxidation in reinen Kulturen 

von Ammoniakoxidierern bisher nicht untersucht, welche die Voraussetzung für die 

abiotische N2O-Produktion aus NH2OH wäre. Das Ziel der vorliegenden Arbeit war daher, die 

Relevanz und die Mechanismen gekoppelter biotischer-abiotischer N2O-Bildung aus NH2OH 

und NO2
- während der Nitrifikation in unterschiedlichen Böden zu untersuchen. 

In der vorliegenden Dissertation konnte anhand von Untersuchungen von Reinkulturen bzw. 

Anreicherungen unterschiedlicher Ammoniakoxidierer (ammoniakoxidierende Bakterien – 

AOB, ammoniakoxidierende Archaeen – AOA, sowie vollständige Ammoniakoxidierer – 

Comammox) eine der NH2OH-Freisetzung während der NH3-Oxidation gezeigt werden. 

Allerdings unterschieden sich die Verhältnisse zwischen NH2OH-Freisetzung und 

Endproduktbildung zwischen den unterschiedlichen Mikroorganismenstämmen (0.24% bis zu 

1.92%) und waren von der NH3-Konzentration im Medium abhängig. Die Anwesenheit von 

NO2
- verringerte im Mittel die abiotische NH2OH-Zerfallsrate, erhöhte hingegen die 

abiotische N2O-Produktion aus NH2OH. Der Anteil von NH4
+, der dabei während der 

Inkubationszeit über NH2OH in N2O umgewandelt wurde, variierte zwischen 0.05% und 
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0.14%, und stimmte damit mit für verschiedene Ammoniakoxidierer veröffentlichten Werten 

von NH4
+-zu-N2O- Umwandlungsverhältnissen überein.  

Im Rahmen der vorliegenden Arbeit wurde die NH2OH-Freisetzung nicht nur in Reinkulturen 

untersucht, sondern auch in natürlichen Böden. Hierzu wurde eine hochempfindliche Methode 

entwickelt und angewendet, bei der NH2OH unter sauren Bedingungen extrahiert und 

anschließend mit Fe3+ zu N2O oxidiert wird. Mit dieser neu entwickelten Methode konnte ein 

NH2OH-Gehalt in Fichtenwaldboden zwischen 0.3 und 3.8 μg N kg-1 Bodentrocken-gewicht 

nachgewiesen werden, der in der gleichen Größenordnung wie der NO2
--Gehalt in Waldböden 

lag. Zudem konnte in dieser Dissertation auch eine positive räumliche Korrelation zwischen 

NH2OH-Konzentrationen im Boden und der aeroben N2O-Produktion in einem Fichtenwald 

gefunden werde, wobei die aerobe N2O-Produktion auch mit andern Bodeneigenschaften, wie 

dem pH-Wert sowie dem NO3
--, Mn- und organischen Kohlenstoff- (SOC)-Gehalt, korrelierte. 

Hierbei wurden ähnliche Hotspots sowohl für die aerobe N2O-Produktion selber als auch für 

den Beitrag von NH2OH zur aeroben N2O-Produktion identifiziert. Die Berücksichtigung der 

NH2OH-Information in einem multiplen Regressionsmodell führte zu einer erheblichen 

Verbesserung der Abschätzung der N2O-Produktion im Untersuchungsgebiet.  

In einem systematischen Experiment mit künstlichen Bodenmischungen war die abiotische 

Umwandlung von NH2OH in N2O stark vom Gehalt an organischer Bodensubstanz (SOM), 

dem pH-Wert und dem MnO2-Gehalt abhängig. Bei geringem SOM-Gehalt, niedrigem pH-

Wert und hohem MnO2-Gehalt wurde mehr NH2OH chemisch zu N2O umgewandelt. 

Basierend auf diesen Ergebnissen wurde in dieser Dissertation ein multiples 

Regressionsmodell entwickelt, welches die abiotische Umwandlung von NH2OH zu N2O in 

Böden unter Berücksichtigung des SOM- und MnO2 Gehalts sowie dem pH-Wert abschätzt. 

Hierbei muss allerdings beachtet werden, dass nicht nur die Quantität, sondern auch die 

Qualität der SOM (z.B. bestimmte funktionale Gruppen) die abiotische Umwandlung von 

NH2OH zu N2O beeinflussen können.  

Weiterhin wurde in dieser Dissertation der Beitrag der beiden reaktiven 

Nitrifikationsintermediate NO2
- und NH2OH zur abiotischen N2O-Produktion in 

unterschiedlichen Böden nach oxischer und anoxischer Vorinkubation untersucht. Es konnte 

gezeigt werden, dass NO2
- eine wichtige Rolle in der N2O-Produktion in Graslandboden 

spielte, gefolgt von Waldboden aus der ungesättigten Zone und dem Uferbereich sowie von 

Ackerlandboden. Abiotische Prozesse trugen zu 10-40% zur Umwandlung von NO2
- zu N2O 

bei. Es konnten allerdings keine signifikanten Faktoren, die für die N2O-Produktion durch 
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NO2
- verantwortlich waren, identifiziert werden. N2O-Produktion aus NH2OH spielte eine 

wichtige Rolle in Grasland- und Ackerböden, sowie auch teilweise in den untersuchten 

Waldböden. Die Umwandlung von NH2OH zu N2O war größtenteils (>80%) abiotisch und 

korrelierte signifikant mit dem pH-Wert des Bodens sowie mit dem MnO2- und SOC-Gehalt. 

Anoxische Vorinkubation führte zu einer Erhöhung des Beitrags von NO2
- zur aeroben N2O-

Produktion, während der Beitrag von NH2OH sich, abhängig vom SOC-Gehalt des Bodens, 

verringerte.  

Schließlich konnte eine enge Beziehung zwischen pulsartiger N2O-Produktion nach 

Wiederbefeuchtung von luftgetrockneten Waldböden und der Konzentration von NO2
-, 

welches  während der Trocknung der Böden akkumuliert worden war, beobachtet werden. 

Hierbei trugen abiotische Prozesse zu 10-70% zur N2O-Produktion in den wiederbefeuchteten 

Waldböden bei. In wiederbefeuchteten Graslandböden war der Anteil abiotischer Prozesse an 

der N2O-Produktion nach Gamma-Bestrahlung sogar nochen erheblich größer.  

Zusammenfassend beschreibt diese Dissertation die gekoppelten biotischen-abiotischen 

Mechanismen der N2O-Produktion während der Nitrifikation. Hierzu wurden die Prozesse, die 

an der N2O-Produktion aus NH2OH beteiligt sind, systematisch in einer Reihe von 

Experimenten untersucht. Darüber hinaus wurde der Beitrag von NO2
-  und NH2OH zur 

abiotischen N2O-Produktion unter unterschiedlichen Umweltbedingungen und für 

unterschiedlichen Bodentypen näher untersucht. Die Ergebnisse dieser Dissertation verbessern 

das Verständnis der Mechanismen sowie die Quantifizierung der aeroben N2O-Produktion in 

Böden und könnten zur Entwicklung effektiverer N2O-Minderungsmaßnahmen beitragen, z.B. 

durch Erhöhung des Boden-pH-Wertes und Zugabe von organischen Bodenhilfsstoffen mit 

verschiedenen funktionellen Gruppen, welche mit NH2OH chemisch reagieren können. 
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1.1 Theory 

Nitrogen (N) is the dominant element in the atmosphere, which is essential for the synthesis of 

nucleic acids and proteins on earth. Despite the importance of N and its overwhelming 

abundance in the atmosphere, most of the N is stored in the earth’s atmosphere as chemically 

inert triple bonded dinitrogen (N2), making ~78% of the atmosphere. Two hundred years ago, 

the atmospheric N could only enter the biogeochemical N cycle through lightning and natural 

biological N fixation in the form of ammonia (NH3). Since about 100 years, human activity 

has dramatically increased NH3 production and release into the environment by fixing N2 to 

NH3 through the industrial Haber-Bosch method and by implementing new agricultural 

practices (e.g. increasing artificial fertilizer input) that boosted crop yields to fulfill the 

demand of the increasing world population. As fertilizer application rates increased, crop 

yield increased while nitrogen use efficiency (NUE) decreased to a certain degree. Zhang et al. 

(2015a) estimated that the global average NUE was 47% in 2009 and 42% in 2010, 

respectively. The low NUE is mainly due to unavoidable N losses by, e.g., gaseous N 

emission and nitrate (NO3
-) leaching associated with soil biological activity. Gaseous N loss, 

e.g. in the form of nitric oxide (NO), nitrous oxide (N2O) and NH3 has resulted in substantial 

consequences for the atmospheric composition and severe effects on the environment and 

human health (Galloway et al., 2008; Davidson, 2012). 

The recent concern about global warming and ozone depletion has increased attention for 

research into N2O. N2O is a powerful greenhouse gas and is currently the third largest 

contributor to global warming, after carbon dioxide (CO2) and methane (CH4) (IPCC, 2013). 

While not as abundant in the atmosphere as CO2, an equivalent mass of it is nearly 300 times 

more potent in its global warming potential than CO2. Besides, N2O has deleterious effects in 

the stratosphere, where it breaks down and acts as a catalyst in the destruction of atmospheric 

ozone. N2O can stay in the stratosphere for hundreds of years. The global lifetime of N2O is 

approximately 114 years according to the 5th Assessment report of the IPCC (IPCC, 2013). 

Since the industrial revolution, the N2O mixing ratio in the atmosphere has increased about 

20%, from 270±7 ppb in 1750 to 324.2 ppb in 2011 (IPCC, 2013). It is reported that 

anthropogenic sources contribute about 40% of the total N2O production, and agriculture 

contributes about 60% of the total anthropogenic N2O production (IPCC, 2013). The increase 

is dominated by emissions from soils treated with synthetic and organic (manure) nitrogen 

fertilizer since the early 1950s according to measurements of N2O and its isotopic 
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composition in firn air (Roeckmann & Levin, 2005; Ishijima et al., 2007; Davidson, 2009; 

Syakila & Kroeze, 2011). The stimulating effect of N fertilization on the production of N2O 

was shown in numerous studies (Shcherbak et al., 2014). An exponential correlation was 

found between the N input and N2O emissions from fertilized soils (Hoben et al., 2011), and 

global emission factors (EFs) for fertilizer-induced direct N2O emissions have been 

determined. For every 100 kg of fertilizer-N input, 1 kg of N in the form of N2O is estimated 

to be emitted directly from soil (De Klein et al., 2006). However, this EF was found to be 

strongly dependent on different fertilizer type, crop type, soil basic properties (e.g. soil C, pH) 

and environmental factors (e.g. water) (Bouwman et al., 2002). Moreover, the mechanisms of 

N2O formation in soils is not fully understood at present, and quantitative understanding of 

N2O emissions remains an unresolved challenge at global, national and regional scales 

(Butterbach-Bahl et al., 2013). To better estimate the N2O emissions from soils and to provide 

theoretical support for the development of N2O mitigation measures, a better understanding of 

the mechanisms responsible for N2O production in soils is urgently required. 

 

1.2 Rationale

According to the classic “hole-in-the-pipe” conceptual model (Firestone & Davidson, 1989), 

N2O can leak out during nitrification (i.e., during NH3 oxidation to nitrate (NO3
-)) and 

denitrification (i.e., during NO3
- reduction to N2), depending mainly on soil water content. 

This model generally shows the main processes responsible for soil N2O production in soils. 

Until now, microbial nitrification and denitrification in managed and natural soils are widely 

accepted as the major sources of N2O emissions from soil, contributing approximately 70% of 

global N2O emissions (Braker & Conrad, 2011).  

Denitrification is the microbial process that reduces NO3
- anaerobically to nitrite (NO2

-), NO, 

N2O and N2. As an important intermediate of denitrification (NO3
-→NO2

-→NO→N2O→N2), 

the N2O production from denitrification has been studied very early, together with the study 

of the denitrification process itself (Nömmik, 1956). The large contribution of denitrification 

to N2O emissions in various ecosystems has been further demonstrated and summarized in a 

large number of studies (Bateman & Baggs, 2005; Baggs, 2011; Bouwman et al., 2013), 

adding more detailed information on quantification and control of N2O production via 

denitrification. However, one fundamental problem of the quantification of denitrification is 
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that it is very difficult to quantify the dominant end-product (N2) of denitrification, given its 

high background concentration in the atmosphere, which makes the assessment of the 

efficiency of N2O mitigation from denitrification difficult. Moreover, the proposed 

management options with consideration of denitrification only, such as application of copper 

(Cu) fertilizer to regulate Cu availability for the Cu-based nitrous oxide reductase enzyme, 

and liming of cropland or grassland, are ineffective in certain soils to promote the reduction of 

N2O to N2 (Richardson et al., 2009).  

On the other hand, although N2O is not an intermediate of nitrification (NH3→NH2OH→NO2
-

→NO3
-), Bremner & Blackmer (1978) showed that N2O is also produced in soils as a side 

product by nitrifying bacteria. Within the last two decades, fostered by the development and 

application of stable isotope techniques to distinguish different N2O sources, growing 

evidence was presented that NH3 oxidation can be the predominant N2O production process 

under certain conditions (Bremner et al., 1980; Wrage et al., 2004; Bateman & Baggs, 2005; 

Shaw et al., 2006). NH3 oxidation was found to contribute up to 80% of soil N2O emissions in 

certain soils at relatively high temperature and moderate soil moisture content (Gödde & 

Conrad, 1999). This finding makes it possible to lower N2O emission by inhibiting NH3 

oxidation, e.g. by applying nitrification inhibitors, and subsequently also denitrification by 

reducing the availability of NO2
- as substrate (Bhatia et al., 2010; Di et al., 2010). 

Nevertheless, the mechanisms leading to the release of N2O during nitrification are not clearly 

understood. Some researchers proposed that the two enzymes, i.e. hydroxylamine 

dehydrogenase (also known as hydroxylamine oxidoreductase, HAO) and NO reductase were 

responsible for the N2O production during NH3 oxidation through the oxidation of 

hydroxylamine (NH2OH) to NO and the subsequent reduction of NO in a biological 

mechanism (Ritchie & Nicholas, 1972). Recently, researchers paid more attention to the 

mechanism of nitrifier denitrification, in which ammonia oxidizers use NO2
- as a terminal 

electron acceptor to produce N2O under oxygen-limited conditions (Ritchie & Nicholas, 1972; 

Wrage et al., 2001; Shaw et al., 2006). However, the potential contribution of abiotic 

processes, i.e. the chemical decomposition of nitrite (or chemodenitrification) and the 

chemical decomposition of NH2OH, in an assumed coupled biotic-abiotic reaction mechanism, 

has been ignored until now. As an end product of NH3 oxidation, small amounts of NO2
- have 

been detected in natural soils, especially after N fertilizer application and under alkaline 

conditions (Shen et al., 2003; Gelfand & Yakir, 2008; Ma et al., 2015). For NH2OH as an 
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intermediate product of NH3 oxidation to NO2
- existing in the periplasm of ammonia 

oxidizing bacteria (AOB), however, no detection in natural soil samples has been reported.  

Recently, two review papers highlighted the role of abiotic processes, such as reactions of 

NO2
- with reduced metal cations or certain soil organic matter (SOM) fractions, the reaction 

between NO2
- and NH2OH, and the oxidation of NH2OH by Fe3+ or MnO2, which could also 

be important for soil N2O production during nitrification (Zhu-Barker et al., 2015; Heil et al., 

2016). These reactions can occur over a broad range of soil characteristics, but they are 

neglected in most current studies on N2O production. The factors that regulate the activity of 

N-cycling microorganisms related to biotic N2O formation, such as pH, quantity, and quality 

of SOM, oxygen availability, and supply of inorganic N, are also important factors 

responsible for the abiotic N2O formation, which may lead to overlooking the contribution of 

abiotic processes to soil N2O formation. Thus, a full understanding of N2O production 

processes, including biotic and abiotic processes and their interactions, could improve the 

modeling of ecosystem N cycling and contribute to constraining atmospheric N2O budgets 

and mitigation strategies. Moreover, a change in climatic conditions, such as drying-rewetting, 

freeze-thaw, and oxic-anoxic cycles, may enhance the contribution of abiotic processes on 

N2O formation via the accumulation of highly reactive N intermediates (Clément et al., 2005; 

Gelfand & Yakir, 2008). Therefore, the understanding the role of this coupled biotic-abiotic 

mechanism in N2O formation involving NH2OH and NO2
- will also help to quantify the 

feedback of N2O emissions to global climate change and other environmental problems.  

 

1.3 State of the art 

1.3.1 Mechanisms of N2O production from NH3 oxidation 

Nitrification can be divided into two steps conducted by two sorts of microorganisms: (1) the 

oxidation of NH3 to NO2
- by ammonia oxidizers; (2) the further oxidation of NO2

- to NO3
- by 

nitrite oxidizers. N2O production occurs usually in the first step, where NH3 is oxidized to 

NO2
- by ammonia oxidizers (Schreiber et al., 2012). Chemolithotrophic ammonia oxidizers 

are an important component of the global N cycle. Until now, three microbial guilds 

responsible for the chemolithotrophic NH3 oxidation have been enriched or purified 

responsible: AOB (Koops et al., 1991), ammonia oxidizing archaea (AOA) (Walker et al., 

2010; Tourna et al., 2011; Spang et al., 2012) and the recently enriched complete bacterial 
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ammonia oxidizers (comammox) of the genus Nitrospira that perform ammonia oxidation via 

nitrite to nitrate (Daims et al., 2015; van Kessel et al., 2015). AOB are the earliest enriched 

and studied microorganisms among the three groups (Skinner & Walker, 1961; Ritchie & 

Nicholas, 1972; Poth & Focht, 1985). They are abundant in soil environments and have great 

potential in the production of N2O. N2O production has been measured from pure cultures of 

AOB of the genera of Nitrosomonas and Nitrosospira (Poth & Focht, 1985; Jiang & Bakken, 

1999; Shaw et al., 2006; Stieglmeier et al., 2014). The mechanisms responsible for the N2O 

production in AOB have been studied for a long time, mainly focusing on the oxidation of 

NH2OH to NO by HAO (Ritchie & Nicholas, 1972) and the so-called nitrifier denitrification 

(Ritchie & Nicholas, 1972; Wrage et al., 2001; Shaw et al., 2006). The mechanisms 

responsible for the N2O production from AOA were still poorly understood. AOA have 

received increasing attention recently, as AOA abundance has been found to exceed AOB 

abundance by orders of magnitude in soil ecosystems (Leininger et al., 2006; He et al., 2007). 

Until now, only a few pure AOA strains have been cultivated successfully from soil, marine 

and thermal spring environments (Walker et al., 2010; Tourna et al., 2011; Lehtovirta-Morley 

et al., 2014; Palatinszky et al., 2015), allowing to study the energy metabolism and general 

physiology of these microorganisms. Although production of N2O has been observed for 

enrichment and pure cultures of AOA from marine and soil ecosystems (Santoro et al., 2011; 

Jung et al., 2014; Stieglmeier et al., 2014), AOA must exhibit a totally different route of 

biotic N2O production than AOB, as AOA lack genes for a homolog of HAO and lack genes 

encoding a potential nitric oxide reductase (NOR) which are assumed to be involved in biotic 

N2O production in AOB (Walker et al., 2010; Tourna et al., 2011; Spang et al., 2012). Recent 

research showed that the soil AOA Nitrososphaera viennensis is indeed not able to conduct 

nitrifier denitrification to produce N2O (Stieglmeier et al., 2014). Later, N2O production from 

this AOA was observed under anoxic conditions that were attributed to abiotic reactions 

between NO and certain substances in the media (Kozlowski et al., 2016a). 

1.3.2 Reactive N intermediates NH2OH and NO2
- 

Hydroxylamine and NO2
- are two reactive key N intermediates of nitrification, which can 

produce N2O both biologically and chemically. NO2
- can be reduced biologically to N2O 

either by NO2
- reductase through a pathway called “nitrifier denitrification” (Wrage et al., 

2001), as well as biologically or chemically by Fe2+ with the help of iron oxidizers and other 

microorganisms (Kampschreur et al., 2011). Moreover, SOM fractions, e.g. fulvic acids, 
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lignin-building units and phenolic compounds can also react chemically with NO2
- to form 

N2O (Stevenson & Swaby, 1964). From NH2OH, N2O can be formed both biologically by the 

enzyme NH2OH oxidoreductase (Ritchie & Nicholas, 1972) and chemically by O2 and several 

soil oxidants (e.g., MnO2 and Fe3+) (Bremner, 1997; Heil et al., 2016). Numerous studies have 

been conducted on the N2O production from NO2
- from the view of a biological process, i.e. 

nitrifier denitrification during nitrification (Wrage et al., 2001; Wrage et al., 2004; Zhu et al., 

2013a; Snider et al., 2015). However, the importance of NH2OH for N2O production, 

especially from the view of an abiotic processes, has long been neglected, even though the 

abiotic conversion of NH2OH to N2O can be above 80% in a few hours under suitable 

conditions (e.g., low pH and in the presence of Fe3+) given its chemically reactive nature 

(Butler & Gordon, 1986; Schreiber et al., 2012). 

Hydroxylamine has long been known as an important intermediate of chemolithoautotrophic 

AOB (Lees, 1952) and was recently also reported to be an intermediate of the marine AOA 

Nitrosopumilus maritimus (Vajrala et al., 2013). NH2OH may play a crucial role in N2O 

production from soils under oxic conditions (Bremner et al., 1980; Bremner, 1997; Schreiber 

et al., 2012). Recently, Soler-Jofra et al. (2016) observed a significant contribution of the 

abiotic reaction between NH2OH and NO2
- to N2O formation in a full-scale nitrification 

reactor. Further support for this hypothesis comes from the intramolecular distribution of 15N 

within the linear, asymmetric NNO molecule, the so-called 15N site preference (SP) (Toyoda 

& Yoshida, 1999), which is distinctly different between N2O produced via denitrification and 

nitrification (Ostrom & Ostrom, 2011). Studies on the pure cultures and chemical reactions 

demonstrate that aerobic NH3 and NH2OH oxidation of AOB, aerobic NH3 oxidation of a 

marine AOA and the chemical reactions of NH2OH with Fe3+, Cu2+ and NO2
- yield similar SP 

values (30-33‰) (Shaw et al., 2006; Santoro et al., 2011; Heil et al., 2014). All these findings 

indicate that chemical reactions involving NH2OH may play an important role in N2O 

production during chemolithoautotrophic NH3 oxidation under oxic conditions. However, 

NH2OH is very reactive and unstable in its natural environment. At neutral or slightly alkaline 

pH, about 30% of NH2OH degrade within 3 h at room temperature in seawater samples at 

micromolar concentrations  (Butler & Gordon, 1986). Therefore, determination of NH2OH in 

natural soils is a very challenging step in the study of the mechanisms of abiotic conversion of 

NH2OH to N2O. 
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The abiotic N2O production from NO2
- has also obtained less attention as the biological 

processes, probably due to its low content in natural soils. NO2
- does usually not accumulate 

in soil at moist or wet conditions (Robertson & Groffman, 2007), as then the oxidation of 

NO2
- to NO3

- proceeds faster than the conversion of NH3 to NO2
-. However, NO2

- has a great 

potential to accumulate after pH increase, at high NH3 levels and during drought stress (Smith 

et al., 1997; Shen et al., 2003; Gelfand & Yakir, 2008; Placella & Firestone, 2013). 

Accumulation of NO2
- in soil can provide a substrate for certain biological processes, e.g. 

denitrification, nitrification and dissimilatory nitrate reduction to ammonium (DNRA) (Silver 

et al., 2001; Rütting et al., 2011). It also plays a major role in chemodenitrification, where 

NO2
- reacts with phenolic compounds to form nitroso and nitro compounds (Thorn & Mikita, 

2000). These nitroso and nitro compounds, in turn, can decompose to NO or N2O, or be 

reduced by Fe2+ to N2O (van Cleemput & Samater, 1995; Samarkin et al., 2010).  

1.3.3 Effects of soil properties and environmental factors 

Certain environmental factors, such as oxygen conditions, pH, and drying-rewetting cycles 

have been long recognized as crucial factors of soil microbial N2O production through their 

effects on nitrification and denitrification (Martikainen & de Boer, 1993; Parton et al., 1996; 

Li et al., 2000; Butterbach-Bahl et al., 2013; Hu et al., 2015). For instance, N2O production 

from nitrification can increase by up to 700-fold when O2 decreases to anoxic conditions 

(Remde & Conrad, 1990; Kool et al., 2011; Stieglmeier et al., 2014). In a complex soil 

environment, O2 conditions determine the contribution of NH3 oxidation, nitrifier 

denitrification and heterotrophic denitrification to total N2O production, with heterotrophic 

denitrification becoming the only source of soil N2O when O2 is completely absent (Zhu et al., 

2013a). Furthermore, it has been revealed by a global meta-analysis that N2O production in 

soils increases with decreasing pH values (Shcherbak et al., 2014). The inhibition of N2O 

reductase by low pH has been considered as one possible reason for the positive effects of 

increasing acidity on N2O production (Bakken et al., 2012). However, contributions of NH3 

oxidation to N2O emissions as affected by soil pH have not been reported.  

Rewetting of soil after longer dry periods is an important event triggering soil N2O emissions 

(Smith & Parsons, 1985; Rudaz et al., 1991; Ruser et al., 2006). A single wetting event may 

be responsible for a large fraction of the annual N2O emission for certain ecosystems (Priemé 

& Christensen, 2001; Berger et al., 2013). The effects of environmental factors are usually 

dependent on soil basic properties. Different soil types may have different responses to the 
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change of environmental conditions. For example, soil rewetting effects were shown to be 

larger in grassland soils when compared to forest soils (Priemé & Christensen, 2001). 

Fluctuation of microbial and enzyme activities has long been considered as the main 

contributor to the increased soil N2O production during the change of environmental 

conditions (Mørkved et al., 2007; Bakken et al., 2012; Zhu et al., 2013a; Snider et al., 2015).  

Nevertheless, varied environmental conditions could also lead to short-term accumulation of 

soil reactive N substances, such as NO2
- (Clément et al., 2005; Gelfand & Yakir, 2008). The 

accumulation of these substances may provide substrates for chemical reactions and result in a 

burst of N2O production, which has been overlooked for a long time. Moreover, the 

accumulation of other reactive substrates, such as DOM and metal ions during environmental 

changes, may shift the contribution of NH2OH and NO2
- to abiotic N2O production. For 

example, quality and quantity of SOM, especially the reactive part of SOM, i.e. phenol 

compounds, may have strong effects on N2O formation from NH2OH and NO2
-. Soils rich in 

phenolic lignin derivatives may favor N2O formation from NO2
- (Stevenson & Swaby, 1964; 

Wrage et al., 2001), but may decrease N2O formation from NH2OH, as NH2OH binds readily 

to carbonyl groups of organic matter to form oximes (Thorn et al., 1992). Anoxic conditions 

could not only change the availability of mineral N substrates (mainly NO3
-, NH4

+ and NO2
-) 

(Achtnich et al., 1995), and quality of SOM (Achtnich et al., 1995; Dassonville & Renault, 

2002), but also transition metal redox state. In soil samples with high Fe and Mn content, the 

oxidized form will promote the conversion of NH2OH to N2O, whereas under reduced 

conditions the formation of N2O from NO2
- will be favored (Heil et al., 2016).  

 

1.4 Objectives and outline of the thesis 

The aim of this thesis was to explore the coupled biotic-abiotic mechanisms of N2O 

production involving the nitrification intermediates NH2OH and NO2
-, with a particular focus 

on the mechanisms of abiotic N2O production from NH2OH. As it has been summarized 

above, NH2OH is an intermediate of the oxidation of NH3 to NO2
- in ammonia oxidizers. The 

quantification of the release of NH2OH during NH3 oxidation, the determination of NH2OH in 

natural soils, the relationship between NH2OH content and N2O production in natural soils 

and the impact factors affecting the abiotic conversion of NH2OH to N2O would be essential 

to explore the mechanisms of the coupled biotic-abiotic N2O formation from NH2OH. As 

another reactive N intermediate during nitrification and the end product of NH3 oxidation by 
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AOA and AOB, the processes of NO2
--related N2O production have been studied for a long 

time as the so-called  “chemodenitrification” (van Cleemput & Baert, 1984; van Cleemput & 

Samater, 1995; van Cleemput, 1998; Venterea, 2007). Therefore, in this thesis, the study on 

NO2
--related N2O production mainly focused on the comparison of the contribution of NO2

- 

and NH2OH on biotic and abiotic N2O production in soils with oxic and anoxic pre-incubation, 

and the role of NO2
- on N2O production during rewetting events.  

The main questions that this thesis aimed to resolve were the following: 

(1) Do ammonia oxidizers of different ammonia oxidizing guilds release NH2OH? 

(2) Is it possible to detect NH2OH in natural soil samples? 

(3) How is soil NH2OH content correlated with aerobic N2O production at the ecosystem scale?  

(4) What are the main factors responsible for the abiotic conversion of NH2OH to N2O? 

(5) Which reactive N species, NH2OH or NO2
-, is more important for soil abiotic N2O 

production, considering basic soil properties and redox conditions?  

(6) What is the role of reactive N in N2O production during rewetting events? 
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2.1 Introduction 

Nitrous oxide is an important greenhouse gas and is currently the third largest contributor to 

global warming, after CO2 and methane CH4. N2O also has deleterious effects in the 

stratosphere, where it is split photolytically and catalyzes the destruction of atmospheric 

ozone (IPCC, 2013). In the past two centuries, the atmospheric N2O concentration has 

increased by about 20% from pre-industrial levels of 270 ppbv to the current level of 324 

ppbv (WMO, 2010). In addition to denitrification and dissimilatory nitrate reduction to 

ammonia, aerobic ammonia (NH3) oxidation contributes significantly to N2O production in 

soil (Huang et al., 2014). Traditionally, two different biochemical routes are proposed for N2O 

production during NH3 oxidation in AOB. The first is the oxidation of NH2OH to NO by HAO 

and subsequent reduction to N2O catalyzed by NO reductase (Ritchie & Nicholas, 1972). The 

second pathway is the so-called nitrifier-denitrification, by which NO2
- is reduced to NO and 

N2O by nitrite reductase (NIR) and NOR, respectively (Ritchie & Nicholas, 1972; Poth & 

Focht, 1985; Shaw et al., 2006). However, recent studies revealed two other routes for the 

N2O production from the AOB N. europaea under anaerobic conditions. One is the direct 

oxidation of NH2OH to N2O by the enzyme cytochrome (cyt) P460 (Caranto et al., 2016), and 

nitrification intermediate NO (Caranto et al., 2017). Nitrifier-denitrification has been 

suggested to play a crucial role in N2O formation at low O2 and low pH (Wrage et al., 2001), 

whereas pathways related to biological or chemical reactions of ammonia oxidation 

intermediates (NH2OH, nitroxyl (HNO)) and/or its product (NO2
-) may be more important for 

N2O production at high ammonium (NH4
+) levels and sufficient O2 supply (Wunderlin et al., 

2012). However, not all AOB share the same route for N2O production. N. communis, for 

example, has no homologues of genes encoding a canonical copper-containing NirK 

(Kozlowski et al., 2016b). Thus, it is unlikely to be able to conduct canonical nitrifier-

denitrification, even though low production of N2O has been detected in an N. communis 

culture (Kozlowski et al., 2016c). Furthermore, a recent study revealed that NH2OH can also 

be oxidized directly to N2O by the enzyme cytochrome (cyt) P460 from the AOB N. europaea 

under anaerobic conditions (Caranto et al., 2016). Most studies on AOB N2O production 

pathways have focused on N. europaea ATCC 19718 (Ritchie & Nicholas, 1972; Poth & 

Focht, 1985; Yu & Chandran, 2010) and different biochemical routes responsible for N2O 

production in other AOB cannot be excluded. 

In recent years, ammonia oxidation-related N2O production by several AOA strains has been 

reported (Santoro et al., 2011; Jung et al., 2014; Stieglmeier et al., 2014) and AOA abundance 
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exceeds that of AOB by several orders of magnitude in some ecosystems (Leininger et al., 

2006; He et al., 2007). However, the mechanism(s) of N2O production by AOA appear to 

differ from that of AOB, as AOA lack genes encoding a canonical HAO and NOR, which are 

involved in N2O production by AOB (Walker et al., 2010; Tourna et al., 2011; Spang et al., 

2012). Recent research showed that the soil AOA Nitrososphaera viennensis is indeed not 

able to generate N2O through nitrifier-denitrification (Stieglmeier et al., 2014). Instead, hybrid 

N2O formation from NH4
+ and NO2

- in Nitrososphaera viennensis was demonstrated in 15N-

labeling experiments (Stieglmeier et al., 2014), indicating an N2O production pathway from 

NO2
- and an intermediate of ammonia oxidation, e.g. NH2OH or NO.  Recently, for this AOA 

species it could be confirmed that N2O formation under anoxic conditions results from the 

abiotic reaction of NO with medium or cellular components (Kozlowski et al., 2016a). 

However, the mechanism of N2O production by AOA under oxic conditions remains unclear. 

Furthermore, complete bacterial nitrifiers (comammox) of the genus Nitrospira that perform 

NH3 oxidation via NO2
- to NO3

- have recently been enriched (Daims et al., 2015; van Kessel 

et al., 2015), but nothing is yet known about the N2O production by these microorganisms. 

Hydroxylamine has long been known as an important intermediate of chemolithoautotrophic 

AOB (Lees, 1952) and was reported to be an intermediate of the marine AOA Nitrosopumilus 

maritimus (Vajrala et al., 2013). Surprisingly,  genes homologous to those encoding the AOB-

like HAO complex have not been found in AOA genomes (Walker et al., 2010; Tourna et al., 

2011), indicating that AOA either encode a novel enzyme for NH2OH oxidation or form 

during NH3 oxidation an initial oxidation product other than NH2OH, e.g. HNO (Walker et al., 

2010). Recent research showed that in N. viennensis NO2
- can be formed after addition of 

NH2OH, leading to the proposal of a novel mechanism for the production of NO2
- via the 

reactions between NH2OH and NO in AOA (Kozlowski et al., 2016a). 

Hydroxylamine may play a crucial role in N2O production from soils under oxic conditions 

(Bremner, 1997; Liu et al., 2014; Heil et al., 2015; Liu et al., 2016), as indicated by the close 

relationship between NH2OH concentration and N2O formation observed in forest soil (Liu et 

al., 2014; Liu et al., 2016). Further support for this hypothesis comes from the intramolecular 

distribution of 15N within the linear, asymmetric NNO molecule, the so-called 15N SP 

(Toyoda & Yoshida, 1999), which is distinctly different between N2O produced via 

denitrification and nitrification (Ostrom & Ostrom, 2011). In pure cultures of different 

nitrifiers and denitrifiers, Sutka et al. (2006) found SP values near 0‰ for N2O formed by 
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NO2
- and NO3

- reduction (via classical denitrification and nitrifier denitrification), while SP 

values were approximately 33‰ for N2O produced during aerobic NH3 and NH2OH oxidation 

by both guilds, which is similar to SP values reported by Heil et al. (2014) for N2O produced 

by chemical reactions of NH2OH with Fe3+, Cu2+ and NO2
-. Santoro et al. (2011) also reported 

an SP value of ~30‰ for N2O produced by an enrichment culture of a marine AOA, although 

soil AOA showed different SP values with a range of 13-30‰ (Jung et al., 2014). Recently, 

Soler-Jofra et al. (2016) observed a significant contribution of the abiotic reaction between 

NH2OH and NO2
- to N2O formation in a full-scale nitrification reactor. All these findings 

indicate that chemical reactions involving NH2OH may play an important role in N2O 

production during chemolithoautotrophic NH3 oxidation under oxic conditions. However, this 

would require the availability of free NH2OH, either in the growth medium or, potentially, in 

the periplasm, for abiotic N2O formation through chemical reactions with substances such as 

NO2
-, MnO2 and Fe3+. Quantification of extracellular NH2OH from AOB, AOA and 

comammox may, therefore, provide important information on the feasibility of coupled 

biotic–abiotic N2O production during microbial NH3 oxidation.  

In this study, we aimed to answer several important questions regarding N2O formation by 

ammonia oxidizing microbes: (1) What are the extracellular concentrations of NH2OH during 

NH3 oxidation by different ammonia oxidizers? (2) If these concentrations are significant, 

what is the NH2OH:final product ratio for AOB, AOA, and comammox? (3) Can we estimate 

the contribution of extracellular NH2OH to abiotic N2O production during NH3 oxidation? (4) 

What is the role of NO2
- in stabilizing NH2OH and in the abiotic conversion of NH2OH to 

N2O? To address these questions, temporal changes in NH2OH concentration were determined 

during incubation of pure and enriched cultures of chemolithoautotrophic AOB, AOA and 

comammox (obtained from soil and aquatic environments) at high (2 mM) and low (0.5 mM) 

NH4
+ concentrations. These experiments were complemented by measurement of abiotic 

NH2OH decay rates and abiotic N2O production involving NH2OH in different media and at 

different incubation temperatures and NO2
- concentrations. These analyses were performed to 

calculate extracellular NH2OH production ratios on a final product basis, to quantify the 

coupled biotic-abiotic NH4
+-NH2OH-N2O conversion rate of AOB, AOA and comammox, 

and to explore the role of NO2
- in the abiotic NH4

+-NH2OH-N2O conversion. We hypothesize 

that the coupled biotic-abiotic N2O production is an important mechanism of N2O production 

during NH4
+ oxidation, at least in some ammonia oxidizers. 
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2.2 Materials and methods 

2.2.1 Strains and cultivation 

This study involved four AOB (Nitrosomonas europaea ATCC 19718, Nitrosospira 

multiformis ATCC 25196, Nitrosomonas nitrosa Nm90, Nitrosomonas communis Nm2), three 

AOA (Nitrososphaera gargensis, Nitrososphaera viennensis and Ca. Nitrosotalea sp. Nd2), 

one AOA enrichment (Ca. Nitrosotenuis uzonensis) and one comammox enrichment (Ca. 

Nitrospira inopinata). N. europaea, N. multiformis, N. communis, N. viennensis and Ca. N. sp. 

Nd2 were isolated from soil (Koops et al., 1991; Shaw et al., 2006; Tourna et al., 2011; 

Lehtovirta-Morley et al., 2014); N. nitrosa Nm90 was isolated from industrial sewage (Koops 

et al., 1991); N. gargensis and Ca. N. uzonensis were isolated from thermal springs 

(Lebedeva et al., 2013; Palatinszky et al., 2015); Ca. N. inopinata was enriched from a hot 

water outflow of a deep oil exploration well (Daims et al., 2015). 

N. europaea and N. multiformis were maintained at 30°C in modified Skinner and Walker 

(S&W) medium (Skinner & Walker, 1961), containing 0.2 g KH2PO4, 0.04 g CaCl2∙2 H2O, 

0.04 g MgSO4∙7 H2O, 1 mL FeNaEDTA (7.5 mM), 1 mL phenol red (0.05%) as pH indicator, 

10 mL L-1 HEPES buffer (1 M HEPES, 0.6 M NaOH) and 4 mM (NH4)2SO4 L-1. The pH was 

regularly adjusted to 7.7 by the addition of sterilized 5% (w/v) Na2CO3. The acidophilic AOA 

Ca. N. sp. Nd2 and the AOA N. viennensis were maintained in freshwater medium at 35 and 

37°C, respectively, according to Tourna et al. (2011). The pH for the Ca. N. sp. Nd2 was 

adjusted to 5.0-5.3 with HCl and the NH4
+ concentration was kept at 0.5 mM by routinely 

adding the NH4Cl stock solution. The pH for N. viennensis was adjusted to 7.5 by the addition 

of 10 mL L-1 HEPES buffer (1 M HEPES, 0.6 M NaOH). N. viennensis was supplied with 1 

mM NH4Cl and 0.1 mM pyruvate. The AOB N. nitrosa and N. communis, the AOA N. 

gargensis, and the enrichments containing Ca. N. uzonensis and Ca. N. inopinata were 

maintained at 37, 28, 46, 46 and 37°C, respectively, in AOA medium modified from 

Lebedeva et al. (2013) containing (L-1) 75 mg KCl, 50 mg KH2PO4, 584 mg NaCl, 50 mg 

MgSO4 ∙ 7 H2O, 1 mL of trace element solution (AOA-TES), 1 mL of selenium-tungsten 

solution (SWS), 4 g CaCO3 (mostly undissolved, acting as a solid buffer reservoir and growth 

surface) and 5 ml of NH4Cl (from an autoclaved 0.2 M stock solution). For a detailed 

description of the composition of TES and SWS please refer to Widdel (1980).  
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2.2.2 Incubation experiments 

Metabolically active cultures were concentrated and washed twice using fresh medium 

without NH4
+ by centrifugation (Table S2.1), and resuspended in fresh medium containing 0.5 

or 2 mM NH4
+. Note that the added NH4

+ concentrations were not optimal for all strains tested, 

but the use of the same concentrations for all strains maximized comparability of the chemical 

factors contributing to the N2O formation in the various growth media. Ca. N. sp. Nd2 was 

incubated with 0.5 mM NH4
+ only, as this culture grew extremely slowly and is inhibited by 

high nitrous acid concentration formed under acidic conditions. Cultures were incubated 

under different conditions and for different periods depending on their different growth 

characteristics (Table S2.1). All treatments were carried out with 4-6 replicates. Only N. 

communis (90 rpm, New Brunswick™ Innova® 42 Shaker) and N. nitrosa (90 rpm, GFL 

3019 shaker) cultures were shaken during incubation. Before each sampling, bottles of all 

cultures were mixed by shaking by hand. Samples (3 mL) for chemical and protein analyses 

were taken at 0, 2, 5, 8 and 13 h on the first day, and thereafter every 12 or 24 h, and 

transferred to 2-mL and 1.5-mL autoclaved Eppendorf tubes, respectively. The tubes were 

centrifuged immediately at 8000 g (4°C) for 10 min and 1.2 mL of supernatant was 

transferred to two 1.5-mL Eppendorf tubes containing 75 µL 480 mM (for 2 mM NH4
+ 

treatment) or 160 mM (for 0.5 mM NH4
+ treatment) sulfanilamide in 0.8 M HCl for 

quantification of NH2OH (see below). Another 0.2 mL supernatant was transferred to a 1.5-

mL Eppendorf tube for NH4
+ and NO2

- analyses (see below) and the remaining liquid and 

pellet were frozen at -20°C for protein quantification (see below). To prevent any potential 

effect of phenol red on NH2OH analysis, N. europaea and N. multiformis were grown in 

parallel in media buffered with HEPES without and with phenol red to facilitate maintenance 

of pH between pH 7.5 and 8 by the addition of sterilized 5% (w/v) Na2CO3. Ca. N. sp. Nd2 

cultures were not buffered and pH was determined daily by pH measurement of 2-mL samples. 

For cultures buffered with CaCO3, pH was stable at ~8.2 throughout the incubation period.  

2.2.3 Determination of abiotic NH2OH decay rates under ambient air conditions 

Abiotic NH2OH decay was quantified in S&W (with HEPES buffer) and modified AOA (with 

CaCO3 buffer) media used in this study at the respective growth temperatures. The freshwater 

medium for Ca. N. sp. Nd2 and N. viennensis were not tested for abiotic NH2OH decay since 

no extracellular NH2OH was observed during NH3 oxidation by these cultures. Well-aerated 

medium (40 mL) was added to 120-ml glass serum bottles followed by different amounts (4, 8, 
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20 and 40 µL) of 5 mM NH2OH to reach final concentrations of 0.5, 1, 2.5 and 5 µM, 

respectively. Subsequently, 1.6 mL 50 mM NO2
- was added to give a final concentration of 2 

mM to simulate abiotic NH2OH decay in the presence of NO2
-. Bottles were then capped with 

aluminum foil and incubated at 30, 37 and 46°C. Samples (1.2 mL) were taken after 0, 1, 2, 5 

and 8 h and transferred to 1.5-mL Eppendorf tubes containing 75 µL 480 mM (for 2 mM NO2
- 

treatment) or 160 mM (for the treatment without NO2
- addition) sulfanilamide in 0.8 M HCl. 

Samples were frozen at -20°C until quantification of NH2OH (see below).   

2.2.4 Chemical assays 

Hydroxylamine concentration was estimated according to the method of Liu et al. (2014). 

Briefly, 1.2 mL of sample, thawed at room temperature, was transferred to a 22-mL glass vial 

and 4.8 mL deionized water was added, yielding a pH of ~2. Then, 0.6 mL of 25 mM FeCl3 

was added to the vial, which was immediately closed gas-tight with a crimping tool. Control 

vials contained sample and water only to assess N2O in the headspace and dissolved in the 

sample. The vials were shaken for 3 h at 200 rpm and then transferred to an autosampler for 

gas chromatography (GC) analysis with an electron capture detector (ECD) as described in 

Liu et al. (2014). NH2OH calibration in the range 0 - 1 µM was performed before each 

measurement. Since N2O background increased by about 10 ppb in the control vials for the 

culture samples of N. communis and N. nitrosa during NH2OH determination, NH2OH 

concentrations <0.06 µM were defined as not detectable. NO2
- and NH4

+ concentrations were 

determined colorimetrically in 96-well plates using sulfanilamide and N-(1-

naphthyl)ethylenediamine dihydrochloride for NO2
- (Strickland & Parsons, 1972), and the 

indophenol method described by Kandeler & Gerber (1988) for NH4
+. Protein concentration 

was determined with the Pierce BCA protein assay kit (Thermo Fisher Scientific). 

2.2.5 Calculation of the NH2OH:final product ratio  

Total extracellular NH2OH concentrations by AOB, AOA and comammox during 

consumption of available NH4
+ was evaluated as the NH2OH:final product ratios (final 

product was NO3
- in the case of comammox and NO2

- in all other cases), taking into account 

the abiotic decay rate of the very reactive NH2OH, which followed first-order reaction 

kinetics: 

C = C0 e-kt    (2.1) 
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where C is the NH2OH concentration (µM) at decay time t (h), C0 is the initial NH2OH 

concentration (µM) and k is the first-order rate constant. 

The NH2OH:final product ratio was calculated as: 

r = [𝐶𝑡2−𝐶𝑡1+∑ 𝐶𝑖
𝑡2−1
𝑖=𝑡1 ·(1−𝑒−𝑘·1)]

𝐶𝑡2
′ −𝐶𝑡1

′   (2.2) 

where r (dimensionless) is the NH2OH:final product ratio between t1 and t2, Ct1 and Ct2 (µM) 

are the measured NH2OH concentrations at t1 and t2, respectively, Ci (µM) is the interpolated 

NH2OH concentration between times t1 and t2 (t2 - t1 = 1 hour), Ct1
’
 and Ct2

’ (µM) are the NO2
- 

or (for comammox) NO3
- concentrations at t1 and t2, and k is the average value of the 

measured kinetic constant for abiotic NH2OH decay in the range of 0.5–2.5 (for HEPES 

buffered medium) or 0.5–5 (for CaCO3 buffered medium) µM initial NH2OH concentrations. 

Note that the presence of NO2
- in the medium would also decrease k. As k was determined in 

the absence or presence of 2 mM NO2
-, loss of NH2OH was calculated using an average value 

of k determined at 0 or 2 mM NO2
- when NO2

- concentration in the medium was <1 mM or >1 

mM, respectively. As NO2
- concentration increased gradually with time, this definition of k 

would have led to overestimation or underestimation of NH2OH when NO2
- concentration was 

<1 mM or >1 mM, respectively. However, the total NH2OH:final product ratio was very 

likely underestimated since higher NH2OH concentration was detected during late growth 

when NO2
- concentration was mostly >1 mM. For the comammox, NO2

- concentration was 

low (<0.033 mM) at all time points and had a negligible effect on the calculation of 

NH2OH:final product ratio.   

2.2.6 Calculation of the fraction of NH4
+ converted to N2O during incubation 

The fraction of NH4
+ converted to N2O through incubation was calculated by determining the 

overall abiotic N2O product ratios (ri in equation 2.3) at different NH2OH and NO2
- 

concentrations for different media and incubation temperatures. For this, 1.2 mL of HEPES 

and CaCO3 medium, respectively, was added to 22-ml glass vials, followed by 0, 12 and 24 

µL  of 100 mM NO2
- and 12, 24 and 60 µL of 50 µM NH2OH. The final NO2

- concentrations 

were 0, 1 and 2 mM and final NH2OH concentrations were 0.5, 1 and 2.5 µM. Vials were then 

incubated for 24 h at 30, 37 and 46°C according to the cultivation conditions of the respective 

microorganisms and headspace gas was analyzed for N2O by GC. The fraction of NH4
+ 

converted to N2O over the whole NH3 oxidation process (R) was then calculated as follows: 
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R =  ∑ 𝐶𝑖·
𝑛
𝑖=1 𝑟𝑖

𝐶
   (2.3) 

where Ci is the concentration of NH2OH during the ith and (i+1)th sampling, ri is the 

theoretical abiotic N2O production ratio determined as described in section 2.2.6, and C is the 

concentration of NH4
+ consumed during incubation. Note that ri was strongly dependent on 

NO2
- concentration. Abiotic N2O production within a certain time period when NO2

- 

concentration was >1 mM, 1 - 1.5 mM and >1.5 mM was calculated using ri values for NO2
- 

concentrations of 0, 1 and 2 mM, respectively. As ri increased with increasing NO2
- 

concentration, this definition of ri may have led to underestimation or overestimation of 

abiotic N2O production when NO2
- concentration was < or >1.5 mM, respectively. 

2.2.7 Data analyses 

Abiotic NH2OH decay was fitted to first-order reaction equations by the R software package 

(version 3.1.0). The coefficients of determination (R2) were larger than 0.99. Paired t-tests (R, 

version 3.1.0) were used to identify significant differences in NH2OH concentrations between 

two time points during culture incubation. 

 

2.3 Results and discussion 

2.3.1 Extracellular NH2OH from autotrophic ammonia oxidizers 

The NH2OH concentration in the medium during NH3 oxidation differed significantly among 

AOB cultures (Fig. 2.1) and was greatest for N. multiformis on initial NH4
+ concentrations of 

0.5 and 2 mM. NH2OH release was also observed for N. europaea, albeit at lower 

concentrations than for N. multiformis. No NH2OH was detectable for N. nitrosa Nm90 or N. 

communis at both tested NH4
+ concentrations. Initial increases in NH2OH concentration in 

cultures of N. multiformis and N. europaea were associated with increases in NO2
- 

concentration, but eventually reached a plateau or decreased before NO2
- concentration 

reached a maximum. The largest measured NH2OH concentrations in the medium were 2.2 

and 0.78 µM, from N. multiformis and N. europaea, respectively, during incubation with 2 

mM NH4
+.  
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Figure 2.1 Dynamics of NH4
+ (red squares), NO2

- (yellow circles), NH2OH (blue triangles) and total N 
(sum of NO2

- and NH4
+, black diamonds) concentrations during incubation of four ammonia oxidizing 

bacteria. NH4
+, NO2

- and total N are plotted using the left y-axis, while NH2OH is plotted using the 
right y-axis. Please note that the left y-axes and the x-axes, respectively, are not always scaled 
identically to improve data presentation. The values are presented as mean ± standard error (SE). 

 

Several studies have determined NH2OH concentrations in the medium during NH3 oxidation 

by pure cultures of the AOB N. europaea. Stüven et al. (1992) observed 0.2 - 1.7 µM NH2OH 

during NH3 oxidation (10 mM) and Yu & Chandran (2010) reported 0.2–3.2 µM NH2OH 

during growth of N. europaea 19718 on 20 mM NH4
+. These findings are consistent with the 

NH2OH concentrations detected for N. europaea in our study, where NH2OH concentrations 

were about three orders of magnitude smaller than those of the produced NO2
-. NH2OH 
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production by N. europaea during NH3 oxidation in our study was also consistent with data 

reported by Yu & Chandran (2010) for N. europaea 19718, although they did not specify 

whether they measured NH2OH in supernatant (as in our study) or in untreated cultures. In our 

experiments, N. multiformis NH2OH concentrations were even larger than for N. europaea. 

The exact reason for this phenomenon remains unclear. One possible explanation is that N. 

multiformis biomass consumed NH4
+ faster (for the 0.5 mM NH4

+ treatment) than N. 

europaea and faster NH3 oxidation might have led to the higher NH2OH release. However, the 

N. communis biomass in the batch experiments showed no detectable NH2OH release into the 

medium even though it had the highest NH3 oxidation rates. Since N. communis is considered 

eutrophic and prefers higher concentrations of NH4
+ (10-50 mM) (Prosser et al., 2014), the 

absence of NH2OH could be due to complete consumption by HAO and conversion to NO2
-, 

assuming that the Vmax of HAO in N. communis is larger than in other AOB. Moreover, N. 

communis is unable to tolerate >100 µM NH2OH in contrast to tolerance of 250 µM NH2OH 

by N. europaea and N. multiformis (Kozlowski et al., 2016c), which may relate to the absence 

of NH2OH in the medium of N. communis, although the exact mechanism for the low 

tolerance of NH2OH by N. communis is still not clear. NH3 oxidation by N. nitrosa Nm90 was 

lower than by the other tested AOB strains, possibly explaining the lack of detectable NH2OH 

release.  

Among the three AOA pure cultures, NH2OH release was detected from the thermal spring 

isolate N. gargensis growing on 2 mM initial NH4
+, but not on 0.5 mM NH4

+. The pattern of 

NH2OH release by N. gargensis differed from that of AOB, with a small but rather constant 

increase in NH2OH during incubation on 2 mM NH4
+, resulting in a final NH2OH 

concentration of 0.33 µM in the medium after 58 h. In contrast, NH3 oxidation by the soil 

AOA N. viennensis and Ca. N. sp. Nd2 was not associated with the detectable NH2OH release 

(Fig. 2.2). The NO2
- production rate by the AOA enrichment N. uzonensis (~0.3 mM NO2

- 

produced within 104 h) was similar at the two initial NH4
+ concentrations, but more NH2OH 

(0.34 µM) was observed at the end of the incubation at 2 than 0.5 mM NH4
+ initial 

concentration.  
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Figure 2.2 Dynamics of NH4
+ (red squares), NO2

- (yellow circles), NH2OH (blue triangles) and total N 
(sum of NO2

- and NH4
+, black diamonds) concentrations in the batch experiments with four ammonia 

oxidizing archaea. NH4
+, NO2

- and total N are plotted using the left y-axis, while NH2OH is plotted 
using the right y-axis. Please note that the left y-axes and the x-axes, respectively, are not always 
scaled identically to improve data presentation. The values are present as mean ± standard error (SE). 

 

No published AOA genomes contains an obvious homologue of AOB-like HAO, or of 

cytochromes c554 and cM552 that are considered critical for energy conversion (Walker et al., 

2010), initially casting some doubt on the role of NH2OH as an intermediate in NO2
- 

formation by AOA (Walker et al., 2010). However, Vajrala et al. (2013) reported the 

production of NH2OH in the marine AOA N. maritimus during NH3 oxidation. Furthermore, 

Kozlowski et al. (2016a) showed that the addition of NH2OH to a culture of N. viennensis 
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resulted in respiration and NO2
- formation and thus the most current model of AOA 

physiology postulates a yet undiscovered novel NH2OH-converting enzyme. The data from 

the N. uzonensis enrichment culture, that does not contain any known AOB (Lebedeva et al., 

2013), confirms the N. gargensis data in showing that some AOA release NH2OH. Also, in a 

preliminary experiment, N. gargensis could convert NH2OH to NO2
- biotically, especially at 

lower NH2OH levels (Fig. S2.1). Stieglmeier et al. (2014) observed aerobic N2O production 

by N. viennensis and attributed this to the hybrid formation of N2O via an N-nitrosating 

reaction. Kozlowski et al. (2016a) later reported that N2O formation from N. viennensis could 

be attributed to abiotic reactions between NO and medium substances during growth, 

especially under anoxic conditions. It is tempting to speculate that the aerobic hybrid 

formation of N2O in N. viennensis could also stem from the well-known chemical reaction 

between NH2OH and NO2
-. However, we failed to observe NH2OH in the medium of N. 

viennensis, which could reflect (i) lack of NH2OH release by this culture (indicating that the 

coupling between AMO and the archaeal HAO-like enzyme is more efficient than in some 

AOB) or (ii) rapid chemical NH2OH conversion in the medium (which could only mask small 

amounts of released NH2OH), as the medium response of N. viennensis was different from 

that of N. gargensis in terms of the nitrogenous gas production from abiotic NH2OH decay 

(Fig. S2.2). Also for Ca. N. sp. Nd2, NH2OH was not detectable, possibly due to low NH3 

oxidation rates.  

The comammox organism Nitrospira inopinata oxidized NH4
+ to NO3

- (Fig. 2.3). After 48 h 

of incubation, N. inopinata produced 0.46 mM NO3
- with 2 mM initial NH4

+ concentration, 

while it produced 0.27 mM NO3
- when fed with 0.5 mM NH4

+. The release of the NH2OH 

into the medium by N. inopinata was similar for both NH4
+ levels, but unlike the other 

cultures, increasing mainly at the beginning of the incubation, decreasing and then increasing 

again in parallel with increasing NO3
- concentration to reach 0.43 µM at the end of the 

incubation period. This decreasing and increasing trend was significant (P < 0.025) for the 

culture growing on 2 mM NH4
+. Consistent with the detection of NH2OH, previous genomic 

analysis had shown that N. inopinata encodes a predicted octaheme cytochrome c protein 

resembling the HAO of AOB, and an AMO that is relatively closely related to the AMO of 

the betaproteobacterial AOB (Daims et al., 2015). N. inopinata lacks canonical NO reductases 

but encodes enzymes for dissimilatory nitrate reduction to ammonia (Kits et al., 2017). 

Whether the latter enzymes are also expressed and active under aerobic conditions and might 

contribute to N2O formation has not yet been investigated. 
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Figure 2.3 Dynamics of NH4
+ (red squares), NO3

- (yellow circles), NH2OH (blue triangles) and total N 
(sum of NO3

- and NH4
+, black diamonds) concentrations during the incubation of the comammox 

organism N. inopinata. NH4
+, NO3

- and total N are plotted using the left y-axis, while NH2OH is 
plotted using the right y-axis. The values are present as mean ± standard error (SE).  

 

2.3.2 NH2OH abiotic decay and NH2OH:final product ratios during NH3 oxidation 

To better understand the presence of extracellular NH2OH during ammonia oxidation of the 

tested organisms, a series of NH2OH abiotic decay experiments were conducted with different 

media, incubation temperatures and NO2
- concentrations (Fig. 2.4). All three factors, i.e., 

medium type, temperature, and NO2
- concentration, had strong effects on the rate of abiotic 

NH2OH decay. The decay rate was faster in CaCO3 than in HEPES-buffered media: 0.5 to 2.5 

µM NH2OH decayed abiotically at 30°C within ~8 h and ~30 h in the CaCO3 and HEPES-

buffered media, respectively. Consequently, the first-order rate constants for abiotic NH2OH 

decay were much higher in the CaCO3 than in the HEPES-buffered media, with an average 

value approximately fourfold larger in the former (0.71 vs. 0.16) (Table S2.2). The 

temperature increased the rate of abiotic NH2OH decay (with a single exception, Table S2.2). 

The decay time at 46°C (~4 h) was half that at 30°C (~8 h) for the CaCO3 medium, and the 

average first-order rate constant was ~80% greater at 46°C (1.31) than at 30°C (0.71). NO2
-, 

however, unexpectedly inhibited abiotic NH2OH decay in both media tested (Figure 2.4, 

Table S2.2), although NO2
- is known to oxidize NH2OH to N2O, albeit preferentially at low 

pH (e.g., Heil et al., 2014). This stabilizing effect of NO2
- was particularly pronounced at 

higher temperatures for the CaCO3 medium, where the first-order rate constant decreased by 

52% for 2 mM NO2
- at 46°C compared to the absence of NO2

-. To exclude the possibility of 

abiotic conversion of NO2
- to NH2OH by components of the medium, an additional test was 

conducted using the more active CaCO3-buffered medium (compared to the HEPES-buffered 

medium) at the highest culture incubation temperature, but no abiotic conversion of NO2
- to 
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NH2OH occurred (data not shown). An additional 15N-NO2
- experiment showed that NO2

- did 

not interfere with the NH2OH analysis (Table S2.3). Under alkaline conditions, one product of 

NH2OH abiotic decay is NO2
- (Butler & Gordon, 1986), which has been also observed in 

abiotic NH2OH decay experiments in the CaCO3-buffered medium in this study (Fig. S2.3). In 

addition to NO2
- and N2O, nitrogen dioxide (NO2), but almost no NO, was observed during 

the NH2OH abiotic decay (Fig. S2.2). The presence of NO2 may explain the observation of 

abiotic NH2OH-to-NO2
- conversion as NO2 is highly reactive and can hydrolyze to nitric acid 

(HNO2) and nitrous acid (HNO3) in aqueous solution. Consequently, NO2
-, N2O, and NO2 

comprised approximately 18.5%, 9.8% and 32.1%, respectively, of the abiotically decayed 

NH2OH in the CaCO3-buffered medium (Fig. S2.2, S2.3). Therefore, a possible reason for the 

inhibitory effects of NO2
- on abiotic NH2OH decay could be that the presence of NO2

- slowed 

down the transformation of NH2OH to NO2
- by inhibiting the disproportionation of NO2, one 

of the primary decay products of NH2OH, to HNO3 and HNO2.  

 

Figure 2.4 Abiotic decay of NH2OH in the absence (hollow) or presence (solid) of 2 mM NO2
- in 

HEPES-buffered and CaCO3-buffered media at different incubation temperatures. The NH2OH 
concentrations were 0.5 (square), 1 (circle), 2.5 (triangle), and 5 (diamond) µM. Mean values of three 
replicates are presented. The relative standard deviation (RSD) of all data is smaller than 10%. Please 
note that the x-axes are not always scaled identically to improve data presentation. 
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The effect of temperature on abiotic NH2OH decay was as expected, as NH2OH is extremely 

unstable and reactive, especially at higher temperatures (Butler & Gordon, 1986). The exact 

reason for the difference of abiotic NH2OH decay between the two media (HEPES- and 

CaCO3-buffered) is not obvious. The media differ mainly in terms of pH, the composition, 

and concentrations of the trace metals and the buffer (HEPES vs. CaCO3). Both pH and redox 

active trace metals are known to have a strong effect on abiotic NH2OH decay. Acidic pH 

stabilizes NH2OH in the absence of redox active trace metals, while trace metals such as Cu2+, 

Fe3+ and Mn4+ can stimulate NH2OH decomposition (Butler & Gordon, 1986). Therefore, 

higher pH and the presence of trace metals could lead to greater abiotic NH2OH decay in the 

CaCO3-buffered medium than in HEPES-buffered medium.  

First-order kinetic rate constants and Equation 2.2 were used to estimate both instantaneous 

and total NH2OH:final product ratios during NH3 oxidation by those cultures producing 

relatively high NH2OH concentrations, i.e. N. europaea, N. multiformis, N. gargensis and N. 

inopinata (Fig. S2.4 and Table 2.1). For the three pure cultures (N. europaea, N. multiformis 

and N. gargensis), instantaneous NH2OH:final product ratios were in the range 0.1 to 0.6% 

during early phases of the incubation experiments, but several-fold higher as the substrate 

NH4
+ was nearly consumed, e.g., as high as about 4% for N. multiformis (Fig. S2.4). For the 

comammox organism N. inopinata, instantaneous NH2OH:final product ratios were in the 

range 0.1 to 2.6% and 0.9 to 5.7% at 0.5 and 2 mM initial NH4
+ concentration, respectively, 

also with higher values at the end of incubation (Fig. S2.4). Generally, N. inopinata had the 

largest total NH2OH:final product ratio of all cultures tested, with ratios of 0.63% and 1.92% 

after incubation for 60 h at 0.5 and 2 mM initial NH4
+ concentration, respectively (Table 2.1). 

In contrast, N. gargensis had a total NH2OH:NO2
- ratio of 0.46% at 2 mM initial NH4

+ 

concentration after 60 h, whereas N. multiformis and N. europaea had total NH2OH:final 

product ratios of 0.34-0.56% and 0.24-0.33%, respectively, depending on the initial NH4
+ 

concentration. 
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Table 2.1 Total NH2OH:final product (NO2
- or NO3

-) ratios for different ammonia oxidizers. § For N. 
inopinata (a comammox organism), NO3

- is the final product of NH3 oxidation. # The NH2OH 
concentration here is the total extracellular NH2OH including the calculated concentration of NH2OH 
that was abiotically converted during incubation. 

Cultures Initial NH4
+ 

concentration 
(mM) 

Final NO2
- or NO3

-§ 
concentration 

(µM) 

NH2OH# 
concentration 

(µM) 

NH2OH:final 
product ratio (%) 

N. multiformis 0.5 516 1.8 0.34 
2 1955 11.0 0.56 

N. europaea 0.5 537 1.8 0.33 
2 1930 4.7 0.24 

N. gargensis 2 1860 7.1 0.46 
N. inopinata 0.5 280 1.8 0.63 

2 490 9.4 1.92 
 

2.3.3 Estimating the fraction of NH4
+ converted to N2O during NH3 oxidation under 

ambient air conditions 

For an informed estimate of the fraction of NH4
+ that was converted to N2O by the different 

ammonia oxidizers under ambient air incubation conditions over the whole incubation period, 

it is essential to consider abiotic N2O production from different NH2OH concentrations, at 

different incubation temperatures, and at different concentrations of NO2
-. In the environment, 

additional factors such as organic matter content, pH, and content of suitable oxidants like 

MnO2 and Fe3+ will also affect the chemical N2O conversion ratio from NH2OH (Bremner, 

1997; Liu et al., 2016). The abiotic N2O:NH2OH conversion ratio was 12-14% for the 

HEPES-buffered medium at 30°C in the absence of NO2
-, and between 18% and 37% for the 

same medium with 1 and 2 mM NO2
-, respectively (Table 2.2). The ratio in the CaCO3-

buffered medium at 30°C was larger, with values of 15-28%, 32.2-46.9%, and 37.6-48.9% at 

0, 1 and 2 mM NO2
-, respectively, for the NH2OH range from 0.5 to 2.5 µM. The contribution 

of NO2
- to N2O production involving NH2OH was even larger at a higher temperature, e.g. 

46°C (Table 2.2). The stimulated conversion of NH2OH to N2O by NO2
- is likely caused by 

the hybrid reaction of NO2
- and NH2OH. However, another mechanism could be inhibition of 

NH2OH conversion to NO2/NO2
- by NO2

-, thereby channeling NH2OH to N2O indirectly via 

other mechanisms. 
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Table 2.2 Fraction (%) of N2O abiotically produced from the added NH2OH in the different media at 
various levels of NH2OH (0.5, 1 and 2.5 µM) and NO2

- (0, 1 and 2 mM). 

 0 mM NO2
- 1 mM NO2

- 2 mM NO2
- 

NH2OH (µM) 0.5 1 2.5 0.5 1 2.5 0.5 1 2.5 
HEPES (30°C) 14.1 13.7 12.0 29.3 20.0 18.4 36.6 33.1 23.4 
CaCO3 (30°C) 15.0 20.9 28.0 33.2 32.2 46.9 45.0 37.6 48.9 
CaCO3 (37°C) 6.7 5.6 6.7 36.2 31.0 43.7    
CaCO3 (46°C) 6.3 4.6 12.5 29.5 22.4 36.1 38.8 46.0 57.1 

 

The total fraction of NH4
+ converted to N2O through extracellular NH2OH and substances in 

the medium over the whole incubation period was then calculated according to Equation 2.3 

(Table 2.3). The total fraction of NH4
+ converted to N2O by this mechanism was 0.05% and 

0.12% for N. multiformis incubated at 0.5 and 2 mM initial NH4
+, respectively, which is 

consistent with that emitted as N2O (0.05-0.1%) during aerobic incubation of a Nitrosospira 

strain (Jiang & Bakken, 1999; Shaw et al., 2006). The fraction of NH4
+ converted to N2O by 

N. europaea was lower than that of N. multiformis, but still consistent with that converted to 

N2O by N. europaea reported by other studies, e.g., 0.05-1.95% (Remde & Conrad, 1990) and 

0.05-0.15% (Hynes & Knowles, 1984). Dundee & Hopkins (2001) also reported that N. 

multiformis produced more N2O than N. europaea at greater dissolved O2 concentrations, 

while N. europaea produced much more N2O during nitrifier-denitrification than N. 

multiformis, which is consistent with our finding that the fraction of NH4
+ converted to N2O 

was larger for N. multiformis than for N. europaea under ambient air conditions. 

Table 2.3 Estimated fraction of NH4
+ converted to N2O from the abiotic reactions between the 

biologically produced extracellular NH2OH and substances in the medium for different ammonia 
oxidizers. 

Cultures Initial NH4
+ 

concentration 
(µM) 

Estimated 
fraction of NH4

+ 
converted to N2O 

(%) 
N. multiformis 500 0.05 

2000 0.12 
N. europaea 500 0.05 

2000 0.07 
N. gargensis 2000 0.08 
N. inopinata 500 0.06 

2000 0.14 
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The AOA N. viennensis and N. maritimus are reported to be incapable of nitrifier-

denitrification at reduced O2 concentration, but produce N2O via hybrid formation, as revealed 

by 15N-labeling (Stieglmeier et al., 2014). In the present study, potential abiotic N2O 

production was approximately 0.08% of the total substrate turnover during aerobic NH3 

oxidation by AOA. Albeit this value was found only in N. gargensis, it was close to the values 

reported for N. viennensis (0.09%) and N. maritimus (0.05%) by Stieglmeier et al. (2014). The 

fraction of NH4
+ calculated to be converted to N2O by the comammox organism N. inopinata 

was even higher (in the range of 0.06–0.14%), but no measured data on N2O emissions from 

comammox organisms are yet available for comparison. 

 

Figure 2.5 Schematic representation of N2O production pathways during NH3 oxidation involving 

NH2OH and NO2
- (AMO, ammonia monooxygenase; HAO, hydroxylamine dehydrogenase; NIR, 

nitrite reductase; NOR, NO reductase). Please note that the schematic cell drawing includes the 

periplasm. 

 

2.4 Conclusions 

We show that extracellular NH2OH is formed in growth media during aerobic NH3 oxidation 

in batch incubations by AOB, AOA and comammox cultures, but with large differences 

between the different organisms and incubation conditions. The calculated fraction of NH4
+ 

converted to N2O by abiotic reactions between extracellular NH2OH and substances in the 

growth medium during aerobic NH3 oxidation, was in the range of values reported previously 

for the conversion of substrate to N2O for various AOB and AOA. The presence of NO2
- in 

the medium not only offers a reactant for hybrid N2O formation from NH2OH, but also delays 
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overall NH2OH abiotic decay further stimulating the conversion of NH2OH to N2O. In view 

of the new results presented here and in recent studies  (Stieglmeier et al., 2014; Heil et al., 

2016; Kozlowski et al., 2016a; Liu et al., 2017a,b; Terada et al., 2017), it is tempting to 

speculate that at least for some strains extracellular NH2OH might contribute significantly to 

aerobic ammonia-oxidizer associated N2O formation (as indicated in the gray area in Fig. 2.5). 

In others, e.g. N. viennensis, no extracellular NH2OH was observed during NH3 oxidation but 

aerobic N2O production has been reported (Stieglmeier et al., 2014), indicating a different 

mechanism, e.g. the abiotic reactions between intracellular NH2OH and periplasmic 

substances.  
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3.1 Introduction 

Hydroxylamine is a short-lived and reactive intermediate in the natural nitrogen cycle. It is 

formed during microbial nitrification, where NH4
+ is oxidized via NH2OH to NO2

- and NO3
- 

(Lees, 1952). NH2OH appears particularly interesting as it is not only an essential 

intermediate of nitrification, but also a potential participant in soil N2O formation (Ritchie & 

Nicholas, 1972; Bremner et al., 1980; Schreiber et al., 2012).  

Certain nitrifiers, e.g. Nitrosomonas europaea and Alcaligenes faecalis, can produce N2O 

during the oxidation of NH3 and NH2OH (Ritchie & Nicholas, 1972; Otte et al., 1999). 

NH2OH can also react with NO2
- during denitrification and produce hybrid N2O in 

denitrifiers, e.g. Pseudomonas sp. (Spott & Stange, 2011). Furthermore, large N2O emissions 

from sterilized soil were observed after NH2OH addition, indicating that chemical reactions 

between NH2OH and other soil constituents may also play a crucial role in N2O production 

(Bremner et al., 1980). In general, there are three chemical ways of NH2OH oxidation to N2O:  

(i) the oxidation of NH2OH by O2:  

2 NH2OH + O2 → N2O + 3 H2O    (3.1) (Bonner et al., 1978); 

(ii) the reaction between NH2OH and NO2
-:  

NH2OH + NO2
- → N2O + H2O + OH-   (3.2) (Arnold, 1954); 

(iii) the reactions between NH2OH and metal ions or metal oxides: 

4 Fe3+ + 2 NH2OH → 4 Fe2+ + N2O + H2O + 4 H+ (3.3) 

2 MnO2 + 2 NH2OH → 2 MnO + N2O + 3 H2O  (3.4) (Butler & Gordon, 1986; 

Bremner, 1997).  

Methods for NH2OH determination have been developed since the 1950s (Dias et al., 1979). 

However, none of these methods have been widely accepted partly due to the inevitable 

disadvantages (Dias et al., 1979). An alternative approach, which involves oxidation of 

NH2OH to N2O by Fe3+ and the subsequent measurement of N2O by GC with GC-ECD, was 

formerly developed for the determination of NH2OH in seawater (von Breymann et al., 1982; 

Butler & Gordon, 1986). Compared to the former methods, this alternative approach is much 

more sensitive and can detect NH2OH in water at concentrations as low as 5 nM, thereby 

exceeding the sensitivity of the spectrophotometric methods by at least an order of magnitude 
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(von Breymann et al., 1982; Butler & Gordon, 1986). Until now, this GC method has been 

successfully used for the determination of NH2OH in marine and pharmaceutical aqueous 

samples (Guzowski Jr et al., 2003; Schweiger et al., 2007; Kock & Bange, 2013). Due to its 

high sensitivity, it appeared to be a very promising approach for the detection of NH2OH in 

soils. 

In contrast to water samples, soil is a much more complex matrix, containing potentially large 

amounts of organic matter, metal ions and, occasionally, NO2
-, which could interfere with 

NH2OH detection. As NH2OH is highly reactive, fast extraction of soil NH2OH is crucial for 

reliable quantification of NH2OH concentrations in soils. Different extraction conditions – 

such as temperature, pH, extraction method and time – may affect the determination of 

NH2OH concentrations.  

As no successful attempt to extract NH2OH from natural soil samples has been reported until 

now, the first aim of the study was to test different methods for NH2OH extraction from soils 

and identify the most suitable conditions for highest NH2OH recovery from the soil samples. 

Another challenge was to minimize the potential interference of soil NO2
- with N2O formation 

from NH2OH oxidation, as NO2
- can artificially increase N2O formation due to its reaction 

with NH2OH by contributing one of the two nitrogen atoms of N2O. Kock & Bange (2013) 

reported that already 5 µM NO2
- could significantly bias NH2OH analysis in water samples, 

but this bias could be eliminated by the use of 100 μM sulfanilamide (SA). Therefore, the 

second aim of this study was to explore the effect of NO2
- at concentrations as high as 100 µM 

on NH2OH detection via N2O, as well as to identify the SA concentration sufficient for its 

elimination. Motivated by the hypothesis that there might be a close link between soil NH2OH 

concentrations and N2O formation in soils under aerobic conditions, the third aim of this study 

was to apply the new method to natural soil samples and compare their NH2OH content with 

their N2O emission rates. 

 

3.2 Materials and methods 

3.2.1 Soils 

Soil samples were collected at 44 locations in a Norway spruce forest site (Wüstebach, 50° 30′ 

10″ N, 6° 19′ 50″ E) in the Eifel National Park, Germany which is part of the Terrestrial 



Chapter 3 

34 

 

Environmental Observatories (TERENO) initiative (Zacharias et al., 2011; Bogena et al., 

2013). At each sampling point, samples of organic (O) and mineral (A) horizons were 

collected between June 24 and 28, 2013. Soil of one of the sampling points was chosen for the 

development of soil NH2OH analysis. At this point, litter layer (L) of Norway spruce was also 

collected. Litter was cut with scissors, and all samples were passed through a 2 mm sieve. The 

samples of the chosen point were put in open plastic bags and stored in a refrigerator (4 ºC) 

until the beginning of the experiments. The other soil samples were stored in closed plastic 

bags in a freezer at –18ºC until analysis with the final method. Before analysis, the frozen soil 

samples were taken out of the freezer, opened and kept at room temperature (21 ±1 ºC, 

applied for the whole paper) for 3 d for reactivation of microbial activity. Soil samples were 

passed through 2 mm sieve during the reactivation period. The basic properties of the soil and 

litter samples are shown in Table 3.1. 

Table 3.1 Characteristics of the soil used in the experiments of this study (n = 3, ± sd). 

 

Samples 

C 

(%) 

N 

(%) 

Fe* 

(%)              

Mn* 

(%) 

Ca* 

(%) 

K* 

(%) 

Mg* 

(%) 

pH 

Litter 45.7±0.1 2.02±0.02 0.52 0.024 0.29 0.21 0.09 3.40±0.06 

Oh 29.3±0.1 1.43±0.03 2.05 <0.01 0.11 0.73 0.13 2.93±0.06 

Ah 14.1±0.1 0.72±0.011 3.34 <0.01 0.05 1.15 0.17 3.12±0.05 
* The relative error was 3% for values >1%, 20% for values <0.1%, and 10% for the other values. 

 

3.2.2 Principle of the assay 

Hydroxylamine was determined using the method described by Butler &Gordon (1986), 

where NH2OH was oxidized to N2O by Fe3+ at acidic conditions according to equation (3.3). 

The final concentration of NH2OH was calculated as follows (Gebhardt et al., 2004): 

[NH2OH] = 2 · r-1 · ([N2O]–[N2O]’)     (3.5) 

[N2O] = (S · N · P · Vwp + N · P · Vhs / RT ) / Vwp · 10-6
                                      (3.6) 

where [N2O] is the concentration of N2O produced by the reaction between NH2OH and Fe3+ 

at a certain pH; [N2O]’ is the background concentration of N2O of the solution without 

NH2OH and Fe3+ addition; r stands for the conversion rate, which is defined as the ratio of 

measured and theoretical NH2OH concentration, determined by adding different known 

amounts of NH2OH to deionized water samples; S is the solubility of N2O (nmol L-1)  as a 
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function of T and salinity of the sample  at 1.01 × 105 Pa according to Weiss and Price (1980); 

N is the measured mole fraction of N2O (ppb) in the headspace of vials; P is the pressure in 

the headspace (1.01 × 105 Pa); Vwp is the volume of water phase (mL); Vhs is the volume of 

headspace (mL); R is the gas constant (8.31441 J K-1 mol-1); and T is the equilibration 

temperature (room temperature) in Kelvin. 

All samples were analyzed for their headspace N2O concentrations using an automatic 

headspace sampler (TurboMatrix 110, PerkinElmer, Germany) and a GC-ECD system (Clarus 

580, PerkinElmer, Rodgau, Germany) with dinitrogen (99.999%, Air Liquide, Germany) and a 

mixture of argon/methane (90/10, Air Liquide, Germany) as carrier gas (flow 7 mL min-1) and 

make up gas (flow 25 mL min-1), respectively. The ECD column was filled with Elite-PLOT 

Q (30 m, 0.53 mmID, and 20 µmdf, USA) and run at 375°C. The temperature of the oven was 

30°C. Signal processing and chromatogram integration was carried out with Totalchrom 

(Clarus 580, PerkinElmer, Germany) software. The GC was calibrated by three different N2O 

standard gas mixtures in the range between 240 to 746 ppb N2O in nitrogen (99.999%), in 

which the detector showed a linear response (r2 > 0.99). All experiments and analyses were 

carried out in 22-mL GC glass vials (VWR International, Darmstadt, Germany). For N2O 

analysis of the headspace, the vials were crimped gas-tight with aluminum caps with butyl 

rubber seal (VWR International). If not indicated differently, the vials were then shaken on a 

rotary shaker at 250 rpm for 3 h. Preliminary experiments had shown that this time was 

sufficient for the full reaction between NH2OH and Fe3+ at pH 3. 

3.2.3 Experimental design 

3.2.3.1 Soil NH2OH extractions 

The extraction procedures were showed in Fig. 3.1. Four grams of fresh, field-moist soil or 2 

g litter was first added to a 100 mL conical flask. Then, 25 mL of 2 mM SA solution in 0.02 M 

HCl (pH 1.7) and 0.002 M HCl (pH 2.7) was added, respectively. The extraction was tested at 

4 °C and 25 °C, respectively, using two different extraction types (magnetic stirring and 

shaking), and testing different extraction times. After extraction, the mixture of soil and 

extractant was centrifuged at 3500 rpm for 15 min in a 50 mL polypropylene centrifuge tube 

(VWR International). Every treatment was duplicated or triplicated. 
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Figure 3.1 The final workflow of NH2OH extraction in this study. 

 

The extracted soil NH2OH was determined by adding 6 mL supernatant into a GC vial, 

followed by 0.6 mL 25 mM FeCl3·6H2O. Another 6.6 mL of supernatant was transferred into 

a separate GC vial for the determination of the N2O background. NH2OH concentration of the 

soil extract was calculated according to equation (3.5). NH2OH -to-N2O conversion rate (r) 

from each soil supernatant was determined by adding 5.5 mL supernatant into a GC vial, 

followed by 0.55 mL of 10 μM NH2OH solution and 0.6 mL of 25 mM Fe
3+ solution.  

Hydroxylamine recovery from soil was determined by extracting 4 g of soil or 2 g of litter 

with 25 mL 2 mM SA, containing 1 μM NH2OH, thereby adding in total 25 nmol NH2OH. 

The soil NH2OH extraction and measurement were carried out as mentioned above. The 

recovery factor was calculated according to the following equation:    

Recovery factor (f) = (C1 − C0) / C                           (3.7) 

where C1
 is the measured NH2OH concentration in soil samples after addition of 25 mL of 1 

µM NH2OH; C0 is the measured NH2OH concentration without NH2OH addition; and C 

stands for the added NH2OH concentration (1 µM).  

3.2.3.2 Nitrite removal 

Nitrite interference was tested first in deionized water. Five mL 0.05 M acetic acid solution 

(pH 3) was first transferred into GC vials, followed by 0.5 mL of either deionized water, 100 

µM or 1000 μM NaNO2 solution, resulting in a final NO2
- concentration of 0, 9.1 and 91 µM, 

respectively (for the ease of use labeled as 0, 10 and 100 µM NO2
-).  Half of the vials were 

immediately amended with 60 μL of 0.2 M SA in 1 M HCl, and allowed to stand for 30 min. 

Noted that 1 M HCl, instead of 2 M HCl was used, because the pH of soil supernatant was 

around 2 due to the counteraction of soil alkali ions after extraction. The other vials were 

amended with 60 μL of 1 M HCl only. Then 0.55 mL of 0.1, 0.5, 1 and 10 μM NH2OH 
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solution were added to the vials, respectively, followed by 0.6 mL of 25 mM Fe3+ solution. 

Each combination of NO2
- and NH2OH concentrations was analyzed in triplicate. 

Nitrite interference in soil was tested by adding 25 mL 0.05 M acetic acid with 100 μM NO2
- 

to 4 g fresh soil each. Then 0.25 mL 0.2 M SA in 2 M HCl was added to half of the soil 

samples, and the other half was amended with 0.25 mL 2 M HCl. The soil solutions were 

stirred magnetically for 10 min. After centrifugation at 3500 rpm for 15 min, 5.5 mL 

supernatant was transferred into GC vials, and 0.55 mL NH2OH with either 0.1, 0.5, 1 or 10 

μM were added to the vials, followed by 0.6 mL 25 mM Fe3+. Again, all analyses were carried 

out in triplicate. 

3.2.3.3 Soil N2O emission 

Three grams of field-moist soil each was weighed into GC vials. Then, the vials were crimped 

gas-tight and incubated at room temperature for 1, 3.5, 6 and 8 h, respectively. The N2O 

concentration in the vial headspace was subsequently measured with the same GC-ECD 

system described in section 3.2.2. The N2O emission rate (µg N kg-1 dry soil h-1) was 

calculated from the linear slope of N2O headspace concentration change with time (ppb h-1) 

according to the following equation: 

E = v · V · Vm · 2 · M / Wds      (3.8) 

where E is the N2O emission rate (µg N kg-1 dry soil h-1); v is the slope of the change of N2O 

mixing ratio in the vial headspace (ppb h-1); V is the volume of vial headspace (L); Vm is the 

molar volume of N2O at standard pressure and room temperature (L mol-1); M is molar mass 

of nitrogen (g mol-1); Wds is the mass of the dry soil (g). 

3.2.4 Statistical analyses 

All statistical analyses were carried out with Origin Pro. 8. Two-sample t-tests were 

performed to compare the differences in NH2OH concentration between 10-min magnetic 

stirring and 2.5-h shaking, between 0 and 10 µM NO2
- addition, and between 10 µM NO2

- + 

SA and 10 µM NO2
- only addition treatments. 
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3.3 Results and discussion 

3.3.1 Soil NH2OH extractions 

Although pH 3 had been previously identified as a suitable condition for conversion of 

NH2OH to N2O, and  for storage of NH2OH with micromolar concentrations (Butler & 

Gordon, 1986; Kock & Bange, 2013), this pH condition could not guarantee NH2OH 

extraction from soil, even with addition of SA solution and only 10-min magnetic stirring. 

Moreover, the recovery of NH2OH was also extremely small (nearly 0) with the addition of 25 

nM under this pH condition (Table 3.2). One explanation for the quick disappearance of 

NH2OH could be the consumption of NH2OH by soil microorganisms. Brierley & Wood 

(2001) reported that heterotrophic nitrifiers, such as Arthrobacter sp. may be actively 

nitrifying at pH 3 in acid forest soil similar to the soil used in this study. Moreover, due to the 

fact that NH2OH is extremely reactive, it could also quickly react with carboxyl groups of 

organic matter or with metal cations in the soil, such as Fe3+ or Mn4+ (Thorn et al., 1992; 

Bremner, 1997; Schreiber et al., 2012). Our experiments showed that NH2OH could not be 

completely recovered even in sterilized soil samples (data not shown), indicating that the 

chemical reactions between NH2OH and other soil constituents play a crucial role in the quick 

disappearance of NH2OH in the soil samples. 

Table 3.2 pH and temperature effect on NH2OH extraction during 10 min magnetic stirring at 4 °C (n 
= 3, ± sd). 

Treatment Measured NH2OH concentration (µM) 

L Oh L 

+ 1 µM NH2OH 

Oh 

+ 1 µM NH2OH 

pH 3† n.d.* n.d. n.d. n.d. 

pH 1.7‡   0.053 ± 0.003 0.021 ± 0.001 0.67± 0.029 0.50 ± 0.022 
* n.d. = not detectable 
† pH 3 extractant was 0.05 M acetic acid. 
‡ pH 1.7 extractant was 0.05 M acetic acid with 0.02 M HCl.  

 

In contrast to negligible NH2OH extraction at pH 3, NH2OH could be extracted from the 

forest soil samples at pH 1.7. For L and Oh layers, NH2OH concentrations of the extracts at 

pH 1.7 amounted to 95 and 28 nM after shaking for 2.5 h at 4 °C, respectively (Fig. 3.2a). The 

recovery of 25 nmol NH2OH added to the L and Oh samples with the extractant were 40.7% 

and 15.5%, respectively, after 2.5 h shaking. In contrast, 53 and 21 nM NH2OH have been 
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extracted already after 10-min magnetic stirring, with recovery factors of 61.3% and 49.3% 

for L and Oh layers, respectively (Fig. 3.2b), indicating that the extraction efficiency of 

magnetic stirring was better than that of shaking. However, with increasing extraction time, 

the NH2OH recovery factor decreased significantly for both extraction methods, i.e. shaking 

and magnetic stirring, suggesting that NH2OH is extremely reactive and unstable (Fig. 3.2a, 

b). Therefore, despite the lower absolute amount of NH2OH extracted as compared to 2.5 h 

shaking, magnetic stirring for 10 min was chosen as the appropriate extraction method for soil 

NH2OH extraction due to its significantly higher NH2OH recovery factor, especially for the 

Oh layer samples. 
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Figure 3.2 Effects of extraction time on NH2OH concentration of the extract with shaking (a) and 
magnetic stirring (b) at 4 °C. Error bars indicate the range of measured concentrations (n = 2). 

 

We also explored the effect of temperature on soil NH2OH extraction. Our results showed that 

the concentration of the extracted NH2OH was the same or even higher at room temperature 

as compared to 4 °C (data not shown). Therefore, NH2OH extraction at room temperature was 

selected as the routine extraction condition.  
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3.3.2 Nitrite removal 

Nitrite could significantly bias NH2OH detection with this method due to the reaction 

according to equation (3.2), especially at low pH. Kock & Bange (2013) reported a significant 

bias even when NO2
- concentration was as low as 5 μM. Although NO2

- concentration has 

been found to be relatively low in most forest soils (Su et al., 2011), i.e. the main research 

object in the present study, it could be as high as 100 μM (ca. 17.4 mg N kg-1 soil) in 

agricultural soils after fertilization (Shen et al., 2003). Therefore, to ensure versatility of the 

newly developed method, NO2
- concentrations of 10 and 100 μM were used to explore the 

effect of NO2
- on the r value (Fig. 3.3a, b).  
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Figure 3.3 Effect of 10 and 100 μM NO2
- on NH2OH conversion with and without sulfanilamide (SA) 

in 0.05 M acetic acid + 0.01 M HCl solution (a) and soil extracts (b) at pH 2 and room temperature. 
Error bars indicate the standard deviation of the mean (n = 3). 

 

We found that 10 μM NO2
- had a negligible effect on the NH2OH -to-N2O conversion rate, 

especially when NH2OH concentration was higher than 0.05 µM. In contrast, 100 μM NO2
- 

increased the NH2OH -to-N2O conversion rate in deionized water by about 50% (Fig. 3.3a), 

revealing substantial N2O formation by the reaction of NO2
- with NH2OH. Furthermore, NO2

- 
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biased NH2OH measurements more significantly in soil samples, especially at lower NH2OH 

concentrations, e.g. 37-fold at 0.05 μM NH2OH (Fig. 3.3b). Kock and Bange (2013) 

suggested 100 μM SA to remove the effect of 5 μM NO2
-. Therefore, in this study we assumed 

that 2 mM SA should be sufficient to remove the bias of 100 μM NO2
-.  

Our results showed that 2 mM SA was adequate for the complete removal of the bias of 10 

μM NO2
- on NH2OH -to-N2O conversion, and also to fully eliminate the effect of 100 μM 

NO2
- at NH2OH concentrations above, but not below 0.05 μM. This could have been due to 

the fact that 2 mM SA was not completely sufficient for the removal of 100 μM NO2
-. We then 

tried 5 mM SA in the subsequent experiment, but failed to find any significant difference 

between these two SA concentration treatments (data not shown), which suggested that the 

bias of 100 μM NO2
- on the determination of nM NH2OH concentrations was inevitable. 

Nevertheless, our results also showed that the concentration bias was linearly correlated with 

the amount of NO2
- in the range of 10–100 μM (Fig. 3.4). Thus, the NO2

- bias could be 

corrected for using this linear relationship after determination of the NO2
- concentration of the 

soil samples.  
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Figure 3.4 Effect of different NO2
- concentrations on NH2OH determination in the presence of 2 mM 

sulfanilamide (SA) at pH 2 in 0.05 M acetic acid + 0.01 M HCl solution (n = 3). 

 

3.3.3 NH2OH concentration in forest soil samples and its correlation with aerobic N2O 

emission rate 

The analysis of NH2OH concentrations in soil samples from Wüstebach forest with the newly 

developed method revealed a range of 0.3–34.8 μg N kg-1 dry soil (Fig. 3.5). This is 

approximately three orders of magnitude lower than the concentrations of NH4
+ and NO3

- in 

forest soil samples, but still comparable to the concentration of NO2
-, for which e.g. a range of 
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2.8–11.2 μg N kg-1 was found for northern hardwood forests (Venterea et al., 2003). NH2OH 

concentration decreased with the depth of soil profiles, in the order of L > Oh > Ah (Fig. 3.2b 

and Fig. 3.5). NH2OH concentration in the L layer was usually twice as high as in the Oh layer 

(Fig. 3.2b), while in the Ah horizon, the NH2OH concentration was rarely above 5 μg N kg1 

dry soil (Fig. 3.5).  This trend was consistent with the trends of NH4
+ and NO3

- in forest soil 

profiles (Tietema et al., 1992), indicating that higher mineralization and nitrification rates 

probably occur in the litter layer, leading to higher NH2OH production.  
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Figure 3.5 Correlation between soil NH2OH content and aerobic N2O emission rates at room 
temperature of soil samples collected from Wüstebach forest (n = 44). 

 

Nitrous oxide emission rates from ranged from 0–1.9 μg N kg-1 dry soil h-1 from Oh and Ah 

with a higher value in Oh than that in Ah (Fig. 3.5). Moreover, the N2O emission rate from the 

L of the chosen point was around 2.9 μg N kg-1 dry soil h-1 (data not shown). These results 

corresponded well with the findings of Martikainen & de Boer (1993), who observed an N2O 

emission rate of 3 μg N kg-1 dry soil h-1 in an aerobic incubation of acid forest litter from a fir 

stand in the Netherlands. Moreover, The same trend of L > Oh > Ah was observed for the soil 

of a Finnish coniferous forest, where ammonia oxidizers were assumed to play an important 

role in aerobic N2O production in these acid soils (Martikainen et al., 1993). In other forest 

soils across Europe, however, denitrification was considered as the main source of N2O 

emission due to the lower aeration of the fresh litter layer especially in deciduous forests 

(Ambus et al., 2006). By using 15NH4
- and 15NO3

- as substrates, Ambus et al. (2006) identified 

NO3
- as a significant source of N2O in most forests, except for two spruce forest soils, 

indicating that the source of N2O may differ between forest types.  
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Hydroxylamine stimulated N2O production during nitrifier pure-culture studies (Ritchie & 

Nicholas, 1972; Otte et al., 1999), most likely due to reactions between NH2OH and other 

substances, such as MnO2 and NO2
- (Bremner, 1997). The potential role of NH2OH in soil N2O 

production has been emphasized in several recent reviews (Wrage et al., 2001; Schreiber et 

al., 2012; Butterbach-Bahl et al., 2013). However, the relationship between soil NH2OH and 

N2O emission has not been explored so far due to the lack of sufficiently sensitive 

determination methods for NH2OH in soil up to now. In this study, we indeed found a 

significant correlation between soil NH2OH concentration and N2O emission rate (Fig. 3.5). 

This finding suggests NH2OH, the intermediate of nitrification, as a significant source of N2O 

formation in the Wüstebach spruce forest soil. Moreover, the linear relationship was more 

obvious in the Oh than that in the Ah. This could be due to that both the NH2OH concentration 

and N2O emission rate were considerably smaller in the Ah than that in the Oh. Additionally, 

the less aerobic condition in Ah layer could also contribute to the less obvious relationship. 

 

3.4 Conclusions 

The newly developed method for soil NH2OH extraction and analysis is very sensitive, and its 

applicability to soils has been shown. The appropriate extraction conditions for soil NH2OH 

were identified as 10-min magnetic stirring at room temperature with an aqueous extractant of 

pH 1.7 (0.05 M acetic acid with 0.02 M HCl), containing 2 mM SA. Soil NH2OH 

concentration was found to be significantly correlated with soil N2O emission, indicating that 

nitrification plays a crucial role in soil N2O formation in the Norway spruce forest soil 

examined in this study. Future work should focus on the analysis of different soil properties 

and their control on soil NH2OH concentrations and N2O emission. 
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4.1 Introduction 

 Nitrous oxide is one of the most important greenhouse gasses, with a global warming 

potential 298 times that of CO2 within a timeframe of 100 years and including climate–carbon 

feedbacks (IPCC, 2013). Soils are estimated to contribute 60% of the total annual N2O 

emissions to the atmosphere, of which about 60% originate from natural soils and the 

remainder from agricultural soils as a result of excessive nitrogen fertilizer application (IPCC 

2013). However, the estimate of total soil N2O emissions is still highly uncertain due to the 

spatial heterogeneity and temporal variability, even at a smaller scale. To quantify N2O 

emissions more accurately, a comprehensive understanding of the spatio-temporal variation of 

soil N2O emissions as well as of the controlling factors and underlying mechanisms is 

required.   

Nitrous oxide is mainly produced by the microbial processes of nitrification and 

denitrification (Baggs, 2008). Denitrification is a process by which NO3
- is stepwise reduced 

to molecular nitrogen via the chain NO3
- – NO2

- – NO – N2O – N2, while nitrification – 

including heterotrophic nitrification, nitrifier denitrification, as well as abiotic 

chemodenitrification – starts with NH3 as a substrate (Brierley & Wood, 2001; Wrage et al., 

2001; Baggs, 2011). Denitrification is traditionally considered as the most important source of 

soil N2O emissions (Wolf & Brumme, 2003; Ambus et al., 2006). However, nitrification has 

increasingly been identified as a relevant source of N2O in forest ecosystems, especially at pH 

values below 5 (Brierley & Wood, 2001; Mørkved et al., 2007). One potential explanation is 

that the first intermediate of nitrification, i.e., NH2OH, might play a crucial role in N2O 

formation as a direct precursor (Bremner, 1997; Schreiber et al., 2012; Butterbach-Bahl et al., 

2013) (see below).  

Commonly, it is assumed that the aerobic oxidation of NH2OH to N2O is a biological process, 

involving the enzyme HAO (Stein, 2011). Using metabolic modeling analysis, Law et al. 

(2013) predicted that the key N2O production pathway of an AOB culture is the biological 

oxidation of NH2OH. Rathnayake et al. (2013) reported that 65% of the N2O was produced 

through NH2OH oxidation in an autotrophic partial nitrification reactor. However, N2O 

formation from NH2OH under oxic conditions has also been observed for some methane-

oxidizing alphaproteobacteria that co-metabolize NH3 along with methane, but do not have a 

corresponding HAO (Sutka et al., 2004; Stein, 2011), pointing to a hitherto unknown N2O 

production mechanism.  
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One possible alternative mechanism of aerobic N2O production could be the chemical 

oxidation of NH2OH excreted by or leaked from nitrifying soil microorganisms by redox 

active soil cations, such as Fe3+ and Mn4+, especially at acidic conditions, since at higher, 

more neutral pH the unprotonated NH2OH can undergo a multitude of chemical reactions with 

SOM (Thorn et al., 1992) and is then no longer available for oxidation by transition metals. 

The occurrence of this oxidation reaction was documented previously (Bremner, 1997; 

Schreiber et al., 2012). Although the importance of NH2OH for N2O emissions has received 

more attention along with progress in the analysis of the isotopic composition of N2O and its 

isotopologues from purely chemical reactions and from wastewater treatment plants (Stein, 

2011; Law et al., 2013; Wunderlin et al., 2013; Heil et al., 2014), studies of the role of 

NH2OH in soil N2O emissions have only rarely been carried out until now (Bremner et al., 

1980) due to difficulties with detecting small quantities of the reactive intermediate NH2OH in 

the complex soil environment. However, a highly sensitive method for the determination of 

the NH2OH content of soils has been developed recently (Liu et al., 2014), which enables 

analysis of the correlation between NH2OH content and N2O emissions in natural soils. 

The spatial variability of soil N2O emissions has been studied in agricultural, grassland, 

pasture or forest ecosystems (Velthof et al., 2000; Yanai et al., 2003; Turner et al., 2008). 

Forest ecosystems have been reported to be a large source of N2O, especially in regions with 

water-logged soils or with large water table fluctuations (Ahmed & De Marsily, 1987; Lamers 

et al., 2007; Rütting et al., 2013). Given that chamber measurements will remain an important 

methodology for the quantification of N2O emissions from soils, but that the number of 

chambers employed – and hence the spatial representativeness – is usually comparatively low, 

it is crucial to find a supporting tool for assessing spatial N2O emission patterns and to 

understand its controlling factors. Only in this way can the uncertainty caused by the choice of 

chamber locations be reduced and the prediction of soil N2O emissions at larger scales be 

improved. Therefore, the goals of this study were to explore the contribution of soil NH2OH 

content to potential soil N2O emissions in a spruce forest ecosystem in association with other 

soil basic properties, and to elucidate the spatial variability of and the relationship between 

potential soil N2O emission rates and NH2OH content. 
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4.2 Materials and methods 

4.2.1 Experimental site 

The soil used in this study was sampled at the TERENO site Wüstebach (50° 30′ 10″ N, 6° 19′ 

50″ E, elevation 630 m a.m.s.l.). This site is located in the German low mountain ranges 

within the National Park Eifel near the German-Belgian border (Fig. 4.1). The site was 

dominated by Norway spruce (Picea abies (L.) H. Karst), planted in 1946, and covers an area 

of approximately 27 ha in a forested catchment of a small tributary (Wüstebach creek) of the 

river Rur, with an average and maximum slope of 3.6% and 10.4%, respectively (Bogena et 

al., 2015). The sampling locations were based on the existing geospatial design of the SoilNet 

network (Bogena et al., 2010). On the hillslopes, cambisols and planosols prevailed, whereas 

gleysols and histosols dominated the riparian zone at the valley bottom (Fig. 4.1). The main 

soil texture was silty clay loam. In most of the area, the organic soil layers consisted of a litter 

layer (L), a fermented litter horizon (Of) and humus rich layer (Oh). The L, Of and Oh layers 

had an average thickness of 3 cm to 5 cm in total, and the average A horizon was about 6 cm 

thick. The ground vegetation was species-poor and scantly developed (mainly fern, grass, and 

moss species, with a few interspersed shrubs and bushes). The climate of the area is temperate 

maritime with an annual mean temperature of around 7°C and an annual precipitation of 

approximately 1200 mm (Bogena et al., 2010). The growing season is short (130-135 days) 

due to the prevailing cold westerlies. 
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Figure 4.1 Map showing the location of the sampling area and the exact position of the sampling 
points within the Wüstebach catchment. 

 

4.2.2 Soil sampling 

In the period of June 24 to 28, 2013, bags with disturbed soil samples were collected from O 

and A horizons at 150 sampling points within the experimental area (Fig. 4.1). Soil samples 

were stored in closed plastic bags in a freezer at –18ºC until analysis for NH2OH content and 

N2O emissions under oxic conditions. Homogenized aliquots of the soil samples (ca. 300 g) 

were analyzed for soil basic properties, i.e. pH, soil water content (SWC), C, N, P, S, Na, K, 

Ca, Mn, Fe, NH4
+ and NO3

- content by a commercial laboratory (Landwirtschaftliches Labor 

Dr. Janssen GmbH, Gillersheim, Germany) (see section 4.2.3.3 for details). Three days before 

the analysis of NH2OH and N2O, the samples were taken out of the freezer, opened at room 

temperature for reactivation of microbial activity, and then passed through a 2 mm sieve. The 

SWC had changed only negligibly after two days of storage at room temperature (data not 

shown). 
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4.2.3 Analytical methods 

4.2.3.1 Hydroxylamine extraction and analysis 

Soil NH2OH content was determined as described in Liu et al. (2014). Briefly, 25 mL of 2 

mM sulfanilamide solution in a mixture of 0.02 M HCl and 0.05 M acetic acid (pH 1.7) was 

added to 4 g of thawed, field-moist soil. The mixture was then magnetically stirred for 10 min 

and centrifuged at 3500 rpm for 15 min. Six ml supernatant was subsequently transferred to a 

22-mL glass vial (VWR International, Darmstadt, Germany), and 0.6 mL of 25 mM FeCl3·6 

H2O in deionized water was added. The vials were immediately closed gas-tight after Fe3+ 

addition and shaken for 3 h on a rotary shaker (250 rpm) at 21°C. N2O production in the 

headspace of the vials was measured afterwards by using a GC-ECD (Clarus 580, 

PerkinElmer, Rodgau, Germany). Afterwards, the NH2OH content of the soil extract was 

calculated according to equations described in Liu et al. (2014).  

4.2.3.2 Potential soil N2O emission rates 

Three grams of field-moist soil were weighed into 22-mL GC vials. Then, the vials were 

crimped gas-tight and incubated at constant temperature (21°C) for 67, 209, 354 and 496 min, 

respectively, with three replicates for each point in time. The N2O concentration in the vial 

headspace was subsequently measured with the same GC-ECD system used for NH2OH 

measurement. The N2O emission rate (µg N kg-1 dry soil h-1) was calculated according to Liu 

et al. (2014). 

4.2.3.3 Soil basic properties 

Topographic attributes were obtained from a digital elevation model with 1 m resolution 

(Land Surveying Office of North Rhine-Westphalia, Germany). Exact elevation and slope of 

each sampling point were calculated in ArcGIS (version 9.3.1, ESRI, Redlands, CA, USA). 

The distance between the nearest superficially visible root and each sampling point was 

determined with a measuring tape. Soil pH was determined in H2O (pH1) and 0.01 M CaCl2 

(pH2) according to the standard procedures DIN 38404 and DIN ISO 10390, respectively. 

Extractable inorganic P (P1) and K were extracted with a mixture of 0.05 M calcium lactate 

and 0.3 M calcium acetate (1:20, soil to liquid) according to Schüller (1969), and analyzed by 

inductively coupled plasma optical emission spectrometry (ICP-OES). Mn, Fe and Na were 

extracted with a mixture of 0.1 M CaCl2 and 0.002 M diethylenetriaminepentaacetic acid 
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(pentetic acid, DPTA) (1:10, soil to liquid) according to VDLUFA A6.4.1 (Hoffmann, 1991) 

and analyzed by ICP-OES. C and N were determined by dry combustion at 950 °C according 

to DIN ISO 10694 and DIN ISO 13878, respectively, and analyzed by a CHN analyzer. Total 

P (P2), S and Ca were extracted by aqua regia (3:1 (v/v) mixture of 12 M hydrochloric acid 

and 14.4 M nitric acid) digestion according to DIN 38406-22 and analyzed by ICP-OES. 

NH4
+ and NO3

- were determined after extraction with 0.01 M CaCl2 (1:1, soil to liquid) 

according to VDLUFA A6.4.1 (Hoffmann, 1991), and analyzed with a continuous-flow 

analyzer. 

4.2.4 Data analyses 

Frequency distributions and skewness of the data were analyzed with histograms, using the R 

statistical software package (version 3.1.0). Soil variables that were not normally distributed 

were log-transformed prior to the geostatistical analysis. The spatial autocorrelation of each 

soil variable was quantified using the semivariance (γ). A semivariogram displays the 

semivariance plotted against the lag distances between pairs of samples. The variance 

increases with distance until a maximum (sill, c) if the data is spatially auto-correlated and 2nd 

order stationary. The distance corresponding to the sill is called the range (a1). The y-intercept 

of a semivariogram is the nugget (c0), which represents the variance caused by measurement 

error and subscale spatial variability, while the variance between c0 and c shows the variance 

of the spatial structure, i.e. spatial variance that is given by (c-c0)/c. Spherical variogram 

models were fitted to the experimental semivariograms with the VESPER software (Minasny 

et al., 2005).  

Stepwise multiple linear regressions were performed to predict potential soil N2O emission 

rates from all the determined soil properties (NH2OH, NO3
-, C, N, C/N, SWC, Mn, Fe, pH1, 

pH2, P1, P2, Na, K, S, Ca) for the Oh and Ah layer, respectively (R version 3.1.0). Variables 

were stepwise eliminated during the regression procedure to determine a minimum subset of 

variables with a maximum explanatory power, and to get rid of explanatory variables’ inter-

correlation. R2 was used to quantify the variation of potential soil N2O emission rates that was 

explained by the variation of the independent variables. R2
adj is a more appropriate criterion 

by relating the explained variation to the number of the variables. As a final criterion for 

model selection, we used the Akaike information criterion (AIC) in the multiple linear 

regressions, where the smallest AIC means that the optimum regression model is closest to the 

‘true’ model (Akaike, 1998). 
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The KT3D-routine of the Geostatistical Software Library (Deutsch & Journel, 1998) was 

applied to perform the spatial estimation by Kriging. The mean absolute error (MAE) and the 

root mean square error (RMSE), determined by a cross validation procedure, were used to 

indicate the goodness of the Kriging estimates. Ordinary Kriging (OK) was extended to 

external-drift Kriging (EDK) by using spatial regression estimates as auxiliary data (Ahmed & 

De Marsily, 1987). The improvement index (Ir) of MAE and RMSE was used to evaluate the 

improvement of the EDK compared to the OK simulation. To preserve the probability density 

function and the spatial autocorrelation of the original measured point data, conditional 

stochastic simulation (CSS) was performed with the Simulated Annealing Algorithm (SASIM, 

Deutsch & Journel, 1998) based on the potential N2O emission measurements and the 

regression estimates as auxiliary spatial information (Goovaerts, 2000; Bourennane et al., 

2007). In contrast to the Kriging approaches, CSS reproduces the semivariogram and the 

frequency distribution of the target variable. Further details on the Kriging estimation and 

stochastic simulation approaches can be found in Herbst et al. (2012).  

 

4.3 Results  

4.3.1 Potential soil N2O emission rates, NH2OH content and basic properties 

The basic properties of the Ah and Oh layers are displayed in Table 4.1. Of all soil properties, 

potential N2O emission rates showed the largest variation, followed by NH2OH, NO3
- and Mn 

content. The potential N2O emission rates ranged from 0–2.9 and 0–0.49 μg N kg-1 dry soil h-1 

in the Oh and Ah layer, respectively, with the mean value of the Oh tenfold higher than that of 

the Ah. The potential N2O emission rates were highly variable, with coefficients of variation 

of 260% and 439% for the Ah and Oh layer, respectively, and were left-skewed distributed. 

The NH2OH concentrations showed a pattern similar to that of potential soil N2O emission 

rates, ranging from 0.3–37.0 and 0.02–6.6 μg N kg-1 dry soil in the Oh and Ah, respectively. 

On a dry weight basis, the mean NH2OH content in the Oh was about sixfold larger than in the 

Ah, with less variation (CV ≈ 100%) compared to potential N2O emission rates. The NH2OH 

content was approximately three orders of magnitude lower than the NO3
- content of the forest 

soil samples (Table 4.1).  
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Table 4.1 Descriptive statistics of potential N2O emission rates, NH2OH concentrations and other soil 
variables of the Ah and Oh soil horizons. 

Soil properties Ah Oh 

μ σ CV (%) n! D μ σ CV (%) n D 

N2O (µg-1 N kg-1 dry soil h-1) 0.07 0.21 295.5 98 LD 0.64 2.81 438.5 126 LD 

NH2OH (µg-1 N kg-1 dry soil) 1.72 1.86 108.4 119 LD 11.1 14.3 128.7 131 LD 

NO3
-
 
(mg N kg-1 dry soil) 2.87 3.26 113.7 139 LD 19.9 33.0 166.0 118 LD 

NH4
+ (mg N kg-1 dry soil) -§ - - - - 94.5 89.2 94.4 118 LD 

C (%) 10.2 5.0 49.4 139 LD 23.1 7.5 32.5 118 ND 

N (%) 0.56 0.24 43.0 139 LD 1.12 0.33 29.1 118 ND 

C/N 18.1 2.5 14.0 139 LD 20.5 2.6 12.5 118 ND 

pH1 (H2O) 4.26 0.32 7.5 139 LD 3.93 0.36 9.1 121 LD 

pH2 (CaCl2) 3.27 0.25 7.5 139 LD 3.10 0.26 8.5 129 LD 

SWC (g g-1 wet soil) 43.6 9.6 22.0 139 ND 59.7 8.4 14.0 120 ND 

Mn (mg kg-1 dry soil) 29.4 42.7 145.1 138 LD 40.2 40.2 100.0 126 LD 

Fe (mg kg-1 dry soil) 1294 300 23 138 ND 946 235 25 126 ND 

P1 ( mg P kg-1 dry soil) 17.0 8.4 49.3 139 LD 52.5 22.0 41.9 129 LD 

P2 (%) 0.07 0.02 23.8 139 ND 0.09 0.01 16.0 136 ND 

Na (mg kg-1) 23.2 12.0 51.6 138 LD 35.6 20.3 57.0 126 LD 

Ca (%) 0.05 0.03 62.9 139 LD 0.12 0.09 74.7 136 LD 

S (%) 0.05 0.03 50.6 139 LD 0.11 0.03 30.9 136 ND 

K (mg K kg-1 dry soil ) 19.6 37.8 193.0 139 LD 119 104 87 129 LD 

µ:  mean, σ: standard deviation of the left-deviated parameters, calculated by the following equation: μ = exp (μ1 + 
0.5 σ2), variance = σ2 = [exp(2 μ1 + σ1

2)] [exp(σ1
2)  1]. μ and σ2 represent the mean and variance of the random 

variable X (in original units), whereas μ1 and σ1
2 are the mean and variance of its log-transformation, given by 

Y= ln(X) (Singh et al., 1997); n: number of valid data used for data analysis. There are generally three kinds of 
distribution (D): LD = left deviation, RD = right deviation, and ND = normal distribution; SWC: soil gravimetric 
water content. 
! Soil properties of some sampling points are missing because the amount of soil material was not sufficient for 
all analyses for those sampling points. 
§ Soil NH4

+ data of Ah layer was missing due to experimental errors during NH4
+ determination. 

 

Soil NO3
- content was also remarkably higher in the Oh than in the Ah layer, with 

considerable spatial variation (Table 4.1). The mean C content of the Oh layer was twice as 

high as that of the Ah layer, whereas the mean C/N ratios of the two layers were nearly the 

same. Owing to the topography and soil variability in the Wüstebach catchment, also SWC 

varied considerably in the sampling area. The mean pH of about 4 (H2O) and of slightly above 

3 (CaCl2) was typical for an acidic spruce forest soil. In general, the Oh layer was more acidic 

than the Ah layer. At certain sampling points, the Mn content was as high as 366 mg kg-1 in 

the Ah layer, whereas the mean value was about 30 mg kg-1 for the Ah, and around 40 mg kg-1 

for the Oh layer. Of all soil properties, only Fe content and pH were larger in the Ah than in 

the Oh.  
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4.3.2 Spatial patterns 

Semivariograms were used to analyze spatial variance and spatial auto-correlations of 

potential N2O emission rates as well as NH2OH and NO3
- content of the spruce forest soil. 

The semivariograms for potential soil N2O emission rates showed similar ranges (approx. 100 

m) for Ah and Oh layers, but with a large difference in spatial variance (22.5% vs. 53.4%) due 

to the difference in spatial auto-correlation in both layers (Fig. 4.2). The NH2OH and NO3
- 

content showed an opposite pattern for ranges and spatial variances in the two soil layers. For 

the Ah, the semivariogram of NH2OH exhibited a smaller range (113.2 m) than for NO3
- 

(179.0 m), but a larger spatial variance (55.0%) than for NO3
- (31.9%). For the Oh, however, 

the range of NH2OH was larger, associated with a smaller spatial variance, compared to NO3
- 

(Fig. 4.2). 

 

Figure 4.2 Semivariograms of log-transformed N2O emission rates [ln (µg-1 N kg-1 dry soil h-1)]2, 
NH2OH content [ln (µg-1 N kg-1 dry soil)]2 and NO3

- content [ln (mg N kg-1 dry soil)]2 in the Ah (A) 
and Oh (B) of the sampling area. 

 

Ordinary Kriging was applied to estimate the spatial patterns of soil NH2OH, soil NO3
- and 

potential N2O emission rates. A large spatial variability was observed for potential N2O 

emission rates for both Ah and Oh layer (Fig. 4.3). The spatial distributions of potential N2O 

emission rates were similar for both layers and were highly dependent on SWC, with larger 

potential N2O emission rates at sampling points close to the headwater of the Wüstebach 

creek. For example, the average potential soil N2O emission rates were 0.04 and 0.7 μg N kg-1 

dry soil h-1 for Ah and Oh layer, respectively, in the area of the headwater of the Wüstebach 
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creek (Fig. 4.3), which was several times larger than at a greater distance from the creek. 

However, N2O emission hotspots were also observed at sampling points with a thick litter 

layer or high root density, whereas N2O emissions at positions with grass cover and no tree 

nearby were hardly detectable. 

 

Figure 4.3 Spatial patterns of potential N2O emission rates (µg
-1 N kg-1 dry soil h-1), NH2OH content 

(µg-1 N kg-1 dry soil) and NO3
- content (mg N kg-1 dry soil) estimated using ordinary Kriging (OK) for 

the Ah and Oh layers of the sampling area. The grey smooth lines in the maps are contour lines. The 

black line represents the Wüstebach creek. The black points indicate the sampling points with valid 

data for each soil property. 

 

Also, soil NH2OH and NO3
- content showed large spatial variability across the whole study 

area. Their spatial patterns were similar to that of potential soil N2O emission rates. Especially 

NH2OH content featured almost the same hotspots as potential soil N2O emission rates, even 

in the area with high SWC (up to 80% WFPS) (Fig. 4.3). However, all of the extreme values 

of soil properties were underestimated by OK, probably as a result of the high spatial 

variability and the smoothing effect of the interpolation. 

4.3.3 Correlations and multiple stepwise regressions 

As soil C and N content as well as pH and SWC are commonly considered as important 

drivers of soil N2O emissions, the correlation analysis focused on these parameters. The log-
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transformed potential soil N2O emission rates were highly and positively correlated with C 

and inorganic N content in both Ah and Oh layer (Table 4.2). Soil NH2OH content alone 

explained 39% and 63% of the potential N2O emission rates of the Ah and Oh, respectively, 

which was similar to the explanatory power of NO3
- content in the Ah (40%) and Oh layer 

(58%). However, NH4
+ was less strongly correlated with potential soil N2O emission rates, 

although highly correlated with soil C and N content. Potential soil N2O emission rates 

showed no significant correlations with soil pH, while a negative correlation (P < 0.05) was 

observed between soil pH1 and NH2OH. 

Table 4.2 Spearman’s rank correlation coefficients of the correlations of N2O emission rates with 
NH2OH, NO3

-, NH4
+, C, N, C/N, pH1 (H2O),pH2 (CaCl2) and soil water content (SWC) in the Oh (grey 

area) and Ah (white area) layer, respectively. 

   Oh 
ln N2O 

ln 

NH2OH 
ln NO3

- ln NH4
+ C N C/N pH1 pH2 SWC 

ln N2O  0.796* 0.761* 0.234* 0.109 0.128 0.021 -0.173 -0.097 0.295* 

ln 

NH2OH 

0.626*  0.598* 0.364* 0.240* 0.222* 0.152 -0.248* -0.251* 0.323* 

ln NO3
- 0.633* 0.490*  0.137 0.050 0.098 -0.070 -0.224* -0.251* 0.238* 

ln NH4
+ ̶ ̶ ̶  0.738* 0.738* 0.258* -0.011 -0.091 0.751* 

ln C 0.349* 0.496* 0.423* ̶  0.929* 0.475* -0.126 -0.037 0.665* 

ln N 0.447* 0.536* 0.5535* ̶ 0.948*  0.161 -0.079 0.068 0.715* 

ln C/N 0.025 0.155 -0.145 ̶ 0.512* 0.282*  -0.151 -0.290* 0.035 

pH1 -0.146 -0.075 0.019 ̶ -0.080 -0.047 -0.209*  0.527* 0.083 

pH2 -0.174 0.239* 0.101 ̶ -0.214* -0.118 -0.464* 0.527*  0.128 

SWC 0.356* 0.331* 0.363* - 0.693* 0.697* 0.239* 0.005 0.028  

 

In contrast to the correlation analysis, stepwise multiple regressions were carried out by using 

all the basic soil properties depicted in Table 4.1 as variables for the prediction of potential 

soil N2O emission rates. As preliminary results showed that soil K, S, Ca and Na content did 

not contribute significantly to explaining the spatial variance of potential N2O emission rates, 

they were excluded from the multiple regression models. In contrast, NH2OH and NO3
- 

content strongly contributed to the variance of N2O (Table 4.3). Soil C content and SWC were 

the second most important variables explaining potential soil N2O emission rates from the Ah, 

followed by soil pH1 and Mn content. Soil Fe and P1 content also featured small, but 

insignificant contributions to potential soil N2O emission rates. Also for the Oh layer, soil 

NH2OH and NO3
- content were the most important variables explaining the variance of 

potential N2O emission rates, but followed by total P and soil Mn content. Soil Fe content, 

Ah 
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again, showed a small but not significant contribution. The best model could explain 60% of 

the variance of potential soil N2O emission rates for the Ah layer, while it could explain about 

80% for the Oh layer (Table 4.3).  

Table 4.3 Stepwise multiple regression equations of potential N2O emission rates in the Oh and Ah 
layer, respectively. The Akaike Information Criterion (AIC) was used for the model selection in the 
multiple linear regressions. 

Soil layer Multiple regression equation R2 R2
adj AIC 

Ah (n = 84) ln N2O = -2.292 + 1.007 ln NH2OH***  + 0.513 ln NO3
-** 

– 1.111 ln C* + 0.042 SWC*  – 0.896 pH1
* + 0.257 ln 

Mn* – 0.0006 Fe + 0.826 ln P1 

0.636 0.601 3.05 

     

Oh (n = 84) ln N2O = -8.569*** + 0.851 ln NH2OH*** + 0.738 ln NO3
-

*** + 21.07 P2
**  + 0.250 ln Mn* + 0.0006 Fe 

0.794 0.781 -29.2 

Asterisks indicate the significance of the respective variable or y-intercept in the multiple regression models at a 
level of P  < 0.05 (*), P  < 0.01 (**), P < 0.001 (***). 
n = number of soil samples for which values for all the co-variables were available. 

 

4.3.4 Improvement of spatial estimation   

External-drift Kriging (EDK) was used to estimate the spatial patterns of potential soil N2O 

emission rates by adding the information of covariates identified by the multiple regression 

analysis (Fig. 4.4). Compared with the spatial patterns based on OK, the EDK simulation 

showed a more complex and sharpened spatial structure for both Ah and Oh layer. Using EDK 

instead of OK led to a greater improvement of MAE and RMSE for the Oh layer than for the 

Ah layer, with an improvement of 45.2% and 41.3 % for the MAE and RMSE for the Oh, and 

27.6% and 23.9% for the Ah, respectively (Table 4.4). A similar spatial pattern was observed 

between CSS and EDK (Fig. 4.4). Even though the CSS approach produced a noisier pattern, 

it exhibited a wider data range compared to EDK (see color bar range of Fig. 4.4) and 

provides a more realistic pattern. Additionally, the pattern of potential soil N2O emission rates 

of the Oh layer derived from CSS showed less noise in comparison to that of the Ah layer, as a 

result of the higher spatial variance of the Oh layer compared to the Ah layer (see Section 

4.3.2). 
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Figure 4.4 Spatial patterns of potential N2O emission rates estimated using external-drift Kriging 
(EDK) and conditional stochastic simulations (CSS) for the Ah and Oh layers. The EDK estimation is 
an extension of ordinary Kriging (OK) by using spatial regression estimates based on the regression 
models as auxiliary data. The CSS estimation is an estimation based on the spatial variability and 
spatial structure by checking the cumulative probability density function.  The color code of the EDK 
maps represents N2O emission rates in µg-1 N kg-1 dry soil h-1, while the color code of the CSS maps 
represents the logarithm of N2O emission rates in µg-1 N kg-1 dry soil h-1. 

 

Table 4.4 Mean absolute error (MAE), root mean square error (RMSE), χ2 and the improvement (Ir) 
percentage for the interpolation maps of ordinary Kriging (OK) and external drift Kriging (EDK). 

 MAE RMSE χ2 

Ah (n = 96)    

OK 1.220 1.480 88.588 

EDK 0.884 1.127 42.920 

Ir  (%) 27.6 23.9  

    

Oh (n = 125)    

OK 1.344 1.612 868.45 

EDK 0.736 0.947 141.46 

Ir  (%) 45.2 41.3  
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4.4 Discussion 

4.4.1 Spatial patterns of potential soil N2O emission rates and soil NH2OH content 

A high spatial variability of potential N2O emissions was observed in the Wüstebach sampling 

area. Topographic conditions, such as slope and elevation, have been reported as important 

factors of spatial variability of soil N2O emissions (Velthof et al., 2000; Nishina et al., 2009; 

Konda et al., 2010). However, although slope and elevation ranged between 0.75–8.27% and 

595–627 m, respectively, in the sampling area of this study, we did not observe a significant 

correlation between N2O emissions and these two variables, neither for the Ah nor for the Oh 

layer (data not shown). Tree density and aboveground vegetation may contribute to the spatial 

variability of soil N2O emissions, as the abundant input of organic matter from litter can 

support microbial activity in the topsoil. In addition, tree distance and root density may also 

have an influence on soil N2O emissions, on the one hand due to their impact on soil water 

fluxes and hence on SWC, and on the other hand due to root litter input and root exudates that 

can serve as substrates for soil microbial N turnover processes (Butterbach-Bahl et al., 2002). 

We observed that SOM was abundant at the sampling points with high root density, and we 

found a weak negative, but significant correlation (r =  ̶ 0.264, p < 0.05) between the distance 

of the nearest superficially visible root to the sampling point and the respective potential soil 

N2O emission rates of the Oh layer of this point (data not shown). 

In addition to the influence of vegetation, the Wüstebach creek flowing through the sampling 

area might have also contributed to the spatial variability of potential soil N2O emission rates, 

mainly by causing – in combination with the specific topographical conditions – a large 

spatial variability of SWC in this area (Bol et al., 2015). Hotspots of potential N2O emission 

rates were observed in the headwater of the creek for both the Oh and Ah layer. This finding is 

consistent with McSwiney et al. (2001), who found that soil N2O emissions increased 

dramatically at the slope-riparian interface and continued to increase through the floodplain 

and the riverbank. The change in SWC is associated with a change in the soil O2 and substrate 

availability, and with the formation of different soil types, e.g. Cambisols (well-aerated) and 

Gleysols (water-logged). Lamers et al. (2007) demonstrated that the N2O fluxes from (water-

logged) Gleysols were much larger than those from an (upland) Cambisol in a spruce forest in 

Central Germany, which is consistent with our research. Increased SWC may decrease O2 

availability in soil but can increase the solubility of iron. In a recent study, large 

concentrations of iron were found in the headwater of Wüstebach creek (Bol et al., 2015). As 
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iron can be an important driver of soil N2O emissions, either through the oxidation of NH2OH 

by iron (III) or through the reduction of NO2
- by iron (II) (Zhu et al., 2013b), the increased 

iron concentration in the Gleysols induced by high water content may contribute to the larger 

N2O emissions in the headwater of the Wüstebach forest.  

The NH2OH content of the soil ranged from 0.02–6.6 μg N kg-1 dry soil in the Ah layer, but 

was on average tenfold larger in the Oh layer, probably due to the large organic matter content 

and therefore higher microbial activity in this layer. The average soil NH2OH content was 

approximately three orders of magnitude lower than the average content of NH4
+ and NO3

- in 

forest soil samples, but the spatial pattern of soil NH2OH content was similar to that of 

potential soil N2O emission rates and soil NO3
- content. The hotspots of soil NH2OH content 

along the headwater of the Wüstebach creek were unexpected, since the conditions in such 

areas are less favorable for autotrophic nitrifying bacteria, which is presumably the most 

likely source process of soil NH2OH. Bol et al. (2015) found the lowest pH value in water 

samples taken in the hotspot area of this study, which could have contributed to the 

accumulation of NH2OH in this location since NH2OH is more stable at low pH. This could 

have also promoted the activity of AOA, which have recently been shown to be also involved 

in N2O formation in soils under oxic conditions (Jung et al., 2014; Stieglmeier et al., 2014). 

While the formation mechanism of N2O in this class of microorganisms is still unclear, 

NH2OH has been shown to be an intermediate of ammonia oxidation by AOA (Vajrala et al., 

2013). However, at the present stage the source process of NH2OH in the Gleysol area of this 

study remains unknown and needs further investigation.  

4.4.2 The contribution of NH2OH to soil potential N2O emission 

Models for the N2O production in forest soils have been developed using functions and 

parameters for nitrification, denitrification and chemodenitrification (Li et al., 2000; Parton et 

al., 2001). But the role of NH2OH on soil N2O emissions in a natural ecosystem has not been 

confirmed before, even though it is an important intermediate of nitrification. 

Although NH2OH and the responsible source processes have recently received more attention 

as potential determinants of soil N2O emissions (Wrage et al., 2001; Schreiber et al., 2012; 

Butterbach-Bahl et al., 2013), a strong correlation of NH2OH with potential N2O emission 

rates, as in this study, has not been observed before for natural ecosystems. In contrast, large 

contributions (up to 65%) of NH2OH to N2O emissions have been observed in wastewater 
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treatment plants (Law et al., 2013; Rathnayake et al., 2013). Until now, soil NH4
+, NO3

- and 

water content have been considered as the most crucial factors affecting soil N2O emission in 

forest soils (Wolf & Brumme, 2003; Schindlbacher et al., 2004; Pilegaard et al., 2006), as 

well as soil pH (Klemedtsson et al., 2005; Mørkved et al., 2007; Gharahi Ghehi et al., 2012) 

and soil C/N ratio (Ambus et al., 2006). However, Bremner et al. (1980) demonstrated that the 

addition of NH2OH to sterilized soil immediately led to soil N2O emission. Chemical 

formation of soil N2O emissions has also been assumed in acidic soils (Martikainen et al., 

1993; Gharahi Ghehi et al., 2012).  

There are mainly two potential pathways for the oxidation of NH2OH to N2O: the biological 

reaction by the enzyme HAO or methanotrophic bacteria, and the chemical oxidation by 

nitrite or redox active metal cations (Bremner, 1997; Campbell et al., 2011; Stein, 2011). The 

redox reaction between NH2OH and Mn4+ (2 MnO2 + 2 NH2OH → 2 MnO + N2O + 3 H2O) 

has been demonstrated to play an important role in soil N2O emissions (Bremner, 1997). In 

this study, by using multiple regression analysis, we also found that Mn was an important 

factor explaining N2O emission rates (Table 4.3), emphasizing the importance of the oxidation 

of NH2OH by MnO2 to N2O in this Norway spruce forest ecosystem. In addition, we also 

observed a negative correlation between N2O emission rates with soil pH and soil C content 

(Table 4.3). This could be explained by the fact that unprotonated NH2OH can react with 

organic carbonyl groups to oximes (Thorn et al., 1992). As higher soil pH leads to a 

decreasing degree of NH2OH protonation (pKa = 5.95), it will become more reactive with 

organic matter, and thus less available for the oxidation by MnO2 to N2O.  

The prediction of soil N2O emissions for larger areas is usually difficult due to high spatial 

variability, not least due to the complex topographic, hydrologic and edaphic conditions. 

Static chambers are widely used for the estimation of soil N2O emissions from terrestrial 

ecosystems and provide valuable information for assessing the spatial variability (Velthof et 

al., 2000; Yanai et al., 2003; Konda et al., 2010). Because the area enclosed by a chamber is 

typically smaller than 1 m2, it is necessary to use a large number of chambers to get a 

representative estimate of the fluxes at the field scale. The decision of how many chambers 

should be used and where the chambers should be put in a terrestrial ecosystem with high 

spatial variability is quite difficult due to high spatial and temporal variability and the limited 

number of chambers that can be employed. For example, the required number for a spatially 

representative observation of soil N2O emission in the sampling area of this study would be as 
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high as 532, using the method by Herbst et al. (2009), which is impossible to realize with a 

practical experimental design. A supporting tool, as suggested here, is to elucidate key control 

variables of soil N2O emission that can be relatively easily measured, to determine these 

variables at a large number of sampling points and to calculate the respective N2O emission 

rates for these points. 

 

4.5 Conclusions 

In this study, potential soil N2O emission rates showed a large spatial variability, which could 

be chiefly explained with the spatial variability of soil NH2OH and NO3
- contents. Hotspots of 

all three soil parameters were observed in the headwater of the Wüstebach creek. This finding 

suggests that NH2OH plays a crucial role in explaining spatial variability of N2O emissions 

under a range of soil conditions in a heterogeneous catchment and indicates that a spatially 

representative determination of soil NH2OH content, along with other co-variables, is a 

promising way to reduce the uncertainty of soil N2O emission estimates for complex 

ecosystems. The approach demonstrated in this study could also facilitate field measurements 

of N2O with chambers in terms of a spatially optimized sampling design which reflects best 

the spatial N2O emission patterns. 
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matter and pH on abiotic formation of 

N2O from hydroxylamine in artificial soil 

mixtures 
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Liu, S., Berns, A. E., Vereecken, H., Wu, D. and Brüggemann, N. (2017). Interactive effects 

of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial 

soil mixtures. Scientific Reports, 7, 39590  
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5.1 Introduction 

Nitrous oxide is a potent greenhouse gas that can be formed by several soil processes, such as 

microbial nitrification and denitrification. The N2O production from nitrification, especially 

from its reactive intermediate NH2OH, has received increasing attention in the recent past, 

fostered by the development of analytical techniques for the determination of the 15N site 

preference in the N2O molecule that allows for constraining the contribution of different 

source processes to total N2O formation (Sutka et al., 2006; Stein, 2011; Wunderlin et al., 

2012; Rathnayake et al., 2013). Also, increasing knowledge from molecular biological and 

genetic studies has contributed to elucidating the different N2O formation mechanisms during 

nitrification (Stein, 2011). Still, the role of NH2OH in N2O formation in the soil is 

insufficiently understood. While there is evidence, e.g., from measurements in wastewater 

treatment systems that NH2OH can contribute about 65% of total N2O formation (Rathnayake 

et al., 2013), the formation of N2O from NH2OH in soil and its controlling factors have rarely 

been studied (Bremner et al., 1980; Heil et al., 2015). 

Hydroxylamine was first identified by Lees (1952) as an intermediate of the first step of 

nitrification by AOB, in which NH3 is oxidized to NO2
-. The knowledge of understanding the 

nitrification process in AOA, however, is much more fragmentary, but NH2OH has been 

identified as an intermediate of ammonia oxidation also in AOA (Vajrala et al., 2013). In most 

circumstances, NH2OH is quickly oxidized to nitrite in the periplasm of the AOB, and N2O 

may be produced as a side product during this process (Stein, 2011).  However, also a leakage 

of NH2OH from the periplasm across the outer membrane of the AOB into the soil matrix, 

followed by a chemical reaction with soil constituents yielding N2O, could be a potential 

mechanism of the N2O formation during nitrification. This assumption is supported by the fact 

that AOB can take up NH2OH from the surrounding medium (Schmidt et al., 2004a) as well 

as by the observation that the medium of AOB cultures contains measurable amounts of 

NH2OH. The latter was found for Nitrosomonas europaea under oxic conditions, both for 

wild-type N. europaea and even more so for NirK and NorB-deficient mutants (Schmidt et al., 

2004b). In accordance with this assumption, a positive relationship between NH2OH content 

of the soil and soil N2O emissions under oxic conditions has been detected in natural forest 

soil samples Liu et al. (2014). In addition, also the abiotic formation of N2O from NH2OH has 

been observed in sterilized soil samples from different ecosystems (Heil et al., 2015).  
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In soil, N2O can be formed chemically, among other possibly reactions, according to the 

following equations (Bremner, 1997):  

 NH2OH + NO2
- → N2O + H2O + OH-     (5.1) 

 2 MnO2 + 2 NH2OH → 2 MnO + N2O + 3 H2O.    (5.2) 

Owing to its high oxidization potential, manganese dioxide (MnO2) acts as a strong oxidant in 

the soil that plays an important role not only in the turnover of organic substances (Lehmann 

et al., 1987; Li et al., 2012), but also in the N cycle (Luther & Popp, 2002), even under anoxic 

conditions (Hulth et al., 1999; Hulth et al., 2005). SOM plays a crucial role in the storage and 

release of N as well as in the emission of N2O from soils. Quick disappearance of NO2
- and 

NO3
- within a few hours after addition has been observed in forest soils (Dail et al., 2001; 

Davidson et al., 2003; Schmidt & Matzner, 2009), whereas NH2OH disappeared completely in 

soil several minutes after addition (Bremner et al., 1980; Liu et al., 2014). Abiotic reactions of 

SOM and inorganic N may contribute to the quick disappearance, as nitrite and nitrate can 

react with SOM or dissolved organic carbon (DOC), leading to the formation of organic N, 

such as nitroso and nitro compounds (El Azhar et al., 1986; Thorn & Mikita, 2000), while 

NH2OH can also react with carbonyl groups to form oximes (Nelson, 1977; Thorn et al., 

1992): 

 R1(R2)C=O  +  NH2OH → R1(R2)C=NOH  +  H2O    (5.3)  

The quality of SOM, or more specifically the C/N ratio and the type and abundance of 

functional groups, influence the bonding of inorganic N to SOM (Thorn & Mikita, 2000). 

Phenolic lignin derivatives, an important constituent of SOM, can covalently bind reactive N 

compounds and thereby stabilize N in soil (Olk et al., 2006; Halvorson & Gonzalez, 2008). 

The N binding form can be affected by the plant species from which the SOM is derived due 

to the different characteristics of phenolic compounds, e.g. condensed or hydrolyzable tannin 

(Kraus et al., 2004). 

Soil pH is another key factor influencing most nitrogen transformations in soil. High soil N2O 

emissions have been observed in acid forest soils (Martikainen et al., 1993; ŠImek & Cooper, 

2002). The effect of pH on enzyme activities during denitrification and nitrification was 

suggested as the main reason (Liu et al., 2010). However, also chemical reactions that produce 

N2O in the soil, such as the reaction of nitrite with SOM and the reaction of NH2OH with 
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MnO2, are subject to a strong pH dependence and can contribute substantially to N2O 

emissions under acidic conditions (van Cleemput, 1998; Venterea, 2007; Samarkin et al., 

2010).  

The aim of this study was to quantify the interactive effects of the major control factors of 

abiotic N2O formation from NH2OH in soil, i.e. MnO2 content, pH and OM quantity and 

quality, by means of experiments with artificial soil mixtures. We hypothesized that the 

control factors interact with each other in the following way: At higher pH, unprotonated 

NH2OH would react more readily with carbonyl groups of OM, leading to oxime formation 

and making NH2OH less available for oxidation to N2O by MnO2. Lower soil pH would lead 

to increased protonation of NH2OH, making NH2OH more stable against the reaction with 

carbonyl groups of OM and more prone to the reaction with MnO2, leading to the higher N2O 

formation from the same amount of NH2OH (Fig. 5.1). To test these hypotheses, we 

performed a series of laboratory experiments with artificial soil mixtures, which were 

produced from pure quartz sand, quartz powder, kaolin clay, MnO2 powder and different 

plant-derived organic materials, resembling SOM of different quality, at different mixing 

ratios. In these experiments, the N2O formation was determined after NH2OH addition to the 

different mixtures at different pH levels and related to the different control factors. 

 

 

Figure 5.1 Hypothetical model of NH2OH release by ammonia-oxidizing bacteria to the soil 

environment and potential reactions of NH2OH with MnO2 and organic matter in the soil at different 

pH conditions (R1R2C=O represents carbonyl groups of SOM). AMO is ammonia monooxygenase; 

HAO is hydroxylamine oxidoreductase. 
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5.2 Methods 

5.2.1 Preparation of the artificial soil mixtures 

The artificial soil mixtures consisted of 15% (expressed as percentage of dry weight) fine 

quartz sand (50% of the particles 0.05-0.2 mm), representing the sand fraction, 65% quartz 

powder (0.002-0.063 mm), representing the silt fraction, and 20% kaolin clay (≤ 0.002 mm), 

representing the clay fraction, mimicking the soil texture of the agricultural TERENO field 

site Selhausen (Bornemann et al., 2011). Freeze-dried, finely ground and sieved (< 0.75 mm) 

peat moss (Sphagnum magellanicum, collected from Dürres Maar, Eifel, Germany) was 

amended as SOM to the artificial soil mixtures at levels of 0%, 1%, 2.5%, 5%, 10% dry 

weight, while the relative amount of sand, clay and silt was reduced according to the amount 

of peat moss added. The water holding capacity (WHC) was determined for each of the 

artificial soil mixtures. The WHC increased with increasing organic matter (OM) content, and 

amounted to 29%, 44%, 55%, 76%, and 132% for the five OM contents, respectively. Each of 

those artificial soil mixtures was amended with MnO2 (Merck, Darmstadt, Germany) at five 

different levels (0%, 0.01%, 0.025%, 0.05%, 0.1% Mn), then the ingredients were thoroughly 

homogenized. 

5.2.2 Preparation of artificial soil mixtures with different OM qualities 

Organic materials with different C/N ratios (Table 5.1) were derived from two different plant 

species, i.e. watermilfoil (Myriophyllum spec.) and clover (Trifolium repens), and from a 

cyanobacterium (Spirulina platensis). Watermilfoil and clover had been collected previously 

on the campus of Forschungszentrum Juelich GmbH (2004 and 2014, respectively), while the 

cyanobacterium material had been purchased in 2006 (Concept Vitalprodukte, Schwerte, 

Nordrhein-Westfalen, Germany). The finely ground and sieved (< 0.75 mm) OM was 

amended to the inorganic quartz-kaolin mixture as described above at a rate of 2.5% dry 

weight, while the relative amount of sand, clay, and silt was reduced accordingly. Also for this 

experiment, each of the artificial soil mixtures was amended with MnO2 at five different 

levels (0%, 0.01%, 0.025%, 0.05%, 0.1% Mn), and again mixed thoroughly to obtain a 

homogeneous composition. 

 

 

http://dict.youdao.com/w/watermifoil/
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Table 5.1 Basic elemental properties of the organic materials used in this study. 

 C§ N C/N Al Ca Fe K Mg Mn Na P Si 

Peat moss 41.3! 0.61 67.2 0.034 0.13 0.055 0.055 0.071 < 0.01 0.014 0.029 0.083 

Watermilfoil 35.4 2.08 17.0 0.12 2.26 0.11 1.21 0.25 0.031 0.666 0.124 0.213 

Clover 41.4 3.67 11.3 < 0.01 1.10 0.011 2.68 0.20 < 0.01 < 0.01 0.338 0.031 

Cyanobacterium 44.9 9.90 4.5 0.017 0.31 0.089 1.22 0.31 < 0.01 1.359 0.920 0.065 

§ All elements are reported as % of dry weight. 
! The standard deviation is 3% for the values larger than 1%, 20% for the values smaller than 0.1%, and 10% for the values in 
the range of 0.1% to 3%. 

 

5.2.3 Addition of NH2OH to the artificial soil mixtures and analysis of the N2O formed 

One gram of each artificial soil mixture was weighed into individual 22-mL GC vials. 

Subsequently, NH2OH in different buffer solutions was added to each vial to obtain a soil 

water content of 50% WHC, which required addition of varying volumes of buffer solution to 

the different soil mixtures depending on the OM content, and adaptation of the NH2OH 

concentration of each of the buffer solutions accordingly. The total amount of NH2OH added 

to each of the soil mixtures was always 5 nmol (equivalent to 70 µg N per kg dry material). 

The pH buffer solutions at pH 3, 4, 5 and 6 were prepared with citric acid (0.1 M) and sodium 

citrate (0.1 M) according to Gomori (1955), whereas the buffer at pH 7 was prepared with 

tris(hydroxymethyl)aminomethane and maleate (Tris-maleate buffer). There were totally two 

experiments conducted, with one experiment with totally three treatments (pH×5 levels, 

MnO2 ×5 levels, OM amount×5 levels) and the other one with also three treatments (pH×5 

levels, MnO2 ×5 levels, OM quality×4 levels, OM amount 2.5%).The experiments included 

totally four treatments (pH×5 levels, MnO2 ×5 levels, OM amount×5 levels and OM quality×4 

levels), with three replicates for each level.  The vials were closed immediately after NH2OH 

addition. After 10 h of incubation, the N2O concentration in the headspace of the vials was 

measured with a GC equipped with an electron capture detector (Clarus 580, PerkinElmer, 

Rodgau, Germany) (Liu et al., 2014). 

5.2.4 Calculation of the NH2OH-to-N2O conversion ratio 

The NH2OH-to-N2O conversion ratio (RNH2OH-to-N2O, moles N2O-N per mole NH2OH-N, %) 

was determined according to the following equation: 

  RNH2OH-to-N2O = (c1 - c0) · V / Vm · 2 / n · 100      (5.4) 

http://dict.youdao.com/w/watermifoil/
http://dict.youdao.com/search?q=spirulina&keyfrom=E2Ctranslation
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where c0 is the background N2O mixing ratio in the headspace of the control without NH2OH 

addition (nL L-1); c1 is the N2O mixing ratio in the headspace of the sample with NH2OH 

addition (nL L-1); the factor 2 represents the molar N ratio of N2O and NH2OH; V is the 

volume of the vial headspace (0.022 L); Vm is the molar volume of N2O at standard pressure 

and room temperature (24.465 L mol-1); n is the amount of NH2OH added to the sample vials 

(5 nmol). 

5.2.5 Determination of the basic properties of the organic materials 

Three replicates of each organic material were analyzed to determine its basic properties. The 

C and N content of the different organic materials was analyzed by weighing 200-300 µg dry 

material into tin capsules, followed by combustion at 1080°C in an elemental analyzer 

(EuroEA, EuroVector, Milan, Italy) interfaced to an isotope-ratio mass spectrometer 

(Isoprime, Isoprime Ltd, Stockport, United Kingdom). The C and N content were determined 

through peak integration of m/z 44 (CO2) and 28 (N2), respectively, and calibrated against 

elemental standards. 

The elemental composition of the organic materials was analyzed by using ICP-OES in the 

central analytical laboratory (ZEA-3) of Forschungszentrum Jülich. Briefly, 100 mg of sample 

material were mixed with 3 mL HNO3 and 2 mL H2O2, heated in the microwave at 800 W for 

30 min. The mixtures were subsequently filled up to 14 mL and diluted 10-fold with deionized 

water followed by the ICP-OES measurement.  

For the determination of characteristic molecule structures and functional groups of the 

different organic materials used in the experiments, 13C and 15N cross-polarisation magic-

angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectra were obtained. 13C 

CPMAS spectra were obtained on a 7.05 T Varian INOVATM Unity (Varian Inc., Palo Alto, 

CA, USA) at a 13C resonance frequency of 75.4 MHz. 15N CPMAS spectra were obtained on a 

14.09 T Varian NMR system (Varian Inc., Palo Alto, CA, USA) at a 15N resonance frequency 

of 60.8 MHz. Samples were packed into 6 mm diameter cylindrical zirconia rotors with 

Vespel® drive tips and spun at 8000 ± 3 Hz in an HX Apex probe. The spectra were collected 

with a sweep width of 25 kHz and an acquisition time of 20 ms. In preliminary experiments, 

the optimal contact time and recycle delay for the cross-polarization experiment were 

determined. A contact time of 1 ms and a 5 s recycle delay time were used for 13C, whereas a 

contact time of 1 ms and a 1 s recycle delay time were used for 15N. During cross-polarization 
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the 1H radio frequency (RF) field strength was set to 47 kHz for 13C and to 33.7 kHz for 15N, 

respectively. The 13C and 15N RF field strength were set to 41 and 41.7 kHz, respectively. An 

ascending ramp of 15 and 12.2 kHz on the 1H-RF field was used for 13C and 15N during 

contact time to account for inhomogeneities of the Hartmann-Hahn condition, respectively 

(Berns & Conte, 2011). Proton decoupling was done using a spinal sequence with a 1H field 

strength of 50 and 35.6 kHz, a phase of 4.5° and 5.5°, and a pulse length of 12 and 9.5 µs, 

respectively. 

The free induction decays (FID) were recorded with VnmrJ (Version 1.1 RevisionD, Varian 

Inc., Palo Alto, CA, USA) and processed with Mestre-C (Version 4.9.9.9, Mestrelab Research, 

Santiago de Compostela, Spain). All FIDs were Fourier-transformed with an exponential filter 

function with a line broadening of 20 to 50 Hz. Baseline correction was done using the 

manual baseline correction function of Mestre-C. 

The 13C chemical shifts are reported relative to tetramethylsilane (= 0 ppm) using adamantane 

as an external reference. The relative intensities of the regions were determined using the 

integration routine of the MestRe-C software. The 15N chemical shifts are reported relative to 

ammonium nitrate (NH4
+ = 0 ppm). 

5.2.6 Data analyses 

Analysis of variance (ANOVA) was performed in the two series of experiments,  main 

controlling factors pH, MnO2 and SOM content, or pH, MnO2 and SOM quality, respectively. 

and their interactive effects was performed, followed by a Tukey honest significant difference 

(HSD) test. The effects of pH, MnO2 and OM on RNH2OH-to-N2O were quantified by multiple 

regression model analysis. All analyses were performed with the R software package (version 

3.1.0, R Development Core Team, 2013)  (R Development Core Team, 2013). 

 

5.3 Results and discussion 

5.3.1 RNH2OH-to-N2O at different pH, MnO2 and OM contents (%) 

In the present study all three factors, i.e. pH, MnO2 and OM content, affected RNH2OH-to-N2O 

from peat moss significantly (Fig. 5.2, S5.1 and S5.2). The RNH2OH-to-N2O increased greatly 

with an increase in MnO2 content from 0% to 0.1% (Fig. 5.2). This finding is consistent with 

Bremner et al. (1980) who studied 19 soils with a wide range of properties and found that the 
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formation of N2O by decomposition of NH2OH was highly correlated with oxidized Mn 

content of the soils. The fact that NH2OH was used in the past for the selective extraction of 

Mn oxides from soil samples (Chao, 1972) indicates that NH2OH can efficiently reduce 

Mn(IV) to Mn(II) or Mn(III) (and in turn is oxidized to N2O) in natural soil samples. With 

increasing OM content, RNH2OH-to-N2O decreased remarkably, especially at high pH (Fig. 5.2). 

For example, an increase in OM by only 1% at 0.01% MnO2 led to about 50% and 80% 

decrease in N2O emissions at pH 3 and pH 7, respectively (Fig. 5.2, S5.2). This could be 

caused by the oxime-forming reaction between NH2OH and carbonyl groups of OM, such as 

in quinones. The oximes may undergo a tautomeric equilibrium with their corresponding 

nitrosophenol forms (Thorn et al., 1992). In fact, NH2OH has been used in a number of 

previous studies to determine the carbonyl content of humic substances (Gierer & Söderberg, 

1959), indicating a high affinity of NH2OH to OM that contains carbonyl groups. In the 

absence of OM and MnO2, increasing pH led to a slight increase in RNH2OH-to-N2O due to the 

self-decomposition of NH2OH at high pH, whereas in the presence of OM and absence of 

MnO2 nearly no NH2OH was converted to N2O (Fig. 5.2, S5.2). In contrast, the effect of 

increasing pH on RNH2OH-to-N2O became negative already in the presence of 0.01% MnO2 (Fig. 

5.2, S5.2). This finding suggests that acidic conditions are favorable for the redox reaction 

between NH2OH and MnO2.  
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Figure 5.2 NH2OH-to-N2O conversion ratios (RNH2OH-to-N2O) in artificial soil mixtures at different pH 
as well as MnO2 and organic matter (OM, peat moss) contents. The total amount of NH2OH added was 
5 nmol. Different symbols represent RNH2OH-to-N2O at different OM content. 

 

The interactive effects of pH and MnO2, pH and OM, and OM and MnO2 were significant (P 

< 0.01). The largest RNH2OH-to-N2O found in the present experiment was 81.5% in the absence 

of SOM at pH 3, and with a MnO2 content of 0.1%, while the lowest RNH2OH-to-N2O was about 

9%, when SOM content was 10% in the presence of 0.1% MnO2 at pH 7. This suggests that 

even at the highest MnO2 level and otherwise optimal conditions a small fraction of NH2OH 

had not been converted to N2O, but to some other unidentified product. 

In the treatments without OM, MnO2 had only a small effect on RNH2OH-to-N2O at all pH 

conditions, while it had a larger effect especially at higher OM content (Fig. 5.2, S5.1), 

suggesting a strong competition between OM and MnO2 for NH2OH. The competition was 
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biased by pH, with lower pH favouring the reaction of NH2OH and MnO2, while higher pH 

favoured the reaction of NH2OH with OM. These findings confirmed our hypothesis that at 

low pH NH2OH is more protected against reaction with OM and more available for the 

oxidation by MnO2 due to the higher degree of NH2OH protonation at lower pH. 

5.3.2 RNH2OH-to-N2O at different pH ,MnO2 content, and OM quality  

Organic matter quality had a clear influence on RNH2OH-to-N2O in this study (Fig. 5.3, S5.3, and 

S5.4). Most of the OM types were associated with a significantly lower RNH2OH-to-N2O 

compared to the mixtures without OM within the pH range of the experiment. In general, the 

inhibitory effect of the organic materials on the conversion of NH2OH to N2O conversion 

showed a clear pH dependency, but not a C/N ratio dependency as we assumed (Fig. 5.3, 

S5.3). At acid conditions (pH 3-4), peat moss and watermilfoil which own the relatively larger 

C/N ratio, inhibited the RNH2OH-to-N2O least, while cyanobacterium and clover inhibited the 

RNH2OH-to-N2O although they have relatively smaller C/N ratio.  The differences between peat 

moss, cyanobacterium and watermilfoil material as OM became smaller at higher pH, and 

were no longer significant at pH 7 in the presence of 0.01% MnO2 (Fig. S5.4), while clover 

showed always the smallest RNH2OH-to-N2O for all the pH levels. In the absence of MnO2, all 

OM forms showed a RNH2OH-to-N2O close to zero, except for the watermilfoil material that was 

associated with a RNH2OH-to-N2O significantly above zero at the pH range 3-6 (Fig. 5.3, S5.3, 

S5.4). A possible explanation could be the fact that, in contrast to the other OM sources, the 

watermilfoil material contained about 0.03% Mn (Table 5.1), which could have caused the 

N2O emission after NH2OH addition even without external MnO2 addition. 



Chapter 5 

74 

 

 

Figure 5.3 NH2OH-to-N2O conversion ratios (RNH2OH-to-N2O) in artificial soils at different pH and MnO2 
content, and for organic matter of different origins at a fixed content of 2.5% (w/w). The total amount 
of NH2OH added was 5 nmol. Different symbols represent RNH2OH-to-N2O for the artificial soil mixtures 
with the different organic materials. 

 

We assumed that RNH2OH-to-N2O would be a function of the C/N ratio of the different SOM 

types, as larger C/N ratios would be indicative of a lower degree of N-containing functional 

groups, i.e. leaving a higher chance for NH2OH to react with SOM and not to be converted to 

N2O. However, we did not observe any clear relationship between C/N ratio and RNH2OH-to-N2O, 

e.g. peat moss had the largest C/N ratio, but did not lead to the lowest RNH2OH-to-N2O. Instead, 

clover with a much lower C/N ratio had the largest inhibitory effect on RNH2OH-to-N2O. The 

addition of 2.5% dry clover powder (C/N ratio = 11.3) to the artificial soil mixture decreased 

RNH2OH-to-N2O by 48% at pH 3 (Fig. 5.3), which was similar to the effect of 10% peat moss 
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(C/N ratio = 67.2) at the same pH (Fig. 5.2). The reason for this observation could lie in the 

differences in functional groups between the different organic materials used in this study.  

 

Figure 5.4 The 13C- and 15N-CPMAS-NMR spectra of the different organic materials 

(cyanobacterium, clover, watermilfoil, peat moss) used in the experiment. 

 

A better insight into the effects of C and N functional groups of the different organic materials 

was obtained from NMR analysis. The peat moss OM had the lowest proportion of ester or 

amide carbonyl at around 170 ppm of all materials (Fig. 5.4, Table 5.2). This is in accordance 

with the observation that – despite having the largest C/N ratio – peat moss OM had a lower 

inhibitory effect on RNH2OH-to-N2O compared to clover and watermilfoil OM (if the background 

MnO2 effect was subtracted), i.e. the lack of almost any carbonyl groups in peat moss was 

clearly visible in its chemical behaviour toward NH2OH. In addition, peat moss OM exhibited 

the largest proportion of O-substituted aliphatic compounds, which might have also 

contributed to the relatively low inhibitory effect on RNH2OH-to-N2O in comparison to clover and 

watermilfoil OM. In contrast, cyanobacterium OM had the highest proportion of acid/amide 

carbonyl of all four organic materials, suggesting the highest inhibitory effect on RNH2OH-to-N2O 

due to the competitive reaction of carbonyl groups with NH2OH. The clover material, 

however, contained lower amounts of O-substituted aliphatics and di-O-substituted C in 

comparison to peat moss and watermilfoil OM, which may have increased its affinity for 
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NH2OH. For the proportion of unsaturated C no clear trend emerged across the different 

materials, suggesting that the effect of unsaturated C on RNH2OH-to-N2O is of minor importance. 

Table 5.2 The chemical structures and their relative proportions derived from 13C CPMAS NMR 
spectra of the different plant materials. 

Spectral 

range 

(ppm) 

Chemical 

structures 

Found in 

 

Cyanobacterium 

(%) 

Clover 

(%) 

Watermil- 

foil 

(%) 

Peat 

moss 

(%) 

45 – 0 

 

Aliphatic 

compounds 

waxes,  suberin, cutin, 

cyanophycin, chlorophyll (a,b,d) 

40.5 17.1 14.8 11.0 

64.5 – 45  N- and O-

substituted 

aliphats 

amino acids, amino sugars, 

lignin, cyanophycin 

19.4 13.7 13.8 11.6 

90 – 64.5  O-substituted 

aliphats 

polysaccharides, cellulose, 

hemi-cellulose, starch, pectin, 

lignin 

14.2 37.8 42.1 49.1 

109 – 90  di-O-

substituted C 

polysaccharides, cellulose, 

hemi-cellulose, starch, pectin 

2.5 10.5 12.0 13.5 

162 – 109  unsaturated 

C, aromatic C 

suberin, lignin, chlorophyll 6.9 11.1 10.0 11.4 

190 –162 acid, ester, 

amid 

cutin, proteins, cyanophycin, 

chlorophyll 

16.6 9.8 7.4 3.5 

 

5.3.3 Development of a stepwise multiple regression model from the artificial soil 

mixtures and application to natural soils 

A stepwise multiple regression model for RNH2OH-to-N2O was developed on the basis of the co-

variables pH, MnO2 and SOM using the data in Fig. 5.2 (RNH2OH-to-N2O = 45.9 – 3.1 SOM + 

241.1 MnO2 – 4.5 pH, R2 = 0.62, P < 0.01). This model obtained from the peat moss 

experiments could explain about 62% variation of RNH2OH-to-N2O, and the contributions of pH, 

Mn and SOM content to the model’s performance were all significant (P < 0.01). It could well 

explain the observations (Fig. 5.3) for peat moss, watermilfoil and clover OM (R2 around  

0.80, P < 0.01, Fig. 5.5), which could be due to the fact that the cyanobacterium material had 

a high N content, a higher ratio of aliphatic C and a lower C/N ratio than the plant materials. 

This demonstrated the general applicability of the model for the OM derived from the 

different plant species, with different N content, aliphatic C and C/N ratio. In contrast, the 

model proved to be not appropriate for the artificial soil mixture without any MnO2, indicated 

by the decreased goodness of the simulation. 
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Figure 5.5 Results of the application of the artificial soil regression model for the NH2OH-to-N2O 

conversion ratios (RNH2OH-to-N2O) to artificial soil mixtures amended with the different organic materials 

(n=22). The three points for which RNH2OH-to-N2O was determined at pH 3, 4, and 5 without MnO2 

addition were excluded for a better simulation. 

 

In addition, RNH2OH-to-N2O was simulated with the same regression model for the natural soils 

described in Heil et al. (2015). The results showed that the application of the model to natural 

soils was promising, no matter if it was applied to fumigated or fresh soils (Fig. 5.6). The 

simulated RNH2OH-to-N2O explained more than 90% of the observed rates, especially for 

cropland, grassland, and deciduous forest soils. However, the model failed at correctly 

predicting RNH2OH-to-N2O for the spruce forest soil of Heil et al. (2015), which could be related 

to the high SOM and relatively low MnO2 content of the spruce soil as compared to the other 

soils. This finding suggests that there is a threshold value for the SOM content of 10% above 

which – and a MnO2 content of 0.01% below which – the model fails to predict the correct 

RNH2OH-to-N2O values. 
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Figure 5.6 Application of the artificial soil regression model for the calculation of NH2OH-to-N2O 
conversion ratios to six natural fresh and fumigated soils as reported in Heil et al. (2015). 

 

Soil pH, MnO2, and SOM content were identified as crucial control variables of RNH2OH-to-N2O, 

i.e. the conversion ratio of NH2OH to N2O in the artificial soil experiments of this study. 

Organic matter derived from different plant species and a cyanobacterium also affected 

RNH2OH-to-N2O due to the differences in composition, type, and abundance of functional groups, 

as more carbonyl C leads to higher reactivity of NH2OH with organic matter, thereby lowering 

its availability for the oxidation to N2O by MnO2. The multiple regression model of pH, MnO2 

and OM developed here could explain about 60% of the variance of RNH2OH-to-N2O in the 

artificial soil mixtures, and proved also to be promising for the prediction of RNH2OH-to-N2O of 

chemical N2O production from NH2OH in natural soils, when SOM content was below 10% 

and Mn content was larger than 0.01%. If these findings can be confirmed for other soils from 

different ecosystems, this improved understanding of the controls of N2O formation from the 

reactive nitrification intermediate NH2OH in soils can have large implications for developing 

appropriate management options, such as adding organic amendments with suitable chemical 

characteristics, for mitigating N2O emissions from agricultural land, the largest anthropogenic 

source of N2O to the atmosphere.  
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Chapter 6     

Effect of nitrite and hydroxylamine on 

N2O production depends on the soil type 

and preceding redox condition 
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Liu S., Schloter M., Hu R., Vereecken H. and Brüggemann N. Effect of nitrite and 

hydroxylamine on N2O production depends on the soil type and preceding redox condition. 
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6.1 Introduction 

The mechanisms of soil N2O formation have been studied extensively in recent years due to 

the large impact of N2O on global warming and ozone depletion (Bremner, 1997; Baggs, 2011; 

Schreiber et al., 2012; Butterbach-Bahl et al., 2013). Soil biological processes, such as 

nitrification and denitrification, and abiotic processes involving the reactive intermediates of 

nitrification, i.e. NH2OH and NO2
-, and of denitrification, i.e. NO2

-, such as the reactions 

between NO2
- and organic matter (van Cleemput & Samater, 1995; van Cleemput, 1998) and 

between NH2OH and MnO2 (Bremner, 1997), contribute to soil N2O formation. Different 

terrestrial ecosystem types (e.g., grassland, cropland, and forest), various environmental 

factors (e.g., temperature, water content, and O2 availability) and soil constituents (e.g., 

quality and quantity of organic carbon and pH) have strong effects on soil N2O formation.  

Nitrite and NH2OH are important nitrification intermediates responsible for soil N2O 

production. Both are very reactive with relatively high self-decomposition rates dependent on 

pH and soil composition. In oxic soils without any artificial (e.g., fertilizer) or natural (e.g., 

drought) interference, NO2
- is rarely accumulated due to the faster oxidation of NO2

- to NO3
- 

than oxidation of NH3 to NO2
- during nitrification (Robertson & Groffman, 2007). However, 

high NO2
- concentrations can be found after fertilizer application and drought (Gelfand & 

Yakir, 2008; Ma et al., 2015). The other reactive nitrification intermediate, NH2OH, is even 

more reactive and unstable in its natural environment. At neutral or slightly alkaline pH, about 

30% of NH2OH degrade within 3 h at room temperature in seawater samples at micromolar 

concentrations  (Butler & Gordon, 1986). Nevertheless, NH2OH has been detected in cultures 

of heterotrophic nitrifiers and ammonia oxidizers (Daum et al., 1998; Liu et al., 2017b) and 

acid forest soils (Liu et al., 2014).   

The two reactive N intermediates can produce N2O both biologically and chemically during 

nitrification. NO2
- can be reduced biologically to N2O either by NO2

- reductase through a 

pathway called “nitrifier denitrification” (Wrage et al., 2001), as well as biologically or 

chemically by Fe2+ with the help of iron oxidizers and other microorganisms (Kampschreur et 

al., 2011). Moreover, soil organic matter fractions, e.g. fulvic acids, lignin-building units and 

phenolic compounds can also react chemically with NO2
- to form N2O (Stevenson & Swaby, 

1964). From NH2OH, N2O can be formed both biologically by the enzyme NH2OH 

oxidoreductase (Ritchie & Nicholas, 1972) and chemically by O2 and several soil oxidants 

(e.g., MnO2 and Fe3+) (Bremner, 1997; Heil et al., 2016). The role of abiotic N2O formation 
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from NH2OH in different soils has been demonstrated previously (Heil et al., 2015), while the 

contribution of NO2
- to the abiotic N2O formation in the same soils remains unclear. 

Different soil types and environmental conditions may have a strong impact on biotic and 

abiotic N2O formation from NO2
- and NH2OH in soil. For example, quality and quantity of 

SOM, especially the reactive part of SOM, i.e. dissolved organic matter (DOM), may have 

strong effects on N2O formation from NH2OH and NO2
-. Soils rich in DOM, especially in 

phenolic lignin derivatives, may favor N2O formation from NO2
- (Stevenson & Swaby, 1964; 

Wrage et al., 2001), but may decrease N2O formation from NH2OH, as NH2OH binds readily 

to carbonyl groups of organic matter to form oximes (Thorn et al., 1992). Moreover, the 

content and oxidation state of transition metals may also affect the formation of N2O from 

NO2
- and NH2OH. In soil samples with high Fe and Mn content, the oxidized form will 

promote the conversion of NH2OH to N2O, whereas under reduced conditions the formation 

of N2O from NO2
- will be favored (Heil et al., 2016). In addition to the transition metal redox 

state, it has been demonstrated that anoxic condition could change the composition of the 

microbial community (Pett-Ridge et al., 2006), availability of mineral N substrates (mainly 

NO3
-, NH4

+ and NO2
-) (Achtnich et al., 1995), and quality of SOM (Achtnich et al., 1995; 

Dassonville & Renault, 2002).  

The aim of this study was to: (1) compare the importance of NO2
- and NH2OH for N2O 

formation in different soils; (2) explore the effect of preceding soil redox condition on the 

N2O production from NO2
- and NH2OH addition; and (3) assess the contribution of the abiotic 

pathways to the formation of N2O from NO2
- and NH2OH. For this purpose, different soil 

samples from forest, grassland and cropland with large ranges of C and Mn contents and pH 

were collected, and oxic or anoxic pre-incubations were carried out. The effect of sterilization 

with γ-irradiation was scrutinized to quantify the relevance of abiotic processes. We 

hypothesized that (1) NH2OH plays a more important role in soil N2O production in soils with 

higher Mn and lower SOM content, whereas NO2
- contributes more to N2O formation in soils 

with higher SOM and Fe content; (2) anoxic pre-incubation increases the contribution of NO2
- 

to soil N2O formation, but decreases the contribution of NH2OH to soil N2O formation; (3) the 

contribution of NH2OH to N2O formation is mainly from abiotic processes, while there is a 

mixed contribution of biotic and abiotic processes to N2O formation from NO2
-. 
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6.2 Materials and methods 

6.2.1 Soil collection 

Soil material was collected from the three field sites of the TERENO (www.tereno.net) from 

the Eifel/Lower Rhine Valley, Germany, i.e. coniferous forest (Wüstebach; 50° 30' 10'' N, 

6° 19' 50'' E), extensive grassland (Rollesbroich; 50° 37' 18'' N, 6° 18' 15'' E) and cropland 

(Selhausen; 50° 52' 10'' N, 6° 27' 4'' E). The coniferous forest site is situated in the low 

mountain ranges of the Eifel National Park, with a sub-catchment of the river Rur basin 

flowing through it. The site was dominated by Norway spruce (Picea abies (L.) H. Karst). 

The hillslopes are characterized by Cambisol and Planosols, whereas the riparian zone is 

dominated by Gleysol and Histosol. The main soil texture at this site is silty clay loam. The 

mean annual precipitation of the coniferous forest is about 1400 mm. The height above sea 

level (a.s.l.) of the forest site is 630 m and the mean annual temperature is around 7°C.  The 

grassland site is located in the Northern Eifel region with smooth meadow grassland. 

Dominant soils at this site are (gleyic) Cambisol, Stagnosol, and Cambisol-Stagnosol with a 

silt loam texture. Mean annual temperature and precipitation at the grassland site are 7.7°C 

and 1033 mm, respectively. The agricultural site is dominated also by (gleyic) Cambisol and 

(gleyic) Luvisol with a silt loam texture, and regularly cultivated with sugar beet, wheat, and 

oilseed rape, depending on the year. Mean annual temperature and precipitation at the 

cropland site are 9.8°C and 690 mm, respectively.    

Due to the strong spatial heterogeneity in soil basic properties of the forest site of this study 

(Liu et al., 2016), fresh soils (~ 3 kg) were sampled in January 2016 from the humus-rich 

layer (Oa horizon, depth 3 ̶ 5 cm) of five sampling points (F1, F2, F3, F4 and F5) of the forest 

upland area, and one sample from the forest riparian zone (FR) in the area of approximately 

27 ha of the forested Wüstebach catchment. For the grassland (G) and cropland (C) sites, five 

soil samples (~ 1.5 kg each) in one hectare were collected from the soil top 15 cm layers of 

the two sites, respectively in January 2016. As the spatial variability of the grassland and 

cropland sites was smaller compared to the forest site, the fresh soil samples were mixed 

directly in a large plastic bag after soil sampling in both the grassland and cropland sites, and 

were transferred to the laboratory with the forest soil samples at the same day. In the 

laboratory, fresh samples (except for the FR sample) were passed through a 2-mm sieve, and 

coarse plant residues (including roots) and stones were manually removed. After that, soil 
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samples were put into open plastic bags and stored in a refrigerator (4 ºC) until the beginning 

of the experiment.  

6.2.2 Oxic and anoxic pre-treatment of soil 

For the anoxic pre-treatment, about 600 g fresh soil from each sampling site was put into a 1-

litre glass bottles and sealed with a rubber plug within a plastic lid. The water content (w/w) of 

the fresh soils was around 59-108%, 22% and 10% for the forest, grassland and cropland, 

respectively. The bottles were then evacuated and refilled with He to 0.4 bar overpressure. 

This procedure was repeated three times. Then the bottles were incubated with He as 

headspace gas at ambient pressure at room temperature for one week. For the oxic pre-

treatment, another about 600 g fresh soil was put in large open plastic bags and kept under 

oxic conditions at room temperature for one week. All plastic bags were stored in a large 

plastic box to reduce air flow and further reduce soil water evaporation. All soil samples were 

freeze-dried immediately after the oxic/anoxic pre-incubations to preserve the chemical status 

of the soil samples until further treatment. One side effect of freeze-drying could have been 

that this process led to a disruption of soil aggregates, which would have made more of the 

substrates soluble when the solution was added, and would have led to an overestimation of 

the N2O production from NO2
- (via both biotic and abiotic pathways), but an underestimation 

of the N2O production from NH2OH (via abiotic pathways). All plastic bags were stored in a 

large plastic box to reduce air flow and further reduce soil water evaporation. After the 

oxic/anoxic pre-incubations, soil samples were freeze-dried for about one week and stored at 

room temperature. After freeze-drying, half of the soil samples were transferred to 50-ml 

falcon tubes and sterilized with γ-irradiation (Best Theratronics, Canada) for 14 hours (total 

dose: 11 kGy). The success of the sterilization process was checked by plating soil slurries 

after the sterilization on R2A medium and incubated for 24 h at 25°C. No growth of bacteria 

or fungi was observed (data not shown). 

6.2.3 Addition of reactive N to freeze-dried soils 

About 1.4 g of freeze-dried soil with or without γ-irradiation were weighed into 22-ml GC 

vials (VWR International, Darmstadt, Germany), followed by the addition of H2O, NO2
-, 

NH2OH and NH2OH + MnO2 (Merck, Darmstadt, Germany) to reach around 40% WHC to 

resemble nitrification conditions. The MnO2 was added to the soil to explore the effect of 

MnO2 on abiotic NH2OH-to-N2O production in soil with either oxic or anoxic pre-treatment. 
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The concentration of the added N solutions was adjusted accordingly, so that 1 mg N kg-1 dry 

soil was added to each bottle. The added N amount corresponded to NO2
- content in soil with 

fertilizer application (Shen et al., 2003; Venterea et al., 2003), and was assumed also 

reasonable for NH2OH in soils with fertilizer application as concentration level of 0.3–34.8 μg 

N kg−1 dry soil had been observed in natural forest soils (Liu et al., 2014). The added Mn 

amount amounted to 0.1% (w/w) of soil dry weight, while the natural Mn content of the soil 

samples of this study ranged between 0.015–0.194% (w/w) (Table 6.1). The vials were closed 

gas-tight immediately after addition of the solution with butyl septa and aluminum crimp caps 

(VWR International) and incubated at room temperature for 1 and 7 h. Each treatment was 

carried out in triplicate.  

Table 6.1 Basic properties of the soils used in this study. For the determination of total C, N, Fe and 
Mn content, soils with oxic pre-incubation were used. Values are presented as mean of three replicates. 
The coefficient of variation of all data was smaller than 10% and is therefore not shown. For the 
determination of pH, DOC, DTN, A254, NH4

+ and NO3
-, soils with both oxic and anoxic pre-incubation 

were used, and only one extraction was carried out. 

 C 
(%) 

N 
(%) 

C/N Fe 
(%) 

Mn 
(%) 

pH DOC 
 (mg kg-1 dry 

soil) 

DTN 
(mg kg-1 dry 

soil) 

A254 
(cm-1 g-1 dry 

soil) 

NH4
+ 

(mg kg-1 dry 
soil) 

NO3
- 

(mg kg-1 dry 
soil) 

oxic anoxic oxic anoxic oxic anoxic oxic anoxic oxic anoxic oxic anoxic 
F1 27.4 1.4 19.3 1.62 0.015 2.88 2.92 2865 3650 155 207 1.42 2.00 7.6 24.5 7.2 n.d. 
F2 26.8 1.5 18.0 2.02 0.027 3.13 3.12 2215 3090 145 168 1.24 1.61 13.2 30.4 13.4 n.d. 
F3 21.0 1.1 20.0 2.44 0.026 3.26 3.23 3175 3720 253 220 1.16 1.68 19.8 35.7 32.4 n.d. 
F4 25.7 1.3 19.2 1.92 0.018 2.99 3.05 2390 3350 126 158 1.24 1.64 2.4 19.6 6.4 n.d. 
F5 23.7 1.1 21.2 2.81 0.194 3.67 3.71 1510 1590 135 121 0.61 0.80 6.3 38.9 17.3 1.6 
FR 9.7 0.5 18.1 1.57 0.024 4.14 4.13 –  930 – 86 – 0.52 3.8 n.d. n.d. n.d. 
G 5.3 0.5 9.9 2.39 0.097 5.45 5.82 720 1023 133 126 0.41 0.62 16.0 97.5 19.5 n.d. 
C 1.3 0.1 9.2 2.10 0.074 5.87 6.19 226 236 24 19 0.29 0.37 2.2 4.5 3.1 n.d. 

n.d.: not detectable;  –: value is missing due to shortage of material. 

 

6.2.4 N2O analysis 

The gas in the headspace of the sample vials was analyzed for N2O using a gas chromatograph 

(Clarus 580, PerkinElmer, Rodgau, Germany) equipped with an ECD and flame ionization 

detector (FID) for N2O and CO2 detection, respectively, as described in Liu et al. (2014). The 

instrument was calibrated each day using five different standard gasses with 0.25, 0.50, 0.75, 

1.00 and 5.00 ppm N2O, balanced with N2 (99.999% purity, Linde, Munich, Germany). 

6.2.5 Soil chemical analyses 

Total C and N contents were determined with an elemental analyzer (vario EL Cube, 

Elementar Analysensysteme GmbH, Hanau, Germany). The elemental composition of the 

organic materials was analyzed by using ICP-OES. Briefly, 100 mg of sample material were 



Effect of nitrite and hydroxylamine on N2O production depends on the soil type and preceding redox condition 

85 

 

mixed with 3 mL HNO3 and 2 ml H2O2, heated in the microwave at 800 W for 30 min. The 

mixtures were subsequently filled up to 14 ml and diluted 10-fold with deionized water 

followed by the ICP-OES measurement.  

Additionally, mineral N and the quality and quantity of soil DOM were analyzed to determine 

the effects of anoxic pre-treatment on the DOM dynamics. The mineral N (NH4
+ and NO3

-) 

contents were analyzed with ion chromatography (IC, Dionex ICS-3000 for NO2
- and NO3

-, 

Dionex DX-500 for NH4
+). NH4

+ and NO3
- were extracted with 1 M KCl (dry soil: solution = 

1:10 w/w) and shaken for 24 h. DOC and dissolved total nitrogen (DTN) were extracted with 

deionized water (dry soil: water = 1:2.5 for grassland and cropland soils, and 1:5 for forest 

and riparian soils) by shaking for 1 h at 200 rpm. DOC and DTN were then analyzed with a 

TOC-TN analyzer (Shimadzu Corp., Kyoto, Japan). In addition, for characterization of the 

aromatic substances the absorbance of the DOC extract at 254 nm (A254) was determined with 

UV-VIS spectrometry (DU 800, Beckman Coulter, Inc., United States) and a path length of 1 

cm.  

6.2.6 Data analyses 

The effects of NO2
- and NH2OH on N2O emission were calculated by subtracting N2O 

emission after water addition only (as control) from the N2O emission in response to NO2
- and 

NH2OH addition. N2O emission was calculated according to Equation 8 in Liu et al. (2014). 

Spearman’s correlation analysis was performed with Origin 7.0. Student's t-test was used to 

identify significant (P < 0.05) differences in N2O production between oxic or anoxic pre-

treatment, with or without γ-irradiation and different soil samples. 

 

6.3 Results 

6.3.1 Effect of reactive N addition on N2O production in different soils 

Nitrite addition to the freeze-dried soil samples after oxic pre-treatment was associated with 

large N2O production in the grassland soil, whereas it was only minor in the other soil 

samples (Fig. 6.1A). In the grassland soil with oxic pre-treatment, 80% of the NO2
- had been 

converted to soil N2O within 7 h, assuming that all the N2O came from the added NO2
-. For 

the forest soils, the N2O formation after NO2
- addition amounted to about 30 µg N kg-1 dry 

soil after 1 h, which was 25% of the grassland soil N2O production within 1 h, but did not 
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increase significantly after 7 h, except for the soil from sampling point F2. Although the N2O 

production from the riparian (FR) and cropland (C) soils increased with incubation time after 

NO2
- addition, it was the smallest among the different soil samples. 

 

Figure 6.1 Net N2O (ng N g
-1 dry soil) production in forest (F1, F2, F3, F4, F5 and FR), grassland (G) 

and cropland (C) soils after NO2
- (A: oxic, C: anoxic pre-incubation) and NH2OH (B: oxic, D: anoxic 

pre-incubation) addition. Net N2O production was calculated by subtracting N2O emission after 

addition of pure water (as control) from the N2O emission after addition of NO2
- or NH2OH solution. 

The values are presented as mean ± standard deviation (SD). 

 

In contrast, NH2OH addition induced the highest N2O production in cropland soil, followed 

by the grassland soil and the forest soil from sampling point F5 in the soil samples with oxic 

pre-treatment. The conversion ratio from the added NH2OH to N2O was 47%, 37% and 12% 

for the cropland, grassland, and F5 forest soils within 7 h, respectively, assuming that all the 

N2O came from the added NH2OH. NH2OH addition had only a minor effect on the other 

forest soil samples during the whole incubation period (Fig. 6.1B). Comparing to the effect of 

NO2
-, NH2OH had a larger effect on N2O production in cropland and F5 forest soils. 

Moreover, N2O was produced very quickly in the first 1 h after NH2OH addition, accounting 

for about 95%, 75% and 85% of the N2O emission after 7 h for the cropland, grassland, and 

F5 forest soils, respectively.   
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6.3.2 Effect of anoxic pre-incubation on N2O production from reactive N addition  

Anoxic pre-incubation increased soil NH4
+ concentration up to sevenfold, with the largest 

NH4
+ concentration (195 mg N kg-1 dry soil) in the grassland soil (Table 6.1), and decreased 

NO3
- concentration in most of the soil samples (except forest sample F5) to nearly zero. The 

quality (reflected in the A254 value) and quantity of DOM (reflected in the concentrations of 

DOC and DTN) varied substantially after anoxic pre-incubation between the different soil 

samples, with 5-42% higher DOC content compared to soil samples with oxic pre-incubation.  

The A254 value followed a trend very similar to DOC, indicating that more aromatic 

substances were available in dissolved form after anoxic pre-incubation. The difference in 

DTN between the different treatments was not as pronounced as for DOC and A254. Moreover, 

the DTN content of soil samples F3 and F5 was even smaller after anoxic pre-incubation 

compared to samples with oxic pre-incubation 

Anoxic pre-treatment of the soil samples had a large effect on soil N2O emission after addition 

of reactive N. After anoxic pre-incubation, N2O production in grassland soil after NO2
- 

addition was about 25% higher after the first hour of incubation compared to the oxic pre-

treatment, but was about 50% lower after 7 h (Fig. 6.1C). Forest soil samples F1, F3 and F5 

showed larger N2O emission after NO2
- addition after anoxic pre-incubation compared to the 

oxic-pretreatment, while F2 and F4 showed no difference in response (Table 6.2). Anoxic pre-

treatment stimulated N2O emission the most from the soil of sampling point F3 after NO2
- 

addition, followed by F5, whereas it decreased the effect of NO2
- on N2O production in the 

riparian soils.  

Table 6.2 Effect of anoxic pre-treatment on soil N2O emissions after 1 and 7 h of incubation of soils 
with NO2

- and NH2OH additions. Values indicate the relative increase (%) in N2O emission in anoxic 
vs. oxic pre-treatment. Negative values indicate a decrease. 

 F1 F2 F3 F4 F5 FR G C 
NO2

-         
1 h 23.4 -14.8 34.1 -1.7 49.7 -44.1 22.8 49.0 
7 h 55.5 -18.3 85.0 -2.2 61.3 -39.6 -49.0 9.8 

NH2OH         
1 h – -81.4 – -96.7 -100.3 -87.5 -77.5 -10.7 
7 h – -84.4 -104.5 -96.6 -98.6 -78.5 -78.6 -12.0 

–: relative increase could not be calculated correctly due to negligible N2O emission after NH2OH addition. 

 

In terms of NH2OH, anoxic pre-treatment had a negative effect on the N2O production after 

NH2OH addition in all soil samples, especially in those with a large NH2OH effect after oxic 
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pre-incubation, i.e. grassland and F5 forest soils, but had a relatively small effect on the N2O 

production after NH2OH addition in cropland soil (Table 6.2).  Anoxic pre-incubation 

decreased N2O production in cropland, grassland, and forest soil F5 by about 14%, 80% and 

97%, respectively, 7 h after NH2OH addition (Fig. 6.1D, Table 6.2). 

6.3.3 Contribution of abiotic pathways to N2O production from reactive N addition 

Abiotic pathways contributed to 9.1-39.4% of soil N2O production within 7 h after NO2
- 

addition from the different soils after oxic pre-incubation, but contributed to 72.5-92.5% of 

soil N2O production within 7 h after NH2OH addition in the cropland, grassland and the F5 

soil (Table 6.3). For the soil samples with anoxic pre-incubation, abiotic pathways contributed 

to 7.0-49.0% of NO2
--induced N2O production after 7 h, but contributed to 84.5-98.7% of 

N2O production only after NH2OH addition in the grassland, cropland and F5 soil in the same 

time period. In general, abiotic pathways played a more important role in the N2O production 

after NH2OH addition than that after NO2
- addition in the tested soils. 

Table 6.3 Contribution (%) of abiotic pathways to soil N2O emissions after 7 h incubation of soils 
with addition of aqueous solutions of NH2OH or NO2

- to soil samples with oxic or anoxic pre-
incubation and freeze-drying treatment. The data of F4 after γ-irradiation treatment is missing due to 
shortage of material.

 

  F1 F2 F3 F5 FR G C 

Oxic NO2
- 9.1 18.9 17.4 16.5 30.2 27.7 39.4 

 NH2OH – – 85.3 84.2 89.1 72.5 92.5 

Anoxic NO2
- 19.6 14.4 49.0 18.3 41.6 35.1 7.0 

 NH2OH 84.5 – – 98.7 – 88.5 93.4 

 

6.3.4 Controls of the effect of reactive N addition on N2O production in soils after oxic 

and anoxic pre-incubation 

Correlation analysis showed that soil Mn, C and DOC content, and pH were important factors 

responsible for soil N2O formation from NH2OH in the forest soil samples (Table 6.4). The 

NH2OH-to-N2O conversion ratio was positively and significantly correlated with soil Mn 

content and pH, but negatively and significantly correlated with soil C, N and DOC content, 

and A254. Soil N2O production after NO2
- addition was found to be only marginally (P = 0.06) 

correlated with soil Fe content after anoxic pre-treatment. No significant correlation was 
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observed between the NO2
--to-N2O conversion ratio and any soil basic properties after oxic 

pre-treatment. 

Table 6.4 Spearman’s correlation coefficients between soil N2O emissions and basic soil properties in 

forest soil samples after 7 h incubation. Asterisks indicate a significant correlation (P < 0.05). 

 NO2
- addition NH2OH addition 

 Oxic Anoxic Oxic Anoxic 

Fe 0.40 0.69 (P=0.06) 0.43 0.43 
Mn 0.36 0.38 0.83* 0.69 (P=0.06) 
C 0.21 0.07 -0.83* -0.83* 
N 0.40 0.13 -0.74* -0.83* 
C/N -0.07 0.33 -0.55 -0.36 
pH -0.16 -0.07 0.95* 0.90* 
DOC 0.24 0.45 -0.86* -0.71* 
DTN 0.31 0.52 -0.52 -0.67 
A254 0.38 0.40 -0.79* -0.74* 

 

The addition of MnO2 increased the NH2OH-to-N2O conversion ratio in all soil samples after 

oxic or anoxic pre-incubation (Fig. 6.2). However, the addition of MnO2 increased the 

NH2OH-to-N2O conversion ratio more in the soil with oxic pre-incubation (especially during 

the first hour after NH2OH addition) compared to the soil with anoxic pre-incubation. Only 

N2O emission from soil F3 with anoxic pre-incubation was largely affected by the addition of 

MnO2 (as high as 2.5 mg kg
-1 N after 7 h), which disappeared completely after γ-irradiation 

(data not shown). The NH2OH-to-N2O conversion ratio of the grassland soil, F5 and other 

forest soil samples after anoxic pre-incubation also increased after MnO2 addition, but was 

still much lower than with NH2OH addition only after oxic pre-incubation. 

 

Figure 6.2 Soil N2O production (ng N g
-1 dry soil) after MnO2 and NH2OH addition after oxic (A) and 

anoxic (B) pre-incubation for samples from forest (F1, F2, F3, F4, F5 and FR), grassland (G) and 

cropland (C). 
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6.4 Discussion 

6.4.1 The importance of NO2
- and NH2OH on biotic and abiotic N2O formation in 

different soils 

Nitrite and NH2OH are important intermediates of the inorganic N cycle in soil (van Cleemput 

& Samater, 1995; Bremner, 1997; Zhu-Barker et al., 2015; Heil et al., 2016). Nitrite is 

involved in soil N2O production through biological denitrification and nitrifier denitrification, 

as well as chemodenitrification, while NH2OH is related to N2O formation via nitrification 

and chemical NH2OH oxidation. Although previous papers reported the importance of NO2
- 

and NH2OH on soil N2O emissions separately (Bremner et al., 1980; van Cleemput & 

Samater, 1995; Venterea, 2007; Heil et al., 2015), according to our knowledge no paper has 

tried to compare the contribution of the two reactive N compounds on soil N2O emissions at 

the same time, with consideration of different soil types, biological and abiotic processes, and 

redox history, which may provide useful information for the exploration of soil N2O 

formation mechanisms. Our results showed that the role of NO2
- and NH2OH in N2O was 

strongly dependent on soil redox history and soil basic properties.  

The by far largest amount of N2O was produced in non-γ-irradiated grassland soil after NO2
- 

addition, much higher than in all other soils (Fig. 6.1A and C). About 80% of the added NO2
- 

was converted to N2O in the grassland soil with oxic pre-incubation after 7 h of incubation, 

assuming that all the N2O produced came from the added NO2
-. However, no soil basic 

property was significantly correlated with N2O production after NO2
- addition (Table 6.4), 

which is not consistent with Venterea et al. (2007) who found N2O production from NO2
- to 

be correlated with pH, total nitrogen, and soluble and total C.  

This large and quick N2O pulse could easily lead to the assumption of abiotic pathways, e.g. 

chemodenitrification, being responsible for the N2O production upon addition of NO2
-. 

However, γ-irradiation decreased the N2O production after NO2
- addition to soil with oxic pre-

incubation by 72.3%, indicating that biotic pathways played a more important role in N2O 

production after NO2
- addition. It was reported that nitrifier denitrification involving 

biological NO2
- reduction can play an important role in soil N2O emissions, especially in 

grassland and cropland soil with large nitrifier activity (Wrage et al., 2001; Wrage et al., 

2004). Thus, the large pulse of N2O production with NO2
- addition in the grassland soil could 

be due to nitrifier denitrification. In contrast, the smaller effect of NO2
- addition on N2O 
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production in forest soils was at first unexpected, as there was more carbon available in the 

forest soils than in the grassland soil for biotic (denitrification) and abiotic 

(chemodenitrification) pathways leading to N2O. One possible reason responsible for the 

smaller N2O production in the forest soils could be that more NO instead of N2O was 

produced as it mostly decomposes to NO and NO2 at low pH (Davidson, 1992; Venterea et al., 

2005). This assumption is supported by the fact that in our study (1) the added water amount 

was small (40% WHC); and (2) the forest soil was acidic with pH values lower than 3.5 for 

most of the samples. Furthermore, also Goldberg & Gebauer (2009) found a maximum NO 

emission for a Norway spruce forest at 33% WFPS in the organic layer, and it was reported 

that chemodenitrification increased at a pH less than 4 (Kesik et al., 2006) 

In contrast to NO2
-, large N2O production was observed after NH2OH addition to cropland, 

grassland and one forest soil sample (F5), and only negligible amounts of N2O were produced 

in other forest soils (Fig. 6.1B and D). Abiotic reactions played a much larger role in the case 

of NH2OH addition compared to NO2
- addition. Comparison of the results from the 

experiments with γ-irradiated and non-irradiated soils revealed that most of the N2O from 

NH2OH was chemically produced, contributing 90.5%, 84.2% and 72.5% to the total 

conversion of NH2OH to N2O for the cropland, F5 and grassland soil, respectively. We found 

larger Mn content in grassland, cropland and F5 forest sub-sample (Table 6.1), and a positive 

and significant correlation was observed between soil N2O production in response to NH2OH 

addition and Mn content (Table 6.4). This is in accordance with previous findings, which 

identified the chemical reaction between MnO2 and NH2OH as important factor for abiotic 

N2O production in soil (Bremner, 1997; Heil et al., 2015). The, at first sight, contradictory 

observation that the forest soil with the largest Mn content (F5) had a lower N2O production 

upon NH2OH addition than the grassland and cropland soils can be explained with the 

inhibitory effect of soil organic matter on the abiotic conversion of NH2OH to N2O. The effect 

of NH2OH on soil N2O emissions had been found earlier to be related to SOM quantity, 

quality and Mn content, with largest NH2OH-to-N2O conversion ratio in soils with higher Mn 

content and lower soil organic C content or, more specifically, lower content of carbonyl 

groups to which NH2OH could bind chemically (Liu et al., 2017a). 

6.4.2 Effect of soil redox history on N2O formation from NO2
- and NH2OH 

Despite their reactivity, the two N intermediates NH2OH and NO2
- may accumulate in soils 

under anoxic conditions. NH2OH accumulation in anoxic sediment slurries has been observed 
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in a preliminary experiment (data not shown), while transient NO2
- accumulation as well as 

the absence of NO3
- have been reported in soil slurries during anaerobic incubation (Clément 

et al., 2005). In the present study, the NH4
+ concentration, especially of the grassland soil, 

increased largely with anoxic pre-incubation (Table 6.1), probably due to dissimilatory nitrate 

reduction to ammonium and indicating that soil redox potential was smaller than +200 mV 

(Froelich et al., 1979). SOM quality, transition metal redox state, and pH may change 

remarkably at this redox potential (Dassonville & Renault, 2002). According to 

thermodynamic theory, the following sequential reduction of electron acceptors is observed 

with decreasing redox potential: O2, NO3
-, MnO2, Fe2O3, SO4

2- and CO2 reduction (Froelich et 

al., 1979) during respiratory or other dissimilatory processes. Thus, Fe2+, Mn2+ and the 

fermented organic matter would accumulate during anoxic pre-incubation. Furthermore, the 

transient occurrence of reactive C substances could have reversed the effects of NH2OH and 

NO2
- addition, as a transient increase in reactive C rich in carbonyl groups would 

preferentially react with NH2OH and decrease N2O production from abiotic conversion of 

NH2OH, while a transient increase in reactive phenolic compounds would lead to preferential 

reaction with NO2
- to produce N2O chemically. 

We hypothesized that anoxic pre-incubation would lead to higher N2O release after NO2
- 

addition and less N2O release after NH2OH addition due to the accumulation of more reduced 

substances. Our results appeared that anoxic pre-incubation increased N2O production in the 

first hour after NO2
- addition in most of the soils, but decreased N2O production afterwards. 

The stimulatory effect of anoxic pre-incubation on N2O production in the first hour could be 

due to the increased contribution of N2O production via chemodenitrification, as more 

reduced metal ions, e.g. Fe2+, may accumulate after anoxic pre-incubation and abiotic N2O 

production occurred usually very fast. However, since most of the N2O produced after NO2
- 

addition came from biotic pathways, anoxic pre-incubation may have altered the microbial 

composition, e.g. changed the activity of nitrifiers and related enzymes, leading to negative 

effects on the longer-term effect of anoxic pre-incubation on N2O production via NO2
- in soils. 

Anoxic pre-incubation had an even more pronounced effect on N2O production after NH2OH 

addition, with a significant reduction in the forest soil F5 and the grassland soil (79% and 

97%, respectively), in accordance with our hypothesis, but with only a small effect (13%) on 

the cropland soil. As a strong oxidant, most of the MnO2 should have been reduced to Mn2+ 

during the anoxic pre-incubation period according to the large increase in NH4
+ and the low 
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redox potential state (Table 6.1), especially in those soil samples with high C content, which 

can be used by microorganisms that reduce Fe3+ or Mn4+ instead of oxygen to catabolize 

organic matter (Lovley et al., 2004). The lower effect of the anoxic pre-treatment on the 

conversion of NH2OH to N2O in the cropland soil could be attributed to the lower C content 

in this soil, where less Mn4+ would be reduced to Mn2+. To further explore the effect of MnO2 

on the NH2OH-to-N2O conversion ratio, we added 0.1% (w/w) MnO2-Mn (equal to the Mn 

content of grassland soil) to both the oxic and anoxic pre-treated soil samples. We 

hypothesized that this amount of MnO2 addition would increase the NH2OH-to-N2O 

conversion ratio of the anoxically pre-incubated soil samples. However, only the grassland 

soil and forest soils F3 and F5 showed a larger Mn effect after anoxic pre-treatment, but the 

added Mn amount could not make up the reduction in N2O production caused by the anoxic 

pre-incubation, despite the large increase of N2O production from F3 with anoxic pre-

incubation (Fig. 6.2).  

It was reported that large amounts of fermented substances could accumulate during anoxic 

incubation (Dassonville & Renault, 2002). In the present study, we found more DOC and 

dissolved aromatic substances (represented as A254) in the soil samples with anoxic pre-

incubation than with oxic pre-incubation (Table 6.1). The change of soil DOC quality and 

quantity could be responsible for the difference in N2O production after NH2OH addition to 

soils with different redox history. The increase in DOC and aromatic substances after anoxic 

pre-incubation would increase the likelihood of fast binding of NH2OH to organic compounds 

once added to the soil, and lead to a lower availability of NH2OH for the reaction with MnO2 

to produce N2O. Therefore, the absence of a MnO2 addition effect on the NH2OH-to-N2O 

conversion ratio could be due to the accumulation of fermented substances that can quickly 

react with NH2OH.  

 

6.5 Conclusions 

In summary, we show that the response of soil N2O production to the addition of the reactive 

N intermediates NH2OH or NO2
- depends on the soil precondition, i.e. oxic vs. anoxic. The 

addition of NO2
- increased N2O emissions mainly from biotic processes, while the addition of 

NH2OH increased N2O from abiotic processes. Anoxic pre-incubation decreased N2O 

emissions in the NH2OH treatment, while it increased N2O emissions in the first hour after 
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NO2
- addition. Cropland, forest, and grassland soils showed different responses to the addition 

of the two N intermediates and soil pre-conditions, e.g. in cropland soil with large MnO2 

content and low C content, more N2O originated from the abiotic NH2OH oxidation compared 

to well-known nitrifier denitrification. This study provides insight into the coupled biotic-

abiotic processes involved in N2O production in soils. 
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Chapter 7     

Accumulation of NO2
- during drying 

periods stimulates soil N2O emissions 

during subsequent rewetting events 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: 

Liu S., Schloter M. and Brüggemann N. Accumulation of NO2
- during drying period 

stimulates soil N2O emissions by subsequent rewetting events. European Journal of Soil 

Science, under revision.  
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7.1 Introduction 

As an important greenhouse gas, the emissions of N2O from soils of various ecosystems under 

different environmental conditions have been widely studied. Rewetting of soil after longer 

dry periods is an important event of accelerated soil C and N mineralization (“Birch effect”), 

as well as soil N2O emissions (Smith & Parsons, 1985; Rudaz et al., 1991; Ruser et al., 2006). 

A single wetting event may be responsible for a large fraction of the annual N2O emission for 

certain ecosystems (Priemé & Christensen, 2001; Berger et al., 2013). In recent years, 

numerous studies have focused on the mechanisms of large soil N2O emissions upon 

rewetting (Beare et al., 2009; Harrison-Kirk et al., 2013; Snider et al., 2015). Three reasons 

have been considered responsible for the increased N2O flux following rewetting: (1) 

Enhanced microbial metabolism including nitrification and denitrification; (2) abiotic 

reactions due to the availability of accumulated soluble substrates; (3) physical mechanisms 

involving infiltration, reduced diffusivity and gas displacement. Soluble substances 

accumulated in the soil during the drying process play an important role in the abrupt N2O 

emissions. To survive drought, microbes must accumulate high concentrations of solutes to 

retain osmotic pressure and prevent dehydration (Fierer & Schimel, 2002; Schimel et al., 

2007). Upon rewetting, however, the accumulated solutes inside the cell may be released 

during cell rupture after sudden rewetting (Halverson et al., 2000; Fierer & Schimel, 2003). In 

addition, drought will also shrink soil aggregates, but rapid rewetting with water entering the 

aggregates quickly can rupture the aggregate (Denef et al., 2001; Fierer & Schimel, 2003). 

These processes can expose large amounts of soluble substances in the soil for subsequent 

microbial uptake and turnover as well as fast chemical reactions.  

The resilience of microorganisms to the drying-rewetting process is largely dependent on soil 

type and history of drought (Placella & Firestone, 2013; Thion & Prosser, 2014).  In a 

drought-acclimated upland soil, an increase in the quantity of bacterial ammonia 

monooxygenase (amoA) transcripts was detectable within 1 hour after rewetting and 

continued until the NH4
+ pool began to decrease (Placella & Firestone, 2013). A rapid 

increase of denitrifying enzyme activity was also observed following rewetting of air-dried 

soils in laboratory incubations (Rudaz et al., 1991). However, in a grassland soil without 

drought history, Thion & Prosser (2014) found little evidence for adaptation of bacterial and 

archaeal ammonia oxidizers, which is in accordance with a cropland field experiment in 
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Canada, in which no increase in the transcription of functional N cycle genes during the 

rewetting process was observed (Snider et al., 2015).  

Compared to biotic processes, abiotic reactions may play an even more important role in 

triggering soil N2O pulses in the wake of rewetting. NH2OH and NO2
- are the most important 

reactive N intermediates involved in abiotic N2O production (Heil et al., 2016). It is unlikely 

that NH2OH would accumulate during soil drying process because of its very reactive nature, 

especially at dry conditions. Nitrite does usually not accumulate in soil at moist or wet 

conditions (Robertson & Groffman, 2007), as then the oxidation of NO2
- to NO3

- proceeds 

faster than the conversion of NH3 to NO2
-. However, NO2

- has a great potential to accumulate 

during soil drying. Davidson (1992) reported that accumulation of soil NO2
- during drought 

probably contributes to pulses of NO and N2O production following rewetting. The 

accumulation of NO2
- in soil is very likely caused by a time delay between the turnover of 

NH4
+ and NO2

- because of differences in tolerance towards and recovery from soil 

environmental change between AOB and NOB, e.g. after pH increase, at high NH3 levels and 

during drought stress (Smith et al., 1997; Shen et al., 2003; Gelfand & Yakir, 2008; Placella 

& Firestone, 2013). Shen et al. (2003) reported that more NO2
- was accumulated at alkaline 

conditions than at acidic conditions with urea addition in an incubation experiment. Gelfand 

& Yakir (2008) also observed an unexpected rapid increase in NO2
- concentration in a forest 

soil after soil rewetting by the first winter rains, accompanied by a decrease in ammonium and 

only a slight increase in nitrate concentrations. 

Accumulation of NO2
- in soil does not only provide substrate for biological processes such as 

denitrification, nitrification and DNRA (Silver et al., 2001; Rütting et al., 2011), but plays 

also a major role for chemodenitrification, in which NO2
- reacts with humic substances or 

phenolic compounds to form nitroso and nitro compounds (Thorn & Mikita, 2000), which in 

turn can decompose to NO or be reduced by Fe(II) to N2O (van Cleemput & Samater, 1995; 

Samarkin et al., 2010). Another important pathway for the N2O production via 

chemodenitrification is the direct reaction between NO2
- and Fe(II), which have been studies 

widely recently by using the new isotope technology-site preference (SP) (Jones et al., 2015; 

Grabb et al., 2017). 

In order to investigate the processes involved in N2O emission pulses after rewetting in more 

detail and to assess the importance of biotic vs. abiotic processes in different soils, we 

designed a series of rewetting experiments with soil samples from various ecosystems (upland 
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and riparian forest, grassland and cropland). We sterilized part of the soil samples with γ-

irradiation and analyzed the 15N SP of N2O, i.e., the intramolecular distribution of 15N within 

the linear NNO molecule, which is considered as an effective tool to assign the source of N2O 

formation via biological reactions (i.e. nitrification, nitrifier denitrification, bacterial 

denitrification and fungal denitrification) and abiotic reactions (chemodenitrification and 

NH2OH oxidation). The aim of the experiments was to (1) identify the relevant drivers of soil 

N2O pulse emissions caused by rewetting; and (2) quantify the contributions of abiotic and 

biotic reactions to the N2O pulse. We hypothesized that (1) the N2O production with rewetting 

would be higher from soil samples with more NO2
- accumulated; (2) abiotic reactions play an 

important role in N2O production upon rewetting.  

 

7.2 Materials and methods 

7.2.1 Soil collection 

Fresh soil samples were collected from three different field sites of the Eifel/Lower Rhine 

Valley Observatory of the network of TERENO (www.tereno.net): coniferous forest 

(Wüstebach; 50° 30' 10'' N, 6° 19' 50'' E), cropland (Selhausen; 50° 52' 10'' N, 6° 27' 4'' E) and 

grassland (Rollesbroich; 50° 37' 18'' N, 6° 18' 15'' E). The coniferous forest site was situated 

in the low mountain ranges of the Eifel National Park, with a sub-catchment of the river Rur 

basin flowing through it. The site was dominated by Norway spruce (Picea abies (L.) H. 

Karst). The main soil texture at this site was silty clay loam. The mean annual precipitation of 

the coniferous forest is about 1400 mm. The height above sea level (a.s.l.) of the forest site is 

630 m and the mean annual temperature is around 7°C. The agricultural site was planted with 

different crops according to the locally common crop rotation, including sugar beet and wheat. 

The soil is dominated by (gleyic) Cambisol and (gleyic) Luvisol with a silt loam texture, and 

the altitude ranges between 102–110 m a.s.l.. Mean annual temperature is 9.8°C, and the 

average precipitation amounts to 690 mm per year. The grassland site was located in the 

Northern Eifel region and planted with smooth meadow-grass. Dominant soils at this site are 

(gleyic) Cambisol, Stagnosol, and Cambisol-Stagnosol with a silt loam texture, covering an 

area of 27 ha with altitude ranging between 474 and 518 m a.s.l.. Mean annual temperature 

and precipitation are 7.7°C and 1033 mm, respectively (Rötzer et al., 2014). 
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Forest soil samples (~ 2 kg each) including those from the riparian zone were collected in July 

2015. For the forest site, a large spatial variability of N2O production had been observed in a 

previous study (Liu et al., 2016) due to the topographic conditions, vegetation and the creek 

flowing through the sampling area. Hotspots of soil N2O production were concentrated in 

several areas where soil basic properties, water conditions and vegetation status were different 

from the rest of the area. We therefore collected several soil samples including one fermented 

litter sample (FOf), six humus-rich (Oa horizon) samples (F1, F2, F3, F4, F5 and F6) and one 

riparian sample (FR) in the area of approximately 27 ha in the Wüstebach forested catchment 

to explore the N2O production mechanisms. Fresh soil samples were transferred to the 

laboratory separately at the same day. At the grassland (G) and cropland (C) sites, five soil 

samples (~ 1.5 kg each) in one hectare were collected from the soil top 15 cm layers of the 

two sites, respectively in January 2016. The spatial variability of the grassland and cropland 

sites were smaller compared to the forest site, therefore we mixed soil samples collected in the 

grassland and cropland sites to one composite soil sample, which was considered as 

representative for the whole site. The fresh soil samples were mixed directly in a large plastic 

bag after soil sampling in both sites, and were transferred to the laboratory on the same day. In 

the laboratory, fresh samples (except the FR sample) were passed through a 2-mm sieve, and 

coarse plant residues (including roots) and stones were manually removed to homogenize the 

soil samples and explore the effects of soil constituents on the rewetting effect. The existence 

of plant material would have biased the soil effect and might have made the results of this 

study only comparable for soils with certain plant species composition. After that, soil 

samples were put into open plastic bags and stored at 4ºC until the beginning of the 

experiment. 

7.2.2 Experimental setup 

7.2.2.1 Soil pre-treatment  

Fresh soil samples were taken out of the fridge and spread out on aluminum foil to a thin layer 

of 0.5-1 cm, and kept at room temperature (21±1°C) for about one month. After that, the air-

dried soil samples were put into ziplock bags and stored at room temperature. To explore the 

effects of air-drying on soil mineral N dynamics, mineral N was measured both fresh and dry 

soil samples. 
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7.2.2.2 Soil γ-irradiation 

Half of the air-dried soil samples were sterilized using γ-irradiation by a Gammacell Irradiator 

4000 (Best Theratronics, Canada), applying a dose of 11 kGy. Plating of the sterilized soil 

slurries directly after y-radiation revealed no microbial growth (R2A medium, 24-hour 

incubation; 25oC; data not shown). To prevent the quick recovery of microorganism after γ-

irradiation, soil samples were incubated only up to 7 h after rewetting. 

7.2.2.3 Rewetting experiments 

Rewetting experiments were performed with both non-irradiated and γ-irradiated air-dried soil. 

The experiments with γ-irradiated air-dried samples were conducted in a clean bench with all 

solutions filtered through 0.2 µm filters. 1.4 g of air-dried soil (0.7 g for FOf) were weighed 

into 22-ml GC vials (VWR international, Darmstadt, Germany), followed by the addition of 

either H2O, or NO2
-, NO3

- or NH4
+ solution to reach around 40% WHC and adding 1 µg N g-1 

dry soil (for NO2
-) and 100 µg N g-1 dry soil (for NH4

+ and NO3
-). The vials were closed 

gastight with butyl septa and aluminum crimp caps (VWR International) immediately after 

addition of water or solution and incubated at room temperature for 1 and 7 h. Each treatment 

was carried out in triplicate. The gas sample in the headspace of the sample vials was 

analyzed using a gas chromatograph (Clarus 580, PerkinElmer, Rodgau, Germany) equipped 

with an ECD and FID for N2O and CO2, respectively (Liu et al., 2014). The instrument was 

calibrated using five different standard gases with 0.25, 0.50, 0.75, 1.00 and 5.00 ppm N2O 

balanced with N2 (99.5% purity, Linde, Munich, Germany). 

7.2.2.4 Analysis of 15N site preference of N2O 

For the determination of N2O SP values, 1.4-2.8 g of soil were weighed into 120-ml 

headspace bottles, and only water was added to the soils to reach about 40% WHC. The 

bottles were closed immediately after addition of water and transferred to an autosampler that 

was programmed in a way that sample bottles were incubated for 0.5-6.5 hours prior to 

analysis. The autosampler was coupled to a pre-concentration unit (TraceGas, Elementar 

Analysensysteme, Langenselbold, Germany) for online separation and purification of N2O, 

which in turn was connected to an isotope ratio mass spectrometer (IRMS, IsoPrime 100, 

Elementar Analysensysteme). Molecular ions (N2O+) and fragment ions (NO+) were 

monitored simultaneously with the IRMS at m/z 44, 45, 46, and 30, 31, respectively. The 

sample values of δ15Nbulk and δ18O were calculated according to the isotope ratios of m/z 45 to 
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44, and 46 to 44, respectively, against a working reference gas. A correction for 17O was 

performed according to the mass-dependent fractionation of 17O and 18O, described by the 

formula 17R=0.00937035· (18R) 0.516 (Kaiser et al., 2003). The SP is defined as SP = δ15Nα – 

δ15Nβ (δ15Nα and δ15Nβ are the δ15N at the central and terminal position of the N2O molecule, 

respectively). The δ15Nα was calculated from the isotope ratio m/z 30 and 31. The δ15Nβ was 

calculated according to the following formula: δ15Nβ = 2·δ15Nbulk – δ15Nα. Scrambling effects 

were corrected for assuming an isotopic scrambling of the terminal and central nitrogen atom 

of about 8% (Kaiser et al., 2004).  Pure N2O (99.999%, Linde, Munich, Germany) was used 

as working standard (δ15Nα vs air-N2 = 3.18 ± 0.23‰, δ15Nβ vs air-N2
 = 1.42 ± 0.21‰, δ18O 

vs VSMOW = 39.35 ± 0.27‰) for isotope analysis, and the δ15Nbulk, δ15Nα, δ15Nβ and δ18O 

were calibrated against two reference gases (Ref 1: δ15Nα vs air-N2 = 15.70 ± 0.31‰, δ15Nβ vs 

air-N2 = -3.21 ± 0.37‰, δ18O vs VSMOW = 35.16 ± 0.35‰; Ref 2: δ15Nα vs air-N2 = 5.55 ± 

0.21‰, δ15Nβ vs air-N2 = -12.87 ± 0.32‰, δ18O vs VSMOW = 32.73 ± 0.21‰) provided by 

EMPA (Dübendorf, Switzerland) and as described in Mohn et al. (2014). In addition, different 

amounts of reference N2O gas were added to the 120-ml bottles and isotope signatures were 

measured. Strong quadratic relations were observed between N2O peak height (2.7 to 72 nA) 

and δ45N2O vs. ref., δ46N2O vs. ref. and δ31NO vs. ref., with polynomial equations of y = 

0.0032x2 – 0.1689x + 0.5516, R2 = 0.93, y = 0.0054x2 – 0.2643x + 39.3, R2 = 0.92 and y = 

0.0014x2 + 0.4489x -0.6767, R2 = 0.99, respectively. Therefore, all δ15Nbulk
, δ18O and SP 

values in this study were calculated according to the corrected δ45N2O vs. ref., δ46N2O vs. ref. 

and δ31NO vs. ref. values by using polynomial equations. For the peak area correction and 

calibration, no technical replication was performed as the standard deviation for the isotope 

analysis was very small, i.e. 0.2‰, 0.4‰, 0.3‰, 0.4‰, 0.7‰ and 0.6‰ for δ15Nbulk vs. air-N2, 

δ18O vs. VSMOW, δ31N vs. ref., δ15Nα vs. air-N2, δ15Nβ vs. air-N2 and SP for a long 

measurement period, respectively. 

7.2.2.5 Soil chemical analyses 

Total C and N contents were determined with an elemental analyzer (vario EL Cube, 

Elementar Analysensysteme GmbH, Hanau, Germany). The elemental composition of the soil 

samples was analyzed by using ICP-OES. Briefly, 100 mg of sample material were mixed 

with 3 ml HNO3 and 2 ml H2O2, and heated in a microwave oven at 800 W for 30 minutes. 

The mixtures were subsequently filled up to 14 ml and diluted 10-fold with deionized water 

followed by the ICP-OES measurement. The mineral N (NH4
+, NO2

- and NO3
-) contents were 
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analyzed with ion chromatography (IC, Dionex ICS-3000 for NO2
- and NO3

-, Dionex DX-500 

for NH4
+). NH4

+ and NO3
- were extracted with 1 M KCl (dry soil: solution = 1:10 w/w) and 

shaken for 24 h. Soil pH was measured from the NH4
+ and NO3

- extractant. NO2
- was 

extracted with water during 15 min magnetic stirring and by using 0.2 M NaOH to keep the 

pH around 6 during extraction (Homyak et al., 2015). DOC and DTN were extracted with 

deionized water (dry soil: solution = 1:2.5 w/w for grassland and cropland soils, and 1:5 w/w 

for forest and riparian soils) by shaking for 1 hour at 200 rpm. DOC and DTN were then 

analyzed with a TOC-TN analyzer (Shimadzu Corp., Kyoto, Japan). Aromatic substances in 

the extracted DOC were determined by UV spectrometry (Beckman Coulter DU 800, 

Beckman Coulter, Inc., California, United States) at a wavelength of 254 nm (A254) with a 

path length of 1 cm.  

7.2.3 Data analyses 

The rewetting effects related to NO2
-, NO3

- or NH4
+ were calculated by subtracting N2O 

emission after addition of water only (as control) from the N2O emission after NO2
-, NO3

- or 

NH4
+ addition. N2O emission was calculated according to Equation 8 in Liu et al. (2014). 

Isotope signatures (δ15Nbulk, δ18O and SP values) of soil-emitted N2O (δsoil) were calculated 

from the total isotope signature of the gas samples (δbottle) and of ambient air (δair) using a two-

component mixing model: δsoil = (δbottle × Cbottle – δair × Cair) / (Cbottle –Cair), with Cbottle 

representing the N2O concentration in the sample bottles and Cair the N2O concentration in 

ambient air. Spearman’s correlation analysis was conducted using Origin Pro version 2015. 

 

7.3 Results 

7.3.1 Soil basic properties 

Soil basic properties, e.g., C content, Mn content and pH varied largely between the soil 

samples obtained from the different ecosystems (Table 7.1). Soil C content ranged from 

around 10% to 46% in the forest soil samples, including the FOf and the FR, while it was only 

~5% and ~1% for the grassland and cropland soil, respectively. The forest soil was strongly 

acidic with a pH around 3, while the pH of grassland and cropland soils was much higher 

(between 5 and 6). Compared to grassland and cropland soil samples, the Mn content of forest 

soil samples of around 0.02% was relatively low, except for soil samples F5 and F6 that 
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exhibited the largest Mn content of all forest soil samples. No distinct difference was 

observed for the Fe content between the soil samples, only the fermented layer (FOf) and 

riparian soil (FR) had a lower Fe content than the other soil samples. 

Table 7.1 Basic properties of air-dried soils. Data values are presented as mean (SD). 

 C 
(%) 

N 
(%) 

C/N pH Fe 
(%) 

Mn 
(%) 

Ca 
(%) 

K 
(%) 

Mg 
(%) 

FOf 45.72 
(0.00) 

1.93 
(0.00) 

23.7 2.85 0.35 
(0.01) 

0.031 
(0.000) 

0.33 
(0.06) 

0.13 
(0.01) 

0.05 
(0.00) 

F1 28.70 
(0.20) 

1.47 
(0.01) 

19.5 3.05 1.72 
(0.05) 

0.011 
(0.000) 

0.10 
(0.00) 

0.73 
(0.01) 

0.15 
(0.00) 

F2 19.80 
(0.20) 

1.08 
(0.03) 

18.4 3.27 2.55 
(0.02) 

0.021 
(0.000) 

0.20 
(0.03) 

1.05 
(0.01) 

0.25 
(0.00) 

F3 25.87 
(0.10) 

1.47 
(0.02) 

17.6 3.35 2.20 
(0.1) 

0.012 
(0.001) 

0.13 
(0.02) 

0.77 
(0.03) 

0.16 
(0.00) 

F4 24.57 
(0.00) 

1.32 
(0.00) 

18.5 3.03 1.87 
(0.02) 

0.020 
(0.001) 

0.14 
(0.01) 

0.96 
(0.01) 

0.16 
(0.00) 

F5 21.38 
(0.10) 

0.88 
(0.06) 

24.4 3.92 3.30 
(0.2) 

0.210 
(0.020) 

0.19 
(0.06) 

1.28 
(0.06) 

0.21 
(0.00) 

F6 22.23 
(0.10) 

1.51 
(0.00) 

14.7 3.78 3.50 
(0.2) 

0.072 
(0.002) 

0.09 
(0.00) 

1.12 
(0.01) 

0.17 
(0.00) 

FR 9.65 
(0.06) 

0.53 
(0.01) 

18.1 4.23 1.57 
(0.08) 

0.024 
(0.001) 

0.13 
(0.01) 

1.75 
(0.08) 

0.31 
(0.02) 

G 5.29 
(0.05) 

0.53 
(0.00) 

9.9 5.25 2.39 
(0.03) 

0.097 
(0.003) 

0.28 
(0.03) 

1.65 
(0.04) 

0.29 
(0.02) 

C 1.29 
(0.01) 

0.14 
(0.00) 

9.2 5.82 2.10 
(0.1) 

0.074 
(0.004) 

0.36 
(0.03) 

1.46 
(0.06) 

0.32 
(0.01) 

 

7.3.2 Mineral N and DOM content before and after drying 

The mineral N content (including NH4
+ and NO3

-) of the fresh soil differed strongly between 

the soil samples (Fig. 7.1). Before air-drying, forest soil samples FOf  and F4 had the largest 

NH4
+ and NO3

-, while samples F5 and F6 had smaller NH4
+ but larger NO3

- content compared 

to the other forest soil samples. Samples from the riparian zone and from the cropland had the 

lowest NH4
+ and NO3

- content amongst all soil samples, and grassland soil had an 

intermediate level of NH4
+ and NO3

-. After air-drying, the NH4
+ content decreased for all the 

soil samples. There was nearly no NH4
+ detectable in the riparian and cropland soil samples 

after air-drying.  
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Figure 7.1 Soil NH4
+ (A) and NO3

- (B) content before (W, grey) and after air-drying (AD, black) for 

forest (FOf, F1, F2, F3, F4, F5, F6 and FR), grassland (G) and cropland (C) soil samples. Only one 

extraction was performed for the determination of soil NH4
+ and NO3

- content.  

In contrast to NH4
+, NO3

- increased during the drying process in almost all soil samples, 

except for FOf, F6, grassland and cropland samples. Forest soil sample FOf had the largest 

NO3
- content, followed by F4 and F6. The grassland soil had an intermediate NO3

- content 

compared to the forest soil samples, while the riparian and cropland soil samples were 

characterized by the lowest NO3
- content. 

Table 7.2 Soil NO2
--N (mg kg-1), dissolved organic carbon (DOC, mg kg-1), dissolved total nitrogen 

(DTN, mg kg-1) and A254 (cm
-1 g-1 dry soil) after air-drying for forest, grassland and cropland soil 

samples. The standard deviation of the NO2
- assay is about 20% of the values (n.d. = not detectable). 

Only one extraction was performed for the determination of soil DOC, DTN and A254. 

Soils NO2
- DOC DTN A254 

FOf 0.3 2420 358 1.40 
F1 0.2 2110 161 1.27 
F2 n.d. 1680 123 1.00 
F3 0.3 1825 183 0.78 
F4 n.d. 1885 221 1.01 
F5 0.1 555 118 0.41 
F6 0.3 890 84 0.24 
FR n.d. 575 74 0.42 
G 0.2 636 105 0.41 
C 0.1 177 21 0.22 

 

Before air-drying, NO2
- concentrations were below the detection limit for the fresh soil 

samples (data not shown). However, small amounts of NO2
- were detectable in several soil 

samples (Table 7.2). Forest soil samples FOf, F3 and F6 had the largest NO2
- content (0.3 mg 



Accumulation of NO2
-
 during drying periods stimulates soil N2O emissions during subsequent rewetting events 

105 

 

kg-1), followed by grassland and forest soil F1 (0.2 mg kg-1), while no NO2
- was detectable in 

soil samples F4, F2 and FR.  

The trend of soil DOC and DTN dynamics after air-drying was very similar to that of soil C 

content, with the largest DOC and DTN contents in soil sample FOf and the smallest in the 

cropland soil, with the exception of soil sample F5, which had a relatively high C content but 

the smallest DOC content of all forest soil samples (Table 7.2). The DOC and DTN contents 

in the grassland soil were also relatively high. Although soil sample F6 featured the second 

largest total N content, it contained a relatively small amount of DTN. The dynamics of A254 

(i.e., content of aromatic substances) followed a similar trend as DOC, with the largest value 

for forest soil sample FOf and the smallest value for the cropland soil.  

7.3.3 Rewetting effects on soil N2O emissions  

Rewetting responses of soil N2O emissions to the water and different N additions were varied 

between the soils from the different ecosystems (Fig. 7.2A). After rewetting with water only, 

the grassland soil showed the largest N2O emission among all soil samples, especially in the 

first hour after rewetting, with an emission of 64 µg N2O-N kg-1 dry soil. Forest soil samples 

showed different responses to rewetting with water only, with samples F1 and F3 showing the 

largest N2O emissions, while samples F2, F4, F5 and FR exhibited a lower N2O emission. 

Unlike the grassland soil, the N2O emission from forest soil did not increase substantially in 

the first hour, but increased between 1 and 7 h, and certain forest soil samples even reached 

the level of the grassland soil after 7 h. In contrast, there was nearly no rewetting effect on soil 

N2O emissions detectable for the cropland soil.  
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Figure 7.2 Rewetting effects by the addition of water (A), and aqueous solutions of NO2
- (B), NO3

- (C) 
and NH4

+ (D) on soil N2O production (ng N g-1 dry soil)  of forest (FOf, F1, F2, F3, F4, F5, F6 and FR), 
grassland (G) and cropland (C) soil samples for different (1 and 7 h) incubation times. The values are 
present as mean ± standard deviation (SD). 

 

Nitrite addition increased the rewetting effect considerably for all soil samples (Fig. 7.2B). 

Similar with water rewetting, NO2
- increased the N2O emission the most for grassland soil 

samples, followed by the forest sample F3. The effects of NO2
- on N2O production in the 

other upland forest, riparian zone and cropland samples were very similar.  For most soil 

samples, NO2
- had a stronger stimulatory effect in the first hour compared to the following 6 h 

if we assume that the N2O production was linear between two-time points. The total NO2
--to-

N2O turnover rate after 7 h was about 20% for grassland soil, but only between 5-10% for 

most upland forest, riparian and cropland samples.  

Compared to NO2
-, NO3

- and NH4
+ had only small stimulatory effects on soil N2O production 

upon rewetting (Fig. 7.2C, 7.2D), even though the added amount of NH4
+-N and NO3

--N was 

100-fold higher than that of NO2
-. The addition of NO3

- increased the N2O production in the 

grassland soil as well as in forest samples FOf, F1, F3 the most, while the maximum N2O 

production after NH4
+ addition was observed for F6. In contrast, both NO3

- and NH4
+ had 

nearly no effect on N2O production in cropland and riparian soil samples as well as in forest 

samples F4 and F5.  
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7.3.4 Influence of γ-irradiation on soil N2O and CO2 emissions after rewetting 

The effect of γ-irradiation on soil N2O emissions upon rewetting was dependent on soil type. 

In general, γ-irradiation decreased N2O emission upon rewetting with water only by about 50-

90% in most forest soil samples compared to the non-irradiated soil samples, while it 

unexpectedly stimulated N2O emissions from grassland and cropland soils by threefold and 

twofold, respectively, after 7 h of incubation (Fig. 7.3A and Table 7.3). Forest soil samples 

showed a large variance of γ-irradiation effects. Gamma irradiation inhibited soil N2O 

production from FOf the most, followed by the riparian sample and F5, while the N2O 

production from samples F1 and F2 were affected by γ-irradiation the least during the 

incubation.  

 

Figure 7.3 Rewetting effects by the addition of water (A) and aqueous NO2
- (B) solution on soil N2O 

production (ng N g-1 dry soil) of forest (FOf, F1, F2, F3, F4, F5, F6 and FR), grassland (G) and 
cropland (C) soil samples for different (1 and 7 h) incubation times after γ-irradiation. The values are 
present as mean ± standard deviation (SD). 

 

Also in the NO2
- rewetting treatment, γ-irradiation increased the N2O production in grassland 

soils, but decreased it in forest soils (Fig. 7.3B and Table 7.3). The increase in N2O 

production caused by rewetting of the cropland soil with NO2
- solution was also reduced by 

86.7%. In contrast, soil samples F1 and F3 were inhibited the least by γ-irradiation. 
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Table 7.3 The inhibitory effect (%) of γ-irradiation on soil N2O and CO2 emissions after 7 h 
incubation after rewetting of air-dried soils. Negative values represent a stimulating effect of γ-
irradiation. 

 FOf F1 F2 F3 F5 FR G C 
H2O addition         

N2O 91.1 30.4 28.0 53.2 73.3 73.4 -304.2 -210.0 
CO2 13.2 -28.2 -0.8 -12.2 25.8 31.0 53.9 26.0 

NO2
- addition         
N2O 82.7 23.2 51.0 47.4 77.1 61.9 -34.6 86.7 
CO2 21.7 -25.5 1.1 4.9 28.0 24.6 53.2 21.2 

 

Compared to the effects on soil N2O emissions, γ-irradiation decreased CO2 production the 

most in the grassland soil, by about 50% after rewetting with water only, but had an inhibitory 

effect of only zero to 20% in forest, cropland and riparian soil samples (Table 7.3). In forest 

soil sample F1, the CO2 production was even stimulated by γ-irradiation. 

7.3.5 Control variables of soil N2O emission upon rewetting 

Soil basic properties play an important role in biotic and abiotic reactions, and may contribute 

to the pulse N2O emissions after rewetting. Among all the basic soil properties, N2O 

production was only significantly (P < 0.05) and positively correlated with NO2
- content, 

marginally (P = 0.056) correlated with soil NH4
+ content, but had no statistically significant 

correlations with other basic soil properties, such as soil C and NO3
- content (Table 7.4). 

Within the forest soil samples, N2O production was also significantly (P < 0.05) correlated 

with soil C and N content (data not shown). Soil NO2
- itself was only significantly (P < 0.05) 

correlated with total soil N content and N2O production, but was not correlated with soil 

mineral N and DTN.  

  



Accumulation of NO2
-
 during drying periods stimulates soil N2O emissions during subsequent rewetting events 

109 

 

Table 7.4 Spearman’s correlation coefficients between soil N2O emission after 7 h incubation after 
rewetting and basic soil properties of air-dried soils (excluding Ca, Mg and K) across all soil samples. 
An asterisk indicates the significance of the respective correlation coefficient at a level of P < 0.05. 

 N2O Fe Mn C N C/N pH NO2
- NH4

+ NO3
- DOC DTN A254 

N2O 1.00             
Fe 0.12 1.00            
Mn -0.28 0.43 1.00           
C 0.53 -0.33 -0.58 1.00          
N 0.55 -0.09 -0.44 0.91* 1.00         
C/N -0.02 -0.25 -0.19 0.64 0.43 1.00        
pH -0.28 0.36 0.62 -0.88* -0.81* -0.67* 1.00       
NO2

- 0.72* 0.08 0.03 0.50 0.64* -0.10 -0.15 1.00      
NH4

+ 0.62 -0.30 -0.57 0.82* 0.75* 0.40 -0.84* 0.42 1.00     
NO3

- 0.43 -0.01 -0.20 0.81* 0.85* 0.48 -0.77* 0.48 0.74* 1.00    
DOC 0.53 -0.44 -0.70* 0.88* 0.82* 0.47 -0.93* 0.34 0.92* 0.68* 1.00   
DTN 0.47 -0.33 -0.53 0.84* 0.70* 0.64 -0.90* 0.24 0.95* 0.77* 0.88* 1.00  
A254 0.28 -0.62 -0.68* 0.75* 0.57 0.62 -0.88* 0.03 0.81* 0.45 0.91* 0.85* 1.00 

 

7.3.6 Isotopic ratio analyses of N2O production during rewetting 

The δ15Nbulk and δ18O varied from -42.4 to -24.0‰ and from 9.7 to 32.0 ‰, respectively, for 

all the soil samples during rewetting, except for soil F3 where δ18O was extremely high with a 

value of 110.6 ‰ (Table 7.5). Both δ15Nbulk and δ18O decreased with increasing incubation  

Table 7.5 15N site preference (SP) values of N2O production (peak height) upon water rewetting with 
different soil samples and incubation time. The peak height of ambient air and 400 ppb standard N2O 
gas was about 1.9 and 2.4 nA, respectively. 

Samples Soil  

(g) 

Incubation time 

 (h) 

Peak height δ15Nbulk δ18O  SP 

(nA) [‰ vs. air-N2] [‰ vs.VSMOW] [‰] 

FOf 1.4 6 3.8 -24.0  29.3  1.6  
F1 1.4 6 2.6 -24.8  32.0  -15.4  
F3 1.4 6 4.3 -35.6  110.6  2.4  
F4 2.8 6 3.2 -28.6  24.8  2.4  
F5 2.8 6 2.3 -42.4  16.0  9.9  
F6 2.8 6 5.1 -35.7  13.5  -1.0  
G 2.8 0.5 11.1 -28.4  12.7  -0.3  
G 2.8 3.5 25.7 -33.8  10.4  -1.6  
G 2.8 6.5 31.1 -35.1  9.7  -2.1  

G (Sterilized) 2.8 0.5 8.5 -24.6  11.7  1.3  
G (Sterilized) 2.8 3.5 51.5 -27.0  9.9  -0.3  
G (Sterilized) 2.8 6.5 64.9 -29.0  10.9  -0.7  
 

time for the grassland soil, no matter the soil was treated with γ-irradiation in advance or not. 

Similar ranges of δ15Nbulk values were observed for the grassland and forest soils, while δ18O 

of N2O was higher from the forest soil than from the grassland soil. The SP values of the N2O 
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formed after rewetting were close to zero for most of the soil samples (except for F5), 

independent of the amount of N2O produced, as indicated by the peak height (Table 7.5), of 

incubation time and of the sterilization treatment. For the forest soil samples, the SP values 

ranged between -15.9 and 9.9‰. The SP values for the grassland soil samples ranged from -

2.1‰ to 1.3‰ for both γ-irradiated and non-irradiated samples, even though the N2O 

production increased largely with incubation time. 

 

7.4 Discussion 

Soil rewetting-induced N2O production has received a lot of attention in recent years due to 

the potentially large contribution of this fraction of N2O to the annual N2O flux (Priemé & 

Christensen, 2001; Kim et al., 2012; Berger et al., 2013). This rewetting effect was shown to 

be highly variable in different ecosystems. In this study, we collected soil samples from 

upland and riparian forest, grassland and cropland and simulated drying and rewetting with 

either pure water or aqueous solutions with different N substrates (NH4
+, NO2

-, and NO3
-), 

quantified the N2O pulses upon rewetting in the different soil samples and identified the main 

governing factor responsible for the rewetting effect on N2O production. Our study 

demonstrated that grassland soil responded to rewetting with pure water most rapidly and had 

the largest N2O production in the first hour after rewetting compared to upland forest, riparian 

forest and cropland soil samples (Fig. 7.2). Nearly 64 µg N2O-N kg-1 dry soil was emitted 

from an air-dried grassland soil sample in only 1 hour without γ-irradiation after rewetting 

(Fig. 7.2). However, seasonal variation, e.g. winter and summer, might have an influence on 

the N2O production in different ecosystems (Flessa et al., 1995; Kiese et al., 2003). The 

collected forest soils could have been affected more by dry summer conditions, leading to 

more accumulated substrate and certain microorganisms that are resistant to the drying 

conditions (Bouskill et al., 2013). Therefore, N2O production during rewetting events could 

have been overestimated in the forest soil samples compared to the cropland and grassland 

soils. However, overall our finding was in accordance with the results of Priemé & 

Christensen (2001) that a greater emission of N2O was observed upon rewetting of soil from 

grassland sites compared to arable and forest sites in Germany, Sweden and Finland.  

Knowledge about the exact mechanisms and influencing factors of the large N2O formation 

upon rewetting from dry soils are still limited. However, soil basic properties, such as C 
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content, pH and inorganic N content, as well as the soil texture and soil microbial composition 

were demonstrated to play important roles in the pulse production of N2O upon rewetting 

(Ruser et al., 2006; Beare et al., 2009; Harrison-Kirk et al., 2013). In our study, there was a 

large variation of soil pH, C, N, metal element and inorganic N (NO3
- and NH4

+) content 

between the different soil samples. Generally, forest soils exhibited the largest soil C content 

(19.8-45.7%) and the lowest soil pH (2.85-3.92) compared to riparian, grassland and cropland 

soils. Harrison-Kirk et al. (2013) reported that more N2O was produced in soil samples with 

high soil organic C content. However, in our study the N2O production from the grassland 

(with less soil C) was larger than from the forest soil samples (with larger soil C content). 

Ruser et al. (2006) reported that soil compaction and high NO3
- content were two important 

factors responsible for the rewetting-induced N2O production in a cropland soil, as more 

anoxic sites could develop when water was added to compacted soils. In this study, air-dried 

grassland soil (1.09 g cm-1) had a much higher bulk density compared to forest soil (0.83 g 

cm-1) according to former research on these sites (Baatz et al., 2014), which may be one 

reason for the immediate and large N2O emission upon rewetting for the grassland soil.   

High soil NO3
- content has been considered as one important factor responsible for rewetting-

induced N2O production, as NO3
- would favor N2O production from denitrification (Ruser et 

al., 2006). During the drying process, soil NO3
- may accumulate due to the higher resistance 

of nitrifiers to water limitation compared to denitrifiers (Avrahami et al., 2003; Szukics et al., 

2010). In this study, we also observed an increase of soil NO3
- content with air-drying for all 

forest soil samples, but not for the grassland and cropland soils (Fig. 7.1). However, there was 

no significant correlation between soil NO3
- content of air-dried soil and N2O production upon 

rewetting (Table 7.4), and NO3
- addition did not induce N2O emission significantly (Fig. 

7.2C), which is in accordance with Venterea (2007). These findings indicate that NO3
- 

accumulation was not the main contributor to the large N2O production upon rewetting to 

around 40% WHC, as done in this study. We assumed that this relatively low water content 

may favor the N2O production from nitrification, but addition of NH4
+ only increased the N2O 

production from one forest soil sample (F6), and had no stimulatory effects on the other soil 

samples.  

Soil NO2
- accumulation has been considered as another important factor for soil N2O pulse 

production after rewetting (Davidson, 1992; Venterea, 2007), although NO2
- was commonly 

not detected after soil air-drying in previous studies. In this study, where we used a new NO2
- 
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extraction method, developed by Homyak et al. (2015), which allows to extract NO2
- at 

elevated pH, we found detectable NO2
- concentration levels in air-dried samples FOf, F3 and 

F6, but no NO2
- was detectable in the air-dried soil samples F4, F2 and riparian forest.  

Despite the low amount of NO2
- accumulated, a close correlation between NO2

- content in the 

air-dried soil and the amount of N2O produced after rewetting was found (Table 7.4). 

Addition of NO2
- also increased soil N2O production largely within the first hour after 

rewetting in all the soil samples (Fig. 7.2B). The exact reason responsible for the variation in 

NO2
- content among the different soil samples remains unclear, but correlation analysis 

showed that the NO2
- concentration was positively correlated with total soil N content (Table 

7.4), but had no correlation with soil NO3
- and NH4

+ concentrations. There are mainly two 

sources involved in the release of soil C and N during the rewetting process: (1) disruption of 

soil aggregates by rapid water addition; (2) the proportion of microorganism died back during 

drying or by dehydration or cell lysis, and the associated release of labile intracellular 

substrates with rewetting. Previous study showed that NO2
- produced from organic N is an 

important NO2
- pool in grassland soil (Müller et al., 2006). Therefore, the NO2

- could 

originate from soil aggregate (< 2 mm in this study) disruption or the release of labile 

intracellular substrates during microbial cell lysis.  

There are mainly two pathways responsible for the NO2
--mediated N2O production: (1) 

biological nitrifier-denitrification and denitrification; (2) chemical reactions with organic 

matter and metal ions (e.g. Fe2+). Stevenson & Swaby (1964) showed that N2O is chemically 

produced following NO2
- addition to acidic soil organic matter fractions. Samarkin et al. 

(2010) found abiotic reactions between NO2
- and Fe2+-containing minerals derived from the 

surrounding igneous Ferrar Dolerite, contributing to the N2O emission from the hypersaline 

Don Juan Pond in Antarctica. We also explored the contribution of abiotic reactions to NO2
--

mediated N2O production during rewetting by sterilizing the soil with a dose of 11 kGy of γ-

irradiation. Our results showed a large variability of the effect of γ-irradiation on soil N2O 

production in the different soil samples (Table 7.3). In general, γ-irradiation inhibited N2O 

production from the forest and riparian soil samples, with the largest inhibition in the soil 

sample with the fermented organic layer (FOf, 91.1%) and smallest inhibition in soil sample 

F2 (28%). The range of inhibition by γ-irradiation was consistent with the range reported by 

Venterea (2007), who also found that N2O production in γ-irradiated cultivated and 
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uncultivated soils was 75%, 60% and 31% of N2O production of their nonsterile counterparts, 

respectively.  

The small effects of γ-irradiation on soil CO2 emissions in the forest soils were unexpected, as 

we assumed that negligible CO2 would be produced in the γ-irradiated soils. One reason 

responsible for the produced CO2 could be due to the limited effect of γ-irradiation on soil 

certain microorganisms, mainly spore forming fungi, even though γ-irradiation is suggested to 

be highly effective and preferable compared to other sterilization methods due to its smaller 

effect on soil chemical and physical properties (Stroetmann et al., 1994). Therefore, γ-

irradiation might have changed microbial community structure towards a strong fungal 

dominance, contributing only partially to N2O production after rewetting in certain forest soil 

samples (e.g. F1 and F2). However, chemical reactions, e.g. nitrosative decarboxylation 

reactions, could also produce CO2 chemically (Thorn & Mikita, 2000), as no microbial growth 

was detected by plating of the γ-irradiated soil slurries in this study. In contrast, in the 

grassland and cropland soil samples γ-irradiation increased soil N2O production threefold and 

twofold, respectively, even though CO2 emission was reduced by about 50% after γ-

irradiation (Table 7.3). The stimulatory effect of γ-irradiation on N2O production in the 

grassland soil samples was surprising, but could indicate an increased contribution of an 

abiotic mechanism of N2O production from NO2
-.  It is possible that the death of certain 

microorganisms by γ-irradiation may have stimulated the activity of other microorganisms 

that have an exceptionally high production rate of N2O after rewetting, which might explain 

the threefold higher N2O production from the grassland soil after γ-irradiation, but this 

assumption remains speculative. In contrast, a contribution of abiotic processes to soil N2O 

production in the grassland soils seems more likely as γ-irradiation could alter organic matter 

structure or functional groups involved in nitrosation reactions, which could promote abiotic 

N2O production (Venterea, 2007). But still this is at odds with the reduced N2O formation in 

the γ-irradiated forest soil samples. Therefore, further research is needed towards elucidating 

the mechanisms behind stimulation and inhibition of N2O production from nitrite after γ-

irradiation of the different soil samples. 

Finally, we measured the isotopic signatures (δ15Nbulk, δ18O and SP values) of N2O formed 

during rewetting, as they are thought to reflect the relative contribution of different N2O 

sources to certain extent (Yoshida & Toyoda, 2000). There have been a number of recent 

studies examining N2O SP from chemodenitrification (Heil et al., 2014; Jones et al., 2015; 
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Buchwald et al., 2016; Grabb et al., 2017). The measured δ15Nbulk in this study falls within the 

range of denitrification (-40 to -19‰) in pure cultures (Toyoda et al., 2005; Toyoda et al., 

2017), while the δ18O values were in the range of N2O produced via nitrification in soils 

(Snider et al., 2012). SP values have been considered as a more useful tool for N2O source 

partitioning than δ15Nbulk and δ18O, since the SP values were found relatively stable for N2O 

production from different soil processes, although there was still some overlap found between 

aerobic nitrification, fungal denitrification and NH2OH oxidation (Sutka et al., 2006; Heil et 

al., 2014; Rohe et al., 2014), and denitrification and nitrifier-denitrification (Sutka et al., 

2006). In this study, the SP values were close to 0‰ for most of the soil samples after 

rewetting, except for F5, no matter whether the soils were sterilized by γ-irradiation or not 

(Table 5), which falls within the SP range (-10…0‰) reported for bacterial denitrification 

including nitrifier denitrification (Sutka et al., 2006). Snider et al. (2015) reported that 

nitrifier denitrification became a more dominant N2O source following a rain event in 

cropland soils by using the δ15N of N2O in their study. In our study, since the addition of NO3
- 

did not increase N2O production significantly and since there was no significant correlation 

between NO3
- and N2O, it was more likely that denitrification by nitrifiers was the dominant 

contributor of N2O production during rewetting. However, as we observed a similar SP for 

sterile and unsterile soil samples, and since previous studies showed that SP values of N2O 

production from NO2
--mediated chemodenitrification varied widely from -45‰ to 26.5‰ 

from chemical reactions or soil samples (Samarkin et al., 2010; Peters et al., 2014; Jones et al., 

2015; Buchwald et al., 2016; Grabb et al., 2017; Wei et al., 2017a,b), it is likely that also 

abiotic reactions have contributed substantially to soil N2O production after soil rewetting.  

 

7.5 Conclusions 

Soils from different ecosystems demonstrate various N2O emissions after rewetting, with 

grassland soil exhibiting the largest N2O emissions while cropland and riparian soils showing 

the smallest N2O emissions. Among different soil basic properties, soil NO2
- content was the 

only significant factor correlated with soil N2O production. Addition of NO2
- increased N2O 

emissions the most, compared to NH4
+ and NO3

-. Although biological reactions might play an 

important role in N2O production in the different soil samples, the role of abiotic processes in 

N2O formation during the rewetting event cannot be excluded. 
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8.1 Synopsis 

This thesis was laid out to characterize the abiotic processes of N2O production in soils 

involving NH2OH and NO2
-, assuming a coupled biotic-abiotic mechanism. The abiotic N2O 

formation processes involving NO2
- have been studied for decades, but are still not well 

understood, while the N2O production involving NH2OH has been widely neglected in most 

current studies. The first part of the thesis was a general introduction of the current state of 

knowledge about these coupled biotic-abiotic mechanisms. The experiments conducted in this 

thesis mainly focused on the proof of NH2OH release during NH3 oxidation by ammonia 

oxidizers, determination of NH2OH in natural soils, the relationship between NH2OH and 

aerobic N2O production in a forest ecosystem, factors governing abiotic N2O production from 

NH2OH, and the comparison of the roles of NH2OH and NO2
- in abiotic N2O production and 

(especially for NO2
-) in pulse N2O production during rewetting events in soils.  

The second chapter of this thesis was an experiment which aimed at exploring the possibility 

of NH2OH release by various chemolithoautotrophic ammonia oxidizers (AOB, AOA and 

comammox). It was observed that certain AOB and AOA as well as the comammox indeed 

released NH2OH during NH3 oxidation. The type of medium, culture incubation temperature 

and the presence of NO2
- were found to affect NH2OH decomposition and abiotic N2O 

production during NH3 oxidation. The NH2OH:final product ratio varied considerably (0.24-

1.92%) dependent on the culture type and NH4
+ concentration, with the largest ratio observed 

during the NH3 oxidation of comammox. Overall, the fractions of NH4
+ converted to N2O via 

NH2OH release during incubations ranged from 0.05% to 0.14%, and were consistent with 

published NH4
+-to-N2O conversion ratios for certain ammonia oxidizers. NO2

- played an 

important role in abiotic decay of NH2OH and conversion of NH2OH to N2O during NH3 

oxidation, with negative effects on the abiotic NH2OH decay, but positive effects on the 

abiotic N2O production. 

After proving the existence of NH2OH release in chemoautotrophic ammonia oxidizers during 

NH3 oxidation, in the second experiment, presented in chapter three, a method for the 

determination of NH2OH in natural soils was newly developed and successfully applied. The 

determination of NH2OH in natural soil samples had not been possible before due to the 

highly reactive nature of NH2OH. Only with the fast extraction and determination method 

newly developed in this work was it possible for the first time to detect NH2OH in soils. The 

method allowed extraction of NH2OH from a spruce forest soil with acidic solution (pH = 1.7) 
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and 10 min magnetic stirring. This highly sensitive NH2OH determination method was based 

on the oxidation of NH2OH to N2O with Fe3+ at pH = 3 in glass vials and analysis of N2O 

formed in the vial headspace with GC. NO2
- at concentrations larger than 10 µM could bias 

this method, but the addition of 2 mM sulfanilamide was found to remove the effect of even 

100 µM NO2
- effectively. By using this newly developed method, the NH2OH concentration 

in the spruce forest soil samples determined with this new method ranged from 0.3 to 34.8 µg 

N kg-1 dry soil, which is comparable with the NO2
- concentration in the forest soil samples.  

A further experiment, described in the fourth chapter, studied the spatial variability of NH2OH 

content and potential N2O emission rates of humic organic (Oh) and mineral (Ah) soil layers 

of a Norway spruce forest, using the developed analytical method for the determination of soil 

NH2OH content described in chapter three, combined with a geostatistical Kriging approach. 

Potential soil N2O emission rates were determined in laboratory incubations under oxic 

conditions. Soil basic properties, such as C, N, pH, Mn, Fe, and mineral N (NH4
+ and NO3

-) 

were also analyzed. The results demonstrated that the soil N2O emission rates were spatially 

highly correlated with soil NH2OH content. The hotspots of soil N2O emission rates in the 

forest were the same or similar as those of soil NH2OH content. According to the multiple 

regression models developed for the two soil horizons, soil NH2OH content contributed to soil 

N2O emission rates the most, followed by soil NO3
- and Mn content. The addition of the co-

variable information of soil NH2OH and NO3
- content improved the Kriging map of soil N2O 

emission rates in the study area markedly. 

The fifth chapter presents an experiment testing a conceptual model of abiotic N2O formation 

from NH2OH released to the soil matrix by changing relevant soil environmental factors 

determined in the previous experiment with natural soil, i.e. pH, SOM and MnO2 content, in 

artificial soil mixtures. The three factors were shown to indeed affect abiotic conversion of 

NH2OH to N2O interactively. High SOM content lowered the abiotic N2O formation from 

NH2OH, while a higher MnO2 content increased the abiotic conversion of NH2OH to N2O. 

Lower pH stimulated abiotic N2O formation from NH2OH by MnO2, but made NH2OH more 

stable in the absence of MnO2. The multiple regression model set up with the three factors 

could explain 62% of the abiotic conversion of NH2OH to N2O. Further work revealed that 

also SOM quality, and not just SOM quantity, played an important role in the abiotic NH2OH 

oxidation to N2O. Soil SOM with more carbonyl groups or phenolic compounds would bind 
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more NH2OH, leading to less N2O production compared to soil SOM with fewer carbonyl 

groups and phenolic compounds.  

The subsequent experiment, presented in chapter six, studied the abiotic N2O production 

process by comparing the role of the two nitrification intermediates NH2OH and NO2
- in soils 

from three ecosystems (forest, grassland, and cropland) with oxic or anoxic pre-incubation. 

Fresh soil samples were incubated under oxic or anoxic conditions prior to the main 

experiment for one week and then freeze-dried. Gamma radiation was applied to half of the 

freeze-dried soil samples, followed by the addition of NH2OH and NO2
-. The experiment 

revealed that NO2
- played an important role in the N2O production in grassland soil, followed 

by the forest and cropland soils, while NH2OH played an important role in the N2O 

production in cropland soil, followed by the grassland and forest soils. The contribution of 

NO2
- to N2O production was mostly biotic, while the contribution of NH2OH on N2O 

production was mainly abiotic, particularly in soil samples with large Mn content and low soil 

SOC content. The anoxic pre-incubation increased the N2O production from NO2
- shortly 

after NO2
- addition, but decreased the N2O production from NH2OH greatly. Moreover, the 

effect of anoxic pre-incubation was dependent on SOC content. In cropland soil with lower 

SOC, the effect of anoxic pre-incubation on N2O production from NH2OH was the least.  

The last experiment, presented in chapter seven, explored the mechanism of large pulse N2O 

production caused by rewetting in soils from three ecosystems (forest, grassland, and 

cropland), involving the nitrification intermediates NO2
- and NH2OH. Since NH2OH is not 

likely to accumulate in soils during the drying process due to its very reactive nature, the 

accumulation of NO2
- during air-drying and the effect of NO2

- addition on N2O production 

during rewetting was explored in this experiment. The results demonstrated that grassland soil 

exhibited the largest pulse N2O production after rewetting, followed by forest and cropland 

soils. The N2O production during rewetting was positively correlated with NO2
- concentration 

of the air-dried soils, and the addition of NO2
- to air-dried soil samples increased N2O 

production the most compared to NH4
+ and NO3

- addition.  
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8.2 Synthesis 

In this thesis, a series of experiments were designed and conducted, providing strong evidence 

that NH2OH-related abiotic processes are important contributors to N2O production during 

nitrification in pure nitrifier cultures as well as in natural soils. Soil basic properties, such as 

SOC and Mn content as well as pH, affect the N2O production via NH2OH during nitrification. 

The other nitrification intermediate, NO2
-, also played an important role in soil N2O 

production, especially during rewetting events. With the obtained results, the presence of 

coupled biotic-abiotic mechanisms of N2O production during nitrification in natural soils has 

been proved and elucidated. 

The first experiment, as presented in chapter two, proved the possibility of NH2OH release in 

certain AOB, AOA and the comammox and gave strong evidence for a substantial 

contribution of a coupled biotic-abiotic mechanism involving NH2OH to N2O production 

during NH3 oxidation. Although the determination of NH2OH concentration from one AOB 

culture Nitrosomonas europaea had been conducted in several former studies (Stüven et al., 

1992; Yu & Chandran, 2010), the experiment in this thesis showed the variability of NH2OH 

release in various AOB. For example, more NH2OH excretion was observed in Nitrosospira 

multiformis, while no NH2OH release was observed in Nitrosomonas communis and 

Nitrosomonas nitrosa. The exact reason responsible for the variability of NH2OH release 

capacity remains unclear, but these results may indicate a versatile contribution of NH2OH to 

abiotic N2O production in different ecosystems. For the first time, this experiment also 

showed the NH2OH release capacity in AOA. AOA have received increasing attention 

regarding nitrification-related N2O production due to the observed N2O production capacity of 

several AOA strains (Jung et al., 2014; Stieglmeier et al., 2014) and an AOA abundance that 

exceeds that of AOB by orders of magnitude in certain ecosystems (Leininger et al., 2006; He 

et al., 2007) in recent years. The observation of NH2OH release in one AOA pure culture and 

one AOA enrichment showed that N2O production in AOA could also stem from the well-

known chemical reaction between NH2OH and NO2
-. Even though the NH2OH:final product 

ratios were smaller than 1% for most of the cultures except comammox, the released amount 

of NH2OH cannot be ignored considering the fact that the total N2O production from N 

fertilizer application is around 1% (De Klein et al., 2006) via both pathways of nitrification 

and denitrification. NH3 oxidation can contribute above 80% to soil N2O emissions under 

certain conditions, which means that up to 0.8% of the added N would be lost as N2O through 
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the NH3 oxidation process. The total NH2OH:final product excretion ratio of the soil NH3 

oxidizer N. multiformis was found to be as high as 0.6%. If the conversion of NH2OH to N2O 

can reach 80%, which is realistic for certain soil samples containing large amounts of oxidants, 

e.g., Mn, a relatively low pH and a relatively small amount of SOC (Liu et al., 2017a), the 

contribution of NH2OH to N2O formation could be around 0.5% after N application. 

Before the second experiment, no successful attempt to extract NH2OH from natural soil 

samples had been reported, probably due to the reactive nature of NH2OH. Different 

extraction conditions – such as temperature, pH, extraction method and time – may affect the 

determination of NH2OH concentrations. As NH2OH decomposes faster at neutral and 

alkaline conditions, the acidic condition is beneficial for the conservation of NH2OH. The 

results of this experiment indeed showed a quick turnover of NH2OH during the extraction 

process. With water, instead of acid (pH = 1.7) solution, no NH2OH could be extracted, 

indicating the strong reactivity of NH2OH at neutral or alkaline conditions, as NH2OH reacts 

with a range of soil constituents, such as SOM, Mn oxides and ferric iron (Bremner et al., 

1980). Moreover, it has been known that a high NO2
- concentration can bias the determination 

of NH2OH in water samples by the well-known hybrid reactions between NO2
- and NH2OH 

(Kock & Bange, 2013). This experiment proved the effectiveness of application of 

sulfanilamide for removing the NO2
- effect on NH2OH determination in soil samples. Another 

interesting result in this experiment was that even though the NH2OH concentrations 

measured in the forest samples were approximately three orders of magnitude lower than the 

concentrations of ammonium and nitrate, they were still comparable to common concentration 

values of nitrite in soil.  

A further experiment was carried out to apply the newly developed NH2OH determination 

method combined with GC microincubation for the analysis of the relationship between soil 

NH2OH content and aerobic N2O production in a Norway spruce forest ecosystem with high 

spatial heterogeneity. This forest ecosystem was characterized by various topographic 

conditions, with slope and elevation ranging between 0.75–8.27% and 595–627 m, 

respectively, in the sampling area of this study. Besides, one small creek flowed through the 

study site, which made the ecosystem more complex. The complexity of the ecosystem with 

its upland and wetland soil areas allowed the identification of hotspots of NH2OH 

concentration, which were similar to the hotspots of aerobic N2O production rates, indicating 

a close correlation between the two parameters.  
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There are mainly two potential pathways for the oxidation of NH2OH to N2O: the biological 

reaction by the enzyme HAO or methanotrophic bacteria, and the chemical oxidation by 

nitrite or redox active metal cations (Bremner, 1997; Campbell et al., 2011; Stein, 2011). The 

redox reaction between NH2OH and Mn4+ (2 MnO2 + 2 NH2OH → 2 MnO + N2O + 3 H2O) 

has been demonstrated to play an important role in soil N2O emissions (Bremner, 1997). In 

this study, by using multiple regression analysis, we also found that Mn was an important 

factor explaining N2O emission rates despite a much higher Fe concentration in the forest 

soils, emphasizing the importance of the oxidation of NH2OH by MnO2 to N2O in soil, which 

is due to the higher position of the Mn4+/Mn2+ pair in the redox chain compared to Fe3+/Fe2+. 

Moreover, this experiment in this thesis provided a supporting tool to elucidate key control 

variables of soil N2O emission that can be relatively easily measured, to determine these 

variables and to calculate the respective N2O emission rates for the different sampling points.  

From the former experiments, several control factors, i.e. SOC content (or more specifically 

C/N ratio), pH and Mn content, were assumed to affect the abiotic N2O production involving 

NH2OH. The conceptual model hypothesized that the released NH2OH would react with 

different soil constituents, e.g. SOM and MnO2. At higher pH, unprotonated NH2OH would 

react more readily with carbonyl groups of SOM, leading to oxime formation and making 

NH2OH less available for oxidation to N2O by MnO2. Lower soil pH would lead to increased 

protonation of NH2OH, making NH2OH more stable against the reaction with carbonyl groups 

of SOM and more prone to the reaction with MnO2, leading to higher N2O formation from the 

same amount of NH2OH. The results of chapter five verified this conceptual model, and the 

interactive effects of the major control factors of abiotic N2O formation from NH2OH in soil, 

i.e. MnO2 content, pH and OM quantity and quality, could be quantified by developing a 

regression model. 

Although previous papers reported the importance of NO2
- and NH2OH on soil N2O emissions 

separately (Bremner et al., 1980; Venterea, 2007; Heil et al., 2015), according to our 

knowledge no study has tried to compare the contribution of the two reactive N compounds 

on soil N2O emissions at the same time, with consideration of different soil types, biological 

and abiotic processes, and redox history. The results of the sixth experiment also proved the 

former studies that abiotic NH2OH-to-N2O conversion is positively correlated with soil Mn 

content, but negatively correlated with SOC content. However, since most of the N2O 

produced from NO2
- came from the biotic pathway, soil properties that can stimulate the 



Chapter 8 

122 

 

microbial or enzyme activity in soils would be more important for N2O production from NO2
-. 

However, the stimulating factors for N2O production from NO2
- could still not be fully 

identified in this study. Moreover, this study also showed that redox conditions are important 

for the contribution of these two reactive nitrification intermediates to N2O production. When 

soil is at a reduced state, more reduced metal ions, e.g. Mn2+ and Fe2+, as well as DOC will be 

released, which would bind with NH2OH and lead to less N2O production from this pathway. 

However, a reduced state of soil would probably increase the contribution of N2O from NO2
- 

by increasing the abiotic reactions between NO2
- and reduced iron. 

Since it is unlikely that NH2OH would accumulate during soil drying because of its very 

reactive nature, especially at dry conditions, the last experiment only studied the contribution 

of NO2
-, NO3

- and NH4
+ on soil N2O production during rewetting. The results of this 

experiment showed a positive and significant correlation between the NO2
- concentration in 

the air-dried soil samples at the time of rewetting and the soil N2O production after rewetting. 

Moreover, the effect of the biotic and abiotic processes on the N2O produced from NO2
- was 

dependent on soil types. Gamma radiation confirmed that abiotic processes contributed about 

20-30% of N2O production from NO2
- during rewetting of forest soil samples, while for the 

grassland soil an even higher N2O production was found after the gamma-radiation treatment.  
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8.3 Perspectives 

Through the experiments of this thesis, a clearer picture of the coupled biotic-abiotic 

mechanisms of N2O production during nitrification could be developed. Thus, the results of 

the thesis can help to extend our current understanding of the biotic and abiotic N2O 

production mechanisms and improve the estimation of N2O emissions in different soils under 

different environmental conditions. However, a range of questions are still left open due to the 

finite time that was available for this dissertation: 

8.3.1 The release of NH2OH during NH3 oxidation in ammonia oxidizers enriched from 

different soils in various ecosystems 

Even though this dissertation has demonstrated the existence of NH2OH release in various 

chemoautotrophic ammonia oxidizers, only two of the studied AOB were enriched from soils. 

In addition, NH2OH release has not been observed in the two newly enriched soil AOA strains 

(Ca. Nitrosotalea sp. Nd2 and Nitrososphaera viennensis). Recent research demonstrated that 

the range of 15N site preference (SP) values, one promising indicator to partition the sources 

of N2O production, of soil AOA strains was 13-30‰ (Jung et al., 2014), indicating that N2O 

production from soil AOA may originate from different production pathways, leaving the 

question about the importance of the coupled biotic-abiotic mechanism of N2O production in 

soil AOA open. Moreover, other microorganisms, such as heterotrophic nitrifiers, fungal 

denitrifiers and methanotrophic (methane-oxidizing) bacteria may play a crucial role in NH3 

oxidation in certain ecosystems (Stein, 2011; Rohe et al., 2014; Zhang et al., 2015b). 

However, NH2OH release rates have not been determined yet for these microorganisms. 

Moreover, even though the N2O production from the coupled biotic-abiotic mechanisms has 

been estimated in this dissertation, further studies should quantify the real N2O production 

during NH3 oxidation in pure cultures and compare the N2O production rate with the 

calculated N2O production rate by the coupled biotic-abiotic mechanism. The importance of 

this mechanism in N2O production during NH3 oxidation in pure cultures should also be 

further studied under different environmental conditions, e.g. different levels of O2 

availability and pH. 
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8.3.2 The importance of the coupled biotic-abiotic mechanisms in soil of other 

ecosystems 

This dissertation has demonstrated the possibility of NH2OH analysis and a positive 

correlation between NH2OH concentration and aerobic N2O production in spruce forest soil.  

However, the determination of NH2OH in other soils is still necessary to fully elucidate the 

importance of this mechanism of N2O production in general. Moreover, soil environmental 

factors, such as pH, MnO2 and SOC content have been demonstrated as important 

contributors to the coupled biotic-abiotic mechanism based on the studies on one grassland, 

cropland and various soils from a spruce forest. Further studies are needed, though, to refine 

the regression model of the abiotic conversion of NH2OH to N2O by considering the three 

factors (pH, MnO2 and SOC) in other soils.  

In addition, the role of NO2
- in the coupled biotic-abiotic mechanism and the impact factors of 

NO2
--related abiotic N2O production in soils could not be fully elucidated in this dissertation. 

Although the importance of NO2
- in abiotic N2O production, also called chemodenitrification, 

has been noticed for a long time, and number of studies have been carried out (van Cleemput 

& Samater, 1995; Venterea, 2007; Müller et al., 2014), the exact mechanisms, such as the role 

of chemical properties of SOM, pH and metal ions in chemodenitrification are still not fully 

understood. Further studies should also develop a model, like the one developed in this 

dissertation, with consideration of soil basic properties and environmental factors for both 

NH2OH and NO2
--related abiotic N2O production.  

8.3.4 Developing effective measures to mitigate soil N2O emissions considering the 

mechanism of coupled biotic-abiotic N2O production in soils 

Currently, measures to mitigate soil N2O emissions are mainly dependent on biological N2O 

production pathways, such as inhibiting the enzyme activity of NOR and AMO. However, the 

mechanism of coupled biotic-abiotic production can provide a new stimulus for the 

development of N2O mitigation measures by changing the reaction conditions between 

NH2OH, NO2
- and soil constituents. For example, increasing pH has been shown as an 

effective measure to reduce N2O emissions in certain ecosystems by increasing the nitrous 

oxide reductase activity. However, increasing soil pH can also decrease the chemical 

production of N2O from NH2OH, but foster the production of N2 and NO2
-. Addition of 

organic soil amendments with suitable functional groups (e.g., carbonyl groups) to soils, 
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accompanied by the application of ammonia fertilizer, could potentially lead to a higher 

binding rate of released NH2OH to SOM, thereby reducing the availability of NH2OH for 

chemical oxidation to N2O during nitrification. However, addition of organic soil amendments 

could also increase the activity of denitrifiers, which in turn could lead to an increase in N2O 

production from denitrification. Thus, further studies on the potentially counteractive effects 

of soil management options on the range of biotic and abiotic N2O production pathways in 

soils are needed to develop more effective N2O mitigation measures. 
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Appendix 

 

Figure S2.1 

 

Figure S2.1 Dynamics of NH2OH, NO2
- and total N (TN) during incubation of the AOA N. gargensis 

(Ng) or only CaCO3 medium (abiotic control, AB) after addition of NH2OH (30/right panel or 80/left 
panel µM). The values are presented as mean ± standard deviation (SD). The differences of NO2

- 
between the abiotic and biotic treatments are significant (P < 0.01, mixed model repeated measures) 
for both 30 and 80 µM  NH2OH addition. 
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Figure S2.2 

 

 

Figure S2.2 Mixing ratios (ppb) of N2O (left y-axis) and NOx (right y-axis) during NH2OH (0.08 mM) 
abiotic decay at 37°C using an infrared laser absorption spectrometer for online real-time analysis of 
N2O mixing ratio and a chemoluminescence NOx analyzer. 
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Figure S2.3 

 

Figure S2.3 Changes in NH2OH (left panel) and NO2
- (right panel) following addition of different 

concentrations (0.03, 0.08 and 0.2 mM) of NH2OH to CaCO3-buffered medium at two temperatures 
(37 and 46°C ) levels. The values are presented as mean ± standard deviation (SD). 
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Figure S2.4 

 

Figure S2.4 NH2OH:final product ratios (%) during incubation at two different initial NH4
+ 

concentrations (0.5 mM, square; 2 mM, circle) for four different cultures of ammonia-oxidizers. Please 
note that the y-axes are not always scaled identically to improve data presentation. 
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Figure S5.1 

 

Figure S5.1 NH2OH-to-N2O conversion ratios (RNH2OH-to-N2O) in artificial soil mixtures at different pH 
as well as MnO2 and organic matter (OM, peat moss) contents. The total amount of NH2OH added was 
5 nmol. Different symbols represent RNH2OH-to-N2O at different pH levels. 



 

144 

 

Figure S5.2 

 

Figure S5.2 NH2OH-to-N2O conversion ratios (RNH2OH-to-N2O) in artificial soil mixtures at different pH 
as well as MnO2 and organic matter (OM, peat moss) contents. The total amount of NH2OH added was 
5 nmol. Different symbols represent RNH2OH-to-N2O at different OM contents. 
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Figure S5.3 

 

Figure S5.3 NH2OH-to-N2O conversion ratios (RNH2OH-to-N2O) in artificial soils at different pH and 
MnO2 content, and for organic matter (OM) of different origins at a fixed content of 2.5% (w/w). The 
total amount of NH2OH added was 5 nmol. Different symbols represent RNH2OH-to-N2O for the artificial 
soil mixtures under different pH levels. 
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Figure S5.4 

 

Figure S5.4 NH2OH-to-N2O conversion ratios (RNH2OH-to-N2O) in artificial soils at different pH and 
MnO2 content, and for organic matter (OM) of different origins at a fixed content of 2.5% (w/w). The 
total amount of NH2OH added was 5 nmol. Different symbols represent RNH2OH-to-N2O for the artificial 
soil mixtures with different OM origins. 
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Table S2.1 

Table S2.1 Centrifugation and incubation conditions for the ammonia-oxidizing strains tested. 

Culture  
type 

Strain Centrifuga
-tion 
conditions 
(g, min) 

Incubation 
bottles 
(culture and 
bottle volume 
(ml), type) 

Initial protein 
in each bottle 
 (µg ml-1) 

Incubation 
conditions 
(°C, shaking 
or not) 

Incubation  
time (h) 

 Nitrosomonas 
europaea ATCC 
19718 

8000, 30  60, 120, Serum 3.5 30, no  68 

 Nitrosospira 
multiformis 
ATCC 25196 

8000, 30 3.3 30, no  64 

AOB 
pure 
culture 

Nitrosomonas 
communis Nm2  
Nitrosomonas 
nitrosa Nm90 

8000, 20  
 
7830, 20  

50, 100, Schott  3.29 
 
1.64 

28, yes 
 
37, yes 

58 
 
84 

 Nitrososphaera 
gargensis 

7830, 20  50, 100, Schott  4.64 46, no  58 

AOA 
pure 
culture 

Nitrososphaera 
viennensis 

8000, 20  0.72 37, no  58 

 Ca. N. sp. Nd2 8000, 30  60, 120, Serum  0.4 35, no  67 

AOA 
enrich-
ment 

Ca. N. uzonensis  8000, 20  50, 100, Schott  1.43 46, no  124 

Comam
-mox 
enrich
ment 

Ca. N. inopinata  7830, 30  50, 100, Schott  1.74 37, no  58 

 

Table S2.2 

Table S2.2 First-order rate constant (k) of abiotic NH2OH decay in different media at different 
NH2OH (0.5, 1, 2.5 and 5 µM) and NO2

- (0 and 2 mM) concentrations. 

NO2
- (mM) 0 2 

NH2OH (µM) 0.5 1 2.5 5 0.5 1 2.5 5 
HEPES (30°C) 0.22 0.15 0.12 - 0.13 0.10 0.07 - 
CaCO3 (30°C) 1.13 0.74 0.56 0.40 0.69 0.39 0.33 0.32 
CaCO3 (37°C) 0.81 0.74 0.89 0.74 - - - - 
CaCO3 (46°C) 2.11 0.96 1.09 1.05 0.93 0.61 0.51 0.48 
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Table S2.3 

Table S2.3 δ15N values of N2O produced by the reaction of NH2OH and Fe(III) during the NH2OH 
assay in the presence of 2 mM 15N-labeled nitrite (δ15N = 1185±2 ‰). 

Samples N2O (ppb) δ15N (‰ vs. air-N2) 

CaCO3 0h 257 3.09 

HEPES 0h 312 3.83 

CaCO3 2h 110 5.12 

HEPES 2h 220 4.25 

CaCO3 8h 7.3 6.13 

HEPES 8h 16.5 4.07 
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