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A B S T R A C T
Predictive modeling of groundwater flow and solute transport can help to protect
groundwater resources and to remediate contaminated sites. It is challenging, how-
ever, to develop realistic groundwater models because it is difficult to characterize and
model the complex heterogeneity of geologic media. In this work, we propose an ap-
proach that combines high resolution geophysical imaging and multiple-point statistical
modeling to estimate the 3-D structure of aquifers.

Our study is carried out at the Krauthausen site, Germany, where 15 cross-borehole
ground-penetrating radar (GPR) data sets were acquired in an alluvial sand and gravel
aquifer. To analyze the GPR data, we apply a recently developed full-waveform in-
version approach that is preferable, in terms of spatial resolution, over traditional ray-
based inversion approaches. By stitching together the inverted tomograms from adjacent
crosshole planes, we are able to image, with a decimeter-scale resolution, the aquifer’s
electrical properties (dielectric permittivity and electrical conductivity) along vertical
cross-sections up to 50 m long and 10 m deep. Comparison of the GPR results with
co-located direct-push profiles shows a strong correlation between the porosity derived
from GPR dielectric permittivity and the porosity derived from direct-push neutron
logs. We can show that the dielectric permittivity obtained from full-waveform inver-
sion more accurately reconstructs sharp contrasts and fine-scale variations in porosity
than the dielectric permittivity obtained from traditional ray-based inversion.

One problem with using GPR for hydrogeological site characterization is that GPR
yields electrical properties which are only indirectly linked to hydraulic properties. We
present two approaches to estimate hydrogeological facies from the GPR results. The
first approach, based on k-means cluster analysis, is applied to GPR data from five adja-
cent crosshole planes. Cluster analysis of the GPR results suggests three facies. Densely
spaced cone penetration tests, located along the GPR transect, confirm the number of
facies and their spatial distribution in the aquifer cross-section. Grain size distributions
and flowmeter data, available from one of the boreholes, show that the derived facies
boundaries correlate with changes in grain size and porosity, and to a lesser extent with
changes in hydraulic conductivity.

The second approach uses a logistic regression to relate the electrical properties from
GPR to different sediments. Compared with the cluster analysis based zonation ap-
proach, the logistic regression approach has the advantage that it provides additional
information about the reliability of classification. Vertical profiles of porosity and hy-
draulic conductivity from direct-push, flowmeter and grain size data suggest that the
GPR facies obtained from logistic regression are meaningful with regard to porosity
and hydraulic conductivity. Comparison of the GPR facies with tracer test data shows
a clear and consistent effect of the facies structure on the observed transport, which
confirms the hydrogeological relevance of the identified facies. In particular, the GPR re-
sults suggest the presence of a thin layer of sand that would explain the observed tracer
plume splitting. Because this sand layer is identified by GPR full-waveform inversion
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vi abstract
but not by conventional GPR ray-based inversion we conclude that the improvement in
spatial resolution due to full-waveform inversion is crucial to detect small-scale aquifer
structures that are highly relevant for solute transport.

The GPR derived facies distribution provides valuable information about the aquifer’s
structure and connectivity. We demonstrate that this information can be used to generate
stochastic realizations of the 3-D aquifer structure using multiple-point statistics (MPS).
To enable 3-D MPS modeling on the basis of the 2-D GPR transects, we propose a
modeling approach that combines sequential 2-D simulations with a 3-D reconstruction
scheme. Because the GPR identified subsurface structures are utilized as training and
conditioning data, this approach yields 3-D aquifer models that honour the structural
information provided by the GPR tomograms. In this way, we are able to model the
site-specific heterogeneity of the studied aquifer, which provides an excellent basis to
set up realistic groundwater models for numerical flow and transport prediction.



Z U S A M M E N FA S S U N G
Die Modellierung und Vorhersage von Strömungs- und Transportprozessen im Grund-
wasser kann dabei helfen, Grundwasserressourcen zu schützen und kontaminierte
Standorte zu sanieren. Es ist jedoch schwierig, realistische Grundwassermodelle
zu entwickeln, da die komplexe Struktur des Untergrunds nur schwer zu erfassen
ist. In dieser Arbeit stellen wir ein Verfahren vor, das geophysikalische Charakteri-
sierung und “multi-punkt-statistische” Modellierung kombiniert, um die 3D-Struktur
von Grundwasserleitern abzuleiten.

Wir analysieren 15 Radar-Datensätze, die in einem sandig-kiesigen Grundwasserleiter
am Testfeld Krauthausen gemessen wurden. Die Radarmessungen wurden nach tomo-
graphischem Messprinzip zwischen jeweils zwei Bohrlöchern durchgeführt. Um die
Radardaten auszuwerten, nutzen wir ein kürzlich entwickeltes Verfahren, das auf der
Wellenform-Inversion von Bohrlochradardaten basiert. Die invertierten Tomogramme
zeigen, mit einer Auflösung im Dezimeterbereich, die elektrischen Bodenparameter
(dielektrische Permittivität, elektrische Leitfähigkeit) entlang von vertikalen Quer-
schnittsflächen mit bis zu 50 m Länge und 10 m Tiefe. Die aus der dielektrischen Permit-
tivität abgeleitete Porosität des Grundwasserleiters wird durch vertikale “direct-push”-
Porositätsprofile bestätigt. Wir können zeigen, dass die Wellenform-Inversion der Radar-
daten eine höher auflösende Charakterisierung der Porositätsverteilung ermöglicht als
die herkömmliche strahlenbasierte Radaranalyse.

Ein Problem bei der Anwendung von Radar für hydrogeologische Fragestellungen ist,
dass die durch Radar ermittelten elektrischen Parameter nur indirekte Informationen
über die hydraulischen Parameter des Untergrunds liefern. Wir entwickeln zwei ver-
schiedene Ansätze, um hydrogeologische Einheiten (Fazien) aus den Radarergebnissen
abzuleiten. Im ersten Ansatz nutzen wir eine Clusteranalyse für die Klassifizierung.
Die Clusteranalyse der Radarergebnisse deutet auf eine Unterteilung des Grundwasser-
leiters in drei Einheiten hin. Vertikale “direct-push”-Sondierungen bestätigen, dass die
aus den Radarergebnissen abgeleiteten Fazien den grundlegenden sedimentologischen
Aufbau des Grundwasserleiters widerspiegeln. Korngrößendaten und Flowmetermes-
sungen zeigen, dass die ermittelten Faziengrenzen mit Veränderungen in der Korngröße,
der Porosität und, untergeordnet, der hydraulischen Durchlässigkeit korrelieren.

Im zweiten Klassifizierungsansatz nutzen wir ein logistisches Regressionsmodell, um
die mit Radar ermittelten elektrischen Bodenparameter unterschiedlichen Sedimenten
zuzuordnen. Die logistische Regression hat gegenüber der Clusteranalyse den Vorteil,
dass sie zusätzliche Informationen zur Unsicherheit der Klassifizierung der Radar-
Ergebnisse liefert. Vertikale “direct-push”-Profile, Flowmetermessungen und Korn-
größendaten zeigen, dass die mit Radar abgegrenzten Sedimentfazien durch unter-
schiedliche Porositäten und hydraulische Durchlässigkeiten charakterisiert sind. Der
Vergleich mit den Ergebnissen eines Tracerexperiments zeigt einen klaren Zusammen-
hang zwischen der auf Basis der Radarergebnisse abgeschätzten Sedimentverteilung
und dem beobachteten Transportverhalten des Tracerstoffes. Insbesondere zeigen die
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viii zusammenfassung
Radarergebnisse eine dünne Sandschicht, die eine Erklärung für die im Experiment
beobachtete Aufspaltung der Tracerstoffwolke liefert. Indem wir zeigen, dass diese
Sandschicht mit herkömmlicher strahlenbasierter Radaranalyse nicht detektiert werden
kann, demonstrieren wir, dass die Wellenform-Inversion von Radardaten entscheidende
Vorteile für die Charakterisierung von Grundwasserleitern bietet.

Die mit Radar abgebildeten Sedimentstrukturen liefern wertvolle Informationen über
die Struktur und die Konnektivität des Untergrunds. Wir zeigen, dass es auf Basis
dieser Informationen möglich ist, die 3D-Struktur des Grundwasserleiters zu model-
lieren. Dafür entwickeln wir einen “multi-punkt-statistischen” Modellierungsansatz,
der sequentielle 2D-Simulationen mit einem 3D-Modellierungskonzept kombiniert. Da
die Radartomogramme als Trainings- und Konditionierungsdaten genutzt werden, wird
die spezifische Struktur des untersuchten Grundwasserleiters explizit bei der Model-
lierung berücksichtigt. Das Ergebnis sind 3D-Untergrundmodelle, die eine exzel-
lente Grundlage bieten, um Grundwasserströmung und Stofftransport im Untergrund
vorherzusagen.



1 I N T R O D U C T I O N
1.1 statement of the problem
Constituting over 95% of the Earth’s unfrozen freshwater, groundwater is the most im-
portant freshwater resource on Earth. Particularly in areas with limited or polluted
surface waters, groundwater often represents the only supply for the production of
drinking water. Ever-increasing water demands and anthropogenic pollution, however,
lead to depletion of clean groundwater reserves in many parts of the world [Wada et al.,
2010]. Protecting the quality of groundwater, and securing its sustained availability, is
thus considered a priority goal for both the present and the future [WHO, 2006].

Achieving this goal requires a precise understanding of flow and transport processes
in aquifers as a basis to assist and guide stakeholders in groundwater related questions.
For example, water suppliers or farmers may want to know how much water they can
pump from an aquifer without overexploiting it. Or, in the case of a contaminated site,
the question may arise of where to place and how long to operate remediation wells in
order to capture a contaminant plume. One way to answer this kind of questions is to
employ groundwater models that numerically simulate flow and transport processes in
the subsurface [Kinzelbach, 1992]. The use of such models is appealing because (ideally)
they offer the opportunity to evaluate the consequences of an action before actually
performing this action. This makes it possible to “try out” several possible strategies for
solving some problem in the model, and choose the most effective one for solving the
problem in reality.

With the development of versatile groundwater flow and transport modeling codes
such as MODFLOW [Harbaugh, 2005] and FEFLOW [Trefry and Muffels, 2007], along
with a strong increase in computational power over the recent past, detailed simulation
of complex groundwater systems on fine meshes has become feasible. Parametrizing
such detailed models, however, poses a problem. The problem lies in the enormous
variability of the parameters that control flow and transport in the subsurface, and in the
difficulties associated to measuring these parameters and representing their variability
properly in a model.

Flow and transport processes in aquifers are mainly controlled by two parameters, the
hydraulic conductivity and the porosity. While the porosity shows only relatively mild
variations in aquifers, the hydraulic conductivity typically varies over several orders
of magnitude and exerts the primary control on groundwater flow and solute migra-
tion [Dagan, 1989; Koltermann and Gorelick, 1996]. Classical hydrogeological methods
to measure hydraulic conductivity include pumping tests, which yield large-scale av-
eraged effective medium properties; flowmeter tests, which yield one-dimensional pro-
files of hydraulic conductivity along wells; and permeameter tests, which yield point
information. None of these methods is able to combine local resolution with spatial cov-
erage. In principle, if the spatial distribution of hydraulic conductivity (and porosity)
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2 introduction
in an aquifer was known at every point in space, simulation of groundwater flow and
solute transport in that aquifer would be relatively straight-forward (at least, say, for
non-reactive transport, known boundary conditions, etc.). However, perfect knowledge
of the parameter field within an aquifer is unrealistic for every practical application, be-
cause it is impossible to measure parameters at every point in space. As a consequence,
there is a conflict between the scarce information typically available from data, and the
exhaustive parametrization required by fine meshed groundwater models.

1.2 the need to account for spatial connectivity
Traditionally, this conflict has been approached by measuring the hydraulic conductivity
at several locations in the aquifer, characterizing the spatial correlation of the measured
data in terms of a variogram, and using variogram-based geostatistical methods such as
sequential gaussian simulation or sequential indicator simulation [Deutsch and Journel,
1998] to stochastically generate synthetic parameter fields, which eventually can be used
to parametrize the grid nodes of a numerical groundwater model. It was soon realized,
however, that the variogram fails to capture spatial connectivity, and thus, may be insuf-
ficient to characterize (and model) the heterogeneity of aquifers [Gómez-Hernández and
Wen, 1998; Western et al., 2001; Journel and Zhang, 2006]. This is illustrated in Figure 1,
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Figure 1: Two heterogeneous fields showing different connectivity patterns but identical his-
tograms and variograms (from Renard and Allard [2013]).



1.3 multiple-point statistics and training images 3
which shows two synthetic hydraulic conductivity fields, one generated using the direct
sampling algorithm [Mariethoz et al., 2010], the other generated by sequential gaussian
simulation [Deutsch and Journel, 1998]. Although the two fields show quite different
connectivity patterns, their histograms and variograms are practically identical.

Spatial connectivity in heterogeneous aquifers has received considerable attention
lately and it has been recognized that connected structures explain a range of phenom-
ena that have been observed in natural aquifers. For example, Bianchi et al. [2011]
demonstrated that connected structures can explain the early arrival and late-time tail-
ing that is often observed in tracer experiments. Meier et al. [1998] and Knudby and
Carrera [2006] analyzed pumping test data and found that differences in the early-
time hydraulic response measured in different observation wells could be explained
by different degrees of hydraulic connectivity between pumping and observation wells.
Generally, connected structures of high permeability act as preferential flow paths and
lead to increased water fluxes and increased transport velocities [Fogg et al., 2000;
Bianchi et al., 2011; Zheng et al., 2011]; whereas connected structures of low perme-
ability act as flow barriers and lead to decreased water fluxes and decreased transport
velocities [Zinn and Harvey, 2003; Huysmans and Dassargues, 2012]. As a consequence,
knowledge about the site-specific connectivity structure of an aquifer is crucial to prop-
erly predict flow and transport. Zheng et al. [2011] reviewed 25 years of research carried
out at the intensively studied MADE site [Boggs et al., 1992] and concluded that the spa-
tial arrangement and the connectivity of heterogeneous sediments is more important
to understanding and modeling transport than the variation of hydraulic conductivity
alone. Therefore, they argued that novel exploration techniques must be developed that
are able to map the detailed distribution and connectivity of subsurface structures. Sim-
ilarly, Renard and Allard [2013] proposed that identifying connected structures in the
field and honoring connectivity in the generation of subsurface models may be the step
forward towards more realistic groundwater models.

1.3 multiple-point statistics and training images
Motivated by the inability of variogram-based geostatistics to model the complex con-
nectivity patterns that one finds in nature, alternative modeling approaches based on
multiple-point statistics (MPS) have been developed [Guardiano and Srivastava, 1993;
Strebelle, 2002; Straubhaar et al., 2011; Mariethoz et al., 2010; Mariethoz and Caers, 2014].
MPS approaches accommodate the stochastic simulation of both categorical and contin-
uous variables and are specifically aimed at representing complex connected structures
and curvilinear patterns.

The principle idea of MPS modeling is to generate models by reproducing the
multiple-point spatial statistics from a user-defined conceptual model, called training
image (TI). The TI is supposed to display the type of geological structures (e.g. channels,
bars, layers) that exist at the site being modeled. These structures are then reproduced
in the simulation grid, taking conditioning data (if available) into account. In this way,
complex models with geologically realistic structures and connectivity patterns can be
obtained (Figure 2); but it is crucial to understand that MPS will only produce appro-
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Figure 2: 3-D models of the Descalvado (Brazil) and Herten (Germany) aquifer obtained from
multiple-point statistical simulations (from Bayer et al. [2015]). Training images were
derived from outcrop photographs.

priate models when an appropriate TI can be provided. The most critical step in MPS
modeling thus consists in identifying a TI that properly reflects the specific heterogene-
ity of the site being modelled. There are different strategies how to obtain such a TI.

One possible approach is to use some external, conceptual TI that reflects the type
of spatial structures that are deemed representative for the site being modeled. For ex-
ample, if the goal is to model an aquifer that is known to represent a former braided
river deposit, it might be appropriate to use a TI that includes high permeable gravel
channels and low permeable clay lobes [Hermans et al., 2015]. Conceptual TIs for dif-
ferent geological settings can be retrieved from data bases [Comunian and Renard, 2008;
Mariethoz and Caers, 2014], or the TI itself can be modeled using process-imitating or
object-based methods [Maharaja, 2008; Comunian et al., 2013]. But the problem with us-
ing such conceptual TIs for real-case applications is that, obviously, it can be difficult do
decide whether a conceptual TI is representative for the (unknown) site to be modeled.
Hermans et al. [2015] and Scheidt et al. [2015] therefore proposed to allow several differ-
ent conceptual TIs, and narrow down the range of these initially plausible TIs by later
comparison of model results with acquired data. Although this strategy alleviates the
difficulty in deciding for one specific TI it still requires that at least one of the provided
TIs properly reflects the actual field.

An alternative strategy was used by Bayer et al. [2015] and Pickel et al. [2015] who
used digitized outcrop images as TIs. The rationale behind this approach is that out-
crops contain site-specific information, and therefore, it might be advantageous to rely
on them rather than on some external, possibly inadequate TI. Outcrops, however, are
often not available and, at best, located at the outer boundaries of the domain to be
modeled. An interesting alternative, therefore, would be to derive TIs from geophysical



1.4 benefits and drawbacks of geophysical imaging 5
images that could be obtained, non-invasively, directly at the location of interest. Deriva-
tion of TIs through geophysical imaging, however, requires that the spatial resolution of
the geophysical imaging technique is high enough to resolve the characteristic structure
of the subsurface without smoothing out critical features [Hermans, 2014]. Moreover,
the derived geophysical images need to be interpreted, for example, by establishing
some relationship between geophysical attribute and lithology.

1.4 benefits and drawbacks of geophysical imaging
Geophysical imaging techniques for the shallow subsurface, such as ground-penetrating
radar (GPR) or electrical resistivity tomography (ERT), offer a great potential for char-
acterizing aquifers because they combine local resolution and spatial coverage. Hence,
these methods are able to bridge the gap between point measurements and volume-
averaged effective properties that are typically obtained from hydrogeological methods.
Due to their sensitivity to water content, pore fluid conductivity and clay content, GPR
and ERT can be applied, for example, to detect lithological boundaries in aquifers [Bowl-
ing et al., 2005] or to quantitatively estimate variations in porosity and clay content
[Doetsch et al., 2010]. Particularly cross-borehole tomographic setups are highly effec-
tive for characterizing the subsurface because they yield high resolution spatial infor-
mation on full cross-sections. This makes it possible to assess the lateral continuity of
subsurface structures, which is the key to characterize spatial connectivity.

There are two major difficulties, however, that hinder the routine application of geo-
physical methods for hydrogeological site characterization. The first difficulty is that the
hydrogeological interpretation of geophysical data is often challenging because there is
a lack of direct and universal relationships between geophysical and hydrogeological
properties [Binley et al., 2015]. The second difficulty is that conventional geophysical
inversion techniques are often limited in spatial resolution, thus yielding only relatively
smooth images of the subsurface. This becomes a problem when the goal is to describe
solute transport that is well known to depend on small-scale structures acting as prefer-
ential flow paths or flow barriers [Zheng et al., 2011].

Recent advances in full-waveform inversion of GPR data have shown great potential
for characterizing aquifers with higher resolution [Klotzsche et al., 2015]. While wave-
form approaches have been applied in seismic inversion for decades, their application
to crosshole GPR inversion is still relatively new, and there have been just a few stud-
ies that used full-waveform inversion to interpret GPR field data [Belina et al., 2012;
Klotzsche et al., 2013, 2014; Keskinen et al., 2017]. Full-waveform inversion of crosshole
GPR data focuses on the analysis of radar waves traveling from a transmitter placed in
a borehole to a receiver placed in another borehole several meters away. Because un-
derground structures alter the radar wave as it travels through the subsurface, the wave
picked up by the receiver contains information about structures located between the
boreholes. Full-waveform inversion aims at revealing these structures by searching for
a dielectric permittivity and electrical conductivity distribution that explains the mea-
sured data. In contrast to conventional traveltime inversion approaches that employ ap-
proximate ray-based forward simulators to reconstruct first arrival times, full-waveform
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inversion employs a numerical solution of Maxwell’s equations to reconstruct entire
waveforms [Ernst et al., 2007a,b; Meles et al., 2010]. Full-waveform inversion thus uses
a significantly larger amount of the measured data and simulates more accurately the
propagation of electromagnetic waves in the ground. As a consequence, this approach
allows characterizing the subsurface with a considerably improved spatial resolution
(Figure 3).
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Figure 3: Synthetic experiment illustrating the differences in resolution between traveltime and
full-waveform inversion of crosshole GPR data (modified from Belina et al. [2012]).
The true permittivity field is used to generate synthetic radar traces. Traveltime and
full-waveform inversion are employed to reconstruct the true permittivity field.

This improvement in spatial resolution makes crosshole GPR full-waveform inver-
sion very interesting for hydrogeological site characterization because it might allow
for imaging the subsurface with the resolution needed to predict solute transport in
aquifers. Moreover, it appears promising to use this high resolution imaging tool to
derive TIs for MPS simulations. In this way, GPR full-waveform inversion would be
used to collect site-specific information about the detailed spatial structures that exist at
a site; and MPS simulations would be used to generate 3-D aquifer models by explicitly
considering the spatial structures and connectivity patterns inferred from GPR.

1.5 objectives and thesis outline
This thesis has two main objectives. The primary objective is to evaluate the benefit of
high-resolution GPR full-waveform inversion for hydrogeological site characterization.
The secondary objective is to test if the GPR tomograms can be utilized in a multiple-
point statistical modeling framework to derive 3-D aquifer models that honor the site-
specific structure and connectivity inferred from GPR.

The two objectives are addressed in three individual Chapters – the primary objective
in Chapters 2 and 3, the secondary objective in Chapter 4. Each Chapter is self-contained
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and includes a specific introduction, a description of the methods used, and a discussion
of the obtained results. Although focusing on different aspects, all three Chapters use
data from the Krauthausen test site, partly collected within the framework of this thesis,
and partly being available from previous studies carried out at this site. The remaining
manuscript is organized as follows:

Chapter 2 investigates if full-waveform inversion of crosshole GPR data followed by
cluster analysis is a suitable approach to delineate lithological facies. GPR data from five
adjacent crosshole planes are analyzed and partitioned into facies using cluster analysis.
The GPR derived zonation is compared to the zonation derived independently from
densely spaced cone penetration tests. On the basis of this comparison the reliability of
the obtained facies classification is discussed.

Chapter 3 focuses on the hydrogeological interpretation of the information provided
by GPR. A logistic regression model is employed to translate the GPR derived electrical
properties into facies, whose hydrogeological relevance is assessed based on vertical
profiles of porosity and hydraulic conductivity from direct-push, flowmeter and grain
size data. The GPR derived facies distribution is compared to the breakthrough of a
tracer observed in a field experiment. To evaluate the true benefit of using GPR full-
waveform inversion instead of traditional GPR ray-based inversion, the results from
both inversion strategies are compared and discussed.

Chapter 4 explores different approaches to utilize the GPR cross-sections as training
images to derive 3-D aquifer models using MPS. The main challenge consists in carrying
out 3-D MPS simulations on the basis of the 2-D information from GPR. Two existing ap-
proaches to this problem are tested and compared in a quantitative manner. In addition,
a new combination of the two former approaches is proposed and evaluated.

Finally, Chapter 5 summarizes the overall conclusions of this thesis and indicates
possible future research directions.





2 H I G H R E S O L U T I O N I M A G I N G O F A Q U I F E RS T R U C T U R E U S I N G C R O S S H O L E G P RF U L L-W AV E F O R M I N V E R S I O N †
abstract
Spatially highly resolved mapping of aquifer heterogeneities is critical for the accurate
prediction of groundwater flow and contaminant transport. Here, we demonstrate the
value of using full-waveform inversion of crosshole ground penetrating radar (GPR)
data for aquifer characterization. We analyze field data from the Krauthausen test site,
where crosshole GPR data were acquired along a transect of 20 m length and 10 m
depth. Densely spaced cone penetration tests (CPT), located close to the GPR transect,
were used to validate and interpret the tomographic images obtained from GPR. A
strong correlation was observed between CPT porosity logs and porosity estimates de-
rived from GPR using the complex refractive index model (CRIM). A less pronounced
correlation was observed between electrical conductivity data derived from GPR and
CPT. Cluster analysis of the GPR data defined three different subsurface facies, which
were found to correspond to sediments with different grain size and porosity. In conclu-
sion, our study suggests that full-waveform inversion of crosshole GPR data followed
by cluster analysis is an applicable approach to identify hydrogeological facies in allu-
vial aquifers and to map their architecture and connectivity. Such facies maps provide
valuable information about the subsurface heterogeneity and can be used to construct
geologically realistic subsurface models for numerical flow and transport prediction.

2.1 introduction
Reliable prediction of groundwater flow and solute transport is needed for environmen-
tal engineering tasks such as the definition of protection zones for drinking water wells
or the development of efficient remediation strategies at contaminated sites. However,
predicting subsurface flow and transport is challenging due to the complex heterogene-
ity found in most geologic media. Physical and chemical properties in the subsurface
vary over orders of magnitude and their spatial variability exerts a primary control on
groundwater flow and solute migration [Dagan, 1989]. Sedimentary deposits, which
commonly represent soils and aquifers, are often composed of several distinct units
or facies, separated by recognizable boundaries at which subsurface properties such
as grain size or hydraulic conductivity may abruptly change [Miall, 1985; Fogg, 1986;

† this chapter has been published as: Gueting N., Klotzsche A., van der Kruk J., Vanderborght J.,
Vereecken H., Englert A. (2015), Imaging and characterization of facies heterogeneity in an alluvial
aquifer using GPR full-waveform inversion and cone penetration tests, Journal of Hydrology 524, 680–695,
http://dx.doi.org/10.1016/j.jhydrol.2015.03.030.

9
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Koltermann and Gorelick, 1996]. This has motivated the conceptualization of heteroge-
neous sedimentary aquifers as assemblages of distinct (hydro-)lithological facies with
less variability within than between facies [Anderson, 1989; Webb and Anderson, 1996;
Barrash and Clemo, 2002; Riva et al., 2006; Bayer et al., 2011].

Field and modeling studies have highlighted the influence of facies architecture and
geometry on flow and transport processes [Zheng and Gorelick, 2003; Feyen and Caers,
2006; Ronayne et al., 2008; Zheng et al., 2011; Haendel and Dietrich, 2012]. In particu-
lar, the spatial connectivity of facies appears to be of substantial importance, because
connected structures of high permeability act as preferential flow paths and lead to in-
creased water fluxes and increased transport velocities, while connected structures of
low permeability act as flow barriers and lead to decreased water fluxes and decreased
transport velocities [Zinn and Harvey, 2003; Knudby and Carrera, 2006; Huysmans and
Dassargues, 2009; Bianchi et al., 2011; Renard and Allard, 2013]. Hence, reliable predic-
tion of flow and transport in the subsurface critically depends on a detailed characteri-
zation of the spatial distribution of subsurface facies.

Unfortunately, a detailed characterization of the subsurface is difficult to obtain in
practice because the subsurface is not easily accessible through measurements. Conven-
tional subsurface characterization techniques tend to rely on pumping tests or borehole
based geophysical or lithological logs. Pumping tests yield appropriate upscaled prop-
erties with regard to flow but suffer from a limited spatial resolution of local proper-
ties, which are needed for proper transport prediction. Borehole logs provide detailed
information about the vertical distribution of local properties but are inherently one-
dimensional in nature. Any inference based on one-dimensional vertical profiles, will be
blind to the lateral distribution of subsurface properties, and thus, the interconnectivity
of facies. Outcrop analyses can be applied to map the distribution of facies on outcrop
walls, which provides valuable information about the lateral connection of facies [Huys-
mans et al., 2008; Huysmans and Dassargues, 2009; Bayer et al., 2011; Comunian et al.,
2011]. However, the characteristics derived from an outcrop are not necessarily valid for
the specific conditions at locations some distance away from the outcrop.

In contrast, minimally invasive tomographic geophysical imaging methods such as
crosshole ground penetrating radar (GPR) can be used to map the spatial distribution
of subsurface properties on full cross-sections directly at the location of interest. The
two-dimensionality of the tomographic images provides the opportunity to characterize
the lateral distribution of structures and to evaluate their architecture and connectivity.
Traditional tomographic inversion of GPR data is carried out using ray-based techniques
[Holliger et al., 2001; Maurer and Musil, 2004]. Because ray-based methods consider only
the first arrival times and the first-cycle amplitudes they exploit only a limited amount
of the information contained in the full recorded waveform. As a consequence, the
spatial resolution of such methods is limited, and only relatively smooth images of the
subsurface can be obtained [Belina et al., 2009; Klotzsche et al., 2010]. In contrast, full-
waveform inversion techniques make use of the full recorded waveform, which includes
information beyond the first arrival times and first-cycle amplitudes. As a consequence,
full-waveform inversion techniques are capable to resolve subsurface properties with
higher spatial resolution and yield tomographic images with a significantly improved
level of detail [Ernst et al., 2007a; Meles et al., 2010; Yang et al., 2013; Klotzsche et al.,
2013, 2014].
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Recent studies showed the potential of GPR full-waveform tomography for hydro-

geological application by comparing GPR results with independent measurements of
porosity [Yang et al., 2013; Klotzsche et al., 2013] and hydraulic conductivity [Klotzsche
et al., 2013]. Within the scope of hydrogeological site characterization the strength of full-
waveform GPR tomography lies in its potential to bridge the gap in terms of resolution
and coverage that exists among traditional hydrogeological methods such as small-scale
core analyses and large-scale pumping tests. However, this advantage comes along
with difficulties regarding the hydrogeological interpretation because GPR returns the
electrical properties which are only indirectly related to hydrogeological parameters
such as porosity or hydraulic conductivity. Without information about the site-specific
relationship between electrical and hydrogeological properties, the use of GPR for hy-
drogeological site characterization can therefore be limited. Another difficulty, in field
applications, is to evaluate the reliability of the obtained tomographic images, because
in the absence of secondary information it is difficult to validate if the structures seen in
the tomographic images represent real subsurface structures and not inversion artifacts.

In the present study we show the value of applying full-waveform GPR tomography in
combination with complementary investigation tools to hydrogeologically characterize a
site. We analyze field data from the Krauthausen test site, where GPR data were recently
acquired along several cross-borehole planes. Because the Krauthausen test site has been
intensively investigated in previous studies [Vereecken et al., 2000; Tillmann et al., 2008],
we are able to confront the GPR results with densely spaced secondary data from cone
penetration tests (CPT), grain size analyses and flowmeter measurements which allow
detailed validation and interpretation of the tomographic images obtained from GPR.
In detail, our approach consists of the following steps: Firstly, a GPR full-waveform
inversion is applied to infer the subsurface permittivity and electrical conductivity dis-
tribution along a vertical aquifer cross-section of approximately 20 m length and 10 m
depth. Results are validated by comparison with co-located CPT porosity and electrical
conductivity logs. Secondly, a cluster analysis is conducted to partition the obtained
GPR tomographic images into clusters. In this way, different lithological facies such as
sand and gravel that differ in their permittivity and electrical conductivity signatures
can be distinguished. The outcome of the cluster analysis is a cross-sectional map show-
ing the spatial distribution of different facies in the aquifer. We discuss the reliability of
the facies classification by comparing the distribution of facies obtained from GPR with
the distribution of facies obtained independently from CPT. Finally, we use the com-
bined information from GPR, CPT, grain size analyses and flowmeter measurements to
develop a hydrogeological interpretation of the obtained facies and to characterize them
in terms of grain size, porosity and hydraulic conductivity.

2.2 material and methods
2.2.1 Study site

The Krauthausen test site, set up by the research center Jülich in 1993, is located ap-
proximately 10 km northwest of the city of Düren, Germany, in the southern part of the
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Figure 4: Map of the Krauthausen test site with the location of boreholes (open circles) and
cone penetration tests (asterixes). The black solid line in the close-up (right) shows the
location of five adjacent cross-borehole GPR planes acquired in the central part of the
test site. Selected cone penetration tests located close to the GPR transect are labeled
with italic numbers.

Lower Rhine Embayment. A detailed description of the test site is given by Vereecken
et al. [2000]. In the last decades, several laboratory and field techniques have been ap-
plied at Krauthausen with the goal to study the spatial distribution of aquifer parameters
and its effect on solute migration. These techniques include laboratory characterization
of sediment samples [Döring, 1997], field pumping and flowmeter tests [Li et al., 2007,
2008], tracer experiments [Vereecken et al., 2000; Vanderborght and Vereecken, 2001],
geophysical imaging methods [Kemna et al., 2002; Müller et al., 2010; Oberröhrmann
et al., 2013], and cone penetration tests [Tillmann et al., 2008]. Due to the extensive set
of subsurface information retrieved in previous studies, Krauthausen provides excellent
opportunities to test and validate novel aquifer exploration techniques.

The present study focuses on the uppermost aquifer in the central part of the test
site where a series of closely spaced boreholes and cone penetration tests were available
(Figure 4). The unconfined aquifer is approximately 10 m thick and composed of alluvial
terrace sediments, which were deposited by a local braided river system of the river Rur
on top of older Rhine and Maas sediments [Englert, 2003]. According to Döring [1997]
and Tillmann et al. [2008] the uppermost aquifer can be broadly divided into three layers
(Figure 5a): A bottom layer composed of sandy to gravely grain size, which extends from
6 to 11.5 m depth and is characterized by varying sand to gravel ratio; a well sorted sand
layer extending from 4 to 6 m depth; and a poorly sorted gravel layer extending from
1 to 4 m depth. The base of the aquifer is formed by thin layers of clay and sand, at
approximately 12 m depth. On top of the aquifer, a loamy soil layer has developed. The
groundwater level shows seasonal variations from 1 to 3 m depth. The aquifer sediments
are characterized by an average clay content of 2% [Döring, 1997] and by a mean total
porosity of 26% [Vereecken et al., 2000]. The mean hydraulic conductivity based on the
results of a large scale pumping test is 3.8× 10−3 m/s [Englert, 2003].

It is important to note that the generalized aquifer cross-section shown in Figure 5a
represents a simplified conceptual model. Treating the aquifer as a perfectly stratified
medium is an oversimplification of the aquifer’s true structure (at Krauthausen and
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Figure 5: a) Generalized cross-section of the uppermost aquifer after Döring [1997] and Tillmann
et al. [2008]. b) Schematic sketch of the crosshole GPR acquisition setup used in the
present study. For clarity, the setup is shown for a vertical extension of 2 m only.

elsewhere). For the true aquifer architecture we expect significant lateral variations in
layer thickness and properties, as well as the existence of discrete non-layered structures.
Characterization thereof is what the present study focuses on.

2.2.2 Crosshole ground penetrating radar tomography

Data acquisition

GPR data were acquired along a transect in the central part of the test site, where six
closely spaced boreholes were available (Figure 4). In total, the transect covers a lat-
eral distance of 22.7 m and consists of five adjacent crosshole tomographic planes with
individual borehole separations ranging from 2.6 to 6.2 m. We used the Sensors and

Software pulseEKKO Pro system with 200 MHz antennas and a semi-reciprocal ac-
quisition setup, with transmitter and receiver spacing of 0.5 m and 0.1 m, respectively
(Figure5b). This setup was recently found to represent a compromise between suffi-
cient ray coverage for high resolution inversion results, on the one hand, and affordable
acquisition time and computational costs, on the other hand [Klotzsche et al., 2010;
Oberröhrmann et al., 2013]. In order to avoid refracted/reflected radar waves associated
to the groundwater table [Klotzsche et al., 2010, 2012], GPR data were acquired only
within the saturated zone. Measurements were conducted from 3 m depth, which was
around 1 m below the groundwater table during the measurements, down to approxi-
mately 8-10 m depth, depending on the depth of the boreholes. Note that the transmitter
and receiver positions within the boreholes were accurately determined by using a log-
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ging tool that measures the lateral deviation of a borehole from a straight vertical line.
This was necessary to avoid inversion artifacts.

Full-waveform inversion methodology

To infer the subsurface relative dielectric permittivity (ε) and electrical conductivity
(σ) from the measured GPR data, we applied a full-waveform inversion. We used an
inversion scheme introduced by Ernst et al. [2007a,b] and further developed by Meles
et al. [2010] and Klotzsche et al. [2010]. Here, we describe only briefly the major steps in
the inversion scheme. For a more detailed description of the inversion procedure and its
implementation, the reader is referred to Meles et al. [2010] and Klotzsche et al. [2010].

The overall goal of the inversion is to find the spatial distributions of ε and σ whose
simulated radar response best matches the observed radar data. This is achieved in an
iterative approach using a gradient method to minimize the misfit function

C = 0.5
∥∥∥Emod − Eobs

∥∥∥2 , (1)

where Eobs is the observed radar data, for all transmitter-receiver combinations over
the total observation time window, and Emod is the corresponding data predicted by a
forward model. Eq. (1) is a sample-by-sample comparison in which all data points are
weighted equally. In order to enable the use of the forward model, which is based on
a 2-D finite difference time domain solution of Maxwell’s equations, the observed data
was converted from 3-D to 2-D using the approach by Bleistein [1986]. Initial estimates
for the distributions of ε and σ were derived using standard ray-based travel time and
amplitude inversion [Holliger et al., 2001; Maurer and Musil, 2004]. The full-waveform
inversion was performed with the ray-based inversion results as starting models and
with an effective source wavelet obtained through a deconvolution method [Ernst et al.,
2007a]. For each iteration of the full-waveform inversion, the wavefield predicted by
the forward model is subtracted from the observed wavefield to calculate the residual
wavefield. Local gradients for the ε and σ models are computed through a cross correla-
tion of the back-propagated residual wavefield and the model-predicted wavefield. The
gradient indicates if the model parameter values should be increased or decreased in
order to reduce the misfit function. In addition, individual step lengths for ε and σ are
determined which indicate the magnitude of the model updates. The ε and σ models
are then simultaneously updated using the derived gradients and step lengths [Meles
et al., 2010]. Except from a smoothing of the gradient, no regularization is applied.
Note that in order to avoid inversion artifacts close to the boreholes, model updates
are suppressed within the domain closer than 30 cm to the boreholes. The updated ε
and σ models are used to parametrize the forward model in the subsequent iteration
step until the iteration is stopped when the root mean squared (RMS) misfit between
model-predicted and observed data changes less than 1%.

It should be noted that the full-waveform inversion critically depends on adequate
starting models for the ε and σ distribution. More precisely, for each transmitter-receiver
combination, the observed data and the model-predicted data (obtained initially with
the starting models) need to show an overlap within half the dominant wavelength
in order to ensure proper convergence of the full-waveform inversion. If the offset
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between observed and modeled data is greater than half the dominant wavelength, the
full-waveform inversion will converge to a local minimum and give unreliable results
[Meles et al., 2011; Klotzsche et al., 2014]. To ensure proper convergence of the full-
waveform inversion, we carefully checked the match between observed and initially
model-predicted data, prior to running the full-waveform inversion.

Another important step in the full-waveform inversion is the definition of perturba-
tion factors for ε and σ, which are required for the computation of the model update
step lengths [Meles et al., 2010]. We determined appropriate values for the perturba-
tion factors by testing the convergence of the full-waveform inversion with a range of
values prescribed for the perturbation factors. With appropriate perturbation factors,
the full-waveform inversion converges smoothly towards the optimal solution (maximal
reduction of the RMS misfit), whereas too high or too low perturbation factors can be
identified by non-smooth convergence and/or minor reduction of the RMS misfit. Note
that the full-waveform inversion typically converges to the optimal solution for quite
a range of perturbation factors (i.e. within that range the inversion results are robust
with regard to changes in perturbation factors), which makes it relatively easy to find
appropriate values for the perturbation factors, in practice.

2.2.3 Complex Refractive Index Model (CRIM)

Petrophysical relationships can be used to translate electrical properties obtained from
GPR into hydrogeologically more relevant properties such as soil moisture or porosity.
Several empirical, semi-empirical and theoretical relationships have been proposed in
the literature [Topp et al., 1980; Dobson et al., 1985; Linde et al., 2006; Brovelli and
Cassiani, 2008; Steelman and Endres, 2011]. Commonly used approaches are so called
mixing models, which are based on the intuitive idea that the bulk permittivity of a
multi-phase medium can be related to the permittivities of the individual phases. In its
general form, the mixing formula for an n-phase medium is

εαb =

n∑
i=1

Viε
α
i , (2)

where εb is the bulk permittivity of the medium, Vi and εi are the volume fraction and
the permittivity of the i-th phase, and α describes the geometrical arrangement of the
individual phases within the medium. For fully saturated porous media, Eq. (2) can be
written as

εαb = (1−φ)εαs +φεαf , (3)

where φ is the porosity, and εs and εf are the permittivities of the solid grain matrix
and of the pore fluid, respectively. The exponent α has theoretical upper and lower
boundaries of 1 and -1, corresponding to the cases where individual phases are arranged
in layers parallel and perpendicular to the applied electric field, respectively [Brown,
1956]. Birchak et al. [1974] argued that for an isotropic phase arrangement, α should
take a value of 0.5, which is equivalent to a volumetric average of the complex index of
refraction. With α = 0.5, Eq. (2) becomes the Complex Refractive Index Model (CRIM)
[Birchak et al., 1974]. Although the CRIM relationship is based on an oversimplified



16 high resolution imaging of aquifer structure using crosshole gpr fwi
description of the complexity of natural porous media [Dobson et al., 1985; Brovelli and
Cassiani, 2008], the CRIM has generally been found to agree well with experimental data
and to produce adequate results for various types of soils [Roth et al., 1990; Robinson
et al., 2003]. In the present study, we apply the CRIM to convert bulk permittivity,
obtained from GPR full-waveform inversion, into porosity, by rearranging Eq. (3) to

φ =

√
εb −

√
εs√

εf −
√
εs

. (4)

2.2.4 Cone penetration tests

A total number of 78 cone penetration tests (CPT) were conducted at Krauthausen and
are described in detail by Tillmann et al. [2008]. The CPT survey focused on the cen-
tral area of the site, where CPT were performed with a horizontal sampling interval
of around 1-3 m (Figure 4). At each CPT location, vertical profiles of mechanic cone
resistance, natural gamma, bulk density and water content were obtained down to an
average depth of approximately 13 m, covering the entire thickness of the uppermost
aquifer. For a limited number of CPT, additional measurements of electrical conductiv-
ity and pore water pressure were conducted. Note that the sleeve friction, a commonly
measured CPT parameter, was not measured in this study. The vertical sampling in-
terval for all measurements was 10 cm. In the present study, we focus on a subset of
13 CPT, which were selected due to their close proximity to the GPR transect. The exact
locations and ID numbers of the selected CPT are shown in Figure 4.

2.2.5 Hydraulic conductivity from flowmeter test and grain size

Flowmeter tests at the Krauthausen site were conducted by Schneider [1995] and are
described by Li et al. [2008]. In the field, a constant pumping rate of Qp = 1500 l/h
was applied for a sufficiently long time to establish pseudo steady state conditions in
the vicinity of the borehole. An electromagnetic flowmeter was used to measure the
cumulative vertical flow rate in the borehole as function of depth. Measurements were
conducted every 10 cm, starting at the deepest and ending at the highest accessible
point within the filtered length of the borehole. If flow towards the borehole is assumed
horizontal and there is no ambient flow in the borehole, then the increase of the cumu-
lative flow rate at increment i, ∆Qi, can be used to calculate the hydraulic conductivity
[Javandel and Witherspoon, 1969; Molz and Morin, 1989]

Ki =
∆Qib

Qp∆zi
K, (5)

where Ki is the horizontal hydraulic conductivity in the aquifer at increment i, b is the
aquifer thickness, ∆zi is the thickness of the ith measurement increment, and K is the
aquifer´s depth averaged hydraulic conductivity. Note that we applied Eq. (5) with a
constant increment of ∆zi = 20 cm and with K obtained from a large scale pumping test
conducted in the central part of the test site [Englert, 2003].
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In addition, hydraulic conductivity was estimated from grain size. For a limited

number of boreholes at Krauthausen, sediment samples were extracted during drilling
and the grain size distribution was determined through sieve analysis [Vereecken et al.,
2000]. The grain size data were used to derive hydraulic conductivity estimates based
on the empirical relationship given by Bialas and Kleczkowski [1970]

K = 0.0036 d2.3
20 , (6)

where K is the hydraulic conductivity and d20 is the 20th percentile of the sediment
particle size. According to Bialas and Kleczkowski [1970], Eq. (6) applies for sediments
with a coefficient of uniformity, U, in the range of 0.2 <U <60, in which U is defined as
the ratio of the 60th and 10th percentile of the particle size. It should be noted that the in-
direct method of estimating hydraulic conductivity based on grain size can be generally
expected to be less reliable compared to methods that directly measure flow properties
(such as pumping tests or flowmeter tests) because hydraulic conductivity is related to
the pore structure rather than simply to the grain size [Koltermann and Gorelick, 1996].
In the present study we apply Eq. (5) and (6) to obtain hydraulic conductivity profiles
for borehole B32, which is one of the boreholes within the GPR transect (Figure 4).

2.2.6 Cluster analysis

The principle of cluster analysis is to partition multivariate data into relatively homo-
geneous units by grouping data points based on their distances in a multi-dimensional
parameter space. Data pre-processing typically involves data normalization (z-score) to
assign similar weights to each measured variable and principal component analysis to
reduce data dimensions which facilitates cluster analysis and data visualization. Many
different clustering approaches exist [Everitt et al., 2001; MacKay, 2002]. Generally, one
can distinguish between hierarchical methods that produce nested clusters (i.e. clusters
are embedded in others) and partitioning methods that produce a unitary classifica-
tion into a pre-defined number of clusters. While partitioning techniques are known
to be computationally more efficient than hierarchical methods, they require additional
user-made specifications such as the number of clusters or the initial cluster centroid
positions [Everitt et al., 2001].

Moreover, a distinction can be made between crisp and fuzzy clustering techniques.
Crisp methods assign each data point to only exactly one cluster (i.e. to the most likely
one), whereas fuzzy methods assign each data point a partial membership to all clusters
[Paasche et al., 2010]. A commonly applied crisp partitioning method is the k-means
approach [MacQueen, 1967]. The k-means algorithm partitions data points into a pre-
defined number of clusters by minimizing the sum of distances from each data point to
its cluster centroid over all clusters. Due to its conceptual simplicity and its computa-
tional efficiency, the k-means algorithm allows rapid classification of large multivariate
data sets in a straight-forward manner. A notable limitation of k-means clustering is that
all clusters are assumed to have the same isotropic variability (i.e. clusters are assumed
to be spherical and of same size). This can cause problems when applied to data char-
acterized by clusters with non-spherical shape and/or different size [MacKay, 2002; Ro-
giers, 2013]. For the interpretation of such data sets, more flexible clustering techniques
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such as model-based clustering [Doetsch et al., 2010; Rogiers, 2013] or density-based clus-
tering [Ester et al., 1996] can be favorable. Despite its limitations, however, the k-means
algorithm has been proven useful to extract the basic structural information from var-
ious types of multivariate data including airborne geophysical data [Anderson-Mayes,
2002], grain size data [Riva et al., 2006] and tomographic geophysical data [Dietrich
et al., 1998; Tronicke et al., 2004; Dietrich and Tronicke, 2009].

In the present study, we applied the k-means algorithm to partition the bivariate GPR
inversion results (permittivity and electrical conductivity) into clusters. Prior to the
cluster analysis, permittivity and electrical conductivity were z-transformed to assign
similar weights to the two parameters. A critical step in the cluster analysis is the
specification of the number of clusters. To determine the number of natural clusters
in a data set, we employed the variance ratio criterion (VRC) [Calinski and Harabasz,
1974; Tronicke et al., 2004; Dietrich and Tronicke, 2009]. Application of the VRC involves
running the cluster analysis with different values prescribed for the number of clusters
and calculating

VRC =
SSB

k− 1
/

SSW

n− k
, (7)

where SSB is the between cluster sum-of-squares, SSW is the within clusters sum-of-
squares, k is the number of clusters and n is the number of samples. The number
of clusters that maximizes the VRC value is supposed to optimally represent the data
[Calinski and Harabasz, 1974]. Because the final partition can be sensitive to the ran-
domly selected initial cluster distribution, the code was run multiple times to ensure
stability of the final solution.

In a similar manner, we applied the k-means algorithm to the multivariate data from
13 CPT profiles located close to the GPR transect (Figure 4). As described in Section 2.2.4,
vertical profiles of cone resistance, gamma ray, bulk density and water content were
measured at each CPT location, whereas electrical conductivity and pore water pressure
were measured only at some CPT locations. To avoid dealing with incomplete data, we
conducted the cluster analysis by considering only the measurements available for all
CPT (i.e. cone resistance, gamma ray, bulk density, water content). Prior to the cluster
analysis, the CPT data were z-transformed and converted into principal components.
The first three principal components were used for the cluster analysis, while the fourth
principal component was dropped because it explained only 5% of the total variance.
The number of clusters was assigned according to the variance ratio criterion.

2.3 results and discussion
2.3.1 GPR full-waveform inversion results and comparison with CPT data

A full-waveform inversion was applied to infer the subsurface permittivity and electrical
conductivity along the transect shown in Figure 4. The obtained tomographic images
are shown in Figure 6a and 7a, respectively. Black circles and crosses show the exact
transmitter and receiver positions within the boreholes, determined by deviation log.
Shaded areas depict regions outside of the tomographic cross-section. It is important
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to note that each of the five cross-borehole planes was inverted separately, i.e. indepen-
dent from the adjacent planes. Nevertheless, consistent structures in the permittivity
and electrical conductivity distribution can be observed left and right of the boreholes,
which indicates robust inversion results. Convergence of the full-waveform inversion for
the individual crosshole planes was reached after 16 iterations minimum (B62-B30) and
27 iterations maximum (B31-B62). Compared with the ray-based inversion results, the
full-waveform inversion led to a reduction in RMS misfit of 51% minimum (B48-32) and
62% maximum (B32-B38). The stability of the final solution was controlled by running
the full-waveform inversion repeatedly with different values prescribed for the pertur-
bation factors (not shown here). Because we found the inversion results to be robust
over quite a wide range of perturbation factors, we can expect that the obtained results
are reliable.

The tomographic images obtained through full-waveform inversion show a high level
of detail and contain spatial structures at the decimeter scale (Figure 6a and 7a). Note
that similar to the findings of Klotzsche et al. [2013, 2014] the full-waveform inversion
considerably improved the spatial resolution of the initially derived ray-based inversion
results (not shown here). A striking feature in the GPR images is the strong increase
in both the permittivity and the electrical conductivity between 3 and 4 m depth which
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Figure 6: (a) Permittivity full-waveform inversion results along the GPR transect. (b-f) Compari-
son of vertical porosity profiles derived from CPT (neutron logs) with co-located GPR
permittivities converted into porosity using the CRIM (Eq. (4)). The exact locations of
the CPT profiles within the GPR transect are indicated by the dashed lines.
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Figure 7: (a) Electrical conductivity full-waveform inversion results along the GPR transect. (b-f)
Comparison of vertical profiles of electrical conductivity derived from CPT and GPR.
Due to technical problems during the CPT measurements, electrical conductivity logs
are available only for CPT 101 and 103. Along CPT 101, the GPR and CPT results can
additionally be compared with ERT results [Müller et al., 2010].

indicates a distinct sedimentologic boundary in the aquifer material at that depth. To
validate the reliability of the obtained GPR results, we compared them with cone pene-
tration test data. As can be seen in Figure 4, five CPT are located directly within the GPR
transect, and thus, can be compared with the GPR results. In the following, we show a
comparison of porosity estimates derived from GPR and from CPT; and a comparison
of electrical conductivity estimates derived from GPR and from CPT.

Derivation of porosity from GPR and CPT

GPR porosities were derived by converting permittivity inversion results into porosities
using the CRIM relation (Eq. (4)). The CRIM was parametrized with εf = 84, which
represents the permittivity of water at 10

◦C [Eisenberg and Kauzmann, 1969], and with
εs = 4.5, which represents the solid grain permittivity of quartz [Carmichael, 1982].
Note that the choice of using the permittivity of quartz for εs is based on the results
of picnometer measurements, which gave a mean sediment density of 2.65 g/cm3 at
Krauthausen [Vereecken et al., 2000] which corresponds to the density of quartz.

CPT porosities were derived from neutron log data. Tillmann et al. [2008] used a
calibration that was performed by Elgoscar 2000 Ltd. in Budapest, Hungary, to relate
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Figure 8: (a) Comparison of CPT porosity estimates with laboratory porosity measurements.
(b) Cross-plot of co-located GPR and CPT data. The x-axis denotes the permittivity
derived from GPR. The y-axis denotes the porosity derived from CPT. Black solid line
shows porosities predicted by the CRIM (Eq. (4)).

neutron log data to water content, which, under saturated conditions and in the absence
of significant amount of clay, represents porosity. We critically reviewed the calibration
used in Tillmann et al. [2008] by comparing porosity data derived from CPT with labo-
ratory porosity measurements. The black solid line in Figure 8a shows the porosity of
sediment samples extracted from borehole B7, which is located in the northern part of
the test site. The sediment samples were oven-dried and their porosity was determined
by measuring their weight, volume and dry matrix density in the laboratory [Döring,
1997]. The red dashed line shows porosities obtained by applying the calibration used
in Tillmann et al. [2008] to neutron log data from a CPT located close to borehole B7.
Obviously, the CPT porosities reproduce the trend of the laboratory measurements quite
well, but they show consistently higher absolute values. The blue dashed line shows the
effect of applying a simple constant-shift correction (φcorrected = φ− 0.08) to the CPT
porosities. Obviously, this leads to a much better match of the two curves.

Another indication that the calibration used by Tillmann et al. [2008] yields overesti-
mated porosity values is shown in Figure 8b. The cross-plot shows how CPT derived
porosities compare with GPR porosities predicted by the CRIM. The calibration accord-
ing to Tillmann et al. [2008] clearly results in distinctly higher porosities derived from
CPT (crosses) compared with the CRIM-predicted porosities (black solid line). Corrected
CPT porosities (filled circles), however, scatter closely around the CRIM, and thus agree
fairly well with the porosity derived from GPR. Note that changing the value for εs in
Eq. (4), would result in a shift of the CRIM curve along the x-axis in Figure 8b. A satis-
factory fit between the CRIM curve and the Tillmann et al. [2008] calibrated data could
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be obtained by using an εs-value of 1.8 instead of 4.5. This must be considered, how-
ever, to be an unrealistically low value for εs at Krauthausen, because it is known from
previous studies that the aquifer material at Krauthausen basically consists of quartz
[Döring, 1997; Vereecken et al., 2000] and the εs-value of quartz is 4.5 (Carmichael,
1982). We therefore assume that, for unknown reasons, the calibration used by Tillmann
et al. [2008] overestimated the true sediment porosity. A simple constant-shift correction
(φcorrected = φ− 0.08), however, seems to be applicable to compensate for the overesti-
mation. In the remainder of this paper, thus, corrected CPT porosities are used.

Quantitative comparison of GPR and CPT results

Figure 6b-f and Figure 7d, f show porosity and electrical conductivity profiles derived
from GPR and CPT. While the GPR and CPT porosity profiles match quite well, notable
deviations exist between the GPR and CPT electrical conductivity profiles. To assess the
agreement between GPR and CPT results in a quantitative manner, we calculated cor-
relation coefficients and linear regression parameters. While the correlation coefficient
measures how close the observed values come to falling on a straight line in a cross-plot,
the slope and intercept of the linear regression allow to assess the deviations from a 1:1
relationship [Isaaks and Srivastava, 1989]. Results for the porosity and for the electrical
conductivity data are shown in Figure 9a and b, respectively.

Porosities derived from GPR and CPT show a strong linear relationship with a linear
correlation coefficient of r = 0.8. Moreover, the slope and intercept of the linear regres-
sion are close to 1 and 0, respectively, which means that the data fall close to the 1:1
line.
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Figure 9: (a) Cross-plot of porosities derived from CPT and GPR for the five profiles for which
co-located porosity data exist (Figure 6b-f). (b) Cross-plot of electrical conductivities
derived from CPT and GPR for the two profiles for which co-located conductivity data
exist (Figure 7d, f). Regression lines through all data points are depicted in black. The
corresponding straight-line equations are given at the bottom of the cross plot, r is the
correlation coefficient.
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The picture is different for the electrical conductivity. First, the correlation between

GPR and CPT results is less pronounced (r = 0.67). More importantly, while the slope
of the linear regression is close to 1, the intercept significantly departs from 0. In other
words, the GPR and CPT electrical conductivity profiles agree fairly well regarding the
variations in conductivity, but they show a static shift in absolute values. To further
investigate the discrepancy in absolute values, we compare the electrical conductivity
obtained from GPR and CPT additionally with results from Müller et al. [2010]) who
investigated electrical conductivity at Krauthausen based on cross-borehole electrical
resistivity tomography (ERT). At CPT location 101, co-located electrical conductivity
values are available from CPT, GPR and ERT. The vertical profiles obtained from the
three methods are compared in Figure 7d. Obviously, the absolute electrical conductivity
values derived from ERT better match the CPT results than the GPR results. Apart from
that, it is interesting to note that the three methods show considerable differences in
spatial resolution, i.e. ERT basically misses the small-scale variability which is most
pronounced in the CPT profile and still clearly visible in the GPR profile.

In the following, we discuss two possible explanations why the absolute conductivity
values derived from GPR are higher than the absolute values derived from CPT and
ERT. One explanation is that the different absolute values are caused by the inherent
differences of the applied methods: ERT and CPT infer electrical conductivity on the
basis of direct current resistivity measurements, whereas GPR uses the attenuation of
the GPR signal to infer the electrical conductivity at higher frequencies. The attenuation
of a GPR signal in the subsurface can be affected by (frequency-dependent) attenuation
effects caused by water relaxation or signal scattering [Davis and Annan, 1989]. Because
these effects cause an attenuation, which acts in addition to the attenuation caused by
electrical conductivity, this could explain the higher absolute conductivities obtained
from GPR.

Another possible explanation is that the higher absolute conductivity values derived
from GPR are caused by biased starting models used in the full-waveform inversion.
As described in Section 2.2.2, we derived starting models for the permittivity and con-
ductivity by applying a ray-based travel time and amplitude inversion, prior to the full-
waveform inversion. While ray-based methods generally provide reliable (but smooth)
estimates for the permittivity, estimation of electrical conductivity is less straightforward
and, in particular the absolute values of the electrical conductivity are typically less re-
liable [Holliger et al., 2001; Maurer and Musil, 2004]. Unfortunately, inaccuracies in the
absolute values of the electrical conductivity starting model are propagated into the am-
plitude of the estimated effective source wavelet used for the full-waveform inversion
because wavelet and electrical conductivity model are coupled [Busch et al., 2012]. As
a consequence, absolute electrical conductivities obtained through full-waveform inver-
sion would be biased if the absolute values of the electrical conductivity starting model
were biased. As discussed in detail in Busch et al. [2012], a strategy to overcome this
issue would be to update the wavelet simultaneously together with the conductivity and
permittivity models during the full-waveform inversion.

Irrespective of the discrepancies in the absolute values, however, GPR and CPT results
agree fairly well regarding the absolute spatial variations in electrical conductivity (slope
of regression line is close to 1 (a = 0.96), and the correlation coefficient is 0.67). In the
next section, we present the results of the cluster analysis. Because the cluster analysis
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interprets the differences in data rather than their absolute values, this allows us to
exploit the electrical conductivity inversion results even if absolute values are uncertain.

2.3.2 Cluster analysis of GPR and CPT data

The cluster analysis was applied to classify the GPR and CPT data into clusters, related
to sediment facies with different parameter signatures. Figure 10a and b show the clus-
tered GPR and CPT data. Note that the cluster analysis was conducted independently
with the GPR and the CPT data set. The number of clusters, prescribed in accordance
to the variance ratio criterion, is three for the GPR data (Figure 10c) and six for the CPT
data (Figure 10d). However, in the part of the aquifer cross-section where GPR and CPT
data overlap, a consistent number of three clusters appear in both data sets and their
spatial distribution in the aquifer cross-section shows a good match (Figure 11b). As a
measure for the consistency between the spatial distribution of GPR and CPT clusters,
we calculated for each CPT profile the percentage of pixels for which the same cluster
ID number was obtained from GPR and from CPT. The results are listed in Table 1. It
is important to note that only five of the 13 CPT profiles are located directly within the
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Table 1: Consistency of GPR and CPT cluster assignment along CPT profiles.

CPT Distance to Consistent Classificationa

GPR transect Single profile Averaged

139 0.1 m 55%
100 0.1 m 89%
101 0.2 m 91% 77%
102 0.2 m 74%
103 0.3 m 73%

32 1.3 m -
172 1.2 m 89%
120 1.2 m 57%
119 1.5 m - %

63%
133 1.2 m 64%
134 1.3 m 56%
118 1.1 m 67%
140 1.1 m 42%
aGPR cluster ID number = CPT cluster ID number

GPR transect. The other eight CPT are located in a lateral distance of 1-1.5 m away
from the GPR transect, which can be expected to lead to differences between CPT and
GPR results. As can be seen in Table 1, the average agreement between CPT and GPR
cluster assignment is indeed larger for the five CPT located close to the GPR transect
(77%), than for the CPT located farther away from the transect (63%). Overall, the close
agreement of the spatial distribution of GPR and CPT clusters suggests that the cluster
analysis, although performed independently with GPR and CPT data, yet defined the
same facies in the aquifer. This is a promising result because it suggests that the facies
obtained from GPR provide a meaningful classification of the subsurface, not only with
regard to electrical properties but also with regard to further sediment properties, such
as those measured by CPT.

Reliability of the facies classification obtained through cluster analysis

Despite the overall consistency of the spatial distribution of GPR and CPT clusters, there
are some locations in the aquifer cross-section where the cluster assignment based on
GPR and CPT is inconsistent. This indicates an uncertainty of the facies classification
at these locations. Figure 12 shows the facies classification of co-located GPR and CPT
data in a cross-plot of permittivity and electrical conductivity derived from GPR. Only
the data along the five CPT profiles which are located directly within the GPR transect
are used. For clarity the same color scale was used to represent GPR clusters and CPT
clusters. This means, data points that were assigned the same cluster ID number based
on GPR and based on CPT, have uniform color; data points for which the cluster assign-
ment based on GPR and CPT is inconsistent, are two-colored. The legend in Figure 12

lists all possible events, sorted by their number of occurrences (n). In total, there are
244 (i.e. 77%) consistent data points, and 74 (i.e. 23%) inconsistent data points. Inter-
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Figure 12: Cluster assignment of co-located GPR and CPT data. Color of circle edges refer to
the cluster assignment based on GPR. Color of circle inner area refer to the cluster
assignment based on CPT. n is the number of occurrences.

estingly, the inconsistent data points are not evenly distributed in the cross-plot. Only
few inconsistent data points plot in the lower left corner and in the upper right cor-
ner, the majority of inconsistent data points are scattered around the borders between
clusters. This suggests that there are regions in the permittivity-conductivity parameter
space, where GPR and CPT facies assignment are more reliable; and there are other
regions where GPR and CPT facies assignment are less reliable. Since the classification
of facies based on GPR data was completely independent from the classification based
on CPT data, inconsistencies in classification can be considered to be related to uncer-
tainty of classification. We used the match/mismatch between the GPR and CPT facies
assignment at co-located locations as a basis to approximate the reliability of the facies
classification in the entire GPR transect. We defined the ratio R for a certain parameter
vector ~X in the GPR derived permittivity-conductivity parameter space as:

R(~X) =
1
n

∑n
i=1 (

~X− ~Pi)
2

1
m

∑m
j=1 (

~X− ~Qj)2
, (8)

where ~P1,...,n and ~Q1,...,m represent the parameter vectors of consistently and inconsis-
tently assigned data points for the respective cluster. For example, if ~X was assigned to
cluster 1, then ~P would represent the data points that were consistently assigned to clus-
ter 1 based on GPR and CPT; and ~Q would represent the data points that were assigned
to cluster 1 only either by GPR or by CPT. Low values for R indicate high reliability of the
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facies classification because ~X has a permittivity-conductivity signature similar to those
data points where GPR and CPT cluster assignment are consistent; high values for R in-
dicate low reliability of the facies classification because ~X has a permittivity-conductivity
signature similar to those data points where GPR and CPT cluster assignment are incon-
sistent. Note that R does not represent the reliability of the GPR or CPT data themselves.
R solely approximates the reliability of the cluster analysis based classification of the
data into facies.

Figure 13 shows the distribution of R values in the aquifer cross-section. The R value
of a grid cell depends on its relative position, in the data space, to consistently and in-
consistently classified data points. Sharp contrasts in R thus reflect the situation when
spatially close cells differ in permittivity and/or conductivity and thus plot in data space
regions with different densities of consistent/inconsistent points. As expected, high R
values occur prevalently along the boundaries between facies (compare with Figure 11b).
This reflects our previous finding that the data points for which GPR and CPT cluster
assignment are inconsistent generally plot close to the borders between clusters in the
parameter space. It is interesting to note, however, that at some locations in the aquifer,
facies boundaries are accompanied by only thin bands of high R values, while at other
locations, facies boundaries are accompanied by considerably thicker bands of high R
values. A thin band of high R values suggests little uncertainty of the exact location of
the facies boundary; a thick band of high R values suggests larger uncertainty for the
exact location of the facies boundary. We believe that these differences can be attributed
to different types of sedimentologic boundaries within the aquifer. For instance, the
uppermost facies boundary between 3 and 4 m depth is characterized by a considerably
thin band of high R values (Figure 13). At this depth, the grain size distribution in
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borehole B32 shows an abrupt change from gravel to underlying sand (Figure 11a). This
suggests that this boundary represents an erosional-surface boundary, where sedimenta-
tion was interrupted by a phase of erosion. At such a boundary, sediment properties can
abruptly change and facies are clearly separated from each other. Note that a distinct
boundary at that depth is also indicated by the full-waveform inversion results, which
show an abrupt increase in permittivity and electrical conductivity between 3 and 4 m
depth (Figure 6a and 7a).

In contrast, in the lower part of the aquifer cross-section (7-10 m depth), facies bound-
aries are generally characterized by relatively thick bands of high R values (Figure 13).
At this depth, the grain size in B32 shows a gradual increase with increasing depth (Fig-
ure 11a) and the permittivity and electrical conductivity distributions show relatively
mild variations (Figure 6a and 7a). Gradual changes in subsurface properties can be
caused by gradual changes in deposition conditions or by cyclic deposition patterns,
which are commonly observed in fluvial systems [Miall, 1996]. If a sediment is charac-
terized by gradual changes in properties, however, it is difficult to define facies and to
delineate the boundaries between them.

This highlights an important implication of using crisp clustering methods (such as
k-means) to define subsurface facies. Crisp cluster algorithms partition each data point
to one of the clusters. More specifically, if a data point plots close to the border between
two clusters in the parameter space, small changes in the parameter signature of this
data point will result in the assignment of that point to either the one or the other
cluster. In the presence of abrupt changes in the subsurface properties, this is not an
issue because there are only few or no data points which lie between clusters in the
parameter space. Such a boundary seems to exist between 3 and 4 m depth, where the
thin band of high R values suggests that the exact location of the corresponding facies
boundary is accurately defined. In contrast, if subsurface properties change gradually,
more data points are characterized by a parameter signature, which plots close to the
borders between clusters in the parameter space. In this case, data points cannot be
assigned unambiguously to either the one or the other cluster and facies are not clearly
separated from each other. This seems to be the reason for an increased uncertainty
of the facies classification in the lower part of the aquifer where thick bands of high R
values suggest a larger uncertainty of the exact location of facies boundaries.

In conclusion, our analysis suggests that the simple k-means approach used in the
present study is an applicable tool to delineate facies boundaries if the subsurface is
characterized by distinct sedimentologic changes. However, if the subsurface is charac-
terized by rather subtle or gradual sedimentologic changes, the exact location of facies
boundaries obtained from k-means clustering should be interpreted with caution be-
cause the crisp classification of data points that fall between clusters may be misleading.
In such environments, fuzzy clustering approaches, which yield additional information
about the quality and the internal consistency of the obtained data classification [Paasche
et al., 2010, 2012] might be beneficial.

(Hydro-)lithological facies interpretation

In this section, we discuss which type of sediment is related to the different clusters. We
first briefly discuss CPT clusters 4-6, which occur in the unsaturated zone and in the
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Figure 14: Characteristic histograms for CPT clusters (left) and GPR clusters (right).

deeper part of the aquifer where no co-located GPR data exist. Then we focus on GPR
and CPT clusters 1-3, which occur in the central part of the aquifer cross-section where
CPT and GPR data overlap.

At the top of each CPT profile, the CPT clusters 5 and 6 occur (Figure 11b). Both
clusters are characterized by large natural gamma values and by low cone resistance
values (Figure 14). This suggests a soft and clay-rich sediment. Note that CPT cluster 5

occurs again near the bottom of the profiles at approximately 11-12 m depth, where
according to Tillmann et al. [2008] the clay layer at the bottom of the uppermost aquifer
is located. We interpret CPT clusters 5 and 6 as clay-rich sediments which form the
top soil layer and the lower boundary of the uppermost aquifer. The reason why they
are not grouped together in just one cluster in the cluster analysis seem to be low bulk
density and low water content values in the uppermost dry and less compacted soil
decimeters.

In contrast to CPT cluster 5 and 6, the CPT cluster 4 shows large cone resistance val-
ues and small natural gamma values (Figure 14). This suggests a hard material such
as gravel or gravelly sand with only small amounts of clay. Note that CPT cluster is
separated from CPT cluster 1 by a near-horizontal boundary at approximately 2.3 m
depth (Figure 11b). The vertical position of that boundary corresponds to the ground-
water level during the CPT survey Tillmann et al. [2008]. This indicates that the two
clusters could represent the same type of material under saturated and under unsatu-
rated conditions. The CPT data supports this interpretation, because the histograms of
cone resistance and gamma activity derived for CPT clusters 1 and 4 look quite similar,
while the histograms of water content and wet bulk density deviate for the two clusters
(Figure 14).
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In the part of the aquifer cross-section where CPT and GPR data overlap, clusters 1-

3occur in both data sets. Comparison of the grain size distribution in borehole B32

(Figure 11a) with the spatial distribution of GPR and CPT clusters close to this borehole
shows that GPR and CPT cluster 1 occur in those depths where the grain size analysis
shows gravel; GPR and CPT cluster 2 occur in those depths where the grain size analysis
shows sand; and GPR and CPT cluster 3 occur where the grain size analysis shows an
intermediate material such as a gravelly sand or a sandy gravel. This interpretation is
supported by the histograms of cone resistance data, which show the largest values for
CPT cluster 1, the smallest values for CPT cluster 2, and intermediate values for CPT
cluster 3 (Figure 14). The water content histograms, which under saturated conditions
can be expected to represent porosity, suggest a relatively small porosity for CPT clus-
ter 1, a relatively high porosity for CPT cluster 2 and an intermediate porosity for CPT
cluster 3. As expected, the permittivity histograms for GPR clusters 1-3 show the same
trend as the water content histograms for CPT clusters 1-3. Interestingly, also the electri-
cal conductivity histograms show the same trend as the water content histograms. This
suggests that the differences in electrical conductivity for GPR clusters 1-3 are mainly
caused by differences in porosity. The reason for the correlation between porosity and
electrical conductivity is probably that there are only minor changes in clay content in
this part of the aquifer, which is supported by the fact that the histograms of gamma
activity only slightly deviate for CPT clusters 1-3. With the clay content staying roughly
constant, the electrical conductivity derived from GPR is mainly influenced by the elec-
trical conductivity of groundwater, and thus, by changes in sediment porosity.

Note that the uniformity coefficient U = d60/d10 (red line in Figure 11a) takes rela-
tively high values in those depths where gravel occurs and relatively low values where
sand occurs. This suggests that the higher porosity of the sand facies compared to the
gravel facies can be explained by the better sorting of the sand facies compared to the
gravel facies.

To evaluate if the facies derived from GPR and CPT provide a meaningful classifi-
cation with regard to hydraulic conductivity, we compare the facies distribution with
vertical profiles of hydraulic conductivity derived from a flowmeter test and from grain
size data (Figure 11a). Given the limited amount of hydraulic conductivity data, our
goal is not to precisely determine quantitative hydraulic conductivity values for each
facies but rather to evaluate if the derived facies show any correspondence to changes
in hydraulic conductivity. It should be noted that, in principle, the (direct) flowme-
ter method can be expected to give more reliable results than the (indirect) grain size
method. However, flowmeter results critically depend on proper well construction and
well development and can be biased by ambient flow in the borehole [Molz et al., 1994].

Overall, flowmeter and grain size based hydraulic conductivity profiles agree rela-
tively well in the lower part of the aquifer but depart from each other in the upper part
of the profile. The grain size based hydraulic conductivity profile shows an obvious
correlation with the spatial distribution of GPR and CPT clusters. The lowest values for
the hydraulic conductivity are derived between 4 and 6 m depth, which match with the
upper and lower boundary of GPR and CPT cluster 2, respectively. The highest values
for the hydraulic conductivity are obtained at around 3 m depth where GPR and CPT
cluster 1 occur. Intermediate hydraulic conductivity values are obtained from 6 to 9 m
depth where GPR and CPT suggest alternating occurrence of clusters 1 and 3.
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The flowmeter based hydraulic conductivity profile generally shows a comparable

trend but it departs from the grain size based conductivity profile in the upper part of
the aquifer. Changes in the flowmeter based hydraulic conductivities are not as clearly
associated with the cluster boundaries as it is the case for the grain size based hydraulic
conductivities. While the upper boundary of GPR and CPT cluster 2 (at 4 m depth) can
be clearly recognized in the flowmeter based conductivity profile, the lower boundary at
6 m depth is only associated with a minor change in hydraulic conductivity. Moreover
the profile between those boundaries (4-6 m depth) shows strong inhomogeneities. The
distinct peak at 5 m depth represents a particularly high hydraulic conductivity value
surrounded by low conductivity values. This suggests a significant heterogeneity within
cluster 2. It must be noted, however, that the peak consists of a single value only, and
could represent a measurement error. The uppermost layer of GPR and CPT cluster 1 is,
unfortunately, only partly covered by the flowmeter data because due to the technical
setup, the flowmeter measurements could be conducted only below approximately 3.5 m
depth. The hydraulic conductivity of cluster 1 in the uppermost layer can therefore not
be evaluated based on the flowmeter data. It can be recognized, however, that the
flowmeter based hydraulic conductivity profile shows relatively high values below 6 m
depth, where GPR and CPT cluster 1 and 3 occur, and relatively low values between 4

and 6 m depth, where GPR and CPT cluster 2 occur (except for the one value peak at
5 m depth).

Putting all information together, the following interpretation can be derived: GPR
and CPT cluster 1 show the distribution of a moderately-poorly sorted gravel facies,
which occurs at the top of the GPR cross-section in one continuous layer, and close to
the bottom of the GPR cross-section in several isolated patches. Based on the water
content values of CPT cluster 1, the gravel facies is characterized by a relatively low
average porosity of 18% with a standard deviation of 3%. The CRIM (Eq. (4)) applied to
the permittivity data of GPR cluster 1 yields a very similar porosity of 19± 3%. Grain
size data and flowmeter measurements suggest that the gravel facies is characterized
by a relatively high hydraulic conductivity. The gravel facies is underlain by a well-
sorted sand facies (GPR and CPT cluster 2) which is characterized by a relatively high
porosity of 29± 4% according to CPT water content values and 30± 3% according to
GPR permittivity data. Grain size based hydraulic conductivity estimates suggest that
the sand facies is characterized by a relatively low hydraulic conductivity. Flowmeter
measurements suggest that the hydraulic conductivity of the sand facies is relatively low
in average but may include significant inhomogeneities. In the left part of the aquifer
cross-section, the sand forms an approximately 1.5 m thick horizontal layer. In the right
part of the cross-section, this layer decomposes into disconnected lenses, which are only
a few decimeters thick. The sand facies is underlain or surrounded by a sandy gravel
or gravelly sand facies (GPR and CPT cluster 3) for which CPT and GPR data give an
average porosity of 25± 3% and 26± 2%, respectively.

It is interesting to note that in contrast to full-waveform inversion results at other sites,
where a positive correlation between porosity and hydraulic conductivity was observed
[Klotzsche et al., 2013], here, our results suggests a negative correlation between poros-
ity and hydraulic conductivity. The reason for this is probably that the high-porosity
sand facies has a relatively narrow pore structure, whereas the low-porosity gravel fa-
cies has larger individual pores which compensate for the lower total porosity and lead
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to a higher hydraulic conductivity of the gravel facies compared to the sand facies. This
shows that the relationship between porosity and hydraulic conductivity is site depen-
dent, and it shows how important it is to combine complementary investigation tools for
aquifer characterization. Based on the GPR inversion results alone, one would probably
have assumed (following the findings of Klotzsche et al. [2013]) that the high permittiv-
ity zone represents the highest hydraulic conductivity in the aquifer. Instead, flowmeter
and grain size data revealed that it is actually the low permittivity zone which can be
expected to have the highest hydraulic conductivity at Krauthausen.

Another point we want to note is that the clustered GPR transect shows the spatial
connectivity of the individual facies. This makes it possible, for instance, to identify the
well connected gravel layer between 3 and 4 m depth or the disconnected sand lenses
in the right part of the transect (Figure 11). As mentioned earlier, identifying connected
structures in the subsurface and mapping their spatial distribution is highly valuable
for aquifer characterization because connected structures can have a substantial impact
on flow and transport [Bianchi et al., 2011; Zheng et al., 2011]. Full-waveform inversion
of crosshole GPR data followed by cluster analysis seems to provide an applicable ap-
proach to characterize the lateral connectivity of subsurface facies in aquifers, which is
difficult to achieve with traditional aquifer exploration techniques.

2.4 conclusions
Crosshole ground penetrating radar (GPR) data, acquired along a transect of 20 m length
and 10 m depth, were used to characterize the heterogeneous architecture of an alluvial
aquifer. Full-waveform inversion of the GPR data yielded the spatial distribution of
permittivity and electrical conductivity at the scale of decimeters. Comparison of GPR
porosity estimates with co-located CPT porosity logs showed good agreement and gave
a linear correlation coefficient of 0.8 and a regression line close to the 1:1 line. Compari-
son of electrical conductivity data derived from GPR and CPT gave a linear correlation
coefficient of 0.67 and a regression line with a slope close to 1, but with a distinct
nonzero intercept, caused by an offset in the absolute electrical conductivity values de-
rived from GPR and CPT. The offset could be caused by the inherent differences of
the two methods or by biased electrical conductivity starting models used in the GPR
full-waveform inversion. Irrespective of the discrepancies in absolute values, we found
that GPR and CPT gave relatively consistent results regarding the spatial variations in
electrical conductivity.

Cluster analysis of the bivariate GPR inversion results defined three different facies in
the aquifer cross-section. The number of facies was confirmed by the results of a cluster
analysis conducted (independently) with multivariate CPT data. Moreover, the spatial
distribution of facies in CPT profiles showed a good match with the spatial distribution
of facies in the GPR transect, which suggests that GPR and CPT identified the same
facies in the subsurface. Comparison of the facies distribution with co-located profiles
from grain size analyses and flowmeter measurements showed that the derived facies
boundaries correlate with changes in grain size and porosity, and to a lesser extent with
changes in hydraulic conductivity.
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In conclusion, our data suggest that full-waveform inversion of crosshole GPR data

followed by cluster analysis is an applicable approach to identify hydrogeological facies
and to map their detailed spatial distribution. A particular benefit of using GPR tomo-
graphic data is that it yields information about the subsurface on full two-dimensional
cross-sections, which makes it possible to assess the spatial connectivity of subsurface
structures. Such information is highly valuable for constraining the heterogeneity of
stochastic models and can be used to construct geologically realistic aquifer models
for numerical flow and transport predictions. Finally, our work shows the benefit of
using complementary investigation tools for aquifer characterization. While the GPR
data yielded detailed maps of the facies distribution in the aquifer, CPT, grain size and
flowmeter data provided the basis for a hydrogeological interpretation of the obtained
facies maps.
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abstract
Limited knowledge about the spatial distribution of aquifer properties typically con-
strains our ability to predict subsurface flow and transport. Here, we investigate the
value of using high resolution full-waveform inversion of cross-borehole ground pene-
trating radar (GPR) data for aquifer characterization. By stitching together GPR tomo-
grams from multiple adjacent crosshole planes, we are able to image, with a decime-
ter scale resolution, the dielectric permittivity and electrical conductivity of an alluvial
aquifer along cross-sections of 50 m length and 10 m depth. A logistic regression model
is employed to predict the spatial distribution of lithological facies on the basis of the
GPR results. Vertical profiles of porosity and hydraulic conductivity from direct-push,
flowmeter and grain size data suggest that the GPR predicted facies classification is
meaningful with regard to porosity and hydraulic conductivity, even though the distri-
butions of individual facies show some overlap and the absolute hydraulic conductivi-
ties from the different methods (direct-push, flowmeter, grain size) differ up to approx-
imately one order of magnitude. Comparison of the GPR predicted facies architecture
with tracer test data suggests that the plume splitting observed in a tracer experiment
was caused by a hydraulically low-conductive sand layer with a thickness of only a
few decimeters. Because this sand layer is identified by GPR full-waveform inversion
but not by conventional GPR ray-based inversion we conclude that the improvement in
spatial resolution due to full-waveform inversion is crucial to detect small-scale aquifer
structures that are highly relevant for solute transport.

3.1 introduction
Predicting subsurface flow and transport is challenging due to the complex heterogene-
ity found in most geologic media. While it has been shown that flow processes can
be reasonably well described using spatially averaged (or upscaled) properties, which
are easily available from classical hydrogeological methods (e.g. pumping test), this ap-
proach fails for the description of transport processes, which inherently depend on the
distribution of local properties [Dagan, 1989]. Because the detailed spatial characteriza-

‡ this chapter has been published as: Gueting N., Vienken T., Klotzsche A., van der Kruk J., Vanderborght
J., Caers J., Vereecken H., Englert A., (2017), High resolution aquifer characterization using crosshole GPR
full-waveform tomography: Comparison with direct-push and tracer test data, Water Resources Research, 53,
http://dx.doi.org/10.1002/2016WR019498.
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tion of aquifers is unfeasible using classical hydrogeological methods, novel techniques
are needed that are able to characterize aquifers with higher spatial resolution.

Recent advances in geophysical measurement and inversion techniques allow imag-
ing the subsurface with unprecedented resolution and coverage [Binley et al., 2015]. A
particularly promising method with regard to the detailed characterization of porous
aquifers is full-waveform inversion of cross-borehole GPR data [Ernst et al., 2007b;
Klotzsche et al., 2014; Gueting et al., 2015]. This method uses a transmitting and a re-
ceiving antenna which are placed in two adjacent boreholes, several meters apart from
each other. The transmitting antenna emits an electromagnetic wave which propagates
through the subsurface and is detected by the receiving antenna. If the wave encounters
contrasting electrical properties in the subsurface, it will be reflected, refracted or scat-
tered [Davis and Annan, 1989]. The waveform that arrives at the receiving antenna thus
contains information about the medium the wave has passed. By repeating the measure-
ment for multiple transmitter-receiver configurations, and inverting the measured data,
two-dimensional tomograms of the subsurface electrical properties (dielectric permittiv-
ity and electrical conductivity) can be obtained.

Because the attenuation of GPR waves depends on electrical conductivity [Davis and
Annan, 1989], GPR performance is optimal for settings where the subsurface electrical
conductivity is relatively low, such as coarse grained porous aquifers with low ground-
water salinity. If significantly higher electrical conductivities are encountered (due to
clay-rich sediments or high groundwater salinity), the use of GPR for subsurface charac-
terization may be limited because of strong signal attenuation.

Traditional inversion of crosshole GPR data focuses on the reconstruction of first ar-
rival times, and ray-based forward simulators are used to approximate the propagation
of radar waves in the ground [e.g. Holliger et al., 2001]. Ray-based models, however,
strongly simplify the propagation of electromagnetic waves, which can lead to biased
inversion results [Linde and Vrugt, 2013]. In addition, first arrival times constitute only
a small portion of the information contained in the measured waveforms. Recently,
full-waveform inversion approaches, which are commonly used in seismic inversion,
have been introduced to crosshole GPR inversion [Ernst et al., 2007b; Meles et al., 2010].
Full-waveform inversion aims at reconstructing not only first arrival times but entire
waveforms, and employs a numerical solution of Maxwell’s equations to more accu-
rately simulate the electromagnetic wave propagation. As a consequence, this approach
exploits more accurately the information contained in the GPR data and allows char-
acterizing the subsurface with a considerably improved spatial resolution [Belina et al.,
2009; Yang et al., 2013; Klotzsche et al., 2013, 2014; Gueting et al., 2015; van der Kruk
et al., 2015].

Although the potential benefit of utilizing high resolution geophysical data for hy-
drogeological site characterization has been demonstrated [e.g. Scheibe and Chien, 2003;
Linde et al., 2006; Dafflon et al., 2011], its routine application is hindered by the lack of
direct and universal relationships between geophysical and hydrogeological properties.
Even though strong and linear relationships seem to exist at some sites, which has moti-
vated direct estimation of hydraulic conductivity from e.g. seismic slowness [Hyndman
et al., 2000] or from radar velocity [Hubbard et al., 2001; Linde et al., 2008], relationships
at other sites are essentially unknown and may or may not exist [Binley et al., 2015].
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Rather than relying on explicit petrophysical relationships, other studies have instead

exploited the geometrical information obtained from geophysical data [Hyndman and
Gorelick, 1996; Tronicke et al., 2004; Schmelzbach et al., 2011]. The underlying assump-
tion is that geophysical variations delineate lithological zonation, which is in turn re-
lated to hydrogeological properties. As no explicit petrophysical relationship is needed,
zonation approaches alleviate the difficulty of defining one specific quantitative rela-
tionship required for the direct estimation of hydraulic parameters from geophysical
data. Hyndman and Gorelick [1996] jointly inverted seismic and tracer data to estimate
the geometry and hydraulic conductivity of lithological zones. With the approximation
that each zone can be represented by a constant hydraulic conductivity, they obtained
a reasonably good match between observed and numerically modelled tracer break-
through curves. Wainwright et al. [2014] developed a Bayesian hierarchical approach
to jointly invert multiscale geophysical data sets and used this approach to estimate
reactive facies at a contaminated site by integrating high resolution crosshole and low
resolution surface seismic data. In a synthetic study, Linde et al. [2006] used crosshole
GPR data to delineate GPR facies and inverted tracer data to infer pixel-wise hydraulic
conductivities from radar velocity, allowing a different petrophysical relationship be-
tween radar velocity and hydraulic conductivity for each GPR facies. Dogan et al. [2011]
and Schmelzbach et al. [2011] employed surface GPR measurements to define subsur-
face facies and derived individual hydraulic conductivity distributions for each facies
from co-located direct-push hydraulic conductivity profiles.

In the present study, we follow a conceptually similar approach and employ cross-
hole GPR to characterize the heterogeneous architecture of an alluvial aquifer. But in
contrast to the aforementioned studies, we analyze the GPR data by full-waveform in-
version, which enables us to image the subsurface with increased spatial resolution.
Full-waveform inversion of crosshole GPR data has been applied previously to charac-
terize alluvial aquifers [Oberröhrmann et al., 2013; Klotzsche et al., 2013, 2014; Gueting
et al., 2015], but these studies considered only relatively small spatial scales (i.e. one or a
few crosshole planes). Here, we investigate a considerably larger domain by analyzing
a total number of 15 crosshole planes that are connected across an aquifer volume of
50 m × 25 m × 10 m.

The main contribution of this study, however, lies in the comparison of the GPR results
with hydrogeological data, which provides an excellent basis to assess the actual ben-
efit of GPR full-waveform inversion for hydrogeological site characterization. Thereto,
the GPR results are compared with the tracer breakthrough observed in a field experi-
ment and with vertical profiles of porosity and hydraulic conductivity from direct-push,
flowmeter and grain size data.

The remaining paper is arranged as follows: In Section 3.2, we describe measurement
and inversion of the GPR data, and we describe direct-push injection logs and direct-
push slug tests which were conducted to characterize the vertical variations in hydraulic
conductivity at selected profiles along the GPR transects. Because the newly conducted
GPR and direct-push measurements are compared with data from previous studies at
this site, we briefly revisit some of the data retrieved in previous studies to facilitate the
later comparisons. In Section 3.3, we first explore the direct correlation between GPR
results, porosity and hydraulic conductivity using crossplots and linear regression; then
we derive a lithological zonation from the GPR tomograms using logistic regression. The
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resulting GPR facies are characterized in terms of porosity and hydraulic conductivity
using co-located direct-push, flowmeter and grain size data, and the facies distribution
along the GPR transects is compared with the breakthrough of a tracer observed in a
field experiment. Section 3.4 summarizes the main findings.

3.2 material and methods
3.2.1 Study site

The Krauthausen test site is situated in the Lower Rhine Embayment, approximately
halfway between the cities of Cologne and Aachen. It was set up by the research center
Jülich in 1993 with the goal to study the in-situ distribution of subsurface properties and
their link to groundwater flow and solute transport. A detailed description of the test
site and its instrumentation is given by Döring [1997] and Vereecken et al. [2000]. The
test site has an extent of 200× 50 m with its longitudinal axis approximately aligned
to the regional groundwater flow direction (Figure 15). The site is equipped with 76

observation wells reaching to a depth of 10-13 m which corresponds to the base of
the uppermost aquifer. The aquifer material is composed of alluvial terrace sediments,
deposited by the Rur river, a local braided river system, on top of older Rhine and Maas
sediments [Englert, 2003]. The aquifer is characterized by sandy to gravely grain size
with only small amounts of clay. The mean aquifer porosity, based on laboratory analysis
of core samples is 26% [Vereecken et al., 2000]. The averaged hydraulic conductivity
derived from a large scale pumping test is 3× 10−3 m/s [Englert, 2003].

Over the last decades, the Krauthausen site has been intensively investigated using a
broad spectrum of methods, including tracer experiments [Vereecken et al., 2000; Van-
derborght and Vereecken, 2001; Kemna et al., 2002; Müller et al., 2010], flowmeter and
pumping tests [Li et al., 2007, 2008], geophysical imaging methods [Kemna et al., 2002;
Müller et al., 2010; Gueting et al., 2015], cone penetration tests [Tillmann et al., 2008] and
laboratory characterization of core samples [Döring, 1997]. These studies have brought
together a rich set of information, which provides excellent conditions to test and vali-
date novel methods.

3.2.2 Crosshole ground penetrating radar (GPR) tomography

Data acquisition

GPR data were acquired along 15 crosshole planes with individual borehole distances
from 3 to 12 m (Figure 15). Crosshole planes with borehole distances smaller than
7 m were measured with 200 MHz antennas, crosshole planes with borehole distances
larger than 7 m were measured with 100 MHz antennas because the signal detected
with 200 MHz antennas was too weak. To obtain sufficient ray coverage at affordable
acquisition times, measurements were carried out in a semi-reciprocal acquisition setup
with transmitter and receiver spacing of 0.5 m and 0.1 m, respectively [Oberröhrmann
et al., 2013]. Measurements were conducted from approximately 3 m depth (about
1 m below the groundwater level during the measurements) down to approximately
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Figure 15: Map of the Krauthausen test site. For clarity, the close-up (right) shows only those
boreholes and cone penetration tests that are located along the GPR transects.

10 m depth, depending on the depth of the boreholes. To avoid inversion artifacts due
to imprecisely known transmitter and receiver positions [Linde et al., 2006], borehole
deviations from the vertical were accurately determined by deviation log, prior to the
GPR measurements.

Full-waveform inversion (FWI)

A full-waveform inversion approach was applied to infer the relative dielectric permit-
tivity, ε, and the electrical conductivity, σ, from the measured GPR data. A brief de-
scription of the inversion scheme is given below, for a more detailed description of the
inversion procedure and its implementation the reader is referred to Meles et al. [2010]
and Klotzsche et al. [2010].

We used the inversion scheme introduced by Ernst et al. [2007b] and modified by
Meles et al. [2010]. This approach employs a conjugate gradient method to iteratively
minimize the misfit between observed and model-predicted radar traces, the latter be-
ing generated by a forward model based on a 2D finite difference time domain (FDTD)
solution of Maxwell’s equations. After each iteration, the parametrization of the for-
ward model (i.e. the spatial distribution of ε and σ) is updated using local gradients de-
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rived from a cross-correlation of the back-propagated residual wavefield and the model-
predicted wavefield [Meles et al., 2010]. To avoid overfitting, the inversion is stopped
when the root-mean squared (RMS) error between observed and model-predicted radar
traces changes less than 1% from one iteration to the next.

An important requirement for the full-waveform inversion are adequate starting mod-
els for ε and σ. In particular, the ε starting model is of critical importance because
proper convergence of the full-waveform inversion requires that for each transmitter-
receiver combination the initial offset between observed and modeled wavefield is not
greater than half the dominant wavelength, otherwise the inversion will converge to a
local minimum [Klotzsche et al., 2014]. To derive adequate ε starting models, we con-
ducted a ray-based traveltime inversion [Holliger et al., 2001] for each crosshole plane,
and used the result of the ray-based inversion as starting model for the full-waveform
inversion. For σ, we used one homogenous starting model (σ = 13 mS/m) for all cross-
hole planes. In principle, individual σ starting models for each crosshole plane could be
obtained from ray-based amplitude inversion [Maurer and Musil, 2004]. However, we
found the ray-based σ models obtained for a series of adjacent crosshole planes to show
large discrepancies in absolute values, which is unlikely for adjacent planes measured
on consecutive days on the same site. In fact, it has been shown that the estimation of
σ using ray-based methods is not always straight-forward and, in particular, absolute
σ-values can be biased [Holliger et al., 2001; Maurer and Musil, 2004]. We therefore
took a different approach and tested, for a few crosshole planes, the convergence of
the full-waveform inversion for a broad range of homogeneous σ starting models. The
model which showed the best convergence was selected as starting model and used for
all crosshole planes. Similar approaches have been applied by Klotzsche et al. [2013]
and Keskinen et al. [2017].

To minimize inversion artifacts in the vicinity of the boreholes, we adopted the ap-
proach by Kurzmann et al. [2013] and implemented a gradient preconditioner that re-
duces the high sensitivity of the inversion close to transmitter and receiver positions.
Details on the implementation are given in van der Kruk et al. [2015].

3.2.3 Complex refractive index model (CRIM)

Petrophysical models can be applied to translate the electrical properties obtained from
GPR into hydrologically more relevant properties such as soil moisture or porosity.
Among the various empirical, semi-empirical and theoretical models that have been
proposed in the literature [e.g. Topp et al., 1980; Dobson et al., 1985; Steelman and En-
dres, 2011], we opted for the CRIM relationship [Birchak et al., 1974], which is based
on the intuitive idea that the bulk dielectric permittivity, εb, of an n-phase medium
can be expressed as the sum of the dielectric permittivities of the individual phases, εi,
weighted by their volume fraction, Vi,

εαb =

n∑
i=1

Viε
α
i . (9)
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The exponent α describes the spatial arrangement of the individual phases and takes a
value of 0.5 for an isotropic phase arrangement [Birchak et al., 1974]. Although the CRIM
does not account for the full complexity of natural porous media [Dobson et al., 1985;
Brovelli and Cassiani, 2008], the CRIM has been found to yield robust porosity estimates
for various types of sediments [Roth et al., 1990]. For a two-phase fully saturated porous
medium with isotropic phase arrangement, Eq. (9) can be written as

φ =

√
εb −

√
εs√

εf −
√
εs

, (10)

where φ is the porosity, εb is the bulk dielectric permittivity (obtained e.g. from GPR),
and εs and εf are the dielectric permittivities of the solid grain matrix and of the pore
fluid, respectively.

3.2.4 Logistic regression

Just like linear regression, logistic regression investigates the dependency between a
response variable and one or more explanatory variables. But while linear regression
applies to continuous response variables, logistic regression applies to binary or multi-
nomial response variables. Given this difference, logistic regression may be able to iden-
tify relations between variables when linear regression does not. For example, Tesoriero
et al. [1998] showed that, while it was not feasible to use linear regression to predict
quantitative values for nitrate concentrations in groundwater from well depth data, it
was still possible to use logistic regression to predict the probability of the concentration
exceeding a critical threshold.

A brief description of the principle of logistic regression is given below, detailed dis-
cussions can be found in Hosmer and Lemeshow [2000] or in Helsel and Hirsch [2002].
In the field of geosciences, logistic regression has been used to predict landslide suscep-
tibility on the basis of geomorphological parameters [Ayalew and Yamagishi, 2005; Van
Den Eeckhaut et al., 2006], and groundwater vulnerability on the basis of land use data
[Eckhardt and Stackelberg, 1995; Nolan, 2001]. The basic assumption of logistic regres-
sion is that the logit of the probability of an observation being in a response category
can be modeled using a linear combination of explanatory variables

logit(τ) = ln
(

τ

1− τ

)
= β0 +βX, (11)

where τ is the probability, X is the vector of explanatory variables, and β0 and β are
the intercept and the vector of regression coefficients, respectively. For a multinomial
response function with k categories and n explanatory variables, Eq. (11) becomes a set
of k-1 equations

ln
(
τj

τk

)
= βj0 +βj1X1 +βj2X2 + ... +βjnXn, j = 1, ...,k− 1, (12)

where τj/τk represents the relative probability of belonging to category j versus be-
longing to the reference category k (here by definition the last category). The regres-
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sion coefficients β can be determined using maximum likelihood estimation [Helsel and
Hirsch, 2002]. Once β is determined, the probabilities of an observation belonging to
each category can be calculated

τj =
eβj0+βj1X1+βj2X2+...+βjnXn

1+
∑k−1
j=1 e

βj0+βj1X1+βj2X2+...+βjnXn
, j = 1, ...,k− 1, (13)

τk = 1−

k−1∑
j=1

τj. (14)

The individual model components (explanatory variables) can be tested for statistical
significance using t-statistics, which are obtained by dividing each component of β by
its standard error. To identify the ‘best’ model among a set of models with different
(combinations of) explanatory variables, Akaike’s Information Criterion (AIC) can be
applied [Helsel and Hirsch, 2002]. The AIC calculates as AIC = 2p − 2L, with p the
number of estimated model parameters and L the log-likelihood of the fitted model
[Akaike, 1974]. Among a set of different models, the model that minimizes the AIC is
the preferred model. The AIC, thus, rewards a high likelihood and penalizes a high
number of model parameters.

In the present study, we applied a logistic regression of GPR results (explanatory vari-
ables) and lithological facies derived from grain size data (response categories). GPR
and grain size data were available at co-located locations along 3 boreholes. The basic
idea is to use the co-located data to derive an empirical relationship (i.e. the fitted lo-
gistic regression model), and utilize this relationship to predict the distribution of grain
size facies at locations where no grain size data exist, solely on the basis of GPR. The fol-
lowing workflow was applied: prior to the logistic regression, the grain size data were
classified into lithological facies using simple k-means clustering [MacQueen, 1967]. The
idea behind this is to transform the multivariate grain size data into a categorical vari-
able, which can be used in logistic regression. The logistic regression was conducted
using the clustered grain size data as categorical response variable and the bivariate
GPR results (dielectric permittivity and electrical conductivity) as explanatory variables.
Maximum likelihood estimates for β were obtained using an iteratively weighted least
squares algorithm. With β determined, Eqs. (13) and (14) were applied to calculate, for
each GPR pixel, the probability to belong to each grain size facies.

To evaluate the benefit of GPR full-waveform inversion instead of classical GPR ray-
based inversion, we compared the outcome of the logistic regression conducted with the
full-waveform inversion results, and with the ray-based inversion results as explanatory
variables.

3.2.5 Direct-push hydraulic measurements

Direct-push injection log (DPIL)

The DPIL method [Dietrich et al., 2008] allows to assess local variations in hydraulic con-
ductivity. The method consists of advancing a small diameter direct-push rod, equipped
with a filter screen, into the subsurface. At selected depths, the pushing is stopped, wa-
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ter is injected through the screen, and the injection flow rate and the injection pressure
are recorded. The ratio of injection rate and pressure, corrected for head loss in the
tube, gives a proxy, KDPIL, for the aquifer’s local hydraulic conductivity [Dietrich et al.,
2008]. Through calibration with absolute hydraulic conductivity data from direct-push
slug tests (or any other method), KDPIL can subsequently be converted into absolute
hydraulic conductivities [Dietrich et al., 2008; Lessoff et al., 2010; Dietze and Dietrich,
2012]. At Krauthausen, DPIL profiles were measured at 9 locations (Figure 15). Since the
focus is on a comparison with the GPR results, the DPIL measurements were conducted
at locations where crosshole GPR results were available. DPIL measurements were con-
ducted from 3 to 9 m depth with a vertical sampling interval of 20 cm. At each depth,
3 repeat measurements with different flow rates were conducted for quality control (e.g.
to identify potential effects caused by opening of preferential flowpaths due to the water
injection or water flow along the probing rods). During the advancement of the DPIL
probe from one sampling depth to the next, water was continuously injected in order to
prevent clogging of the screen.

Direct-push slug test (DPST)

In order to obtain absolute values of hydraulic conductivity, multi-level DPST [Butler
et al., 2002] were performed at 3 profile locations (Figure 15). Because of the multitude
of repeat measurements at each measurement interval that were performed for qual-
ity control (see Butler [1997]), the DPST measurements were relatively time consuming.
Therefore, only 2 or 3 depth intervals were tested in each profile, resulting in a total num-
ber of 7 individual DPST. To enable calibration of the DPIL data, the DPST were carried
out in close proximity (30 cm lateral distance) to DPIL locations; and depth intervals
with fairly constant DPIL ratios were selected. Slug tests were performed in temporarily
installed direct-push monitoring wells with a screen length of 1 m. During well instal-
lation, the screen was protected inside the rods to prevent clogging of the screen. At
the selected depths, the screen was exposed and water was pumped until the pumped
water was free of fines. The slug tests were initiated pneumatically [Butler et al., 2002],
by pressurizing the air column above the water to create the initial head displacement
and rapidly depressurizing the air column to initiate the tests. The recorded water table
responses were analyzed using the approach of Butler et al. [2003], which is based on
matching aquifer response type-curves to the measured head recovery. The obtained
absolute hydraulic conductivities, KDPST, were subsequently used as calibration data to
translate the relative DPIL ratios, KDPIL, into absolute hydraulic conductivities.

3.2.6 Previous studies at the Krauthausen site

To facilitate the later comparisons, we briefly revisit some of the data from previous
studies that will be compared with the newly conducted crosshole GPR and direct-push
hydraulic measurements.



44 the benefit of gpr fwi for hydrogeological site characterization
Cone penetration tests (CPT)

More than 70 cone penetration tests have been conducted at Krauthausen and are de-
scribed in detail by Tillmann et al. [2008]. At each CPT location, measurements of
cone resistance and electrical resistivity were recorded while the CPT probe was con-
tinuously pushed into the ground. Subsequently, additional measurements of natural
gamma, gamma-gamma and neutron activity were conducted. By calibration, gamma-
gamma and neutron log were related to bulk density and water content, respectively
[Tillmann et al., 2008]. Recently, Gueting et al. [2015] reviewed this calibration by com-
paring the water contents derived from CPT neutron log with the saturated porosity of
core samples determined in the laboratory. They found that the CPT water contents
overestimated the laboratory measurements by a constant value and applied a simple
constant-shift correction to compensate for the overestimation. In the present study, we
used the corrected CPT water contents, the electrical resistivity and the mechanic cone
resistance for comparison with the GPR results. We focus only on those CPT that are
located close to the GPR transects; the locations and ID numbers of the CPT considered
in the present study are shown in Figure 15.

Hydraulic conductivity from flowmeter and grain size

Previous studies at Krauthausen determined local variations in hydraulic conductivity
from flowmeter measurements and grain size [Vereecken et al., 2000; Li et al., 2008;
Tillmann et al., 2008]. The flowmeter method consists of measuring, as function of
depth, the vertical flow in a screened well subject to a constant pumping rate. From
the increase in cumulative flow rate, ∆Qi, along some depth interval, zi, the hydraulic
conductivity, Ki, of that interval can be estimated [Molz and Morin, 1989]

Ki =
∆Qi
Q

b

zi
K, (15)

where Q is the total pumping rate, b is the screened thickness of the aquifer and K is
the depth-averaged hydraulic conductivity obtained from a pumping test carried out in
the same well.

Grain size based estimation of hydraulic conductivity is an indirect method (i.e. no
flow process is measured) that relies on empirical or semi-empirical relationships be-
tween hydraulic conductivity and grain size distribution. Various relationships have
been proposed in the literature (see e.g. Vienken and Dietrich [2011]). In the present
study, we follow Tillmann et al. [2008], who employed the empirical formula of Bialas
and Kleczkowski [1970] to derive hydraulic conductivity estimates for the Krauthausen
sediments and found the obtained estimates to be of the same order of magnitude com-
pared with the hydraulic conductivity derived from a pumping test. The Bialas and
Kleczkowski [1970] formula is given by

K = 0.0036 d2.3
20 , (16)

with K the hydraulic conductivity in (m/s) and d20 the 20th percentile of the sediment
particle size in (mm). Due to the empirical nature of this relationship the units are not
balanced in Eq. (16).
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Tracer experiments

Two consecutive tracer tests were carried out in the years 2002 and 2003 at the
Krauthausen site [Müller et al., 2010]. In both experiments, tracer was injected into bore-
hole B22 and tracer breakthrough was monitored along two downgradient detection
planes using time-lapse electrical resistivity tomography (ERT) and multilevel ground-
water samplers. The overall setup is shown in Figure 15. ERT electrodes were installed
in boreholes B41, B26, B61 and B25 (first ERT transect), and in boreholes B48, B32, B31

and B62 (second ERT transect). Additional electrodes were placed at the surface [Müller
et al., 2010]. In the first experiment, a ‘positive’ tracer with a higher electrical conductiv-
ity than the ambient groundwater was applied. In the second experiment, a ‘negative’
tracer with a lower electrical conductivity than the ambient groundwater was applied.
The idea behind this was that if the two experiments yield consistent results, density
effects related to the tracer application can be neglected. A consistent observation in
both experiments was a splitting of the tracer plume in the first ERT transect (Figure 16,
top). This splitting was also observed in the second ERT transect for the positive tracer
experiment, but not for the negative tracer experiment (Figure 16, bottom). The rea-
son why the negative tracer experiment did not show a plume splitting in the second
ERT transect could be a smaller signal-to-noise ratio in the negative tracer experiment
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Figure 16: ERT observed tracer plume splitting (modified from Müller et al. [2010]). Colorbars
refer to changes in bulk resistivity (left) and bulk electrical conductivity (right), re-
lated to the breakthrough of a resistive (negative) and a conductive (positive) tracer.
Tracer plumes are outlined by the red dashed and solid lines. Vertical bars show
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which possibly inhibited seeing detailed breakthrough patterns in the ERT images. For
a detailed discussion of the results, the reader is referred to Müller et al. [2010].

In the present study, we compared the ERT observed tracer breakthrough with cross-
hole GPR data acquired along the same transects, in order to evaluate if the GPR tomo-
grams give evidence about subsurface structures that caused the splitting of the tracer
plume. Moreover, we derived estimates of hydraulic conductivity from the tracer arrival
times in order to compare them with the hydraulic conductivity derived from direct-
push, flowmeter and grain size data. Thereto, hydraulic conductivity estimates were
derived from tracer velocities

K =
v n

i
, (17)

with v the pixel-wise equivalent (streamtube) tracer velocities, that were determined by
Müller et al. [2010] by fitting the solution of the 1D convection-dispersion equation to
locally measured breakthrough curves (i.e. to the tracer breakthrough detected within
a pixel of the ERT cross-sections). n and i are the aquifer porosity and the hydraulic
gradient, respectively.

3.3 results and discussion
3.3.1 GPR full-waveform inversion results

A full-waveform inversion was applied to infer the subsurface dielectric permittivity
and electrical conductivity for a total number of 15 individual GPR crosshole planes.
Depending on the depths of the boreholes, a single crosshole data set comprised ap-
proximately 1500 to 2000 individual radar traces. Each crosshole data set was inverted
separately, i.e. independent from adjacent crosshole planes. A grid cell size of 3 cm
× 3 cm was used for the forward modeling to ensure numerical accuracy [Holliger and
Bergmann, 2002]. For the inversion, 9 forward modeling cells (3× 3) were combined into
one inversion cell [Ernst et al., 2007b]. Convergence of the full-waveform inversion was
typically reached after 15 to 20 iterations. For each crosshole plane the full-waveform
inversion lead to a reduction of the initial RMS misfit (obtained with the ray-based per-
mittivity starting model and the uniform conductivity starting model) by about 50 to
70%.

Figure 17 shows a 3D plot of the full-waveform inversion results for all crosshole
planes. Close-ups of ray-based and full-waveform dielectric permittivity along the main
2D transects are shown in Figure 18. Compared with the ray-based results the full-
waveform tomograms contain spatial structures at greater detail. This is most notable
in the longitudinal transect (Figure 18a, b), where the full-waveform inversion identifies
several thin layers with high permittivity, that are not resolved by ray-based inversion.

An important finding is that the tomograms in Figure 17 and Figure 18 show rela-
tively consistent spatial structures across boreholes, which indicates robust inversion
results. For some boreholes, however, the tomograms left and right of the boreholes de-
part and/or the spatial structures in the tomograms can be observed to “fade out” close
to the boreholes. This effect can most clearly be seen in Figure 18 along the boreholes
B62, B61 and B38, both for ray-based and full-waveform inversion results. In the follow-
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Figure 18: Comparison of ray-based (a, c) and FWI derived (b, d) dielectric permittivity along
the two main transects (from borehole B07 to B22 and from B48 to B30; see Figure 15

for reference).

ing, we will briefly discuss potential causes for these inconsistencies as well as possible
strategies against it. In fact, inversion artifacts close to boreholes are an issue commonly
encountered in crosshole GPR (and seismic) tomography [e.g. Maurer and Green, 1997;
Becht et al., 2004; Irving et al., 2007]. A well-known source of such artifacts are impre-
cisely known transmitter and receiver positions within the boreholes [Linde et al., 2006].
Therefore, it is common practice to perform borehole deviation log measurements prior
to the crosshole measurements [e.g. Doetsch et al., 2010; Dafflon et al., 2011]. This is
also what was done in the present study. However, Maurer and Green [1997] noted that
measured borehole deviations can be flawed, and demonstrated that relatively minor
coordinate errors can produce considerable inversion artifacts. As a strategy to account
for potential errors in the measured coordinates they proposed to treat transmitter and
receiver coordinates as uncertain and include them as additional inversion parameters.
Applied to seismic data from the Grimsel site their approach was able to strongly reduce
the inconsistencies between two adjacent tomograms.

Dafflon et al. [2011] analyzed radar traveltimes from a total number of 31 crosshole
planes at the Boise Hydrogeophysical Research Site and showed that the consistency
of intersecting tomograms could be greatly improved by simultaneously inverting all
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crosshole data sets together instead of separately. Unfortunately, they also observed that
by inverting all data sets jointly, a significantly smoother subsurface model was obtained
(i.e. a model containing less details) than when each data set was inverted separately. As
our primary goal is to image subsurface structures with the highest possible resolution
we decided to invert each crosshole data set separately. An unwanted side effect of that
might be that the obtained tomograms are not completely consistent with each other.

It should also be mentioned that the drilling of the boreholes may have locally dis-
turbed the soil structure. In that case, discontinuities in the GPR tomograms would
reflect actual zones of disturbance rather than inversion artifacts.

3.3.2 Comparison of GPR full-waveform inversion results with CPT neutron and elec-
trical resistivity logs

As several CPT profiles are located in close proximity to the GPR transects (Figure 15),
they provide an opportunity to validate the GPR results. It should be noted, how-
ever, that also the CPT profiles are not expected to be flawless, and thus, discrepancies
between GPR and CPT could result from errors in either or both techniques. In the
following, we compare the porosity from CPT neutron logs with porosity estimates de-
rived from GPR; and we compare the electrical conductivity from CPT resistivity logs
with the electrical conductivity derived from GPR. Altogether, 17 CPT porosity profiles
and 9 CPT electrical conductivity profiles were available at locations co-located with
the GPR transects. To obtain porosity estimates from GPR, the CRIM relation (Eq. (10))
was applied with εf=84, which represents the dielectric permittivity of water at 10 ◦C
[Eisenberg and Kauzmann, 1969], and with εs=4.5, which represents the dielectric per-
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Figure 19: a) CPT porosity profile and comparison with co-located porosity estimated from GPR
ray-based inversion and from GPR full-waveform inversion. b) CPT electrical conduc-
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ERT and from GPR full-waveform inversion.
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Figure 20: a-c) Crossplots of porosity from CPT and GPR FWI; d-f) Crossplots of electrical con-
ductivity from CPT and GPR FWI. Data from crosshole planes measured with differ-
ent GPR antenna frequencies are plotted separately and combined (a,d: 200 MHz; b,e:
100 MHz, c,f: together). n is the number of data points.

mittivity of quartz [Carmichael, 1982], i.e. no fitting was performed. Figure 19a shows
a comparison of CPT and GPR derived porosity along CPT profile 141. Overall, the
porosity from CPT and GPR shows a strong correlation. Compared with the ray-based
inversion results the full-waveform inversion improves the reconstruction of small scale
structures, such as the high porosity layer at about 4 m depth. The ray-based results
give a good estimate of the basic trends in porosity, though.

Crossplots of CPT porosity versus GPR FWI porosity along all CPT profiles are shown
in Figure 20a-c. Note that the data from crosshole planes measured with different
GPR antenna frequencies are plotted both separately (Figure 20a,b) and combined (Fig-
ure 20c). As expected, the agreement between GPR and CPT is better (higher correla-
tion coefficient, regression line closer to the 1:1 line) for the GPR data acquired with the
200 MHz antennas (Fig 20a), than for the GPR data acquired with the 100 MHz antennas
(Fig 20b). This can be attributed to the higher spatial resolution that can be obtained
from shorter wavelengths.

Figure 20d-f show crossplots of electrical conductivity from CPT and GPR FWI. Al-
though the correlation is not as strong as it is for the porosity, GPR and CPT results
still correlate fairly well. For the electrical conductivity data, a better correlation of the
200 MHz data compared to the 100 MHz data cannot be recognized, but this could also
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be due to the limited amount of data (due to technical problems during the CPT sur-
vey, the electrical conductivity was measured only at approximately every second CPT
profile). Generally, it can be observed that the majority of data points plot above the
1:1 line in Figure 20d-f, which indicates that the electrical conductivity obtained from
GPR is slightly higher than the electrical conductivity obtained from CPT. Figure 19b
shows a comparison of CPT and GPR derived electrical conductivity along CPT profile
135. Along this profile the CPT and GPR results can additionally be compared with the
ERT results from Müller et al. [2010]. Overall, the three different methods identify fairly
similar trends. However, some notable differences exist, particularly in the lower part
of the profile. It is very interesting to see how the small scale variability is most pro-
nounced in the CPT profile, less pronounced in the GPR profile, and virtually absent in
the ERT profile, which highlights the differences in spatial resolution of the individual
methods.

3.3.3 Comparison of GPR full-waveform inversion results with direct-push hydraulic
conductivity

Prior to comparing the direct-push derived hydraulic conductivity with the GPR full-
waveform inversion results, we converted the relative KDPIL values into absolute hy-
draulic conductivity using the few KDPST values as calibration data. Following Dietrich
et al. [2008], we conducted a linear regression of co-located log KDPIL and log KDPST val-
ues and used the obtained regression equation to translate KDPIL values into hydraulic
conductivity (Figure 21).
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Figure 21: Linear regression of log KDPST and log KDPIL. The equation of the regression line and
the correlation coefficient are given at the bottom of the crossplot.

Because the DPST were conducted with a filter screen length of 1 m, and the DPIL
were measured with a vertical sampling interval of 20 cm, there are five DPIL mea-
surements co-located with each DPST measurement. Assuming horizontal layering, we
calculated an averaged (or upscaled) KDPIL value for each DPST interval, by taking the
arithmetic mean of the five associated KDPIL values. The regression was conducted with
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Figure 22: DPIL derived hydraulic conductivity (note the reversed axis for log K) and co-located
dielectric permittivity and electrical conductivity from GPR full-waveform inversion.

the arithmetic means of the KDPIL values and the corresponding KDPST values. The high
correlation coefficient of 0.92 suggests that the regression equation allows robust estima-
tion of absolute hydraulic conductivity from KDPIL.

The absolute hydraulic conductivity derived from DPIL and DPST were used to in-
vestigate if a correlation exists between hydraulic conductivity and GPR attributes. Fig-
ure 22 shows vertical profiles of hydraulic conductivity and GPR FWI results along DPIL
profiles 2 and 5. Scatterplots of hydraulic conductivity (entire DPIL and DPST data set)
versus GPR attributes are presented in Figure 23a, b. The scatterplots were constructed
by averaging the values from GPR cells located along the DPST and the DPIL depth
intervals, respectively. To reduce noise, a three-point moving average was applied to the
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DPIL data. Overall, both GPR attributes show a negative correlation with hydraulic con-
ductivity (note that in order to make it easier to see the negative correlation in Figure 22

the log K axis was reversed). The negative correlation is stronger for the (few) DPST
hydraulic conductivity estimates than for the DPIL hydraulic conductivity estimates
(Figure 23a, b).

Interestingly, the scatterplots for the two GPR attributes versus hydraulic conductivity
look quite similar. The reason for this similarity is probably that the clay content at the
Krauthausen site is so small that both the dielectric permittivity and the electrical con-
ductivity primarily depend on porosity. According to grain size analyses, the average
clay content of the part of the aquifer covered by GPR measurements is only 2%. If
changes in clay content are minor, the bulk electrical conductivity of saturated media
is controlled by the electrical conductivity of the pore fluid. Under such conditions,
both the dielectric permittivity and the electrical conductivity obtained from GPR can
be expected to depend mainly on saturated porosity, which is also reflected in the strong
correlation of the two GPR attributes (Figure 23c). It is interesting that our data suggests
a negative correlation between porosity and hydraulic conductivity, although intuitively
one would expect a positive relationship. However, several studies showed that the
relation between porosity and hydraulic conductivity is strongly site-dependent and a
correlation between the two parameters can be positive, negative or absent [Nelson, 1994;
Hubbard et al., 2001; Morin, 2006]. The reason for this is that the hydraulic conductivity
is not a function of the total pore volume alone but also of the structure, size, tortuos-
ity and connectivity of the individual pores within the pore network [Koltermann and
Gorelick, 1996]. At the Krauthausen site, it appears that the structural features of the
pore network that lead to a higher hydraulic conductivity are negatively correlated to
the total pore volume. According to Tillmann et al. [2008] and Gueting et al. [2015],
the Krauthausen aquifer comprises different lithological facies that are characterized by
different average grain sizes (ranging from sand to gravel). In addition, these facies
are characterized by different sorting, namely the sand-dominated facies is significantly
better sorted than the gravel-dominated facies. This leads to a smaller total porosity of
the gravel facies compared to the sand facies. Despite its smaller total porosity, however,
we suspect that the gravel is characterized by (fewer but) larger individual pores which
compensate for its smaller total porosity and lead to a higher hydraulic conductivity of
the gravel facies compared to the sand facies. We believe that this is the reason why we
observe a negative correlation between hydraulic conductivity and GPR attributes.

Yet despite this overall negative correlation, the relationship between DPIL derived
hydraulic conductivity and GPR results is characterized by considerable scatter (Fig-
ure 23a, b). There are several possible explanations for that: 1) The small-scale variations
in DPIL and/or GPR data are measurement scatter. 2) The GPR and DPIL estimates are
not perfectly co-located so that a combination of a small spatial shift with large small-
scale variations leads to considerable noise on the correlation between GPR and DPIL
estimates. 3) The porosity does not explain the variations in hydraulic conductivity
completely, which appears reasonable considering that the total porosity does not seem
to exert primary control over hydraulic conductivity at the Krauthausen site, as was
discussed above.

In conclusion, the analysis of co-located GPR full-waveform inversion results and
direct-push hydraulic conductivity data suggests that an overall negative correlation
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exists between porosity and hydraulic conductivity at the Krauthausen site. As such,
this relationship provides the potential to estimate hydraulic conductivity on the basis
of GPR attributes which are sensitive to porosity. Indeed the hydraulic conductivity
derived from DPST correlates strongly with the GPR attributes. The weak correlation
between the DPIL derived hydraulic conductivity and the GPR attributes, however, sug-
gests that the use of GPR to estimate fine scale variations in hydraulic conductivity is
limited at the Krauthausen site. Note that also a multi-linear regression approach, using
both GPR attributes (or their principal components) simultaneously, did not lead to a
significantly improved correlation between GPR and DPIL data (not shown here). In the
following, we present an alternative facies-based approach in which the GPR attributes
are not used to directly estimate hydraulic conductivity but instead to distinguish differ-
ent aquifer units (facies), whose hydraulic conductivity is derived independently, based
on direct-push, flowmeter and grain size data.

3.3.4 Facies classification

Lithological facies were defined on the basis of grain size data, available along 3 bore-
holes (B7, B22 and B32). During the drilling of these boreholes, soil samples were
collected with a vertical sampling interval of 10 or 20 cm and analyzed for grain size
distribution [Vereecken et al., 2000]. Co-located with the GPR data, a total number of
140 grain size distribution curves are available (Figure 24a).

To extract lithological facies from the ensemble of grain size distribution curves, we
applied a simple k-means cluster analysis [MacQueen, 1967]. In this way, grain size
distribution curves that are relatively similar to each other (i.e. belong to the same fa-
cies) are grouped together in clusters. Figure 24b-d show the results from clustering the
multivariate grain size data (12 sieve fractions for each sediment sample) into three clus-
ters. The division into three clusters was chosen based on the findings of Döring [1997]
and Tillmann et al. [2008], who analyzed borehole logs and CPT profiles and found that
the Krauthausen aquifer can be broadly divided into three lithological units. A simi-
lar finding was reported by Gueting et al. [2015], who analyzed multivariate GPR and
CPT data and showed that both data sets were best represented by a division into three
facies. It should be noted, however, that these facies are not expected to form clearly sep-
arated spatial structures in the Krauthausen aquifer, because sedimentation conditions
in alluvial systems often change gradually [Miall, 1996], which leads to gradual instead
of abrupt changes in subsurface properties (e.g. fining upward sequences). Indeed, it
can be observed that the obtained clusters (Figure 24b-d) represent different subsets
of a continuous ensemble rather than clearly separated units. Nevertheless, the facies
based approach may be used to represent part of the spatial variability in subsurface
properties since the variability of the grain size distribution within a certain cluster is
reduced compared to the variability of the ensemble of all grain size distribution curves
(Figure 24). Table 2 gives characteristic properties for each grain size facies. The main
differences are reflected in the sand-to-gravel ratio and sorting.

As described in Section 3.2.4, we conducted a logistic regression of the clustered grain
size data (response variable) and the co-located GPR data (explanatory variables). The
results are given in Table 3. Note that we constructed four different logistic regression
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Figure 24: a) Ensemble of 140 grain size distribution curves. b-d) Results of k-means clustering.

models with different sets of explanatory variables. The variables contained in each
model are listed in the second column of Table 3. The first model (‘Intercept-Only’)
contains only a constant term, i.e. no GPR data at all. As a consequence, the probabilities
derived from this model are constant, simply corresponding to the relative amounts of
the individual facies in the grain size data. The reason why we included this most
basic model is that any improvement due to incorporating GPR data can be seen by
comparison with this basic model. The second model (‘Ray-based’) contains, in addition
to a constant term, the GPR dielectric permittivity obtained from ray-based inversion.
In the third model (‘FWI (ε only)’), the ray-based dielectric permittivity is replaced by
the full-waveform dielectric permittivity. The fourth model (‘FWI’) contains additionally
the electrical conductivity obtained from full-waveform inversion.

Table 2: Characteristic properties of grain size facies with standard deviations (in brackets).

Facies Clay (%) Silt (%) Sand (%) Gravel (%) Ua (-)

1 3.1 (1.1) 2.8 (1.3) 76 (11) 18 (10) 5 (2)
2 2.0 (0.5) 2.4 (1.5) 41 (11) 55 (10) 19 (11)
3 1.4 (0.5) 2.9 (1.2) 18 (7) 78 (8) 60 (35)

aU=d60/d10, the coefficient of uniformity
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The maximum likelihood coefficient estimates, β, obtained for each model (Table 3)

represent matrices with as many rows as there are explanatory variables and as many
columns as there are categories (not including the reference category, i.e. facies 3, for
which the coefficients are by definition zero). The first column of β thus corresponds to
the distinction between facies 1 and facies 3, while the second column corresponds to
the distinction between facies 2 and facies 3 (compare Eq. (12)). The p-values, computed
from the t-statistics of the individual components of β, suggest that all coefficients are
statistically significant (i.e. p<0.05). The only exception is a p-value of 0.34 for FWI
σ, which suggest that FWI σ does not provide additional significant information to
distinguish between facies 2 and 3. But note that FWI σ is significant to distinguish
between facies 1 and 3 (indicated by p<0.05, one position further left in Table 3).

The last two columns in Table 3 (GSD and AIC) give global measures that describe
how well the different models explain the clustered grain size data. Based on these
two metrics, the models listed in Table 3 get better from top to bottom, the FWI model
best explains the grain size data. As expected, all models that contain GPR data as
explanatory variable perform much better than the basic Intercept-Only model. The im-
provement using the GPR full-waveform instead of the ray-based inversion results seems
only minor. As we will see later, however, this small improvement is quite important.

3.3.5 Comparison of GPR predicted facies distribution with CPT cone resistance logs

Figure 25 shows for one GPR transect the facies distribution predicted by the Ray-based,
the FWI (ε only) and the FWI logistic regression model. Information about the reliability
of the facies classification is included by scaling the color saturation proportional to the
probability of facies assignment predicted by the logistic regression model (Eqs. (13) and
(14)). Full color saturation refers to a probability of 1, zero color saturation refers to a
probability of 0.33 (the lowest possible value for three facies).

Overall, the facies distribution obtained from the three different logistic regression
models is quite similar for facies 3, but considerable differences exist regarding the
distribution of facies 1 and 2. The GPR predicted facies distribution can be compared
with CPT cone resistance logs (black lines in Figure 25) which were measured in close
proximity to the GPR transect (Figure 15). While the CPT profiles show only very little
correlation with the ray-based predicted facies distribution, they correlate quite well
with the FWI predicted facies distribution: low cone resistance values coincide with
the depth intervals occupied by facies 1; intermediate and high cone resistance values
coincide with the depth intervals occupied by facies 2 and 3, respectively. Note that this
order is also what we would expect based on the gravel contents of the individual grain
size facies (Table 2).

It is noteworthy that the greatest part of the improvement of the FWI model relative
to the ray-based model is already obtained when using the FWI (ε only) model. This
shows that the improvement is not only due to the additional information from electrical
conductivity but also due to the higher resolution of the dielectric permittivity obtained
from full-waveform inversion. But including the electrical conductivity improves the
consistency of facies across boreholes B62 and B61 (Figure 25c). This shows that the
electrical conductivity contributes valuable information for facies estimation.
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Figure 25: GPR predicted facies distribution using a) ray-based dielectric permittivity, b) full-
waveform dielectric permittivity, c) full-waveform dielectric permittivity and electri-
cal conductivity (see Table 3). Color saturation is proportional to the probability of
facies assignment predicted by the logistic regression model. Vertical gaps represent
boreholes. Black lines represent CPT cone resistance logs.

3.3.6 Comparison of GPR predicted facies distribution with tracer breakthrough

Figure 26a and b show, respectively, the ray-based and the FWI predicted facies distri-
bution in the part of the aquifer where the two tracer experiments were conducted. The
transects parallel to the x-axis are the same transects that were monitored with ERT dur-
ing the tracer tests (Section 3.2.6). The red dashed and solid lines show the outlines of
the ERT observed tracer breakthrough for the negative and positive tracer experiment,
respectively (compare with Figure 16).

The main difference in Figure 26 between ray-based and FWI results is the distribution
of facies 1. Note that facies 1 is the facies with the finest grain size distribution which
can therefore be expected to be less hydraulically conductive than facies 2 and 3. The
ray-based approach shows a thick facies 1 layer between approximately 5 and 8 m depth
which is interrupted at some places by facies 2. The FWI approach, in contrast, suggests
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Figure 26: Comparison of ERT observed tracer breakthrough and GPR predicted facies distribu-
tion using a) ray-based dielectric permittivity, b) full-waveform dielectric permittivity
and electrical conductivity. Color saturation is proportional to the probability of fa-
cies assignment predicted by the logistic regression model. Red dashed and solid
lines show the outlines of the ERT observed tracer plumes projected on the GPR
tomograms (compare with Figure 16).
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that this layer is split up between boreholes B62 and B22 into two thinner layers of facies
1, and that between these two layers, there is a thin facies 2 layer at approximately 5-6 m
depth that is laterally more or less continuous. At the bottom of this facies 2 layer, there
is again a thin facies 1 layer found. The consequence of this facies structure derived
from FWI for transport of a tracer that is injected into borehole B22 is that part of the
tracer plume will be transported through the upper continuous facies 2 layer (between
5 and 6 m depth) whereas the lower facies 1 layer will lead to a split of the tracer
plume (indicated by red arrows in Figure 26). In contrast, the facies structure derived
from the ray-based approach would suggest tracer transport mainly through facies 2

below 7 m depth. This finding suggests that the improvement in resolution due to full-
waveform inversion is crucial to detect small-scale aquifer structures which are highly
important for solute transport. The correlation between the tracer breakthrough and
the FWI predicted facies distribution suggests that the derived facies are meaningful
with regard to flow and transport. In the following, we will test this hypothesis by
investigating the porosity and the hydraulic conductivity of the GPR FWI facies.

3.3.7 Porosity of GPR facies

The porosity of the FWI predicted GPR facies was estimated from CPT neutron logs and
from GPR dielectric permittivity (see Section 3.3.2). The porosity of each facies, based on
GPR and CPT data, is shown in Figure 27. Note that the portion of the aquifer sampled
by GPR and CPT is different, because CPT porosity is available along 17 vertical profiles,
whereas GPR porosity is available for each and every GPR pixel. Nevertheless, the
porosity estimates from GPR and CPT are relatively consistent. Both methods suggest
that the porosity decreases from facies 1, to facies 2, to facies 3, and that the porosity
distribution of each facies is distinct (i.e. different from the porosity distribution of the
other two facies).
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Figure 27: Porosity of the FWI predicted GPR facies according to CPT neutron logs and GPR
dielectric permittivity. Horizontal lines represent two times the standard deviation.

3.3.8 Hydraulic conductivity of GPR facies

The hydraulic conductivity of the FWI predicted GPR facies was estimated from the
DPST and DPIL profiles; and from flowmeter (Eq. (15)) and grain size data (Eq. (16)).
Co-located with the GPR transects, flowmeter data were available along boreholes B22,
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B26, B31 and B32; and grain size data were available along boreholes B7, B22 and B32.
Unfortunately, there were no flowmeter data available at locations co-located with fa-
cies 3, because the flowmeter measurements were conducted only below approximately
4 m depth, and facies 3 occurs mainly above 4 m depth (Figure 26).

Figure 28 shows the hydraulic conductivity of each facies according to DPST, DPIL,
flowmeter and grain size. Overall, it can be noted that the different methods show a
fairly similar trend, i.e. an increase in hydraulic conductivity from facies 1, to facies 2,
to facies 3. This suggests that the GPR derived facies are meaningful with regard to hy-
draulic conductivity, although the overlap of the hydraulic conductivity distributions for
individual facies indicates that the GPR facies are not as well constrained by hydraulic
conductivity as they are by porosity (Section 3.3.7).
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Figure 28: Hydraulic conductivity of the FWI predicted GPR facies according to direct-push
slug test, direct-push injection log, flowmeter and grain size data (note the different
x-axes!). Horizontal lines represent two times the standard deviation.

Interestingly, the highest hydraulic conductivity is obtained for facies 3, although no
tracer breakthrough was observed above 4 m depth, where facies 3 primarily occurs
(Figure 26b). This is most likely a consequence of the tracer injection into borehole B22,
which is equipped with a filter screen ranging from 2.9 to 10.9 m depth. As facies 3

seems to occur only at the very top of the screened interval (the uppermost GPR pixels
in Figure 26 correspond to a depth of 2.86 m depth), it can be expected that the amount
of tracer injected into this uppermost layer was only small, which explains that no tracer
mass was detected in this layer farther downstream.

The lowest hydraulic conductivity is obtained for facies 1, which is in agreement
with the hypothesis that the facies 1 layer caused the splitting of the tracer plume (Sec-
tion 3.3.6). It is intriguing, however, that the distinction of facies 1 and 2 (the two
transport relevant facies) is not very clear when looking at their hydraulic conductivity
distributions which overlap (in particular the DPIL derived distributions). Nevertheless,
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the difference in the average properties of the two facies was apparently large enough
to have an important impact on transport in the aquifer because the tracer tests do show
a clear and consistent effect of the facies structure on the observed tracer transport. This
indicates that the structure and especially the connectivity of the facies is important even
though the measured variability of local hydraulic properties within a facies is large.

Although the hydraulic conductivity derived from direct-push, flowmeter and grain
size data agree fairly well regarding the trend, they show quite some disagreement
regarding the absolute values (note the different x-axes in Figure 28). In order to evaluate
which method best explains the observed tracer arrival times, we derived hydraulic
conductivity estimates from the tracer test data, by applying Eq. (17) with i = 0.002,
the mean hydraulic gradient during the tracer experiments [Müller et al., 2010], and
n = 0.25, the mean porosity of GPR FWI facies 2 (because the tracer breakthrough
occurred primarily through facies 2 (Figure 26b)).

Figure 29 shows a comparison of the tracer test derived hydraulic conductivity and
the hydraulic conductivity of facies 2 according to direct-push, flowmeter and grain
size data. It can be seen that in order to explain the observed tracer arrival times,
log hydraulic conductivities of around -3 are required. This is approximately half an
order of magnitude higher than the direct-push derived hydraulic conductivity, and
approximately half an order of magnitude lower than the flowmeter derived hydraulic
conductivity. The grain size based estimates lie between the direct-push and flowmeter
results and show the best agreement with the tracer test derived hydraulic conductivity.
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Figure 29: Tracer test derived hydraulic conductivity and comparison with the hydraulic con-
ductivity of GPR FWI facies 2 according to direct-push slug test, direct-push injection
log, flowmeter and grain size data. Horizontal lines represent two times the standard
deviation.
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The differences in absolute hydraulic conductivities obtained from the different meth-

ods may be attributed to different sensitivities, support volumes and biases of the dif-
ferent measurements techniques. Particularly at strongly heterogeneous sites, different
methods have been reported to give deviating results. For example, Rehfeld et al. [1992]
statistically analyzed hydraulic conductivity at the MADE site on the basis of flowme-
ter, grain size, slug tests and laboratory permeameter tests and found that the different
methods yielded hydraulic conductivity distributions with comparable covariance pa-
rameters but largely varying mean values. Bohling et al. [2012] compared flowmeter
and direct-push derived hydraulic conductivity and found that the two methods identi-
fied similar structures in the subsurface, but the direct-push estimates were on average
about a factor 5 to 10 smaller compared with the flowmeter results.

One explanation for lower hydraulic conductivity measured with direct-push is that
direct-push tools may locally compress the subsurface structure and thereby decrease
hydraulic conductivity. Another practical difficulty consists in keeping the injection
screen free from clogging because this can be misinterpreted as a decrease in hydraulic
conductivity [Dietrich et al., 2008]. Although it was found that the continuous injection
of water during DPIL tool advancement [Dietrich et al., 2008] and the use of shielded
screens for DPST measurements [Butler et al., 2002] can mitigate or prevent screen clog-
ging, under unfavorable conditions screen clogging may still occur and lead to an un-
derestimation of hydraulic conductivity. Butler et al. [2002] discussed the implication of
well development on DPST results and noted that insufficient development of the direct-
push installed well can lead to significant underestimation of hydraulic conductivity by
DPST.

Flowmeter derived hydraulic conductivities, on the other hand, are well known to be
sensitive to skin effects, filter pack, ambient flow in the well and head losses in well
and screen [Rehfeldt et al., 1989; Molz et al., 1994]. Ruud et al. [1999] demonstrated
numerically that the combined effect of flowmeter-induced hydraulic head losses and
cross-flow through the filter pack can easily lead to an overestimation of the true hy-
draulic conductivity by a factor 10.

Finally, we want to note that the method-based discrepancy in absolute hydraulic con-
ductivity observed in the present study (approximately one order of magnitude) appears
less dramatic if one considers the enormous variability (several orders of magnitude) of
hydraulic conductivity in the subsurface.

3.4 conclusions
High resolution tomographic images of the electrical properties of an alluvial aquifer
were obtained from full-waveform inversion of cross-borehole GPR data. By analyzing
multiple crosshole planes and stitching together the tomograms from adjacent planes,
we were able to image, with a decimeter scale resolution, the dielectric permittivity and
electrical conductivity along several cross-sections up to 50 m in length and 10 m in
depth.

Porosity estimates derived from the GPR results using the Complex Refractive Index
Model (CRIM) showed a strong correlation with porosity estimates derived from CPT
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neutron logs (correlation coefficient of 0.8). A less pronounced correlation was observed
between the GPR results and the hydraulic conductivity from direct-push injection logs
(correlation coefficient of -0.4).

By employing a logistic regression model that relates the electrical properties obtained
from GPR to lithological facies obtained from grain size data, we utilized the GPR full-
waveform inversion results to predict the spatial distribution of lithological facies along
the GPR transects. Vertical profiles of porosity and hydraulic conductivity from direct-
push, flowmeter and grain size data suggest that the GPR predicted facies are meaning-
ful with regard to porosity and hydraulic conductivity, even though the distributions
of individual facies show some overlap. The hydraulic conductivity estimates from the
different methods (direct-push, flowmeter, grain size) were found to identify similar
trends but deviating absolute values. Taking tracer test derived hydraulic conductivity
as a reference, the direct-push derived hydraulic conductivities were approximately half
an order of magnitude lower, and the flowmeter derived hydraulic conductivities were
approximately half an order of magnitude higher. Somewhat surprisingly, the indirect
(i.e. purely empirical) estimation of hydraulic conductivity from grain size data was
found to best explain the observed tracer arrival times.

Comparison of the GPR predicted facies distribution with tracer test data suggests that
the plume splitting observed in a tracer experiment was caused by a hydraulically low-
conductive sand layer with a thickness of only a few decimeters. Because this sand layer
was detected by GPR full-waveform inversion but not by conventional GPR ray-based
inversion we conclude that the improvement in spatial resolution due to full-waveform
inversion is crucial to detect small-scale aquifer structures that are highly important for
solute transport.

We hope that the results presented here will stimulate further applications of GPR
full-waveform inversion. Admittedly, the results from intensively studied test sites, such
as the Krauthausen site, must be regarded as best case scenarios of what information a
method can provide. Yet, full-waveform inversion of crosshole GPR data has been tested
under different conditions at several sites now [Klotzsche et al., 2013, 2014; Gueting et al.,
2015], and we believe that hydrological site characterization could often benefit from
its application (provided that the fundamental requirement for any GPR application is
fulfilled, i.e. signal attenuation due to electrical conductivity is not too high).

A particularly interesting application in our view would be to use tomograms from
GPR full-waveform inversion as “training images” for multiple-point-statistical (MPS)
simulations [e.g. Mariethoz and Caers, 2014]. In this framework, GPR full-waveform
inversion would be used to collect site-specific high resolution information about the
geological structures that exist at a site; and MPS simulations would be used to stochas-
tically derive 3D subsurface models based on the structural information provided by the
GPR tomograms. The resulting models could be parametrized for flow and transport
simulations.
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abstract
Suitable training images (TIs) for multiple-point statistics (MPS) are difficult to identify
in real-case 3-D applications, posing challenges for modelers trying to develop realis-
tic subsurface models. This study demonstrates that high resolution 2-D geophysical
images, when employed as training and conditioning data, can provide sufficient infor-
mation for 3-D MPS simulations. The advantage of such data-driven approach is that
it does not rely on any external (possibly inappropriate) TI. The disadvantage is that
3-D MPS simulations must be carried out based on 2-D information. We have tested
three different approaches (two existing, one new) to overcome this problem. The two
existing approaches rely on the reconstruction of incomplete images and on sequential
2-D simulations, respectively. The third approach is a new combination of the two for-
mer approaches. The three approaches are applied to model the 3-D facies structure
of an alluvial aquifer based on high resolution ground penetrating radar cross-sections.
We evaluate the quality of a simulation outcome based on the similarity of its multiple-
point histogram (MPH) with reference MPHs, derived from the geophysical images.
Our analysis reveals that the first approach (image reconstruction) performs well close
to conditioning data, but farther away from the data the simulation results deteriorate.
Quite conversely, the second approach (sequential 2-D) performs well when only few
conditioning data exist, but with increasing simulation sequence the quality decreases.
The newly proposed third approach integrates the benefits from both approaches and
is found to reproduce the reference MPHs significantly better than each of the two ap-
proaches stand-alone.

4.1 introduction
Flow and transport processes in the subsurface are controlled by the complex hetero-
geneity found in most geologic media. Geostatistical simulation techniques aim at mim-
icking geological heterogeneity to derive subsurface models that can be used to simulate
and predict, for example, groundwater flow and contaminant transport [e.g. Deutsch
and Journel, 1998]. Considerable attention has been devoted to the development of
multiple-point statistical (MPS) simulation approaches [Guardiano and Srivastava, 1993;
Strebelle, 2002; Straubhaar et al., 2011; Mariethoz et al., 2010; Mariethoz and Caers, 2014]
because such approaches are able to model complex geometries and connectivity pat-

§ this chapter has been published as: Gueting N., Caers J., Comunian A., Vanderborght J., Englert A., (2017),
Reconstruction of three-dimensional aquifer heterogeneity from two-dimensional geophysical data, Mathe-
matical Geosciences, http://dx.doi.org/10.1007/s11004-017-9694-x
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terns, that cannot be modeled using traditional variogram-based simulation techniques
[Gómez-Hernández and Wen, 1998; Western et al., 2001; Renard and Allard, 2013]. The
basic idea of MPS simulations is to generate models by reproducing the multiple-point
spatial statistics derived from a user-defined training image (TI). Because the spatial
structure of the TI is reproduced in the model, the choice of the TI is of most critical
importance. As a consequence, applying MPS to real field cases can be challenging, be-
cause finding an appropriate TI is not always straight-forward, especially for 3-D cases
[Huysmans and Dassargues, 2009; Le Coz et al., 2011].

One possible approach is to use some external, conceptual TI that is anticipated to
reflect the type of spatial structures that (presumably) exist at the site being modeled.
Conceptual models for different geological settings may be found in data bases [Comu-
nian and Renard, 2008; Mariethoz and Caers, 2014]. Alternatively, the TI itself may be
modeled using object-based methods [Maharaja, 2008] or process-imitating models [Co-
munian et al., 2013]. If the geological setting is unclear, Hermans et al. [2015] proposed
to allow multiple alternative TIs, and narrow down the range of initially plausible TIs
by validation/falsification with geophysical data.

In this study, we take a different approach and utilize data, instead of an external
conceptual TI, to directly inform MPS simulations. The motivation for this data-driven
approach is that data, collected directly at the site of interest, contains information about
the actual field; and therefore it may be advantageous to rely on the data rather than
on some external TI that is possibly not representative for the actual site being modeled
[Ortiz and Deutsch, 2004; Mariethoz and Renard, 2010]. Until now, data-based TIs were
obtained mainly from outcrops [Bayer et al., 2011; Huysmans and Dassargues, 2012;
Pickel et al., 2015]. However, outcrops are often not available and, at best, located at the
outer boundaries of the domain to be modeled. In contrast, state-of-the-art geophysical
imaging techniques allow imaging the subsurface structure with high resolution and
coverage directly at the location of interest. For example, Gueting et al. [2017] used
cross-borehole ground penetrating radar (GPR) to characterize the spatial distribution
of lithological facies in an alluvial aquifer. By applying a high resolution full-waveform
inversion to analyze the tomograms from multiple crosshole planes, they were able to
map the distribution of facies with a decimeter scale resolution, along cross-sections up
to 50 m long and 10 m deep.

The present study builds upon the work by Gueting et al. [2017] and addresses the
question if the GPR cross-sections provide enough information to reconstruct the 3-D
aquifer structure using MPS. The main problem we are facing with this approach is that
3-D MPS simulations have to be carried out on the basis of 2-D information. This kind of
problem has already been investigated by Mariethoz and Renard [2010] and Comunian
et al. [2012] who developed two approaches that enable 3-D MPS simulations but do not
require a 3-D TI. Both approaches have proven their ability to generate 3-D models when
only 2-D data are available [Mariethoz and Renard, 2010; Comunian et al., 2012; Bayer
et al., 2015; Pickel et al., 2015], but only little is known about when these approaches
work or fail, and under which conditions one approach should be preferred over the
other. In the present study, we quantitatively compare the performance of the two
approaches based on a proxy for simulation quality that is derived from the similarity
of simulated and observed spatial patterns. Using this proxy, we discuss the benefits
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and limitations of the two existing approaches and we propose a new approach that
integrates the benefits from both approaches.

4.2 material and methods
4.2.1 Study site and GPR data set

The Krauthausen test site, set up by the research center Jülich in 1993 [Vereecken et al.,
2000], is situated in the southern part of the Lower Rhine Embayment, close to the city
of Düren. The 200 m × 50 m test site is equipped with a total number of 76 boreholes
that reach down to the base of a shallow unconfined aquifer at approximately 10 m
depth. The aquifer is composed of alluvial terrace sediments that were deposited by a
local braided river system on top of older Rhine and Maas sediments [Englert, 2003].
The aquifer material comprises sand and gravel in varying proportions, with only small
amounts of clay.

In 2013, an extensive cross-borehole GPR survey was conducted in the central part
of the test site [Gueting et al., 2015, 2017]. The GPR data were inverted for dielectric
permittivity and electrical conductivity using a recently developed full-waveform inver-
sion approach that is preferable, with respect to spatial resolution, over conventional
ray-based inversion approaches [Klotzsche et al., 2010, 2013]. To translate the electrical
properties derived from GPR into hydrogeologically meaningful facies, Gueting et al.
[2017] conducted a logistic regression of GPR results and co-located grain size data, and
used the fitted logistic regression model to predict the distribution of lithological facies
along the GPR transects. A 3-D plot of the obtained facies distribution along the various
2-D GPR transects is shown in Figure 30. Overall, the facies are arranged in layer-like
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Figure 30: GPR derived facies distribution along 15 individual 2-D cross-borehole planes. De-
tails on the inversion of the GPR data and the classification into facies are given by
Gueting et al. [2017].
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Table 4: Porosity n and log hydraulic conductivity Y of the GPR facies according to different

methods (CPT = Cone Penetration Test; GPR = Ground Penetrating Radar; DPST =
Direct-Push Slug Test; DPIL = Direct-Push Injection Log; FM = Flowmeter; GSD = Grain
Size Distribution). Details on the methods and their application at the Krauthausen site
can be found in Gueting et al. [2017].

Facies nCPT nGPR YDPST YDPIL YFM YGSD

1 (sand) 0.27 0.29 -3.65 -3.62 -2.81 -3.78

2 (sandy gravel) 0.24 0.25 -3.48 -3.60 -2.50 -3.09

3 (gravel) 0.17 0.18 -3.18 -3.42 n.a. -2.14

structures that appear plausible for a braided river alluvial setting. Note that despite
the generally layered architecture, significant lateral variations in number and thickness
of layers can be observed, which indicates that conceptualizing the aquifer as a perfectly
stratified medium (as one may be tempted to do if only 1D vertical borehole logs were
available) would be an oversimplification of the true aquifer structure. This highlights
the value of crosshole geophysical imaging techniques, which yield information in 2-D,
along the vertical and the lateral direction.

Vertical profiles of porosity and hydraulic conductivity from direct-push tests, flowme-
ter measurements and grain size data, were used to hydrogeologically characterize the
GPR facies. Table 4 gives the porosity and hydraulic conductivity estimates for each
facies, according to the different methods. Although the absolute values from the dif-
ferent methods show some disagreement, there is a clear and consistent trend that the
hydraulic conductivity increases from facies 1 to facies 2 to facies 3, whereas the porosity
decreases. Gueting et al. [2017] compared the GPR derived facies distribution with the
tracer breakthrough observed by Müller et al. [2010] and found a clear effect of the facies
structure on the observed transport, which confirmed the hydrogeological relevance of
the GPR derived facies. In the present study we take the 2-D facies structure along the
GPR transects obtained by Gueting et al. [2017] as given, and address the problem of
estimating the 3-D facies structure. In other words, the facies distribution along the 2-D
GPR transects (Figure 30) is assumed to reflect the true aquifer structure; the goal is to
reconstruct the 3-D volume between these transects.

4.2.2 Multiple-point-statistical simulations

Basic principle

This section briefly reviews the principle idea of multiple-point-statistical (MPS) simula-
tion and its implementation in the impala algorithm [Straubhaar et al., 2011] and in the
direct sampling algorithm [Mariethoz et al., 2010], which were used in the present study.

Consider an attribute S with K possible states. S may represent a categorical variable
which identifies, for instance, the occurrence of different geological facies; it may also
represent a continuous variable, such as porosity or permeability, whose range was
divided into K classes using some kind of classification technique. The objective of
MPS simulations is to assign a value S(u) to each node u in a 2-D or 3-D simulation
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grid, by taking into account the spatial position of u relative to already informed nodes
(i.e. conditioning data or already simulated nodes). The data values and geometry of N
informed nodes in the neighborhood of u can be expressed as the data event du

du = {S(u+ h1), ...,S(u+ hN)} (18)

where h1,...,N are 2-D or 3-D vectors that describe the spatial position of the informed
grid nodes with respect to the central node u. To simulate S(u) for a given data event
du we are interested in the conditional probability distribution function (cpdf)

Prob {S(u) = k | du} = f(u; k | du), k = 1, 2, ...,K (19)

The basic idea of MPS is to infer this cpdf from a user-defined Training image (TI) that is
supposed to be representative for the geological setting being modeled [Strebelle, 2002].

In the impala algorithm [Straubhaar et al., 2011], the cpdf is built by scanning the TI
prior to simulation, and storing the number of occurrences of individual patterns in a
catalog. Then the nodes in the simulation grid are sequentially visited and, for each
node u (characterized by the data event du), the number of replicates of du in the TI
is retrieved from the catalog, and a value for S(u) is drawn randomly based on the
histogram of the central node values for all replicates found in the TI.

A different strategy is used in the direct sampling algorithm [Mariethoz et al., 2010].
Instead of explicitly building the cpdf by scanning the TI prior to the simulation, this
step is skipped by directly sampling the TI during the simulation. As soon as a TI
pattern is found which either matches exactly du, or whose mismatch is below a speci-
fied threshold, the scanning is stopped and the central node of the found TI pattern is
directly pasted into the simulation grid. Because the TI is scanned randomly, this strat-
egy is completely equivalent to drawing a random value from the cpdf, yet it increases
simulation speed.

3-D reconstruction approach

Recognizing that an important practical limitation of MPS modeling consists in finding
an appropriate TI, Mariethoz and Renard [2010] developed a data-driven image recon-
struction approach that uses multiple-point statistics but does not require a TI. Instead
of extracting multiple-point statistics from a TI, their approach extracts multiple-point
statistics directly from the available data (i.e. the informed grid nodes), which serve as
training and conditioning data.

In the present study, we applied the approach by Mariethoz and Renard [2010],
from here on called the 3-D reconstruction approach, to derive 3-D facies models for the
Krauthausen aquifer using the GPR derived facies distribution along the various 2-D
crosshole planes as training and conditioning data (Figure 30). For the simulation, the
approximately 25 m × 50 m × 6 m aquifer volume shown in Figure 30 is discretized
on a grid of 131 × 244 × 30 nodes. This results in approximately 106 nodes, of which
about 2% are informed by the GPR planes. The simulations were carried out with the
direct sampling algorithm using a maximum neighborhood of 35 nodes, an acceptance
threshold of 0 (this means that the TI is initially scanned for patterns that exactly match
the data event; if no such pattern is found, the TI pattern with the lowest mismatch is
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accepted) and a simulation path that ensures that only nodes with at least one informed
neighbor are simulated. This parametrization was chosen based on the examples given
by Mariethoz and Renard [2010] who used the same parameter values for their “Real-
case 3-D application” (Example 3.4 in their paper).

Sequential 2-D approach

In field studies, providing a 3-D training image will often be more challenging than
providing a 2-D training image because 2-D information can often be obtained with less
effort e.g. from outcrops or geophysical surveys. This has motivated Comunian et al.
[2012] to develop a method that allows conducting 3-D MPS simulations on the basis of
2-D training images. Two perpendicular 2-D training images need to be specified. These
TIs are used to perform multiple sequential 2-D MPS simulations in a 3-D grid. Because
the simulations are conducted along perpendicular directions, the simulated slices cross
each other, and the nodes along the intersection lines with already simulated slices can
be used as conditioning data for the following 2-D simulations. In this way, a 3-D volume
is eventually generated “slice-by-slice” without performing an actual 3-D simulation at
any time. As a consequence, their approach requires only 2-D TIs instead of 3-D TIs.

b)a)

Figure 31: 2-D perpendicular training images used for the sequential 2-D approach.

In the present study, two perpendicular TIs were derived from the longest longitudi-
nal GPR transect and the longest transverse GPR transect, respectively (Figure 31). The
2-D TIs were used to apply the approach by Comunian et al. [2012], from here on called
the sequential 2-D approach, to simulate the facies distribution in the 131× 244× 30 nodes
grid introduced already in the previous section. Following Comunian et al. [2012], we
used 3 multigrids and z as an auxiliary variable to conduct 2-D simulations with the
impala algorithm. Figure 32 illustrates the simulation sequence for the first 10 slices. At
the beginning, the four outer surfaces are simulated (black lines). In the following, the
simulation proceeds by dividing the remaining “empty spaces” into half (i.e. the slices

x

y

x

y

1

2

3

4 6

5

7
8

10
9

Figure 32: Simulation sequence for the first 10 slices using the sequential 2-D approach (top
view). The numbers refer to the order in which individual slices are simulated. Each
2-D simulation considers the nodes along the intersection lines with already simu-
lated slices as conditioning data.
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along the central red lines are simulated next, followed by the slices along the blue lines).
Note that while the TIs comprise only the two main GPR transects, all GPR transects are
included as conditioning data (Figure 30).

Combined approach

As will be shown in Section 4.3.1 and 4.3.2, our results suggest that the 3-D reconstruc-
tion approach is preferable over the sequential 2-D approach when dense conditioning
data are available; but when sparse conditioning data are available, the sequential 2-D
approach is preferable over the 3-D reconstruction approach. With the goal to integrate
the benefits from both approaches, we propose a combined application of the two ap-
proaches. The basic idea is to employ each approach under the conditions where its
performance is optimal: the sequential 2-D approach in the beginning, when only few
conditioning data exist; the 3-D reconstruction approach later, when already simulated
nodes contribute more and more conditioning data. We propose the following 2-step
workflow:

1. The first step consists of starting the sequential 2-D approach exactly in the same
manner as already described. After a user-defined number of 2-D simulations,
however, the sequential 2-D approach is stopped, and the partly informed simu-
lation grid is saved. At this stage, the simulation grid contains (a) the initially
available conditioning data and (b) the already simulated 2-D slices.

2. This is the starting point for the second step, which consists of running the 3-D
reconstruction approach using the partly informed simulation grid from the first
step, as training and conditioning data.

Note that this workflow is not at all restricted to the data set used in the present study,
but can be applied, without any additional implementations, whenever the sequential
2-D approach can be applied.

4.2.3 Evaluating the quality of a simulation outcome

We evaluate the quality of a simulation outcome based on its multiple-point histogram
(MPH). The MPH indicates the frequency of spatial patterns in a grid, for a user-defined
template [Boisvert et al., 2007]. For example, for a variable with 3 possible states and
a 3 × 3 nodes template, there would be a total number of 19683 (39) possible patterns.
The MPH is obtained by scanning the entire grid for each pattern, and recording their
number of occurrences [Boisvert et al., 2007].

MPS simulations aim at reproducing the spatial patterns found in a TI. Because grids
with similar spatial patterns are characterized by similar MPHs, successful pattern re-
production will result in an MPH that is very similar to the MPH of the TI. However,
as the simulation proceeds and the simulation grid gets increasingly filled by informed
nodes, the simulation may produce data events that are incompatible with the TI. Such
data events deteriorate the simulation and lead to a deviation of the simulated MPH
from the MPH of the TI. Taking the MPH of the TI as a reference and quantifying the de-
viation of a simulated MPH from this reference MPH, thus provides information about
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the quality of a simulation outcome. A quantitative metric for the dissimilarity of two
MPHs, p and q, is the Jensen-Shannon (JS) divergence [Tan et al., 2014]
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If more than two MPHs shall be compared, a distance matrix D can be obtained by
computing Eq. (20) for all possible pairs of MPHs. In the present study, we use the
MPH-distance to the GPR derived facies distribution to evaluate the quality of an MPS
simulation outcome. More precisely, we use the 15 available GPR planes to obtain an
ensemble of 15 reference MPHs, and we assume that the quality of a simulation out-
come is reflected in the distance of its MPH to these reference MPHs. A small distance
indicates consistent spatial structures, and thus, high-quality simulation results. A large
distance indicates inconsistent structures, and thus, poor simulation results.

Because the simulation outcome is 3-D, but the GPR planes are 2-D, we decompose the
simulated 3-D block into 2-D vertical slices. As the simulation grid has dimensions of 131

× 244 × 30 nodes, this results in 131 slices along the longitudinal direction (yz) and in
244 slices along the transverse direction (xz). Because we want to investigate in detail if
the simulation quality differs with the location in the simulation domain we additionally
split each longitudinal slice into 7 segments, and each transverse slice into 4 segments.
This results in a total number of 1893 segments with a length of approximately 6 m. By
calculating the MPH (for a 3 × 3 template) for each simulated segment and for each GPR
plane, and by computing Eq. (20) for all possible pairs, a distance matrix D is obtained
which describes the dissimilarity among all simulated segments and GPR planes. The
information in D is visualized using multi-dimensional scaling (MDS) [Caers, 2011].
MDS approximates the MPH-distance by a lower-dimensional Euclidean distance in
Cartesian space, which facilitates the visualization of D.

In addition, we propose to use the minimal MPH-distance to a GPR plane as a quan-
titative proxy for the quality of a simulated segment. As there are 15 GPR planes, there
are 15 individual distances d1,...,15 available for each simulated segment (one distance
to each GPR plane). By taking the smallest distance dmin = min(d1,...,15) as a quality
measure, a simulated segment is assigned a high quality if it is similar to any one of
the GPR planes. Alternatively, one could use the sum of distances to all GPR planes,
but this would mean that if several GPR planes are similar to each other, a simulated
segment which is similar to them is better than a simulated segment which is similar to
a GPR plane that is different from other GPR planes.

4.3 results
4.3.1 3-D reconstruction approach (stand-alone)

The facies model obtained from the 3-D reconstruction approach is shown in Figure 33.
The simulated facies distribution exhibits 3-D structures that are locally consistent with
the conditioning data, i.e. the spatial structures in the GPR planes continue in the sim-
ulation grid (Figure 33b). Overall, however, the facies distribution appears patchy. Dis-



4.3 results 73

GPR facies 1

GPR facies 2

GPR facies 3

Δx ≈ 25 m

Δz ≈ 5 m

Δy ≈ 45 m

GPR facies 1

GPR facies 2

GPR facies 3

3
4
5
6
7
8

15

20

25

30

35

80

85

90

95

100

105

110

115

120

y (m)

x (m)

z (m)

a) b)

MPS simulation

facies 1

facies 2

facies 3

GPR transects

facies 1

facies 2

facies 3

xy

z

Figure 33: Result of the 3-D reconstruction approach. a) Block view of the simulated 3-D volume.
White dashed lines show the locations of the GPR transects, which were used as
training and conditioning data. b) Cross-sectional slices through the simulated 3-D
volume and comparison with the GPR planes. For clarity, a different color-scale is
prescribed to simulated nodes and to GPR informed nodes.

connected structures and isolated pixels can be observed. Particularly further away from
the conditioning GPR planes, the simulated facies structures seem to deteriorate. This
is most obvious for the distribution of facies 3, which seems to follow the GPR transects
in the simulation grid (Figure 33a). In the rest of the simulation domain, facies 3 is less
abundant. This is also reflected in the global facies proportions (Table 5). While facies
3 accounts for 14% of the conditioning data, it accounts for only 7% of the simulated
3-D volume. For all three facies, the differences between reference and simulated facies
proportions sum up to 24%.

As described in Section 4.2.3, the consistency between the spatial structures in the
simulation grid and the spatial structures in the GPR images is assessed by decomposing
the simulated 3-D block into multiple 2-D segments and calculating the JS-divergence
(Eq. (20)) between the MPHs of these segments and the MPHs of the GPR images. The
resulting distance matrix is visualized using MDS. Figure 34 shows the MDS plot for
the 3-D reconstruction result. The GPR images are plotted in red. The 2-D segments
extracted from the simulated 3-D block are plotted in black. On the one hand, it can be
observed that the distribution of black data points comprises the area where the GPR
images plot. This shows that some part of the simulated segments are consistent with
the GPR data (meaning that they are characterized by an MPH similar to the MPH of the
GPR images). On the other hand, the black data points are scattered over a much larger

Table 5: Facies proportions for the conditioning data and for the simulated 3-D models shown
in Figure 33a, 36a and 39a

Data / Simulation result Facies 1 Facies 2 Facies 3 Deviationa

GPR conditioning data (reference) 36 % 50 % 14 % -
3-D reconstruction approach 31 % 62 % 7 % 24 %
Sequential 2-D approach 38 % 51 % 11 % 6 %
Combined approach 38 % 49 % 13 % 4 %
aTotal deviation from reference (i.e. the sum of deviation over all facies)
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Figure 34: MDS plot for the 3-D reconstruction approach. The distance is the JS-divergence
between the MPHs of simulated segments/GPR planes. Percentages in paranthesis
quantify the amount of variance explained by a dimension.

area, including regions far away from where the GPR images plot. These simulated
segments are not consistent with the GPR data (i.e. they contain spatial structures which
are not contained in the GPR images).

Figure 34 includes images of three individual 2-D segments that plot in different
regions of the MDS map. As expected, the spatial structures in the segments can be
seen to deteriorate with increasing distance to the GPR planes in the MDS plot. This
supports the idea that the quality of a simulated segment can be evaluated based on the
segment’s distance (in terms of the MPH) to GPR planes. As described in Section 4.2.3,
we use the minimal MPH-distance to a GPR plane, dmin, as a proxy for the quality of a
simulated segment. Note that we also tested using the arithmetic and harmonic mean
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(red) derived from the 3-D reconstruction approach. As a measure of quality, the
minimal distance dmin between the MPH of a simulated segment and the MPH of a
GPR plane is used.
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of the MPH-distances to GPR planes as a quality proxy, but the results were very similar
to the results obtained using the minimal distance dmin. Here we show only the results
that were obtained with dmin. Figure 35 shows in green and red color, the 33% of the
longitudinal and transverse segments that are characterized by the smallest and largest
dmin-values, respectively. While the green segments are distributed closely around the
GPR planes, the red slices tend to plot farther away from the GPR planes (e.g. in the
corners of the domain). This suggests that the 3-D reconstruction approach yields better
results close to the conditioning data than farther away from the conditioning data. This
observation is in agreement with the findings of Mariethoz and Renard [2010], who
discussed the benefits and limitations of the 3-D reconstruction approach and noted
that only “at locations where sufficient information is present, complex shapes can be
inferred from the data” [Mariethoz and Renard, 2010]. Our study provides quantitative
evidence for this behavior using the JS-divergence between simulated and observed
MPH as a proxy for simulation quality.

4.3.2 Sequential 2-D approach (stand-alone)

The 3-D facies model obtained from the sequential 2-D approach is shown in Figure 36.
Overall, the facies model is characterized by layer-like structures that appear to be con-
nected across the entire simulation grid. The conditioning GPR planes are well inte-
grated in the simulation grid (Figure 36b). However, particularly in the inner volume
of the 3-D block (Figure 36b), noisy simulation results with unclean facies boundaries
can be observed. Compared with the 3-D reconstruction result (Figure 33), the facies
distribution in the sequential 2-D model is more continuous. Most notably, a more or
less continuous top layer of facies 3 is obtained, which was not obtained from the 3-D re-
construction approach. As a consequence, the global facies proportions of the sequential
2-D model better match the facies proportions of the conditioning data. The deviations
for all three facies sum up to only 6%, which is a distinct improvement relative to the
24% deviation obtained with the 3-D reconstruction approach (Table 5).
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Figure 36: Result of the sequential 2-D approach using the training images shown in Figure 31.
a) Block view of the simulated 3-D volume. White dashed lines show the locations
of the GPR transects, which were used as conditioning data. b) Cross-sectional slices
through the simulated 3-D volume and comparison with the GPR planes. For clarity,
a different color-scale is prescribed to simulated nodes and to GPR informed nodes.
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Figure 37: MDS plot for the sequential 2-D approach. The distance is the JS-divergence between
the MPHs of simulated slices / GPR planes.

Figure 37 shows the MDS plot for the sequential 2-D simulation results. The distribu-
tion of the data points shows that the ensemble of 2-D segments extracted from the 3-D
simulated block comprises both segments that are consistent (in terms of the MPH) with
the GPR planes, but also segments that are not consistent with the GPR planes. This
is similar to what was observed for the 3-D reconstruction approach. What is different
for the sequential 2-D simulation result, is how the consistent/inconsistent segments are
distributed in the model domain. This is shown in Figure 38a, where again the 33% of
the longitudinal and transverse segments with the smallest and largest dmin-values are
plotted in green and red color, respectively. In contrast to the 3-D reconstruction result,
where the green segments were clearly aligned along the GPR planes (Figure 35), here,
the green and red segments are quite evenly distributed over the entire model domain.

The quality of the sequential 2-D results, thus, does not seem to be controlled by the
proximity to conditioning data. Instead, the quality seems to be a function of the sim-
ulation sequence (Figure 38b). This can be explained as follows. The sequential 2-D
approach generates 3-D volumes by performing multiple 2-D simulations, considering
already simulated slices as conditioning data for the following simulations. With in-
creasing simulation sequence, the 2-D simulations become more and more constrained
by the already simulated pixels along the intersection lines with previously simulated
slices. As discussed by Comunian et al. [2012] this increasing amount of conditioning
data eventually produces data events that are incompatible with the TIs. Such incom-
patible data events deteriorate the simulation results and are the reason why we see a
correlation between simulation sequence and quality (Figure 38b).

In conclusion, the MPH based analysis of the facies models obtained from the 3-D
reconstruction approach and from the sequential 2-D approach, highlighted some im-
portant differences between the two approaches. The 3-D reconstruction approach was
found to yield good results close to the conditioning data, but further away from the
conditioning data, the quality of the simulation results decreased. In contrast, the se-
quential 2-D approach was able to produce good results far away from the conditioning
data, but with increasing simulation sequence (i.e. increasing amount of conditioning
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Figure 38: a) Spatial distribution of 2-D segments with “high quality” (green) and “low quality”
(red) for the sequential 2-D approach. As a measure of quality, the minimal distance,
dmin between the MPH of a segment and the MPH of a GPR plane is used. b) Quality
of the segments as function of the simulation sequence. Red lines represent two times
the standard deviation.

data), the quality of the simulation results decreased. So basically, while the presence of
conditioning data improves the 3-D reconstruction results, it deteriorates the sequential
2-D simulation results. Given these complimentary requirements, it appears promis-
ing to combine the two approaches in order to benefit from the advantages of both
approaches.

4.3.3 Combined approach

As described in Section 4.2.2, a combined application of the two approaches was pro-
posed by starting with the sequential 2-D approach, and after a couple of 2-D simu-
lations, switching to the 3-D reconstruction approach. Obviously, the question arises
regarding the optimal point to switch from the one approach to the other. We will
address this question later in Section 4.4. First, we will analyze the results obtained
by choosing a switching point after 10 slices simulated by the sequential 2-D approach.
Figure 39 shows the resulting 3-D facies model. Visual comparison with the models
obtained from the two approaches stand-alone (Figure 33 and Figure 36) indicates that
the combined approach might indeed be an improvement because the obtained model
shows neither the disconnected patches nor the noisy facies boundaries, which were the
main issues in the models obtained from the two approaches stand-alone. The combined
approach also better reproduces the reference facies proportions (Table 5).

To compare the facies models from the three different approaches in more detail,
MDS plots were constructed by calculating the MPH-distance between the 2-D segments
extracted from all three models and plotting them together in the same MDS plot. The
resulting MDS maps are shown in Figure 40a. Individual segments from the three
models are compared in Figure 40b. Overall, it can be observed that the segments
obtained from the combined approach tend to plot closer to the GPR planes in the
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Figure 39: Result of the combined approach. a) Block view of the simulated 3-D volume. White
dashed lines indicate the GPR transects. Black lines indicate the slices simulated with
the sequential 2-D approach before switching to the 3-D reconstruction approach. b)
2-D slices through the simulated 3-D volume. For clarity, a different color-scale is
prescribed to simulated nodes and to GPR informed nodes.

MDS maps than the segments obtained from the other two approaches. This suggests
that, of the three approaches, the combined approach produces spatial structures that
best resemble the GPR images. However, due to the strongly overlapping data points,
it is difficult to decide on the basis of the MDS maps if one approach outperforms
another. Moreover, the distances in the MDS maps are not the actual distances but
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their Euclidean approximations. It appears more appropriate to use the actual distances
for quality assessment. Recall that in Section 4.3.1 and 4.3.2 we have used the actual
distance dmin to identify differences in the quality of segments belonging to the same
3-D model (Figure 35 and 38). Now we will use dmin to assess differences in the quality
of segments belonging to different 3-D models. Figure 41 shows dmin for all segments
extracted from (a) the 3-D reconstruction model, (b) the sequential 2-D model and (c)
the combined model. By sorting the individual segments (x-axis) with respect to dmin,
distribution curves for dmin are obtained that allow for a quantitative comparison of
the quality of different models. Because low values for dmin express a strong statistical
similarity between the simulated spatial structures and the structures in a GPR image,
they indicate high quality simulation results. In contrast, high values for dmin indicate
low quality simulation results. It is obvious in Figure 41, that the combined approach
leads to the distribution curve that is characterized by the lowest dmin values. This shows
that the combined approach produces spatial structures that are in better agreement
with the GPR images than both the 3-D reconstruction and the sequential 2-D approach
stand-alone. The distinct improvement is particularly intriguing because the dmin-curves
from the two approaches stand-alone look quite similar (with slight advantages for the
sequential 2-D approach, though). Due to the similarity of the two curves, it appears
useless to combine the two approaches to get a better result. But the point is that due to
the opposite effect that conditional data has on the two approaches (Figure 35 and 38),
the two approaches produce “good” and “bad” segments in different spatial parts of
the simulation domain. Therefore, the effect of combining the two approaches is that
the “bad” segments of the one approach are replaced by the “good” segments of the
other approach. This eventually leads to the distinct improvement that can be observed
in Figure 41 for the combined approach.
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Figure 41: Characteristic distribution curves for dmin obtained from the different approaches.
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4.4 discussion
4.4.1 General validity of findings

In Section 4.3 we have analyzed in detail one simulation outcome obtained from each
approach. But MPS offers a stochastic modeling framework, i.e. one simulation outcome
is only one out of multiple realizations that can be obtained from each approach. There-
fore, it is important to test if our observations are valid for other realizations. Figure 42

shows the distribution of dmin for three realizations obtained from each approach. The
distribution curves from the individual realizations are strikingly similar. Note that this
similarity is not a consequence of nearly identical 3-D facies models. In fact, the spatial
arrangement of facies in the simulation grid looks quite different from one realization
to the other (not shown here). Nevertheless, in terms of dmin, which expresses the MPH-
based similarity to the GPR images regardless of the exact location of specific structures,
the realizations yield nearly identical results. This finding strongly suggests that the
results presented in Section 4.3 are generally valid, even though a number of only three
realizations is arguably not sufficient to ascertain general validity.
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Figure 42: Distribution of dmin for three different realizations obtained from each approach.

4.4.2 Optimal switching point

As foreshadowed in Section 4.3.3, we will investigate if there is an optimal point to
switch from the sequential 2-D approach to the 3-D reconstruction approach. Principally,
an optimal switching point should be not too early, because otherwise there is not suf-
ficient conditioning data available for the 3-D reconstruction approach, but also not too
late, because otherwise flawed simulation results, obtained with increasing simulation
sequence from the sequential 2-D approach, are irrevocably included into the simulation
grid. In fact, avoiding the latter is critical because, once simulated, defective structures
get reproduced by the 3-D reconstruction approach, which uses the already simulated
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Figure 43: Different switching points. SP refers to the number of slices simulated with the
sequential 2-D approach before switching to the 3-D reconstruction approach. The
slices simulated with the sequential 2-D approach are represented by black lines. The
conditioning GPR planes are represented by red lines.

slices as training data. To identify an optimal switching point, the performance of the
combined approach was tested for different switching points. This was achieved by run-
ning the sequential 2-D approach and saving the partly informed simulation grid after
4, 10, 18, 34, 66 and 130 simulated slices (Figure 43). The partly informed grids were
then used as starting points for the 3-D reconstruction approach.

Figure 44 shows the distribution of dmin obtained for the different switching points
SP. While relatively high values for dmin are obtained for very early and late switching
points, lower values for dmin are obtained for the intermediate switching points. This

 

0 0.5 1
0

0.1

0.2

n
i
 / n

tot

 

 

S =  4P

S = 10P

S = 18P

S = 34P

S = 66P

S =130P

GPR planes

switching points

d
m

in

Figure 44: Effect of different switching points on simulation results and comparison with the
(reference) distribution of dmin derived from the GPR images.
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shows that the intermediate switching points yield results that are in better agreement
(in terms of the MPH) with the GPR images than the results obtained with the early and
late switching points.

What is additionally included in red color in Figure 44 is the distribution of dmin de-
rived for the GPR images themselves by calculating for each GPR image the minimal
JS-divergence to another GPR image. To enable the comparison of the distribution of
dmin for simulation results and GPR images, the x-axis in Figure 44 is expressed as the
rank number ni of the sorted segments/images divided by the total number ntot of
segments/images (i.e. ntot=1893 for the simulated segments and ntot=15 for the GPR
images). This comparison is based on the idea that lower values for dmin might not
always indicate better simulation results. Consider the extreme case that dmin is zero for
each 2-D segment extracted from a simulated 3-D model. In this case, each 2-D segment
would be a mere copy of one of the GPR images. Clearly, this should not be considered
a good simulation result. If we assume that the 15 GPR images are representative for
the entire aquifer, then the distribution of dmin for the GPR images can be considered
a reference distribution, and the distribution of dmin for the simulated segments should
ideally follow this reference distribution. In Figure 44, the majority of dmin values ob-
tained from the GPR images plot below the distribution curves from the simulations,
which shows that the similarity among the GPR images is more pronounced than the
similarity between simulation results and GPR images. Nevertheless, the GPR image
based dmin distribution is not distinctly different from the simulation results, and par-
ticularly the simulation results obtained with the switching point SP=10 show a fairly
good match with the GPR image based reference distribution.

4.4.3 Possible future research directions

More research should be carried out to further test and optimize the combined approach
presented here. One potential improvement would be to develop a strategy against
incompatible “simulation fronts” originating from different conditioning slices. This
problem was already recognized by Mariethoz and Renard [2010] who applied the 3-D
reconstruction approach to reconstruct a synthetic 3-D test case and observed unrealistic
sharp transitions in the simulated facies distribution at the equidistance of two parallel
conditioning slices. They attributed these artifacts to the custom path (i.e. the sequence
in which nodes are simulated) used for the 3-D reconstruction. This path randomly
visits nodes that have at least one informed neighbor. This means that first the direct
neighborhood of the conditioning data is simulated, then the direct neighborhood of
the simulated nodes is simulated, etc. As a result, the simulation gradually moves
away from the conditioning data. When simulated nodes originating from distant con-
ditioning slices meet, incompatibilities can occur and lead to sharp transitions in the
simulation grid. In the present study, the same custom path was used for the 3-D recon-
struction, and occasionally, sharp transitions in the simulated structures between two
conditioning slices could be observed. One example for such a sharp transition can be
seen in Figure 40b, where the 1000th closest segment for the combined approach shows
an upper blue facies layer that abruptly ends as if vertically cut. Probably, this is due
to incompatible simulation fronts originating from conditioning slices located left and



4.5 conclusions 83
right of this segment. As noted by Mariethoz and Renard [2010], a possible strategy
to avoid such incompatible simulation fronts would be to use larger neighborhoods
for the simulations because this would increase the probability that simulated nodes
coming from another slice belong to the neighborhood of the node to be simulated. Al-
ternatively, one could use syn-processing [Mariethoz et al., 2010] to remove inconsistent
patterns through recursive un- and re-simulation of nodes. Unfortunately, both strate-
gies would greatly increase the computational demands. Another possibility would be
to relax the condition for the path so that not only nodes in the direct neighborhood
of informed nodes are simulated but also nodes which are some (small) distance away
from informed nodes.

Another potential improvement lies in modifying the sequence of slices simulated
with the sequential 2-D approach. In the present study, alternating simulations along
xz and yz were performed to gradually fill up the simulation domain (compare Fig-
ure 43). As noted by Comunian et al. [2012], it can be beneficial when conditioning data
are available, to define a customized sequence by preferentially simulating slices that
include as many conditioning data as possible. In addition, when conditioning data are
available along 2-D planes (such as from GPR) it appears particularly useful to avoid the
simulation of slices located in close distance to conditioning planes with approximately
parallel orientation, because in this case, it is very likely that the simulated slice and the
conditioning plane contain inconsistent structures, which are difficult to “link” in the
later simulations.

Finally, future studies should investigate the importance of the work presented here
by conducting flow and transport simulations. In the present study we have evaluated
the quality of simulated facies models based on spatial structures (i.e. based on the
consistency, in terms of MPH, with available data). Often, the ultimate goal of a sub-
surface facies model is to enable flow and transport modeling (e.g. in the context of
groundwater extraction, oil production, contaminant transport and remediation, etc.).
Therefore, it would be interesting to evaluate the quality of a facies model on the basis
of flow and transport simulations instead of its spatial structure only. In fact, the facies
models derived in the present study provide an excellent opportunity to carry out such
flow/transport based evaluations, because porosity and hydraulic conductivity values
are available for each facies (Table 4) and it would be straight-forward to use them to
parametrize the obtained facies models for flow and transport simulations. Simulation
results could be compared with pumping and tracer test data available from previous
studies at the Krauthausen site [Li et al., 2007, 2008; Müller et al., 2010]. This comparison
would provide the opportunity to verify/falsify individual facies models and, on this
basis, decide which approach yields the most realistic facies distribution.

4.5 conclusions
The present study demonstrates that high resolution 2-D geophysical images can pro-
vide enough information to derive reasonable 3-D models of the subsurface using MPS
simulations. The advantage of such data-driven approach is that no external TI (which
possibly does not properly reflect the spatial structure of the actual field being mod-
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eled) is required. The disadvantage is that 3-D MPS simulations have to be carried out
on the basis of 2-D information. We have tested three different approaches (two exist-
ing, one new) to overcome this problem. To quantitatively compare the performance
of the three approaches, we approximate the quality of a simulation outcome by the
similarity of its multiple-point histogram (MPH) with reference MPHs, derived from
the geophysical images. In this way, a simulation outcome is considered as “good” if
the simulated spatial patterns are consistent with the type of spatial patterns observed
along the geophysical transects. Using this MPH-based analysis we can show that the
3-D reconstruction approach proposed by Mariethoz and Renard [2010] produces good
results close to the conditioning data, but farther away from the conditioning data the
simulation results deteriorate. Quite conversely, the sequential 2-D approach proposed
by Comunian et al. [2012] produces good results when only few conditioning data exist,
but with increasing simulation sequence the quality decreases because the simulations
become too strongly constrained by conditioning data.

To integrate the benefits from both approaches, we propose a combination of the two
existing approaches. The combination is achieved by starting with the sequential 2-D
approach, and after a couple of 2-D simulations, switching to the 3-D reconstruction
approach. In this way, each approach is employed under the conditions where its per-
formance is optimal: the sequential 2-D approach is used when only few conditioning
data exist; the 3-D reconstruction approach is used when more and more conditioning
data become available. Our results clearly show that the combined approach is able
to reproduce the reference MPHs better than each of the two approaches stand-alone.
As the combined approach does not require any additional implementations, it is easy
to use and straight-forward to apply. The only requirement for its applicability is that
suitable 2-D training images are available (i.e. similar requirements as for the sequential
2-D approach). More research should be carried out to further test and optimize the
combined approach presented here. In particular, its benefits should be evaluated on
the basis of flow and transport simulations.



5 C O N C L U S I O N S A N D O U T LO O K
5.1 conclusions
Overall, this thesis presents an approach that combines high resolution geophysical
imaging and multiple-point statistical modeling to estimate the 3-D structure of aquifers.
Chapters 2 and 3 investigate the value of crosshole GPR full-waveform inversion for
hydrogeological site characterization. Chapter 4 explores different approaches to utilize
the 2-D information from GPR to generate 3-D aquifer models using multiple-point
statistics. In the following, we will summarize the principle findings from the individual
Chapters and we will draw some general conclusions.

Chapter 2 describes the measurement and inversion of GPR data along five adjacent
crosshole planes. Each crosshole plane is inverted separately, i.e. independent from
the adjacent planes. Nevertheless, consistent structures in the permittivity and elec-
trical conductivity distribution can be observed left and right of the boreholes, which
indicates robust inversion results. To infer lithological facies from the GPR results we
present a zonation approach that is based on cluster analysis: The k-means algorithm
is used to partition the inverted GPR tomograms into clusters, and the variance ratio
criterion is used to determine the optimal number of clusters. Our results suggest three
clusters in the GPR data set. Mapped back into the aquifer cross-section, these clusters
delineate spatial zones that integrate the information from both GPR attributes (dielec-
tric permittivity and electrical conductivity). A second cluster analysis, conducted with
multivariate CPT data, confirms the number of clusters and their spatial distribution in
the aquifer. This clearly suggests that GPR and CPT independently identified the same
facies. Grain size data available from one of the boreholes show that the obtained fa-
cies boundaries correlate with changes in grain size, sorting and porosity. These results
demonstrate that full-waveform inversion of crosshole GPR data followed by simple
k-means cluster analysis is an applicable approach to delineate lithological facies in al-
luvial aquifers. A limitation of this approach consists in the crisp classification scheme
provided by k-means (each data point is uniquely assigned to one cluster). While this is
a useful approach to detect sharp contrasts in subsurface properties, it is less well suited
to characterize gradual changes. In our study this manifests in a better agreement of
GPR and CPT clusters in the upper aquifer cross-section where an erosional-surface
boundary clearly separates sand from gravel; and in a less well agreement in the lower
aquifer cross-section where the aquifer properties change more gradually.

Chapter 3 focuses on the hydrogeological relevance of the information that can be
obtained from GPR. We show that porosity estimates, derived from GPR dielectric per-
mittivity, correlate strongly with the porosity independently determined from direct-
push neutron logs. The dielectric permittivity from full-waveform inversion is found to
more accurately reproduce sharp contrasts and small-scale variations in porosity than
the dielectric permittivity from conventional ray-based inversion. A logistic regression
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approach is used to predict the distribution of lithological facies along the GPR transects.
In contrast to the cluster analysis based zonation approach presented in Chapter 2, the
logistic regression approach uses secondary information from grain size distributions
to define facies. Although this requires additional data, it has the advantage that it is
clearly defined what kind of sediment each facies represents. Moreover, the logistic re-
gression approach assigns each GPR pixel a probability to belong to each facies, which
provides additional information about the reliability of the classification of GPR pixels.
Cone resistance logs, located along the GPR transects, confirm the existence of the GPR
mapped facies. Vertical profiles of porosity and hydraulic conductivity from direct-push,
flowmeter and grain size data show that the GPR facies are meaningful with regard to
porosity and hydraulic conductivity, even though the absolute hydraulic conductivities
from the different methods (direct-push, flowmeter, grain size) differ up to approxi-
mately one order of magnitude. Comparison of the GPR predicted facies architecture
with tracer test data suggests that the plume splitting observed in a tracer experiment
was caused by a hydraulically low-conductive sand layer with a thickness of only a few
decimeters. This sand layer was not detected using conventional ray-based GPR data
inversion, demonstrating the strength of full-waveform inversion for hydrogeological
site characterization.

The facies distribution along the various GPR transects provides valuable informa-
tion about the architecture and connectivity of subsurface structures. In Chapter 4, we
demonstrate that this information can be used to generate stochastic realizations of the
3-D aquifer structure using multiple-point statistics (MPS). The main problem encoun-
tered with this approach is that 3-D MPS simulations must be carried out on the basis
of 2-D information. Three different approaches to this problem (two existing, one new)
are tested and compared. We characterize a simulation outcome in terms of its multiple-
point histogram (MPH) and develop a quantitative proxy for simulation quality by com-
paring the simulated MPHs with reference MPHs, derived from the GPR facies maps.
In this way, the similarity between simulated and observed spatial patterns is assessed,
regardless of their exact spatial location. Based on this proxy, we are able to evaluate
the benefits and limitations of the two existing approaches, and we develop a new com-
bined approach that integrates the benefits from both approaches. Using this combined
approach, we obtain reasonable 3-D facies models that reproduce the reference MPHs
better than each of the two approaches stand-alone.

In conclusion, this thesis demonstrates that crosshole GPR full-waveform inversion
provides information that is highly valuable for hydrogeological site characterization.
The particular strength of this method lies in its spatial resolution, which goes well
beyond the resolution of classical geophysical imaging techniques such as ray-based
GPR data inversion [e.g. Dafflon et al., 2011] or ERT imaging [e.g. Müller et al., 2010].
Equally important is that this method yields information on full cross-sections because
this allows one to assess the specific connectivity structure of an aquifer. This infor-
mation, in turn, is crucial to develop realistic groundwater models because knowledge
about the connectivity structure of an aquifer is the key to predict flow and transport in
that aquifer [Zheng et al., 2011; Renard and Allard, 2013]. We have presented a multiple-
point statistical modeling approach that allows for generating 3-D aquifer models while
explicitely accounting for the GPR inferred aquifer structure. In this way, we are able
to model the site-specific heterogeneity of an aquifer, which provides an excellent ba-



5.2 outlook 87
sis to set up realistic groundwater models for numerical flow and transport prediction.
Notably, the proposed workflow is stochastic and yields multiple realizations, which is
highly useful for the assessment of model uncertainty.

5.2 outlook
The final outcome of the approach presented in this thesis are 3-D facies models that
reflect the specific architecture and connectivity of the facies inferred from GPR. The
next logical step would be to parametrize these facies models for numerical flow and
transport simulations. The resulting groundwater models could be verified/falsified by
comparing their output with pumping test data and tracer test data that are available
from previous studies at the Krauthausen site [e.g. Li et al., 2007, 2008; Müller et al.,
2010]. In the following, we will outline possible approaches how the derived facies mod-
els could be transformed into groundwater models, and we will indicate some research
questions that could be adressed.

A simple approach would be to assign a uniform porosity and hydraulic conductiv-
ity to each facies. The required values could be retrieved directly from Table 4. By
comparing the resulting flow and transport models, one could evaluate which method
(direct-push, flowmeter, grain size) yielded the hydraulic conductivities that best repro-
duce the observed tracer transport. A particularly interesting question is if the contrast
between the measured hydraulic conductivities of the sand and the sandy gravel facies
is strong enough to reproduce the observed splitting of the tracer plume.

Instead of assuming internally homogeneous facies, one could also try to account
for the heterogeneity within facies (i.e. each facies is assumed to be represented by
a distribution of porosity and hydraulic conductivity rather than by uniform values).
Wainwright et al. [2014] proposed to model intra-facies heterogeneity by (1) specifying
specific parameter distributions for each facies, and (2) assigning pixel-wise parameter
values by randomly drawing values from the corresponding distributions. A similar ap-
proach could be applied to parametrize the Krauthausen facies models: Specific porosity
distributions for each facies are available from CPT neutron logs and from GPR dielec-
tric permittivity (Figure 27); specific distributions of hydraulic conductivity are available
from direct-push injection logs and from grain size (Figure 28). One could argue that
randomly drawing values from a distribution (i.e. without considering spatial correla-
tion/connectivity) contradicts our premise to properly account for structure and connec-
tivity in aquifer models. But one could also argue that the spatial connectivity is already
imposed by the facies structure, so that neglecting connectivity at the intra-facies scale
is acceptable. This is anyway a very interesting direction for future research.

Finally, the hydraulic conductivity of facies could be estimated by inverse modeling.
In fact, this would represent an interesting follow-up study of the work conducted by
Li et al. [2008] who jointly inverted flowmeter and pumping test data to estimate the
3-D hydraulic conductivity structure at the Krauthausen site. Unfortunately, despite
considering a huge amount of data in their inversion (175 measurements of steady-
state drawdown and 808 flowmeter measurements) they found the inferred hydraulic
conductivity field to show distinct 3-D structures only in the close vicinity of those
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boreholes with flowmeter data. Some meters away from the boreholes, the inferred
hydraulic conductivity field was practically homogeneous. Deriving 3-D facies models
as described in this thesis, and using the structural information from these models to
additionally constrain inverse modeling, might be the key to inferring more realistic 3-D
hydraulic conductivity structures (at Krauthausen and elsewhere).
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