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ABSTRACT

IZA DP No. 11141 NOVEMBER 2017

Spillovers in Education Choice*

This paper examines how skills are shaped by social interactions in families. We show 

that older siblings causally affect younger sibling’s education choices and early career 

earnings. We focus on critical course choices in high school and overcome the identification 

challenges of estimating spillover effects in education by exploiting exogenous variation 

in choice sets stemming from a pilot program. The pilot induced an essentially random 

subset of older siblings to choose advanced math-science at a lower cost, while not directly 

affecting the course choices of younger siblings. We find that younger siblings are 2-3 

percentage points more likely to choose math-science if their older sibling unexpectedly 

could choose math-science at a lower cost. We argue that the main influence of the pilot 

program on the younger siblings may be attributed to the social influence of the older 

sibling. Spillovers are strongest among closely spaced siblings, in particular brothers, and 

they have a lasting impact on the career out-comes of younger brothers. We argue that 

competition is likely one of the driving forces behind younger siblings conforming to their 

older siblings’ choices.
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1. Introduction 

Social interactions may play an important role in the formation of skills. Social groups may either 

transmit information about particular educational investments or carry social norms and identity 

concerns influencing an individual’s educational decision. Social interactions may reinforce or 

counteract the direct effect of economic shocks or policy interventions. In this paper, we focus on 

social interactions within the family in the context of advanced math-science choices in high school.1 

To the best of our knowledge, this is the first paper to quantify sibling spillovers of education choices 

and to document a considerable longer-term career impact. 

 Estimating causal spillover effects is challenging due to simultaneity, correlated unobservables, and 

endogenous peer group membership (Manski, 1993; 1995). We study naturally occurring social groups 

and exploit exogenous variation in the cost of taking up advanced math and science in high school 

among a partial population (Moffitt, 2001).2 Advanced math and science courses are critical career 

choices that increase college access and improve future earnings prospects. Understanding what 

determines these choices is crucial for understanding income inequality, since prior research suggests 

that more than 50% of individual income variation over the life-cycle is explained by choices made 

prior to age 18 (Keane and Wolpin, 1997; Cunha et al., 2005; Huggett et al., 2011). 

We exploit the fact that some older siblings in Denmark in 1984-87 were unexpectedly exposed to 

a pilot scheme after entering high school and investigate whether they influenced the course choices 

of their younger siblings. In previous work (Joensen and Nielsen, 2009; 2016) we investigated the 

direct impact of the lower cost of choosing advanced math and science on the individuals’ education 

choices, subsequent careers, and earnings. Those unexpectedly exposed to the pilot scheme obtained 

more advanced college degrees and substantially higher earnings. In this paper, we analyze whether 

there are spillover effects on younger siblings who were unexposed themselves. We find that younger 

siblings are 2-3 percentage points more likely to choose math and science if their older sibling was 

exposed to the pilot scheme. If we invoke the exclusion restriction that the pilot scheme influences the 

younger sibling’s course choice only through the older sibling’s course choice, the influence of the 

pilot scheme on younger siblings’ course choices can be interpreted as a causal peer effect. Since the 

                                                             
1 This choice is a prerequisite for increasing the supply of college graduates in science, technology, engineering, and 

mathematics (STEM). Any policy aiming to increase the investment in such skills (e.g. increased course requirements 

implemented in the US following A Nation at Risk, Gardner et al., 1983) may be seriously dampened or amplified by 

social interaction effects. Social interaction effects are extremely important during the teenage years when decisions on 

more advanced coursework are taken (Akerlof, 1997; Akerlof and Kranton, 2002; Card and Giuliano, 2013). 
2 Our study is thus methodologically similar to the study of social interaction effects in program participation by Avvisati, 

Gurgand, Guyon and Maurin (2014), Dahl, Kostøl and Mogstad (2014), and Dahl, Løken and Mogstad (2014). 
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first-stage estimate is around 7 percentage points, this implies a peer influence of older siblings on 

younger siblings of about 0.3-0.5. Thus by affecting the choice of the older sibling, almost half of the 

direct effect is expected to spill over on the younger sibling’s choice. We provide evidence that the 

bulk of the spillover of the pilot program runs through sibling interactions rather than other social 

interactions for closely spaced peers and other high school or social group characteristics. More 

generally, this suggests that knowledge about the social peer group is important to predict the total 

impact of education policies. Policies targeted at influential peers (such as older siblings) are amplified 

and have more widespread long-term effects in the presence of positive peer effects. 

Our results suggest that there is substantial heterogeneity in peer effects – both in terms of how 

strongly the older sibling responds to incentives and how their choice spills over on the younger 

sibling. Peer effects are largest for relatively closely spaced siblings with up to four year age difference, 

in particular brothers. The longer-term effects on completed education and early career earnings are 

also large for younger brothers, but always insignificant for younger sisters. First-born siblings are the 

most influential peers and parental education is also important for spillovers. We provide suggestive 

evidence that sibling competition is likely driving the peer effect as younger siblings are less likely to 

conform to their older sibling’s course choice if the older sibling is among the top performers. 

Our paper speaks to the literature trying to unravel the role of the family in skill formation and 

human development more generally.3 However, traditionally the child is not modelled as interacting 

with siblings, and rigorous economics research on the importance of social interactions among siblings 

is scarce.4 We document that sibling spillovers in education choices are possibly large. Our results 

have implications for understanding equality of opportunity, inequality, and intergenerational mobility 

where the importance of family background for educational investments has long been recognized and 

sibling correlations have recently been examined.5 We go beyond correlations and study sibling 

spillover effects in order to understand the complex family component that siblings share. 

                                                             
3 See e.g. Becker and Tomes (1979, 1986), Cunha and Heckman (2007), Cunha et al. (2010) for a theoretical framework. 

Heckman and Mosso (2014) provide a recent review. 
4 Butcher and Case (1994) find that the presence of a sister in the sibship reduces education of daughters, and they argue 

that this is because a sister changes the reference group. Qureshi (2016) finds that the education of older sisters improves 

the education of younger brothers, and she argues that this result reflects improved quality of child care as the older sister 

takes care of younger siblings. Sibling spillover effects have also been documented from parental leave taking among 

brothers (Dahl, Løken and Mogstad, 2014), military service among brothers (Bingley, Lundborg and Lyk-Jensen, 2017), 

from child health (Black et al., 2017; Breining, Daysal, Simonsen and Trandafir, 2015) and adolescent smoking, drinking 

and marijuana use (Altonji, Cattan and Ware, 2017). 
5 See e.g. Black and Devereux (2010) and Solon (1999) for reviews on intergenerational correlations and Björklund and 

Jäntti (2012), Björklund and Salvanes (2010) and Mazumder (2008) for sibling correlations in schooling. 
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The remainder of the paper unfolds as follows: Section 2 discusses identification of social interaction 

effects and presents the institutional background which our empirical strategy relies on. Section 3 

describes the data, while section 4 presents the empirical analysis of social interaction effects in the 

choice of math and science in high school. Section 5 investigates mechanisms and heterogeneity in 

peer effects. Section 6 concludes the paper. 

2. Identification of Spillover Effects Using a High School Pilot Scheme 

We exploit some unique features and changes in institutions in Denmark to identify sibling spillover 

effects. This section describes our identification strategy and the educational environment of the 

Danish high school. In the first subsection, we briefly explain the empirical challenge of identifying 

spillover effects and how we exploit the unique institutional setup to identify social interaction effects 

from older to younger siblings. Then we describe the two relevant high school regimes, which form 

the basis for our identification strategy. The second and third subsections concern the high school 

regime and the pilot scheme that provides us with exogenous variation in the cost of acquiring 

advanced math and science courses for the older siblings. The fourth subsection concerns the high 

school regime forming the basis for the math and science choices of their younger siblings. 

2.1. Identifying Spillover Effects 

Peer (or social interaction) effects occur when the choice of one individual affects the choices of 

other individuals in the same peer (or social) group. In this paper, we are interested in how math and 

science choices of an older sibling affect whether his or her younger sibling pursues advanced math 

and science courses. The general challenge of identifying peer effects lies in the empirical issues of: 

(i) endogenous group membership, (ii) simultaneity (the reflection problem), and (iii) correlated 

unobservables in the peer group.6 These identification issues can be illustrated in a setting with only 

two individuals in each peer group - an older sibling and a younger sibling. 

     ���ℎ����	��
�� = �� + �����ℎ����	���
��� + ���
�� + ����
��� + ��� + ��� + �
��              (1) 

     ���ℎ����	���
��� =  � +  ����ℎ����	��
�� +  ��
�� +  ���
��� +  �� +  �� + ��
���          (2) 

where the subscript � ∈ #$%&, ($)	*+	refers to sibling i in pair f.7 ���ℎ����	��- denotes whether 

sibling i chose advanced math and advanced science in high school, �- denotes observable 

characteristics of sibling i, � denotes sibling pair specific characteristics like family background, 

                                                             
6 Manski (1993; 1995) provides a more complete analysis of the identification of peer effects (or more generally 

endogenous peer effects), while Moffitt (2001) introduces the conceptual framework we adopt here. 
7 For ease of exposition, we suppress sibling pair subscript f. 
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gender composition, and age difference, whereas �	denotes high school specific characteristics 

including quality and average family background. Finally, �- denotes other unobserved factors 

affecting the MathScience choice of sibling i in pair f. 

Our objective is to estimate a causal effect of the older sibling’s ���ℎ����	��
�� choice on the 

younger sibling’s ���ℎ����	���
��� choice. To be able to give a causal interpretation of the parameter 

estimate of  � in (2) we need to address the empirical issues (i)-(iii) mentioned above. The third issue 

of correlated unobservables is naturally a big concern in our setting, since siblings share many common 

social and genetic influences; including common genes, family background, neighborhood, and 

schools. All these common influences shape both siblings’ preferences and abilities and could lead 

them to make similar high school course choices. Omitted variables bias due to contextual effects 

arises if we are not able to observe all the relevant sibling pair specific and individual variables. The 

first and the second issues are presumably minor in our setting: (i) siblings are born into the same 

family thus do not choose each other based on each other’s characteristics and choices, and (ii) given 

the timing of high school course choices it seems plausible that the older sibling’s course choice is 

independent of the younger sibling’s choice (�� = 0) since the older sibling makes this choice years 

before the younger sibling. This exclusion restriction overcomes the reflection problem, as we 

postulate that the direction of the sibling effect goes from the older sibling to the younger sibling.8 

Nevertheless, this is not a necessary exclusion restriction as our empirical strategy addresses all these 

three empirical concerns, if the exogenous variation in the cost of acquiring advanced math and science 

for the older sibling is independent of both sibling pair specific factors, individual sibling 

characteristics, and unobserved social and genetic influences.  

More specifically, our identification strategy exploits exogenous variation in the cost of acquiring 

advanced math and science stemming from a pilot scheme, where some older siblings unexpectedly 

got the option of a more flexible course combination. Let 8�%$�9	�:$
�� = 0 for older siblings in a 

traditional high school, where advanced math and science could only be achieved in a package of 

advanced math, advanced physics and intermediate chemistry. Let 8�%$�9	�:$
�� = 1 for older siblings 

in a pilot high school, where advanced math and science could also be achieved in a package of 

advanced math, advanced chemistry, and intermediate physics. This additional course package option 

                                                             
8 The developmental psychology literature supports that the direction of behavioral influence goes from the older sibling 

to the younger sibling (Buhrmester, 1992). Bingley et al. (2017) test and reject that younger brother draft lottery affects 

older brother military service status. Altonji et al. (2013) also corroborate this assumption and impose it as an identifying 

assumption to estimate sibling influences on adolescence substance use. 
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was introduced unexpectedly just before the older sibling made the choice of advanced high school 

courses. Substituting into (1) and (2) we get: 

     ���ℎ����	��
�� 					= �� + ;8�%$�9	�:$
�� + ���
�� + ����
��� + ��� + ��� + �
��                   (3) 

     ���ℎ����	���
��� =  � +  ����ℎ����	��
�� +  ��
�� +  ���
��� +  �� +  �� + ��
���         (4) 

 The 2SLS estimate of  � in (4) can be interpreted as a causal sibling spillover effect. The key 

identifying assumptions are the exclusion restriction that 8�%$�9	�:$
�� does not directly influence the 

younger sibling, i.e. is excluded from equation (4) and the orthogonality condition that 8�%$�9	�:$
�� 

is independent of any individual (�-) and sibling pair specific (�)  or high school specific (S) variables, 

as well as any unobserved social and genetic influences on sibling choice (�-) for � ∈ #$%&, ($)	*+.9 

We estimate ; as the first-stage regression coefficient in equation (3). This is the direct effect of 

the unexpected pilot introduction on the older sibling’s MathScience choice.  

We also examine whether the quasi-random variation in cost of MathScience for the older sibling 

changes the course choice of the younger sibling by estimating the following reduced-form: 

     ���ℎ����	���
��� = >� + >�8�%$�9	�:$
�� + >��
�� + >���
��� + >�� + >�� + ��
���                   (5) 

where >1 can be interpreted as an “intention-to-treat” (ITT) effect of the unexpected pilot introduction 

(for the older sibling) on the younger sibling’s MathScience choice. An advantage of the reduced form 

(5) is that it requires fewer assumptions to estimate the sign of the sibling spillover effect. If the pilot 

option is as good as randomly assigned such that 8�%$�9	�:$
�� is uncorrelated with individual and 

sibling pair characteristics, the reduced form consistently estimates the causal effect of having an older 

sibling who unexpectedly could choose MathScience at a lower cost. To consistently estimate the size 

of the peer effect via 2SLS, we also need to assume that the only channel for younger siblings to be 

affected is through the older sibling’s MathScience choice. In addition to this exclusion restriction, 

2SLS when  � in (4) is a random coefficient also requires the monotonicity (or uniformity) condition 

that the pilot did not cause any older siblings to be less likely to choose MathScience. We are confident 

that the monotonicity assumption is reasonable in our application, since all options available at non-

pilot schools were also available at schools introducing the pilot scheme. 

Under the assumptions stated above, IV identifies the Local Average Treatment Effect (LATE) 

which is the causal effect of older sibling math-science choice on younger sibling math-science choice 

                                                             
9 Moffitt (2001) labels this type of identification strategy a partial-population policy intervention. If  8�%$�9	�:$
�� is 

randomly assigned, it will be uncorrelated with all observed and unobserved variables affecting each sibling’s outcome 

in (3) and (4). This implies that ; can be identified from a regression of ���ℎ����	��
��  on 8�%$�9	�:$
�� . As the 

younger sibling makes their choice after the older sibling, it also means that a consistent estimate of the spillover effect 

 � can be obtained by regressing  ���ℎ����	���
��� on 8�%$�9	�:$
�� and scaling by ; (provided a strong instrument 

such that ; ≠ 0). The orthogonality condition ensures that correlated unobservables do not bias the estimates. 



6 

 

for those older siblings who comply with the instrument; i.e. those who choose math-science when 

they are unexpectedly exposed to the pilot scheme and can do so at a lower cost, but would not have 

chosen it at the higher cost without the pilot scheme. 

The orthogonality condition is corroborated in Joensen and Nielsen (2009; 2016) showing that 

8�%$�9	�:$
�� is independent of predetermined individual, family, and school characteristics for the 

students entering high school in 1984-87. This implies that older siblings are as good as randomly 

assigned to high schools which unexpectedly introduce the pilot scheme when they are enrolled in 

their first year and before they choose advanced courses for their second and third high school years. 

The following (sub)sections are devoted to provide further support for the key identifying assumptions. 

Subsection 2.3 shows that the instrument has a strong influence on the choice of math-science courses 

for cohorts entering high school in 1984-87 and that the pilot scheme was not implemented in schools 

with a student body that was more prone to choose math-science. We return to these empirical issues 

and additional empirical evidence to support the exclusion restriction which is unique to this paper in 

Section 4 and 4.2. in particular. 

The following subsections describe the educational environment of the two relevant high school 

regimes: The Pre-1988 High School with restrictive course packages that the older siblings attended 

and the Post-1988 High School with much more flexible course choices for their younger siblings. 

2.2. The Pre-1988 High School 

In the period 1961-1988, the Danish high school system was a "branch-based" high school regime 

in which courses were bundled into restrictive course packages.10 We focus on the cohorts entering 

high school in 1984-87. The main reason to focus on this period is that the supply of course packages 

provides us with relevant exogenous variation in the cost of acquiring advanced math and science for 

the older siblings. The combination of advanced math and science provides immediate access to STEM 

field college programs and it is by far the most lucrative course package; see Appendix A, Figures A1-

A3. The variation in earnings across course packages is more important than the variation across high 

schools and more than doubles the high school premium. The decision about which package to opt for 

is taken at the end of the first year in high school. The only way to obtain advanced math and science 

was the package consisting of advanced math, advanced physics and intermediate chemistry, unless 

the student was enrolled at a pilot school, where the package could be adjusted to include advanced 

                                                             
10 Available course packages were labelled: Social Science and Languages, Music and Languages, Modern Languages, 

Classical Languages, Math-Social Science, Math-Natural Science, Math-Music, Math-Physics, and Math-Chemistry. 

The additional course package introduced at pilot schools was the Math-Chemistry option. See Joensen and Nielsen 

(2009) for additional details on choices sets and course content. 
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chemistry and intermediate physics instead. It is exactly this increased course flexibility which some 

students were unexpectedly exposed to that constitutes the quasi-experiment we exploit in this paper. 

2.3. The Pilot Scheme 

The pilot scheme was implemented as an experimental curriculum at about half of the high schools 

prior to the 1988-reform. The purpose of the pilot scheme was to test the impact of increased flexibility 

prior to the 1988-reform. Figure 1 illustrates the consequences of the pilot scheme on the course 

packages of the high school youth. Prior to the pilot scheme, the fraction choosing advanced math and 

science declined and was below 25% in 1983. The pilot scheme counteracted this declining trend by 

attracting youth to the alternative course package with a higher weight on chemistry and a lower weight 

on physics. 

Figure 1. Fraction of High School Cohorts Choosing Math-Science, by School Pilot Status 

  
Note: This Figure displays the fraction of each entering high school cohort in 1980-2000 who chooses 

advanced Math and Science. The blue solid line refers to the traditional high schools. The red dashed 

line refers to pilot schools, where pilot schools include all schools with pilot status at any point in 

time during 1984-87; i.e. 64 schools in total. 
 

Table 1 gives an overview of the gradual implementation of the pilot scheme from 1984-87. The 

table is divided by types of high schools: schools with no pilot scheme (PilotSchool=0), schools 

where the pilot scheme was introduced after enrollment of the relevant cohort (PilotSchool=0,	
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PilotIntro=1), and schools where the pilot scheme was implemented prior to enrollment of the 

relevant cohort (PilotSchool=1,	PilotIntro=0). 

Table 1.  Introduction of the Pilot Scheme 

 
Note: The table illustrates the introduction of the pilot scheme. For each of the affected cohorts, 1984-86, the table displays the number 

of schools which are traditional high schools only offering advanced Math with advanced Physics (PilotSchool=0), which are 

unexpectedly introducing the pilot scheme combining advanced Math with advanced Chemistry (PilotSchool=0, PilotIntro=1) and which 

already have adopted the pilot scheme (PilotSchool=1, PilotIntro=0). 

Schools were not randomly assigned to become pilot schools, but we provide evidence that 

assignment was as good as random. From 1984-86, schools could apply to the Ministry of Education 

for permission to adopt the experimental curriculum and the ministry decided which shools were to 

adopt it, whereas in 1987 the high school principals could make this decision without approval from 

the ministry.11  

It is clear, however, that students with a particular preference for chemistry may self-select into 

schools that are known to offer the pilot program before entrance. This is why we distinguish between 

students at pilot schools where the pilot scheme was unexpectedly introduced after they had enrolled 

(PilotSchool=0,	PilotIntro=1) and those who knew that the school was a pilot school before they 

applied for admission to the school (PilotSchool=1,	PilotIntro=0). 

The instrumental variable strategy exploits the fact that the pilot scheme reduces the psychological 

cost of choosing advanced math and science since the students exposed to the scheme are free to choose 

either advanced physics and intermediate chemistry or advanced chemistry and intermediate physics.12 

Hence, first-year high school students enrolled at a school when it decided to introduce the pilot 

scheme were exposed to an unexpected exogenous cost shock, which induced more students to choose 

advanced math and science compared to students at non-pilot schools. If the selection of newly 

                                                             
11 The schools which introduced the program in 1987 tend to be slightly negatively selected in terms of the students’ math 

abilities, while no similar concerns are raised regarding the other cohorts. However, to maintain a large number of sibling 

pairs, we include the 1987 cohort of older siblings in the study, while checking the sensitivity of our results to leaving 

out this cohort. Similarly, the post-reform cohort enrolling pilot schools in 1988 appears to be slightly positively selected 

according to Figure 1. We thus also check the sensitivity of our results to leaving out this cohort. 
12 Traditionally, the opportunity cost of attending high school is interpreted as forgone earnings from unskilled work. We 

use a broader interpretation associated with time allocation across courses as well as between studies, leisure, and 

unskilled work. If students choose course combinations optimally given their preferences and abilities, then a more 

flexible choice set reduces the cost of taking a given course as there is a higher probability of a good match between 

feasible course combinations and the students' preferences and abilities. 

Cohort N MathScience Schools N MathScience Schools N MathScience Schools N MathScience Schools

1984 12,758 0.2343 122 3,145 0.3253 22 0 0.0000 0 15,903 0.2523 144

1985 10,645 0.2280 107 1,802 0.3330 15 3,069 0.3271 22 15,516 0.2598 144

1986 8,997 0.2120 91 1,749 0.3116 15 4,969 0.3490 37 15,715 0.2664 143

1987 8,297 0.1899 78 1,505 0.2811 12 7,553 0.3311 52 17,355 0.2593 142

Total 40,697 0.2187 8,201 0.3159 15,591 0.3360 64,489 0.2594

Pilot School  = 0 Pilot School  = 0 Pilot School  = 1 AllHigh School
Pilot Intro  = 1 Pilot Intro  = 0
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participating schools is uncorrelated with the unobservables affecting math-science course choices, 

then the pilot scheme provides exogenous variation in students' math and science skills without 

influencing the outcome(s) of interest except through the effect on math and science choices. 

The instrumental variable, PilotIntro, is equal to one if the individual enrolled in a high school which 

introduces the experimental curriculum for the first time when they were in their first year and about 

to choose advanced course packages for their second and third year, and it takes the value zero 

otherwise.  

The instrument is strong if the unexpected introduction of the pilot scheme induces students to 

choose advanced math and science. This can be seen from Figure 1 and Table 1, and is directly tested 

and validated in Section 4.  

The instrument satisfies the orthogonality condition if the pilot scheme is randomly assigned to 

schools and if individuals are randomly distributed across schools that have not yet decided to 

introduce the experimental curriculum. We minimize issues of students self-selecting into schools by 

focusing on those who were already enrolled, but had not yet chosen their final math-science level 

when the pilot scheme was unexpectedly introduced. The orthogonality condition is also violated (a) 

if the schools participate in the program based on the math abilities of local students or (b) if schools 

change as a consequence of the scheme: if the school develops an expertise in science or if the quality 

of teachers changes as a consequence of the pilot scheme. 

Table 2.  Placebo Tests on Pre-Pilot Cohorts 

 
Note: Parameter estimates and (standard errors) of the placebo pilot scheme introduction are displayed for first-stage OLS 

regressions of MathScience choice. The columns differ in which cohorts the placebo pilot introduction is assumed for and 

which schools are included in the sample. Column (1) leads PilotIntro two cohorts by assuming it was implemented for 

those who are graduating from the relevant school in the year it was actually implemented. Columns (2) and (3) lead 

PilotIntro three and four cohorts, respectively, by assuming it was implemented for those who have already graduated from 

the relevant school in the year it was actually implemented. The full set of cohort and parental background control variables 

is included. Significance at a 1%-, 5%-level and 10%-level are indicated by ***, ** and *, respectively. 

(1) (2) (3)

Placebo PilotIntro -0.016 ** 0.002 -0.005

(0.006) (0.005) (0.005)

PilotIntro  (actual)

PilotIntro  (placebo)

Pre-pilot placebo period

Number of Individuals

Parameter Estimates

(Standard Errors)

First-stage: MathScience

1984-1985 1984-1986 1984-1987

35,870 54,018 70,771

1982-1983 1981-1983 1980-1983

t-2 t-3 t-4
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It is not possible to directly test whether the pilot schools represent a sample of schools which is 

essentially random with respect to potential students’ math and science ability, but we corroborate that 

this is a reasonable assumption. Table 2 presents placebo tests that support instrument exogeneity by 

showing that (a) is not a core concern. The table presents first-stage estimates (falsely) assuming that 

the pilot scheme was introduced two, three, or four years, respectively, prior to when it was actually 

introduced. The first specification assumes that the pilot scheme was implemented for the cohorts who 

were in their third and final year when the pilot was actually adopted, while the last two specifications 

assume that it was implemented for recently graduated cohorts. Neither of these cohorts should be 

affected, since they should already have made their final course choices before the pilot scheme was 

adopted. We find a small significantly negative effect of the pilot schemes for the first placebo test. 

This suggests that the schools introducing the pilot in 1984-85 had slightly (1.6 percentage points) 

fewer students choosing math and science before the school adopted the pilot program. The coefficient 

is small and the picture is consistent with what is also seen in Figure 1.13 However, in the two last 

specifications where the distance to the actual reform is longer, the effect is smaller and insignificant. 

We therefore conclude that there existed only minor, if any, systematic prior differences in choices at 

schools which adopted the pilot scheme, and if anything, they should work in the opposite direction of 

the pilot.14 In Section 3 below, we further test for similarities of student and parent characteristics 

across the school status, and we find almost no significant differences in characteristics determined 

prior to high school.  

Second, the exclusion restriction is violated if (b) schools change as a consequence of the pilot 

scheme. If the school develops an expertise in science or if the quality of teachers changes as a 

consequence of the pilot scheme. Such effects would presumably most strongly influence the younger 

siblings if they attend the same high school as their older siblings and could confound the sibling peer 

effects. We cannot completely rule out such an effect. However, Figure 1 shows that the pilot scheme 

was introduced following a declining trend in the fraction choosing advanced math and science, and 

therefore qualified teachers for these courses would most likely be available in pilot schools as well as 

non-pilot schools during the pilot period and afterwards. Furthermore, the relevant compliers would 

switch from intermediate chemistry and intermediate math (and e.g. advanced biology and geography, 

depending on their alternative choice) to advanced chemistry and advanced math (and e.g. intermediate 

                                                             
13 We have also graphed the red dashed line in Figure 1 separately by schools who introduce the pilot in 1984, 85, 85, and 

87 separately. This reveals that the schools implementing the pilot in 1984 are driving the dip, but this is the cohort 

carrying the lowest weight in our main estimation sample of relatively closely spaced siblings. 
14 We have also performed the placebo tests for older siblings and for older brothers and sisters separately. For these 

subsamples, none of the parameters of main interest are significant, but power is also lower. 
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biology and geography, depending on their alternative choice). This means that 5-6 weekly chemistry 

and math lectures replace biology and geography. From the point of view of the complying student, 

this means that 20% of their weekly time schedule would be different during the 2nd and 3rd year of 

high school. From the point of view of the school, this means that the teaching supply should be 

adjusted corresponding to approximately 1% of the weekly course supply.15 In the empirical analysis 

in Section 4.2 we further investigate to what extent the spillover effects may be going through the high 

school or other social interactions - such as common friends across school cohorts - rather than through 

sibling interactions. Our findings suggest that the bulk (at least 70%) of the spillover effect goes 

through social interactions among siblings.  

Our instrument exploits the exogenous variation in the exposure of students to the option of 

switching the levels of physics and chemistry. Hence, the treatment of the older sibling that we 

investigate is the combined treatment of advanced math with advanced chemistry and intermediate 

physics. We cannot separately identify the effect of math and science courses from the potential 

synergy between them. 

2.4. The Post-1988 High School 

In 1988 there was an extensive structural reform of the Danish High School, which was the most 

fundamental high school reform since 1903. The reform abolished the “branch based” regime and 

substituted it with a “choice based” regime, where the main distinction is between mathematical and 

linguistic track students. The reform implied an extended choice set in the form of more flexible 

opportunities to combine optional courses.16 In particular, the mathematical track students have the 

option of combining advanced math with any other advanced course; for example physics, chemistry, 

biology, social science, or a language course. This is the regime within which the younger siblings in 

our sample make their education choices. We focus on the younger siblings’ choice of advanced math 

with advanced physics and/or advanced chemistry, since these are comparable to the relevant course 

combinations for the older sibling attending high school in the pre-1988 regime.  

                                                             
15

 This adjustment corresponds to around 32 additional math and/or chemistry teachers in the entire country in year 1987 

when the program was at the maximum and 64 schools had introduced the pilot program; see Table 1, and most of these 

should be available as the declining math-science trend continued at the traditional high schools. This was a relatively 

small adjustment of the teaching supply in comparison to the subsequent adjustment due to the major reform in 1988, 

which is described in the next subsection.  
16 The reform also implied more weight on the high schools’ role of preparing students for college, more required readings, 

more written assignments, more stringent non-attendance regulation, more grading, and more hours of instruction 

allocated to the compulsory courses. 



12 

 

In the post-1988 high school regime, students choose either the mathematical or the linguistic track 

upon entry. Each course is either common to all students on the chosen track (compulsory courses), 

compulsory for some and optional for others, or exclusively optional. The optional courses can be 

obtained at either advanced or intermediate level reflecting the complexity of the content, the number 

of lessons per week and the intensity of exams (written and/or oral).  

All students are required to follow at least two (and at most three) optional advanced courses, and 

for the mathematical students there was a minimum required amount of math-science content, while 

for the linguistic students there was a minimum required amount of language content. The first year of 

high school consists only of compulsory courses (common as well as track-specific courses) taught in 

classes of at most 28 students. The second and third year of high school added at least three and at 

most four optional courses.17 In addition to the requirements of at least two advanced optional courses, 

there were some bonds between some courses in order to preserve the possibility for courses to 

complement each other.  

We follow younger siblings in this high school regime until the entry cohort of 1997. We focus on 

the younger siblings’ choice of advanced math with either advanced physics or advanced chemistry, 

since these are comparable to the relevant pre-1988 regime course combinations of the older siblings.18 

Thus ���ℎ����	���
��� in equation (4) is an indicator for whether the younger sibling chooses to 

combine advanced math with either advanced physics or advanced chemistry.  

3. Data Description 

3.1. Sample Selection 

For our empirical analysis we use a panel data set comprising the population of individuals enrolling 

in high school from 1980 and onwards. The data are gathered from administrative registers and 

administered by Statistics Denmark. The data include basic demographic information such as date of 

birth, place of residence, and gender. What is crucial for this study is that we observe which schools 

offered the pilot scheme when, and we can identify which school the individual attended as well as the 

                                                             
17 The compulsory courses common to all students are advanced Danish and history, intermediate English and basic 

physical education, biology, geography, religion, music, (visual) art, and ancient history. Track-specific compulsory 

courses for mathematical students comprise intermediate math and physics, basic chemistry, and a second foreign 

language. For the linguistic students the track-specific compulsory courses are basic natural sciences (including math) 

and Latin, as well as two other foreign languages. Commonly available optional intermediate courses comprise: biology, 

geography, chemistry, technical science, business and economics, drama, sports, and movie science, while optional 

advanced courses include all feasible continuations of the intermediate courses. 
18 Some curriculum changes are introduced with the reform, e.g. a historical dimension was incorporated into the math 

course while some advances in the experimental direction were incorporated into the physics course. 
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chosen course package. Furthermore, we have information on the dates for entering and exiting a high 

school education, along with an indication of whether the individual completed the education 

successfully, dropped out, or is still enrolled as a student as well as subsequent career outcomes. We 

augment this data with background information about the parents; including educational achievement 

and gross income. This information is recorded when the individual was 15-years old, which is prior 

to enrolling in high school. 

The sample consists of individuals who are directly influenced by the quasi-experimental variation 

due to the gradual introduction of the pilot scheme for cohorts entering high school 1984-1987. From 

this sample, we select high school graduates who finished in three years and have a younger sibling 

who entered high school after 1987 and finished in three years.19 In our main analysis, we focus on a 

homogeneous sample of relatively closely spaced sibling pairs (cohorts 1988-91, age gap ≤ 4 years), 

and for comparison we also report results for more widely spaced sibling pairs (cohorts 1988-97, age 

gap ≤ 10 years).20
 

3.2.  Outcome and Control Variables 

The outcome of interest is whether the post-reform peers choose to combine advanced math and 

science or not. Table B3 reveals a strong correlation in the choice of this course package across 

siblings:  28 % (14 %) of younger siblings chose this course package when the older sibling did (did 

not) choose this package, and the correlation varies across gender composition of the sibship. 

Table B4 shows variation in the choice of advanced math and science when we distinguish between 

whether the older sibling was exposed to the pilot scheme or not. The proportion of younger siblings 

who chose this course package is 18% when the older sibling was not exposed (PilotSchool=0, 

PilotIntro=0) and 22% when the older sibling was unexpectedly exposed to the pilot scheme 

(PilotSchool=0, PilotIntro=1). The relationship appears to be very strong among pairs of brothers.  

The control variables are crucial, as they should include key variables reflecting common influences 

in the environment that shape both siblings’ high school course choices (as discussed in section 2). We 

include entry cohort fixed effects, sibling pair gender composition, parental background, county fixed 

effects and high school specific controls. Importantly, county fixed effects and predetermined high 

                                                             
19 About 40% of a birth cohort attended the academic high school track at this point in time; hereof 10% do not complete 

in three years. The main part of drop out takes place before the choice of advanced math and science course packages. 

For older as well as younger siblings, dropout is uncorrelated with pilot school status. 
20 An overview of the sample selection is given in Table B1 in Appendix B. An overview of the distribution of sibling pairs 

across the older siblings’ exposure to the pilot scheme for each high school cohort of younger siblings is given in Table 

B2 in Appendix B. 
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school means are thought to proxy permanent regional or high school specific differences in the quality 

of science teachers or the expertise in science teaching. Parental background variables are thought to 

proxy family variation in the preferences or ability for high school courses. They include a set of 

mutually exclusive indicator variables for the level of highest completed education of the mother and 

father, respectively, and their income as observed at the end of the year before the individual started 

high school.21 Since this study is specifically concerned with spillovers of math and science course 

choices, we also include indicators for whether the mother’s and father’s highest completed education 

is within a STEM field or not in order to approximate a family-specific ability or preference for STEM 

fields. We have constructed indicator variables based on a definition of STEM fields, which follows 

the definition by the National Science Foundation (NSF) and includes math, engineering, natural and 

technical sciences as well as some social sciences and life sciences.  

Table B5 in Appendix B shows descriptive statistics of background variables across pilot school 

status. From this table it is evident that the students whose older siblings entered high schools which 

had already adopted the pilot program (PilotSchool=1, PilotIntro=0) prior to their entry are potentially 

non-randomly selected, while those whose older siblings were unexpectedly exposed to the program 

(PilotSchool=0, PilotIntro=1) are not systematically different from students at schools without the pilot 

program (PilotSchool=0, PilotIntro=0). This lends further support for the exogeneity of PilotIntro as 

an instrument for older siblings’ course package choice as there is no significant selection on pre-

determined obervables. 

4. Estimates of Sibling Spillover Effects 

Table 3 presents the main results from the empirical analysis of how an increase in the incentives to 

do math-science for the older sibling spills over on the younger sibling’s math-science choice.  

As a benchmark, the OLS estimates of  � in equation (2) show a strong positive association between 

math-science choices of older and younger siblings. The probability of a younger sibling choosing 

math-science is 14 percentage points higher if the older sibling chose math-science. This is true for all 

three specifications. Column (1) only controls for whether schools had already implemented the pilot 

scheme. Column (2) adds sibling pair gender composition (which is the most influential control 

variable), cohort fixed effects, and parental background variables. Column (3) adds county fixed 

effects and predetermined high school means of parents’ highest completed education and income, 

which are thought to proxy permanent high school specific effects such as the teacher quality. 

                                                             
21 The variables mentioned so far are identical to the variables included in Joensen and Nielsen (2009; 2016). 
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Reduced form OLS estimates of  > in equation (5) are also presented in columns (1)-(3) in Table 3. 

The reduced form estimates suggest that there are spillover effects from the introduction of the pilot 

scheme on the younger siblings. The effects are statistically significant when the age difference 

between siblings is less than four years, but not when the distance is up to ten years. When the age 

difference is less than four years, the magnitude of the estimates ranges from 3.6 to 3.0 (when sibling 

pair gender composition, cohort fixed effects, and parental background variables are included) to 2.1 

percentage points and insignificant (when county fixed effects and high school specific variables are 

added). Figure B1 in Appendix B illustrates point estimates and confidence intervals when the 

maximum age difference between siblings varies. The point estimates are smaller for widely spaced 

as well as closely spaced siblings, and it is literally zero for the few siblings less than 2 years apart in 

specification (3).  

While the reduced form estimates are informative about spillover effects of the pilot program, the 

IV estimates are informative about spillover effects of the program going through the older siblings’ 

course choice if we invoke the exclusion restriction that the only channel through which PilotIntro 

affects MathScienceyoung is through its effect on MathScienceold. We present first-stage estimates of  ; 

in equation (3) and 2SLS estimates of  � in equation (4) in columns (4)-(6) in Table 3.22 The first stage 

corroborates instrument relevance as older siblings who were unexpectedly exposed to the pilot 

increased their probability of choosing math-science by 7 percentage points. The IV estimates suggest 

a strong sibling spillover effect, since the younger siblings whose older siblings are incentivized to 

take math-science because of the pilot are 0.3-0.5 percentage points more likely to also choose math-

science. Again, the point estimates are not significantly different across specifications, only 

statistically significant for closely spaced siblings, and not significantly different from zero once all 

controls are included.23 

 

                                                             
22 The main results are robust to alternative estimation methods. We report the results from the (bivariate) probit estimator 

in Table B6 in Appendix B. Our main results are robust and the first-stages are literally unchanged. Conclusions from 

the bivariate probit model appear slightly stronger; particularly in the subgroup analysis in Section 5. However, as in 

Altonji, Elder and Taber (2005) identification is mainly driven by the parametric assumptions when covariates are 

included in the bivariate probit model. In addition, we have used the semi-parametric estimator by Abadie (2003) as a 

robustness check. The IV estimate without control variables is statistically indistinguishable from the bivariate probit 

(marginal effect 0.384 vs. 0.360) and 0.310 with all controls in specification (6). 
23 We also examine how the 2SLS estimates change when the maximum age difference between siblings varies. The first-

stage point estimates do not change as maximum age difference increases from two to ten years. The 2SLS point 

estimates get smaller for widely spaced siblings and follow the same pattern as the reduced form estimates presented in 

Figure B1 in Appendix B, but are larger and noisier. This suggests that the older sibling’s choice is largely independent 

of how age-distant the younger sibling is, but the spillover from older to younger sibling becomes weaker as the age 

distance increases beyond four years. Our estimates are too noisy to draw conclusive inference on these patterns. 
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Table 3.  Estimates of Spillover Effects: Main Results 

 
Note: Standard errors are clustered by older siblings. Significance at a 1%, 5%, and 10% level are denoted by ***, ** and 

*, respectively. 

4.1. Counting and Characterizing Compliers 

The IV point estimates are larger than the OLS point estimates, although not significantly so. At a 

first glance, this may be surprising as we suspected that common unobservables like shared genes and 

social environment may affect both older and younger siblings’ math-science choices in the same 

direction. Thus implying that the OLS estimate is upward biased. However, it may suggest that there 

is substantial heterogeneity in causal peer effects and older siblings who are at the margin of choosing 

N (1) (2) (3) (4) (5) (6)

PilotIntro 7,786   0.068 *** 0.069 *** 0.069 ***

Younger Sibling 1988-91, ≤4y (0.018) (0.017) (0.017)

PilotIntro 17,691 0.067 *** 0.073 *** 0.074 ***

Younger Sibling 1988-97, ≤10y (0.012) (0.012) (0.012)

PilotIntro 0.036 ** 0.030 ** 0.021

Younger Sibling 1988-91, ≤4y (0.015) (0.014) (0.015)

PilotIntro 0.010 0.009 0.006

Younger Sibling 1988-97, ≤10y (0.010) (0.009) (0.009)

Older Sibling MathScience 0.140 *** 0.143 *** 0.142 *** 0.523 ** 0.436 ** 0.298

Younger Sibling 1988-91, ≤4y (0.010) (0.010) (0.010) (0.237) (0.215) (0.213)

Older Sibling MathScience 0.139 *** 0.143 *** 0.143 *** 0.143 0.119 0.076

Younger Sibling 1988-97, ≤10y (0.007) (0.007) (0.007) (0.139) (0.123) (0.126)

Control Variables:

  Entry Cohort Fixed Effects + + + +

  Sibling Pair Gender Composition + + + +

  County Indicators + +

Parental Variables (for Mother and Father):

  Highest Completed Education and Income + + + +

  Highest Completed Education in STEM Field + + + +

  HS Mean of Highest Completed Education and Income + +

Outcome:  Younger Sibling MathScience

Parameter Estimates                                                    

(Standard Errors)                                                       

[Marginal Effects]
OLS 2SLS

First-stage:  Older Sibling MathScience 

Reduced-form:  Younger Sibling MathScience
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math science are more influential for their younger siblings than others. This would be consistent with 

sibling competition: if the older sibling is a “math-science star”, the younger sibling would be more 

reluctant to compete than if the older sibling is on the margin of choosing math-science. We examine 

heterogeneity in more detail in Section 5, and provide some support for this claim.  

Now we turn to counting and characterizing compliers and decomposing the OLS and IV estimates 

in order to better understand their differences and what the estimated spillover effects embody. 

First, we count and characterize compliers. Let MathScienceyoung,1 be the potential math-science 

choice of the younger sibling if the older sibling chose math-science (MathScienceold=1) and let 

MathScienceyoung,0 be the potential math-science choice otherwise (MathScienceold=0). Likewise, let 

MathScienceold,1 be the potential math-science choice of the older sibling if unexpectedly getting the 

low cost math-science option (PilotIntro=1) and let MathScienceold,0 be the potential math-science 

choice otherwise (PilotIntro=0). Under the monotonicity assumption stated in Section 2, the potential 

outcome framework splits sibling pairs into three groups: Never-takers are older siblings who do not 

choose math-science even when exposed to the pilot program; i.e. MathScienceold,1=0, 

MathScienceold,0=0. Always-takers are older siblings who choose math-science even without the pilot 

program; i.e. MathScienceold,1=1, MathScienceold,0=1. Compliers are individuals who choose math-

science when they are unexpectedly exposed to the pilot program, but not when they do not have the 

pilot option available; i.e. MathScienceold,1=1, MathScienceold,0=0. Table B2 (bottom) shows that 

34.57% of 865 students enrolled in high schools unexpectedly offering the pilot program chose math-

science, while only 27.72% of 4,463 students enrolled in high schools without the pilot program did. 

Under the monotonicity assumption, this leaves a total of 6.85% or 364 compliers, among whom 59 

attended a high school unexpectedly offering the pilot program. Parents of compliers more often have 

a 4-year college degree or more education, mother’s education is more often within STEM fields, and 

compliers are more often males and have higher high school GPA compared to the population of high 

school graduates; see Table B7 in Appendix B.  

Second, we decompose the OLS and IV estimates. The OLS estimates simply compare the younger 

sibling math-science probability for always-takers and compliers at pilot schools to the younger sibling 

math-science probability for never-takers and compliers at non-pilot schools. This difference is always 

around its raw data moment presented in Table B3 in Appendix B. That is, the difference between 

P(MathScienceyoung=1 | MathScienceold=1) = 0.283 and P(MathScienceyoung=1 | MathScienceold=0)= 

0.144. This difference is in line with the OLS point estimates of  � around 0.14 presented in columns 

(1)-(3) in Table 3. 
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With essential heterogeneity, IV identifies the LATE; i.e. the expected causal effect for compliers 

E[ MathScienceyoung,1-MathScienceyoung,0 | MathScienceold,1=1, MathScienceold,0=0 ] and can be 

decomposed into the expected potential outcomes with and without treatment for the compliers, 

respectively; i.e. P( MathScienceyoung,1=1 | MathScienceold,1=1, MathScienceold,0=0 ) and 

P(MathScienceyoung,0 =1 | MathScienceold,1=1, MathScienceold,0=0 ). We use the method suggested by 

Abadie (2002, 2003) to estimate these expected potential outcome of compliers with and without 

treatment to be 0.521 and 0.211, respectively, for our specification (6) in Table 3.24  

If we compare these estimates of complier potential choice probabilities to the observed probabilities 

of younger siblings choosing math-science conditional on older sibling choice and pilot status 

presented in Tables B3 and B4, the expected probability of compliers without treatment (0.211) is 50% 

higher than the observed probability when the older sibling does not choose math-science 

P(MathScienceyoung=1 | MathScienceold=0)=0.144 and as high as this probability for brother-brother 

pairs (0.206) and younger siblings whose older siblings were unexpectedly exposed to the pilot; i.e. 

P(MathScienceyoung=1 | PilotIntro=1)=0.216. More strikingly, the expected probability of compliers 

with treatment (0.521) is almost twice as large as the observed probability when the older sibling 

chooses math-science P(MathScienceyoung=1 | MathScienceold=1)=0.283 and 10 percentage points 

larger than this probability for brother-brother pairs (0.423). This strongly suggests that the younger 

siblings of the complying older siblings were slightly more prone to choose math-science despite their 

older siblings not doing so, but way more prone to conform and follow in their older sibling’s footsteps 

if the older sibling is induced to choose math-science because of the pilot program.  

The IV estimates become so large because the instrument affects a subgroup for which the younger 

sibling is extremely likely to conform to the older sibling’s choice if they choose math-science. In this 

respect, the OLS estimates place a higher weight on the younger siblings who are about half as likely 

to conform to the math-science choice of the always-taker older sibling (0.283 versus 0.521). This 

large difference between compliers and always-takers in expected potential outcomes with treatment 

is thus the main reason why the IV estimates are so much larger than the OLS estimates. 

4.2. Potential Threats to Identification 

We now turn to providing some additional empirical support of the exclusion restriction and 

exogeneity of PilotIntro, which is imperative for the causal inference based on the IV estimates.  

                                                             
24 The decomposition renders similar conclusions if we instead focus on the other specifications (4) and (5), where the 

difference is even larger. These differences are also in line with the IV estimates of  in columns (4)-(6) in Table 3. 
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We already presented evidence for instrument exogeneity in Section 2.3. First, showing that the pilot 

program was not introduced at schools where the student body was more prone to choose math-science 

(Table 2), if anything less prone. Second, we presented evidence showing that almost no predetermined 

characteristics differ significantly across schools (Table B5);  two exceptions (of 32) are fathers being 

2 percentage points more likely to have compulsory schooling only and students being 3 percentage 

points more likely to be in a large sibship of four or more siblings. Under the null hypothesis that there 

are no predetermined differences between schools which do and do not adopt the pilot, we should 

consider it a reasonable size of the test if we reject a true null hypothesis (and make a Type I error) 

6.25% of times.  

The exclusion restriction is arguably a much stronger assumption when analyzing sibling spillovers 

than when analyzing the direct effects on older siblings’ subsequent education and labor market 

outcomes. In this context, it states that the only channel through which the pilot program affected the 

younger sibling’s choice was through social interactions with the older sibling. We provide five pieces 

of empirical evidence to corroborate that the exclusion restriction is still reasonable in this context of 

sibling spillovers in math-science choice. The first two sensitivity checks aim at ruling out other direct 

social interactions while the last three pieces of evidence aim at ruling out the school itself as an 

important transmitter of the pilot spillover effect. 

 Those who are in adjacent high school cohorts or close in age could directly influence each other’s 

choices as they may share the same social environment in terms of leisure activities or common friends. 

First, we therefore exclude older siblings enrolling high school in 1987 and younger siblings enrolling 

high school in 1988, respectively. Our results are robust to this exercise and, if anything, stronger in 

these subsamples; see Table B8 in Appendix B. Second, we exclude sibling pairs with an age difference 

of less than two years. The results are reported in Table B9 in Appendix B and, if anything, stronger 

for this subsample. 

It is also possible that high schools (or counties) with or without traditions for math and science act 

as catalysts for sibling spillovers. Third, we therefore distinguish between high schools (and counties) 

with a low versus high fraction of students choosing math and science before the pilot was introduced; 

see Table B10 in Appendix B. Even though pilot schools on average have a slightly lower fraction of 

students choosing math and science prior to the pilot (see Figure 1), our results indicate that spillovers 

are indeed higher at high schools with a prior tradition for math and science. This pattern is weaker, 

but also present, when we instead distinguish between counties with or without a prior tradition for 

math and science. This is consistent with Section 4.1 as compliers in environments with a stronger 
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tradition for math and science may face a stronger social pressure or a higher social benefit to conform 

to the modal choice in their social peer group at large. 

It is also possible that the pilot changed school quality or that particular parental characteristics drive 

choices. Fourth, we therefore present results from a placebo test where we match only children from 

entry cohorts 1984-87 with only children from entry cohorts 1988-91; see Table B11 in Appendix B. 

In the left panel, we match the children randomly based on mother’s education and income, and in the 

right panel, we match only children attending the same high school. We perform exact matching 

without replacement. In both cases the correlation between their course choices are positive but 

insignificant. When we match only children attending the same high schools, the reduced-form and 

the 2SLS estimates tend to be larger than when they are randomly matched across high schools. 

However, the estimates are insignificant and less than 30% of the main spillover estimates in Table 3. 

It should also be noted that the OLS estimates for the randomly matched siblings with similar mother 

characteristics and attending the same school are just over 30% of the OLS estimates for the real 

siblings in Table 3. We conclude that the potential spillover effect transmitted through the school is 

quantitatively much smaller than the one transmitted through siblings.25  

Fifth, Figure B2 in Appendix B presents evidence that measures of high school quality did not 

change because of the pilot. Potential long-term impacts of the pilot program on school quality could 

also confound the estimated sibling spillovers as 81.5% of younger siblings attend the same high school 

as their older siblings. Panel (a) shows that the number of students graduating within three years – the 

ordained high school duration – fluctuates similarly by pilot status. The cohorts around the major high 

school reform (1987-88) may be exceptions to this rule, since the pilot schools tend to produce slightly 

more on-time graduates in these two years. However, as shown in Table B8, our main conclusions are 

robust to excluding these two cohorts. Panel (b) shows that log parental income follows a similar 

increasing trend, while panels (c)-(f) show that this is also true for the fraction of mothers and fathers 

with a longer than 4-year college degree and STEM degrees. 

These five pieces of empirical evidence largely corroborate that the exclusion restriction is 

reasonable and that social interactions with the older sibling are by far the most important source of 

the spillover effect, while other social peer interactions and school quality concerns should only be 

minor transmitters. 

                                                             
25 It should be noted that only children attending the same high school may know each other and socially interact through 

extra-curricular activities like sports clubs. This direct social interaction is less likely if their age difference is larger. 

The estimates are not significantly affected by leaving out placebo siblings within the same high school with an age 

difference of less than two years. 
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5. Understanding Heterogeneity in Sibling Interactions 

In this section, we seek to better understand heterogeneity in pilot incentive responses and spillover 

effects. We examine which older siblings respond more (or less) to changes in incentives, as well as 

for which sibling pairs the spillover effect is stronger (or weaker). We explore differences in complier 

characteristics and spillover effects across gender, ability, sibship composition, and parental 

background. These heterogeneous effects provide suggestive evidence on mechanisms.  

The student may gain utility from behaving similarly to an older sibling who inspires academic 

aspirations or compete with the older sibling in terms of academic achievements in order to improve 

his or her identity payoff. The social environment may also allow for information sharing in which 

case a student with an older sibling who pursued math and science faces less uncertainty about the 

difficulty and joy of this course package and about the future prospects compared to other students.  

In order to shed light on which mechanism is more important, we draw upon psychological and 

sociological literature on the social interactions among siblings. This literature focuses on gender 

composition, birth spacing and birth order as fundamentally important characteristics explaining the 

nature of social interaction between siblings. 

The importance of birth order was first mentioned by Adler (1927) and has been found for education 

and cognitive outcomes (Björklund and Jäntti, 2012; Black et al., 2005). Adams (1972) suggests that 

second and middle children often try to catch up with the first child and compete, but the youngest 

child less so. In Appendix C we scrutinize birth order effects and show that first borns exert a strong 

influence on younger siblings which seems to be driven by strong direct spillover on the second born. 

Conley (2000) stressed that same-sex sib ships are more competitive and achievement-oriented than 

other sibships, and in particular if they consist of two boys. Grose (1991) states that two closely spaced 

brothers produce the most rivalry. Adams (1972) suggests that siblings who are less than five years 

apart are more competitive, while siblings who are more than five years apart tend to behave like 

separate sibships. Thus, it seems plausible that sibling rivalry and competition is a common 

denominator which may be particularly important among closely spaced pairs of brothers. 

High school course choices may reflect competitive actions. Various characteristics of math, in 

particular, but to some extent also science, suggest that it is a competitive discipline (Niederle and 

Vesterlund, 2010). In the discipline of math, answers are either right or wrong, which makes it easier 

to claim victory. Furthermore, math skills are strong predictors of future performance, which means 

that the monetary gains from excellent performance may be sizeable.26 The math discipline attracts 

                                                             
26 See e.g. Altonji (1995), Cortes et al. (2015), Falch et al. (2014) and Joensen and Nielsen (2009; 2016). 
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more males who are known to be attracted to competition, while females tend to shy away from mixed-

sex competition and to do worse in high-stake mixed-sex competition (Niederle and Vesterlund, 2007). 

Buser et al. (2014) estimate that around 20% of the gender difference in the choice of an academic 

math and science high school track is explained by gender differences in competitiveness. Therefore, 

MathScience course choice may be a battlefield characterized by competition and sibling rivalry. To 

investigate the importance of sibling rivalry, and other potential mechanisms, we study heterogeneity 

of effects across subgroups divided by sibship gender composition and ability.  

5.1. Ability and Gender Composition of Sibship 

Table 4 presents estimates separately by gender of the older and younger sibling, respectively. The 

first stage results show that older brothers are much more likely to comply with the instrument than 

older sisters, and older siblings in sibships with younger brothers are also more likely to comply with 

the instrument than those with younger sisters. The pilot scheme inducing adolescents to choose 

advanced math and science thus influenced students in sibships containing boys more than others. For 

example, the relative likelihood that a complier is an older brother with a younger brother is around 

1.8 and given by the ratio of the first-stage coefficient on PilotIntro for the subsample of older brothers 

relative to the estimate for the full sample. This means that older brothers with younger brothers are 

around 80% more likely to comply with the unexpected introduction of the pilot scheme than the 

average older sibling. The reduced-form estimates reveal a very strong effect on younger brothers: 

when their older sibling was unexpectedly exposed to the pilot, younger brothers’ probability of taking 

up advanced math and science increased by 6-9 percentage points. The sibling spillover effects also 

differ by gender: the point estimates are largest and only statistically significant for brother–brother 

pairs as younger brothers are 70 percentage points more likely to choose math-science if their older 

brother unexpectedly chose to do so because of the pilot. Decomposing this LATE for brother-brother 

pairs reveals that the younger brothers are extremely likely to conform and choose math-science 

(0.922) if their older brother is a complier and also quite likely to choose math-science (0.431) if the 

older brother does not choose math-science. This is consistent with a mechanism of sibling rivalry 

typically found to be systematically stronger among pairs of brothers. In addition, it may be interpreted 

as evidence against parental involvement driving the findings. One would think that parents would not 

systematically influence sons differently than daughters, unless they have a stereotypical mindset. We 

investigate this further in subsection 5.3.  



 

 

Table 4.  Estimates of Spillover Effects: Heterogeneity by Gender  

 
Note: Standard errors are clustered by older siblings. Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PilotIntro 0.128 *** 0.125 *** 0.118 *** 0.084 ** 0.085 ** 0.086 ** 0.054 * 0.053 * 0.062 * 0.039 0.030 0.031

(0.040) (0.040) (0.042) (0.038) (0.039) (0.041) (0.030) (0.030) (0.032) (0.026) (0.026) (0.027)

Relative to overall first-stage 1.882 1.812 1.710 1.235 1.232 1.246 0.794 0.768 0.899 0.574 0.435 0.449

PilotIntro 0.089 ** 0.088 ** 0.059 0.008 0.004 0.001 0.039 0.033 0.027 0.006 0.001 0.002

(0.038) (0.038) (0.040) (0.022) (0.021) (0.022) (0.036) (0.037) (0.038) (0.019) (0.019) (0.020)

Older Sibling MathScience 0.696 ** 0.703 ** 0.504 0.093 0.053 0.017 0.732 0.629 0.430 0.164 0.037 0.051

(0.306) (0.315) (0.329) (0.254) (0.247) (0.257) (0.738) (0.738) (0.620) (0.489) (0.633) (0.624)

Control Variables:

  Entry Cohort Fixed Effects + + + + + + + +

  County Indicators + + + +

Parental Variables (for Mother and Father):

  Highest Completed Education and Income + + + + + + + +

  Highest Completed Education in STEM Field + + + + + + + +

  HS Mean of Highest Completed Education and Income + + + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs

Parameter Estimates                                                                                                      

(Standard Errors)                                                                                                        Older Brother Older Sister

Younger Brother Younger Sister Younger Brother Younger Sister

First-stage:  Older Sibling MathScience 

Reduced-form:  Younger Sibling MathScience

Outcome:  Younger Sibling MathScience

0.495 0.473 0.197 0.183

0.313 0.089 0.307 0.093

1,710 1,963 1,780 2,333



 

 

Table 5.  Estimates of Spillover Effects: Heterogeneity by Ability 

 
Note: Standard errors are clustered by older siblings. Significance at a 1%, 5%, and 10% level are denoted by ***, ** and 

*, respectively. 

In Table 5 we split the sample by high school GPA of the older sibling. Unfortunately, we do not 

have any measures of ability (such as test scores or grades) before the students entered high school. 

Therefore, we define the subgroups based on GPA as measured as the simple average of grades in all 

high school courses at the end of high school. We caution that this measure may be affected by the 

course choice; for example, this GPA measure has more weight on performance in math-science 

related tasks for older siblings who chose more advanced math-science courses. However, this may be 

desirable for our particular purpose of measuring older sibling success in their chosen high school 

track. We distinguish three groups: below 50th percentile, between 50th-90th percentile, and above 90th 

percentile in the GPA distribution. The results show that the first stage is sizable as the unexpected 

pilot introduction increased the math-science probability by 13-15 percentage points for the older 

siblings with the highest ability, while the sibling spillover turns negative (but insignificant) in this 

case. This pattern of results supports the hypothesis of sibling competition. If the older sibling performs 

very well (is a “superstar”) the younger sibling would rather not compete with this top performance 

and chooses another course combination. However, the younger sibling does conform to and compete 

with an older sibling with more moderate ability.27
  

                                                             
27 We have also run these regressions separately by gender, which reveals the same patterns, but the samples of high-ability 

students are only around 400 students in these cases and the estimates consequently very imprecise. 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PilotIntro 0.086 *** 0.077 *** 0.071 *** 0.040 0.052 * 0.060 ** 0.135 ** 0.126 ** 0.152 **

(0.024) (0.023) (0.024) (0.028) (0.027) (0.028) (0.063) (0.059) (0.061)

Relative to overall first-stage 1.265 1.116 1.029 0.588 0.754 0.870 1.985 1.826 2.203

PilotIntro 0.035 * 0.028 0.015 0.059 ** 0.050 ** 0.040 * -0.051 -0.036 -0.043

(0.019) (0.019) (0.019) (0.024) (0.023) (0.024) (0.051) (0.050) (0.052)

Older Sibling MathScience 0.408 0.366 0.215 1.452 0.953 0.660 -0.376 -0.285 -0.285

(0.250) (0.257) (0.282) (1.066) (0.600) (0.462) (0.419) (0.390) (0.325)

Control Variables:

  Entry Cohort Fixed Effects + + + + + +

  Sibling Pair Gender Composition + + + + + +

  County Indicators + + +

Parental Variables (for Mother and Father):

  Highest Completed Education and Income + + + + + +

  Highest Completed Education in STEM Field + + + + + +

  HS Mean of Highest Completed Education and Income + + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs

0.170 0.208

Parameter Estimates                                                                                 

(Standard Errors)                                                                                    

First-stage:  Older Sibling MathScience 

Reduced-form:  Younger Sibling MathScience

Outcome:  Younger Sibling MathScience

0.290 0.347 0.420

0.210

GPA < P50 P50 < GPA < P90 GPA > P90

Older Sibling

3,768 3,142 876



 

 

Table 6.  Estimates of Spillover Effects: Heterogeneity by Parental Education 

 

Note: The STEM definition follows the definition by the National Science Foundation (NSF), which includes math, engineering, natural and 

technical sciences as well as some social sciences and life sciences. Standard errors are clustered by older siblings. Significance at a 1%, 5%, and 

10% level are denoted by ***, ** and *, respectively. 

(1) (2) (3) (4) (5) (6) (7) (8)

PilotIntro 0.074 *** 0.063 * 0.052 *** 0.135 *** 0.066 *** 0.106 0.062 *** 0.165 **

(0.020) (0.036) (0.019) (0.040) (0.017) (0.089) (0.017) (0.079)

Relative to overall first-stage 1.072 0.913 0.754 1.957 0.957 1.536 0.899 2.391

PilotIntro 0.016 0.038 0.010 0.063 * 0.013 0.166 ** 0.011 0.168 ***

(0.016) (0.031) (0.016) (0.032) (0.015) (0.076) (0.015) (0.063)

Older Sibling MathScience 0.215 0.607 0.188 0.467 * 0.201 1.574 0.172 1.015 *

(0.222) (0.573) (0.315) (0.264) (0.225) (1.309) (0.232) (0.607)

Control Variables:

  Entry Cohort Fixed Effects + + + + + + + +

  Sibling Pair Gender Composition + + + + + + + +

  County Indicators + + + + + + + +

Parental variables (for mother and father):

  Highest Completed Education and Income + + + + + + + +

  HS Mean og Highest Completed Education and Income + + + + + + + +

Mean of Older Sibling MathScience  

Mean of Younger Sibling MathScience

Number of Sibling Pairs

Parameter                                                                                 

(Standard Error)

0.214

5,828 1,958 5,936 1,850 7,309

0.210 0.186 0.245 0.188

0.323

0.172 0.242 0.183

477 7,226

0.326 0.354

560

0.302 0.406 0.321 0.349 0.398

0 1 0 1 0 1 0 1

STEM > 4-year college

Father

STEM > 4-year college

Mother



 

 

5.2. Parental Background 

Parents’ and children’s education are known to be strongly correlated for many reasons. One of the 

potential reasons is that parents’ level and field of education reflect their ability to assist their children 

with making adequate education choices. Such assistance is highly relevant when it comes to choosing 

course packages in high school. 

We do not know to what extent parents are actually involved in course choice in our sample. 

However, we do know that during high school when students are 16-20 years old, parents are still very 

closely involved in their educational decisions. Actually the family is ranked first when it comes to 

helping the students deciding what to do after compulsory school. A recent survey showed that 79% 

of students in 9-10th grade responded that their parents were closely involved in their high school 

enrollment choice. 28 We have no reason to believe that parental involvement is less in our sample. 

This suggests that students discuss their education choices with their parents across socio-economic 

status. However, for parents without a college degree, it may be difficult to give appropriate advice 

about course choices. Parents with a STEM degree may be better at advising on courses in advanced 

math and science.  

Stinebrickner and Stinebrickner (2014) model students’ college major completion as the result of a 

learning process. They find that students tend to be particularly overoptimistic about whether they can 

complete a degree in math or science. The reason is that they have misperceptions about their ability 

to perform well in math or science. They suggest that such misperceptions are mainly prevalent among 

students who are less likely to have college-educated parents, because such students may be especially 

uninformed about what takes place during college. Arcidiacono, Aucejo, Fang and Spenner (2011) 

also find that students from ethnic groups who on average have less educated parents have more 

misperception about their graduation probabilities in natural sciences. We test whether a similar 

mechanism may play a role in advanced high school course choices. 

In Table 6, we investigate heterogeneity of the incentive effects by parents’ education. We 

distinguish students whose mother or father, respectively, has completed more than a 4-year college 

as well as students whose mother or the father has a STEM degree. 

We find that the older sibling tends to respond more to the pilot scheme when either of the parents 

has completed a long college education or when the mother has a STEM degree. If the father has a 

STEM degree, the older sibling does not significantly react to the introductions of the pilot scheme. 

                                                             
28 See Ministry of Education (2013). 
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This is most likely because the potential is exhausted as 40.6% of the high school students in such 

families already choose math and science (see the bottom panel of Table 6). When we divide by gender 

of the older sibling in Table B12, results suggest that older daughters respond more strongly to the 

pilot in families where at least one of the parents has a STEM degree, while the opposite is the case 

for older sons.29  We interpret the complier analysis across parental education as suggestive evidence 

that information sharing in the family is important for course choices, but does not drive the sibling 

spillover. However, our estimates are not precise enough to draw sharp inferences. 

The estimates of the spillover effects are rarely significant in the subsamples, but the point estimates 

are systematically higher when the parents have a longer college degree or a STEM degree. It is not 

evident that this necessarily reflects that peer effects are higher in these instances. It may reflect that 

the parents are involved in the course choice of both siblings. If the parents assist the older sibling with 

the course choice, they may transfer their acquired knowledge about the content and the demand of the 

courses to the younger sibling, and then the social interaction partly goes through the parents. This 

result also means that it is unlikely that the peer effect embodies the older siblings being direct path 

breakers by providing information on course content. 

5.3. Long-term Outcomes 

We have documented that there is a spillover effect of the pilot program on younger siblings’ course 

choices; particularly for relatively closely spaced brothers. What remains is to examine whether there 

are any longer term effects on the younger siblings’ completed education and earnings in their early 

careers.  

Table 7 presents estimates of sibling peer effects on younger sibling’s earnings at ages 30-35 and 

their highest completed education at age 30. Overall, there is some indication that younger siblings are 

2-3 percentage points more likely to complete a long (> 4-year) college degree in a STEM field if the 

older sibling was unexpectedly exposed to the pilot scheme. Examining subsamples by younger sibling 

gender reveals that there are strong and significant positive spillovers on younger brothers, but no 

significant spillovers on younger sisters. This corroborates that there is not only a shorter-term effect 

of younger brothers being 5-6 percentage points more likely to choose advanced math-science if their 

older siblings unexpectedly got the option of choosing advanced math-science at a lower cost.  

                                                             
29 This may be because there is a large pool of unexploited talent for older daughters in such families (only 25% 

choose math and science) and not for sons (54% of them choose math and science), who are likely to be always-takers. In 

Joensen and Nielsen (2016), we analyze the marginal monetary payoff for the students directly affected by the pilot. We 

find that the payoff tends to be high for those who gain the most, while it approaches zero for boys when more than half 

of them choose math and science. 



 

28 

 

Table 7.  Estimates of Spillover Effects: Long-term Outcomes 

 
Note: The definition of STEM fields follows the definition by the National Science Foundation (NSF), which includes 

math, engineering, natural and technical sciences as well as some social sciences and life sciences. . Standard errors are 

clustered by older siblings. Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. 

 

The reduced-form estimates in Table 7 show that these younger brothers also become 5-7 percentage 

points more likely to complete a long college degree, 6-7 percentage points more likely to complete a 

(long) STEM-field college degree, and that they earn 24-25 log-points more when they are age 30-35 

years old. 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PilotIntro  0.067 *** 0.068 *** 0.068 *** 0.072 *** 0.076 *** 0.078 *** 0.062 ** 0.058 ** 0.057 **

Younger Sibling, age 30 (0.018) (0.017) (0.018) (0.027) (0.026) (0.027) (0.024) (0.023) (0.024)

Relative to overall first-stage 1.059 1.101 1.130 0.912 0.841 0.826

PilotIntro  0.088 0.068 0.035 0.254 ** 0.235 * 0.242 * -0.062 -0.057 -0.103

Younger Sibling log(earnings), ages 30-35 (0.089) (0.088) (0.093) (0.121) (0.122) (0.130) (0.126) (0.126) (0.132)

PilotIntro  0.007 0.012 0.011 0.054 * 0.063 ** 0.068 ** -0.034 -0.030 -0.035

Younger Sibling > 4-year college, age 30 (0.019) (0.018) (0.019) (0.028) (0.028) (0.029) (0.025) (0.024) (0.025)

PilotIntro 0.025 0.024 0.024 0.063 ** 0.068 ** 0.066 ** -0.012 -0.008 -0.005

Younger Sibling STEM field college, age 30 (0.017) (0.017) (0.017) (0.027) (0.027) (0.028) (0.021) (0.021) (0.021)

PilotIntro 0.023 0.025 0.026 * 0.056 ** 0.063 *** 0.064 ** -0.008 -0.004 -0.002

Younger Sibling > 4-year college in STEM field, age 30 (0.015) (0.015) (0.016) (0.025) (0.024) (0.025) (0.019) (0.019) (0.019)

Older Sib MathScience 1.232 0.942 0.492 3.129 * 2.811 * 2.872 -1.009 -0.971 -1.756

Younger Sibling log(earnings), ages 30-35 (1.272) (1.231) (1.285) (1.824) (1.665) (1.756) (2.120) (2.212) (2.423)

Older Sib MathScience 0.106 0.174 0.163 0.749 0.825 * 0.883 * -0.554 -0.505 -0.621

Younger Sibling > 4-year college, age 30 (0.276) (0.267) (0.274) (0.463) (0.443) (0.455) (0.462) (0.464) (0.514)

Older Sib MathScience 0.371 0.359 0.356 0.878 * 0.896 ** 0.853 * -0.190 -0.137 -0.091

Younger Sibling STEM field college, age 30 (0.266) (0.254) (0.261) (0.484) (0.448) (0.442) (0.350) (0.362) (0.377)

Older Sib MathScience  0.340 0.364 0.389 0.784 * 0.832 ** 0.825 ** -0.130 -0.071 -0.041

Younger Sibling > 4-year college in STEM field, age 30 (0.240) (0.233) (0.242) (0.437) (0.411) (0.411) (0.315) (0.324) (0.340)

Control Variables:

  Entry Cohort Fixed Effects + + + + + +

  Sibling Pair Gender Composition + + + + + +

  County Indicators + + +

Parental Variables (for Mother and Father):

  Highest Completed Education and Income + + + + + +

  Highest Completed Education in STEM Field + + + + + +

  HS Mean of Highest Completed Education and Income + + +

Mean of Outcome variables:

  Younger Sib. log(earnings), ages 30-35

  Younger Sib. > 4-year college, age 30

  Younger Sib. STEM field college, age 30

  Younger Sib. > 4-year college in STEM field, age 30

Number of Sibling Pairs, Younger Sib. obs. at age 30

Number of Observations, Younger Sib. earnings ages 30-35 42,484 18,787 23,697

0.197 0.248 0.156

7,123 3,151 3,972

0.268 0.359 0.196

0.357 0.399 0.324

First-stage:  Older Sibling MathScience 

Reduced-form:  Younger Sibling longer-term outcomes

Outcome:  Younger Sibling longer-term outcomes

11.076 11.275 10.918

Parameter Estimates                                                                               

(Standard Errors)                                                                                  

All
Younger Sibling

Brother Sister
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From previous studies we know that there is a substantial direct effect of investing in math on career 

outcomes of the individual (Cortes et al. 2015; Falch et al. 2014; Joensen and Nielsen, 2009; 2016). 

Based on our analysis of siblings, we now also know that this investment spills over to younger siblings 

and that this indeed has long-term consequences for career outcomes of the younger siblings.  

6. Conclusion 

We study the spillover effects of an education program offered to older siblings on their younger 

siblings’ education choices. We find significant spillover effects, which are particularly strong for 

brothers, and present evidence that social interactions among siblings are important for skill formation.  

Younger siblings are 2-3 percentage points more likely to choose advanced math and science in high 

school if their older siblings could unexpectedly opt for this course choice at a reduced cost. If we 

invoke the exclusion restriction that the extra education program offered to the older sibling only 

influences the younger sibling through the older sibling’s course choice, this implies a sizeable peer 

effect as almost half of the direct effect spills over, which varies across subgroups. Spillovers are never 

significant for sisters and strongest for relatively closely spaced brother-brother pairs. We argue that 

the pattern of the heterogeneous spillover effects across gender, ability, birth spacing and birth order 

suggests that the most likely mechanism is competition and sibling rivalry. Furthermore, we document 

that these sibling spillovers have long-term consequences for the careers of the affected subgroup of 

younger brothers. 

Our results indicate that social interactions in the family may exacerbate inequality across 

households. First, the presence of possibly large sibling peer effects in education choices reveals that 

the strong sibling correlations could conceal influential interactions among siblings. Second, we find 

systematically larger spillover effects in families where either of the parents has a long college 

education or a STEM degree. This suggests that parents are closely involved in the educational decision 

and that they are part of the social environment in which these decisions are made. However, our 

empirical analysis of the potential mechanisms are merely suggestive and a first step towards sheding 

light on what the sibling spillovers in education choices embody. More hard evidence is needed on the 

role of the family and siblings in influencing eachother’s educational decisions and human capital 

investments more generally. 
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Appendix A.  Earnings across Course Choices 

In the empirical analysis, we focus on the choice of advanced math and science. This course 

combination gives access to STEM field colleges programs without further supplementary courses, 

and on average, the students choosing this course combination have the most lucrative careers. 

Figure A1 shows that the choice of advanced math-science increases earnings by more than moving 

from the “worst” to the “best” high school, where “worst” (“best”) refers to lowest (highest) ranked 

high school as measured by the average earnings of graduates. Average earnings for non-math-science 

high school graduates are lower than the earnings at the “worst” school, while average earnings of 

math-science graduates are as high as top ranked schools. 

Figures A2 and A3 show that the average earnings premium of advanced math-science is higher 

than the average earnings premium of non-math-science high school graduates relative to those without 

a traditional academic high school degree (black solid line). Choosing advanced math-science thus 

seems to increase earnings by more than acquiring a traditional academic high school degree per se. 

This is true both at age 30 (Figure A2) and age 35 (Figure A3). 

Thus Figures A1-A3 present descriptive evidence that the choice of advanced math-science is more 

strongly related to earnings at ages 30-35 than the choice of high school. 

Figure A1. Earnings at Ages 30-35, by High School and Advanced Course Choices 

 

Note: The figure displays annual earnings of high school graduates for the each cohort at age 30-35. Annual earnings are 

displayed separately by high school and advanced Math-Science. The horizontal axis displays the percentile rank of the 

high schools in our sample based on average earnings for all students graduating from the high school (black solid line). 

All numbers are in real 1989 DKK. The exchange rate was 6.1853 USD/DKK ultimo December 1989. 
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Figure A2. Earnings at age 30, by High School Degree and Advanced Course Choices 

 

Note: The figure displays annual earnings of each cohort who is 30 years old in the relevant year: 1984-2010. Thus most 

of those observed in 2001 enrolled in high school in 1987. Annual earnings are displayed separately by high school degree 

and advanced Math-Science choice. All numbers are in real 1989 DKK. The exchange rate was 6.1853 USD/DKK ultimo 

December 1989. 

 

Figure A3. Earnings at age 35, by High School Degree and Advanced Course Choices 

 

Note: The figure displays annual earnings of each cohort who is 35 years old in the relevant year: 1989-2010. Thus most 

of those observed in 2006 enrolled in high school in 1987. Annual earnings are displayed separately by high school degree 

and advanced Math-Science. All numbers are in real 1989 DKK. The exchange rate was 6.1853 USD/DKK ultimo 

December 1989.  
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Appendix B. Additional Descriptive Statistics and Results 

Table B1.  Overview of Sample Selection 

 

 

  

N MathScience

All high school entry cohorts 1984-87 79,681 0.2192

who graduates within 3 years at ages 18-22 64,489 0.2594

with younger siblings

    sibling pairs 55,734 0.2655

    accounting for older siblings once 38,273 0.2706

with younger siblings in high school

    sibling pairs 28,509 0.3008

    accounting for older siblings once 23,046 0.2991

with younger siblings in high school*

    sibling pairs 24,116 0.3075

    accounting for older siblings once 20,016 0.3055

with younger siblings in high school cohorts 1988-97*

    sibling pairs 18,780 0.3088

    accounting for older siblings once 16,313 0.3074

and age difference < 10 years*

    sibling pairs 17,691 0.3115

    accounting for older siblings once 15,420 0.3102

with younger siblings in high school cohorts 1988-91*

    sibling pairs 12,157 0.3201

    accounting for older siblings once 11,610 0.3183

and age difference < 4 years*

    sibling pairs 7,786 0.3279

    accounting for older siblings once 7,496 0.3280

* Graduated with in 3 years at ages 18-22.
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Table B2.  Summary of Older Siblings’ Course Choice,  

by their Exposure to the Pilot Scheme and by High School Cohort of Younger Sibling 

 

Note: The table displays the number of younger siblings and the fraction of their older siblings choosing advanced Math 

with advanced Physics or Chemistry. The numbers are displayed by younger siblings’ high school entry cohort and type 

of high school attended by the older sibling: traditional high schools only offering advanced Math with advanced Physics 

(PilotSchool=0, PilotIntro=0), schools which unexpectedly introduced the pilot scheme combining advanced Math with 

advanced Chemistry (PilotSchool=0, PilotIntro=1) for the older sibling, and schools which already had adopted the pilot 

scheme (PilotSchool=1, PilotIntro=0). The two rows at the bottom summarize information for younger sibling enrolling 

high school 1988-97 (age gap ≤ 10 years) and 1988-91 (age gap ≤ 4 years). 

  

Younger Sib 

High School

Cohort

N MathScience old N MathScience old N MathScience old N MathScience old

1988 2,160 0.2815 443 0.3341 689 0.3614 3,292 0.3053

1989 2,192 0.2810 431 0.3364 953 0.4292 3,576 0.3272

1990 1,788 0.2768 331 0.4018 819 0.4371 2,938 0.3356

1991 1,384 0.2724 257 0.2763 710 0.3972 2,351 0.3105

1992 1,023 0.2366 214 0.3131 500 0.3740 1,737 0.2855

1993 858 0.2669 155 0.3677 392 0.3648 1,405 0.3053

1994 669 0.2272 123 0.2764 326 0.3926 1,118 0.2809

1995 614 0.2492 115 0.3391 260 0.4154 989 0.3033

1996 452 0.2235 93 0.2796 222 0.3739 767 0.2738

1997 391 0.2532 73 0.3014 143 0.2727 607 0.2636

Total 11,531 0.2664 2,235 0.3320 5,014 0.3961 18,780 0.3088

1988-1997 10,733 0.2679 2,097 0.3348 4,861 0.3979 17,691 0.3115

1988-1991 4,463 0.2772 865 0.3457 2,458 0.4138 7,786 0.3279

Older Sibling                                              

Pilot School = 0

Pilot Intro = 0

Older Sibling                                                     

Pilot School = 0

Older Sibling                                                     

Pilot School = 1 All

Pilot Intro = 1 Pilot Intro = 0
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Table B3.  Younger Sibling Course Choice, by Course Choice of Older Sibling 

 
Note: The table displays math-science course choices of younger siblings, by sibling pair 

gender composition and by older sibling’s math-science choice. 

 

 

Table B4.  Younger Sibling Course Choice, by Pilot School Status of Older Sibling 

 

Note: The table displays math-science course choices of younger siblings. The numbers are displayed by 

sibling pair gender composition and type of high school attended by the older sibling: traditional high 

schools only offering advanced Math with advanced Physics (PilotSchool=0, PilotIntro=0), schools 

which unexpectedly introduced the pilot scheme combining advanced Math with advanced Chemistry 

(PilotSchool=0, PilotIntro=1) for the older sibling, and schools which already had adopted the pilot 

scheme (PilotSchool=1, PilotIntro=0).  

Gender Course Choice N Mean N Mean N Mean

All MathScience 5,233 0.1439 2,553 0.2832 7,786 0.1896

Brother MathScience 863 0.2063 847 0.4227 1,710 0.3135

Sister MathScience 1,035 0.0444 928 0.1390 1,963 0.0891

Brother MathScience 1,430 0.2804 350 0.4171 1,780 0.3073

Sister MathScience 1,905 0.0672 428 0.2103 2,333 0.0934

Older Brother

Older Sister

Younger Sibling
Older Sibling                         

MathScience = 0

Older Sibling                      

MathScience = 1
All

All

Gender Course Choice N Mean N Mean N Mean N Mean

All MathScience 4,463 0.1804 865 0.2162 2,458 0.1969 7,786 0.1896

Brother MathScience 1,001 0.3027 189 0.3915 520 0.3058 1,710 0.3135

Sister MathScience 1,094 0.0804 204 0.0882 665 0.1038 1,963 0.0891

Brother MathScience 1,005 0.2955 212 0.3349 563 0.3179 1,780 0.3073

Sister MathScience 1,363 0.0858 260 0.0923 710 0.1085 2,333 0.0934

Older Sister

Younger Sibling

Older Sibling                                       

Pilot School = 0

Older Sibling                                       

Pilot School = 0

Older Sibling                                       

Pilot School = 1 All

Pilot Intro = 0 Pilot Intro = 1 Pilot Intro = 0

All

Older Brother
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Table B5.  Descriptive Statistics, by Pilot School Status of Older Sibling 

 

Note: The table displays means and standard deviations of background variables for older siblings and their families by 

type of high school attended by the older sibling: traditional high schools only offering advanced Math with advanced 

Physics (PilotSchool=0, PilotIntro=0), schools which unexpectedly introduced the pilot scheme combining advanced Math 

with advanced Chemistry (PilotSchool=0, PilotIntro=1), and schools which had adopted the pilot scheme when the older 

sibling enrolled (PilotSchool=1, PilotIntro=0). The population includes 7,786 sibling pairs with an age gap ≤ 4 years where 

the younger sibling enrolled in high school in 1988-91. Bold and italics indicate that the mean is significantly different 

from the mean for Pilot School=0 & Pilot Intro=0 at the 5 % and the 10% level, respectively. 

 

 

  

 

 

 

Younger Sibling Mean Std.Dev. Mean Std.Dev. MeanDiff Mean Std.Dev. MeanDiff

Male 0.4495 0.4975 0.4636 0.4990 -0.0141 0.4406 0.4966 0.0089

High school cohort

1988 0.4098 0.4919 0.4324 0.4957 -0.0226 0.2738 0.4460 0.1360

1989 0.3274 0.4693 0.3110 0.4632 0.0164 0.3515 0.4775 -0.0241

1990 0.1927 0.3945 0.1746 0.3798 0.0181 0.2433 0.4292 -0.0506

1991 0.0701 0.2554 0.0821 0.2746 -0.0119 0.1314 0.3379 -0.0613

Father

Log(Earnings) 10.1093 4.5365 10.1125 4.5967 -0.0032 10.2757 4.4347 -0.1664

Primary School Only 0.1214 0.3267 0.1422 0.3495 -0.0208 0.1098 0.3128 0.0116

High School Only 0.0432 0.2034 0.0497 0.2175 -0.0065 0.0439 0.2050 -0.0007

Vocational Training 0.2543 0.4355 0.2509 0.4338 0.0034 0.2327 0.4226 0.0216

2-year College 0.0356 0.1854 0.0451 0.2076 -0.0095 0.0374 0.1898 -0.0018

4-year College 0.2642 0.4409 0.2474 0.4318 0.0168 0.2628 0.4403 0.0014

> 4-year College 0.2252 0.4178 0.2116 0.4087 0.0136 0.2604 0.4389 -0.0352

STEM Field 0.2389 0.4264 0.2532 0.4351 -0.0143 0.2738 0.4460 -0.0349

Mother

Log(Earnings) 9.5384 4.3456 9.5306 4.3265 0.0078 9.6555 4.2569 -0.1171

Primary School Only 0.1499 0.3570 0.1526 0.3598 -0.0027 0.1318 0.3384 0.0181

High School Only 0.0379 0.1909 0.0347 0.1831 0.0032 0.0391 0.1938 -0.0012

Vocational Training 0.3034 0.4598 0.3179 0.4659 -0.0145 0.3096 0.4624 -0.0062

2-year College 0.0614 0.2401 0.0751 0.2638 -0.0138 0.0736 0.2612 -0.0122

4-year College 0.3424 0.4746 0.3306 0.4707 0.0117 0.3393 0.4736 0.0031

> 4-year College 0.0726 0.2595 0.0578 0.2335 0.0148 0.0732 0.2606 -0.0006

STEM Field 0.0596 0.2368 0.0497 0.2175 0.0099 0.0683 0.2524 -0.0087

Older sibling

Male 0.4694 0.4991 0.4543 0.4982 0.0151 0.4821 0.4998 -0.0127

Math Science 0.2772 0.4477 0.3457 0.4759 -0.0685 0.4138 0.4926 -0.1366

GPA 8.5817 0.9721 8.5032 0.9260 0.0784 8.5680 0.9679 0.0137

First Born 0.7930 0.4052 0.8000 0.4002 -0.0070 0.7815 0.4133 0.0114

Second Born 0.1667 0.3728 0.1607 0.3675 0.0060 0.1798 0.3841 -0.0131

Third Born or Later 0.0439 0.2049 0.0405 0.1972 0.0035 0.0419 0.2004 0.0020

Sibship

Sibship Size = 2 0.4779 0.4996 0.5017 0.5003 -0.0238 0.4870 0.4999 -0.0091

Sibship Size = 3 0.3477 0.4763 0.3561 0.4791 -0.0083 0.3657 0.4817 -0.0180

Sibship Size = 4+ 0.1743 0.3794 0.1422 0.3495 0.0321 0.1473 0.3545 0.0270

Number of Individuals

Older Sibling                                              

Pilot School = 0

Older Sibling                                                     

Pilot School = 0

Older Sibling                                                     

Pilot School = 1

4,463 865 2,458

Pilot Intro = 0 Pilot Intro = 1 Pilot Intro = 0



 

 

Table B6.  Estimates of Spillover Effects: Probit Estimators 

 

Note: Standard errors are clustered by older siblings. Significance at a 1%, 5%, and 10% level are denoted by ***, ** and 

*, respectively. 

(1) (2) (3) (4) (5) (6)

PilotIntro 0.203 *** 0.222 *** 0.223 ***

(0.046) (0.050) (0.052)

[0.072] [0.071] [0.071]

Older Sibling MathScience 0.493 *** 0.565 *** 0.566 *** 1.453 *** 0.793 ** 0.655 *

(0.034) (0.038) (0.039) (0.350) (0.321) (0.355)

[0.140] [0.150] [0.149] [0.360] [0.188] [0.154]

Control Variables:

  Entry Cohort Fixed Effects + + + +

  Sibling Pair Gender Composition + + + +

  County Indicators + +

Parental Variables (for Mother and Father):

  Highest Completed Education and Income + + + +

  Highest Completed Education in STEM Field + + + +

  HS Mean of Highest Completed Education and Income  +  +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

 Number of Sibling Pairs

0.328

0.190

7,786

Probit

Parameter Estimates                                                                   

(Standard Errors)                                                                      

[Average Marginal Effects]

Probit Normal Index Models

Bivariate Probit

First-stage:  Older Sibling MathScience 

Outcome:  Younger Sibling MathScience



 

 

Table B7.  Means by Treatment Status 

 
Note: Table reports means of family background for individuals with PilotSchool=0. “Never Takers” are individuals who 

do not choose math-science even when exposed to the pilot program, i.e. PilotIntro=1 and MathScience=0; “Always 

Takers” are individuals who choose math-science even without the pilot program, i.e. PilotIntro=0 and MathScience=1; 

“Compliers” are individuals who only choose math-science when exposed to the pilot program, but not otherwise. The 

means for compliers are inferred based on the other columns. Standard errors are bootstrapped (99 repetitions) and 

significant mean differences between “All” high school students at non-pilot schools and those who unexpectedly introduce 

the pilot; i.e. PilotIntro=1, at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. 

  

Father

log(earnings) 12.070 12.130 12.090 11.492

Primary School Only 0.132 0.149 0.118 ** 0.021

High School Only 0.047 0.054 0.044 -0.013

Vocational Training 0.268 0.296 * 0.243 ** 0.095

2-year College 0.039 0.041 0.042 0.012

4-year College 0.276 0.251 0.310 *** 0.369

> 4-year College 0.239 0.209 * 0.244 0.515

STEM Field 0.241 0.237 0.307 *** 0.016

Mother

log(earnings) 11.440 11.380 11.460 12.017

Primary School Only 0.155 0.168 0.157 0.026

High School Only 0.039 0.035 0.047 0.040

Vocational Training 0.316 0.336 0.318 0.112

2-year College 0.066 0.082 0.057 -0.058

4-year College 0.351 0.332 0.347 0.553

> 4-year College 0.074 0.047 *** 0.073 0.326 ***

STEM Field 0.058 0.042 * 0.068 0.167

Siblings

Older Sibling Male 0.467 0.325 0.723 *** 0.787 ***

Younger Sibling Male 0.452 0.445 0.472 0.432

Older Sibling's GPA 8.569 8.472 ** 8.714 *** 8.909

Number of Observations (to Compute Means) 5,328           566              1,237           -

Number of Observations 5,328           3,486           1,477           364              

Means

All Always TakersNever Takers Compliers
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Table B8.  Estimates of Spillover Effects: Exclude Cohorts Close to 1988-Reform. 

 

Note: The samples consist of 4,705 and 4,910 sibling pairs, respectively. Standard errors are clustered by older siblings. 

Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. 

(1) (2) (3) (4) (5) (6)

PilotIntro 0.086 *** 0.080 *** 0.067 ***

Younger Sibling 1988-91, ≤4y, Older Sibling 1984-86 (0.021) (0.020) (0.021)

PilotIntro 0.068 *** 0.067 *** 0.069 ***

Younger Sibling 1989-91, ≤4y, Older Sibling 1984-87 (0.023) (0.022) (0.023)

PilotIntro 0.040 ** 0.031 * 0.029

Younger Sibling 1988-91, ≤4y, Older Sibling 1984-86 (0.018) (0.017) (0.018)

PilotIntro 0.049 ** 0.052 *** 0.045 **

Younger Sibling 1989-91, ≤4y, Older Sibling 1984-87 (0.020) (0.018) (0.019)

Older Sibling MathScience 0.144 *** 0.146 *** 0.145 *** 0.459 ** 0.383 * 0.437

Younger Sibling 1988-91, ≤4y, Older Sibling 1984-86 (0.013) (0.014) (0.014) (0.217) (0.217) (0.277)

Older Sibling MathScience 0.141 *** 0.141 *** 0.140 *** 0.728 ** 0.785 ** 0.654 **

Younger Sibling 1989-91, ≤4y, Older Sibling 1984-87 (0.012) (0.012) (0.012) (0.348) (0.342) (0.321)

Control Variables:

  Entry Cohort Fixed Effects + + + +

  Sibling Pair Gender Composition + + + +

  County Indicators + +

Parental Variables (for Mother and Father):

  Highest Completed Education and Income + + + +

  Highest Completed Education in STEM Field + + + +

  HS Mean of Highest Completed Education and Income  +  +

Outcome:  Younger Sibling MathScience

Parameter Estimates                                                  

(Standard Errors)                                                     

[Marginal Effects]OLS 2SLS

First-stage:  Older Sibling MathScience 

Reduced-form:  Younger Sibling MathScience



 

 

Table B9. Estimates of Spillover Effects: Exclude Closely Spaced Siblings 

 

Note: Standard errors are clustered by older siblings. Significance at a 1%, 5%, and 10% level are denoted by ***, ** and 

*, respectively.

PilotIntro 0.077 *** 0.077 *** 0.075 ***

Younger Sibling 1988-91, ≤4y  (0.019) (0.018) (0.018)

PilotIntro 0.039 ** 0.034 ** 0.023

Younger Sibling 1988-91, ≤4y (0.016) (0.015) (0.016)

Older Sibling MathScience 0.146 *** 0.150 *** 0.150 *** 0.511 ** 0.435 ** 0.314

(0.011) (0.011) (0.011) (0.223) (0.203) (0.211)

Control Variables:

  Entry Cohort Fixed Effects + + + +

  Sibling Pair Gender Composition + + + +

  County Indicators + +

Parental Variables (for Mother and Father):

  Highest Completed Education and Income + + + +

  Highest Completed Education in STEM Field + + + +

  HS Mean of Highest Completed Education and Income  +  +

Number of Sibling Pairs

Outcome:  Younger Sibling MathScience

First-stage:  Older Sibling MathScience 

Reduced-form:  Younger Sibling MathScience

(6)

6,515

Parameter Estimates                                                

(Standard Errors)                                                   

[Marginal Effects]

(1) (2) (3) (4) (5)

OLS 2SLS



 

 

Table B10. Estimates of Spillover Effects: Distinguish Low versus High Fraction Math-Science Prior to Pilot 

  
Note: The left (right) hand side of table distinguishes high schools (counties) where the fraction choosing math and science in 1983 was below and above the median. Standard 

errors are clustered by older siblings. Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. Note that we do not observe the course choices at 

one high school in 1983. This school was founded in 1985 and 39 older siblings in our sample subsequently attend this high school that never adopted the pilot program. 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PilotIntro 0.082 *** 0.077 *** 0.062 ** 0.069 *** 0.074 *** 0.051 * 0.044 * 0.051 ** 0.036 0.099 *** 0.088 *** 0.102 ***

(0.024) (0.023) (0.026) (0.026) (0.025) (0.027) (0.024) (0.022) (0.023) (0.027) (0.025) (0.027)

Relative to Overall First-Stage 1.206 1.116 0.899 1.015 1.072 0.739 0.647 0.739 0.522 1.456 1.275 1.478

PilotIntro 0.015 0.009 -0.020 0.058 ** 0.058 *** 0.036 0.029 0.029 0.023 0.040 * 0.027 0.024

(0.020) (0.020) (0.022) (0.023) (0.022) (0.023) (0.021) (0.020) (0.020) (0.022) (0.022) (0.023)

Older Sibling MathScience 0.183 0.117 -0.318 0.840 ** 0.781 ** 0.703 0.647 0.583 0.643 0.402 * 0.308 0.234

(0.243) (0.252) (0.403) (0.425) (0.359) (0.528) (0.535) (0.428) (0.648) (0.229) (0.241) (0.220)

Control Variables:

  Entry Cohort Fixed Effects + + + + + + + +

  County Indicators + + + +

Parental Variables (for Mother and Father):

  Highest Completed Education and Income + + + + + + + +

  Highest Completed Education in STEM Field + + + + + + + +

  HS Mean of Highest Completed Education and Income + + + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs

Parameter Estimates                                                                                                                 

(Standard Errors)                                                                                                                    

[Marginal Effects]High School MathScience County MathScience 

<  Median >  Median <  Median >  Median

First-stage:  Older Sibling MathScience 

Reduced-form:  Younger Sibling MathScience

Outcome:  Younger Sibling MathScience

0.317 0.340 0.326 0.330

0.194 0.187 0.201 0.178

3,901 3,846 4,027 3,759
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Table B11.  Estimates of Spillover Effects: Randomly Matched Sibling Pairs  

  

Note: Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. Only children who are enrolling in high school in 1984-91, graduating within three 

years, and are 18-22 years old at graduation are given a random number. First, they are matched based on mother’s education, income and STEM field indicator and the rank 

of their random number within the 1984-87 and 1988-91 cohorts Just as for our main sample, we condition on placebo siblings having an age difference of mostly four years. 

Columns (1)-(6) display results when only children are matched across high schools, whereas columns (7)-(12) display results when they are matched with only children 

attending the same high school.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PilotIntro 0.105 *** 0.107 *** 0.091 ** 0.087 ** 0.092 ** 0.067

(0.036) (0.034) (0.036) (0.042) (0.041) (0.043)

PilotIntro 0.002 0.003  0.000 -0.004 0.010 -0.004

(0.031) (0.031)  (0.032) (0.038) (0.037) (0.039)

Older "Sibling" MathScience 0.017 0.020 0.023 0.014 0.032 -0.003 0.033 0.044 0.041 -0.042 0.113 -0.063

(0.022) (0.022) (0.022) (0.299) (0.283) (0.348) -0.027 (0.027) (0.028) (0.441) (0.402) (0.579)

Control Variables:

  Entry Cohort Fixed Effects + + + + + + + +

  Sibling Pair Gender Composition + + + + + + + +

  County Indicators  +  +  +  +

Parental Variables (for Mother and Father):

  Highest Completed Education and Income

  Highest Completed Education in STEM Field + + + + + + + +

  HS Mean of Highest Completed Education and Income  +  +  +  +

Mean of Older "Sibling" MathScience

Mean of Younger "Sibling" MathScience

Number of Randomly Matched Sibling Pairs

Parameter Estimates                                                                                                            

(Standard Errors)                                                                                                               

Only Children Matched by Mother's Income, Education level, and STEM field

Random High School Same High School

OLS 2SLS OLS 2SLS

First-stage:  Older "Sibling" MathScience 

Reduced-form:  Younger "Sibling" MathScience

Outcome:  Younger "Sibling" MathScience

0.269 0.274

0.183 0.198

1,678 1,140



 

 

Table B12. Estimates of Spillover Effects: Heterogeneity by Parental Education and Gender 

 
Note: The definition of STEM fields follows the definition by the National Science Foundation (NSF), which includes math, engineering, natural and technical sciences as well 

as some social sciences and life sciences. Standard errors are clustered by older siblings. Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PilotIntro 0.040 * 0.039 * 0.043 * 0.053 0.055 0.060 0.114 *** 0.112 *** 0.104 *** 0.089 * 0.076 0.085

(0.022) (0.022) (0.023) (0.043) (0.043) (0.045) (0.032) (0.033) (0.034) (0.052) (0.052) (0.055)

Relative to overall first-stage 0.588 0.565 0.623 0.779 0.797 0.870 1.676 1.623 1.507 1.309 1.101 1.232

PilotIntro 0.022 0.014 0.012 0.027 0.018 0.032 0.039 0.038 0.022 0.073 * 0.061 0.034

(0.022) (0.021) (0.022) (0.042) (0.041) (0.042) (0.025) (0.024) (0.024) (0.044) (0.042) (0.044)

Older Sibling MathScience 0.564 0.368 0.279 0.518 0.334 0.528 0.344 0.336 0.215 0.828 0.801 0.404

(0.617) (0.562) (0.514) (0.856) (0.786) (0.778) (0.229) (0.218) (0.238) (0.611) (0.681) (0.520)

Control Variables:

  Entry Cohort Fixed Effects + + + + + + + +

  Sibling Pair Gender Composition + + + + + + + +

  County Indicators + + + +

Parental variables (for mother and father):

  Highest Completed Education and Income + + + + + + + +

  Highest Completed Education in STEM Field + + + + + + + +

  HS Mean og Highest Completed Education and Income + + + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs

STEM = 0 STEM = 1 STEM = 0 STEM = 1

Parameter Estimates                                                                              

(Standard Error)

Parent and Older Daughter Parent and Older Son

First-stage:  Older Sibling MathScience 

Reduced-form:  Younger Sibling MathScience

Outcome:  Younger Sibling MathScience

0.166 0.254 0.458 0.541

0.165 0.246 0.177 0.231

3,041 1,072 2,561 1,112



 

 

Figure B1. Reduced-form Estimates of Pilot Spillover Effects: Sibling Spacing 

(1) 

 

(2) 

 

(3) 

 

Note: Figure illustrates reduced-form coefficient estimates and 95%-confidence intervals for estimates of pilot spillover 

effects on younger sibling math-science choice for sibling pairs ≤ 2, ≤ 3, ≤ 4, ≤ 5, ≤ 6 and ≤ 10 years apart. (1): no control 

variables apart from post pilot school; (2): sibling pair gender indicators, cohort, and parental variables; (3) = (2) + county 

fixed effects and high school variables.  
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Figure B2. School Characteristics, by School Pilot Status. 

                            (a) Number of Students                                                       (b) Average Parental log(income) 

  

            (c) Fraction of Mothers with ≥4-year College                       (d) Fraction of Fathers with ≥4-year College 

 

            (e) Fraction of Mothers with STEM Degrees                        (f) Fraction of Fathers with STEM Degrees 

 
 

Note: This Figure supplements Figure 1 by showing characteristics of the student body and their parents by high school 

entry cohort (on the x-axis) and by pilot status. The red dashed lines refer to the 64 schools with pilot status at any time 

during 1984-87, while the blue solid lines refer to the schools which never implemented the pilot scheme. Panel (a) displays 

the number of high school graduates within three years, panel (b) displays log total parental income, while panels (c)-(f) 

display the fraction of mothers and fathers with at least a 4-year college degree and a STEM degree, respectivley. Parental 

background variables are only sparsely available before 1982. 



 

 

Appendix C.  Birth-Order Effects 

In Table C1 we investigate heterogeneous effects by birth order and size of the sibship. We find that 

first-born older siblings respond less strongly to the introduction of the pilot program and influence 

their younger sibling more strongly than later-born older siblings. For pairs where the young sibling is 

also the last-born in the sibship, the old sibling responds more strongly to the pilot program and 

influences the younger sibling more than in other sibships. This latter finding is not entirely consistent 

with the predictions from the psychological literature, that middle children compete more with first 

borns, while last borns do not. Our results reveal no difference between families with two siblings 

versus three or more siblings. 

There are two competing hypothesis why first-borns influence younger siblings more than later-

borns: either they exert a stronger direct influence on all of the younger siblings, or they exert a stronger 

effect due to indirect snowball effects. In our set-up we analyze 1,842 sibships of three ("triplets") to 

identify the birth order effect without imposing additional parameter restrictions. Below we  provide 

details on how we exploit the unique features of the institutional setup and the timing of the policy 

changes, which implies that some “triplets” have one and some have two older siblings exogenously 

affected by the pilot scheme. This allows us to separately identify both the direct effect of the first and 

of the second on the third sibling, without imposing additional parameter restrictions. We are thus able 

to estimate birth-order effects under more general conditions than the social multiplier conditions 

provided by Glaeser, Sacerdote and Scheinkman (2003) and the snowball effect conditions provided 

by Dahl, Løken and Mogstad (2014).  



 

 

Table C1.  Estimates of Spillover Effects: Heterogeneity by Birth Order and Sibship Size 

 

Note: Standard errors are clustered by older siblings. Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

PilotIntro 0.147 *** 0.150 *** 0.150 *** 0.048 ** 0.047 ** 0.048 ** 0.032 0.035 0.035 0.085 *** 0.085 *** 0.081 *** 0.069 *** 0.060 *** 0.060 ** 0.066 *** 0.077 *** 0.078 ***

(0.040) (0.038) (0.038) (0.020) (0.018) (0.019) (0.031) (0.030) (0.030) (0.021) (0.020) (0.021) (0.025) (0.023) (0.024) (0.025) (0.024) (0.025)

Relative to overall first-stage 2.162 2.174 2.174 0.706 0.681 0.696 0.471 0.507 0.507 1.250 1.232 1.174 1.015 0.870 0.870 0.971 1.116 1.130

PilotIntro 0.016 0.015 0.01 0.041 ** 0.034 ** 0.025 0.031 0.030 0.000 0.038 ** 0.030 * 0.030 * 0.033 0.023 0.023 0.038 * 0.035 * 0.017

(0.032) (0.031) (0.032) (0.016) (0.016) (0.016) (0.027) (0.026) (0.026) (0.017) (0.017) (0.017) (0.021) (0.020) (0.021) (0.021) (0.020) (0.020)

Older Sibling MathScience 0.107 0.097 0.070 0.839 * 0.730 * 0.508 0.988 0.859 -0.012 0.449 ** 0.357 * 0.367 * 0.473 0.391 0.387 0.577 0.449 0.215

(0.220) (0.204) (0.231) (0.434) (0.406) (0.367) (1.188) (0.960) (0.657) (0.221) (0.203) (0.220) (0.318) (0.341) (0.355) (0.363) (0.279) (0.266)

Control Variables:

  Entry Cohort Fixed Effects + + + + + + + + + + + +

  Sibling Pair Gender Composition + + + + + + + + + + + +

  County Indicators + + + + + +

Parental Variables (for Mother and Father):

  Highest Completed Education and Income + + + + + + + + + + + +

  Highest Completed Education in STEM Field + + + + + + + + + + + +

  HS Mean of Highest Completed Education and Income + + + + + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs

First-stage:  Older Sibling MathScience 

Parameter Estimates                                                                                                                                                                        

(Standard Errors)                                                                                                                                                                           

Older Sibling Younger Sibling Number of Siblings in Sibship

Not Oldest Oldest Not Youngest Youngest Nsibs = 2 Nsibs > 2

Reduced-form:  Younger Sibling MathScience

Outcome:  Younger Sibling MathScience

0.295 0.337 0.325 0.329 0.343 0.314

0.190 0.189

1,634 6,152 2,489 5,297 3,764 4,022

0.177 0.193 0.198 0.186



 

 

 

 

To illustrate, we simplify the linear projections (3) and (4) to exclude other characteristics (subscript 

f suppressed): 

     ���ℎ����	��
�� = �� + ;8�%$�9	�:$
��                         

     ���ℎ����	���
��� =  � +  ����ℎ����	��
��       

Assume there are three siblings, where the older siblings affect younger siblings. If only the oldest 

was affected by the pilot scheme, then we have the system of equations: 

���ℎ����	��� = �� + ;8�%$�9	�:$�                    

���ℎ����	��� =  �� +  �����ℎ����	���  

���ℎ����	��� =  �� +  �����ℎ����	��� +  �����ℎ����	���  

where 1 denotes the oldest sibling, 2 the middle, and 3 the youngest. Using exogenous variation from 

the cost of obtaining Math-Science for the oldest sibling, we could identify the reduced form 

parameters: 

RSTUVWX-Y�XYZ

R[-�
U\�U]
^
=  ��; = >�  

RSTUVWX-Y�XY_

R[-�
U\�U]
^
	= ( �� �� +  ��); = >�  

The total peer effect on the Math-Science choice of the younger sibling j is given by >̀  divided by the 

first-stage coefficient	;. Comparing the estimated total effects across younger siblings in this setting, 

we could follow Dahl, Løken and Mogstad (2014) and assume that the direct effect of an older sibling 

on all younger siblings is identical:  �� =  �� =  � and  �� =  �, and then identify snowball effects: 

 � �. The second sibling identifies the direct effect,  �, as >� divided by ;. Subtracting off this direct 

effect, the snowball effect on the third sibling,  � �, is given by the difference >� − >�  divided by ;.30 

This is, however, an unreasonable assumption in our setting as the peer effect varies with sibling age 

difference. Alternatively Glaeser et al. (2003) identify social multipliers under the assumption that 

 �� =  �� = b and  �� = bc meaning that the effect on the immediate younger sibling is the largest 

and identical independent of birth order. This is, however, also an unreasonable assumption in our 

                                                             
30 More generally, they estimate a decay function to allow the direct effects to decay over time and assume the functional 

form of the decay function is the same for the same distance. 



 

 

setting as age difference and sibling interactions (in terms of birth order and gender composition) 

matter for the strength of the peer effect.  

We exploit that we have variation in how many older siblings were exposed to the pilot scheme in 

order to avoid having to make unreasonable parametric restrictions. If the two oldest siblings were 

affected by the pilot scheme, then: 

���ℎ����	��� = �� + ;8�%$�9	�:$                    

���ℎ����	��� =  �� +  �����ℎ����	��� + ;8�%$�9	�:$  

���ℎ����	��� =  �� +  �����ℎ����	��� +  �����ℎ����	���  

																								= 	 �� +  ��(�� + ;8�%$�9	�:$) +  ��( �� +  ��(�� + ;8�%$�9	�:$) + ;8�%$�9	�:$) 

Exploiting the exogenous variation that some have one and some have two older siblings affected by 

the pilot scheme, we can separately identify both the direct effect of the first and of the second on the 

third sibling, without imposing additional parameter restrictions. Again, looking at the reduced form 

parameters: 

RSTUVWX-Y�XYZ

R[-�
U\�U]

= ( �� + 1); = >� + ; = d�  

RSTUVWX-Y�XY_

R[-�
U\�U]

= ( �� �� +  �� +  ��); = >� +  ��; = d� 												 

First, the reduced form for the second sibling identifies the direct effect of the first on the second 

sibling,  ��, as >� divided by ; (or alternatively as d� divided by ; minus one:  �� =
eZ

f
=

gZ

f
− 1). 

Second, we identify the direct effect of the second sibling on the third sibling,  ��, as d� − >� divided 

by  :  �� =
g_he_

f
. Third, we identify the direct effect of the first on the third sibling,  ��, as >� divided 

by ; minus  �� ��. That is,  �� =
e_

f
−  �� ��. 

We can therefore identify the direct and indirect (multiplicative) average effects between all three 

siblings without additional parameter restrictions. 

To this end we exploit that we observe 1,842 triplets; 564 for which the two oldest siblings entered 

high school during the pilot period. The catch here is that we only observe two triplets for which both 

older siblings were unexpectly exposed to the pilot introduction, 90 where only the oldest, and 56 

where only the second was exposed. We therefore lump together all the pilot schools for this part of 

the analysis. We thus disregard whether the pilot was unexpectedly introduced or not which may entail 

a bias as some older siblings may have chosen high school based on the availability of the pilot. 

However, Joensen and Nielsen (2009) find that the high school choice is neither sensitive to distance 



 

 

to school nor its interaction with pilot status, and they find similar causal effects on earnings when not 

distinguishing between students who were unexpectedly exposed to the pilot and those who enrolled 

after the pilot status was announced. Our estimates of the direct effects are:  �� = 0.24,  �� = -0.23, 

	 �� = -0.42, but too noisy to draw strong inference on direct and indirect birth-order effects. These 

estimates suggest a strong positive direct effect of the first- on the second-born, but negative direct 

effects on the third-born. The pattern is consistent with Adams (1972) who suggests that second- and 

middle-born are more likely to conform to the first-born child, while the last-born is more likely to be 

a non-conformer.  

 




