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Abstract

Understanding how the brain processes information is a major goal in neuroscience. A
crucial step towards achieving this goal is to elucidate how information is processed by
networks of neurons and how this is expressed in their firing activities. It has been
hypothesized that neurons communicate through temporally precisely coordinated spiking,
a long-standing hypothesis investigated by several studies. This view has been supported
by the insight that a neuron would fire most efficiently if it receives synchronous (in a range
of a few milliseconds) spike input. Experimental studies have endorsed this hypothesis
and shed light on the functional relevance of synchrony in cortical information processing.
However, much of this work has been carried out on handfuls of neurons, thus neglecting
features of coordinated activity which emerge only at the level of statistically representative
neuron populations while remaining invisible in data sampled from small populations.

Over the last few decades electrophysiological techniques have improved significantly,
enabling nowadays to record from hundreds of neurons simultaneously. Such advances
allow us to study the mechanism behind cortical information processing on a large scale
by incorporating the interaction of the constituents of neuronal ensembles. This, however,
calls for advanced analysis techniques which can handle increasingly larger numbers of
recorded neurons. It is therefore very important to check whether the effectiveness of
small-scale data analysis tools also extends to large-scale data.

In this thesis we begin with investigating two widely used statistical analysis tools
in statistical neuroscience, namely the Unitary Event (UE) analysis and the Maximum
Entropy (ME) model. These analysis tools have been designed to assess the presence,
magnitude and neuronal composition of correlations in parallel spike train data, and the
relevance of these correlations to cortical information processing. We address the emergent
features and shortcomings of these analysis tools when applied to massively (i.e. up to
hundreds of) parallel spike trains. Then, in line with the statistical frameworks employed
by each of these analysis tools, we present two novel statistical analysis tools, i.e. Inhibited
Maximum Entropy (IME) and Population Unitary Events (PUE), that can handle the
high complexity of large scale data and are able to provide insights about the correlations
within an ensemble of neurons. In particular, they aim at segregating the correlations
which emerge as a direct consequence of network connectivity, e.g. shared inputs to pairs of
neurons, and those with a functional role, e.g. task-dependent modulation of correlations
in relation to behavior. In the application of our newly proposed methods to massively
parallel spike train recordings from motor cortex of macaque monkey, we verify the insights
that they can bring about the importance of correlations (pairwise and higher order) in
cortical information processing.

To summarize, this work proposes two novel statistical tools to study the presence
and functional relevance of correlations in massively parallel spike trains. In studying
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the mechanism behind cortical information processing, these tools shed new light on the
distinction between correlations that emerge as a consequence of network connectivity, and
those that have a functional role.
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Zusammenfassung

Eines der wichtigsten Ziele der Neurowissenschaften ist es, zu verstehen wie das Gehirn
Informationen verarbeitet. Ein entscheidener Schritt hierfür ist herauszufinden, wie Infor-
mationen in neuronalen Netzwerken verarbeitet werden und inwiefern sich dieser Prozess
in deren Aktivität widerspiegelt. Die Kommunikation von Neuronen beruht hauptsächlich
auf dem Austausch von Aktionspotentialen. Eine wichtige und viel diskutierte Hypothese
ist die Kommunikation von Neuronen durch zeitlich präzise aufeinander abgestimmte
Aktionspotentiale. Diese Annahme wird von der Einsicht gestützt, dass ein Neuron ins-
besondere dann feuert (d. h. Aktionspotentiale produziert), wenn es viele synchrone
Eingangssignale empfängt. Die Synchronizität bezieht sich hier auf ein zeitlich eng be-
grenztes Intervall weniger Millisekunden. Experimentelle Studien stützen diese Hypothese
und geben Aufschluss über die funktionelle Relevanz von Synchronizität in kortikaler
Informationsverarbeitung. Die meisten dieser Studien beruhen jedoch auf der Aufzeichung
der Aktivität weniger Neurone und können somit Eigenschaften, die sich erst aus dem
Zusammenspiel vieler Neurone ergeben, nicht erfassen. Koordinierte Aktivität wird deshalb
erst unter Betrachtung einer statistisch signifikanten Anzahl von Neuronen sichtbar und
bleibt in einer zu kleinen Stichprobengröße unerkannt.

Durch die technischen Fortschritte der letzen Jahrzehnte in elektrophysiologischer
Messtechnik ist es heutzutage möglich, die Ativität von hunderten Neuronen simultan zu
messen. Hierdurch können die Mechanismen kortikaler Informationsverarbeitung, unter
Berücksichtigung der Interaktionen zwischen neuronalen Gruppen („assemblies”), in großem
Maßstab untersucht werden. Dazu werden neue Analysemethoden benötigt, die mit der
zunehmenden Anzahl von aufgenommenen Neuronen umgehen können. Ein wichtiger
Schritt ist daher zu untersuchen, ob sich bisherige Methoden, die für eine kleinere Anzahl
von Neuronen entwickelt wurden, auf größere Anzahlen von Neuronen anwenden lassen.

Diese Doktorarbeit beginnt deshalb mit der Analyse von zwei bekannten und etablierten
statistischen Methoden, der „Unitary Events (UE) Analyse” und der „Maximum Entropy
(ME) Analyse”. Beide Methoden untersuchen die Existenz, Stärke und neuronale Zusam-
mensetzung von Korrelationen in Datensätzen, die simultan aufgenommene Ketten von
Aktionspotentialen (im folgenden „spike trains” genannt) vieler Neurone enthalten. Sie
geben Aufschluss über die Relevanz dieser neuronalen Korrelationen für die kortikale Infor-
mationsverarbeitung. Wir untersuchen die Eigenschaften und Probleme dieser Methoden,
welche sich ergeben, wenn sie auf bis zu hunderten simultan aufgenommenen spike trains
angewendet werden.

Des Weiteren stellen wir zwei neuartige statistische Methoden vor, die speziell für die
Analyse komplexer und umfangreicher Datensätze entwickelt worden: „Inhibited Maximum
Entropy (IME)” und „Population Unitary Events (PUE)”. Mit Hilfe dieser Methoden kön-
nen aus den Korrelationen innerhalb von neuronalen Gruppen geschlossen werden, welche
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im kortikalen Netzwerk allgegenwärtig sind. Insbesondere ermöglichen diese Methoden
eine Unterscheidung der Korrelationen bezüglich ihrer Ursache. Einerseits können Korrela-
tionen als direkte Konsequenz der Netzwerkkonnektivität auftreten, z. B. durch gemeinsam
erhaltene Eingangssignale in Neuronpaaren, zum Anderen können sie funktionale Ursachen
wie, z. B. eine aufgabenabhängige Modulation der neuronalen Korrelationen als Folge einer
Verhaltensänderung haben. Abschließend wenden wir die neu entwickelten Methoden auf
Daten aus Multielektrodenmessungen im Motorkortex von Makaken an. Damit verifizieren
wir den praktischen Nutzen der Methoden, d. h. den erzielten Erkenntnisgewinn von neu-
ronalen Korrelationen (sowohl paarweise als auch höherer Ordnung) und deren Bedeutung
für kortikale Informationsverarbeitung.

Zusammengefasst stellt diese Doktorarbeit zwei neuartige statistische Methoden vor,
die der Untersuchung von Korrelationen in massiv parallelen spike trains dienen. Die
Methoden ermöglichen die Analyse von Mechanismen, die der kortikalen Informationsver-
arbeitung zu Grunde liegen. Sie geben Aufschluss über den Unterschied zwischen aus der
Netzwerkstruktur resultierenden und funktionell bedingten Korrelationen.

vi



Contents

Contents

Abstract iii

Zussamenfassung v

I Introduction 1

1 Fundamentals and focus of study 3
1.1 Neuronal response and synapse . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Theories of neuronal code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Local and distributed coding, binding problem . . . . . . . . . . . . 6
1.2.2 Temporal coding and rate coding . . . . . . . . . . . . . . . . . . . . 7

1.3 Correlations & behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Forms of correlations: signal correlation, noise correlation, synchrony 10

1.4 Principled statistical models: towards higher order correlations (HOC) . . . 11
1.4.1 Signature of assemblies: time-locked synchrony to behavior . . . . . 12
1.4.2 Synchrony and information-theoretic perspective . . . . . . . . . . . 13

1.5 Advances in experimental recordings: needs for advanced statistical tools . 14
1.6 Aim and overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 17

II Results 21

2 Baseline and functional correlations 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Replication of Riehle et al (1997) by an open source implementation of the

Unitary Events method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 UE analysis and Python implementation . . . . . . . . . . . . . . . . 26
2.2.2 Reporducing the results of Riehle et al (1997) . . . . . . . . . . . . . 30

2.3 Population statistics uncovers baseline correlation in the cerebral cortex . . 38
2.4 Flaw of UE or feature of the data? . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Test on independent and correlated Poisson data . . . . . . . . . . . 39
2.4.2 Analysis of experimental data based on surrogate data . . . . . . . . 42

2.5 Prediction from random balanced network . . . . . . . . . . . . . . . . . . . 43

vii



Contents

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Inhibited maximum entropy (IME) model 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Pairwise maximum-entropy model . . . . . . . . . . . . . . . . . . . 50
3.2.2 Reduced maximum-entropy model . . . . . . . . . . . . . . . . . . . 53
3.2.3 Glauber dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.1 The problem: bimodality, bistability, non-ergodicity . . . . . . . . . 55
3.3.2 Intuitive understanding of the bimodality: Glauber dynamics and

mean-field picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.3 Bistability ranges and population size . . . . . . . . . . . . . . . . . 63
3.3.4 Relevance of the bimodality problem for massively parallel data . . . 64
3.3.5 Eliminating the bimodality: an inhibited maximum-entropy model

and Glauber dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.6 Importance of inhibition in neural networks: modified Glauber dy-

namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.7 Inhibited maximum-entropy (IME) model . . . . . . . . . . . . . . . 68

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Population unitary events (PUE) analysis 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Example application of the method to synthetic data . . . . . . . . . 79
4.3.2 Calibration of the method . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.3 Changing perspective: how to approach unknown data . . . . . . . . 87
4.3.4 Impact of non-homogeneous firing rates and pairwise correlations

across neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.5 Application to experimental data . . . . . . . . . . . . . . . . . . . . 99

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

III Discussion 105

IV Appendices 121

5 Supplementary materials 123
5.1 Appendix to Chapter 2 “Baseline and functional correlations” . . . . . . . . 124

viii



Contents

5.1.1 Compound Poisson Process (CPP) . . . . . . . . . . . . . . . . . . . 124
5.2 Appendix to Chapter 3 “Inhibited maximum entropy (IME) model” . . . . 125

5.2.1 Definition of Glauber dynamics . . . . . . . . . . . . . . . . . . . . . 125
5.2.2 Inhibited Glauber dynamics and its stationary maximum-entropy

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.3 Simulation of Glauber dynamics with NEST . . . . . . . . . . . . . 128
5.2.4 Inferences from a network to a subnetwork and vice versa . . . . . . 129
5.2.5 Maximum-entropy model in probability calculus and analogy with

statistical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3 Appendix to Chapter 4 “Population unitary events (PUE) analysis” . . . . 142

5.3.1 Analytical derivation of f0
A(ξ) and λ0

cp . . . . . . . . . . . . . . . . . 142

Basic Notation 143

Acknowledgments 145

References 148

ix



Contents

x



I
Introduction

1





Chapter 1. Fundamentals and focus of study

CHAPTER1
Fundamentals and focus of study

This chapter introduces the biological and theoretical background for proposing the main
aim and questions of this thesis. It focuses on the neuronal mechanism behind cortical
information processing by highlighting the relevant hypotheses and reviewing the important
studies which have been carried out during the last century in this respect.
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1.1 Neuronal response and synapse

1.1 Neuronal response and synapse

Thanks to Santiago Ramón y Cajal and his “Neuron doctrine”, it is known nowadays that
the building blocks of the nervous system are neurons: remarkable cells, among all types
of cells in the body, with regard to their structures and functions. They, in a nutshell,
consist of a cell body called soma which receives electrochemical signals from other neurons
through ramified structures called dendrites and sends out a particular type of electric
impulses known as action potential via axons to other neurons. The axon of a sending
(pre-synaptic) cell is linked to the dendrite of a receiving (post-synaptic) cell via synapses.

The neuron interior is separated from the outer environment by a cell membrane
which is normally impermeable to charged ions such as Cl−, K+and Na+. These ions are
present in the inside and the outside of the neuron, but usually at different concentrations.
The overall higher concentration of positive charges in the exterior compared to the interior
endows a neuron with electrical properties: a voltage difference across its membrane known
as membrane potential. In absence of electrical inputs (resting state) to a neuron, this
negative potential fluctuates around a baseline level called resting potential (∼ −70 mV,
alhough this value may change across species and animals). To maintain this voltage, or
the electrical gradient, neurons actively expell Na+ and pump in K+ by so called ionic
pumps. Charged ions can pass through the cell membrane via protein structures called
ion channels, which can open in specific conditions and are selective to a specific type
of ions that can pass through, e.g. specific to Na+ but not Cl− or K+. Two important
classes or channels are voltage-gated channels, whose opening probability depends on the
membrane potential itself, and chemically-gated channels, opened by chemicals called
neurotransmitters. When a channel opens, ions of the associated type are free to diffuse
against their concentration gradient (either outside the cell or inside it), generating an
electrical current and eventually changing the membrane potential around the channel
location. Channel opening and consequential changes in membrane potentials mediate
the communication between neurons. When a pre-synaptic neuron A sends an input to a
post-synaptic neuron B through a connecting synapse (Figure 1.1A), neurotransmitters
are released at the pre-synaptic site (the terminal part of the axon of neuron A) and binds
to chemically-gated channels at the postsynaptic site (dendrite of B). These channels are
selective, in the most common scenario, to Na+, which is then allowed from the outside
to the inside of the cell (because of its chemical gradient), thereby causing an increase
(excitatory post-synaptic potential, ePSP) in the local membrane potential (depolarization).
PSPs usually have a magnitude of a few mV at most. If the increase in membrane potential
reaches a sufficient level caused firing potential or firing threshold, for instance because
neuron B receives sufficiently many inputs in a short amount of time, then voltage-gated
channels on B open, allowing for a much more rapid influx of positively charged ions and
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Chapter 1. Fundamentals and focus of study

thus for a faster and stronger depolarization. This is the first phase of the generation of
action potential, or spike.

The stereotypical shape of the action potential is shown in Figure 1.1B. The membrane
potential has a rapid excursion from the resting potential toward higher values because of
the opening of voltage-gated Na+channels. This causes opening of more channels until
the membrane reaches a maximum value and the Na+ channels get inactivated. At this
point the K+ voltage-gated channels open and the efflux of K+ restores the membrane
potential. A remarkable property of the action potential, which should be noted here, is
that its frequency characterizes the intensity and duration of cell stimulation rather than
its amplitude. Therefore, it is said to be an “all-or-none” signal.

A B

Figure 1.1: Sketch of a biological neuron and an action potential. A) Struc-
ture of a typical neuron and a chemical synapse (source: US National Institutes
of Health, National Institute on Aging http://www.nia.nih.gov/alzheimers/
publication/alzheimers-disease-unraveling-mystery/preface). B)
Stereotypical shape of the action potential. Synaptic inputs to the neuron raise
the membrane potential from the resting potential. This rise happens because
of the opening of Na+ channels and it continues until the potential reaches a
maximum value. Then the Na+ channels get inactivated. At this point the K+

channels open and restore the membrane potential.

1.2 Theories of neuronal code

Neurons are commonly believed to be the basic units of information processing in the brain.
There is a huge number of neurons in the brain, e.g., of the order of 1011 in the human
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1.2 Theories of neuronal code

brain. These neurons communicate with one another to exchange information to cause
feeling, acting, learning, remembering, etc. For instance a simple sensory–motor task like
reaching and grasping an object needs the cooperation of many brain areas, from sensory
neurons which locate the position of the object, till the motor neurons which execute the
movement. Our brain manages such kind of complicated tasks in our everyday life within a
few tens to hundreds of milliseconds, which brings up the question of how the information
is (that efficiently) represented and processed in the brain by the activity of neuronal cells.
This question boils down to understanding the relation between the neuronal responses
and stimuli, i.e. how stimulus attributes (e.g. light, sound, smell, etc.) or motor actions
(e.g. the direction of an arm movement) are represented by the response of neurons, in
particular by the action potentials or spikes. Therefore, by characterizing the relation
between neuronal response and stimuli we can try to understand how neurons represent
information in terms of spikes, which is the central question in “neural coding”. This very
fundamental question remains unanswered, despite tremendous progress in understanding
various cognitive processes.

In the following we will first introduce the notion of local and distributed neuronal
coding scheme and the complex of binding problem. Then we will discuss the proposed
solutions for that problem and the principal debate on this issue, which is known as rate
coding versus temporal coding paradigm.

1.2.1 Local and distributed coding, binding problem

In this section, we first introduce the concept of local and distributed coding schemes by
answering the following question: How do the responses of the individual or ensemble of
neurons are used for representation of the external world in our brain?

Early studies on the stimulus selectivity of neurons (from sensory nerve fibers of frog
muscles) by Adrian [6] and on the response properties of neurons by Hubel and Wiesel
[168] were the basis of the local coding hypothesis, according to which neurons respond
to the features (e.g. form, color, motion, depth, and position) of the perceived objects;
elementary features are coded by neurons in the early sensory pathway and the more
complex ones in the higher sensory areas. In the extreme case, this theory states that there
is a single neuron which will be activated at the presence of one’s grandmother, thus, often
called grandmother cell hypothesis [19]. Let us take a concrete example to make this clear.
Assume that you see a red Newton apple. You immediately perceive this apple which is
“red” and “Newton” type. How do you do that? One possibility is to have one neuron
specialized to detect the “red-Newton-apple”. Therefore activation of this neuron results in
the perception of the red Newton apple. Such a possibility is a simple example of the local
coding hypothesis. Now considering different colors, e.g. 5, and different varieties, e.g. 5,
of apples one would need 5× 5 neurons to only be able to perceive different apples.
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Chapter 1. Fundamentals and focus of study

Thinking about the enormous number of possible features leads us to doubt this local
coding hypothesis, simply because there are not enough neurons in the brain to cover
all possible concepts one may come across. Apart from this trivial argument, the other
criticism to this hypothesis is that coding by a single neuron is risky, i.e. the death of one
neuron causes the death of one concept such as the concept of grandmother.

Alternatively, in the distributed coding hypothesis, different features are distributed
in different streams like those of “what” and “where” streams in the visual cortex. This
also supports the idea originally proposed by Donald Hebb according to which different
feature dimensions are encoded in the co-activation of different groups of neurons called
cell assemblies [157]. A cell assembly is an anatomically dispersed set of neurons with
excitatory connections. The activity of the cell assembly can therefore be maintained by
mutual excitation without continuous sensory stimulation (see [152] for a review). In this
paradigm the same neurons may be used in different cell assemblies; hence there can be
more groups of neurons than there are single neurons. Coming back to the red Newton’s
apple example, instead of 5× 5 neurons we can code each color or type of apples with only
5 neurons: the co-activation of sub-groups of these neurons represents e.g. the red Newton
apple or the green Newton apple, etc. Thus this is much more efficient, and prevents the
problem of combinatorial explosion of the grandmother cell theory.

The distributed representation is appealing because it provides a powerful paradigm
for explaining the mechanism behind perception. However, the question then arises: how
can superposition of activation of assemblies be segregated into individual assemblies?
And, at a more global level, how can local features in different cortical areas form a unified
whole to represent coherent percepts and actions? The best-known example is shown in
Figure 1.2. This picture contains black patches which, by looking at them for the first
time, seem completely disordered. But after a while our brain perceives an order in this
disorder: the Dalmatian dog in the middle of the picture. The question of how this is done
by our brain is known as the binding problem or Gestalt psychology. Another example
of the binding problem can be seen in Figure 1.3. Here the picture has more than one
interpretation. It can be interpreted either as a rabbit or a duck, and our interpretation
alternates between the rabbit and the duck but we never see both of them at the same
time.

1.2.2 Temporal coding and rate coding

In the previous section we introduced the binding problem. Here we discuss two rather
opponent solutions which were proposed to this problem: rate coding and temporal coding.

Milner [246] and von der Malsburg [350–352], independently from each other [353],
suggested the idea of binding-by-synchrony (also called temporal correlation hypothesis)
as a possible solution to the binding problem. Binding-by-synchrony is based on the
cell assembly hypothesis postulated by Hebb [156] with time as an additional dimension

7



1.2 Theories of neuronal code

Figure 1.2: Illustration of the binding problem or Gestalt psychology.
There is a Dalmatian dog hidden in the black-and-white spots. Adapted from
[341].

Figure 1.3: Rabbit and Duck. Adapted from the 23 October 1892 issue of
Fliegende Blätter ("Rabbit and Duck") http://digi.ub.uni-heidelberg.de/
diglit/fb97/0147&ui_lang=eng.
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Chapter 1. Fundamentals and focus of study

to represent dynamical relations (sometime called dynamical cell assembly hypothesis).
The basic idea is that a group of neurons forms a cell assembly by synchronizing their
spiking activity within a few millisecond-time scale. The synchronization is dynamically
modulated and allows a particular cell to participate in different cell assemblies. The
binding-by-synchrony was first supported in the experimental works of Gray and Singer
[127, 128, 313].

Considering the biological nature of neurons, the temporal coding hypothesis postulates
that neurons operate as coincidence detectors [1, 2]. This implies that the postsynaptic
neurons are sensitive to the precise arrival timing of the presynaptic inputs (on a millisecond
time scale). This concept in line with the dynamical cell assembly hypothesis brought a
vigorous framework to shed light on the mechanism of cortical information processing.

Another somewhat opposite view has been proposed in the rate coding paradigm,
where a neuron is seen as an integrator. This paradigm states that most, if not all, incoming
presynaptic inputs contribute to the generation of action potentials on the postsyanptic
side. In fact the neuron integrates the inputs from the presynaptic side over a temporal
window of tens or hundreds of milliseconds and this can lead to the generation of an action
potential if there are enough input spikes. Thus, a neuron operates as an integrator and
the precise timing of afferent signals is not important. This implies that the firing rate of a
neuron conveys information, and the correlations between the activity of neurons have no
functional meaning and might only emerge as an epiphenomenon of the network structure
[222, 302].

The two rather opposing paradigms of rate coding and temporal coding have been
widely studied during the last few decades. Experimental evidence has been provided
for both of these hypotheses, and the pros and cons of both have been argued about in
theoretical studies [18, 44, 303, 313, 323]. Taking all these studies together, it seems that
the brain might use both rate and temporal codes as complementary contributions.

1.3 Correlations & behavior

The question of how information is represented and processed by the brain is still a matter
of an ongoing debate (see previous section). Nevertheless, correlated activity between pairs
of cells has been observed early on [265] and immediately the question arose whether there
is a functional interpretation of this observation [104], or correlated activity is merely an
unavoidable epiphenomenon, because neurons are connected and therefore influence one
another [303]. In this section we will review briefly the major hypotheses that have been
studied during the last two decades trying to shed light on the role of correlation in cortical
information processing.

Theoretical considerations hypothesized that synchronous activation of neurons may
be used to bind representations of features into more complex percepts [29, 127, 313,
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352]. Another hypothesis is that correlations may be used to efficiently gate information
[296]. These functional interpretations can also be approached in a bottom up, dynamical
view, by asking the question: What makes a neuron fire? Cortical neurons typically show
two tendencies [167]: they integrate, but they are also efficient in detecting synchrony;
from which the terms “integrator” and “coincidence detector” [2, 202] have been coined
(see Section 1.2.2). Moreover, these two dimensions of information processing are not
completely orthogonal, because correlation transmission may be co-modulated with changes
of firing rate, and in theory [60, 307] in the regime of Gaussian fluctuating membrane
potentials. Synchronous synaptic events, however, have been hypothesized to explain highly
non-Gaussian features of membrane potential fluctuations in sensory cortex [66]. These
can cause a considerable gain of correlation transmission, supporting synchrony as a robust
and noise-suppressing channel of signal transfer [299].

In another view, by studying chaos in neuronal networks, it has been suggested that
the chaotic activity arising in recurrent neuronal networks [325, 347] may be employed
as an argument for correlations being an epiphenomenon: Estimating that a single spike
causes a barrage of downstream spikes shows that cortex may operate deeply in the chaotic
regime, so that a single spike can hardly be used to process information in a reliable way
[222]. In line with this argument is the view of weakly correlated activity of the cortex
as a rich set of basis vectors from which arbitrary linear readouts can be constructed
[343]. Correlations between spike trains impair this basis set by introducing redundancy.
The signal-to-noise ratio of such a signal, in the simplest way of the population-averaged
activity, is therefore bounded by correlations [303, 364]. The proposed linear readout,
inspired by the accumulation of synaptic input by a single neuron, has, however, to be
contrasted with non-linear readout mechanisms, which indeed can assess information
represented in correlations [324]. A more differential investigation of these ideas has shown
that correlations are not necessarily information-limiting, but that limitations arise only
from a specific subset of correlations that relate to the tuning properties of the neurons
[248].

However, the above-mentioned hypotheses cannot to date explain a salient experi-
mental finding of the relevance of transient, short-lasting correlations (in a range of few
milliseconds), called synchrony. Such synchronous events have been observed in motor
cortex [196, 278, 340] at time points of expected, task-relevant information, but also in
primary visual cortex in relation to saccades (eye movements) [170, 233].

1.3.1 Forms of correlations: signal correlation, noise correlation, syn-
chrony

In the previous sections we have discussed different views on the importance of correlation
in cortical information processing. However, the term “correlation“ in the neuroscientific
literature has been referred to distinct phenomena, causing sometimes confusion about
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what it is meant by “correlation”. Here we explain three commonly used measures of
pairwise correlations with their basic neuroscientific standpoint in the field of neural coding.

The experimental paradigm of repeatedly presenting a stimulus and measuring the
average response, and the assumption that information is entirely contained in the average
firing rate, suggests the characterization of neurons by their tuning curves [168]. As a
consequence, the terms “signal correlation” and “noise correlation” have been established
[73]: In a pair of neurons, signal correlation measures the similarity of their tuning curves,
while noise correlation (sometimes called spike count correlation) quantifies the co-variability
of their responses, given the same stimulus. Both of these measures are typically quantified
by the Pearson correlation coefficient and have been based on responses measured over the
duration of typically hundreds of milliseconds.

Another form of correlation is “synchrony”, which expresses the temporal relationship
between neurons on a short time scale of few milliseconds. A very first technique, proposed
by [265], to measure the synchrony (also delayed synchrony) between two spike trains is the
cross-correlogram (CCG). The CCG measures the tendency of two spike trains to jointly
emit spikes with zero lag, used for quantifying synchrony, or by a certain time delay, used
for quantifying delayed synchrony (see [141] Chapter 17 for an extensive explanation).

1.4 Principled statistical models: towards higher order cor-
relations (HOC)

The correlation measures mentioned above, i.e. the Pearson correlation coefficient for
measuring noise or signal correlation and the CCG, are simple, descriptive statistics for
studying the correlations between a pair of neurons. Their simplicity has made them a
convenient choice to investigate the role of correlations in cortical information processing.
However, such pairwise correlations provide a limited view of the collective dynamics of
neuronal populations [33, 141, 206, 236]. To clarify what we mean by limited view, let
us give a concrete example, adapted from [141]. Consider the two scenarios sketched in
Figure 1.4A and Figure 1.4B. In each scenario, the spiking activity of 3 neurons, s1(t), s2(t)
and s3(t), are shown together with the input to each neuron. The firing rate of each neuron
and the pairwise correlations for all combinations of pairs are similar in both scenarios.
However, in Figure 1.4A, all the neurons receive one shared common input (y123) whereas
in Figure 1.4B for each pair of neurons there is a different shared input (y12, y13, y23).
Assuming strong synapses in both scenarios, this clear difference appears only by measuring
the triplet synchrony or third order correlation between spike trains. Now, considering a
large network of neurons with a structured (not random) connectivity, these scenarios might
be more complicated, and only statistical measures which go beyond pairwise correlations
can provide a complete picture. Thus, to avoid the limited view sketched above in studying
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the functional role of pairwise correlations in cortical information processing, one needs to
carefully investigate higher order correlations between neurons.

Figure 1.4: Illustrative example of the importance of higher-order correlation (see
text for details; adapted from Figure 12.1 of [141]).

1.4.1 Signature of assemblies: time-locked synchrony to behavior

Precise spike coordination within the spiking activity of multiple neurons, e.g. synchrony,
is considered to be a signature of cell assemblies [1, 103, 152, 314]. This argument rests on
the premise that synchronized presynaptic spikes enhance reliably the generation of output
spikes [2, 70, 201, 299]. Therefore, the detection of cell assemblies and their functional
relevance can be focused on the detection of time-locked synchrony in relation to behavioral
context [94, 278, 295]. Statistically, this needs principled statistical models to study
synchrony of different orders among spike trains. These statistical models should be able to
quantify the synchrony among spike trains and relate it to a behavioral task (or stimulus).
This, however, is harder than it sounds, because to demonstrate that information coding
is solely carried out by synchronous spikes — or spike patterns – one needs to subtract
the effect of firing rates. This is a crucial step to ensure that the increase in the rate
of synchronous spikes is not caused by the increase in the firing rates and, therefore, to
justify the conclusion that the brain has to pay attention to correlations to extract extra
information that is carried out by synchrony.

A prominent method which was specifically developed to quantify the synchrony
between spike trains is the Unitary Events method [135, 136, 138]. This method uses a
statistical approach, by testing the null hypothesis that neurons are mutually independent
(see Chapter 2). A notable feature of this method is its capability of a time resolved
analysis, thereby enabling to relate the temporal modulation of synchrony to sensory
stimuli and behavioral events.
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1.4.2 Synchrony and information-theoretic perspective

Another approach to study the role of correlations in cortical information processing comes
from an information theoretic perspective. In this context, the synchronous spikes act as
an extra channel of information beside the information carried by the firing rates. An
explicit assumption here is that if there is information in spike trains, e.g. originated
by synchrony, the brain uses it. Therefore, if we measure the amount of information by
considering different aspects of spike trains, e.g. marginal statistics, pairwise or higher order
correlations, we will be able to relate this to the stimulus or behavior. In the other words,
if the brain uses correlations to accomplish a task, we have to be able to understand the
underlying coding scheme by characterizing the relation between information in synchrony
among neuronal responses and stimuli (or behavioral context). In this section, we first
elaborate briefly on a big picture of this approach which is based on a probabilistic view of
the relation between stimuli and neuronal responses using Bayesian theory [182]. Then
we will explain a common quantitative method used in this framework for studying the
relevance of correlations.

Understanding the relation between neuronal response on one side, and what we could
call the “state” of the brain – the complex combination of behavior, stimuli, memory, and
thought, which still partly escapes definition and measurement [12] – on the other side, is
a major goal in the study of cortical information processing [192, 216]. We would like to
achieve this understanding at a probabilistic level at least. In very hand-waving terms, we
could say it amounts to assigning probabilities of the form

P (brain activity| state). (1.1)

Given the practically uncountable patterns of activity in the brain or even in just a
small region of it, and the continuous spectrum and even vagueness of “states”, assigning
such probabilities is practically impossible and will likely stay that way for the next few
decades. In Bayesian theory we deal with a vague or too large set of probabilities by
introducing one or more statistical models, which simplify the problem and give it well-
defined contours. For example, we can introduce a set of models M , each of which includes
some multi-dimensional parameter α, in such a way that they informationally screen off
every “brain activity” from every “state”, making them conditionally independent [57, 262,
263, 326]:

P (activity|α,M, state) = P (activity|α,M)
for all activity and states. (1.2)

Then the inverse also holds: P (state|α,M, activity) = P (state|α,M). By the rules of
marginalization and total probability we can then rewrite the probability P (activity| state)
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as
P (activity| state) =

∑
M

ˆ
P (activity|α,M)P (α,M | state) dα. (1.3)

The advantage of this approach appears in the mutual information conditional on the
model M and α:

I(activity, stimuli|α,M) = 0,

or, paraphrasing Caves [47]: “the mutual information between state and brain activity flows
through the model M and parameters α”. In this divide et impera approach we deal more
easily with P (activity|α,M) and P (α,M | stimuli) separately than with the full probability
(Eq. 1.1), provided the parameter α has much fewer dimensions than the “activity” and
“state” spaces. This parameter then constitutes a coarser but sufficient description of
the activity, or of the state (stimuli, behaviour, memory, thought processes), or of both.
An example of the first case could be the mean activities and pairwise correlations of a
neuronal population; an example of the second could be the orientation of a light-intensity
gradient on the retina, or ambient temperature. In the first case, if the model M can be
interpreted and motivated neurobiologically, then it is a “neural code” [34, 72, 86, 259, 260,
275].

The abstract viewpoint just outlined [36, 58, 59, 92, 217, 262, 263] can be made
concrete by the maximum-entropy method: the model M is chosen to be a maximum-
entropy model [51–53, 101, 142, 162, 165, 174–176, 180–182, 186, 243, 304, 305, 315, 317,
342, and references therein], and the parameter α to be the empirical means and the
pairwise empirical correlations of the activity of a neuronal population. Does such a choice
of model and parameters give reasonable predictions P (activity|α,M)? This question has
been asked repeatedly in the neuroscientific literature of the past few years. Some studies
[33, 49, 126, 297, 338] have tested the suitability of the maximum-entropy distribution –
(Eq. 1.2) from our perspective – for various experimental and simulated “activities” and
“states”. Some studies [21, 96, 230, 235, 310, 312] have tested the suitability of pairwise
correlations or of higher-order correlations – our parameter α. Some studies have done
both at the same time [105, 227, 228, 293]. This will be the topic of Chapter 3 of this
thesis where we explain the maximum entropy model in detail and examine its aptness for
studying the relevance of correlations in massively parallel spike trains.

1.5 Advances in experimental recordings: needs for advanced
statistical tools

Over the last five decades, the number of simultaneously recorded neurons has grown
exponentially. To a good approximation, this number has doubled every 7 years [329] since
the development of the first implantable multi-electrode array in the 1950s. Nowadays,
microelectrode arrays, e.g. the Utah array (Blackrock Microsystems, Salt Lake City, UT,
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USA), enable to chronically record extracellular activity from hundreds of individual
neurons in both anesthetized and behaving animals [25, 42, 254, 279]. Consequently,
these advances in the neuronal recording allow, for the first time, to test the relevant
hypothesis behind neuronal coding in a large population of neurons and, therefore, to gain a
rigorous understanding of information processing in the brain. However, this requires data
analysis techniques which can handle large numbers of simultaneously recorded neurons.
These analysis techniques must be developed taking explicitly into account the relevant
questions that need to be studied. For example, in studying the cell assembly hypothesis
(discussed in the previous sections), which is the most experimentally and theoretically
studied hypothesis in cortical information processing and is the focus of this thesis, we
would require analysis tools which enable to consider emergent features when studying
large populations of neurons. One of these features that has been extensively studied in
theoretical works is the correlation between ensembles of neurons that arises from direct
or recurrent synaptic connections as well as shared inputs, even in the simplest network
models without any temporally modulated input [158, 159, 204, 266, 276, 303, 333, 344].
This feature becomes accessible when analyzing large population of cortical neurons and,
consequently, violates the assumption of independence between neurons which is commonly
presumed in classical analysis tools.

To illustrate the last point, consider the real case scenario of recording from cortical
neurons. Using, for example, the Utah array we are able to record from hundreds of
neurons. The recorded spikes could solely be the result of the ongoing activity [12], e.g.
when there are no stimuli or behavioral tasks; or they could reflect the composition of
ongoing and task-related activity (see Figure 1.5). From theoretical studies [159, 204,
303, 332, 333] we can hypothesize that during ongoing activity the recorded spike trains
show correlations merely because of the connectivity between them, which we call baseline
correlation. Whereas when these ensemble of neurons are engaged in a specific task there
will be extra correlations, such as those hypothesized by Hebb, which are synchronous
action potentials appearing at behaviorally relevant time points, which we call functional
correlation. Taken all together, designing statistical tools with a null hypothesis which
includes the baseline correlation that is expected in the absence of any task-related stimulus
or behavior is essential.
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Figure 1.5: (Caption on the next page)
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Figure 1.5 (previous page): Baseline and functional correlations in activity
of an ensemble of neurons. Using multi-electrode array, e.g., Utah array
(Blackrock Microsystems, Salt Lake City, UT, USA), the activity of hundreds of
neurons can be recorded simultaneously. Top panel shows a Utah array implanted
chronically in the motor cortex of monkey (adapted from [279]). Following the
cell assembly picture, the recorded activities of neurons are either the results of
so called “ongoing” activity [12] (gray color; left branch), i.e. in the absence of
stimulus or behavioral task, or the results of the ongoing activity plus the task
dependent activity where the activity of a portion of the neurons (assembly) is
relevant for the task (red color; right branch). The ongoing activity of neurons
exhibits correlation due to the connectivity (marked spikes in gray squares). This
correlation is beyond chance correlation (coincidence) that we might observe given
the firing rates of neurons. A time-resolved statistical measure ρ, which takes
into account the chance correlation by assuming independence among neurons,
fluctuates around zero when measured on the activity of (unconnected) independent
neurons (bottom panel; blue color), but measuring ρ on an ensemble of connected
neurons exhibits a positive offset, what we name baseline correlation, which is
not accounted for in the statistical measure ρ (bottom panel; gray color). Now,
considering the same recordings while the animal is engaged in a behavioral task
or represented by a stimulus (right branch), extra correlations will be appeared
because of the activation of the cell assemblies related to the stimulus or task, what
we name functional correlation. The functional correlation (appeared in the sketch
at t0) is, therefore, time-locked to the behavioral task and can be detected in our
statistical measure as a significance increase on top of the baseline correlation
(bottom panel; red color).

Furthermore, these data analysis techniques will be along with computational chal-
lenges. These challenges range from handling the big amount of data to the combinatorial
explosion of the complexity of the data from large numbers of neurons and the correspond-
ing increase in the number of degrees of freedom. Therefore, it is necessary to improve the
efficiency of data analysis algorithms and to develop hardware to facilitate them. These
techniques should also be made publicly available, to assist the analysis of huge amounts
of data which are being produced every day in different laboratories around the world.

1.6 Aim and overview of the thesis

The aim of this thesis is to provide statistical tools for analyzing (pairwise or higher order)
synchrony among massively parallel spike trains (MPST), available nowadays by modern
electrophysiological techniques. These analyses can contribute to our understanding of
how cortical information processing is carried out in the brain. In particular they can test
the cell assembly hypothesis in large population of neurons by considering the complexity
of high-dimensional data. To this aim, we first investigate the aptness of the existing
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commonly used methods in spike train analysis, namely the Unitary events (UE) analysis
[134–136, 139] and the Maximum Entropy (ME) model [21, 96, 230, 235, 310, 312], to
be applied to MPST. This investigation will carefully consider the severe computational
or statistical problems that might arise in high dimensional data. After identifying the
emergent features as well as the limitations and shortcomings of these analysis tools, we will
propose two novel statistical analysis tools which can substitute the UE and ME methods
in the search for the functional relevance of correlations in MPST.

The rest of this thesis is structured as follows: In Part II the results of our studies
are presented. In Chapter 2, the UE method is inspected by replicating the results of
[278] to ensure that the original research is reproducible, and to provide an open source
implementation of this method in Python. Then, using this python implementation, the
UE method will be applied to a recording from a monkey performing a center-out-reaching
task to check the systematic occurrences of UEs across ensemble of neuron pairs. These
analyses demonstrate that the UE method applied to a large population of cortical neuron
pairs allows to uncover a baseline correlation which is known through theoretical studies to
be a direct consequence of shared input in network of neurons. Considering the ubiquity
of baseline correlations in the brain, we will discuss the importance of providing analysis
tools which enable to separate the baseline correlation from the correlations that have a
functional role.

In Chapter 3, the ME method will be inspected by investigating its aptness for MPST.
By employing large populations of neurons (159 neurons) recorded from motor cortex of a
macaque monkey during “ongoing activity”, i.e. with the monkey sitting on a chair without
performing any task, we carefully investigate the results of the pairwise ME method and
their interpretation. We identify a failure of this method in applications to MPST which
has not been noted in previous literature. To correct this failure and its ensuing problems,
we, then, introduce a new method, named Inhibited Maximum Entropy (IME). IME is a
parametric-model based method similar to ME but based on a biologically realistic model
that accounts for features of the experimental data which have been neglected in the
pairwise ME method.

In Chapter 4, we present a new method, the Population Unitary Event (PUE) analysis,
which is specifically designed to assess higher-order (i.e., beyond pairwise) synchrony in
MPST by accounting for the baseline correlation. This method is calibrated on test data
which imitate realistic scenarios of experimental data, and we demonstrate that the method
copes with the variability of neuronal responses over time and across trials and neurons,
variability which are usually observed in physiological data [140]. We also show that the
method has a high degree of specificity and sensitivity, as well as a high tolerance against
relatively small sample sizes, which allows its application in a time resolved manner to
detect time dependent changes of the synchrony, and infer their order. Furthermore, we
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demonstrate the application of this method to MPST recorded by a 10× 10 electrode Utah
array from motor cortex of awake monkey performing a delayed reach-to-grasp task.

Finally we discuss the findings of this thesis in Part III by summarizing our results
and outlining possible future work based on our studies.
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CHAPTER2
Baseline and functional

correlations

The first part of the following chapter has been published as the following manuscript:
Rostami V, Ito J, Denker M, and Grün S (2016) [Re] Spike Synchronization and Rate
Modulation Differentially Involved in Motor Cortical Function, ReScience, volume 3, issue
1, article number 3 2017, DOI 10.5281/zenodo.583814. The second part of this chapter
is an unpublished work in collaborations with Junji Ito, Joachim Confais, Alexa Riehle,
Moritz Helias and Sonja Grün.

Author contributions: Under supervision of Junji Ito and Sonja Grün, the author
performed the method implementation, the replication of the results of [278], all the
analysis, simulations and interpretation of the results.
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2.1 Introduction

To test whether temporal coordination of spiking activity is indeed relevant for neuronal
information processing, advanced data analysis methods are required that perform correla-
tion analysis between simultaneously recorded single unit spike trains. The Unitary Events
(UE) analysis [134–137] is one of those methods which is able to extract significant spike
synchrony between neuronal activities that is beyond what is expected by chance (given
the firing rates of neurons) and enables us to follow the dynamics of this coordination.
The tricky issue with such analyses is that one has to take into account that experimental
spike data are typically non-stationary in the sense that the firing rates are not stationary
in time and not homogeneous across trials, and that the statistics of the individual spike
trains deviate from those of a Poisson process [140, 141]. If such features are ignored there
is a considerable danger of occurrence of false positives and thus wrong interpretation of
the data. Changes in the firing rates are the most prominent generators of false positives if
ignored. The original UE method (used in [278]) considers this aspect by performing the
analysis in a sliding window fashion. In later versions of the analysis method also other
features were corrected for by considering the respective features in the null-hypothesis
of the tests [139, 223, 233, 269], either by using extended analytical descriptions of the
null-hypotheses or by use of surrogate methods [140, 141].

The UE method had been applied to experimental parallel spike data from, e.g., the
motor cortex of awake behaving non-human primates [64, 65, 122, 139, 196, 278] and to
data from visual cortices [170, 233]. Generally it was found that UEs, i.e., synchronous
spike events across neurons that are in excess of the expectation, occur in relation to
behavior, e.g., when the animal expects a signal to occur but did not [278]. This finding,
in particular, demonstrates the core feature of the method: by performing a time resolved
analysis, the method accounts for changes in the firing rates and captures modulations of
significant spike synchrony in time. It was also shown that the time of occurrence of UEs
may change to a new requested timing in the behavior during a learning process [196].

In this chapter we first implement the UE method in Python and replicate the
results of [278]. A publicly available and open source implementation of the UE method
had not been available. Only very recently, we reimplemented the UE analysis as part
of the Electrophysiology Analysis Toolbox1 (Elephant), a Python library that provides
implementations for the analysis of electrophysiological data. A reimplementation of
the method, rather than releasing the existing code, was justified by two factors. First,
the custom data object model used to represent the primary data and metadata in the
original analysis code was not documented. Therefore, any data represented in a specific
file format had to be converted by implementing a custom data loading routine for this
data model. Our new implementation of the UE method is part of the Elephant and

1http://neuralensemble.org/elephant/
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Neo2 libraries. These provide generic functions and classes for standardized neuronal
data representation and basic analyses. In particular, the new UE reimplementation is
based on the internal data object model provided by the Neo library [97], a package for
representing electrophysiology data in Python. Neo provides support for reading a wide
range of neurophysiology proprietary file formats, and supports writing to a subset of
these formats, including non-proprietary formats such as HDF5. Second, the original
implementation has experienced several updates throughout the development process and
after its publication in order to include improvements and extensions of the method to
accommodate more features of experimental data. Since no version control was employed
in this development process, the original code used in Riehle et al. (1997) [278] was lost at
some point. Considering that no systematic testing was performed each time the code base
of the Unitary Event analysis was updated after the original publication to check whether
the code gives the same results as before, it was not clear whether the latest version could
exactly reproduce the results of [278].

Then, using our Python reimplementation, we apply the UE method on a larger
population of neuron pairs than the number of neurons used in [278]. For doing that
we employ a meta statistic across neuron pairs which was suggested in [196] that allows
to study the systematic occurrences of UEs across large neuronal sampling. As a result
we demonstrate that this method reveals correlations between pairs of neurons which
are known, in theoretical studies [158, 159, 204, 266, 276, 303, 333, 344], to be present
between connected cells, because of their connectivity. These correlations are interpreted
as baseline correlations since they occur owing to the structure of the network, independent
of functions in the network.

2.2 Replication of Riehle et al (1997) by an open source
implementation of the Unitary Events method

In this section we illustrate the successful reproduction of the results shown in [278] using
our new Python implementation of the UE method. In particular, we reproduce Figure
2 and Figure 4A of the original paper, which represent the central results of the original
study. The remainder of the original paper consisted of more example analyses of individual
data sets and a meta statistics across many data sets, all of which were based on the same
analysis method and thus do not provide additional insight when reproduced. In the original
publication the authors used two different UE implementations: one implemented by Sonja
Grün (SG) in IDL 3, and the other in Matlab (Mathworks, Nattick, MA) implemented later
by Markus Diesmann (MD) and SG. The IDL implementation is not available anymore.
At a later point we were provided with a Matlab implementation of the extended UE

2http://neuralensemble.org/neo/
3http://www.harrisgeospatial.com/ProductsandSolutions/GeospatialProducts/IDL.aspx
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2.2 Replication of Riehle et al (1997) by an open source implementation of the Unitary
Events method
method, however it does not preserve the original implementation used in [278] and was
not considered in this study.

For the reproduction of the original results we contacted and communicated with
Alexa Riehle (AR), CNRS-AMU, Marseille, and MD, Research Centre Jülich. AR is the
first author of the original publication and performed the experiments and data analysis.
MD is the third author of the original publication and contributed with the Matlab
implementation and quality checks of the software implementations. The reproduction of
the results of [278] would not have been possible without contacting these authors, since
the information in the original publication is not sufficient for reproducing the results. AR
provided us with the original data and information, including an old written report by MD,
which was crucial to reproduce Figure 4A.

2.2.1 UE analysis and Python implementation

For reproducing the results of [278] we use our reimplementation of the Unitary Events
analysis method in Python which is made available in the unitary_event_analysis module
of the Elephant library (accepted pull-request: [287]). The method is accompanied by unit
tests for individual functions (test coverage: 88.54%) and documented as part of the library
documentation. The structure and algorithm of our UE implementation is explained in
the pseudo-code shown below.

In the following, we will explain the algorithm in detail. The primary data entering
the UE method is a set of parallel, i.e., simultaneously recorded, spike trains, recorded
in one or multiple trials. In Elephant, an individual spike train of a particular neuron in
a particular trial data is represented as a Spiketrain object in the data object model
provided by the Neo library, which stores the time points of spike occurrences along with
additional information describing the spike train, such as the start and end time. The
UE method consumes a nested list of Spiketrain objects relating to the spike trains of
individual neurons in the individual trials. In order to perform the necessary calculations,
the spike data must be converted to an alternative time-binned representation (line 1 in
the pseudo code) where the parallel spike trains are stored as binary sequences of ones
(marking time bins containing at least 1 spike) and zeros (bins with no spike). The bin
size is a parameter provided as input (parameter bin_size in the pseudo code) to the
analysis, and defines the temporal precision in detecting spike synchrony. A spike pattern
is defined as a specific vector of zeros and ones in one time bin of a given trial across all
neurons. Thus, the number of possible spike patterns is given by 2N −N − 1, where N is
the number of neurons. In order to limit the analysis to a set of patterns of interest, the
input parameter pattern_hash_values specifies the patterns to consider in the analysis
in the form of a hash value which uniquely represents each spike pattern (line 2 in the
pseudo code). The hash value is obtained by interpreting the binary spike pattern as a
binary number, where the n-th neuron is represented as bit n− 1.

26



Chapter 2. Baseline and functional correlations

Algorithm of the Unitary Events method: Black color shows the

part of the code used for reproduction of the results of Riehle et al

(1997) and the gray color indicates the additional features which are

now available in our reimplementation but not used specifically here.

input : spike trains, bin size, window size, window step,

pattern hash values, method

output: time series of: suprise S, number of empirical coincidences

n emp, number of expected coincidences n exp, firing rate of

each neuron rate

1 Diescretize the input spike train data (spike trains) and represent

them as binary sequences (‘BinnedSpikeTrain()‘ from coversion

module in Elephant)

2 for each hash value from pattern hash values do

3 Define the sliding window positions over the whole length of the

data given window size and window step (‘ winpos()‘ and

‘ bintime()‘)

4 for each window position do

5 Calculate n emp (‘n emp mat()‘ and ‘n emp mat sum trial()‘)

6 if method is “analytic TrialAverage” or

“analytic TrialByTrial” then

7 if method is “analytic TrialAverage” then

8 calculate n exp based on “analytic TrialAverage”

(‘ n exp mat analytic()‘ and ‘n exp mat sum trial()‘)

9 end

10 else if method is “analytic TrialByTrial” then

11 Calculate n exp based on “analytic TrialByTrial”

(‘ n exp mat analytic()‘ and ‘n exp mat sum trial()‘)

12 end

13 Generate Poisson distribution with the mean n exp

14 end

15 else if method is “surrogate TrialByTrial” then

16 Generate n exp distribution based on surrogates

(‘ n exp mat surrogate()‘ and ‘n exp mat sum trial()‘)

17 end

18 Calculate p-value of n emp given the distribution of n exp

19 end

20 Calculate the surprise as a function of time from the p-values at

each window position (‘jointJ()‘)

21 end
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The UE analysis is performed in a sliding window fashion, i.e. the data in each window
are analyzed separately. This approach is chosen to account for potential changes of the
firing rates in time and to follow the dynamics of the correlation. Here, a sliding time
window is defined based on trial time meaning that a certain window position includes the
activity of all neurons in all trials in a certain time interval of the trial. In the algorithm,
at each position of the window, the data contained in the window are extracted in order
to compute the significance of the specified patterns (line 3 in the pseudo code). For
doing that we require the empirical number of occurrences of each pattern as well as its
expected number given the firing rates. While the empirical number is directly extracted
from the data (line 5 in the pseudo code), the method to compute the expected number
can be chosen using the input parameter method depending on the assumptions regarding
the data (line 6 and 15 in the pseudo code). For cross-trial homogeneous data, selecting
“analytic_TrialAverage” as method (line 7 in the pseudo code) computes the expected
number by estimating the rate of each neuron from the average spike count across trials [135,
136]. For data with cross-trial variability, the “analytic_TrialByTrial” method (line 10 in
the pseudo code) should be used, which accounts for cross-trial changes in the firing rates by
computing the expected number of occurrences of the spike pattern based on the product of
single-trial estimates of firing rates [139]. Both methods perform a parametric test, where
the number of occurrences of the spike pattern is assumed to be a Poisson-distributed. As
an alternative non-parametric option, selecting “surrogate_TrialByTrial” as method (line
15 in the pseudo code) will numerically compute the distribution of the expected number
by implementing the null-hypothesis based on surrogate spike trains [140]. In the following,
we will explain these methods in greater detail.

In case of selecting “analytic_TrialAverage” - as used in the remainder of this study
for the reproduction of [278] - the number of spikes per neuron within the sliding window
is summed across trials and divided by the number of trials and bins contained, thus
yielding the average probability pi to have a spike of neuron i in a bin of the time window.
The probability to find a particular pattern by chance in a bin is then computed by
multiplication of the relevant probabilities, i.e. for a pattern [1,0,1] the probability p of
occurrence is given by p[1,0,1] = p1 ∗ (1 − p2) ∗ p3 . In this expression, (1 − p2) is the
probability for contributing no spike to the pattern. The expected number of pattern
occurrences, computed as the product of the occurrence probability p of the pattern, e.g.
p[1,0,1], multiplied by the number of bins (across all trials) covered by the sliding window.
The distribution of coincidences is given by a Poisson distribution with the mean equal to
the expected number.

Alternatively, for the “analytic_TrialByTrial” method, the firing probability of each
neuron is calculated in a trial-by-trial manner based on the spike counts per trial. The
probability p of finding the pattern by chance is calculated by summing the products of the
firing probabilities obtained individually from each trial. As for the trial-averaging method,
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the expected number of pattern occurrences is given by multiplication with the number
of bins of the trial in the sliding window, used as the mean of a Poisson distribution to
obtain the distribution of expected coincidences.

As a third alternative, a surrogate method for estimating the expected number can be
selected using “surrogate_TrialByTrial” for the parameter method . In this Monte-Carlo
approach, a surrogate version of the spike trains is generated repeatedly, and from each
surrogate the number of occurrences of the pattern of interest is counted. The method by
which surrogates are generated from the input spike trains is spike time randomization
of the spikes per trial and per neuron within the sliding window. The pattern counts
obtained from this procedure form the distribution of the expected number of occurrences
of the pattern, thus implementing the null-hypothesis under the constraints implied by the
surrogate method.

The distribution obtained by either of the three methods above is then used for the
significance test of the pattern on the basis of the empirical occurrence count. The p-value
resulting from the test is then transformed by a logarithmic transformation to the surprise
value (line 20 in the pseudo code), which indicates by positive or negative values more
or less occurrences of the pattern than expected by chance, respectively. If the p-value
is below a fixed prescribed level (e.g. below 5%, which corresponds to a surprise value
exceeding 1.27), the occurrences of the spike pattern under investigation in the sliding
window are marked as UEs for that pattern. This procedure is performed for each pattern
of interest, and in each sliding window.

In the present study, in order to reproduce the original results we used the “ana-
lytic_TrialAverage” method, which reflects the analysis performed in the original publication
[278]. The “analytic_TrialByTrial” and “surrogate_TrialByTrial” methods are extensions
of original UE method, which were developed after the original publication and introduced
in subsequent works [139, 140].

The reimplementation of the UE method is based on the data object model provided by
the Neo library, upon which the Elephant library is based. The Neo library provides loading
routines for a variety of data formats, including proprietary and generic data formats. The
data sets available for reproducing Figures 2 and 4A of [278] were tab-separated ASCII
text files containing two columns of integers (informally often referred to as ‘GDF-format’):
the first column provides event codes (behavioral events or neuron IDs), and the second
column contains the time of the occurrence of these events (time stamps). The units
of the time stamps are not contained in the data file. We partly extracted metadata
information, in particular the time units and the meaning of the event codes, from a Matlab
routine (provided by AR) operating on the GDF data file. However, only after further
communication with AR we were able to identify the exact meaning of the content of the
data files. Using this information, we wrote a new loading routine that loads the GDF
data as Neo data objects.
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Our reimplementation uses the conversion module of Elephant for converting the
spike data (represented as a series of time stamps) into the binary sequence to guarantee a
unique, global binning mechanism for all analysis methods provided in Elephant. The bin
size to be set for the analysis was extracted from the original publication. However, defining
the time point to start the binning of each single trial data required to know the alignment
event in each trial and how much time before this event (pre-time) is considered. Since
this information was not documented in the original paper, we tried several possibilities
until we got an agreement with the original figures as will be shown in the Results.

To check if our Python implementation produces the same results as the implementa-
tion(s) used in the original publication, we compare each of our figures visually in detail
with the original figures. This is also the test if we used the correct data files since the
names of the data sets are not mentioned in the original publication. A direct numerical
comparison to the original results plotted in these figures was not possible as this data is
not available.

2.2.2 Reporducing the results of Riehle et al (1997)

For the reproduction of the original results in [278], we focus on reproducing Figure 2A-F
and Figure 4A. Figure 2 is chosen because it represents the main result of the study and
includes the UE analysis that underlies all subsequent analyses. Figure 4A is chosen
because this is an example of the application of the UE method to data with more than 2
neurons. In terms of complexity of the code the implementation of the UE analysis for
three or more neurons is considerably more demanding than for only two neurons. With
this example we show that our implementation is capable of performing the UE analysis
for the generic case of arbitrary numbers of neurons.

We apply our reimplementation of the UE method to preprocessed versions of the
spike train data available to us after communication with AR, which in part were identical
to those used in the original analysis. Also, we learned from AR that Figure 2 was generated
by the Matlab implementation of the UE method while all remaining figures of the original
publication, including Figure 4A, were generated by the older implementation in IDL.

Let us start with the reproduction of Figure 2 of the original publication. We first
give a brief description of the experiment (see the original publication for details). After
the monkey was presented with the preparatory signal (PS) he had to sit still and wait for
a response signal (RS) to start his arm movement (i.e. equivalent to a GO signal). The
duration of the waiting period was randomly selected on a trial-by-trial basis to be either
600, 900, 1200 or 1500 ms. In Figure 2 of [278] only trials of the longest waiting period
(1500 ms) were used for the analysis. In these trials, times marked as expected signals
ES1, ES2, and ES3 corresponded to the ends of the three shorter waiting periods, at which
the monkey could have gotten the RS signal but did not. As the monkey was trained to
recognize and distinguish the four waiting periods, but was not informed of the randomly
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Figure 2.1: (Caption on the next page)
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Figure 2.1 (previous page): Initial attempt to reproduce Figure 2 of the original
publication with trial alignment to PS. (A) Raster plot of two neurons (neuron 2:
top of panel; neuron 3: bottom of panel) in 32 trials (sorted identically for both
neurons). (B) Average firing rate of each neuron calculated across trials in a sliding
window of length 100 ms in steps of 5 ms. (C) Same raster plot as in panel A with
spike coincidences (i.e., pattern [1, 1]) between the two neurons marked by cyan
squares. (D) Empirical (cyan) and expected (magenta) number of coincidences
calculated in a time-resolved manner (parameters of sliding window identical to
panel B). (E) Time course of the surprise measure, calculated in same sliding
windows as in panel B. Surprise values that correspond to positive and negative
significance levels α+ = 0.05 and α− = 0.95 are shown with by horizontal red
and green lines, respectively. (F) Same raster plot as in panel A with significant
coincidences, i.e. UEs, marked by red squares.

selected period for a given trial, ES1-ES3 were time points at which the monkey expected
that a signal could occur.

Since the data file for Figure 2 of [278] contained the data as a continuous recording
of one recording session (winny131.gdf ; 2 neurons, and behavioral events), we extract the
trials by cutting the data in a time window around specific trigger events that belong to
trials of the longest waiting period, such that the complete trial is contained in the cut-out.
In a subsequent step, the spike times in the individual trials are aligned to the trigger
event, such that spike times in each trial are given as relative to the trigger.

The original publication does not provide information which trigger event was used
for alignment. In this experiment, 2 triggers that occur in every trial could serve as trigger
events, the preparatory signal PS (event code 114) and the response signal RS (event code
124). We noticed that the time interval between PS and RS for the longest trials was
not identical across the respective trials and varied by ± 1 ms. Given the UE method is
applied on a time scale of 5 ms, the analysis results therefore are expected to depend on
whether trials are aligned to PS or RS. Thus, we decide to generate the results for both
alignments .

Figure 2.1 and Figure 2.2 show the results of performing the UE analysis for both PS-
and RS-aligned data, respectively. Here, the analysis parameters are set to the identical
values as reported in the original publication (bin size: 5 ms, analysis time window size:
100 ms, time step of the sliding window: 5 ms, significance level α = 0.05). The comparison
of the two figures to the original figure shows agreement in the raster displays (panel A) and
the time-resolved, trial-averaged firing rate estimates (B). However, although the graphs of
the number of coincidences per sliding window (panel D) and the surprise measure (panel
E) are similar in their overall general behavior, they differ in the details. Thus, indeed
the choice of the alignment influences the analysis result. In order to test if one of the
two alignments is in agreement with the original publication, we perform a detailed visual
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to RS. The same conventions as in Figure 2.1 apply to the respective panels.
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comparison of our two figures and the original one on the basis of the spikes marked as
coincident (panels C) and as part of a UE (panel D). We notice that when aligning to PS
(Figure 2.1), the marked spikes do not agree in all details with the original figure. However,
Figure 2.2 with alignment of the trials to RS agrees completely with the original figure.
Although we cannot check the identity to a further extent because the exact numerical
values of the original results are not available anymore in electronic form, we believe that
this visual inspection provides enough support for a reproduction of the original result by
the reimplementation of the UE method.

Figure 2.3: Close-ups of the original raster display in Figure 4A of the original
publication (left) and the first data file available at hand for reproduction (right)
reveal slight differences in the positions of some spikes. Data on the right are
aligned (similar to the data on the left) to ES1 (event code 15 in the GDF data
file). The time before the alignment event is chosen as 700 ms, and a bin size
of 5 ms is used. The red marks indicate spike clusters with identified differences
between the left and the right panel, where at least one spike is shifted in the right
panel compared to the left panel.

As a next step we aim at reproducing Figure 4A of [278]. This figure contains the
result of the analysis of three neurons recorded simultaneously, in contrast to Figure 2
where only two neurons are considered. We analyze the original data provided by AR
with the parameter values given in [278] and compare our result to the original figure.
Figure 4A of the original publication contains the raster displays of the data in the top
panel, the raster displays with the marked coincident spikes (blue marks) in the middle
panel, and the raster displays with the marked spikes that are part of a UE (red marks) in
the bottom panel. We find that the UE result is different, as the UEs occur at different
times and between different neurons compared to the original publication. Thus we check
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whether the spike times of the individual spikes are identical between the original and
our results. Figure 2.3 shows a segment of the raster plot of the original figure and the
corresponding segment of our reproduced figure. We compare the positions of the single
spikes and find that there are small discrepancies between the two raster plots in some of
the spike times. Figure 2.3 demonstrates examples of clusters of spikes marked in red that
should be identical in both raster plots but contain a few individual spikes that are slightly
shifted in comparison to the original figure by a very small amount.

This leads us to the suspicion that the data are binned in a fashion that is not consistent
with the data shown in the original publication. Personal communication with AR revealed
that while Figure 2 had been generated by the Matlab implementation of the UE analysis,
Figure 4 had been generated by the IDL implementation (see Introduction). A report by
MD written before the time of the original publication summarized a comparison of the IDL
and the Matlab implementations, and concluded that both were correct implementations
of the method, but differed in their results due to a slightly different implementation of the
down-sampling and binning of the raw data (recorded at 10 kHz). In the workflow for the
IDL implementation, as illustrated in Figure 2.4 (the leftmost branch of the diagram), the
raw data were first down-sampled to a temporal resolution of 0.5 ms (by a program 2gdf)
and then further rounded to 1 ms resolution integer values inside the IDL implementation.
The data available to us had a resolution of 1 ms, which must have been a result of another
down-sampling procedure than the one for the IDL implementation. This explains the
difference in the raster displays, and this difference is likely also the cause that we were
initially not able to reproduce the original UE result.

In our reproduction of Figure 2 of the original paper we use preprocessed data available
in 1 ms resolution, that likely experienced the alexa2gdf program for conversion as shown
in Figure 2.4 (the rightmost branch), before data are loaded into our reimplementation of
the UE analysis. However, according to the aforementioned report by MD we only have a
chance to reproduce Figure 4A of [278] if we have the original data or a version of them with
a time resolution lower than 1 ms available (see the relevant ASCII drawing from the report
in Figure 2.4). The original raw data with 0.1 ms resolution are presumably only available
on a storage medium and format that at present we are not able to read and interpret.
However, after we contacted AR she found the data (“jenny201_345_preprocessed.gdf”)
of Figure 4A of [278] with a time resolution of 0.5 ms (left box in the second row of the
sketch shown in Figure 2.4).

We loaded this data at 0.5 ms resolution into Python and converted the data from
the 0.5 ms to the required 1 ms resolution by the mathematical operation

⌊
x+ 1

2

⌋
, called

“rounding half up”. In numerical software packages, including Matlab, this operation is
typically implemented by a function named round(). However, the round() implementation
of NumPy (version 1.11.0) performs an even rounding, i.e., values exactly halfway between
two integers are rounded to the nearest even integer. Indeed, the latter implementation
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Figure 2.4: Illustration of the data preprocessing workflow, taken from the 1997
report of MD (in German) on the comparison of the first UE implementation in
IDL (left branch) and the second implementation in Matlab [69] (right branch).
Data entering both analysis branches have a resolution of 0.1 ms (top box). In the
IDL branch spike times t in the original data are first transformed to a resolution of
h = 0.5 ms (by the 2gdf program, middle left) using the method of binning bt/hc.
Then the data are read into the "IDL UE Software" (lower left box) and therein
converted to h = 1 ms resolution by the method of "round half up" bt/h+ 1./2c
prior to analysis. Alternatively, one can load the 0.5 ms resolution data into the
"MATLAB UE Software" (lower right box). Here the bin width is a parameter of
the analysis and thus data can be converted to a 1 ms resolution but results are
different from the IDL branch. Results are only identical if a prior transformation
"T" (diagonal in center) performs a round half up and no further binning is done in
the MATLAB program. At a later point in time the alexa2gdf converter function
(written in MATLAB) became available such that data in the original 0.1 ms
resolution could directly be converted to the 1 ms resolution by binning.
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Figure 2.5: Reproduction of Figure 4A of the original publication. The left part of
the figure shows the UE analysis result for the data aligned to ES1 (event code
15 in the GDF data file) with a time before the event (pre-time) set to 699 ms.
The right part of the figure shows the analysis of the same data aligned to RS and
with a pre-time of 99 ms. The left and right parts of the figure show 96 and 128
trials, respectively.
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of rounding did not reproduce the result of the original publication. Thus, we used the
expression floor(x+0.5) to perform rounding as it is implemented by Matlab. The
procedure completely reproduces panel A of Figure 4 in the original publication (see
Figure 2.5).

2.3 Population statistics uncovers baseline correlation in
the cerebral cortex

In the previous section we have implemented the UE method as open source software and
reproduced the result of [278] where they found behavior related, dynamic occurrence of
excess synchrony. Now we are interested in searching for UEs in a large population of
neurons. However, the UE analysis does not scale well due to the combinatorial explosion
of the number of spike patterns, and due to the massive multiple testing problem involved.

In Kilavik et al. 2009 [196] the systematic occurrences of UEs in relation to behavior
were studied by evaluating the UEs of many, sequentially recorded pairs of neurons. For
this purpose a variant of the UE analysis was developed for the population statistics across
many pairs of neurons by extending the expectancy of the occurrences of coincidences
under the independence assumption of neurons as follows:

npairsexp =
K∑
k=1

M∑
m=1

pm,ki · pm,kj · Tw
h

(2.1)

with K: number of pairs, M : number of trials, pm,ki : firing probability of neuron i in
k-th pair and m-th trial, Tw : duration of window, h : bin width.

To evaluate the significance of the synchrony across all pairs, first, the expected
number of coincidences, npairsexp , is calculated for a small portion of data (within a window
size of about hundred of milliseconds). Then, the empirical coincidence count, npairsemp , within
each window is calculated by counting the actual number of coincidences for each pair and
summing the number across pairs. The significance of the empirical coincidences is derived
by calculating the p-value ψ of the deviation of npairsemp from npairsexp , i.e. the probability of
getting npairsemp or larger values assuming a Poisson distribution with the mean being npairsexp .
For a better visualization the surprise measure S, which is the logarithmic transformation
of the p-value: log10[(1−ψ)/ψ], is used. Finally, applying a sliding window analysis enables
to capture the time modulation of the surprise which can be related to the behavior.

We applied the above-mentioned extended UE analysis to a dataset recorded from
monkey motor cortex while performing a center-out reaching task (see [50] for details of
the experiment). The details of the analysis are as follows: only neurons with a firing rate
of at least 5 Hz throughout the whole epoch of the analysis were chosen. Pairs of neurons
were analyzed with neurons recorded on different electrodes only, leading to the total of
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81 pairs. To assess the effect of the number of pairs on the surprise, we used a bootstrap
procedure within each analysis window as follows:

1. We chose a number x of pairs to be analyzed: either x = 20, 40, 60 and 81.

2. We sampled x pairs randomly from the total number of available pairs (81) allowing
duplication.

3. We calculated the values of npairsemp and npairsexp across the x pairs.

4. For a fixed value of x we repeated steps 2 and 3 for 1000 times.

5. We averaged the values of npairsemp and npairsexp , respectively, across the 1000 repetitions
and calculated the surprise value from the averaged values n̄pairsemp and n̄pairsexp .

With this procedure, we studied the surprise of populations of x = 20, 40, 60 or 81 pairs of
neurons. Figure 2.6A shows the time modulation of the obtained surprises for different
numbers of neuron pairs included in the analysis. The surprise is not modulated around zero
but has a positive offset which depends on the number of pairs in the analysis. Including
more pairs in the analysis increases the offset as it is shown in Figure 2.6A right panel.

In a next step we evaluated the time modulation of synchrony by introducing a new
measure which does not depend on the number of pairs. This measure, called R, is the
ratio between summed empirical and summed expected coincidences over pairs calculated
in each analysis window:

R =
npairsemp

npairsexp

. (2.2)

The time modulation of R, computed on the same data and with the same analysis
parameters as in Figure 2.6A, is shown in Figure 2.6B. It demonstrates that, similar to
what we observed in the time modulation of the surprise, there is a positive offset in R as
well (mean value of R is above 1, where R = 1 is expected for independent data).

2.4 Flaw of UE or feature of the data?

The offset that we observed in the temporal modulation of the surprise S and the ratio R
brought up the question whether this offset is the result of a not yet known flaw of the UE
analysis, or if it reflects a feature of the data captured by the UE method. To answer this
question we test the method with various artificial and surrogate data.

2.4.1 Test on independent and correlated Poisson data

First, we ask the question: How do the surprise S and the ratio R change as a function
of the number of neuron pairs when they are derived from independent and correlated
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A

B

Figure 2.6: Modulation of surprise and R resulted from experimental
data. Applying the extended UE analysis on the data recorded from the motor
cortex of monkey in the delay trials before performing an arm movement task in
which there is a temporal cue (TC) at 700 ms (see [50] for details of the experiment).
(A) Left: Temporal modulation of surprise, summed across trials and different
number of pairs. The window of analysis is 100 ms with a shift of 20 ms. The blue
dashed line indicates the 5% significance level. 1000 bootstrapping was done to
take into account the bias due to the sampling from different pairs. Each color
corresponds to a different number of pairs included in the analysis. Right: Surprise
as a function of included pairs in the analysis. The error bars are bootstrap errors
on the estimation of mean value of surprise in time. (B) The same as in A for R.
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Poisson spike data, respectively? To answer that, we apply the extended UE analysis to
independent and correlated artificial spike data and compare the behavior of the surprise
S and the ratio R as a function of the number of neuron pairs in each. Both data sets,
the independent and the correlated data, are generated using a compound Poisson process
(CPP) model [141, 327, 328]. The CPP model (as explained in Appendix 5.1.1) is a
stochastic model to generate synthetic spike data with known correlation structure. The
correlation structure is defined by a set of parameters called amplitude distribution fA(ω),
which represents the occurrence probabilities of spike synchrony events of different orders.
The parameter ω, called amplitude, takes an integer value between 1 and N , and fA fulfills∑N
ω=1 fA(ω) = 1 as it represents a probability distribution. The amplitude distribution is

used to generate a marked Poisson process [75, 322] scp(t) = ∑
j δ(t− tj) · aj , called carrier

process, where {tj} is a Poisson process of rate λcp and aj is a random number between
1 and N drawn from fA. From this carrier process a population of N correlated point
processes xi (i = 1, 2, · · · , N) is constructed by copying the event of the carrier process
at tj into each of aj processes chosen from {xi}. The specific process IDs which receive a
spike copy are drawn randomly from {1, 2, · · · , N}. Thus synchronous events of order ω
are induced whenever events of amplitude ω occur in the carrier process. The mean firing
rate of the individual processes is λ =

´ T
0 scp(t)dt/(NT ) , which depends on the rate of

the carrier process λcp and the amplitude distribution fA.
Using the CPP model we generate independent and correlated datasets with duration

of T = 1 s and N = 100 number of neurons. The firing rate of each neuron, in both datasets,
is λ = 20 Hz. The amplitude distribution for the independent data has one entry only at
ω = 1 and for the correlated data it has entries at ω = 1 and 20 with fA(20) = 5× 10−4.

Figure 2.7 shows the behavior of the expected and empirical coincidences as well as
the ratio R and the surprise S as a function of the number of pairs in the analysis. The
blue and red colors indicate the results for the independent and the correlated data sets,
respectively.

The results of the independent data set (blue) show that increasing the number of
pairs increases the empirical coincidences as well as the expected number of coincidences,
but their ratio, i.e. R value, remains around 1. Similar to the R value, the surprise also
does not increase with increasing the number of pairs and the mean value of the surprise
remains around 0. For the correlated data (red), the empirical coincidences take higher
values than the expected. The R value converges to a fixed value above 1 after around
500 pairs. The surprise increases more and more as we include more pairs in the analysis.
This test shows that the Unitary Event analysis is exactly doing what it is supposed to do:
Adding more pairs causes an accumululation of the evidence that the data are correlated,
which increases the surprise.
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Figure 2.7: Testing the UE analysis with the independent and the correlated
Poisson data.

2.4.2 Analysis of experimental data based on surrogate data

As a second test, to confirm that the positive offset in the surprise S and the ratio R
observed in experimental data (Figure 2.6) reflects the correlation in these data, we do the
following:

First, we generate surrogate data in which we aim to destroy the correlation in the
experimental data set without changing the the firing rate of the neurons in each analysis
window. For this purpose we randomize the spike times of each neuron in each analysis
window (see [140] for an extensive discussion on surrogate methods). Then, we apply the
extended UE method on these surrogate data, calculate R and S, and check whether the
offset is still present. Figure 2.8 shows the results after the randomization. To account for
the bias by of sampling from different number of pairs, we compute the bootstrap statistics
of S and R (as explained in Section 2.3). The results show that the positive offset in S
and R disappears by destroying the correlation between pairs of neurons. This is another
confirmation that the UE analysis performs as expected: when there is no correlation, the
accumulation of pairs does not increase the observed level of synchrony.

We conclude that the UE analysis is exactly doing what it is supposed to do. Thus
the offset in the surprise and the R values, observed in our dataset is a real phenomenon.
This was not observed before because such a huge number of neuron pairs had not been
analyzed.
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Figure 2.8: Modulation of surprise and R resulted from surrogate data.
Testing the UE analysis with surrogate generated from experimental data by
randomization of spike times. The figure is plotted similar to Figure 2.6.

2.5 Prediction from random balanced network

Anatomical data of the cortex show that there is a large connectivity convergence on
individual neurons, and also a large divergence from individual to other neurons. A random
balanced network model [38] considers this connectivity, and includes no other specific
connectivity such as, e.g., the one proposed for the synfire chain [1]. We next test if such a
network model without any specific connectivity structure, but merely random connectivity
with known parameters, also exhibits the offset when using the extended UE analysis.

We simulate a randomly connected sparse network of inhibitory and excitatory neurons,
so called random balanced network (RBN) [38], with N = 10000 neurons (80% excitatory
and 20% inhibitory). For the simulation we used NEST [106], which is a simulator for
spiking neural network models. The parameters of the simulation were set to values that
result in an asynchronous irregular (AI) network dynamic. The AI dynamics often observed
in the spontaneous activity of cortical neurons [250, 348], in which individual neurons have
irregular spikes with stationary population activity (see [38] for explanation of different
dynamics that appear in RBN). We are interested in such a particular dynamics of RBN
because it holds the assumption of stationary firing rate and irregularity of spike times,
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2.5 Prediction from random balanced network

which are explicitly presumed in the null-hypothesis of the UE method. A raster plot of
arbitrarily chosen 2000 neurons from our simulation is shown in Figure 2.9 top panel. By
choosing a small bin of 1ms , we calculate the population activity of neurons, which is the
total number of active neurons within each bin (Figure 2.9 bottom panel).
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Figure 2.9: Spike data simulated by RBN. Snippet of raster plot (top) and
population activity (bottom) of spike data generated from RBN network of 10000
neurons with 80% excitatory and 20% inhibitory (500 ms activity of 2000 randomly
sampled neurons are shown here). The red dashed line in the bottom panel indicates
the mean firing rate of neurons. The parameters for the network simulation were set
as follow: The relative strength of inhibitory synapses g = 6 and the transmission
delay d = 0.5 ms to gain asynchronous irregular (AI) dynamics.

Figure 2.10A shows the temporal modulation of the surprise obtained from the RBN
data for different number of pairs included in the analysis. It shows a positive offset which
increases by increasing the number of neuron pairs included in the analysis. Figure 2.10B
demonstrates the temporal modulation of R with an offset larger than 1 irrespective of the
number pairs included in the analysis. The magnitude of the offset in R is similar to the
value observed in the experimental data (Figure 2.6).

This observation provides strong evidence that the extended UE analysis detects
correlations which may be a consequence of direct or recurrent synaptic connections as
well as shared inputs [158, 159, 204, 266, 276, 303, 333, 344], and refer to the correlation
within a RBN as baseline correlation.
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Figure 2.10: Modulation of surprise and R resulted from RBN data.
Testing the UE analysis on the RBN data generated by the network simulation
explained in Figure 2.9. The analysis parameters are similar to Figure 2.6.

2.6 Summary

We were able to reproduce the original results of [278] by applying a completely new
reimplementation of the Unitary Events analysis method in Python to the original data.
The method involves a number of numerical computations and is very sensitive. Therefore
this reproduction of the result is a strong indication that the analysis in the original study
was performing correctly and that the analysis program used there faithfully implemented
the UE method. The UE software which we developed in Python and used here contains
also extra features later developed for improving the statistics, i.e. accommodating cross-
trial inhomogeneity, by calculating the expectation on the TrialByTrial basis for the rate
estimation [139] or the possibility to use different surrogate methods for implementing the
null-hypothesis [140, 141].

Furthermore, by applying the extended UE method on the data recorded from
motor cortex of the monkey performing a center-out-reaching task, we captured the
baseline correlation on the activity of real cortical neurons owing to the connectivity
and shared input to a pair of neurons. We tested the method with synthetic data and
surrogate data (generated from the experimental data) and showed that the Unitary Event
analysis correctly captures the existence of baseline correlation. Moreover, by studying
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2.6 Summary

the correlation structure in the random balanced network in an asynchronous irregular
regime, we observed that the surprise S shows an offset and is not modulated around 0. R
also shows a higher value than 1 and is close to the value of the offset of R observed in the
experimental data.
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CHAPTER3
Inhibited maximum entropy (IME)

model

The following chapter and the supplementary materials related to this chapter (Ap-
pendix 5.2) have been published as two preprints: i) Rostami V, Porta Mana PGL
and Helias M, Pairwise maximum-entropy models and their Glauber dynamics: bimodal-
ity, bistability, non-ergodicity problems, and their elimination via inhibition. (2016)
arXiv:1605.04740 [289], ii) Porta Mana PGL and Torre E and Rostami V, Inferences
from a network to a subnetwork and vice versa under an assumption of symmetry. (2015)
BioRxiv [271]. These works have been submitted to peer-reviewed journals and are under
review.

Author contributions: Under supervision of PGL Porta Mana and Moritz Helias,
the author perfomed the literature research, conceptual and mathematical derivation, sim-
ulation and analyses of the simulated as well as experimental data, model implementations
and defining the new model. Sonja Grün provided useful feedback on the obtained results
and on defining the biological questions that needed to be answered during the development
of this project.
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3.1 Introduction

Pairwise maximum-entropy models have been used in recent neuroscientific literature
to construct a probabilistic description of the neuronal activity [21, 96, 230, 235, 310,
312]. The obtained probability distribution, by construction including the single-unit and
pairwise statistics of the observation, could indeed help us to solve the segregation of
baseline and functional correlation described in Chapter 2. In assigning to every observed
activity pattern a probability, we obtain a measure of “surprise” for each such pattern; this
measure is related to the logarithm of the probability and thus to Shannon’s entropy [22,
112, 116, 117, 342]. Periods of low probability correspond to large surprise: these patterns
cannot be explained by the statistical properties that entered the construction of the
probability distribution. In this way, we are able to effectively differentiate expected, less
surprising events from those that are unexpected, surprising, and potentially functionally
meaningful.

Computing the maximum-entropy distribution from moment constraints – usually
called the inverse problem – is very simple in principle: it amounts to finding the maximum
of the entropy, which is a convex function and hence optimization is simple [82, 242, 282]:
The maximum can be searched for with a variety of methods (downhill simplex, direction
set, conjugate gradient, etc. [273, ch. 10]). The convex function, however, involves a sum
over exp(number of neurons) terms. For 60 neurons, that is roughly twice the universe’s age
in seconds, but modern technologies enable us to record hundreds of neurons simultaneously
[24, 42, 254, 279]. Owing to the exponential explosion for such large numbers of neurons,
the convex function cannot be calculated (also not numerically) anymore, but therefore
must be “sampled” usually via Markov chain Monte Carlo techniques [11, 31, 171, 203,
212, 225, 273]. In neuroscience the Glauber dynamics (also known as Gibbs sampling)
[111, 225, chap. 29] is usually chosen as the Markov chain whose stationary probability
distribution is the maximum-entropy one.

Boltzmann learning [4, 37, 161] is such an iterative combination of sampling and
search for the maximum, and is still considered the most precise method of computing a
maximum-entropy distribution.

A different approach is to approximate the convex function with an analytic expression,
and to find the maximum directly via the study of the derivatives of this approximation.
The mean-field [153, 252, 257], Thouless-Anderson-Palmer [257, 334], and Sessak-Monasson
[300, 301] approximations are examples of this approach. These approximations are valid
only in limited regions of the domain of the original convex function, and their goodness is
usually checked against a Boltzmann-learning calculation (as e.g. in [293]).

Moment-constrained maximum-entropy models have also been used [140, 226] as
generators of surrogate data, again via a Glauber dynamics. Such surrogates are used
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to implement a null hypothesis to estimate the significance of correlations between spike
trains [95, 102, 139, 140, 223, 267, 268].

The pairwise maximum-entropy model has been used for experimentally recorded
activities of populations of a couple hundreds neurons at most, so far; but its success (or
lack thereof) cannot be automatically extrapolated to larger population sizes. Roudi et al.
[292] gave evidence that the maximized Shannon entropy and other comparative entropies
of such a model may present qualitatively different features above a particular population
size.

In this chapter we discuss a feature of the pairwise maximum-entropy model that
may be problematic or undesirable: the marginal distribution for the population-averaged
activity becomes bimodal, and one of the modes may peak at high activities. In other
words, maximum-entropy predicts that the population fluctuates between a regime with a
small fraction of simultaneously active neurons, and another regime with a higher fraction
of simultaneously active neurons; the fraction of the second regime can be as high as 90%.
This feature of the maximum-entropy model seems to have been observed before [33, 229,
230], but never remarked upon.

We also provide evidence that this bimodality is not just a mathematical quirk: it
is bound to appear in applications to populations of more than a hundred neurons.It
makes the pairwise maximum-entropy model problematic, for several reasons. First, in
neurobiological data the coexistence of two regimes appears unrealistic – especially if the
second regime corresponds to 90% of all units being active.

Second, two complementary problems appear with the Glauber dynamics and the
Boltzmann-learning used to find the model’s parameters. If the minimum between the
two probability maxima is shallow, the activity alternately hovers about either regime for
sustained periods, which is again unrealistic, and hence rules out this method to generate
meaningful surrogate data. If the minimum between the two maxima is deep, the Glauber
dynamics becomes practically non-ergodic, and the pairwise model cannot be calculated
at all via Boltzmann learning or via the approximations previously mentioned [212, §
2.1.3][225, chap. 29]. This case is particularly subtle because it can go undetected: the
non-ergodic Boltzmann learning still yields a reasonable-looking distribution, and this
distribution gives back the moments used as constraints when re-checked with Monte
Carlo sampling. However, this distribution is not the sought pairwise maximum-entropy
distribution: the two differ quantitatively also for low activities.

The plan of the rest of the chapter is the following: after some mathematical and
methodological preliminaries we show the appearance of the bimodality problem of the
maximum-entropy model in the context of an experimental dataset of the activity of 159
neurons recorded from macaque motor cortex. Then we use an analytically tractable homo-
geneous pairwise maximum-entropy model (called “reduced” model for reasons explained
later) to give evidence that the bimodality affects larger and larger ranges of datasets as
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the population size increases. We show that experimental datasets of neural-activity are
likely to fall within the bimodality ranges.

After analyzing the appearance of bimodality and the conditions for it, we also propose
a way to eliminate it: using a slightly modified pairwise maximum-entropy distribution,
which does not suffer from the bimodality problem. This modified distribution can be
interpreted as arising from the principle of minimum relative entropy (also called minimum
discrimination information) [5, 14, 43, 48, 51, 143–145, 162, 165, 176, 207–211, 277]
with respect to a neurobiologically motivated reference prior, or as a maximum-entropy
distribution with an additional constraint. The most important property of this modified
distribution is its stationarity under a modified Glauber dynamics that includes a minimal
asymmetric inhibition. This gives a neurobiological justification for using the modified
distribution and its Glauber dynamics. We also show that the modified maximum-entropy
distribution is the actual one obtained via Boltzmann learning or other approximations
in the non-ergodic case – and thus could be the distribution actually computed in papers
that used such techniques.

3.2 Methods

Our study uses three main mathematical objects: the pairwise maximum-entropy distri-
bution, a “reduced” pairwise maximum-entropy distribution, and the Glauber dynamics
associated with them. We review them here and give some additional remarks and refer-
ences from the probability calculus viewpoint (see Appendix 5.2.5 for a comparison of the
pairwise maximum-entropy in the probability calculus and the statistical mechanic).

3.2.1 Pairwise maximum-entropy model

First let us make mathematically clear what we mean by “activity”: a set of sequences
of spikes of N neurons during a finite time interval [0, T ]. These spike sequences are
discretized: we divide the time interval into n bins of identical length ∆ equal to T/n,
indexed by t in {1, . . . , n}. For each neuron i, the existence of one or more spikes in bin t
is represented by si(t) = 1, and lack of spikes by si(t) = 0. With this binary representation,
the activity of our population at time bin t is described by a vector: s(t) :=

(
si(t)

)
. We

will switch freely between vector and component notation for this and other quantities.
Time averages are denoted by a circumflex: ·̂ , and population averages by an overbar:

· . The activity summed over the population at time t, or time-resolved population-summed
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activity, is denoted by S(t), and the population-averaged activity by s̄(t):

S(t) :=
N∑
i=1

si(t) ∈ {0, 1, . . . , N},

s̄(t) := 1
N

N∑
i=1

si(t) ≡
1
N
S(t) ∈ {0, 1/N, . . . , 1}.

The time-averaged activity of neuron i is denoted by mi:

mi := ŝi(t) := 1
T

n∑
t=1

si(t), (3.1)

and the time average of the product of the activities of the neuron pair ij, called raw
covariance or coupled activity, is denoted by gij :

gij := ̂si(t) sj(t) := 1
T

n∑
t=1

si(t) sj(t). (3.2)

These time averages will be used as constraints for the maximum-entropy model..
The pairwise maximum-entropy statistical model [33, 235, 297, 312] assigns a time-

independent probability distribution for the population activity s(t) of the form (time is
therefore omitted in the notation):

Pp(s|µ,Λ) = 1
Zp(µ,Λ) exp

(∑
i

µisi +
∑
i<j

Λijsisj
)
,

Zp(µ,Λ) :=
∑
s

exp
(∑
i

µisi +
∑
i<j

Λijsisj
)
;

(3.3)

the Lagrange multipliers µ(m, g) and Λ(m, g) are determined by enforcing the equality of
the time averages (Eq. 3.1) and (Eq. 3.2) with the single- and coupled-activity expectations,
with their definitions

Ep(si) :=
∑
s

si Pp(s), Ep(sisj) :=
∑
s

sisj Pp(s) (3.4)

(or in matrix form Ep(s) := ∑
s sPp(s) and Ep(ssᵀ) := ∑

s ss
ᵀ Pp(s)):

Ep(si) = mi and Ep(sisj) = gij . (3.5)

Noting that Ep(si) = Pp(si = 1), and Ep(sisj) = Pp(si = 1, sj = 1), we see that the
constraints above are equivalent to fully fixing the single-neuron probabilities of Pp and
fixing one of its two-neurons probabilities.
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By introducing the covariances c and Pearson correlation coefficients ρ,

cij := E(sisj)− E(si)E(sj),

ρij := cij√
[Ep(s2

i )− Ep(si)2] [Ep(s2
j )− Ep(sj)2]

, (3.6)

the constraints above are jointly equivalent to

Ep(si) = mi and cij = gij −mimj (3.7)

or
Ep(si) = mi and ρij = gij −mimj√

(mi −m2
i ) (mj −m2

j )
(3.8)

Note that the covariance constraints cij = gij −mimj by themselves are not convex, i.e.,
they do not define a convex subset in the probability simplex on which the entropy is
maximized. The Lagrange-multiplier method does not guarantee the uniqueness of the
solution if only the covariances are constrained. Uniqueness has to be checked separately
[52, 53, 82, 99, 243]. On the other hand, the constraints Ep(si) = mi and Ep(sisj) = gij are
separately convex, thus their conjunction Ep(si) = mi

∧Ep(sisj) = gij is convex too, and
the bijective correspondence of the latter with Ep(si) = mi

∧
cij = gij −mimj guarantees

that the latter set of constraints is convex as well. What we have said about the covariances
c also holds for the correlations ρ.

It is important to remember that (m, g) are physically measurable quantities, inde-
pendent of the observer, whereas

(
Ep(si),Ep(sisj)

)
depend on the observer’s uncertainty,

quantified by her probability assignment, and are not physically measurable. Therefore
the constraints (3.5) are not trivial definitions (“:=”) or equivalences (“≡”). In fact, in
particular situations it does not make sense to enforce some of the constraints [270]; this also
depends on what is our uncertainty about. Let us explain this point. The maximum-entropy
distribution represents our uncertainty about the population activity for each of the given
time bins, t ∈ {1, . . . , n}; this can be shown by symmetry and combinatorial arguments
within the probability calculus [51–53, 93, 142, 179–181, 186, 270, 317]. Sometimes the
maximum-entropy distribution is also used to represent someone’s uncertainty about a
new observation about a new time bin, e.g. t equal to n+ 1. But such use implies addi-
tional assumptions and a particular prior that are not always justified [270]. Here is an
example: suppose the time average of the coupled activity of neurons 1 and 2 vanishes:
g1 2 := 1

T

∑n
t=1 s1(t) s2(t) = 0 (this happens for a couple of pairs in our data). If we enforce

the constraint Ep(s1s2) = g1 2 = 0, then maximum-entropy says that it is impossible that
neurons 1 and 2 spike together: Pp(s1 = 1, s2 = 1) = 0 (the corresponding Lagrange
multiplier Λ1 2 = −∞). This prediction makes sense if we are speaking about any of our
n time bins – in fact, g1 2 = 0 means that neurons 1 and 2 have never spiked together in
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our data, so the prediction is right. But it is an unreasonable prediction about a future or
past time bin that is not part of our data: just because neurons 1 and 2 have not spiked
simultaneously in our n data bins, we cannot conclude that it is impossible for them to spike
or have spiked simultaneously in the future (t > n) or in the past (t < 0). Therefore, when
some constraints assume extreme values, as g1 2 = 0 in our example, it is not meaningful to
use the maximum-entropy model for new predictions outside the given dataset. In this case
it is more appropriate to use the full (Bayesian) probability calculus [26, 28, 100, 225, 270,
356, 363], possibly with maximum-entropy ideas on a more abstract level (space of prior
distributions) [45, 46, 283–285, 316]. Contrary to what is sometimes stated in the literature,
it is not true that the maximum-entropy model can only be used if the time sequence
of activities is “stationary”. This model represents a guess about the activities in the
sequence, given time-average information. This guess, therefore, has to be time-invariant
by symmetry: any time-dependent information has been erased by the time averaging.
In other words, it is our guess which is “stationary”, not the physical data; but it is still
a good guess, given the time-independent information provided. With time-dependent
constraints we would obtain a time-dependent maximum-entropy distribution [cf. 160]:
this application of the maximum-entropy principle is called “maximum-calibre” [123, 178,
185, 187, 219, 274].

3.2.2 Reduced maximum-entropy model

If the time-averaged activities m are homogeneous, i.e. equal to one another and to their
population average m̄, and the N (N − 1)/2 time-averaged coupled activities g are also
homogeneous with population average ḡ, ḡ := 2

N (N−1)
∑
i<j gij , then the pairwise maximum-

entropy distribution has homogeneous Lagrange multipliers by symmetry: µi = µr and
Λij = Λr. It reduces to the simpler and analytically tractable form

Pr(s|µr, Λr) = 1
Zr(µr, Λr)

exp[µrNs̄+ 1
2ΛrNs̄ (Ns̄− 1)],

Zr(µr, Λr) :=
∑
s

exp[µrNs̄+ 1
2ΛrNs̄ (Ns̄− 1)],

(3.9)

which assigns equal probabilities to all those activities s that have the same population
average s̄. In this homogeneous case, the values of the multipliers are equal to their
averages: µi = µr = µ̄ := 1

N

∑
i µi and Λij = Λr = Λ̄ := 2

N (N−1)
∑
i<j Λij .

This simpler distribution could be interpreted as an approximation of the pairwise
maximum-entropy one, achieved by disregarding population inhomogeneities of the con-
straints mi and gij . . But it is also an exact maximum-entropy distribution in its own
right, obtained by only constraining the expectations for the population sums of the single
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and coupled activities,

∑
i

si = S = Ns̄,
∑
i<j

sisj = S (S − 1)/2 = Ns̄ (Ns̄− 1)/2,

to be equal to their measured time averages:

Er(Ns̄) = Nm̄ and Er(Ns̄ (Ns̄− 1)) = N (N − 1)
2 ḡ :=

∑
i<j

gij (3.10)

(or equivalently constraining the population averages.)
For this reason we call the model (Eq. 3.9) a reduced (pairwise) maximum-entropy

model. If the time-averages are homogeneous, then µr = µ̄ = µi, Λr = Λ̄ = Λij and the
reduced and full pairwise model coincide. But in the inhomogeneous case the multipliers
of the reduced model are not equal to the averages of the pairwise one: µr 6= µ̄, Λr 6= Λ̄.

It is straightforward to derive the probability distribution for the population average
s̄ in this model, owing to its symmetry: if the average is s̄, then the total number of active
neurons must be Ns̄ in the population, and there are

(N
Ns̄

)
ways in which this is possible,

all having equal probability given by (Eq. 3.9). Therefore,

Pr(s̄|µr, Λr) = 1
Zr(µr, Λr)

(
N

Ns̄

)
exp[µrNs̄+ 1

2ΛrNs̄ (Ns̄− 1)],

Zr(µr, Λr) :=
∑
s̄

(
N

Ns̄

)
exp[µrNs̄+ 1

2ΛrNs̄ (Ns̄− 1)].
(3.11)

This probability distribution Pr(s̄) can, in turn, also be obtained applying a minimum-
relative-entropy principle [5, 43, 48, 51, 143–145, 176, 207–211, 277], i.e. minimizing the
relative entropy (or discrimination information)

H(P, P0) :=
∑
s̄

P (s̄) ln P (s̄)
P0(s̄) (3.12)

of P (s̄) with respect to the reference distribution P0(s̄) = 2−N
(N
Ns̄

)
while constraining

the first two moments of Pr(S), or equivalently its first two factorial moments [272],(
E(S),E(S (S − 1)/2)

)
.

It is easy to see that in this model, by symmetry, we also have

Er(si) = Er(s̄), Er(sisj) = Er

(
Ns̄ (Ns̄− 1)
N (N − 1)

)
, (3.13)

cij = c̄ = Er

(
Ns̄ (Ns̄− 1)
N (N − 1)

)
− Er(s̄)2, ρij = ρ = c̄

Er(s̄)− Er(s̄)2 , (3.14)
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and
(
Er(s̄),Er

(
Ns̄ (Ns̄−1)
N (N−1)

))
,
(
Er(s̄), c̄

)
,
(
Er(s̄), ρ

)
are equivalent sets of constraints (but c̄

and ρ̄ by themselves are not convex).
This reduced maximum-entropy model is mathematically very convenient, because

the Lagrange multipliers µr, Λr can be easily found numerically (with standard convex-
optimization methods like downhill simplex, direction set, conjugate gradient, etc. [273, ch.
10]) with high precision even for large (e.g., thousands) population sizes N .

Summarizing: the reduced maximum-entropy model can be seen as: 1. the form taken
by the pairwise maximum-entropy model in the case of homogeneous single and couple
activities; 2. an approximation to the pairwise maximum-entropy model in the case of
inhomogeneous single and couple activities; 3. a maximum-entropy model in its own right,
that uses less information than the full pairwise model.

3.2.3 Glauber dynamics

Next we will use the Glauber dynamics for estimating the parameters of our maximum-
entropy model and address specific adaptations that become necessary for our context. The
pairwise and reduced maximum-entropy distributions discussed before do not give complete
information about the dynamical or kinematical properties of the population activity They
are, however, identical in form to the stationary distribution of an asynchronous Glauber
dynamics [111] with symmetric “couplings” Λ, sometimes interpreted as symmetric synaptic
couplings, and “biases” µ, or sometimes interpreted as either a threshold or external input
controlling the base activity of individual neurons. In the reduced maximum-entropy
model these parameters are homogeneous: Λij = Λr, µi = µr. The full and reduced
maximum-entropy distributions give some information about this particular dynamics, like
the appearance of metastable or most probable population-average states.

If we assume that our uncertainty about the evolution of the population activity
can be modelled by the Glauber dynamics of a binary network, we can choose the µ,Λ
parameters determined by the constraints (Eq. 3.5) and thus generate surrogate data that –
if the dynamics is ergodic – have infinite-time-average activities as our initial experimentally
observed data.

3.3 Results

3.3.1 The problem: bimodality, bistability, non-ergodicity

We first show how the bistability problem subtly appears with a set of experimental data,
then explore its significance for larger population sizes.
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Example with experimental data

Our data consists of the activity of a population of N = 159 neurons recorded from motor
cortex of macaque monkey for 15 minutes using a 100-electrode “Utah” array and the
experimental setup as described in [279]. , but with a different behavioral design. Here
the monkey was awake and alert, but without performing a task during the recording.
We choose this behavioral protocol for retrieving ’resting state’ (or ongoing) [12] data to
characterize the “ground” state (in contrast to a task or functional state).

Figure 3.1A shows a raster plot (2 sec out of 15 min for better visibility) of the activities
s(t) of all the simultaneously recorded neurons . The population histogram (or time-resolved
population-summed activity) S(t) for this period is shown underneath. The distributions
of the time-averaged single and coupled activities mi, gij , and the corresponding empirical
covariances cij measured in the full data set of 15 min are shown in panels B, C, D. The
population averages of these quantities are

m̄ ≈ 0.0499, ḡ ≈ 0.00261, c̄ ≈ 0.000135, ρ ≈ 0.00319. (3.15)

Let us now find, via Boltzmann learning, the Lagrange multipliers of the pairwise
maximum-entropy model constrained by the empirical single and coupled activities of the
experimental data and shown in Figure 3.1B–C. At each iteration, the sampling phase of
the Boltzmann learning has 106 timesteps; an example is shown in Figure 3.2A. We decided
to use a large number of time steps (n=1000) as compared to Roudi et al. [293] (n=200) or
Broderick et al. [37] (n=400) to make sure that the learning in our case really converged.
We obtain the Lagrange multipliers (µi, Λij) whose distributions are shown in Figure 3.2D.
The final single and coupled activities are shown in Figure 3.2C, and compar them to
the experimental data. We find that the model parameters are highly correlated with
the experimental ones and thus describe the data well. Sampling the maximum-entropy
distribution with the obtained Lagrange multipliers, we obtain the population-average
probability distribution ( Figure 3.2B, red). It disagrees in the tail from the distribution
based on the experimental data (dashed), which we will address next.

The results of the Boltzmann learning do not show any inconsistency at this point.
But now we sample the distribution for a much longer time, i.e. 5 × 107 steps. The
result is shown in Figure 3.3A. Here we find that after roughly 2× 106 steps, the whole
population (i.e. all neurons) jumps to a high-activity regime and remains there until
the end of the sampling. Thus, we have discovered that the Glauber dynamics has an
additional metastable high-activity regime. Then we wondered if there are even more
metastable regimes. Therefore we started the dynamics from different activity levels of
the population-summed activity, and observed two metastable regimes (see Figure 3.3B) -
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Figure 3.1: Experimental data and their empirical first- and second-
order statistics. (A) Example raster display (snippet of 2 sec of the total
data of 15min) of 159 parallel spike recordings of macaque monkey during a
state of “ongoing activity”. The experimental data are recorded with a 100-
electrode “Utah” array (Blackrock Microsystems, Salt Lake City, UT, USA) with
400 µm interelectrode distance, covering an area of 4× 4 mm (session: s131214-
002). The population-summed activity S(t) shows the number of active neurons
within each time bin t of width ∆ = 3 ms. (B) Population distribution of the
time-averaged activities mi of each of the neurons i, Figure 3.1. The vertical
line marks the population average, m̄ := 1

N

∑
imi (C) Population distribution

of the time-averaged r aw covariances (coupled activities) gij , Figure 3.2. The
vertical line marks the population average, ḡ := 2

N (N−1)
∑
i<j gij (D) Population

distribution of the covariances cij = gij −mimj . The vertical line again marks
the population average, c̄ := 2

N (N−1)
∑
i<j cij with a slightly positive average

correlation. (Histograms bins in B, C, D computed with Knuth’s rule [198] and
calculated over the full recordings (15 minutes)). Data courtesy of A. Riehle and
T. Brochier.
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Figure 3.2: Results of Boltzmann learning. (A) Population-summed activity
S(t) of N = 159 neurons, obtained via Glauber dynamics in 106 timesteps. The
couplings Λij and biases µi of the Glauber dynamics are the Lagrange multipliers,
shown in panel D, found by Boltzmann learning (106 samples) from the experi-
mental rate time-averages of all neurons mi and all raw pairwise correlations gij
of Figure 3.1. (B) Red, solid: Probability distribution of the population-summed
activity, sampled via the Glauber dynamics. Blue, dashed: empirical distribution
of the population-summed activity from the dataset shown in A. (C) Time av-
erages mi and gij obtained from Boltzmann learning (106 samples), versus the
experimental ones. (D) Population distribution of the Lagrange multipliers µi
and Λij obtained via Boltzmann learning (106 samples). (Histogram bins in D
computed with Knuth’s rule [198].)
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one at a high activity and one at a low activity. This means that the actual distribution
associated with the Lagrange multipliers of Figure 3.2D is bimodal.
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Figure 3.3: Longer sampling: bistability. (A) Population-summed activity
S(t) obtained via the Glauber dynamics, as in Figure 3.2A, but with longer
sampling: 5× 107 timesteps. The dashed grey line marks the end of the previous
sampling of Figure 3.2A. (B) Population-summed activities S(t) obtained from
several instances of the Glauber dynamics. Each instance starts with a different
initial population activity s(0), i.e. having different initial population sums S(0),
and are represented by different red shaded colors, from S(0) = 0 (light red) to
S(0) = N (dark red). Note that there are two convergence levels - one at 100 and
of approx 15.

The second metastable regime has important implications and causes quite a few
issues:

• Our Boltzmann learning had actually not yet converged to the final Lagrange multi-
pliers. This can be seen from the different time-averages of the single and coupled
activities obtained if sampled long enough to allow the exploration of both metastable
regimes.

• Therefore the Lagrange multipliers shown in Figure 3.2D are not correct, because they
were obtained before convergence. Hence the probability distribution obtained from
the initial Boltzmann learning is not the true pairwise maximum-entropy distribution.

• For practical purposes the Glauber dynamics is non-ergodic. In other words to sample
the probability distribution around both modes and estimate their relative heights,
we would need to observe many jumps between the two metastable regimes. The
time required to observe one such jump seems to be larger than 5× 107 timesteps
(we did not wait for longer), which is impractically long: thus we cannot find the true
pairwise distribution within reasonable times.
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• The Sessak-Monasson [300, 301] solution can be shown to be very close to the
erroneous Boltzmann-learning.

The reason why the initial result shown in Figure 3.2 seemed self-consistent is that the
sampling phase was too brief compared to the time needed to explore the full distribution.
For the latter the required time is so long that the dynamics is non-ergodic for computational
purposes. This non-ergodicity effectively truncates the sampling at states s for which s̄ . θ,
where θ is the population-averaged activity at the trough between the two metastable
regimes. In other words, the Lagrange multipliers µ,Λ that we found belong to the
“truncated” distribution

Pt(s|µ,Λ, θ) ∝

exp
(∑

i µisi +∑
i<j Λijsisj

)
, s̄ 6 θ,

0, s̄ > θ,
(3.16)

which reproduces the experimental time averages for the single and coupled activities:Et(si) =
mi, Et(sisj) = gij . Using these Lagrange multipliers in the true maximum-entropy
distribution (Eq. 3.3) would, however, not reproduce these experimental time averages.

Everything is self-consistent as long as we use the truncated distribution Pt, but this
is not the pairwise distribution Pp. This remark will be important later on.

Now the question is whether the correct maximum-entropy distribution is also bimodal,
or the Boltzmann learning simply encountered a bimodal distribution during its search of
the correct one in the space of probabilities.

We make an educated guess by examining the analytically tractable reduced maximum-
entropy model Pr, (Eq. 3.9). Using the population-averaged single and coupled activities as
constraints, Er(si) = m̄ and Er(sisj) = ḡ from (Eq. 3.15), we numerically find the Lagrange
multipliers of the reduced model:

µr ≈ −3.259, Λr ≈ 0.03859. (3.17)

Note that in this case there is no sampling involved – the distribution can be calculated
analytically – so the values (Eq. 3.17) are correct within the numerical precision of the
maximization procedure (interior-point method [273, chap. 10]). The values of the expected
single and couple activities, re-obtained by explicit summation (not sampling) from the
corresponding reduced maximum-entropy distribution, agree with the values (Eq. 3.15) to
seven significant figures.

The resulting reduced maximum-entropy distribution for the population-summed
activity, Pr(S|µr, Λr), is shown in Figure 3.4A, together with the experimental time-
frequency distribution of our dataIts corresponding Glauber dynamics with two metastable
regimes is shown in Figure 3.4B. It shows a second maximum at roughly 90% activity. An
exact analysis of small-population cases, and an analysis of large-population cases with a
maximum-entropy model constrained by the population variance of the second moments
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(not shown here), corresponding to constraining E(S), E(S2), E
(
S (S−1)
N (N−1) −

(
S (S−1)
N (N−1)

)2)
,

show that if a reduced maximum-entropy model is bimodal, the full inhomogeneous model
is also bimodal, with a heightened second mode shifted towards lower activities with respect
to the reduced model.

The bimodality encountered in the Boltzman learning, the bimodality of the reduced
maximum-entropy model, and the bimodality of the full maximum-entropy model for small
populations are evidence that the correct, full pairwise maximum-entropy distribution for
our data should be bimodal.

We will now propose a solution to eliminate the bimodality. The basic idea behind
can be grasped after having first presented an intuitive explanation of how the bimodality
arises.

3.3.2 Intuitive understanding of the bimodality: Glauber dynamics and
mean-field picture

From the point of view of a network with couplings Λ and biases µ whose evolution is
described by a Glauber dynamics, the bimodality and associated bistability appear because
the couplings Λ are on average positive, thus making the network dominantly excitatory.
This positivity of the couplings appears simply because the average correlation c̄ between
the neurons is positive (Figure 3.1D).

A possible mechanism to suppress the second peak of high activity is by effective
negative feedback: Such a negative input must be activated if the sum of the active units is
high, and in turn must inhibit them, much in the same way as inhibition stabilizes the low
activity state in neuronal networks [10, 347]. As a consequence, the couplings received by
this hypothetical inhibitory input must have a positive sign, while its projections back are
negative (illustrated in Figure 3.7A). This asymmetry, however, is in contradiction to the
symmetry required for the couplings of a Glauber dynamics. Thus, self-regulary feedback
loops, possible in networks with asymmetric couplings, are impossible in this case.

A naive mean-field analysis also confirms this. In such an approximation we imagine
that each neuron is coupled to a field that is representing the mean activities of all other
neurons [153][252, ch. 4][32, ch. 6] (from the point of view of entropy maximization,
we are replacing the maximum-entropy distribution with one representing independent
activities, having minimal Kullback-Leibler divergence from the original one [9, 258, 331,
chs 2, 16, 17]). Given the couplings Λ and biases µ, the mean activities m must satisfy N
self-consistency equations

1
2 + 1

2 tanh(1
2

j 6=i∑
j

Λijmj + 1
2µi) = mi. (3.18)
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In the homogeneous case they reduce to the equation tanh[(N − 1)Λrm̄ + µr] = m̄ and
correspond to the intersection of two functions of m̄:the line m̄ 7→ m̄, and the curve
m̄ 7→ tanh[(N − 1)Λrm̄ + µr] that depends parametrically on (µr, Λr). See Figure 3.4D:
for the Lagrange multipliers of our data, these curves intersect at two different values of
m̄, meaning that there are two solutions to the self-consistency equation, corresponding
to two different mean activities. These approximately correspond to the maxima of the
probability distribution for the population average in Figure 3.4A.
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Figure 3.4: Reduced maximum-entropy model and mean-field picture.
(A) Red, solid: Probability distribution for the population-summed activity, Pr(S)
given by the reduced model for our dataset (Eq. 3.15); note the two probability
maxima. Blue, dashed: empirical distribution of the population-summed activity
from our dataset. (B) Population-summed activities S(t) obtained from several
instances of the Glauber dynamics associated with the reduced model, with
homogeneous couplings, Λij = Λr, and biases, µi = µr, of (Eq. 3.17). As in
Figure 3.3, each instance starts with a different initial population activity s(0),
having different initial population sum S(0), and is represented by a different red
shaded curve, from S(0) = 0 (light red) to S(0) = N (dark red). (C) Illustration
of a self-coupled symmetric network that is self-excitatory on average. Arrow-
headed blue lines (→) represent excitatory couplings; circle-headed red lines (()
represent inhibitory couplings. (D) Self-consistency solution of the naive mean-field
equation, illustrated for different Λr. Larger Λr causes two additional intersections,
corresponding to one additional unstable and one additional stable solution. The
red curve corresponds to the Λr calculated from our experimental data (Eq. 3.17).
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3.3.3 Bistability ranges and population size

Now we aim to understand what are the parameter regimes leading to bimodality, and
whether or not the bimodality will disappear for larger neuronal populations or become even
more prominent? Further, is the appearance of bimodality peculiar to our experimental
dataset, or can it be also expected in other experimental datasets of neuronal activities?
We aim to answer these two questions in the following two sections to understand whether
or not this is a general problem.

We again make an educated guess using the reduced maximum-entropy model and its
distribution for the population average s̄ Pr(s̄|µr, Λr), (Eq. 3.11). An elementary study of
the convexity properties (second derivative) of the distribution shows that it can have one
minimum in the interior, 0 < s̄ < 1, or none, depending on the values of the parameters
(µr, Λr). The distribution has two probability maxima if it has one such minimum for some
value s̄m, 0 < s̄m < 1. The conditions for this are

dPr(s̄|µr, Λr)
ds̄

∣∣∣∣
s̄=s̄m

= 0, d2Pr(s̄|µr, Λr)
ds̄2

∣∣∣∣
s̄=s̄m

> 0, 0 < s̄m < 1, (3.19)

These conditions can be solved analytically and give the critical ranges of the multipliers
(µr, Λr) for which bimodality occurs, parametrically in (s̄m, Λr):

0 < s̄m < 1,
Λr > Ψ′[1 + (1− s̄m)N ] + Ψ′(1 + s̄mN),

µr(s̄m, Λr) = Λr/2− s̄mNΛr −Ψ[1 + (1− s̄m)N ] + Ψ(1 + s̄mN),

(3.20)

where Ψ(x) := d ln Γ(x)/dx and Γ is the Gamma function [3, ch. 6][255, chs 43, 44].
We then express the population-averaged single neuron activities Er(s̄) and the Pearson
correlation ρ, typically used in the literature, in terms of (µr, Λr) using the definitions
(Eq. 3.14) and the probability (Eq. 3.11). Finally we obtain the bimodality range for(
Er(s̄), ρ

)
, parametrically in (s̄m, Λr) within the bounds (Eq. 3.20) numerically.

The results are shown in Figure 3.5A for various values of the number of neurons N .
For each N, a curve is associated for the Pearson correlation coefficient as a function of the
expected activity. The values of

(
Er(s̄), ρ

)
above such curves yield a bimodal distribution

in the homogeneous case. Most important, Figure 3.5A shows that the maximum-entropy
distribution will be bimodal for larger ranges of mean activities and correlations, as the
population sizeN increases. Empirical population-averaged quantities e.g.

(
Er(s̄), ρ

)
, on the

other hand, should not change with population size if they are sampled from a biologically
homogeneous neural population (see Appendix 5.2.4 for an extensive explanation and
the mathematical proof; see also Figure 5.3). This means that even if maximum-entropy
does not predict a bimodal distribution for the measured activities and correlations of
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a particular small sample, it will predict a bimodal distribution for a larger sample in a
similar experimental setup.

Figure 3.5B displays the probability distribution of the population-averaged activity
for different values of N . When N . 150 the distribution has only one maximum at low
activity, s̄ ≈ 0.0497, and when N & 150 a second probability maximum at high activity,
s̄ ≈ 0.9502, appears. The probability at this second maximum increases sharply until
N ≈ 200 and thereafter maintains an approximately stable value, roughly 6000 times
smaller than the low-activity maximum. The minimum between the two modes becomes
deeper and deeper as we increase N above 200.

As mentioned in the previous section, exact studies with small samples and stud-
ies with large samples and a different reduced model, which takes into account the
population-variance of the second moments, indicate that the high-activity maximum in
the inhomogeneous case is larger (roughly 2000 times smaller than the low-activity one
when N = 1000) and shifted towards lower activities (s̄ ≈ 0.25 when N = 1000).

This can also be seen by adding a Gaussian jitter to the multipliers of the reduced
case µi = µr, Λij = Λr, thereby making the model inhomogeneous. The results for small
and large jitter are shown in Figure 3.5C–D, respectively. The basin of attraction of the
second metastable regime is shifted to lower activities, and transitions between the two
metastable regimes become more likely for larger jitters. This means that inhomogeneity
makes the minimum in between the two modes shallower.

The population-averaged activity and Pearson correlation of our data (violet “3 ms”
point in Figure 3.5A) fall within the bimodality range.

3.3.4 Relevance of the bimodality problem for massively parallel data

The important question is whether our dataset is a typical representative leading to this
bimodality problem, or an outlier. To answer this question we take as reference the data
summarized in Table 1 of Cohen & Kohn [49], which reports firing rates and spike-count
correlations rSC. The reported firing rates correspond to population-averaged activities m̄
ranging between 0.02 and 0.25, if we use 3 ms time bins, and thus are close to the values
we found in out data. For being able to compare the spike-count correlations we need
to estimate our Pearson correlation ρ from their spike-count correlation rSC. Both are
particular cases of the “cross-correlogram metric” rCCG introduced by Bair et al. [15, App.
A]:

rCCG ij(τ) := E(νi(τ) νj(τ))− E(νi(τ))E(νj(τ))√
[E(νi(τ)2)− E(νi(τ))2] [E(νj(τ)2)− E(νj(τ))2]

,

with νi(τ) :=
τ∑
t=1

si(t),
(3.21)
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i.e. νi(τ) is the number of spikes of neuron i during the (real-)time window τ∆. This
metric also equals the area between times −τ∆ and τ∆ under the cross-correlogram of
neurons i and j (stationarity is assumed). The spike count correlation rSC corresponds
to τ = n ≡ T/∆, and our Pearson correlation ρ to τ = 1. Several studies [15, 16, 200,
241, 321] report either measured values of rCCG(τ) for different windows τ , or measured
cross-correlograms. From their analysis we can approximately say that ρ . rSC/20, so we
take ρ = rSC/20 as a safest-case value (i.e. as far away from bimodality as possible).

Under these approximations the largest part of the values summarized by Cohen &
Kohn fall in the bimodality regions of Figure 3.5A if N = 250, and almost all of them
if N = 500; see Figure 3.6. These data points have only an indicative value but suggest
that our dataset is not an outlier for the bimodality problem. If those data had been
recorded from a population of 500 neurons, they would have yielded a bimodal pairwise
maximum-entropy model. Thus, the more neurons we are able to record, the more likely
the bimodality occurs. Thus, the bimodality problem and its consequences need to be
taken seriously. So our next question arises: Is there any way to eliminate the bimodality
problem?

3.3.5 Eliminating the bimodality: an inhibited maximum-entropy model
and Glauber dynamics

We briefly summarize our results so far and the reason why a maximum-entropy model
yielding a bimodal distribution in the population-summed activity is problematic:

• For commonly observed statistics of neuronal data, the maximum-entropy model
predicts the presence of two sharply distinct modes (bimodality). This prediction
seems unrealistic in view of present neuroscientific data.

• As N increases, the second mode becomes more pronounced, and the minimum
between the modes shallower: above a particular population size, the bimodality
cannot be dismissed as a small mathematical quirk.

• The Boltzmann-learning procedure based on Glauber dynamics becomes practically
non-ergodic and the Lagrange multipliers of the model are difficult or impossible to
find.

• The Glauber dynamics based on the pairwise model jumps between two metastable
regimes and cannot be used to generate realistic surrogate data.

• Finally, the fact that the position and height of the second mode depend on N (in the
inhomogeneous case) goes against basic statistical expectations. If we consider the N
neurons to be a sample, chosen in an unsystematic way, of a larger population, then
the maxima in our probability assignments for the population averages of the sample
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Figure 3.5: Bimodality ranges for the reduced model and effects of in-
homogeneity. (A) The reduced maximum-entropy model (Eq. 3.9) yields a
distribution Pr(s̄) that is either unimodal or bimodal, depending on the number
of neurons N and the values of the experimental constraints

(
Er(s̄), ρ

)
. Each

curve in the plot corresponds to a particular N (see legend) and separates the
values

(
Er(s̄), ρ

)
yielding a unimodal distribution (below the curve) from those

yielding a bimodal one (above the curve). The curves are symmetric with re-
spect to Er(s̄) = 0.5 (ranges Er(s̄) > 0.4 not shown). Note how the range of
constraints yielding bimodality increases with N . Coloured dots show the ex-
perimental constraints for our dataset, for different time-binnings with widths
∆ = 1 ms, ∆ = 3 ms, ∆ = 5 ms, ∆ = 10 ms. (B) Probability distributions of the
reduced model for the population-summed activity, Pr(S|N), obtained keeping the
constraints (Eq. 3.15) fixed and using different N (same legend as panel A). (C)
Population-summed activities S(t) from several instances of Glauber dynamics, all
with the same normally-distributed couplings Λij and biases µi, with means as in
(Eq. 3.17) and Figure 3.4B, and standard deviations σ(Λij) = 0.009, σ(µi) = 0.8.
Each instance starts with a different initial population activity s(0), having differ-
ent initial population sum S(0), and is represented by a different red shade, from
S(0) = 0 (light red) to S(0) = N (dark red). Note how the basins of attraction of
the two metastable regimes are wider than in the homogeneous case of Figure 3.4B.
(D) The same as panel C, but with larger standard deviations σ(Λij) = 0.012,
σ(µi) = 1.08; the jumps between the two metastable regimes become more frequent
than in Figure 3.4B, indicating that the minimum between the modes becomes
more shallow with increasing inhomogeneity.
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Figure 3.6: Bimodality for experimental data from neuroscientific liter-
ature. Mean activities and correlations

(
Er(s̄), ρ

)
inferred from experimental

data reported in Cohen & Kohn [49, Table 1], plotted upon the curves separating
bimodal from unimodal maximum-entropy distributions of Figure 3.5A. The plot
suggests that typical experimental neural recordings of 250 neurons and above are
likely to lead to bimodal maximum-entropy pairwise distributions.

and of the larger population should roughly coincide (the former being obtained from
the latter by convolution with a hypergeometric distribution).

We now propose a way to eliminate the bimodality and the above problems. Let us
re-examine what happens with the Glauber dynamics first.

3.3.6 Importance of inhibition in neural networks: modified Glauber
dynamics

As mentioned in Section 3.3.2, from the viewpoint of the Glauber dynamics the jumps
to high activities happen because the couplings Λ are positive on average, making the
network effectively excitatory.

The positivity of the couplings corresponds to an experimentally observed positive
average correlation (Figure 3.1D). However, their symmetry is an assumed mathematical
feature of the pairwise model. Thus, we wonder if we can break this symmetry to avoid
the bimodality of the probability distribution e.g. by adding an asymmetric inhibitory
feedback to the Glauber dynamics.

We approach the problem in the following way. By connecting all N neurons to a
single inhibitory neuron that instantaneously activates whenever their average activity
exceeds a threshold θ ∈ {1/N, 2/N, . . . , (N − 1)/N} (the cases θ = 0 or 1 are trivial).
Upon activation, the inhibitory neuron inhibits (because ΛI < 0) all other N neurons
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(see Figure 3.7A). The algorithm for this “inhibited” Glauber dynamics is explained in
Appendix 5.2.1.

The results from simulations of the inhibited Glauber dynamics are shown in Figure 3.7;
in all cases we set the inhibitory coupling to ΛI = −24.7 and the inhibition threshold
to θ = 0.3. It can clearly be seen that in contrast to the symetrical and on average
excitatory networks (Λij = Λr and µi = µr, (Eq. 3.17)) the additional inhibitory neuron has
eliminated the bistability, leaving only the stable low-activity regime . The homogeneous
(Λij = Λr and µi = µr, (Eq. 3.17)) as well as the inhomogeneous (where Λij and µi are
normally distributed as in Figure 3.5C) model has a unimodal probability distribution
and the activity converges over time to one activity solution. Furthermore, in the case
of experimental data with the inhomogeneous couplings and biases (distributed as in
Figure 3.2D) that caused the quasi-non-ergodic behaviour in our previous Boltzmann
learning results, Figure 3.3, the addition of the inhibitory neuron (again with ΛI = −24.7,
θ = 0.3) eliminates the second metastable state: see Figure 3.7E.

In summary, the asymmetric coupling of an additional inhibitory neuron clearly
eliminates the bistability of the Glauber dynamics. This works for any network size N
with an appropriate choice of the inhibitory coupling ΛI < 0 and threshold θ. We discuss
these two parameters in the next section.

We now show analytically how this idea also eliminates our original problem, i.e. the
bimodality of the pairwise maximum-entropy model.

3.3.7 Inhibited maximum-entropy (IME) model

The pairwise maximum-entropy model is the stationary distribution of the Glauber dy-
namics with symmetric couplings. We have now modified the latter in an asymmetric way.
We are wondering if the resulting distribution of the inhibited Glauber dynamics (Eq. 3.7)
is still a maximum-entropy model. We consider

Pi(s|µ,Λ, ΛI, θ) =

1
Zi(µ,Λ, ΛI, θ)

×

exp
[∑
i

µisi +
∑
i>j

Λijsisj + ΛIN G(s̄− θ)
]
,

Zi(µ,Λ, ΛI, θ) :=
∑
s

exp
[∑
i

µisi +
∑
i>j

Λijsisj + ΛIN G(s̄− θ)
]
,

G(s̄− θ) := (s̄− θ) H(s̄− θ),

(3.22)

where ΛI is the (negative, in our case) coupling strength from the inhibitory neuron to the
other neurons, θ is the activation threshold of the inhibitory neuron, and H is the Heaviside
step function. We call (Eq. 3.22) the inhibited pairwise maximum-entropy model.

The function G(s̄− θ) (plotted in Figure 3.8 together with its exponential) can also be
written as a linear combination of population-averaged K-tuple activities, si1si2 · · · siK , for
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K equal to Nθ and larger (we leave the proof of this as a classic “exercise for the reader”):

N G(s̄− θ) =
N∑

K=Nθ

(
−Nθ
−K + 1

)  ∑
i1<i2<···<iK

si1si2 · · · siK

 , (3.23)

the linear coefficients being binomial coefficient functions [91], which have alternating
signs. For example, if N = 5 and θ = 3/5,

N G(s̄− θ) =
(s2s3s4s5 + s1s3s4s5 + s1s2s4s5 + s1s2s3s5 + s1s2s3s4)−

3 s1s2s3s4s5. (3.24)

(This function differs from the additional function appearing in maximum-entropy model
by Tkačik et al. [335–337], which consists in N + 1 constraints enforcing the observed
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Figure 3.7: (Caption on the next page)
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Figure 3.7 (previous page): Asymmetric inhibition and elimination of bi-
modality and non-ergodicity. (A) Illustration of self-coupled network with
additional asymmetric inhibitory feedback. Each neuron receives inhibitory input
ΛI < 0 from the additional neuron whenever the population-average s̄ becomes
greater than the inhibition threshold θ. (B) Population-summed activities S(t)
from several instances of the inhibited Glauber dynamics, with ΛI = −25, θ = 0.3,
and same homogeneous Λij = Λr, µi = µr of (Eq. 3.17), as used for Figure 3.4B.
Each instance starts with a different initial population activity s(0), having differ-
ent initial population sum S(0), and is represented by a different grey shade, from
S(0) = 0 (light grey) to S(0) = N (black). Note the disappearance, thanks to inhi-
bition, of the bistability that was evident in the “unhinibited” case of Figure 3.4B.
(C) Analogous to panel B, with ΛI = −25, θ = 0.3, but inhomogeneous normally
distributed couplings and biases as in the unhinibited case of Figure 3.5C. Note
again the disappearance, thanks to inhibition, of the bistability that was evident in
the activities S(t) of that figure. (D) Comparison of a longer (5× 106 timesteps)
Glauber sampling with couplings and biases of Figure 3.2D obtained from our first
Boltzmann learning, and inhibited-Glauber sampling with same couplings and
biases and ΛI = −25, θ = 0.3. The comparison confirms that inhibition eliminates
the second metastable regime and makes the Glauber dynamics ergodic. (E) Time
averages mi and gij obtained from Boltzmann learning for the inhibited model Pi,
versus experimental ones. (F) Probability distribution of the population-summed
activity Pi(S) given by the inhibited model (Eq. 3.22) for our dataset (Eq. 3.15),
compared with the one previously given by the reduced model Pr(S), Figure 3.4A.
Asymmetric inhibition, expressed by the reference prior (Eq. 3.25), has eliminated
the second mode.
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Figure 3.8: Reference prior. The function G(s̄− θ) and its exponential

population-average distribution. For reasons discussed at the end of Section 3.2.1, the use
of all those constraints may not be justified or meaningful.)
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Chapter 3. Inhibited maximum entropy (IME) model

The stationarity of the distribution Pi(s) under the inhibited Glauber dynamics is
proved in the Materials and Methods section. This distribution is a maximum-entropy
model in two different ways:

1. As an application of the minimum-relative-entropy (minimum-discrimination-information)
principle [5, 43, 48, 51, 143–145, 165, 176, 207–211, 277], with the pairwise constraints
(Eq. 3.5), with respect to the reference (or prior) probability distribution

P0(s|ΛI, θ) ∝ exp
[
ΛIN G(s̄− θ)

]
, (Nθ ∈ {1, 2, . . . , N − 1}). (3.25)

This distribution assigns decreasing probabilities to states with average activities
above θ; see Figure 3.8B. This probability can be interpreted as arising from a more
detailed model in which we know that external inhibitory units make activities above
the threshold θ increasingly improbable. In this interpretation the parameters ΛI

and θ are chosen a priori.

2. As an application of the “bare” maximum-entropy principle, given the pairwise
constraints (Eq. 3.5) and an additional constraint for the expectation of N G(s̄− θ):

Ei(N G(s̄− θ)) =
N∑

S=Nθ
(S −Nθ)Pi(S)

=
N∑

K=Nθ

(
−Nθ
−K + 1

)
Ei

 ∑
i1<i2<···<iK

si1si2 · · · siK

. (3.26)

This is a constraint of the “tail first moment”, so to speak, of the probability for the
population-averaged activity Pi(s̄): it determines whether the right tail of Pi(s̄) has
a small (ΛI < 0) or heavy (ΛI > 0) probability. It can also be seen as a constraint
on the Nθth and higher moments, owing to (Eq. 3.23). In this interpretation the
parameter ΛI is the Lagrange multiplier associated with this constraint, hence it is
determined by the data; the parameter θ is still chosen a priori. Note, however, that
experimental data are likely to give a vanishing time average of N G(s̄− θ), so that
ΛI = −∞. This interpretation has therefore to be used with care, for the reasons
discussed at Section 3.2.1.

Several features of the inhibited maximum-entropy model (Eq. 3.22) are worth remarking
upon:

1. The inhibited distribution Pi includes the pairwise one Pp, (Eq. 3.3), as the particular
case ΛI = 0 (obviously, as this is equivalent to removing the inhibitory neuron).

2. Pairwise and inhibited distributions Pp and Pi having same Lagrange multipliers
(µ,Λ) are equal if restricted to states with population-averaged activity below the
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threshold θ, because G(s̄− θ) = 0 if s̄ 6 θ:

Pp(s|µ,Λ, s̄ 6 θ) = Pi(s|µ,Λ, ΛI, θ, s̄ 6 θ). (3.27)

Said otherwise, the pairwise and inhibited distributions have the same shape for
s̄ 6 θ, modulo rescaling by a constant factor:

Pi(s|µ,Λ, ΛI, θ) = Pp(s|µ,Λ)× Zp(µ,Λ)
Zi(µ,Λ, ΛI, θ)

, s̄ 6 θ. (3.28)

3. For states with average activity s̄ above the threshold θ, the inhibited model is a
“squashed” version of the pairwise one when ΛI < 0:

Pi(s|µ,Λ, ΛI, θ) ∝ Pp(s|µ,Λ)× exp
[
NΛI (s̄− θ)

]
, s̄ > θ. (3.29)

4. If ΛI 6= 0, then inhibited and pairwise models with the same Lagrange multipliers
(µ,Λ) have different expectations for single and coupled activities:

Ei(si|µ,Λ, ΛI, θ) 6= Ep(si|µ,Λ),
Ei(sisj |µ,Λ, ΛI, θ) 6= Ep(sisj |µ,Λ),

(3.30)

and obviously also different covariances and correlations.

Remarks 2 and 3 above imply that if the inhibitory coupling ΛI is negative and very large,
so that exp

[
NΛI(s̄− θ)

]
≈ 0 when s̄ > θ, then the inhibited maximum-entropy distribution

Pi is approximately equal to the truncated distribution Pt – the incorrect one (Eq. 3.16)
obtained via Boltzmann learning – having the same multipliers (µ,Λ) and threshold θ:

Pi(s|µ,Λ, ΛI, θ) ≈ Pt(s|µ,Λ, θ) if ΛI � −1, (3.31)

(mathematically speaking we have pointwise convergence as ΛI → −∞), and their expecta-
tions are also approximately equal. This suggests a way to reinterpret and keep the results
of our first Boltzmann-learning algorithm, Figure 3.2.

Boltzmann learning for the inhibited maximum-entropy model

Our first Boltzmann-learning calculation, with results shown in Figure 3.2, returned a
distribution that reproduced the desired constraints (m, g). But that distribution turned
out to be not the true pairwise maximum-entropy one, but a truncated version of it Pt,
(Eq. 3.16), owing to the bimodality of the true pairwise distribution and the resulting
non-ergodicity.

Applying the inhibited pairwise maximum-entropy model Pi(s|µ,Λ, ΛI, θ) (with
ΛI � −1 and 0.3 . θ . 0.5) to our data, instead of the pairwise one Pp(s|µ,Λ), and
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Chapter 3. Inhibited maximum entropy (IME) model

findingits Lagrange multipliers via Boltzmann learning, we obtain the same results as in
Figure 3.2. This happens because the inhibitory neuron does not allow jumps to higher
activities, unlike Figure 3.3A (see Figure 3.7D); and at the same time it does not influence
the dynamics below s̄ ≈ 0.3 (i.e. S ≈ 50). The sampling phase of our Boltzmann learning
thus becomes sufficient. We confirm this by applying Boltzmann-learning procedure
(with the inhibited Glauber dynamics) to find the multipliers of the inhibited model with
ΛI = −25, θ = 0.3. The resulting multipliers are close to those in Figure 3.2D, and the
constraints are satisfied, see Figure 3.7E.

3.4 Summary

In this chapter we provided evidence that the pairwise model, applied to experimental
recordings, predicts a bimodal distribution for the population-averaged activity, and for
some population sizes the second mode peaks at high activities, with 90% of the neuron
population active within time-windows of few milliseconds. This bimodality has several
undesirable consequences: 1. The presence of two modes is unrealistic in view of observed
neuronal activity. 2. The prediction of a high-activity mode is unrealistic on neurobiological
grounds. 3. Boltzmann learning becomes non-ergodic, hence the pairwise model found
by this method is not the maximum entropy distribution; similarly, solving the inverse
problem by common variants of mean-field approximations has the same problem. 4. The
Glauber dynamics associated with the model is either unrealistically bistable, or does not
reflect the distribution of the pairwise model. This bimodality is first demonstrated for an
experimental dataset comprising activity recorded from 159 neurons in the motor cortex of
macaque monkey. Using a reduced maximum-entropy model, evidence is then provided
that this bimodality affects analysis of typical neural recordings of population sizes of a
couple of hundreds or more neurons. As a way to eliminate the bimodality and its ensuing
problems, the inhibited maximum entropy (IME) was presented, which – most important –
has an associated pairwise Glauber dynamics. This model avoids bimodality thanks to a
minimal asymmetric inhibition. It can be interpreted as a minimum-relative-entropy model
with a particular prior, or as a maximum-entropy model with an additional constraint.
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CHAPTER4
Population unitary events (PUE)

analysis

The following chapter is prepared as a manuscript to be submitted soon to a peer-reviewed
journal. Preliminary results have been presented in Rostami et al (2015a) [288].

Author contributions: Under supervision of Junji Ito and Sonja Grün, the author
designed the statistical test and proposed the method, implemented the method in Python,
calibrated the method, and analyzed the simulated as well as the experimental data. Prof.
Dr. Laura Sacerdote provided useful feedback on the design of the statistical test.
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4.1 Introduction

Precise, coordinated spike timing within an ensemble of neurons has been hypothesized to
be a potential mechanism behind cortical information processing [1, 74, 156]. Consequently,
different statistical analysis tools have been proposed to investigate this hypothesis on
the recordings from cortical neurons. Nevertheless, most of these tools, if applicable to
MPST, exploit the assumption of independence among neurons to test the significance of
the occurrence of specific spike patterns or synchrony. The independence assumption in
particular becomes an issue when studying MPST because the results of the statistical
test (with the null-hypothesis based on independence) are inadequate to answer questions
such as: How much of the observed significance synchrony comes simply because the
neurons are connected and therefore exhibit correlation? How much of this is task, stimulus
related? Appropriate approaches to those questions call for statistical tools which can
incorporate the null hypothesis beyond independence. In this chapter we propose a novel
statistical method which on the one hand can handle MPST and on the other hand is able
to incorporate a null hypothesis beyond independence to take into account the baseline
correlation.

4.2 Methods

Let us consider a set of N spike trains si(t) = ∑
j δ(t− ti,j) on a common time axis, with

neurons i = 1, 2, · · · , N and the spike times τ ≤ ti,1 < ti,2 < · · · ≤ τ + T of the i-th neuron
in a finite interval [τ, τ +T ]. Since we are interested in spike synchrony on a physiologically
relevant time scale, we discretize the time axis into nbins exclusive bins of identical size 4
(typically on the order of a few ms), and define a variable dki =

´ (k+1)∆
k∆ si(τ + t)dt which

represents the number of spikes of the i-th neuron within the k-th bin. If more than one
spikes are found in a bin, i.e. dki > 1, dki is set to 1 (’clipping’). After this clipping dki
represents a binary process.

The initial step of the analysis is to detect spike synchrony events of a specific order in
a parallel set of binary processes dki , i = 1, . . . , N representing parallel spike trains. Here
“order” of synchrony refers to the number of spikes which constitutes a synchronous spike
event. Concretely, we call a pairwise spike coincidence if two neurons have a spike in the
same time bin, and name it a spike synchrony event of order 2, likewise, a triple-wise spike
coincidence of order 3, a quadruple coincidence of order 4, etc. To count the number of spike
synchrony events of a specific order, we first consider the population spike count Ck defined
as the sum of dki across the neurons in each time bin k: Ck = ∑N

i=1 d
k
i (Figure 4.1A). We

then count the number of spike synchrony events of a given order ξc, which is derived by the
binomial coefficient Ck-choose-ξc for the k-th bin. The obtained counts of a certain order
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ξc are summed across the time bins to yield the population coincidence count nξcdefined
as:

nξc =
nbins∑
k=1

(
Ck

ξc

)
=

nbins∑
k=1

Ck!
ξc!(Ck − ξc)!

. (4.1)

The population coincidence count nξc represents the total number of ξc-tuple-wise spike
synchrony events in the given data. For instance, as illustrated in Figure 4.1B, n2 is the
total number of pair-wise spike synchrony events (marked in blue), n3 is the total number
of triple-wise synchrony events (marked in red), and so on.
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Figure 4.1: Population coincidence count nξc, based on population count
Ck. (A) Raster plot of 100 simulated parallel independent Poisson spike trains
with a stationary rate of 40 Hz per neuron. The panel below shows the population
histogram that contains in each bin of ∆ = 2 ms the number of spikes across the
neurons. (B) Illustration of the ξc-tuples of different order (blue of order 2, red
of order 3 and green of order 4). Their respective number of occurrences per bin
are shown next to each pattern type. The population coincindence count nξc is
the sum of all counts across the bins for ξc. (C) The p-value ψ of nξc of a given
order ξc is calculated as the area under the null distribution from the empirical
population coincidences to infinity.

In the following we devise a framework for testing the significance of the population
coincidence count derived from given empirical data, which we denote as nempξc

. For doing
this we assume a certain order ξ0 of correlation among the given spike trains, referred to
as “null-order”, and define the null-hypothesis H0 for the test as “the order of correlation
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among the given spike trains is up to the null-order ξ0”. This formulation includes the
null-hypothesis of independence as a special case of ξ0 = 1. Thus the alternative hypothesis
H1 is “the order of correlation among the given spike trains is higher than ξ0”.

For testing if our empirical data deviate from the null-hypothesis assuming a maximal
order ξ0, we make use of a compound Poisson process (CPP) model [141, 327, 328] to
realize the null-hypothesis. It would be optimal if we had the null-distribution Pξc,0 at
hand, however, it is analytically not tractable. Therefore we realize the test statistics
nξc,0 and its distribution by the CPP model (see Section 2.4.1 and Appendix 5.1.1 for the
detailed explanation of the CPP model). From multiple realizations of the null-model we
derive from each the test statistics, and build up the distribution. Then we test if the
empirical count nempξc

deviates significantly from the distribution of the nξc,0 values.
To use the CPP model to realize the null-distribution Pξc,0 , the parameters of the

model, i.e. fA(ω) and λcp (as explained in Section 2.4.1), need to be specified so that the
highest order of correlation among the generated spike trains is ξ0 and the statistics on
the orders up to ξ0 are consistent with the given empirical data. The model has N free
parameters: one is λcp and the others are fA(ω) for 2 ≤ ω ≤ N (fA(1) is determined by
the condition ∑ω fA(ω) = 1). As we assumed that the highest order is ξ0 we naturally
set fA(ω) for ω > ξ0 to zero. This reduces the number of free parameters to ξ0, i.e., λcp
and fA(ω) for 2 ≤ ω ≤ ξ0. To further reduce the number of free parameters in fA, we
follow the approach taken in [327, 328] and use an amplitude distribution which has entries
only at 1 and ξ0, i.e., a double-peaked distribution. After these reductions we are left only
with three parameters: 1) the assumed highest correlation order ξ0 and 2) its strength η
in the amplitude distribution, i.e. η = fA(ξ0), and 3) the rate λcp of the carrier process.
As explained in Appendix 5.3.1, the values of these parameters can be derived from the
average firing rate and the average pairwise correlation of the given spike trains, once a
null order ξ0 is specified. The average firing rate defined as

λ̂ = 〈λ̄i〉 = 1
N

N∑
i=1

λ̄i (4.2)

where λ̄i is the firing rate of individual neurons i, defines the rate of the carrier process of
the CPP model. The average pairwise correlation

ρ̂ =
∑N
i=1

∑i
j=1 ρ̄ij

N(N − 1)/2 (4.3)

estimated by the Pearson correlation coefficient ρ̄ij between pair i, j, averaged over all
possible pairs.

Based on that parameters, we can numerically estimate the null-distribution by
computing nξc for multiple realizations of the CPP model and constructing its distribution.
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The empirical population coincidence count nempξc
is then tested for its significance.

The p-value ψ of nempξc
is derived as the area under the null-distribution Pξc,0 from nempξc

to
infinity (Figure 4.1C). If the p-value is smaller or equal to a predefined significance level α,
we reject the null-hypothesis and conclude that the data contain correlations of an order
higher than ξ0.

4.3 Results

4.3.1 Example application of the method to synthetic data

Throughout this study, the performance of our method is assessed by applying it to synthetic
data with known ground truth. We also use the CPP model (with the double-peaked
amplitude distribution) explained in the former section to generate such data. Hence the
ground truth of the data is specified by the three parameters of CPP, i.e., the mean firing
rate λ of the neurons, the average pairwise correlation coefficient ρ, and the order ξ of
the synchrony the data exhibit (termed “true order”). For a given set of values for these
parameters we generate N = 100 parallel spike trains to mimic a typical number of a
parallel recordings by, e.g., a Utah array [279] and for a duration T = 100 ms to mimic a
typical width of a sliding window used in a time resolved analysis [136]. Example raster
plots of two such data sets are shown in Figure 4.2A. In both cases the firing rates of each
neuron is 30 Hz, and their average pairwise correlation coefficient 0.002. The true order of
inserted correlation is ξ = 4 (left panel) and ξ = 8 (right panel). From these spike trains
we derive the population coincidence count nempξc

for a given test order ξc.
The null-distribution Pξ0,ξc is then realized for a model of a certain null-order ξ0 and

the test statistic ntestξc
of a certain order ξc is derived from the realizations of the model.

It serves to derive the p-value of nempξc
of the ground truth data set. As illustrated in

Figure 4.2B, the shape of the null-distribution depends on the null-order ξ0 and hence does
the p-value of nempξc

. In this example, nemp3 from the data of ξ = 4 (blue arrow) resulted in
a significant p-value of 0.02 (for a chosen significance level α = 0.05) for the null order of
ξ0 = 2 and test order of ξc = 3, and nemp3 resulted for ξ0 = 6 for the same test order in a
non-significant value (0.11). Both reflect correctly the correlation in the data: since the
true order was ξ = 4, the data were correctly detected as deviating from the null-hypothesis
of order ξ0 = 2, and not detected as significant in case of the null-order of ξ0 = 6. In case
of the data set with the true order ξ = 8 (green arrow), both tests led to significant results.

However, the shape of the null-distribution also depends on the test-order ξc. Fig-
ure 4.2C shows the null-distribution for one null-order ξ0 = 4 and for two different test
orders (ξc = 2 (gray) and 4 (black)), as well as the corresponding population coincidence
counts nempξc=2, n

emp
ξc=4 for data with ξ = 4 and ξ = 8 together with their p-values. As expected,

the data of true order ξ = 4 did not become significant for the test orders ξ = 2, 4 since
the null-order was ξ0 = 4 corresponded to the true order of the data set. For the data set
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of true order ξ = 8 only the test with the test order ξc = 4 becomes significant, but not
for the test order of ξc = 2, although in both cases the test order was smaller than the
true order. Thus we conclude, that the test order is also influencing the significance test
results. In the next section we will study this dependence more systematically in order to
understand the reasons for its behavior.

Figure 4.2: Impact of true order, test order ξc and null order ξ0 on the
null distribution and the significance of empirical data. (A) Raster plot
and population histogram (below, bin width= 2ms) of synthetic data generated
as two CPP models with true order of ξ = 4 (blue) and 8 (green), left and right,
respectively. Each data set has a duration of 100 ms, and each neuron has a firing
rate of 30 Hz. The processes have an average pairwise correlation of ρ̂ = 0.002
(blue, left) and 0.005 (green, right). (B) Null-distributions for different null orders
ξ0 = 2, 6 (gray and black, respectively) for a fixed test order ξc = 3 generated by
R = 104 realizations of the respective CPP model. The blue and green arrows
indicate the counts of the empirical spike synchrony events nemp3 retrieved from
the two data sets shown in panel A. (C) Null-distributions generated in the same
way as in panel B for different test orders ξc = 2, 4 (gray and black, respectively)
and a fixed null-order ξ0 = 4. However, in contrast to panel B, the empirical spike
synchrony events nempξc

are shown here for two test orders (light colors for ξc = 2
and darker colors for ξc = 4).
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4.3.2 Calibration of the method

For a systematic assessment of the performance of our method, we evaluate it in terms of
false positive (FP) and true positive (TP) rates and explore its dependence on different
parameters. To observe these dependencies, we generate multiple realizations of ground
truth data via a CPP model with a given set of parameters, apply the method and test in
how many of the realizations - given a certain significance level α - the null-hypothesis is
rejected. From this we derive the rate of null-hypothesis rejection as the ratio between the
given count and the total number of realizations R. Note that this rate indicates the TP
rate when ξ0 < ξ and the FP rate when ξ0 ≥ ξ.

This procedure is illustrated in Figure 4.3A. We generated R = 104 realizations of the
CPP model with parameters T = 100 ms, N = 100, λ = 10 Hz, ρ = 0.01 and a correlation
order ξ = 6, and derived the p-value for a test statistic for ξc = 1 (corresponds to the
population rate) of nemp6,1 for each realization under the null-hypothesis of ξ0 = 2. The dark
blue curve in Figure 4.3A shows the distribution of the obtained p-values in the form of a
cumulative distribution function (CDF). The rate of the null-hypothesis rejection (here
TP since ξ = 6 > ξ0 = 2) is derived as the value of the CDF curve at which the p-value
equals the significance level α (here 0.05, gray line). It’s value is marked by a dark blue
asterisk in Figure 4.3A at the crossing of the latter with the CDF. We extracted the same
for different test statistic orders ξc = 2 to 5 (shown in Figure 4.3B-E, respectively) for
identical other parameters. Figure 4.3F summarizes the TP results as a function of ξc.
Obviously, the performance of the method depends on the choice of ξc. For ξc = 1 the
TP rate was very low (∼ 6%), which may be due to the fact that information about the
higher-order correlation was attempted to be extracted only based on the population spike
count (see (Eq. 4.1)). By increasing ξc, the method considers the population coincidence
counts of increasing order which enhances the performance up to ∼ 80% at ξc = 3, and
slowly decreased with higher ξc. Next, we systematically explore the dependence of the
rate of the null-hypothesis rejection on combinations of parameters ξ, ξ0 and ξc. For
different true orders ξ = 4, 6, 8, 10 (Figure 4.3G-J, respectively) we show the rate of the
null-hypothesis rejection (significance level α = 0.05) for all combinations of ξ0 = 1, 2, . . . , 8
and ξc = 1, 2, . . . , 9, displayed in matrix form. This matrix of rates is named as TP/FP
rate spectrum since, as mentioned above, the rate of null-hypothesis rejection represents
TP rate when ξ0 < ξ and FP rate when ξ0 ≥ ξ. The border between the representations of
TP and FP rates is indicated by a gray line in each matrix: below is the TP region, above
the FP region. The white dots indicate the test order ξc at which the largest TP rate is
taken for each null-order ξ0.

For all values of ξ the FP rates are at most equal to the significance level (α = 0.05),
meaning that the FP rate is as expected given the significance level and is not enhanced.
The TP rate gets larger the larger the difference between ξ0 and ξ , meaning that the
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Figure 4.3: Parameter dependence of p-values. (A-E) Probability distribu-
tion of p−values in form of a cumulative distribution function (CDF) over R = 104

realizations of the CPP model with parameters T = 100 ms, N = 100, λ = 10 Hz,
ρ = 0.01 and ξ = 6. The test parameters are ξ0 = 2 and ξc = 1,..., 5 in A-E,
respectively. The significance level α = 0.05 is indicated by the gray line. Its
intersection with the CDF marks the null-hypothesis rejection rate, here TP rate
(marked by a star). The diagonal dashed lines indicate the dependence of the CDF
and the p-values for independent data (ξc = 1). (F) Summarizes the results shown
in A-E: TP rate as a function of ξc. (G-J) TP/FP rate spectra for synthetic data
of a given true order ξ = 4, 6, 8, 10 (other parameters are as A-F), each for varying
ξ0 (horizontal axis, ξ0 = 1, 2, . . . , 8) and ξc (vertical axis, ξc = 1, 2, . . . , 9). The
border between the representations of the TP (when ξ0 < ξ) and FP (when ξ0 ≥ ξ)
rates are shown by a gray line. The highest TP rate is indicated by a white dot
for each ξ0 as a function of ξc. Below of each TP/FP rate spectra the changes of
rate of null hypothesis rejection is shown for a fix ξc and different ξ0. The vertical
red line indicates the null order which is equivalent to the true order.
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power of the method becomes larger when the data contain higher order of synchrony than
assumed in the null-hypothesis.

As seen before, for an increasing test order ξc and a fixed ξ0 the TP rate increases
until a certain ξc (shown by white dots in Figure 4.3G-J) and then decreases again. In the
following we carefully investigate this dependence of the TP rate on ξc.

Dependence of the TP and FP rates on the test order ξc

To illustrate how the choice of ξc affects the performance of the method, we investigate
the dependence of the empirical population coincidences nempξc

and the null distribution
Pξ0,c on ξc. To investigate the dependence of nempξc

on ξc, we generated again R = 104

realizations of the CPP model with parameters T = 100 ms, N = 100, λ = 10 Hz, ρ = 0.01
and ξ = 6, and computed the distributions Pξ0,c from ntestξc

for different values of ξc. As
illustrated in Figure 4.4A, the distribution becomes broader as ξc gets larger. The peak of
the distribution shifts to the right until ξc = 3 or 4 and then shifts back to the left with its
peak getting higher again. These changes can be explained in terms of the dependence

of the binomial coefficient
(
Ck

ξc

)
on ξc, because ntestξc

is defined as a sum of
(
Ck

ξc

)
in

(Eq. 4.1).
How the distribution shape changes as a function of ξc depends on the true order ξ of

the data. To illustrate this dependence, the median of the distribution is plotted against
ξc for several values of ξ in Figure 4.4B. The rightward shift of the distribution, which is
represented by the growth of the curve for small values of ξc in Figure 4.4B, is faster for
larger values of ξ. This reflects the fact that, for a given ξc, nempξc

takes a larger value for
larger ξ because the data contain more higher order coincidence events.

Now, to understand how this behavior relates to the performance of the method, we
study the relation between one of these distributions with ξ = 6 and the null distribution
Pξ0 for different ξ0 values (here ξ0 = 2, 6 and 8 are chosen). For this purpose we characterize
the distribution of nempξc

by several percentiles, i.e. the 25, 50, 75, 95 and 99-th percentiles
and plot them together with the 95th percentile of Pξ0(see Figure 4.4C). Let us first focus
on ξ0 = 2 (blue dashed curve in Figure 4.4C) and the 25th percentile of the distribution of
nempξc

(the darkest gray curve in Figure 4.4C) and see how their relation changes depending
on ξc. At ξc = 1 the darkest gray curve is below the blue dashed curve, indicating that
the rate of null hypothesis rejection is less than 1− 0.25. As ξc increases from 1, the 25th
percentile value increases and the darkest gray curve goes above the blue dashed curve at
ξc = 3, meaning that the rate of null hypothesis rejection exceeds 1− 0.25. Beyond ξc = 3
the 25th percentile value decreases and the darkest gray curve goes below the blue dashed
curve again at ξc = 5. In this way the rate of null hypothesis rejection can be derived from
this plot by reading the crossings of the gray curves and blue dashed curve.
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Figure 4.4: Relation between test order and TP/FP rates. (A) Distribution
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calculated over many realizations of the CPP model, with fixed parameters
N = 100, T = 100 ms, λ = 10 Hz, ξ = 6 and different test orders ξc = 1, 2, . . . , 6.
(B) 50th percentile of the nempξc

distribution versus different test order ξc for true
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versus different test order ξc for ξ = 6 in shades of gray. Dashed lines show the
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0.05 significance level for the data with true order ξ = 6 are shown versus the test
order ξc.
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Figure 4.4D shows the rate of null hypothesis rejection obtained in such a way for
ξ0 = 2, 6 and 8. In the case of ξ0 = 2, the growth of the gray curves is faster than that of
the blue dashed curve for small ξc values, and hence the rate of null hypothesis rejection,
which is TP rate in this case, becomes higher as ξc takes larger values up to ξc = 4. Beyond
that, the gray curves drop fast and hence the TP rate goes down. In the cases of ξ0 = 6
and 8, the gray curves grow at most as fast as green and red dashed curve and hence
the rate of null hypothesis rejection, which is FP rate in these cases, never exceeds the
predefined significance level (here α = 0.05).

Dependence of TP and FP rates on firing rate, number of neurons and data
length

We further study how the performance of the method depends on other properties of the
data, such as the firing rate, the number of neurons and the length of the data. For these
dependencies we also compute TP/FP rate spectra.

First, we vary the firing rate λ of the neurons while we fix the ξ = 6, the number of
neurons N = 100, and the data length T = 100 ms. Figure 4.5A-C show the TP/FP rate
spectra for λ = 20 Hz, 50 Hz and 100 Hz, respectively. The spectra show that there is no
increase in the FP rate with an increase of the firing rate of the neurons. The TP rates
seem also almost not affected, but the peak of the highest TP rates are at higher ξc values
as the firing rate increases. This means that the optimal ξc value depends on the firing
rate in the data set.

Next, we vary the number of neurons N while keeping ξ = 6, λ = 10 Hz and
T = 100 ms fixed. The corresponding TP/FP rate spectra are shown in Figure 4.5D-F for
N = 200, 400 and 600, respectively. The spectra show a very similar behavior as for the
increase in firing rate. Also the optimal ξc value increases in a similar fashion to higher
values with N as for the rate.

Lastly we computed the TP/FP rate spectra for various data length T for fixed ξ = 6,
λ = 10 Hz and N = 100 (see Figure 4.5G-I). As for the cases before, the FP rate does not
increase with the length of the data set, but rather decreases for an intermediate test order
ξc and for high ξ0, but generally is at most equal to the predefined significance level (here
α = 0.05). The TP rate is overall higher. The optimal ξc for maximum TP rate varies
stronger with ξ0 as for the former parameters: the higher ξ0, the lower the optimal ξc.

In summary we observed the following parameter dependencies: generally the TP rate
decreases with ξ0 getting closer to ξ. The optimal ξc is not constant for different ξ0. The
more data samples are available (as for longer data sets) the higher the TP rate and the
lower the FP rate. Still, the FP rate is here lower than the significance level, which is not
expected. An increase of the number of neurons N and an increase of the firing rate leads
to a decreased sensitivity (lower TP rates and higher FP rates), which may be due to the
increase of “noise” data by these parameters, i.e. more spikes not involved in correlations.
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Figure 4.5: TP and FP rates for different firing rates, number of neurons
and data lengths. (A-C) TP/FP rate spectrum at α = 0.05 on R = 104

realizations of the CPP model with parameters ξ = 6, N = 100, and T = 100 ms
shown for different firing rates λ = 20 Hz, 50 Hz and 100 Hz from A to C. (D-F)
TP/FP rate spectrum for parameters ξ = 6, λ = 10 Hz and T = 100 ms for different
number of neurons N = 200, 400 and 600 from D to F. (G-I) TP/FP rate spectrum
for ξ = 6, λ = 10 Hz and N = 100 equal to Figure 4.4B for different data lengths
T = 300 ms, 500 ms and 1000 ms from G to I.
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4.3.3 Changing perspective: how to approach unknown data

The question is now how to approach unknown, typically experimental data, of which
we do not know the ground truth. From such data we would like to know a) if there is
(higher-order) synchrony contained, b) if these change as a function of time, and c) of what
the order of synchrony is. In this section we approach these questions.

Estimation of firing rate and pairwise correlation

When applying the PUE method to an unknown data set, we first require to estimate the
average firing rate and average pairwise correlation of the data to parametrize the CPP
model of our null-hypothesis. Here the question arises to what extent a deviation of the
estimated values from the true values, due to finite data size, affects the performance of
the PUE method. To answer that we use again data of known ground truth. First we
quantify the deviation of estimated values from the true values with respect to the amount
of available data. Therefore, we generate 400 realizations of a CPP model of N = 100,
λ = 10 Hz , ρ = 0.005 and ξ = 6 and calculate from the data the firing rate λ̂ and the
pairwise correlation ρ̂ using (Eq. 4.2) and (Eq. 4.3) for each realization. Throughout this
chapter we use a circumflex .̂ to denote estimated values. We repeat the same procedure
for data sets of different durations (T = 100, 300, 500, 1000, 3000 and 10000 ms). For each
duration T , we characterize the distributions of the obtained values of λ̂ and ρ̂ by a
Box-and-whisker plot (see Figure 4.6A). As expected, the deviations of the estimates λ̂ and
ρ̂ from the ground truth values λ and ρ, respectively, are large for small durations (up to
about 100 ms) and they decrease as T is increased. Furthermore, for short duration of the
data (100 ms), ρ̂ is generally underestimated (compare the red line in the Box-and-whisker
plot with the true value of ρ) and it has negative values. The underestimation arises
because of the small number of spikes.

Next we investigate the impact of the deviation of λ̂ and ρ̂ from the underlying true
values λ and ρ on the resulting p-value of the PUE analysis. For doing that we first
compute the p-values of the ground truth data, i.e. realizations of the CPP model with
N = 100, λ = 10 Hz , ρ = 0.005 and ξ = 6 and compute the p-value based on the null
hypothesis H0(λ, ρ, ξ0), i.e. using the theoretically given rate λ and the pairwise correlation
coefficient ρ. We plot for each of the realization the estimated λ̂ and ρ̂ and the p-value of
the evaluation of the higher-order correlation (Figure 4.6B, red dots). The distribution
of the p-values (red histogram on the right) is - as expected - approx. homogeneously
distributed over the range of 0 and 1. The variations of the p-values result from the
stochastic variations of the process realizations for given λ and ρ. We notice that the
p-value becomes the lower the lower the resulting λ̂. The same holds for the correlation ρ̂,
or in other words λ̂ and ρ̂ correlate positively. The estimated pairwise correlations show
even negative values.
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Now we compute the p-values as we would do for unknown data. For the same data
as before we now use the estimated λ̂ and ρ̂ from each realization for the implementation
of the null-hypothesis, i.e. H0(λ̂, ρ̂, ξ0) (Figure 4.6B, blue dots). For T = 100 ms data
duration about 15% of the realizations led to negative correlation coefficients. Since the
CPP is not defined for that case we could not perform the PUE analysis and do also not
show the estimated values for λ̂ and ρ̂. The distribution of the p-values for the resulting
data is much more clustered than compared to the results based on H0(λ, ρ, ξ0). Here the
p-values range from slightly above zero to about 0.65. The p-value is higher (i.e. less
significant) the higher the estimated ρ̂, and there seems no correlation to the estimated
rates λ̂ .

Figure 4.6B-E show the scattergrams of the p-values versus λ̂ and ρ̂ (blue dots) as
well as the marginal histograms of each of these measures (blue) for different durations of
the data. For comparison, we also calculate the p-values resulted from the test which uses
the ground truth values λ and ρ for implementing the null hypothesis H0(λ, ρ, ξ0).

Let us first focus on Figure 4.6B, which shows the result for the data duration
of 100 ms. The obtained p-values from the null hypothesis H0(λ, ρ, ξ0) are distributed
uniformly (Figure 4.6B, the right most histogram, red). This is as expected when data
correspond to the null hypothesis. The p-values show a negative correlation for λ̂ and ρ̂.
For ρ̂, this is because realizations with larger pairwise correlations have larger empirical
test statistics nempξc

as well. For λ̂, this is simply because there is a correlation between λ̂
and ρ̂, i.e. those realizations with larger λ̂ (hence larger number of spikes) have larger ρ̂.
Comparing the p-values resulted from H0(λ̂, ρ̂, ξ0) with those from H0(λ, ρ, ξ0) shows a bias
of the former p-values toward lower values when the estimated pairwise correlation ρ̂ is
very small and close to zero (Figure 4.6B the right scattergram). This bias in the p-values
arises because of the small number of spikes in the synthetic data. As discussed above, for
data duration of 100 ms, the small number of spikes causes the underestimation of ρ̂ (see
Figure 4.6A). This underestimation leads to a null hypothesis with smaller correlations
than actual data and , hence, smaller p-values.

Next, we increase the data duration and study the behavior of p-values for T =
300, 500 and 1000 ms. As it is shown in Figure 4.6C-E the bias observed in the results for
the data duration of 100 ms vanishes for longer data durations and p-values are concentrated
around 0.5, demonstrating that the test with H0(λ̂, ρ̂, ξ0) is conservative compared to the
test with H0(λ, ρ, ξ0).

We further quantify the performance of the method by the FP and TP rates for
different data durations and various ξc and ξ0. We use the same data as in Figure 4.6B-E
and implement the null hypothesis with λ̂, ρ̂ calculated for each realization of the data to
generate the TP/FP rate spectra, as shown in Figure 4.7A-D. For T = 100 ms, comparing
Figure 4.7A to Figure 4.3G shows a decrease of rate of null hypothesis rejection for
ξc = 1 and 2. This is because the empirical population coincidences nemp1 and nemp2 (see
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Figure 4.6: (Caption on the next page)
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Figure 4.6 (previous page): Deviation of estimated average firing rate and
pairwise correlation of the CPP data from the ground truth. (A) Esti-
mated λ̂ andρ̂ (on top and bottom respectively) over 400 realizations of the CPP
model with parameters: N = 100, λ = 10Hz, ρ = 0.005, ξ = 6 versus duration of
the data (T = 100, 300, 500, 1000, 3000, 10000 ms). (B) Blue: Each dot represents
a p-value computed on one realization of the CPP data (with identical parameters
as the data A) with T = 100 ms and using λ̂, ρ̂ and ξ0 = 6 for implementing
the null hypothesis. The p-values are plotted versus λ̂ and ρ̂ (in left and right
columns respectively) correspond to each realization of the data. Note that those
realizations with ρ̂ < 0 are discarded as the CPP can only generate data with
independence or positive correlations. The histograms of λ̂ and ρ̂ values are plotted
on top and for the p-values on the right. Red: The same as blue but using the
ground truth values of the realized data (true firing rate and pairwise correlation
λ and ρ) for implementing the null hypothesis. (C-E) The same as B for different
data durations T = 300, 500, 1000 ms

(Eq. 4.1)), which count the total number of spikes (i.e. firing rate λ̂ times the number of
bins) and the total number of pairwise coincidences, respectively, are accounted for by the
estimated firing rate λ̂ and pairwise correlation ρ̂. For ξc > 2, Figure 4.7A in comparison
to Figure 4.3G shows a slight increase of the FP rate. This increase can be explained by
the bias in p-values toward lower values observed in Figure 4.6B. For T > 100 ms (compare
Figure 4.7B-D to Figure 4.5G-I), the rate of null hypothesis rejection decreases. This means
that the PUE method is more conservative when the firing rate and pairwise correlation
estimated on a single realization are used to construct the null hypothesis. As for the TP
rate we see that a larger TP rate is obtained by a better estimation of the firing rate and
pairwise correlation (longer data have larger TP rate).

The observed bias in the p-values can be avoided by increasing T . But the question
now is: how long the data should be? or in the other word what is the lower bound of the
number of spikes that assures un-biased p-values? Based on further analysis (not shown)
for various firing rates λ, pairwise correlations ρ, number of neurons N and data durations
T , we propose that the total number of spikes across all neurons in the selected data should
equal or larger than number of neurons N . This lower limit identifies an appropriate T
given the firing rate of neurons. For example in a case where neurons have an average firing
rate of 5 Hz the duration of data we need for an un-biased p-value is about T = 300 ms.

In summary, estimation of firing rates and pairwise correlations from a limited data
set deviates from the ground truth values. For a short data duration (up to about 100 ms),
this deviation might result in higher FP rates than expected (roughly 1% more for α =0.05
in the example data set shown here). This problem arises because of not having enough
spikes for he analysis. The TP rates of the method increases by having longer data.
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Figure 4.7: FP and TP rates with estimated firing rate and correlation.
(A) TP/FP rate spectra of the data similar to Figure 4.6A for various null orders
(ξ0 = 1, 2, . . . , 8) and test orders (ξc = 1, 2, . . . , 9) with estimated firing rate and
correlation in small window of 100 ms. (B-D) Similar to A for different data
durations of T = 300, 500, 1000 ms, respectively.

Time resolved analysis

An important aspect of the proposed method is its ability to obtain a reliable statistic for
short data segment (in a range of 100 ms). This allows us to apply the method in a sliding
window fashion to longer data sets to examine a potential temporal modulation of the
higher-order synchrony. We demonstrate this application using synthetic data with time
dependent higher-order synchrony. These are T = 2000 ms CPP data where the order of
synchrony changes from ξ = 2 to ξ = 6 for a time interval of 400 ms, referred to as period
of enhanced synchrony hereafter. The other parameters (such as the firing rate and the
pairwise correlation coefficient) stay constant. Figure 4.8A, top panel displays the time
course of the order of synchrony.

Then we choose an analysis window of duration Tw = 300 ms and estimate the average
firing rate and the average pairwise correlation coefficient λ̂ ,ρ̂ of the data therein. With
these estimated parameters and a null order ξ0 = 2, we calculate the p-value within a
window. We slide the window along the data in steps of 10 ms, and at each window position
do the same analysis. Thus in the end we have a time dependent p-value. To pronounce
the changes in small p-values (ψ), we illustrate the significance instead by the surprise S
which is a logarithmic transformation of p-value ψ: S =log1−ψ

ψ .
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Figure 4.8A, second panel shows the raster plot and the population histogram,
calculated with a bin width of 1 ms, of the synthetic data set. The average pairwise
correlation coefficient and the average firing rate estimated at each window position
are plotted in Figure 4.8A, third and fourth panels, respectively. The bottom panel in
Figure 4.8A displays the surprise, computed using a range of test orders ξc (see color bar).
The surprise fluctuates as a function of time. The largest surprise values are attained
for ξc = 4 within the period of enhanced synchrony. This corresponds to our observation
(in Section 4.3.2) that the TP rate increases for larger ξc until an optimal ξ∗c and then
decreases due to the paucity of samples. Thus the surprise indicates indeed that there is
an increase of the synchrony order in the period of enhanced synchrony (gray area). The
presence of the synchrony of order ξ = 2 before and after the period of enhanced synchrony
is not detected as significant, because this synchrony order is accounted for by the null
hypothesis (ξ0 = 2).

Concatenated trials Analysis

In realistic scenarios of analysis of experimental data we often have multiple realizations of
the same stimulus or behavioral condition, i.e., multiple trials. We propose an approach,
which we name “Concatenated trials Analysis”, to make use of trials to enhance the
performance of the method.

GivenM trials of N parallel spike trains in a time window of width Tw, we concatenate
all M trials along the time axis to form a new set of N spike trains of duration Tw ×M
(see Figure 1 of [136] for an illustration of the concatenation procedure). Now we apply
the PUE method on the concatenated data and calculate the surprise for the window. We
can obtain the time modulation of surprise by applying the concatenation for each window
position and repeat the same procedure. An important remark is that this approach works
under the assumption of stationary firing rates and pairwise correlations across trials.

Figure 4.8B displays the results of the concatenated trials analysis for various number
of realizations (M = 20, 50), mimicking data from multiple trials, of the same CPP as
Figure 4.8A with various window sizes (Tw = 50, 100, 300 ms ) in steps of 20 ms and ξ0 = 2.
The surprise increases in the period of enhanced synchrony order for ξc > 2. This increase
starts when the analysis window enters the enhanced synchrony period and reaches its
maximum when the window is completely within this period. Therefore, the time onset
of the increase in the surprise is different for different window sizes. For some ξc, e.g.
ξc = 4, the surprise is extremely significant (with p-value< 0.0001). Outside this period,
where the true order (ξ = 2) equals null order (ξ0 = 2), the surprise remains below 5%
significance level (gray dash line). Comparing the results of Figure 4.8A (single trial)
to Figure 4.8B (multiple trials) shows that the concatenated trials analysis is a suitable
approach to enhance the power of the method and including more trials leads to a larger
power.
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Figure 4.8: (Caption on the next page)
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Figure 4.8 (previous page): (Simulated data) Detection of significant higher
order correlation in a time resolved manner. (A) Top panel: Simulated
data using CPP model with stepwise changes in the order of correlation, from
ξ = 2 to ξ = 6 and then back to ξ = 2 while the pairwise correlation is constant.
The amplitude distribution of the CPP has a double peaked shape at 1 and ξ. To
keep the firing rate constant, the rate of mother process λmp is adjusted during
this time. Second panel: Dot display and population spike counts of the simulated
data. Population spike counts are calculated with a bin width of ∆ = 1 ms. Third
and fourth panels: Estimated pairwise correlation coefficient ρ̂ and firing rate λ̂ in
a sliding window of 300 ms in step of 20 ms. Bottom panel: Surprise calculated in
a time resolved manner with the estimated firing rate and pairwise correlations λ̂,
ρ̂ in the same windows as shown in the third and fourth panels. Different colors
correspond to different test orders used to derive the surprise values. (B) Time
modulation of surprise obtained from concatenated trial analysis is shown for
various trial numbers and window sizes of the same CPP as A. The top panel
shows the modulation of surprise for a fixed window size of 300 ms and different
trial numbers of M = 20, 50 (left and right, respectively). In the bottom panel the
number of trial is fixed (M = 50) and window size has been changed from 100 ms
to 50 ms, from left to right respectively. (C) Top panel: Time course of correlation
order (same as the top panel in A). Middle panel: Windows with significant (5%)
surprise indicated by dots. In each row surprise is calculated on one realization of
simulated data (the same parameters as A). Each realization is referred to one
trial. Color indicates the least coincidence order on which surprise is significant i.e.
for a given window, if the surprise is always significant for coincidence order more
than e.g. 4, the dot represents only ξc = 4. Bottom panel: Results of cross-trial
analysis on 100 trials shown as number of trials with significant surprise, summed
across trials for each window position Wsum(tw).

Cross-trial Analysis

A limitation of concatenated trials analysis is that it requires the assumption of stationarity
across trials. This stationarity assumption may not hold in given experimental data. Here
we propose another approach for the circumstances where data violates the stationarity
assumption across trials.

In this approach, which we name “Cross-trial analysis”, given M trials of duration
T , we apply the PUE method in a time resolved manner to one trial j. We indicate the
window position in time by tw (tw = Tw/2 + nTstep, where n is an integer number and
Tstep is the step of sliding window), which corresponds to the center of the window at each
window position. The time resolved analysis yields the surprise at each window position in
trial j, i.e., Sj(tw). With a significance level α, we identify the window positions in which
the surprise is significant Sj(tw) > Sα, where Sα = log 1−α

α . Then, we construct a binary
vector ~W j(tw) (of the same length as Sj(tw)) where “1” indicates window positions with
significant surprise and “0” otherwise. After obtaining the vectors of all trials, we compute
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their sum ~Wsum over trials:
~Wsum(tw) =

M∑
j=1

~W j(tw). (4.4)

~Wsum(tw) is now a vector which contains the number of significant trials at each window
position.

To demonstrate the application of the proposed method, we apply it with ξ0 = 2,
Tw = 300 ms and Tstep = 10 ms to the same data set as for Figure 4.8B with significance
level α = 0.05. Figure 4.8C, second panel displays the window positions where the surprise
is significant by colored dots. The color of each dot indicates the smallest ξc value that
gives a significant result at the corresponding window position (see color bar). Note that if,
for instance, the surprise is significant for ξc = 4, it usually remains significant for ξc > 4
(until an optimal ξ∗c which was discussed in Section 4.3.2).

Figure 4.8C, bottom panel displays Wsum(tw) for different test orders ξc. Wsum(tw)
is small (≤ M × α) for windows within the periods of ξ = ξ0 = 2 and increases for the
windows within the period of enhanced synchrony ξ = 6 > ξ0 = 2. Thus, the proposed
cross-trial analysis is an approach to increase the power of the method in terms of true
positive (TP) detection. Importantly, this approach does not presume any stationarity in
the firing rates and the pairwise correlations across trials and hence makes the proposed
method applicable to data sets which do not fulfill the assumption of statistical stationarity
across trials.

Which order of synchrony?

In Section 4.3.2 we discussed the parameter dependencies of the rate of null hypothesis
rejection (or equivalently the TP and FP rates). We learned that for a fixed ξc, and for
increasing ξ0, the rate of null hypothesis rejection decays, until it reaches the percentage
equivalent to the significance level, and then further decays (Figure 4.3G-I). From the above
observation we learned that the percentage equivalent to the significance level is reached
when ξ0 is at or close to ξ. Thus the changes in the rate of null hypothesis rejections as a
function of null order ξ0 would provide us a way to estimate the underlying synchrony order
ξ. As we also observed in Figure 4.5, this behavior is independent from other parameters,
such as the firing rate, the number of neurons or the length of the data. Only the steepness
and the modulation depth vary depending on these parameters.

Here we propose a procedure to extract the synchrony order from unknown data. We
apply this procedure to the synthetic data used in the previous section and infer what
the order of synchrony is at window positions where the null hypothesis (with ξ0 = 2) is
rejected. We name these window positions window of interest (WOI). Note that in the
other window positions the order of synchrony is at most 2, i.e. there is no higher order
synchrony outside WOIs.

95



4.3 Results

1 2 3 4 5 6 7 8

null order ξ0

−6

−4

−2

0

2

4

6
Su

rp
ri

se

A
single trial

1 2 3 4 5 6 7 8

null order ξ0

0

10

20

30

40

50

−1

0

1

2

3

4

5

1 2 3 4 5 6 7 8

null order ξ0

-5

0

5

> 10

Su
rp

ri
se

B
concatenated trial

Figure 4.9: (Simulated data) Extracting the order of synchrony. (A) Left
panel: Changes of the surprises versus the null order ξ0: for a given null order
each dot represents the value of surprise calculated for different trials (M = 50
trials) of the window centered at t = 1000 ms in Figure 4.8B. Here the λ̂ and ρ̂ are
estimated in each window. The red horizontal line indicates the true order ξ in
the data. Right panel: Green curve: percentage of significant surprise of A with
α = 0.05 versus null orders. The green dashed line indicates the 5%. Blue curve:
95% confidence interval of the mean of surprises from A for different ξ0. The blue
dashed curve is at 0 and the red horizontal line indicates the true order ξ in the
data. (B) Surprise calculated by concatenated trial analysis on the same data as
A for different null orders ξ0 = 1, 2, . . . , 8.

For the data used in the previous section, the WOIs are within the period of enhanced
synchrony (see Figure 4.8B-C, gray area). We choose one of the WOIs and explain the
procedure for inferring the order of synchrony in the following for each of the two approaches
to multi-trial data proposed in previous sections: 1) Concatenated trials analysis, and 2)
Cross-trial analysis.

In the concatenated trials analysis, we apply the test on the concatenated data (over
trials) of the selected WOI with different null orders ξ0. We infer the true order of synchrony
in the given data from the bahavior of surprise as a function of ξ0 . Figure 4.9B shows the
result for the WOI at 1000 ms in Figure 4.8B. For the test order we choose ξc = 4 because
it leads to the maximum significant count in the selected WOI. The surprise decreases
as the null order increases and becomes non-significant when the true order and the null
order are equal (ξ0 = ξ).

For the cross-trials analysis, starting with ξ0 = 1, we apply the PUE on each trial
separately. Then we change the null order consecutively and repeat the same analysis. The
scatter plot of the obtained surprise values over trials are shown in Figure 4.9A for different
ξ0(= 1, 2, 3, · · · , 8). For small ξ0, the surprises have overall large values and by increasing
ξ0 they decrease. To quantify the behavior of the surprises, we employ two measures:

1. Significant count: For each null order ξ0 we count the number of trials with significant
surprises and plot the count as a function of ξ0 (see Figure 4.9B, green curve).
This measure, then, indicates the true order of synchrony at the null order where
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the number of significant surprises is below significant level (green dashed line in
Figure 4.9B). This inference depends on the number of trials and data durations and
it might vary from the underlying true synchrony order, e.g. here it infers synchrony
order of 5 whereas the underlying order is 6.

2. Avergae surprise: For a given null order ξ0, we calculate the 95% confidence interval
of the mean surprises over trials (see Figure 4.9B, blue curve). Then, the least ξ0 of
which confidence interval of the mean surprises contains zero indicates the true order
of synchrony.

4.3.4 Impact of non-homogeneous firing rates and pairwise correlations
across neurons

So far, to implement the null hypothesis, we have implicitly assumed that all neurons
have similar marginal statistics; in particular same firing rate across all neurons and same
pairwise correlations across all neuron pairs. However, electrophysiological data often show
heterogeneous firing rates and pairwise correlations between neurons. The aim of this
section is to investigate the effect of violation of homogeneous assumption on the FP rates
of the PUE method. We consider two scenarios: S1) Neuron pairs have homogeneous
pairwise correlations but firing rate is heterogeneous across neurons, S2) Firing rate is
homogeneous across neurons but neuron pairs have heterogeneous pairwise correlations.

We start with the S1: To mimic the firing rate heterogeneity of the electrophysiological
data, we assume a log-normal shape for the firing rate distribution across neurons. This type
of distribution has been often considered to explain the observed firing rate in experimental
data. To generate a set of spike trains which has a log-normal firing rate distribution
across neurons and also incorporates a predefined order of synchrony among them, we use a
modified CPP model which is explained in Compound Poisson Process (CPP). In short, it
is similar to the conventional CPP model but here we copy the spikes from carrier process
with amplitude ω = 1 into a chosen neuron according to a log-normal distribution (in the
case of conventional CPP model this distribution is uniform), meaning that a neuron with
a higher firing rate will receives more spikes.

Using the modified CPP model we first generate K realizations of a set of spike trains
containing a synchrony order ξ = 4 and a log-normal firing rate distribution across neurons
with a mean E[λ] and a standard deviation SD[λ]. The value of SD quantifies the strength
of heterogeneity among neurons where SD[λ] = 0 resembles the homogeneous case and the
larger the SD[λ] the stronger the heterogeneity. Then, we apply the PUE method with as
assumed ξ0 equals to ξ and estimated λ̂ and ρ̂ on each realization and obtain a p-value for
each realization. Defining the significance level α = 0.05 we compute the FP rate: total
number of null hypotheses rejection in proportion to the total number of tests (= K). We
varies the SD[λ] while keeping the E[λ] constant and repeat the above procedures. Here
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it should be noted that even though the empirical data have heterogeneous firing rate
distribution, we assume a homogeneous firing rate across neurons in implementing the null
hypothesis. The obtained results are shown in Figure 4.10A together with the firing rate
distribution for different SD[λ]s. As follows from Figure 4.10A the FP rate is at most equal
to the predefined significance level (here α = 0.05) and puts forward the claim that the
PUE method is robust against heterogeneous firing rate across neurons.

Turning now to the impact of heterogeneous pairwise correlations across neuron pairs
on the FP rate of the PUE method, we consider the S2 for the ground truth of the empirical
data. To this end we generate a set of N spike trains where a subset of them with n

neurons is correlated and the rest m = N − n neurons are independent. By keeping the
average pairwise correlation ρ over all pairs (including correlated and independent subsets)
constant, we change the n. Note that for n = N the S2 resembles the homogeneous
case and for n < N the heterogeneous case, where smaller n corresponds to stronger
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Figure 4.10: (Caption on the next page)
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Figure 4.10 (previous page): Non-homogeneous firing rates and pairwise
correlations. (A) FP rate of the PUE method applied to synthetic data with
inhomogeneous firing rate distribution across neurons (pairwise correlation is
homogeneous across neuron pairs with ρ = 0.005). The firing rate distribution
has a log-normal shape lnN (µ, σ2) which can be characterized by two parameters:
location µ and scale σ, where the arithmetic mean is E[λ] = exp(µ + 1

2σ
2) and

the arithmetic standard deviation SD[λ] = E[λ]
√

exp(σ2 − 1). By changing the
SD from 0 (corresponds to homogeneous case; blue line of the left panel) to
20 Hz (corresponds to extremely heterogeneous case; the widest distribution on
the left panel), the FP rate (right panel) is calculated for the simulated data (with
ξ0 = ξ = 4) following the corresponding firing rate distribution, while the null
hypothesis of the PUE is based on the homogeneous assumption of firing rate
across neurons (with the mean rate λ̂ estimated on each realization of the data).
(B) FP rate of the PUE method applied to synthetic data with inhomogeneous
pairwise correlation across neuron pairs (firing rate is homogeneous across neurons).
To mimic the inhomogeneous pairwise correlations across neuron pair we simulated
a set of N spike trains where a subset of them with n neurons is correlated and
the rest m = N − n neurons are independent. By keeping the average pairwise
correlation ρ over all pairs (including correlated and independent subsets) constant,
we change n to increase the inhomogeneity: n = N mimic homogeneous case.
For different n, then, we simulate 1000 realizations of data following the desired
pairwise correlation distribution and compuet the FP rate (shown in the right
panel).

heterogeneity. The FP rates obtained for different n similar to the S1 case. The results
are shown in Figure 4.10B. The FP rates are at most equals to α and with decreasing
the n i.e. increasing the heterogeneity, the FP rates decrease. This shows that the PUE
method becomes more conservative for the data with heterogeneous pairwise correlation
distribution.

4.3.5 Application to experimental data

In this section we demonstrate the application of our method to a massively parallel
recording of spike trains from an awake, behaving monkey. The monkey was trained to
perform a reach-to-grasp task. The behavioral task protocol is shown in Figure 4.11A. The
monkey’s task is to reach to an object located in front of the animal, grasp it with either
of two alternative grip types, i.e., side grip (SG) or precision grip (PG) (upper left pictures
in Figure 4.11A) and hold it with either a high or a low force. A trial is initiated when
the monkey holds a switch placed at waist-level (event label: TS). 800 ms after TS, the
monkey gets the first cue about the grip type (event label: CUE-ON), which is turned off
after 300 ms (event label: CUE-OFF). Then after a 1000 ms delay, the monkey gets the
second cue about the force the monkey needs to exert on object, which is also a Go signal
to initiate the arm movement (event label: GO). The movement initiation is detected by a
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switch release (event label: SR) and varies from trial to trial depending on the reaction time
of the animal. Thus, each trial is composed of four behavioral epochs (see Figure 4.11A):
pre-cue period (from TS to CUE-ON), cue period (CUE-ON to CUE-OFF), preparatory
delay period (from CUE-OFF to GO) and movement period (after GO).

Spiking activities of the primary motor and premotor cortices during the task were
recorded by using a 10×10 electrode grid (Plexon Utah array) [245, 279, 340]. The data set
that we selected for illustrating the application of our method contains spike trains of 156
well-sorted single neurons (SUA) (cf. [279] for details of the experiment and recordings).
Data preprocessing has been done as described in [340].

The spiking activities of N = 156 neurons in an example trial and its population
histogram, computed with a bin width of ∆ = 5 ms, are shown in the top panel of
Figure 4.11B. We apply our analysis on these data in a time resolved manner using a time
window of 300 ms width slid in steps of 20 ms. At each window position we estimate the
average pairwise correlation coefficient ρ̂ and the average firing rate of all neurons λ̂ within
the window. The temporal modulations of ρ̂ and λ̂ are shown in the second and third
panels of Figure 4.11B, respectively. The experimental events that mark the borders of
the behavioral epochs are shown with red vertical lines and the delay period is indicated
by a gray shade. We apply our test and calculate the surprise with a null order ξ0 = 2
for different ξc. The bottom panel of Figure 4.11B shows the temporal modulations of
the surprises. In this example trial, the surprises for ξc greater than 4 exhibit large values
above the 5% significant level during the delay period shortly after the offset of the first
cue.

To explore the results shown above across trials, we first employ the cross-trial analysis
(explained in Section 4.3.3). Before applying this analysis, we separate the trials into two
groups according to the different grip types (SG and PG). Then, separately for the SG
and PG trial groups, we align the time axis of each trial to GO for analysis of the periods
before GO, or to SR for analysis of the movement period, because a previous study has
shown that the temporal modulation of firing rates in the movement period is locked to
SR rather than to GO.

The second panel of Figure 4.11C and Figure 4.11D display the significance windows in
each trial (same as explained in Figure 4.11B) for the SG and PG trial groups, respectively.
The significance count Wsum(tw, ξc) (see (Eq. 4.4)) is shown in the bottom panel of
Figure 4.11C-D. Wsum tends to take larger values during the delay period in both SG and
PG trials.
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Figure 4.11: (Caption on the next page)
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4.3 Results

Figure 4.11 (previous page): (Experimental data) Detection of significance
higher order correlation in a time resolved manner. (A) Experimental
protocol (see text for details). (B) Top panel: Dot display and population
histogram of the one trial in reach-grasp experiment. Population histogram is
calculated in a bin size of ∆ = 5 ms. Second and third panel: Estimated pairwise
correlation coefficient ρ̂ and firing rate, λ̂ in a sliding window of 300 ms with step
of 20 ms. Bottom panel: Surprise calculated in a time resolved manner similar to
panels two and three. Different colors correspond to different test ordes. Red lines
indicate events of the experiment (see A). (C-D) Results of cross trials analysis:
First and second panel: Average pairwise correlation coefficient and average firing
rate across all neurons and trials. The period from TS GO signal is aligned on
TS and the movement period (i.e. after GO) is aligned on the switch release
(SR). Third panel: Windows with significance (5%) surprise indicated by dots. In
each row surprise is calculated on one trial of the experimental data (the same
parameters as A). Different colors correspond to different at least test order where
surprise becomes significant. In the other word for a given window, if the surprise
is always significance for test order more than e.g. 4, the dot represents only ξc = 4.
Bottom panel: Sum over number of significance surprise over all realizations (trials)
in a given window. The results of the SG trial type is shown in C and PG is
shown in D. (E-F) Results of concatenated trial analysis: First and second panel:
Time modulation of average pairwise correlation and firing rate calculated on the
concatenated trials with window size of 100 ms in step of 20 ms for SG in E and PG
in F. The trial alignment is TS for the before GO and SR after GO. Bottom panel:
Modulation of surprise calculated on the concatenated data (similar parameters as
E and F). The gray line indicates the 5% significance level.

Next, we employ the concatenated trials analysis as explained in Section 4.3.3. Using a
window of 100 ms width slid in steps of 20 ms, we apply the PUE method on the concatenated
data at each window position. Figure 4.11E-F show the temporal modulations of the
surprises for the SG and PG trial groups, respectively. In the delay period, the surprises
for both the SG and PG trial groups reach significant (with α = 0.05) values while they
remain non-significant in the other periods. For the SG trial group, the significant surprise
appears shortly after CUE-OFF and only at one window position, whereas for the PG trial
group it appears in the middle of the delay period and at more than one window positions.

Finally we infer the order of synchrony in the WOIs as explained in Section 4.3.3.
Figure 4.12 shows the results of the inferences, similar to Figure 4.9, for the SG and PG
trial groups. This analysis suggests the inferred true synchrony order of 6 for the SG trial
group and 7 for the PG trial group (Figure 4.12B and D). For the cross-trial analysis,
the average surprise and the significance count, which were introduced in Section 4.3.3,
are shown in Figure 4.12A for the SG trial group and in Figure 4.12C for the PG trial
group. The average surprise infers the synchrony order of 2 for both of the SG and PG
trial groups. The significance count infers the synchrony order of 5 for the SG trial group
and 7 for the PG trial group.
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Chapter 4. Population unitary events (PUE) analysis
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Figure 4.12: (Experimental data) Extracting the order of synchrony. (A,
C) Similar to Figure 4.9A for experimental data with SG trial type in A and PG
trial type in C. The WOI for each trial type has been chosen from Figure 4.11E-F
where the surprise becomes significant (the chosen window is the one with largest
value of the surprise). (B, D) Similar to Figure 4.9B for experimental data with
SG trial type in B and PG trial type in D. The WOI is the same as A for B and
the same as C for D.

4.4 Summary

In this chapter, we have presented the population unitary events (PUE) method as a novel
statistical tool to assess higher order synchrony in MPST. The method was carefully designed
to construct, on the one hand, a null hypothesis beyond independence by incorporating
the correlations (pairwise and higher order) among MPST, and on the other hand to be
applicable to small-sampled data (e.g. 100 ms duration) with a reasonably high test’s
power. In an extensive calibration of the PUE method with synthetic data which mimicked
the real case scenarios of the electrophysiological recordings, we demonstrated the good
performance of the method in terms of false positive (FP) and true positive (TP) rates.
Furthermore, we showed that the method is able to capture the temporal modulation of
higher-order synchrony in MPST, and can infer the underlying order of correlation. Finally,
we demonstrated the application of the PUE to MPST recorded from the motor cortex
of monkey during a delayed reach to grasp task. As a result we detected the functional
higher-order synchrony locked to delay-period when monkey is expecting a GO signal to
appear.
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In this thesis, we propounded the importance of segregating correlations which arise
merely as a natural consequence of network connectivity (baseline correlations) from those
with a functional role (functional correlations) when studying the relevance of correlations
in cortical information processing. We demonstrated that this segregation becomes more
and more crucial in increasingly larger parallel recordings of neurons, which are available
nowadays through modern electrophysiological recordings. We discussed the indispensable
prerequisite of advanced statistical tools, which on the one hand enable to distinguish
baseline and functional correlations, and on the other hand can cope with massively parallel
spike data and the complexity thereof. Toward addressing these needs, we studied in detail
the aptness of two commonly used methods in statistical neuroscience, i.e. the Unitary
Events method [135, 136, 139] and the maximum entropy model [175, 297, 312], and
discovered that these methods are prone to become impracticable and might yield a wrong
interpretation of the data when applied to massively parallel spike trains (MPST). To
overcome the limitation of these methods and handle the complexity of high-dimensional
data, we presented two novel statistical methods for analyzing MPST and studying the
functional role of correlations in cortical information processing.

The first method is Inhibitory Maximum Entropy (IME) which incorporates in a
simple way the effects of neural inhibition into the classical pairwise maximum entropy
model. This method can therefore be quite useful as a realistic hypothesis to model the
baseline correlations among the activity of an ensemble of neurons.

The second method is Population Unitary Events (PUE) which was developed to
handle MPST in search for higher-order synchrony in a time-resolved manner, and also to
incorporate a null-hypothesis beyond independence. This method was extensively calibrated
through application to test data covering the typical features of the electrophysiological
recordings such as inhomogeneous firing rate across neurons and trials, or inhomogeneous
pairwise correlations across neuron pairs. Applied to experimental data recorded from
the motor cortex of monkey, this method proved to be very useful in the search for the
functional role of correlations, thanks to its accounting for baseline correlations.

The following sections will summarize our results, and outline the future projects that
can be initiated based on our studies.

Reproducibility of Riehle et al (1997)

In Chapter 2, we started by inspecting the UE method by replicating the results of [278]
for two purposes: i) to provide an open source implementation of this method, and ii) to
ensure that the original research is reproducible. By providing a new reimplementation
of the UE method in Python and applying this method to the original data of [278], we
demonstrated that we are able to reproduce the original results of [278].
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The UE method involves a number of numerical computations and is very sensitive,
as we showed in Chapter 2 by the comparison of Figure 2.1 and Figure 2.2, which differed
in the events to which trials were aligned. This difference in the alignment would not make
any difference in the results if the time differences between the two events (PS and RS)
were identical across the trials. But this was not the case, due to hardware features of the
recording setup (as we learned from the first author of the original publication); therefore
the binning of the data started at a slightly different time points in different trials. This
likely led to a loss or an addition of a spike in a bin and thus to a small difference of
the number of spike synchrony events (see also the discussion on the issues of exclusive
binning in [137]). Nevertheless, this sensitivity of the method is a strong indication that
our reproductions of Figure 2 and Figure 4A of the original publication are correct and
that our new implementation of the analysis is faithful to the UE method.

The event to which the data were aligned, and the cut time which defined the start of
the (exclusive) binning, are not documented in the original publication. The original scripts
for the analysis could have revealed this information, even without having the original UE
software code at hand, but they are not available anymore either. Thus due to the lack of
documentation we were only able to reproduce the results of [278] by communicating with
some of the authors of the original publication.

The reproduction of Figure 4A of the original publication is a further and important
test of whether our reimplementation is also correct for N > 2 neurons. This is relevant
since the implementation for N > 2 requires a more generic, complex algorithm for the
analysis than the N = 2 case. The reason is that in the case of two neurons there is only
one pattern type which has to be analyzed (i.e. [1,1]), but in the case of e.g. 3 neurons
there are already 4 different spike patterns to analyze ([1,1,0], [0,1,1], [1,0,1], and [1,1,1]),
and exponentially more for more neurons (2N −N − 1). Thus the statistics of each of the
patterns is performed separately and the bookkeeping needs to be carefully done.

There are also other reasons why the reproduction of Figure 4A is more complicated
than that of Figure 2. First of all, the data were not available to us. After requesting
them from the first author of the original publication we received some data but were not
able to reproduce the result - both in terms of the UE results but also the data seemed
slightly different. After further consultation with the original authors we learned that the
original Figure 4A was not generated by the Matlab implementation used for Figure 2 but
by another implementation in IDL. Neither is available to us. However, we were told that
the third author of the original publication performed a thorough comparison of the two
implementations at the time and the final report on that was made available to us. This
enables us to define the correct workflow that reproduces the original result, given we have
the data in the correct resolution at hand.

The reimplemented UE analysis software contains extensions for improving the statis-
tics that were developed after the original publication. First, it contains the option to
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adjust the statistics to take into account cross-trial inhomogeneity, by calculating the
number of expected spike synchrony events based on the firing rates on a trial-by-trial
fashion (option: “analytic_TrialByTrial”), as suggested in [139], in contrast to using trial
averages of the firing rates. Second, our reimplementation offers the possibility to calculate
the significance of the empirical number of spike synchrony events based on a Monte Carlo
approach (option: “surrogate_TrialByTrial”). Instead of computing the significance using
a parametric distribution based on the estimate of the firing rates, the null-hypothesis of
independence is implemented by surrogate data [140, 141, 223]. By repeated intentional
manipulation of the original data, potential spike synchrony is deleted. Each of these
surrogate data created by this procedure are then searched - as the original data - for spike
synchrony, and these numbers create the distribution underlying the significance test of
the method. Obviously this version is much more computationally expensive than the
parametric approach used here for the reproduction of [278] and we are currently working
on an HPC implementation to make use of parallelization. The Python implementation
of the UE method is publicly available in the open source software package Elephant at
http://neuralensemble.org/elephant/.

If the authors of the original paper had not been accessible, we would not have been
able to reproduce the results. Nevertheless, here our final validation of the reproduction is
based only on a detailed visual comparison of the original and reproduced figures. In an
optimal scenario, we would be able to exactly validate the results based on a numerical
comparison. To do so, all of the following pieces of information ought to be available:

1. the original primary data

2. metadata describing the primary data in detail

3. the original statistics software package (e.g. Unitary Events)

4. the loading routine for the data

5. all specific code required to produce each figure of the original publication

6. detailed documentation of all code

7. the original software environment (with programs available in the original versions
used), including, e.g. the interpreter/compiler (here: Matlab) and operating system

8. unique identifiers of the data records that are used to unambiguously identify data
from within the analysis code

In the analysis presented in this work, not even the original primary data (1), recorded
more than 20 years ago, is available, but only a slightly preprocessed version of it. However,
even today many of the pieces of information listed above are often not made available
by scientists. This is due in part to the enormous complexity of the task to record all
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information in fine detail, leading from the experiment to a final analysis. Moreover, there
is still a lack of software tools to support researchers in the process of acquiring, storing,
and organizing this information. Currently, there are emerging approaches suggested for
metadata annotation (2) of electrophysiological data, such as the odML1 framework (see,
e.g. [131, 362]) for storing hierarchical collections of metadata or the NIX2 data format
[7] for linking data and metadata. In our concrete example, the information about the
hardware limitations in storing the event times, would have been essential information
contained in the metadata. Using modern tools for version control, points 3-6 can be
easily addressed. There are emerging approaches to keep software environment, i.e., the
original Matlab version and the operating system (7), e.g., by freezing the environment in
a virtual machine. Point 8 is still challenging, because it requires the data to be addressed
in an unambiguous manner from within the analysis scripts. Including data within the
code repositories is typically prohibitive due to the size of the data. A solution would be
to deposit data in public or private databases that allow them to be tagged by a unique
identifier in combination with a tool to generate a detailed provenance track of the analysis
process, but the implementation of tools and services for the workflows used in data analysis
of electrophysiological data is still an ongoing endeavor [13, 63]. In summary, there are still
components missing such that researchers are put into a position to build complex data
acquisition and analysis workflows that enable optimal reproducibility in neuroscience.

Correlations between cortical neurons

Having implemented the UE method, to test for systematic occurrences of UEs across data
sets and neuronal sampling, in Chapter 2 we applied the extended UE method, proposed in
[196], to data recorded from motor cortex of monkey during a center-out reaching task. We
observed that: i) the obtained surprise exhibits a slight constant positive offset, and ii) the
modulation depth of the surprise is the larger, the more data (neuron pairs) are included
in the analysis. The natural question was whether these observations were features of
network processes, or the result of false positives due to a not yet identified flaw in the UE
analysis. The latter explanation was excluded by testing the UE analysis with synthetic
data: the analysis of an increasing number of pairs does not lead to a larger surprise (i.e.
false discoveries) when pairs are sampled from independent spike trains. However, when
the spike trains are correlated, the UE analysis results in larger surprise. This has a clear
explanation: the more pairs are considered, the more evidence of the correlation enter the
analysis, resulting in a larger surprise, which is a correct and desired property of the UE
analysis.

1https://github.com/G-Node/python-odml
2https://github.com/G-Node/nix/wiki
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To explain the positive offset we referred to theoretical studies where networks
of connected neurons are shown to exhibit correlations owing to the shared input or
recurrent connectivity. By simulating such a network (a random balanced network without
any function) and applying the extended UE method to the obtained spike trains, we
demonstrated the presence of the positive offset. Thus, we interpret such a positive offset
as baseline correlations, since they occur independent of correlations with functional role
in the network (functional correlations).

To summarize, the co-occurrence of action potentials on a fine time scale (range
of milliseconds) has been shown in cortical-neuron activity time-locked to a behavioral
task [196, 278]. On the one hand, such synchrony is thought to result from information
processing in the network related to function. On the other hand, low spike correlations
between pairs of neurons have been shown to arise as a direct consequence of shared input
in network models with inhibitory feedback [159, 332]. We refer to these types of activity
as functional and baseline correlations, respectively.

• Functional Correlation: Time-dependent correlation due to task-related network
function.

• Baseline Correlation: Time-independent correlation due only to network structure
(connectivity).

Baseline correlations are extensively studied in theoretical works. In experimental data
there has been no evidence of such correlations yet, since until recently parallel recordings
have been limited to only a small number of neurons. Recent technical advances now
enable massively parallel recordings of cortical neurons. Only here baseline correlations
become visible, due to the large sample size.

Maximum entropy model and bimodality problem

In Chapter 2 we provided evidence for baseline correlations among cortical neurons recorded
from motor cortex of monkey. This, in line with theoretical studies, emphasizes the
importance of baseline correlations in MPST and calls for statistical tools which take them
into account in the construction of null hypotheses for the search of functional relevance of
correlations. One of the available tools which can serve this purpose is maximum-entropy
models. They predict the activity of neuronal populations by taking into account of the
observed mean firing rates and correlations (pairwise and higher-order). Thus, in Chapter 3,
we employed some of these models for constructing a null hypothesis beyond independence
and examined their aptness in application to MSPT.

The obtained results showed that the pairwise model, applied to experimental neuronal
data of populations of hundreds of neurons, is very likely to give a bimodal probability
distribution for the population-averaged activity. We have provided evidence for this claim
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starting from an experimental data set and then looking at summarized data from the
literature. The first mode of the bimodal distribution is the one observed in the data. The
second mode (unobserved) can appear at very high activities (even 90% of the population
simultaneously active) and its height increases with population size. The mechanistic origin
of the second mode is simple and generic: Positive pairwise correlations imply positive
Lagrange multipliers that couple pairs of units. This mutual positive feedback, given
sufficiently large numbers of units, may become strong enough to sustain a second mode
of high activity. The mechanism in hence identical to the transition to the ferromagnetic
state of the Ising model.

The presence of a second mode is problematic for several reasons:

• As far as we know, a second mode has never been observed in experimental record-
ings, and surely not at high activity – data in which 180 out of 200 neurons spike
simultaneously are unheard of. So it is an unrealistic prediction of the pairwise
model.

• Above certain population sizes the second mode cannot be dismissed as too small to
be recorded, because it becomes more pronounced as N increases, and the minimum
that separates it from the main mode becomes shallower.

• The Boltzmann-learning [4, 37, 161] procedure based on asynchronous Glauber
dynamics [111, 225, chap. 29], used to numerically construct this model, becomes
practically non-ergodic – it can already be so for population sizes of roughly 50
neurons – so that the Lagrange multipliers of the pairwise model are difficult or
impossible to find. Approximate methods like mean-field [153, 252, 257], Thouless-
Anderson-Palmer [257, 334], Sessak-Monasson [300, 301] also seem to break down in
this case.

• The Glauber dynamics based on the pairwise model jumps between two metastable
regimes, remaining in each for long times (owing to its asynchronous update) and
cannot be used to generate realistic surrogate data.

• The fact that the position and height of the second mode vary with N contradicts the
natural assumption that the recorded N neurons are a “random sample” of a larger
population (see Appendix 5.2.4). From the probability calculus we know that the
population-average distributions of a full population and a “random sample” from it
should have maxima at roughly the same relative heights and locations, since they
are connected by convolution with a hypergeometric distribution [83, ch. II][286, ch.
4][182, ch. 3][107, 358–360].

Eliminating the second mode also eliminates all these problems.
We gave an intuitive explanation of why the second mode appears: because the

pairwise model, given positive pairwise correlations, corresponds to a network that is
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excitatory on average and symmetric. And symmetric connectivity is incompatible with the
presence of a subset of neurons that have an inhibitory effect, but receive excitatory input
(see Section 3.3.2). This explanation also suggested a way to eliminate the second mode:
by adding a minimal asymmetric inhibition to the network, in the guise of an additional,
asymmetrically coupled inhibitory neuron (Figure 3.7A).

This idea led to the construction of an “inhibited” pairwise maximum-entropy (IME)
model Pi(s), (Eq. 3.22), with the important properties:

• It is a maximum-entropy or minimum-relative-entropy model.

• It is the stationary distribution of a particular asynchronous Glauber dynamics with
pairwise couplings.

• Its Lagrange multipliers can be found via Boltzmann learning.

• Its parameters can be chosen to have the main mode only.

• It is numerically equal to the distribution one would obtain from a non-ergodic
Boltzmann learning.

Inhibited maximum entropy (IME) model

In Chapter 3, we have shown that bimodality is a problem in the application of the pairwise
maximum-entropy model. We wish to stress, though, that the presence of bimodality
and non-ergodicity can easily go unnoticed. Sampling from a bimodal distribution, the
probability to switch to the second mode may be so small that is practically does not occur.
If the high mode is not visited during neither Boltzmann learning, nor while surrogate
generation, we face the most subtle situation. The obtained distribution is then formally not
the assumed maximum entropy distribution (Eq. 3.3), but rather the inhibited maximum
entropy distribution (Eq. 3.22). But otherwise all results seem consistent. Results obtained
with non-ergodic Boltzmann learning therefore do not correspond to the pairwise maximum-
entropy model. Still, they can be reinterpreted as correct results for the IME model, with
appropriately chosen ΛI and θ. This is relevant for any work in the literature that may
unknowingly have been affected by non-ergodicity.

Obvious inconsistencies appear as soon as the system visits the second mode during
either of these phases. This breakdown may appear at random points in time and is hence
not predictable. Using the original pairwise model (Eq. 3.3) therefore requires a check
for the presence of bimodality and non-ergodicity in a case by case way. For example, by
starting the sampling from different initial conditions, at low and high activities, looking out
for bistable regimes [212, § 2.1.3]. Another way out of this problem is to use other sampling
techniques or Markov chains different from the Glauber one [30, 212, 225]. Alternatively,
one may use the IME model (Eq. 3.22) with the standard approaches.
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In the presence of inhomogeneous and randomly chosen parameters, the obtained
distribution is mathematically similar to the Boltzmann distribution of the Sherrington &
Kirkpatrick infinite-range spin-glass [197, 308] (see Appendix 5.2.5). A more systematic
analysis of the effect of inhomogeneity on the appearance of the second mode could
therefore employ methods developed for spin glasses [87]. This way, one could also
arrive at approximate expressions for the inverse problem, the determination of Lagrange
multipliers form the data. One may think of modifying the Thouless-Anderson-Palmer
(TAP) mean-field approach [290, 334], generalizations of which exist form the asymmetric
non-equilibrium case [291] appearing here due to the inhibitory unit. An approximation
based on the ideas of Sessak and Monasson [300, 301] may be an alternative. Another
possibility is the use of cumulant expansions [39, 110] have the advantage of being valid also
in regimes of strong coupling, as opposed to TAP-based approaches, and recent extensions
exist that allow us to obtain the statistics on the level of individual units [54].

Different readers will draw different conclusions from the presence of bimodality. Some
may dismiss or abandon the whole pairwise model as flawed. Some may still want to
use it, bimodality notwithstanding. Some may look for other maximum-entropy-inspired
alternatives. We have presented one (as opposed to the) such alternative: the IME model
Pi, (Eq. 3.22). It is an interesting alternative for at least two reasons.

First, the IME model Pi is stationary under a Glauber dynamics with pairwise
couplings. Consider that pairwise models with additional constraints are stationary under
Gibbs samplers with higher-order couplings – and thus lose some of their analogies with
real neuronal networks.

Second, the inhibited distribution Pi incorporates the effects of neural inhibition in a
simple way. These effects are represented by the reference or prior probability P0(s|ΛI, θ),
(Eq. 3.25).

The IME model Pi includes Shimazaki’s model [310] and its “simultaneous silence”
constraint as the limit ΛI → −∞, θ = 1/N . Because of this limit, Shimazaki’s model has a
sharp jump in probability when s̄ = 1/N . Their constraint uniformly removes probability
from P (s̄ > 1/N) and assigns it to P (s̄ = 0). In contrast, the IME model Pi only presents
a kink when s̄ = θ, with a discontinuity in the derivative proportional to ΛI.

Some readers may actually object to the usefulness of the inhibited distribution Pi

exactly because it is derived from a particular prior via minimum-relative-entropy, and may
thus appear less “non-committal” or less “unstructured” than a “bare” maximum-entropy
one. We briefly countered this argument by pointing out that bare maximum-entropy can
be quite “committal”, and that reference priors can correct that.

At first sight one may be tempted to interpret the maximum-entropy method to give
the maximally non-committal probability distribution consistent with the given information.
But there are many qualifications behind this statement, especially behind the terms “non-
committal” and “information”. The term “information” does not mean only “experimental
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data”: it also means knowledge of the specific problem and resulting assumptions on the
variables describing the problem. The way we set up a maximum-entropy problem implies
many underlying assumptions, already before experimental data are taken into account
[172, 180].

A concrete assumption underlying the bare maximum-entropy principle applied to
neuronal activity is that the recorded neurons should not be a sample from a larger population.
To be more precise: consider N neurons from a population of R > N neurons. If the N
activities are modelled by a maximum-entropy distribution, then the R activities cannot
be modelled by a maximum-entropy distribution. Vice versa, if if the R activities are
modelled by a maximum-entropy distribution, the marginal distribution for the N activities
cannot be a maximum-entropy one (see Appendix 5.2.4). This fact is known in statistical
mechanics [84, 232, 298]. This N -dependence implies a lack of robustness of our inferences
under augmentation of data. If we acquire data for and additional set of M neurons,
besides the N we already have, and reapply maximum-entropy to the N +M activities,
the marginal distribution for the original N will change, and some statistical features of
it – e.g., surprising moments or correlations, distribution tails, “critical points”, “heat
capacities” – will disappear or be different. This N -dependence demands a lot of care
in assessing the meaningfulness of statistical features deduced via maximum-entropy on
a sample; a similar remark was already made by Good in the 1960s [114, p. 379]. This
N -dependence shows that the bare maximum-entropy principle is far from “non-committal”
or “unstructured”.

The “committal” nature of bare maximum-entropy also appears in its derivation
from the probability calculus. This derivation requires a particular prior [51, 52, 172, 180,
270], but one could use other, quite natural priors (e.g., the “flat prior over probability
distributions” considered by Bayes [23, Scholium] and Laplace [213, p. xvii]) and the result
would not be a bare maximum-entropy distribution.

Reference priors can in some cases correct such implicit assumptions. For example,
consider a pair of neurons with binary states s1 and s2. Without “experimental data”,
the maximum-entropy principle assigns a uniform probability of 1/4 to each of the four
possible joint states (s1, s2). The probability assigned to the total activity, S := s1 + s2, is
therefore not uniform (2/4 probability to S = 1 and 1/4 probability to the remaining two
values). If we apply the maximum-entropy principle to the total activity S directly, instead,
it gives a uniform probability of 1/3. Both applications of the principle are consistent,
but they use different assumptions about the structure of the biophysical problem. The
information implicit in the first application can be specified in the second by using the
minimum-relative-entropy method with a non-uniform prior distribution assigning 2/4
probability to S = 1. (Something analogous happens in statistical mechanics with the
probability distribution for energy, in which a “density of states” term multiplies the
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Boltzmann factor). Some implicit assumptions, however, like the sampling assumption
previously discussed, cannot be corrected by reference priors.

The necessity of reference priors, reflecting deeper assumptions, is well-known in
maximum-entropy image reconstruction [318, 354], for example of astronomical sources
[319, 354]: as Skilling remarked, “bare maximum-entropy is surprised to find isolated stars,
but astronomers are not” [180].

An analogous remark can be made in our case: bare maximum-entropy is surprised
to find so many inactive neurons, and it tries to make some more active ones by creating
a second maximum, if that does not break the constraints. But neuroscientists are not
surprised at inactive neurons. Bare maximum-entropy assumes that we have abstract
“units” whose states are symmetrically exchangeable. But neuroscientists know that these
units are neurons, whose individual and collective properties are asymmetric with respect
to state exchanges, for biophysical reasons. The prior of the IME model Pi reflects this
asymmetry. It is fortunate that we can partially correct the symmetry assumption of
bare maximum-entropy by using a prior, without having to overturn our whole space of
variables.

The long argument above shows, we hope, that the IME model Pi and its reference
prior do not break the “non-committal” nature of the maximum-entropy principle; rather,
they prevent maximum-entropy from committing to unrealistic assumptions. The IME
can therefore be quite useful in all applications of the maximum-entropy model mentioned
in Section 3.1. For example, as a realistic hypothesis against which to check or measure
the prominence of correlations in simulated or recorded neural activities, to separate
the baseline correlation from the potentially behaviourally relevant departures thereof
(functional correlation). The surprise measure to effect such separation would, according
to the IME model, take into account the presence of inhibition and the overall baseline
correlations that are natural in the cortex. As a second example, for the generation of
surrogate data, which would also include the natural effect of inhibition besides the observed
level of pairwise activity. As a third example, in the study of the predictive sufficiency of
pairwise correlations as opposed to higher-order moments, for example for distribution
tails [21, 33, 49, 96, 105, 126, 227, 228, 230, 235, 293, 297, 310, 312, 338]. And as a final
example, in the characterization of dynamical regimes of neuronal activity [247, 337–339].
Some of the maximum-entropy applications above could suffer from the N -dependence
problem for small samples, thus requiring the use of considerable sample sizes. The IME
model becomes therefore increasingly more useful, since the problematic bimodality of the
bare pairwise model is more pronounced at large sample sizes.
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Population Unitary Events (PUE): a novel method to study
baseline and functional correlations

The major difficulty of detecting task, stimulus related significant synchrony (what we
referred to as functional correlation) among MPST is that the statistical test should
carefully account for the chance coincidences which arise as the results of phenomena
unrelated to tasks and stimuli, e.g. contribution from firing rate of individual neurons or
consequence of connectivity between neurons (what we referred to as baseline correlation).
These phenomena become more and more visible in larger populations of neurons and call
for a null hypothesis beyond independence in the statistical test. For example, the IME
model introduced in Chapter 3 is one of these methods to implement a null hypothesis
beyond independence. However, the IME method requires sufficiently large samples of data
in order to make reliable inferences about baseline correlations. As a consequence, IME
cannot be employed to assess the time modulation of synchrony (in the “sliding window”
fashion), and is therefore unable to relate transient, short-lasting synchrony to the time
course of a behavioral task. Such relation, however, is a signature of cell assemblies (see
Section 1.4.1). To overcome this limitation we introduced the Population Unitary Event
(PUE) analysis in Chapter 4.

A powerful aspect of the statistical test designed for the PUE method – besides the
null hypothesis beyond independence – is a novel test statistic which allows the application
of the method on small-sample data. To explain how this is achieved, consider the cell
assembly picture. In this picture synchronous activity of neurons is considered to have a
functional role related to the behavioral task, whereas the rest of the recorded spikes are
the results of so-called “ongoing” activity, which we refer to as “background noise” (see
Figure 1.5). The test statistic (Eq. 4.1) of our method includes a free parameter ξc which
can reduce the background noise. This is achieved by a systematic increase of ξc: For
ξc = 2 the test statistic, being the sum over the binomial coefficient

(Ck

ξc

)
(with Ck the

total number of spikes at bin k), excludes those bins with less than two spikes, because(Ck

ξc

)
= 0 for ξc > Ck. For ξc = 3 bins with less than three spikes are excluded and so

on. This systematically decreases the contribution of bins with lower-order synchrony
in the analysis. Note that the bins with lower-order synchrony which are excluded from
the analysis might contain spikes from cell assemblies, but it has been shown (see e.g.
[340]) that the occurrences of cell assemblies in MPST are rare in comparison to all the
recorded spikes (background noise). Therefore, the majority of excluded bins contains the
background noise.

The performance of the PUE method was examined in terms of false positive (FP)
and true positive (TP) rates by applying it to synthetic MPST with known ground truth
of the correlation order. We showed that the method is able to detect the underlying
order of correlation by varying the null order for a given test statistic. Further, the
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method has a high degree of specificity and sensitivity, as well as high tolerance against
relatively small sample sizes, which enables its time-resolved application to capture the
temporal modulation of the correlations. This is particularly important, because to detect
the signature of cell assembly one needs to test the detailed structure of the transient
higher-order correlations in time and in relation to the behavioral paradigm.

The null hypothesis of our method explicitly assumes the CPP as a model behind
observed parallel spike trains. Such model-driven approaches have a serious consequence
on the test results: the rejection of null-hypothesis could come from the disagreement of
the predefined model rather than the actual parameters in the null hypothesis. Therefore,
each of the critical assumptions behind the model should be carefully considered when
interpreting the test results. In our framework we have the following assumptions: First,
we assume a stationary CPP model where each neuron exhibits constant firing rate in time.
This assumption may appear to be a strong constraint, given that the activities of cortical
neurons have been reported to show time modulation, owing to transient input related
to internal cognition or stimulus. However, with an extensive calibration of our method
we have shown that PUE yields reliable results even for small sample sizes, of e.g. 100 ms.
We can therefore apply PUE to non-stationary data using the sliding-window approach
suggested in [136], where we first cut the data in quasi-stationary segments and then apply
the method on those segments. Second, the CPP model assumes Poisson statistics for the
spikes of carrier process. This implies that we explicitly model the population activity
of neurons as a Poisson process. It has been shown that the spiking activity of cortical
neurons is less variable than for a Poisson process [8, 249, 251]; the latter has therefore
been criticized as a model of single-neuron spiking. This criticism, however, might not
hold for the population activity of neurons, achieved by pooled spike trains across neurons.
From a mathematical point of view, the pooling of sparse point processes has Poisson limits
under sufficient conditions, e.g. large number of processes [55, 132]. Although we are not
aware of experimental studies on realistic distribution of the pools of spike trains in large
populations of cortical neurons (hundreds or more), we expect that the Poisson assumption
of pools of spike trains should be valid on MPST, and therefore is not a limitation of our
method. Third, the CPP model can only generate independent or positively correlated
spike trains. Consequently, the null hypothesis of the PUE method cannot incorporate
negative correlations among parallel spike trains, which makes the method impractical for
spike data with average negative pairwise correlations. Nevertheless, reported correlations
among cortical neurons from diverse brain areas (see [49] for a review) are often positive,
which makes the mentioned limitation of our method unimportant.

Finally, we demonstrated our method by its application on MSPT recorded from
motor cortex of a behaving monkey in a reach to grasp task. The method showed the
occurrence of higher order synchrony during the delay period in which the monkey is
expecting a GO signal for the task. This finding from MPST is consistent with aprevious
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study of time-locked synchrony related to behavior [278], which was carried out on a limited
number of neurons. Of course, further analysis is required to check the consistency of this
finding across different recordings as well as different animals.

Future work and outlook

In this thesis, we presented two novel statistical methods which can be employed in studying
the functional relevance of correlations in MPST beyond baseline correlations, which are
ubiquitous in the brain owing to the connection between neurons. Rapid advances in
electrophysiological recordings call for these methods to shed light on the long-standing
questions about the mechanisms behind cortical information processing. Nevertheless, this
thesis is a part of continuous endeavors to provide appropriate statistical tools to make
sense of a progressively growing amount of available data. In the following we sketch an
outline of possible future projects that arise from this thesis.

The proposed methods, PUE and IME, can be readily applied to the huge amount of
spike data which are today being recorded from diverse brain areas and diverse species. To
make this method accessible to the whole community from different countries, one natural
next step would be to provide a publicly available implementation of these methods.

As a follow up study of IME, we are continuing to explore maximum-entropy method-
ologies, but in the broader context of Bayesian theory (as it happened in astrophysics).
This allows for more flexibility and understanding, and also enables us to ask and answer in
a precise way model-comparison questions, like "does knowledge of higher-order correlations
lead to better predictions?", or "which prior leads to best predictions?", as explained in
[224].

For example, a pairwise maximum-entropy distribution corresponds to two possible
large-sample limits in Bayesian theory: a limit model by sufficient statistics, i.e. statistics of
the sample which are hypothesized to be sufficient for making inferences about a particular
parameter, or a limit exchangeable model with a particular prior. The more general
Bayesian point of view allows us to extend the pairwise model in two ways: "modulating"
it with a prior distribution, and considering the non-limit case of small data samples. It
also allows us to use this method to make predictions or test the hypotheses behind the
model. In the broader context of Bayesian theory it is also immediately evident how to use
the model in time-dependent cases. Our next project in fact considers a time-dependent
"model by sufficient statistics".

The PUE method has been calibrated extensively on artificial test data to be robust
against the typical non-stationarity observed in the activity of cortical neurons, such as
firing rate non-stationarity in time and across trials. In the application of this method to
MPST recorded from motor cortex of monkey in a reach-to-grasp task, we have observed
higher order synchrony, time-locked to the delay period when monkey is preparing his
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movement and expecting a GO signal to appear. This finding is in line with previous
observations of functional synchrony in [196, 278] which were studied on small number of
neurons. However, the next step will be to verify our results by applying the PUE method
to different data sets recorded in different sessions and from different monkeys.
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Chapter 5. Supplementary materials

CHAPTER5
Supplementary materials

This chapter contains the supplementary materials related to each chapter of this thesis.
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5.1 Appendix to Chapter 2 “Baseline and functional correlations”

5.1 Appendix to Chapter 2 “Baseline and functional corre-
lations”

5.1.1 Compound Poisson Process (CPP)

A compound Poisson process (CPP), also known as marked Poisson, is a time-continuous
doubly stochastic process with amplitudes (or jumps). It is composed of N simultaneous
Poisson processes x(t) = (x1(t), ..., xN (t)), all having the same marginal rate parameter λ
that is constant over time, and coupled with each other by a given correlation structure.
It is parameterized by two parameters: firing rate of Poissonian carrier process λcp and
amplitude distribution fA(ω). Using this parameterization, we can generate parallel spike
trains with the CPP. To this end we need two steps: first, generate a Poisson process with
rate λcp and draw for each of its events at time tj a corresponding amplitude ωi from the
amplitude distribution. In a second step, each event at tj is copied to ωi individual process,
where the precise process IDs is determined by another distribution Pλ (see Figure 5.1).
The distribution Pλ can be, in the simplest case, a uniform distribution which will results
in a homogeneous rate across all processes, or it can have any arbitrary shapes to mimic
inhomogeneous rate across population.

Figure 5.1: Scheme of the compound Poisson process with an arbitrary firing rate
distribution across population.
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5.2 Appendix to Chapter 3 “Inhibited maximum entropy
(IME) model”

5.2.1 Definition of Glauber dynamics

In this section we show that there is a temporal process that is able to sample from the
the distribution Pp(s|µ,Λ) (Eq. 3.3). This temporal dynamics is called Glauber dynamics.
It is an example of a Markov chain on the space of binary spins {0, 1}N [111]. At each
time step a spin si is chosen randomly and updated with the update rule

si ← 1 with probability Fi(s) = g(
∑
j

Λijsj + µi) and 0 else (5.1)

g(x) = 1
1 + exp(−x) , (5.2)

where the coupling is assumed to be symmetric, Λij = Λji, and self-coupling is absent,
Λii = 0. The transition operator of the Markov chain, κ, only connects states that differ by
at most one spin, so for the transition of spin i we can write, if si+ = (s1, . . . , 1︸︷︷︸

i−th

, . . . , sN )

and si− = (s1, . . . , 0︸︷︷︸
i−th

, . . . , sN ),

κ(si+|si−) = Fi(si−) (5.3)
κ(si−|si+) = 1− Fi(si+).

The pairwise maximum-entropy distribution Pp(s|µ,Λ) is stationary under the Markov
dynamics above. The proof can be obtained as the ΛI = 0 case of the proof, given below,
for the inhibited pairwise maximum-entropy model.

5.2.2 Inhibited Glauber dynamics and its stationary maximum-entropy
distribution

Inhibited Glauber dynamics.

In the “inhibited” Glauber dynamics, the network of N neurons with states si(t) has an
additional neuron with state sI(t). The dynamics is determined by the following algorithm
starting at time step t with states s = s(t), sI = sI(t):

1. One of the N units is chosen, each unit having probability 1/N of being the chosen
one. Suppose i is the selected unit.
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2. The chosen unit i is updated to the state s′i := si(t+ 1) with probability

p(s′i| s, sI) =
(
1 + exp[(1− 2s′i)Fi(s, sI)]

)−1

=


[
1 + eFi(s,sI)

]−1
, for s′i = 0,[

1 + e−Fi(s,sI)
]−1

, for s′i = 1,

with Fi(s, sI) := µi +
k 6=i∑
k

Λiksk/2 + ΛIsI.

Note the additional coupling from the neuron sI, with strength ΛI. This strength
can have any sign, but we are interested in the ΛI 6 0 case; we therefore call sI the
“inhibitory neuron”.

3. The inhibitory neuron is deterministically updated to the state s′I := sI(t+ 1) given
by

s′I = H
(∑
k

sk/N − θ
)
, (5.4)

corresponding to a Kronecker-delta conditional probability

p(s′I| s, sI) = p(s′I| s) = δ
[
s′I −H

(∑
k
sk/N − θ

)]
. (5.5)

In other words, the inhibitory neuron becomes active if the population-averaged
activity of the other neurons is equal to or exceeds the threshold θ.

4. The time is stepped forward, t+ 1→ t, and the process repeats from step 1.

The original Glauber dynamics, described in the previous section, is recovered when ΛI = 0,
which corresponds to decoupling the inhibitory neuron sI.

The total transition probability can be written as

p(s′, s′I| s, sI) = 1
N
δ
[
s′I −H

(∑
k
sk/N − θ

)]
×

∑
i

[(
1 + exp[(1− 2s′i)Fi(s, sI)]

)−1
k 6=i∏
k

δ(s′k − sk)
]
; (5.6)

the product of Kronecker deltas in the last term ensures that at most one of the N neurons
changes state at each timestep.

The transition probabilities for the chosen neuron si and the inhibitory neuron sI are
independent, conditional on the state of the network at the previous timestep:

p(s′, s′I| s, sI) = p(s′| s) p(s′I| s),
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so the transition probability for the N neurons only can be written as

p(s′| s) = 1
N

∑
i

[(
1 + exp[(1− 2s′i)Fi(s)]

)−1
k 6=i∏
k

δ(s′k − sk)
]
, (5.7)

with Fi(s) := µi +
k 6=i∑
k

Λiksk/2 + ΛI H
(∑

k
sk/N − θ

)]
. (5.8)

Proof that the inhibited maximum-entropy model is the stationary distribution
of the inhibited Glauber dynamics.

The modified maximum-entropy distribution Pi, (Eq. 3.22), is the stationary distribution
of a slightly modified version of the above dynamics, with the update rule

s′I = H
(k 6=i∑
k

sk/N − θ
)
, (5.9)

and the use of N inhibitory neurons, one for each of the original N units. This dynamics
has a slightly different transition probability, with activation function

Fi(s) := µi +
k 6=i∑
k

Λiksk/2 + ΛI H
(∑k 6=i

k
sk/N − θ

)]
(5.10)

instead of (Eq. 5.8). Note that the two dynamics are very similar for large enough N .
To prove the stationarity of inhibited maximum-entropy distribution Pi, we show that Pi

satisfies the detailed-balance equality

p(s′| s)Pi(s) = p(s| s′)Pi(s′) or p(s′| s)
p(s| s′) = Pi(s′)

Pi(s)
, ∀s, s′, (5.11)

which is a sufficient condition for stationarity [98, 194, 346].
First note that if s′ and s differ in the state of more than one neuron, the transition

probability p(s′| s) vanishes and the detailed-balance above is trivially satisfied. Also the
case s′ = s is trivially satisfied. Only the case in which s′ and s differ in the state of one
unit, say si, remains to be proven. Assume then that

s′i = 1, si = 0, ∀k 6= i, s′k = sk; (5.12)

by symmetry, if the detailed balance is satisfied in the case above it will also be satisfied
with the values 0 and 1 interchanged.

Substituting the transition probability (Eq. 5.7) and (Eq. 5.10) in the left-hand side
of the fraction form of the detailed balance (Eq. 5.11), and noting that Fi(s′) = Fi(s), we
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have

p(s′| s)
p(s| s′) = exp[−Fi(s)]−1

= exp
[
µi +

k 6=i∑
k

Λiksk/2 + ΛI H
(∑k 6=i

k
sk/N − θ

)]
.

(5.13)

Using the expression for the inhibited model Pi, (Eq. 3.22), in the right-hand side of the
fraction form of the detailed balance (Eq. 5.11), we have

P (s′)
P (s) = exp

[
µi +

k 6=i∑
k

µksk + 1
2

k 6=i∑
k

Λiksk +

1
2

k<m∑
k,m6=i

Λmksmsk + ΛIN G
(k 6=i∑
k

sk
N

+ 1
N
− θ

)]

= exp
[
µi + 1

2

k 6=i∑
k

Λiksk + ΛI H
(k 6=i∑
k

sk/N − θ
)]
, (5.14)

where we have used the equality NG(x+1/N)−NG(x) = H(x), valid if x = ∑k 6=i
k sk/N−θ

and Nθ ∈ Z. Comparison of formulae (Eq. 5.13) and (Eq. 5.14) finally proves that the
detailed balance is satisfied also in the case (Eq. 5.12).

5.2.3 Simulation of Glauber dynamics with NEST

The neuron model ginzburg_neuron in NEST implements the Glauber dynamics, if the
parameters of the gain function are chosen appropriately. The gain function has the form

gginzburg(h) = c1h+ c2
2 (1 + tanh(c3(h− θ)). (5.15)

With tanh(x) = ex−e−x

ex+e−x , setting x = c3(h− θ), c1 = 0, c2 = 1, c3 = 1
2 it takes the form

gginzburg(h) = 1
2
ex + e−x + ex − e−x

ex + e−x
,

= 1
1 + e−2x = 1

1 + e−(h−θ) ,

(5.16)

which is identical to (Eq. 5.2).
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5.2.4 Inferences from a network to a subnetwork and vice versa

This section summarizes some mathematical relations between the probability distributions
for the states of a network of binary units and a subnetwork thereof, under an assumption
of symmetry. These relations are standard results of probability theory, but seem to be
rarely used in neuroscience. Some of their consequences for inferences between network
and subnetwork, especially in connection with the maximum-entropy principle, are briefly
discussed. The meanings and applicability of the assumption of symmetry are also discussed.

Uncertainties about networks and subnetworks

If we are uncertain about the state of a network of neurons, what is our uncertainty
about the state of a subnetwork? And vice versa, if we are uncertain about the state of a
subnetwork, what is our uncertainty about the state of the whole network?

If our uncertainties are expressed by two probability distributions for the states of
network and subnetwork, and these distributions satisfy a particular symmetry property,
then they are related by precise and relatively simple mathematical formulae. These
formulae are of essential importance when we want to make inferences about the whole
network given data about the subnetwork and vice versa.

Formulae connecting network and subnetwork probabilities

Setup. Consider a network of N binary neurons with states (X1, . . . , XN ) having fixed
but unknown binary values (R1, . . . , RN ), with Ri in {0, 1}, vectorially writtenX = R. For
example, X can represent the state of a network at a particular time. We call the neurons
“units” to lend some generality to our discussion. We shall make statements about the whole
network of N units and about a subnetwork of n units; the word “network” will always refer
to the whole network. The subnetwork states and their values are denoted by lowercase
letters: (x1, . . . , xn) ≡ x and (r1, . . . , rn) ≡ r; but note that xi ≡ Xji and ri ≡ Rji for
some distinct j1, . . . , jn. We shall also make statements about the network-averaged state,
or network average:

X := (X1 + · · ·+XN )/N, (5.17)

and the subnetwork-averaged state, or subnetwork average:

x̂ := (x1 + . . .+ xn)/n. (5.18)

The quantities NX and nx̂ represent the total number of active units in the network and
the subnetwork. Quantities like R and r̂ are defined analogously. The averaging operators
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·̂ and · are also extended to averages of
(n
m

)
or
(N
m

)
products of m states; e.g.,

XX :=
(N

2
)−1(X1X2 +X1X3 + · · ·+XN−1XN ), (5.19)

x̂xx :=
(n

3
)−1(x1x2x3 + x1x2x4 + · · ·+ xn−2xn−1xn), (5.20)

and so on.

Assumptions. Our uncertainty about the network state is represented by the joint
probability distribution of the individual states, from which we can derive all other
probabilities of interest. We denote it by

P(X1 = R1, X2 = R2, . . . , XN = RN |H) or P(X = R|H). (5.21)

Such probability is conditional on our state of knowledge, i.e. the evidence and assumptions
backing our probability assignments, denoted by the proposition H.

In the present discussion, H is a state of knowledge that leads to two specific properties
in our probability assignments:

H1. Permutation symmetry, expressed as the invariance of the joint distribution
(Eq. 5.21) under arbitrary permutations of the units’s labels:

P(X1 = R1, X2 = R2, . . . , XN = RN |H) =
P(X1 = Rπ(1), X2 = Rπ(2), . . . , XN = Rπ(N)|H)

for any permutation π. (5.22)

This property can reflect two very different states of knowledge: physical homogeneity of
the network, or symmetry in our ignorance about the network. This property is called finite
exchangeability in the Bayesian literature and its basis, consequences, and alternatives to it
are discussed in Section 5.2.4.

H2. The network average X has a particular distribution Q:

P(X = A|H) = Q(A), A ∈
{

0, 1
N ,

2
N , . . . , 1

}
. (5.23)

For the moment we are not concerned about the specific form of Q and about how it
was assigned: it could, e.g., arise from maximum-entropy arguments [e.g.: 5, 36, 82, 115,
174–176, 187, 315, 345] used with data on the network.

Formulae. The state of knowledge H has the following six (not independent) main
consequences for our probability assignments:
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I. Probability for the network state:

P(X = R|H) =
(
N

NR

)−1

Q(R). (5.24)

II. Probability for the state x of any subnetwork of n units:

P(x = r|H) =
N∑

NA=0

(
N − n

NA− nr̂

)(
N

NA

)−1

Q(A). (5.25)

Note that the only summands contributing to this sum are those for which nr̂ ≤ NA ≤ N ;
the others are zero because by definition

(M
y

)
= 0 if y < 0. This remark applies to all the

sums of this kind in the rest of this Note.

III. Probability for the subnetwork state conditional on a network state:

P(x = r|X = R, H) =
(

N − n
NR− nr̂

)
. (5.26)

IV. Probability for the subnetwork average x̂:

P(x̂ = a|H) =
(
n

na

)
N∑

NA=0

(
N − n
NA− na

)(
N

NA

)−1

Q(A),

a ∈
{

0, 1
n ,

2
n , . . . , 1

}
. (5.27)

V. Probability for the subnetwork average conditional on the network average:

P(x̂ = a|X = A,H) =
(
n

na

)(
N − n
NA− na

)(
N

NA

)−1

. (5.28)

VI. The product of the states of any m distinct units from a given subnetwork,

xi1xi2 · · ·xim , 1 ≤ i1 < i2 < · · · < im ≤ n

has an expectation equal to that of the subnetwork average of such products, is independent
of the subnetwork size n:

E(xi1 · · ·xim |H) = E( x̂ · · ·x︸ ︷︷ ︸
m factors

|H) = E(X · · ·X︸ ︷︷ ︸
m factors

|H), (5.29a)
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and has an explicit expression in terms of Q:

E(xi1 · · ·xim |H) =
(
N

m

)−1 N∑
NA=0

(
NA

m

)
Q(A)

≡
N∑

NA=0

(
N −m
NA−m

)(
N

NA

)−1

Q(A).
(5.29b)

A useful relation connects the expectation of a product (Eq. 5.29) and the mth
factorial moment [272] of the probability distributions for the averages. The mth factorial
moment of the subnetwork average x̂ is defined by

E(∗)nx̂ (nx̂− 1) · · ·
(
nx̂− (m− 1)

)︸ ︷︷ ︸
m factors

|H ≡ E(∗) (nx̂)!
(nx̂−m)! |H, (5.30)

an analogous definition holding for X. We have that

E(xi1 · · ·xim |H) = (n−m)!
n! E(∗) (nx̂)!

(nx̂−m)! |H = (N−m)!
N ! E(∗) (NX)!

(NX −m)!
|H. (5.31)

As a consequence of the above relation, the first three moments of the probability
distributions P(x̂ = a|H) and P(X = A|H), are related by

E(x̂|H) = E(X|H), (5.32a)

E(x̂2|H) = E(X|H) N − n
(N − 1)n +

E(X2|H)N (n− 1)
(N − 1)n ,

(5.32b)

E(x̂3|H) = E(X|H) (N − n)(N − 2n)
(N − 1)(N − 2)n2 +

E(X2|H)3N (N − n)(n− 1)
(N − 1)(N − 2)n2 +

E(X3|H)N
2 (n− 1)(n− 2)

(N − 1)(N − 2)n2 .

(5.32c)

Relations for higher moments can be obtained recursively from (Eq. 5.31). In general,
this means that the two sets of first m moments are related by a homogeneous linear
transformation,

E(x̂m|H) =
m∑
l=1

Mml(n,N)E(X l|H), (5.33)

with a universal, lower-triangular transformation matrix Mml(n,N) that depends only on
n, N , and the condition of symmetry (Eq. 5.22).
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As intuition suggests, we have

E(x̂m|H) n→N−−−→ E(Xm|H), E(x̂m|H) n→1−−−→ E(X|H), (5.34)

the latter because xim = xi, since states are {0, 1}-valued.

The core of the six mathematical relations above are (Eq. 5.25) and (Eq. 5.27). The
latter expresses the probability for the subnetwork average as a mixture of hypergeometric
distributions [182, ch. 3, 286, § 4.8.3, 83, § II.6], with parameters N,NX, n, weighted by
the probabilities P(X = A|H) [cf. 195, § 4, esp. eq. (22)]. The connection between this
mixture representation and the condition of symmetry (Eq. 5.22) is well-known in the
Bayesian literature [61, 67, 68, 155, 183, 195].

Asymptotic approximations and generalizations. Recall the definition of the Shan-
non and Burg [41, 81] entropies for a binary probability distribution (p, 1− p) with p in
[0, 1]

H(p) := −p ln p− (1− p) ln(1− p), HB(p) := ln p+ ln(1− p). (5.35)

The binomial coefficient has an asymptotic form that involves the two entropies above [35,
62, 244, 261, 280, 349, 355]:

ln
(
M

Mp

)
= M H(p)− 1

2 ln(2πM)− 1
2HB(p) + O

(
1√
M

)
, M large, (5.36)

and this expression can be used to obtain asymptotic forms of the mathematical formulae
(Eq. 5.24)–(Eq. 5.31) for large N , depending on the magnitudes of n and n/N . For example,
if N and n are large and their ratio k := n/N finite, the probability distributions for
the averages can be approximated (provided some regularity conditions) by continuum
densities,

nP(x̂ = a|H) ≈ f(a), N P(X = A|H) = N Q(A) ≈ F (A),
f, F : [0, 1]→ [0,+∞[,

(5.37)

and sums by integrals, and (Eq. 5.25) takes on the approximate form

f(a) =
1ˆ

0

exp
{
N

[
kH(a)−H(A) + (1− k)H

(
A− ka
1− k

)]}
F (A) dA, (5.38)

which shows an interplay of three entropies that depends on the ratio n/N . In some
cases this allows us to approximate the integral by the value at a mode determined by a
generalized entropy principle. (In fact, the standard maximum-entropy procedure can be
derived from the probability calculus via a similar approximation [270].)
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The relations above can also be generalized to K-valued states Xi in {0, . . . ,K − 1},
leading to the appearance of the generalized hypergeometric distribution [182, ch. 3, 286,
§ 4.8.3, 83, § II.6], or to real-valued states Xi in R.

We do not pursue any of these approximations or generalizations in this Note.

Examples of inferential use of the formulae

From network to subnetwork. Let us illustrate with an example how the probability
distribution for the subnetwork average x̂, determined by (Eq. 5.27), changes with the
subnetwork size n. Choose a network-average distribution P(X = A|H) belonging to the
exponential family [28, § 4.5.3, see also 89]:

P(X = A|H) = Q(A) ∝
(
N

NA

)
exp[λ2NA (NA− 1)/2 + λ1NA]. (5.39)

This is the form obtained from the principle of maximum relative entropy [e.g.: 5, 36, 82,
115, 174–176, 187, 315, 345] with first and second moments as constraints and the reference
distribution Q0 defined by Q0(A) = 2−N

( N
NA

)
, corresponding to a uniform probability

distribution for the network state X.
The probability distribution of (Eq. 5.39) is plotted in Figure 5.2, together with the

resulting subnetwork-average distributions P(x̂ = a|H), for the case in which N = 1000
units, λ1 = −2.55, λ2 = 0.005, and n = 10, 50, 100, 250. The distributions become broader
as n decreases, and the minimum of the original distribution disappears; at the same time
the finite-difference

P(x̂ = a+ 1/n|H)− P(x̂ = a|H)
1/n

presents a sharp jump at this minimum when n ≈ 100.
To the eye familiar with maximum-entropy distributions, the subnetwork-average

distributions of Figure 5.2 do not look like maximum-entropy ones with second-moment
constraints. In fact, they are not and cannot be:

P(x̂ = a|H) 6= κ

(
n

na

)
exp[κ2 na (na− 1)/2 + κ1 na] (5.40)

for any κ, κ1, κ2, unless n = 2. This impossibility holds more generally for any number
of constraints m and subnetwork size n such that m < n. The reason is simple: suppose
we have assigned a maximum-entropy distribution with m moment constraints as the
distribution for the network average. If we want the same kind of distribution for a
subnetwork of size n, we are free to play with m+ 1 parameters (normalization included),
but we must also satisfy the n+1 equations corresponding to the marginalization (Eq. 5.27).
This is generally impossible unless m ≥ n. (Impossibilities of a similar kind appear in
statistical mechanics, see e.g. ref. [232].)
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This fact can be significant for recent works [e.g., 96, 234, 297, 309, 310, 312, 336, 338,
339] in which a maximum-entropy probability distribution with second- or third-moment
constraints is assigned to relatively small subnetworks (n < 200) of neurons. If we assume
that such subnetwork is part of a larger network, and assume the condition of symmetry
(Eq. 5.22), then the larger network cannot be assigned a maximum-entropy distribution
with the same number of constraints. Vice versa, if we assign such a maximum-entropy
distribution to the larger network, then none of its subnetwork of enough large size n can
be assigned a similar maximum-entropy distribution.

The dependence of the first four moments E(x̂m|H) as a function of size n is shown
in Figure 5.3. The moments become practically constant when n ≈ 100 or larger. The
expectations of m-tuple products of states E(xi1 · · ·xim |H), proportional to the factorial
moments, are not shown as they do not depend on n.
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Figure 5.2: Probability distributions P(x̂ = a|H) for different subnetwork sizes
n, obtained from a network probability distribution P(X = A|H) having the
maximum-etropy form (Eq. 5.39).
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Figure 5.3: Moments of the probability distributions P(x̂ = a|H) as functions of
the subnetwork size n.

From subnetwork to network. We have seen that, given the condition of symmetry
(Eq. 5.22), the probability P(X = A|H) for the network average determines that of each
subnetwork average, P(x̂|H), by the marginalization (Eq. 5.27). The reverse is trivially
not true, since (Eq. 5.27), as a linear mapping from RN+1 to Rn+1, with N larger than n,
is onto but not into. Assigning a probability distribution P(x̂ = a|H) to a subnetwork
average x̂ does not determine a network distribution P(X = A|H): it only restricts the set
of possible ones; this set can in principle be determined via linear-programming methods
[146–150].
Analogous situations appear in the truth-valued logical calculus: if the composite proposition A ⇒ B is
assigned the truth-value “true”, then assigning A the value “true” also determines the value of B, whereas
assigning B the value “true” leaves the value of A undetermined.

The same linear-programming methods show that any inference from subnetwork
properties to network ones must necessarily start from some assumptions I that assign
a probability distribution P(X = R| I) for the network states. The approaches to this
task and reformulations of it have become uncountable: they include exchangeable models,
parametric and non-parametric models, hierarchical models, general linear models, models
via sufficiency, maximum-entropy models, and whatnot [e.g.: 28, 56, 58, 85, 100, 107, 129,
182, 188, 189, 191]. We now show two examples, based on a maximum-entropy approach,
that to our knowledge have not yet been explored in the neuroscientific literature.
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First example: moment constraints for the network. Consider a state of knowledge
H ′ leading to the following properties:

H ′1. the expectations of the single and pair averages x̂ and x̂x of a particular subnetwork
have given values

E(x̂|H ′) = c1, E(x̂ixj |H ′) = c2; (5.41)

H ′2. the network probability distribution P(X = R|H ′) has maximum relative entropy
with respect to the uniform one, given the constraints above.

Then the probability distribution for the network conditional on H ′ is completely
determined: it satisfies the symmetry property (Eq. 5.22) and is defined by

p(X = R|H ′) = K exp[Λ2NR (NR− 1)/2 + Λ1NR]

with K,Λm, such that the distribution is normalized and

K
N∑

NA=0

(
N −m
NA−m

)
exp[Λ2NA (NA− 1)/2 + Λ1NA] = cm, m = 1, 2. (5.42)

We omit the full proof of this statement: it is a standard application of the maximum-
entropy procedure [e.g.: 36, 82, 115, 174–176, 187, 315, 345], combined with the equality
(Eq. 5.29) of subnetwork and network expectations, e.g.

c2 = E(x̂x|H ′) =
(
N

2

)−1 N∑
NA=0

(
NA

2

)
P(X = A|H ′), (5.43)

and with relations (Eq. 5.24), (Eq. 5.26). This example is easily generalized to any number
m of constraints such that m ≤ n.

Note again that, as remarked in Section 5.2.4, the subnetwork from which the averages
in the expectations (Eq. 5.41) are calculated has a probability distribution P(x̂ = a|H)
determined by the marginalization (Eq. 5.27) and does not have a maximum-entropy form
with the same number of constraints.

Second example: subnetwork-distribution constraint. Consider another state of
knowledge H ′′ leading to the following properties:

H ′′1. the average x̂ of a particular subnetwork has a probability distribution q:

P(x̂ = a|H ′′) = q(a); (5.44)

H ′′2. the probability distribution for the network, P(X = R|H ′′), has maximum
relative entropy with respect to the uniform one, given the constraint above.
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Then the probability distribution for the network given H ′′ is completely determined
and satisfies the symmetry property (Eq. 5.22):

P(X = R|H ′′) = exp
[

n∑
na=0

Λa

(
n

na

)(
N − n

NR− na

)]
with Λa such that
N∑

NA=0

(
n

na

)(
N − n
NA− na

)
exp

[
n∑

na=0
Λa

(
n

na

)(
N − n
NA− na

)]
= q(a) (5.45)

(the normalization constraint being unnecessary since q is normalized). This result is just
another application of the maximum-entropy procedure with n + 1 (linear) constraints
given by (Eq. 5.25), where the left-hand side is now given and equal to q(a).

This example is equivalent to the generalization of the previous one with n moment
constraints, since knowledge of P(x̂ = a|H ′′) is equivalent to knowledge its first n moments.

The above examples do not mention how the values of the expectation constraints or
of the subnetwork-average probability distribution can have been assigned. They cannot be
assigned by a measurement, of course, since probabilities and expectations are not physical
quantities and cannot be physically measured – they represent guesses of an observer and
depend on the observer’s state of knowledge and assumptions. Rather, such values usually
come from measurements made on “copies” – in a very general sense – of the states of the
network; e.g., when we have a time sequence of them and measure the frequencies of their
occurrence. Such situations can again be fully analysed with the probability calculus, and
one can show [270] that the maximum-entropy formulae in the examples above are just
limit forms of such an analysis, employing measured physical data ∆ like, e.g., frequencies,
and repeated applications of Bayes’s theorem,

P(X = R|∆, I) ∝ P(∆|X = R, I) P(X = R| I), (5.46)

which updates the initial probability assignments on such data. But the discussion of this
is again outside the scope of this Note.

On the symmetry property

The symmetry property (Eq. 5.22) is called finite exchangeability in the Bayesian literature
and, as was mentioned in Section 5.2.4, its relation to the hypergeometric distribution in
expression (Eq. 5.27) for the subnetwork average is well-known [61, 67, 68, 155, 183, 195].

This property can reflect two very different states of knowledge: either (a) knowledge
that the network is somehow physically homogeneous, or (b) complete ignorance about the
network’s homogeneity or inhomogeneity. In the second case we are saying that the indices
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or labels “i” of the units are uninformative – because, for example, we have no idea of how
the units were labelled, hence we cannot presuppose any relation among the units, nor
can we presuppose any structural or topological properties of the network they constitute.
In the first case we are saying that the labels are irrelevant, even though they might be
informative. The reason could be that, even if there is a connection between labels and,
say, spatial locations of the units, each unit is nevertheless physically, homogeneously,
identically connected to all the others; so we assume that spatial location does not play a
relevant role.

An important consequence of the symmetry property is that no amount of new
evidence about an asymmetry in the labelling of some units can lead to asymmetric
predictions about the remaining ones. For example, if we have new data ∆ saying that the
first n units are in state 1 and the last n in state 0,

∆ := (X1 = X2 = · · · = Xn = 1, XN−(n−1) = · · · = XN−1 = XN = 0), (5.47)

with n large, our updated probabily distribution will still assign (as can be shown using
(Eq. 5.22) and (Eq. 5.24)) the same probability for their respective neighbouring units with
labels n+ 1 and N − n to be in state 1 or 0:

P(Xn+1 = 1|∆,H) = P(XN−n = 1|∆,H),
P(Xn+1 = 0|∆,H) = P(XN−n = 0|∆,H).

(5.48)

This may seem unreasonable – we would now say that the unit n+ 1 is more likely to be
in state 1, as the first n are, than in 0; and that the unit N − n is more likely in state 0, as
the last n are, than in 1; i.e.

P(Xn+1 = 1|∆,H) > P(Xn+1 = 0|∆,H),
P(XN−n = 1|∆,H) < P(XN−n = 0|∆,H),

(5.49)

which is equivalent to P(Xn+1 = 1|∆,H) > 1
2 , P(XN−n = 1|∆,H) < 1

2 ; but the equalities
(Eq. 5.48) make this impossible.

The two very different motivations behind the symmetry property – lack of information
and lack of relevance – can of course be handled differently by the probability calculus, in
such a way that the appearance of asymmetry in new data leads to asymmetry in updated
predictions. But this requires a more complex set of assumptions than those embodied in
H; it requires, in particular, some sort of probability distribution for the degree of physical
symmetry or homogeneity of the network, appropriately quantified.

The moral is that we should use the symmetric assumption H only if we can safely
exclude the presence of inhomogeneity or are uninterested in detecting its presence. Other-
wise, we must resort to more appropriate (and complex) assumptions. If we repeatedly
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observe new values that happen to have a very low probability according to the updated
distribution P(X = R|∆1, ∆2, . . . ,H), this could be an indication that the symmetry
property is unreasonable. Any strong departure of higher powers of measured averages
from their expected behaviour given in (Eq. 5.32) and illustrated in Figure 5.3 can also be
an indication that the symmetry property may have to be abandoned; hence the usefulness
of (Eq. 5.32).

Summary and remarks

The main point of this section was to explicitly collect and illustrate the mathematical
formulae I–VI, between the probabilities assigned to the state of a network of neurons (or
similar entities), and those assigned to the state of a subnetwork thereof. The formulae
hold in the simple case of binary states and under an assumption of symmetry. Such
relations can be found in several classical texts on probability and statistics; but we deemed
it useful to restate them in a neuroscientific context, given their fundamental importance
in relating a whole to its parts.

We have indeed seen that these formulae lead to straightforward but in some cases
unexpected consequences: e.g., if a network is assigned a maximum-entropy probability
distribution, then its subnetworks cannot be assigned a maximum-entropy distribution
of the same form, and vice versa. The formulae also readily suggest new ways of making
inferences or of formulating starting assumptions.
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5.2.5 Maximum-entropy model in probability calculus and analogy with
statistical mechanics

The formulae of the pairwise maximum-entropy model are similar or even identical to the
formulae of the Lenz-Ising or Sherrington-Kirkpatrick spin model [169, 193, 197, 220, 256,
264, 308]. This similarity is useful: it allows us to borrow some mathematical techniques,
approximations, and intuitive pictures developed for one model, and to apply them to
the other. Yet we purposely emphasize the probability-calculus viewpoint and avoid any
“explanation” via statistical-mechanical analogies and their related concepts and jargon.
On the whole, such analogies are conceptually limitative and pedagogically detrimental
because they put the logical cart before the logical horse: the logical route is not statistical
mechanics → maximum-entropy, but probability calculus + physics → maximum-entropy
→ statistical mechanics [108, chaps I–IV][17, 80, 123–125, 163, 164, 166, 174, 178, 187,
231] [see also 77, 237–239]. There are in fact important differences between the two models
and their quantities. In no particular order:

First: in the case of the Lenz-Ising model, the microscopic state is unknown: we try
to guess it from macroscopic properties; this is a problem of inference within a model
(the energy-constrained maximum-entropy model itself is not brought into question). The
opposite holds for the pairwise maximum-entropy model: the “microscopic state” (activity)
is known, and we try to find the “macroscopic properties” that lead to a good guess about
it; this is a problem of inference of a model [cf. 224].

Second: the Lenz-Ising model has one macroscopic quantity as constraint: the total
energy, which has one associated Lagrange multiplier: the statistical temperature. The
pairwise maximum-entropy model has N+(N2−N)/2 constraints, with as many associated
Lagrange multipliers. The difference of constraints between the two models implies essential
differences between their entropies; negligence of such differences leads to variants of the
Gibbs paradox [118, 119, 121, 184, 218].

Third: The couplings and external fields that appear in the energy of the Lenz-Ising
model are measurable physical quantities. The mathematically similar Lagrange multipliers
of the pairwise maximum-entropy model are statistical parameters and cannot be measured
– they encode our ignorance. In particular, the expression “∑i µisi +∑

i<j Λijsisj” – what
Gibbs [108] calls index of probability – is not an energy. The following exercise shows why:
Assume µi = −3, Λij = 0.04, consider a transition from a state S = 7 to the state S = 0,
and calculate by how many metres we could lift a 1 kg weight if that “energy” difference
could be converted into mechanical energy.

These differences do not stop us from using mathematical techniques common to the
two models to our advantage.
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5.3 Appendix to Chapter 4 “Population unitary events (PUE)
analysis”

5.3.1 Analytical derivation of f 0
A(ξ) and λ0

cp

Given the mean pairwise correlation coefficient ρ, total number of spikes across all neurons
D and the null order ξ0, the CPP parameters for constructing the null distribution, f0

A (ξ)
and λ0

cp, can be calculated as follows:
In the CPP model mean pairwise correlation coefficient can be expressed knowing the

amplitude distribution and the number of neurons [141]:

ρ =

(
E[ξ2]
E[ξ] − 1

)
N − 1 (5.50)

where E [ξ] = ∑
ξ ·fA (ξ) and E

[
ξ2] = ∑

ξ2 ·fA (ξ). For the given correlation order ξ0,
a double peaked amplitude distribution is defined as f0

A (ξ) = ηδ1,ξ+(1− η) δξ0,ξ. Therefore
the expectency of ξ and ξ2 is:

E [ξ] = η + (1− η) · ξ0 and E
[
ξ2
]

= η + (1− η) · ξ2
0 . (5.51)

Putting equation (Eq. 5.51) into (Eq. 5.50), η is obtained as:

η = ξ0 · (ξ0 − 1)− ρ · (N − 1) · ξ0
ξ0 · (ξ0 − 1)− ρ · (N − 1) · ξ0 + (N − 1) · ρ, (5.52)

therefore, knowing ρ and the null order ξ0, the amplitude distribution is written as:

f0
A(ξ) =

(
ξ0 · (ξ0 − 1)− ρ · (N − 1) · ξ0

ξ0 · (ξ0 − 1)− ρ · (N − 1) · ξ0 + (N − 1) · ρ

)
· δ1,ξ (5.53)

+
( (N − 1) · ξ0
ξ0 · (ξ0 − 1)− ρ · (N − 1) · ξ0 + (N − 1) · ρ

)
· δξ0,ξ. (5.54)

For calculating λ0
cp we make use of relation between carrier process rate and the rate

of individual neurons as follows [141]:

λcp = λ ·N
E [ξ] ,

where λ is the rate of individual neurons and can be written as λ = D
N ·T , hence:

λ0
cp = D

T · E [ξ] . (5.55)
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Basic Notation

Abbreviations:

AI asynchronous irregular
BL Boltzmann learning
CCG cross-correlogram
CDF cumulative distribution function
CPP compound Poisson process
CV coefficient of variation
FF Fano factor
FP false positive
HOC higher-order correlation
IME inhibited maximum entropy
ISI inter-spike interval
ME maximum entropy
MPST massively parallel spike trains
UE unitary event
PUE population unitary event
RBN random balanced network
TP true positive
WOI window of interest
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Frequent mathematical symbols:

:= defined as or denoted by
≡ identically equal to
≈ approximately equal to
ˆ estimated values
H0 null hypothesis
α significance threshold of a statistical test
ξ true order of correlatin among spike trains
ξc test order used in the test statistics of the PUE method
ξ0 null order assumed in the null hypothesis of the PUE method
N total number of neurons (spike trains) in a data set
fA amplitude distribution of the CPP model
λcp rate of the carrier process of the CPP model
nξc population coincidence count
C population spike count
S surprise
gij raw covariance or coupled activity of the neuron pair ij
cij covariance of the neuron pair ij
ρij Pearson correlation coefficient of the neuron pair ij
Pp probability distribution of the pairwise maximum entropy model
Pr probability distribution of the reduced maximum entropy model
Pi probability distribution of the inhibited maximum entropy model
Λ, µ lagrange multipliers
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