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A Multinomial Probit Model with Latent 
Factors: Identification and Interpretation 
without a Measurement System*

We develop a parametrization of the multinomial probit model that yields greater insight 

into the underlying decision-making process, by decomposing the error terms of the utilities 

into latent factors and noise. The latent factors are identified without a measurement 

system, and they can be meaningfully linked to an economic model. We provide sufficient 

conditions that make this structure identified and interpretable. For inference, we design 

a Markov chain Monte Carlo sampler based on marginal data augmentation. A simulation 

exercise shows the good numerical performance of our sampler and reveals the practical 

importance of alternative identification restrictions. Our approach can generally be applied 

to any setting where researchers can specify an a priori structure on a few drivers of 

unobserved heterogeneity. One such example is the choice of combinations of two options, 

which we explore with real data on education and occupation pairs.
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1 Introduction

The multinomial probit (MNP) model is a useful tool to estimate decision-making pro-

cesses, especially when alternatives have correlated error terms. With an increasing num-

ber of alternatives, however, it becomes prohibitively difficult to estimate. The prolifer-

ation of parameters in the covariance matrix implies that it is not only computationally

challenging, but also difficult to interpret, because a large, unstructured covariance matrix

is utterly non-informative about the unobserved heterogeneity that drives choices. For ex-

ample, taste shocks that apply to specific alternatives in a structured way are hidden in

the error terms’ noise.

To address the computational challenge, progress has been made by imposing some

structure on the covariance matrix—for example by specifying a single latent factor (Geweke

et al., 1994), a structured covariance matrix (Yai et al., 1997), zero restrictions deter-

mined stochastically in a data-driven way (Cripps et al., 2009), or autoregressive error

terms (Bolduc, 1992). For panel data, researchers have specified multiple factors (Elrod

and Keane, 1995), random effects (Nobile et al., 1997), and autoregressive error terms

(Börsch-Supan et al., 1992). These approaches represent steps toward improved compu-

tation and interpretation, but many are tailored to panel data, and unfortunately the

cross-sectional approaches do not make enough progress to interpret the covariance ma-

trix. In some instances, identification questions remain, which would limit the inference

that can be made about the underlying economic model.

To allow an interpretable latent structure, the MNP model can be combined with a

structural equation model. In so-called ICLV models (integrated choice and latent vari-

ables), the underlying utilities are determined by latent factors that separate the unob-

served heterogeneity into its different sources (Ben-Akiva et al., 2002; Daziano and Bolduc,

2013; Bhat and Dubey, 2014). While this approach is flexible (even if challenging to esti-

mate, see Fu and Juan, 2017), it requires extra data to measure the latent factors. Yet,

researchers often do not have such data available to extract the factors. At the same time,

they may have a good idea a priori about how latent tastes or traits could map into the

available choices. For example, in the study of simultaneous choices (Train, 2009), there is

typically a clear structure of how choice-specific tastes relate to the different alternatives.

In the present paper, we develop a powerful parametrization of the MNP that decom-

poses the unobserved heterogeneity into latent factors, without requiring extra data to

measure them. The fully identified and implied parsimonious latent structure, which links

directly to an economic model, yields practical interpretability. The resulting implemen-

tation is computationally efficient compared to state-of-the-art methods.

Our methodological contribution is to develop a very general approach for cross-

sectional data that relates a number of unobserved factors to the utilities of the alterna-

tives. These (possibly correlated) factors can directly reflect an economic decision model

and are not extracted from a measurement system, only assigned to the utilities through an

allocation matrix. This structure reparametrizes the MNP to separate noise (idiosyncratic
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error terms) from economic decision content (latent factors), and makes the covariance

matrix manageable both for estimation and interpretation.

To ensure full economic interpretability, we place identification at the core of our analy-

sis. New identification challenges arise because of the lack of a measurement system, as the

factors are only allocated and not extracted. We provide several theoretical identification

criteria, and also show how empirical identification is achieved in practice.

Our second contribution is computational. We develop an efficient approach relying on

Bayesian methods for the inference of this factor structure model—its implementation in an

R package is available from the authors upon request. Markov chain Monte Carlo (MCMC)

methods have been successfully applied to the MNP model (McCulloch and Rossi, 1994,

2000; Nobile, 1998, 2000; McCulloch et al., 2000), with recent advances relying on marginal

data augmentation that are even more efficient (Imai and van Dyk, 2005a, 2005b; Jiao

and van Dyk, 2015). These latter methods introduce extra “working parameters” that

cannot be identified from the data but serve to improve the sampler’s convergence and

mixing (van Dyk et al., 2001). We apply these techniques and construct suitable working

parameters that build on our identification restrictions. Using synthetic and real data,

we provide evidence that our sampler succeeds in decomposing the covariance structure

between latent factors and noise. We show that our approach performs at least as well as

the most recent developments for the standard MNP model (Imai and van Dyk, 2005a;

Jiao and van Dyk, 2015), and that it outperforms them with respect to interpretability

and economic content.

Our MNP with latent factors can be applied to any setting where unobserved tastes,

effects, or features are present for some alternatives but not others, and where an alloca-

tion of these factors to the latent utilities can be specified beforehand. Throughout the

paper, we use as a motivating example a model where agents choose simultaneously their

occupation and level of education. In this joint decision process, the different alternatives

reflect pairs of decision types, and are naturally correlated. The latent factors are speci-

fied at the education and occupation levels, so as to capture taste shocks associated with

the options at each of these two decision types. This setup allows us to disentangle the

channels of unobserved preferences, where the standard MNP model would remain silent,

as the underlying factors would be hidden in the overall covariance matrix.

The paper is organized as follows. Section 2 lays out the specification and identification

of our MNP model with latent factors. The identification problems at stake are thoroughly

discussed, and formal proofs of identification are given. Section 3 introduces the Bayesian

inferential procedure. We present marginal data augmentation methods and explain how

we use them to construct an MCMC sampler that safeguards the identification of the

model and that is efficient at the same time. Section 4 investigates the performance of

the proposed sampler in a Monte Carlo experiment, and Section 5 presents the empirical

application to the joint choice of occupation and education. Section 6 concludes.
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2 Specification and identification of the multinomial probit

model with latent factors

2.1 Model specification

Each agent i = 1, . . . , N takes a decision betweenK+1 alternative choicesDi ∈ {0, 1, . . . ,K}
by solving the following utility maximization problem:

Di = argmax
k

Uik, (1)

Uik = W ′ikβ + ε?ik, (2)

for k = 0, 1, . . . ,K, where each utility Uik is assumed to depend linearly on observed

alternative-specific1 characteristics Wik through a vector of regression coefficients β.

To operationalize Eq. (1), distributional assumptions and identification restrictions are

required on the error terms ε?ik. Depending on these assumptions (e.g., logistic or normal

distribution), this model could give rise to the well-known conditional logit, to the nested

logit or to the multinomial probit model (see Train, 2009, for a review). In this paper,

we introduce an alternative approach that assumes an underlying latent structure of the

error terms. More specifically, each ε?ik is decomposed into J latent factors η?ij that are

allocated to the latent utilities through an allocation matrix Γ ?.

ε?ik = Γ ? η?i + uik, (3)

where Γ ? is a user-specified matrix of dimension (K + 1) × J , η?i =
(
η?i1, . . . , η

?
iJ

)′
is the

J-vector containing the latent factors, and uik is the (K+1)-vector of idiosyncratic errors.

For the sake of simplicity, all unobservables are assumed to be normally distributed:(
η?i
ui

)
|Wi ∼ N

((
0

0

)
;

(
Φ? 0

0 Σ?

))
, (4)

with Σ? = diag
(
σ2

0, . . . , σ
2
K

)
and Wi = (Wi0,Wi1, . . . ,WiK)′. The matrix Φ? can either

be full if the latent factors are assumed to be correlated, or a diagonal or block-diagonal

matrix (i.e., with zero constraints) if they are uncorrelated, depending on the requirement

of the underlying economic theory. The latent factors η?i , as well as the error terms

ui, are assumed to be independent of the covariates, and the factors are assumed to be

independent of the error terms. This specification results in the following covariance

matrix for the unobserved part of the model:

Ω? ≡ Var(ε?i ) = Γ ? Φ? Γ ?′ +Σ?. (5)

1. The covariates could also be individual-specific (i.e., fixed across alternatives), in which case the
regression coefficients would vary across alternatives. We stick to the alternative-specific covariates in this
notation, for the sake of simplicity, and because they help for identification in practice (Keane, 1992).
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We use the notational convention that starred parameters refer to the unidentified

version of the model, while later in the paper unstarred versions will denote the counterpart

of these parameters in the identified version of the model. Identification issues and the

restrictions they require will be discussed in the following sections.

We call the matrix Γ ? ‘allocation matrix,’ instead of ‘factor loading matrix’ in the

terminology of the factor analysis literature, to prevent possible confusion. In our setup,

this matrix is not estimated but fixed by the analyst. Usually, Γ ? will take the form

of a binary matrix that determines the mapping of the η?ij into the latent utilities. We

impose this fixed structure for two reasons. The first is an economic argument: In the

applications we have in mind, the latent factors capture taste shocks that are associated

with different features of the alternatives, and the interest lies in learning how these

shocks are related. Specifying the mapping between latent utilities and factors usually

comes naturally. Decomposing the covariance matrix Ω? is helpful for the interpretation

of the decision process, as Ω? by itself is rather non-informative. The structure given by

the allocation matrix induces parsimony, in the sense that fewer parameters describe the

structure. Furthermore, the decomposition of Ω? separates the economic content in Φ?

from noise in Σ?. The researcher can learn about the relative importance of these sources

of unobserved heterogeneity, and even learn how the different factors in η?i are related to

each other. For more intuition, we refer to the discussion in our example in Section 2.2.

The second reason for the fixed structure in Γ ? is a statistical one: Contrary to tra-

ditional latent factor models where the factors are extracted from multiple manifest vari-

ables, in our framework only the choice is observed—a single categorical variable—and

the latent structure is obtained as the decomposition of the overall covariance matrix of

the model. No extra information is available to measure the latent factors, contrary to

integrated choice and latent variable (ICLV) models (Ben-Akiva et al., 2002; Bhat and

Dubey, 2014). This complicates both the identification and the inference of the model.

The fixed factor loadings structure we impose helps in this respect, as we will explain in

the following sections.2

The informed reader may argue at this point that the standard MNP can easily accom-

modate any covariance matrix, including one generated by an underlying structure such as

in Eq. (5). While this is true, we argue that our structural approach, with the decomposi-

tion in Eq. (3), provides a much clearer interpretation. The standard MNP would only be

able to recover Ω? and ignore the underlying structure of this matrix on the right-hand

side of the equation. Our approach not only addresses this potential structure, but uses

it: its parsimonious structure facilitates the inference of larger models compared to the

reduced-form version offered by the standard MNP model. As usual, this gain comes at a

price: any misspecification in the structure of the latent part of the model may result in

a deterioration of the results. How large the risk of misspecification is will depend on the

application at hand. In the example we introduce below, we argue this risk to be rather

2. Estimating the factor loading matrix rather than fixing it would be possible in theory, but given the
complexity of the task, we reserve this extension, and the investigation of its feasibility, for future research.
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small. A comparison of the parameters of the overall covariance matrix Ω? with a regular

MNP is always possible and advisable.

Finally, note that despite the fixed factor loading matrix of our model, our approach

can easily be re-expressed as a standard factor model. Using the Cholesky decomposition

of the covariance matrix of the factors, it is possible to define an alternative model with

factor loading matrix Γ̃ ? ≡ Γ ?(Φ?)
1
2 and covariance matrix the identity matrix, Φ̃? = IJ .

This reparametrization would be observationally equivalent to Eq. (3) with the covariance

structure of Eq. (5), and would correspond to a standard factor model. The factor loadings

in Γ̃ ? would be estimated, with some restrictions implied on these parameters. In our

framework, however, we prefer to fix the factor loading matrix and estimate the covariance

matrix. The factor loading matrix has no particular meaning in the context of our choice

model, while the covariance matrix is interesting to interpret, as it directly gives an idea

of the importance and relatedness of the different taste shocks.

2.2 Example: A model of joint decisions for the study of education and

occupation choices

Consider that individuals make their decisions about education and occupation simultane-

ously. Each available alternative is a combination of two decision types: one schooling level

among NS schooling alternatives, and one occupation among NO occupations.3 There is

a total number of NSNO joint alternatives. Two taste shocks are assumed to influence

each level of decision: schooling-related shocks in η?Si for each available schooling level,

and occupation-related shocks η?Oi for the occupations.

To provide more intuition, we develop here the case with two schooling levels, NS = 2,

and three occupations, NJ = 3, corresponding to a total of 6 alternatives. The error term

of the overall model in Eq. (3) can be decomposed as:

ε?i = Γ ?η?i + ui, η?i =


η?O1
i

η?O2
i

η?O3
i

η?S1
i

η?S2
i

 , Γ ? =



1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1


, (6)

with ui = (ui1, . . . , . . . , ui6)′.4

The allocation matrix Γ ? determines which factors influence the different occupations

and education levels. The elements of η?i can be interpreted as occupation/education-

specific taste shocks, and Γ ? forms all of their possible combinations. The taste shocks

3. By “occupation,” we do not mean a precise type of job, but rather a bundle of characteristics that
make it possible to create broad groups of job types.

4. The general formulation of Γ ? would be
(
ιNS ⊗ INO INS ⊗ ιNO

)
, where the vector ιN = (1, . . . , 1)′

contains N ones, while IN is the (N ×N)-identity matrix, and ⊗ denotes the Kronecker product.
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(factors) are allowed to correlate, with the following partitioned covariance matrix:

Φ? =

(
Φ?OO Φ?OS
Φ?SO Φ?SS

)
,

where Φ?SO = Φ?OS
′.

The need for different latent factors η?Oi and η?Si , as well as their possible non-zero

correlation, arises from the economic content of this model. Typically, in a decision-making

framework, agents are allowed to have unobserved taste shocks that make them more or

less inclined towards each alternative. In the classic random-utility setup, these random

components are usually added to the “explained” preference from observed individual

characteristics or choice-specific attributes. These random components, however, always

correspond to a specific type of choice. Since two types of choices are combined in our

setup, we need to account for taste-shocks for each type of decision. For example, if a

worker derives extra utility from working in a service sector job, we want to allow for this

taste to apply whenever she considers a “service” occupation, regardless of whether she

considers this occupation paired with a low education level or a high education level.

By modelling the choice as being from among combinations of an occupation and an

education level, in a simultaneous choice setting, we merely assume that the expected

utility of a given education level is influenced by the expected occupation, and vice versa.

This resembles the anticipation of future utility from education in different occupations

that is inherent in dynamic structural models such as Keane and Wolpin (1997) or Lee

(2005). Agents do not ignore their expected occupation when deciding on education. For

instance, someone interested in manual work will expect a low utility gain from engaging

in a PhD program in astrophysics. Assuming that individuals already have a broad idea

of the type of occupation they would like to have later when they choose their education

means that econometrically, this choice can be treated as simultaneous.

2.3 Identification

The MNP model is notorious for being non-identified if no restrictions are imposed on its

structure. Our version of this model with latent factors introduces additional challenges

that need to be tackled appropriately. This section discusses the different identification

problems at stake, and how we address them.

2.3.1 Location problem

The lack of natural location of the latent utilities—they can be shifted simultaneously

without affecting their ordering, i.e., without changing the likelihood—creates a well-

known identifiability problem (see Dansie, 1985; Bunch, 1991). The traditional solution

is to define a base category, e.g., k = 0, and to work with the differences in utilities with

respect to this baseline. Defining Yik ≡ Uik − Ui0, the decision problem stated in Eq. (1)
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can thus be re-expressed as:

Di =

0 if max(Yi) < 0,

k if max(Yi) = Yik ≥ 0,
(7)

for i = 1, . . . , N , where max(Yi) is the maximal element of Yi = (Yi1, . . . , YiK)′. This

representation is observationally equivalent to the original decision problem in Eq. (1) and

solves the current identification issue.

The overall model in differenced form is obtained by pre-multiplying Eqs. (2) and (3)

by the matrix ∆K :

Yi ≡ ∆KUi = Xiβ + Γηi + ωi, (8)

where:

∆K =
(
−ιK IK

)
, Xi = ∆KWi, ωi = ∆Kui, (9)

while for the latent factors, this first differentiation generally results in a reduction of their

number. This reduction can be operationalized through two transformation matrices H

and G:

Γ = ∆KΓ
?H, ηi = Gη?i , (10)

where ηi is a vector containing the P latent factors in their differenced form with respect

to the factors appearing in the baseline utility Ui0. G is a matrix of dimension (P × J)

that yet needs to be specified, and H is the corresponding (J × P )-matrix, such that

Γηi = ∆KΓ
?HGη?i = ∆KΓ

?η?i . (11)

Some conditions on both G and H, which will be discussed below, are required to make

this transformation feasible.5 The transformation in Eq. (10) looks more complicated than

those of the covariates and the error terms in Eq. (9), because the latent factors driving

the baseline utility Ui0 may also influence other utilities, and cancel out selectively when

the whole system is differentiated.

In most applications, the specification of G comes naturally, as it depends on how

the latent factors cancel out in the first differentiation of the system. Our education-

occupation joint decision example, continued in the following subsection, gives an illus-

tration. In more sophisticated models, G and H might be less straightforward to specify.

Proposition 2.1 provides a sufficient condition for G and H to be valid matrices for the

required transformation, which can help specify them.

5. If G had a left generalized inverse H such that HG would be equal to the identity matrix, the problem
would be trivial. This is not the case, unfortunately, because G is of dimension (P ×J) and therefore only
has at most P < J linearly independent columns.
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Proposition 2.1. A sufficient condition for G and H to allow the transformation in

Eq. (10), i.e., to fulfill the condition in Eq. (11), is that

1. G is made of P linearly independent rows of ∆KΓ
?, where P = rank (∆KΓ

?), or of

any linear combination of the rows of ∆KΓ
? that provides P linearly independent

rows,

2. H is the Moore-Penrose pseudoinverse of G.

Proof. See Appendix A1.

Because of the normality assumption made in Eq. (4) on the unobservables in the

original model, the latent factors and error terms are also normally distributed in the

differenced system, with following covariance matrices:

Φ ≡ Var(ηi) = GΦ?G′, (12)

Σ ≡ Var(ωi) = ∆KΣ
?∆′K = σ2

0ιKι
′
K + diag(σ2

1, . . . , σ
2
K), (13)

and the overall covariance matrix of the latent part of the differenced system is equal to:

Ω = Γ ΦΓ ′ +Σ. (14)

Example: Differenced system in the education-occupation joint decision model.

Since each latent utility is influenced by one schooling-specific effect and one occupation-

specific effect, a natural transformation of the system in Eq. (6) is to subtract the two

factors of the baseline utility (first occupation and first education factors) from the other

factors, within each decision type. This can be obtained from the transformation in

Eq. (10) by defining the matrix G as:

G =

−1 1 0 0 0

−1 0 1 0 0

0 0 0 −1 1

 , ηi
(P×1)

= Gη?i =

η
?O2
i − η?O1

i

η?O3
i − η?O1

i

η?S2
i − η?S1

i

 .

The general formulation for G that can be applied to any choice setting where two types

of choices are combined is

G =

(
∆(NO−1) 0

0 ∆(NS−1)

)
,

with Moore-Penrose pseudoinverse equal to:

H =

(
∆+

(NO−1) 0

0 ∆+
(NS−1)

)
, ∆+

N =

(
0(1×N)

IN

)
−
ι(N+1)ι

′
N

N + 1
.

It can be verified that this choice of G and H fulfills the condition in Proposition 2.1. The

allocation matrix corresponding to G and H in this general setting, where two choices are
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made jointly, becomes

Γ
(K×P )

= ∆KΓ
?H =

 I(NO−1) 0[(NO−1)×(NS−1)]

ι(NS−1) ⊗

(
0[1×(NO−1)]

I(NO−1)

)
I(NS−1) ⊗ ιNO

 ,

where P = (NO − 1) + (NS − 1). More specifically, in our example with P = 3 factors,

this matrix is

Γ =


1 0 0

0 1 0

0 0 1

1 0 1

0 1 1

 .

Finally, the covariance matrix of the latent factors is the following partitioned matrix:

Var(ηi) =

(
∆(NO−1)Φ

?
OO∆′(NO−1) ∆(NO−1)Φ

?
OS∆′(NO−1)

∆(NS−1)Φ
?
SO∆′(NS−1) ∆(NS−1)Φ

?
SS∆′(NS−1)

)
.

Necessary and sufficient conditions for identification. The identification of Φ and

Σ from Ω, using the mapping defined in Eq. (14), hinges on two conditions. First, the

number of parameters in the structural system with Φ and Σ should not exceed the number

of available linear equations, i.e., the number of free parameters in Ω in the reduced-form

model. Hence the following condition:

P (P + 1)

2
+K + 1 ≤ K(K + 1)

2
,

which is fulfilled for all K > P + 1.6 This condition on the number of free parameters

relative to the number of available equations is, however, only necessary and not sufficient.

An additional condition is required to achieve identification. For any pairs of matrices

{Φ,Σ} and {Φ̌, Σ̌}, such that there exists covariance matrices Ω and Ω̌ fulfilling Eq. (14)

for both pairs, i.e., Ω = Γ ΦΓ ′ +Σ and Ω̌ = Γ Φ̌ Γ ′ + Σ̌, the overall covariance matrices

can only be equal, Ω = Ω̌, if and only if Φ = Φ̌ and Σ = Σ̌. We obtain this result by

making two assumptions on the structure of the allocation matrix Γ in the differenced

system, which are stated in Assumption 2.1.

Assumption 2.1. The allocation matrix Γ in the differenced system is such that:

1) It is full rank, i.e., rank (Γ ) = P .

6. In our example, this condition is fulfilled for any NS ≥ 2 and NO ≥ 2, where at least one of the two
inequalities is strict. A model with NO = NS = 2 would therefore not be identified without any additional
restrictions—at least one restriction on Φ or Σ would be required.
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2) Every row of Γ is a linear combination of some (or all) of its other rows.

The second condition corresponds to a row-deletion property: Any row of Γ can be

deleted without reducing the full rank of the matrix. This property is similar to identifica-

tion requirements relying on rank conditions that are traditionally used in standard factor

analysis, such as in Anderson and Rubin (1956, see, e.g., Theorem 5.1). They are slightly

different in our framework, because we do not deal with the identification of the factor

loading matrix—which is fixed in our model—but with the identification of the covariance

matrix of the factors—which is fixed to the identity matrix in standard factor analysis.

Therefore, we state and prove the full conditions for the identification of our model, for

the sake of completeness.

Assumption 2.1, combined with the necessary condition on the number of latent factors

relative to the number of alternatives (K > P +1), is sufficient for identification, as stated

in the following proposition:

Proposition 2.2. If the allocation matrix Γ defined in Eq. (10) satisfies Assumption 2.1,

in a model where K > P + 1, then the covariance matrix of the latent factors Φ and the

idiosyncratic variances σ2
0, σ

2
1, . . . , σ

2
K are identified from the overall covariance matrix Ω.

Proof. The proof relies on a rank condition, see details in Appendix A2.

Although the linear function corresponding to Eq. (14) is bijective, the proof of Propo-

sition 2.2 only uses its injectivity to show that Φ and σ2
0, σ

2
1, . . . , σ

2
K are identified from

Ω. The surjectivity of this function cannot be exploited: If all covariance matrices Φ and

all variances σ2
0, σ

2
1, . . . , σ

2
K yield a matrix Ω that is positive semi-definite, the reverse is

not true and not all covariance matrices Ω correspond to a positive semi-definite matrix

Φ and strictly positive variances σ2
0, σ

2
1, . . . , σ

2
K . This remark has important implications

for the inference of the model. Although in theory it would be possible to work with the

reduced-form model that only involves Ω, and to retrieve the corresponding parameters Φ

and σ2
0, σ

2
1, . . . , σ

2
K , this approach would require an estimation under constraint to guar-

antee the positive semi-definiteness and positiveness of the corresponding parameters. In

the Bayesian framework used in this paper, this would imply sampling from non-standard

truncated distributions. Additionally, this would introduce complications in the inter-

pretation of the prior distribution—the prior would be specified on Ω, and would induce

priors on Φ and Σ that would not be straightforward to derive and might have odd shapes.

For these reasons, it turns out to be easier to work with the structural form model using

the right-hand side of Eq. (14), for the sake of inference and interpretation of the model.

In the remainder of the paper, we work with the differenced system in Eq. (8). To

simplify text and notation, we refer to the differenced latent factors simply as the latent

factors, and similarly for the utilities and the error terms.

Coming back to our example, it can easily be shown that in this case Assumption 2.1

holds by reordering the rows of Γ such that each row containing a single 1 appears on top
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to form the identity matrix:

Γ
(K×P )

=

(
IP

ι(NS−1) ⊗ I(NO−1) I(NS−1) ⊗ ι(NO−1)

)
≡

(
IP

Γ 2.

)
(15)

Since the top block is the identity matrix, Γ can be put in reduced row echelon form,

which implies it is full rank. Given that each row and each column of the lower block Γ 2

contains two nonzero elements, respectively, and the upper block is the identity matrix,

any row of Γ can be obtained from elementary operations on two of its other rows. This

fulfills the second point of Assumption 2.1.

2.3.2 Scaling problem

The second well-known identification problem arises because the latent utilities Uik have

no natural scale—they can all be multiplied by a positive constant without changing their

ordering. Therefore, one restriction that sets the scale of the utilities is required to achieve

identification, even in the differenced system in Eq. (8).

In the MNP framework, this identification problem is commonly solved by fixing one of

the diagonal elements of the covariance matrix of the error terms to a constant—usually,

the first variance is set to one (see McCulloch and Rossi, 1994; McCulloch et al., 2000).

Alternatively, Burgette and Nordheim (2012) impose a restriction on the trace of the

covariance matrix. This restriction makes the model symmetric with respect to the choice

of the baseline level, and exhibits computational advantages over the standard restriction

of the MNP model.

Given the latent structure of our model, many different strategies can be implemented

to address this identification problem. We consider the following restrictions, for a user-

defined constant c ∈ R+:

Table 1: Identification restrictions, four strategies

Idiosyncratic variances Overall covariance matrix

Element restriction R1a R2a
σ2

1 = c Ω[1,1] ≡ Φ[1,1] + σ2
0 + σ2

1 = c

Trace restriction R1b R2b∑K
k=0 σ

2
k = c tr(Φ) +

∑K
k=0 σ

2
k = c

All these restrictions prevent the utilities from being rescaled, but they operate through

different channels. First, the two R1* restrictions only fix the variance(s) of the error

term(s) in Σ, while the R2* conditions impose the restriction on the overall covariance

matrix of the latent part of the model, Ω. The latter ones are therefore equivalent to the

way identification is usually achieved in the MNP model. Second, the two R*a restrictions

require the analyst to select one baseline utility to impose the restriction (in this case,

the first one), whereas the two R*b restrictions impose the restriction on a combination

11



of all the parameters affected by the scaling problem. It resembles the trace restriction of

Burgette and Nordheim (2012) and does not create any asymmetry between the utilities

because of the choice of the restriction.

These four identification strategies are innocuous for the interpretation of the model—

they only set the scale of the utilities in different ways—and they do not affect the general

identification of the model stated in Proposition 2.2.7 However, they have very different

implications for the inference of the model. Only the first one, R1a, can be implemented

in a simple way, as it only restricts a single parameter. All others put the restriction

on a combination of several parameters, which makes the whole estimation problem far

less trivial. Besides this practical issue, they may also imply different properties of the

estimator. In the Bayesian setting adopted in this paper, this translates into different

features of the sampler, as well as different prior distributions on the parameters of the

model. It is crucial to grasp these subtleties to fully understand how to carry out inference

and to interpret the results.

3 Marginal data augmentation methods for the inference of

the identified model

We now present the algorithm used for inference that guarantees the identification con-

ditions just laid out. This algorithm has been implemented as an R package, so that

interested researchers can apply the proposed method conveniently.8

Without the identification restriction, it would be straightforward to make inference

on our model. Standard data augmentation methods could be used to simulate the unob-

served latent factors and latent utilities (Tanner and Wong, 1987), and no complications

would arise in the implementation of a simple Gibbs sampler. The restriction required for

identification, unfortunately, completely changes the setup, as no prior distribution that

fulfills this identification condition can be found (except in the R1a case). Therefore, there

is a dichotomy between two versions of the model: the identified version we are interested

in but that is impractical to handle on the one hand, and the non-identified version in

which a sampler can be derived but that is difficult to interpret because of the lack of iden-

tification on the other hand. In this section, we propose to exploit this dichotomy through

the use of Marginal Data Augmentation methods. These enable us to work effortlessly

with an unidentified model, then move back to an identified and therefore interpretable

version of this model.

7. As a general result, applying linear restrictions on the parameters of an identified model does not
affect its identification. In all four identification strategies, σ2

1 can be expressed as a linear function of
the constant c and of (some or all of) the remaining parameters tr(Φ) , σ2

0 , σ
2
2 , . . . , σ

2
K . Dropping this

constrained parameter reduces the number of parameters by one, and at the same time the rank of the
system of linear equations by one, but the overall system remains full rank.

8. Package available from the authors upon request.

12



3.1 Principle

Marginal Data Augmentation (MDA) methods have been introduced by Meng and van

Dyk (1999) and van Dyk et al. (2001), and developed in parallel with Parameter-Expansion

methods (Liu et al., 1998; Liu and Wu, 1999). These approaches started from the observa-

tion that one can dramatically boost the convergence and mixing of the MCMC sampler

by relaxing model restrictions, notably through the introduction of extra parameters that

cannot be identified from the data. This surprising property has been extensively and

successfully applied to models where convergence and mixing can be problematic, such as

in latent variable models, where the proliferation of latent variables usually makes param-

eter autocorrelations very high. A by-product of MDA methods is that they allow to deal

with constrained models that would otherwise be very hard or even impossible to handle.

They have been successfully implemented to the standard multinomial probit by Imai and

van Dyk (2005a) and Jiao and van Dyk (2015).

To fix ideas and understand how MDA proceeds, let us express the likelihood function

of the model, which depends on the model parameters β, Φ and Σ, in two different ways:

L(β, Φ,Σ | D,X) ∝ p(D | X,β, Φ,Σ),

∝
∫∫

p(D,Y, η | X,β, Φ,Σ)dY dη, (16)

∝
∫∫ {∫

p(D,Y, η | X,β, Φ,Σ, α2)p(α2 | Φ,Σ)dα2

}
dY dη. (17)

In Eq. (16), the likelihood is augmented with the latent utilities Y and latent factors η.

This is the traditional Data Augmentation approach (Tanner and Wong, 1987), which ex-

plicitly incorporates the latent variables into the model to facilitate sampling. In Eq. (17),

an extra parameter α2 is introduced and averaged out of the likelihood over its condi-

tional distribution p(α2 | Φ,Σ). This is the Marginal Data Augmentation approach.

The extra parameter α2, commonly called working parameter, cannot be identified by

the data, i.e., its introduction into the model does not alter the likelihood, such that

L(β, Φ,Σ | D,X) = L(β, Φ,Σ, α2 | D,X).

In our model, an obvious candidate for α2 is the scale of the latent utilities. As dis-

cussed previously in Section 2.3, the utilities have no natural scale. Therefore there exists

an infinite number of parameters α2 ∈ R+ that can be used to multiply the utilities while

leaving the likelihood of the model unchanged. We use this property for the implementa-

tion of MDA, similar to Imai and van Dyk (2005a) and Jiao and van Dyk (2015).

The working parameter and the resulting model expansion have to be chosen in such

a way that there exists a one-to-one mapping between the parameters of the expanded

model and those of the original model. This bijection ensures that it is possible to move

between the two versions of the model in a unique way, and always allows to move back

to the identified model.

Given the four identification strategies outlined in Section 2.3, four corresponding
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working parameters can be considered. Each identification restriction implies different

prior distributions on the idiosyncratic variances and the covariance matrix of the latent

factors. Each calls for a different sampling scheme, and might perform differently in

practice. We will discuss these differences and illustrate them through simulations.

3.2 Model expansion

The model in Eq. (8), assumed to be identified thanks to a restriction imposed on the

covariance matrix of its latent part, can be expanded by rescaling all the utilities by an

auxiliary parameter α ∈ R+:

αY ≡ Ỹi = Xiβ̃ + Γ η̃i + ω̃i, η̃i ∼ N
(

0; Φ̃
)
, (18)

ω̃i ∼ N
(

0; Σ̃
)
,

with:

β̃ ≡ αβ, η̃i ≡ αηi, ω̃i ≡ αωi, Φ̃ ≡ α2Φ, Σ̃ ≡ α2Σ, (19)

where tildes are used on the parameters of the expanded model to distinguish them from

their counterparts in the original (identified) model. This transformation does not affect

the observational rule in Eq. (7), so expanded utilities Ỹi can be used in place of Yi.

The auxiliary parameter α2 qualifies as a working parameter for MDA: it is not identifi-

able from the data in the unrestricted model, and it allows to define a one-to-one mapping

between the parameters of the two versions of the model, as expressed in Eq. (19). The

working parameter has to be expressed differently in the four identification strategies to

ensure that the restrictions defined in Table 1 are fulfilled, see Table 2.

Table 2: Working parameters in the four identification strategies

R1a: α2 = σ̃2
1/c, R2a: α2 =

(
Φ̃[1,1] + σ̃2

0 + σ̃2
1

)
/c,

R1b: α2 =
(∑K

k=0 σ̃
2
k

)
/c, R2b: α2 =

(
tr
(
Φ̃
)

+
∑K

k=0 σ̃
2
k

)
/c,

where c ∈ R+ is the user-defined value of the restriction.

Now that we have defined the relationship between the parameters of the identified

model and those of its expanded version, we can derive the prior distribution implied on

the former ones when a proper prior is specified on the latter ones.

3.3 Working prior distribution

The implementation of MDA requires us to average the likelihood over a prior distribution

for the working parameter p(α2 | Φ,Σ) in Eq. (17). For a given prior distribution on the

parameters of the expanded model Φ̃ and σ̃2
k, each identification strategy implies a different
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prior distribution on the working parameter α2 and on the corresponding parameters Φ

and σ2
k in the identified model. It is important to understand how the prior distribution

of the unrestricted parameters is related to the prior of the restricted parameters and of

the working parameters to implement MDA.

3.3.1 Prior for identification restrictions on idiosyncratic variances

In schemes R1a and R1b, the covariance matrix of the latent factors Φ is left unconstrained,

and only the idiosyncratic variance(s) are restricted to set the scale of the latent utilities.

Proposition 3.1 and Corollaries 3.1 and 3.2 provide the analytical results for the condi-

tional prior of the working parameter α2, as well as the prior distribution induced on

σ2
0, σ

2
1, . . . , σ

2
K in the identified model.

Proposition 3.1 (Conditional prior distribution of α2 in scheme R1a). Assuming

inverse-Gamma prior distributions on the idiosyncratic variances in the expanded model,

σ̃2
k ∼ G−1(a0; b0) , a0, b0 > 0, (20)

for k = 0, . . . ,K, the variable transformation used in scheme R1a implies the following

conditional prior distribution for the working parameter:

α2 | σ2
0, . . . , σ

2
K ∼ G−1

(
a0(K + 1); b0

K∑
k=0

1

σ2
k

)
. (21)

Corollary 3.1 (Marginal prior distribution of Σ in scheme R1a). Given the priors

in Eqs. (20) and (21), the marginal prior distribution of the idiosyncratic variances in

scheme R1a is proportional to:

p(σ2
0, . . . , σ

2
K) ∝

(
K∑
k=0

1

σ2
k

)−a0(K+1) K∏
k=0

(σ2
k)
−a0−1

1
{
σ2

1 = c
}
. (22)

Proof. The transformation of random variables provides:

p(α2, σ2
0, . . . , σ

2
K) = J(σ̃2

0 ,...,σ̃
2
K)→(α2,σ2

0 ,...,σ
2
K) p(σ̃

2
0, . . . , σ̃

2
K),

∝
(
α2
)K K∏

k=0

(σ̃2
k)
−a0−1 exp

{
− b0
σ̃2
k

}
1
{
σ2

1 = c
}
,

∝
(
α2
)−a0(K+1)−1

exp

{
− b0
α2

K∑
k=0

1

σ2
k

}
K∏
k=0

(σ2
k)
−a0−1

1
{
σ2

1 = c
}
, (23)

where the Jacobian of the transformation J(·)→(·) adds a factor of
(
α2
)K

,9 and 1
{
σ2

1 = c
}

is the indicator function that is equal to one if the corresponding condition is fulfilled, to

zero otherwise. The kernel of an inverse-Gamma distribution can be extracted from the

9. See proof in Appendix B1.
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last expression, proving Proposition 3.1. Corollary 3.1 is obtained by integrating out α2

from Eq. (23), such that p(σ2
0, . . . , σ

2
K) =

∫
p(α2, σ2

0, σ
2
2, . . . , σ

2
K) dα2.

Corollary 3.2 (Prior distributions of α2 and Σ in scheme R1b). In scheme R1b,

assuming the same prior on σ̃2
k as in Eq. (20), for k = 0, . . . ,K, implies that the condi-

tional prior distribution of α2 and the marginal prior distribution of σ2
0, . . . , σ

2
K are the

same as in Eq. (21) and Eq. (22), up to the indicator function that should be replaced by

1

{∑K
k=0 σ

2
k = c

}
in the latter equation.

Proof. This result is a direct implication of the fact that the Jacobians of the two trans-

formations R1a and R1b are identical, see Appendices B1 and B2.

The kernel in Eq. (22) does not correspond to a known distribution and cannot be

further factorized into a product of kernels for the different parameters σ2
k. This result

can be understood intuitively, as the idiosyncratic variances are all bound together a priori

because of the identifying restriction—setting the scale of the first utility automatically

sets the scales of the other utilities. Fortunately, it is straightforward to simulate this

constrained prior distribution to get an idea of its shape. This can be done by sampling

the parameters from the working prior in Eq. (20), and rescaling them appropriately to

guarantee that the restriction is fulfilled.

The analogy between schemes R1a and R1b is comparable to what Burgette and Nord-

heim (2012) find for the MNP model, where the trace restriction they propose implies the

same working prior distribution as for the original MNP model developed by Imai and

van Dyk (2005a). In practice, this result is very convenient, as the same sampling scheme

can be designed for both R1a and R1b. Only the step where the working parameter is

retrieved from the sampled values of the idiosyncratic variances will differ.

3.3.2 Prior for identification restrictions on the overall covariance matrix Ω

The case of schemes R2a and R2b is more complicated, as the restriction now involves both

the covariance matrix of the latent factors Φ̃ and the idiosyncratic variances σ̃2
0, . . . , σ̃

2
K .

The prior distributions in the expanded model and the implied prior distributions in the

identified model are summarized in Proposition 3.2 and Corollaries 3.3 and 3.4.

Proposition 3.2 (Conditional prior distribution of α2 in scheme R2a). Assuming

that the parameters of the expanded model follow an inverse-Wishart distribution and

inverse-Gamma distributions a priori, respectively,

Φ̃ ∼ W−1(ν0; t0S0) , ν0 ≥ P, S0 > 0 (pos. def.) (24)

σ̃2
k ∼ G−1(a0; t0b0) , a0, b0, t0 > 0, (25)

for k = 0, . . . ,K, the conditional prior distribution of the working parameter α2 is the
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following scaled inverse chi-squared distribution:

α2 | Φ,Σ ∼ t0

(
tr
(
S0(Φ)−1

)
+ 2b0

K∑
k=0

1

σ2
k

)
/χ2

(ν0P+2a0(K+1)). (26)

Corollary 3.3 (Marginal prior distribution of Φ and of Σ in scheme R2a). Given

the priors in Eqs. (24) to (26), the joint prior distribution of Φ and Σ in the identified

model is proportional to:

p(Φ,Σ) ∝

(
tr
(
S0(Φ)−1

)
+ 2b0

K∑
k=0

1

σ2
k

)−(ν0P+2a0(K+1))/2

× |Φ|−
ν0+P+1

2

K∏
k=0

(
σ2
k

)−a0−1
1
{
Φ[1,1] + σ2

0 + σ2
1 = c

}
. (27)

Proof. From the variable transformation expressed in Eq. (19), the joint prior distribution

of the corresponding parameters in the restricted model and of the working parameter is

derived as follows:

p(Φ,Σ, α2) = J
(Φ̃,Σ̃)→(Φ,Σ,α2)

p(Φ̃, Σ̃),

∝
(
α2
)P (P+1)

2
+K
∣∣∣Φ̃∣∣∣− ν0+P+1

2
exp

{
−1

2
tr
(
t0S0(Φ̃)−1

)}
×

K∏
k=0

(
σ̃2
k

)−a0−1
exp

{
− t0b0
σ̃2
k

}
1
{
Φ[1,1] + σ2

0 + σ2
1 = c

}
,

∝
(
α2
)−(ν0P+2a0(K+1))/2−1

exp

{
− t0

2α2

[
tr
(
S0(Φ)−1

)
+ 2b0

K∑
k=0

1

σ2
k

]}

× |Φ|−
ν0+P+1

2

K∏
k=0

(
σ2
k

)−a0−1
1
{
Φ[1,1] + σ2

0 + σ2
1 = c

}
, (28)

where J
(Φ̃,Σ̃)→(Φ,Σ,α2)

∝
(
α2
)P (P+1)

2
+K

is the Jacobian of the corresponding transformation

(see proof in Appendix B3). The kernel of a scaled inverse chi-squared distribution can be

extracted from Eq. (28), proving Proposition 3.2. Corollary 3.3 is obtained by integrating

out α2 from Eq. (28), such that p(Φ,Σ) =
∫
p(Φ,Σ, α2)dα2.

Corollary 3.4 (Prior distributions of α2, Φ and Σ in scheme R2b). In R2b, assum-

ing the same priors as in Eqs. (24) and (25) for Φ̃ and σ̃2
k, k = 0, . . . ,K, implies the same

conditional prior distribution for the working parameter α2 as in Eq. (26) and the same

marginal prior distribution for the parameters of the identified model as in Eq. (27), up to

the indicator function at the end of the latter that is equal to 1

{
tr(Φ) +

∑K
k=0 σ

2
k = c

}
.

Proof. This result comes from the fact that the Jacobians of the two transformations R2a

and R2b are identical, see Appendices B3 and B4.
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The scale matrix of the inverse-Wishart distribution and the scale parameter of the

inverse-Gamma distributions depend on a common parameter t0 in Eqs. (24) and (25).

This parameter ensures that the two parts of the unobservables of the model are scaled

similarly in the expanded model, and also allows to simplify calculations. Note that this

parameter appears in the conditional distribution of the working parameter in Eq. (26),

but not in the joint distribution of Φ and Σ in Eq. (27). Therefore, t0 is a tuning parameter

that controls to which degree the unobservables of the model are inflated in the expanded

model, but does not affect the resulting prior distribution of the corresponding parameters

in the restricted model.

As previously, the kernel in Eq. (27) cannot be further factorized into the product of two

known kernels, because the identification restriction generates prior dependence between

the covariance matrix Φ and the idiosyncratic variances σ2
k. This prior can, however, also

be simulated to get an idea of its shape.

3.3.3 Prior distribution of the remaining parameters

The regression parameters are affected by the rescaling (see Eq. (19)) but are not directly

connected to the working parameter. As a consequence, it is possible to specify their prior

distribution in the identified model, and to derive their implied prior in the expanded

model conditional on the working parameter. Using a normal prior provides:

β ∼ N (0; B0) , β̃ | α2 ∼ N
(
0; α2B0

)
, (29)

In schemes R1a and R1b the covariance matrix of the latent factors, Φ, is also not

directly connected to the working parameter, but still affected by the transformation. For

these two schemes, we assume an inverse-Wishart distribution a priori, resulting in the

same type of prior in the expanded model:

Φ ∼ W−1(ν0; S0) , Φ̃ | α2 ∼ W−1
(
ν0; α2S0

)
. (30)

3.4 Sampling scheme: MDA and partial collapsing

With the prior distribution of the working parameter and of the model parameters in

hand, both in the expanded model and in the identified model, we can design a sampling

scheme that implements the MDA approach. Our algorithm updates the parameters and

the latent variables of the model iteratively according to the steps described below, where

the working parameter α2 is sampled alongside to allow the marginal data augmentation

procedure to operate.

The sampler is presented in Algorithm 1. Each posterior distribution implicitly con-

ditions on the observed data decision D and on covariates X, and the conditioning set

always includes the most up-to-date values of the parameters and latent variables. Some

steps contain intermediate values of some parameters that are immediately discarded—

e.g., for the working parameters these intermediate steps are denoted α(a), α(b), and α(c).
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The corresponding conditional distributions are provided in Appendix C.

The covariance matrix Σ of the error terms in the differenced system has a particular

structure10 that makes it impossible to sample the variances σ2
k directly using the standard

Gibbs sampler. Instead, we rely on data augmentation methods (Tanner and Wong, 1987)

and simulate the error term ũ0 of the baseline utility in the expanded model. This simple

one-factor error structure approach was proposed by Geweke et al. (1994, Section V) and

is straightforward to implement.

This MCMC sampler has a number of interesting features that are worth pointing

out. It is a non-standard MCMC sampler that combines (marginal) data augmentation

techniques, a partial collapsing and a partial marginalization of the Gibbs sampler (van

Dyk and Park, 2008, 2009), to generate a Markov chain with improved mixing properties

and better convergence.

In step 1, the working parameter is sampled from its conditional prior distribution that

depends on Φ and Σ in the identified model, as no other information is available at this

stage to move to the expanded model. This is done using the results of Section 3.3.1 or

Section 3.3.2, depending on the chosen identification strategy. Steps 1 and 2 are carried

out conditional on the covariance matrices Φ and Σ, but not on the latent variables η̃ and

ũ0. Integrating out these latent variables in some steps of the sampler, while explicitly

drawing them and conditioning on them in other steps (e.g., in steps 3 and 4), is allowed

in the framework of a partially collapsed Gibbs sampler (van Dyk and Park, 2008, 2009).

As emphasized by these authors, partially collapsing the Gibbs sampler must be done with

care, as it may alter the stationary distribution of the Markov chain. Particularly, only

intermediate quantities that are not conditioned upon in subsequent steps of the sampler

can be marginalized and trimmed safely.11 This is the case here: Since η̃ and ũ0 do not

appear in any conditioning set until they are sampled in step 3, they can be marginalized

and trimmed in the first two steps of the sampler.

The implicit goal of step 2 is to sample β from p(β | Ỹ , Φ,Σ). This is done by sampling

jointly the regression parameters and the working parameter from p(β, α2 | Ỹ , Φ,Σ), which

is the same as sampling from p(β̃, α2 | Ỹ , Φ,Σ) and transforming β = β̃/α. Importantly,

β and α2 need to be sampled simultaneously, so that the marginal data augmentation

procedure does not distort the prior distribution of the regression parameters. In step 3,

the working parameter is not sampled jointly with the latent variables η̃ and ũ0, but rather

conditioned upon. The fact that the working parameter is not sampled in each step of

the sampler implies that we are dealing with a partially marginalized Gibbs sampler (see

van Dyk, 2010, Section 3.2). This is a valid step in this framework, as η̃ and ũ0 only need

to be sampled in the expanded model to then allow the sampling of Φ and Σ in step 4. The

values of these latent variables in the identified model are of no particular interest, and

they are not used in the first two steps of the sampler. Hence, their trimming is possible

10. See Eq. (13).
11. I.e., they can be moved from the conditioning set to the set of parameters or latent variables being

sampled, and then discarded from the sampling scheme for these steps.

19



Algorithm 1 MCMC Sampler

step 0: Set t← 0. Initialize model with starting values β(0), Φ(0), Σ(0), and Y (0).

while t < T do

step 1: Sample
(
Ỹ , (α(a))2

)
from p(Ỹ , α2 | β(t), Φ(t), Σ(t)) in steps:

(a) Draw (α(a))2 from its conditional prior p(α2 | Φ(t), Σ(t)). . Appendix C1

(b) Draw Ỹ from p(Ỹ | (α(a))2, β(t), Φ(t), Σ(t)):

for i := 1, . . . , N do

for k := 1, . . . ,K do

Sample Yik from p(Yik | Yi,−k, β(t), Φ(t), Σ(t)).

end for

Set Ỹi = α(a)Yi.

end for

step 2: Sample
(
β(t+1), (α(b))2

)
from p(β, α2 | Ỹ , Φ(t), Σ(t)) in steps:

(a) Draw (α(b))2 from p(α2 | Ỹ , Φ(t), Σ(t)). . Appendix C2

(b) Draw β̃ from p(β̃ | (α(b))2, Ỹ , Φ(t), Σ(t)).

(c) Set β(t+1) = β̃/α(b).

step 3: Sample (η̃, ũ0) from p(η̃, ũ0 | Ỹ , β(t+1), Φ(t), Σ(t), (α(b))2) in steps:

(a) Draw η̃ from p(η̃ | Ỹ , β(t+1), Φ(t), Σ(t), (α(b))2). . Appendix C3

(b) Draw ũ0 from p(ũ0 | η̃, Ỹ , β(t+1), Φ(t), Σ(t), (α(b))2).

step 4: Sample
(
Φ(t+1), Σ(t+1), (α(c))2

)
from p(Φ,Σ, α2 | Z̃, η̃, ũ0),

where Z̃ = (Z̃1, . . . , Z̃N )′ with Z̃i = Ỹi − α(b)Xiβ
(t+1) − Γ η̃ + ũ0, for i = 1, . . . , N ,

using the following accept-reject procedure:

repeat

(a) Sample Φ̃ from p(Φ̃ | η̃). . Appendix C4

(b) Sample Σ̃ from p(Σ̃ | Z̃).

(c) Retrieve α(c) from Φ̃ and Σ̃, as defined in Table 2.

(d) Compute Yi =
(
Z̃i + α(c)Xiβ

(t+1) + α(c)

α(b) (Γ η̃ − ũ0)
)
/α(c),

until the following condition is satisfied, for all i = 1, . . . , N :max{Yi1, . . . , YiK} < 0 if Di = 0,

max{0, Yi1, . . . , YiK} = Yik if Di = k.
(31)

Set Φ(t+1) = Φ̃/
(
α(c)

)2
, Σ(t+1) = Σ̃/

(
α(c)

)2
, and Y (t+1) = Y .

return β(t+1), Φ(t+1), Σ(t+1), and Y (t+1).

t← t+ 1.

end while
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without adverse consequences.

Jiao and van Dyk (2015) point out two errors in the original sampling scheme derived

in Imai and van Dyk (2005a), and offer an appropriate correction that ensures the sampler

provides the correct stationary distribution. Since our procedure is an extension of the

multinomial probit model, we apply a similar approach: In step 4, a transformation is

applied to produce the parameters and latent variables of the identified model. It needs

to be done starting from Z̃i = Ỹi −α(b)Xiβ
(t+1) − Γ η̃+ ũ0, to take into account the infor-

mation contained in the working parameter and in the latent variables sampled in steps 2

and 3. This transformation, however, might change the ordering of the latent variables,

implying different observed decisions D. Since the transformation is made using the work-

ing parameter α2, this parameter should be sampled conditional on the observational rule

not being violated. To do this, we use an accept-reject procedure in step 4 to produce

draws from Φ̃ and Σ̃ that verify the corresponding condition in Eq. (31). The working

parameter α2 is a function of these two matrices and is computed differently depending

on the identification restriction used, see Table 2.

4 Monte Carlo study

We investigate the properties of our MCMC sampler through a Monte Carlo experiment.

We generate synthetic data that are similar to the real data used in our empirical appli-

cation (Section 5), in terms of number of education and occupation decision categories,

observed covariates and number of observations.

4.1 Experimental setup

Data generation. We simulate data from the differenced model specified in Eq. (8),

combined with the decision rule in Eq. (7). Following our previous example, we specify

a total of six alternative choices resulting from two levels of schooling and three occu-

pation groups (K = 5 in the differenced system). For illustration purposes, we specify

a single explanatory variable X, which varies between alternatives and individuals. The

corresponding model is:

Yi = Xiβ + Γηi + ωi,

with

β = −0.2, Xij
iid∼ U(−3; 3) , σ2

k = 0.25,

for i = 1, . . . , N, j = 1, . . . , 5 and k = 0, . . . , 5. The specification of the idiosyncratic

variances implies that Σ = 0.25(I5 + ι5ι
′
5). The P = 3 latent factors are generated and
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allocated to the latent utilities as follows:

ηi =

ηi1ηi2
ηi3

 ∼ N (0; Φ) , Φ =

 0.5 −0.3 0.2

−0.3 0.5 0.1

0.2 0.1 0.5

 , Γ =


1 0 0

0 1 0

0 0 1

1 0 1

0 0 1

 .

This parametrization results in samples with a well-balanced number of observations across

the different alternatives. We generate datasets of sizes N = 1, 000 and 5, 000.

Identification. We study each of the four identification restrictions outlined in Sec-

tion 2.3 separately, and compare them. We contrast our results to those produced by the

standard multinomial probit model, implemented in the MNP package (Imai and van Dyk,

2005b)—using both identification restrictions those authors studied as well.

Prior specification. We want to study the robustness of the algorithm to various

priors—we do this by comparing four different specifications.

Note, however, that results from the different identification schemes cannot be directly

compared, even if the same prior parameters are used: As explained in Section 3.3, a given

specification of prior parameters induces different prior distributions in each of the four

identification strategies because of the different parameter transformations used to obtain

the identified model. Therefore, our posterior results should be contrasted with care,

as differences in the posterior results might be due to differences in the induced prior

distribution, rather than to differences in performances of the identification strategies.

There is a duality between the priors of the latent factors and the idiosyncratic error

terms: Any prior distribution that implies a larger variance of the error terms in the

expanded model will automatically result in a smaller relative impact of the latent factors

in the identified model, because of the rescaling used to produce the parameters of the

identified model from the expanded model. Therefore, it is important to study the role of

the prior parameters of the unobserved components of the model jointly.

The four parametrizations we use are presented in Table 3. They use the same val-

ues for the parameters of the regression coefficients and the idiosyncratic variances, only

varying in the parametrization of the distribution of Φ, the covariance matrix of the latent

factors in the expanded model. Particularly, setting the number of degrees of freedom to

ν0 = P + 1 = 4 implies that the marginal distributions of the correlations between the

factors are uniform in the expanded model (Barnard et al., 2000). Increasing ν0 to 6 pulls

the correlations away from ±1, allowing to prevent extreme cases with highly-correlated

latent factors. Increasing the scale of the covariance matrix S0 gives more weight to the

latent factors compared to the error terms, everything else held equal.

For the benchmark standard MNP model, we specify very similar prior parameters:

B0 = 10, ν0 = 6, and S0 = I3.
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Table 3: Prior specification in Monte Carlo experiment

B0 a0 b0 ν0 S0 t0

spec 1 10 2 1 6 4 · I3 1
spec 2 10 2 1 4 I3 1
spec 3 10 2 1 6 I3 1
spec 4 10 2 1 4 4 · I3 1

Monte Carlo setup and MCMC tuning. For each identification strategy and each

parametrization of the prior, we replicate the experiment 100 times, using different seeds

of the random number generator to generate different data sets. In every replication, the

model is sampled using 60,000 MCMC iterations, keeping only the last 50,000 iterations

for posterior inference.

4.2 Simulation results

Separating latent factors from noise. The first criterion we use to assess our sampler

is its capacity to correctly decompose the overall covariance matrix of the model into latent

factors and noise. The share of unobserved heterogeneity captured by the latent factors

can be measured by the following parameter:

ρj =
Γ ′j ΦΓj

Γ ′j ΦΓj + σ2
0 + σ2

j

, (32)

for each latent utility j = 1, . . . ,K, where Γj is the column vector of length P containing

the jth row of Γ .

Figs. 1 and 2 show the distribution of the first parameter ρ1, both a priori and a

posteriori, across the 100 Monte Carlo replications of the experiment, along with its true

value in our synthetic data, for N = 1, 000 and 5, 000 respectively. The vertical axes

of these graphs show the values of ρ1, which is distributed on the [0, 1]–interval, while

the corresponding prior and posterior densities are shown on the horizontal axes. These

violin plots display the densities as mirrored images, to emphasize where the mass of the

distribution is located.

Each cell of these figures corresponds to a unique prior distribution, as prior parameters

play a different role in the four identification strategies. This appears clearly here, when

looking at the solid green shapes of the prior distributions across columns. For example,

in the first row, the same specification (spec 1) implies a larger share of variance explained

by the latent factors a priori for R1a and R1b than for R2a and R2b.

A posteriori, the sampler manages to learn from the data the share of overall variance

that can be attributed to the latent factors, in the sense that the posterior distribution of

ρ1 (blue outline) deviates from the prior distribution in all cases, and the corresponding

posterior mean (blue triangle) tends to the true value (black dot). There are, however,

large disparities across prior specifications and identification restrictions. Extreme priors

23



Figure 1: Prior vs. posterior distribution of ρ1, the share of overall variance of the
first latent utility explained by the latent factors, for different prior specifications and
identification restrictions. Model with 1000 observations.
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Figure 2: Prior vs. posterior distribution of ρ1, the share of overall variance of the
first latent utility explained by the latent factors, for different prior specifications and
identification restrictions. Model with 5000 observations.
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that assume a lot of noise (e.g., spec 3 in R2*), or on the contrary very little noise (e.g.,

spec 4 in R1*) are difficult to escape from, and the sampler over- or under-estimates the

share of noise in these cases. The impact of the prior diminishes when the number of

observations increases. In estimations with N = 5, 000, in Fig. 2, all models that use an

identification restriction on the overall covariance matrix Ω (i.e., R2*) perform well. The

posterior average is very close to the true noise share—even when the prior puts a large

weight on very high or low noise shares. The restrictions on the idiosyncratic variances

Σ (i.e., R1*) perform slightly worse in that case, as the effect of the prior is not entirely

wiped out (see, for example, spec 1 or 4).

Therefore, a first general recommendation can be formulated: When the researcher

does not have a strong prior for the share of noise relative to the latent factors, choosing

the version of the sampler with an identification restriction on the overall covariance matrix

Ω, such as R2a or R2b, is a safe option.

Recovering the latent structure of the model. The second criterion we use to assess

our sampler’s performance is the root mean squared error (rMSE) of the inferred parame-

ters. The rMSEs for all four prior specifications across the four identification restrictions

are shown in Table 4. As a benchmark, we also provide the results obtained from the

standard MNP model (with the existing MNP package, Imai and van Dyk, 2005b) on the

same artificial data sets, with both the identification restriction on the first element of Ω

(MNPa) and on its trace (MNPb). For a fair comparison of the methods, the identification

strategies should be compared pairwise depending on whether the restriction is imposed

on a single element (MNPa/R1a/R2a) or on a combination of the diagonal elements (“trace

restriction”, MNPb/R1b/R2b).

For the regression coefficient β, we simply report the average rMSE over the 100

Monte Carlo replications. For the remaining parameters, Table 4 shows an aggregate

measure corresponding to the average rMSE within each group of parameters Σ, Φ and

Ω.12 The benchmark MNP model does not allow to decompose the overall covariance

matrix, therefore only results for β and Ω are provided.

The results show that the MCMC sampler generally retrieves the true coefficient β in a

very satisfactory way, as the rMSE is small in all cases. For all other parameters, important

differences can be observed across identification restrictions. The trace restriction provides

better results for β than the element restriction in all cases, thus confirming that the results

of Burgette and Nordheim (2012) for the standard MNP model also apply to our approach.

This is also noteworthy for the Σ-restrictions of type R1*, where the trace restriction (R1b)

provides a large improvement over the element restriction (R1a)—there, the highest rMSEs

are observed. For Σ and especially Φ, placing the restriction on the idiosyncratic variances

Σ is associated with more error than the restriction on the full covariance matrix Ω. The

identification restrictions using the full covariance matrix Ω produce much lower rMSEs,

12. This aggregate measure is only used to limit the number of parameters to be displayed (e.g., 15 unique
parameters in Ω only), and does not alter the main conclusions of the analysis.
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Table 4: Comparing root mean squared errors of model parameters across identification
restrictions and prior specifications in the Monte Carlo study.

(a) Number of observations: 1,000

MNPa MNPb R1a R1b R2a R2b

β spec 1 0.032 0.015 0.073 0.046 0.026 0.013
spec 2 0.032 0.015 0.048 0.026 0.027 0.013
spec 3 0.034 0.016 0.037 0.024 0.026 0.014
spec 4 0.035 0.015 0.115 0.073 0.026 0.013

Σ spec 1 0.301 0.134 0.128 0.121
spec 2 0.237 0.121 0.145 0.132
spec 3 0.184 0.112 0.162 0.145
spec 4 0.404 0.144 0.129 0.125

Φ spec 1 0.506 0.418 0.145 0.173
spec 2 0.337 0.255 0.154 0.176
spec 3 0.234 0.205 0.172 0.184
spec 4 0.940 0.671 0.154 0.182

Ω spec 1 0.431 0.301 0.959 0.683 0.326 0.223
spec 2 0.424 0.302 0.583 0.393 0.337 0.236
spec 3 0.448 0.303 0.383 0.325 0.314 0.239
spec 4 0.456 0.303 1.804 1.125 0.358 0.225

(b) Number of observations: 5,000

MNPa MNPb R1a R1b R2a R2b

β spec 1 0.015 0.007 0.059 0.030 0.013 0.006
spec 2 0.015 0.007 0.035 0.017 0.013 0.006
spec 3 0.015 0.007 0.028 0.015 0.014 0.006
spec 4 0.015 0.007 0.087 0.040 0.014 0.006

Σ spec 1 0.196 0.094 0.083 0.086
spec 2 0.143 0.086 0.087 0.090
spec 3 0.119 0.084 0.089 0.093
spec 4 0.274 0.099 0.087 0.091

Φ spec 1 0.359 0.235 0.094 0.106
spec 2 0.220 0.155 0.092 0.103
spec 3 0.162 0.133 0.096 0.105
spec 4 0.574 0.313 0.103 0.112

Ω spec 1 0.215 0.150 0.718 0.392 0.188 0.131
spec 2 0.213 0.149 0.402 0.241 0.195 0.132
spec 3 0.218 0.149 0.303 0.207 0.190 0.130
spec 4 0.218 0.149 1.167 0.518 0.193 0.131

Notes: The rMSE presented here is the root mean squared error across the 100 Monte Carlo replications. For
β, we simply show the rMSE. For the other parameters, Σ, Φ, and Ω, where there are several parameters of the
same type (e.g., the 6 elements of Σ), we report the average rMSE within this group. The columns correspond to
different identification restrictions. “MNPa” and “MNPb” correspond to the MNP package with an element and
trace restriction, respectively. For the remaining 4 columns, see Table 1. Cells in grey show the smallest rMSE in
each row of the table.
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at an entirely different order of magnitude. Again, the restriction that combines multiple

elements of the trace, R2b, works best for most parameters.

The general lesson of this simulation exercise is that even though all four restrictions

yield a theoretically identified model, large disparities between their respective perfor-

mances prevail. The restriction on the elements of the trace of Ω (R2b) is most stable in

recovering the parameters (Table 4) and, more importantly, in retrieving the share of the

unobserved variance driven by the specific latent factors rather than noise (Fig. 2).

5 Empirical application

To illustrate the empirical relevance and the applicability of our method, we study the

determinants of educational and occupational choice in a subsample of the American

Community Survey of 2015 (1% sample, Ruggles et al., 2010). The number of alternatives

and sample size are similar to the setup of our Monte Carlo experiment.

5.1 Data description

In the American Community Survey, we focus on individuals aged 34-35 who are in the la-

bor force. Among those who have valid entries for the outcome and explanatory variables,

we select a random subsample of 1,000 individuals. The outcome variable is the joint

choice of education and occupation. Education can be “Low ed” with up to 12 years of

education (high school graduation), or “High ed” with some college or more. Occupations

are aggregated into three groups on the basis of 2-digit SOC occupation codes: “Blue col-

lar,” “Services,” and “Business/Management/STEM.” Forming all education-occupation

combinations yields the six alternatives listed in Table 5. The baseline in our analysis is

taken as “Low ed – Blue collar.” Recall that the latent factors in ηi correspond to differ-

ences of the occupation- or education-specific taste shocks with respect to their base-level:

here, η1 corresponds to the difference between the taste for “Services” vs. “Blue collar”,

η2 to “Business” vs. “Blue collar”, and η3 to the difference between the specific taste for

“High ed” vs. “Low ed.”

As choice-specific covariates, we use the local labor market characteristics of the

occupation-education pairs—determined among workers that are older than our target

group, but who live in the same area. Within each state, the Census Bureau defines

PUMAs (Public Use Microdata Areas), an area of contiguous territory containing 100,000+

residents. Within each PUMA, we generate averages, for workers aged 36-65, of the fol-

lowing two characteristics: wage income (incwage) and the share of workers of the same

gender as the respondent in this occupation-education pair (gendershare). In addition

to these alternative-specific covariates, we use indicators for the respondent’s person-fixed

characteristics of marital status (married) and race (non-white). Non-white is defined as

self-classification as either African-American, Hispanic, or Asian.
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Table 5: Available Choices in ACS Data

Choice # Freq Percent η1 η2 η3

Low ed Blue collar 0 160 16 . . .
Low ed Services 1 150 15 1 0 .
Low ed Bus/Managmt/STEM 2 32 3.2 0 1 .
High ed Blue collar 3 74 7.4 . . 1
High ed Services 4 383 38.3 1 0 1
High ed Bus/Managmt/STEM 5 201 20.1 0 1 1

Total . 1000 100 . . .

Note: The chosen baseline in our analysis is “Low ed – Blue Collar.” Recall that η1 and η2 are differences
in tastes for occupations, with baseline “Blue collar” (indicated with “.”), so η1 is the difference between
the taste for “Services” vs. “Blue collar”, η2 between “Business” and “Blue collar,” and η3 is the
difference in education taste between “High ed” and “Low ed.”

5.2 Results

The results of the application are shown in Table 6. The algorithm was implemented with

the identification restriction R2b, using 100,000 MCMC iterations (after a burn-in period

of 10,000 iterations). The prior corresponds to “spec 4” in Table 3. We tried alternative

prior specifications. In line with the results from the Monte Carlo study, we find that the

choice of the prior does not influence the results in any noticeable way as long as the prior

is not too informative about the share of noise in the latent part of the model.13

For all parameters, we report the mean and standard deviation of the posterior dis-

tribution, as well as the lower and upper endpoints of the 95% highest posterior density

(HDP) interval interval.14 The coefficients reveal that conditional on the other covari-

ates, choices 2 and 3 are rather infrequent—see the negative 2nd and 3rd intercepts. It is

generally unusual to select into business/management/STEM jobs together with low edu-

cation, and (to a lesser extent) also a blue collar occupation with high education. Marital

status has only a weak or noisy influence on choices (the HDP intervals include zero).

But race significantly impacts the choice of occupation-education pairs, as do the alterna-

tives’ average income among older workers (incwage), and the share of the same gender

(gendershare). The signs of the coefficients are in line with our expectations: workers

are more likely to choose an occupation that has higher wages (among the other workers

in their area), and which has a larger share of their own gender as well.

We can now turn to interpret the covariance matrix of the unobserved heterogeneity.

Recall that the σ2
k elements correspond to the variance of the noise that remains after

accounting for the structure of the latent factors. Comparing the magnitude of the σ2
k

elements to the variance of the factors in Φ shows that a substantial amount of the un-

observed variation stems from the factors rather than the error terms in our example. To

see this more clearly, we can use the means of the posterior distribution to compute ρ in

13. Additional results available upon request.
14. The shortest interval that covers 95% of the empirical cumulative distribution function of the param-

eters’ sample values, comparable to a confidence interval.
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Table 6: Empirical results on ACS Data

Mean SD [95% HPD]

intercept1 -0.16 0.19 -0.53 0.22

intercept2 -0.87 0.30 -1.47 -0.30

intercept3 -0.35 0.18 -0.72 -0.00

intercept4 0.51 0.13 0.26 0.78

intercept5 -0.22 0.20 -0.63 0.17

married1 -0.18 0.11 -0.41 0.05

married2 0.05 0.13 -0.20 0.30

married3 0.02 0.15 -0.27 0.31

married4 -0.12 0.16 -0.45 0.20

married5 -0.02 0.13 -0.26 0.24

non-white1 -0.44 0.14 -0.71 -0.16

non-white2 0.07 0.09 -0.10 0.24

non-white3 -0.51 0.10 -0.71 -0.31

non-white4 0.28 0.12 0.06 0.52

non-white5 -0.37 0.13 -0.64 -0.13

incwage 0.26 0.11 0.04 0.47

gendershare 0.99 0.15 0.70 1.26

σ2
0 0.15 0.10 0.02 0.33

σ2
1 0.36 0.27 0.01 0.87

σ2
2 0.21 0.17 0.01 0.57

σ2
3 0.16 0.12 0.01 0.41

σ2
4 0.09 0.05 0.01 0.19

σ2
5 0.13 0.10 0.01 0.34

Φ1:1 0.45 0.19 0.11 0.82

Φ1:2 0.16 0.18 -0.16 0.53

Φ1:3 -0.39 0.21 -0.77 0.00

Φ2:2 0.48 0.24 0.08 0.93

Φ2:3 -0.21 0.26 -0.76 0.32

Φ3:3 0.67 0.29 0.14 1.24

Φ
(cor)
1:2 0.33 0.35 -0.37 0.90

Φ
(cor)
1:3 -0.67 0.21 -0.96 -0.24

Φ
(cor)
2:3 -0.36 0.41 -0.98 0.47

Note: Mean and standard deviation of the posterior distribution, with identification restriction R2b and
prior B0 = 10, a0 = 2, b0 = 1, ν0 = 4, S0 = 4 · I3, t0 = 1. We report lower and upper limits of the 95%
highest posterior density (akin to a confidence interval). See Table 5 for the definition of alternatives.
Elements of Φ correspond to the covariance between the η (see also Table 5).
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Eq. (32). The implied shares of variance explained by the latent factors, for each of the

latent utilities, are ρ1 = 48%, ρ2 = 59%, ρ3 = 70%, ρ4 = 60%, ρ5 = 72%. These shares

are relatively large and demonstrate the importance of occupation or education-specific

factors that drive the choice. The data hold information that can be backed out rather

than only calling all terms in Ω “noise.”

Throughout this text, we have motivated the need for occupation- or education-specific

latent factors with the example of unobserved taste shocks that apply to specific occu-

pations or education levels. Along this example, the structure for these latent factors

arose from the fact that each occupation had an unobserved person-specific component

that appeared in all alternatives that contained this occupation. We will continue this

example in the interpretation below. For the sake of completeness, however, we note that

the latent factors could reflect not only taste differences, but other unobserved charac-

teristics that follow the same structure. They could, for example, also reflect unobserved

occupation- or education-specific ability differences, depending on the data used. What is

important for our interpretation is that these choice-specific unobserved tastes or abilities

are picked up by the structure, which in turn lets us relate them to each other and to the

remaining noise. The economic content in the decision-making process is given by these

recurrent factors that drive choices in a traceable way. In our example, we conclude that

unobserved tastes or characteristics for specific occupations and education shape 50-70%

of the variation in observed choices.

Within Φ, the variation in latent preferences seems to come relatively evenly from

preferences for occupations and schooling, with a slightly larger role for schooling (see the

variance terms Φ1:1 to Φ3:3). More interestingly, we can examine the off-diagonal terms

of Φ to learn about the relationship between the different factors. For convenience, we

report the correlation of the factors as Φ(cor) in Table 6. Begin with Φ
(cor)
1:2 . Because this

parameter’s HDP interval includes zero, we conclude that there is no evidence in the data

that η1 and η2 are correlated. This implies that the relative preferences for “Services”

and “Business” are not correlated: if a worker prefers service jobs relative to blue collar

jobs (large η1), we cannot infer that he also prefers business/management jobs to blue

collar jobs (we cannot conclude that η2 will also be large). In larger models with more

occupation categories, this type of analysis could reveal which occupations are seen as

closer substitutes than others, while the preference for education is controlled for.

Next, observe that Φ
(cor)
1:3 is negative. Recall that η3 corresponds to the relative utilities

of the two education levels. The negative correlation of η1 and η3 shows us that individuals

who prefer service sector over blue collar jobs (large η1) dislike the higher education level

relative to the lower one (low η3). Alternatively phrased, individuals with a strong taste

for higher education do not prefer service sector over blue collar jobs. Would individuals

with a taste for high education then prefer management-type jobs over blue-collar jobs?

Again, we do not find evidence for this in the data, once we hold alternative-specific and

personal characteristics constant: the posterior of Φ
(cor)
2:3 contains zero in its 95% HPD

interval. This means that individuals who prefer high education do not have a stronger
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preference for management jobs over blue collar jobs, relative to those who prefer low

education.

These interpretations of the covariance matrix Φ are informative for the decision-

making process, as they go beyond an observation of how frequently choices are made

together (cf. Table 5). We have conditioned the decision on both alternative-specific and

person-specific covariates, and within this model learned about the correlation between

taste preferences for the occupation options and education levels separately.

6 Conclusion

This paper develops a multinomial probit model with latent factors that can flexibly be

allocated to different alternatives. The factor allocation can directly reflect an economic

decision structure, if researchers have a priori knowledge of such a structure. A prime

example of this setting, which we investigate empirically, is for choices that are taken

jointly, so that alternatives reflect pairs of choices.

Our contribution focuses on the researcher’s ability to interpret the MNP results in

light of the underlying economic decision process, without requiring data for a factor

measurement system. We achieve this through three steps: The first is that factors are

allocated to alternatives in a way that can directly reflect the economic model. Secondly,

the resulting parametrization of MNP yields a manageable covariance matrix for both

estimation and interpretation. The usual problem of the quickly increasing number of

parameters is addressed through the factor structure, and the estimated covariance matrix

of the factors provides researchers with information about how different latent decision-

drivers are correlated. Finally, we fully guarantee economic interpretability with our

theoretical proofs and discussion of empirical identification.

Our simulation exercise shows that our approach manages to decompose the unob-

served heterogeneity into noise and economic content (latent factors). How well it does

so depends on the identification restriction used. The recommendation for practitioners

is to favor the “trace” restriction on the full covariance matrix (R2b). Other than the

variance decomposition, the sampler also retrieves the remaining parameters (coefficients

β and overall covariance matrix Ω) well. It does so with a significantly lower rMSE than

the state-of-the-art non-structured MNP model.

The fact that our proposed algorithm outperforms an uninformative MNP in a setting

where the economic model represents a simple structure shows that our sampler should

be prioritized whenever this type of structure is available. Our approach addresses the

computational and interpretation challenges that remain with existing MNP approaches,

and offers an attractive alternative that provides economically meaningful results without

additional data requirements, while being computationally at least as efficient as existing

MNP implementations.
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A Proofs

A1 Proof of Proposition 2.1

Proof. Since G is made of P linearly independent rows of ∆KΓ
?, it is full rank with

rank (G) = P . Therefore, GG′ is nonsingular and the Moore-Penrose pseudoinverse of G

can be constructed as H = G′(GG′)−1. This generalized inverse is a right inverse, such

that GH = IP , and HG = G′(GG′)−1G = PG′ is the projection matrix on the span of

the columns of G′. As a consequence, the transformation in Eq. (11) can be expressed as

Γηi = ∆KΓ
?HGη?i = [PG′(∆KΓ

?)′]′η?i = ∆KΓ
?η?i , where the last equality comes from

the fact that G is made of P = rank (∆KΓ
?) linearly independent rows of ∆KΓ

?, therefore

PG′(∆KΓ
?)′ = (∆KΓ

?)′. This result is also valid if G is made of P linearly independent

rows that are linear combinations of rows of ∆KΓ
?.

A2 Proof of Proposition 2.2

The proof proceeds in two steps: First, it is shown that the covariance matrix Φ and the

idiosyncratic variance of the baseline level σ2
0 are identified from the lower triangular ele-

ments of Ω—excluding the diagonal elements. With the identification of these parameters
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in hand, the remaining idiosyncratic variances σ2
1, . . . , σ

2
K are identified from the diagonal

elements of Ω in a second step.

The model is identified if and only if the system of linear equations corresponding to

Ω = Γ ΦΓ ′ +Σ is full rank. The overall covariance matrix Ω can be vectorized as:15

vec (Ω) = vec
(
Γ ΦΓ ′

)
+ σ2

0 ιK2 + vec
(
diag(σ2

1, . . . , σ
2
K)
)
,

=
(
︸ ︷︷ ︸

S

Γ ⊗ Γ ιK2 ︸ ︷︷ ︸
E

e1 ⊗ e1 e2 ⊗ e2 · · · eK ⊗ eK
)


vec (Φ)

σ2
0
...

σ2
K2

 , (A1)

where ek is the K-vector containing only zeros besides its kth element that is equal to

one, for k = 1, . . . ,K, and using the result that vec (Γ ΦΓ ′) = (Γ ⊗ Γ ) vec (Φ), where ⊗
denotes the Kronecker product.

Identification is achieved if and only if the matrix A =
(
S E

)
is full rank, or equiva-

lently, if and only if the determinant of A′A is different from zero. Using some results on

the determinant of a partitioned matrix, it follows that

∣∣A′A∣∣ =
∣∣E′E∣∣× ∣∣E′E − S′E(E′E)−1E′A

∣∣ =
∣∣(MES)′(MES)

∣∣ , (A2)

because |E′E| = |IK | = 1, and ME = IK2 − E(E′E)−1E′ = IK2 − EE′ is the projection

matrix on the orthogonal of the subspace spanned by the columns of E.16 The last

determinant in Eq. (A2) is different from zero if and only if MES is full rank. Given the

structure of ME , the projection MES is equivalent to transforming the matrix E such

that all the rows corresponding to the diagonal elements of the overall matrix Ω are set

to zero. This result is used in Proposition A1 to show that MES is full rank. Finally,

Proposition A2 shows that the redundant parameters and equations in the system of linear

equations Eq. (A1) are innocuous for the full rank condition of the system.

Proposition A1. If Γ fulfills Assumption 2.1, then the matrix MES =
(
ME(Γ ⊗ Γ ) MEιK2

)
,

obtained by projecting S on the orthogonal of the subspace spanned by the columns of E,

is full rank.

Proof. The Kronecker product Γ ⊗ Γ is made of K blocks Bk ≡ Γk• ⊗ Γ stacked one

on top of each other, where Γk• is the kth row of Γ , for k = 1, . . . ,K. Each block Bk is

obtained by rescaling and repeating the columns of Γ , and/or adding zero columns. Given

that every row of Γ is a linear combination of some of its other rows (see condition 2 of

Assumption 2.1), the same applies to Bk. As a consequence, it is possible to delete one

row within each block Bk without reducing the rank of the overall matrix Γ ⊗ Γ .

15. The vec (·) operator stacks the columns of the corresponding matrix, such that if X =

(
a c
b d

)
, then

vec (X) =
(
a b c d

)′
, whereas the vech (·) operator used later stacks the lower triangular elements of

the corresponding matrix, such that vech (X) =
(
a b d

)′
.

16. The projection matrix ME is symmetric and idempotent matrix, i.e., ME = M ′E and MEME = ME .
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Projecting Γ ⊗ Γ on the orthogonal of the span of the columns of E is equivalent to

nullifying the kth row of each block Bk, for k = 1, . . . ,K. Since Γ ⊗ Γ is full rank and

has P 2 linearly independent rows,17 the argument of the previous paragraph implies that

ME(Γ ⊗ Γ ) is full rank.

The column vector MEιK2 = ιK2 −
(
e′1 · · · e′K

)′
is not a linear combination of the

columns of ME(Γ ⊗ Γ ). This can be seen from the structure of Γ (see also Eq. (15)):

because it contains the identity matrix, at least P − 1 of its columns would need to be

added to produce the required 1s in ιK−ek, but this sum would imply 2s in the remaining

elements, thus making it impossible to create ιK − ek from a linear combination of the

columns of ME(Γ ⊗Γ ). It is enough to apply this argument to one block Bk to show that

MEιK2 is linearly independent of the columns of ME(Γ ⊗ Γ ).

Therefore, MES has P 2 + 1 linearly independent columns, i.e., it is full rank.

Proposition A2. Omitting redundant parameters and redundant equations in Eq. (A1)

does not affect the full rank of the resulting matrix.

Proof. Because of the symmetry of the covariance matrices Ω and Φ, some elements are

redundant and can be omitted. This is done using the vech (·) operator, which stacks the

lower triangular elements of the corresponding matrix column-wise. The two operators are

related through the duplication matrix Dn, of dimension n2×n(n+1)/2, which transforms

vech (·) into vec (·), such that for any symmetric matrix A, vec (A) = Dn vech (A), see

Magnus and Neudecker (2007, p. 56-57).

Equation (A1) can be re-expressed as:

vech (Ω) = D+
K

(
︸ ︷︷ ︸

S?

(Γ ⊗ Γ )DP ιK2 E
)


vech (Φ)

σ2
0
...

σ2
K2

 , (A3)

where D+
n is the Moore-Penrose inverse of Dn, which is equal to D+

n = (D′nDn)−1D′n, see

Magnus and Neudecker (2007, p. 57).

The post-multiplication by DP is used to remove the redundant elements of Φ. Since

DP is a zero-one matrix that contains a single nonzero element in each row, (Γ ⊗ Γ )DP

is a
(
K2 × P (P+1

2

)
-matrix, of which each column is either a column of Γ ⊗ Γ , or the sum

of two columns of this matrix, each column of Γ ⊗Γ being used only once. Therefore, the

full rank of Γ ⊗ Γ implies the full rank of (Γ ⊗ Γ )DP .

The pre-multiplication by D+
K removes all the redundant equations due to the sym-

metry of Ω. Therefore, this operation does not reduce the rank of the overall matrix,

implying that A? =
(
S? E

)
is also full rank.

17. rank (Γ ⊗ Γ ) = rank (Γ )2 = P 2.
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B Jacobians of the variable transformations: Proofs

B1 Identifying restriction R1a

In the expanded model, Σ̃ = σ̃2
0ιKι

′
K + diag(σ̃2

1, · · · , σ̃2
K) is not restricted, while in the

restricted model, Σ is constrained such that σ2
1 = c, where c ∈ R+. The two versions of

the model are related through the following transformations of variables:

α2 = σ̃2
1/c, σ̃2

k = α2σ2
k, k = 0, · · · ,K.

The Jacobian of the transformation Σ̃ → (Σ,α2) is the determinant of the matrix of

first derivatives of the function that transforms (Σ,α2) into Σ̃. This matrix is equal to:



α2 σ2
0 σ2

2 · · · σ2
K

σ̃2
1 c 0 0 · · · 0

σ̃2
0 σ2

0 α2 0 · · · 0

σ̃2
2 σ2

2 0
. . .

. . .
...

...
...

...
. . .

. . . 0

σ̃2
K σ2

K 0 · · · 0 α2


≡ A,

and its determinant is equal to c(α2)K . Thus, the Jacobian of the transformation J
Σ̃→(Σ,α2)

is proportional to (α2)K .

B2 Identifying restriction R1b

The restriction implies that σ2
1 = c −

∑K
k=0,k 6=1 σ

2
k, and the matrix of first derivatives

corresponding to the transformation can be expressed as:



α2 σ2
0 σ2

2 · · · σ2
K

σ̃2
1 σ2

1 −α2 −α2 · · · −α2

σ̃2
0 σ2

0 α2 0 · · · 0

σ̃2
2 σ2

2 0
. . .

. . .
...

...
...

...
. . .

. . . 0

σ̃2
K σ2

K 0 · · · 0 α2


≡ A,

which can be rewritten as:

A = α2

(
IK+1 +

U ′V

α2

)
,
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with:

U =

(
σ2

1 − α2 σ2
0 σ2

2 · · · σ2
K

−α2 0 · · · · · · 0

)
,

V =

(
1 0 · · · · · · 0

0 1 · · · · · · 1

)
.

The determinant of A can then be computed using some basic properties of the deter-

minant and Sylvester’s determinant theorem:

|A| = (α2)K+1

∣∣∣∣IK+1 +
U ′V

α2

∣∣∣∣ = (α2)K+1

∣∣∣∣I2 +
V U ′

α2

∣∣∣∣ ,
= (α2)K+1

∣∣∣∣∣I2 +
1

α2

(
σ2

1 − α2 −α2∑K
k=0,k 6=1 σ

2
k 0

)∣∣∣∣∣ ,
= (α2)K+1

(∑K
k=0 σ

2
k

α2

)
,

= c (α2)K .

The Jacobian of the transformation is therefore the same as for scheme R1a and is

proportional to (α2)K .

B3 Identifying restriction R2a

In the expanded model, Φ̃ and Σ̃ = σ̃2
0ιKι

′
K + diag(σ̃2

1, · · · , σ̃2
K) are not restricted, while

in the restricted model, Φ and Σ are constrained such that Φ[11] + σ2
0 + σ2

1 = c. The two

versions of the model are related through the following transformations of variables:

α2 =
(
Φ̃[11] + σ̃2

0 + σ̃2
1

)
/c, Φ̃[ij] = α2Φ[ij], i, j = 1, · · · , P,

σ̃2
k = α2σ2

k, k = 0, · · · ,K.

Using the identity Φ[11] = c− σ2
0 − σ2

1 derived from the restriction, the matrix of first
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derivatives of the function that transforms (Φ,Σ, α2) into (Φ̃, Σ̃) is equal to:18



α2 Φ[12] Φ[13] · · · Φ[PP ] σ2
0 σ2

1 σ2
2 · · · σ2

K

Φ̃[11] Φ[11] 0 0 · · · 0 −α2 −α2 0 · · · 0

Φ̃[12] Φ[12] α2 0 · · · · · · 0

Φ̃[13] Φ[13] 0 α2 . . .
...

...
...

...
. . .

. . .

Φ̃[PP ] Φ[PP ]
. . .

σ̃2
0 σ2

0
. . .

σ̃2
1 σ2

1
. . .

...
...

. . .
. . .

...
...

...
...

. . .
. . . 0

σ̃2
K σ2

K 0 · · · · · · 0 α2



≡ A.

The matrix A can be expressed as:

A = α2

(
IQ +

U ′V

α2

)
, Q =

P (P + 1)

2
+K + 1,

with:

U =

(
Φ[11] − α2 Φ[12] · · · Φ[PP ] σ2

0 σ2
1 · · · σ2

K

−α2 0 · · · · · · · · · · · · · · · 0

)
,

V =

(
1 0 · · · · · · · · · · · · · · · · · · 0

0 0 · · · 0 1 1 0 · · · 0

)
.

Similarly to Appendix B2, we obtain:

|A| = (α2)Q
∣∣∣∣IQ +

U ′V

α2

∣∣∣∣ = (α2)Q
∣∣∣∣I2 +

V U ′

α2

∣∣∣∣ ,
= (α2)Q

∣∣∣∣∣I2 +
1

α2

(
Φ[11] − α2 −α2

σ2
0 + σ2

1 0

)∣∣∣∣∣ ,
= (α2)Q

(
Φ[11] + σ2

0 + σ2
1

α2

)
,

= c (α2)Q−1.

Therefore, the Jacobian of the transformation J
(Φ̃,Σ̃)→(Φ,Σ,α2)

is proportional to
(
α2
)P (P+1)

2
+K

.

18. Alternatively, we could have omitted any of the other two restricted parameters, σ2
0 or σ2

1 , without
changing the result on the Jacobian of the transformation.
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B4 Identifying restriction R2b

The proof is similar to the one used for scheme R2a. The restriction tr(Φ) +
∑K

k=0 σ
2
k = c

implies that Φ[11] = c−
∑P

j=2 Φ[jj] −
∑K

k=0 σ
2
k. The matrix of first derivatives is equal to:



α2 Φ[22] Φ[33] · · · Φ[PP ] Φ[12] · · · Φ[1P ] σ2
0 σ2

1 · · · σ2
K

Φ̃[11] Φ[11] −α2 −α2 · · · −α2 0 · · · 0 −α2 −α2 · · · −α2

Φ̃[22] Φ[12] α2 0 · · · · · · 0

Φ̃[33] Φ[13] 0 α2 . . .
...

...
...

...
. . .

. . .

Φ̃[PP ] Φ[PP ]
. . .

Φ̃[12] Φ[12]
. . .

...
...

. . .

Φ̃[1P ] Φ[1P ]
. . .

σ̃2
0 σ2

0
. . .

...
...

. . .
. . .

...
...

...
...

. . .
. . . 0

σ̃2
K σ2

K 0 · · · · · · 0 α2



≡ A,

which can be expressed as:

A = α2

(
IQ +

U ′V

α2

)
, Q =

P (P + 1)

2
+K + 1,

with:

U =

(
Φ[11] − α2 Φ[12] · · · Φ[PP ] σ2

0 σ2
1 · · · σ2

K

−α2 0 · · · · · · · · · · · · · · · 0

)
,

V =

(
1 0 · · · · · · · · · · · · · · · · · · · · · 0

0 1 · · · 1 0 · · · 0 1 · · · 1

)
.
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Using again Sylvester’s determinant theorem, it comes:

|A| = (α2)Q
∣∣∣∣IQ +

U ′V

α2

∣∣∣∣ = (α2)Q
∣∣∣∣I2 +

V U ′

α2

∣∣∣∣ ,
= (α2)Q

∣∣∣∣∣I2 +
1

α2

(
Φ[11] − α2 −α2∑P

j=2 Φ[jj] +
∑K

k=0 σ
2
k 0

)∣∣∣∣∣ ,
= (α2)Q

(∑P
j=1 Φ[jj] +

∑K
k=0 σ

2
k

α2

)
,

= c (α2)Q−1,

thus showing that the Jacobian of the transformation is the same as in scheme R2a and is

proportional to
(
α2
)P (P+1)

2
+K

.

C Details of the MCMC Sampler

C1 Step 1: Sampling the latent utilities jointly with the working pa-

rameter

Since p(Ỹ , α2 | β, Φ,Σ) ∝ p(Ỹ | α2, β, Φ,Σ)p(α2 | Φ,Σ), the sampling is done by first

sampling α2 from its prior specified in Eq. (21), then drawing Y from its conditional

distribution given β, Φ and Σ, and finally transforming Ỹ = αY .

The latent utilities are sampled from a multivariate truncated normal distribution

with covariance matrix ΓΦΓ ′ + Σ using a standard sampling scheme, as for instance in

McCulloch and Rossi (1994, Section 3).

C2 Step 2: Sampling the regression coefficients jointly with the working

parameter

Sampling from p(β̃, α2 | Ỹ , Φ,Σ) is done in two steps by first sampling the working pa-

rameter from its marginalized conditional distribution p(α2 | Ỹ , Φ,Σ), then conditional

on this draw by sampling the regression coefficients from p(β̃ | α2, Ỹ , Φ,Σ).

Given the prior distribution on the regression coefficients implied in the expanded

model (see Eq. (29)), the conditional distribution of β̃ is:

β̃ | α2, Ỹ , Φ,Σ ∼ N
(
Bβbβ; α2Bβ

)
, B−1

β = B−1
0 +

N∑
i=1

X ′i(ΓΦΓ
′ +Σ)−1Xi,

bβ =
N∑
i=1

X ′i(ΓΦΓ
′ +Σ)−1Ỹi.

The conditional distribution of the working parameter is derived as a function of the

likelihood function, the prior and posterior distributions of β̃, and the prior of α2. It

can be evaluated at any value of β̃, for instance at the posterior mean of β̃ to simplify
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calculations, i.e., at β̂ = Bβbβ:

p(α2 | Ỹ , Φ,Σ) ∝ p(Ỹ | α2, β̃, Φ,Σ)p(β̃ | α2)p(α2 | Φ,Σ)

p(β̃ | Ỹ , α2, Φ,Σ)

∣∣∣∣∣
β̃=β̂

, (C1)

where:

p(Ỹ | α2, β̃, Φ,Σ) ∝
∣∣α2(ΓΦΓ ′ +Σ)

∣∣−N/2
× exp

{
− 1

2α2

N∑
i=1

(Ỹi −Xiβ̃)′(ΓΦΓ ′ +Σ)−1(Ỹi −Xiβ̃)

}
,

p(β̃ | α2) ∝
∣∣α2B0

∣∣−1/2
exp

{
− 1

2α2
β̃′B−1

0 β̃

}
,

p(β̃ | Ỹ , α2, Φ,Σ) ∝
∣∣α2Bβ

∣∣−1/2
exp

{
− 1

2α2
(β̃ −Bβbβ)′B−1

β (β̃ −Bβbβ)

}
.

The working parameter α2 has two different conditional prior distributions in the four

identifying restriction schemes, which provides two different posterior distributions.

For the schemes R1a and R1b, since:

p(α2 | Φ,Σ) = p(α2 | Σ) ∝
(
α2
)−a0(K+1)−1

exp

{
− b0
α2

K∑
k=0

1

σ2
k

}
,

Eq. (C1) evaluated at β̂ provides:

p(α2 | Ỹ , Φ,Σ) ∝
(
α2
)−a0(K+1)−KN/2−1

exp
{
− τα
α2

}
,

with:

τα =
1

2

N∑
i=1

(Ỹi −Xiβ̂)′(ΓΦΓ ′ +Σ)−1(Ỹi −Xiβ̂) +
1

2
β̂′B−1

0 β̂ + b0

K∑
k=0

1

σ2
k

,

which corresponds to the kernel of an inverse-Gamma distribution:

α2 | Ỹ , Φ,Σ ∼ G−1(a0(K + 1) +KN/2; τα) .

For the schemes R2a and R2b, since

p(α2 | Φ,Σ) ∝
(
α2
)−(ν0P+2a0(K+1))/2−1

exp

{
− t0

2α2

[
tr
(
S0(Φ)−1

)
+ 2b0

K∑
k=0

1

σ2
k

]}
,

Eq. (C1) evaluated at β̂ provides:

p(α2 | Ỹ , Φ,Σ) ∝
(
α2
)−δα/2−1

exp
{
− τα

2α2

}
,
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with:

δα = NK + ν0P + 2a0(K + 1),

τα =
N∑
i=1

(Ỹi −Xiβ̂)′(ΓΦΓ ′ +Σ)−1(Ỹi −Xiβ̂) + β̂′B−1
0 β̂

+ t0tr
(
S0(Φ)−1

)
+ 2t0b0

K∑
k=0

1

σ2
k

,

which corresponds to the kernel of a scaled inverse chi-squared distribution:

α2 | Ỹ , Φ,Σ ∼ τα/χ2
(δα).

C3 Step 3: Sampling the specific effects and the baseline error term

These latent variables are sampled in the expanded model by first drawing η̃ from p(η̃ |
Ỹ , β̃, Φ,Σ, α2), then by drawing ũ0 from p(ũ0 | η̃, Ỹ , β̃, Φ,Σ, α2), using the value of α2

sampled in step 2.

The differenced system in Eq. (8) can be seen, for each individual i = 1, . . . , N of the

sample, as a linear regression model where the specific effects ηi represent the regression

coefficients associated with the matrix of indicators Γ . Therefore, in the expanded model

the specific effects are sampled from:

η̃i | Ỹi, β̃, Φ,Σ, α2 ∼ N
(
Bηbηi ; α

2Bη
)
, B−1

η = Γ ′(Σ)−1Γ + (Φ)−1,

bηi = Γ ′(Σ)−1(Ỹi −Xiβ̃).

Similarly, the baseline error term ũ0 can be seen as the regression coefficient of a

column vector of K minus ones in Eq. (8). Consequently, it is sampled as:19

ũ0i | η̃i, Ỹi, β̃, Σ, α2 ∼ N
(
Bu0bu0i ; α

2Bu0
)
, B−1

u0 =

K∑
k=0

1

σ2
k

,

bu0i = −
(

1

σ2
1

, . . . ,
1

σ2
K

)
(Ỹi −Xiβ̃ − Γ η̃i),

where the minus sign at the beginning of bu0i comes from the fact that the baseline error

term ũ0 is substracted from the remaining error terms.

C4 Step 4: Sampling the covariance matrix of the specific effects and

the idiosyncratic variances jointly with the working parameter

This step is slightly different for R1* and R2*, as the prior distribution on Φ̃ depends on

the working parameter α2 in R1*, but not in R2*. Since p(Φ̃, Σ̃, α2 | Ỹ , β̃, η̃, ũ0) = p(Φ̃ |
α2, η̃)p(Σ̃, α2 | Ỹ , β̃, η̃, ũ0), both schemes start by sampling the idiosyncratic variances,

19. Note that Φ is dropped from the conditioning set, as η̃ is already conditioned upon.
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expressed as Σ̃ = σ̃2
0ιKι

′
K + diag(σ̃2

1, . . . , σ̃
2
K), in the expanded model:

σ̃2
0 | ũ0 ∼ G−1

(
a0 +

N

2
; t0b0 +

1

2

N∑
i=1

(ũ0i)
2

)
,

σ̃2
k | Ỹ , β̃, η̃, ũ0 ∼ G−1

(
a0 +

N

2
; t0b0 +

1

2

N∑
i=1

(Ỹki −Xkiβ̃ − Γkη̃i + ũ0i)
2

)
,

for k = 1, . . . ,K, where Ỹki, Xki, Γk denote the kth element/row of the corresponding

vector/matrices Ỹi, Xi, Γ , respectively, and where t0 = 1 for the two R1* schemes.

For the first two sampling schemes, the working parameter is retrieved as α2 = σ̃2
1/c

(scheme R1a) or as α2 =
[∑K

k=0 σ̃
2
k

]
/c (scheme R1b). Conditional on the value of the

working parameter, the covariance matrix of the specific effects Φ̃, with prior distribution

specified in Eq. (30), is sampled from:

Φ̃ | α2, η̃ ∼ W−1
(
ν0 +N ; η̃′η̃ + α2S

)
.

In sampling schemes R2a and R2b, the prior distribution of Φ̃ does not depend on the

working parameter in the expanded model. Therefore, the inverse-Wishart prior distribu-

tion assumed in Eq. (24) implies that:

Φ̃ | η̃ ∼ W−1
(
ν0 +N ; η̃′η̃ + t0S

)
.

Given the sampled values of Σ̃ and Φ̃, the working parameter is then retrieved as α2 =[
Φ̃?[1,1] + σ̃2

0 + σ̃2
1

]
/c (scheme R2a) or as α2 =

[
tr
(
Φ̃
)

+
∑K

k=0 σ̃
2
k

]
/c (scheme R2b).
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