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Preface

A naive distinction between metals and insulators rests on the single-electron picture: com-
pletely filled or empty bands characterize insulators while metals have some partially filled
bands. Nature, however, offers a much richer variety of behaviors: Mott insulators would
be band metals in the absence of electron correlation while strongly-correlated metals behave
quasiparticle-like only in the Fermi-liquid regime. Correlated metals and insulators can be dis-
tinguished by the gap in the spectral function. Superconductors form a class of their own, they
have a single-electron gap but are not insulators.

This year’s school addresses the rich physics of correlated insulators, metals, and super-
conductors. Insulators show complex ordering phenomena involving charge, spin, and orbital
degrees of freedom. Correlated metals exhibit non-Fermi-liquid behavior except right at the
Fermi surface. Superconductors are dominated by the delicate interplay of coupling bosons and
quasiparticles. Along with the phenomena, the models and methods for understanding and clas-
sifying them will be explained. The aim of the school is to introduce advanced graduate students
and up to the modern approaches for modeling strongly correlated materials and analyzing their
behavior.

A school of this size and scope requires support and help from many sources. We are very
grateful for all the financial and practical support we have received. The Institute for Advanced
Simulation at the Forschungszentrum Jiilich and the Jiilich Supercomputer Centre provided the
major part of the funding and were vital for the organization of the school and the production of
this book. The Institute for Complex Adaptive Matter (ICAM) offered travel grants for selected
international speakers and participants.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jiilich and to Mrs.
L. Weidener of the Grafische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with
proofreading the manuscripts, often on quite short notice: Julian MuB3hoff, Esmaeel Sarvestani,
Amin Kiani Sheikhabadi, and Qian Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Holzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini, Erik Koch, Richard Scalettar, and Richard Martin

August 2017






1 Electronic Structure Computation Meets
Strong Correlation: Guiding Principles

Richard M. Martin
University of lllinois at Urbana-Champaign, lllinois
Stanford University, Stanford, California
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1.2 Richard M. Martin

1 Introduction

1.1 Read this first!

Before reading the rest of this chapter, please read the following questions, formulate your
answers (or at least your approach to answering them) and think about the relation to the

topics of this school. After the school check if you think that your understanding has evolved.

e What does the term correlation mean? The general definition in statistics and the defini-
tion(s) used in the fields that are the topics of this school.

e What does “strong correlation” mean? “Strong” relative to what? Do we always have to
specify the context in order for the term meaningful?

e What are signatures of correlation? What are the types of experimental information from
which we may conclude that a material is strongly correlated. What theoretical findings
indicate strong correlation?

e What are examples of materials and phenomena that are often called “strongly correlated”
in present-day condensed matter physics? What are the reasons for this designation? Why
should we care enough for individuals and groups around the world to devote countless
hours and resources for decades?

e Van der Waals interactions are due purely to correlated fluctuations between electrons
on different atoms or molecules that are weakly coupled. Is this an example of strong
correlations?

e What is a “Mott insulator”? What is the Luttinger theorem and to what extent is it an
actual theorem?

The purpose of this lecture is to set the tone that interacting, correlated electrons present some
of the most difficult challenges in physics. There are no exact solutions except for very few
special models; yet there are powerful techniques that are being applied to complex problems.
Each method involves approximations and assumptions that may be forgotten or brushed aside
when they are applied. This is a perfect example of a field where one should examine critically
every aspect of the theory and the methods for calculations.

Modern electronic structure methods successfully determine ground state structures, phonon
frequencies, and many other properties to within a few percent for large classes of materials,
and they are improving with new ideas, methods, and experience. Yet they may fail miserably
to account for some other properties. As calculations become more and more powerful, it is
more and more important to formulate the problem clearly and judge what aspects of the results
are meaningful. We need fundamental guiding principles to recognize how to use the results to
draw well-justified, useful conclusions. In this endeavor, I will give some of my pet principles
and examples,' and warnings about the care needed to apply them. These are only examples

and you must identify for yourself what is needed in your research!

"Many of the ideas and examples in this chapter are taken from [1], with some added comments. Many addi-
tional references are given there.



Strong Correlation and Guiding Principles 1.3

1.2 Strong correlation: What do we mean? What is the evidence?

Since our goal is to develop theories of materials with strong correlation, we should define
carefully what is meant by terms like “correlation” and “strong,” and what are the experimental
signatures. The standard definition of correlation for fermions is anything beyond Hartree-Fock.
However, this is not sufficient for present purposes: Correlation is crucial for all materials
with more than one electron. The correlation energy is a large part of the total energy that
determines structures of materials and related properties. Correlation is even more important
for excitations: Hartree-Fock leads to band gaps in insulators much greater than experiment and
it is completely wrong for the properties of any metal because it leads to a singularity at the
Fermi energy due to the long-range Coulomb interaction. Any useful theory of excitations must
involve a screened interaction which removes the singularity at the Fermi surface. Screening
is one aspect of correlation, and it is one of the successes of the RPA and GW approximations
considered below. A model with short-range interactions that is proposed to apply to a real
material has some assumption, perhaps hidden, of why a short range interaction is appropriate.
In short, correlation must be included for a reasonable theory in any material, whether it is
metallic Na or Ce, insulating NaCl or NiO.

In addition, the definitions depend upon whether one considers restricted or unrestricted Hartree-
Fock. Often there is a broken symmetry solution that lowers the total energy and captures a large
part of the correlation energy. In this case, the question is whether or not the broken symmetry
is physically reasonable and how to use such a solution even if there is no such broken sym-
metry. This brings us immediately to issues of broken symmetry, phase transitions, and order
parameters.

For many problems correlation is largest at short range, and the approach is to identify some
reduced degrees of freedom on each site that already takes into account local on-site correlation.
The key is that there is a degeneracy or near-degeneracy of the local states, e.g., a spin, weakly
coupled to the rest of the system. Then the issues have to do with two aspects of correlation, on
each site and between the different sites. This is the type of problem addressed in this chapter

and each example involves identifying some set of local degrees of freedom.?

The typical
systems involved are transition elements with localized atomic-like d and f states illustrated in
Fig. 1, which is a rearrangement of the rows of transition elements so that the most localized
orbitals are at the upper right and the most extended at the lower left. This provides an intuitive
picture of the progression from band-like metallic superconductors colored blue to magnetic
systems with localized moments involving 4 f states colored red. Many of the most interesting
elemental solids and compounds contain elements at the boundary where there is the greatest

competition between interactions and independent-particle terms.

2There are other cases such as the fractional quantum Hall effect, where the single-particle kinetic energy is
zero and the interaction is the dominant effect.
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Fig. 1: Rearranged periodic table of the transition elements showing the trend from delocalized
orbitals for elements at the lower left indicated by the blue color to the most localized at the
upper right colored red. At the boundary are the elements that exhibit anomalous properties. In
compounds the occupation of d or f orbitals may vary, for example, the extraordinary properties
of the copper oxides where the Cu 3d states are near the boundary. (Similar to figure in [2],
originally due to J.L. Smith.)

1.3 Experimental signatures

So what is the driving force to identity “strongly correlated” materials and what do we want to
determine? A general classification of properties of condensed matter is the division between
ground state and excitations, where each can reveal essential aspects of correlation. Of course,
the qualitative nature of the excitations is determined by the symmetry of the ground state, for
example, a gap in an s-wave superconductor, or the magnon dispersion in a magnetic system.
This is crucial for understanding but we also want more quantitative information. Consider the
example of a high-temperature d-wave superconductor which is certainly often called “strongly
correlated.” However, it was shown by Kohn and Luttinger [3] many years ago that perturba-
tion theory predicts that, due to repulsive electron-electron interactions, the Fermi liquid state
of any metal is unstable to a superconducting state with some pair angular momentum if the
temperature is low enough, i.e., the ground state is a superconductor. Clearly symmetry is not
enough and we must look further if terms like weak or strong are to be useful.

A theme of this lecture is that a ubiquitous signature of “strongly correlated” materials is strong
variations with temperature. Temperature dependence is often the most important property
for actual applications and it is often the property most directly measured in experiments, but
it is difficult to calculate the effects directly. Of course, temperature dependence is due to
excitations, but measuring spectra for excitations requires specialized experiments which often
are difficult to interpret. However, spectra are more directly related to theoretical methods. High
energy features in the spectra are direct evidence for large interactions, but it is the low energy
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excitations that determine the temperature dependence, the response to perturbations that lead
to phase transitions, and other effects. Prime examples of such behavior involve the elements
listed in Fig. 1.

It is not my purpose to say that we must use theoretical methods that include temperature di-
rectly. This may be very difficult and not needed to understand the observed phenomena. This
lecture is devoted to sorting out the issues and using various theoretical methods — with judi-
ciously chosen guiding principles.

1.4 Fermi liquids, Mott insulators, .....

Since this is a school on “The Physics of Correlated Insulators, Metals, and Superconductors,”
certainly terms like “Fermi liquid,” “Mott insulator,” etc., will arise and we should be clear what
1s meant in each case. In particular, it is important to be clear about the meaning of the term
insulator, and realize that there is not a unique definition of “Mott insulator.” There is no hope
of forcing everyone to adopt a single convention, and probably it is best not to try to make a
single term apply to many complex problems. But we can be clear what is meant in specific
cases.

A common feature of the different definitions is an insulator that would be a metal if the elec-
trons did not interact. Even this condition already has problems if we want to identify “cor-
related” systems. If one allows for a broken symmetry, the unrestricted Hartree-Fock solution
includes some important aspects of correlation and can lead to an insulating state; in fact, it
tends to favor an insulator. There may be additional conditions that are used to define the term
“Mott insulator.” One is that they are only those that can be insulators without a broken sym-
metry, i.e., the order is not essential. A yet more restrictive definition is only insulators with no
broken symmetry at zero temperature, called quantum “spin liquids”™ (see, e.g., [4] and papers
referred to there), which present deep issues concerning the states of matter. These three def-
initions exemplify the issues addressed in this lecture: the nature of different states of matter;
what experimental signatures show that correlations play an essential role; the power of mod-
ern computational methods to make quantitative predictions; the difficulty of making robust
conclusions even if we have such powerful methods; and some guiding principles to help.

2 The four primary methods for quantitative calculations
for materials

Quantitative calculations for materials are now an essential part of research, a fact made possible
by the development of theoretical approaches together with powerful computational methods.
There are four complementary approaches each having a crucial step in its genesis in the 1960’s,
key advances in the 1980’s that made possible effective computational algorithms, and active,
ongoing developments. The present discussions follow [1,5] where each approach is described
in much more detail.
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2.1 Density functional theory (DFT)

It is important to realize that there were two different steps in the development of DFT done in
1964 and 1965.% One is the proof by Hohenberg and Kohn [7] that all properties of a system
of electrons are determined by the ground state density n(r), and in principle, each can be
expressed as a functional of the functional of n(r). This would be only a minor observation
were it not for the second step by Kohn and Sham [8] to define an auxiliary system of non-
interacting electrons designed to reproduce that exact ground state density and energy. The
Kohn-Sham approach uses independent-particle methods, but it is not an independent-particle
approximation; instead it is a stroke of genius to reformulate the entire approach to many-body
theory to calculate certain properties, in principle exactly, with no guarantee that any other
property can be determined by the method. The success of DFT is due to the fact that it is a
theory of interacting, correlated electrons and it has proven to be possible to find approximate
functionals E,.[n| for exchange and correlation contributions to the total ground state energy
that are remarkably accurate, even for many systems that are called “strongly correlated.” Often
the local approximation (LDA) is very good, and improved approximations have made DFT
an integral part of research in chemistry and other fields. The work of Car and Parrinello in
1985 [9] set the stage for developments of efficient computational approaches that have made
DFT into an indispensable method for realistic calculations.

Extensions of the original formulation illustrate the power and the limitations of the approach.
The extension to hybrid functionals and methods like “DFT +U” are often important for systems
we call strongly correlated, and the role of such methods are discussed in the examples below.
Successful functionals have been developed to describe the van der Waals interaction, which
is a non-local effect due to correlation (see, e.g., [10]). The ground state of a superconductor
is also described in principle by DFT and functionals that include effects of electron-phonon
interaction have been developed (see [11] that cites earlier references). Very soon after the
Kohn-Sham paper, Mermin [12] showed that the density and free energy at any temperature are
given exactly in terms of a temperature dependent functional E,.(T")[n] for the exchange and
correlation energy. However, there has been almost no use of the Mermin functional because it
has been so difficult to make useful thermodynamic functionals for exchange and correlation.
(Question to the reader: why is this so hard?)

Excitations are not supposed to be given by DFT, even in principle. It is an independent-particle
approximation to use the eigenvalues the Kohn-Sham equations as excitation energies. This is
merely one of many possible independent-particle approximations and it is not justified by any
systematic theory. Indeed the results often are badly in error, even for materials as simple as
silicon.

3 An extensive presentation is in [5] as well as in many good references such as the lecture by Jones in volume
3 of this series in 2013 [6].
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2.2 Quantum Monte Carlo

There are various ways quantum Monte Carlo (QMC) simulations can be used to treat inter-
acting quantum systems by sampling the many-body wavefunction. One is variational Monte
Carlo, where a wavefunction is optimized to provide the lowest possible energy for that type of
function. A different approach is diffusion Monte Carlo that is based upon the analogy of the
Schrodinger and the diffusion equations. This approach can provide the exact solution for the
ground state of an interacting system of particles, and the first such calculation was done in 1965
by McMillan for *He [13]. However, the direct application to fermions does not work because
the wavefunction must change sign and cannot be treated as a probability distribution. This has
led to the fixed-node approximation where the nodal surface (where the wavefunction changes
sign in the 3V dimensional space for NV particles) is constrained to be the same as that of an op-
timized many-body variational function. This is the method used in the famous Ceperley-Alder
work [14] in 1987 that provided the total energy of the homogeneous electron gas used in the
construction of local density approximations to DFT. Other approaches include auxiliary field
Monte Carlo and the more recent continuous time [15] methods that are particularly appropriate
for embedded systems and are used in DMFT, as discussed below.

2.3 Many-body perturbation theory

A general approach to the theory of excitations in many-electron systems can be developed in
terms of a perturbation expansion in the Coulomb interaction. The Green function G(k,w) is
expressed by a Dyson equation in terms of the non-interacting part Go(k,w) and a self energy
XY (k,w), which contains the effects of interaction,

Gl=Gy'-X. (1)

The approach used in much current work is the “G'W” approximation developed by Hedin [16]
in 1965, who applied it to the homogeneous electron gas and gave it the modest name GW to
denote that it is lowest-order approximation Y = GW, where IV is the screened interaction. In
condensed matter it is essential to screen the long-range Coulomb interaction, so that IV itself
is an infinite sum of diagrams. In the 1980’s it was possible to develop computational methods
to apply GW to materials, and it is now widely used to calculate band gaps in systems where
the correlation is relatively weak, such as in semiconductors.* Extensive description can be
found in [1] and reviews such as [17]. A question addressed here is when it can be a reasonable
approximation for more strongly correlated systems with d and f states.

2.4 Dynamical mean-field theory (DMFT)

DMEFT is a Green function method that treats the correlation in a way that is very different from
GW . Instead of a low-order expansion, the approach is to treat the short range correlation more

*It also can describe the asymptotic 1/7 form of the van der Waals interaction, which is a pure correlation
effect. The difference from the examples of strong correlation considered here is that perturbation theory works
because there is a large gap and no low energy electronic excitations.
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Fig. 2: Single site embedded in a lattice. For the Ander-
son impurity model (AIM) this depicts a real impurity with
interactions embedded in a metal in which the electrons
do not interact. It also represents the many-body problem
solved in DMFT in the single site approximation: a site
with interactions treated explicitly embedded in a medium
with a frequency-dependent self-energy, which is equiva-
lent to an AIM solved self-consistently with the requirement
that the self-energy for the surrounding lattice is the same
as that calculated for the embedded site.

accurately and to treat the longer range correlation more approximately or ignore it altogether.
This is designed to treat materials with d and f states and models such as the Hubbard model,
and it is the main approach considered in the examples in this chapter. There are precedents,
both published in 1965, that capture some of the ideas in DMFT. They are still widely-used
for intuitive understanding and are described in Sec. 4.2. Two seminal advances have led to the
formulation of DMFT: The first is the work of Metzner and Vollhardt [18] and Miiller-Hartmann
[19] in 1989, who developed the quantum theory of interacting particles in infinite dimensions.
The second advance is the recognition by Georges and Kotliar [20] and, independently, by
Jarrell [21] in 1992 that an embedded site can be viewed as an auxiliary system equivalent to an
Anderson impurity model (AIM). Thus the analytic and computational methods developed for
the AIM are directly applicable as solvers for DMFT calculations, and many insights developed
over the years can be used to understand the phenomena caused by interactions. Good resources
for the concepts and theoretical methods are the review [22] and many lectures in this series,
notably in the volumes devoted to DMFT [23,24] which also describe ongoing developments
and realistic applications.

The essence of DMFT is to calculate a Green function and self-energy by a many-body calcu-
lation for a site or cluster of sites embedded in a medium that represents the rest of the crystal.’
For example, the single-site approximation is to carry out the calculation for a site embedded in
the rest of the crystal as illustrated in Fig. 2. This approach can be used for a real impurity on a
site, which is the Anderson impurity model (AIM) discussed in Sec. 4.1. However, DMFT is not
an impurity approximation; the calculation is done self-consistently with the atoms in the rest of
the crystal (depicted by the solid gray circles in Fig. 2) required to have the same self-energy as
that calculated for the central site. The calculation for the embedded site is used only to deter-
mine the self-energy for the states on the site, and the final result is a translation-invariant Green
function G (k, w) given by Eq. (1), where there is no approximation in the independent-particle
Go(k,w) and the approximation is that the self-energy has only local on-site components, i.e.,
Y(w) is independent of momentum k.

3In the literature the term DMFT is often used to denote only the single-site approximation following the
traditional definition in statistical mechanics. Here and in [1] DMFT is regarded as a general approach for a site
or cluster of sites embedded in a medium. DMFT is designed to give spectra, whereas an alternative approach,
Density Matrix Embedding, is designed to give the energies for the ground state [25].
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In applications to models with on-site interactions U and hopping matrix elements between
sites, DMFT is constructed to be exact in two limits: the non-interacting limit, U = 0, and the
limit of infinite dimensions d — oo where there is no correlation between sites and mean-field
theory is exact (see especially [24]). In calculations for materials, interactions I/ and a small
basis set are inputs to the method; this introduces approximations and uncertainties, and usually
the parameters are calculated using DFT or many-body perturbation methods. Also there are
other less correlated bands that are approximated by some other method like DFT or GW.
There are various ways to do the many-body calculation for the embedded site or cluster. The
natural approach is to use the finite temperature formalism with fixed Fermi energy so that
the particle number of the site is not fixed. One on the most powerful approaches uses finite
temperature Monte Carlo calculations which samples all possible occupations of the central
site. This builds upon the work on the AIM which provided the exact solution by Hirsch and
Fye [26] for the case of a single-band with spin 1/2, where there is no sign problem. Those
methods have been adapted directly and more recently a continuous time algorithm [15] has
been developed just for the embedded site or cluster.

3 Guiding principles

All many-body calculations for interacting, correlated electrons — except for a few models that
can be solved exactly — involve approximations. How can we justify that the results of such
a calculation are meaningful? This is the first question before one addresses the issues of the
quantitative accuracy. It is very useful to have some guiding principles that are rooted in deep,
fundamental principles like conservation of energy and momentum, symmetry, and topological
classification. In addition, there may be guiding principles that are based upon very general
arguments that involve theoretical derivations, and one might suspect that the derivations have
some loopholes or they break down in some cases. In these cases the guiding principles may
be especially fruitful if they are taken seriously: A conclusion that the principle applies is
extremely useful and insightful. A demonstration that it is violated may indicate an error or
may be truly important; it should not be taken lightly and it may indicate new, here-to-fore
unknown possibilities. Let us examine a few guiding principles, and in the following sections
illustrate their use.

T=0 vs. T > 0: There are crucial differences between 7' = 0 and 7" > 0. Much of the theory of
electronic structure is formulated specifically for perfect crystals at 7' = 0. However, we want
to consider both 7" = 0 and 7" > 0, where there is always disorder and finite entropy, and it is
crucial to recognize the differences.

Metals vs. Insulators: Strictly the distinction between metal and insulator is well-defined only
at zero temperature. At any 7' > 0 there is some conductivity. However, the difference in con-
ductivity may be very large; the effects of thermal disorder are manifested in the temperature
dependence and the characteristic behavior as 7' — 0 is the way metals and insulators are dis-
tinguished in practice. We will adopt the terms metal and insulator, with the realization that we
must be careful applying arguments valid only at 7" = 0 to problems at 7" > 0, and vice versa.
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3.1 Conservations laws and continuity:
Normal metals and Fermi liquid theory

Fermi liquid theory is a fabulously successful theory attributed to Landau. It was initially ap-
plied to liquid *He, where the interaction is short range, and later extended to include Coulomb
interactions by Silin. As told to me by Alexey Abrikosov, Landau arrived at his proposal by
asking himself: “What is conserved?” The fact that conservation laws are unchanged by the
interaction suggests continuity. Even though *He has strong interactions the proposal is that it
remains an isotropic liquid with a Fermi surface and low energy excitations that have the same
quantum numbers as if it were a system of non-interacting fermions, but with a modified effec-
tive mass and susceptibilities. This is not a theory of how to calculate the effective parameters,
but rather of relations among them, that are extremely useful and insightful.

The messages that I want to emphasize are the importance of continuity and the separation of the
three different aspects of our understanding: the formulation of the theory, explicit mathemat-
ical methods to calculate the properties, and proofs (if any) that the results of the calculations
are rigorously correct. Some aspects can be argued to be guaranteed if the system evolves con-
tinuously from a known state, even if there are no theoretical proofs that the system evolves
continuously, and no proofs that the theoretical derivations are foolproof. Systems that are
continuously connected to some independent-particle state are termed “normal.” The same ar-
guments also apply to insulators where there is a gap. Of course, there are many examples of
transitions between states that have different symmetry, and we can ask if each state can be
considered to evolve continuously from some known state.®

3.2 The Luttinger theorem and Friedel sum rule

The Luttinger theorem states that in a perfect crystal the volume enclosed by the Fermi surface
in k-space is the same, independent of interactions. (I will use the term “theorem,” but it might
be better to call it a sum rule since theorem implies mathematical rigor.) It is sufficient to
indicate the sense of the derivation in the original papers by Luttinger and Ward (LW) [27, 28],
which is summarized in App. J of [1]. The total number of electrons is given by d{2/d where (2
is the thermodynamic potential and  is the chemical potential. The derivation by LW involves
the particular way of summing diagrams to express (2 in terms of the Green function GG (which is
an infinite sum of diagrams involving the bare (Gy) summed over Matsubara frequencies, taking
the limit of 7" — 0 and a partial integration. The derivation uses the fact that the one-particle
Green function G(k, w) evaluated at the Fermi energy w = Er (where Er = u(7 = 0)) is real,
and the final result is that G(k, Er) changes sign as a function of k at the Fermi surface, so
that the volume is defined by the region where the Green function is negative. The conclusions
apply only at 7" = 0 where the Fermi surface is precisely defined and the states at the Fermi
energy have infinite lifetime, just as for an independent-particle system.

There can be further distinctions including classification by the topology of the eigenstates as a function of k
where topologically trivial and non-trivial states are each connected to an independent-particle state with the same
topology.
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As far as I know there are no rigorous proofs that the summations are uniformly convergent, and
there are no loopholes in the mathematical derivations.” However, we can appeal to the principle
of continuity, to rephrase the argument: The theorem should be obeyed so long as the system is
normal, i.e., can be continuously connected to some independent-particle system. The lack of a
rigorous proof applies to any case, such as Na, Al, or Cu, and it is experiment that shows these
systems act like normal Fermi liquids with a Fermi surface that obeys the theorem as 7" — 0 for
the accessible range of temperatures. We already know one example, superconductivity, which
is certainly not normal! Any violation of the theorem would herald a different state of matter;
in both theory and experiment we should be doubly careful not to treat violations lightly and to
search vigorously for exceptions!

It is instructive to consider also the Friedel sum rule [30] on the sum of phase shifts for an
impurity in a metal, which is an example of how much can be learned without heavy mathe-
matical calculations. The sum rule follows from the condition that the sum of phase shifts of
the states at the Fermi energy due to the impurity equals the number of electrons added (or
subtracted) around the impurity compared to the host. Since charges are perfectly screened in
a metal, the number of electrons is balanced exactly by the added charge of the nuclei of the
impurity relative to the host. The sum rule was originally derived for independent particles;
however, the derivations of LW apply here with the difference that the sum is over the phase
shifts that are labelled by the point symmetry of the impurity instead of the momentum k that
labels the quantum numbers for a translation symmetry of a crystal [31]. But there is a great
difference because the impurity cannot induce a phase transition in an extended solid and the
system evolves continuously as the interaction is increased. There are no caveats and we can
be confident that the Friedel sum rule is valid no matter how strong are the interactions on the
impurity.

Knowing only the sum rule we can draw conclusions about the Kondo effect, one of the classic
problem of condenser matter physics described in the next section. At zero temperature resis-
tance caused by an impurity in a metal is determined by the phase shifts. A widely-used model
for the Kondo effect and the Anderson impurity model is a one-band model where there is only
one phase shift. If the band is chosen to be symmetric, the impurity state is half-filled and it
follows that the impurity causes the maximum possible resistance no matter how strong is the
interaction or how weak is the coupling to the host. It is not many steps to an understanding of
the Kondo effect at least qualitatively.

"However, it is tested in the case where there is an exact solution by Lieb and Wu [29] for the one dimensional
Hubbard model. There the Luttinger theorem is rigorously satisfied for any particle filling. The excitation spec-
trum is different from a Fermi liquid, but nevertheless there is a Fermi surface and it is the same independent of
interactions, except at 1/2 filling where there is a gap.
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4 Instructive models

4.1 The Anderson impurity model and the Kondo effect

The Kondo effect is the observed temperature dependence of the resistivity of solids containing
transition metal impurities.® The expected behavior is a decrease as T is lowered, since the
resistivity due to dynamical effects such as phonons decreases. It should never increase and
at low temperature it reaches a plateau determined by the static disorder. However, the Kondo
effect is that there is a resistance minimum after which it increases and saturates for 7" — 0,
contrary to all expectations. This set up the problem of a spin embedded in a metal, which is
a strong-coupling problem that defied solution until Wilson’s invention of the numerical renor-
malization group [32]. The problem is that a perturbation series in the coupling of the spin to
the metal diverges due to the low energy excitations in the metal.

If we step back and note that the spin is actually electrons, the problem can be cast as the Ander-
son impurity model (AIM) with strong interactions on the impurity site [33]. This is depicted
in Fig. 2, where the central site is shown with lines that denote the states of the interacting
system on the impurity, while the surrounding lattice is considered as a non-interacting metal.
As discussed in the previous section, the principle of continuity and the Friedel sum rule leads
to the conclusion that the system must evolve, as the interaction increases, keeping the sum of
phase shifts unchanged, so that the resistance at 7" = 0 is constrained. For the simplest problem
of a single band there is only one phase shift and the resistance is the maximum possible value
at 7' = 0. There are now exact solutions [34] and useful approximations that fully support the
analysis.

Anderson [33] provided an instructive analysis illustrated in Fig. 3. Consider the case of a half-
filled band with a symmetric density of states and an added state on one site at the Fermi energy
so that it is half-filled. If there are no interactions this leads to a density of states on the impurity
site that is broadened due to coupling to the continuum of host states as depicted schematically
in the lower panel of Fig. 3. If we add an interaction U only on the impurity site, the problem
remains symmetric if the energy to remove an electron is —U/2 below the Fermi energy and
to add a second electron on the site is increased by U, i.e., U/2 above the Fermi energy. In
this case the impurity state must remain half-filled by symmetry and a restricted Hartree-Fock
solution gives exactly the same density of states. However, there can be a broken-symmetry
unrestricted solution with one spin mainly occupied and the other mainly empty; for U larger
than a critical value this is the lowest energy state as illustrated in the middle panel. As pointed
out by Anderson, this is fundamentally incorrect but it heralds the strongly interacting regime
where something interesting happens. The exact solution for 7' = 0 is shown schematically
at the top in the large U regime; it has both behaviors: the feature at the Fermi energy that is
required by the Friedel sum rule and the high energy features that are at energies similar to that
given by the unrestricted Hartree-Fock approximation.

8Ted Geballe told me that in 1955 he asked John Bardeen to name the most important unsolved problems in
condensed matter physics. Bardeen replied, “superconductivity” and, after a characteristic pause, “the resistance
minimum” now called the Kondo effect.
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Fig. 3: Schematic illustration of the spectra for an Anderson impurity in the regime that leads
to the Kondo effect. As described in the text, the bottom panel shows the broadened peak for the
non-interacting case, the middle illustrates the peaks above and below the Fermi energy for the
broken-symmetry unrestricted Hartree-Fock solution in the large U regime; and the top shows
the qualitative form of the full spectrum that has a peak at the Fermi energy, which satisfies the
Friedel sum rule.

The spectrum in Fig. 3 already shows how we can understand some important aspects of solids
illustrated later. The “three-peak™ behavior of the spectral density is a characteristic signature
of systems that are often called strongly correlated. We can expect high-energy features due to
the strong local interactions and low-energy features that lead to strong temperature dependence
and large susceptibility; for the impurity there can be no phase transitions but in a crystal with
interactions on every site, the large susceptibility can lead to transitions to various kinds of
ordered states. Even though the unrestricted Hartree-Fock calculation is unphysical, it indicates
the regime of strong interactions. The temperature dependence is not shown in Fig. 3, but it is
similar to that shown later in Fig. 5, which shows that the peak at the Fermi energy disappears
as 7' is increased, another signature of strong interactions.

Notice the “strongly interacting” problem with large U is continuously connected to the non-
interacting U = 0 state. There is no sharp division between a Mg impurity Na and a Mn
impurity in Au. What is the difference? The temperature scale that is denoted by the Kondo
temperature!

4.2 The Hubbard and Gutzwiller approximations

Although we have rigorous solutions for the AIM and 1d Hubbard model, we do not yet know
whether the conclusions can be used in other problems. Let us try the opposite approach:
approximations that are so extreme that they can be solved analytically. The question is what
aspects can we use to make confident conclusions about the complicated many-body problem.
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Fig. 4: Spectral function for a half-filled band with a semicircular density of states shown at
the top. The lower four panels show the spectra calculated in the Gutzwiller (dashed lines) and
Hubbard (solid lines) approximations as the interaction U increases. The Gutzwiller approx-
imation leads to a narrowed band with a mass (inverse of the band width) that diverges and
above a critical Ug there is no solution, which is a model for a metal-insulator transition. In
the Hubbard “alloy” approximation the band widens and above Uy a gap opens to form an
insulating state.

In fact the approximations considered in this section were both proposed in 1965 and they are
very enlightening for all the methods and examples in the rest of this chapter!

The approximations described here can be applied to any lattice, but there is a special case that
allows an analytic solution, the semicircular form for the independent-particle density of states
shown at the top of Fig. 4 where

1 2
p(w) = —%ImGo(w) = vVD? — w2 )

which is non-zero only for |w| < D and D is 1/2 the band width. This is the actual density
of states for the Bethe lattice in infinite dimensions so that it can be interpreted as an lattice
where each atom has an infinite number of neighbors. Since mean-field theory is exact for an
infinite number of neighbors where fluctuations average out, DMFT provides the exact solution,
as discussed in the following section.

The approach of Gutzwiller [35] was to propose a variational form for the ground state wave-
function that is the same as independent particles (or some other mean-field solution) multiplied
by a factor that reduces the probability of double occupation. This is widely used and can be
evaluated essentially exactly by Monte Carlo methods. The Gutzwiller approximation is to ig-
nore the correlation of the occupation of electrons on different sites; this leads to equations
that can be solved in general numerically and analytically for simple models. Minimization
of the energy as a function of U leads to a state with reduced kinetic energy interpreted as a
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band narrowing or increased mass. For a one-band Hubbard model the result is that the Fermi
surface is unchanged but the mass increases as the density approaches half-filling and exactly
at half-filling there is a critical US where the solution is for infinite mass. This is illustrated
for the semicircular density of states at half-filling in Fig. 4. This is widely used as a scenario
for a Mott transition as a function of band filling: bands with increasing mass as the density
approaches 1/2 until it diverges signalling an insulator.

Hubbard proposed a different approach in terms of the Green function [36]. The propagation of
an electron in an interacting system is approximated by assuming the rest of the electrons act
as a static array of scatterers, called an “alloy approximation.” The further approximation that
allows analytic solution is the coherent potential approximation which ignores the correlation
between occupation on different sites, which was derived independently by Hubbard and others
and is now widely used in real alloys. This leads to a Green function given by Eq. (1) with an
on-site self-energy X'(w), like in DMFT, but a static mean-field approximation. The result is that
the states near the Fermi energy have a lifetime, which may be reasonable for high temperature
but is fundamentally incorrect at 7' = 0. On the other hand it leads to a gap for large U as
illustrated in Fig. 4 with well-defined band edges. This provides a different scenario for a Mott
transition as a function of the interaction: a spectrum that broadens until a gap opens above a
critical UH.

Thus we have two widely-used pictures of a Mott transition: one is a band at the Fermi energy
that narrows as the interaction increases and the other a broadening of the bands until they are
splitting into what are called the upper and lower “Hubbard bands.” Each ignores correlation
of occupation on different sites and assumes no change of symmetry, and each can be argued to
capture a part of the physics.

4.3 Dynamical mean-field theory (DMFT) for the Hubbard model

As discussed in Sec. 2.4, DMFT is an approach to treat interacting electrons in a crystal, but
the heart of the many-body calculation is the calculation of the on-site Green function and self-
energy for an embedded site that is equivalent to a self-consistent Anderson impurity model
(AIM). This section illustrates DMFT by showing a few results for a one-band Hubbard model.
It is especially appropriate to consider the semicircular density of states defined in Eq. (2)
which allows a direct comparison with the Hubbard and Gutzwiller approximations shown in
Fig. 4. Because the single-site DMFT is exact in the limit of infinite dimensions, the result is the
exact solution for the Bethe lattice with an infinite number of neighbors. Thus this is an exact
solution for a special model and our job is to recognize when the results can help us understand
the properties of real complex systems in finite dimensions!”

°In finite dimensions, this is an approximation and an approach to an exact solution requires that the calculations
be done for large enough clusters that the correlations between electrons on different sites has converged. For
examples like the two-dimensional Hubbard model various size clusters have been treated, which is essential for
some important effects [37]. However, this is generally not feasible for calculations for realistic systems with
many-bands and all the DMFT calculations in the examples for real materials in the following section are done in
the single-site approximation.
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Fig. 5: Spectral function for a half-filled band with a semicircular density of states calculated
using DMFT in the single site approximation. The spectra have features like the Anderson
impurity model in Fig. 3 and the approximations for a Bethe lattice in Fig. 4: Gutzwiller (peak
at the Fermi level that narrows as the interactions U increases) and Hubbard (spectra that
broadens as U increases with weight that decreases at the Fermi level until a gap opens). At
the right is shown the effect of temperature: the feature at the Fermi energy at low temperature
vanishes at high temperature where the states act like decoupled spins and the spectral weight
is transferred to the high energy peaks. Adapted from figures in [22].

The results of DMFT calculations are shown in Figs. 5 and 6. Here we skip all the details of
the calculations and give only a few results. As expected, the spectra shown in the left side of
Fig. 5 have the characteristics of those for the AIM shown in Fig. 3, a central peak that narrows
as the interaction increases and high energy peaks separated by U. The right side of Fig. 5
shows the temperature dependence for a case where the solution has a narrow central peak that
disappears as 7" increases. This is not a broadening but a true many-body effect. For the AIM
the analogous result is the Kondo effect where the resistance decreases at 1" increases. For a
lattice, it is the Fermi surface that disappears, which is illustrated later in Fig. 8.

However, unlike the AIM, the self-consistency leads to a very different consequence: As U in-
creases the central peak disappears at some value of U and a gap opens at a value UZ2. Thus the
DMEFT result shows both behaviors captured by the Gutzwiller and Hubbard approximations
shown in Fig. 4. This provides a scenario for a Mott transition as a function of the interaction
that is the exact solution for a model! Whether or not this applies to a real problem in finite di-
mensions is an issue. Furthermore, if we look more carefully into the solutions for the Hubbard
model there is an important issue not considered so far, and a deep issue of physics still to be
understood.

The issues are illustrated in Fig. 6. A result of the DMFT calculations is that for some regime of
interaction U there are two types of solutions, an insulating solution with a gap for U > U! and
a metallic solution with a central peak for all U < U2, with U! < UZ2. In the region from U} to
U? the two solutions indicate two phases with the same symmetry so that there is a first-order
phase transition. Furthermore, as a function of temperature the central peak disappears and the
gap fills in until there is a critical point and the solutions merge like the water steam transition.
This is shown in the left side of Fig. 6 by the dashed line ending in a critical point, which has
the features of a Mott transition.
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Fig. 6: Phase diagram for Bethe-lattice in infinite dimensions which has a semi-circular density
of states in the limit of infinite dimensions. Left: Results for a Hamiltonian that has only
nearest neighbor hopping t; the dashed line ending in a critical point indicates a transition
between the two types of spectra in Fig. 5. However, for this model the actual transition is
to an antiferromagnetic insulator (AFI) indicated by the solid line. At the right is the phase
diagram if a second-neighbor hopping t' is included; the AFI state is not as favorable (note
the expanded vertical scale) and there is a range of temperatures where the first-order metal-
insulator transition occurs. (For this t' there is also an antiferromagnetic metal phase that is
not shown and is not important for our purposes.) Adapted from figures in [22].

However, there is more that can be learned from the single-site DMFT calculation. The previous
calculation is in fact restricted DMFT where it is required that there is no order of the spins or
any other order. One possibility is an antiferromagnetic state where each site is allowed to have
a net spin and it is surrounded by sites with opposite spin. Such a solution is allowed for any
lattice that is “bipartite,” i.e., that can be divided into A and B sites, where all A sites have only
B neighbors and vice versa. The Bethe lattice has this property and we can expect that such
a state is favored just as it is in the multitude of other models and actual materials that order
antiferromagnetically. This can still be solved by single-site calculation where the A and B
sites are related by time reversal symmetry. Indeed the calculations find an antiferromagnetic
phase for temperatures and values of U shown by the solid line in the left side of Fig. 6. The
first-order transition is completely eliminated and the only stable phases are a metal with no

order and an ordered antiferromagnet.

Nevertheless, there is a way to uncover the first order transition. A second-neighbor hopping
(denoted t’) couples an A site to the nearest other A site (the same for B sites) which tends to
frustrate the antiferromagnetic order and reduce the temperature range where the antiferromag-
netic insulator is the stable phase. It turns out that the independent-particle density of states is
still semicircular, but with modified width, and the calculations can still be done within the same
model. This is shown in the right side of Fig. 6 (note the reduced temperature scale). Now the
first-order transition can actually occur for some temperature range about the antiferromagnetic
transition. This is the behavior known from the classic example, V03, discussed in Sec. 5.3.

Finally, we arrive at a deep issue that opens the door (or not) to new states and phenomena
that are qualitatively different from normal states of matter. If the antiferromagnetic order can
be eliminated could the insulating state extend all the way to 7" = 0? Further discussions are
postponed to later.
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5 A few examples: Data, interpretation, and theory

5.1 Cerium: volume collapse phase transition, heavy fermions, ...

Experimental facts and interpretations. Cerium is the first transition element in the lan-
thanide series. In various compounds it exhibits behavior that is readily identified as due to one
electron in the localized, atomic-like 4 f shell (f!) (for example, in magnetic Ce,O3 where Ce
has a formal valence +3) or an empty 4f shell (f°) (as in non-magnetic CeO,, formal valence
+4). As an impurity in metallic La it leads to the Kondo effect expected for a localized f!
embedded in a metal. Some compounds such as Celrln; are “heavy fermion” materials [42]
with masses (inversely proportional the band widths) orders of magnitude larger than ordinary
metallic bands, similarly to the Kondo effect for impurities where the energy scale can vary
over orders of magnitude for different impurities and hosts.

For many decades it has been known that elemental Ce has a phase diagram as a function
of temperature and pressure with a first-order transition between the high volume 7- and low
volume a-phases, each with the same fcc structure. There is an anomalously large 15% volume
change at room temperature and a critical point at higher temperature analogous to the water-
steam transition. The  phase has a temperature-dependent magnetic susceptibly accounted for
by weakly coupled f! spins, whereas the o phase appears to be inert magnetically. The first
interpretation was the natural one: a transition between magnetic f' states and non-magnetic
f° with an electron transferred to the weakly interacting metallic bands. However, more recent
experiments showed that the 4f occupation in the o phase is also close to f!, for example, as
indicated by the photoemission and inverse photoemission data shown at the top of Fig. 7, where
the sidebands below and above the Fermi energy indicate the strong interactions U ~ 7 eV and f
states in both phases, with bands at the Fermi energy in the « phase like the three peak structure
for the Anderson impurity model in Fig. 3.

Guiding principles for theory. We are faced with a strongly interacting problem of a lattice of
localized f states coupled to delocalized metallic bands. It is certainly very difficult to explain in
detail all the properties of cerium and its compounds.'® The purpose of the present discussion
is to examine what we can understand from experiment alone and what we can believe from
DFT calculations that are simple to do now-a-days, but which are clearly inadequate in some
respects. Furthermore we want the reasoning to apply, a least qualitatively, not just for one
material but for many different cases. The same reasoning is also invaluable in judging what
can be believed from a heavy many-body calculation, which certainly involves assumptions and
approximations.

A great success of DFT calculations using standard functionals like LDA is that for Ce the
calculations find an equilibrium volume near that for the o phase and a 4 f occupation of ap-

0Two mechanisms have been proposed to explain the a-+ transition caused by the large interactions for elec-
trons in the 4 f states. In one proposal the primary effect is a “Mott transition” of the f states; the d states do not
play an essential role. The other proposal is a “Kondo volume collapse” in which the primary driving force is the
coupling of the f states to the band-like d states; this is a simplified version of the results of the DMFT calculations
described here.
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Fig. 7: Electron removal (photoemission) and addition (inverse photoemission) spectra for
a (left) and ~ (right) phases of Ce. Top: Measured spectra at room temperature [38] that
is mainly the Ce 4f component. Middle: Single-site DMFT calculations for the 4f states
with parameters from LDA. For the « phase (left) theory “b” [39, 40] is broadened by the
experimental resolution and includes the 6s—6p-5d states. Theory “a” [41] shows the high-
resolution peaks near the Fermi energy including spin-orbit splitting. Note widths are ~ 10X
narrower than the LDA peaks in the bottom panel. For the ~y phase (right) the calculation finds
upper and lower Hubbard bands with no peak at the Fermi energy. Bottom: The density of
states for static mean-field calculations: LDA for a non-magnetic solution in the o phase and
unrestricted LDA+U for a magnetically ordered state in the v phase. The peaks are 4f and
the broad spectra are bands formed from 6s—6p—5d states. Each static mean-field calculation
describes an aspect of the spectrum, but cannot explain the three-peak spectrum found in the
DMFT. Similar to figure in [1] provided by A.K. McMahan except “theory a” modified from
figure provided by K. Haule.

proximately one. Such a calculation is guaranteed to have partially-filled 4 f bands at the Fermi
energy, as illustrated in the bottom left panel of Fig. 7, which satisfy the Luttinger theorem
including the f states. Quantitatively, the bands are narrow, but yet broad enough that there
would be only band-like paramagnetism, consistent with what is observed in the o phase. How-
ever, the LDA calculation cannot explain the peaks well above and below the Fermi energy that
indicate a large interaction.
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What can we conclude about the results of a heavy many-body calculation even before it is
done? So long as the system does not have a transition to an ordered magnetic state and the
temperature is much lower than the characteristic energy scales, continuity implies that the
Luttinger theorem is obeyed and any correct many-body calculation must give bands that are
well-defined at the Fermi energy, even though they may be much narrower than the LDA bands
and the spectrum is very different as one goes away from the Fermi energy. This is illustrated
by the results shown in Fig. 7 for DMFT calculations done in the single-site approximation.

What about the v phase? Another success of DFT calculations is that if one allows for spin
polarization there is another solution with larger volume close to that observed for the v phase
at room temperature. The spectrum is illustrated in the lower right panel of Fig. 7, which
shows the result of an “LDA+U” calculation for a magnetically ordered state. The spectrum is
qualitatively like the experiment with apparently no 4f bands at the Fermi energy, similar to
the unrestricted Hartree-Fock approximation in Fig. 3. Is this inconsistent with the Luttinger
theorem? Before we do a many-body calculation, what do we expect to be the different possible
results? If the temperature is high compared to some characteristic energy scale (the scale of
interactions between spin on different sites), we do not expect there to be bands at the Fermi
energy! Indeed, this is the result of the single-site DMFT calculation for the model in Fig. 5,
where the central peak vanishes at high temperature, and the same behavior is found in the
DMEFT calculation for v-Ce shown in the middle right panel of Fig. 7.

Consider now the heavy fermion material Celrln; for which DMFT results [43] are shown in
Fig. 8. From experiment such as specific heat measurements we know the characteristic energy
scale is very low, somewhat above 10 K and there is no magnetic order at 10 K. The figure
shows the huge effects of interactions: At room temperature the bands at the Fermi energy are
almost like an LDA calculation at 7" = 0 with the f states artificially removed. This mimics
the fact that the f states are essentially decoupled at this temperature and result is a “small
fermi surface” that does not include f electrons. At low temperature the bands are like an
LDA calculation with the f states included, i.e., a “large Fermi surface,” but they are greatly
renormalized as shown in the right side of Fig. 8 where the scale is expanded by a factor of 100.

What can we conclude? None of the calculations definitively establishes the mechanisms for
the behaviors and there is no theoretical proof that the systems do not order in some way. But
if we take from experiment that there is no transition to some ordered phase at the relevant
temperatures, then we can have a qualitative picture without doing a heavy many-body calcu-
lation. Furthermore, since there is no order, the single-site approximation is reasonable and it
appears to be an appropriate starting point for quantitative understanding. The fact that low
energy scales emerge implies that susceptibilities are large such that there may be transforma-
tions to other states at lower temperature, which is found in many heavy fermion materials [42].
Finally, a lesson from the previous sections is that if we seek the behavior at 7' = 0, we expect
the system to be either a Fermi liquid or have a transition to an ordered state, and we should be
very careful about using 7" = 0 arguments at 7' > 0 and vice versa.
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Fig. 8: Momentum resolved spectra at 300 K (left) and 10 K (right) calculated using single-site
DMFT. As discussed in the text at 300 K the 4 f weight at the Fermi energy is very small, but a
very narrow 4f band (note the greatly expanded scale energy in the right figure!) emerges in
analogy to the Kondo effect and the model DMFT calculation shown on the right side of Fig. 6.
From [43].

5.2 NiO and Mott insulators

NiO is the original “Mott insulator” as identified by de Boer and Verwey [48] and pointed out by
Mott and Peierls [49] in 1937. Below the Curie temperature of 525 K, it is an antiferromagnetic
insulator with a gap around 4 eV, which can be seen from the spectra shown in the top panel
of in Fig. 9. It satisfies the narrower condition for a Mott insulator: If there is no order there
should be fractionally filled bands that would indicate a metal, but in fact it acts like an insulator
with a gap that does not depend on the magnetic order and remains above the Curie temperature
(which is found in experiments not shown in the figure). The structure is fcc and there are no
complications about which d states are involved (unlike the other classic case V503).

Guiding principles. This case is simpler than the various problems for Ce compounds since
NiO is an insulator with a gap, and it allows us to ask simple direct questions. What about the
Luttinger theorem when there is no broken symmetry? Since this is a “Mott insulator” can we
trust any results from methods such as the GW approximation, based upon perturbation theory?
The theoretical results shown in Fig. 9 suggest that we have a rather good understanding of the
basic issues even if there is much yet to be understood. As in many systems, DFT calculations
are very successful in predicting the structure. At the bottom is the spectra that shows the result
from an LDA calculation for the ordered antiferromagnetic structure; there is a gap, but it is
very small and not visible in the figure since the spectra are broadened to compare with the
experiment. In addition to the gap being too small, the relative positions of the oxygen p and
the Ni d states are wrong. Improved DFT calculations using DFT+U (a generalized gradient
functional GGA + U in this case) functionals open the gap but cannot give both the magnitude of
the gap and the positions of the p and d in agreement with experiment. The HSE hybrid density
and Hartree-Fock functional leads to much improved spectra. An example of GW calculation
is shown for “one shot” GyW, starting from the HSE wavefunctions and eigenvalues. Similar
results are found using a self-consistent GW method that is independent of the starting point.
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Fig. 9: Spectra for electron removal and addition in NiO. Top: experimental results for 3d
weight from [44] and [45]. The other panels are calculated spectra projected on the O-p (grey)
and Ni-3d (red) components. The lower four panels: DFT calculations with different function-
als, above these: GW calculation, all for the antiferromagnetic state [46]. The top theoretical
results are the spectra for the paramagnetic state calculated using single-site DMFT (called
DMFA in the figure) with parameters from DFT calculations [47]. Similar to a figure in [1].

These methods are not chosen to fit NiO; the same approximations give improved results for
semiconductors, large classes of oxides, and other systems. The conclusion is that DFT and GW
calculations can be very useful and describe systems like NiO so long as we restrict ourselves
to the ordered state at low temperature.

The gap and insulating behavior of NiO remain for temperatures above the Curie temperature
where there is no ordered moment. In this case any T' = 0 DFT or GW-type calculation must
lead to a metal, this is not shown but must occur by electron counting for partially filled bands
that originate from atomic-like d states. Why do these methods not work for NiO above the
Curie temperature where there is no order? The simple answer is that temperature has a large
effect because the large on-site interactions lead to local moments that persist above the Curie
temperature. Approaches that take the disordered moments into account can explain the gap in
the high temperature state. A simple approach is a static approximation like the Hubbard alloy
approximation that opens a gap like that shown in Fig. 4. A greatly improved approach is the
DMEFT calculation for the dynamically disordered system shown in Fig. 9. This is the result
within the single-site approximation which means that correlations between electrons on a site
are included but correlations between different are sites treated only as an average mean-field,
which is justified at high enough temperature.
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5.3 V>03 and the Mott transition

Whereas NiO is described as a Mott insulator, V5,05 is the classic example of what has been
termed a Mott transition. The famous phase diagram [50] is not shown here but the basic points
are illustrated in the phase diagram in the right side of Fig. 6. Experimentally the different parts
of the phase diagram are accessed by applying pressure and doping with Cr. Pressure squeezes
the atoms together resulting in larger independent-particle hopping terms and a decrease in
the relative importance of interactions, which favors the metal. At low temperature and low
pressure V,Oj3 is an antiferromagnetic insulator, like the right side of Fig. 6. Applying pressure
corresponds to moving to the left in the figure until there is a transition to a paramagnetic metal;
these are only two states observed at low temperature. With Cr doping there is also a first-order
transition in the paramagnetic phase at higher temperature, like the phase line in Fig. 6 that
ends in a critical point. It is this transition that has long been taken as the classic example of
a Mott transition with no change of symmetry. Because of the complicated crystal structure
and possible ordering of the electronic states, there have been many models proposed to explain
the behavior. But for our purposes the only relevant point is that there exists a transition with
a change in the spectrum and conductivity from a form expected for an insulator to that for a
metal in some range of temperature and pressure. However, the two states are not really distinct
since they merge continuously above the critical point.

Does this violate the Luttinger theorem? Just as the analysis for NiQO, it does not because the
transition is only observed at high temperature. It is important to understand the reasons for
insulating-like and metallic-like behavior, but it should be done with the understanding that it
is not inconsistent with the theorem unless the transition actually continues all the way to zero
temperature, which leads up to the issues in the following section.

6 The Mott insulator and topological order

Several times in the previous sections there were references to deep issues in physics that are
brought to light by relentlessly pursuing the question of whether or not a Mott insulator with
no order can exist at zero temperature. Recall that the difference between a metal and an in-
sulator is precisely defined only at 7" = 0, and the Fermi surface and Luttinger theorem are
precisely defined only at 7' = 0. An insulating state with fractional occupation and no order
T = 0 (termed a quantum spin-liquid; see, e.g., [4] and papers referred to there) would vio-
late the original statement of Luttinger theorem. There is now growing evidence that such a
state would have some form of topological order'! and would be a state of matter with quan-
tum order not described by any classical order parameter [51]. There is a well-known example,
superconductivity, and it would be an extraordinary advance to discover other states of matter
with quantum order. For states with topological order, there is not a continuous connection to

"Topological insulators that have been of great interest recently are band insulators with a Hamiltonian H (k)
that has non-trivial topology as a function of k in the Brillouin zone. For a Mott insulator there may be related
properties, but this has not been worked out to my knowledge.
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an independent-particle system, and many works using different approaches find that at a tran-
sition to a topologically ordered state the volume enclosed by the Fermi surface can change by a
discrete amount. This leads to a possible new formulation of the Luttinger theorem that extends
the original derivation to systems with topological order. Perhaps the most direct conclusions
related to the Luttinger theorem are due to Sachdev and coworkers who have argued that any
state that does not satisfy the original Luttinger theorem must have topological order. (See,

e.g., [52].)

7 A few final remarks

It is nice to appreciate the prescient work of the 1960’s that are the basis of much of the work
today and still provide very valuable insights, along with the advances of the 1980’s and early
1990’s that have provided new ideas and methods that are the basis for actual calculations done
today. As the calculations have become more and more powerful we have reached the point
where quantitative theory is an essential part of research on actual materials in actual exper-
imental conditions. Despite great successes in many cases, there are failures in others. In
addition, present day theories often use different methods for different regimes of correlation,
for example, the band-like behavior for the materials at the lower left in Fig. 1 and the extreme
localized local-moment behavior for materials in the upper right. It is the materials on the bor-
derline that have interesting, anomalous behavior; they present the greatest challenges because
correlation plays an especially important role. At such points we need guiding principles to
keep the ship afloat and not be caught on the rocks.

Consider the example presented in Sec. 5.1 of cerium in the o and « phases, where temperature
is an essential ingredient in the complete picture. It is a luxury to be able to carry out a heavy
many-body calculation like DMFT that can span the range of behaviors within one method, but
the main point of the discussion in Sec. 5.1 is that we can understand the qualitative behavior
using methods like DFT if we use clear guiding principles like the Luttinger theorem together
with well-established properties of models such as the spectra of the Anderson impurity model
and the temperature dependence in the Kondo effect. The same guiding principles help clar-
ify the limitations of methods like the single-site approximation (or other approximations) in
DMEFT and help us understand the results.

The guiding principles emphasized here have many tentacles that reach into the very essence
of the goal of making robust theories and conclusions that can be trusted. In all the cases
described here, whether real materials or models, there is no rigorous proof that the calculations
are the final answer. It is very difficult to prove that one has found the global minimum free
energy state, i.e., there can be no state with a different type of order that is lower in free energy.
Nevertheless, there are many very useful lessons to be learned and interesting results, if they
are used judiciously. The combination of experiment, theory, and computational methods, each
held to high standards, can provide solid understanding and even open doors to possible new
states of matter.
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2.2 Richard T. Scalettar

1 Introduction

In the United States (and perhaps also around the world) we have a joke about some students’
tendency to try to understand physics by memorizing equations: In comprehending electric
circuits, we say, it is important that such students completely master Ohm’s three laws for
current flow in a metal,

V=1IR I=V/R R=V/I. (1)

In this chapter, we shall present the subtle relations between resistance, voltage and current,
and come to grips with the equations and the deep concepts governing metallic and insulating
behavior, and their extension to superconductors. We will see that there is considerably more
depth to the field than Ohm’s Three Laws, as represented by Eq. (1).

The difference between metals, insulators, and superconductors can be precisely defined, and
illustrated, within the framework of tight-binding Hamiltonians (TBH). That will be our pri-
mary language here. In addition to developing some analytic approaches to the solution of
these Hamiltonians, and hence their characterization into distinct charge transport categories, a
good fraction of the material will involve a discussion of how to implement the concepts and
equations in precise calculational frameworks, including exact diagonalization and Quantum
Monte Carlo (QMC).

The organization of this chapter is as follows. We first describe, in a rather qualitative way,
the different types of insulators (band, Anderson, and Mott) which can arise. Our criteria for
insulating behavior will focus on the appearance of a gap in the single particle energy levels
(band insulator), the appearance of localized eigenfunctions in the presence of disorder (Ander-
son insulator), or the possibility that interactions between electrons are so strong that motion of
electrons is inhibited (Mott insulator). The first two cases can be addressed with some precision
with simple calculations, but the latter is much more challenging. In fact, it is fair to say that a
full understanding of Mott insulating behavior has not yet been achieved, an especially unfortu-
nate state of affairs since out of Mott insulators many of the most interesting new materials and
novel physics develops.

The second part of the chapter develops a more formal set of mathematical criteria for distin-
guishing metals, insulators, and superconductors, one which focussed directly on the current-
current correlation function (and hence, in a sense, can be viewed as a proper treatment of the
quantities in Eq. (1) !) This closely follows the discussion of Scalapino, White, and Zhang in
Ref. [1]. These criteria will be shown to give sensible results both in simple analytic treat-
ments and also with QMC methods. In the latter case, disorder can also be included, along with
interactions.

The final section will outline alternative approaches to distinguishing metallic, insulating, and
superconducting behavior which involve an approximate formula for the conductivity and an
examination of the single particle spectral function.
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2 A brief introduction to tight-binding Hamiltonians

Metals and band insulators

Tight-Binding Hamiltonians (TBH) allow for a simplified description of electrons in a solid,
which complements methods like density functional theory. Rather than calculate the wave
functions in continuum space, one instead focuses on a collection of discrete sites or orbitals
which the electrons can occupy and, between which, make transitions. We will assume the
student has some familiarity with second quantization, which forms the language of TBHs. We
begin with the simplest TBH

H=—t (ajgélg + éjc,éjg> > (ﬁ” + ﬁji) . )

H consists of a kinetic energy term which describes the destruction of a fermion of spin o

&l - and a chem-

on site 1, via the operator ¢, , and its re-creation on site j, via the operator ¢ o

1ca1 potential term. The creation and destructlon operators obey anticommutation relations

(el & o oy =1 Cio0 G ) = 0 and {¢ JO,,clg .} = d;10,./, which guarantee that they describe
fermionic particles. As one consequence, the number operators 7;, = cT ¢, can take only the
values 0, 1.

The symbol < 31 > in Eq. (2) denotes the collection of pairs of sites between which the hopping
of electrons is allowed. Very commonly, this is restricted to the near neighbor sites of some
periodic lattice, for example a one-dimensional chain, two dimensional square, triangular, or
honeycomb lattice, etc. Because there are no interactions, the two spin species ¢ =T, | can,
for the moment, be considered independently. We will define the density p to be the number of
fermions per lattice site.

For most of this chapter, we will assume periodic boundary conditions. In this situation, the
translation invariance of the geometry suggests that going to momentum space will simplify
our understanding. Indeed, if we introduce

o = fze“‘” G o = fze*“” o 3)

the Hamiltonian Eq. (2) becomes diagonal: rather than destruction on one spatial site being
partnered with creation on a different spatial site, creation and destruction processes only occur
between identical momenta. It is worth emphasizing that the new ‘momentum creation and
destruction operators’ obey the same anti-commutation relations of the original operators in
real space, so that each of the momenta states k can be occupied by at most one fermion of each
spin species.

Let’s consider, for concreteness, a one dimensional chain. The explicit calculation is (ignoring
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the chemical potential term)

T AT A AT A
H=—t E (Cjacj+1a + Cj+1o—cja)
7,0
¢ o o o o
v —ikjat 4k’ (j+1) 4 —ik (G+1) At +ik 4
N g E g ( e Ci o€ Cp T € CL o€ Ci o )
jo kK

_ _% Z Z Z i k) j (€+ik’ n eiik)ézaék’a . (4)
k

kK jo

If we use the orthogonality relation Y e™* =7 — Ny, (which is also employed in the
inversion of the site to momentum transformation of Eq. (3)) we obtain the Hamiltonian in
momentum space

H =Y —2tcosk ¢} ¢, - (5)
ko
The structure of Eq. (5) is quite general, that is, also correct in higher dimension and on different
lattice structures. For an arbitrary TBH,

o . . A
H= E €k Nk o Nko = Cp yCxp - (6)
ko

As noted earlier, H is diagonal in the momentum indices, so that a state characterized by the
occupation of certain momenta is an eigenstate of H with an energy equal to the sum of the
corresponding €. This is, obviously, not true of position occupation number states. Different
lattice geometries are encapsulated in the specific dispersion relation €. Summarizing, then,
when viewed in momentum space there is a single, continuous, ‘energy band” whichis, at7" = 0
occupied by two, spin 1 and |, fermions for all i < p. Such a model is always metallic, except,
at zero temperature 7', in the trivial limits where p is below the lowest level in the band, i.e.,
when there are no fermions on the lattice (p = 0) or when p is above the highest level in the
band, i.e., when every level is occupied (p = 2).

A more interesting situation arises when multiple energy bands are present. This can occur in a
variety of ways. Again focussing on a one dimensional chain, consider an additional staggered
potential A3 (—1)7 nj, = ¢"n, in the Hamiltonian. When one goes to momentum space
the staggered potential mixes momenta k and k£ + 7:

A Z(—l)j c;cj = A% Z Z Z et e~k (f o tipd c, =A Z CLCk+7r . (7
J ik p k

(We have used the orthogonality relation ) ; etiltm=klj — N Ok p+~ again.) Now, going to
momentum space has not fully diagonalized the Hamiltonian: the wavevectors k£ and k + 7 mix.
Using the forms already written down for the hopping term,

B Py —2tcosk A C
= zk: < G Ot ) ( A —2t cos (k + ) ’ ®)

Ck+7r
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Fig. 1: The dispersion relation of a one dimensional non-interacting TBH before (black) and
after (red, blue, green) a staggered potential (—1)? f; is added. The staggered potential opens
a gap near k = +m /2 and leads to insulating behavior at half-filling.

where the & sum is over the reduced Brillouin zone —7/2 < k < 7/2, so as not to overcount
the modes.

This structure is not restricted to a one dimensional chain, but will arise for any ‘bipartite’ lattice
(that is, one whose sites divide into two sets .A and 3 such that the neighbors of .A belong only
to B and vice-versa. In this general situation, momenta k and k + 7 mix. One must still do a
final diagonalization of the 2x2 matrices in Eq. (8). The allowed energy levels are

By =+\/e2 + A%, 9)

where k ranges only over the reduced Brillouin zone containing only one of each pair k and
k + 7. The dispersion relation of Eq. (9) has a gap 2A separating the positive and negative Fj.
The system is insulating, not just in the trivial limits when there are no electrons on the lattice or
when all sites are fully occupied, but also at half-filling p = 1, which occurs when the chemical
potential —2A < u < +2A. See Fig. 1

One way of diagnosing such a band insulator is by computing p(1x). Within an energy band, the
density p increases as the chemical potential 1 1s raised. However, for 4 in the gap, p is constant.
This plateau in p(u) reflects a vanishing of the electronic compressibility kK = dp/0u = 0. We
will see that this criterion for insulating behavior applies also to interaction-driven situations,
but not to the disorder-induced Anderson insulator.

In the discussion above we generated multiple bands and a band gap through an additional stag-
gered potential. One could also generalize the original TBH, Eq. (2), so that several fermionic
species are present. One can, for example, allow two orbitals (and associated operators ¢ and ci)
on every site of a square lattice,

]f[:_tZ( CIU_'_CIO'JO' _tz de 10d30'>
(Gl)o
—t Z(djoéjo +é}0(2w “’Z nJT+nJ¢+nJT+ﬁjc¢) ) (10)
jo

J
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Each of the individual fermionic species associated with operators ¢ and d hops on near-neighbor
sites. However, the two types of fermions are also allowed to interconvert on the same site of
the lattice, with hopping parameter ¢’.

Once again going to momentum space, the mixing of the two fermionic species leads to

F[ = ngéTkaéka + ngdjcadka + tlz (CZLUékU + éI{adko')
ko ko

ko

et c
:;<CL dL)(t, 8k)<d‘;>. (1)

The final 2x2 rotation yields the energy levels,
By = =2t (cosk, + cosk, ) £t . (12)

This band structure is somewhat more rich than that which arises from a staggered potential,
where a gap opens for any nonzero A. Here, instead, the bands overlap for ¢’ < 4¢ and the
system is always metallic (except for p = 0 or p = 2). However, it can be made insulating at
p = 1ift' > 4t. The TBH of Eq. (10) is sometimes used to describe ‘bilayer’ geometries,
where ¢ and d label two different spatial layers, as opposed to distinct orbitals.

The considerations of this section have described the simplest type of metal-insulator transition:
Fermions which are noninteracting, on a translationally invariant lattice such that the placement
of the chemical potential either within one of the energy bands (a metal) or in a gap between
them (insulator).

3 Antiferromagnetic and charge density wave insulators

Insulating behavior which is closely connected, from the viewpoint of mathematical structure,
to that of the previous section arises when interactions are included within mean-field theory
(MFT). Consider the most simple type of TBH interaction, a repulsion between spin up and spin
down fermions on the same spatial site. Together with the kinetic energy of Eq. (2) we obtain
the Hubbard Hamiltonian,

A=t > (ot + oty ) —nd (g g, ) +UD dgpigy . (13)
(i)e i j
The MFT approximation consists of recasting the interaction term in Eq. (13) as,

U (gt i) + g (g ) = (ige) (ga)) (14)
J
It is clear that if the fermionic occupations possess an antiferromagnetic (AF) pattern, (nj) =
p+ (—1¥mand (f;;) = p— (—1)Ym, on a bipartite lattice, then a staggered potential similar
to that described by Eq. (7) is present. As a consequence of this ‘spin density wave’ (SDW), a
band gap opens and ‘Slater’ insulating behavior arises, in direct analogy of the argument leading
up to Eq. (8).
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Although this MFT treatment of the Slater insulator is indeed close to that of a staggered poten-
tial, it is worth emphasizing that AF can also arise away from p = 1. Of course, it is necessary
to determine whether the ansatz for (n;,) in which the occupations vary spatially actually low-
ers the free energy for nonzero m. The answer will depend, in general, on U and p and can be
used to generate the MFT phase diagram. The result for the d = 2 square lattice is given in [2].
Note that it is also possible that a ‘ferromagnetic’ ansatz (nj) = p +m and (n3) = p — m,
lowers the energy. This is quite a bit less likely to lead to an insulating gap since, as discussed
above within the context of a bilayer model, a large order parameter m is required to introduce
a gap between energy bands which are rigidly shifted, whereas a gap immediately opens for any
staggered potential amplitude A.

A similar type of insulator arises when fermions interact with local phonon (oscillator) modes
Dj, q;, rather than with each other, e.g. in the Holstein model

Hijosiein —t Y (8,61, +6,6,) + % S T(D3+wd3) + A (Agr +hgy) g5 . (15)

Ghe J J
One can get a preliminary understanding of its physics by ignoring the phonon kinetic energy
and considering only static ionic displacements. On a bipartite lattice, an oscillating set of
displacements (§;) = qo(—1)) opens a gap in the fermion dispersion relation precisely as
with a staggered potential associated with an AF spin pattern. Unlike the latter case, however,
the resulting densities of up and down spin are in phase, leading to a charge density wave
(CDW) as opposed to a SDW. At half-filling, the lowering of the electronic energy from ey
to By = —\/512(+7A2 favors non-zero values of gy. Against this competes the increase in the
potential energy w? ¢2/2. Which effect dominates depends on the phonon frequency wy, the
electron-phonon coupling A, the dimensionality of the lattice, and, of course, a proper treatment
of quantum fluctuations of the phonons.

4 Anderson and Mott insulators

In this section we combine a discussion of two distinct types of insulator, those arising from
disorder and those arising from strong repulsive interactions.

Anderson insulators develop from randomness in a tight binding Hamiltonian. We begin our
discussion by considering a one dimensional TBH with a single site at the chain center N/2
with a lower energy than all the others

; t
H - —tz< JU ]+1U+CJ+10' ]0'> —'MOCN/Q,UCN/Q,U : (16)

Figure 2(top left) shows the eigenenergies, obtained numerically by diagonalizing H. Since
translation invariance is broken by the impurity, we no longer label the eigenvalues with a
momentum index k. Nevertheless, all but one of the eigenvalues form a band, which looks very
much like the (k) = —2t cos(k) in the absence of the impurity (19 = 0). However, there is
one extremal eigenvalue split off from all the others, which we have placed at n = 512. This
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Fig. 2: Top Left: Eigenspectrum of the TBH Eq. (16) for a chain of length N = 512 and
impurity depths 1y = 0.05,0.10,0.20,0.50. Shown over their full range, the energy levels are
indistinguishable from each other and from those of Fig. 1. Top Right: A blow-up of the eigen-
spectrum allows the resolution of the impurity level split off below the energy band. Bottom Left:
Farticipation ratios of all eigenvectors are of order the number of sites N, except for the single,
localized mode. Bottom Right: The square of the components of the associated eigenfunctions,
in the vicinity of the defect at N/2 = 256. As the impurity depth 1y decreases, the eigenfunc-
tions are less localized. Since momentum is no longer a good quantum number in the presence
of the breaking of translation invariance by the defect, the horizontal axes in the top row are
labeled by the eigenvalue index j rather than k.

separation is clear in the blow up of Fig. 2(top right). Figure 2(bottom right) plots the square
of the amplitude of the components !gbj }2 of the localized eigenfunctions. They are seen to be
sharply peaked at N /2.

A useful way to characterize the spatial extent of an eigenfunction with components ¢; (which
we assume are normalized to ) | i ‘qﬁj ‘2 = 1) is via the participation ratio P

P =3"o" (17)
J

If the eigenfunction is fully localized on a single site jo, that is, if ¢; = 6(7, jo), it is easy to see
P~! =1 and hence P = 1. On the other hand, if the eigenfunction is completely delocalized
o; =1/ VN we have P~ = 1 /N and hence P = N. By considering other cases one can
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be convinced that, roughly speaking, P measures the number of sites in the lattice where ¢; is
“large.” Figure 2(bottom left) plots these participation ratios. They are all of the order of the
lattice size /N (meaning the states are delocalized) except for a single mode (5 = 512) which is
localized.

This problem is formally very similar to that of localization of vibrations of a harmonic chain
with a single mass m’ or spring k£’ which differs from all the others, in the sense that the solution
of both reduces to diagonalization of the same type of matrices. In the case of vibrations, it is
interesting to note that localization occurs only for a defect mass which is lighter than all the
others. This can be seen to be physically reasonable in the extreme limits: If m’ < m, one
pictures the very light mass as vibrating back and forth between the heavy ‘walls’ provided by
its neighbors. A heavy defect, m’ > m, shoves aside its neighbors and its vibrations spread
throughout the chain.

The problem of a small number of impurities in a noninteracting TBH can be treated analyti-
cally [3]. The procedure is sufficiently interesting and important to provide the initial steps here.
In order to connect this discussion with the previous material, it is useful to recall an alternate
approach to the solution of noninteracting TBHs.

We solved Eq. (2) by a rather sophisticated method, namely by doing a canonical transformation
on the fermionic creation and annihilation operators which diagonalized H. Aless sophisticated
solution is to construct the matrix for / using position occupation states as a basis. This is done
in the usual way, by allowing H to act on each basis vector. Because H conserves particle num-
ber (fermion creation and destruction operators always appear as partners), its matrix consists
of independent blocks corresponding to the particle number. For a linear chain of N sites with
periodic boundary conditions, then

H[100000---00) =—t|010000---00)—¢|000000---01)
H[010000---00)=—t|100000---00)—¢|001000---00)
H[010000---00)=—¢[100000---00) —¢[001000---00)

-~ ete. (18)

The calculation of the single particle eigenstates ¢ and eigenenergies E, in the absence of an
impurity, therefore corresponds to the linear algebra problem,

Z Lmn (bn =0 Lmn = E(Smn - tfsm,nfl - tfsm,n+1 ) (19)

where L is the matrix of numbers which forms the single particle block of H in the occupation
number basis.

The nontrivial solution of Eq. (19) requires the vanishing of the determinant | L | = 0. It is an
easily proven that the & component of the nth eigenvector is ¢, = e*", and E;, = —2t cosk,
solve Eq. (19). The periodic boundary conditions discretize the allowed & values to k = 27n/N
with n = {1,2,3,..., N}. Notice that this solution is precisely the same as that arising from
the transformation to momentum space operators, Eq. (5)!
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Fig. 3: The qualitative physics of the Mott insulator is seen by considering a half-filled system
(one particle per site). Left: When the on-site repulsion U between particles is weak, they are
free to hop around the lattice. Empty, singly, and doubly occupied sites are all present, with
only the average density equalling one particle per site. Right: On the other hand, when U is
very large compared to t, it is energetically preferable for the particles to sit with exactly one
fermion on each individual site.

This second approach to the problem lends itself nicely to an attack on the behavior in the
presence of randomness. One can write the problem as,

Y Lymn=> 0Lmrds — (I-GiL)¢p=0, (20)
n k

where JL is the matrix which contains the local chemical potentials and G = L. In the case
of Eq. (16), L has a single nonzero entry along its diagonal.
A solution to Eq. (20) is,

bn=> GudlLydy . 1)
Lk

However, this a only ‘formal’ solution because the unknown variables ¢,, appear on both sides
of Eq. (21). However, note that the non-trivial solution of Eq. (21) requires | I — GJL| = 0.
The important observation is that the sparsity or § L enormously simplifies the linear algebra
problem. Instead of rank NN, the matrix / — G 0 L whose determinant must be computed
has much lower rank. Furthermore, the solution of the eigenproblem of L is known, we have
an explicit expression for the Green function, G,; = >, ¢*("=0 /F; . Amazingly, then, the
problem of the modes in the presence of n < N defects boils down to the diagonalization of
an n X n matrix, whose elements involve the known defect potential § L and Green function
G. Ref. [3] provides some explicit examples, and a beautiful graphical solution of several
interesting cases.

Having discussed the situation when there is a single, or small number of, defects, it is natural
to ask what happens when there are many impurities present, for example when there is a
randomly chosen chemical potential on every site of the lattice. This is the problem of ‘Anderson
Localization’ [4]. In one dimension, all the eigenstates become localized, for any amplitude of
disorder. This is also true in two dimensions, although just barely [5]. In three dimensions, the
eigenfunctions at the extremes of the spectrum (that is, those associated with the largest and
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Fig. 4: The Pauli Principle prevents fermions of like spin on adjacent sites from hopping
(left), a process which is allowed if the fermions have opposite spin (right). In the case of
antiparallel spin, the intermediate state created by the hop has a doubly occupied site, and
hence a potential energy U. The resulting second order lowering of the energy relative to the
parallel spin arrangement is proportional to —t*/U.

smallest eigenvalues) are localized, while the eigenfunctions near the center of the spectrum are
extended. The energy which separates these two behaviors is referred to as the mobility edge.
In 3D one has the appearance of Anderson insulating behavior, and the possibility of associated
metal-insulator transitions: If the chemical potential lies below the mobility edge, only localized
eigenfunctions are occupied, and the system is an insulator. When y crosses the mobility edge,
extended states become occupied, and the system becomes a metal. It is important to emphasize
that, in stark contrast to the band, SDW, and CDW insulators previously discussed, there is no
gap in the spectrum. The compressibility « is nonzero in the insulator, and a plot of density p as
a function of chemical potential i would show no marked signal at the transition from Anderson
insulator to metal.

The final qualitative discussion concerns “Mott insulators,” whose behavior arises from inter-
actions, as opposed to gaps in the band structure or localization by disorder. Consider a single
band Hubbard Hamiltonian, for example on a square lattice, at “half-filling” (one electron per
site). The simple physical picture of a Mott insulator is that if the on-site repulsion U is very
large, the energy cost for the double occupation which must occur in order for the electrons to
move, overwhelms the kinetic energy and freezes the electrons in place. See Fig. 3.

Although in Fig. 3 the spin orientations of the fermions are not indicated, it is natural to ask
if they have any preferred arrangement. There are several arguments which suggest AF order.
The first treats the hopping term in the Hubbard Hamiltonian Eq. (13) perturbatively. Consider
two adjacent sites, both singly occupied with fermions of parallel spin. The interaction energy
is zero, and, because of the Pauli Principle, the matrix element of the kinetic energy in this
state vanishes, so there is no shift in the energy. If the fermions have antiparallel spin, however,
the kinetic energy operator connects to an intermediate state with one empty and one doubly
occupied site, with energy U. Thus the energy of a pair of sites with antiparallel spin fermions
is lowered by AE ~ —t?/U. See Fig. 4. There are other arguments suggesting AF dominates
at half-filling, for example a calculation of the magnetic susceptibility of the Hubbard Hamil-
tonian within the random phase approximation. A very nice early discussion of these ideas,
emphasizing several unique features of the square lattice dispersion, is contained in Ref. [2].
Figure 5 shows some quantum simulation results for the square lattice Hubbard Hamiltonian
at U = 4. p(p) develops a ‘Slater-Mott’ plateau at half-filling. (See below.) The figure uses
a convention in which the interaction term is written in particle-hole symmetric form so that
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Fig. 5: Left: The density p as a function of the chemical potential . for the Hubbard Hamilto-
nian on a square lattice at U = 4t and three different inverse temperatures 5 = t/T = 4,6, 8.
As [ increases, Right: The density of fermions at a nonzero chemical potential, as a function of
B shows that p — 1.

it = 0 corresponds to p = 1. The vanishing of the compressibility, x = 0, at p = lisa
truly remarkable change in behavior since, on the square lattice, the noninteracting system has
a divergent density of states at half-filling: x = oo at U = 0! The algorithm used in the
figure is ‘determinant QMC’. This approach treats the interactions between electrons exactly,
on lattices of finite spatial extent (a few hundred up to about a thousand spatial sites), and thus
provides a much more rigorous treatment than that provided by MFT. The reader is referred to
Refs. [2,6-8] for a discussion of DQMC and its application to magnetism in the 2D Hubbard
Hamiltonian.

The review of these ideas emphasizes an important point: in many situations (especially on
bipartite lattices) a ‘Slater insulator,” which occurs at weak to intermediate U due to the opening
of an AF gap, merges smoothly, as U increases, into the Mott insulator where the lack of
transport predominantly arises from the high cost of double occupancy. There is no sharp
boundary between these two types of insulator, but rather a gradual crossover. A very deep
question indeed is whether for fermionic systems symmetry breaking such as AF order always
accompanies the Mott insulator, or whether a featureless, translationally invariant Mott phase
can occur, as for collections of bosonic particles [9].

5 Formal definitions

The proverbially alert reader will have noticed that the preceding discussion avoided what would
seemingly be the most natural quantity to distinguish metals and insulators, namely the conduc-
tivity o. This is because transport properties are a bit more subtle to deal with. We will now
consider o and develop an understanding, which unifies the preceding, more qualitative, dis-
cussion. An added bonus will be the fact that the superfluid density, the defining characteristic
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of a superconductor, naturally arises. The discussion in this section very closely follows that of
Ref. [1]. The derivation is a bit dense. The key ‘practical results’ are Eqgs. (30) and (31) which
allow for the determination of Drude weight D and superfluid density D from the current-
current correlation function A,...

Consider the response of the current to presence of a vector potential A,(1). As shown in
Ref. [10], this modifies the hopping term in the kinetic energy (suppressing the spin indices),

C}L—l—xcl + CICI-F.Z’ - eiEAI(l)CL-xCl + eiieAz(l)C;rcl—l-ac ) (22)

This can be expanded in powers of A so that the kinetic energy K acquires an additional term
which can be expressed in terms of the paramagnetic current density in the x direction e;2(1)
and the kinetic energy density on bonds in the x direction, &, (1),

Ka= K=Y (ezmam+ W a,02) 23

1
jg(l) =1t Z (C;[eraclo' - CiraclJra:O')

kdf(l) =t Z (CLr:EJClU + c;roclero) :

g

Differentiating Eq. (23) with respect to A, (1) yields the total current density, which includes
both paramagnetic and diamagnetic contributions,

. 0K 4

= ejp(D) + € k(1) Au(1) (24)
If one assumes a plane wave form for the vector potential,

A, (1,t) = Re(Ay(q,w) 9474 | (25)
then the resulting current is,

(a1, 8)) = Re((a(q,)) 7'
(el w)) = =¢( (k) = Aala,0)) As(q ) - 6)

The real-frequency current-current correlation functions /A(q, w) are related to those at Matsub-
ara frequencies iw,, = 2mm7T’,

: 1 g W T [ .
Ael@ivn) = 5 | drela ni(-a,0)) @
0

by analytic continuation.

Equations (26), (27) and the calculations leading to them are simply somewhat more complex
versions of the relations such as the one which expresses the magnetization induced by an
applied Zeeman field, to the magnetization-magnetization correlation functions and thereby the
magnetic susceptibility x, or any of the other multitude of ‘fluctuation-dissipation’ relations
which arise from linear response theory.
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It remains to connect this rather abstract quantity to more physical objects like the superfluid
density: For bosonic particles, the superfluid density can be measured in, for example, a tor-
sional oscillator experiment. As 7" is decreased below the superfluid transition temperature, the
moment of inertia of a liquid in a container abruptly decreases, because the liquid inside no
longer couples to the walls of the container. As we discuss below, for fermionic particles the
superfluid density determines the distance to which a magnetic field penetrates a superconduc-
tor.
One of the early fundamental advances in understanding superconductivity was London’s ob-
servation that the Meissner effect follows if one assumes the current density is proportional to
the vector potential,
o) =~ 5 Aelay) (28)

That is, magnetic fields will be expelled from a superconductor at distances beyond the pene-
tration depth A,

1 dmnge?

X2 me
which depends on the superfluid density n,. A comparison of Egs. (28), (29) with Eq. (26)

(29)

provides a link between the superfluid weight Dy = ng/m and the current-current correlation

function:
D .
2 :_<_kx>_Ax:c(qx:OaQy_)Oalwm:O) . (30)
me
The usual relations between vector potential and electric field, £, = —0A,/0t, and between

the conductivity and electric field, result in an analogous formula for the Drude weight, the delta
function contribution Dé(w) to the conductivity,
D
me?
Details of this connection are in Ref. [1].

The third limit, in which the longitudinal momentum is taken to zero, relates /A to the kinetic
energy,

(—ky) = Apu(qe = 0,9y = 00w, =0) . (32)

Summarizing, the key results are the following: Depending on the limits in which the momenta
and frequency are taken to zero, one can obtain superfluid density D and Drude weight D from
the current-current correlation function.

The superfluid density D, and the Drude weight D form a basis for distinguishing an insulator
(D = Dy, = 0), from a metal, (D # 0,D, = 0), from a superconductor (D, # 0). It is
rather remarkable that these alternate limits of approaching zero momentum and frequency
yield distinct results and profoundly different physical quantities, especially to physicists who
are accustomed to not being overly worried about the subtleties of the order of operations.

We will introduce the simplified notation A" = lim,, o Au2(¢z, g, = 0;iw, = 0) and AT =
limg, 0 Aszz(qz = 0,qy; 1w, = 0) so that Egs. (30) and (32) can be simply expressed as D, =
7K, — AT] and — K, = A" respectively.
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Fig. 6: Left: Kinetic energy K,, longitudinal A*, and transverse AT limits of current-current
correlation function for the attractive Hubbard model with U = —41t at temperature T' = 0.1
and filling p = 0.875. The horizontal axis is the strength of random site energies —V < u; <
+V. The data indicate that A* = —K, over all parameter ranges, as required by gauge
invariance. Right: The superfluid density D, = 7r( —K,— AT) and Drude weight D. To within
the accuracy of the numerics, D = D,. See Egs. (30), (31), and also Fig. 7

6 Applications of formal theory

Ref. [1] considered the simplest TBHs to check their formalism, namely the clean, single band
attractive and repulsive Hubbard Hamiltonians on a square lattice. Here we present results [11]
on a TBH which also includes disorder in the site energies (an additional term ), v;(n; + 1))
in the Hubbard Hamiltonian), to illustrate how powerful and general Eqs. (30), (31) truly are.
We use the same DQMC approach which generated the data shown in Fig. 5 (and which was
used in [1]). We note, however, that the implementation of these criteria within DQMC requires
the evaluation of imaginary time-dependent observables, as opposed to the algorithmically more
simple equal time quantities like the energy, density, and magnetic, charge, and pairing structure
factors. Such calculations slow down DQMC simulations quite significantly, especially at low
temperatures and on large spatial lattices.

It is important to note that, while the presence of randomness breaks translation invariance
for a single disorder realization, translation invariance is recovered after disorder averaging.
Typically one finds calculations for 10-100 distinct instances of the local site potential {v;} are
required in DQMC simulations such as those described here.

Results from [11] for A7, A* and — K, are plotted in Fig. 6(left) as a function of the strength
of randomness in the site energies —V < v; < +V. The attractive interaction strength U = —4,
temperature 7' = 0.10, and density p = 0.875. D and D; are plotted in Fig. 6(right). They
decrease monotonically with disorder. There is a critical value V. beyond which D = Dy = 0
and the system becomes insulating. These results are consistent with a direct superconductor to
insulator transition in 2D, without an extended intervening metallic phase.

Figure 7 provides some numerical details on the extrapolation in Matsubara frequencies which,
following Eq. (31), is needed to capture D. Similar plots showing the momentum extrapolations
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Fig. 7: Illustration of the details of the extrapolation procedure to obtain the Drude weight D
via Eq. (31). The horizontal axis n = w, /(2w T). Parameters are as in Fig. 6. In the metallic
phase, which occurs precisely at the critical point V- =V, ~ 3.25, the slope of D(w,,) can be
used to obtain o,4.. See text.

to obtain D, and verify AF = —( K, ) are not shown, but can be found in Ref. [1]. Note that
in general the simulations are performed in a regime where there are up to several hundred
Matsubara frequencies, but only 10-30 momenta in each direction, an order of magnitude less.
Thus the momentum extrapolations needed for A* and A” are typically more challenging than
those for D.

As argued in Ref. [1], the extrapolation in Fig. 7 can also be used to obtain the dc conductivity
via

D(wy) = 70 4e|lwn] - (33)

We will use this as a consistency check against alternate ways of quantifying the metal-insulator
transition and obtaining o ..

7 Conductivity and spectral function

This final section before the conclusions will focus on two further QMC approaches to the
metal-insulator transition. The first technique, like those of Sec. 6, begins with the current-
current correlation function, but has the advantage of avoiding analytic continuation and ex-
trapolation to zero momentum or frequency. It is, however, approximate. The second method
moves away from /,, and instead considers the spectral function.

Consider the fluctuation-dissipation theorem

[T dw  exp(—wrT)
Molar) = [ B A4 G4

In principle one can invert this Laplace transform to get Im A, but this process is known to be
very ill-conditioned [12]. We instead proceed as follows: If the temperature 7' < (2, the scale
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Fig. 8: Left: The resistivity pg. = 1/04. obtained from Eq. (35) as a function of temperature.
The on-site attraction U = —41t and the density p = 0.875. The curves are (top to bottom)
for disorder strengths V' = 5.0,4.5,4.0,3.5,2.0,2.5,2.0,1.5,1.0. For large V, pq. increases
as T' is lowered, indicating insulating behavior. For small V, pg. decreases as T is lowered,
indicating metallic behavior. The open symbol at'T' = 0.10 is the value of p,. inferred from the
V =V, data in Fig. 7. See text. Right: The data are replotted to show py. as a function of V for
curves of constant T'. The crossing indicates the approximate position V.. of the metal-insulator
transition. For these parameters, the superconducting transition temperature T, < 0.05t, so
no abrupt drop in pg. occurs. The quantum of resistance pg = h/(4e?) = /2 in our units
(h=e?=1).

at which Im A deviates from its low frequency behavior Im A ~ way,, it is useful to evaluate
Eq. (34) at the largest possible imaginary time, 7 = /2. By doing this, the factor e=“" cuts off
all contributions to the integral for frequencies above (2, allowing us to replace Im A by woye,
and enabling an analytic evaluation of the integral. The result
52

Odc = ?Am(q =0,7=0/2), (35)
provides a very useful approximate formula for o4, subject to the restrictions noted above.
The reasoning leading to Eq. (35) is dubious for non-random systems: for example, for a Fermi
liquid, the scale 2 ~ 1/7._. ~ N(0)T?, so that it is impossible to satisfy 7' < (2 at low T.
However, in the presence of strong disorder (2 it is set by V. Since (2 is T-independent, it is
possible to lower the temperature sufficiently far in the DQMC simulation to make Eq. (35)
applicable.
There is a quite nice consistency between the different methodologies to characterize the phases
of the model, and even the quantitative values of the conductivity. For example, Fig. 6 shows an
onset of nonzero D and D for V in the range 3 < V' < 4 as the disorder strength is decreased.
These results are based on Egs. (30), (31). Meanwhile, the crossings of the data for p,. in
Fig. 8 indicate V. ~ 3.5. Here Eq. (35) was utilized. Analysis of D based on Eq. (31) yields
V. ~ 3.25 and, furthermore, via Eq. (33), gives a numerical value for o4 which agrees quite
closely with Eq. (35). This sort of careful cross-checking of numerics is of course essential in
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Fig. 9: Superconducting-insulator transition in thin amorphous Bi films as a function of carrier
density [17]. Note the qualitative similarity to Fig. 8. (As noted in the caption to Fig. 8, the less
abrupt drop in the DOMC data is a consequence of the fact that T' > T, over the temperature
range shown.)

any calculational approach, but is especially important in QMC studies of interacting fermions,
where limitations of finite size and the sign problem are especially acute.

As a connection to real materials, we observe that the curves in Fig. 8 are remarkably similar
to those found in the experimental literature on the two dimensional superconductor-insulator
transition (SIT) in the presence of disorder [13]. In these studies, the SIT has been accessed
in a wide variety of ways: by explicitly changing the degree of microscopic disorder (similar
to the model studied here in which V' is varied, by altering the film thickness, by applying a
magnetic field, or by changing the carrier density. An example of the latter tuning method is
given in Fig. 9. With DQMC, different ways of driving the SIT have also been explored with
DQMC [11, 14-16].

One further method of distinguishing metals and insulators relies on the computation of the
momentum-resolved spectral function A(q, w) and its sum, the density of states. The formalism
is similar to that of Eq. (34), except involving the single-particle Green function G(q, 7).

I exp(—wT) B
Glar) = [ oot a(a.w) V@) =T Alaw) . G0

Figure 10 shows what this diagnostic discloses concerning the square lattice Hubbard Hamilto-
nian at half-filling. One observes that N(w = 0) — 0 as 7" — 0 both for weak U, the ‘Slater
insulator’ driven by SDW order, and at intermediate U where the crossover begins to Mott in-
sulating behavior. The size of the insulating gap is roughly given by the temperature range over
which N(w = 0) is small. This is seen to increase with increasing U.
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Fig. 10: Density of states at the Fermi surface, N(w = 0) of the half-filled Hubbard Hamilto-
nian as a function of temperature 1" for different values of the interaction strength U = 2,4, 6.
AsT' — 0, the density of states vanishes in all cases. One concludes the Hubbard Hamiltonian
on a square lattice with p = 1 is insulating over the entire range ) < U < oc.

8 Conclusions

We began this chapter with some simple qualitative pictures of metals and various types of in-
sulators: (i) band insulators which arise when a TBH has several non-overlapping bands and the
chemical potential lies between them; (ii) SDW and CDW insulators whose origin can be un-
derstood within a MFT treatment of interactions between the electrons or between electrons and
phonons; (iii) Anderson insulators formed by disorder; and (iv) the most challenging situation,
Mott insulators driven by strong interactions.

We then turned to a formal way of characterizing metals and insulators in terms of different
limits of the current-current correlation function, and the implications for the conductivity and
superfluid density. Our qualitative pictures of the distinction between metal and insulator in (1)
and (ii) focussed on the spectrum of the Hamiltonian rather than the conductivity. The MFT
treatment of the formal criteria showed the linkage between the two pictures.

The formal criteria have also been used in conjunction with QMC in the solution of the Hubbard
Hamiltonian [1] to show that they indeed work when the interactions are treated more exactly
than in MFT. We gave some illustrations of this approach when disorder and interactions are
both present which serves as a specific model calculation for the superconducting to insulator
phase transition [11], which is so well-explored experimentally [13]. Finally, we showed a
few QMC results for the conductivity, spectral function, and density of states in determining
insulating behavior.

It is worth noting two further approaches to the question of the metal-insulator transition which
have also been widely used in QMC. The first is an analysis of the behavior of the electron
self-energy at small Matsubara frequencies. For a illustration of this method, see [18]. The
second is an analytic continuation of the imaginary time dependent spin, x(7) = (M (7)M(0)),
and charge, P(7) = (N(7)N(0)), correlation functions. Here M = Y, (n;, — n;) and N =
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> (?%'T +n; i)- The presence of ‘spin and charge gaps’ in the low frequency behavior of their
Laplace transforms x(w) and P(w) can be used to infer the presence of insulating behavior
associated with spin and charge order. See, for example, [19].

We finish by returning to the opening of this chapter, presenting the reader with a question: In
our first encounter with the idea of conductors, one associates the resistance R in Ohm’s law
with some sort of scattering mechanism which provides for the loss of energy. Where is such
dissipation in models like the clean Hubbard Hamiltonian?
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1 Introduction

By definition, a macroscopically homogeneous material is insulating whenever its dc longitudi-
nal conductivity vanishes, i.e., when the real symmetric part of the conductivity tensor US};) (w)
goes to zero for w — 0. Here and throughout Greek subscripts are Cartesian indices. For
a d-dimensional system of volume L? the conductance G equals L?"2c. When measured in
klitzing~* (symbol Ry') conductivity is dimensionless in d = 2, while it has the dimensions of
an inverse length in d = 3. We remind that 1 Rk = h/e* ~ 25,813 ohm [1].

Longitudinal conductivity is an intensive material property whose most general form can be

written as

i regular Drude regular
745 () = Das [6<w> + @} + ol (W) = o @) + ol W), )

where the constant D, goes under the name of Drude weight. The insulating behavior of a
material implies that D,s = 0 and that the real symmetric part of agﬁegmar) (w) goes to zero for
w — 0 at zero temperature.

Eqn. (1) will be expressed below using linear-response theory (Kubo formulas); it may include—
at least in principle—disorder and correlation, but does not include any dissipative mechanisms.

The conductivity obeys the f-sum rule

w 7T627’L

00 2
dw R (regular) _ P _ 2
+ /0 wReo,: (w) 3 Dy (2)

Daa
2

/ dw Re 044 (w) =
0

where n is the electron density and wy, is the plasma frequency. For free electrons (a gas of
noninteracting electrons in a flat potential) aggg‘”ar> (w) vanishes, while D,z assumes the same
value as in classical physics [2], i.e, Do = we*(n/m)d,p: this explains the extraordinary
longevity of Drude theory, developed in the year 1900. Given eqn. (2), switching on the poten-
tial (one-body and two-body) has the effect of transferring some spectral weight from the Drude
peak into the regular term.

Dissipation can be included phenomenologically in the Drude term by adopting a single-relax-

ation-time approximation, exactly as in the classical textbook case [2], i.e.,

U‘E‘%rme) (@) = %wl—)i-aiﬁ/ T’ )
whose 7 — oo limit coincides with first term in the expression (1).

In the special case of a band metal (i.e., a crystalline system of non interacting electrons)
agﬁegmar) (w) is a linear-response property, which accounts for interband transitions, and is non-
vanishing only at frequencies higher than a finite threshold. Instead, D,g is a ground-state
property which accounts for the inertia of the many-electron system in the adiabatic limit, and
provides an effective value of n/m, where the free-electron value is modified by the periodic
potential. After an integration by parts, D,z can be equivalently expressed as a Fermi-surface
integral, and acquires then the meaning of an “intraband” term [3]. As said above, the free-
electron Drude weight is an upper limit for the actual value of D,g.
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In 1964 Kohn published the milestone paper “Theory of the insulating state” [5], according to
which insulators and metals differ in their ground state. Even before the system is excited by
any probe, a different organization of the electrons is present in the ground state and this is the
key feature discriminating between insulators and metals. Kohn’s theory remained little visited
for many years until the late 1990s, when a breakthrough occurred in electronic structure theory:
the modern theory of polarization (for historical presentations see, e.g., Refs. [6—8]).

The many-body version of polarization theory appeared in 1998 [9]; shortly afterwards—inspired
by the fact that electrical polarization discriminates qualitatively between insulators and metals—
Resta and Sorella [10] provided a definition of many-electron localization rather different from
Kohn’s, and derived by the theory of polarization. Their program was completed soon after
by Souza et al. [11] (hereafter quoted as SWM), thus providing the foundations of the modern
theory of the insulating state, deeply rooted in geometrical concepts. A couple of review papers
appeared in 2002 [12] and in 2011 [13]. We are going to revisit the theory here. The present
viewpoint differs somewhat from the previous one; some of the results given here are original
and published for the first time.

2 Linear response and conductivity

To start with, we fix our conventions about Fourier transforms

fw) = / Taretr) f() = = / " e (w): 4

different conventions can be found in the literature.

Suppose we have a general input signal fi,pu () and the corresponding output foueput(t), which
is due to the response of a time-independent physical system. The most general linear response
is given by a convolution

foutput <t> - / dt/ X(t - tl)finput (t/), (5)
where x(t) is the generalized susceptibility. It is easily verified that x(¢) can equivalently be
defined as the response an instantaneous d-like “kick” at ¢ = 0; causality implies that x(¢) = 0
for ¢ < 0. The convolution theorem yields

foutput (w) = X(w) finput (W) (6)

Within quantum mechanics at zero temperature, we define x(¢) by means of a perturbation in
the Hamiltonian AH = —§ (t)A (the “kick™), acting on the system in its ground state. The
response is measured as the expectation value of another operator B. Without loss of generality
we simplify our notation by assuming that

(Wo| Ajwe) =0, (| B|&p) = 0. (7
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Time-dependent perturbation theory leads to the Kubo formula for the generalized susceptibil-
ity, which we write in the w domain adopting the compact notation due to Zubarev [14-16]

x(w) = —(BlA).; (8)
.1 1 Wo| BIW,) (W | AlBo) (Wl A|W,,) (&, B,
R —— Z'<< 0| BIT) (Wl A1) (@l Al (7| B o>>, ©
n—0+ W — Wop + 1 W + won + 11
where wy,, = (E, — Ey)/h. The positive infinitesimal 7 ensures causality, and we remind that
li ! P Loy d(w) (10)
im =P—
n—=0+ w & in ERIA

where P indicates the principal part. We draw attention to the fact that the sign convention
adopted in this chapter agrees with Zubarev [14, 15] and Chandler [17], but is opposite the one
of McWeeny [16] and other textbooks.

We apply the general linear response theory by addressing an interacting /V-electron system,
whose most general Hamiltonian we write, in the Schrodinger representation and in Gaussian
units, as

2 ~
p; + ;A(rl-) +hx| +V; (11)

1=

the potential V includes one-body (possibly disordered) and two-body (electron-electron) con-
tributions. Equation (11) is exact in the nonrelativistic, infinite-nuclear-mass limit. The velocity
in eqn. (11) is augmented with two terms: A(r) is a vector potential of electromagnetic origin,
and k, having the dimensions of an inverse length, is called “flux” or “twist”. Setting k # 0
amounts to a gauge transformation. The electrons are confined in a cubic box of volume L? and
the eigenstates |, (k)) are normalized to one in the hypercube of volume L™%; we will adopt
the simplifying notation |¥,(k = 0)) = |,,).

Bulk properties of condensed matter are obtained from the thermodynamic limit: N — oo, L —
oo, with N/L? constant. Since the following formulas will comprise «-derivatives evaluated at
rx = 0, itis important to stress that the differentiation is performed first, and the thermodynamic
limit afterwards.

Two kinds of boundary conditions can be adopted for the given Hamiltonian: either periodic
(PBCs) or “open” (OBCs). We briefly address the latter case first: the cubic box confines the
electrons in an infinite potential well, the eigenstates |¥,(k)) are square-integrable over R4,
and the position operator & = ) . r; is the ordinary multiplicative operator. Within OBCs the
effect of the gauge is easily “gauged away”: the ground-state energy is gauge-independent,
while the ground state is [Wy(k)) = e T Y).

We will come back below (Sec. 7) to OBCs. For the time being we adopt instead Born-von-
Karman PBCs over each electron coordinate r; independently, whose Cartesian components
i« are then equivalent to the angles 27r; /L. The potential 1% enjoys the same periodicity,
which implies that the electric field averages to zero over the sample. As noticed by W. Kohn
in 1964 [5], PBCs violate gauge invariance in the conventional sense: for instance, the ground
state energy Fy(k) actually depends on K.
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In order to address conductivity it is essential to adopt PBCs: there cannot be any steady state
current within OBCs. Furthermore, since the multiplicative position T is no longer a legitimate
operator within PBCs [9], it is mandatory to adopt the vector-potential gauge for the macro-
scopic electric field £: the perturbation in the Hamiltonian is therefore an w-dependent vector
potential A, constant in space.

One key point is that the vector potential modifies the velocity operator. We stick to the symbol
v for the velocity in absence of the perturbation, and at £ = 0: this may include a ground-state
vector potential, but not the perturbing one, i.e.,

N
1 e
v=—3> [pi+AQ ] . 12
M m im1 [p + C <r ) ( )
The current carried by a generic state |7) after the perturbation is switched on is therefore
e e?N
j=——V¥)— 0A. 13
J Ld< V1) meLd (13)

Expansion of the Hamiltonian to first order in the perturbing vector potential J A yields
AH =S6A -v. (14)
c

If we set £ and A along the /3 direction, the linearly induced current in the « direction is

e?N e . e e2 (N o
A = L S04 0 = = (2 dua+ (s ) 84 (19

ja:_

where we are restoring the w dependence. The term in 5 A2, being constant in space, has zero
matrix elements; it is also second order in £.
In order to arrive at the conductivity we need to express 0 A(w) in eqn. (15) in terms of £(w). In

the time domain their relationship is £ = —200A/dt; a naive integration would yield 6 A(w) =
—ic€(w)/w, but this violates causality. The correct integration yields:
1
dA(w) = c€(w) {— — Wé(w)] : (16)
iw

Therefore the current, as expressed directly in terms of the field intensity, is
(W) = 0ap(w) Eg(w) = (X (oalin) ) |— — )| Exw). (A7)
Ja\W) = 0apl\W)CplW) = Ld maﬂ Va|VB))w o To\W gl\W).

‘We then write the Kubo formula as

1 . ! Rna,@"'iznaﬁ Rnab’_il—naﬁ)
Vo|Ug) = = lim : = — : : , 18
(valus) > (Buorttuon Ry =t (1)

Ruas = Re <W0|Ualgpn><gpn|vﬁ|¢0>v Znop =1Im <¢0|Ua|wn><wn|v,3|w0>> (19)

where R, g 1s symmetric and Z,, g antisymmetric. The longitudinal conductivity is the sym-

()

metric part aa; (w) of the tensor. Upon exploiting eqn. (10) we eventually get

7T€2 N 2 "R ]
Dog=— | —0ug — = LA I 20
= (m A h; Won ) 20)
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2 'R
Re o™ (w) = 253 ~L[6(w — win) — 6(w +won) @1
Won
n#0
2
(regular) _ 2e / Rmag w
Imo,, (w) = — PO —— (22)
n#0
The two terms ogzmde) (w) and ag;gmar) (w) obey the Kramers-Kronig relationships separately;

we also remind that only the longitudinal conductivity afxg) (w) is addressed for the time being.

(=)

«

The transverse conductivity o, will be addressed in Secs. 6 and 9.

At any finite-size L the spectrum is discrete and the system is gapped, while in a metal the gap
closes in the large-L limit. It is therefore necessary to regularize the singular sums in eqns. (20-
22); this can be done in the following way [18]: One starts assuming a finite value of 7 in the
Kubo formula, eqn. (9), with  much larger than the level spacing; then one takes the L — oo
limit first, and the n — 0" limit afterwards.

The first term in the parenthesis in eqn. (20) yields the free-electron Drude weight, while the
second term accounts for the (always negative) correction due to the one-body potential and
to the electron-electron interaction. We have given here the Kubo formula for a many-body
Hamiltonian; for independent electrons eqn. (18) is easily transformed into a double sum over

occupied and unoccupied orbitals [3].

3 Drude weight

We have arrived at eqn. (20) by means of linear-response theory, while we have stressed above
that D,z must be regarded as a ground-state property, which measures the inertia of the many-
electron system in the adiabatic limit. In order to show this, we follow W. Kohn, who in 1964
adopted the “twisted” Hamiltonian, eqn. (11). By expanding Ey (k) to second order one gets

N#K? Yp| 00| ¥ ) (Wn | 05|,
Ey(k) ~ %KJQ — h koK Re E ' o[l 030< %] 0>; (23)
n#0 "

the expansion is essentially the many-body analogue of the elementary k - p expansion for the
band energy, leading to the effective mass.
By comparing eqn. (23) to (20) one immediately gets Kohn’s result:

2 92
Dap = —= 9" Eo(r) (24)

 R2L4 Ok,Okg

K=0

We remind that it is crucial to set & = 0 in the derivative before the thermodynamic limit is
taken: this ensures that we are following the ground state adiabatically [19]. In insulators the
second derivative is zero: this can be proved in various ways.

In the simple case of a band metal eqn. (24) becomes the Brillouin-zone (BZ) integral [3]:

PREEELS /B 1K) 8= =3) 2 04) (25)
J
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where [dk] = dk/(2m)%, p is the Fermi level, ¢;x are band energies, and the effective inverse
mass tensor of band j is

. 1 826 jk
" h20k,Oks

mj_,olz,ﬁ (k)

(26)

4 The Resta-Sorella approach

2m

L
For this special K the effect of the gauge is easily gauged away; in fact the state vector

We consider a special value ko = =Fe,, where e, is the unit vector in any Cartesian direction.

Wo(ko)) = e~ Fo |up) 27)

obeys PBCs, and is an eigenstate of H (ko) with eigenvalue Fj, similarly to the OBCs case.
Now the issue is whether [¥(ko)) coincides or not with the genuine [¥ (o)), obtained, as
said above, by following the ground state adiabatically while « is switched on continuously.
Eqn. (24) shows that whenever D # 0 the state |¥y(k¢)) has an energy higher than Ey: it is
therefore an excited eigenstate of H (), orthogonal to |¥(ko)). If instead D = 0, then the
state [y (ko)) coincides—apart for a phase factor—with [ (ko)) (we are assuming a nonde-
generate ground state):

@o(ﬂoﬂ%("?o» = (Wl Wy (ko)) =0, D #0, (28)

(Wo (ko) [Wo(Ko)) = (Wole T |Wy(ko)) =€, D =0. (29)

We notice, en passant, that «y is the single-point Berry phase determining the polarization [9];
we are not discussing the issue here.
Replacing now |¥ (ko)) with |¥,) we are approximating eqns. (28) and (29) to order 1/L, i.e.,

avl = [ (Wole®™ )| = O(1/L), D #0, (30)
inv| = | (@|eFt ) |=1-0(1/L), D=0. (31)

The Resta-Sorella [10] localization length is defined for an isotropic system in dimension d as

2

1 L
R 2/d—1 2 _ : 2
Tz A N loslanl” = =g Jim i loslan (32)

A2 =

where n = N/L¢ is the density. Owing to eqns. (30) and (31) the localization length diverges
when D # 0 and converges to a finite limit otherwise.

A very successful application of this theory concerns the Mott transition in 1-dimensional hy-
drogen chains within PBCs [20,21]. We reproduce here Fig. 1 from Ref. [20] by Stella et al.
who have performed variational quantum Monte Carlo studies, up to 66 atoms. The crossover
between the weakly correlated (band) metallic regime—at small a—and the strongly correlated
(Mott) insulating regime—at large a—is clearly visible in both panels of Fig. 1, which indicate
the transition at a ~ 3.5 bohr. The bottom panel shows that the modulus of the matrix element
in eqns. (30) and (31). Top panel: A/a. Bottom panel: the modulus of the matrix element
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5 T L) T T Ll T T
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Interatomic distance, a (a.u.)

switches from zero to one in a narrow a region, the transition becoming sharper with increasing
size. The top panel perspicuously shows that in the Mott-insulating regime \ is size-insensitive,
while in the metallic regime it diverges with size. Unfortunately, the authors have chosen to plot
A/a instead of A itself. Therefore the A value in the large a limit cannot be verified: we expect
that it goes to the isolated-atom limit, i.e., A = 1 bohr.

5 The Souza-Wilkens-Martin sum rule
(periodic boundary conditions)

The modern theory of the insulating state is also rooted in a sum rule, introduced in 2000 by
SWM [11]. They define the insulating/metallic character of a homogenous material via the
frequency integral

> d
[SWM = / _w Re Uozoz(w); (33)
0 w

for the sake of simplicity we address isotropic materials only. Igwy converges in all insula-
tors and diverges in all metals. In fact the integral converges at the upper limit—compare to
eqn. (2)—but it diverges at the lower one whenever D, # 0 and also whenever Re a&‘;‘igular) (0)
is finite. The SWM integral has instead a finite value when the system has either a spectral gap

or a mobility gap. We evaluate Isw)\; using the regular part only of longitudinal conductivity,
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eqn. (22):

K le/0|Ua|%
Tsww = 7 Ldz . (34)

Wiy

The SWM integral is related by a sum rule to the quantum metric, defined according to Provost
and Vallee [22], and where the relevant parameter is the twist k. The metric-curvature tensor at
k=0Iis 1

Fop = N< (01a 0|01y Wo) — Oy, Wo | Wo) (Wo| D1, o) ), (35)
where we have divided by /V in order to get an intensive quantity. This tensor is real symmetric
in time-reversal invariant system, and may be endowed with an antisymmetric imaginary part if
time-reversal invariance is lacking. The latter feature is discussed in the next Section.
The metric tensor at k£ = 0 is the real symmetric part of F,3:

1
Gos = 77 (Re (D5, V00, Wo) — (O, Yol o) (W[ O, W) ): (36)
since g,p 1s gauge-invariant, we are going to evaluate it in the parallel-transport gauge, where
!P o| o) LP oY
|a,‘{aw0 _ hz |w ”U | 0 . Z | n ’U ’ 0> (37)
n#0 n#0
1 ! <w0’ﬁa|wn><wn|@ﬂ|w0> 'R af T iz, aﬁ
Fop = — = — 38
> s v 9
n#0 n#0
From eqns. (34) and (38) we thus get
h d,
o =~ | Re o) (39)
men J, w

where n = N/L?. We observe that in eqn. (39) the Lh.s. is a ground-state property, while the
r.h.s. concerns the excitations of the system.

In the insulating case o**8"a") coincides with the full conductivity; if €, 1s either the spectral
gap or the mobility gap, the SWM sum rule reads

h > d
Gaa = 2 / _w Re Oaa (U)) (40)
Te*n Jo n W
The f-sum rule leads to the inequality:
h2 00 h2
Joo < — / dw Re 044 (w) = : 41)
e neg Jo,/n 2me,

From the above it becomes clear that the PBCs metric, when defined via eqn. (36), does not
discriminate between insulators and metals: in the latter case it misses the (diverging) Drude
contribution to eqn. (33). For instance, eqn. (39) vanishes for the paradigmatic metal: the free
electron gas.

The author has recently shown how to remove this drawback of the PBCs metric, upon defining
it in a somewhat more general way [23]. The novel metric coincides with the established one in
the insulating case, but diverges in metals. The theory is incomplete, in that it only addresses in-
dependent electrons (in both the crystalline and noncrystalline cases). This recent development
is reviewed in Sec. 8.
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6 Many-body Chern number

The celebrated TKNN paper (Thouless, Kohmoto, Nightingale, and den Nijs) [24] explains
the integer quantum Hall effect as the manifestation of a topological invariant of the electronic
ground state in 2d, the integer C'; € Z, called Chern number of the first class. The choice of
the sign of ] is not uniform across the literature: the one adopted in this Chapter is consistent
with most of the recent papers.

Later Niu, Thouless, and Wu [25] addressed the fractional quantum Hall effect, where the many-
body wavefunction is known to be strongly correlated. They provided a many-body definition
of C'; which, in the notations of the present work, reads:

. 2w /L 2n/L
= | dn, / Ay ( (B, Wo(K) |0, o(K)) — (O VoK) To(K))).  (42)

Since the L — oo is implicit in the definition, we observed in Ref. [26] that the mean-value
theorem yields

. 9 2
O = o (9 ({00010, T0) — (D1, W0/0x, T5) ). 43)

This is clearly proportional to the imaginary part of the metric-curvature tensor, as defined in
eqn. (35):
Ol = —4mnIm .Fg;y, (44)

where n = N/L? is the 2d density. A minor detail is worth mentioning: the ground-state
wavefunction is a singlet state in the previous Section, while it is instead spin-polarized in the
quantum-Hall regime.

The main result by Niu, Thouless, and Wu is the expression of the quantized Hall conductivity
in terms of the many-body Chern number C';. From eqns. (17) and (18) one gets

2 2
(=) _ e _ 2e / In,zy
Re o) (w) = —im {(va|vy ) = AL 2 P - R, (45)
and from eqns. (38) and (44) the final result is
2 2 2
Re o()(0) = = m F,, = —S-C. (46)

h

7 Bounded samples within open boundary conditions

At variance with the PBCs results presented in Sec. 5, the OBCs metric does carry the infor-
mation to discriminate between insulators and metals. As said above, within OBCs the twist is
easily gauged away and one has |¥y(k)) = e " T|¥), where t = ), 1; is the ordinary position
operator, well defined within OBCs.

It is expedient to adopt a x-dependent phase factor and write instead:

[Wo(r)) = e FCD|gg),  d = (B|7[W). (47)
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The gauge-invariant metric, eqn. (36), takes then the form

_ 1 - - ;
o = ~ ((WolFarislo) — (FolFa o) (Polatko) ), @)

where the different symbol emphasizes the different boundary conditions adopted for |¥).
eqn. (48) clearly shows that g, is the second cumulant moment of the position, or equivalently
the ground-state quantum fluctuation of polarization. The basic tenet of the modern theory of
the insulating state is that the OBCs metric, eqn. (48), in the large- NV limit diverges in all metals
and converges in all insulators.

We are going to recast g, in terms of one-body and two body densities, defined as

n(ry) = N Z/dXQdX;e,...dXN|!p(X1,X2,...XN)|2, (49)
n(ry,ry) = N(N—l)z dxs ... dxy|¥(xq,Xg, ... XN)|% (50)

o102

where x; = (r;, 0;) are the space and spin coordinates of the i-the electron, and a singlet ground
state is assumed. Straightforward manipulations lead to the equivalent form:

Gop = % /drdr’ (r —1")o(r — ')g[n(r)n(r) — n@(r,r')], (51)

showing that g,z is the second moment of the exchange-correlation hole, averaged over the
sample.

We have not justified yet why the OBCs metric discriminates between insulators and metals.
In a bounded sample there cannot be a steady-state current, nonetheless an oscillating field
induces charge sloshing and an oscillating macroscopic current. Therefore at w # 0 a linear
relationship of the kind j,(w) = Gap(w)Es(w) holds. The definition of the insulating state,
making reference to large bounded samples, is that even G,5(w) vanishes in the w — 0 limit.
The order of limits is crucial: first N — oo, and then w — 0. The SWM integral bypasses this
problem of limits: the insulating state requires that

~ * dw .
Iswn = / — Re G40 (w), (52)
0w

stays finite in the large- N limit. We stress that 6,53(w) differs from the genuine longitudinal
conductivity agg) (w) in two respects: it lacks the Drude peak, and it includes contributions
from the sample boundary. The latter feature enters the Kubo formula by means of the matrix
elements.

We are going to relate Iy to the OBCs metric Jap- To this aim we start converting g,z into a
sum-over-states form. Using again eqn. (37), we get an expression identical in form to eqn. (38),

1.e.,

- L (Yo[ta|F) (Zn |05 o)
Gos = D ) ; (53)

n#0
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the key point is that the velocity matrix elements therein are very different, owing to the different
boundary conditions. Addressing once more the extreme case of the free electron gas, all matrix
elements in eqn. (38) vanish (by an obvious selection rule); they don’t vanish for a bounded
sample within OBCs, as in eqn. (53).
Within OBCs we may safely adopt the scalar potential gauge, where ¢ has the compact expres-
sion 2

Tap(w) = =13 {0als)e (54)
in Zubarev’s notations. The matrix elements of 1 are converted into the matrix elements of v by
means of the commutator [H, ], i.e., (Z|t[%,) = (¥ |V|¥,) /won, to obtain

. 2 ' | (W, 04|, 17
Re Gou(w) = W;D |< 0|WOL ) [ 6(w — won) + 8w — won) |, (55)
leading to the OBCs version of the SWM sum rule
h * d,
oo = — / % Re Go(w). (56)
e n Jo, w

Once more, eqns. (55) and (56) are identical in form to their PBCs counterpart, eqns. (21) and
(39), but their physical content—as well as their defining quantities—are very different in the
metallic case. For instance, 5,4(w) by itself obeys the f-sum rule, while agggular) (w) does not:
see eqn. (2).

In the insulating case, instead, the PBCs conductivity o(w) coincides with the OBCs one 7 (w).
It follows that the (finite) metric g,, coincides with g,, and obeys the SWM sum rule in the
form of eqn. (40). This can be proved in various ways; the basic feature is that the macroscopic
polarization P, (w) linearly induced by an oscillating field stays finite for w — 0 in insulating
materials, and can therefore be evaluated using either OBCs or PBCs, in any gauge.

Finally, we observe that the L.h.s. of eqn. (56) is a ground-state quantum fluctuation, while the
r.h.s. is a property of the system excitations. Eqn. (56) belongs then to the general class of
fluctuation-dissipation theorems.

8 Independent electrons

Owing to eqn. (51), in the noninteracting case the OBCs metric g,z is expressed in terms of the
one-body density matrix as p(r,r’) = 2(r|P|r’) as

1
Gop = ~ / drdr’ (r —1')o(r — 1) |(r|P|r')]?. (57)

As said above, the convergence/divergence of g, in the large-/N limit discriminates between
electrons and metals. For instance, the well known P expression for the free-electron gas [27],
when inserted in eqn. (57), yields a diverging g.g in d = 1, 2, and 3. This is what is expected in
a metal, and is in sharp contrast with the OBCs metric g,g which—if defined as in eqn. (36)—
vanishes. The difference is to be ascribed to the different order of limits. In this Section we
are going to provide a more general definition of the OBCs metric g,g, which coincides with
eqn. (36) in the insulating case, but has the virtue of diverging in the metallic case.
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Crystalline systems

Besides the electron-gas case, where P is known analytically, simulations for model noninter-
acting systems within OBCs have indeed demonstrated the large-N divergence of the OBCs
metric g, eqn. (58), in the metallic case [28,29]. Simulations and heuristic arguments altogether
suggest that the metallic divergence of g is of order of the linear dimension L of the system in
d=1,2,or3.

The PBCs metric g,g, as defined so far, does not diverge in the metallic case and requires
therefore a somewhat different definition in order to acquire the same desirable feature. The
novel definition provided here follows Ref. [23].

In the crystalline case the PBCs ground-state projector P is

P = Ve 3 [14K] 00— 230l (. (58)

where BZ is the Brillouin-zone, |1, ) = e’**

|u;k) are the Bloch states (normalized to one over
the unit cell of volume Vi), €k are the band energies, p is the Fermi level, the integration is
over [dk] = dk/(27)?, and d is the dimension. We recast eqn. (58) in terms of Bloch projectors

Py as

(r[Plr') = Veen /[gk] TN RPY),  Pe= ) 01 — e ) (. (59)
J

and we choose a gauge which makes |u ;) smooth on the whole BZ: this is always possible,
even in topologically nontrivial materials. The Bloch projectors Py are gauge-invariant in the
generalized Marzari-Vanderbilt sense [30, 31], i.e., they are invariant for any unitary transfor-
mation of the occupied |u;i) at the given k.
The BZ integrand is smooth in insulators, and only piecewise continuous in metals. In the latter
case, the sharpness of the Fermi surface is responsible for the power-law decay of (r|P|r’)
for |[r — | — oo; the decay is instead quasi-exponential (i.e. exponential times a power) in
insulators [32].
The ground-state projector is lattice-periodic, 1.e.,

(r[P|r’) = (r + R[P|r' + R), (60)

where R is a lattice translation. Therefore in the large-/V limit the crystalline form of eqn. (57)
is

/ (r = 1')a(r — )5 [ (r[Pr)[7, (61)
cell all space

where NN, is the number of electrons per crystal cell.

ga,B_N

C

Next we are going to address the PBCs metric g,3, starting with the insulating case, where it
coincides with the OBCs metric g,s and obeys the SWM sum rule in the form of eqn. (40).
The number of occupied bands is N./2, independent of k. A well known result, first shown in
Ref. [33], is

Jap = g /[d k] Re Faﬁ(k)7 (62)
n Jpz
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where n is the electron density and F,3(k) is the k-dependent metric-curvature tensor [22, 30,
31,33]:

N¢/2 N¢/2
Fas(K) =Y Ok, il Ostine) — > Ok el tijne) (ujnel Oy ) (63)
i=1 Jd'=1

The BZ integral in the r.h.s. of eqn. (62) made its first appearance in the Marzari-Vanderbilt
theory of maximally localized Wannier function, where it provides the gauge-invariant term in
the quadratic spread, universally indicated as {2; in the literature. The relationship is [30,31]:

N,
0 = Voo [0 3 Foal) = 5 Y g (64)
BZ

«

Notice that the original definition of €2; is not intensive.

Following Ref. [23] the PBCs metric of a band insulator, eqn. (62), can be recast in a compact
trace form, which has the virtue of showing gauge invariance explicitly. A tedious calculation
shows that

Fap(k) = Tr {Pic(O0rPr) (OrPr) }- (65)

We may extend the definition of eqns. (62) and (65) to the metallic case as well, noticing that
the k-derivative of the Bloch projector acquires a singular -like term at the Fermi level:

O Pic = — > 6(1 — €0 Ok nc [une) (il + D 01t — €30) (1) (O el + |0k u06) (e ).
j j

(66)
In the insulating case the singularity vanishes, and we thus retrieve the previous result, while
the squared 9, when inserted into eqn. (62), provides the sought for divergence.
The second term in eqn. (66) is smooth in insulators; instead it is only piecewise continuous—
and therefore integrable—in metals. If eqn. (62) is evaluated using this term only, we retrieve
the nondivergent SWM sum rule in the PBCs form of eqn. (39).

Noncrystalline systems

The OBCs metric, eqn. (58), has been implemented to study the metal-insulator (Anderson)
transition in disordered systems. It is well known that in 1d any amount of (uncorrelated)
disorder yields an insulating ground state. OBCs simulations over a lattice model in 1d have
shown that the system has no spectral gap but eqn. (58) converges nonetheless to a finite value
in the large- N limit [28].

In 3d matters are different: a genuine metal-insulator transition may occur. The integral in
eqn. (57) converges whenever (r|P|r’) is exponential in |r — 1’| (as in crystalline insulators), as
well as when |(r|P|r’)|? decays as |r — r/|~%, with @ > 5. A detailed study of the Anderson
transition on a paradigmatic lattice model, based on eqn. (57), has recently appeared [34]. This
confirms that the OBCs metric is an alternative tool with respect to the ones currently adopted
in the literature. The standard computational methods to address the Anderson transition are
often peculiar to lattice models (recursive methods and the like) [35], while our approach has a
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general ab-initio formulation and could in principle be applied to realistic disordered materials
by standard electronic structure methods.

A novel approach to disordered and macroscopically inhomogeneous systems (such as hetero-
junctions) has been proposed in Ref. [23]. We recast here the PBCs metric in trace form, i.e.,

s = = Re [0 Tr {PUOPOO: P )

We are going to show that eqn. (67) can be equivalently cast in a form where any explicit
reference to lattice periodicity disappears.

In order to arrive at such a transformation, we start noticing that the integrand in eqn. (58) is
periodical over the reciprocal lattice, and therefore the BZ integral of its k-gradient vanishes:

i(r = 1) (x|P|r') + Veen / [dL] ™ (x| Py[r’) = 0; (68)
BZ

we remind that eqn. (68) is a well behaved expression only in insulators. The first term therein
is ¢ times [r, P|: a lattice periodic operator (unlike r itself). The trace of eqn. (68) can therefore
be cast as

/ (K] Tr {0 Pi} = —— / dr (el PlIr) = =iTry {{ro. P} (69)

BZ ‘/cell

where Try, indicates the trace per unit volume in the Schrédinger representation.
Using similar arguments it is not difficult to prove that, for an unbounded sample within PBCs,

Jop = %Re /B [gk] Tr {Pic(0.Pi) (01 Pi) } = —%Re Try {P [ra, Pl lrs, Pl}. (70)

The second expression on the r.h.s. has two outstanding virtues: (i) it is expressed directly in the
Schrodinger representation, making no reference to reciprocal space, and (i) it can be adopted
as such for supercells of arbitrarily large size, thus extending the concept of PBCs metric to
noncrystalline systems, such as alloys and liquids. We have not proved yet that such form can
be adopted as it stands even for bounded samples within OBCs.

If we evaluate the trace per unit volume over the whole sample of volume V', eqn. (70) yields

2 2 2
Jop = _NRC Tr {P[ra,P][rs, P]} = NTr {PrarsP} — NTr {PaPrsP}.  (71)

We have stated above that in insulators the PBCs metric g,s is finite and coincides with the
OBCs metric g,g: a simple calculation confirms that eqn. (71) is indeed identical to eqn. (57).
Our novel approach reconciles the PBCs metric with the OBCSs one: both metrics yield the
same message even in the metallic case. Looking at eqn. (70), the first expression on the r.h.s.
diverges because of the sharpness of the Fermi surface embedded in eqn. (66), while the diver-
gence of the second expression has been discussed in Sec. 7.

The next issue is whether one may adopt eqn. (70) locally, in order to address inhomogeneous
systems: preliminary results indicate that the answer is affirmative [36]. For an isotropic system
the local marker for the insulating state is the real function

Loo(r) < Re (r| P [ro, Pl [ra, Pl r) : (72)
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when averaged locally in a homogenous region of the sample it detects the insulating vs. metal-
lic character of that region. For instance in a metal/insulator heterojunction it diverges on
the metallic side and converges to a finite value on the insulating side. It therefore provides
a marker complementary to the (commonly used) local density of states; at variance with it,
L. (r) probes locally the organization of the electrons in the ground state, the main property
that—according to the outstanding Kohn’s message [5]—discriminates insulators from metals.

9 Geometry in the anomalous Hall effect

On the theory side, the anomalous Hall effect (in both insulators and metals) is closely related
to the theory of the insulating state. In this section we remain at the independent-particle level.
Furthermore, in agreement with the literature on the topic, we adopt a spinless-electron formal-
ism: factors of two here will differ from the previous sections. The metric-curvature tensor for
a band insulator, eqn. (63), is rewritten as

Nc Nc
Fas(K) =D Ok il Oyt — D (Oraugictijne) (ujne Oy ) - (73)

Jj=1 Jy'=1

So far, we have addressed the real symmetric part of F,5(k), i.e., the k-space metric first
introduced by Marzari and Vanderbilt in the theory of maximally localized Wannier functions
[30,31]. The imaginary antisymmetric part (times —2) is the Berry curvature of the occupied

manifold:
Nc
Qaﬁ(k) = —2Im falg(k) == ZZ ( <akaujk\8kﬁujk> - (E)kﬁujk|8kaujk) ) (74)
j=1
From eqn. (65) we equivalently get
Qu5(k) = i Tr {Px[ Ok P, 31%731{]}- (75)

While this form was used in the past for the insulating case only, we stress that it holds for the
metallic case as well: in fact, the singular term in eqn. (66) disappears after antisymmetrization.
The key difference is that the Berry curvature of the occupied manifold is smooth in insulators
and only piecewise continuous in metals: its BZ integral is well defined and finite in both cases.
The anomalous Hall conductivity (AHC) is by definition the Hall conductivity in zero magnetic
field; it can be nonvanishing only if the Hamiltonian lacks time-reversal symmetry. When
expressed in klitzing ™! it is dimensionless for d = 2, while it has the dimensions of an inverse
length for d = 3. The known expression for the w = 0 AHC in both metals and insulators is

_ 4me? 21
770 = T [0 m Faplo = = o [ dk 20 (76)
BZ T JBZ

and this expressions holds for both d = 2 and d = 3; notice the two equivalent forms, where
the integral is either in [dk] = dk/(27)? or in dk.
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We address the insulating case first: the AHC is quantized, and in natural units it equals minus
the Chern invariant C.,, usually defined as

1
ny = 587045 /BZ dk Qcm(k)' (77)

In 2d the Chern invariant is a dimensionless integer € Z. The definition of eqn. (77) coincides
indeed with the Chern number (', as defined in Sec. 6 for a many-body wavefunction [26].
In the metallic case eqn. (76) is nonquantized: the difference owes to the fact that the Berry cur-
vature of the occupied manifold {2,5(k) is smooth in insulators and only piecewise continuous
in metals.
In the metallic case eqn. (76) yields only the intrinsic (or geometric) contribution to the AHC;
extrinsic contributions, known as “skew scattering” and “side jump” must be added [37]. We
stress that, instead, extrinsic contributions have no effect in insulators, owing to the robustness
of topological observables.
The same transformation as in eqn. (70) can be carried over for the antisymmetric imaginary
part of F,53(k), leading to

) 4rre?

08 (0) == h Im Try {P[TQ,P] [7“5,7)]}, (78)

where we address a possibly disordered sample, although still unbounded within PBCs. If we
try to proceed analogously to what we did for the real symmetric part, by adopting eqn. (78)
even for a bounded sample within OBCs and evaluating the trace over the whole sample, we
get a vanishing result: the tensor entering eqns. (70) and (78) is obviously real symmetric. This
stems from the fact that even the original definition of g.g, eqn. (48), is not endowed with an
antisymmetric term.

The solution of the paradox was found in Ref. [38]. The real function

¢(r) = 4m Im (x| Plra, P] [rs, P]|r) (79)

carries indeed the information which allows evaluating the AHC locally; but its average has
to be evaluated using an inner region of the bounded sample and not the whole sample. The
boundary provides a compensating contribution. When the bounded sample is a crystallite, one
may integrate €(r) over the central cell; this integral, divided by the cell volume (area in 2d),
provides the AHC value in the large-sample limit.

In the insulating case the function €(r) samples the topological nature of the ground state lo-
cally: it has therefore been dubbed “topological marker” [38]. Simulations on a paradigmatic
lattice model in 2d for bounded samples (crystalline and disordered) and for heterojunctions
have shown that €(r) samples indeed the local Chern number (equal to minus the Hall conduc-
tivity in natural units).

The metallic case differs from the insulating one in two important respects: (i) the macroscopic
current flows across the whole sample, while it only flows at the boundaries in topological
insulators; (ii) the ground-state projector entering eqn. (79) is power-law in |r — 1’|, while it
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is quasi-exponential in insulators (including topological insulators). Despite these differences,
simulations reported in Ref. [39] demonstrate that €(r), eqn. (79), provides in the metallic
case a “geometrical marker”, which allows to evaluate the geometrical contribution to the AHC
locally in both homogenous and inhomogeneous samples.

The homogeneous case of a “dirty” metal deserves a comment. The trace per unit volume of
¢(r) clearly includes some geometrical effects due to the impurities. It is argued that the AHC
evaluated in this way may yield the sum of the intrinsic and side-jump contributions to the AHC,
while instead it may not include the skew scattering [37,40].

Ref. [39] also provides a convergence study. Therein, a metallic crystallite is addressed vs.
an insulating one, and the AHC of the material is evaluated, as said above, by averaging the
respective €(r) over the central cell. The convergence to the bulk value is—as expected—
exponential in the insulating case. In the metallic case the convergence is instead of the order
L3, where L is the linear dimension of the sample. While the actual simulations are in 2d,
it is conjectured that the convergence is of order L~ in any dimension, in analogy with what
happens to the large-sample metallic divergence of the metric (of order L in any d).
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