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Abstract

This paper studies optimal non-linear income taxation in an empirically

plausible model with labor supply responses at the intensive (hours, effort) and

the extensive (participation) margin. In this model, redistributive taxation

gives rise to a previously neglected trade-off between two aspects of efficiency:

To reduce the deadweight loss from distortions at the extensive margin, the

social planner has to increase distortions at the intensive margin and vice

versa. Due to this trade-off, minimizing the overall deadweight loss requires

to distort labor supply by low-skill workers upwards at both margins. Building

on these insights, the paper is the first to provide conditions under which social

welfare is maximized by an Earned Income Tax Credit with negative marginal

taxes and negative participation taxes at low income levels.
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1 Introduction

Governments in all developed countries use labor income taxes and income-based

transfers to redistribute resources from the rich to the poor. The properties of these

tax-transfer schemes differ substantially across countries, though, especially with

respect to the treatment of low incomes. Most European countries provide more

or less generous payments to unemployed agents and smaller, decreasing payments

to low-income earners. Economists refer to these tax-transfer schemes with strictly

positive marginal taxes and strictly positive participation taxes1 as Negative Income

Taxes (NIT). Other countries use tax-transfer schemes that provide higher transfers

to low-income earners than to unemployed agents. The most prominent example is

given by the Earned Income Tax Credit (EITC) in the US, which involves both neg-

ative marginal taxes and negative participation taxes for low-income earners.2 On

the one hand, there seems to be a growing consensus among political practitioners

that the EITC is an effective instrument for fighting poverty and should be further

expanded.3 On the other hand, economists have so far struggled to identify condi-

tions under which such an income tax schedule is optimal in the standard sense of

maximizing social welfare.4 The present paper fills this gap by providing sufficient

and necessary conditions for the optimality of an EITC with both negative marginal

taxes and negative participation taxes.

The common approach to determine the optimal income tax involves, first, the

definition of a welfare function that provides a rationale for redistribution from the

rich to the poor, and second, the maximization of this welfare function over the set

of (non-linear) income taxes that satisfy the government’s budget constraint, taking

into account the agents’ labor supply responses. In most previous models, the agents

respond to tax changes either at the intensive margin only, i.e., by adjusting their

hours worked or their effort spent while working, or at the extensive margin only,

i.e., by entering or leaving the formal labor market. Both classes of models are

inconsistent with the empirical evidence that labor supply responds at the intensive

margin as well as the extensive margin: “the world is obviously a mix of the two

models” (Saez 2002: p. 1054). More specifically, empirical studies consistently find

1The participation tax function assigns to each income level y > 0 the difference between tax
levels at income y and at zero income, T (y)− T (0).

2Nichols & Rothstein (2015) provide a detailed description of the details of the EITC and a
comprehensive review of the recent literature studying its labor supply effects.

3In particular, both President Obama and Paul Ryan–then Republican Chairman of the House
of Representatives Budget Committee–proposed to roughly double the maximum EITC payments
for childless workers (see Executive Office 2014, House Budget Committee 2014).

4Most previous papers find that the optimal income tax is unambiguously given by an NIT. I
comment below on the most important exceptions, including Saez (2002).

1



that extensive-margin responses are particularly important at the bottom of the

income distribution: The participation elasticity of low-income earners is both larger

than their elasticity of hours worked, and larger than the participation elasticity of

medium-income earners and high-income earners (see, e.g., Juhn et al. 1991, 2002,

Meghir & Phillips 2010).5 The present paper investigates the optimal redistributive

tax-transfer scheme in a model that is consistent with these empirical patterns.

In particular, I study a two-dimensional screening model in which the agents

face both marginal costs of providing output as in Mirrlees (1971) and fixed costs of

working as in Diamond (1980). The agents are privately informed about their fixed

costs of working and their skills, where the latter determine the marginal costs of

output provision. To make the model tractable, I follow the random participation

approach by Rochet & Stole (2002) and assume additive separability between the

fixed-cost component and the other components of the utility function. The analysis

focuses on the empirically and economically relevant cases in which, first, society has

a concern for redistribution from higher-skilled to lower-skilled agents and, second,

participation elasticities are decreasing over the skill dimension.

The paper uses this model to contribute in three ways to the literature on op-

timal income taxation. First, it provides sufficient conditions for the optimality of

an EITC, expressed in terms of the model’s primitives: utility functions, type dis-

tributions, and the properties of the social welfare function. In particular, it shows

that the optimal income tax is given by an EITC with negative marginal taxes and

negative participation taxes at low income levels if (a) society has strong concerns

for redistribution from the rich to the poor, but only limited concerns for local re-

distribution from the poor to the very poor and (b) there is a sufficiently large mass

of highly productive agents.6

The previous literature has neither identified conditions under which an EITC

with negative marginal taxes as well as negative participation taxes is optimal, nor

clarified whether it can be optimal at all under reasonable assumptions. Surprisingly,

only a few papers have studied optimal income taxation in a model with labor

supply responses at both margins so far. Most related to the present paper are

Saez (2002) and Jacquet et al. (2013). Saez (2002) is the first to strongly advocate

and investigate this setting. He shows that an EITC with negative marginal taxes

5For additional empirical evidence on how participation elasticities vary across the population,
see Meyer & Rosenbaum (2001), Eissa & Hoynes (2004), Immervoll et al. (2007), Blau & Kahn
(2007) and the surveys by Hotz & Scholz (2003), Eissa & Hoynes (2006), McClelland & Mok (2012).

6This result holds whenever labor supply responds at both margins, and higher-income earners
respond more elastically at the extensive margin than lower-income earners. These patterns are
ensured by a set of reasonably weak assumptions on the agents’ utility functions and the type
distributions. Besides, the paper also provides sufficient conditions for the optimality of an NIT.
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for low-income workers can be optimal if both the participation elasticities and the

optimal participation taxes for all higher-income earners are sufficiently large. He

concludes that “optimal tax rates are not necessarily nonnegative as in the pure

intensive model” (Saez 2002, p. 1055), but does not clarify in which cases these

conditions are indeed met–especially, in which cases the endogenous levels of optimal

participation taxes are large enough. The general perception of Saez’ results seems to

be that an EITC can only be optimal if labor supply responds more strongly at the

extensive margin than at the intensive margin (see, e.g., Brewer et al. 2010, Piketty

& Saez 2013).7 In contrast, Jacquet et al. (2013) demonstrate that the signs of

optimal tax rates depend on how the strength of participation responses varies over

the skill distribution. Their main results are given by sufficient conditions for the

optimality of positive marginal taxes and positive participation taxes as in the NIT,

expressed in terms of participation (semi-)elasticities and social welfare weights.

They do not provide results on when the optimal marginal taxes are negative as in

the EITC.

Second, the paper proposes a new strategy to analytically solve multi-dimensional

screening models. The major problem in solving these models is that the set of bind-

ing incentive-compatibility (IC) constraints is a priori unclear. Jacquet et al. (2013)

show that this problem can sometimes be circumvented. In particular, they identify

conditions under which all downwards IC constraints along the skill dimension are

binding and the optimal marginal taxes are positive everywhere, just as in Mirrlees

(1971). In contrast, an EITC with negative marginal taxes can only be optimal in

cases for which at least some upwards IC constraints are binding. Hence, I cannot

use the method proposed by Jacquet et al. (2013) to identify sufficient conditions

for the optimality of an EITC, but have to develop a new solution strategy.

The methodological innovation of this paper is to study a hybrid model with a

continuous set of fixed cost types and a discrete set of skill types in the first step,

and to focus on skill sets with sufficiently small distances between adjacent skill sets

in the second step. In particular, the discrete skill set has two advantages: First,

the optimal tax problem involves a finite number of distinguishable downwards and

upwards IC constraints, which can be added or deleted one by one to study partially

relaxed problems. Second, there exist allocations in which both local IC constraints

are slack for some pairs of adjacent skill types.8 The proofs of my main results

exploit both properties, and would hence not be valid with a continuous skill set as

in Jacquet et al. (2013).

7The analysis in the present paper does not confirm this perception.
8With a continuous skill set, downwards and upwards IC constraints are collapsed into an

envelope condition that always has to be satisfied with equality.
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The discrete skill set has a major drawback, however. If there is a strictly positive

distance between adjacent skill types, it is impossible to check whether a potentially

optimal allocation satisfies a particular IC constraint unless strong functional form

assumptions are imposed. I solve this problem by verifying incentive compatibility

when the difference between adjacent skill types converges to zero or, more precisely,

marginally increases from zero. This allows me to determine unambiguously which

IC constraints are binding whenever the skill set is sufficiently “dense”, i.e., the

distance between adjacent skill types is strictly positive but small. Intuitively, I

study the behavior of the model at the transition between a discrete skill set and a

continuous skill set, exploiting major advantages of both model classes.

Third, the paper provides a novel intuition for the potential optimality of an

EITC. In particular, it shows that the optimality of negative marginal taxes is

driven by an inherent trade-off between labor supply distortions at both margins,

which has not been elucidated in the previous literature. The following thought

experiment helps to understand this trade-off and its implications. Consider an

economy populated by agents who differ both in their skills (very low, low, or high)

and in their fixed costs of working, so that some agents in each skill group choose

to remain unemployed for each tax schedule. Assume that the social planner wants

to redistribute some fixed, strictly positive amount of resources from the rich (high-

skilled workers) to the poor (unemployed agents, very-low-skill workers and low-skill

workers) in such a way that efficiency is maximized, i.e., the deadweight loss from

labor supply distortions at both margins is minimized.9 Hence, he does not care for

how the resources are distributed among the poor. The properties of the efficiency-

maximizing redistribution scheme can be explained in two steps.

For the first step, assume that the social planner only seeks to minimize the labor

supply distortions at the extensive margin (given some amount of redistribution). If

he increases the transfer to the unemployed, some workers in all three skill groups

find it attractive to leave the labor market and save the fixed costs of working. If

he increases the transfers to both groups of lower-skill workers, some unemployed

agents in these skill groups find it attractive to enter the labor market, but none

of the high-skill agents has an incentive to leave the labor market. Hence, the

second option induces less distortions at the extensive margin. Accordingly, the

efficiency-maximizing tax schedule involves higher transfers to both groups of lower-

skill workers than to the unemployed, i.e., negative participation taxes.10

But how should these transfers be divided between both groups of lower-skill

9A formal definition of the deadweight loss (or excess burden) is provided in Section 3.
10These arguments are closely related to those in papers on optimal income taxation with labor

supply responses at the extensive margin only (see, e.g., Saez 2002 and Christiansen 2015).

4



workers? To minimize the distortions at the extensive margin, the planner has to

apply a version of the classical inverse elasticity rule. If the very-low-skill agents

respond more elastically at the extensive margin than all higher-skilled agents (in

line with the empirical evidence), the planner should pay smaller transfers to the

very-low-skill workers than to the low-skill workers. For this purpose, he has to

introduce negative marginal taxes in the relevant income range.

For the second step, assume that the social planner also seeks to minimize the

labor supply distortions at the intensive margin. The lower-skilled workers respond

to the negative marginal taxes mentioned above by increasing their output provision,

so that labor supply becomes upwards distorted at the intensive margin. Hence,

the efficiency-maximizing planner faces a trade-off between labor supply distortions

at both margins: To reduce the deadweight loss from upward distortions at the

extensive margin, he has to increase the upward distortions at the intensive margin

and vice versa.11 To implement the optimal compromise between both types of

distortions, the planner has to introduce an EITC with negative participation taxes

and negative marginal taxes.

A more rigorous derivation of this result is provided in Section 6. The section also

explains when, and why, an EITC continues to be optimal if, first, the planner’s

redistributive concerns among the poor and, second, the incentive-compatibility

constraints between high-skill workers and low-skill workers are taken into account.

The paper proceeds as follows. In Section 2, I briefly review the previous litera-

ture on optimal income taxation. In Section 3, I introduce the model and the optimal

tax problem. Section 4 introduces three important assumptions on the primitives of

the model, while Section 5 presents the results of this paper. In Section 6, I explain

the economic mechanism underlying these results, focusing on the trade-off between

labor supply distortions at both margins. I conclude in Section 7. All formal proofs

are provided in Appendix A.12

2 Related literature

The previous literature on optimal non-linear income taxation studies mainly two

classes of models that differ in the type of costs agents face and, correspondingly,

the margin at which they respond to tax changes.

11To avoid the distortions at the intensive margin, the planner would have to set marginal taxes
equal to zero, i.e., identical transfers to both groups of low-skill workers. As explained above,
however, this would lead to a larger deadweight loss from distortions at the extensive margin.

12Appendices B and C provide supplementary results, graphical illustrations and an example
with commonly used functional forms.
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First, a large number of studies follow the seminal paper by Mirrlees (1971)

by assuming that the agents face only variable costs of providing effort, which are

affected by a single private parameter referred to as skill. In these models, labor

supply responds to tax changes at the intensive (hours, effort) margin only. The

“central result” (Hellwig 2007: 1449) in this strand of the literature is that the opti-

mal income tax is an NIT with strictly positive marginal taxes almost everywhere.13

This result holds whenever the welfare function gives rise to a desire for redistribut-

ing resources from higher-skilled to lower-skilled agents (see, amongst others, Seade

1977, 1982, Hellwig 2007). Complementing these findings, Choné & Laroque (2010)

and Brett & Weymark (2017) show that negative marginal taxes as in the EITC

can be optimal in the intensive model if the social planner has a non-standard de-

sire to redistribute resources from lower-income earners to higher-income earners.14

Notably, the same results apply whether the skill set is continuous or discrete (see

Stiglitz 1982 and Hellwig 2007).

Second, a smaller set of papers follow Diamond (1980) by studying models in

which the agents differ not only in their skills, but also in their privately observable

fixed costs of working. This strand of the literature was revived by Saez (2002)

and a series of papers by Laroque (2005) and Choné & Laroque (2005, 2011). In

their models, labor supply responds to tax changes at the extensive (participation)

margin only. As there are no variable costs of providing output, all agents either

prefer to work at full capacity or to be unemployed. The papers typically find that

optimal participation taxes at the bottom of the income distribution are negative

if and only if the social planner cares almost as much for the low-skilled workers as

for the unemployed (see Diamond 1980, Saez 2002, Laroque 2005, Choné & Laroque

2005, 2011, Christiansen 2015). While optimal marginal taxes can also be computed,

they are economically irrelevant as they do not lead to distortions at the intensive

margin. Again, the results do not depend on whether the skill set is continuous as

in Choné & Laroque (2011) or discrete as in Christiansen (2015).

Finally, there exist a few papers that study optimal income taxation with labor

supply responses at both margins. Saez (2002) strongly advocates the mixed model

due to its empirical relevance and discusses how the mechanisms of this model differ

from the pure intensive and the pure extensive model. Most importantly, he is

13The optimal marginal income tax is zero at the top and, under certain conditions, at the
bottom of the income distribution.

14In Choné & Laroque (2010), the desire to redistribute resources from the poor to the rich
arises if higher-skilled agents are on average disadvantaged in another private parameter that also
affects the marginal costs of output provision. Brett & Weymark (2017) investigate income taxes
that maximize the utility of workers with an intermediate skill type, i.e., that redistribute as many
resources as possible to medium-skill workers from below as well as from above.
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the first to show that negative marginal taxes at low-income levels are compatible

with a standard desire for redistribution if both the participation elasticities and

the optimal participation taxes for higher-income earners are sufficiently large. This

crucial insight does not allow to verify the optimality of an EITC, however, because

the optimal participation taxes are themselves endogenous entities that depend on

the redistributive concerns, the labor supply elasticities and the optimal marginal

taxes.15

The paper by Jacquet et al. (2013) is most closely related to my paper. They

also study a random participation model in which the agents differ in fixed costs

of working and in skills, where the latter parameter affects the marginal costs of

providing output. The main difference to my model is that they consider a type

set that is continuous in both dimension. In contrast, I study a hybrid model with

a discrete set of skill types and a continuous set of fixed cost types.16 The main

result of Jacquet et al. (2013) is given by a sufficient condition for the optimality of

positive marginal taxes. While this condition is expressed in terms of endogenous

entities–participation elasticities and marginal social weights–as acknowledged by

the authors, they also provide examples for it is unambiguously satisfied.17 For

example, they show that the optimal income tax is given by an NIT if (a) the

social planner maximizes a Rawlsian welfare function and (b) higher-skilled workers

respond more elastically at the extensive margin that lower-skilled workers, in line

with the empirical evidence.18

Lorenz & Sachs (2012) study a model that is similar in spirit to the one by

Jacquet et al. (2013), although the labor supply responses at the extensive margin

result from a minimum hours constraint instead of fixed costs of working. They

complement the literature by showing that optimal participation taxes as in the

NIT are positive whenever the tax designer cares less for the lowest-skilled workers

than for the average agent in the population.

In contrast to my paper, the previous literature has not identified conditions

under which an EITC with negative marginal taxes as well as negative participa-

tion taxes is optimal, nor has it clarified whether such a scheme can be optimal at

15Additionally, Saez numerically solves the optimal income tax for commonly used functional
forms, finding positive marginal taxes and (sometimes) negative participation taxes at the bottom.

16Besides, their analysis is somewhat more general in allowing for income effects in labor supply.
17In particular, Jacquet et al. (2013) show that the optimal marginal tax is positive at all income

levels if the function h(ω) := [1− α(ω)] /η(ω) is strictly increasing in ω, where α(ω) is the marginal
social weight and η(ω) is the semi-elasticity of participation for agents with skill type ω.

18Lehmann et al. (2014) use a two-country random-participation model to study non-linear
income taxation with labor supply responses at the intensive (hours) margin and the migration
margin. Although their model differs from the ones in Jacquet et al. (2013) and the present paper
in many aspects and leads to different conclusions, the mechanisms at work are similar.
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all under empirically plausible assumptions. Moreover, it has not provided a clear

economic intuition for why negative marginal taxes could be expected to be optimal

given a standard concern for redistribution from the rich to the poor. In particu-

lar, none of the previous papers comments on the trade-off between labor supply

distortions at both margins, which I document in section 6.1.19

Finally, Beaudry et al. (2009) rationalize in-work benefit schemes as the EITC

in a two-dimensional screening model that deviates in several aspects from the pre-

viously discussed literature. First, the agents do not face fixed costs of working,

but opportunity costs related to the possibility of generating income in an infor-

mal (black) labor market. Hence, the social planner holds a desire to redistribute

resources from unemployed agents (the workers in the informal sector) to formally

employed agents with identical skills. Second, the planner is able to observe hours

worked in the formal sector and, consequently, to condition tax payments on the

wages of formally employed agents. Due to these two properties and in contrast

to my model, an EITC with negative marginal taxes is always optimal for agents

earning wages below some cutoff wage, and the optimal transfers to unemployed

agents are always zero.20

3 Model

The following subsection presents a two-dimensional screening model in which la-

bor supply responds to tax changes at the intensive and at the extensive margin.

Subsection 3.2 provides a formal definition of the optimal tax problem and of labor

supply distortions at both margins. Subsection 3.3 explains how the optimal alloca-

tion can be decentralized via non-linear income taxes, and Subsection 3.4 discusses

the relation between social welfare functions and marginal social welfare weights.

3.1 The economy

The set of agents is given by a continuum of mass one and denoted by I, with typical

element i. Agent i’s consumption is denoted by ci, his contribution to the economy’s

output by yi. Agent i derives utility from consumption and suffers from the cost of

providing output. This cost can be separated into a variable effort cost and a fixed

19In the model by Saez (2002), it is unclear what a distortion in labor supply is and how it can
be measured (because the costs of output provision are not modeled explicitly). Jacquet et al.
(2013) do not distinguish explicitly between labor supply distortions at both margins.

20In Beaudry et al. (2009), agents can respond at the intensive as well as the extensive margin.
However, the optimal allocation only involves labor supply distortions at the extensive margin, as
all agents work in only one sector (except for the agents with a single threshold skill type).
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cost of participating in the labor market. Formally, individual preferences can be

represented by the following utility function:21

u(ci, yi;ωi, δi) = ci − h
(
yi, ωi

)
− 1yi>0 δ

i. (1)

The fixed cost of participating in the labor market is given by an individual param-

eter δi ∈ ∆, which I refer to as agent i’s fixed cost type. The variable effort cost of

providing output is measured by the function h. It depends on the output level yi

and an individual parameter ωi ∈ Ω, which I refer to as i’s skill type. Absolute and

marginals cost of providing output are both decreasing in this parameter, so that

hω(yi, ωi) < 0 and hyω(yi, ωi) < 0 for all yi > 0 and ωi ∈ Ω. Moreover, h is strictly

increasing and strictly convex in yi, so that hy(y
i, ωi) > 0 and hyy(y

i, ωi) > 0 for all

yi > 0 and ωi ∈ Ω. Finally, h is assumed to satisfy hyyω(y, ω) ≤ 0 for all yi > 0 and

ωi ∈ Ω, and h(0, ωi) = 0 as well as the Inada conditions limy→0 hy(y
i, ωi) = 0 and

limy→∞ hy(y
i, ωi) =∞ for all ωi ∈ Ω.

Agent i is privately informed about his skill type ωi and his fixed cost type δi.

The skill set Ω is given by a finite ordered set {ω1, ω2, . . . , ωn} with ωj+1/ωj ≥ 1 + ε

for all j ∈ {1, 2, . . . , n− 1} and some ε > 0. The set of fixed costs ∆ is given by

a closed interval with lower endpoint δ and upper endpoint δ̄. These endpoints are

assumed to satisfy

δ < max
y>0

y − h (y, ω1) and (2)

δ̄ > max
y>0

y − h (y, ωn) . (3)

Under laissez-faire, agents with fixed cost type δ and any skill type ω ∈ Ω would

thus provide positive output, while agents with fixed cost type δ̄ and any skill type

ω ∈ Ω would provide zero output.22 As will become clear below, the combination

of a discrete set of skills and a continuous set of fixed costs helps to explain the

interaction between labor supply distortions at both margins.

The joint cross-section distribution of the pair (ωi, δi) in the population at large

is commonly known and denoted by K : Ω ×∆ → [0, 1]. The share of agents with

skill type ωj, which I henceforth refer to as skill group j, is given by the number

fj > 0 for any j ∈ j. The distribution function of fixed cost types in any skill group

j ∈ J is twice continuously differentiable and denoted by Gj. The corresponding

density function gj is bounded from below by some number g > 0 for all δ ∈ ∆ and

there exists some closed subset of ∆ on which gj is weakly decreasing.

21I comment on the implications of the functional form imposed by (1) below.
22This ensures that tax changes may affect the participation decisions of agents in all skill groups.
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3.2 The optimal tax problem

I use a mechanism design approach to solve for the optimal non-linear income tax.

Thus, I study the problem to maximize a social welfare function (to be defined below)

over the set of feasible and incentive-compatible allocations. An allocation is given

by two functions c : Ω×∆→ R and y : Ω×∆→ R+
0 that specify the consumption

and output levels for all types in Ω × ∆. It is feasible if overall consumption does

not exceed overall output, i.e.,∫
Ω×∆

c(ω, δ)dK(ω, δ) ≤
∫

Ω×∆

y(ω, δ)dK(ω, δ), (4)

and incentive-compatible if

u (c(ω, δ), y(ω, δ);ω, δ) ≥ u (c(ω′, δ′), y(ω′, δ′);ω, δ) (5)

for all types (ω, δ) and (ω′, δ′) in Ω×∆.

Below, I will investigate whether the optimal allocation involves labor supply dis-

tortions. The characterization of these distortions is based on the following thought

experiment, which I illustrate in Figures 2 and 3 in Appendix B. Consider an initial

allocation in which agent i’s bundle is given by (ci, yi) ≥ 0. Now consider providing

agent i with a different bundle (c̃, ỹ) ≥ 0 such that ỹ − yi = c̃ − ci 6= 0. The set

of these potential deviations is given by a straight line through (ci, yi) with slope

equal to 1, the economy’s marginal rate of transformation between consumption and

output. Agent i’s labor supply is said to be distorted if there is a bundle (c̃, ỹ) on

this line that i strictly prefers to (ci, yi).

First, it might be possible to increase i’s utility through a marginal deviation

from (ci, yi). This will be the case if and only if i’s marginal rate of substitu-

tion, hy (yi, ωi), differs from 1. If hy (yi, ωi) < 1, i would strictly prefer an output-

increasing deviation. Then, i’s labor supply is said to be downwards distorted at

the intensive margin. Correspondingly, if hy (yi, ωi) > 1, i would strictly prefer an

output-decreasing deviation, and i’s labor supply is said to be upwards distorted at

the intensive margin.

Second, it might be possible to increase i’s utility through a large deviation from

(ci, yi) that changes his participation status (from zero output to positive output or

vice versa). Consider an initial allocation with yi = 0 and the deviation to bundle

(ci + ỹ, ỹ) for some ỹ > 0. Agent i would be strictly better off with the new bundle

than with his initial bundle if and only if i’s total costs of providing output ỹ are

below the additional utility from consuming ỹ, h (ỹ, ωi) + δi < ỹ. Hence, i’s labor
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supply is said to be downwards distorted at the extensive margin if both yi = 0 and

δi < δ∗(ωi) := maxy>0 y − h(y, ωi).

Correspondingly, consider an initial allocation with yi > 0. Agent i would be

strictly better off with bundle (ci − yi, 0) than with his initial bundle if and only if i’s

total costs of providing output yi exceed the utility from consuming yi, h (yi, ωi) +

δi > yi. Hence, i’s labor supply is said to be upwards distorted at the extensive

margin if both yi > 0 and δi > yi − h (yi, ωi).

These definitions allow to characterize the distortions in the labor supply of each

type in Ω×∆ separately. In the interest of readability, however, I will use a more con-

cise characterization of labor supply distortions across the type set. This is possible

because only specific patterns of distortions are compatible with implementability

and (second-best) Pareto efficiency.

Lemma 1. Every allocation (c, y) that is implementable and Pareto-efficient (in the

set of implementable allocations) is characterized by two vectors (yj)
n
j=1, (cj)

n
j=0 such

that,

• for each j ∈ J = {1, 2, . . . , n}, all agents with skill type ωj and fixed cost type

δ ≤ δj := cj − h(yj, ωj)− c0 receive bundle (cj, yj), and

• all other agents receive bundle (c0, 0).

By Lemma 1, any implementable allocation involves pooling by n + 1 sets of

different types. First, all agents with skill type ωj ∈ Ω and fixed cost types below

the (endogenous) participation threshold δj provide the same output level yj > 0

and receive the same consumption level cj > 0. Second, all other agents provide

zero output and receive the same consumption level c0.

Both properties are driven by the additive separability of the fixed cost com-

ponent δ in utility function (1), which follows the random participation approach

Rochet & Stole (2002). First, conditional on not working, an agent’s payoff is in-

dependent of his type. Hence, incentive compatibility requires that all unemployed

agents must receive the same bundle (c0, 0). Second, conditional on working, an

agent’s preference relation over any set of bundles depends only on his skill type

ω. Hence, all working agents with skill type ωj ∈ Ω must receive the same gross

payoff c− h(y, ω) (but not necessarily the same consumption-output bundle). Con-

sequently, there is a unique fixed cost level δj that makes an agent with skill type ωj

indifferent between working and unemployment. Finally, Pareto efficiency ensures

that all working agents with skill type ωj receive the same bundle (cj, yj) instead of

different bundles related to the same gross payoff.
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As indicated before, Lemma 1 allows to concisely characterize the labor supply

distortions in any implementable allocation for an entire skill group j ∈ J . The

statement that labor supply in skill group j is distorted at the intensive margin

characterizes an allocation in which the marginal rate of substitution h(yj, ωj) differs

from one for all working agents with skill type ωj. The statement that labor supply in

skill group j is distorted at the extensive margin characterizes an allocation in which

the skill-specific participation threshold δj is either located below δ∗(ωj) (downward

distortion) or above yj − h(yj, ωj) (upward distortion).23

An allocation is said to be efficient if it does not involve labor supply distortions

at any margin, based on the vectors (yj)
n
j=1 and (δj)

n
j=1. The efficiency losses in all

other allocations can be evaluated based on the implied deadweight loss, defined as

DWL(c, y) :=
n∑
j=1

fj

∫ δ∗(ωj)

δ

gj(δ) [δ∗(ωj)− δ] dδ

−
n∑
j=1

fj

∫ δj

δ

gj(δ) [yj − h(yj, ωj)− δ] dδ , (6)

where δj = cj − h(yj, ωj)− c0 as derived in Lemma 1.24

3.3 Decentralization

The previous section explains the problem of maximizing welfare over the set of

implementable allocations via direct mechanisms. How does this serve the goal of

this paper, i.e., investigating the properties of the optimal income tax schedule?

First, the taxation principle ensures that every implementable allocation (c, y) can

be decentralized through an admissible tax function T . Second, as the following

section will demonstrate, the labor supply distortions in any allocation (c, y) have

straightforward implications for the properties of the tax schedule that decentralizes

(c, y)–in particular, for the signs of the marginal tax T ′(y) and the participation tax

T P (y) = T (y)− T (0) at all relevant levels of y.

Consider the class of social choice functions that are decentralized through non-

linear income tax schedules, mapping output levels into tax payments. I denote by

(cT , yT ) the social choice function that is decentralized by tax function T . The liter-

ature also refers to yT as pre-tax income, and to cT as post-tax income. Tax function

23Note that their is a conceptual difference between both statements: the second statement refers
to an allocation in which labor supply by some but not all agents with skill type ωj is distorted
at the extensive margin. In the interest of readability, I nevertheless use the same terminology to
characterize labor supply distortions at both margins.

24In Appendix B, I explain the derivation of the deadweight loss formula and show that the
overall deadweight loss can be decomposed in efficiency losses from distortions at both margins.
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T is admissible if the tax revenue is non-negative,
∫

Ω×∆
T [yT (ω, δ)] dK (ω, δ) ≥ 0.

The problem of an agent with type (ω, δ) is to choose income y in order to

maximize U(c, y;ω, δ), subject to the individual budget constraint c = y − T (y).

To simplify the exposition, assume that T : R+
0 → R is continuously differentiable.

Then, the solution to this program is given by

yT (ω, δ) =

{
y∗T (ω) if δ ≤ δT (ω)

0 if δ > δT (ω),
(7)

where y∗T (ω) is implicitly defined by

1− T ′ [y∗T (ω)] = hy (y∗T (ω), ω) , (8)

and δT (ω) := y∗T (ω)− h (y∗T (ω), ω)− [T (y∗T (ω))− T (0)].

The reason for the case distinction in (7) is the following. Conditional on labor

market participation, y > 0, the agent’s maximization problem is globally concave.

Hence, the conditional optimum y∗T (ω) is characterized by the first-order condition

(8), which involves only his skill type ω and the marginal tax T ′.25 For an agent

with type (ω, δ), participating in the labor market can increase his utility at most

by δT (ω), the net gain from increased consumption and increased effort costs. If

his fixed cost δ is lower than δT (ω), the agent’s individually optimal income level

yT (ω, δ) coincides with the conditional optimum y∗T (ω). If instead his fixed cost δ

exceeds δT (ω), the agent prefers zero income to any positive income y > 0. Note

that both the fixed cost type δ and the participation tax T (y)−T (0) affect only the

extensive decision whether or not to work at all, but not the intensive decision how

much to work conditional on participation.

Now, fix an implementable and Pareto-efficient allocation (c, y). By Lemma 1,

any such allocation consists of n + 1 bundles of consumption and output for the

groups of working agents with any skill type ωj ∈ Ω and the group of unemployed

agents. Which properties does the tax schedule T need to decentralize this allocation

so that yT (ω, δ) = y(ω, δ) and cT (ω, δ) = c(ω, δ) for all types in Ω×∆?

First, assume that labor supply in skill group j is downwards distorted at the

intensive margin, i.e., the marginal rate of substitution at yj = y∗T (ωj) is below 1. As

shown above, y∗T (ωj) satisfies hy (y∗T (ωj), ωj) = 1− T ′ (y∗T (ωj)). Hence, the marginal

tax at the income level y∗T (ωj) = yj must be strictly positive. Intuitively, a positive

marginal tax is required to ensure that each agent with skill type ωj provides lower

25If T is not continuously differentiable, y∗T (ω) might be located at a kink of T and fail to satisfy
the first-order condition (8).
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output than efficient. Correspondingly, if and only if labor supply in skill group j

is upwards distorted at the intensive margin, the marginal tax at the income level

y∗T (ωj) = yj must be strictly negative.

Second, assume that labor supply in skill group j is downwards distorted at

the extensive margin, i.e., δj < δ∗(ωj). As shown above, an agent self-selects zero

income if his fixed cost type δ exceeds the utility gain of participation, y−h(y, ω)−
[T (y)− T (0)], for all positive income levels. Hence, the participation tax T (y)−T (0)

must be strictly positive at the income level that maximizes y−h(y, ωj). Intuitively,

a positive participation tax is required to ensure that the agent prefers to stay

inefficiently out of the labor market. Correspondingly, if labor supply in skill group

j is upwards distorted at the extensive margin, the participation tax at income level

y∗T (ω) = yj must be strictly negative.

The main results of this paper in Section 5 characterize the optimal labor supply

distortions at the intensive margin and the extensive margin. As shown here, these

results can straightforwardly be translated into statements about the signs of the

optimal marginal tax and the optimal participation tax.

3.4 The social welfare function

In optimal tax theory, social welfare is usually taken to be an increasing function of

individual utilities that gives rise to a “desire for redistribution” (Hellwig 2007). A

standard assumption is that the social objective can be expressed as∫
Ω×∆

γ(ω, δ) Ψ
(
c(ω, δ)− h [y(ω, δ), ω]− 1y(ω,δ)>0 δ

)
dK(ω, δ), (9)

where the transformation Ψ : R→ R is strictly increasing and weakly concave, and

the weighting function γ : Ω×∆→ R+ is weakly decreasing in ω and weakly increas-

ing in δ. The desire for redistribution is either introduced through transformation

Ψ or through type-dependent weights γ; with quasi-linear preferences, it would not

be present if welfare were given by the unweighted sum of individual utilities.

Assume in the following that society associates the same weight γ(ω, δ) to each

type (ω, δ) ∈ Ω×∆. Then, the concavity of Ψ implies that it would be beneficial to

redistribute resources from types enjoying high levels of utility to types with lower

levels of utility, if one could ignore incentive considerations.

In an economy with heterogeneity in skills only, an agent’s utility as well as his

output are monotonically increasing in his skill type. Hence, the concavity of Ψ pins

down society’s preferences for redistributing resources from higher-income earners

to lower-income earners, given equal weights γ(ω, δ) for all types in Ω×∆.
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For the economy with two-dimensional heterogeneity considered here, an agent’s

utility is increasing in his skill type and decreasing in his fixed cost type. Conse-

quently, redistribution from high-skilled to low-skilled agents is no longer equivalent

to redistribution from agents with high utility to agents with low utility. Hence,

the concavity of Ψ is neither a necessary nor a sufficient condition for a social de-

sire to redistribute resources from higher-income earners to lower-income earners.26

Instead, the direction of desired redistribution depends on the properties of Ψ (and

γ) as well as on the joint type distribution K.

The basic reason behind this ambiguity is that, by Lemma 1, any implementable

allocation involves pooling of n subsets of types that enjoy different utility levels. In

particular, working agents with the same skill type ωj, but different fixed cost types

must always receive the same bundle. Hence, there is no possibility to redistribute

resources between the agents in this set, although this would be socially desirable.

In contrast, redistribution is only possible between the n + 1 groups of agents who

provide different output levels: the group of unemployed workers and the groups of

workers with skill type ωj for any j ∈ J . As usual, incentive-compatibility and the

single-crossing condition ensure that higher-skilled workers provide larger output

levels than lower-skilled workers, yj+1 > yj, for all j ∈ J \ {n}. In contrast to the

model with one-dimensional heterogeneity, however, the composition of these groups

is endogenous to the tax schedule T . In particular, T affects the threshold δj for

each j ∈ J .

Following many other tax papers, I can express the social concerns for redis-

tributing resources in my model by the average social welfare weights associated

to the n + 1 groups mentioned above, evaluated at the welfare-maximizing alloca-

tion. For any j ∈ J , I define the social weight ᾱj as the marginal welfare effect of

increasing cj, the consumption level enjoyed by all workers with skill type ωj,

ᾱj := Eδ [γ(ωj, δ) Ψ′ (cj − h (yj, ωj)− δ) | δ ≤ δj] . (10)

Correspondingly, I define the social weight ᾱ0 of unemployed agents as the marginal

effect from increasing c0, the consumption level of all unemployed agents,

ᾱ0 := Eωj ,δ [γ(ωj, δ) Ψ′ (c0) | δ < δj, j ∈ J ] . (11)

26Similarly, if γ is decreasing in ω and increasing in δ, this does not ensure a social desire for
redistribution from higher-income earners to lower-income earners.
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The average weight across the population is given by

ᾱM :=

∫
Ω×∆

[
(ᾱj − ᾱ0)1y(ω,δ)>0 + ᾱ0

]
dK(ωj, δ). (12)

In the remainder of this paper, I restrict my attention to welfare functions that

give rise to monotonically decreasing social weight sequences, which seems to be

most natural and economically most relevant case.27 Importantly, this restriction

simplifies the comparison of my results with those in the standard Mirrlees frame-

work: If the optimal tax has non-standard properties, they cannot be driven by

non-monotonicities in the social weights, but must be related to the interaction of

labor supply responses at the intensive and extensive margins.

To simplify the exposition, I henceforth treat the group-specific social weights

as if they were exogenous objects and denote them by α = (α0, α1, . . . , αn). In

particular, Propositions 2 to 4 provide conditions on α for which the optimal income

tax is either given by an EITC or by an NIT. Propositions 5 (in the main text), 8 and

9 (in Appendix B.6) clarify, however, that these conditions are indeed satisfied by

the welfare weights that endogenously arise for some well-behaved welfare functions.

Without loss of generality, I will focus on the set of strictly decreasing social weight

sequences that are normalized to have an average weight of 1. I denote this set of

weight sequences by A.

4 Assumptions

In the following, I will impose three sets of conditions on the economy. These include

some standard regularity conditions that are commonly used in the literature on

optimal income taxation. Other conditions have not been used in this literature so

far. The specific role of each condition is discussed in the subsequent sections.

The first condition imposes restrictions on the joint type distributions, expressed

in terms of the hazard rates of fixed costs distributions. Fix a skill type ωj. Recall

that Gj denotes the cdf of the distribution of fixed cost types in the group of agents

with this skill type. The hazard rate of this cdf is given by Aj(δ) :=
gj(δ)

Gj(δ)
.

Condition 1. The joint type distribution has the following properties:

(i) For every j ∈ J , Aj(δ) is strictly decreasing in δ.

(ii) For every j ∈ J−n := J \ {n} and δ ∈ ∆, Aj(δ) ≥ Aj+1(δ).
27In Appendix B.3, I provide conditions on Ψ, γ andK that jointly ensure that ᾱ is monotonically

decreasing. Additionally, I provide an example in which, despite a strictly concave Ψ, the social
weight sequence is locally increasing.
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Condition 1 requires the hazard rates to be strictly decreasing along the fixed

cost dimension, and weakly decreasing along the skill dimension. Part (i) is a stan-

dard monotone hazard rate condition. It is satisfied whenever the skill-dependent

distribution Gj of fixed costs is log-concave, which is true for most commonly used

distribution functions. Part (ii) rules out a specific type of positive joint variation

between skill types and fixed cost types. For some distribution functions, it is iden-

tical to the assumption that Gj weakly dominates Gj+1 in the sense of first-order

stochastic dominance.28

Jointly, both parts of Condition 1 ensure that low-skill workers respond more

elastically at the extensive margin than high-skill workers, in line with the empirical

findings by Juhn et al. (1991, 2002) and Meghir & Phillips (2010). As will become

clear, the main results of this paper depend crucially on this pattern. It proves

helpful to measure these extensive-margin responses by the semi-elasticity ηj of

participation in each skill group j, formally defined by

ηj(c, y) :=
∂Gj (cj − h (yj, ωj)− c0)

∂cj

1

Gj (cj − h (yj, ωj)− c0)
=

gj (δj)

Gj (δj)
(13)

for each j ∈ J .29 Under Condition 1, the relative sizes of these semi-elasticities

across different skill types are consistent with the empirical evidence.

Lemma 2. For each j ∈ J−n, skill group j has a strictly larger semi-elasticity of

participation than skill group j + 1, ηj(c, y) > ηj+1(c, y), in every implementable

allocation.

The second condition imposes further restrictions on the skill-dependent distri-

butions of fixed costs. In particular, it compares the previously defined cdf hazard

rate Aj(δ) with the hazard rate of the corresponding pdf in the same skill group j.

I denote this pdf hazard rate by aj :=
g′j(δ)

gj(δ)
.

Condition 2. The joint type distribution has the following properties:

(i) For every j ∈ J , aj(δ) is weakly decreasing in δ with
daj(δ)

dδ
∈
[
2

dAj(δ)

dδ
, 0
]
.

(ii) For every j ∈ J−n and δ ∈ ∆, 0 ≤ aj(δ)− aj+1(δ) ≤ 2 [Aj(δ)− Aj+1(δ)].

28In general, however, part (ii) is neither stronger nor weaker than the assumption of first-order
stochastic dominance.

29More precisely, ηj represents the semi-elasticity of the skill-specific participation share Gj(δj)
with respect to the net-of-tax income cj = yj − T (yj) faced by the workers with skill type ωj . It
indicates by how much percent the participation share in skill group j increases if cj is increased
by one unit. In contrast, the (standard) elasticity of participation measures by how much percent
the participation share in skill group j increases if cj is increased by one percent.
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Condition 2 imposes two novel conditions that have not been used in the lit-

erature before. They require that the pdf hazard rate aj varies across both type

dimensions in the same direction as the cdf hazard rate Aj, but at a sufficiently small

rate compared to the latter. By part (i), the pdf hazard rate must be monotonically

decreasing in δ at a sufficiently small pace. By part (ii), the difference between the

pdf hazard rates in two adjacent skill groups must be small enough compared to

the difference in the cdf hazard rates. Note that both parts of Condition 2 are sat-

isfied, e.g., if the fixed costs are uniformly distributed in all skill groups. Moreover,

the second condition trivially holds whenever skill types and fixed cost types are

independently distributed.30

Finally, the third condition imposes mild restrictions on the effort cost function

h and the implied labor supply responses at the intensive margin.

Condition 3. There are two numbers µ1 ∈ (0,∞) and µ2 ∈ (0,∞) such that, for

all y > 0 and ω > ω1, the effort cost function h satisfies

(i) 1
y

hy(y,ω)

hyy(y,ω)
≤ µ1, and

(ii) −ω
y

hyω(y,ω)

hyy(y,ω)
≥ µ2.

Condition 3 imposes weak bounds on the elasticities of an agent’s individually

optimal income y∗T (ω) with respect to the retention rate and his skill type. By

part (i), the elasticity of income with respect to the retention rate 1 − T ′(y) is

bounded from above by some finite number µ1 for all skill types. By part (ii),

the elasticity of income with respect to the agent’s skill level ω is bounded from

below by some positive number µ2 for all skill types. Hence, Condition 3 can be

regarded as a minimal regularity condition on the effort cost function h. It is satisfied

for all commonly used functional forms, including the class of functions given by

h(y, ω) = 1
1+1/σ

(
y
ω

)1+1/σ
for any parameter value σ ∈ (0,∞).31

5 Results

In the following, I present the formal results of this paper and briefly describe their

implications for the optimal design of income tax schedules. I start by investigating

a relaxed version of the optimal tax problem, for which I derive three preliminary

30In Appendix B.4, I provide a relaxed version of Condition 2 for which all results of this
paper continue to hold. I show that this relaxed version is satisfied if the conditional fixed cost
distributions (Gj)

n
j=1 are given by Pareto, log-normal or normal distributions and if Gj weakly

dominates Gj+1 in the sense of first-order stochastic dominance for any j ∈ J/ {n}.
31If h is given by a function of this class, both elasticities are constant and given by

εy,1−T ′(y, w) = σ and εy,ω(y, w) = 1 + σ, respectively, for all y > 0 and ω > 0.

18



results of crucial importance. Then, I proceed by characterizing the labor supply

distortions at both margins in the solution to the non-relaxed problem for three

subsets of social weights in A. As explained in Subsection 3.3, these results can

easily be translated into results on the signs of the optimal marginal taxes and the

optimal participation taxes. The economic mechanism behind these results will be

explained in the following section. All formal proofs can be found in Appendix A.

5.1 Preliminary results

As Jacquet et al. (2013), I start by studying a relaxed version of the optimal tax

problem that ignores the incentive compatibility (IC) constraints between all pairs

of working agents k and l with different skill types, ωk 6= ωl. More precisely, I study

the problem of maximizing social welfare (9) subject to the feasibility constraint (4)

and the subset of IC constraints, first, between all agents with identical skill types,

u (c(ω, δ), y(ω, δ);ω, δ) ≥ u (c(ω, δ′), y(ω, δ′);ω, δ) (14)

for all ω ∈ Ω and δ, δ′ ∈ ∆, and second, between all unemployed agents,

c(ω, δ) ≥ c(ω′, δ′) (15)

for all (ω, δ) and (ω′, δ′) in Ω × ∆ such that y(ω, δ) = y(ω′, δ′) = 0. I denote by(
cαR, yαR

)
=
(
cαRj , yαRj

)n
j=0

the solution to the relaxed problem for the social weight

sequence α = (α0, α1, . . . , αn).

Lemma 1 continues to apply to the set of allocations satisfying this reduced set

of IC constraints. Hence, the solution to the relaxed problem involves, first, pooling

by all unemployed agents and, second, pooling by all working agents with the same

skill type. Moreover, an agent with skill type ωj provides positive output if and only

if his fixed cost type is below the skill-specific threshold δj. I will say that
(
cαR, yαR

)
is an interior solution if δj ∈

(
δ, δ̄
)

for all skill groups j ∈ J .

Lemma 3. There is a number χ ∈ (1, 2] such that the relaxed problem has a unique

and interior solution if αj ∈ [0, χ) for all j ∈ J . In this case, yαR is undistorted at

the intensive margin in all skill groups j ∈ J . At the extensive margin, yαR is

(i) downwards distorted in skill group j ∈ J if and only if αj < 1, and

(ii) upwards distorted in skill group j ∈ J if and only if αj > 1.

The first sentence of Lemma 3 indicates that the relaxed problem is well-behaved

if the social weights of all groups of workers are below some threshold χ ∈ (1, 2].
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For higher social weights, in contrast, the welfare function may either possess no

interior maximum or multiple local extrema. In the latter case, an allocation that

satisfies the first-order condition may violate the second-order condition.32 This is

an inherent and well-known problem for models with labor supply responses at the

extensive margin. For example, Choné & Laroque (2011) discuss the problem of a

potentially violated second-order condition for the purely extensive model of optimal

taxation. As a result, the solution of the optimal tax problem may involve technical

complications that are not directly related to the research question of this paper.

Hence, I proceed by restricting my attention to a subset of social weight sequences

for which the existence of a well-behaved solution is ensured. In particular, I define

the set Aχ ⊂ A as the subset of strictly decreasing weight sequences for which each

element αj is below the threshold χ. All results in the remainder of this paper will

be derived for weight sequences in Aχ.

The second and third sentence of Lemma 3 characterize the labor supply distor-

tions in the solution to the relaxed problem, (cαR, yαR). At the intensive margin,

optimal output yαR is undistorted in all skill groups. This may not come as a sur-

prise to the reader. In intensive-margin models à la Mirrlees (1971), labor supply

distortions at the intensive margin are necessary to relax the binding (downwards)

IC constraints between adjacent skill types. In the relaxed problem considered here,

however, these IC constraints are not taken into account anyway.

At the extensive margin, in contrast, optimal output yαR may in general be

distorted in both directions. In particular, labor supply is upwards distorted at

the extensive margin in each skill group with a social weight above the population

average 1, and downwards distorted in each skill group with a weight below 1.

Hence, strictly decreasing social weights can give rise to two possible cases. First,

if the social planner cares much more strongly about the unemployed than about

the lowest-skilled workers, the social weight α1 of the latter group is below 1. Then,

labor supply is downwards distorted at the extensive margin in all skill groups.

Second, if the social planner cares almost as much for the lowest-skilled workers as

for the unemployed, the social weight αj of the workers in the lowest k ≥ 1 skill

groups is above 1. Then, labor supply is upwards distorted in the lowest k skill

groups, and downwards distorted in all higher skill groups.

The crucial questions to be studied in the following are whether the introduction

of the previously omitted IC constraints between workers with different skill types,

first, leads to downwards, upwards or no distortions at the intensive margin, and

second, changes this simple pattern of distortions at the extensive margin. I proceed

32Formally, the Lagrangian can become strictly convex in cj for αj > χ.
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by investigating whether the solution to the relaxed problem, (cαR, yαR), satisfies the

downward IC constraint,

cαRj+1 − h
(
yαRj+1, ωj+1

)
≥ cαRj − h

(
yαRj , ωj+1

)
, (16)

and the upward IC constraint,

cαRj − h
(
yαRj , ωj

)
≥ cαRj+1 − h

(
yαRj+1, ωj

)
, (17)

for a single pair of adjacent skill types ωj and ωj+1. Recall that, in an intensive-

margin model à la Mirrlees (1971), the downward IC constraint is violated whenever

the social planner cares more for the lower-skilled group, αj > αj+1. In the present

model with labor supply responses at both margins, the answer to this question is

more subtle.

Lemma 4. For any j ∈ J−n and αj ∈ [0, χ), the relaxed problem’s solution violates

(i) the downward IC constraint if and only if

αj+1 − 1

ηj+1 (cαR, yαR)
<

αj − 1

ηj (cαR, yαR)
−
∫ yαRj+1

yαRj

[1− hy (y, ωj+1)] dy , (18)

(ii) the upward IC constraint if and only if

αj+1 − 1

ηj+1 (cαR, yαR)
>

αj − 1

ηj (cαR, yαR)
+

∫ yαRj+1

yαRj

[hy (y, ωj)− 1] dy . (19)

Lemma 4 provides two conditions that allow to determine whether the solution

to the relaxed problem satisfies or violates the local IC constraints.33 In particular,

which IC constraint is violated depends mainly on two statistics that are familiar

from previous optimal tax papers: the social weights αj and αj+1 and the semi-

elasticities of participation, ηj and ηj+1. First, the downward IC is more likely to

be violated if the concern for local redistribution is stronger, i.e., the difference

αj − αj+1 is larger. Second, the satisfaction of each IC constraint depends on the

difference ηj − ηj+1, which is strictly positive by Lemma 2. The effect of an increase

in this difference is not monotonic, however. If the weights αj and αj+1 are below

1, a larger difference ηj − ηj+1 implies that the downward IC is more likely to be

33Note that Jacquet et al. (2013) provide a similar condition for the model with a continuous skill
set. Conditions (18) and (19) mainly differ from the one in Jacquet et al. (2013) by the integral
terms in (19), which are strictly positive for any ωj+1/ωj > 1 (and strictly increasing in ωj+1 given
any ωj).
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violated. If αj and αj+1 instead exceed 1, a larger difference ηj − ηj+1 implies that

the upward IC is more likely to be violated.34

The conditions (18) and (19) also provide preliminary insights about the labor

supply distortions in the optimal allocation. As shown in Jacquet et al. (2013), labor

supply is downwards distorted at the intensive margin in all skill groups (below the

very top) if the solution of the relaxed problem violates all local downwards IC

constraints, i.e., if condition (18) is satisfied for all j ∈ J−n. Put differently, upward

distortions at the intensive margin can only be optimal if the relaxed problem’s

solution violates the upward IC constraint for some pairs of adjacent skills groups j

and j + 1. In the following, I investigate in which cases the violation of an upward

IC constraint is compatible with decreasing social weights, i.e., αj > αj+1.

For this purpose, I exploit that equation (19) implicitly defines a function βUj :

[0, χ) → R such that the upward IC is violated if and only if αj+1 > βDj (αj).

Accordingly, equation (18) implicitly defines a function βDj : [0, χ) → R such that

the downward IC is violated if and only if αj+1 < βDj (αj). Both functions cannot

be expressed in closed form because the semi-elasticities ηj and ηj+1 are endogenous

quantities, which depend on the allocation (cαR, yαR) and, ultimately, on the social

weights αj and αj+1. I can however study whether βDj (αj) and βUj (αj) can be located

below αj, so that the solution to the relaxed problem satisfies the downward IC and

violates the upward IC constraint given some decreasing social weights.

Lemma 5. For each j ∈ J−n, the functions βDj and βUj are continuously differen-

tiable, strictly increasing and satisfy 0 < βDj (x) < βUj (x) < χ for any x ∈ [0, χ). For

each j ∈ J−n, moreover, there is a number aj > 1 such that, if
ωj+1

ωj
∈ (1, aj),

(a) βDj (x) < x if and only if x is above a unique number β
j
∈ (0, 1), and

(b) βUj (x) < x if and only if x is above a unique number β̄j ∈ (1, χ).

Lemma 5 determines whether the relaxed problem’s solution, first, violates the

downward IC constraint, second, satisfies both IC constraints or, third, violates the

upward IC constraint between the workers in skill groups j and j + 1, depending

only on the social weights αj and αj+1. In particular, all three cases arise for some

combination with αj < χ and αj+1 ∈ (0, αj) if the relative distance between the skill

levels ωj and ωj+1 is sufficiently small.35

Figure 1 illustrates the formal statements in Lemma 5 to make them more easily

accessible. The shaded area below the 45◦ line contains all possible combinations of

34Besides, the larger the relative distance between the skill types ωj and ωj+1 is, the more likely
are both IC constraints to be satisfied.

35If the relative distance between ωj and ωj+1 exceeds the bound aj , the solution of the relaxed
problem may satisfy both local IC constraints (or one of them) for all αj and αj+1 in (0, χ).
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the social weights αj and αj+1 < αj in the relevant set Aχ. Additionally, Figure 1

includes two ascending graphs corresponding to the functions βDj and βUj in Lemma

5. Each graph crosses the 45◦ line exactly once, i.e., each function has a unique

fixed point. The fixed point β
j

of function βDj is located between 0 and the average

weight 1. The fixed point β̄j of function βUj is located between the average weight

1 and the upper threshold χ. By Lemma 5, the functions βDj and βUj partition the

relevant set of weights A into three regions.

αj+1

αj

45◦

βUj (αj)

βDj (αj)

β̄j

1

β
j

χ

χ

1 β̄jβ
j

I

II

III

Figure 1: Local IC constraints in the relaxed problem’s solution

For each tuple (αj, αj+1) in region I, the relaxed problem’s solution violates the

downward IC constraint, i.e., higher-skilled workers consider their bundle (cαRj+1, y
αR
j+1)

less attractive than the bundle of the lower-skilled workers, (cj, yj). As can be seen

from Figure 1, this constellation results if either both social weights are low (below

β) or if the difference between the social weights αj and αj+1 is large. In the first

case, the planner has a strong desire to redistribute resources from the workers in

these two skill groups to lower-skilled workers and/or unemployed agents. In the

second case, the social planner has a strong desire to redistribute resources from the

workers in the higher skill group j + 1 to the workers in the lower skill group j.

For tuples (αj, αj+1) in region II, the relaxed problem’s solution satisfies both

local IC constraints, i.e., the workers in each skill group prefer their own bundle

to the one designated for the other group. As can be seen from Figure 1, this

constellation mainly occurs if both social weights are close to 1. In this case, the

social planner has only a limited desire to redistribute resources between both groups

of workers and the average agent in the economy.

For tuples (αj, αj+1) in region III, the relaxed problem’s solution violates the

upward IC constraint, i.e., lower-skilled workers consider the bundle (cαRj+1, y
αR
j+1) more
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attractive than their own bundle. Figure 1 shows that this constellation occurs if

both social weights are above the average weight 1 and close enough to each other.

Hence, the social planner has a strong concern for redistribution from higher-skilled

workers to the workers in the skill groups j and j + 1, but only a limited desire to

redistribute resources between the workers in these two skill groups. By Lemma 3,

labor supply in both skill groups is upwards distorted at the extensive margin in

this case. As will become clear, this is no coincidence: the social planner can only

prefer an allocation that violates the upward IC constraint if labor supply in both

skill groups is upwards distorted at the extensive margin.

Summarizing, Lemma 5 clarifies that the relaxed problem’s solution may indeed

conflict with downward incentive-compatibility, as one might expect. But it may

also conflict with upward incentive compatibility even if the social weight sequence

is strictly decreasing, as it is the case for all weights in Aχ. Does this imply that,

in the optimal allocation, upward IC constraints are binding and labor supply is

upwards distorted at the intensive margin? For case III, this conjecture would be

easy to confirm if the social planner would only take into account the upward IC

constraint between the workers in skill groups j and j + 1. The optimal (second-

best) allocation must satisfy the full set of local IC constraints, however, potentially

including a large number of other (downward and upwards) IC constraints that were

violated by (cαR, yαR). The main results below identify social weight sequences for

which the distortions at the intensive margin can nevertheless be determined.

5.2 Main results

In the following, I characterize the labor supply distortions in the optimal allocations

for decreasing social weight sequences. The first Proposition identifies three common

properties of the optimal allocations for all weights in the set Aχ.

Proposition 1. For each α ∈ Aχ, the optimal tax problem has a maximum (cα, yα)

with δj ∈
[
δ, δ̄
)

for all j ∈ J . In this solution,

(i) the consumption level cα0 of the unemployed is strictly positive;

(ii) there is a number kα ∈ (0, n) such that optimal output is

a) upwards distorted at the extensive margin in skill group j if and only if

j ≤ kα, and

b) downwards distorted or undistorted at the intensive margin in skill group j

if j > kα;
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(iii) optimal output in the highest skill group n is undistorted at the intensive margin

and downwards distorted at the extensive margin.

By Proposition 1, the optimal tax problem has a well-defined solution with the

following properties for any α ∈ Aχ. First, the social planner provides a strictly

positive transfer to the unemployed agents. Second, upward distortions at the exten-

sive margin can only be optimal in the lowest skill groups with j ≤ kα.36 Moreover,

upward distortions at the intensive margin can only be optimal in a subset of these

low-skill groups. Hence, upward distortions at the extensive margin are a neces-

sary, but not sufficient condition for the optimality of upward distortions at the

intensive margin. Third, Proposition 1 qualifies the classical no distortion at the

top result. At the intensive margin, labor supply by the most productive workers

is always undistorted as in Mirrlees (1971). At the extensive margin, in contrast,

labor supply in the top skill group is always downwards distorted.

Apart from these common properties, there are substantial differences between

the optimal allocations for alternative social weights in Aχ. In the interest of read-

ability, I focus on three mutually exclusive subsets of social weights in Aχ. The

definitions of these subsets make use of the functions βDj and βUj for all j ∈ J−n, as

identified in Lemma 5.

Definition 1. The sets of weight sequences AN , AD and AU are defined as follows:

(i) Set AD contains all sequences α ∈ Aχ such that αj+1 ≤ βDj (αj) for all j ∈ J−n,

with a strict inequality for at least one j ∈ J−n.

(ii) Set AN contains all sequences α ∈ Aχ such that αj+1 ∈
[
βDj (αj), β

U
j (αj)

]
for

all j ∈ J−n.

(iii) Set AU contains all sequences α ∈ Aχ such that α2 > βU1 (α1) and αj+1 ≥
βDj (αj) for all j ∈ {2, . . . , n− 1}.

The construction of each subset can be illustrated using Figure 1 above. In this

figure, any weight sequence α ∈ Aχ can be depicted as an ascending scatter plot

consisting of n − 1 points, representing the weight-pairs (αj, αj+1) for all j ∈ J−n.

To simplify the exposition, assume that the functions βDj and βUj were identical for

all j ∈ J−n.37 Then, the social weights in the three subsets AN , AD and AU have

the following properties.

36It is also possible that labor supply in all skill groups is downwards distorted at the extensive
margin (i.e., that kα < 1).

37Note that this simplifying assumption is not imposed to define the subsets AD,AN and AU ,
but only to explain their construction.
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For social weights in the first subset AD, all weight-pairs are located in region I

at the lowest part of Figure 1. As argued above, this represents a case in which the

social planner has large concerns for local redistribution between all pairs of workers

with adjacent skill types, including the workers with the lowest skill types. A limit

case is given by the Rawlsian welfare function, which associated a positive weight

to the unemployed and weights of zero to all groups of workers.

For social weights in the second subset AN , all weight-pairs are located in region

II in the centre of Figure 1. In this case, the social planner has rather limited

concerns for redistribution between all groups of workers.

For social weights in the third subset AU , the first weight-pair (α1, α2) is located

in region III in the upper right part of Figure 1, while each of the remaining

weight-pairs can be located in region III or in the intermediate region II. This

case represents a social planner with a pronounced concern for redistribution from

highly skilled workers to the workers in the lowest skill groups and the unemployed,

but only a limited concern for redistribution among the workers in the lowest skill

groups. An interesting limit case of this set involves identical weights above 1

associated to the unemployed and the workers in the k ≥ 2 lowest skill groups.

I proceed by characterizing the optimal labor supply distortions for social weights

in each of these three subsets, starting with the set AD. After that, Proposition 5 in

the main text and Propositions 8 and 9 in Appendix B.6 clarify that social weights

in all three sets can indeed arise for welfare functions with standard properties.

Proposition 2. For any α ∈ AD, optimal output yα is

• downwards distorted at the intensive margin in all skill groups j ∈ J−n,

• downwards distorted at the extensive margin in all skill groups if α1 is below

some threshold γD > 1.

By Proposition 2, optimal labor supply by all except the highest-skilled workers

is downwards distorted at the intensive margin for any social weights in the set AD.

At the extensive margin, labor supply in all skill groups is downwards distorted

if α1, the weight of the lowest-skilled workers, is below some threshold γD. Note

that the threshold γD is strictly higher than in the solution to the relaxed problem

characterized in Lemma 3 (where it is equal to 1). Hence, labor supply distortions

at both margins are interdependent: The condition for optimal upward distortions

at the extensive margin becomes harder to satisfy if labor supply is downwards

distorted at the intensive margin.

For all social weights in AD, the “central result of optimal income taxation”

(Hellwig 2007) remains hence valid: The optimal marginal tax is strictly positive
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for all income levels below the top income yαn . If and only if α1 < γD, the optimal

participation taxes are strictly positive at all income levels as well: the optimal

income tax is a Negative Income Tax.

Proposition 3. For any α ∈ AN , optimal output yα is

• undistorted at the intensive margin in all skill groups;

• upwards distorted at the extensive margin in each skill group j such that αj > 1.

By Proposition 3, optimal labor supply is undistorted at the intensive margin in

all skill groups for any social weights in the set AN . The optimal distortions at the

extensive margin in each skill group depend on whether the social weight associated

to this group is below or above the average weight of 1. Hence, the labor supply

distortions in the solutions to the relaxed problem and the full problem of optimal

taxation are identical (see Lemma 3).

Note that this does not imply identical tax levels for all agents.38 The optimal

allocation can be decentralized by a piecewise horizontal tax schedule, however.

This finding is already in stark contrast to the before-mentioned “central result of

optimal tax theory”. If and only if α1 > 1, the least-productive workers benefit from

a negative participation tax.

Proposition 4. For any α ∈ AU , optimal output yα is

• upwards distorted at the intensive margin in skill group 2;

• upwards distorted at the extensive margin in skill groups 1 and 2.

By Proposition 4, the optimal allocation involves upward distortions at both

margins for any social weights in the set AU . In particular, labor supply in the two

lowest skill groups is upwards distorted at the extensive margin, and labor supply

by all workers with skill type ω2 is upwards distorted at the intensive margin.39 For

all social weight in AU , the optimal tax is hence given by an Earned Income Tax

Credit with negative marginal taxes and negative participation taxes at low income

levels.

Summing up, the previous three propositions have clarified that any sign of the

optimal marginal tax as well as the optimal participation tax is compatible with

strictly decreasing social weights. More precisely, I have shown that the properties

38In contrast, the tax schedule will always be increasing over some income range. Additionally,
it may also be decreasing over some (low) income range.

39In Appendix B, I construct subsets of AU for which upward distortions at the intensive margin
are optimal in multiple skill groups.
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of the optimal income tax depend on the strength of society’s concerns for, first,

redistribution from the rich to the poor (from high-skilled workers to low-skill work-

ers) and, second, redistribution among the poor (from the low-skilled workers to the

very-low-skilled workers and the unemployed). Propositions 2 to 4 have expressed

these conditions on the redistributive concerns in terms of the (average) welfare

weights associated to the agents in the n+ 1 income groups.

It is important to recall, however, that these social weights are endogenous ob-

jects that depend both on the properties of the welfare function (9) and on the

allocation that maximizes this welfare function given the joint type distribution

K. Hence, the previous result is only relevant if there exist well-behaved welfare

functions for which the endogenous weight sequence ᾱ indeed belongs to the set

AU . In the following, I focus on welfare functions that involve a transformation

Ψ : R→ R and a type-dependent weighting function γ : Ω×∆→ R+ with standard

properties. More precisely, I say that a combination of Ψ and γ is regular if (a) Ψ

is strictly increasing and weakly concave and (b) γ is weakly decreasing in ω and

weakly increasing in δ.

Proposition 5. There are two numbers aU > 1, m ≥ 3 and two vectors (φj)
n
j=1,

(δ′j)
n
j=1 with φj+1 ≥ φj for all j ∈ J−n, φj ≷ 1 for j ≷ m and δ′j ∈

(
δ, δ̄
)

for all

j ∈ J such that, if

(a) ω2

ω1
< aU ,

(b) n ≥ m and

(c)
∑n

j=1 fjGj(δ
′
j)φj > 1,

there exist regular combinations of Ψ and γ for which ᾱ ∈ AU .

Proposition 5 provides three conditions that jointly ensure the existence of well-

behaved welfare functions for which an Earned Income Tax Credit is optimal.40

Although these conditions appear complicated, they can easily be interpreted. Con-

dition (a) requires the relative distance between the two lowest skill types to be

sufficiently small. The remaining two conditions ensure that there is a sufficiently

large share of high-skilled workers in the economy. This requirement can be decom-

posed into two elements.

By Condition (b), the cardinality n of the skill set Ω has to be equal to (or above)

some finite threshold m ≥ 3. Recall that the ratio ωj+1/ωj is assumed to exceed

40Correspondingly, Propositions 8 and 9 in Appendix B.6 provide sufficient conditions for the
existence of well-behaved welfare functions such that the welfare weights ᾱ belong to the sets AD
and AN , respectively.
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1 + ε for some ε > 0. Hence, Condition (b) requires the relative difference between

the highest skill type ωn and the lowest skill type ω1 to be large enough.

By Condition (c), the population share of the agents with high skill types (ωm

or higher) and low fixed cost types has to be sufficiently large. To see this, note

that the condition compares a weighted average over the increasing sequence φ =

(φ1, φ2, . . . , φn) with 1. Each element φj is weighted by the population share of the

agents with skill type ωj and fixed cost types below some threshold δ′j (i.e., the agents

in skill group j with the largest preference for participating in the labor market).

By construction, only the elements with index m or higher in φ are larger than 1.

Hence, condition (c) is ensured to be satisfied if the population share
∑n

j=m fjGj(δ̃j)

of highly productive agents is close to 1, and to be violated if the same population

share is close to zero.

While condition (a) can be perceived as a regularity condition, the two latter

parts are economically more restrictive. A crucial aspect is given by the level of the

threshold skill type ωm (relative to the lowest skill type ω1). In general, the required

ratio of ωm/ω1 depends in a non-trivial way on all primitives of the model, including

the effort cost function h, the type set Ω×∆ and the type distribution K. To assess

the restrictiveness of condition (b), I consider a numerical example with commonly

used functional forms in Appendix C. For this example, the condition turns out to

be reasonably mild: It is satisfied whenever the skill set is sufficiently “dense” and

the ratio ωn/ω1 of the highest to the lowest skill type exceeds 2.

6 The underlying mechanism

In the following section, I explain the economic mechanism behind the main re-

sults of this paper. The optimal pattern of labor supply distortions are driven by,

first, the standard trade-off between equity and efficiency and, second, a previously

neglected trade-off between labor supply distortions at both margins. I start by

studying an auxiliary problem that helps to isolate the latter trade-off and clarify

its implications for the optimal allocation. Then, I show how the properties of the

optimal allocation are affected by the introduction of redistributive concerns. On

the way, I also comment on crucial steps in the proofs of my results.

6.1 The tradeoff between intensive and extensive efficiency

In the following, I study the auxiliary problem to maximize efficiency subject to a

reduced set of incentive compatibility constraints and to the constraint that some
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fixed amount of resources is redistributed from the high-skill workers to the un-

employed agents and the low-skill workers. More formally, I analyze the problem

to minimize the deadweight loss from labor supply distortions (6) over the set of

feasible allocations, subject to the constraint that the exogenous amount R > 0 of

resources is transferred from the set of workers with skill type ω3 and higher to the

set of unemployed agents and workers with skill types ω1 and ω2,

n∑
j=1

fj [1−Gj(δj)] c0 +
2∑
j=1

fjGj(δj)(cj − yj) =
n∑
j=3

fjGj(δj)(yj − cj) = R , (20)

and to the incentive compatibility constraints between all agents with identical skills

(14), between all unemployed agents (15), and between the workers in the lowest

two skill groups,

c2 − h(y2, ω2) ≥ c1 − h(y1, ω2) , (21)

c1 − h(y1, ω1) ≥ c2 − h(y2, ω1) . (22)

I henceforth refer to this program as the problem of efficient redistribution. I denote

its solution by (cE, yE) and the implied vector of participation thresholds by δE. The

following Lemma identifies the labor supply distortions in this solution.

Lemma 6. Consider a redistribution amount R > 0 such that the solution (cE, yE)

to the efficient distribution problem exists and is interior.

(i) Output yE is upwards distorted at the extensive margin in skill groups 1 and 2.

(ii) There is a number aE > 1 such that, if ω2

ω1
∈
(
1, aE

)
, output yE is upwards

distorted at the intensive margin in skill group 2.

By Lemma 6, redistributing resources in the most efficient way requires to dis-

tort labor supply of low-skill workers upwards at both margins. This result holds

whenever, first, the distance between skill groups 1 and 2 is sufficiently small and,

second, the problem has an interior solution. The first qualification is related to the

assumption of a discrete skill set and will become clear below. The second qualifica-

tion has to be made because the problem may fail to have a well-behaved solution for

high levels of R. In particular, it may be impossible to collect the required amount

of resources from the high-skilled workers due to Laffer curve effects.41 Besides, the

solution for high levels of R may involve labor market participation by all low-skill

41The more resources are transferred from high-skill workers to unemployed agents, the more
high-skill workers become unemployed. Hence, the level of transfers is bounded from above.
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agents, i.e., a boundary solution with extreme upward distortions. As both problems

have no relevance for the optimal income tax problem and the trade-off between in-

tensive efficiency and extensive efficiency, I henceforth restrict my attention to cases

with a well-behaved solution.

Upward distortions at the extensive margin. I start by explaining why effi-

cient redistribution yE gives rise to upward distortions at the extensive margin in

both low-skill groups, i.e., why the participation threshold δEj exceeds its first-best

level δ∗(ωj) for j ∈ {1, 2} (see first part of Lemma 6). Assume for a moment that

the local IC constraints between the workers in both low-skill groups are not binding

and can hence be ignored. In this case, the efficiency-maximizing allocation (cE, yE)

does not involve distortions at the intensive margin. Hence, the social planner only

faces the problem to minimize the deadweight loss from distortions at the extensive

margin.

For each j ∈ {1, 2}, the optimal level of the participation threshold is implicitly

defined by the first-order condition with respect to cj,

δEj − δ∗(ωj) = cEj − yEj − cE0 =
λE

1− λE
1

ηj(cE, yE)
> 0 , (23)

where λE is the Lagrange multiplier associated with the constraint that R resources

have to be transferred to the unemployed and the working poor.42 Equation (23)

has two crucial implications.

First, low-skill labor supply is upwards distorted at the extensive margin when-

ever the redistribution constraint is binding, i.e., the amount R is strictly positive.

Put differently, efficient redistribution always involves larger transfers to the low-

skilled workers than to the unemployed. To provide the economic intuition behind

this result, consider an initial allocation in which labor supply in both low-skill

groups is undistorted at both margins. This requires that, first, the output levels

y1 and y2 satisfy hy(y1, ω1) = hy(y2, ω2) = 1 and, second, identical transfers are pro-

vided to the low-skill workers and the unemployed agents, c1−y1 = c2−y2 = c0 > 0.

Feasibility requires that these transfers are paid by the high-skill workers, i.e.,

yj − cj > 0 for all j ≥ 3. Hence, labor supply in the high-skill groups must be

downwards distorted at the extensive margin.

Assume now that the planner reduces the consumption level c0 of the unemployed

and increases the consumption levels c1 and c2 of the working poor in a budget-

balancing way, holding R constant. This has two effects on labor supply. First, some

42Note that λE takes a value in the interval (0, 1) for any R > 0 such that (cE , yE) is interior.
Below, I show how the levels of δE1 and δE2 are affected by the presence of the IC constraints.
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previously unemployed agents in both low-skill groups start working, creating an

upwards distortion at the extensive margin. Initially, this only leads to a negligible

(second-order) increase in the deadweight loss, because labor supply in these groups

was undistorted before. Second, some previously unemployed agents in all high-skill

groups start working due to the reduction in c0. This response leads to a first-order

reduction in the deadweight loss, because labor supply was downwards distorted at

the extensive margin before and is less so now. Hence, providing larger transfers

to the low-skilled workers than to the unemployed increases extensive efficiency,

although it leads to upward distortions at the extensive margin.

Second, the first-order conditions with respect to c1 and c2 imply that the workers

in both low-skill groups receive different transfers. It is worth noting that, if the local

IC constraints between both low-skill groups are ignored, the problem of efficient

redistribution is structurally identical to the Ramsey problem of optimal commodity

taxation (or optimal linear pricing). Accordingly, equation (23) represents an inverse

elasticity rule: The transfer to skill group j ∈ {1, 2} has to be inversely related to the

semi-elasticity ηj of participation in this skill group.43 Recall that the relative sizes

of participation responses are pinned down by Condition 1: η1 exceeds η2 in every

implementable allocation (see Lemma 2). For any R > 0, the efficient-maximizing

allocation must hence involve strictly higher transfers to the higher-skilled workers

than to the lowest-skilled workers, cE2 − yE2 > cE1 − yE1 .

Upward distortions at the intensive margin. By the previous paragraph, the

solution to the problem of efficient redistribution involves higher transfers to the

workers in skill group 2 than to the less skilled workers in group 1. This gives rise to

the question whether the allocation defined by equation (23) and the redistribution

constraint (20) violates the upward IC constraint.44 As Lemma 6 indicates, the

answer to this question is positive whenever the skill set is sufficiently “dense”, i.e.,

the distance between skill levels ω1 and ω2 is sufficiently small.

Note that the formal derivation of this crucial result involves a non-standard

complication. In particular, as I have not imposed any functional form assumptions

on the effort cost function h and the joint type distribution K, the violation of the

upward IC constraint cannot be verified directly for specific skill distances. The

formal proof resolves this problem by studying how the participation threshold δE2 is

affected by variations in the skill level ω2, given some fixed level of R. In particular,

I first use equation (23) to investigate the optimal relation between δE1 and δE2 for the

43Note that the classical inverse elasticity rule is expressed in terms of standard elasticities
instead of semi-elasticities.

44By the previous arguments, the downward IC constraint is trivially satisfied for any R ≥ 0.
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limit case where ω2 equals ω1. Second, I show that allocation (cE, yE) unambiguously

violates the upward IC constraint after a marginal increase in ω2 as long as Condition

1 is satisfied.

The previous arguments have clarified that the upward IC constraint is binding

in (cE, yE) if the distance between ω1 and ω2 is small enough. Assume that this

condition is met. In this case, the social planner cannot at the same time set the

transfers to both groups of low-skill workers according to the inverse elasticity rule

(23) and avoid distortions at the intensive margin. Specifically, to satisfy the inverse

elasticity rule, he has to relax the upward IC constraint by distorting labor supply

y2 upwards at the intensive margin. Put differently, the planner can only increase

extensive efficiency if he reduces intensive efficiency and vice versa. This trade-off

constitutes a crucial difference between the problem of efficient redistribution and

the standard Ramsey problem.

To minimize the overall deadweight loss (6), the planner has to implement the

allocation that equates the marginal deadweight losses from distortions at both mar-

gins, representing the optimal compromise between intensive efficiency and extensive

efficiency. Formally, the efficiency-maximizing allocation has to satisfy

f2G2(δE2 )
[
hy(y

E
2 , ω2)− 1

]
hy(yE2 , ω1)− hy(yE2 , ω2)

= Λ
{
η1

[
δE1 − δ∗(ω1)

]
− η2

[
δE2 − yE2 + h(yE2 , ω2)

]}
> 0 , (24)

where Λ :=
[
f1f2G1(δE1 )G2(δE2 )

]
/
[
f1G1(δE1 ) + f2G2(δE2 )

]
.

For the interpretation of this condition, consider a marginal increase in y2, which

relaxes the upward IC constraint and hence allows to raise the difference between

the transfers to the workers in skill groups 1 and 2. The left-hand side of equation

(24) captures the induced increase in the intensive deadweight loss. In particular,

the term in the numerator states the difference between the marginal rate of substi-

tution hy(y2, ω2) and the marginal rate of transformation 1, while the term in the

denominator quantifies the extent to which the upward IC is relaxed.

The right-hand side (24) captures the reduction in the extensive deadweight loss

that results from raising the difference between both transfers. In particular, the

term in brackets evaluates how much the allocation (cE, yE) deviates from the inverse

elasticity rule (23). The larger this term is, the more beneficial it is to distort y2

upwards in order to increase the difference between both transfers.45

Summing up, the solution to the auxiliary problem of efficient redistribution

45Note that equation (24) is also satisfied if the distance between both skill levels ω1 and ω2 is
above the threshold aE . In this case, allocation (cE , yE) satisfies the inverse elasticity rule and
involves no distortion at the intensive margin. Thus, both sides of the equation equal zero.

33



involves upward distortions in labor supply at both margins. Note that these insights

extend to a more general version of the efficient redistribution problem in which the

planner wants to redistribute resources to the unemployed and the workers with the

lowest k ∈ (2, n) skill types (from all higher-skilled workers), and takes into account

the local IC constraints between all workers with skill types ω1 to ωk. In this case,

the efficiency-maximizing allocation involves upward distortions at the extensive

margin in the skill groups 1 to k, and upward distortions at the intensive margin in

the skill groups 2 to k. As shown in section 3.3, this allocation can be implemented

by means of an EITC -type income tax schedule with negative participation taxes

and negative marginal taxes for low-skill workers.

6.2 The effects of redistributive concerns

The following section sketches how the previous insights are affected by the introduc-

tion of redistributive concerns. For this purpose, I turn to the problem of maximizing

social welfare (9) subject to the feasibility constraint (4) and the subset of incentive

compatibility constraints (14), (15), (21) and (22), which were also included in the

problem of efficient redistribution.46 The following paragraphs explain how changes

in the social weights α0, α1 and α2 affect the properties of the optimal allocation.

To simplify the exposition, I concentrate on social weight sequences that put zero

weight on the workers in all higher-skill groups, αj = 0 for all j ∈ {3, . . . , n}.
As a benchmark, consider the case with identical weights for the unemployed

and both types of low-skill workers, i.e., α0 = α1 = α2 > 1. In this case, the social

planner has no concerns for redistribution between the agents in these three groups.

Hence, the solution to this welfare maximization problem is identical to the solution

of the efficient redistribution problem, given some strictly positive amount R′ > 0 of

redistribution. As shown above, this allocation involves upward distortions among

the low-skilled workers at both margins.

Concerns for redistribution from low-skill workers to unemployed agents.

Assume that the planner associates a higher weight to the unemployed than to the

low-skill workers, i.e., α0 > α1 = α2 = α′. In this case, he has a concern for local

redistribution from the low-skill workers to the unemployed, but no concern for

redistribution between the low-skill workers. It turns out that the level of α′ affects

the optimal distortions at both margins.

46In contrast to the relaxed problem in section 5, the problem studied here also takes into account
the local IC constraints (21) and (22) between the workers in skill groups 1 and 2.
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First, these redistributive concerns call for giving higher transfers to the unem-

ployed than to the working poor, inducing downward distortions at the extensive

margin. As shown above, however, maximizing efficiency requires to provide higher

transfers to the low-skilled workers, inducing upward distortions at the extensive

margin. The strength of the redistributive concerns as measured by the difference

α0−α′ determines which of these countervailing forces dominates. In particular, the

optimal allocation involves upward distortions at the extensive margin in both skill

groups if α′ is above the average weight 1, but downward distortions if α′ is below

1 (see Lemma 3).

Second and less obviously, the relative size of α′ also affects the optimal distor-

tions at the intensive margin. Because the planner cares equally for all low-skill

workers, the optimal transfers for both low-skill groups are defined by a slightly

adjusted version of the inverse elasticity rule (23).47 Hence, as long as low-skill

labor supply is upwards distorted at the extensive margin (i.e., for α′ > 1), the

optimal transfer to the workers in group 2 is larger than the one to the workers in

group 1. If low-skill labor is downwards distorted at the extensive margin (i.e., for

α′ < 1), in contrast, the inverse elasticity rule implies that the optimal transfer to

the workers in group 2 is smaller (or more negative) than the one to the workers in

group 1. Consequently, the optimal allocation can only involve a binding upward

IC constraint between skill groups in which labor supply is upwards distorted at the

extensive margin.

More precisely, Lemma 5 states that the upward IC is binding if and only if α′

exceeds a unique threshold β̄1 > 1 (see illustration in Figure 1). Note that this

uniqueness result is only ensured if the difference between the optimal transfers to

both skill groups is monotonically increasing in the social weight α′. Intuitively, this

property seems reasonable: With higher social weight α′, the social planner provides

larger transfers to both groups of workers. To limit the deadweight loss, the larger

share of these additional transfers should go to the higher-skilled workers in group

2, who respond less elastically at the extensive margin.

This basic intuition does not take into account, however, that variations in the

transfers to both low-skill groups may affect the relative sizes of the elasticities η1

and η2. In the proof of Lemma 5, I show that the difference between both optimal

transfers is nevertheless monotonic if the joint type distribution satisfies

(2− α′) [A1(δ1)− A2(δ2)] > (1− α′) [a1(δ1)− a2(δ2)] (25)

47If the local IC constraints between both groups of low-skill workers can be ignored, the welfare-
maximizing transfer to workers in skill group j is defined by δj − δ∗(ωj) = (α′ − 1) 1

ηj(c,y) .
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for all relevant combinations of δ1 and δ2 ∈ ∆, where Ak(δk) and ak(δk) are the

hazard rates of the cdf and the pdf of the fixed-cost distribution Gk in skill group k.

Condition 2 ensures that this inequality holds for all levels of α′ ∈ (0, χ). Intuitively,

it hence serves as a regularity condition that rules out drastic changes in the relative

sizes of the semi-elasticities η1 and η2.

Concerns for redistribution among low-skill workers. Finally, assume that

the social planner cares more for the lowest-skilled workers than for the slightly

higher-skilled workers, α1 > α2. These redistributive concerns call for providing

higher transfers to the lower-skilled workers in group 1. As shown above, however,

maximizing efficiency requires to provide higher transfers to the higher-skilled work-

ers in group 2 as long as both social weights exceed 1. To balance both aspects,

the transfers to the higher-skilled workers in group 2 have to be smaller than in

the efficiency-maximizing allocation (cE, yE). Consequently, there is less need (or

no need at all) to relax the upward IC constraint through upward distortions at the

intensive margin: the optimal output y2 by workers with skill type ω2 is strictly

smaller than yE2 .

More precisely, labor supply in the higher-skilled group 2 continues to be upwards

distorted at the intensive margin if the local redistributive concerns as measured by

the difference α1 − α2 are weak and both social weights are sufficiently high (see

Lemma 5 and Figure 1). If the redistributive concerns are stronger, in contrast, the

optimal allocation involves larger transfers to the lower-skilled group. In this case,

the downward IC constraint is binding, and labor supply in the lower-skilled group

1 is downwards distorted at the intensive margin.

6.3 Full incentive compatibility

The previous sections have clarified why and when optimal labor supply may be

upwards distorted at both margins. For this purpose, I have studied two auxiliary

problems, in which I have ignored the IC constraints between the workers in all

but the two lowest skill groups. The following section explains how these insights

extend to the unrelaxed problem of optimal income taxation, where the complete

set of incentive compatibility constraints is taken into account.

In the solution to this unrelaxed problem, the direction and magnitude of labor

supply distortions in skill group j do not only depend on the social weights associated

to the workers in this group and in the two adjacent groups j − 1, j + 1, but on

the complete sequence of social weights α = (α0, α1, . . . , αn). Put differently, the IC

constraints along the entire skill set Ω are interconnected and the set of binding IC
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constraints has to be determined jointly.

The implications of this interconnection can be clarified transparently for the

problem of efficient redistribution, where a fixed amount of resources has to be

transferred from the workers with skill type ω3 and higher to the workers with

skill types ω1 and ω2 and the unemployed (see Section 6.1). If only the local IC

constraints between the workers in the two lowest skill groups are taken into account,

the solution to this problem involves a binding upward IC constraint and upward

distortions in y2. But this solution typically violates the downward IC constraint

between the workers in skill groups 2 and the workers in skill group 3, because the

social planner transfers resources from the latter to the former.48 If the social planner

has to take into account this constraint as well, he can only provide lower transfers

to the workers in skill group 2 than in his preferred allocation (cE, yE). Unless more

specific assumptions are imposed, it is impossible to determine whether the solution

to the unrelaxed problem involves a binding upward IC constraint or, in contrast, a

binding downward IC constraint between skill groups 1 and 2.

Propositions 2 to 4 identify social weight sequences for which the optimal di-

rection of labor supply distortions can be uniquely determined despite these com-

plications. In the following, I concentrate on social weight sequences for which the

optimal allocation involves upward distortions at both margins. First, I explain why

this pattern results for all weight sequences in the set AU (Proposition 4). Second, I

sketch why the existence of a sufficiently large share of high-skilled workers ensures

that some well-behaved welfare functions indeed give rise to (endogenous) social

weights in the set AU (Proposition 5).

By Proposition 4, the optimal allocation involves upward distortions at both

margins for any α ∈ AU . The intuition behind this result can most easily be provided

by an example with three skill groups only. Fix some social weight sequence α ∈ AU .

By the definition of set AU , the relaxed problem’s solution violates the upward IC

constraint between the workers in skill groups 1 and 2, and satisfies the downward

IC between the workers in skill groups 2 and 3. Put differently, the social planner

would prefer to provide higher transfers towards the workers in the middle group

2 than compatible with the upward IC constraint at the bottom. In the optimal

allocation, this upward IC constraint is necessarily binding. However, the downward

IC constraint between the skill groups 2 and 3 can be binding as well. Why is an

upward distortion in output yα2 ensured to be optimal in this case?

Assume that both the upward IC constraint at the bottom and the downward

48Additionally, it can be shown that allocation (cE , yE) violates the downward IC constraints
between the workers with all pairs of higher skill types if the ratio ωj+1/ωj is sufficiently small.
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IC constraint at the top are binding in the optimal allocation, and that yα2 is down-

wards distorted.49 Both binding constraints imply that the social planner has to

make the workers in group 2 worse off than in his preferred allocation (cαR, yαR).

Hence, the bundle (cα2 , y
α
2 ) is less attractive to all other workers as well. Due to the

single-crossing condition, the downward distortion in yα2 makes this bundle even less

attractive to high-skill workers. Hence, the high-skill workers strictly prefer their

own bundle in the planner’s preferred allocation (cαR, yαR) to the bundle (cα2 , y
α
2 ),

which gives a contradiction. Hence, either the downward IC constraint at the top

cannot be binding, or yα2 cannot be downwards distorted. Figure 7 in Appendix B

illustrates these arguments graphically. Additionally, it clarifies that the downward

IC constraint at the top can actually be binding in the optimal allocation, but can

never overturn the upward distortion in yα2 .

Proposition 5 provides three jointly sufficient conditions for the existence of

regular combinations of Ψ and γ such that the optimal allocation involves upward

distortions at both margins. As explained in Section 5, the first condition requires

the relative distance between the lowest skill types ω2 and ω1 to be sufficiently small.

The second and third conditions jointly require the share of high-skill workers, i.e.,

agents with high skill types and low fixed cost types, to be sufficiently large.

The first condition (a) requires the relative distance between the skill types ω1

and ω2 to be sufficiently small. Its relevance is explained for the problem of efficient

redistribution in Section 6.1 above. Whenever the social planner transfer more

resources to the low-skilled workers than to the unemployed, efficiency considerations

call for providing larger transfers to the more skilled workers in group 2 than to the

less skilled workers in group 1. If the distance between ω1 and ω2 is large, however,

the upward IC constraint may remain slack despite these differential transfers. In

this case, upward distortions at the intensive margin cannot provide any benefits.

This insight directly extends to the solution of the optimal tax problem, where the

social planner has redistributive concerns.

The remaining conditions (b) and (c) require the existence of a sufficiently large

share of high-skill workers. Intuitively, their role is to ensure that a potentially

optimal allocation with upward distortions at both margins is both feasible and

incentive-compatible. Recall that, for any α ∈ AU , the transfers to the low-skilled

workers are larger than the strictly positive transfers to the unemployed agents.

First, feasibility requires that these transfers are paid by the remaining agents,

i.e., the workers with higher skill types. Hence, the group of agents with high

49Alternatively, either both upward IC constraints or only the upward IC constraint at the
bottom could be binding. In both cases, yα2 is upwards distorted by standard arguments.
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skill types and low fixed cost types must be sufficiently large. Second, incentive

compatibility requires that the high-skill workers prefer to provide high output levels

despite paying transfers instead of providing little output and receiving transfers,

i.e., mimicking low-skill workers. This condition can only be satisfied if the high-

skill agents can at the same time pay substantial transfers and keep much higher

consumption than the low-skill workers. Hence, the difference between the highest

and the lowest skill types must be large enough.50 Moreover, the skill difference

must also induce a large difference in the output levels y1 and yn, which is ensured

by Condition 3 on the effort cost function h. If these conditions are met, the social

planner can design a tax schedule T that involves (a) large differences between the

tax levels T (yn) and T (y1) and at the same time (b) small marginal taxes that induce

only negligible labor supply distortions at the intensive margin.

From an applied perspective, Proposition 5 has a more general implication for

the optimal design of income taxes. When the jointly sufficient conditions (a) to (c)

are met, the optimal labor supply can also be upwards distorted at both margins in

more than just one skill group, e.g., in the subset of all skill groups 2 to k. By the

arguments provided above, however, this subset can only comprise a minority of the

population, and only agents with skill types that are considerably below the top skill

ωn. Hence, an Earned Income Tax Credit always has to be restricted to a limited

set of agents with income levels that are well below the average income. Otherwise,

it would not be possible to transfer resources from the high-skilled tax-payers to the

low-skilled EITC recipients in a feasible and incentive-compatible way.

7 Conclusion

The paper has studied optimal income taxation in an empirically plausible model

with labor supply responses at the intensive margin and at the extensive margin.

Using a novel modeling strategy, it is the first paper to provide sufficient conditions

for the optimality of an Earned Income Tax Credit with negative marginal taxes and

negative participation taxes at low income levels. In particular, the optimal income

tax is given by an EITC if society has strong concerns for redistribution from the

rich to the poor, but only weak concerns for redistribution from the poor to the very

poor. In contrast, the optimal income tax is given by a Negative Income Tax with

positive marginal taxes and positive participation taxes at all income levels if society

has strong concerns for redistribution from the rich to the poor as well as strong

50Given a discrete skill set in which the relative distance ωj+1/ωj is bounded away from zero,
any skill difference can be ensured by requiring the number of skill groups n to be large enough.
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concerns for redistribution from the poor to the poorest. As shown above, these

results are driven by a trade-off between labor supply distortions at the intensive

margin and at the extensive margin, which has not been discussed in the previous

literature.

Importantly, the paper has shown that an EITC can be optimal although society

considers the unemployed strictly more deserving than the working poor, and the

working poor more deserving than high-income earners. It has repeatedly been

argued that society might in contrast consider the working poor more deserving

than the unemployed (for example, see the arguments in Beaudry et al. 2009 and

Saez & Stantcheva 2016). As a result of the trade-off between distortions at both

margins, redistributive concerns of this kind would not only make a stronger case

for negative participation taxes, but also for negative marginal taxes. Hence, the

results of this paper would even be reinforced.

This paper is the first to analytically confirm Saez (2002)’s conjecture that an

EITC can be optimal when the standard model is extended to take into account

labor supply responses at both margins. Still, the paper abstracts from some aspects

that could affect the desirability of in-work benefit schemes such as the EITC. For

example, an EITC might have additional benefits when there is learning on the

job, i.e., when larger output provision today increases an agent’s labor productivity

tomorrow (see Best & Kleven 2013). An EITC might also be more desirable if an

agent’s non-participation in the labor market has negative external effects, e.g., on

the educational outcomes of his children (see Ho & Pavoni 2016, Nichols & Rothstein

2015: 37-40). Future research should incorporate these non-standard aspects into

empirically plausible two-margin models in order to investigate their interaction with

the mechanism studied in this paper.
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Choné, P. & Laroque, G. (2011), ‘Optimal taxation in the extensive model’, Journal

of Economic Theory 146(2), 425–453.

Christiansen, V. (2015), ‘Optimal participation taxes’, Economica 82, 595–612.

Diamond, P. (1980), ‘Income taxation with fixed hours of work’, Journal of Public

Economics 13(1), 101–110.

Eissa, N. & Hoynes, H. W. (2004), ‘Taxes and the labor market participation of

married couples: the earned income tax credit’, Journal of Public Economics

88, 1931–1958.

Eissa, N. & Hoynes, H. W. (2006), Behavioral responses to taxes: Lessons from

the eitc and labor supply, in J. M. Poterba, ed., ‘Tax Policy and the Economy’,

Vol. 20, MIT Press, chapter 3, pp. 73–110.

41

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2051214
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2051214


Executive Office of the President and U.S. Treasury Department (2014), The

President’s Proposal to Expand the Earned Income Tax Credit, March 3,

2014. URL: https:// obamawhitehouse.archives.gov/ sites/ default/ files/ docs/

eitc report 0.pdf .

Hellwig, M. F. (2007), ‘A contribution to the theory of optimal utilitarian income

taxation’, Journal of Public Economics 91(7-8), 1449–1477.

Ho, C. & Pavoni, N. (2016), Efficient child care subsidies, IGIER Working Paper

No. 572, Bocconi University.

Hotz, V. J. & Scholz, J. K. (2003), The earned income tax credit, in R. A. Moffitt,

ed., ‘Means-Tested Transfer Programs in the United States’, University of Chicago

Press, chapter 3, pp. 141–198.

House Budget Committee Majority Staff, Chairman Paul Ryan (2014), Expanding

Opportunity in America. A Discussion Draft from the House Budget Committee,

July 24, 2014. URL: http:// budget.house.gov/ opportunity/ .

Immervoll, H., Kleven, H. J., Kreiner, C. T. & Saez, E. (2007), ‘Welfare re-

form in european countries: A microsimulation analysis’, The Economic Journal

117(516), 1–44.

Jacquet, L., Lehmann, E. & Van der Linden, B. (2013), ‘Optimal redistributive tax-

ation with both extensive and intensive responses’, Journal of Economic Theory

148(5), 1770–1805.

Juhn, C., Murphy, K. M. & Topel, R. H. (1991), ‘Why has the natural rate of

unemployment increased over time?’, Brookings Papers on Economic Activity

1991(2), pp. 75–142.

Juhn, C., Murphy, K. M. & Topel, R. H. (2002), ‘Current unemployment, historically

contemplated’, Brookings Papers on Economic Activity 2002(1), pp. 79–136.

Laroque, G. (2005), ‘Income maintenance and labor force participation’, Economet-

rica 73(2), 341–376.

Lehmann, E., Simula, L. & Trannoy, A. (2014), ‘Tax me if you can! optimal nonlin-

ear income tax between competing governments’, Quarterly Journal of Economics

129(4), 1995–2030.

42

https://obamawhitehouse.archives.gov/sites/default/files/docs/eitc_report_0.pdf
https://obamawhitehouse.archives.gov/sites/default/files/docs/eitc_report_0.pdf
http://budget.house.gov/opportunity/


Lorenz, N. & Sachs, D. (2012), Optimal participation taxes and efficient transfer

phase-out, Working Paper Series of the Department of Economics, University of

Konstanz 2012-37. URL: http:// ideas.repec.org/ p/ knz/ dpteco/ 1237.html .

McClelland, R. & Mok, S. (2012), A review of recent research on labor supply

elasticities, Congressional Budget Office Working Paper 2012-12, Congressional

Budget Office. URL: https:// www.cbo.gov/ publication/ 43675 .

Meghir, C. & Phillips, D. (2010), Labour supply and taxes, in J. Mirrlees, S. Adam,

T. Besley, R. Blundell, S. Bond, R. Chote, M. Gammie, P. Johnson, G. Myles

& J. Poterba, eds, ‘Dimensions of Tax Design: The Mirrlees Review’, Oxford

University Press, chapter 3, pp. 202–274.

Meyer, B. D. & Rosenbaum, D. T. (2001), ‘Welfare, the Earned Income Tax

Credit and the labor supply of single mothers’, Quarterly Journal of Economics

116(3), 1063–1114.

Mirrlees, J. A. (1971), ‘An exploration in the theory of optimum income taxation’,

Review of Economic Studies 38(114), 175–208.

Nichols, A. & Rothstein, J. (2015), The Earned Income Tax Credit (EITC), NBER

Working Paper Series No. 21211. URL: http:// www.nber.org/ papers/ w21211 .

Piketty, T. & Saez, E. (2013), Optimal labor income taxation, in A. J. Auerbach,

R. Chetty, M. Feldstein & E. Saez, eds, ‘Handbook of Public Economics’, Vol. 5,

Elsevier, chapter 7, pp. 391–474.

Rochet, J.-C. & Stole, L. A. (2002), ‘Nonlinear pricing with random participation’,

Review of Economic Studies 69(1), 277–311.

Saez, E. (2002), ‘Optimal income transfer programs: Intensive versus extensive labor

supply responses’, The Quarterly Journal of Economics 117(3), 1039–1073.

Saez, E. & Stantcheva, S. (2016), ‘Generalized social welfare weights for optimal tax

theory’, American Economic Review 106(1), 24–45.

Seade, J. (1982), ‘On the sign of the optimum marginal income tax’, Review of

Economic Studies 49(4), 637–43.

Seade, J. K. (1977), ‘On the shape of optimal tax schedules’, Journal of Public

Economics 7(2), 203–235.

Stiglitz, J. E. (1982), ‘Self-selection and pareto efficient taxation’, Journal of Public

Economics 17(2), 213–240.

43

http://ideas.repec.org/p/knz/dpteco/1237.html
https://www.cbo.gov/publication/43675
http://www.nber.org/papers/w21211


Appendix

A Proofs

Proof of Lemma 1

Proof. Using equation (1), incentive compatibility requires that, for all pairs of (ω, δ) and

(ω′, δ′) in Ω×∆,

c(ω, δ)− h [y(ω, δ), ω]− 1y(ω,δ)>0 δ ≥ c(ω′, δ′)− h
[
y(ω′, δ′), ω

]
− 1y(ω′,δ′)>0 δ .

To satisfy these constraints, first, all pairs of agents with types (ωj , δ) and (ωj , δ
′) who

provide strictly positive output must receive the same gross (of fixed costs) utility c(ωj , δ)−
h [y(ωj , δ), ωj ] = zj . Second, all agents with types (ω, δ) and (ω′, δ′) who provide zero

output must receive the same consumption c(ω, δ) = c(ω′, δ′) = c0. Third, an allocation

can only be incentive-compatible if each agent with skill type ωj and fixed cost type below

(above) δj = zj − c0 provides positive output (zero output).

Second-best Pareto efficiency requires, moreover, that all agents with skill type ωj

and fixed cost type below δj receive the same bundle (cj , yj). By the strict convexity of

effort cost function h, there is a unique bundle (cj , yj) that minimizes the net transfer

c − y, subject to c − h(y, ωj) = zj and to the IC constraints along the skill dimension,

zk ≥ c− h(y, ωk), for all k 6= j. Assume there is an initial allocation in which some agent

with type (ωj , δ) receives bundle (c′, y′) 6= (cj , yj) with y′ > 0. Changing his allocation

to (cj , yj) allows to save resources without changing his utility level, and to redistribute

these resources lump-sum to all agents in the economy. Hence, the initial allocation with

(c′, y′) 6= (cj , yj) was not Pareto efficient.

Proof of Lemma 2

Proof. In every implementable allocation, the downward IC constraint between the work-

ers with skill types ωj and ωj+1 is satisfied, i.e.,

cj+1 − h (yj+1, ωj+1) ≥ cj − h (yj , ωj+1)

⇔ δj+1 − δj ≥ h(yj , ωj)− h(yj , ωj+1) . (26)

By hω(y, ω) < 0, this implies that δj+1 > δj . Parts (i) and (ii) of Condition 1 ensure that

ηj(c, y) =
gj(δj)
Gj(δj)

>
gj(δj+1)
Gj(δj+1) ≥

gj+1(δj+1)
Gj+1(δj+1) = ηj+1(c, y).

Proof of Lemma 3

The proof of Lemma 3 consists of three steps. I start with two preliminary Lemmas.
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Lemma 7. Consider the relaxed problem formally defined in section 5.1. For any α ∈ A
such that an interior solution (cαR, yαR) exists, it satisfies for each j ∈ J the conditions

hy(y
αR
j , ωj) = 1 , (27)

δαRj − δ∗(ωj) =
αj − 1

Aj(δαRj )
, and (28)

cαR0 =
2∑
j=1

fjGj(δ
αR
j )

(
δ∗(ωj)− δαRj

)
. (29)

Proof. Assume that the relaxed problem has a solution for social weights α. First,

(cαR, yαR) must be Pareto-efficient in the set of allocations that are feasible and satisfy

the IC constraints (14) and (15). Second, the statements in 1 must be true for (cαR, yαR)

because its proof only uses the IC constraints (14) and (15). Consequently, the Lagrangian

of the relaxed problem can be written as

L =
n∑
j=1

fj

(∫ δj

δ
gj(δ)γ(ω, δ)Ψ [cj − h(yj , ωj)− δ] dδ +

∫ δ̄

δj

gj(δ)γ(ω, δ)Ψ(c0) dδ
)

+λ

 n∑
j=1

fjGj(δj)(yj − cj + c0)− c0

 ,
where δj = cj−h(yj , ωj)−c0 and λ is the Lagrange parameter associated with the feasibility

condition. Replacing the average weights ᾱj and ᾱ0 as defined in (10) and (11) by the

exogenous numbers αj and α0, the first-order conditions of this problem are given by

Lcj =fj
[
Gj(δ

αR
j ) (αj − λ) + λgj(δ

αR
j )(yαRj − cαRj + cαR0 )

] !
= 0

Lyj =fj

[
−hy(yαRj , ωj)

(
Gj(δ

αR
j )αj + λgj(δ

αR
j )(yαRj − cαRj + cαR0 )

)
+ λGj(δ

αR
j )
]

!
= 0

Lc0 =
n∑
j=1

fj

[(
1−Gj(δαRj )

)
α0 + λGj(δ

αR
j )− λgj(δαRj )(yαRj − cαRj + cαR0 )− 1

]
!

= 0

Equation (27) follows from combining the first-order conditions with respect to cj and yj .

Combining the FOCs with respect to cj for all j ∈ J and c0 gives

λ =

n∑
j=1

fj

[
Gj(δ

αR
j )αj +

(
1−Gj(δαRj )

)
α0

]
= αM = 1,

where the average weight αM is normalized to 1 for all α ∈ A. Using λ = 1 and cj =

δj + h(yj , ωj) + c0, the FOC with respect to cj can be rewritten as

δαRj − yαRj + h(yαRj , ωj) =
Gj(δ

αR
j )

gj(δαRj )
(αj − 1). (30)
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As Aj(δ) =
gj(δ)
Gj(δ)

and δ∗(ωj) = maxy>0 {y − h(y, ωj)} = yαRj −h(yαRj , ωj), this is identical

to equation (28). Finally, equation (29) follows from substituting −δαRj − h(yαRj , ωj) =

−cαRj + cαR0 into the feasibility condition.

Lemma 8. There is a number χ ∈ (1, 2] such that the relaxed optimal tax problem has a

unique interior solution for α if αj < χ for all j ∈ J .

Proof. As shown above, the FOC with respect to cj is identical to

kj(δ
αR
j , αj) = Gj(δ

αR
j )(αj − 1) + gj(δ

αR
j )(δ∗(ωj)− δαRj ) = 0 , (31)

for every j ∈ J . Hence, the relaxed problem has a unique interior extremum for α if and

only if kj(δ, αj) has a unique root in δ with δ ∈
(
δ, δ̄
)
. First, kj is continuous in αj and δ

for all δ ∈
(
δ, δ̄
)
. Second, kj(δ, αj) > 0 for any αj ≥ 0 because δ∗(ωj) ≥ δ∗(ω1) > δ for all

j ∈ J by (2) and the properties of h. Third, the derivative of kj with respect to cj (or its

first argument) is given by

kjδ(δ, αj) = gj(δ) (αj − 2) + g′j(δ)(δ
∗(ωj)− δ) .

If k has a root at δ′, this derivative has to be equal to

kjδ(δ
′, αj) = Gj(δ

′)
[
Aj(δ

′) (αj − 2)− aj(δ′)(αj − 1)
]
,

where Aj(δ) =
gj(δ)
Gj(δ)

and aj(δ) =
g′j(δ)

gj(δ)
. Part (i) of Condition 1 ensures that Aj(δ) > aj(δ)

for all δ ∈ ∆ and all j ∈ J . This implies that kjδ(αj , δ
′) is negative if

αj < χ
j
(δ′) := 1 +

Aj(δ
′)

Aj(δ′)− aj(δ′)
,

and that χ
j
(δ′) > 1 for all δ′ ∈ ∆ and all j ∈ J . Define χj as the minimum of χ

j
(δ′) over

δ′ ∈
(
δ, δ̄

]
. By assumption, gj(δ) is larger than some number g > 0 for all δ ∈ ∆ and

g′j(δ) ≤ 0 for some δ ∈ ∆. By the first property, χj is bounded away from 1 for all j ∈ J .

By the second property, χj ≤ 2 for all j ∈ J . Consequently, kj(δ, αj) has at most one root

in δ if αj < χj . If this root exists, it constitutes a maximum because kjδ(δ, αj) < 0.

The existence of a root is ensured if, additionally, kj(δ̄, αj) < 0, which is ensured for

αj < χ′j := 1 + gj(δ̄)
(
δ̄ − δ∗(ωj)

)
. Note that χ′j > 1 for all j ∈ J by (3). Let χ be given by

the minimum of χj and χ′j over all j ∈ J . By the construction of χ, the relaxed problem

has a unique interior extremum for α if αj < χ for all j ∈ J .

Lemma 3 follows as a corollary from the Lemmas 7 and 8, using the definitions of

labor supply distortions at both margins provided in Section 3.2. In particular, equation

(27) implies that labor supply is undistorted at the intensive margin in all skill groups.

Equation (28) implies that labor supply is downwards (upwards) distorted at the extensive

margin in skill group j ∈ J if and only if αj is below (above) 1.
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Proof of Lemma 4

For the following analysis, it proves useful to rewrite the downward IC constraint between

the workers in skill groups j and j+1 as (26). Inserting equations (27) and (28) into (26),

the downward IC constraint is violated if

δ∗(ωj+1) +
αj+1 − 1

Aj+1

(
δαRj+1

) − δ∗(ωj)− αj − 1

Aj

(
δαRj

) < h
(
yαRj , ωj

)
− h

(
yαRj , ωj+1

)
⇔ αj+1 − 1

Aj+1

(
δαRj+1

) − αj − 1

Aj

(
δαRj

) <
[
yαRj − h

(
yαRj , ωj+1

)]
− δ∗(ωj+1) .

Replacing ηj
(
cαR, yαR

)
= Aj

(
δαRj

)
and δ∗(ωj+1) = yαRj+1− h

(
yαRj+1, ωj+1

)
, the last line is

identical to (18).

Correspondingly, the upward IC constraint can be rewritten as

δj+1 − δj ≤ h(yj+1, ωj)− h(yj+1, ωj+1) . (32)

Inserting (27) and (28) into this constraint and replacing δ∗(ωj) gives equation (19).

Proof of Lemma 5

Lemma 5 is proven through Lemmas 9 to 14.

Lemma 9. For every j ∈ J and every α ∈ Aχ, δαRj is strictly increasing in αj.

Proof. Threshold δαRj is implicitly defined by condition (28) in Lemma 7. Using the

implicit function theorem, its derivative with respect to αj is given by

dδαRj
dαj

=
Aj(δ

αR
j )−1

1 + (1− αj)
(

1− aj(δαRj )

Aj(δαRj )

) =
1

(2− αj)Aj(δαRj )− (1− αj)aj(δαRj )
, (33)

where the numerator equals −kδ(αj , δαRj )/Gj(δ̂
αR
j ) > 0 (see proof of Lemma 8). Hence,

the derivative is strictly positive for all αj < χ.

Lemma 10. For any skill group j ∈ J−n, if αj = αj+1 = α′,

(i) the difference δαRj+1 − δαRj is strictly increasing in α′ for all α′ ∈ (0, χ) such that the

downward IC constraint (26) between skill groups j and j + 1 is satisfied;

(ii) (cαR, yαR) satisfies the downward IC constraint (26) between skill groups j and j+ 1

for all α′ ∈ [1, χ);

(iii) (cαR, yαR) satisfies the upward IC constraint (32) between skill groups j and j + 1

for all α′ ∈ [0, 1].
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Proof. (i) Using (33), the derivative of δαRj+1(α′)− δαRj (α′) with respect to α′ is strictly

positive if

(2− α′)
[
Aj(δ

αR
j )−Aj+1(δαRj+1)

]
> (1− α′)

[
aj(δ

αR
j )− aj+1(δαRj+1)

]
. (34)

In all allocations that satisfy the downward IC constraint, δαRj+1 > δαRj . By Conditions

1 and 2, we hence have Aj(δ
αR
j ) − Aj+1(δαRj+1) > 0 and aj(δ

αR
j ) − aj+1(δαRj+1) ≥ 0.

Because χ ∈ (1, 2], this directly implies that inequality (34) is satisfied for any

α′ ∈ [1, χ). Moreover, Condition 2 ensures that aj(δ
αR
j )−aj+1(δαRj+1) ≤ 2

[
Aj(δ

αR
j )−

Aj+1(δαRj+1)
]
. Hence, inequality (34) is also satisfied for the alternative case α′ ∈

(0, 1), where (2− α′)/(1− α′) > 2.

(ii) For αj = 1, δαRk = δ∗(ωk) for k ∈ {j, j + 1}. Inserting these into the downward IC

constrait (26) and rearranging terms gives

δ∗(ωj+1) = yαRj+1 − h
(
yαRj+1, ωj+1

)
≥ yαRj − h

(
yαRj , ωj+1

)
,

which holds with strict inequality by the single-crossing property. The left-hand side

of (26) is given by δαRj+1− δαRj , which is strictly increasing in α′ by part (i), while the

right-hand side is constant. Hence, the downward IC constraint is satisfied for all

α′ ≥ 1.

(iii) For αj = 1, inserting δαRk = δ∗(ωk) for k ∈ {j, j + 1} into the upward IC constraint

(32) gives yαRj+1 − h
(
yαRj+1, ωj

)
≤ δ∗(ωj) = maxy>0 {y − h(y, ωj)}, which is again

satisfied with strict inequality. As the left-hand side of (32) is strictly increasing in

α′, the upward IC is satisfied for all α′ < 1 such that the downward IC is satisfied.

As the downward and upward IC constraints cannot be violated at the same time,

the upward IC constrained is also satisfied for all other α′ < 1.

Lemma 11. Consider the downward IC constraint (26) between the workers with skill

types ωj and ωj+1 = ajωj for some j ∈ J−n. Define a0
j as the supremum of the set of

real numbers a′ > 1 such that, given αj = αj+1 = 0, (cαR, yαR) violates the downward IC

constraint for all aj ∈ (1, a′).

(i) If Condition 1 is satisfied, a0
j > 1 exists.

(ii) Let αj = αj+1 = α′. For each aj ∈
(

1, a0
j

)
, there exists a unique number β

j
∈ (0, 1)

such that (cα, yα) violates the downward IC constraint (16) if and only if α′ < β
j
.

Proof. (i) In the limit case aj = 1, the downward IC constraint (26) simplifies to δαRj+1−
δαRj ≥ 0. By (28)δαRk is implicitly defined by 1

Ak(δαRk )
+ δαRk = δ∗(ωk) for α′ = 0

and any k ∈ J . For aj = 1, we have δ∗(ωj+1) = δ∗(ωj). By Condition 1 (ii),
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Aj(δ) ≥ Aj+1(δ). Hence, there are two possible cases. First, if Aj(δ
αR
j ) > Aj+1(δαRj ),

we have δαRj+1 < δαRj . Hence, the downward IC constraint is violated for α′ = 0 and

a = 1. Second, if Aj(δ
αR
j ) = Aj+1(δαRj ), we have δαRj+1 = δαRj . Hence, the downward

IC constraint is satisfied with equality for α′ = 0 and a = 1.

To consider the general case aj > 1, I compare the derivatives of both sides of (26)

with respect to aj at aj = 1. The derivative of the left-hand side is given by

dδ∗(ωj+1)
daj

2− aj+1(δαRj+1)

Aj+1(δαRj+1)

=

d[yαRj+1−h(yαRj+1,ωjaj)]
daj

2− aj+1(δαRj+1)

Aj+1(δαRj+1)

= −
ωjhω

(
yαRj+1, ωja

)
2− aj+1(δαRj+1)

Aj+1(δαRj+1)

> 0 ,

where the term in the denominator is strictly larger than 1 because aj+1(δ) < Aj+1(δ)

for all δ ∈ ∆ by Condition 1 (i). The derivative of the right-hand side is given by

−ωjhω
(
yαRj , ωja

)
> 0, which is strictly larger than the derivative of the left-hand

side. Hence, the downward IC constraint is unambiguously violated for αj = αj+1 =

0 and all aj between 1 and some number a′ > 1. The supremum a0
j is hence well-

defined, and may either be given by a finite number or by ∞.

(ii) For any aj ∈
(

1, a0
j

)
, the right-hand side of (26) is independent of α′. The left-hand

side δαRj+1 − δαRj is small enough to violate the downward IC constraint for α′ = 0 by

part (i), and large enough to satisfy this constraint with strict inequality for α′ = 1

by Lemma 10 (ii). By Lemma 10 (i), δαRj+1 − δαRj is strictly increasing in α′ for all

levels of α′ such that (26) is satisfied. Consequently, there exists a unique threshold

β
j
∈ (0, 1) such that the downward IC constraint is violated for all α′ ∈

[
0, β

j

)
and

satisfied for all α′ ∈
[
β
j
, χ
)

.

Lemma 12. Consider the upward IC constraint (17) between the workers with skill types

ωj and ωj+1 = ajωj for some j ∈ J−n. Define auj (γ) as the supremum of the set of real

numbers a′ > 1 such that, given αj = αj+1 = γ > 1, (cαR, yαR) violates the upward IC

constraint for all aj ∈ (1, a′).

(i) If Condition 1 is satisfied, auj (γ) exists for all γ ∈ (1, χ).

(ii) Let αj = αj+1 = α′. For each γ ∈ (1, χ) and each a ∈
(

1, auj (γ)
)

, there exists a

unique number β̄j ∈ (1, γ) such that (cα, yα) violates the upward IC constraint if and

only if α′ ∈
(
β̄j , χ

)
.

Proof. (i) Fix a number γ ∈ (1, χ). In the limit case aj = 1, the upward IC constraint

(32) simplifies to δαRj+1 − δαRj ≤ 0. For αj = αj+1 = γ > 1, δαRk is implicitly defined

by 1−γ
Ak(δαRk )

+ δαRk = δ∗(ωk) for k ∈ {j, j + 1}. For a = 1, δ∗(ωj) = δ∗(ωj+1). By

Condition 1 (ii), Aj(δ) ≥ Aj+1(δ) for all δ ∈ ∆. Again, there are two possible cases.

First, if Aj(δ
αR
j ) > Aj+1(δαRj ), we have δαRj+1 > δαRj so that (32) is violated. Second,
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if Aj(δ
αR
j ) = Aj+1(δαRj ), we have δαRj+1 = δαRj so that (32) is satisfied with strict

equality.

To consider the general case aj > 1, I again compare the derivatives of both sides of

(32) in aj , given a fixed γ. The derivative of the left-hand side is given by

−ωjhω
(
yαRj+1, ajωj

)
1− (γ − 1)

(
1− aj+1(δαRj+1)

Aj+1(δαRj+1)

) > 0 ,

where the term in the denominator is strictly positive for any γ < χ and strictly

smaller than 1 by Condition 1 (i) for all γ > 1. The derivative of the right-hand side

is given by

−ωjhω
(
yαRj+1, ajωj

)
+
[
h(yαRj+1, ωj)− h(yαRj+1, ajωj)

] dyαRj+1

daj
> 0 .

At aj = 1, the term in squared brackets equals zero. Hence, the derivative of the

left-hand side is strictly larger than the derivative of the right-hand side of (32).

Thus, the upward CI constraint is violated for αj = αj+1 = γ > 1 and all aj between

1 and some number a′ > 1. The supremum auj (γ) is hence well-defined, and may

either be given by some finite number above 1 or by ∞.

(ii) Fix any γ ∈ (1, χ). If aj ∈
(

1, auj (γ)
)

, the difference δαRj+1 − δαRj is large enough

to violate (32) for α′ = γ and small enough to satisfy (32) for α′ = 1. Moreover,

δαRj+1 − δαRj is strictly increasing in α′ for all α′ > 1 by Lemma 10 (iii) and (i).

Consequently, there exists a unique threshold β̄j ∈ (1, γ) such that the downward IC

constraint is violated for all α′ ∈
(
β̄j , χ

)
, and satisfied for all α′ ∈

[
0, β̄j

]
.

Lemma 13. Consider any j ∈ J−n. If aj < a0
j , there is a continuously differentiable and

strictly increasing function βDj : [0, χ]→ (0, χ) such that (cαR, yαR) satisfies the downward

IC constraint if and only if αj+1 ≥ βDj (αj). Function βDj has a unique fixed point at

β
j
∈ (0, 1), where

dβDj (β
j
)

dαj
< 1.

Proof. Consider some j ∈ J−n and some aj ∈
(

1, a0
j

)
, where a0

j is defined in Lemma 11

(i). Hence, there is a number β
j
∈ (0, 1) such that (cαR, yαR) satisfies the downward IC

constraint (26) if αj = αj+1 ≥ βj , and violates (26) if αj = αj+1 < β
j
. Recall that δαRk is

strictly increasing in αk for each k ∈ J and each αk ∈ [0, χ) by Lemma 9 and that changes

in αj and αj+1 only affect the left-hand side of the downward IC (26).

First, fix some αj = x ∈
(
β
j
, χ
)

. For αj+1 = β
j
, the difference δαRj+1 − δαRj is smaller

than for αj = αj+1 = β
j
, and (26) is violated. For αj+1 = αj = x, in contrast, (26) is

satisfied by Lemma 11. As δαRj+1 is increasing in αj+1, there is a unique number βD1 (x) ∈(
β, x

)
such that (26) is satisfied for all αj+1 ≥ βDj (x), and violated for all αj+1 < βDj (x).
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Second, fix some αj = x ∈
[
0, , β

j

)
. For αj+1 = β, the difference δαRj+1 − δαRj is larger

than for αj = αj+1 = β
j

so that (26) is satisfied. For αj+1 = x, in contrast, (26) is

violated by Lemma 11. By the monotonicity of βαRj+1 in αj+1, there is a unique number

βDj (x) ∈
(
x, β

j

)
such that (26) is satisfied if αj+1 ≥ βDj (x), and violated if αj+1 < βDj (x).

This also implies that Hence, βD1 (x) ∈ (0, χ) for all x ∈ [0, χ).

To prove that βDj is continuously differentiable and strictly increasing, note that βDj (αj)

is implicitly defined by

δαRj+1

(
βDj (αj)

)
− δαRj (αj) = h

(
yαRj , ωj

)
− h

(
yαRj , ωj+1

)
. (35)

The right-hand side of this equation is constant in αj and αj+1. The left-hand side is

continuously differentiable and monotonic in both weights as long as these are below χ.

Hence, βDj is continuously differentiable in αj . Using the implicit function theorem, the

derivative is given by

dβDj (αj)

dαj
=

dδαRj (αj)

dαj

dδαRj+1(βDj (αj))

dαj+1

> 0 , (36)

where the numerator and the denominator are strictly positive by Lemma 9.

Finally, we know from Lemma 11 that βDj has a unique fixed point at β
j
< 1 whenever

aj ∈
(

1, a0
j

)
. As the downward IC constraint is satisfied at this fixed point, Lemma 10 (i)

ensures that
dδαRj (β

j
)

dαj
<

dδαRj+1(β)

dαj+1
. Hence,

dβDj (β
j
)

dαj
< 1.

Lemma 14. Consider any j ∈ J−n. If aj < auj (γ) for some γ ∈ (1, χ), there is a

continuously differentiable and strictly increasing function βUj : [0, χ) → (0, χn) such that

(cαR, yαR) violates the upward IC constraint if and only if αj+1 > βUj (αj). Function βUj

has a unique fixed point at β̄j ∈ (1, χ), where
dβUj (β

j
)

dαj
< 1.

Proof. The proof of Lemma 14 follows the same steps as the proof of Lemma 13. Consider

some j ∈ J−n and some aj between 1 and the treshold auj (γ) for some γ ∈ (1, χ), as defined

in Lemma 12 (i). Hence, there is a number β̄j ∈ (1, γ) such that (cαR, yαR) satisfies the

upward IC constraint (32) if αj = αj+1 ≥ β̄j , and violates (32) if αj = αj+1 < β̄j .

First, fix some αj = x ∈
(
β̄j , χ

)
. The upward IC constraint is satisfied for αj+1 = β̄j ,

and violated αj+1 = x by Lemma 12. By the monotonicity of δαRj+1 in αj+1, there is a

unique number βU1 (x) ∈
(
β̄j , x

)
such that (32) is satisfied if αj+1 ≤ βUj (x), and violated if

αj+1 > βUj (x).

Second, fix some αj = x ∈
[
0, β̄j

)
. The upward IC constraint is violated for αj+1 = β̄j ,

and satisfied for αj+1 = x by Lemma 12. Hence, there is a unique number βUj (x) ∈
(
x, β̄j

)
such that (32) is satisfied if αj+1 ≤ βUj (x) and violated if αj+1 > βUj (x). Hence, we also

have βUj (x) ∈ (0, χ) for all x ∈ [0, χ).
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For each αj ∈ [0, χ), βUj (αj) is implicitly defined by

δαRj+1

(
βUj (αj)

)
− δαRj (αj) = h

(
yαRj+1, ωj

)
− h

(
yαRj+1, ωj+1

)
, (37)

where the left-hand side is continuously differentiable and monotonic in αj and αj+1, and

the right-hand side is constant in both social weights. Using the implicit function theorem,

the derivative of βUj with respect to αj is given by

dβUj (αj)

dαj
=

dδαRj (αj)

dαj

dδαRj+1(βUj (αj))

dαj+1

> 0 , (38)

where the numerator and the denominator are strictly positive by Lemma 9. This deriva-

tive is continuous and strictly positive for all α1 ∈ [0, χ).

Finally, Lemma 12 implies that βUj has a unique fixed point at β̄j ∈ (1, χ) whenever

aj ∈
(

1, aUj (γ)
)

for some γ ∈ (1, χ). At this fixed point, the downward IC constraint is

satisfied and
dδαRj (β̄j)

dαj
<

dδαRj+1(β̄j)

dαj+1
by Lemma 10 (i). Consequently,

dβUj (β̄j)

dαj
< 1.

Finally, this allows us to prove Lemma 5.

Proof. Define aUsj := sup
{
aUj (γ) |γ ∈ (1, χ)

}
. For all aj < min

{
a0
j , a

Us
j

}
, Lemmas 13 and

14 directly ensure the existence of two functions βDj and βUj with the properties stated in

Lemma 5.

It only remains to prove that βUj (αj) > βDj (αj) for all αj ∈ [0, χ). Note that

h
(
yαRj+1, ωj

)
−h

(
yαRj+1, ωj+1

)
> h

(
yαRj , ωj

)
−h

(
yαRj , ωj+1

)
by the properties of the effort

cost function h. Hence, equations (35) and (37) imply that δαRj+1

(
βUj (x)

)
> δαRj+1

(
βDj (x)

)
.

Because δαRj+1 is strictly increasing in αj+1 by Lemma 9, we have δUj (x) > δDj (x) for all

x ∈ [0, χ).

Proof of Proposition 1

I prove Proposition 1 through Lemmas 15 to 20, which identify properties of the optimal

allocation (cα, yα) for different sets of binding IC constraints along the skill dimension. To

refer to these different constellations, I will henceforth say that two skill groups j and k

are downwards-linked (upwards-linked) if all downward (upward) IC constraints between

the pairs (j, j + 1), . . . , (k − 1, k) are binding.

Lemma 15. For each j ∈ J , output yαj and participation threshold δαj satisfy the conditions

δαj = yαj − h(yαj , ωj) +
αj − 1

Aj(δαj )
+
νDj−1 − νDj − νUj−1 + νUj

fjgj(δαj )
, (39)

1− hy(yj , ωj) =
hy(yj , ωj)− hy(yj , ωj+1)

fjGj(δαj )
νDj −

hy(yj , ωj−1)− hy(yj , ωj)
fjGj(δαj )

νUj−1 , (40)
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where νDk and νUk denote the Lagrange multipliers associated with the downward IC (16)

and the upward IC (17), respectively, between the workers with skill types ωk and ωk+1.

Proof. The Lagrangian of the optimal tax problem is given by

L =

n∑
j=1

fj

(∫ δj

δ
gj(δ)γ(ω, δ)Ψ [cj − h(yj , ωj)− δ] dδ +

∫ δ̄

δj

gj(δ)γ(ω, δ)Ψ(c0) dδ
)

+λ

 n∑
j=1

fjGj(δj)(yj − cj + c0)− c0


+
n−1∑
j=1

νDj [cj+1 − h(yj+1, ωj+1)− cj + h(yj , ωj+1)]

+
n−1∑
j=1

νUj [cj − h(yj , ωj)− cj+1 + h(yj+1, ωj)] .

For any j ∈ {2, . . . , n− 1}, the FOCs with respect to cj and yj are given by:

Lcj =fj
[
Gj(δ

αR
j ) (αj − λ) + λgj(δ

αR
j )(yαRj − cαRj + cαR0 )

]
+ νDj−1 − νDj − νUj−1 + νUj

!
= 0

Lyj =fj

[
−hy(yαRj , ωj)

(
Gj(δ

αR
j )αj + λgj(δ

αR
j )(yαRj − cαRj + cαR0 )

)
+ λGj(δ

αR
j )
]

−
(
νDj−1 + νUj

)
hy(y

α
j , ωj) + νDj hy(y

α
j , ωj+1) + νUj−1hy(y

α
j , ωj−1)

!
= 0

The FOC with respect to c0 is identical to the one for the relaxed problem (see Lemma

7). Combining the FOCs with respect to cj for all j ∈ {0, 1, . . . , n} gives λ = 1. Equation

(39) then follows from rearranging the FOC with respect to cj . Combining the FOCs with

respect cj and yj gives equation (40).

Below, I will exploit that, setting νUj = νDj = 0, Lemma 15 also provides the conditions

for the solution to a relaxed problem that ignores the local IC constraints between the

workers with skill types j and j + 1.

Lemma 16. For any α ∈ Aχ, if k is the lowest skill group that is upwards-linked with

l > k, then

(i) αk > 1,

(ii) δαj > yαj − h(yαj , ωj) for all j ∈ {k, . . . , l}, and

(iii) αj > 1 for all j ∈ {1, . . . , l}.

Proof. (i) First, note that k and l > k cannot be upwards-linked unless either αj+1 >

αj(β
U
j ) for at least one j ∈ {k, . . . , l − 1} or the downward IC between l and l + 1

is binding, νDl > 0. Assume both conditions would be violated, and consider a

relaxed problem where all local ICs between k and l are ignored. In the solution

to this problem, δk ≥ δαRk , δj = δαRj for all j ∈ {k + 1, . . . , l} and yj = yαRj for all
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j ∈ {k, . . . , l}. Hence, the solution to this relaxed problem satisfies all upward IC

constraints between k and l. Consequently, these upward IC constraints cannot be

binding in (cα, yα).

Second, assume that there is a skill group j ∈ {k, . . . , l − 1} such that αj+1 > αj(β
U
j ).

By Lemma 5, αj > β̄j > 1. For the monotonicity of α ∈ A, this ensures that αk > 1.

Third, assume that the upward IC between l − 1 and l as well as the downward IC

between l and l + 1 are binding and that αj+1 ≤ αj(β
U
j ) for all j ∈ {k, . . . , l − 1}.

Consider a relaxed problem where only the local ICs between skill groups l − 1 and

l are ignored. In the solution to this relaxed problem, the downward IC between l

and l + 1 has to be binding as well. From Lemma 15, the solution of this problem

satisfies yl−1 = yαRl−1, δl−1 ≥ δ∗(ωl−1) + (αl−1−1)/Al−1(δl−1) and δl < yl−h(yl, ωl) +

(αl − 1)/Al(δl). By αl < αl−1, this allocation has to satisfy

δl − δl−1 <

(
1

Al(δl)
− 1

Al−1(δl−1)

)
(αl−1 − 1) + yl − h(yl, ωl)− δ∗(ωl−1) .

The allocation only violates the upward IC constraint (32) if δl−δl−1 > h(yl, ωl−1)−
h(yl, ωl). Hence, this can only result if(

1

Al(δ
αP
l )
− 1

Al−1(δαPl−1)

)
(αl−1 − 1) > δ∗(ωl−1)−

[
yαPl − h(yαPl , ωl−1)

]
≥ 0 ,

where the last inequality follows by the definition of δ∗(ωl−1). Recall that Al(δ
αP
l ) <

Al−1(δαPl−1) by Lemma 2. Hence, the condition above can only be satisfied if αl−1 is

strictly larger than 1. But this implies that αk > 1 for all α ∈ Aχ.

(ii) By construction, k is the lowest skill group that is upwards-linked to l, i.e., the

upward IC between k − 1 and k is not binding. Hence, δαk > yαk − h(yαk , ωk) +
αk−1
Ak(δαk ) > yαk − h(yαk , ωk) because αk > 1 as shown in part (i). By Lemma 15,

we have yαj > yαRj for all j ∈ {k, . . . , l − 1} because the corresponding upward IC

constraints are binding, i.e., νUj > 0. As usual, incentive compatibility also requires

yαj+1 > yαj . The single-crossing condition hence ensures that, for all j ∈ {k, . . . , l − 1},
yαj − h(yαj , ωj) > yαj+1 − h(yαj+1, ωj) and

δαj+1 = δαj + h(yαj+1, ωj)− h(yαj+1, ωj+1)

> yαj − h(yαj , ωj) + h(yαj+1, ωj)− h(yαj+1, ωj+1) ≥ yαj+1 − h(yαj+1, ωj+1) .

(iii) Assume that m is the highest skill group that is upwards-linked with k. By the

previous arguments, δαm > yαm−h(yαm, ωm). At the same time, δαm < yαm−h(yαm, ωm)+

(αm−1)/Am(δαm) by equation (39). Both statements can only be consistent if αm > 1.

For all α ∈ Aχ, we hence have αj > 1 for all j ∈ {1, . . . ,m}.

54



Lemma 17. For any α ∈ Aχ, if the skill groups j and j + 1 are downwards-linked and

δαj ≤ yαj − h(yαj , ωj), then (cα, yα) also involves δαj+1 ≤ yαj+1 − h(yαj+1, ωj).

Proof. If the downward IC constraint (26) is binding, δj+1 = δj + h(yj , ωj)− h(yj , ωj+1).

Hence, we have δj+1 ≤ yαj −h(yαj , ωj+1) ≤ yαj+1−h(yαj+1, ωj+1). The second inequality re-

sults because yj ≤ yj+1 in every incentive-compatible allocation and yαj+1 ≤ arg maxy>0 y−
h(y, ωj+1) if the skill groups j and j + 1 are downwards-linked.

Lemma 18. For any α ∈ Aχ, there exists a number kα ∈ (0, n] such that labor supply in

skill group j is upwards distorted at the extensive margin if and only if j ∈ {l ∈ J : l ≤ kα}.

Proof. Fix some α ∈ Aχ. Consider a skill group j for which labor supply in (cα, yα) is

not upwards distorted at the extensive margin, δαj ≤ yαj − h(yαj , ωj). As I will show, this

ensures that optimal labor supply is not upwards distorted at the extensive margin in any

skill group h > j as well.

By Lemma 16, j cannot be upwards-linked to other skill groups. Let l be the highest

skill group to which j is downwards-linked. (Note that l equals j if the downward IC

between skill groups j and j + 1 is slack.) By Lemma 17, δαk ≤ yαk − h(yαk , ωk) for all

k ∈ {j, . . . , l}. By Lemma 15, we must at the same time have δαl ≥ yαl − h(yαl , ωl) +

(αl − 1) /Al(δ
α
l ). Hence, we must have αl ≤ 1.

Consequently, there cannot be upwards-linked skill groups above l by Lemma 15. For

any unlinked skill group k > l, αk < αl ≤ 1 ensures that labor supply is not upwards

distorted at the extensive margin. For any downwards-linked skill groups k > l and m,

αk < 1 and νDk > 0 jointly ensure that δk < yαk − h(yαk , ωk). By Lemma 17, the same

conditions holds for the skill groups k + 1 to m. Hence, labor supply is not upwards

distorted at the extensive margin in any skill group h > j.

Lemma 19. Consider some weight α ∈ Aχ such that the optimal tax problem has an

interior solution (cα, yα). Then,

(i) the consumption level cα0 of the unemployed is strictly positive;

(ii) there is a number kα ∈ (0, n) such that optimal output is

(a) upwards distorted at the extensive margin in skill group j if and only if j ≤ kα,

and

(b) downwards distorted or undistorted at the intensive margin in skill group j for

all j ≥ kα;

(iii) optimal output in the highest skill group n is undistorted at the intensive margin and

downwards distorted at the extensive margin.

Proof. (i) Consider some implementable and Pareto-efficient allocation (c, y) with c0 ≤
0. In this allocation, the feasibility condition must hold with equality, so that c0 =
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∑n
j=1 fjGj(δj)(yj−cj+c0) ≤ 0. Moreover, an increase in c0 must not self-financing. I

will show that there exists a marginal variation that is feasible, incentive-compatible

and welfare-increasing given any weight sequence α ∈ Aχ.

Consider an allocation (c̃, y) with c̃j = cj − ε for all j ∈ J and c̃0 chosen to balance

the feasibility condition. In particular, consider a marginal increase in ε from ε = 0.

This leaves the IC constraints between all workers satisfied, but induces some workers

in all skill groups to leave the labor force. Taking these responses into account, we

have

dc̃0

dε

∣∣∣∣
ε=0

=

∑n
j=1 fjGj(δj)−

∑n
j=1 fjGj(δj)Zj

1−
∑n

j=1 fjGj(δj) +
∑n

j=1 fjGj(δj)Zj
,

where the denominator is strictly positive (otherwise, an increase in c0 would be self-

financing) and Zj =
gj(δj)
Gj(δj)

(yj − cj + c0) =
gj(δj)
Gj(δj)

(yj − h(yj , ωj)− δj). If allocation

(c, y) is welfare-optimal, there is a unique number k ∈ (0, n] such that Zj < 0 for all

j < k and Zj ≥ 0 for all j ≥ k by Lemma 17. Moreover,
gj(δj)
Gj(δj)

= Aj(δj) > Ak(δk)

for all j < k and
gj(δj)
Gj(δj)

< Ak(δk) for all j > k by Lemma 2. Hence, we have

n∑
j=1

fjGj(δj)Zj < Ak(δk)

n∑
j=1

fjGj(δj) (yj − cj + c0) = Ak(δk)c0 ≤ 0 ,

which implies that dc̃0
dε

∣∣∣
ε=0

>
∑n
j=1 fjGj(δj)

1−
∑n
j=1 fjGj(δj)

. The marginal welfare effect of increas-

ing ε follows as

dW (c, y;α)

dε

∣∣∣∣
ε=0

= −
n∑
j=1

fjGj(δj)αj +

1−
n∑
j=1

fjGj(δj)

α0
dc̃0

dε

∣∣∣∣
ε=0

> −
n∑
j=1

fjGj(δj)αj +

n∑
j=1

fjGj(δj)α0 = α0 − αM ,

where αM = 1 is the average social weight in the population. For all α ∈ Aχ,

α0 > αM . Hence, an increase in ε is strictly welfare-increasing, and the initial

allocation with c0 ≤ 0 is not welfare-maximizing.

(ii) For part (a), there exists a number kα ∈ (0, n] with the required properties by

Lemma 18. Assume that kα = n, i.e., that labor supply in all skill groups is upwards

distorted at the extensive margin. The feasibility condition then requires that c0 =∑n
j=1 fjGj(δ

α
j )
(
yαj − cαj + cα0

)
=
∑n

j=1 fjGj(δ
α
j )
(
yαj − h(yαj , ωj)− δαj

)
< 0. This is

inconsistent with part (i) of this Lemma. Hence, kα < n for all α ∈ Aχ.

For the statement in part (b), note that labor supply in skill group j can only be

upwards distorted at the intensive margin if j − 1 and j are upwards-linked, i.e.,

νUj−1 > 0 (see Lemma 15). By Lemma 16 (ii), this can only be true if labor supply
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in skill group j is upwards distorted at the extensive margin.

(iii) For all α ∈ Aχ, δαn < yαn − h(yαn , ωj) as argued in the proof to part (ii). Hence, n− 1

and n cannot be upwards-linked by Lemma 16. If n− 1 and n are downwards-linked

or unlinked, yαn = yαRn : Labor supply in skill group n is undistorted at the intensive

margin. This moreover implies that yαn − h(yαn , ωn) = δ∗(n). Hence, δαn < δ∗(ωn):

labor supply in skill group is downwards distorted at the extensive margin.

To prove Proposition 1, it only remains to show that the optimal tax problem has a

solution with δj ∈
[
δ, δ̄
)

for any α ∈ Aχ.

Lemma 20. For all α ∈ Aχ, the optimal tax problem has a maximum (cα, yα) with

δj ∈
[
δ, δ̄
)
.

Proof. Fix some α ∈ Aχ. By Lemma 3, the FOCs with respect to yj and δj are satisfied

by a unique tuple (yαj , δ
α
j ) if the local IC constraints between skill groups j, j−1 and j+1

are non-binding. In the following, I only consider the cases where skill group j is either

downwards-linked or upwards-linked to skill group j + 1 only. Similar proofs are available

on request for cases where some skill groups k and l > k + 1 are downwards-linked or

upwards-linked.

First, assume that the downward IC (26) between skill groups j and j + 1 is binding.

For simplicity, I henceforth write Hj(yj) := h(yj , ωj)−h(yj , ωj+1). The FOCs with respect

to cj , cj+1 and yj (see Lemma 15) can be combined to get the optimality conditions

Z1(yj , δj) = Bj(δj , yj) +Bj+1(δj+1, yj+1) = 0

Z2(yj , δj) = Bj+1(δj+1, yj+1) + fjGj(δj)Cj(yj) = 0 ,

where Bk(δk, yk) := fk [Gk(δk)(αk − 1) + gk(δk) (yk − h(yk, ωk)− δk)] and Cj(yj) := [1−
hy(yj , ωj)] /Hj(yj). By the binding downward IC constraint, we have 1 − hy(yj , ωj) > 0,

Cj > 0, Bj+1 < 0 and Bj > 0 in allocation (cα, yα). Z1 and Z2 are continuous in yj , δj

and δj+1. Moreover, I will show that Z1 has a root in δj at which ∂Z1/∂δj < 0, and that

Z2 has a root in yj at which ∂Z2/∂yj < 0.

To start, consider function Z1 for some fixed level yj < yαRj . Function Bj(δj , y
αR
j )

has a unique root δj1 ∈
(
δ, δ̄
)

for any αk ∈ [0, χ) by Lemma 3. Function B̃j+1(δj) :=

Bj+1(δj +Hj(y
αR
j ), yαRj+1) either has a unique root δj2 in

(
δ, δ̄
)

as well, or it is negative for

all δj ∈ ∆. In the first case, δ < δj2 < δj1 < δ̄. By Lemma 3, Bk is strictly decreasing in δk

at its roots for any k ∈ J . For any yj < yαRj , the root δj2 is increased, while the root δj1 is

decreased. As Bj and Bj+1 are continuous, Z1 must have a root in the interval (δj2, δj1).

In the second case, if δαj = δ results if and only if Bj(δ, y
αR
j )+Bj+1(δ+Hj(y

αR
j ), yαRj+1) < 0.

Next, consider Z2 for some fixed δj ∈
(
δ, δαRj

)
. At any root of Z2 in yj , we have

Bj+1 < 0 and Cj(yj) > 0. Note that C ′j(yj) = −hy(yj ,ωj)H
′
j(yj)+(1−hy(yj ,ωj))H

′′
j (yj)

H′j(yj)
2 . By
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hyω < 0 and hyyω ≤ 0, C ′j(yj) < 0 for all yj ≤ yαRj . The root yj1 of Bj+1 must again

be located left of yαRj , the root of Cj . Hence, function Z2 has a root yj in the interval(
yj1, y

αR
j

)
.

Second, assume that the upward IC constraint (32) is binding. Recall that this only

results for αj1 and αj+1 > 1. Then, the optimal tuple (δj , yj+1) is implicitly defined by

Z3(yj+1, δj) = Bj(δj , yj) +Bj+1(δj+1, yj+1) = 0

Z4(yj+1, δj) = Bj+1(δj+1, yj+1) + fj+1Gj+1(δj+1)Cj+1(yj+1) = 0 ,

where Cj+1(yj+1) := [1− hy(yj+1, ωj+1)] /Hj(yj+1). By the binding upward IC constraint,

we have 1− hy(yj+1, ωj+1) < 0, Cj+1(yj+1) < 0, Bj+1 > 0 and Bj < 0 in this optimum.

Again, I start by showing that Z3 has a root in δj for some fixed yj+1 > yαRj+1. Func-

tion Bj has a unique root δj3 ∈
(
δ∗(ωj), limαj→χ δ

αR
j

)
. For any yj+1 < yαRj+1, function

B̃j+1(δj) = Bj+1(δj +Hj(yj+1), yj+1) has a unique root δj4 such that δj4 +Hj(yj+1) is be-

low the optimal δαRj+1 for αj+1 < χ. Both functions are strictly positive left of these roots,

and strictly negative right of these roots. As Bj+1 > 0 and Bj < 0 must be satisfied,

δj3 < δj4. Hence, Z3 must have a root in δj in the interval (δj3, δj4).

Finally, consider function Z4 for some fixed δj > δαj . Bj+1 has a unique root in yj+1

above yαRj+1, while Cj+1(yj+1) has a unique root at yαRj+1. Both Bj+1 and Cj+1 are strictly

decreasing at their roots. Hence, Z4 has a root in yj+1 with yj+1 > yαRj+1.

Proof of Proposition 2

Proof. Fix some α ∈ AD. By Lemma 13, the relaxed problem’s solution (cαR, yαR) violates

the downward IC for at least one pair of skill groups (k, k + 1), where αk+1 < βDk (αk).

For the first step, consider the intermediate problem A that takes into account the local

IC constraints between skill groups k and k+1, but ignores the ICs between all other skill

pairs. I denote the solution to this problem by (cA, yA). By αk+1 < βDk (αk), the downward

IC is binding with νDk > 0. From Lemma 15, we know that yAk < yαRk , δAk < δαRk and

δAk+1 > δαRk+1. For all other skill groups j, we have yAj = yαRj and δAj = δαRj . In particular,

this is true for skill group k − 1. Hence, (cA, yA) violates the downward IC constraint

between skill groups k − 1 and k, because δαRk − δαRk−1 ≤ h(yαRk−1, ωk−1)− h(yαRk−1, ωk−1) by

the construction for any α ∈ AD.

For the second step, consider the intermediate problem A2 that takes into account

the local IC constraints between the skill groups k − 1, k and k + 1. In the solution

(cA2, yA2) to problem A2, both downward IC constraints are binding with νDk−1 > 0 and

νDk > 0. Consequently, we have yA2
k−1 < yαRk−1, yA2

k < yαRk , δA2
k−1 < δαRk−1 and δAk+1 > δαRk+1,

while yA2
k−2 = yαRk−2 and δA2

k−2 = δαRk−2. These inequalities imply that (cA2, yA2) violates the

downward IC between skill groups k − 2 and k − 1 for any α ∈ AD. The same arguments

can be repeated to show that, in the solution to problem B that takes into account the
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local ICs between skill groups {1, . . . , k + 1} only, all downward IC constraints are binding

and labor supply in each skill group j ∈ {1, . . . , k} is downwards distorted at the intensive

margin.

For the third step, note that the solution to problem B involves yBk+1 = yαRk+1, δBk+1 >

δαRk+1 and δBk+2 = δαRk+2. Hence, this allocation violates the upward IC constraint between

skill groups k + 1 and k + 2 for any α ∈ AD. In problem B2 that takes into account

the local ICs between skill groups {1, . . . , k + 2} only, all downwards IC constraints are

binding again. Hence, we have yB2
k+1 < yαRk+1, yB2

k+2 = yαRk+2, δB2
k+2 > δαRk+2 and δB3

k+3 = δαRk+3,

which ensures that the downward IC between skill groups k + 2 and k + 3 is violated.

The same arguments can be repeated to show that, in allocation (cα, yα), all downward

IC constraints along the skill dimension are binding and that labor supply is downwards

distorted at the intensive margin in each skill group j ∈ J−n.

With respect to the distortions at the extensive margin, the previous arguments imply

that δα1 = yα1 − h(yα1 , ω1) + (α1 − 1)/A1(δα1 ) − νD1 / [f1g1(δα1 )] with νD1 > 0. Hence, labor

supply in skill group 1 is downwards distorted at the extensive margin if and only if α1 is

smaller than

γD := 1 +
νD1

f1G1(δα1 )
+A1(δα1 ) [δ∗(ω1)− yα1 + h(yα1 , ω1)]

where γD > 1 because νD1 > 0 and because yα1 < yαR1 implies that yα1 −h(y1α, ω1) < δ∗(ω1).

For each higher skill group j > 1, labor supply is downwards distorted at the extensive

margin as well because δαj < yαj − h(yαj , ωj) ≤ δ∗(ωj), where the first inequality follows

from Lemma 17.

Proof of Proposition 3

Proof. For α ∈ AN , (cαR, yαR) satisfies all local IC constraints along the skill dimension.

Hence, the same allocation also solves the non-relaxed problem of optimal taxation, i.e.,

(cα, yα) = (cαR, yαR). By Lemma 3, labor supply in all skill groups is undistorted at the

intensive margin, and upwards (downwards) distorted at the extensive margin if and only

if αj is strictly above (strictly below) 1.

Proof of Proposition 4

Proof. Fix some α ∈ Aχ such that αj+1 ≤ βUj (αj) for all j ∈ {2, . . . , n− 1}, i.e., that

the solution to the relaxed problem violates no upward IC except the one between skill

groups 1 and 2. This also implies that α1 > α2 > 1. The following proof focuses on

this case. The results derived below hold for the alternative case that (cαR, yαR) violates

multiple upward ICs a forteriori (a formal proof is available on request). To economize

on notation, I write Hj(yk) := h(yj , ωk)− h(yj , ωk+1) in the following.
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Consider problem A that takes into account the local IC constraints between all pairs

of skill groups except (2, 3). By Lemma 14, the upward IC between 1 and 2 is binding with

νU1 > 0, while all other local ICs are non-binding with νUj = νDj = 0 for all j ∈ {3, . . . , n}.
By Lemma 15, the solution (cA, yA) involves yA2 > yαR2 , yAj = yαRj for all j 6= 2, δA2 < δαR2

and δAj = δαRj for all j 6= {1, 2}. Recall that the relaxed problem’s solutions satisfies both

neglected IC constraints, i.e.,

H2

(
yαR2

)
≤ δαR3 − δαR2 ≤ H2

(
yαR3

)
.

Note that yA2 > yαR2 implies that H2(yA2 ) > H2(yαR2 ) by hyw < 0. Hence, (cA, yA) may

violate the downward IC between 2 and 3, the corresponding upward IC or none of them.

If (cA, yA) satisfies both IC constraints, we have (cα, yα) = (cA, yA). In the following, I

consider the remaining two cases.

First, assume that (cA, yA) violates the downward IC constraint between skill groups

2 and 3. Consider problem B that takes into account all local IC constraints except

those between 3 and 4. In its solution (cB, yB), the upward IC between 1 and 2 and the

downward IC between 2 and 3 are binding with νU1 > 0 and νD2 > 0. Hence, we have

δB2 < δαR2 and δB3 > δαR3 . By the binding downward IC, we have H2(yB2 ) = δB3 − δB2 >

δαR3 − δαR2 ≥ H2(yαR2 ). This ensures that yB2 > yαR2 by hyω < 0. Note further that (i)

δB2 < δA2 and (ii) yBj = yαRj for all j ∈ J/ {2} and δBj = δαRj for all j ∈ J/ {1, 2, 3}. By

(i), the upward IC between 1 and 2 continues to be binding. By (ii), allocation (cB, yB)

satisfies the (neglected) upward IC between skill groups 3 and 4, and may satisfy or violate

the corresponding downward IC. Adding the IC constraints for all skill groups above 3

stepwise, similar arguments as in the proof to Proposition 3 can be applied to show that

the optimal allocation (cα, yα) satisfies the following conditions:

(a) the upward IC between skills 1 and 2 is binding and yα2 > yαR2 ,

(b) yα is upwards distorted at the extensive margin in skill groups 1 and 2 by Lemma 16,

(c) there is a unique skill group l ∈ {3, . . . , n} such that the skill groups 2 and l are

downwards-linked, while all skill groups between l and n are unlinked.

Second, assume that (cA, yA) violates the upward IC constraint between skill groups

2 and 3. Then, allocation (cB, yB) involves binding upward ICs between 1 and 2 as well

as between 2 and 3. Hence, we have δB3 < δαR3 and yBj > yαRj for j ∈ {2, 3} . As with

allocation (cA, yA) before, allocation (cB, yB) may violate the downward IC between 3 and

4, the corresponding upward IC or none of both. The arguments in the previous paragraph

can be applied again to show that both upward ICs continue to be binding in (cα, yα) and

that yαj > yαRj for j ∈ {2, 3}. Besides, labor supply in skill groups {1, 2, 3} is upwards

distorted in (cα, yα). The same arguments can be repeated to show that there always

exists a skill group k ∈ {2, . . . , n− 1} such that the skill groups 1 and k are upwards-

linked and (a) either all skill groups between k and n are unlinked or (b) there is a skill
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group l ∈ {k + 1, . . . , n} such that the skill groups k and l are downwards-linked, while all

skill groups between l and n are unlinked. Finally, note that skill groups 1 and n cannot

be upwards-linked, i.e., k 6= n, by Proposition 1.

Proof of Proposition 5

Proposition 5 provides conditions that ensure the existence of regular combinations of Ψ

and γ such that the endogenous (average) welfare weights ᾱ are elements of the set AU .

It is proven by Lemmas 21 and 22 below by example, for Ψ being equal to the identity

function, i.e., Ψ(x) = x for all x ∈ R.

Lemma 21. Consider a sequence α′(τ) =
(
α′j(τ)

)n
j=2

such that α′2(τ) = τ and α′j+1(τ) =

βDj (α′j(τ)) for all j ∈ {2, . . . , n− 1}. For any τ ∈ (1, χ), there is a unique natural number

m ≥ 3 such that α′j(τ) < 1 for all j ∈ {m, . . . , n}.

Proof. By Lemma 13, βDj (αj) < αj for all αj ≥ 1 and βDj (αj) < 1 for all αj < 1 (for any

j ∈ J−n). It remains to show that there is a number µ′ > 0 such that αj − βDj (αj) > µ′

for all j ∈ J and all αj ∈ [1, χ). If this is true, α′(τ) < max {τ − (j − 2)µ′, 1} for all j ≥ 2.

Hence, α′j(τ) < 1 if and only if j > 2 + τ−1
µ′ , which directly implies that αn < 1 whenever

n is large enough. The following proof shows that this is true under Condition 3.

With some abuse of notation, I henceforth denote by δαRk (αk) the level of δk in

(cαR, yαR) given social weight αk. By construction, function βDj satisfies

δαRj+1

(
βDj (x)

)
− δαRj (x) = h

(
yαRj , ωj

)
− h

(
yαRj , ωj+1

)
,

while, for all x ≥ 1, δαRj+1(x) − δαRj (x) ≥ δ∗(ωj+1) − δ∗(ωj) by Lemma 10. Consequently,

we have

δαRj+1(x)− δαRj+1(βDj (x)) ≥ δ∗(ωj+1)− δ∗(ωj)−
[
h
(
yαRj , ωj

)
− h

(
yαRj , ωj+1

)]
= yαRj+1 − h

(
yαRj+1, ωj+1

)
−
[
yαRj − h

(
yαRj , ωj+1

)]
=

∫ yαRj+1

yαRj

[1− hy(y, ωj+1)] dy

=

∫ yαRj+1

yαRj

1− 1

1 +
hy(yαRj+1,ωj+1)−hy(y,ωj+1)

hy(y,ωj+1)

 dy,
where I exploit that hy(y

αR
j+1, ωj+1) = 1. Let ŷ(ω) := arg maxy∈R y − h(y, ω), and ŵ(y) :=

(ŷ)−1(y) the corresponding inverse function. Then, the following inequality holds

hy(y
αR
j+1, ωj+1)− hy(y, ωj+1)

hy(y, ωj+1)
=

∫ ωj+1

ŵ(y)

hyy(ŷ(ω), ωj+1)

hy(y, ωj+1)

dŷ(ω)

dω
dω

= −
∫ ωj+1

ŵ(y)

hyy(ŷ(ω), ωj+1)

hy(y, ωj+1)

hyω(ŷ(ω), ω)

hyy(ŷ(ω), ω)
dω
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> −
∫ ωj+1

ŵ(y)

ŷ(ω)hyy(ŷ(ω), ωj+1)

hy(ŷ(ω), ωj+1)

ωhyω(ŷ(ω), ω)

ŷ(ω)hyy(ŷ(ω), ω)

1

ω
dω

≥
∫ ωj+1

ŵ(y)

µ2

µ1

1

ω
dω =

µ2

µ1
ln

(
ωj+1

ŵ(y)

)
,

where the last line inequality follows from Condition 3. Hence, we can derive the following

lower bound

δαRj+1(x)− δαRj+1(βDj (x)) >

∫ yαRj+1

yαRj

1− 1

1 + µ2
µ1

ln
(
ωj+1

ŵ(y)

)
 dy =

∫ yαRj+1

yαRj

ln
(
ωj+1

ŵ(y)

)
µ1
µ2

+ ln
(
ωj+1

ŵ(y)

)dy
>

∫ ŷ(ω′)

yαRj

ln
(ωj+1

ω′

)
µ1
µ2

+ ln
(ωj+1

ω′

)dy =
ln
(ωj+1

ω′

)
µ1
µ2

+ ln
(ωj+1

ω′

) [ŷ(ω′)− yαRj
]

≥
ln
(ωj+1

ω′

)
µ1
µ2

+ ln
(ωj+1

ω′

)µ2 ln

(
ω′

ωj

)
yαRj

for any ω′ ∈ (ωj , ωj+1). In particular, let ω′ =
√
ωjωj+1 and recall that, by assumption,

ωj+1/ωj ≥ 1 + ε for all j ∈ J−n and some number ε > 0. Denoting ε̃ = ln (1 + ε), we get

δαRj+1(x)− δαRj+1(βDj (x)) >
(µ2ε̃)

2

µ1 + µ2ε̃︸ ︷︷ ︸
:=µ3

yαRj ,

where µ3 is bound away from zero for any j ∈ J−n.

From equation (33), the left-hand side of the last inequality can also be written as

∫ x

βDj (x)

dδαRj+1(x′)

dα
dx′ =

∫ x

βDj (x)

[
Aj+1

(
δαRj (x′)

)]−1

1 + (x′ − 1)

[
1− aj(δαRj (x′))

Aj(δαRj (x′))

]dx′

By Lemma 2, Aj(δ
αR
j ) > An(δαRn ) in any allocation that satisfies all downward IC con-

straints. Moreover, α′j(τ) < α2 = τ for all j > 2, and 1− aj
(
δαRj

)
/Aj

(
δαRj

)
< 1/(χ− 1)

for any α ∈ Aχ by the construction of χ (see Lemma 3). Hence, dδαRj (x′)/dα is strictly

smaller than µ4 := An[δαRn (τ)]−1(χ − 1)/(χ − τ) for all j ∈ J and x′ ∈ [1, α2]. For all

j ∈ J \ {1} and α ∈ [1, τ ], we consequently have∫ x

βDj (x)
µ4dx

′ = µ4

[
x− βDj (x)

]
> µ3y

αR
j

⇔ x− βDj (x) >
µ3

µ4
yαR2 =: µ′ .

As argued above, this ensures that τ − α′j(τ) =
∑j−1

k=2

[
α′k(τ)− βDk (α′k(τ))

]
> (j − 2)µ′

if α′(τ) ≥ 1, and α′j(τ) < 1 for all j > 2 + τ−1
µ′ . Hence, there exists a level m ∈

[3, 2 + (τ − 1)/µ′) such that αj < 1 if and only if j ≥ m.
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Lemma 22. Let Condition 3 and ω2
ω1
< au1(ζ) be satisfied for some ζ ∈ (1, χ). Then, there

exist a number m ≥ 3 and two vectors (φj)
n
j=1, (δ̃j)

n
j=1 with φj+1 ≥ φj, φm > 1 > φ1 = 0

and δ′j ∈
(
δ, δ̄
)

for all j ∈ J such that, if

(i) n ≥ m and

(ii)
∑n

j=1 fjGj(δ
′
j)φj > 1,

there exist regular combinations of Ψ and γ for which α ∈ AU .

Proof. Assume that Ψ is the identity function and fix some number δ̂ ∈
(
δ∗(ωn), δ̄

)
.

Consider the weighting function γ′ such that

γ′(ωj , δ) =


γ′j = β̄1 for j ∈ {1, 2} , δ < δ̂ ,

γ′j = max
{
βDj−1 (γj−1) , β

j
, . . . , β

n−1

}
for j ∈ {3, . . . , n} , δ < δ̂ ,

γ′0 =
1−

∑n
j=1 fjGj(δ̂)γj

1−
∑n
j=1 fjGj(δ̂)

for j ∈ J, δ ≥ δ̂ ,

where β̄1 is a fixed point of function βU1 . By Lemma 12, β̄1 exists, is unique and is located

in (1, χ) if ω2/ω1 < aU (ζ) for some ζ ∈ (1, χ) under Conditions 1 and 2.

By Lemma 21, Condition 3 ensures that there is a unique number m ≥ 3 such that

γ′j < 1 for all j ∈ [m,n] if n ≥ m. Assume that the latter condition is met (i.e., (i)

in the Lemma above). Let δ′j be equal to the level of δj in the relaxed problem’s so-

lution
(
cαR, yαR

)
given αj = γ′j for each j ∈ J . Then, the average weight ᾱn (among

workers in skill group n) equals γ′n < 1, and δ′n < δ∗(ωn) < δ̂. Moreover, ᾱj = γ′j

and δ′j < δ′n < δ̂ for all j ∈ J−n (as all downward IC constraints are satisfied, see

proof of Lemma 2). Finally, the average social weight of the unemployed is given by

ᾱ0 =
[
1−

∑n
j=1 fjGj

(
δ′j

)
γ′j

]
/
[
1−

∑n
j=1 fjGj

(
δ′j

)]
.

By construction, ᾱ satisfies ᾱ2 ≥ βU1 (ᾱ1) and ᾱj+1 ≥ βDj (ᾱj) for all j ∈ {2, . . . , n− 1}.
Moreover, ᾱj ≥ ᾱj+1 for all j ∈ J and ᾱj > ᾱj+1 for all j ∈ {2, . . . ,m}. We also have

ᾱ0 > ᾱ1 = β̄1 if and only if

n∑
j=1

fjGj
(
δ′j
) [
β̄1 − γ′j

]
> β̄1 − 1 . (41)

Let φj = (β̄1−γ′j)/(β̄1−1) for all j ∈ J . Then, ᾱ0 > β̄1 if conditions (i) and (ii) in Lemma

22 are satisfied.

For the final step, note that the average welfare weights ᾱ are not an element of AU

given γ′ because ᾱ1 = ᾱ2 = β̄1. Consider the weighting function γε such that

γε(ωj , δ) =



γε1 = β̄1 + ε1 + ε2 for j = 1, δ < δ̂ ,

γε2 = β̄1 + ε2 for j = 2, δ < δ̂ ,

γεj = max
{
βDj−1

(
γεj−1

)
, β

j
, . . . , β

n−1

}
for j ∈ {3, . . . , n} , δ < δ̂ ,

γε0 =
1−

∑n
j=1 fjGj(δεj)γεj

1−
∑n
j=1 fjGj(δεj)

for j ∈ J , δ ≥ δ̂ ,
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where δεj is the level of δj in the relaxed problem’s solution given αj = γεj for each j ∈ J .

Fix ε2 at some level in
(
0, χ− β̄1

)
. By Lemma 12, there is a unique number ε̄ > 0 such

that γε2 ≥ βU1 (γε1) for each ε1 ∈ (0, ε̄). If ε1 > 0 and ε2 > 0 are sufficiently small, the

resulting average weight ᾱ0 continues to be strictly larger than γε1. Hence, ᾱj > ᾱj+1 for all

j ∈ {0, . . . ,m− 1}. Consequently, ᾱ ∈ AU results if γεj+1 < γεj for all j ∈ {m, . . . , n− 1}
as well. (If γε involves γεj+1 = γεj for some j ≥ m, then one can construct a weighting

function γ that is strictly decreasing over the skill dimension and has otherwise identical

properties, i.e., for which ᾱ ∈ AU .)

Proof of Lemma 6

Proof. First, note that minimizing the deadweight loss (6) is equivalent to maximizing

the term
∑n

j=1 fj
∫ δj
δ gj(δ) [yj − h(yj , ωj)− δ] dδ over c and y. The Lagrangian for the

problem of efficient redistribution is hence given by

L =
n∑
j=1

fj

∫ δj

δ
gj(δ) [yj − h(yj , ωj)− δ] dδ + λF

 n∑
j=3

fjGj(δj)(yj − cj)−R


+λE

 2∑
j=1

fjGj(δj)(cj − yj) +
n∑
j=1

fj [1−Gj(δj)] c0 −R


+µ [c1 − h(y1, ω1)− c2 + h(y2, ω1)] ,

where I have included the constraints that resources R are transferred away from the

workers in skill groups 3 and higher (Lagrange parameter λF ), the same resources are

transferred towards the unemployed and the workers in skill groups 1 and 2 (λE), and the

upward IC constraint between the workers in skill groups 1 and 2 (µ). Note that the first

two constraints are binding in the solution of the efficient redistribution problem for any

R > 0. Hence, λE and λF are strictly positive in any solution.

First, I solve the problem ignoring the upward IC constraint, and denote the solution

by (cER, yER). The FOCs with respect to cj and yj for j ∈ {1, 2} are given by

Lcj = (1− λE)fjgj(δ
ER
j )

[
yERj − h(yERj , ωj)− δERj

]
+ λEfjGj(δ

ER
j )

!
= 0 , and

Lyj = fjGj(δ
ER
j )

[
1− hy(yERj , ωj)

]
−hy(yERj , ωj)(1− λE)fjgj(δ

ER
j )

[
yERj − h(yERj , ωj)− δERj

]
− λEfjGj(δERj )

!
= 0 .

The combination of both FOCs yields that labor supply in both low-skill groups is undis-

torted at the intensive margin, hy(y
ER
j , ωj) = 1, which also implies yERj − h(yERj , ωj) =

δ∗(ωj). Rearranging the first condition, we additionally get the inverse elasticity rule (23),

δERj − δ∗(ωj) = cERj − yERj − cER0 = λE

1−λE
Gj(δ

ER
j )

gj(δERj )
.
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From the second-order condition, λE has to attain a value below some bound λ̂ < 1 at any

solution (the exact level of λ̂ depends on the type distribution K). Hence, δERj > δ∗(ωj)

for j ∈ {1, 2} and any R > 0 such that an interior solution exists. From Lemma 2, we

know that η1(c, y) = g1(δ1)
G1(δ1) > η2(c, y) = g2(δ2)

G2(δ2) in any incentive-compatible allocation,

which implies that cER2 − yER2 > cER1 − yER1 . Hence, allocation (cER, yER) satisfies the

downward IC (21), and might satisfy or violate the upward IC (22).

Fix a number R > 0, the type distribution K and all skill levels except ω2. Similar

arguments as in the proof of Lemma 12 (i) can be applied to show that there is some

number aE > 1 such that the upward IC constraint is violated by the allocation (cER, yER)

whenever ω2 ∈
(
ω1, a

Eω1

)
. First, consider the limit case ω2 = ω1. In this case, λE ∈ (0, 1)

and δER2 ≥ δER1 by Condition 1. As shown in the proof of Lemma 12 (i), allocation (cE , yE)

unambiguously violates the upward IC constraint after a marginal increase in ω2 for any

fixed λE ∈ (0, 1). Because ω2 and all other variables enter the maximization program

continuously, ω2 also affects the value of the Lagrange parameter λE continuously. Hence,

λE is bounded away from 0 and 1 after a marginal increase in ω2. Thus, there is a number

aE > 1 such that the upward IC constraint is violated for any ω2 ∈
(
ω1, a

Eω1

)
.

Next, consider a combination of R > 0 and ω2 ∈ (ω1, ω3) such that (cER, yER) violates

the upward IC constraint. Taking into account this constraint for the Lagrangian, the

adjusted FOCs with respect to c1, c2 and y1 are given by

Lc1 = (1− λE)f1g1(δE1 )
[
yE1 − h(yE1 , ω1)− δE1

]
+ λEf1G1(δE1 ) + µ

!
= 0 ,

Lc2 = (1− λE)f2g2(δE2 )
[
yE2 − h(yE2 , ω2)− δE2

]
+ λEf2G2(δE2 )− µ !

= 0 , and

Ly2 = f2G2(δE2 )
[
1− hy(yE2 , ω2)

]
− hy(yE2 , ω2)(1− λE)f2g2(δE2 )

[
yE2 − h(yE2 , ω2)− δE2

]
−λEf2G2(δE2 ) + µhy(2, ω1)

!
= 0 .

Combining the two latter conditions shows that, as usual, yE2 is upwards distorted if and

only if the upward IC constraint is binding with µ > 0,

f2G2(δE2 )
[
hy(y

E
2 , ω2)− 1

]
(1− λE) = µ [hy(y2, ω1)− hy(y2, ω2)] > 0

Using the FOC with respect to c2, we can replace µ in the previous condition to get

f2G2(δE2 )
[
hy(y

E
2 , ω2)− 1

]
hy(y2, ω1)− hy(y2, ω2)

=
λE

1− λE
f2G2(δE2 )− f2g2(δE2 )

[
δE2 − yE2 + h(yE2 , ω2)

]
.

Combining the FOCs with respect to c1 and c2 and inserting yE1 −h(yE1 , ω1) = δ∗(ω1) gives

λE
1− λE

=
f1g1(δE1 )

[
δE1 − δ∗(ω1)

]
+ f2g2(δE2 )

[
δE2 − yE2 + h(yE2 , ω2)

]
f1G1(δE1 ) + f2G2(δE2 )

. (42)

Inserting this term into the previous function to eliminate the Lagrangian parameter λE

and rearranging terms gives the optimality condition (24), which implies that yE2 has to be
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chosen so to equate the marginal deadweight losses from distortions at both margins.

B Supplementary material

B.1 Illustration of labor supply distortions

In Subsection 3.2, I formally define labor supply distortions at the intensive margin and at

the extensive margin. The following Figures 2 and 3 illustrate these definitions graphically.

In each figure, point A marks the initial bundle (ci, yi) allocated to agent i. The sets of

hypothetical deviations are given by the solid lines through A and B. The indifference

curves of Agent i are given by the union of the dashed line and point Z (in figure 2) and

the union of the dashed line and point A (in figure 3), respectively, corresponding to the

discontinuity in i’s utility due to the fixed cost δi.

y

c

A
ci

yi

h
(
yi, ωi

)
δi

yi

0

(
yi + d, ci + d

)ICi

Z

B

Figure 2: Labor supply distortions, Example 1.

y

c

A

B

(
d, ci + d

)ICi

h
(
y∗
(
ωi
)
, ωi
)

δi

y∗
(
ωi
)

ci + y∗
(
ωi
)

y∗
(
ωi
)

yi = 0

ci

Figure 3: Labor supply distortions, Example 2.
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In Figure 2, i’s output is strictly positive, yi > 0. In point A, the slope of the

indifference curve is below 1, the marginal rate of substitution. Hence, i’s utility could be

increased by moving slightly upwards the solid line. Alternatively, i’s utility could also be

increased by jumping downwards to point B, where output provision is zero. Hence, i’s

labor supply is both downwards distorted at the intensive margin and upwards distorted

at the extensive margin.51

In Figure 3, i does not provide output, yi = 0. Jumping upwards to point B with

positive output y∗(ωi) = arg maxy>0

{
y − h(y, ωi)

}
would increase i’s utility, as B is

located above the indifference curve. Hence, i’s labor supply is downwards distorted at

the extensive margin.

B.2 Construction, decomposition and illustration of dead-

weight loss

In the model studied above, if labor supply by all agents is undistorted, the difference

between the consumption possibilities that result from providing labor and the total costs

of providing labor (measured in consumption units) is maximized. Following the literature,

I define the deadweight loss (or excess burden) in any allocation (c, y) as the loss in this

difference relative to its maximum. Formally, the deadweight loss in an implementable

allocation (c, y) is hence given by

DWL(c, y) =
n∑
j=1

fj

∫ δ∗(ωj)

δ
gj(δ) [δ∗(ωj)− δ] dδ

−
n∑
j=1

fj

∫ δj

δ
gj(δ) [yj − h(yj , ωj)− δ] dδ .

As usual, the deadweight loss is minimized and equal to zero if labor supply in all skill

groups is undistorted at both margins, i.e., if hy(yj , ωj) = 1 and δj = δ∗(ωj) = maxy>0 y−
h(y, ωj) for every j ∈ J .

Note also that the deadweight loss can be decomposed as follows,

DWL(c, y) =

n∑
j=1

fjGj(δj) [δ∗(ωj)− yj + h (yj , ωj)]

+

n∑
j=1

fj

∫ δ∗(ωj)

δj

gj(δ) [δ∗(ωj)− δ] dδ ,

where the first term captures the deadweight loss from distortions at the intensive margin

and the second term captures the deadweight loss from distortions at the extensive margin

(across all skill groups).

51In a model without fixed costs as in, e.g., Mirrlees (1971), this would be impossible by con-
struction.
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Figure 4 below illustrates the deadweight loss from distortions in skill group j and its

decomposition graphically. It depicts the quantity Gj(δj) of labor of skill type ωj , and

the labor supply Sj and labor demand Dj (measured in mass of workers) for an allocation

that involves bundle (yj , δj). D∗j depicts the labor demand that would result without

distortions at the intensive margin, i.e., if each worker would provide efficient output.

In particular, the figure depicts a case where labor supply in skill group j is downwards

distorted at both margins, hy(yj , ωj) < 1 and δj < yj−h(yj , ωj) < δ∗(ωj). The red shaded

area (Li) depicts the efficiency loss due to intensive-margin distortions, the blue-shaded

area (Le) depicts the efficiency loss due to extensive-margin distortions in this skill group.

Gj(δ)

δ

δ

δ̄ Sj

δ∗(ωj) D∗j
yj − h(yj , ωj) Dj

δj

Gj(δj)

A

E
Li

Le

Figure 4: Illustration of deadweight loss in skill group j.

B.3 Monotonicity of social weights

In Subsection 3.4, the endogenous marginal social weights are defined in equations (10)

and (11). In the following, I assume that all type-specifid weight are equal, i.e., that

γ(ω, δ) = 1 for all (ω, δ) ∈ Ω×∆. Then, concavity of Ψ ensures that ᾱ0 > ᾱj for all j ∈ J .

For j ≥ 1, however, the endogenous weight sequence ᾱ is only ensured to be decreasing if

additional conditions on the joint type distribution K are met.

Lemma 23. If Ψ is strictly concave and γ is constant over Ω ×∆, Gj dominates Gj+1

in the sense of first-order stochastic dominance for all j ∈ J−n and Condition 1 holds,

ᾱj > ᾱj+1 for all j ∈ J−n in all implementable allocations.

Proof. Using Lemma 1 and cj − h(yj , ωj) = δj + c0, weight ᾱj can be rewritten as a

function of δj ,

ᾱj(δj) =
1

zGj(δj)

∫ δj

δ
gj(δ)Ψ

′ [δj + c0 − δ] dδ ,

where z is a normalization parameter. In the following, I show that, in every implementable
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allocation,

z [ᾱj(δj)− ᾱj+1(δj+1)] = z [ᾱj(δj)− ᾱj+1(δj)] + z [ᾱj+1(δj)− ᾱj+1(δj+1] < 0 .

For the term in the first bracket, note that

z [ᾱj(δj)− ᾱj+1(δj)] =

[
1

Gj(δj)
− 1

Gj+1(δj)

] ∫ δj

δ
Ψ′ [δj + c0 − δ] dGj(δ) +

1

Gj+1(δj)

[∫ δj

δ
Ψ′ [δj + c0 − δ] dGj(δ)−

∫ δj

δ
Ψ′ [δj + c0 − δ] dGj+1(δ)

]
,

where the first term is weakly positive by the assumed first-order stochastic dominance.

Applying integration by parts, the term in the second bracket can be written as

[Aj(δj)−Aj+1(δj)] Ψ′(c0) +

∫ δj

δ
[Gj(δ)−Gj+1(δ)] Ψ′′ [δj + c0 − δ] dδ ≥ 0 ,

where the first term is weakly positive by Condition 1 (ii), and the second term is weakly

positive by the assumed first-order stochastic dominance. Hence, the term ᾱj(δj)−ᾱj+1(δj)

is weakly positive.

For the term in the second bracket, note that

dᾱj
dδj

= Aj(δj)Ψ
′(c0) +

1

Gj(δj)

∫ δj

δ
gj(δ)Ψ

′′ [δj + c0 − δ] dδ

−Aj(δj)
Gj(δj)

∫ δj

δ
gj(δ)Ψ

′ [δj + c0 − δ] dδ

Applying integration by parts again, the last term can be rewritten to get

dᾱj
dδj

=
1

Gj(δj)

∫ δj

δ
gj(δ)Ψ

′′ [δj + c0 − δ] dδ −
Aj(δj)

Gj(δj)

∫ δj

δ
Gj(δ)Ψ

′′ [δj + c0 − δ] dδ

=
1

Gj(δj)

∫ δj

δ
Gj(δ) [Aj(δ)−Aj(δj)] Ψ′′ [δj + c0 − δ] dδ < 0 ,

where the negative sign follows because Ψ is concave and Aj(δ) > Aj(δj) for all δ ∈ [δ, δj)

due to the log-concavity imposed by Condition 1 (i).

In the following, I provide a simple example to demonstrate that the concavity of Ψ

per se does not guarantee decreasing social weights.

Example 1. Assume that n > 2, ω1 = 1, ω2 = 3/2, δ = 0, δ̄ = 10, h(y, ω) = 1
2

( y
ω

)2
,

Ψ(x) = x1/2, γ(ω, δ) = 1 for all (ω, δ) ∈ Ω ×∆, g1(δ) = 0.1 for all δ ∈ ∆, g2(δ) = ε for

δ ∈ [0, 1] and g2(δ) = 1−ε
9 for δ ∈ (1, 10].

Note that function Ψ is strictly concave. Fixed costs types are uniformly distributed

in skill group 1, and piecewise uniformly distributed in skill group 2. For ε below (above)
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0.1, G2 dominates (is dominated by) G1 in the sense of first-order stochastic dominance.

Consider the allocation (c′, y′) with c′0 = 0.1, (c′1, y
′
1) = (1.1, 1), (c′2, y

′
2) = (9/4 +

.1, 9/4), δ′1 = 1/2 and δ′2 = 9/4. Note that this allocation satisfies both IC constraints

between workers with skill types ω1 and ω2 with strict inequalities. The social weights in

this allocation are given by

ᾱ0(c′0) =
1

z
Ψ′(c′0) ≈ 1.581

z
,

ᾱ1(δ′1, c
′
0) =

2

z

[√
δ′1 + c′0 −

√
c′0

]
≈ .917

z
, and

ᾱ2(δ′2, c
′
0) =

1

G2(δ′2)z

[
ε

(√
δ′2 + c′0 −

√
δ′2 + c′0 − 1

)
+

1− ε
9

(√
δ′2 + c′0 − 1−

√
c′0

)]
≈ 1.265 + 44.272ε

(1 + 71ε)z
,

where z > 0 is again a normalizing parameter. The following result is provided without

formal proof.

Lemma 24. Consider the economy specified in Example 1. The social weights satisfy

ᾱ2(δ′2, c
′
0) > ᾱ2(δ′2, c

′
0) if and only if ε is below some threshold ε̂ ≈ 0.0167.

In this example, the social weights are hence locally increasing if G2 first-order stochas-

tically dominates G1 “sufficiently much”. Loosely speaking, the workers in skill group 2

are on average worse off than the workers in skill group 1 in this case, because they have

on average much higher fixed costs.

B.4 Validity of Conditions 1 and 2 for specific functions

In the following, I provide results on whether Conditions 1 and 2 are met if the group-

specific fixed costs distributions are given by some commonly used functional forms. Proofs

and numerical simulations are available upon request.

Condition 1 (i) requires the fixed cost distribution Gj to be log-concave for each j ∈ J .

Observation 1. For any j ∈ J , Condition 1 (i) is satisfied if Gj is given by

(a) a uniform distribution on
[
δj , δ̄j

]
;

(b) a Pareto distribution with scale parameter (minimum value) δj > 0 and shape param-

eter kj > 0;

(c) a log-normal distribution with location parameter ξj ∈ R and scale parameter σj > 0;

or

(d) a normal distribution with mean ξj ∈ R and standard deviation σj > 0.
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Condition 1 (ii) refers to the co-variation of distributions Gj and Gj+1 for each pair of

skill groups j and j + 1. In particular, it assumes that the cdf hazard rates can be unam-

biguously ordered for each δ ∈ ∆, Aj(δ) ≥ Aj+1(δ). In general, this assumption is neither

stronger nor weaker then the assumption that Gj+1 first-order stochastically dominates

Gj . Within each of the families of distribution functions considered here, however, both

properties are equivalent.

Observation 2. For any j ∈ J , Condition 1 (ii) is satisfied and Gj+1(δ) ≥ Gj(δ) for all

δ ∈ ∆ if the fixed cost distribution Gj and Gj+1 are given by

(a) uniform distributions with upper endpoints δ̄j ≥ δ̄j+1 and identical lower endpoints

δj = δj+1;

(b) Pareto distributions with shape parameters 0 < kj ≤ kj+1 and identical scale parame-

ters (minimum value) δj = δj+1 > 0;

(c) log-normal distributions with location parameters ξj ≥ ξj+1 ∈ R and identical scale

parameters σj = σj+1 > 0;

(d) normal distributions with means ξj ≥ ξj+1 ∈ R and identical standard deviations

σj = σj+1 > 0.

Finally, Condition 2 requires the pdf hazard rate aj(δj) to be weakly decreasing in δ

and weakly increasing in ω, but only at a sufficiently small rate compared to the derivative

of the cdf hazard rate Aj(δj).

Observation 3. For any j ∈ J , Condition 2 is satisfied

(a) for all δ ∈ ∆ if Gj and Gj+1 are given by uniform distributions with upper endpoints

δ̄j ≥ δ̄j+1 and identical lower endpoints δj = δj+1;

(b) for all δ below some threshold level zj > ξj if Gj and Gj+1 are given by normal

distributions with means ξj ≥ ξj+1 and identical standard deviations σj = σj+1 > 0.

Condition 2 is not satisfied if Gj and Gj+1 are given by Pareto or log-normal distri-

butions. In particular, Condition 2 (i) is violated: the pdfs of these distribution functions

are not log-concave for any combination of parameters. I proceed by providing a relaxed

version of the condition that is satisfied for these distribution functions. Recall that Con-

dition 4 is used to prove the uniqueness of the fixed points β < 1 and β̄ in Lemma 5. The

Lemma continues to hold if the joint type distribution satisfied the weaker Condition 4.

Condition 4. For every j ∈ J/ {n}, δ ∈ ∆ and x ∈
(
0, δ̄ − δ

)
, the joint type distribution

satisfies

Bj(δ) [aj(δ)− aj+1(δ + x)] < (1 +Bj(δ)) [Aj(δ)−Aj+1(δ + x)] ,

where Bj(δ) := Aj(δ) [δ∗ (ωj)− δ].
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Note that this condition is similar in spirit to Condition 2: Again, the pdf hazard rate

aj(δ) is assumed to change at a sufficiently small rate compared to the cdf hazard rate

Aj(δ), both in δ and in ω. For this relaxed condition, numerical simulations lead to the

following observations.

Observation 4. For any j ∈ J , Condition 4 is satisfied

(a) for all δ above some threshold level zj ∈ (δ, δ∗(ωj)) if Gj and Gj+1 are given by Pareto

distributions with shape parameters 0 < kj ≤ kj+1 and identical scale parameters

(minimum value) δj = δj+1 > 0;

(b) for all δ above some threshold level zj ∈ (0, δ∗(ωj)) if Gj and Gj+1 are given by log-

normal distributions with location parameters ξj ≥ ξj+1 and identical scale parameters

σj = σj+1 > 0;

(c) for all δ above some threshold level zj < δ∗(ωj) if Gj and Gj+1 are given by normal

distributions with means ξj ≥ ξj+1 and identical standard deviations σj = σj+1 > 0

and if δ
gj(δ)
Gj(δ)

< 1.

For all functional forms considered here, the relaxed Condition 4 is satisfied for any δ ∈(
δ∗(ωj), δ̄

)
, i.e., in the interval relevant for social weights that may induce the optimality of

an EITC. Hence, Lemma 12 on the violation of the upwards IC constraint for sufficiently

high weights αj = αj+1 > β̄ is ensured to hold.

B.5 Upward distortions in multiple skill groups

In Section 5, I define the set AU of social weights for which optimal labor supply in skill

group 2 is upwards distorted at both margins by Proposition 4. Proposition 5 provides

sufficient conditions for the existence of well-behaved welfare functions that give rise to

welfare weights in the set AU . In the following, I define subsets of AU for which optimal

labor supply in l skill groups is ensured to be upwards distorted at both margins.

Definition 2. The set of weight sequences AUl contains all sequences α ∈ Aχ such that

αj+1 > βUj (αj) for all j ∈ {1, . . . , l − 1} and αj+1 ≥ βDj (αj) for all j ∈ {l, . . . , n− 1}.

For each sequence of social weights in the set defined as this, we get the following

result.

Proposition 6. For any α ∈ AUl , optimal output yα

• is upwards distorted at the intensive margin in each skill group j ∈ {2, . . . , l};

• is upwards distorted at the extensive margin in each skill group j ∈ {1, . . . , l}.

Finally, I provide conditions that ensure the existence of well-behaved welfare functions

for which ᾱ ∈ AUl .
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Proposition 7. There are two numbers aUl > 1, ml > l and two vectors (φlj)
n
j=1, (δ̃lj)

n
j=1

with φlj+1 ≥ φlj for all j ∈ J−n, φlj ≷ 1 for j ≷ ml, and δ̃lj ∈
(
δ, δ̄
)

for all j ∈ J such that,

if

(a)
ωj+1

ωj
< aUl for all j ∈ {1, . . . , l − 1},

(b) n ≥ ml and

(c)
∑n

j=1 fjGj(δ̃
l
j)φ

l
j > 1,

there exists a regular combination of Ψ and γ for which ᾱ ∈ AUl .

Note that the conditions are closely related to those in Proposition 5. However, the

threshold ml is weakly larger than threshold m above. To ensure ᾱ ∈ AUl with l > 2,

there must hence be a sufficiently large share of workers with even higher skill types than

for ᾱ ∈ AU . Besides, the relative distance between each pair of skill types below ωl has to

be sufficiently small. The proofs to Propositions 6 and 7 are available upon request; they

apply the same arguments as the proofs of Propositions 4 and 5.

B.6 Existence of social weights in other weight sets

Proposition 5 above provides conditions under which the marginal welfare weights belong

to set AU for some regular combinations of Ψ and γ. Put differently, it provides sufficient

conditions for the existence of well-behaved welfare functions that are maximized by an

EITC with negative marginal taxes and negative participation taxes. In the following, I

clarify the conditions under some regular (Ψ, γ) give rise to welfare weights in the sets AD

and AN .

By Proposition 8, there exist well-behaved welfare functions for which optimal labor

supply is throughout undistorted at the intensive margin given any combination of the

type set Ω ×∆, the joint type distribution K and the effort cost function h that satisfy

the previously imposed assumption. By Proposition 9, there exist well-behaved welfare

functions for which a Negative Income Tax is optimal whenever the relative distance

between all pairs of adjacent skill types is sufficiently small. In Appendix C, I study

an example with commonly used functional forms, for which I also provide a necessary

condition for the existence of regular (Ψ, γ) such that ᾱ ∈ AD.

Proposition 8. There exist regular combinations of Ψ and γ for which ᾱ ∈ AN .

Proof. Assume that Ψ is the identity function and fix some number δ̂ ∈
(
δ∗(ωn, ), δ̄

)
.

Consider the family of weighting functions γε with γε(ωj , δ) = γεj = 1 − (j − 1)ε for all

j ∈ J and δ < δ̂, and γε(ωj , δ) = γ0 =
[
1−

∑n
j=1 fjGj(δ̂)γj

]
/
[∑n

j=1 fj

(
1−Gj(δ̂)

)]
for

all j ∈ J and δ ≥ δ̂. For each ε > 0, the average welfare weights are given by a decreasing

sequence ᾱ = (ᾱ0, ᾱ1, . . . , ᾱn) with ᾱj = γεj for all j ∈ J and average weight 1. For each
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ε ∈ (0, 1/(n− 1)), ᾱ ∈ Aχ because ᾱj ∈ (0, χ) for all j ∈ J . Moreover, ᾱ2 < 1 ensures

that ᾱj+1 < βUj (ᾱj) for all j ∈ J−n. Consider the weights ᾱj and ᾱj+1 for some j ∈ J−n
and ε ∈ (0, 1/(n− 1)). The difference between both weights is strictly increasing in ε, and

the level of each weight is continuous and strictly decreasing in ε for any j > 1. For ε = 0,

ᾱj = ᾱj+1 = 1 and ᾱj+1 > βDj (ᾱj) by Lemma 13. Additionally, Lemma 13 implies that

there exists a unique number εj > 0 for each j ∈ J−n such that ᾱj+1 ≥ βDj (ᾱj) for all

ε ∈ (0, εj). Let ε̂ := minj∈J−n {εj}. For all ε ∈ (0, ε̂], ᾱ ∈ AN .

Proposition 9. There is a number aD > 1 such that, if
ωj+1

ωj
< aD for all j ∈ J−n, there

exist regular combinations of Ψ and γ for which ᾱ ∈ AD.

Proof. Assume that Ψ is the identity function and fix some number δ̂ ∈
(
δ∗(ωn, ), δ̄

)
.

Consider the family of weighting functions γε with γε(ωj , δ) = γεj = (n − j + 1)ε for

all j ∈ J and δ < δ̂, and γε(ωj , δ) = γ0 =
1−

∑n
j=1 fjGj(δ̂)γj∑n

j=1 fj[1−Gj(δ̂)]
for all j ∈ J and δ ≥ δ̂.

For each ε ∈ (0, 1/n), the average welfare weights are given by a decreasing sequence

ᾱ = (ᾱ0, ᾱ1, . . . , ᾱn) with ᾱj = γεj ∈ (0, 1) for all j ∈ J and average weight 1.

Let aD := minj∈J−n

{
a0
j

}
and β′ := minj∈J−n

{
β
j

}
, where a0

j and β
j

are defined as in

Lemmas 11 and 13. If ε ∈ (0, β′/n), then ᾱj < β
j

for all j ∈ J−n. By Lemmas 11 and 13,

αj+1 < βDj (αj) for all αj+1 < αj < β
j

(for any j ∈ J−n). Hence, the sequence of average

welfare weights ᾱ is an element of AD for any ε ∈ (0, β′/n).

B.7 Illustration of optimally binding upward IC constraints

In Subsection 6.3, I explain why optimal labor supply in skill group 2 is upwards distorted

at the intensive margin for every social weight in the set AU . In particular, I argue that

the upward IC constraint between skill groups 1 and 2 will always be binding in the

optimal allocation. With respect to the IC constraints between skill groups 2 and 3, there

are multiple possible constellations. In particular, the downward IC constraint between

workers in both skill groups may be binding or slack in the optimal allocation. In both

cases, however, labor supply in skill group 2 is upwards distorted at the intensive margin.

Figure 7 below illustrates both cases in panels 7(a) and 7(b). In both panels, the filled

circles mark the bundles allocated to workers with skill types ω1, ω2 and ω3 in the solution

to the relaxed problem. The indifference curves corresponding to these bundles are drawn

as solid lines. As can be seen, workers with skill type ω1 prefer the bundle (cαR2 , yαR2 ) to

the bundle (cαR1 , yαR1 ), while workers with skill type ω3 are indifferent between their own

bundle and the bundle designed for workers with skill type ω2.

In the intermediate problem A, the IC constraints between workers with the two lowest

skill types are taken into account (see Subsection 6.3 and proof to Proposition 4). The

solution to this problem is represented by the empty circles and the corresponding dashed

indifference curves for workers with skill types ω1 and ω2. As can be seen, the utility

of workers in skill group 1 is higher than in the solution to the relaxed problem, while
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Figure 7: Illustration of binding upward IC constraint for α ∈ AU

the utility of workers in skill group 2 is lower. The output provided by workers in skill

group 2 is strictly upwards distorted, yA2 > yαR2 . In the case depicted in the left panel,

the solution to the intermediate problem A satisfies the downward IC constraint between

workers in skill groups 2 and 3. In this case, the solution to intermediate problem A

also solves the non-relaxed problem of optimal taxation. In the case depicted in the

right panel, the solution to intermediate problem A violates the downward IC constraint

between the workers in groups 2 and 3. In the solution to the non-relaxed problem (not

shown), this downward IC constraint will hence be binding. The optimal output level yα2

will nevertheless be upwards distorted. More precisely, it will always be located between

the output levels yA2 and yZ2 (corresponding to the intersection point Z between the red

dashed indifference curve of the workers in skill group 2 and the green indifference curve

of the workers in skill group 3). Which of the two cases prevails, depends in general in

a non-trivial way on the joint type distribution K, the effort cost function h and the

complete sequence of social weights α.

C Example with commonly used functional forms

The main results of this paper have been derived under relatively weak assumptions on

the economy. In particular, I have not imposed any functional form assumptions (except

for the quasi-linearity of utility in consumption). On the one hand, this demonstrates

the generality of these results. On the other hand, the use of implicit functions makes it

hard to assess how restrictive the Conditions in Proposition 5 are. The following section

provides a closer look on a class of economies with simple and common specifications for

the effort cost function h, the type set Ω × ∆ and the type distribution K. For these

functional forms, simple closed-form expressions can be derived.
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Condition 5. The economy satisfies the following assumptions:

(i) The effort cost function is given by h(y, ω) = 1
1+1/σ

( y
ω

)1+1/σ
with σ > 0,

(ii) the skill space is given by the finite set {ω1, ω2, . . . , ωn} with constant relative dis-

tances
ωj+1

ωj
= a > 1 for each j ∈ J/ {n},

(iii) the fixed cost space is given by the interval
[
0, δ̄
]

with δ̄ > 1
σ+1ω

σ+1
n , and

(iv) for each j ∈ J , the conditional distribution Gj of fixed costs is given by a uniform

distribution on
[
0, δ̄
]
.

By the first part of Condition 5, the utility function has a commonly used functional

form that ensures a constant elasticity of hours worked, i.e., a constant elasticity of labor

supply yT (ω, δ)/ω with respect to the net-of-tax rate [1− T ′(y)]ω, conditional on partic-

ipation in the labor market. In particular, this elasticity equals the parameter σ for all

working types. By the second part, the relative distance between each pair of adjacent skill

types is identical and equal to parameter a. The third part specifies the lower endpoint

δ = 0 of the fixed cost set ∆, and establishes a lower bound on the upper endpoint δ̄.

By part (iv), finally, fixed costs are uniformly distributed on ∆ in each skill group. This

implies that the semi-elasticity ηj of participation is equal to 1/δj for each j ∈ J . Note also

that skill types and fixed cost types are independently distributed. Under Condition 5, an

economy is uniquely defined by the parameters σ, a, n, δ̄, and by the skill distribution F .

The proofs to the following Lemmas are available upon request.

Lemma 25. Under Condition 5, Conditions 1 and 3 are satisfied for all combinations of

σ, a, n and δ̄. The optimal tax problem has a unique interior extremum for all weight

sequences α such that αj < χ = 2 for all j ∈ J .

Lemma 26. Under Condition 5,

(i) AD is non-empty if a is below the threshold e(σ) defined by

e(σ) = x > 1 : xσ+1 − 1− 2σ
(

1− x−(1+1/σ)
)

= 0 , (43)

(ii) there is a vector (φj)
n
j=1 > 0 and a number κ > 0 such that AU is non-empty if and

only if

n > m̄(a, σ) := 2 +

ln

(
σ(ã1/σ−1)(ã−1/σ−ã)
σ(1−ã−1/σ)+1−ã

)
ln ã

, (44)

δ̄ < d(a, σ, n) := ψ(a, σ, n)
ωσ+1
n

σ + 1
and (45)

n∑
j=1

fjφj > κ , (46)
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where ã = aσ+1 and ψ(a, σ, n) := min

1−
ã+ã−1/σ(ãn−2−1)

ãn−1

1− ã−1

σã(ã1/σ−1)
,

2σã(ã1/σ−1)−ã+1

2[σã(ã1/σ−1)−ã+1]

;

Lemma 26 refines Propositions 5 and 9 for the family of economies defined by Condition

5. It provides necessary and sufficient conditions for the existence of social weights in the

sets AD and AU , expressed in terms of the parameters mentioned above. Notably, these

conditions are simple threshold conditions on the parameters a, n, and β̄ and the skill

distribution F . Table 1 reports the levels of these thresholds for specific values for the

intensive-margin elasticity σ and the relative skill distance a. In the following, I comment

on the threshold levels for my preferred scenario with σ = .3 and a = 1.1. To show the

qualitative robustness of my results, Table 1 additionally provides the levels for σ = .5

and a = 1.5.

The first three lines of Table 1 illustrate part (ii) of Lemma 26, which provides sufficient

conditions for the non-emptiness of set AU . Recall that this condition is satisfied if and

only if there is a sufficiently large mass of working types with skills above a threshold

ωm. For the class of economies considered here, this is equivalent to assuming that, first,

the cardinality n of the skill set Ω is above some the threshold m(a, σ), second, that

the maximum level β̄ of fixed costs is below the threshold β̄(a, σ, n), and third, that the

population share of agents with skill types above ωm is sufficiently large. For my preferred

scenario, the first condition is satisfied if there are at least 9 skill groups (m = 8.97). This

implies that agents with the highest skill type ωn must be about two and a half times

as productive as the lowest skill group (ωm/ω1 = 2.35). The second condition ensures

that a majority of high-skill agents participates in the labor market, given the assumed

uniform distribution of fixed costs. Table 1 does not report the level of the threshold

d(a, σ, n). Instead, I report a transformed version of this threshold that is more readily

interpretable. In particular, I provide the minimum level γ20(a, σ) of the participation

share in the highest skill group for n = 20. For my preferred scenario, more than 54

percent of the agents with the highest skill type have to participate in the labor market

in the optimal allocation.52

The fourth line of Table 1 illustrates part (i) of Lemma 26, which provides a necessary

condition for the non-emptiness of set AD. Recall that this condition is satisfied if and

only if the relative distance between each pair of adjacent skill types is small enough.

For the preferred level of the elasticity σ = 0.3, this is true whenever an agent with any

skill types ωj is less than 30 percent more productive than an agent with the next-lower

skill type ωj−1 (parameter a is below e(.3) = 1.3). For the class of economies defined by

Condition 5, it is also possible to provide a necessary condition for the non-emptiness of

AD.

The remaining lines of Table 1 provide numerical values for the thresholds β and β̄ in

52To see the equivalence between the thresholds d and γ, note that Gn(δ̂n) = qn(βn)

δ̄
and

γn(a, σ) = qn(βn)
d(a,σ,n) .
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σ = .3 σ = .5

a = 1.5 a = 1.1 a→ 1 a = 1.5 a = 1.1 a→ 1

m(a, σ) 5.02 8.97 ∞ 4.18 7.73 ∞
ωm/ω1 7.65 2.35 2 5.45 2.09 2

γ20(a, σ) .42 .54 - .38 .51 -

d(σ) 1.30 1.30 1.30 1.37 1.37 1.37

β̄ 1.72 1.24 1 1.61 1.20 1

β < 0 .70 1 < 0 .76 1

κ .72 .24 0 .61 .20 0

φ′1 = φ2 0 0 0 0 0 0

φ′3 .17 .04 0 .24 .04 0

φ′4 .41 .08 0 .56 .08 0

φ′20 1.72 .45 0 1.61 .39 0

φ′∞ 1.72 .54 – 1.61 .44 –

Table 1: Numerical values for different combinations of σ and a

Lemma 5, and for the vector φ = (φj)
n
j=1 = κ−1

(
φ′j

)n
j=1

in Lemma 26 (and in Proposition

5).

Lemma 27. Let Assumption 5 be satisfied and n = 2. There is a number aN (σ) ∈(
1, (2 + 2σ)1/(1+s)

)
such that optimal output yα in both skill groups is undistorted at the

intensive margin for each α ∈ Aχ if

a ≥ aN (σ), and

f1 ≥ 1

2

(
1− 1

ã− 2σ
(
1− ã−1/σ

))−1

∈ (0, 1) .

For an elasticity of σ = .3, the threshold au(σ) is given by 2.07. Hence, optimal labor

supply is undistorted at the intensive margin for any decreasing weight sequence in an

economy where (a) there are only two skill levels, (b) high-skilled agents are more than

2.07 times as productive as low-skilled agents, and (c) the share of low-skilled agents is

large enough.

Finally, Condition 5 allows to study how the main results depend on the assumption

of a finite skill space. In particular, assume that the relative skill distances a converges

from above to 1, i.e., that the finite skill space converges to an interval. Table 1 provides

the thresholds for this limiting case as well. For this limit, two conclusions can be drawn.

First, set AN vanishes in the limit. Hence, the optimal allocation involves distortions at

the intensive margin for any decreasing weight sequence. In particular, as the threshold β

converges to 1, labor supply is necessarily downwards distorted at the intensive margin for
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all working types with weights below the population average. Second, this does not imply

that the potential optimality of upward distortions at both margins vanishes. Instead,

the conditions in part (ii) of Lemma 26 (and Proposition 5) become easier to satisfy. In

particular, the relative distance ωm
ω1

has to exceed the same threshold for all levels of σ > 0.

Lemma 28. Let Assumption 5 be satisfied and let the relative distance a converge to 1

from above. Then, the relative distance between skill types ωm(a,σ) and ω1 converges to

lima→1 ωm(a,σ)/ω1 = 2 for all σ > 0.
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