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Editorial

High-performance computing and simulation are strongly advancing fields in the scien-

tific community. The Jülich Supercomputing Centre (JSC) provides a high-class HPC

infrastructure and fosters young scientists willing to enter these domains. Our ten-week

guest student program offers interested students the opportunity to work within one

of the world’s most powerful HPC environments. Within this programme, students

with a major in natural sciences, engineering, computer science or mathematics get

the opportunity to familiarize themselves with different aspects of scientific computing.

Together with local scientists, the participants work on different topics in research and

development. Depending on previous knowledge and on the participant’s interest, the

assignment can be chosen out of different areas. These fields include mathematics,

physics, chemistry, neuroscience, software development tools, visualization, distributed

computing, operating systems and communication.

The JSC Guest Student Programme has already been successfully running for 17

years. Since the first programme in 2000, a total of 182 students have seized the

opportunity to join research teams from JSC on the Forschungszentrum Jülich campus

each summer. Working on challenging scientific projects, they gained experience with

modern hardware and software as well as HPC-related methods and algorithms. For

many students, the programme has been the foundation for a career in HPC and the

basis for fruitful continuing cooperations.

The JSC Guest Student Programme 2016 took place from August 1st to October 7th.

Once again it was run under the CECAM framework (Centre Européen de Calcul Atomique

et Moléculaire) with support by IBM Deutschland through a sponsorship within the IBM

university relations programme. It targeted students who have already completed their

first degree but have not yet finished their master’s course.

This year’s announcement yielded a record response of about 100 applications from

over 30 different countries. Competition for the available places was especially strong,

and after the final selection process, 13 students were invited to Jülich. This publication

summarized the findings of these research projects.

Ivo Kabadshow

Jülich, December 2016
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Photons with Möbius Boundary
Quenched Schwinger model on a Klein bottle

Abstract In this report I will present an implementation of

a pure gauge 2D U(1) theory on a lattice. The objective is

to measure the topological susceptibility, which, in the full

QCD theory, is proportional to the mass squared of the axion,

a candidate for dark matter. I will show that a Möbius

boundary is useful to avoid charge freezing, the main problem

that prevents performing a well controlled extrapolation to

the continuum limit. Furthermore, I will discuss how the

topological charge is influenced by space topology, and why

a new topological invariant is arising.

Giovanni Iannelli
Physics Department
University of Pisa

Italy
iannelli.gio-

vanni@gmail.com

1 Introduction
One of the main research topics in modern Physics is the origin and behaviour of Dark

Matter.

We know, from observations, that Dark Matter has a mass and generates a gravitational

field. However, its peculiarity lies in its apparent complete lack of interaction with all

other forces in nature. Its contribution to the total amount of matter (or energy) in the

universe is remarkable: it is approximately 26.8%, while the contribution of ordinary
matter is 4.9% and 68.3% is Dark Energy [1].

Axion mass

The axion is a hypothetical particle, and it was introduced in 1977 by Peccei and Quinn

to solve a problem in CP symmetry of QCD [5]. However, they didn’t realize that their

model implies the existence of a new lightweight boson, and this was pointed out the

following year by Weinberg [7] and Wilczek [8]. They noticed that such a particle must

have a very small coupling with the Standard Model, and that’s a big clue for being Dark

Matter.

In this model, the axion appears coupled to its counterpart, the saxion, and both are

described by the complex scalar theory:

L = ∂𝜇𝜙∗∂𝜇𝜙 − 𝜆
8

(𝜙∗𝜙 − f 2a )2 + 𝜒t

∣𝜙∣
fa

cos arg𝜙

in which:

 arg𝜙 is the axion field

 ∣𝜙∣ is the saxion field

 𝜒t is the effective coupling with QCD

 fa is a constant that has units of a mass, and it must be very big (∼ 1010GeV)
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V = 𝜆 (𝜙∗𝜙 − f 2a )2

ℜ𝜙 ℑ𝜙

V

V = 𝜆 (𝜙∗𝜙 − f 2a )2 − 𝜒t

∣𝜙∣
fa

cos arg𝜙

ℜ𝜙 ℑ𝜙

V

Figure 1.1: Mexican hat potential – effective potential in the axion Lagrangian.

The addition of the coupling term to this Lagrangian creates a new massive mode in

the potential, and that is where the axion mass comes from. This process can be seen

with the aid of the Mexican hat potential plot in Fig. 1.1: particles are oscillation modes

among the minima of the potential V, and, without the coupling term, V has a nonzero

slope only in the radial direction. This oscillation mode corresponds to the saxion. If

the coupling term is added, there is a slope also along the angular direction that gives

rise to the axion mass.

In terms of the Lagrangian parameters, the two masses are:

 Saxion: ms = √𝜆 fa, which is very big due to fa

 Axion: ma =
√𝜒

t

fa
, which is instead very small because of fa suppression

Topological susceptibility

The interesting part of this model is that the axion mass is related to a functional Q of

the gluon field strength tensor, called topological charge:

Q = 1

4𝜋2
∫d4x 𝜖𝜇𝜈𝜌𝜎F𝜇𝜈F𝜌𝜎

In particular, the topological susceptibility
⟨Q2⟩
V
acquires an important role since it is

proportional to the axion mass:

⟨Q2⟩
V

= 𝜒t = f 2a m
2
a

where ⟨.⟩ indicates a mean value and V the volume of the space-time.
This susceptibility can be evaluated through numerical simulations, collecting gluon

field configurations and performing the mean value.
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Link

Staple

Plaquette

Figure 2.1: Useful objects in the discretized space-time.

2 Schwinger model
When new ideas or algorithms are going to be implemented, it is comfortable to apply

them to a simplified model in order to observe the consequences without having to

handle a cumbersome theory like QCD.

Instead of the full 4D SU(3) QCD, it’s possible to work with the Schwinger model, a

2D U(1) QED theory that shares important properties with QCD, like the confinement of

fermions [6].

However, in my simulations, I implemented the model in the quenched approximation,

in which the Lagrangian has only the pure gauge term:

L = 1

4
F𝜇𝜈F𝜇𝜈

In this case F𝜇𝜈 is the electro-magnetic tensor, and the oscillation modes of the electro-

magnetic fields are photons.

Schwinger model on a lattice

To perform numerical simulations, the space-time has to be discretized on a grid, or

lattice (Fig. 2.1). Link variables are the lines connecting two lattice sites and are U(1)

elements, represented as {ei𝜑}𝜑∈(−𝜋,𝜋] numbers. If a link is taken in the opposite direction,

its value should be the complex conjugate. Plaquettes are given by the multiplication of

links in small closed loops and their value is related to the electromagnetic field.

Links have to be sampled from a probability density function e−S, in which

S = 𝛽 ∑
2

(1− ℜ2)

is the action of the theory, 2s are the plaquettes, and 𝛽 is a constant parameter related
to the physical coupling.

Heat-bath algorithm

The link sampling is done through a Markov Chain Monte Carlo: at every step only one

link is sampled, leaving the other links unchanged. Q is evaluated after each sweep,

which consists in sampling, one by one, every link in the lattice.

To get one link from his distribution, an accept/reject Metropolis-Hastings step is

implemented. The procedure I chose to apply is similar to the one showed in Montvay-

Münster [3] for extracting SU(2) matrices, but instead of starting from an exponential

proposal, I started from a gaussian proposal:

3



−𝜋 0 𝜋
0.0

0.1

0.2

0.3

0.4

x

N ecos x

N e− x2

2

Figure 2.2: The Ns are the normalization factors.

Let U be the link to sample, ̂U all the other links (kept fixed), S the staples connected

to U and W(U| ̂U) be the probability density function of U. Then

W(U| ̂U) ∝ e𝛽ℜ(US)

Defining k ≡ |S| ,U0 ≡ S

k
U, it is still U0 ∈ U(1), so:

W(U| ̂U)dU = W(U0| ̂U0)dU0 = e𝛽kℜ(U0)dU0 = e𝛽k cos argU0dU0

since dU and dU0 are the same measure.

Due to the fact that ecos x is similar to the gaussian e1− x2

2 (see fig. 2.2), the accept/reject

algorithm is straightforward and the acceptance ratio is pretty high: in all simulations I

did, is above 95%.
Topological charge in the Schwinger model

The topological charge in 2D assumes a simplified form:

Q = 1

4𝜋 ∫d2x 𝜖𝜇𝜈F𝜇𝜈

while, in the discretized theory, it becomes:

Q = 1

2𝜋 ∑
2

(arg2 → (−𝜋, 𝜋])

in which arg2 → (−𝜋, 𝜋]means that the angle given by arg2 is shifted to the equivalent
value in (−𝜋, 𝜋], and this is done by the function x ↦ x − ⌈x − 𝜋

2𝜋 ⌉2𝜋.
The properties of this functional can help to visualize the physical meaning of Q:

 Different areas, called instantons, with their own charge value, contribute to the
total amount of Q.
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Figure 2.3: Instantons moving around in the bulk.
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Figure 2.4: Instanton moving over the boundary on a torus.

 If very few local changes are applied to links, inside or not the instantons, the
charge value remains constant, and, for this reason, is difficult to create or destroy

a new instanton, especially for fine lattices.

 What actually happens, is that instantons just move around in the space during
the simulation (Fig. 2.3).

Boundary conditions

Usually periodic boundary conditions are implemented in lattice simulations. This means

that the borders of the lattice are connected in order to form a torus, like in Fig. 2.4. In

such a case, Q can only assume integer values because, over the sum, every link is taken

in both directions, and the only terms surviving are the shifting terms to (−𝜋, 𝜋], which
are just integer numbers.

If an instanton reaches the border, it will just be moved on the other side, and the

total amount of charge remains constant. This property is called topological invariance.

This means that, in the continuum limit, Q will be frozen in only one configuration, and

it will be impossible to compute any reliable mean value (Fig. 2.5).
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Q
𝛽 = 5.0, N = 20
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Q

𝛽 = 7.2, N = 24

Figure 2.5: History plot of the topological charge on a torus. When the lattice gets finer, the

charge freezes in one value. (Periodic boundary).

Möbius boundary

The situation could change and the problem could be solved, if one of the boundaries is

switched from periodic to Möbius, as discussed in [4]. Gluing together such boundaries,

in 2D, would produce a Klein bottle surface (Fig. 2.6) and Q can now assume non-integer

values, because the contribution of links on the Möbius border is not cancelled anymore

over the summation.

Another crucial property of the topological charge is that if the orientation of the

manifold is inverted, the value of Q changes sign. This means that, on a non-orientable

surface, an instanton can change sign just moving through the boundary.

The history plot with Möbius conditions has a different behaviour (Fig. 2.7) and

doesn’t manifest freezing anymore.

It is interesting to notice that the sign flipping of the instantons can be seen from the

history plot: Q has rapid jumps of ±2 or ±4, and this means that one or two instantons
have passed the Möbius border.
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Figure 2.6: Instanton moving over the boundary on a Klein bottle.
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Q
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Figure 2.7: History plot of the topological charge on a Klein bottle. The charge doesn’t freeze as

in the torus case. (Möbius boundary).
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3 Numerical results
For all my simulations, I have started with a hot initial configuration, i.e. every link

angle is sampled from an uniform distribution in (−𝜋, 𝜋]. In each simulation, I made
50000 measures, one every sweep, and discarded the very first thermalization values

(I chose the number of iterations to discard accordingly to the corresponding history

plot of the charge). To get rid of the autocorrelation bias in evaluating mean values and

errors, I applied Jackknife method on the dataset splitted in 20 blocks (20 are enough

to have correct Jackknife evaluators, but not too many to show autocorrelation).

Measuring the plaquette

The first thing one would like to measure is the plaquette mean value: it is the best and

fastest validity test, since its value is available for comparison in the literature. After

each sweep, I evaluated and stored the mean value of all plaquettes in the lattice.

Furthermore, the plaquette mean value in the infinite box size limit should be the

same also with Möbius boundary, since it is independent of the orientation of the space.

Running the program with 𝛽 = 7.2 and box size N = 24, I could check the compatibil-

ity between my values the one obtained by Dürr-Hoelbling (2005) [2]:

 0.927681(78) on a torus

 0.927729(37) on a Klein bottle

 0.927722(54) Dürr-Hoelbling

Topological susceptibility: infinite volume limit

To figure out the limit of infinite volume, one should keep the coupling fixed (i.e. 𝛽)
and compute 𝜒 for different values of box size N.

A B C D E

𝛽 1.0 1.0 1.0 1.0 1.0

N 12 16 20 24 28

As shown in Fig. 3.1, topological susceptibility is already stable for small box sizes,

and the results are compatible with both boundary conditions.

Continuum limit

To evaluate the limit of vanishing lattice, 𝛽 has to be increased together with the size of
the box in order to keep the physical coupling constant. To find the corresponding 𝛽
values, one needs a scaling study, and I have used the results obtained by Dürr-Hoelbling

(2005) [2]:

F G H I J

𝛽 1.8 3.2 5.0 7.2 9.8

N 12 16 20 24 28

8
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Figure 3.1: Infinite volume limit of the topological susceptibility. In both cases, lattice artifacts

are not observed even for small lattices, like 12 × 12.
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Figure 3.2: Continuum limit of the topological susceptibility. On a torus, data are compromised

by charge freezing.
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As shown in Fig. 3.2, the values for ⟨Q2⟩ have the same behaviour under both boundary
conditions, however, in the case of periodic boundary, topological freezing prevents a

fair evaluation: for point I, the number of independent configurations is not enough to

get a useful value, while, for point J, there is complete freezing at the value Q = 2. On

the other hand, for Möbius boundary, it’s possible to perform measurements towards

the continuum limit without suffering from charge freezing. In the plot is also shown

a linear fit of the data in green, and the red cross indicates the limit value found by

Dürr-Hoelbling (2005) [2]:

 ⟨Q2⟩ = 1.87(6) is the continuum limit on a Klein bottle

 ⟨Q2⟩ = 1.84(6) is the limit from Dürr-Hoelbling on a torus

4 Conclusion
Changing the boundary condition actually prevents charge freezing and yields the same

continuum limit, confirming that this approach could lead to a more precise value of

the axion mass.

In the Schwinger model, finite box size artifacts to the susceptibility are very small,

even for quite small box sizes, and also switching one boundary to Möbius doesn’t

produce any significant artifact.

Few other considerations have to be done about the topological charge because both

charge quantization and topological invariance are lost switching from a torus to a Klein

bottle.

A new charge

In order to recover them, a new topological charge can be defined. To have only integer

values, the contribution of the Möbius border have to be subtracted. This is done adding

two times the Polyakov loop on the Möbius border. This operation, however, leaves a

gauge degree of freedom of 4k𝜋:

Q = 1

2𝜋 ∑ (arg2 → (−𝜋, 𝜋] + 2P0 + 4k𝜋)

and can be suppressed taking the modulus 2 value:

Qe/o ≡ Q mod 2

This charge is also a topological invariant because, if an instanton changes sign, the

variation of Q is absorbed into the modulus operation.

Plotting the history of Qe/o (Fig. 4.1), shows again the charge freezing in one of the

two possible values.

Furthermore, for all values of (𝛽,N) considered, the ratio
Qe/o = 1

Qe/o = 0
is compatible

with 1. This situation may change if also fermions are considered in the action, and

implementing them could be an interesting outlook for this project.

It’s not clear what could be the physical meaning of this new charge. Perhaps it

could be coupled to the axion mass as well, in an extension of the model that take into

consideration also topologically non-trivial manifolds.
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Figure 4.1: History plot of the even/odd charge. Freezing is now present since this charge is a

topological invariant
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Floor Fields in JuPedSim

Abstract For the JPScore module of JuPedSim, several

changes with the aim of speeding up the router and the di-

rection strategy computation when floor fields are used have

been made. The implementation ideas are presented in de-

tail in this report. Furthermore, the scaling behavior of the

now-improved program has been investigated.

Fabian Mack
Faculty of Chemistry and

Biosciences
Karlsruhe Institute of

Technology
Germany

fabian.mack@stu-
dent.kit.edu

1 Introduction
Pedestrian dynamics is a research field of great interest. One branch deals with the

calculation of the movement of pedestrian in a given environment and under given

circumstances.

Places with high pedestrian density like shopping malls or train stations – buildings

which are erected for decades – need to be planned carefully to avoid congestions

or long waiting times. Being able to predict the paths pedestrians will take can help

architects to optimize the pedestrian traffic flow, allowing them to use the building more

economically and more comfortably.

For all these kinds of buildings, as well as for big events (e.g. festivals), it is also

necessary to plan escape routes. It is crucial to know the capacity of the location, as

well as the evacuation time and the crowd movement in an emergency situation. When

it becomes apparent in advance that this causes problems, pedestrian simulation can be

used to optimize such route by relocating barriers or adding information signs.

The calculation of the pedestrian movement has to be included into a larger context. An

input geometry of the location to be investigated has to be provided, then the simulation

can be run. Data has to be collected and statistical analysis has to be performed in

order to use the generated information or to validate the model. It might also be

desirable to visualize the trajectories of the pedestrians to easily identify bottlenecks.

One framework which provides this functionality is the Jülich Pedestrian Simulator

(JuPedSim), a platform independent open-source project, licensed under the GNU Lesser

General Public License (LGPL) [3]. The aforementioned tasks are mainly independent

from each other, therefore, JuPedSim is divided into several modules.

The calculation of the trajectories is done in a module named JPScore. There are

different tasks to be done for a complete simulation. First, the pedestrians need their

next destination (which usually is a door). It is the router’s task to find the optimal

route and guide the pedestrians through the building. Second, the pedestrian needs to

know how to navigate from his position inside the room to the door designated by the

router. The direction a pedestrian should go in is given by the so called direction strategy.

Third, a pedestrian cannot always walk in this desired direction: Other pedestrians

might be standing in his way. The operational model calculates the interaction between

the pedestrians and prevents them from walking into each other. This is done in parallel

for all the pedestrians, one time step after the other. This is necessary because the

latest position of all pedestrians is needed for the calculation of the inter-pedestrian

forces. This implies that the next time step cannot begin before the calculation of the
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(a) The floor field like it is used by the router.

Since the distance to walls is not consid-

ered, the trajectories are partially identical

to walls.

(b) The floor field like it is used by the direction

strategy. When the propagation of the floor

field is slowed down near the walls and obsta-

cles, pedestrians try to avoid them, resulting

in a more realistic vector field.

Figure 1.1: A visualization of a floor field for reaching the right side of the room. The color

code represents the cost, black lines connect points of equal cost. The black arrows indicate

the gradient. The white lines are the trajectories of two pedestrians in the room. The blue

U-shape represents an obstacle. Source: [2]

last pedestrian from the previous time step has finished.

All of these tasks are not trivial. While the router could take the linear distance

between two doors, this would underestimate the real distance in non-convex rooms. A

simple direction strategy could lead the pedestrian directly towards the door. Again,

this method is suboptimal in non-convex rooms. The pedestrian might even get stuck

when he had to go around several corners or obstacles. A solution to these problems

is the floor field, as first described by Burstedde et al. in 2001 [1]. Such a floor field

(requiring the domain 𝛺 ⊂ ℝn, e.g. a room, a target ∂𝛺, e.g. a door, and a function f (x)
with positive values) assigns a value c(x) to every point x ∈ 𝛺. This value describes
the cost to reach this point from the target (or vice versa). Described by the Eikonal

equation, a well known approximation for wave propagation,

|∇c(x)| = 1

f (x) , subject to c|∂𝛺 = 0 ,

the floor field is calculated by the fast marching method [4]. The space domain is

discretized. The function f (x) has the physical meaning of the speed of the wave, which
corresponds to the maximum walking speed of a pedestrian at the location x in our use

case.

Since the router and the direction strategy have different requirements, different

floor fields are used. The router needs the distances between any two doors, therefore

many floor fields have to be calculated. To compensate for that, a large grid spacing

is chosen and f (x) = 1 over the whole domain, implying a uniform wave speed. The

resulting floor field for a sample geometry is depicted in figure 1.1a. For the direction

strategy, the direction a pedestrian should take at a given point needs to be calculated

from the gradient of c(x); therefore, a finer grid spacing is needed. Some operational
models might have problems with pedestrians being too close to a wall. Under rare

circumstances, such a pedestrian might erroneously be treated as being stuck. But

forcing the pedestrians away from the wall does not only resolve this computational

problem: It can also be observed in reality that pedestrians tend to avoid walls. This

can be easily modelled by decreasing the propagation speed of the wave f (x) near walls
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and obstacles (see figure 1.1b), as proposed in [2]. This causes the gradient not to

point directly to the target or a corner that has to be passed to reach the target, but to

also include a component away from the wall, causing pedestrians to leave the wall if

they are standing or walking near one and not to approach other walls too close. The

resulting trajectories are no longer the shortest way, but the fastest, according to the

walking speed f (x). The walking speed close to the walls is not modified in the router
where approximate results are sufficient.

The calculation of the floor fields is a computationally expensive task. In order to

achieve real-time simulation, parallelization suggests itself. In JuPedSim, this is done

by using the directives allowed by the OpenMP standard. They enable us to simply use

multiple threads and shared memory.

2 Implementation
2.1 Router Initialization
The router needs to be initialized before it can fulfill its task of leading the pedestrians

through the building. For the floor field router, this includes the calculation of all

possible floor fields and the determination of the door–door distances (which are saved

in a paths matrix) within one room. Afterwards, the Floyd–Warshall algorithm acts on

this matrix to find the shortest distance between any two doors.

The calculation of the floor field is an expensive operation. The program logic was

in a way that all rooms were calculated in parallel. The problem with this approach is

that the floor fields in one room, but belonging to different doors, are calculated one

after the other. This is not strictly necessary since these floor fields are independent

from each other. The new approach is to collect all pairs of rooms and doors first and

then to calculate these in parallel. This leads to smaller chunks of work that can be

more uniformly distributed over the available threads. This also tackles the problem

of big rooms having many doors, which are two reasons for a long processing time.

Since the floor fields for different doors are now split up, only the problem of having

big rooms remains. However, splitting up one floor field to calculate it in parallel seems

impractical.

2.2 Direction Strategy Floor Fields
Since the direction strategy needs to deliver an accurate direction, a much finer grid is

needed than for the router. It is thus highly desired not to calculate more floor fields than

needed and – since the calculation takes a considerable amount of time – to structure

the program in such a way that other threads do not idle longer than necessary when

one thread is calculating a floor field. In this regard, two issues have been identified.

First, there are cases where the same floor field is requested by two pedestrians during

the same time step. This case had no special handling and therefore, the calculation

took place twice. This does not only waste CPU cycles, but also prevents the thread from

calculating other pedestrians, which might need a new floor field, too. The solution to

this problem is to keep track of which floor fields are being calculated and not to start

the calculation a second time. Instead, the method returns a special value which can be

interpreted differently by the operational models. For the models currently implemented

in JPScore, this means that the pedestrian keeps its current direction, and possibly slows

down a little. Immediately afterwards, the next pedestrian can be calculated by this
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thread. In the next time step, the floor field in question will have been calculated by the

first pedestrian who needed it and can thus be used by all the pedestrians. It has been

verified with different sample geometries that the loss of accuracy in one time step has

no visible impact on the overall result (neither on the trajectories nor on the evacuation

time).

Second, the calculation of floor fields in a simulation step slows down the whole

simulation if this is the last task to finish within one time step. It would be more efficient

to calculate the floor fields for the direction strategy during the initialization phase. The

needed floor fields have to be identified first; this is currently only implemented if the

floor field router is used. This router can provide the direction strategy with a list of all

needed pairs of rooms and doors that are presumably needed for the initial pedestrian

distribution. The corresponding floor fields can the be calculated in parallel before the

first simulation time step.

2.3 Critical Constructs

When it comes to parallel programming, it is sometimes necessary to access global

variables or class members that are shared among multiple threads. If this happens in an

uncontrolled manner, data races may occur, resulting in data corruption or data loss. By

the use of a critical construct, OpenMP allows the programmer to restrict the access to

such instructions. While a thread is operating within a critical region, no other thread

can enter a critical region with the same name.

In the code of JPScore, all critical constructs were unnamed. This is of particular

interest in the calculation of the floor field. Here, two different class members are

accessed several times. While they are independent from each other, this is not properly

represented in the code by naming the corresponding constructs. Since threads have to

wait at the beginning of a critical region, this increases the wall time of the program

and can even lead to deadlocks in some cases. In all known cases, the stalling could be

avoided by naming the critical constructs appropriately.

2.4 New Router Floor Field

The router and the direction strategy used the same type of floor field – one that has

the whole length of the door as a target. This is desirable for the direction strategy

because it allows two pedestrians to walk through this door side by side. However, when

used for the router, this might produce unwanted results, as visualized in figure 2.1a.

The floor fields for reaching the right and the middle door, which is represented by

lines of equal costs, are shown. The distance between two doors is the cost of one floor

field, evaluated at the center of the other door. If a pedestrian was to walk this way,

he would follow the gradient, as indicated by the red arrows. As is clearly visible, a

(hypothetical) pedestrian walking from the left to the right door would not necessarily

pass by the center of the middle door, meaning that the length of the path as estimated

by the router is shorter than the way the pedestrian would be going to take (notice the

small gap between the two arrows at the middle door). The problem that is caused by

this becomes obvious if we consider a corridor that a pedestrian wants to walk through

from north to south, with doors on the side of the corridor. As depicted in figure 2.1b,

the router assumes that the path to the first door on the side of the corridor, then to the

next door, and so on until the end of the corridor is shorter than the direct path because
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(a) A visualization of the floor fields emerging

from the right and the middle door into the

room to their respective left side. The red

arrows indicate the path from the center of

a door to the one to its right, following the

gradient of the floor field.

(b) The same sketch for a different room.

For clarity, the floor fields are not visual-

ized and the red arrows have been shifted

to avoid overlapping with the wall. The

route indicated by red arrows is wrongly

assumed to be shorter than the direct path

(green).

Figure 2.1: Explanation why door hopping happens and its consequences
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Figure 2.2: A depiction of how the coarse grid for the subroom determination works. The black

dots represent grid points of the floor field grid (for clarity, there are only 16 and not 256

floor field grid points per subroom grid point), the larger blue points in the corners are grid

points of the newly implemented subroom grid. They store the subroom they are in, indicated

by the number. The straight lines are the borders between the subrooms. The red dot is a

probe point. Further explanation on how the algorithm operates can be found in the text.

the pedestrian is assumed to skip half the door width at every door. Without further

corrections, a pedestrian would either get stuck at a door or walk to the first door, but

then walk back into the same room to reach the next door – a behavior that we named

“door hopping”.

The problem was dealt with in a way such that whenever a pedestrian needed to

find the next exit door, the router would check whether the pedestrian leaves the room

through this door, and would return this door only if this condition holds. However,

when it comes to getting the presumable exit route (to initialize the floor fields of the

direction strategy), the same problem arises again: Without further correction, the floor

fields belonging to the side doors are calculated as well as the floor field for the final

door, although the first ones are not needed.

To overcome this problem, a new kind of floor fields has been implemented for the

router: a floor field that leads only to the center of the door. Now, the distance between

two doors is always calculated as the distance of the two center points. These distances

satisfy the triangle inequality, which avoids door hopping completely and is therefore

well suited for the router. It is not advisable to use this kind of floor field for the direction

strategy because it effectively shrinks the door to a point, allowing only one pedestrian

at once to pass through it.

2.5 Determination of the Subroom
For the calculation of the floor field, it is necessary to know whether a given point of

the floor field grid is inside or outside of the room. Since a room is not aware of its

boundary, this is achieved by iterating over all the subrooms (disjoint subunits whose

union equals the whole room) and checking whether the probe point lies within this

subroom. Doing this for every grid point (the currently implemented spacing is 6.25 cm)
is computationally expensive.

The implementation has been changed to do this expensive calculation only for the

grid points (blue in figure 2.2) of a coarser grid (1m in the current version), named
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“subroom grid” below. There are thus 256 grid points of the floor field grid belonging to

a square formed by four points of the subroom grid. When the subroom of a floor field

grid point is needed, the subrooms in which the four corners lie are checked first. Only

if the check in all (up to four) subrooms is unsuccessful, the complete list of subrooms

(excluding the ones already investigated) is checked. If in figure 2.2, the subroom of the

red probe point shall be determined, the subroom of the lower left corner (17 in this

case) is checked. Since the red point is not in subroom 17, the next subroom grid point

is checked, e.g. the upper left one. Since subroom 17 has already been checked, it is not

checked again. Then, the subroom of the upper right corner, subroom 23, is checked.

Since this check is successful, the algorithm terminates. While with the old approach, all

subrooms from 1 to 23 had been checked, only two subrooms (17 and 23) were checked

in the subroom grid approach in this case, which is a significant reduction. Since we

still check the subroom for every floor field grid point, it is guaranteed that for every

such point, the correct subroom (and therefore the information whether a point is inside

or outside the room) is still obtained in every case, so the behavior of the program is

not altered.

2.6 Direction Strategy Initialization Scheduling

A lot of the execution time of the program is spent in the initialization of the direction

strategy for the creation of the grid. In the investigated sample geometry, this initializa-

tion took around 24 s, which is more than half of the complete execution time of the

program (around 40 s, all measurements with 8 threads). It is therefore desirable to

speed up this part.

The current scheme is that all rooms initialize their grid in parallel, using the parallel

for directive from OpenMP. There are three different scheduling kinds that can be used

together with this directive: static, dynamic, and guided. With the static clause, all loop

iterations are distributed as evenly as possible over the available threads before the

execution of the loop starts. With the two clauses dynamic and guided, not all the work

is distributed at the beginning. Rather, once a thread finishes its current chunk of work,

it requests a new one. A guided scheduling starts with distributing larger chunks that

decrease in size when most loop iterations have been distributed. The idea behind this is

to have fewer portions to distribute and therefore less overhead. For all three scheduling

kinds, a chunk distributed is never smaller than the chunk size specified (except the

last one). The dynamic and guided scheduling are usually beneficial when the tasks that

have to be done are very different in size – as is the case here with rooms of dissimilar

areas. For this reason, a significant difference between different scheduling kinds can

be expected.

For the aforementioned geometry, the three scheduling kinds have been examined

with chunk sizes varying from 1 to 4. In each test, 8 threads have been used. For the

static kind, an additional test has been run where the chunk size parameter has been

left out, causing the chunk size to be determined in such a way that all loop iterations

are distributed at once. This is also the default when no scheduling clause is specified

at all. For the other two scheduling kinds, the default value is 1. The average of five

measurements for each possible combination is listed in table 2.1. As can be seen from

these data, the times for the investigated set of parameters all lie between 24.0 s when
using static with a chunk size of 3 or 4 and 24.4 s when using dynamic or guided with
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chunk size static dynamic guided

1 24.1 24.3 24.4

2 24.2 24.4 24.4

3 24.0 24.4 24.4

4 24.0 24.4 24.4

not specified 24.1 − −

Table 2.1: Measured initialization times in s

almost every chunk size investigated. It has been observed that the recorded times vary

by up to 0.3 s for the same measurement, so it seems reasonable to assume a margin of
error of ±0.2 s. From the data, we can see that the static scheduling is faster by 1.6%.
This might be caused by the additional overhead for the dynamic and guided scheduling.

For all scheduling kinds, the difference between varying chunk sizes lies within the

assumed margin of error.

3 Scaling
The scaling behavior of the program was analyzed when between 1 and 8 threads are

used. The time for the initialization of the direction strategy and the complete execution

time of the program were measured for 10 times each, using both the static and dynamic

scheduling kind with their default chunk size. From the values of the static scheduling,

the duration of the non-initialization part of the program has been calculated. The

average values are visualized in figure 3.1.

The data clearly show that the scaling of the program can still be improved. The time

needed for the initialization of the direction strategy with static scheduling does not

scale: It is either 32 s to 33 s if 1, 2 or 4 threads are used, or 24 s when another number

of threads (of those tested) are used. Further investigation of this issue showed that

this alternating behavior is specific for the used geometry. The reason is an unfortunate

distribution of the rooms to the available threads. With 1, 2 or 4 threads, the two

biggest rooms are assigned to the same thread (this is due to the order of the rooms

and the static scheduling that was used), increasing the run time. Since for 8 cores,

the rooms are distributed in a favorable way, different scheduling types as tried out in

section 2.6 had little influence. Redoing the scaling test with dynamic scheduling with

the default chunk size of 1 demonstrates the performance gain when 2 or 4 threads are

used. For other number of threads, a negligible overhead is introduced. However, the

initialization only scales up to 3 threads; from then on, the time is constant between

24.4 s and 24.5 s. The rest of the program is independent of the scheduling kind. For
this part, the time reduction when using multiple threads can easily be seen. The serial

fraction of the non-initialization can be calculated by linear regression on Amdahl’s law;

in the investigated case, it is 54%. This includes, however, the parsing of the input files
(configuration and geometry), a task that cannot be parallelized.

20



0 5 10 15

15

20

25

30

35

#threads

n
e
e
d
e
d
ti
m
e
in

s

Init (static)

Init (dynamic)
Non-Init

Figure 3.1: Scaling for the optimized program using a sample geometry. Shown are the times the

initialization (abbreviated “Init”) of the direction strategy needs with two different scheduling

kinds as well as the rest of the program (“Non-Init”).

4 Conclusion & Outlook
In this report, several improvements to the JPScore modul of JuPedSim have been

presented. The main task was to speed up the calculation of the parts of the code

involving floor fields, namely those routers and direction strategies who are based on

them. For some of the changes, a performance improvement could be measured. Not all

modification already develop their full potential though. It is to be expected that the

further application of JuPedSim (e.g. on bigger buildings) will make greater demands

on the program, making parallelization even more important.

In section 2.4, a new kind of floor field that has been implemented was presented.

The door hopping problem has been a known issue that was dealt with in a working,

yet unsatisfying way. With the changes made (in this case, shifting the calculation of

the floor fields for the direction strategy to the initialization phase), this issue came up

again and the inconvenience emanating from it grew. The floor field starting only at the

centre of the door does not only overcome the aforementioned issue, but also adds to

the variety of models and options JuPedSim offers.

For the initialization of the direction strategy, the most time consuming task of the

whole program, different scheduling clauses (static, dynamic, and guided) for the OpenMP

pragma have been tried out. When using 8 threads, no performance gain was observed,

but the additional overhead introduced by dynamic and guided scheduling was measured.

We soon realized that the scheduling only had an influence under certain circumstances.

For the investigated geometry, using 8 threads does not yield such a case, but using

4 threads does. In this case, the dynamic scheduling does indeed reduce the initialization

time, as we expected. However, the time does not change anymore when more than three

threads are used. A possible reason is the large amount of memory that is allocated, but

this needs further investigation. If this is indeed the cause, the solution is to reorganize

the memory allocation and its use.

JuPedSim is still under heavy development: New methods, models and features and
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added, old ones are improved or removed if they are rarely used in practice because

they are inefficient or yield results that model the reality insufficiently. Since new ideas

come up all the time, structures that have been in the program code for a long time are

not safe from being reworked. One such example is how the subroom is determined.

The implementation of a coarser grid turned out to be a success. It is obvious that a

similar concept can be applied to other grid data used in the program, e.g. the distance

to walls.
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1 Introduction

The simulation of interactions between particles is of peculiar interest in diverse research

areas such as astrophysics, plasma physics and molecular dynamics. These areas have in

common the necessity to describe the motions of numerous objects interacting with each

other. In order to accomodate this necessity by simulating dynamic particle systems,

long-range Coulomb interactions have to be considered. Due to the absence of an

analytical solution for this so called N-body problem for N ≥ 3, where N is the number

of particles, we have to compute the acting forces numerically, in order to obtain the

resulting motions. To compute the force acting on one particle, a classical Coulomb

solver would ascertain the interaction between this particle and each of the remaining

particles, which leads to O(N) computations. Due to the fact that we need to determine
a force vector F for each particle in the system, this method leads to a computational

complexity of O(N2). Considering that realistic systems may contain millions of particles
and that each timestep of a simulation costs O(N2) computations, such a direct approach
is not feasible.

Therefore the development of more efficient methods, e.g. fast summation techniques,

was of great interest. One of these fast summation techniques is the fast multipole

method (FMM), which was developed by Rokhlin and Greengard in 1987 [4]. The FMM

reduces the complexity of computing the long-range interactions from O(N2) to O(N)
by spatial grouping of particles, based on the idea, that particles further away from an

oberserved particle affect that particle less than particles in the proximity.

Since the theoretical concepts of the FMM need to be implemented for todays HPC

systems, we outline the initial requirements briefly. Foundation of this work is a highly

templated C++11 implementation of the mentioned fast multipole method. Since the

implementation already covers inter-node parallelization by means of MPI, the goal of

this work is to describe an intra-node parallel implementation with std::thread. This

is necessary to advance towards the goal of simulating one timestep for an arbitrary sized

particle ensemble in only one millisecond. Due to that goal, the parallel implementation

not only needs to cope with as few particles per node as possible, but also needs to

fullfill the requirements of strong scaling – even on many-core architectures like Intel’s

Knights Landing [5].
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2 Essentials

In this section we first depict the workflow of the FMM as it is specified in reference [7].

In the course of this, we leverage the methods parallelization potential. Subsequently,

we introduce the concepts of tasking, in order to combine these two in section 3.

2.1 Workflow of the Fast Multipole Method

As input the FMM receives the coordinates x and the charge q of each particle in the

system. The workflow of the method, starting with this input, is depicted in figure

2.1. Output of the FMM are the forces F, the potential 𝜙 and the Coulomb energy
E of the system. Based on the particles force vectors, velocities and corresponding

position updates for the particles can be computed. Subsequently we will describe how

to transfer input data into output data step by step. In a preprocessing step, we first have

to determine three parameters. Firstly, the multipole order p, which determines the

precision of the computed results. Secondly, the well-seperateness criterion ws, which

differentiates a boxes environment into near- and farfield. In the implementation ws

is configureable, but in this work ws = 1 applies constantly, because this reduces the

number of direct interactions to a minimum and yields the best performance. Thirdly,

we determine the maximal tree depth dmax of the derived FMM tree with regard to the

multipole order p and the number of particles N.

The principle mentioned in section 1, that remote particles affect a particle less than

particles in the proximity, and its consequence – the possibility to group remote particles

together in form of pseudo-particles – is illustrated in figure 2.2. The illustrations depict

the inter-cluster interactions between two groups of particles and exhibit, that spatial

grouping leads to a reduced number of interactions.

Based on this concept, we start out with a hierarchical space subdivision of the cubic

simulation box. We do so by bisecting the cube in each dimension, which generates

eight equally sized child boxes. For a three-dimensional particle system this results in

a data-structure commonly referred to as octree. The subdivision of the child boxes

is recursively continued until the determined tree depth dmax is reached. Figure 2.3

illustrates this principle for a two-dimensional system. The levels of the tree can be

named by depth d, whereas d = 0 indicates the root of the tree, respectively level index

l, whereas l = d + 1.

Having finished the initial setup, we will now go through the five passes of the

FMM, depicted in 2.1, with respect to parallelization concepts. In passes 1 to 4 the far

field contributions are computed, while the near field contributions are independently

computed in pass 5.

E
F
𝛷

x
q

dmax
p
ws

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

Figure 2.1: Workflow of the FMM.
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(a) (b) (c) (d)

Figure 2.2: Spatial grouping of particles in order to reduce the number of interactions, see [3] for

details (picture source: [3]). 2.2a Direct interactions between particles, except inter-cluster

interactions. 2.2b Grouping particles of upper cluster to pseudo-particle; interaction between

pseudo-particle and particles in the lower cluster. 2.2c Grouping particles of lower cluster to

pseudo-particle; interaction between pseudo-particle and particles in the upper cluster. 2.2d

Interaction between pseudo-particles.

2.1.1 Pass 1: Particle to Multipole (P2M) & Multipole to Multipole
(M2M)

Pass 1 consists of two steps. The first step is the expansion of the particles on the lowest

level into multipole moments, referred to as P2M. Assuming that we have a number

of threads t, e. g. t = 4, this step could for instance be parallelized as illustrated in

figure 2.4a. The figure shows a binary tree for illustration. Each color stands for one

thread, which means that each thread could perform P2M for two boxes independently

from the other threads. Generally speaking each thread could perform P2M on 8dmax/t
boxes. Due to the fact, that the boxes do not necessarily cover the same number of

particles, this approach would already lead to load-imbalances. Another parallelization

approach would be to distribute particles equally to the threads. The latter would

admittedly lead to a perfect load-balancing for this step, but would conversely introduce

synchronization and further parallelization overhead. Synchronization overhead due

to the fact, that multiple threads construct the multipole of the same box; further

parallelization overhead, due to a larger number of work units to be scheduled. In

the second step of pass 1 we translate the constructed multipole moments 𝜔 up the
tree. As depicted in figure 2.4b, this step could be performed on subtrees partly in

parallel. Starting on the lowest level l = 4 each of the four threads could shift two

multipole moments from the lowest level to the center of the corresponding parent box.

Subsequently each thread could translate the so created parent boxes multipole moment

(a) d = 0 (b) d = 1 (c) d = 2 (d) d = 3

Figure 2.3: Hierarchical space subdivision of a two-dimensional system, see [3] for details (picture

source: [3]).
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(a) Parallelization of P2M, L2P and P2P. (b) Parallelization of M2M.

(c) Parallelization of M2L. (d) Parallelization of L2L.

Figure 2.4: Pass-dependent parallelization approaches.

one more level up the tree. As the color gradients in figure 2.4b indicate, we need the

threads to synchronize at these points. Due to the O(N) requirement of the FMM, we
cannot shift the multipole moment one level up, before the last child box multipole

moment was shifted to the center of the parent box. In consequence of the mentioned

synchronization points, respectively the tree getting smaller with decreasing depth d, an

increasing number of threads becomes idle while going up in the tree towards the root.

With respect to strong scaling this causes trouble, because – as Amdahl’s law implies,

the theoretical speedup is limited by the sequential parts of a program. Meaning, as

long as we have to do at least something sequentially, e.g. the M2M operation for the

root node, we will not reach ideal scaling.

2.1.2 Pass 2: Multipole to Local (M2L)

In pass 2 we transform the multipole moments 𝜔 on each level into local moments 𝜇. An
approach to execute these transformations in parallel is shown in figure 2.4c. M2L needs

to be executed for each box and the operations do not depend on each other. Hence

we can distribute the work as follows: Starting from the lowest level, an equal amount

of boxes is assigned to each thread. Regarding the example in figure 2.4c this would

correspond to two boxes per thread. Each time we go up one level, we have to decide

to which thread the M2L operation of the parent box is assigned. In the example this

operation is by convention assigned to the thread, which performed M2L on the left

child. As the example exhibits, this work distribution leads to load-imbalances due to

the tree structure. However, the described distribution also leads to load-imbalances

for two more reasons. Firstly, the tree may contain empty boxes for which no M2L

operation needs to be done. As a consequence, the threads to which these boxes are

assigned, have less work. Secondly, in a not fully periodic system, the boxes located

near the boundaries have less neighbors. Therefore, the threads to which these boxes

are assigned, have to compute less local moments 𝜇.
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2.1.3 Pass 3: Local to Local (L2L)

In this step we start at the root and shift local moments 𝜇 down the tree. Figure 2.4d
depicts a possible parallelization approach. Starting at the root box each thread could

shift the local moment of the root box to an equal amount of child boxes. In the shown

example we spawn two threads to do so. Once the local moment has reached the child

box, we could again spawn threads and assign an equal amount of shifting-operations to

them. Generally speaking, we could make use of 8d threads to shift the local moments

from depth d − 1 to level d, assuming that each thread executes one L2L operation.

Applying this principle until the local moments reach the lowest level, it becomes

apparent, that parallelism increases from the top to the bottom of the tree.

2.1.4 Pass 4: Local to Particle (L2P)

This pass covers the computation of the far field contributions by translating the local

moment of each box on the lowest level to each particle in the according box. Figure

2.4a points out, that L2P can be parallelized in a similar manner as P2M. Each of the t

threads performs L2P for all particles in 8dmax/t boxes on the lowest level. Regarding the
example, each of the four threads performs L2P for two boxes.

2.1.5 Pass 5: Particle to Particle (P2P)

So far we have described the passes required to compute the far field contributions.

In order to complete the computation of the interactions, in pass 5 the near field

contributions are computed. Thus the pairwise interactions between the particles in

one box on the lowest level and the particles in the adjacent boxes, with respect to the

well-seperateness ws, are taken into account. Even though we refer to this pass as pass 5,

it has not necessarily to be executed after the abovementioned passes. Thanks to being

independent from the other passes, P2P can even be computed in parallel to all other

passes. Furthermore, P2P itself can be parallelized analogous to L2P respectively P2M

as shown in figure 2.4a.

2.2 Tasking
In addition to the threading-concept, applied in section 2.1, we introduce the concept of

tasking in this section.

We refer to tasking as the assignment of tasks to threads. In this context a task is a

unit of work of specified size, whose execution contributes to a major computation.

To give an example for tasking, we consider the subdivision of a classical Coulomb

solver into tasks. One way to do so, would be to consider the computation of a single

interaction between two particles out of all pairwise computations as a task, which

would lead to small tasks and hence a fine granularity. However, a task could also be the

computation of the interaction between a certain particle and all other particles, which

would lead to a much coarser granularity. Thanks to the tasks being independent from

each other no matter which subdivision we choose, the tasks can be equally assigned to

the threads and be computed in parallel.

3 Taskifying the Fast Multipole Method
After introducing the workflow of the FMM and the basics of tasking, we will now

combine these two. To do so, we could, sorted by ascending granularity, subdivide the

algorithm into tasks based on levels, boxes or particles. In the subsequent sections we
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Source P2M M2M M2L

P2P

L2L L2P Target

Figure 3.1: Dependencies between tasks. Dependencies that need to be resolved to transform a

source particle into a target property.

stick to boxes in terms of the granularity level, because the tasks are large enough, so

the distribution overhead does not prevail. However, we will introduce load-imbalances

by sticking to boxes, e.g. due to the boxes covering different amounts of particles. Due

to these load-imbalances, we will also present a dynamic load-balancing approach in

this section.

3.1 Tasks

Based on the workflow of the FMM, we differentiate six types of tasks – P2M, M2M,

M2L, L2L, L2P and P2P. Each P2M task covers expanding all of the particles into a

multipole in a single box on the lowest level. From the perspective of a single parent box

an M2M task translates the multipole moments of all its eight child boxes to its center.

In a three-dimensional system each M2L task comprises up to 189 M2L operations.

An L2L task covers the translation of the local moment 𝜇 of a specific parent box to
local moments in its eight child boxes and computing the farfield forces. Each L2P task

involves shifting the local moment of a box to all the particles in the according box.

With a single P2P task the near field contributions for all of the particles in one box with

respect to the boxes well-seperated neighbors are computed.

3.2 Task Dependencies

Having described the tasks we can now consider the task-dependencies arising from

the abovementioned subdivision as shown in figure 3.1. In the current implementation

these dependencies are resolved through the fact, that tasks generate their succeeding

tasks by means of dependency counters. Once being generated, each of the tasks needs

to be assigned to a thread. This is implemented by storing the generated, but not yet

performed tasks in a data structure referred to as a multi-queue.

3.3 Multi-Queue

To store tasks in the order of their creation and execute them in the same order, a

FIFO-queue would be sufficient. However, since we have different task types, we need a

data structure resembling this circumstance. Hence, we designed and implemented a

class MultiQueue, which initially provides a single queue for each task type. Each of

the six task queues is implemented by std::deque, the double-ended queue structure

from the C++ standard library. This enables threads to take tasks from the front and

from the back of the queue. Since std::deque is not thread-safe, each of the single

queues is protected by a std::mutex in case a thread adds or removes a task from the

according queue.
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Figure 3.2: Workload per thread without work-stealing.

3.4 Work-Stealing vs. Work-Sharing
There exist two contrasting concepts to dynamically schedule tasks in a multi-threaded

application – work-sharing and work-stealing. Work-sharing is based on a global data

structure containing all of the tasks, which can be executed right away. Here the

scheduler tries to distribute the arising work as equally as possible among the threads.

In a work-stealing approach each thread has got its own data structure, which stores

the tasks it has to perform. Since there is no scheduler assigning tasks to threads in

work-stealing, threads autonomously try to steal tasks from other threads when running

out of work. In contrast to work-sharing, work-stealing scales, because there is no central

scheduler, which all of the threads depend on. Another advantage of work-stealing in

comparison to work-sharing is that tasks only migrate from one thread to another if

necessary. Thanks to these advantages, the subsequently described idea is based on the

first feasible work-stealing scheduler for multi-threaded computations with dependencies

presented by Blumofe, Leiserson and Charles in reference [1].

Plot 3.2 emphasizes why we in fact need work-stealing. The plot depicts that the

runtimes of the threads vary widely. In order to equalize the runtimes, threads with less

work, in the plot e.g. thread zero, should steal work from threads with more work, e.g.

thread 9. This could be done as shown in listing 3.1.

Listing 3.1: Work-Stealing

1 void RunOne()

2 {
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3 unsigned int num_threads = queues.size();

4 std::pair<std::function<void(void *)>, void *> work_unit(

5 [](void *) {}, nullptr);

6 if (!queues[main_que_index]->empty())

7 {

8 work_unit = queues[main_que_index]->take_front();

9 }

10 else if (stealing)

11 {

12 unsigned int i = (main_que_index + 1) % num_threads;

13 while (!queues[i]->stealable() && i != main_que_index)

14 {

15 i = (i + 1) % num_threads;

16 }

17 if (queues[i]->stealable())

18 {

19 work_unit = queues[i]->try_steal();

20 }

21 }

22 work_unit.first(work_unit.second);

23 }

First, we retrieve the number of threads, respectively multi-queues, in line 3. Second,

a work unit (which conforms a task) is initialized with an empty lambda-function in

line 4. This is done so that in any case a work unit can be executed at the end of

RunOne() in line 22. Next it is checked, whether the threads multi-queue is empty.

If the threads own queue is empty, we step into the else-branch in line 10 and try

to steal a task, respectively a work unit, from another threads multi-queue. Starting

with thread_id+1, we iterate ring-like over all multi-queues until we either reach

thread_id-1 or find a multi-queue to steal from. To check whether stealing from a

queue is possible, the function stealable() is used; stealable() returns true, if the

according queue contains more than one work unit. stealable() is not thread-safe

and therefore only returns a hint, that there could be a task to steal. Hence, we can

only try to steal from the ascertained queue by means of try_steal(). If try_steal()

indeed returned a task from another threads queue, we then execute the stolen task in

line 22. Otherwise an empty lambda-function – either returned from try_steal() or

from the work unit’s initialization – is executed. Plot 3.3 contrasts the workload of each

thread with and without the presented work-stealing approach.

The plot depicts that work-stealing leads to an equal load-distribution, hence a de-

creased parallel runtime. However, in comparision to the average runtime without

stealing, we introduced an overhead of 4.4% through work-stealing.
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Figure 3.3: Workload per thread with vs. without work-stealing.
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4 Performance Analysis
In this section we analyze to which extent a better load-balancing through work-stealing

improves not only the parallel runtime, but also the efficiency respectively the scaling

of the implementation. Let’s introduce our measuring technique first.

4.1 Measuring Technique

The time measurements for all of the presented plots are done on a single compute node

of JURECA [6]. Each compute node is equipped with two Intel Xeon E5-2680 CPUs,

conforming 24 physical cores and 48 logical cores. The measurements are performed by

std::chrono::high_resolution_clock, which on JURECA leads to a resolution of

one nanosecond. In order to get reasonable timing results, we execute the application

500 times with the small input data set (1k particles) and 50 times with the large input

data set (100k particles). To avoid the influence of clock frequency variations during

the starting phase of the measurements, only the runtimes of the last 30% are taken

into account to average the runtime. Turbo boost is disabled during the measurements,

because it leads to varying clock frequencies i.a. depending on the number of used

cores. Due to this, scaling plots can be distorted. To which extent turbo boost influences

runtime is described by Charles, Jassi et al. in reference [2]. Since JURECA’s compute

nodes are non-uniform memory access (NUMA) systems, with 12 cores per NUMA node,

a pinning policy needs to be implemented. For measurements with up to 12 threads,

we use a compact pinning policy, utilizing only one NUMA node. We do so in order

to avoid the influence of data exchange between the nodes. For larger thread counts,

NUMA effects can not be avoided. Hence, threads are distributed among the two nodes

automatically by the operating system without manual pinning.

4.2 Large Input Set

In this section we analyze the performance of the implementation on a homogenous

system with 100k particles. Figure 4.1a shows the according scaling plot. The light

blue line shows the runtime for the implementation without work-stealing, while the

dark blue line depicts the runtime with work-stealing. The dashed red line represents

ideal scaling. The light blue background depicts the number of threads from which on

threads are pinned to the cores of both NUMA nodes. The darker blue area indents

the usage of simultaneous multi-threading (SMT), while the gray area conforms the

area beyond SMT. As the plot illustrates, both the versions scale up to a number of 48

threads, which notably means that the implementation even scales when using SMT.

However, the curve of the version with work-stealing runs much closer to the optimal

runtime than the curve of the version without dynamic load-balancing. This shows that

the administration overhead introduced through the dynamic load-balancing is smaller

than the runtime improvement precipitated through it. Furthermore the plot depicts

that there is no more runtime improvement when increasing the number of threads

further. The reason for this is, that the compute nodes only support 2× SMT, which
means that we experience costly context switches when using more than 48 threads.

The subsequent plot 4.1b shows the related efficiency plot.

The efficiency plot emphasizes once more that the load-balanced version scales better

than the non-balanced version. However, an efficiency decline becomes apparent as

soon as more than 12 threads are used. The reason for this is, that we have to use
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Figure 4.1: 100k particles, multipole order p 10 and tree depth dmax 4.

both NUMA nodes when exceeding a quantity of 12 threads without considering this
in terms of memory management. Meaning, that the threads running on NUMA node
1, in order to get the data to compute on, permanently need to request memory access
from NUMA node 1, which leads to higher task execution times and in turn to a higher
parallel execution time.

4.3 S I S
In analogy to the previous section we subsequently analyze the runtime behavior of a
smaller particle system covering only 1k particles by means of plot 4.2a. The line and
area colors used in the plot have the same meaning as previously described.
Even though load-balancing through work-stealing leads to a runtime improvement

independently from the number of used threads here too, the curves are by far not that
close to the ideal curve as for the large particle system. A possible reason for this could
be that hiding of memory access latencies is less eˤective due to less computational
work. This would also explain the fact that the e˞ciency decline due to the usage of two
NUMA nodes becomes more apparent in the scaling and e˞ciency plots for the small
particle system. The reason for the lower computational eˤort for one thing is the lower
amount of particles and for another thing the lower multipole order. The e˞ciency plot
in ˚gure 4.2b depicts the massive e˞ciency decline even more clear.
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Figure 4.2: 1k particles, multipole order p 3 and tree depth dmax 3.

5 C & F W
We described a task-based approach for an intra-node parallelization of the FMM by
means of std::thread. In the course of that, we presented an FMM-aware multi-queue
and a work-stealing implementation to equally distribute tasks among threads dynami-
cally. Considering the small input set with 24 threads, our intra-node parallelization
with work-stealing led to an overall parallel runtime of 2.7 ms. In comparison with the
sequential runtime of 24.6 ms this leads to a speedup of 9.1 and brings us closer to the
1 ms goal.
However, we have not yet achieved it. Due to the observed e˞ciency decline (cf. 4.2

and 4.3), the implementation of a NUMA-aware memory management is next up on
our agenda. In the course of this the work-stealing approach also needs to be adapted
to the NUMA topology, e.g. by preferably stealing tasks from threads running on the
same NUMA domain. So far the tasks are taken from the MultiQueue and executed in
the order according to the sequential FMM’s work˜ow without considering the critical
paths through the tree. Due to this another step is the implementation of a priority
multi-queue with potentially dynamically adaptable priorities to execute tasks on the
critical paths preferential. Especially through the latter we gather knowledge about task
dependencies and task granularity in order to advance towards a static load-balancing
through FMM-aware task distribution.
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1 Introduction/Motivation
The main topic of this project is the hybrid parallelization of the computationally most

expensive part of the iterative eigensolver ChASE. The Eigenproblems are the class of

problems which frequently appear in the applications. One of the most common source

of algebraic eigenproblems is the discretization of certain partial differential equations.

There are many methods to solve algebraic eigenproblems. We focus on a particular

method based on the accelerated subspace iterations. This method incorporates the

Chebyshev filter, a particularly useful strategy of acceleration. This strategy involves

iterative multiplication of dense tall and skinny matrices which makes it the most

expensive part of the solver. The aim of this paper is to optimize a hybrid parallelization

of such kernel on distributed CPU/GPU platforms.

However, before we dive into examining strategies, we have to set the theoretical

background.

2 Eigenproblems and the ChASE library
We begin with the definition of an eigenvalue of a matrix. A complex scalar 𝜆 is an
eigenvalue of the square complex matrix H if there exists a nonzero vector x ∈ ℂd such

that

Hx = 𝜆x. (2.1)

The set of all the eigenvalues of H is reffered to as the spectrum of H. The vector x is

called an eigenvector of H. Usually we call the pair (𝜆, x) eigenpair. Every square full

rank complex matrix of the size d × d has exactly d eigenvalues. In the case that all the

eigenvalues are distinct, the matrix has also d uniquely distinct eigenvectors.

Eigenvectors make up the subspaces of ℂd called the eigenspaces. As we are interested

in the Hermitian eigenvalue problems, we will focus our discussion in that direction. The

complex square matrix H is Hermitian if it is equal to its conjugate transpose (H = H∗).
In other words, matrix H is Hermitian if

Hi,j = Hj,i, ∀i = 1, ..., d, j = 1, ..., d.
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It can be shown that the eigenvalues of these kind of matrices are always real numbers.

That means that we have an ordering of the eigenvalues of a Hermitian matrix. Addition-

ally, there exists an orthonormal basis u1, u2, ..., ud for ℂd made up of the eigenvectors of

H. So the eigenspaces of a hermitian matrix are mutually orthogonal. Actually, if we put

vectors ui as columns of the matrix U than there exists a diagonal matrix 𝛬 such that

A = U𝛬U∗. (2.2)

All of these properties make solving the Hermitian eigenproblem easier than solving

general eigenproblem. The eigensolvers are usually classified by the approach which is

used for calculating the eigenpairs (𝜆, x). Direct eigensolvers perform transformations on
a matrix in order to diagonalize it. These methods are performing similarity transfor-

mations which should bring matrix H to its diagonal form, from which we can easily

read the eigenvalues. While direct eigensolvers are usually used on dense matrices,

for sparse matrices we use iterative solvers. In contrast to direct eigensolvers, iterative

solvers perform transformations on vectors. The idea is to take one or more starting

vectors, iteratively perform transformations until they converge to the eigenvectors.

These sorts of methods are used mostly on the sparse matrices due to cheap execution of

transformations. We will now focus on the iterative methods. These methods are more

flexible when calculating only a small part of the spectrum. Also, if starting vector is

already a good approximation for an eigenvector then it will take a small amount of

work to calculate the eigenvector. These assumptions, together with the polynomial

acceleration strategy, present a good argument for using iterative methods to solve dense

eigenvalue problems.

2.1 Subspace iterations and ChASE
The power method is one of the simplest iterative methods for extracting a single

eigenpair of a matrix. The method consists of generating a sequence of vectors Hkv0,

where v0 is some nonzero initial vector. This method, when converges, calculates the

dominant eigenvector, which is the eigenvector associated with the eigenvalue with the

largest modulus. Since there is an orthonormal basis u1, ..., ud of eigenvectors of H, an
initial vector v0 can be written as a linear combination of eigenvectors.

v0 =
d

∑
i=1

𝛾iui. (2.3)

By taking H and multiplying it with v0, taking into the account the linearity of multipli-

cation, we get:

Hv0 =
d

∑
i=1

𝛾i𝜆iui.

So the k-th iteration looks like this:

Hkv0 =
d

∑
i=1

𝛾i𝜆k
i ui.

If we assume that the eigenvalues are given in the descending order of their mudulus,

|𝜆1| > |𝜆2| ≥ |𝜆2| ≥ ... ≥ |𝜆d|, then we could extract the most dominant eigenvalue out of
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the sum

Hkv0 = 𝜆k
1[𝛾1u1 +

d

∑
i=2

𝛾i(
𝜆i

𝜆1
)kui].

By repeatedly normalising this sequence we get that all the components, except for the

most dominant one, tend to zero, since ( 𝜆i

𝜆1
)k → 0 when k → ∞.

This approach can be easily generalized in the sense that we can calculate several

most dominant eigenvectors at once. Starting with an initial system of nev vectors

forming a d × nev matrix X0 = [x1, ..., xnev], we proceed with the similar approach as
with the power method. The iterations consist of computing the matrix Xk ∶= HkX0.

As we have already stated, all of the vector columns of X would converge to the most

dominant eigenvector. This means that the column vectors in Xk will progressively loose

their linear independence. For that reason we reestablish their linear independence

by reorthonormalizing them again after every few iterations. This method is called

Subspace Iterations. It is capable of calculating m most dominant eigenvectors of a

matrix.

However, in either case, the rate of convergence of these methods could be quite slow.

The rate of convergence greatly depends on the ratios | 𝜆i

𝜆1
| which could be quite close to

1. In order to improve the rate of convergence one could use the polynomial acceleration.

ChASE eigensolver utilizes this strategy in order to both accelerate the method and to

make filtration of eigenvalues.

Sometimes, it is of interest to calculate only a smaller part of the spectrum. For this,

one should filter out the unwanted eigenvalues. The way that ChASE is doing this is by

using the Chebyshev filtering.

2.2 Chebyshev filter
The way in which the subspace iterations perform is to successively calculate the product

HkX0. This approach corresponds to taking the polynomial p(t) = tk and calculating

p(H)X0. The idea for improvement is to use more general polynomial which could
improve the rate of convergence. By taking the general polynomial p in the power

method, we get:

p(H)v0 =
d

∑
i=1

𝛾ip(𝜆i)ui.

If we choose the polynomial such that the value p(𝜆i) is large for some i = 1,2, ..., d
and small for the others, then we would get the convergence towards this chosen i. In

this way, we filter out unwanted eigenvalues and accelerate the convergence towards

wanted ones. One might wonder which polynomial would give the fastest convergence?

The answer comes in the form of the Chebyshev polynomials. These polynomials

could be used in order to neglect the eigenvalues in a certain interval and amplify the

convergence to the rest. The Chebyshev polynomials are defined with the three-term

recurrence relation

Ck+1t = 2tCk(t) − Ck−1(t), C0(t) = 1,C1(t) = t. (2.4)

The relation (2.4) allows us to evaluate the polynomials by iterating it up to the desired

degree. The following is an important result from the approximation theory which
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Figure 2.1: Examples of Chebyshev polynomials

lightens up the importance of the Chebyshev polynomials. Let [𝛼, 𝛽] be a non-empty
interval in ℝ and let 𝛾 ≥ 𝛽 be a scalar. Then the solution to the optimization problem

min
p∈ℙk,p(𝛾)=1

max
t∈[𝛼,𝛽]

|p(t)| (2.5)

is given with the scaled and shifted Chebyshev polynomial

̂Ck(t) ∶=
Ck(1+ 2

t−𝛽
𝛽−𝛼)

Ck(1+ 2
𝛾−𝛽
𝛽−𝛼 )

. (2.6)

By using the notation c ∶= 𝛽+𝛼
2
, e ∶= 𝛽−𝛼

2
we can rewrite the polynomial (2.6) as

̂Ck(t) = Ck((t−c)/e)
Ck((𝛾−c)/e) . Taking into account the relation (2.4), we can simplify the calculation

of polynomials ̂Ck. Letting 𝜌k ∶= Ck((𝛾 − c)/e), k = 1,2, ..., we get:

𝜌k+1 ̂Ck+1(t) = Ck+1(
t − c

e
) = 2

t − c

e
Ck(

t − c

e
)−Ck−1(

t − c

e
) = 2

t − c

e
𝜌k ̂Ck(t)−𝜌k−1 ̂Ck−1(t).

By defining 𝜎k+1 = 𝜌k/𝜌k+1, we get the relation:

̂Ck+1(t) = 2𝜎k+1
t − c

e
̂Ck(t) − 𝜎k𝜎k−1 ̂Ck−1(t).

We are able to calculate the recurrence relation for 𝜎i, i = 1,2, ...:

𝜎1 = e

𝛾 − c
;

𝜎k+1 = 1
2
𝜎1 − 𝜎k

, k = 1,2, ....
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Now we can derive the relation for the Chebyshev iterations. Starting with the initial
vector v0, we have:

v1 e H cI v0 (2.7)

vk 1 Ck 1 H v0 2 k 1
e H cI Ck H v0 k k 1Ck 1 H v0 (2.8)

2 k 1
e H cI vk k k 1vk 1 (2.9)

The same holds for the case with multiple vectors. We will denote the shifted matrix
H cI as H. Note that the matrix H remains Hermitian.
Since all the eigenvalues of the Hermitian matrices reside on a real line, by using the

Chebyshev polynomials, we are capable of ˚ltering out the eigenvalues in an interval
of our choice. In practice, we would ˚rst calculate the estimate for the most dominant
eigenvalue 1 and set 1 . We de˚ne the interval in a way that is mapped to
a lower estimate for d and is mapped to the estimate of nev . In this way, we get the
improved convergence towards nev most dominant eigenvalues. Using the three-term
recurrence relation (2.9) we can calculate iterations for the Chebyshev ˚lter. A lot more
about eigensolvers can be found in [5].
Chebyshev ˚lter takes up the most of the computation time of the whole solver, as

we can see on the Figure 2.2. This gives us a good motivation for introducing parallel
programming strategies.

< 1%

90%

6%

4%Res iduals  convergence
Rayleigh Ritz

Chebyshev filter

Lanczos

Figure 2.2: Time usage chart for ChASE

More on the ChASE eigensolver and applications can be found in [1], [4] .

3 S
In this section we describe the strategies which we use for implementing the Chebyshev
polynomial acceleration. This algorithm consists of successive iteration of the three
terms recurrence relation of the form

X m 1
mHX m

mX m 1 m 2 3 k X 1 HX 0 H d d X i d nev

(3.1)
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where parameters 𝛽m and 𝛼m are determined with the scaling and shifting of the Cheby-

shev polynomials. The recursive nature of this formula allows us to evaluate it using

only 3 arrays, A, B and C. Indeed, we use the array A to store the matrix ̂H and the

array B to store the initial matrix X(0). The first iteration is done by calculating

C ← 𝛼0AB. (3.2)

The second iteration utilizes the array B for saving the product:

B ← 𝛼1AC − 𝛽1B. (3.3)

The third iteration shifts back to C,

C ← 𝛼2AB − 𝛽2C, (3.4)

and the process goes on until we reach the desired degree of a Chebyshev polynomial.

The largest part of these iterations is the matrix-matrix multiplication. In order

to efficiently perform the multiplication we exploit graphics processing units (GPUs)

since their architecture is favourable for such linear algebra operations. On the other

hand, GPUs have much less memory then required for saving the whole matrix H. Such

matrices, which we get from applications, are about the size 105×105 which corresponds
to 160 GBs of memory. This means that implementing the multiplication using GPUs

will require the use of multiple GPU devices at once. In practice we will divide the

calculation over multiple GPU nodes which contain several GPUs each.

Managing such distribution requires multiple processes together with an appropriate

communication layout. In the next section, we describe the scheme for performing one

Chebyshev filter iteration.

3.1 Distribution among nodes, employment of GPUs
We first have to tile up the matrix A and distribute the tiles on different processes. Since

Am,1Am,2Am,3 … Am,n

⋮ ⋮ ⋮ ⋱ ⋮

A2,1 A2,2 A2,3 … A2,n

A1,1 A1,2 A1,2 … A1,n
B1

B2

B3

⋮

Bn

× + 𝛽𝛼

C1

C2

⋮

Cm

Figure 3.1: Tiling of matrices A, B and C

we are dealing with the tiling of a matrix, we will use Cartesian grid of processes which

fits perfectly with the usual matrix tiling scheme. Each node will perform one process

and receive one tile of a matrix A together with the appropriate tiles of matrices B and C.

It is necessary to mention that, together with the arrays A, B and C, each node also has
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node1

A1,1 B1
C1

node2

A1,2 B2
C1

noden

A1,n Bn

C1…

⋮ ⋮ ⋮

Figure 3.2: Array distribution on nodes

the working array IMT which has an important role as an intermediate array between

calculating AB and 𝛼AB − 𝛽C.
The first step in calculating the iteration is performing the multiplication AB. For

the sake of consistency we assume that we have 4 GPU devices available on each node,

however usually we will use all the GPUs at our disposal. The next step is distributing

nodein+j

Ai,j Bj
Ci

GPU4

GPU1 GPU2

GPU3

Figure 3.3: Node structure

the data on GPUs in order to perform multiplication. There are several ways to do it.

From now on, whenever we focus on one node, we will be using the notation A, B and

C instead of Ai,j, Bj and Ci, for the sake of simplicity.

We begin with the vertical or VER implementation, in which we divide A in vertical

blocks as following:

A = [ A1 A2 A3 A4 ] , B =
⎡
⎢⎢⎢
⎣

B1
B2
B3
B4

⎤
⎥⎥⎥
⎦

. (3.5)

In this way, the calculation of the product AB reduces to the calculation of smaller

products AiBi since

AB =
4

∑
i=1

AiBi.

Each of the smaller products can be calculated concurrently on separate GPU and then

summed into the final product.

The next implementation is the horizontal or HOR implementation. There, we also

divide A into 4 blocks but this time horizontally. We have:

A =
⎡
⎢⎢⎢
⎣

A1
A2
A3
A4

⎤
⎥⎥⎥
⎦

,
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Figure 3.4: Vertical scheme

so we have to calculate 4 products AiB = Ci and then concatenate Ci to get

C =
⎡
⎢⎢⎢
⎣

C1
C2
C3
C4

⎤
⎥⎥⎥
⎦

.

The third implementation is the mixed or HV implementation. This time we divide A

GPU4

GPU3

GPU2

GPU1

×

×

×

×

×

=

=

=

=

Figure 3.5: Horizontal scheme

into 4 blocks as follows:

A = [ A1 A2
A3 A4

] , B = [ B1 B2 ] .

We have:

C = [ C1
C2

] = [ A1B1 + A2B2
A3B1 + A4B2

] .
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The way this is calculated is to first distribute the data, then calculate the products on

separate GPUs. Then we take i.e. the product A2B2 and send it to the GPU containingA1B1
so that they can be summed. Afterwards we concatenate the results. Upon implementing

GPU4

GPU3

GPU2

GPU1

×

×

×

×

×

=

=

=

= +

+

=

=

Figure 3.6: Mixed scheme

these schemes, we performed experiments in order to decide which one to use as the

default one. Experiments were performed with different matrix sizes and shapes. Upon
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Figure 3.7: Performance comparison plot

examining the results in the figure 3.7, we opted for the HV implementation whenever

we have 4 GPU devices available on a node. Otherwise we will use either VER or HOR

implementation.

We will discuss the actual implementation issues in the next section. Lets just em-

phasize that at the end of the multiplication on each node, the array IMT contains the

product.

3.2 Alternating cycle algorithm for evaluating Chebyshev

filter
So far we are able to calculate the product AB on each node using the available GPUs.
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Figure 3.8: Step 1

In order to perform full Chebyshev iteration we must first develop a communication

strategy between processes. Since the matrix A was tiled up, we will get the final product

by summing the contributions from each process in the same row.

AB =
⎡
⎢⎢⎢
⎣

A1,1 A1,2 … A1,n
A2,1 A2,2 … A2,n

⋮ ⋮ ⋮ ⋮
Am,1 Am,2 … Am,n

⎤
⎥⎥⎥
⎦

×
⎡
⎢⎢⎢
⎣

B1
B2
⋮
Bn

⎤
⎥⎥⎥
⎦

=
⎡
⎢⎢⎢⎢
⎣

∑n

j=1 A1,jBj

∑n

j=1 A2,jBj

⋮
∑n

j=1 Am,jBj

⎤
⎥⎥⎥⎥
⎦

.

In order to get the correct products on each node, we perform one reduction (summing)

of arrays IMT on each row of processes. After this, we will in each row have the tile of

the correct result AB saved in the array IMT.

Ai,1
B1

IM
T Ai,2

B2

IM
T … Ai,n

Bn

IM
T

REDUCTION

Figure 3.9: Step 2

Upon finishing the reduction, it is straight forward to calculate the final Chebyshev

iteration C ← 𝛼IMT − 𝛽C by using BLAS routines scal and axpy. After this step, each
process possesses one tile of the matrix 𝛼 ̂HX(k) − 𝛽X(k−1) which corresponds to the row

of processes which it belongs to. This tile is saved in the array C.

Now that we have finished one cycle of the Chebyshev filter, we have to continue with

the calculation of B ← 𝛼AC− 𝛽B. Here, we face more problems with the implementation.
At this point, the processes in each row of the Cartesian grid have the same tile of the

array C. For almost every process this tile of C is utterly useless since it is not the tile

which should take part in the next iteration. In adition, also the blocks of C are not

compatible with the tiling of the matrix A. That means that if we want to successfully

multiply A with C we have to redistribute parts of C to the according processes, together

with the slicing and glueing of different tiles. However, there is a way to avoid this

complicated communication. The matrices from the problems which are of interest

46



to us are Hermitian. This, seemingly unrelated fact will enable us to elegantly solve

communication issues and implement fairly efficient scheme.

The most important thing is to remember that the Hermitian matrices are the same as

their transpose conjugates. We can exploit this fact in a very straight forward way. If we

would take the transpose conjugate of matrix A then we would also take the transpose

conjugate of its tiles. The tiling of the matrix C would then match with the tiling of the

conjugate transpose of A. Also, another convenient thing would happen. The tiles of the

matrix C would suddenly appear on all the right processes where they are needed.

…

⋮ ⋮ ⋮ ⋱ ⋮

…

…

⋮
× ⇔

…

… … ⋱ …

…

…

…

⋮
×

Figure 3.10: The conjugate transpose equivalence

However, we don’t actually transpose the matrix A. What we do is virtually transpose

the Cartesian grid, then multiply the conjugate transposes of tiles of A with the tiles of

C. Actually, the tiles of C were in all the right places this whole time.

What were once rows now are columns. Like before, we perform A∗C multiplication

on GPUs and retrieve the product back to the CPU, then save it inside IMT. Afterwards

we have to perform the reduction to sum up all the parts of the product in each column

of processes. We can take a look at the Figure 3.11 to examine the scheme. The practical
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T GPU
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T GPU
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(a) Step 1
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(b) Step 2

Figure 3.11: Second cycle of Chebyshev filter

implementation only calls different types of the multiplication routines (A∗C or AB) and

accordingly performs a reduction on either rows or columns. Notice that, in this way, we

have reduced the communication between processes to performing only one reduction
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per cycle. This way of iterating the recurrence relation (3.1) is quite efficient and scales

well.

There is one more detail which we have to discuss. In order to avoid unnecessary data

copying to GPUs, we distribute the matrix A only once, at the beginning of the Chebyshev

filter. This means that the tiles of matrix A, once distributed on GPUs, remain there in the

same exact form for the duration of the Chebyshev filter. However, since we sometimes

have to transpose the matrix, we will have to alternate between different schemes for

the matrix-matrix multiplication. For example, in the case of 3 available GPU devices

per node, we would have to alternate between VER and HOR implementations.

× ×

Figure 3.12: Alternating usage of schemes

In the next section we discuss the actual implementation in C/CUDA/MPI together

with examining the results of the scaling experiments.

4 Implementation
For the actual implementation we used the programming languages C and C++. The

code is divided into two parts. The first part is related to the multi GPU programming

while the other is related to managing multiple processes on multiple nodes.

4.1 Multi GPU matrix-matrix multiplication
The first part that we implemented is multi GPU matrix-matrix multiplication on one

node. For programming GPUs we used CUDA. CUDA is parallel computing platform

which enables us to use CUDA-enabled GPUs for general purpose processing.

The center of this program is the structure called GPU_Handler.

Listing 4.1: GPU_Handler structure

1

2 typedef struct _GPU_Handler {

3 cuDoubleComplex **A_dev;

4 cuDoubleComplex **B_dev; //arrays on GPUs

5 cuDoubleComplex **C_dev;

6 cuDoubleComplex **TMP; //special array for temorary results

7 cublasHandle_t *handle; //array of device handles

8 cudaStream_t *stream; //array of cudaStreams

9 int m; //vertical dimension of A

10 int n; //horizontal dimension of A

11 int l; //horizontal dimension of B
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12 int NOD; //number of devices

13 int *k;

14 int *off; //arrays of block dimensions

15 bool use_2D; //this tells us which scheme to use

16 } GPU_Handler;

Its purpose is to keep track of all the allocated memory and parameters which are

used throughout the execution of the program. Cuda provides us structure called

cuDoubleComplex which implements double precision complex number. We will use

that structure to implement matrix entries. In order to achieve parallelism, we use

different cudaStream objects for each GPU. In order to perform the concurrent memory

transfer we also have to use the pinned memory for arrays on the CPU.

Here we faced the first coding obstacle. For the usual transfer of data arrays using

multiple streams, one could use the function cudaMemcpyasync(). The problem is that

we wish to copy chunks of arrays (tiles) which do not make a contiguous memory array.

However, we can overcome this obstacle by using the function cudaMemcpy2DAsync().

In order to successfully use cudaMemcpy2DAsync(), one should provide the host pitch,

the device pitch, height, width and a pointer to the first element in the block.

Listing 4.2: Memcpy2DAsync used in HV scheme for transfering tiles of A

1 pitch_host = GPU_hand->m*sizeof(cuDoubleComplex);

2 for(i=0;i<GPU_hand->NOD;i++)

3 {

4 pitch_device = ky[i/2]*sizeof(cuDoubleComplex);

5 cuda_exec(cudaMemcpy2DAsync(GPU_hand->A_dev[i], pitch_device, A+kx[0]*GPU_hand->m*(

i%2)+ky[0]*(i>1), pitch_host, ky[i/2]*sizeof(cuDoubleComplex), kx[i%2],

cudaMemcpyHostToDevice, GPU_hand->stream[i]));

6 }

The pitch is an argument which holds the information on how far in the memory is one

array column from the other.

Now that we have concurrent memory transfer covered, we move on to the multiplica-

tion. CUDA provides cuBLAS library, which implements basic linear algebra operations.

We use cublasZgemm() for the multiplication of double precision complex matrices and

cublasZaxpy() for adding them.

Listing 4.3: Zgemm used in HV scheme for multiplying tiles of A and B

1 for(i=0;i<GPU_hand->NOD;i++)

2 {

3 cuda_exec(cudaSetDevice(i));

4 cublasZgemm(GPU_hand->handle[i], CUBLAS_OP_N, CUBLAS_OP_N, ky[i/2], l, kx[i%2], &a,

GPU_hand->A_dev[i], ky[i/2], GPU_hand->B_dev[i], kx[i%2], &b, GPU_hand->

C_dev[i], ky[i/2]);

5 }

All the code which we use to control GPUs is distributed onto several functions

in the MMMGPU library. While working on the host CPU we use MKL_Complex16

implementation of double complex numbers. This requires casting the array pointers

into the right type before calling an appropriate GPU function.

Next, we implemented the library for managing multiple processes on different nodes

and calculating Chebyshev iterations.

4.2 Multi CPU Chebyshev iterations
For running multiple processes and programming the communication we used Massage

Passing Interface – MPI. MPI is a standardized message-passing system which one can
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Listing 4.4: MMMGPU library

1 void GPU_init_1D(GPU_Handler *GPU_hand);

2 void GPU_init_2D(GPU_Handler *GPU_hand);

3 void GPU_init(int m, int n, int l, GPU_Handler *GPU_hand); //calculates parameters and allocates

memory

4

5 void GPU_load_2D(cuDoubleComplex *A, GPU_Handler *GPU_hand);

6 void GPU_load_1D(cuDoubleComplex *A, GPU_Handler *GPU_hand);

7 void GPU_load(MKL_Complex16 *A, GPU_Handler *GPU_hand); //distributes tiles of A

8

9 void GPU_doGemm_2D_AB(cuDoubleComplex *B, cuDoubleComplex *C, int l, GPU_Handler *GPU_hand);

10 void GPU_doGemm_2D_AC(cuDoubleComplex *B, cuDoubleComplex *C, int l, GPU_Handler *GPU_hand);

11 void GPU_doGemm_1D_AB(cuDoubleComplex *B, cuDoubleComplex *C, int l, GPU_Handler *GPU_hand);

12 void GPU_doGemm_1D_AC(cuDoubleComplex *B, cuDoubleComplex *C, int l, GPU_Handler *GPU_hand);

13 void GPU_doGemm(MKL_Complex16 *B, MKL_Complex16 *C, int l, GPU_Handler *GPU_hand, char mode); //

performs multiplication and returns the result

14

15 void GPU_destroy_1D(GPU_Handler *GPU_hand);

16 void GPU_destroy_2D(GPU_Handler *GPU_hand);

17 void GPU_destroy(GPU_Handler *GPU_hand); //frees memory

use for parallel programming. Again, the center of the code is the structure called

CPU_Handler. Each process will initialize its own CPU_Handler which will keep track of

all the arrays and communicators which it will use. CPU_Handler also possesses one

instance of GPU_Handler so that it can use GPUs available on its node.

Listing 4.5: CPU_Handler

1 typedef struct _CPU_Handler {

2 MPI_Group ROW, COL, origGroup; //groups of processes (rows and columns groups)

3 MPI_Comm ROW_COMM, COL_COMM; //each process needs one row communicator and one column

communicator

4 MPI_Comm CART_COMM; //cartesian communicator

5 int *ranks_row;

6 int *ranks_col;

7 int dims[2]; //optimal dimensions of cartesian grid

8 int coord[2];

9 int off[2];

10 MKL_Complex16 *A, *B, *C; //tiles of matrix H, X

11 MKL_Complex16 *IMT; //intermediate array

12 int global_n, m, n, nev, nprocs, rank;

13 char next; //keeps track of multiplication cycle ('B' or 'C')

14 int initialized;

15 GPU_Handler GPU_hand; //handler for managing GPUs on this process/node

16 } CPU_Handler;

There is an especially useful function for calculating grid dimensions for our 2D Cartesian

grid scheme. It is called MPI_Dims_Create(). For a given number of processes it calculates

the most square Cartesian grid possible.

Listing 4.6: Creating Cartesian communicator

1 MPI_Dims_create(CPU_hand->nprocs, 2, CPU_hand->dims);

2 MPI_Cart_create(MPI_COMM_WORLD, 2, CPU_hand->dims, periodic, reorder, &(CPU_hand->CART_COMM));

The Cartesian communicator offers useful translation between usual process ranks and

Cartesian coordinates in the form of MPI_Cart_coords() and MPI_Cart_rank() functions.

Listing 4.7: Translation

1 MPI_Cart_coords(CPU_hand->CART_COMM,CPU_hand->rank,2,CPU_hand->coord); //computes coordinates from

rank

2 MPI_Cart_rank(CPU_hand->CART_COMM,coord,&r); //computes rank from coordinates
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In order to perform reductions we must create communicators for each row and column

of processes. Since each process belongs to exactly one row and one column, each

process needs only one row communicator and one column communicator. We do it by

creating groups of processes and then creating according communicators.

Listing 4.8: Creating row and column communicators

1 MPI_Comm_group(CPU_hand->CART_COMM, &(CPU_hand->origGroup)); //creates original group of processes

2 MPI_Group_incl(CPU_hand->origGroup, CPU_hand->dims[1], CPU_hand->ranks_row, &(CPU_hand->ROW)); //

creates group of all the processes in this row

3 MPI_Group_incl(CPU_hand->origGroup, CPU_hand->dims[0], CPU_hand->ranks_col, &(CPU_hand->COL)); //

creates group of all the processes in this column

4 MPI_Comm_create(MPI_COMM_WORLD, CPU_hand->ROW, &(CPU_hand->ROW_COMM));

5 MPI_Comm_create(MPI_COMM_WORLD, CPU_hand->COL, &(CPU_hand->COL_COMM)); //create required

communicators

One Chebyshev iteration consists of the next steps:

Listing 4.9: One iteration of Chebyshev filter

1 GPU_doGemm(CPU_hand->B,CPU_hand->IMT,CPU_hand->nev,&(CPU_hand->GPU_hand),CPU_hand->next); //perform

multiplication

2 MPI_Allreduce(MPI_IN_PLACE, CPU_hand->IMT, CPU_hand->m*CPU_hand->nev, MPI_DOUBLE_COMPLEX, MPI_SUM,

CPU_hand->ROW_COMM); //reduce

3 zscal(&dim,&beta,CPU_hand->C,&inc);

4 zaxpy(&dim,&alpha,CPU_hand->IMT,&inc,CPU_hand->C,&inc); //calculate alphaAB+betaC

5 CPU_hand->next = 'C'; //reminder that the next iteration is alphaAC+betaB

Now we have everything ready. First we distribute the data. Then we do the iteration

multiple times, return the result and free the memory. The code is organised as a library

called CHEBMPI.

Listing 4.10: CHEBMPI library

1 void CPU_handler_init(CPU_Handler *CPU_CPU_hand, int global_n, int nev); //initialize everything

2 void CPU_load(CPU_Handler *CPU_CPU_hand); //load tiles of H, X

3 void CPU_doCheb(CPU_Handler *CPU_hand, MKL_Complex16 alpha, MKL_Complex16 beta); //perform

iteration

4 void CPU_destroy(CPU_Handler *CPU_hand); //free memory

5 void CPU_get_off(CPU_Handler *CPU_hand, int *xoff, int *yoff, int *xlen, int *ylen); //calculate

offsets in regard to matrix H

6 void CPU_get_C(CPU_Handler *CPU_hand, int *COff, int *CLen, MKL_Complex16 *C); //acquire the

filtered matrix

Once the filtering is complete, one calls function CPU_get_C() on each process which

then returns the calculated tile of C. More about CUDA and MPI programming can be

found in [2], [3].

5 Results
We have performed experiments with this scheme in order to get a good idea of how it

behaves in different situations.

We have measured times of execution for a different number of processes. The size of

the matrix which we distribute is 105 × 105, the number of target eigenvectors (nev) is
equal to 1% of the size of the matrix. We ran 10 cycles of the Chebyshev iterations for
several different random matrices and calculated the average times of execution. In the

Figure 5.1 we see the average times of execution for one Chebyshev iteration in regards

to the number of nodes involved. This sort of experiment is called strong scaling. The

strong scaling plot indicates that the program scales well up to 15 processes. Then the

scaling stops, and the speed gained with the multiplication is undid with the time spent
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on communication. From the time measured, the speed-up can be calculated. Figure 5.2

also shows how the speed-up is lost at some point.

We also did the weak scaling experiment. There we maintained constant problem

size per node. It is done by increasing the matrix size by multiplying it with the

square root of the number of processes. The weak scaling plot indicates that we should

avoid using prime number of nodes. Using prime number of nodes results in one

dimensional Cartesian grid of processes which yields thin rectangular tiles. This prolongs

communication and time spend doing the matrix-matrix multiplication.

All in all, the scaling results are not bad, the performance is quite fast. There is surely

a lot to do in order to improve the scheme, but we can already draw some conclusions.

It is best to use a number of processes which yields the most square Cartesian grid. That

will make the communication during cycles faster and more uniform. It will also make

matrix tiles more square which will result in better performance of the matrix-matrix

multiplication.

6 Outlook

Further research should be directed into finding out what causes problems with scaling

for larger number of processes. That requires better insight into the scheme and the usage

of some sort of profiler. We are working on calculating execution times in more details

in order to detect potential bottlenecks. One of the next steps is developing general

2D scheme for the GPU multiplication similar to HV. This scheme would recognize

the number of available GPU devices and accordingly perform multiplication using a

Cartesian grid, not only for 4 devices, but also for 6,8... Further performance experiments

should be performed once this scheme is integrated with ChASE. We expect this to reduce

the amount of time spent during Chebyshev filter. It is also necessary to take a closer

look at some of the other parts of the ChASE eigensolver and see what can be done to

parallelize them. This will lead to an optimized program which utilizes several parallel

programming aspects in order to increase its efficiency.
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1 Introduction
Smoke propagation through complex geometries requires modeling of fluid flow, heat

transport and turbulence coupled with complex physics of combustion, radiation and

soot formation. It is a tough numerical challenge because it requires the solution of

continuum equations for fluid flow, heat transfer and turbulence a shown in Figure 1.1.

These physics can than be coupled to a fire model that incorporates the effects of

combustion, radiation and soot formation. Pyrolysis, forced convection, radiation and

air entrainment can also be included into the model (Figure 1.2). The first steps to solve

this problem is to solve the Navier-Stokes and the energy equations for fluid flow and

heat transport numerically.

The proposed continuum equations for fluid flow, heat and turbulence models are to

be discretized and solved efficiently. So, the finite difference method is chosen as the

discretization technique because of its ease of implementation and solid mathematical

basis. Another reason for choosing finite difference is its implicit functionality as filter

for attenuation of high frequencies used in turbulence modeling.

Smoke flow is usually turbulent because of the very low density and viscosity of the

smoke. So it is important to model and include the turbulent effects with good trade-off

between efficiency and accuracy into the real-time simulation for smoke propagation. For

this purpose, we implemented the Large Eddy Simulation (LES) based on Sub-grid Scale

(SGS) model where the large scale fluid motion is computed and the small scale motion

is modeled. The two most common Sub-grid Scale models are Constant Smagorinsky and

Dynamic Smagorinsky. Real-time simulation for large systems and complex geometries

requires the most efficient and scalable code for instant feedback and steering of the

simulation parameters. Since most of the discretization is based on the local stencil

finite difference operations, it can be ported for multi-core and GPU implementation

effectively. We use OpenACC for code acceleration due to its simple programming syntax

and minimal changes to the code. Using simple pragma constructs before parallelizable

loops, we can achieve significant speedup of the serial code.
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Figure 1.2: Processes involved in the smoke generation and propagation [14].
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2 Governing equations and discretization
2.1 Equations of motion
The most notable equations in fluid dynamics are the Navier-Stokes equations(NSE) [1].

Anything which has fluid characteristics and flowing can be modeled and simulated

using the NSE. The Direct Numerical Simulation (DNS) of NSE with sufficient resolution

of the grid size can even resolve turbulence. For the simulation of the fluid flow, we

solve two equations numerically, namely the continuity and momentum equation. The

Continuity equation

∇ ⋅ ⃗u = 0 where ⃗u describes the velocity (2.1)

is derived processesfrom the mass conservation of the flow. For incompressible flows

density (𝜌) is constant, so the equation reduces to simple divergence free velocity
formulation. The Momentum equation

∂t ⃗u + ⃗u ⋅ ∇ ⃗u = −1𝜌∇p + 𝜈𝛥 ⃗u + ⃗F, (2.2)

is derived from Newton’s second law of motion applied to fluids. Here ⃗u, p, ⃗F and 𝜈
describes velocity, pressure, force and kinematic viscosity of the fluid respectively. It

combines the physics of temporal change, diffusion, convection, pressure forces and

source and sink terms. Depending on the properties of the fluid involved and the

geometry of the problem, different parts of the equation are more dominant than the

other. For instance, for turbulent flows, the inertial/convective part is more dominant

than the viscous/diffusive part. Usually, the non-dimensional formulation of the NSE 2.2

is used for all practical purposes, so that we can benchmark with experimental studies.

The non-dimensional tensorial formulation of NSE is parametrized by the Reynolds

number Re and reads,

∂ui
∂t +

∂uiuj
∂xj

= − ∂p
∂xi

+ 1

Re

∂2ui
∂x2j

+ Fi i = 1,2,3 (2.3)

The Reynolds number describes the relation of inertial effects to viscous effects. So, it

is a very important parameter which characterizes turbulence. We always refer to the

above dimensionless form of the NSE for future references.

2.2 Finite difference method
The finite difference method (FDM) is the oldest and simplest and yet powerful method

among the discretization techniques for partial differential equations [8]. The derivation

and implementation of FDM are particularly simple on structured meshes which are

equivalent to a regular Cartesian grid. The nodal value of the approximate solution at

node i and time step n

⃗unum( ⃗xi, tn) ≈ ⃗u( ⃗x, t) (2.4)

is a pointwise approximation to the true solution of the partial differential equation.

Taylor series expansions or polynomial fitting techniques are used to approximate all

space derivatives in terms of ⃗unum( ⃗xi, tn) and solution values at a number of neighbouring
nodes. For example, if we consider the uniform 1-D mesh given by, the computational
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Figure 2.1: The discretization grid.

domain a b is an interval. A subdivsion of this interval into N subintervals
k xk 1 xk of equal size yields the simplest representation of structured meshes.

The N 1 grid points are numbered from left to right. In multi-dimensions,a structured
mesh is a net of grid lines (Figure 2.1) with

xi i x i 0 1 N (2.5)

The ˚rst order derivative in 1-D can be approximated by the central diˤerence scheme
which is of second order accuracy.

u
x i

ui 1 ui 1
2 x (2.6)

The same principle can be extended for second order derivatives in 1-D as second-order
approximation at node i.

2u
x2 i

ui 1 2ui ui 1
x 2 (2.7)

On a nonuniform mesh in 2D, the coe˞cients are diˤerent and must be derived indi-
vidually for each grid point. Since, the equation 2.3 is time-dependent, suitable choice
of time-diˤerencing is important. Explicit, Implicit and Trapezoidal methods are the
simplest schemes. More accurate schemes like Range-Kutta could also be employed.

3 T
Turbulence can be described as ˜uid moving in complex and indeterministic way. Its very
di˞cult to predict the future state of turbulent ˜ows due to its complexity. Turbulence
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Figure 3.1: Turbulence in coffee mixing (left) and Jupiters turbulent atmosphere (right).

is ubiquitous, its present everywhere from turbulent flow of blood in our arteries to flow

of rapid rivers to atmospheric dispersion of pollutants to vortices in the atmosphere of

Jupiter (Figures 3.1a and 3.1b).

For the past 150 years, the greatest minds in science put their time and efforts to

quantify this chaotic nature of turbulence. Werner Heisenberg, German theoretical

physicist who worked on the mathematical equations for transition from laminar to

turbulent flow once said, “When I meet God, I am going to ask him two questions: Why

relativity? And why turbulence? I really believe he will have an answer for the first” [9].

Even Richard Feynman, the famous American theoretical physicist know for his works on

quantum mechanics and superfluidity acknowledged turbulence as the most important

unsolved problem of classical physics [5].

In a sense, the problem of turbulence was solved long ago. The NSE equations

describing the fluid motion were formulated 150 years ago. The Direct Numerical

simulation (DNS) of the NSE can resolve turbulence, but for problems concerning real

world applications, the solution would take more than a year for its solution. So we

would like to resort to have a more efficient way to deal with turbulence. In this direction,

Reynolds Average Navier-Stokes (RANS) and Large Eddy Simulations (LES) are the two

most common ways to tackle the problem of turbulence with reasonable compute time.

In the next section, we present the idea and theory behind LES based on Subgrid-Scale

(SGS) modeling.

3.1 Large Eddy Simulation based on Subgrid-Scale modeling
Before we can go into the theory of turbulence and LES, it is prudent to contemplate

on the question “Why not use Direct Numerical Simulation of NSE?”. DNS of NSE 2.2

involves no modelling approximation, so a fine grid approximation of NSE by DNS would

adequately capture the most accurate physics including turbulence [4]. But when it

comes to solving problems of real world applications DNS simulations can take months

because of the fine step size required both in time and space. So to have a good trade-off
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between accuracy and efficiency, we resort to more modeling approximation which can

leverage the information from the large scales to quantify the scale dynamics. This is

the basis for Large Eddy Simulations based on Subgrid-Scale modeling.

SGS modeling is based on decomposition of flow into low-frequency resolved modes

and high-frequency unresolved modes (Subgrid-Scale stresses). This scale separation

is achieved by applying a filter, in our case the finite difference grid itself acts as an

implicit filter. The implicit filtering can be achieved by using discrete filters based on

the stencil/grid provided by the finite difference method. The discrete filters can be

developed in 1-D and can be extended to 3-D by construction of product and derivative

rules.

In Large Eddy Simulation, the flow variables are divided into a low frequency resolv-

able part and a high frequency modeled part by applying a convolution kernel:

̃f (x) = ∫G(x, x′)f (x′)dx′ resulting in ui = ̃ui + u′
i , (3.1)

where ̃ui is the resolvable large scale motion and u′
i is the modeled Subgrid-Scale part.

The filter function G(x, x′) depends on the filter width 𝛥 and satisfying the normaliza-
tion condition

∫G(x, x′)dx′ = 1. (3.2)

Some common isotropic filters are the box filter, defined [12] as

G(x, x′) =
⎧{
⎨{⎩

1

𝛥
, if |x − x′| ≤ 𝛥

2

0, otherwise
(3.3)

and the Gaussian filter

G(x, x′) = ( 6

𝜋𝛥2
)

1
2

exp(−6|r|2

𝛥2
) . (3.4)

Applying any one of the filtering operator to the NSE 2.3, we get the filtered form of

NSE.

∂ũi
∂t +

∂ũiũj
∂xj

= − ∂p̃
∂xi

+ 1

Re

∂2ũi
∂x2j

−
∂𝜏ij

∂xj
+ Fi (3.5)

where 𝜏ij = ũiuj − ũiũj is the LES Subgrid-Scale stress.

An additional term appears on the RHS due to the non-linear convection term. This

term incorporates the information of the small scales into the filtered NSE. This is schemat-

ically shown in Figure 3.2 where the energy E(k) is plotted against the wavenumber
k.

Modeling 𝜏ij to include the small scale dynamics is the objective of SGS. In 1887,

Boussinesq [3] postulated that the momentum transfer caused by the turbulent eddies
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Figure 3.2: Energy spectrum showing cut-oˤ wavenumber kc separating resolved and modeled
scales [11].

can be modeled with eddy viscosity. The mathematical structure is similar to that of
molecular diˤusion described by molecular viscosity.

ij
1
3 kk ij 2 tS (3.6)

where S is the large scale strain-rate tensor and t is the SGS turbulent viscosity/eddy
viscosity. This eddy viscosity t is fed to Navier-Stokes through the eˤective viscosity
eˤ mol t.

3.2 C S
The ˚rst SGS model developed to model the eddy viscosity t is the Smagorinsky-Lilly
model [13]. It models the eddy viscosity as:

t Cs 2 S (3.7)

where V
1
3 with V x y z and

S 2SijSij with Sij
1
2

ui
xj

uj
xi

(3.8)

The most important challenge for the Smagorinsky models is determining the parame-
ters Cs with given . It is the parameter controlling the rate of kinetic energy dissipation
happening at small scales. Cs is given explicitly in the formulation and a value between
0 1 0 2 has been found to yield good results for wide range of ˜ows except for wall
bounded ˜ows. Regardless, this simple scheme suˤers from high dissipative characteris-
tics and is not so robust parameters with a non-adaptive value of Cs. This may lead to
some undesirable and non-physical behaviour of the system.

3.3 D S
Germano and Lilly proposed in [7] a procedure where the Smagorinsky model constant
Cs is computed dynamically based on the information of the resolved scales u. The idea
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is to apply a ˚lter for the second time to the equations of motion, i.e. momentum and
continuity equations. The new explicit ˚lter width is greater than that of , usually
twice that of the grid ˚lter. Both ˚lters produce a resolved ˚eld. The diˤerence between
the contribution of these ˚elds is the resolved turbulent stress usually referred as Leonard
stress Lij which is used to compute Cs adaptively. In Figure 3.3 the orange coloured
region represents the Leonard stresses Lij which are de˚ned by Germano [6] as

Lij Tij ij uiuj uiuj (3.9)

where Tij uiuj uiuj is the residual stress tensor of the test ˚lter and ij uiuj uiuj is
the Subgrid-Scale stress of grid ˚lter that is test ˚ltered again.
By applying Smagorinsky model for stresses in the Germano identity 3.9 and minimiz-

ing the error associated due to modeling in the least-square sense, we get an expression
for the dynamic Cs, i.e.

C2s
LijMij

MijMij
(3.10)

where Mij 2 2 S Sij 2 S Sij and .
However, expression 3.10 can be numerically unstable since the numerator could

become negative and large ˜uctuations in Cs are observed. Hence, additional averaging
of the error is done, resulting in

C2s
LijMij

MijMij
(3.11)

The averaging can be as simple as volume averaging with respect to the neighbours
or spatial averaging over the entire domain. For details about the explicit ˚lters used
during the simulations are described in the following paragraphs.
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3.3.1 Finite difference method as Implicit filter

From the wavenumber-dependent characteristics of the errors in finite difference scheme,

the hidden filtering properties of the scheme can be seen nicely by comparing the

equivalence between a finite difference and the exact derivative of the filtered variable :

(∂u
∂x)

i

≈
ui+1 − ui−1

2𝛥x = ∂

∂x
∫

xi+1

xi−1

u dx = ∂ ̄u
∂x

. (3.12)

3.3.2 1-D test filters

The test filter width is usually twice the size of the grid filter i.e. ̄𝛥 = 2 ̃𝛥.

̄f (x) = 1

2 ̃𝛥
∫

+�̃�

−�̃�

̃f (x′)dx′ where ̄𝛥 = 2 ̃𝛥 (3.13)

where 𝛥 is the grid filter width. Numerical integration of the above equation leads to
various forms of discrete filters [10]. The integration can be done by trapezoidal 3.14

and Simpsons rule 3.15. Equation 3.14 is used most extensively in LES based on finite

difference approximations [2, 10].

Trapezoidal rule :

f (x) = 1

4
( ̃fj−1 + 2 ̃fj + ̃fj+1) (3.14)

Simpson’s rule :

f (x) = 1

6
( ̃fj−1 + 4 ̃fj + ̃fj+1) (3.15)

Discrete filters of higher order can also be constructed from using stencils beyond (j− 1)
and (j + 1).
Seven point filter :

f
j
= 1

256
( ̃fj−3 − 18 ̃fj−2 + 63 ̃fj−1 + 164 ̃fj + 63 ̃fj+1 − 18 ̃fj+2 + ̃fj+3) (3.16)

3.3.3 Extension to 3D – Construction by product

Multi-dimensional filters can be defined by the composition of one-dimensional filters

applied in each space direction.

Fp =
p

∏
i=1

F i, (3.17)

where p is the dimension. This product is equivalent to a sequential application of

the one-dimensional filter. The resulting filter is a (2N + 1)3 -point stencil. In the
three-dimensional case, the discrete operator reads

f
i,j,k = Fpfi,j,k =

N

∑
l=−N

N

∑
m=−N

N

∑
n=−N

alaman fi+l,j+m,k+n, (3.18)

where al, amand an are the coefficients of the discrete filter.
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The Dynamic Smagorinsky model is self contained i.e there is no need to specify the

Smagorinsky constant Cs. But when it comes to the matter of stability the model can

produce parameters which are variant 10 times from the mean and the denominator can

potential go to zero resulting in instability. It also produces negative turbulent viscosities

which the advocates of the model believe can capture the effects of backscatter: energy

transfer from small scales to large scales.

4 Acceleration using OpenACC
OpenACC is a directive based programming paradigm for accelerating programs with

simple syntax and minimal change to the program. It is designed for performance

portability across devices and platforms. Simple insertions of directives into the code

will inform the OpenACC compiler about possible acceleration by GPU or multicore.

The three most common used constructs in OpenACC are:

1. Data construct: An accelerator data construct defines a region of the program
within which data is accessible by the accelerator.

2. Parallel construct: The parallel construct launches a number of gangs (thread-
blocks) executing in parallel.

3. Kernel construct: The OpenACC compiler essentially translates the loops into a
kernel that can run in parallel on the accelerator.

Both parallel and kernel constructs try to exploit the loop parallelism and map it

to device parallelism. The most important difference between them is that, kernel

operation is more implicit, giving the compiler more freedom to identify and map

parallelism. The parallel construct is more explicit, and requires more explicit syntax

from the programmer to determine when it is appropriate.

5 Results

5.1 Finite difference filter for high frequencies

Explicit filtering by finite difference with different filter width where conducted to

demonstrate the smoothing properties of the scheme.

A seven point discrete filter operator in 1-D can be constructed as following.

fj = 1

256
( ̃fj−3 − 18 ̃fj−2 + 63 ̃fj−1 + 164 ̃fj + 63 ̃fj+1 − 18 ̃fj+2 + ̃fj+3) (5.1)

Extension to multi-dimensions can be achieved by the construction of a product as

shown in equation 3.18.

f
i,j,k = Fp ̃fi,j,k =

3

∑
l=−3

3

∑
m=−3

3

∑
n=−3

alaman ̃fi+l,j+m,k+n (5.2)

where a1 = 1
256

, a2 = − 18
256

, a3 = 63
256

, a4 = 164
256

, a5 = 63
256

, a6 = − 18
256

, a7 = 1
256
.
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Figure 5.1: Random noise (left) and filtered with seven point filter.
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Figure 5.2: Speedup of 4× for 10242 cells using Implicit Jacobi. CUPS resembles cells updated
per second [ in 104].

5.2 Qualitative studies to show the speedup

5.2.1 Diffusion

The diffusion equation is solved in a square geometry 𝛺 = [0,2]2 with Dirichlet bound-
ary conditions i.e. u = 0 at ∂𝛺 and initial condition given by u0 = u(t = 0). The
Implicit Jacobi method is used to solve the discretized equation. The solution domain

is initialized ExpSinus and the solution is compared with the analytical solution. At a

system size of 128 × 128, the GPU acceleration performs better than serial and multi-core

implementation. At system size of 1024 × 1024, the GPU implementation is 4 times

faster than the multicore implementation.

5.2.2 Constant Smagorinsky

The diffusion equation is again solved in a square geometry with the same Dirichlet

boundary conditions and initial conditions but with the viscosity being the effective

viscosity calculated by 𝜈eff = 𝜈mol + 𝜈t. A Cs value of 0.1 is used in all the simulations.
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82 162 322 642 1282 2562 5122 10242
0

50

100

CPU dominates

GPU dominates

1 1 2 3 3 6 7 9
0 1 2 4 5

15

29 27

0 0 1 2
8

30

72

105

grid size

C
U
P
S

Serial: Xeon E5-2650

Multicore: Xeon E5-2650

GPU: Tesla K40

Figure 5.4: Speedup of 4× for 10242 cells using Dynamic Smagorinsky. CUPS resembles cells
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Essentially the simulation runs at higher viscosity with the constant smagorinsky model

feeding the local varying effective viscosity to the fluid-solver. At a system size of

128 × 128 , the GPU acceleration performs better than serial and multi-core implemen-

tation. At system size of 1024 × 1024, the GPU implementation is 4 times faster than

the multi-core implementation.

5.2.3 Dynamic Smagorinsky

With the same set-up as that of Constant Smagorinsky, the dynamic Smagorinsky calcu-

lates the Cs dynamically. The negative eddy viscosities are clipped to zero. Thus the

simulation runs at higher viscosity with the Constant Smagorinsky model feeding the

local varying effective viscosity to the fluid-solver. At a system size of 128 × 128, the

OpenACC acceleration performs better than serial and multi-core implementation. At

system size of 1024 × 1024, the GPU implementation is 4 times faster than the multi-core

implementation.
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6 Conclusion and Outlook
Two most common turbulence models namely Constant Smagorinsky and Dynamic

Smagorinsky based on SubGrid-Scale modelling are implemented. The eddy viscosity

computed locally in the turbulence modules was used to calculate the effective viscosity.

The fluid-solver is then used with this locally varying effective viscosity with Dirichlet

boundary conditions to solve the NSE. In the case of the Dynamic Smagorinsky model,

explicit filtering is included by using discrete filters based on top-hat filters. Some

negative viscosities in Dynamic Smagorinsky model are observed but are clipped to zero

for stability reasons. Due to the inherent local stencil operation of finite differencing, the

code was effectively ported to GPU through OpenACC. Qualitative benchmark studies

for parameter boundedness and the convergence to zero for decreasing grid width were

conducted. Performance comparisons for serial, multicore and OpenACC were realized.

The future works should focus more on the quantitative benchmark studies for dif-

ferent boundary conditions. Tuning of the Cs is needed for stability reasons in Constant

Smagorinsky. Since the Smagorinsky models are highly dissipative in nature, more

matured models like mixed models based on linear combination of Smagorinsky and

scale similarities models should be developed.

7 Acknowledgements
I would first like to thank Ivo Kabadshow for giving me the opportunity to participate in

this exciting workshop. My heart-full thanks to my supervisor Anne Severt for giving me

the freedom and independence in working on this exciting project. I wish her the very

best in her scientific pursuits. I would like to thank my fellow colleagues for making

these 2 months a very memorable time of my life.

References
[1] G. K. Batchelor. An introduction to fluid dynamics. Cambridge university press,

2000.

[2] E. Balaras, C. Benocci, and U. Piomelli. Finite-difference computations of high Reynolds

number flows using the dynamic subgrid-scale model, volume 7. Springer, 1995.

[3] J. Boussinesq. Essai sur la théorie des eaux courantes. Mémoire des Savants étrangers.

1877.

[4] A. Dewan. Tackling turbulent flows in engineering. Springer Science & Business

Media, 2010.

[5] I. Eames and J. Flor. New developments in understanding interfacial processes in

turbulent flows, volume 369. The Royal Society, 2011.

[6] M. Germano. Turbulence: the filtering approach, volume 238. Cambridge Univ Press,

1992.

[7] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy

viscosity model, volume 3. AIP Publishing, 1991.

67



[8] C. Grossmann, H.-G. Roos, and M. Stynes. Numerical treatment of partial differential

equations. Springer, 2007.

[9] A. Marshak and A. Davis. 3D radiative transfer in cloudy atmospheres. Springer

Science & Business Media, 2005.

[10] F. Najjar and D. Tafti. Study of discrete test filters and finite difference approximations

for the dynamic subgrid-scale stress model, volume 8. AIP Publishing, 1996.

[11] P. Sagaut. Large eddy simulation for incompressible flows: an introduction. Springer

Science & Business Media, 2006.

[12] P. Sagaut and R. Grohens. Discrete filters for large eddy simulation, volume 31. Wiley

Online Library, 1999.

[13] J. Smagorinsky. General circulation experiments with the primitive equations: The

basic experiment, volume 91. 1963.

[14] G. H. Yeoh and K. K. Yuen. Computational fluid dynamics in fire engineering: theory,

modelling and practice. Butterworth-Heinemann, 2009.

68



Sorting and Administration of
Particles in OpenCL

Abstract Two parallel implementations of neighbor list tech-
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GPU.
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1 Motivation
Simulation methods based on the application of particles are complementary techniques

to mesh-based simulation approaches often used to solve partial differential equations

(PDEs) or to simulate the behavior of complex statistical systems. Especially for cases

where the system under study is atomistically resolved or composed of coarse-grain

agglomerates, particles are often a natural choice to map the physical system onto a

numerical method. In particular atomistic systems composed of N particles are often

simulated by Molecular Dynamics (MD) or Monte Carlo (MC) techniques in order to

study their physical or chemical behavior. Most often it is of crucial imporantance to

compute the interaction between particles, which can often be reduced to pair-wise

interactions between particles i and j. In such cases the total force Fi on particle i can be

computed as the superposition of individual forces between particles pairs fij:

Fi = ∑
i≠j

fij (1.1)

Since interactions have to be evaluated between all particle pairs, the computational

complexity isO(N2). Although the complexity prefactor can be reduced by a factor of two
when applying Newton’s third law, the computational complexity remains unchanged.

fij = −fji (1.2)

Due to the mobility of the paricles, this complexity is even true for short range inter-

actions, since the environment of each particle is not static and the neighbor relations

between particle pairs have to be updated (re-computed) in every time step. These

short-range interactions, which are considered in this report, are characterized by a

rapidly decreasing interaction potential between particles which usually can be set to

zero outside of a spherical range of influence with radius Rc called the cut-off radius.

In order to effectively reduce the complexity from O(N2) to O(N) techniques have to
be developed, that keep track of neighborhood relations between particles, i.e. linear

scaling neighbor list techniques. Two possible implementations of these neighbor list

techniques are described in this report.
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Figure 2.1: System of particles subdivided into cells.

2 Sorting Techniques
As discussed before, cut-off radii can be used in MD sumulations based on short-range

interactions in order to reduce the number of computed pair-wise particle-particle

interactions and pair-wise distances checks. To avoid testing mutual pair distances

between all particle pairs in the system, sorting or grouping techniques are required,

that provide information for each particle i about all particles j located in close spatial

proximity.[8]

The most simple way to provide this information is to sort particles into cubic cells

of side length Lc = L/Nc, where L is the length of the system and Nc is the number of

cells in a cartesian direction defined as Nc = L/Rc (integer division). Using this type of

organization in cells, it can be assured that for a given particle located in cell (ix, iy, iz)

all required interaction partners are situated in surrounding cell (ix ± 1, iy ± 1, iz ± 1).

Therefore instead of needing to check the distances to all other particles in the system,

only the distances to the particles in the surrounding eight (2D case) or 26 (3D case)

cells need to be computed and evaluated. Figure 2.1 represents such a subdivision.

For the creation of the particle subdivision into cells, two different approaches will

be described hereafter: (i) a linked-cell approach, where the particles are stored in an

unsorted array and the cells are represented by linked-lists and (ii) a container-based

approach, where particles representing a cell are stored in contiguous memory locations.

In both cases the cell-length is assumed to be the length of the cut-off radius for a fictitious

short-range potential, as that would allow to restrict the number of particle-particle

distance calculations to all particles within bordering cells. Applying this procedure, the

computational complexity is reduced from O(N2) to O(NM) where the prefactor M ≪ N

is dependent on the density.

2.1 Linked-Cell List

In order to organize the particles into a linked-cell list, two arrays of integers are required.

The first array is of size N and contains the linked-lists describing the cells. In a second

array, the size of which is the number of cells in the system, the entry particles for

each cell list are stored. Particles are stored in a seperate array without any further

sorting applied to them. To group the particles into cells, for each particle the cell it is

located in is calculated and the particle index in the particle array is appended to the
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Figure 2.2: Illustration of linked-cell approach.

linked list describing that cell. This is achieved by setting the list entry with the same

index as the particle to the current entry value of the cell and then updating the cell

entry to be index of the current particle. This results in a computational effort of O(N)
for the grouping into cells. As the entry values form the head of the linked lists, the

corresponding array is called ’head’ in this report. Figure 2.2 shows the result of such a

grouping procedure, in 2.2a the spatial division into cells can be seen, whereas in figure

2.2b the representation of the first cell in memory is shown. The content of the head

array points to the index of the first particle within the cell. To find all particles in the

cell it is required to follow the sequence of indices stored in the list array until an invalid

index (in this case −1) is encountered, marking the end of the linked list. To access the
particles, the stored indices are used as indices of the seperate particles array.

Interactions are taken into account between particles which are within the cut-off

sphere. Since the cell size is chosen according to Rc i.e. Rc ≤ Lc, the particles inside

neighboring cells are checked for force calculations. The memory requirement for the

arrays is each linearly dependent on the number of particles and cells in the system.

The entries have to be updated in every MD simulation time-step since there will be a

particle fluctuation across the cell boundaries.

In terms of parallelization of the algorithm with OpenCL, threads are assigned in

1D range which means threads will share particles from 0 to N either in a blockwise

fashion (contiguous index range of particles) or in a cyclicwise fashion (jumping between

particle indices with a stride of nth where nth is the number of threads. While creating

the linked-cell list in parallel, race conditions may occur because two or more different

threads can try to modify the same cell at the same time by trying to change the value of

the ’head’ array for the given cell. This may lead to lost particles, as overwritten values

of ’head’ may not be processed in respective concurrent updates. In order to avoid race

conditions Compare and Swap (CAS) atomic operations, locks or copies can be used. For

further information on locks and copies in order to parallelize the creation of linked-cell

lists via OpenMP, see Jongmanns[5].

2.2 Container-Based Sorting

In contrast to the linked-list based approach, where the cells are represented by linked-

lists and the particles remain in a seperate array, in the container-based variant, the

particles are physically connected to a cell as each cell is represented by a contigous
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c5 17 18 19 20 -1 -1

c4 13 14 15 16 -1 -1

c3 9 10 11 12 -1 -1

c2 5 6 7 8 -1 -1

c1 1 2 3 4 -1 -1

Figure 2.3: Illustration of the initial step container-based sorting, items inside the red rectangle

represent particles located in the given cell.

memory space, in which particles contained in the cell are stored. For the sake of

simplicity particles are created inside their respective cell in this project, to avoid the

additional need for a first-step sorting algorithm. In figure 2.3 the 2D-array storing the

particles is shown. Each red box, i.e. each line, represents a single cell with its content.

As the figure shows the system after initialization, each cell contains the same number

of particles in ascending order. As particle fluctuation is expected, the memory space

reserved for each cell is larger than the number of particles in the first steps requires.

Unused particle positions are marked with invalid indices, usually negative values like

’−1’.
In order to update the cell contents, a two-step approach is chosen that can be

reasonably well implemented in OpenCL. In the first step particles that left the local

cell are stored in a cell-owned buffer and are removed from the local cell by marking

them with an invalid index. Afterwards in a second step for each cell the buffers of

the surrounding cells are checked for particles that moved into the given cell. If such

a particle is found, it is inserted into an empty location, i.e. a location containing a

particle with invalid index. In an OpenCL implementation a 3D range of work-items

can be used to work on the cells. Each work-item can indepentently fill the cell-based

buffer in the first step and in the second step each work-item can check the buffers of

the surrounding cells without interference from other work-items, as write operations

only take place in the memory assigned to the local work-item. Another variant, that

was not investigated in depth within the project, writes particles directly into remote

cells, once they leave the local cell. This would require synchronization with atomic

operations, as inter work-group synchronization would be required.

3 Implementation
OpenCL (Open Computing Language) is an open, royalty-free standard for cross-platform,

parallel programming of diverse processors [6].

We used OpenCL for a parallel implementation of many-particle sorting algorithms in

order to run this code on CPUs, GPUs, and MICs. OpenCL comprises a C-API for platform

and runtime management on the host and a special programming language for the

device code. Devices contain a large number of processing elements or execution units

for integer and floating- point operations. These units are organized within so-called
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Figure 3.1: OpenCL Platform Model.

compute units or multi-processors and SIMD-cores. In OpenCL nomenclature, a single

unit of execution is called a “work-item” or “thread”. A “work-group” contains a larger

number of work-items which are scheduled together for execution on the same multi-

processor. Brief structure of an OpenCL application with external device is illustrated

in Figure 3.1 The memory architecture is hierarchical: The most important memory

types are local and global memory. Each multi-processor has its own local memory

store which is very fast and can be used as a programmer-managed cache. However, it

is strongly limited in size. In contrast, global memory is large but slow. Usually, the

main memory of the GPU (both local and global) is denoted as “device memory” and

the main memory of the CPU as “host memory”. The large number of threads which run

in parallel on a device puts strong pressure on the memory bandwidth. For this reason,

it is an important programming challenge to carefully design memory access patterns so

that accesses to global memory can be coalesced.

Both MD algorithms are implemented in OpenCL. As it mentioned before, linked-cell

list algorithm has one-dimensional thread ranging while container-based algorithm has

three-dimensinal thread ranging.

3.1 Linked Cell List

The implementation of the linked-cell list alogrithm emulates a MD simulation, consisting

of particle creation, linked-cell list creation, force calculation and particle movement.

These steps are handled in individual kernels, as seen in algorithm 1. For initialization

the particles are created with a random distribution within the system. Afterwards the
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Figure 3.2: Two sets of particles (1-6), (7-11) administrated by two different threads (red, blue)

and sorted into two cells. Due to the concurrency of the threads, it is not guaranteed that the

cell list contain monotonously descending particle indices, as particles are added to the list

from both threads at the same time. With regard to each thread, the lists are monotonously

descreasing, like in the serial case.

particles are grouped into the linked-cells, that are the basis for the force calculation in

the next step. Once the forces are calculated, the particle are moved to new positions

based on the results of the force calculation. This procedure is repeated Nstep times.

Algorithm 1 Main program for MD with Linked-Cell List.

1: createParticles()

2: for i = 0 → NStep do
3: createLcList();

4: forceCalculation();

5: moveParticles();

6: end for

The parallel implementation of the creation of linked-cell lists is presented in [3].

Within this project the linked-cell lists were implemented with the OpenCL framework,

the kernels use a 1D work-item range, distributing chunks of the particle array onto the

kernels. As previously mentioned the parallel implementation of linked-cells leads to

race-conditions, as different work-items are bound to sort particles into the same cell at

the same time, see 3.2. Since no inter work-group synchronization is availble in OpenCL,

atomic operations are required to solve this problem. To ensure the integrety of the

created lists, atomic_cmpxchg() was used.

Algorithm 2 Linked Cell List creation subroutine.

1: repeat
2: old = lc_ cells[cellidx][HEAD];

3: lc_ cons[gid] = old;

4: result = atomic_ cmpxchg(lc_ cells[cellidx][HEAD], old, gid);

5: until (old != result);

Algorithm 2 shows how the linked cell creation with compare and swap operations

atomic_cmpxchg() works: As described in the previous chapter, two arrays are required
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for the representation of the cells. lc_cells[ic][HEAD] contains the ’head’ values, i.e.

the entry point for cell ic, and lc_cons contains the connections between the particles,

i.e. the linked lists. Both arrays are initialized with invalied indices (-1). In order to

assign a particle to a cell in OpenCL a cell index cellidx is calculated. Then the old entry

value is temporarily stored to old. Afterwards the connection of the local particle is set

to this old entry value. In the last step the compare and swap operation is executed

which ensures that the entry value is only updated if it was not changed since it was

stored to the old value. If the value would have changed, that means that a different

work-item has added another particle to the cell in the meanwhile, so the assigning

procedure has to be repeated. This ensures correct lists, containing all the particles at

the end of the procedure.

3.2 Container-Based Sorting
In contrast to the linked-cell list version, the ideal implementation of the container-

based sorting would consider contiguous chunks of memory which are assigned to

every cell and which represent the containers to host the particles within cells. In

the present implementation, however, a simplified approach is taken. Here we do not

assign contiguous space to each cell but sort particles according to their global index in

increasing order. Although this allows a simple access of particles in each cell it has as a

consequence a random jump in global memory. When implementing the container-based

variant in OpenCL it is useful to assign a single cell or clusters of neighbored cells to a

single work-item. The range of the work-item then may be three-dimensional in order

to have representation that is similar to the cell structure. For the algorithm additional

space must be allocated for each cell to account for particle fluctuation, also a buffer for

the exchange of particles in parallel must be provided.

Algorithm 3 Main program for MD with container-based algorithm.

1: createParticles()

2: for i = 0 → NStep do
3: forceCalculation();

4: movingParticles();

5: buffering();

6: assignParticles();

7: end for

The particlesInCells array contains the memory chunks representing the cells. Algo-

rithm 3 gives an overview about the needed OpenCL kernels. In the createParticles()

kernel the particles are created in the particlesInCells array in an ascending order (see

also figure 2.3). In contrast to the linked-cell version, the force calculation can be

processed immediatly afterwards, as the particles are already sorted into cells (force-

Calculation()). Afterwards the particles are moved according to the results of the force

computations (movingParticles()). To finalize the time step, now buffering and reas-

signment of the particles has to take place. Figure 3.3 shows which particles left their

respective cells and need to be copied into buffers before further processing. In figure 3.4

it can be seen, that the outgoing particles are copied to a buffer and their places in the

arrays are filled with invalid indices to mark them as free. This finishes the buffering
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Figure 3.3: The structure of the array – the leaving particles are marked as red.

c5 17 18 19 20 -1 -1

c4 13 14 15 16 -1 -1

c3 9 10 11 12 -1 -1

c2 5 6 7 8 -1 -1

c1 1 2 3 4 -1 -12 3

7

14

17 c5 17 18 19 20 -1 -1

c4 13 14 15 16 -1 -1

c3 9 10 11 12 -1 -1

c2 5 6 7 8 -1 -1

c1 1 2 3 4 -1 -1-1 -1

-1

-1

-1

Figure 3.4: Leaving particles are marked as red and the directions of those particles with blue

arrows.

step. Now the reassignment of the particles takes place by checking the buffers of cells

neighboring the local cell. All particles that are moved into the local cell are inserted

into empty spaces of the local array. Figure 3.5 shows a possible final state after the

reassignment of particles. Possible improvements include the trimming of the cell arrays

after the reassignment step in order to avoid gaps between the particles and to decrease

the number of particles that are checked, as soon as an invalid index is encountered

no further particles in that cell need to be checked. Compare cell c1 and cell c4 in

figure 3.5, where this can be seen. In the current implementation always all particles in

the cell are checked.
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Figure 3.5: Green particles represent new particles located in cells after assignParticles() kernel.

4 Results
We chose two fundamental parameters for benchmarking, the grid size and the number

of particles per cell. Various types of runs are plotted to compare algorithms and

architectures.

The physical domain is a three-dimensional cube, which is divided into identical

hexahedron elements.

Due to the chosen parameters the total number of particles differs. While the average

number of particles per cell is kept constant and set to 10, the number of grid cells per

dimension is varied from 10 to 100 thereby changing the number of particles in the

system between 104 and 107. Results for time measurements are shown in Figure 4.1.

Measurements are obtained from the supercomputer JUROPA3. This supercomputer

is equipped with differing types of compute nodes: (i) two Intel Xeon E5-2650 CPUs

and two NVIDIA Tesla K20X GPUs and (ii) two Intel Xeon E5-2650 CPUs and two Intel

Xeon Phi 5110P co-processors. This hardware is referred to as CPU, GPU and MIC in

this report [1, 2, 7].

To study the behavior of more complex computations we implemented the force

calculations between particles in line with a Lennard Jones potential [4, 9] for both

algorithms. In order to compute the force acting on one particle mutual distances

between the tagged particle i and all other particles j located in the local and the 26

neighbor cells have to be taken into account. Each work-item calculates a partial force

contribution fff ij to the total force FFF i.

The GPU is the fastest architecture for force calculation and sorting where the CPU is

the slowest as expected. Regarding the container-based approach the CPU-based version

is the fastest because in this algorithm, many if-else statements are used inside the code

to check for invalid particle indices.

After many time-steps, the particlesInCells array gets scattered by placeholder indices

which are left where particles moved to a different cell. Further analysis and benchmarks

are required to comment on an unexpected behavior of accelerators observed here for

this algorithm. The minor performance of this implementation is probably due to the

fact that there are many placeholder indices’-1’ to be checked.
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Figure 4.1: Comparison of GPU and MIC – linked-cell list approach. Figure 4.1a shows the

runtime for the force calculation, figure 4.1b shows the runtime for linked-list cell creation.
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Figure 4.2: Comparison of GPU and MIC – container-based approach. CPU shows expected

behavior with constant elapsing time where GPU and MIC shows non-constant behavior due

to the number of particles. Figure 4.2a shows the runtime of the force calulation, 4.2b shows

the runtime of sorting and administration.
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5 Conclusion & Outlook
The container-based algorithm provides three-dimensional thread ranging where linked-

cell list runs is one-dimensional. Since we have cells across work-items there is no

perfect load balancing as one cell may have more particles than the other cells. In the

linked-cell approach there is a perfect load-balancing because particles are distributed

equally across work-items.

Optimization of the code has not been done so far. The container-based approach is

more appropriate to make use of the fast local memory on the device. On the other hand,

in order to treat the placeholder indices’-1’ there is a lot of if-else branches. Moreover

vectorization optimization has not been exploited in the code which would boost MIC

performance closer to GPU since MICs are specially developed for vectorization.

However, the container-based algorithm is relatively slower than the linked-cell list

algorithm since it has redundant ’-1’ ones in the array and worse memory locality

after many time-steps. Moreover, there is the flag checking for every item of the

particlesInCells array. In order to avoid this a new data-storage model could be

developed. Here some important optimization issues to consider:

OpenCL devices are so different (CPUs, GPUs, and MICs) portable performance is a

challenge.

1. efficient access to memory, i.e. memory coalescing and memory alignment

 try to provide data to the work-items in parallel, e.g. Structure of Arrays (SoA)
suits memory coalescence on GPUs and Array of Structures (AoS) may suit

cache hierarchies on CPUs

2. vary number of work-items and work-group sizes due to architecture and the

application

 try to provide sufficient parallelism for the work-items; occupancy is a measure
of how active each processing-element is kept

3. avoid work-item divergence:

 try to avoid branches in device code; here barrier functions are helpful

So far, only one aspect regarding memory optimisation has been considered. A speed-up

of 1.3 could be achieved by re-arranging the data organisation in the linked-cell list

creation, e.g. splitting the struct array into float and integer arrays.
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Brain Cortex Segmentation using
Deep Learning

Abstract Deep learning is a new field in Machine Learning

that uses algorithms that are able to create data abstraction

models. One of the most important tools are artificial neural

networks that have been inspired by the attempt to mimic

biological neural networks. Our goal is to train a computer

to detect gray matter in a human brain and to do so, build a

fully convolutional neural network. We have been inspired by

GoogLeNet to built an inception model of a neural network

to segment brain images.

Monika Bajcer
Department of Mathematics

University of Zagreb
Croatia

mbajcer92@gmail.com

1 Introduction
The human brain is the main organ of the human central nervous system – the big boss of

the humans body that runs the whole show. The cerebral cortex is the dominant feature

of the human brain associated with higher brain function such as thought and action.

It contains 86 billion nerve cells, which we call gray matter which is the object of our

study. Our data consists out of 7404 images of human brain slices. Associated to it is a

binary image – so called labels. Every pixel of a label is either one – if a corresponding

pixel of a brain image represents a gray matter, or zero – if it does not. Examples of a

brain image and its labels are depicted in figure 6.2.

Our goal is to train a computer with deep learning methods to distinguish the gray

matter from the remainder parts of the brain. The idea is to present numerous examples

to the machine so that it learns and abstract from them. Every picture has a high

resolution of 5711 × 6572 pixels and if we consider the total 7404 brain images and
its additional 7404 labels, we have a problem of respectable size, approximately one

terabyte. Out tool in solving this problem are neural networks. The neural networks with

at least one hidden layer are a strong tool that can represent any continuous function.

In other words, it holds that given any continuous function f (x) and some 𝜀 > 0, there

exists a neural network g(x) with one hidden layer such that ∀x, ∣ f (x) − g(x) ∣< 𝜀. Even
though models with just one layer can represent any function, empirical observation

have shown, that many layers converge faster towards the above inequality. We try to

find good solution with different neural network models. Each model is trained for a

day and supervised with the help of a loss function allowing us to observe the learning

progress. Additionally, we also investigate how different hyperparameters change the

results.
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(a) Brain image (b) Labels

Figure 1.1: Slice of a human brain and labels marking its gray matter.

2 Background
Described above is a common problem called classification. It is the problem of identify-

ing to which of a set of categories a new observation belong, based on a training set

whose category membership is known. There are various approaches, such as decision

trees, support vector machines or linear classifiers [2]. Out of these, we have selected

neural networks for our attempt due to their great success in image processing tasks.

The idea is to try out with a model called neural network inspired by biological neural

networks which can approximate functions that can depend on a large number of input

variables. The basic unit of a brain is a neuron. Each neuron receives input signals from

its dendrites and produces output signals that it sends along the axon to other neurons.

Figure 2.1 shows an example.

In a model of artificial neuron, inspired by biological neuron, the signals (xi) interact

multiplicatively with dendrites, which are also called weights (wi). The idea is that

weights are learnable and control the influence of one neuron towards another. The

cell body sums the partial results up and applies a function f – the activation function –

that transforms a set of input signals into an output signal. The task of an activation

function is break the linearity of a neural network, allowing it to learn more complex

functions. They are also important for squashing the unbounded linearly weighted sum

from neurons, hence avoid large values accumulating high up the processing hierarchy.

+

f

x1

x2

x3

x4

w1

w2

w3

w4

y

Figure 2.1: Mathematical model of a neuron – basic unit of a neural network.
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There are many choices for an activation function and every one of them takes a single

number and performs a certain mathematical operation on it. Some of the activation

functions are:

 Sigmoid non-linearity has the form 𝜎 = 1
1+e−x . It takes a real number and gives an

output in range between zero and one so large negative numbers will become close

to zero and large positive numbers close to one. The sigmoid function has grown

out of popularity, because it has two major drawbacks. Firstly, when neuron’s

activation is at either tail of zero or one, the gradient at these regions is almost

zero and consequently, all learning stops in this section of the network. Beside

that, sigmoid outputs are not zero-centered and this could introduce undesirable

dynamics in the gradient updates for the weights.

 The tanh function squashes a real-valued number to the range [−1,1] and the
output is zero-centered. It also holds that tanh(x) = 2𝜎(2x) − 1.

 ReLu is short for the Rectified Linear Unit, a function that is becoming really
popular because it will have fixed gradient (either zero or one, depending on the

sign of x), it is numerically stable and fast to compute, easy to implement. Small

difficulty for x=0, as there is no gradient, usually randomly select one side (either

zero or one). Its mathematical form is f (x) = max(0, x).

 Linear function where the weighted sum input of the neuron becomes the system
output, also known as identity.

It is important to stress out that this model of a biological neural network is signif-

icantly simplified compared to actual neurons. One has to be prepared to hear groaning

sound from anyone with some neuroscience background, if you draw analogies between

neural networks and real brains [9].

Neural networks are modeled as collections of neurons described above, that are

connected in an acyclic graph so that outputs of some neurons can become inputs to

other neurons. A feed forward network is organized into distinct layers, shown in

figure 2.2 in which neurons between two adjacent layers are fully pairwise connected.

Neurons in the same layer are usually not connected. This kind of neuron organization

is called a fully-connected layer.

The structure of neural networks makes it very simple to evaluate this networks using

matrix vector operations. All weights for one layer can be stored in a single matrix so

with a few multiplications neurons in the activation layer are evaluated. We will try out

networks that will be made up of ten to 20 layers. The large number of layers is the

reason, we denote it deep learning.

Large neural networks can represent more complicated functions but with more layers

it is easier to overfit the training data. In other words, model memorizes the training

data instead of abstracting it. To avoid overfitting we include special layers into our

model, e.g. dropout or pooling layer. In practice, it shows that it is always better to

use some methods to control overfitting instead of decreasing the number of layers and

neurons because the smaller networks are harder to train.
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Figure 2.2: A model of a simple neural network with two layers.

The training of a model will be supervised with the help of a loss function. A loss

function is a function that measures cost or deviation from the expected outcome (labels)

compared to the models prediction. There are various loss functions in use. The most

common for neural networks is mean-squared error (MSE). It takes an average over

the data losses for every individual example, so L = 1
N

∑
i
Li, where N is the number of

training data and

Li = ‖fj − fyi‖
2
2,

where fj is j−th prediction and fyi is i−th ground truth label. The reason the L2 norm
is squared is that the gradient becomes mush simpler, without changing the optimal

parameters since squaring is a monotonic operation.

At this point neural network becomes an optimization problem that tries to find the set

of parameters that minimize the loss function. Since the minima cannot be analytically

determined, we do iterative refinements, where we start with a random set of weights

and refine them. We compute the direction of negative gradient along which we change

our weight vector because it is mathematically guaranteed to be the direction of the

descend. Considering the data volume, we use a stohastic gradient descent (SGD). It is

a way of computing the gradient over batches of the training set in order to perform

a parameter update. The size of the mini-batch is a hyperparameter that we have to

tune and it shows that the gradient from a mini-batch is a good approximation of the

gradient of the full data. We have a special way of computing gradients of expressions

using chain rule for partial gradients. Through iterative minimization of the loss and the

backpropagation [5] of the gradient changes on the weights, the network learns from

the data how to approximate the underlying problem function. These iterations we call

epochs so when we say that the model did training in 1000 epoch, we mean that the

weights had been refined 1000 times.

3 Convolutional Neural Networks
We will try out modern convolutional neural networks that are very similar to ordinary

neural networks – they are organized in layers made up of neurons that receive inputs,
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Layer 3Layer 2Layer 1

Figure 3.1: Convolutional layer neurons are only connected to the input’s local regions.

performs a dot product and applies activation function. A convolutional neural network

(CNN) allows the input to be an image or in general, any n-dimensional input. The

neurons in a layer are only connected to a small region of the layer before it, instead of

being fully pairwise connected with the neuron of the adjacent layer.

3.1 Types of layers

3.1.1 Convolutional layer

The convolutional layer is the basic layer for those kind of networks. This layer consist

of a set of learnable filters that perform some operations only on a small portion of

input image. We will work with images which are two-dimensional. Filter on a first

layer of a convolutional network might have size 5 × 5 (five pixels width and five pixels
height). On a figure 3.1 there is an example of sequetional convolutional layers. We

then slide this filter across the width and height of the input and compute dot products

between the entries of the filter and the input at any position. On a intuitive level,

network should learn filters that activate when they see some type of visual feature

and we will have a set of filters. In other words, filters look at only a small part of the

input and share parameters with all neurons to the left and right spatially in order to

save some sort of memory. This approach is practical because of local connectivity and

sharing parameters, reducing the number of total parameters by an order of magnitude.

Consider a network like in a figure 2.2 with an input like ours – an image of 5711×6572
pixels – it would take a lot of memory and it would also be slow to train.

One can pad the input with zeros around the border, which allows us control the

spatial size of the output.In general, padding must be with a neutral element or number

which in our case is zero. For a input sizeW , the filter size F, the stride S and the amount

of zero padding used on the border P, we can compute the output size like W−F+2P
S

+ 1.

It turns out that we can also reduce the number of parameters if we assume that if one

feature is useful to compute at some spatial position (x1, y1), then it should also be useful
to compute at a different position (x2, y2). In other words, learned features should be
translation-invariant and should be able to detect in an arbitrary data position. That is

why it makes sense to constrain the neurons to use the same weights. On figure 8.1 there

is an image of two position over the input, and shows that each element is computed by
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Figure 3.2: Two iterations in computing output of a convolutional layer, where blue is the image,

gray zero padding, yellow are weights and red is the next layer.
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Figure 3.3: Pooling layer downsamples the volume spatially, independently in each depth slice

of the input. Presented pooling method is a max pooling (selects largest number).

elementwise multiplying the input with the filter and summing it up.

3.1.2 Pooling layer

In our model we use periodically pooling layer in-between convolutional layers to pro-

gressively reduce spatial size, hence reduce the amount of parameters and computation

in the network and also control overfitting. For example, if we use form of a pooling

layer with filters of size 2 × 2 and a stride of two, as a result, we downsample the
input by two along both width and height. In figure 3.3 there is an example of how a

pooling layer is applied to every slice in a three-dimensional input. In our case the third

dimension is one. In other words, we have images which are a two dimensional input.

In this case, 75% of the activations are being discard. With this layers we have to be
careful because larger receptive fields can be too destructive.

3.1.3 Dropout layer

Dropout layer is an effective and simple layer that helps us provide overfitting [7]. It

is implemented by only keeping a neuron active with some probability p, otherwise a

neuron is set to zero.

4 Implementation
We do the training on a supercomputer Jureca [3] using one graphic card and 4 tasks,

with every task doing the training with different learning rate. The implementation

has been done in Python using Keras [4] library and the data has been saved as HDF5

file [1]. We also made a generator that takes a given number (in out example, two) of

small random portions of images. Those portions we call windows and we estimate the

window size to be 100 × 100 pixels. In the first example of convolutional networks, the
output was always one pixeland later, in section 6 we change it to predict more pixel at

once.
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Figure 5.1: First model of a convolutional neural network with seven layers.
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Figure 5.2: Example of overfitting – the train loss decreases, the test loss increases.

5 First Convolutional Networks and results
After having a look into the theory behind neural networks, we are now ready to construct

a first simple neural network and to try it out to see if it predicts what we want. In

figure 5.1 is a graph that shows our first network’s structure. It consists of convolutional

layers followed by dropout layers to prevent overfitting. The intermediate activation

layers are ReLu units, whereas the final output is linear. The model is implemented in

Python using Keras library. We split the data into the training set (80%) and the test
set (20%).
We transformed labels to be minus one and one instead of zero and one. That way,

when we set the last activation function to be linear, wrong predictions of zero would

be more punished. We did that because model tend to predict more zeros then it should.

Since we did that and since we put the activation function to be linear, if the final output

will be close to minus one, we will assume that is not gray matter and for predictions

close to one, we assume that the prediction is a gray matter.

The training usually lasted for a day because that was our computational limit on

Jureca, even though the training could last longer. This was really expensive and so we

had to be careful not to train models that will most likely not be good enough. The data

loss takes the form of an average over the data losses for every individual example. The
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(a) Learning rate = 0.001
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(b) Learning rate = 0.00001

Figure 5.3: Two examples of plots of loss function with different learning rates.

goal is to make the loss function to be really small because that means that predictions

are good. The training consisted of more then 1000 epochs, and after every epoch, we

plotted the loss function, both data loss and train loss. The reason is that the plot will

that way tell us not only about the loss, but also about when overfitting accures. When

we see that the train loss started to decrease, but test loss increase, like in a figure 5.2,

it was a sign that a model is just memorizing the data and does no abstractions. On this

plot it is also visible how fast the model learns and speed depended on a learning rate.

Small learning rates are likely to lead to consistent but slow progress. Large steps can

lead to better progress but are more risky because we could skip the minimum of a loss

function. So the step size became one of the most important hyperparameters that had

to be carefully tuned. That is why we will try out different rates and then see which

one works best. We did the training on Jureca [3], using one node and four tasks per

node, with every task doing the training with different learning rate using systematic

parameter search. The training process is visible on plots. Two examples of plots are on

figure 5.3.

After a day of training, we want to test our model. When we gave it a picture, it will

make prediction pixel by pixel, and for every pixel it will tell us if it is a gray matter or

not. First problem in that idea was the size of the picture. Let’s repeat, the pictures were

5711 × 6572 big and it would take a lot of time to make predictions for every pixel in
one picture in a day. So that is why we tested it on a small part of one picture, like in

figure 5.4.

On figure 5.5 are our first results – it is obvious that they are not good enough. That

is why we had to go for something better.
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(a) How a full brain image looks like. (b) Image portion to predict.

Figure 5.4: Testing model how it predicts small portion of a brain image.

(a) Ground truth (b) Our results

Figure 5.5: Testing a model how it predicts small portion of a brain image – label and results.

89



6 Going for deeper ConvNets and new results
6.1 Inspiration in Google
Unhappiness with our old results made us think about other possibilities for constructing

a CNN model. This time, we found inspiration in GoogLeNet, [8]. What is so special

about this architecture are inception modules – this is a convolutional network that has

smaller convolutional networks build inside, eliminating a large amount of parameters

that do not seem to matter much. The model that we made, shown on figure 6.1, consist

of many layers, mostly convolutional, followed by pooling layer or dropout in order to

prevent overfitting.

Another thing that was now changed was number of output pixels, so instead of

predicting one pixel at a time, we went fully convolutional and now are able to operate

on any input size and produce an output of corresponding size (eg. 6 × 6 or 24 × 24
output size). An illustration of this is on the figure 6.2. We put the same problem in

front this model, like in the figure 5.4. The results were again not good, see figure 6.3.

6.2 Removing pooling layers
Now we started to think about why our model was not able to learn anything and why

it gave us sub-optimal results. To prevent overfitting, we used many pooling layers and

with that we did not allow the model to learn. Instead of control overfitting, we went to

other extreme – underfitting, where model is not able to generalize, so the new idea

was to remove most of the pooling layers and to challenge a model one more time. We

now have a model on a figure 6.4a, we train it for a day with different learning rates in

order to compare and to choose a learning rate that gives us the smallest loss function.

New prediction of a small image portion from figure 5.4 is on figure 6.4b. The model

still does some errors, but now it recognized the structure of a gray matter in a brain

and results make much more sense.

6.3 Results on full images
After we got better results on a small portion of an image, we are now ready to make

predictions on a full image. Our input was of a size 100 × 100 pixels and corresponding
output was a size 44×44. The results of a prediction on a whole picture are on figure 6.5.
Beside that, we gave him more images to make a predictions, which are shown in a

figure 6.3.
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input Convolutional Pooling Convolutional Convolution Zero padding Pooling

Zero padding Convolutional Dropout

Zero padding Convolutional Dropout Convolutional

Zero padding Maxpooling Upsampling Convolutional

Zero padding Convolutional Dropout Convolutional

Merge Pooling Convolutional Dropout Convolutional Activation output

Convolutional Convolutional layer

Pooling Pooling layer

Zero padding Zero padding

Maxpooling Max pooling

Upsampling Upsampling

Dropout Dropout

Merge Merge

Activation Activation

Figure 6.1: New model of CNN inpired by GoogLeNet with inception module.

Convolutionalization

Figure 6.2: Ilustration of transforming a model into fully convolutional.
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(a) Ground truth (b) Our results

Figure 6.3: Result that we got from model on a Figure (6.1).

input Convolutional Pooling Convolutional Convolution Zero padding Pooling

Zero padding Convolutional Dropout

Zero padding Convolutional Dropout Convolutional

Zero padding Maxpooling Upsampling Convolutional

Zero padding Convolutional Dropout Convolutional

Merge Pooling Convolutional Dropout Convolutional Activation output

Convolutional Convolutional layer

Pooling Pooling layer

Zero padding Zero padding

Maxpooling Max pooling

Upsampling Upsampling

Dropout Dropout

Merge Merge

Activation Activation

(a) Removing pooling layers

(b) New results

Figure 6.4: Transforming our model and allowing it to learn more.

(a) Brain image (b) Label (c) Results – treshold 0.1

Figure 6.5: Predicting the whole image, 44 × 44 pixels by one.
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(a) Brain image (b) Label (c) Results

(d) Brain image (e) Label (f) Results

Figure 6.6: More predictions of the whole image, 44 × 44 pixels by one.

7 Discussion
When we want to determine a gray matter of a brain, we give our model an image like

on figure 7.1a and it gives us predictions like on figure 7.1c, this is how it looks like

without any post processing. What we want is an binary output, with zeros on the places

that are under a given number, and ones on the places that are above. This number that

makes the difference we call a treshold. In the results in section 6 we tried out different

tresholds and we show the one that gives the best results. On figures 7.1, 7.2, 7.3 we

show three examples how different tresholds influence results on different sections of a

brain (on figure 7.1f there is an example where all the predictions are smaller then the

treshold). It still has to be investigated what is the proper post processing procedure

which would give us best results. In other words, one could determine the treshold

function that should be applied to the results of our model.
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(a) Brain image (b) Label (c) Result

(d) Treshold: -0.35 (e) Treshold: -0.2 (f) Treshold: 0.35

Figure 7.1: Enlarged brain image and results.

(a) Brain image (b) Label (c) Result

(d) Treshold: -0.35 (e) Treshold: -0.2 (f) Treshold: 0.35

Figure 7.2: Brain image and results.
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(a) Brain image (b) Label (c) Result

(d) Treshold: -0.35 (e) Treshold: -0.2 (f) Treshold: 0.35

Figure 7.3: Enlarged brain image and results.

8 Summary and Outlook
Fully convolutional networks are a rich class of models, of which we tried out a model

inspired by a GoogleNet. In this paper, we achieved some results on the brain cortex

segmentation and now our model can distinguish gray matter from the rest part of a

human brain. This model still makes mistakes sometimes and there is a place to improve

it. This project was just a small puzzle inspired by the big Human Brain Project [6] and

next step would be to make three-dimensional model (predict multiple images at once)

and get a deeper look into the brain.
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Brain simulators on JULIA: Initial
performance evaluation

Abstract In this report, we describe an initial performance

analysis of the prototype Cluster JULIA installed in the frame-

work of the Human Brain Project (HBP). Special care is taken

to understand the memory hierarchy of the Intel Xeon Phi

Knights Landing processor. Finally, the performance of the

neural simulator NEST is evaluated.
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1 Introduction
Understanding the human brain is one of the big visions of mankind: Revealing the

processes behind reasoning and creativity, building artificial intelligence. The Human

Brain Project, funded by the European Union, unifies these efforts into one project.

One idea is to simulate the brain on high-performance computers in order test and

refine models. An example for one such simulator is NEST which builds physiological

inspired neural networks. These networks consist, just as the brain, of neurons and

connections between neurons. Currently, networks up to 1.73 billion neurons can be
simulated on the biggest computers using up to 1PB of main memory [5]. In contrast,

the human brain contains up to 100 billion neurons and even more synapses. Trying to

reach the human brain in size and complexity, new computer architectures have to be

used.

The newly released Intel Xeon Phi Knights Landing (KNL) platform is a promising

candidate in this regard. Benefiting from up to 72 cores per card, codes can be executed

in a highly parallel fashion on a single processor. Before exploiting the KNLs for

neuroscientific applications, the actual performance of the processors is analysed with

micro-benchmarks.

The primary target of this study is to provide a first understanding of the memory

hierarchy and to give an idea of neural simulations on KNL. In order to understand the

hierarchy, a memory micro-benchmark is used. The tool of choice was PMBW which

implements read and write operations in a multi-threaded way [7]. It resolves unique

features like highspeed memory access to multi-channel DRAM (MCDRAM), which is

located directly on-package. Additionally, an initial benchmark of the Solid State Disks

(SSD) on the DataWarp nodes is performed. These disks serve as an additional storage

layer between the fast RAM and the slower network storage. The second step consists of

timing runs for NEST examining the scalability and time to solution performance.

2 JULIA Cluster
The JULIA Cluster system is a high performance system built by Cray and based on the

Intel Xeon Phi Knights Landing (KNL) technology. It consists of 2 Login-nodes, 60 KNL-,

4 DataWarp-, and 4 Visualization nodes. Each KNL node consists of a Intel Xeon Phi

CPU 7230 that has 64 cores which support 4 hardware threads. The memory of the

KNL-card is split in two parts: The fast MCDRAM (16GB) and the slower but larger

DDR4 RAM (96GB). All other nodes are equipped with Intel Xeon CPU E5-2680 v4
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operating at 2.4GHz and 128GB of DDR4 RAM. Two 14-core processors are hosted on a
two socket system working on different NUMA (non-uniform memory access). They act

as single node with 28 cores. This holds true for DataWarp-, Login-, and Visualization

nodes. Only the DataWarp nodes are equipped with actual hard-drives (2 Intel NVMEs

of 1.6TB). In order to provide immediate visualization capability, 4 NVIDIA graphics
card (GK110BGL) are attached to each visualization node.

2.1 Intel Xeon Phi Knights Landing Platform
The most salient feature of the JULIA cluster is the Intel Knights Landing chip, the latest

Xeon Phi processor. In contrast to the Knights Corner coprocessor, the Knights Landing

version can be shipped as a coprocessor or as a processor. This report only considers the

Knights Landing processors since they are installed in the JULIA cluster.

2.1.1 Architecture Overview

The Knights Landing platform consists of mulitple architectural layers. An overview of

the setup is provided in Figure 2.1. The elemental building block of the KNL processor
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Figure 2.1: Schematic drawing of the Knights Landing architecture. The blue tiles in the center

consist of two processors with two vector processing units (VPU) each. They can be observed

in further detail in the inlay. The caching home agent (CHA) ensures cache-coherency across

the tiles. Memory controllers for the DDR4 RAM are marked in green at either side of the card.

The red boxes above and below represent the high-bandwidth MCDRAM.

is called tile (marked as dark-blue Figure 2.1). One tile consists of two modified Intel

Atom cores (codename Silvermont) with two vector processing units (VPU) each. The

two out-of-order cores share 1MB of L2 cache, while using 32 kB of instruction L1 (IL1)

and 32 kB of data L1 (DL1) cache.

In contrast to other processors, the KNL provides two layers of main memory: multi-

channel DRAM (MCDRAM) and DDR4 RAM. The first is on-package memory and pro-

vides 16GB of high-bandwidth memory with a transfer bandwidth of approximately

450GB s−1 [4]. The DDR4 RAM is addressed via six memory controllers, three at each

side of the KNL (marked in green in Figure 2.1). A maximum of 384GB can be addressed

and used with a theoretical bandwidth of 115GB s−1.
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2.1.2 Memory and Cluster modes

The KNL cards provides serveral modes to exploit the high-bandwidth of the MCDRAM

which have to be selected at boot-time. These modes are grouped in to sections: Memory

and Cluster modes. The latter affect the cache look-up strategy while the first influence

the structure of the MCDRAM. The user may choose freely from both sections. At first,

the different Memory modes will be presented.

Cache Mode This modes uses the MCDRAM (the high-bandwidth memory) entirely as
cache for the DDR memory. It is important to note that the cache does not work as

an L3 on the processor side, but as a pure memory cache on the DDR side. Since

the organization of the memory cache is not accessible from the software side,

the MCDRAM remains invisible to the programmer. All allocations will be made

directly in the DDR.

Flat Mode The Flat Mode renders the MCDRAM visible to the software. The high-
bandwidth memory is attached to DDR4 address-space on the high-address side.

It can be either allocated directly via software (memkind for C, FASTMEM for

Fortran) or used as a preference for the whole program via numactl.

Hybrid Mode The Hybrid Mode splits the MCDRAM in two parts. One will be utilized
as cache, the other can be addressed directly. Hence, it is a combination of the

two modes mentioned above.
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Figure 2.2: Illustration of different memory modes. In Flat and Hybrid Mode, the MCDRAM is

accessible by software via the given addresses. MCDRAM cannot be accessed directly in Cache

mode.

The different modes are illustrated in Figure 2.2.

Independently, one of five cluster modes can be selected: all-to-all, quadrant, hemi-

sphere, or subNUMA-cluster-4 (SNC-4), or SNC-2. In this work, only the modes all-to-all

and quadrant will be used. Further information may be found in literature [4]. The

cluster mode influences the behaviour of the KNL upon the occurance of a cache miss.

If a cache miss occurs, three agents are involved: tile, Caching-Home agent (CHA),

memory. The affinity between these agents is managed by the selected Cluster mode.
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The most general mode is the all-to-all mode. It is the only mode that works with

different sizes of RAM attached to the different DIMMs. Since no assumptions are

made about the layout of memory, it is, in general, expected to be the worst mode in

terms of performance [4]. No affinity is assumed between the CHA, the tile, and the

memory. Therefore, any tile may request any address of memory which is tracked by a

tile anywhere on the chip. On average the messages have to transverse longer on the

chip and the lookup for an L2 cahce miss will take longer. For further details the reader

may be referred to Ref. [4].

The default mode for equal memory distribution is quadrant. In contrast to all-to-all,

an affinity is established between memory and CHA. The CHA is divided into four parts

and each part organizes the tags for the memory in its quadrant. Therefore, the expected

latency of memory look-ups is smaller.

A third mode is SNC-4 which provides a strong affinity between all three agents. It is

meant for NUMA-optimized software and can be most easily imagined as a multi-socket

system. The KNL is divided into 4 subNUMA nodes and they can be readily depicted as

a four-socket system built of XEON processors. The access-times for addresses that are

stored in the memory of another socket are considerably higher.

For more information about other modes and further details the reader may be referred

to literature [4].

3 PMBW Benchmark
The PMBW benchmark measures the memory bandwidth and memory latency for read

and write operations. In order to avoid the dependence on compiler optimization

each benchmark is written in inline assembly in a C-function. Often, a pure read and

write operation without processing is regarded as unnecessary by the compiler and,

therefore, does not occur in the final binary. This optimization would prevent the desired

measurement and has to be avoided.

The functions are implemented using different SIMD1 instruction sets. The KNLs

support a maximal vector length of 512bit which is exactly the length of one cache line.

If the largest SIMD instructions are used, the full cache line is populated at once and the

highest bandwidth is achieved.

PMBW is one of the few memory benchmarks that can measure the memory bandwidth

while multiple threads are used. The implementation relies on the usage of pthreads.

This feature is especially interesting since the KNL platform is expected to reach maximal

performance for a large thread numbers. This expectation is motivated by the fact that

one thread is not divisible and can only run on a single processor (one of 64) which

leaves most of the card unused.

Due to limited timer resolution, each benchmark is executed for at least 1 s. Further

details about the PMBW benchmark can be found online [7].

3.1 Performance with different instruction sets

In a first step, the different instruction sets are benchmarked one against each other on

a single core. The double logarithmic plot in Figure 3.1 shows the result of a PMBW

execution on a single thread. The names listed in the legend are always structured in

1Single Instruction Multiple Data
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the same way. ScanRead stands for the operation that is performed. It is a reading

operation in a sequential manner, hence Scan. The following number names the size of

the instruction operand in bits. The suffix UnrollLoop states that the 16 times unrolled

version of the function was benchmarked instead of the simple implementation with

one instruction per loop.

The constant offset of the different curves against each other shows the influence of

the different instruction sets. Since the doubled amount of data can be transferred in an

equal number of processor cycles, the observed bandwidth doubles as well (constant

offset in the logarithmic plot). The x labels have been partially replaced by the actual

sizes of important hardware features. For example, the bandwidth drops significantly

when the arraysize exceeds the size of the L1 cache. The same behaviour can be observed

for the shared L2 cache.

The absolute values of the benchmark can be compared to the hardware capabilities

of the KNL. The KNL is able to perform 2 load instruction per cycle with a width of

64B = 512bit each. Running at a base frequency fbase = 1.3GHz, the nominal bandwidth
can be calculated as 2 ⋅ 64B ⋅ 1.3GHz = 154.97GiB s−1. The PMBW reaches in the L1

region up to 117.50GiB s−1 which is reasonably close to the theoretical value.
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Figure 3.1: PMBW benchmark results for a KNL configured with Flat-Quadrant. The PMBW is

executed on one thread and the instruction set is changed in each run. The label 𝛼 denotes
the size of the MCDRAM (234 B).

3.2 Performance with multiple threads
The PMBW benchmark also provides the feature to measure the performance of one

SIMD instruction set when used with a different number of threads (compare Figure 3.2).

The overall shape of the graph is comparable to Figure 3.1. However, there are some

interesting differences. These benchmark results do not only show sharp drops in

performance when L1 and L2 are exceeded, but also when the capacity of MCDRAM is

reached at 16GiB. This drop only evolves for high thread numbers, implying a large

number of threads is necessary to use up the whole bandwidth of the card.

Another difference is the right-shift of the different drops at cache size boundaries in

contrast to the single threaded benchmark. Since the L1 cache is private to the processor,

the total amount of L1 changes if multiple threads are in use. Therefore, the drop
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Figure 3.2: Left: Bandwidth measured with different numbers of threads. Right: Latency

measured with different numbers of threads. In both plots, the actual array size has been

replaced by sizes of hardware features. 𝛼 replaces the size of the MCDRAM (16GB). p defines
the number of threads used in the benchmark. The solid black line denotes the theoretical

limit.

to lower bandwidth values is observed at higher array sizes for increasing number of

threads. A similar explanation is valid for L2 because it is shared inside a tile but not

across tiles. Hence, the amount of L2 cache increases if more threads are used.

The theoretical maximum value that can be reached is a bandwidth of 9918.21GiB s−1.

It is calculated as bandwidth = nload ports ⋅ nCPU ⋅ fbase, where nload ports = 2 for the given

processors used in the tiles.

The right plot of Figure 3.2 shows the latency plot corresponding to the measured

bandwidth values. Here, the latency is defined as latency = t
naccesss

where t is the runtime

of the benchmark and naccess is the number of accesses of the memory during the run.

The minimal latency for 512bit operands amounts to 0.012ns. This data is reasonable
although it is smaller than the duration of one processor cycle (0.76ns). The L1 cache
is local to the processor and can be accessed by each of the 64 processors during each

cycle. Thus, the minimal, theoretical latency is 1
2⋅1.3GHz⋅64 = 0.006ns, which is smaller

than the smallest, measured latency value. The additional factor 2 is attributed to the

fact that the processor can issue 2 instructions per cycle.

3.3 Comparison of different Cluster modes
As mentioned above, the all-to-all modes is the only one that manage differently sized

RAM-blocks since it makes no assumptions at all. In contrast, the quadrant mode

establishes a binding between the main memory and the CHA. Therefore, the load

process from memory should be faster than in the case of all-to-all. However, Figure

3.3 shows a better performance for all-to-all in the MCDRAM region. The problem with

this specific benchmark could be reproduced on another KNL system by Intel and is

currently under investigation.
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Figure 3.3: Comparison of PMBW running on 64 cores with AVX-512 instructions and different

cluster modes. As above, 𝛼 denotes the hardware size of the MCDRAM. The numbers inserted
are the mean bandwidth values (harmonic mean) for allocation on the MCDRAM.

4 ezFIO
The only nodes that are actually equipped with non-volatile memory are the DataWarp

nodes. The two attached NVMe (Non-Volatile Memory express) cards are Intel DC P3600

with 1.6TB each. They are used as an additional hierarchy level of the permanent
storage system.

If data is needed after the termination of a run, it has to be transferred to disk at

some point of the program. Since the compute nodes do not have non-volatile memory

attached and the network filesystem is too slow, an additional layer of durable memory is

introduced: The DataWarp nodes. They work as a mediator between the high-bandwidth

RAM and the inherently slower network filesystem.

In order to perform the measurements of the IO performance independent of a specific

file system, ezFIO is used. It is a Python wrapper that uses FIO which accesses the SSD

directly via libaio and the NVMe interface [8]. The data is not written to the filesystem

which is mounted on the disk, but directly onto the device, wiping the memory in the

process. The benchmark presented here considers only read and write operations to a

single disk although the DataWarp nodes are equipped with two disks. The analysis of

work sharing strategies between both disks could be part of a further analysis.

ezFIO does not show any significant alterations in the IO operations per second (IOPS)

(see Figure 4.1). The bandwidth stays almost constant at around 165000 IOPS indicating

a constant bandwidth. Therefore, the NVMe’s performance is not influenced by a wear

leveling mechanism.

Additionally, ezFIO is used to check the ultimate read and write performance values

which are given by Intel with 1600MB s−1 for sequential writing and 2600MB s−1 for

sequential reads [3]. To test these numbers, the ezFIO was configured to perform

sequential reads and writes on the bare disks. The results of these runs are presented

in Figure 4.2. The benchmark was executed on one thread with increasing block size.

Write benchmarks are executed with a queue depth of one while read benchmarks are

executed with a queue depth of 256. Both benchmarks show that the limits reported by

Intel are almost reached. The read benchmark reaches up to 2345.50MB s−1 while the

data is written with up to 1479.62MB s−1.
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Figure 4.1: Bandwidth of the NVME over time. The bandwidth is monitored as number of IO

operations per second (IOPS). It does not change significantly over time.
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Figure 4.2: Sequential read and write operations with a single thread.

5 NEST – Network Simulator
The Neural Simulation Tool (NEST) is an application to simulate biological motivated

neural networks with scalability in mind [1]. It offers a variety of neuron models as well

as different synapse implementations. In this report, NEST was chosen as an application

benchmark on JULIA. Therefore, the main focus is rather on performance of a single

network than validating the actual results.

We chose the Brunel Network example implemented in Python as a benchmarking

case (brunel_alpha_nest.py). The concept of a Brunel network is a neuron population

that is only sparsely connected [2]. Given the order number n, the network consists of

NE = 4n excitatory neurons and NI = n inhibitory neurons. Thus, 80% of the population
is excitatory and 20% is inhibitory. Finally, each neuron receives CI = 𝜀NI connections

from inhibitory neurons and CE = 𝜀NE from excitatory ones. Since the network is

supposed to be only sparsely connected, 𝜀 is chosen as 𝜀 ≪ 1.

In order to evaluate the performance of NEST on Knights Landing processors, both,

the scaling with MPI and OpenMP is evaluated, since these strategies are used in the
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Figure 5.1: Strong scaling of NEST with varying number of MPI ranks. The number of OpenMP
threads is held constant at 1. The shaded region indicates the SMT region of the KNL processor,
i.e. the number of processes exceeds the number of cores available on the card.

implementation of NEST. The e˞ciency

t 1
nPU t nPU

is used to evaluate the scaling behaviour for a diˤerent number of PUs. Here, t nPU is
the execution time of the program on a n processing units (PU). A PU names a single
thread, i.e. a single stream of instructions, but imply nothing about the a˞nity to a
certain process. Therefore, 4 PU may be realized, for example, as 2 MPI ranks with 2
OpenMP threads each or as 1 MPI rank with 4 OpenMP threads.
In this report, we consider only the strong scaling performance of the program. Strong

scaling is harder to achieve, since the total work stays constant during the analysis.
Therefore, the work per processing unit will decrease as the number of PUs is increasing.
Hence, communication and computation cannot be overlapped as e˞ciently and eˤects
like synchronization may become visible.
The presented graphs are recorded with NEST 2.10.0 compiled with GCC 6.1.0 and

linked against the Intel-MPI 5.1.3. The NEST software is not a benchmark on its own,
but a scienti˚c neural simulator. Therefore, NEST is not designed like PMBW or ezFIO to
output data that is already a statistical value of multiple runs. The JUBE framework [6],
written and maintained in Jülich, is used to organize multiple runs and to run a basic
statistical analysis. Each data point is the minimum time of ˚ve independent runs. The
minimum is chosen because the distribution of computing time is inherently asymmetric.
It only has a ˚xed lower limit, while the upper limit may be, in the worst case, arbitrarily
large due to operating system eˤects.
The e˞ciency plot for both cases, MPI and OpenMP, can be considered as fairly high.

Especially the super-linear behaviour of the MPI version at full-use of the KNL processor
looks very promising. E˞ciency drops only for large a number of cores, when the SMT
region of the KNl is reached, i.e. multiple threads are scheduled per core. The inferior
performance of OpenMP with respect to MPI is expected, since the memory allocation
of NEST is not yet optimized for high numbers of OpenMP threads. The optimization is
planned for the upcoming releases.
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Figure 5.2: Strong scaling of NEST with varying number of OpenMP threads. The number of MPI
ranks is held constant at 1. The shaded region is the SMT region of the KNL processor.
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Figure 5.3: Comparison of KNL 7230 and Xeon CPU E5-2680v4 processor. The number of
OpenMP threads is ˚xed to one during the whole benchmark. The shaded region highlights
the SMT region, as above.

Although the e˞ciency of NEST on KNL platforms is very promising, the time to
solution is slower than on Xeon processors.
The result shown in Figure 5.3 was produced using the visualization nodes of JULIA

as a reference (compare Section 2 for further information on the hardware).
The reason for this performance diˤerence is not yet fully clear. One explanation

under investigation is the following: The Xeon Phi processor consists of a big number of
low-performance core (Intel Atom). It is possible that the Xeon processor architecture is
more suitable to the task than the massively parallelized approach with smaller cores
because of a better processor architecture.

6 C
This report presented an initial performance analysis of JULIA’s KNL- and DataWarp
nodes. The hierarchical memory architecture of Intel Xeon Phi Knights Landing pro-
cessors that incorporates an additional layer of high-bandwidth memory, can prove
bene˚cial for programs that use ranges of data frequently which are larger than the
processor’s cache. The PMBW benchmark shows that maximal performance in terms
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of memory bandwidth is only reached for high numbers of threads. An unexpected

difference between quadrant and all-to-all Cluster mode is currently under investigation.

Additionally, the SSDs used in the DataWarp nodes show high bandwidth stability and

read/write performance close to the values reported by the manufacturer.

NEST, a future use case for neural science, shows very good scalability up to high

numbers of threads. The performance decreases only when the SMT region of the KNL

is reached. The reason for the difference in timing in comparison to the Intel Xeon

processor is not entirely clear yet.

In a next step, the network fabric (Omnipath) could be tested and used in order to

reach even bigger network sizes that are not computable on one node any more.
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Abstract The method 3D-Polarized Light Imaging (3D-PLI)
is a promising tool in mapping the ˚ber tracts of the human
brain on both, small and large scales. In the imaging process
the signal is degraded by several sources of noise, which reduc-
tion is of importance for the quality of the 3D-reconstruction.
A parallelized Independent Component Analysis (ICA) based
method was successfully adapted to the JURECA supercom-
puter environment and extended to seperate components based
on their distribution being sub- or supergaussian.
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1 I /M
In the challenge of understanding the human brain, there is a variety of methods
available in order to analyze structures on diˤerent scales (Figure 1.1). While methods
like electron microscopy allow to show the structure of single axons and methods
based on ˜uorescence microscopy can be used to identify local connections, they lack
the ability of tracking more distant ˚ber tracts. On the other side classical dissection
methods can be used in order to analyze the brain as a whole, however providing no
further insight on the connections of the ˚ber tracts. More recently diˤusion MRI has
prooven itself as a successfull tool in tracking nerve ˚bers of the human brain, while
unfortunately being restricted to resolutions in the mm-scale. Here 3D-Polarized Light
Imaging (PLI) has been introduced as a new approach [1], reaching voxel dimensions of
1 3 1 3 70 μm [4] while still being applicable to map the whole brain. This method is
exploiting the birefringent properties of the myelin sheath surrounding nerve ˚bers[2].

neuro laments

myelinated axons

unmyelinated axons

ber tracts

large ber tracts

human brain

10 nm 100 nm 1 m 10 m 100 m 1 mm 10 mm 100 mm 1 m
electron microscopy

light microscopy
di usion MRI di usion MRI

dissection techniques

3D Polarised Light Imaging (3D-PLI)

Figure 1.1: Available methods for the structure analysis of the human brain on diˤerent scales.

The imaging process for 3D-PLI takes place mainly on the Large Area Polarimeter
(LAP) and the Polarizing Microscope. The increased resolution of the PLI-Microscope
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Figure 1.2: Work˜ow from sectioning the brain towards a 3D-Fiber map.

however adds additional challenges to the process of mapping a whole human brain,
as the specimen has to be sectioned into ca. 3500 slices of about 70 μm while a typical
slice takes up to 500GB of space for the human brain[2]. In return similar eˤorts are
taken in mapping the ˚ber tracts in rat and vervet monkey brains. The raw datasets are
then processed in an image analysation pipeline to reduce unwanted eˤects, as well
as extracting informations about the direction of the polarization, the transmittance
of the probe and the retardation of the signal. Further steps combine the information
gathered for every slice in order to achieve a 3D-reconstruction of the full brain and the
3D-structure of the nerve ˚ber connections (Figure 1.2).
This work is focused on applying an independent component analysis within the

image analysation pipeline, which promises reduction of unwanted signals, as well as
an improved feature extraction.

2 P D
The deployed setup for the imaging process of 3D-PLI consists of a light source, 2
polarizers, a retarder, a stage for the probe and a camera device (Figure 2.1). The LAP
furthermore allows a tilting of the probe, while the PLI-Microscope is driven by a motor
for tile-wise scanning of the probe with overlapping ˚elds of views[3]. The generated
data is stored in HDF5 container ˚les[13], typically in uncompressed 3d-arrays where
2 dimensions map to the xy-coordinates and the remaining dimension to the diˤerent
angles under which the images were taken.
Due to the birefringence of the probe, the measured light intensity I varies in a

sinusodial manner with a change of the polarizers rotation angle . I is referred to as
the light intensity pro˚le

I
I0
2 1 sin 2 2 sin (2.1)
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Figure 2.1: 3D-PLI setup for the Large Area Polarimeter (LAP)[3]. A narrow banded green LED

light source with a wavelength of 525±25nm is used. The polarizers and retarder are rotated

simultaneously by an automated system, furthermore the probe can be tilted by an angle of

up to 8° in east, west, north and south direction.

The retardation 𝛿 is approximately given by

𝛿 ≈ 2𝜋 ⋅ d ⋅ 𝛥n
𝜆 ⋅ cos2 𝛼 (2.2)

where d is the thickness of the section, 𝛥n the birefringence of the myelin, 𝛼 the inclination
angle of the fiber and 𝜆 the lights wavelength. On both PLI setups the images are typically
taken under 18 different rotation angles from 0° to 170°.

However in the measurement process we naturally observe deviations from the pre-

viously described light intensity profile (eq. 2.1). These deviations can be traced back

to an unknown mixing of different sources like camera noise, dust on the probe or the

polarizers, as well as light scattering.

Here the independent component analysis (ICA) provides a statistical approach in

order to estimate the different sources from the measured signal.

2.1 Independent component analysis (ICA)
The following section covers the theory behind the ICA method as well as some of the

limitations that come with it.

2.1.1 The ideal cocktail party problem

Suppose we are in a room with n different people speaking simultaneously, then each

of them will emmit a time dependent signal sj (t) where j ∈ ℕ with 1 ≤ j ≤ n. Now

we place m microphones into this room, each of them recording a signal xi (t) with
i ∈ ℕ and 1 ≤ i ≤ m. Ignoring time delays, a valid assumption seems to be, that

the recorded signals can be expressed as a weighted sum of the emitted signals with

weighting parameters aij[7]:

x1 (t) =a11s1 (t) +…+ a1nsn (t)
⋮ (2.3)

xm (t) =am1s1 (t) +…+ amnsn (t)
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W ≈ A−1

W ⃗x = ⃗s∗

Signal sources ⃗s Measured signal ⃗x Reconstructed sources
⃗s∗ in mixed order

Figure 2.2: Schematic of the idealized cocktail party problem. Left: different people in a room

speaking at the same time act as signal sources sj. Center: A number of microphones spread in

the room measure a linear mixture x = As of these sources, where A is an unknown mixing

matrix. Right: The source signals are reconstructed using an Independent Component Analysis

(ICA) approach, where W is the estimated pseudoinverse of A.

The problem of estimating the initial signals sj while only having the recorded signals xi
available is famously known as the cocktail party problem. Using matrix notation and

dropping the time index, equation 2.3 can simply be written as

x = As . (2.4)

If we were to know A and as long as the number of recordings is larger or equal to the

number of initial signals (n ≤ m) we could, for a full ranked matrix A, solve equation 2.4

for s by the left-inverse A−1
left of A with s = A−1

leftx. Unfortunately the problem becomes

considerably more difficult if we want to solve for s with unknown A. The independent

component analysis (ICA) approaches this problem by assuming that the initial signals sj
are statistically independent random variables (see 2.1.3), allowing for an estimation of

A and in return for an approximation of its leftinverse, known as the unmixing matrix

W ≈ A−1
left.

Furthermore it is helpful to assume that the observed variables xi as well as the

independent components sj have zero-mean[7], if this is not fulfilled we can always

center the individual components by substracting their mean ̂xi = xi − ̄xi and ̂sj = sj − ̄sj.
2.1.2 Restrictions of the method

Before covering the theory behind the method the restrictions on the possible solutions

should be kept in mind:

As both, the original signal s and the mixing matrix A are unknown, we can neither

resolve the amplitude of the original signals, nor their order.

The first property can be understood by replacing one of the sources sj with a multiple

of itself 𝜆 ⋅ sj where 𝜆 can be choosen with 𝜆 ∈ ℂ\ {0}. Dividing the corresponding
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column with index j of the matrix aij by 𝜆 will yield the original vector x (see eq. 2.4).
A natural way to resolve this is by fixing the magnitude of each source such that they

have unit variance 𝔼 {s2j } = 1, this process is called whitening[7].

The second property can be shown by introducing a permutation matrix P𝜋 and its

inverse P−1
𝜋 into equation 2.4 such that x = AP−1

𝜋 P𝜋s. Now we have the new set of

signals ̂s = P𝜋s that is simply the original vector s but in another order as well as the

new mixing matrix Â = AP−1
𝜋 [7].

Another restriction has to be put on the sources themselves: As shown in the next

section, we need the sources themselves to be distributed nongaussian.

2.1.3 Moments, correlation and dependence of random variables

As implied before, the ICA method exploits that the mixed signals xi are no longer

statistically independent. To clearify how this independency can be measured, the

following section will give a short introduction to the necessary stochastics.

Expectation values and moments:

Given that a random variable X follows the probability density function fX (x), the
expectation value 𝔼 {g} of a function g (x) that depends on this random variable is given
by [11]

𝔼 {g (X)} =
∞
∫

−∞
g (x) fX (x) dx. (2.5)

In the discrete case, P {X = xi} denotes the probability of measuring the random variable
X as xi and equation 2.5 becomes

𝔼 {g (X)} = ∑
i

g (xi)P {X = xi} .

The expectation values 𝔼 {Xn} in the continous case

mn = 𝔼 {Xn} =
∞
∫

−∞
xnfX (x) dx (2.6)

and respectively in the discrete case

mn = 𝔼 {Xn} = ∑
i

xni P {X = xi} (2.7)

are called the n-th moment of the random value X[11], where the first moment 𝜇 = 𝔼 {X}
is also known as the mean. In return the central moments are given by

𝜇n = 𝔼 {(X − 𝜇)n} . (2.8)

The variance is defined by the second central moment 𝜎2 = 𝔼 {(X − 𝜇)2} = 𝔼 {X2}−𝜇2.
It is useful to express higher moments in standart units with [8, p.99]

𝛼n =
𝜇n

𝜎n
.

The fourth central moment 𝜇4 = 𝔼 {(X − 𝜇)4} is of particular interest for the inde-
pendence analysis, as it defines the kurtosis. As the kurtosis is classically used as a
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measurement of gaussianity and the fourth central moment of a normal distribution is

𝜇4 = 3𝜎4, we will use the more practical definition by Fisher[6, p.76] in standard units

Kurt [X] =
𝜇4
𝜎4

− 3 (2.9)

which is more accurately known as the excess kurtosis. With this definition a normal dis-

tribution the kurtosis Kurt [X] = 0, distributions with Kurt [X] < 0 are called platykurtic

or sub-gaussian and have a relatively big part of their probability mass distributed

in a broad center, whereas their tails are relatively flat. Vice versa distributions with

Kurt [X] > 0 are called leptokurtic or super-gaussian and have comparably fatter tails

than a normal distribution. For two independent random variables X and Y, the excess

kurtosis furthermore satisfies the linear properties

Kurt [X + Y] = Kurt [X] + Kurt [Y]
Kurt [𝛼X] = 𝛼4Kurt [X] (2.10)

with 𝛼 being a scalar[7].

Independence and correlation:

Two given events A and B [11, p.27,32] are called independent, if their joint probability

P (A,B) = P (A|B)P (B) = P (B|A)P (A) is given by the product of their individual
probability:

P (A,B) = P (A)P (B) (2.11)

Here P (X) denotes the probability of an event X and P (X|Y) the conditional probability
of an event X, given that event Y occured. Thus equation 2.12 implies that the know

Corollary we find that two continous random variables X and Y are independent,

if their joint probability density function (pdf) fX,Y (x, y) can be factorized into the
according pdfs fX (x) and fY (y)[11, p.132]:

fX,Y (x, y) = fX (x) fY (y) (2.12)

Furthermore, for a number of n random variables X1,…,Xn the events are indepen-

dent[11] if their joint pdf fX1,…,Xn (x1,…, xn) fulfills eq. 2.13

fX1,…,Xn (x1,…, xn) = fX1 (x1) ⋅… ⋅ fXn (xn) . (2.13)

For two independent random variables X1 and X2 we find the relation

𝔼 {g1 (X1) ⋅ g2 (X2)} = 𝔼 {g1 (X1)} 𝔼 {g2 (X2)} (2.14)

using equations 2.5 and 2.12[7].

Substituting g1 (X1) → X1 and g2 (X2) → X2 into equation 2.14 yields 𝔼 {X1 ⋅ X2} −
𝔼 {X1} 𝔼 {X2} = 0 and therefore demands the covariance of X1 and X2, defined as

cov (X1,X2) = 𝔼 {X1 ⋅ X2} − 𝔼 {X1} 𝔼 {X2} (2.15)

114



to be zero. If cov(X1,X2) = 0 the random variables X1 and X2 are called uncorrelated[11,

p.153]. Similary n random variables X1,…,Xn are called uncorrelated, if the covariance

matrix, defined as

𝛴 (X) = (cov (Xi,Xj))
i,j=1,…,n

= 𝔼 {XXT} − 𝝁𝝁T

is the identity matrix In. However, equation 2.14 implies that uncorrelatedness is not a

sufficient criterium for variables to be statistically independent. An improved estimate on

the independence of random variables can be achieved, if higher moments are considered

for equation 2.14. Here the ICA method heavily utilizes the fourth momentum known

as kurtosis.

As mentioned before (2.1.2) the ICA method requires that at max. one of the sources

sj can be Gaussian distributed. The difficulties arising otherwise can be understood if

we assume two underlying source signals s1 and s2 to be Gaussian distributed, with

zero mean, uncorrelated thus 𝛴 (x) = I2 and therefore s = (s1 s2)
T ∼ N (0, I2)[10].

The linear mixing model leads to the observation of x = As, with the mixing matrix

A ∈ ℝ2×2 and covariance matrix

𝛴 (x) = 𝔼 {xxT} − 𝔼 {x} 𝔼 {x}T

= 𝔼 {AssTAT} − 𝔼 {As} 𝔼 {sTAT}
= A𝔼 {ssT}AT − A𝔼 {s} 𝔼 {sT}AT

= AAT .

If we introduce an arbitrary orthogonal (rotation/reflection) matrix R ∈ ℝ2×2 such

that RRT = RTR = I2, into our mixing model such that x
′ = ARs, we will again find x′

distributed with zero mean and covariance matrix

𝛴 (x′) = 𝔼 {x′ ⋅ x′T} = 𝔼 {ARssTRTAT} = ARRTAT = AAT .

In consequence it for both x and x′ our observation data would be distributed with

N (0,AAT), hiding whether the sources were mixed with A or AR.
An interpretation of this statement can be found using the central limit theorem, which

states that the sum of n independent random variables sj with j ∈ 1,…, n under certain
conditions approaches a normal distribution as n increases[11, p.214]. Therefore the

measured signals x = As are distributed more gaussian, than the original sources sj,

giving us the possibility to search for a matrix W ≈ A−1
left that minimizes gaussianity in

̂s = Wx. If the sources s however are already distributed gaussian, the actual solution

A−1
left can’t be expected to decrease gaussianity in A

−1
leftx, therefore rendering our approach

useless for gaussian distributed sources.

2.1.4 Approaches in source estimation

In the section about the ideal cocktail party problem we stated, that the assumption of

the source signals being statistically independent allows for an estimation of W ≈ A−1
left.

A number of approaches in solving this problem can be motivated using information

theory, the idea being that two statistically independent components (s1 s2)
T
contain

more information than their mixture (x1 x2)
T = (a11s1 + a12s2 a21s1 + a22s2)

T
. This
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is due to the fact, that some information between those two variables is now shared

in their dependence. A measurement for this information is given by the Entropy H

defined as

H (X) = −
∞
∫

−∞
fX (x) ln (fX (x)) dx (2.16)

in the continous and

H (X) = −∑
i

P {X = xi} ln (P {X = xi}) (2.17)

in the discrete case[7]. In analogy to this, the joint entropy is given by

H (X,Y) = −
∞
∫

−∞

∞
∫

−∞
fX,Y (x, y) ln (fX,Y (x, y)) dx dy (2.18)

The method used in this implementation is based on maximizing the joint entropy

(eq. 2.18) of ̂S = 𝛺 (ŝ) with ̂s = Wx by adjusting the matrixW ≈ A−1
left, therefore leading

to statistical independence between the source signals ̂s1,…, ŝn. Here 𝛺 is introduced as
a non-linear, bounded, continous and invertible cost function, it is typically choosen to

be a sigmoidal function with 𝛺 ( ̂s) = 1

1+e− ̂s or 𝛺 ( ̂s) = tanh ( ̂s), flattening the distribution
of ̂s.
2.1.5 The infomax algorithm

An algorithm known to maximize the joint entropy of some estimated ̂S is known as the
infomax algorithm. Before applying the infomax algorithm, the measured signals x are

decorrelated with a variance of 1 as a preprocessing step, therefore reducing the search

space. This is achieved in a process called whitening which is implemented by applying

an eigenvalue decomposition to the covariance matrix of the signals x[12]:

𝛴 (x) = 𝔼 {x ⋅ xT} = Q ⋅ 𝛬 ⋅QT (2.19)

Here Q is an orthogonal matrix with the eigenvectors and 𝛬 a diagonal matrix contain-
ing the eigenvalues of 𝛴 (x). The according whitening matrix given by Dx = E ⋅𝛬−1/2 ⋅ET

can now be applied to x yielding the whitened measurements ̂x = Dx ⋅ x = Dx ⋅ A ⋅ s
resulting in a new mixing matrix Â = Dx ⋅ A that is now orthogonal. In the following
algorithm we assume that the measurements x have already been decorrelated.

The natural gradient version of the infomax algorithm iteratively adjusts the unmixing

matrix W ≈ A−1
left and the bias weight matrix W0 until ̂s reaches the intended precision.

It is given by the scheme

̂s =W ⋅ x +W0 (2.20)

𝛥W =𝜏 [I + (1− 2 ̂S) ⋅ ŝT] ⋅W (2.21)

𝛥W0 =I − 2 ̂S (2.22)

using the invertible cost function 𝛺 ( ̂s) = 1

1+e− ̂s with ̂S = 𝛺 ( ̂s), the learning rate 𝜏 and
the identity matrix as the initial bias weight matrix W initial

0 = I[12]. To incooperate

knowledge of the intensity distributions in gray and white matter, the cost function

can furthermore be tuned with additional parameters b, v and q such that 𝛺 ( ̂s) =
b
v

1

1+q⋅e−b ̂s(k)[12]. The learning rate is lowered with every iteration step.
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Extended infomax

As illustrated in the work of Y. Wang [14], the infomax algorithm has some shortcomings

when applied to 3D-PLI data, as it does not destinguish between super- and subgaussian

distributed signals. An extension of the infomax algorithm that includes this distinction

reads[9]

𝛥W = 𝜏 [I − K ⋅ ̂S ̂sT − ŝ ̂sT] ⋅W (2.23)

where K ∈ {−1,0,1}m×m is a diagonal switching matrix for m measured signals with

K = diag (k1,…, km) and

ki =
⎧{
⎨{⎩

−1 if signal ̂si is subgaussian distributed
1 if signal ̂si is supergaussian distributed

, (2.24)

while the cost-function ̂S = 𝛺 ( ̂s) = b
v tanh ( ̂s ⋅ b) is used[5, 9]. The switching factors

can be calculated by applying the signum function on the kurtosis.

2.2 ICA on PLI data
So far we only considered the independent component analysis for the classical cocktail

party problem, where every measurement xi (t) is a time dependent and therefore
one-dimensional signal. For 3D-PLI-data, the ICA algorithm is applied seperatedly on

every brain slice, resulting in a 2-dimensional signal x𝜌 (u, v) for every angle 𝜌. As the
implemented ICA algorithm does analyze the local surroundings of a pixel, the 2 spatial

dimensions can be reduced by vectorization, thus (x, y) → (k), which allows us to drop
the spatial coordinates from our notation altogether, yielding again the model x = As

we introduced in equation 2.4. Image slices, that are distributed over a set of tiles, like

for the PLI-Microscope can be treated in the same way. In addition to this vectorization,

the images are masked to allow a distinction between white and gray matter as well as

the exclusion of image parts not including brain tissue.

As implied by equation 2.1, the intensity of the source signals varies in sinusoidal

fashion with changing angle 𝜌. As described in the work of Tabbi[12], this allows for
the application of certain constraints in the ICA algorithm, as only the signals of interest

are expected to show this behaviour.

The goodness of fit for the function

f (𝜌) = a0 + a1 ⋅ sin (2𝜑) + b1 cos (2𝜑) (2.25)

to the coloumns of the estimated mixing matrix W−1 are then used to select the signals

of interest from the reconstructed sources ̂s.
As the image size for a single brain slice can exceed 500GB [2], the dataset x is

distributed over a number of processors using MPI within a python environment. Each

processor executes one ICA iteration step on its share on x, before permuting x as well

as exchanging the learning rate, the weight matrix W and the bias weight matrix W0

cyclically with its neighbours. In the extended infomax implementation, informations

about the kurtosis are furthermore exchanged.
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Figure 2.3: The optical measurements xi of a 3D-PLI slice are modeled by a linear mixture x As
of diˤerent unknown underlying physical sources sj. After the application of the ICA method,
a set of reconstructed sources s is found allowing for a selection of signals of interest. The
estimated mixing matrix W 1 can be applied on the selected signals, resulting in noise and
artifact reduction.

3 R
The parallel implementation of the infomax algorithm by Tabbi [12] has been extended to
allow the optional use of the extended infomax algorithm as desribed in equation 2.23 and
was adapted for the use on JURECA. In this process the initial program implementation
has been signi˚cantly modi˚ed. The program has been tested on several comparably
small datasets requiring between 576MiB and a few Gigabyte of diskspace on up to 48
processors. For the small dataset the original implementation takes about 70 s on 48
processors, whereas the extended infomax implementation increases the runtime by
about a factor of two. This does not come to a surprise, as especially the calculation of
the Kurtosis is computationally expensive. It has to be noted, that the computation time
for both methods heavily depends on the choice of a number of tuning parameters that
depend on the measurement’s setup as well as the observed and a more experienced
choice might considerably change this statement.
Figure 3.1 shows, that the extended ICA implementation on JURECA successfully

retrieved a number of independent source signals from the original measurements.
The method impressively shows how otherwise hidden information that is distributed
between the measurements can be retrieved and unveils signi˚cant structures that can
be attributed to the birefringence of the myelin. In this example only the two ˚rst
reconstructed sources certainly contain sources of interest, while the remaining ones
contain mostly noise. However using similar tuning parameters on the larger dataset
yielded one additional source that is clearly of interest and the order of the sources was
not contained.
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Figure 3.1: Extended ICA performed on a dataset of gray matter taken by the PLI-Microscope on

two neighbouring tiles with a resolution of 2048×2048px each. Both datasets, the measure-
ments as well as the reconstruction take 576MiB of discspace excluding the applied mask. Of

the signals measured over 18 angles and the reconstructed 18 sources only 6 are shown and

the contrast has been modified to highlight the areas of interest. Left: Measured signals shown

with polarizer orientation 𝜌 of 0°,30°,…,150°. Here the sinusoidal change of the measured
light intensity I is only barely visible as the retardation is small compared to the overall

change of the transmittance between the pixels. Right: 6 of the 18 reconstructed sources,

where the first two images are components due to the image polarization, the remaining

images (including the ones not displayed) to an overwhelming degree contain noise. It can be

noted, that details not visible in the original set of images appear in the reconstructed sources,

whereas some of the dark spots on the measured signals that can be attributed to dirt, are

mostly gone in the reconstructed sources.
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4 Conclusion
In this work the aim was to perform a statistical image analysis tool, specifically a signal-

seperation on data generated by 3D-PLI systems. For the independent component analysis

(ICA), an implementation based on the natural-gradient version of the Infomax algorithm

was further modified to account for sub- and supergaussian distributed sources based on

kurtosis estimation. While this extension comes with a considerably higher demand in

computation, it could be shown that by extension of the underlying parallelization, this

approach is still feasible for application on larger datasets.

In the future, computation time of larger datasets might be further reduced by esti-

mating the unmixing matrix using only a certain number of samples from the original

data. As the implementation depends on a significant amount of parameters and the

variety of datasets this implementation was tested on was rather small, an improvement

of the source seperation in both feature extraction and execution time can be expected

by further studies of the parameter choices.
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Pixels, Matrices, and Circles on
GPU

GPU Implementation of the Approach to Color Morphology Based
on Loewner Order and Einstein Addition

Abstract In this paper, a GPU implementation of the ap-

proach to color morphology based on Loewner order and

Einstein addition, firstly introduced by B. Burgeth and A.

Kleefeld is presented. The implementation of basic gray-scale

morphology operations erosion and dilation is demonstrated

and used as a basis for the suggested approach. The conver-

sion from RGB space to a symmetric matrix field is introduced

and a fast way of comparing matrices using the Loewner order-

ing via solving the smallest enclosing circle of circles problem

is demonstrated. Additionally, a way of implementing higher

order morphological operations such as top-hats and gradients

using the Einstein addition and two GPU devices is introduced.

Filip Srnec
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Croatia
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1 Introduction
Mathematical morphology is the theory of processing geometrical structures which

was mainly introduced by Serra and Matheron ([15], [13]) in their work from the

second half of the last century. Over the years, it has evolved into a powerful theory

with applications in many areas of science, from digital image processing to medical

imaging and geological science. Nowadays, mathematical morphology operations are

fundamental techniques that are widely used in image processing.

The main idea of mathematical morphology is to probe the image with a structuring

element, a geometrical shape that determines which pixels should be processed, to

perform structural changes on pixel values. More precisely, a structuring element is

used as a pixel mask and the morphological operation is performed only on pixels which

are below the mask. The result of the operation in stored as a value of the pixel below

the center of the structuring element. A few examples of possible structuring elements

can be seen in Figure 1.

Mathematical morphology theory was originally developed for binary images, but later,

theory for grey-scale images has also been established. Two fundamental morphological

operations, which are formally defined for gray-scale images, are erosion and dilation.

In lattice-theoretic framework with a total order, erosion and dilation rely on the notion

of a minimum and a maximum. Intuitively, while calculating erosion, the goal is to

find a minimal pixel value below the structuring element. On the other hand, while

calculating dilation, the goal is to find a maximal pixel value below the structuring

element. However, when it comes to color morphology, mathematical morphology

theory for color images, defining basic morphological operations is not straightforward

at all, due to the lack of a total order. There have been many attempts to establish the

theory of morphological operations for color images, but none of them is unanimously

accepted in the image processing community. For further information about different
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(b) Probing the image with 3 × 3 cross structur-
ing element.

Figure 1.1: Structuring elements in mathematical morphology.

approaches for defining color morphology framework, we refer the reader to [2], [18],

and [21].

B. Burgeth and A. Kleefeld in [5] introduced a new approach to color morphology

which is based on Loewner order among symmetric matrices and Einstein addition. It is

shown that this approach has many advantages over previously discovered approaches.

However, it is computationally expensive if implemented in a basic, straightforward

way. In this paper, we present a GPU implmenetation of this approach. Including all the

details about the introduced approach would be out of the scope of this paper, but all of

them can be found in the original paper (see [5]). Having an implementation which can

perform well in terms of time and memory usage, can be an useful foundation for future

research. Also, it is time saving, since for real-world applications, time is crucial.

This paper is structured as follows: In Section 2 gray-scale morphology is introduced

in a more formal way and a GPU implementation of basic morphological operations

on gray-scale images is presented. The approach based on the work by B. Burgeth and

A. Kleefeld and its GPU implementation is explained in detail in Section 4. Finally, in

Section 5, higher order morphological operation are introduced, as well as their GPU

implementations.

2 Gray-scale morphology

2.1 Definition

Gray-scale morphology is a term used for mathematical morphology theory applied to

gray-scale images. Gray-scale images are images which consist of only one channel.

More precisely, each pixel has a value between 0 and 255 which represents an intensity

of the color gray related to that pixel. In gray-scale morphology, an image is defined

as a function mapping the Euclidean space or an integer grid E into ℝ ∪ {−∞, ∞}.
Structuring elements are also functions of the same format. As mentioned before,

two fundamental operations of gray-scale morphology are erosion and dilation. Let

f be a gray-scale image and b a structuring element. Dilation of f by b is given by
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(f ⊕b)(x) = sup
y∈E

[f (y)+b(x−y)]. On the other hand, erosion is defined as (f ⊖b)(x) =
infy∈E[f (y) + b(y − x)]. For more about basic morphology operations, see [16] and
[17]. Considering we have a total order on ℝ and that pixels of gray-scale images we
are processing have values in interval [0,255] associated with, we can refer to those
morphological operations as finding a maximum pixel value below structuring element

(dilation) and a minimum pixel value below structuring element (erosion).

2.2 GPU implementation
When thinking about the implementation of basic gray-scale morphology operations one

has to consider that all pixels of an image have to be processed which gives us a natural

algorithm with complexity O(n2) when processing the image with size n × n. The idea is

to run through every pixel and calculate the maximum (or the minimum) of pixels below

the structuring element and store the result. Moreover, one can think of straightforward

GPU implementation of the introduced algorithm using a natural 2-dimensional grid

configuration to associate every pixel with one GPU thread. For example, in Figure 2.1

we show one possible grid configuration for performing morphological operation on a

standard image processing testing image Lena. In this example, we assume that Lena

consists of 8 × 8 (gray-scale) pixels and that we are using CUDA blocks of size 4 × 4
which is not the case in the actual implementation where we use 16 × 16 CUDA blocks.
If we look carefully at the introduced grid configuration and try to probe the image

with an arbitrary structuring element, we would see that several problems can occur.

Firstly, when performing structural changes on pixels that are on the edge of the image,

the structuring element can go out of the borders of the image. Furthermore, some

threads may use parts of the image that belong to “other” blocks. Problems that can

occur are shown in Figure 2.2. While solving these problems one should think of GPU

memory layout and good practices of writing CUDA code. We want to have proper

memory access and also avoid branching so that each thread in one CUDA warp executes

the same code.

One way of solving these problems is to calculate the index of a pixel which is currently

processed by a thread and then use only pixels that are needed for calculating a structural

change for a given pixel. This path obviously leads to branching which is exactly the

thing we want to avoid. That is why we suggest the following: additional padding to

the image needs to be provided. The idea is to expand the image with additional pixels

on every side. The size of the padding should be equal to the ⌊dim/2⌋ where dim is
the size of the side of the structuring element. One should consider that the side of

the structuring element is usually an odd integer between 3 and 21 so the amount of

additional memory we use is acceptable.

However, pixels that lie on the padding should not affect the result of the morphological

operation. In order to assure that the result stays unchanged, the content of the padding

should be determined on runtime. If dilation is performed (the maximum needs to be

found), the padding should contain the minimal pixel value, 0, which corresponds to

the color black. On the other hand, if erosion is performed (the minimum needs to be

found), the padding should contain the maximal pixel value, 1, (we assume that pixel

values are normalized to a value that belongs to the interval [0,1]). Figure 2.3 shows
the image after adding the additional padding. However, only pixels of the original

image are processed.
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Figure 2.1: Natural 2 2 grid con˚guration for implementingmathematical morphology operations
on GPU. For the state of the example, we assume that standard image processing Lena image
has dimensions 8 8 and we use blocks that consist of 4 4 threads.
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Figure 2.2: Problems that occur during implementation of the basic gray-scale morphology
operations with 3 3 square structuring element after con˚guring the 2-dimensional grid. We
can see that the structuring element can go out of borders of the image (for example, while
calculating structural change of the pixel (0,0) of block (0,0)). Also, in some cases, for the
calculation of a given morphological operation, we have to use parts of the image that we
associate to “other” blocks which can lead to branching and unwanted memory access (for
example, while calculating structural change of the pixel (3, 3) of block (0, 0)). Red color
indicates states when problems occur.
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Figure 2.3: The image after adding the additional padding to assure that the structuring element
will never go out of image borders. To assure that the result will stay unchanged, padding
pixels should be ˚lled with a maximal pixel value (1) for calculating erosion or a minimal
pixel value (0) for calculating dilation.

To solve the second problem, optimizing memory access, one should consider using
CUDA shared memory. Using shared memory in the right way usually leads to a
performance boost. Shared memory is on-chip GPU memory, much faster than local and
global memory. Shared memory latency is roughly 100 lower than uncached global
memory latency. Moreover, it is allocated per thread block, so all threads in the block
have access to the shared memory (see [9]). The main idea is to give a block the whole
part of the image that it needs for computing morphological operations. That means
that we have to store the part of the image associated with this block in the shared
memory, as well as the padding for the structuring element. Therefore, the width of
the tile stored in the shared memory will be blockDim x padding, and the height of
the tile stored in shared memory will be blockDim y padding where padding dim 2
and dim is a size of the side of the structuring element as before. Example of the shared
memory tile associated to the block 0 0 from the Lena example is given in Figure 2.4a.
To sum up, before a thread calculates a minimum or a maximum it loads a part of the
image (with the padding) in the shared memory. Since we also have to consider the
image padding, few of the threads have to store more data. We overcome this problem
using the following code:
1 for (int i = threadIdx.y; i < sharedHeight; i += blockDim.y) {
2 for (int j = threadIdx.x; j < sharedWidth - 1; j += blockDim.x) {
3 smem[i * sharedWidth + j] = in_ptr[i * in_lda + j];
4 }
5 }

For further explanation, one can look at the Figure 2.4b which shows how the job of
storing data in the shared memory is divided by GPU threads under assumption that
we use a 3 3 structuring element and blocks of size 4 4 like in the previous Lena
example. Also, one could notice that the interior for loop iterates while counter j is
less than sharedWidth 1. The reason is that the width of the shared memory tile is
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(a) Tile in the shared memory associated to
the block 0 0 in our Lena example. The
padding is also included in the tile, as well
as parts of the image originally related to
another block.
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(b) Storing pixel values in the tile of shared
memory related to each block in Lena exam-
ple. Since 2-dimensional grid con˚guration
is used, threads are labeled as ordered pairs
x y where x and y are appropriate block
coordinates.

Figure 2.4: Using CUDA shared memory in the GPU implementation.

extended by 1 to prevent bank con˜icts.
2.3 R
In this section, we present performance measurement and results of our implementation
of basic gray-scale morphology operations. For performance tests we used NVIDIA Tesla
K40 GPU devices and Intel Xeon E5-2650 CPUs. We are comparing our approach with a
straightforward CPU implementation which is based on the algorithm we mentioned in
Section 2.2. We are measuring time needed for the gray-scale erosion using 3 3 square
structuring element on the set of 12 gray-scale testing images with respective widths
between values 64 and 8192. As we can see in Figure 2.5a, the GPU implementation
outperforms straightforward CPU implementation which uses only 1 CPU thread. More-
over, times related to the CPU implementation are approximately 6 to 8 times longer
compared to the time used by the GPU implementation, which is something that one
could expect. Furthermore, since the log-log plot is used, one can make sure that the
assumption of complexity O n2 was correct. On the other hand, Figure 2.5b shows
that CPU implementation that uses 32 threads gives us times that are very close to our
approach, considering we are using only 3 3 structuring element. This is expected if
we think of the number of comparison operations on such a small structuring elements.
However, when we compare the time needed for erosion with 7 7 structuring element
on the same set of images (results are showed in Figure 2.6a) we can see that the GPU
approach gives us a signi˚cant boost.
Last but not least, we compared our approach with two commonly used image pro-

cessing libraries, OpenCV and CImg. We measured the time needed for erosion with
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(b) Using 32 CPU threads

Figure 2.5: Gray-scale erosion using 3 × 3 square structuring element on GPU (NVIDIA Tesla
K40) and CPU (Intel Xeon E5-2650).

7×7 square structuring element on the same set of images used in previous performance
tests. As we can see on the Figure 2.6b, both our approach and OpenCV library erosion

outperform the approach used in CImg library erosion which one could expect since CImg

library does not use GPU for calculations. However, the time measured for our approach

and for OpenCV library erosion are almost the same what we found very satisfactory.

To sum up, the introduced GPU implementation of basic morphological operations

performs well even on the large images. For example, time needed for erosion with 3×3
structuring element on image with size 8192 × 8192 is still under 100ms in our testing

environment. In Figure 2.7 and Figure 2.8 we are showing results of morphological

operations on the 512 × 512 Lena image.
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Figure 2.6: Gray-scale erosion using 7 × 7 square structuring element on GPU (NVIDIA Tesla
K40) and CPU (Intel Xeon E5-2650).

(a) Erosion (b) Dilation

Figure 2.7: Gray-scale morphological operations on 512 × 512 Lena testing image with 3 × 3
square structuring element.
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(a) Erosion (b) Dilation

Figure 2.8: Gray-scale morphological operations on 512 × 512 Lena testing image with 7 × 7
diamond structuring element.
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3 Color morphology
As we have already mentioned in the Section 1, finding the “right” approach to morpho-

logical operations for color (multi-channel) images is quite a challenging task. There is

no unanimously acceptable way to define those operations. The question what is the

supremum of two different colors is rather philosophical.

Over the years, many different approaches have been introduced. We will mention

only a few of them. The basic approach is to perform the standard gray-scale morphology

operation on each channel separately and then combine results in one final image. The

second approach is to use standard lexicographic ordering between vectors containing

color values. For example, if we have an image in RGB color space, each pixel is

represented by a 3-dimensional vector containing values representing colors red, green,

and blue, respectively. Standard lexicographic ordering will first compare red values then

green and finally blue values. The third approach that we will mention is the approach

which uses lexicographical cascades in HSI space. Since details about this approach are

beyond the scope of this paper, for more information we refer the reader to [3].

In Figure 3.1 one can see and compare results of the performing erosion with 5 × 5
square structuring element based on each one of three introduced approaches on standard

image processing testing image Parrot. One can notice how colors on the parrot’s back

and tail differ among approaches. Also, some differences can be seen on background

colors. Deeper analysis of this approaches is out of the scope of this paper. In short,

they are based on detecting “false” colors in result images, colors that do not appear in

the original image.

Since both newly defined orders are total orders, implementation of the second and

the third approach is similar to implementation of gray-scale morphology approach.

The only difference is that the standard total order on ℝ has to be replaced with the
new order. The remaining GPU code stays the same. However, these approaches are

not satisfactory in the sense that both of them require giving priority to color channels

when defining lexicographic order. Our goal is to assure that all channels contribute

equally in the calculation of morphological operation. This is exactly what we get using

the approach of B. Burgeth and A. Kleefeld introduced in [5].
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(a) Original image (b) Component-wise

(c) Lexicographic in RGB space (d) Lexicographic cascades in HSI space

Figure 3.1: Erosion with 5 × 5 square structuring element based on 3 different approaches on a
standard image processing Parrot testing image.
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4 Loewner morphology
In this section, we briefly describe the approach to color morphology based on Loewner

order and Einstein addition introduced by B. Burgeth and A. Kleefeld in [5]. Later in

the text, we will refer to this approach as Loewner morphology. The main idea is to code

a color image as a symmetric matrix field and find a suitable order among matrices

to calculate the infimum and the supremum in (gray-scale) definitions of dilation and

erosion. From now on, we assume that we are processing color images with pixels

represented by their RGB values (red, green, and blue values).

4.1 Conversion of an image to a matrix field
For the coding of a color image as a matrix field a variant of the HSL-color space

(hue, saturation, and luminance) inspired by Ostwald’s color solid form is used (see

[14]). As presented in [5], as a first step, conversion from RGB to m-HCL color space

needs to be done. This is accomplished by using a standard conversion from RGB to

HSL color space which is well known in the image processing community (see [1])

and replacing saturation s with chroma c which is calculated by the following: c =
max{r, g, b} − min{r, g, b}. After that, we have to modify luminance l by introducing
̃l = 2l − 1. One can think of this conversion as a mapping from RGB unit cube, denoted

by 2 (since we want to be consistent with the original paper) tom−HCL bi-cone centered

at 0 with a circular base of radius 1 with tips at (0,0,1) and (0,0, −1) (representing
colors white and black, respectively) denoted by 3. In order to show this, we present

the following mapping. Arbitrary point p = (x, y, z) ∈ 3 is obtained by x = c cos2𝜋h,
y = c sin2𝜋h and z = ̃l.
The final step consists in applying the following mapping

𝛹 ∶ (x, y, z) → A (4.1)

where A is a symmetric matrix defined by

A = (a b

b c
) =∶ ([a, b], [b, c]) ∈ Sym(2) (4.2)

with a = 𝜅(z − y), b = 𝜅x and c = 𝜅(z + y) where 𝜅 = 1/√2. One can show that 𝛹 is an
isometry between the Euclidean space ℝ3 and Sym(2). Moreover, one-to-one mapping
from the RGB space into the 𝛹(3) = M ⊂ Sym(2) is established (for further explanation,
see [5]).

In our implementation, both conversions (from image to matrix field and vice versa)

are performed on the CPU since conversion operations require lots of condition checking

what implies branching which is something we want to avoid while writing CUDA

applications. However, converting pixel values can be independently done in parallel,

so we use OpenMP to run the code in parallel.

4.2 Loewner order
As we mentioned before, a new order has to be introduced to find a minimal and a

maximal matrix among a set of symmetric 2 × 2 matrices in order to perform the basic
morphological operations erosion and dilation. For that purpose, we introduce the

Loewner order. Let A,B ∈ Sym(2) be symmetric 2 × 2 matrices. We say that A ≥ B
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Figure 4.1: Smallest enclosing circle of circles problem. The goal is to ˚nd the smallest circle (a
circle with the smallest radius) that contains all of a given set of circles (blue circles). The
solution is marked with red color.

in terms of Loewner order if A B is positive semide˚nite. One could show that
matrices which are the result of mapping from the bi-cone � are in the Loewner interval

I I A M Sym 2 I A I . The matrix I corresponds to the color
black and the matrix I corresponds to the color white.
When we think carefully about the Loewner order we can see that the Loewner order is

not a total order since there exists a matrix which is not positive semide˚nite. Therefore,
the supremum and the in˚mum of the set of matrices is not necessary an element of
the set since all the matrices in the set do not need to be even comparable. It is shown
(see [6] and [4]) that the problem of ˚nding the minimum and the maximum among
a set of matrices, A max A1 An , is equivalent to solving the smallest enclosing
circle of circles problem on circles that are converted from the set of matrices. For the
conversion, the following mapping is used: a circle which is a result of the conversion is
a circle with center in x y and radius r where x 2 b, y c a and r c a .
This mapping is obviously a bijective mapping.

4.3 S
Smallest enclosing circle of circles problem (from now on referred as smallest circle
problem) is a problem of computing the smallest circle that contains all of a given set of
circles in the Euclidean plane (see [7]). Figure 4.1 shows an example of the ˚nding a
solution to the Smallest circle problem. Since ˚nding exact solution of this problem is
computationally expensive, ˚nding a “right” approach to use is an important task.
In our approach, we use a subgradient method to solve the problem numerically. It is

a standard iterative optimization method usually used for solving convex minimization
problems. Since the set of circles we are using for calculations is usually reasonably small
(as mentioned before, the size of the side of the structuring element is usually between
3 and 21) there is no need to use more sophisticated methods. The idea is to formulate
the smallest enclosing circle of circles problem as an unconstrained non-diˤerentiable
convex program:

min f x y max
i 1 n

ai x 2 bi y 2 ri
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where ai = xi + x, bi = yi + y, (xi, yi) are the centers of the circles in the set and ri radii of
the circles in the set. For further explanation, see [24]. The algorithm itself is presented

in Algorithm 1.

Algorithm 1 Subgradient method for finding the smallest enclosing circle

initialize starting point to (x0 = 0, y0 = 0);
𝛼 = 1.0;
k = 0;

while k < MAX_ITERATIONS do
if |𝛼| ≤ ALPHA_EPSILON then
return circle with the center at (xk, yk) and radius f (xk, yk);

end if
compute subgradient (gradX, gradY) of f (x, y) at (xk, yk);
use line search to update 𝛼;
xk = xk + 𝛼 ⋅ gradX;
yk = yk + 𝛼 ⋅ gradY;
k = k + 1;

end while

However, this algorithm is not able to deal with negative radii. One can easily show

that after performing a conversion from amatrix to a circle introduced in Section 4.2 some

circles can end up with a negative radius since every symmetric matrix that participates

in the conversion is a result of the mapping 𝛹 presented in Section 4.1 from the bi-cone
3 to Sym(2). In order to solve this problem, we will not directly apply the introduced
algorithm to matrices A1, ...,An, but instead to their shifted versions A1 + 𝜅I, ...,An + 𝜅I
(see [5] for further explanation). Furthermore, since basic morphological operations

require calculation of both Ā ∶= max{A1, ...,An} and A ∶= min{A1, ...,An}, it is worth
mentioning that one can show that in terms of Loewner order the following equality is

valid: A ∶= min{A1, ...,An} = −max{−A1, ..., −An}.
For the GPU implementation of the presented method we use the same grid config-

uration as for the gray-scale approach. The difference is that we do not store pixel

values in GPU memory. In GPU memory we store matrices that were the result of the

conversion presented in Section 4.1. Each GPU thread solves its own smallest circle

problem locally using Algorithm 1, in the same way as it was calculating minimum and

maximum operations in gray-scale morphology. To optimize memory access, we are

again using CUDA shared memory, in the same way as we did in the gray-scale approach.

However, there is one difference. This time, in shared memory we store circles (results

of conversion from matrix) that are used for solving the smallest circle problem. Using

this approach, we assure that all data needed for the subgradient method is stored in

CUDA shared memory which gives us a major performance boost.

4.4 Pull-back mapping
Note that with the introduced smallest circle problem approach we are only calculating

the pseudo supremum of the set of matrices. That means that the resulting maximum or

minimum can be outside of the bi-cone 3, so the resulting matrix can not be converted

back to the RGB pixel. However, it is proved (see [5]) that the solution of the smallest
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circle problem is always in the unit ball with the center at (0,0), denoted by B(0,1). So,
the next step is finding the suitable mapping from the B(0,1) to the bi-cone 3. This
mapping should be applied each time after the calculation of maximum and minimum

in the terms of Loewner order. While constructing the mapping one should be aware of

the fact that colors should not be too much affected by this mapping. That means that

after applying the mapping, we should not get “false” colors.

For implementation of the pull-back mapping, we are using the theorem from the

original work of B. Burgeth and A. Kleefeld (for detailed explanation and proof see [5]

and [23]).

Theorem 1 Let �̂� ∈ (1, √2]. The mapping 𝛩 given by

𝛩 ∶ B(0,1) → ℝ3 ,

(x, y, z) ↦ (1𝜇x, 1𝜇y, 1𝜇z) ,

with the unique real 𝜇 satisfying the polynomial of degree 11

𝜇11 − 𝜇10 + 1− �̂� = 0 ,

where 𝛩 maps B(0,1) bijectively to the bi-cone 3.

In the original paper, the constant �̂� is calculated using the following mapping from the
unit ball B(0,1) to the bi-cone 3:

�̂� = �̂�(x, y, z) = 1+ (√x2 + y2 + |z|)
n

(1𝜆 − 1) ,

where n = 10 and 𝜆 is defined by a mapping from unit ball to the bi-cone 3

𝜆 = 𝜆(x, y, z) =
⎧{
⎨{⎩

1 if x, y = 0 ,
√(1+𝛬2)
1+𝛬 otherwise

with 𝛬 ∶= |z|
√x2+y2

.

If we look carefully at bijective mappings used in point to matrix (Section 4.1) and

matrix to circle (Section 4.2) conversions we can notice that an arbitrary point (x, y, z)
from the Euclidean space is mapped to a circle with the center in (x, y) and radius
r = z. That means no explicit conversion from a circle to a point in the unit ball

B(0,1) is needed since the coordinates of a needed point have already been calculated
in matrix to circle conversion. Therefore, the mapping introduced in Theorem 1 can be

directly applied to the solution of the smallest circle problem stored as a circle. In our

implementation every GPU thread already computes a solution of its local smallest circle

problem, so before storing the result in matrix form, the introduced mapping should

be applied on a point (x, y, r) where (x, y) is the center of the resulting circle and r its
radius.

To apply the mapping, a unique real root of a polynomial p(𝜇) = 𝜇11 − 𝜇10 +1− �̂� = 0

should be found. In our implementation, we used Newton’s iterative method. One can
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assure that all the requirements for the convergence of Newtons’s method are satisfied

since all polynomials are in the class C∞(ℝ) and it is proved (see [5] and [23]) that p
has unique real root.

The algorithm for mapping a point from the unit ball B(0,1) to a point on the bi-cone
is presented in Algorithm 2.

Algorithm 2 Mapping a point from the unit ball B(0,1) to a point on the bi-cone 3
𝜆 = 𝜆(x, y, z);
�̂� = �̂�(x, y, z);
p(𝜇) = 𝜇11 − 𝜇10 + 1− �̂� = 0;

p′(𝜇) = 11𝜇10 − 10𝜇9;
k = 0;

𝜇 = 1.0;
while k < MAX_ITERATIONS do
if |p(𝜇)| ≤ NEWTON_EPSILON then

return ( 1
𝜇x, 1𝜇y, 1𝜇z);

end if
𝜇 = 𝜇 − p(𝜇)

p′(𝜇)
k = k + 1;

end while

4.5 Implementation – all together
In this section, we will go through the presented GPU implementation of the basic

morphological operations dilation and erosion based on the Loewner order once again to

emphasize key-points and give the reader a better insight of our approach. A schematic

view of the implementation can be seen in Figure 4.2.

The first step is to convert the input image that consists of RGB pixel values to a

symmetric 2 × 2 matrix field which is performed on the CPU in parallel using OpenMP.
After that, in order to optimize the GPU code, additional padding is added to the image,

in a same way as described in Section 2.2 while describing GPU implementation of

basic gray-scale morphology operations. In the other words, the amount of memory

which is equal to the size of the image in the new matrix format with additional padding

should be allocated. The next step is to fill the allocated memory with a maximum

(if erosion is performed) or a minimum (if dilation is performed) value in terms of

Loewner morphology. Those are matrices which represent color white (𝜅I) and black
(−𝜅I), respectively. Also, the converted image is copied to the GPU global memory.
After that, the whole structuring element is stored in the CUDA constant memory,

special GPU memory which is provided by NVIDIA hardware. The whole constant

memory space is cached. As a result, a read from constant memory cost one memory

read from device memory only on a cache miss. Moreover, a request from constant

memory is handled differently that other memory requests, due to the fact that while

reading from constant memory CUDA uses different access patterns (see [8] for more).

However, constant memory is only used for read-only data that will not change over the

kernel execution. Since in this approach we assume that the structuring element stays

the same during the calculation, this is exactly what we need.
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Converting RGB image to

matrix field (CPU threads)

Allocating memory on

GPU for image + padding

Filling allocated memory

with max or min element

Copying image to

GPU memory

Copying mask to

constant memory

Configure GPU grid

- same as grayscale

Filling shared memory with

matrices converted to circles

Each GPU thread solves

smallest enclosing circle

problem in shared memory

- subgradient method

Result is pulled back

to the bi-cone

- Newton’s method

Copying result image

back to CPU

Converting image from

matrix field to RGB

values (CPU threads)

Figure 4.2: Schematic view of the implementation phases of the presented GPU implementation

of the basic morphological operations based on Loewner order.

In the next phase, we need to configure a grid used by a kernel which performs

the morphological operation. We use the same grid configuration that we presented

in Section 2.2, while describing the implementation of gray-scale approach. Also, as

explained in the last paragraph of Section 4.3, we are using CUDA shared memory in a

slightly different way than in the gray-scale approach since we store circles which have

already been prepared for solving the smallest circle problem. After that, each GPU thread

solves the smallest circle problem independently with the explained subgradient method,

using only data from the shared memory related to the block where the thread belongs

to. As described in the Section 4.4, the mapping from the unit ball to the bi-cone needs

to be applied.

Finally, we need to copy the resulting image back to the CPU and perform conversion

from the symmetric matrix field back to the RGB format.

5 Higher order morphological operations
In our implementation, we included some well-known higher order morphological

operations which will be introduced in this section.

5.1 Einstein addition

For the design of morphological operations such as top-hats and gradients, we need

to define adequate addition and subtraction. However, one can easily show that the

considered bi-cone 3 is not closed under standard matrix addition (for example, one

can add the matrix representing the color white to itself).

In order to overcome those difficulties, B. Burgeth and A. Kleefeld, in [5], used a

symmetric variant of the Einstein addition in Hilbert space. First, elements of the
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bi-cone 3 are mapped to the unit ball B(0,1). After that, the symmetric 2 × 2 matrix
representation of the points on the unit ball is used (the mapping introduced in Section 4.1

is used). We denote this representation as 𝛹(B(0,1)). Let A,B ∈ Sym(2) be symmetric
2 × 2 matrices and 𝛼A = √1− ||A||2. The Einstein addition is defined follows:

A ⊕E B ∶= 1

1+ tr(A ⋅ B) (A + 𝛼AB + tr(A ⋅ B)
1+ 𝛼A

A) .

However, it can be shown that the Einstein addition is not commutative. A commutative

version is the Einstein co-addition which is given as

A ⊞ B ∶= 𝛼AB + 𝛼BA

𝛼A + 𝛼B

⊕E

𝛼AB + 𝛼BA

𝛼A + 𝛼B

.

The subtraction is given as

A ⊟ B ∶= A ⊞ (−B) = −B ⊞ A .

It can be shown that 𝛹(B(0,1)) is closed with respect to ⊕E, ⊞ and ⊟. For details, see
[19] and [20]. It is worth mentioning that result of the introduced addition should be

mapped back to the bi-cone 3 using the introduced pull-back mapping from Section 4.4.

5.2 Definitions

In this section, definitions of higher order morphological operations, which were im-

plemented in our approach, are presented. Let us assume that f is an image and b an

arbitrary structuring element. Let us denote dilation with f ⊕ B and erosion with f ⊖ B.

We define the following operations:

 opening, f ∘ B = (f ⊖ B) ⊕ B

 closing, f • B = (f ⊕ B) ⊖ B

 white top-hat, f ⊟ (f ∘ B)

 black top-hat, (f • B) ⊟ f

 self-dual top-hat, (f • B) ⊟ (f ∘ B)

 Beucher gradient, (f ⊕ B) ⊟ (f ⊖ B)

 internal gradient, 𝜌−
B ∶= f ⊟ (f ⊖ B)

 external gradient, 𝜌+
B ∶= (f ⊕ B) ⊟ f

 morphological Laplacian, 𝛥bf ∶= 𝜌+
B ⊟ 𝜌−

B

 shockfilter, (trace(𝛥bf ) > 0) ? f ⊖ B ∶ f ⊕ B
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5.3 Implementation
In this section, the GPU implementation of higher order morphological operations will

be presented. As we can see in Section 5.2, higher order morphological operations are

defined as compositions of basic morphological operations. Therefore, in the implemen-

tation we use the same GPU kernel for erosion and dilation presented before (refer to

Section 4.5).

The implementation of opening and closing is straightforward since both erosion and

dilation should be performed sequentially to get the right result.

On the other hand, for top-hats and gradients the situation is a bit different since they

are defined as a subtraction (in terms of the Einstein addition) of two other morphological

operations. One can notice that, for example, while implementing the Beucher gradient

which is defined as (f ⊕ B) ⊟ (f ⊖ B), dilation and erosion operations can be done in
parallel since they are completely independent. For that reason, in our implementation

we included an additional GPU device. The idea is to use two GPU devices to calculate

both minuend and subtrahend for the Einstein subtraction in parallel and then to calculate

the Einstein subtraction on one GPU. Here, we use CUDA peer-to-peer communication

methods to exchange the data between two GPUs. This technique obviously cannot be

used if we have access only to one GPU. In that case, in terms of optimization, we take

advantage of CUDA streams to overlap computation and communication (see [10]).

When implementing the Einstein subtraction, we introduce the standard 2-dimensional

grid configuration to divide the image in 16 × 16 CUDA blocks. Each thread has to
calculate the Einstein difference between two matrices associated to the pixel in the

same position in both result images. However, since the calculation is done for each

thread independently, we can overlap the calculation of the difference and copying the

image back to the CPU memory using CUDA streams like before. In this concrete case,

we are using 4 CUDA streams.

6 Summary and outlook
In this paper, we have presented a GPU implementation of the new approach for color

morphology based on the work of B. Burgeth and A. Kleefeld (see [5]). In our implemen-

tation, we used C++ with CUDA. As a result, there is a standalone C++ (CUDA) library

for color morphology based on Loewner order and Einstein addition that contains all

previously defined morphological operations (see Section 5.2). It can utilize up to 2 GPU

devices. Since this is the first attempt of implementing morphology operations based on

the Loewner order in terms of high performance computing in parallel, there is no exist-

ing code to compare our results with. However, there exists a MATLAB implementation

originally written by A. Kleefeld (see [5]) which is much slower in computation time (as

expected since the two technologies are incomparable) and therefore, the comparison

with the GPU implementation would be unfair.

Color morphology operations have a large spectrum of applications. Firstly, one

can think of many image filters (like shockfilter implemented in our library) which

are based on morphological operations. Moreover, morphological operations are the

basis for technique colloquially called “comification” — creating cartoon-like images

from standard photos. Furthermore, higher order morphological operations have their

applications in edge detection and image denoising which are very useful in many areas

of science as well as in everyday life. That leads us to a conclusion that our final goal
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(a) Original image (b) result image

Figure 6.1: Internal gradient with diamond 7 × 7 structuring element on 512 × 512 Pepper image,

5 iterations.

should be finding a way to implement the presented technique for color morphology in

a “right” way to get the most of the performance out of the technology that we have at

our disposal. The reason is that, for real world applications, time matters.

The research of B. Burgeth and A. Kleefeld in terms of image processing using color

morphology is still continuing and this will be the basis for future research. The main

idea is to include additional filters in existing library code such as median filter, which

is the basis of creating cartoon-like images mentioned before or amoeba quantile filters

presented in a work of M. Welk, A. Kleefeld, and M. Breuß (see [23] and [22]). Also,

there is a way to process multispectral images (images that consist of more than only 3

channels) via mathematical morphology presented by A. Kleefeld and B. Burgeth in [11].

However, one of the most challenging tasks is implementing mathematical morphology

with adaptive structuring element. That means that, in this approach, the structuring

element can change during the morphological operation. For more information about

this approach, we refer the reader to the work by A. Kleefeld, M. Breuß, M. Welk, and B.

Burgeth presented in [12].

In addition, we present only few examples of the morphological operations on standard

image processing testing images generated by our library (see Figure 6.1, Figure 6.2,

Figure 6.3, Figure 6.4, and Figure 6.5).
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(a) Original image (b) Result image

Figure 6.2: External gradient with square 3 × 3 structuring element on 768 × 512 Color image, 1

iteration.

(a) Original image (b) Result image

Figure 6.3: Dilation with diamond 21 × 21 structuring element on 768 × 512 Parrot image, 1

iteration.
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(a) Original image (b) Result image

Figure 6.4: Shockfilter with square 3 × 3 structuring element on 512 × 512 Lena image, 20

iterations.

(a) Original image (b) Result image

Figure 6.5: Beucher gradient with square 5 × 5 structuring element on 6572 × 5711 Brain image,

2 iterations.
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1 Introduction
A reaction-diffusion system is a mathematical model which is usually associated with

change in space and time of the concentration of one or more chemical substances.

This system is usually represented with systems of partial differential equations which

consists of a reaction part that describes local chemical reactions and a diffusion part

that causes the substances to spread out. One of the reasons why these reactions are

of such an interest is that they can produce variety of patterns and behaviours, often

similar to ones that can be found in nature.

In order to peform get numerical simulations of the Gray-Scott model, we use the

spectral deferred correction (SDC) method for discretization of the time domain. One of

the advantages of SDC is that the numerical method used to approximate the correction

equations can be low-order accurate, while the solution after many iterations can in

principal be of arbitrarily high-order of accuracy. This has been exploited to create SDC

methods that allow the equations to be split into stiff and non-stiff parts that can be

treated either implicitly or explicitly. In our work, we treat the reaction part explicitly

and the diffusion part implicitly. That way we get a system of elliptic partial differential

equations which we will solve with the Finite Element Method.

The outline of this paper is as follows. In Section 2 we give a short description of SDC,

together with the semi-implicit version for a general class of ODEs. In Section 3 we give

a short introduction to the Finite Element Method and then, in Section 4, we explain

the basic idea behind dune-PFASST++, the software that we used. In Section 5 we give

results of our implementation of a multi-component model and we also test convergence

in space and time. Finally, in Section 6, we describe the Gray-Scott model and show the

results of numerical simulations.

2 Spectral deferred corrections
Consider the ODE initial value problem (IVP)

∂u
∂t = f (u(t)), t ∈ [0,T],

u(0) = u0,
(2.1)

where t ∈ [0,T], u0, u(t) ∈ ℝN and f ∶ ℝN × ℝ → ℝN. To describe SDC, it is convenient

to use the equivalent Picard integral form of (2.1) which is given by

u(t) = u0 + ∫
t

0
f (u(s))ds.
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We now focus on a single timestep [Tn,Tn+1], which is divided into subsets by defining
a set of quadrature nodes on the interval. Here we consider Radau quadrature and

denote M + 1 nodes t ∶= (tm)m=0,…,M such that Tn < t0 < t1 … < tM = Tn+1. The SDC

method begins by first computing a provisional solution U0 = [U0
1 , … ,U0

M] at each of the
intermediate nodes with U0

m ≈ u(tm). In order to derive equations for the intermediate
solutions Uj, we define quadrature weights

qm,j ∶= ∫
tm

Tn
lj(s)ds, m = 0, … ,M, j = 0, … ,M,

where (lj)j=0,…,M are the Lagrange polynomials defined by the nodes t. We obtain

Um = U0
m +

M

∑
j=0

qm,jf (Uj),m = 0, … ,M. (2.2)

For a more compact notation, we define the integration matrix Q to be the M + 1 ×M + 1

matrix consisting of entries qm,j. If we denote by

U ∶= [U0, … ,UM]T

F(U) ∶= [F0, … , FM]T ∶= [f (U0), … , f (UM)],

then we can write set of equations (2.2) more compactly as

U = U0 + Q F(U).

After applying Picard iterations in order to approximate the solution of the upper problem

we get

Uk+1 = Uk + U0 − (IN − QF)(Uk).

After preconditioning using a simpler integration rule Q𝛥, we derive the next formula

for solution in k + 1th iteration:

Uk+1 = U0 + Q𝛥F(Uk+1) + (Q − Q𝛥)F(Uk)

We define by

sm,j ∶= ∫
tm

tm−1
lj(s)ds, m = 1, … ,M

the quadrature weights for node to node integration and as S the matrix consisting of
entries sm,j. It depends on the integration rule Q𝛥 whether the iteration is explicit or

implicit. For example, if we take Q𝛥 which corresponds to the forward Euler method, as

depicted in Figure 2.1a, we get

Uk+1
m+1 = Uk+1

m + 𝛥tm [f (Uk+1
m ) − f (Uk

m)] + Skm . (2.3)

On the other hand, if we take Q𝛥 which corresponds to the backward Euler method, as

depicted in Figure 2.1b, we get

Uk+1
m+1 = Uk+1

m + 𝛥tm [f (Uk+1
m+1) − f (Uk

m+1)] + Skm , (2.4)

where in both equations Skm denotes the m
th row of SF(Uk) and 𝛥tm ∶= tm+1 − tm. The

process of solving (2.3) or (2.4) at each node is referred to as an SDC sweep. SDC methods

for ODEs were first introduced in [1], and were subsequently refined and extended e.g.

in [4].
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Figure 2.1: Left: Quadrature rule with explicit Q . Right: Quadrature rule with implicit Q

2.1 IMEX SDC
In many practical applications, systems of ODEs that contains both stiˤ and non-stiˤ
elements must be solved. Such an IVP is given below

u
t f E u t f I u t t 0 T

u 0 u0
(2.5)

Two straight-forward approaches naturally arise: to solve the whole system using an
implicit scheme or to use an explicit method with a short time step. The basic premise
of an IMEX solver is to provide a compromise – the stiˤ parts of the system are solved
with an implicit solver to ensure stability, while the non-stiˤ parts are solved with an
explicit solver to reduce computational load. SDC method is easily modi˚ed to create
semi-implicit or IMEX schemes. Equations (2.3) and (2.4) can be easily modie˚ed to
give a semi-implicit scheme:

Uk 1
m 1 Uk 1

m tm f E Uk 1
m f E Uk

m tm f I Uk 1
m 1 f I Uk

m 1 Skm (2.6)

3 G PDE
In this section we look at a general reaction-diˤusion system which can be represented
in the general form

u
t D u R u

where u u x t represents the unknown function, D is a diagonal matrix of diˤusion
coe˞cients and R is a reaction term. We will treat the diˤusion part implicitly and the
reaction term explicitly. After applying IMEX SDC scheme we get following semi-discrete
equation

Uk 1
m 1 x D tm Uk 1

m 1 x Uk 1
m x tmR Uk 1

m x
R Uk

m x D Uk
m 1 x Skm

bkm x m 0 M 1
(3.1)
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We can see that solution Uk+1 at each node tm is a solution of a system of elliptic partial

differential equations. In order to describe a method for solving such equations we will

focus on this elliptic PDE:

−D𝛥u(x) + u(x) = f (x) x ∈ 𝛺
u(x) = 0 x ∈ ∂𝛺.

(3.2)

A function u ∈ C2(𝛺) ∩ C(𝛺) satisfying (3.2) would be called classical solution of this
problem. The theory of partial differential equations tells us that (3.2) has a unique

classical solution, provided that f and ∂𝛺 are sufficiently smooth. However, in many
applications one has to consider equations where these smoothness requirements are

violated, and for such problems the classical theory is inappropriate. To begin, let us

suppose that u is a classical solution of (3.2). Then, if we multiply the equation with

v ∈ C10(𝛺) and integrate over 𝛺 we get

−D∫
𝛺

𝛥u(x)v(x)dx + ∫
𝛺
u(x)v(x)dx = ∫

𝛺
f (x)v(x)dx.

Upon integration by parts in the first integral and noting that v = 0 on ∂𝛺, we obtain

D∫
𝛺

∇u(x)∇v(x)dx + ∫
𝛺
u(x)v(x)dx = ∫

𝛺
f (x)v(x)dx.

In order for this equation to make sense, we do not need to satisfy that u ∈ C2(𝛺). It is
sufficient that u ∈ L2(𝛺), ∇u ∈ L2(𝛺)d and f ∈ L2(𝛺). Having in mind that that u = 0

at boundary, it is natural to seek solution u ∈ H1
0(𝛺), where H1

0 is defined as

H1
0(𝛺) = {u ∈ L2(𝛺) ∶ ∇u ∈ L2(𝛺)d, u = 0 on ∂𝛺} .

This leads to following problem: find u ∈ H1
0(𝛺) such that

D∫
𝛺

∇u(x)∇v(x)dx + ∫
𝛺
u(x)v(x)dx = ∫

𝛺
f (x)v(x)dx, ∀v ∈ C10(𝛺). (3.3)

It can be shown that if we expand our space of test functions from C10(𝛺) to H1
0(𝛺)

that there exists the unique solution of described problem and that solution we call

weak solution of (3.2). Once we formulated our problem, the next question is how to

find a weak solution. The first step is to replace H1
0(𝛺) by a finite-dimensional subspace

Vh ⊂ H1
0(𝛺). Then we consider the following approximation of (3.3): find uh ∈ Vh such

that

D∫
𝛺

∇uh(x)∇v(x)dx + ∫
𝛺
uh(x)vh(x)dx = ∫

𝛺
f (x)vh(x)dx, ∀vh ∈ Vh. (3.4)

As we said, we choose Vh to be finite-dimensional space so we can write

dimVh = N, Vh = [{𝜑1, … , 𝜑N}] .

Expressing the approximate solution uh as a linear combination of basis functions, we

can write

uh(x) =
N

∑
j=1

Uj𝜑j(x),
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Figure 3.1: Finite Element space. Left: Mesh consisted of squares. Right: Linear test function.

where Uj, j 1 N are to be determined. In order to (3.4) hold for every vh Vh it is
su˞cient that it holds for every basis function, so we get next formulation of problem
(3.4): ˚nd U1 UN N such that

DUj
N

j 1
j x i x dx

N

j 1
Uj j x i x dx f x i x dx i 1 N

(3.5)
If we de˚ne matrices A, M and vector F in a following way

A aij aij j x i x dx i j 1 N

M mij mij j x i x dx i j 1 N

F fi fi f x i x dx i 1 N

we see that U1 UN is the solution of next linear system

DA M U F

The next question is how will we choose space Vh. First we have to assume that is
a bounded domain with polygonal boundary so that it can be covered by a ˚nite
number of triangles or squares. It is assumed that any pair of triangles or squares
intersect along a complete edge, at a vertex, or not at all, as shown in Figure 3.1a. With
each interior node i we associate a basis function i which is equal to 1 at node i and is
equal to 0 at all the other nodes. An example of a test function is shown in Figure 3.1b.
The only thing left to discuss is how will we treat boundary conditions since we have

the condition ui 0 if i is an exterior node. The easiest solution would be to put 0 on
each entry of ith row of matrix A except the diagonal one where we put 1. Also, we set
all values of ith row of matrix M to 0. That way we have assured that ui 0. In case of
non-homogeneous Dirichlet conditions or Neumann conditions, the matrices A and M
are easily modi˚ed. Case of periodic boundary conditions will be discussed later. This
method is called the Finite Element Method. For more details see e.g. [8].
Now, let us go back to the Equation (3.1). We can write Uk 1

m 1 x
N
j 1U

k 1
m 1 j j x ,
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bkm(x) = ∑N

j=1 b
k
m,j𝜑j(x) and after multiplying with test functions we get

N

∑
j=1

Uk+1
m+1,j (𝜑j, 𝜑i) + D𝛥tm

N

∑
j=1

Uk+1
m+1,j (∇𝜑j, ∇𝜑i) =

N

∑
j=1

bkm,j (𝜑j, 𝜑i) , ∀i = 1 … N.

If we define matrices A and M in a way described before we can see that the solution
Uk+1
m+1(x) of SDC sweep in k + 1th iteration is the solution of the linear system

MUk+1
m+1 + 𝛥tmAUk+1

m+1 = Mb
k
m . (3.6)

4 DUNE and PFASST++
DUNE, the “Distributed and Unified Numerics Environment” is a C++ library for solving

partial differential equations with grid-based methods. It supports the easy implemen-

tation of methods like Finite Elements, Finite Volumes, and also Finite Differences.

The framework consists of a number of modules which are downloadable as separate

packages. In our implementation we only used the set of core modules. The development

of DUNE started in 2002 and the main public representation of DUNE is its project

homepage at www.dune-project.org.

The PFASST++ project given in [6] is a C++ implementation of the ”parallel full

approximation scheme in space and time” algorithm, which in turn is a time-parallel

algorithm for solving ODEs and PDEs [2]. It also contains basic implementations of the

spectral deferred correction (SDC) and multi-level spectral deferred correction (MLSDC)

algorithms. The two parts have been combined to one application (dune-PFASST++) by

Ruth Schöbel at Jülich Spercomputing Centre and it is still under development.

Since in each iteration of SDC method we have to solve linear system (3.6), here we

describe the main idea behind the implementation of the Finite Element Method in

DUNE. Let us suppose that we have constructed a mesh which covers the domain 𝛺.
The mesh will be denoted by 𝛵h. Furthermore, the number of vertices of each element

K ∈ 𝛵h will be denoted by n. We associate two indices to each node: a local index

I ∈ {1, … , n} and a global index i ∈ {1, … ,N}, where N is the dimension of the space Vh.

It is important to construct a mapping from local to global indices

g ∶ 𝛵h × {1, … , n} → {1, … ,N} .

Also, for each K ∈ 𝛵h, I, J ∈ {1, … ,N} we define aKIJ and mK
ij in a following way

aKIJ = ∫
K

∇𝜑J∇𝜑I , mK
IJ = ∫

K
𝜑J𝜑I.

Now we have the next algorithm to assemble matrices A and M:
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Algorithm 1 Algorithm for assembling matrices A and M

for all elements K of the mesh 𝛵h do
for all nodes I, J of K do
calculate aKIJ and m

K
IJ

get global index i of node I, i = g(I,K)
get global index j of node J, j = g(J,K)
aij = aij + aKIJ, mij = mij + mK

IJ

end for
end for

5 Results
In this section we aim to examine the performance of semi-implicit SDC scheme, first

for a flame propagation problem and then for a linear multi-component problem. For

both problems we know exact solutions. We also test the order of convergence in space

and time.

5.1 Flame propagation problem
We consider the family of 1D reaction-diffusion equations

∂u
∂t = 𝛥u + 8

𝛿2u
2(1− u), −∞ ≤ x ≤ ∞, 𝛿 > 0,

with boundary conditions u(x) → 1 as x → −∞ and u(x) → 0 as x → ∞. The exact
solution is given by

u(x, t) = 1

2
(1− tanh [x − ct

𝛿 ]) , c = 2

𝛿 . (5.1)

For numerical simulations we used a finite element grid over the interval [−20,20],
𝛿 = 1 and Dirichlet condition: u(−20, t) = 1, u(20, t) = 0. For time-step discretization

we used 3 Gauss-Radau nodes and, as expected, we got 5th order convergence in time,

see Figure 5.1.

5.2 Linear multi-component model
Here we consider a one dimensional reaction-diffusion system with two state variables

∂u
∂t = d𝛥u − au + v,
∂v
∂t = d𝛥v − bv,

(5.2)

with x ∈ [0, 𝜋/2] and boundary conditions:
∂u
∂x(0, t) = 0, ∂v

∂x(0, t) = 0, u(𝜋
2

, t) = 0, v(𝜋
2

, t) = 0.

The diffusion parameter d and the reaction parameters a and b are fixed. The system

admits the following family of solutions:

u(x, t) = (e−(a+d)t + e−(b+d)t) cos(x)
v(x, t) = (a − b)e−(b+d)t cos(x).
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Figure 5.1: Log-log plot of error in dependence of time for different number of finite elements.
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Figure 5.2: Log-log plot of error in dependence of time for different number of finite elements;

a = 0.1, b = 0.01, d = 1.

In this example we used 4 Gauss-Radau nodes and tested for diffusion dominant case

with the triplet (a, b, d) = (0.1,0.01,1). Figure 5.2 shows 7th order convergence in time
and 2nd order convergence in space.

For the implementation in DUNE we note that the system (5.2) can also be written as

∂U
∂t = D𝛥U + BU , (5.3)

where U ∈ ℝ2 ,U1 = u ,U2 = v, and matrices D, B ∈ ℝ2×2 are defined in a following

way

D = [d 0

0 d
] , B = [−a 1

0 −b
] .

We change the implementation in a way that the unknown variable u is now a vector

of block-vectors instead of doubles. Each block-vector has the size two. If we had N
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components in our model, we would have a block vector of size N. Also, we had to

change structure of the matrices A and M. We defined their entries to be 2 × 2 matrices
so that it would be possible to apply them on vector U. In other words, we define new
matrices in the multicomponent model as Amulticomp ∶= A ⊗ I2, Mmulticomp ∶= M ⊗ I2. This
way we generalized the implementation in dune-PFASST++ to support also system of

reaction-diffusion equations.

6 Gray-Scott model
The Gray-Scott model is a reaction-diffusion system that involves two generic chemical

species U and V, whose concentration at a given point in space are denoted by u and v.

They react with each other, they diffuse through the medium and V produces an inert

product P. Therefore, the concentration of U and V at any given location changes with

time and can differ from that at other locations. There are two reactions which occur

at different rates throughout the space according to the relative concentrations at each

point:

U + 2V → 3V ,
V → P .

The overall behavior of the system is described by the formula

∂u
∂t = Du𝛥u − uv2 + F(1− u)
∂v
∂t = Dv𝛥v + uv2 − (F + K)v.

The first equation tells how quickly the quantity u increases. The first term, Du𝛥u is
the diffusion term. It specifies that u will increase in proportion to the Laplacian. The

second term is -uv2. This is the reaction rate. The first reaction written above requires

one U and two V ; such a reaction takes place at a rate proportional to the concentration

of U times the square of the concentration of V. Also, it converts U into V: the increase

in v is equal to the decrease in u. The third term, F(1− u), is the replenishment term.
Since the reaction uses up U and generates V, all of the chemical U will eventually get

used up unless there is a way to replenish it. The replenishment term says that u will be

increased at a rate proportional to the difference between its current level and 1. As a

result, even if the other two terms had no effect, 1 would be the maximum value for

u. The constant F is the feed rate and represents the rate of replenishment. The third

term in the v equation is the diminishment term. Without the diminishment term, the

concentration of V could increase without limit. For more information on this chemical

system see [5] and [3].

We wanted to test our implementation of this multi-component reaction-diffusion

system for different values of F and K. Also, since we wanted to simulate a large tank

without having a big domain, we implemented periodic boundary conditions.

Now we present implementation of matrices A and M which corresponds to periodic
boundary conditions. First, for simplicity, lets take the 1D domain [0,1]. Let 𝜑1, … , 𝜑N
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Figure 6.1: Illustration of the reaction diffusion model. V is fed at a certain rate, while U is

removed (’killed’) at a certain rate. Both compound U and V diffuse at certain rates, and U

reacts with 2V and is converted into V.

be the test functions. Taking in account that we want u(0) = u(1), our solution u can
be written as

u(x) = u1𝜑1 + u2𝜑2 + … + u1𝜑N . (6.1)

Let us define test functions 𝜓i, for i = 1,1, … ,N − 1 as

𝜓1 = 𝜑1 + 𝜑N

𝜓i = 𝜑i, i = 2, … ,N − 1.

Now, since uN = u1 the next formula holds for solution u:

u(x) = u1𝜓1 + u2𝜓2 + … + uN−1𝜓N−1.

So, we got one degree of freedom less than we had before, that is, Vh = [{𝜓1, … , 𝜓N−1}].
We define matrices Ap and Mp as described in Section 3 as

Ap = (apij) , apij = ∫
1

0
∇𝜓j∇𝜓i,

Mp = (mp
ij) , mp

ij = ∫
1

0
𝜓j𝜓i.

The function 𝜓1 shares its support with functions 𝜓2 and 𝜓N−1. That leads to the

conclusion that in the first row of matrices Ap and Mp the non-zero elements would be

(1,1), (1,2) and (1,N − 1). So, now we can easily reproduce matrices Mp and Ap from
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matrices M and A:

Mp =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2m11 m12 0 … mN,N−1 0

m21 m22 m23 0 … 0

0 ⋱

⋮ ⋱

⋮ ⋱

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ap =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2a11 a12 0 … aN,N−1 0

a21 a22 a23 …

⋮ ⋱

⋮ ⋱

⋮ ⋱

1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We integrated condition u1 = uN into the last row of matrices Ap and Mp. Generalization

for the 2D domains is shown in the Figure below.
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(b) We distinguish boundary nodes from the

interior nodes.
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(c) We locate node 4 on the boundary.
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(d) We find its periodic pair – node 24.
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(e) In the vector of global indices we change its

global index to 4.
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(f) We do the same procedure for all boundary

nodes.

Figure 6.2: This set of pictures depicts the implementation of periodic boundary conditions in

DUNE for 2D domains. The idea can be extended for 3D domains.
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7 Numerical simulation
Simulations are performed on a finite domain [0,1] × [0,1] with 100 finite elements in
each direction. Different values for parameters F and K are considered.

We can see that the numerical simulation is very sensitive to the parameters F and K.

In both simulations we had the same initial condition and same timestep size dt = 10s.

In the first simulation, as stable state we got circles (see Figure 7.1) and in the second

simulation shown in Figure 7.2 as stable state we got stripes. Also, what can be seen

nicely in the simulation shown in Figure 7.1 is a process similar to mitosis – at convex

borders more U is available to diffuse inwards and feed V , so those edges grow outwards

as V increases and diffuses. At concave borders, less U diffuses in and V slowly thins out.

This causes a spot of V to grow and then divide into two as if it were a cell undergoing

mitosis.
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Figure 7.1: Numerical simulation for parameters F = 0.035, K = 0.062, dt = 10s
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Figure 7.2: Numerical simulation for parameters F = 0.037, K = 0.060, dt = 10s
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8 Conclusion
In this paper we present results of the implementation of the multi-component reaction

diffusion systems in dune-PFASST++. First we extended the existing implementation of

a solver for the heat equation to support also a reaction term and then we implemented

a multi-component reaction-diffusion solver. We examined the performance through

numerical examples such as a flame propagation problem and linear multi-component

problem for which we know exact solutions. Results have shown good behaviour in terms

of space and time order of convergence. In order to get numerical simulations of the

Gray-Scott model we also implemented periodic boundary conditions. We ran simulation

for different F and K and concluded that the model is very sensitive to changing the

parameters. The next step of this project would be to parallelize in the temporal domain

and fully use features of the PFASST++ library, such as MLSDC. In contrast to SDC,

MLSDC performs correction sweeps in time on a hierarchy of discretization levels. The

advantage of MLSDC is that it shifts computational work from the fine level to coarse

levels, thereby reducing the number of fine SDC sweeps and, therefore, the time-to-

solution. The method is described in detail in [7].
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Alternative Communication
Methods for Stencil-Based

Operations in MPI
Abstract Most simulations in Quantum Chromodynamics

(QCD) follow a specific communication pattern. We present

an implementation which is using one sided communication.

First, we explain in detail how the communication pattern can

be implemented with two sided communication calls. Then

we show how to improve this pattern using one sided commu-

nication and by introducing double buffering. In the end we

present measurements which show the performance differeces

between both methods.

Lukas Mazur
Department of Physics
Bielefeld University

Germany
lmazur@physik.uni-

bielefeld.de

1 Introduction
Quantum Chromodynamics (QCD) is a theory of quarks and gluons and thus of all

hadronic matter. Before 1970 the only way to study QCD was by using a pertubative

expansion at small distances or high temperatures. 1974 Kenneth Wilson discretized the

theory by replacing space-time with a four dimensional lattice [3]. The first numerical

simulations where done by Michael Creutz in 1980 [2]. Since then lattice QCD became

a well-established non-perturbative approach to solving QCD problems.

Today most simulations in this field require a lot of computation time. Therefore, the

massive increase of computation power and better algorithms have opened new fields of

study. In this paper we try to improve a common used algorithm in Lattice QCD. We

present a different communication method for stencil operations in MPI [1].

First we explain in section 2 what we denote as a stencil. In section 3 we show how to

create an cartesian grid in MPI. Then we describe a commonly used implementation in

section 4. In section 5 we introduce the most important one sided communication calls

in MPI and explain why we should benefit from using them. Subsequently, in section 6

we introduce the “double buffering” method. Our implementation of these approaches is

shown in section 7. Finally we present our performance results in section 8 and conclude

them in section 9.

2 Stencil
A stencil can be understood as a geometric arrangement that introduces a relationship

between a point and its neighbours using a numerical approximation routine. In Lat-

tice QCD it is a partial differential equation. Figure 2.1 visualizes a stencil on a two

dimensional lattice. In order to parallelize it, one can domain-decompose the lattice into

sub-lattices equal to the number of parallel processes. Then the stencil computations

are done on each sub-lattice in parallel. Within one sub-lattice the computation only

requires data from lattice points associated with that process and thus no data need to

be transferred between processes at these points. However, the lattice points on the

surface of each sub-lattice require information from other ranks. In our work we are

only focussing on interprocess communication, thus each lattice point is associated with
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Figure 2.1: QCD Lattice. Each circle holds a physical value which needs to be updated. This is

done via the stencil (red) which goes through all lattice points. After one sweep is done, the

stencil starts again from the beginning.

one process. After one sweep through the whole lattice, the computation starts again

from the beginning updating the new calculated values on each lattice point. A lot of

iterations in Lattice QCD usually are done in the same manner, which leads to long

computation times.

3 Lattice in MPI
Lattice QCD uses a four dimensional (space-time) lattice. Since the stencil only connects

nearest neighbours, we can domain-decompose the lattice with the implication that only

neighbouring compute nodes exchange data. In order to implement this, we first need

to rearrange the ranks in a way that each rank knows its neighbours. This can be done

by MPI_Cart_create:

Listing 12.1: MPI_Cart_create Interface

1 int MPI_Cart_create(MPI_Comm comm_old, int ndims,

2 const int dims[], const int periods[],

3 int reorder, MPI_Comm *comm_cart)

This function needs an MPI communicator, the number of dimensions, the size of each

dimension, an array which indicates which dimension should be periodic and the integer

reorder which specifies whether the ranks should be relabeled or not. It returns a new

communicator, which has the desired properties as shown in figure 3.1. If a rank wants

to know which neighbours he has, one should use the function MPI_Cart_shift:

Listing 12.2: MPI_Cart_shift Interface

1 int MPI_Cart_shift(MPI_Comm comm, int direction,

2 int disp, int *rank_source, int *rank_dest)

That function takes as arguments the cartesian communicator, the direction which indi-

cates the dimension of interest and a displacement where the distance to the neighbour

is specified (e.g. nearest neighbour = 1, next nearest neighbour = 2). It returns the two

ranks rank_source and rank_dest which are the neighbours in the given dimension.
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Figure 3.1: 2D 4x4 cartesian communication in MPI. Each number represents a rank. Optionally

one can also turn on periodic boundary conditions, as shown with dashed circles.

4 Simple communication pattern
In this section we want to illustrate a rather simple communication pattern. Usually MPI

does not guarantee that processes are running synchronously. Therefore, the programmer

has to take care about synchronization. A commonly used stencil algorithm would go

through the following steps:

1. Send my local values to my neighbours

2. Calculate a new local value out of my old value and the received values of my

neighbours

3. Wait until neighbours are done with the same iteration step, before sending the

new calculated value to them.

In MPI such a pattern can easily be implemented as follows:

Listing 12.3: Implementation

1 for(int i= 0; i<maxupdates; i++){

2

3 MPI_Irecv(right_recv, 1, buffer_type, right, ... );

4 MPI_Irecv( left_recv, 1, buffer_type, left, ... );

5 MPI_Irecv( up_recv, 1, buffer_type, up, ... );

6 MPI_Irecv( down_recv, 1, buffer_type, down, ... );

7

8 MPI_Isend(sendbuf, 1, buffer_type, left, ... );

9 MPI_Isend(sendbuf, 1, buffer_type, right, ... );

10 MPI_Isend(sendbuf, 1, buffer_type, down, ... );

11 MPI_Isend(sendbuf, 1, buffer_type, up, ... );

12

13 MPI_Waitall(4, request_send, ... );

14 MPI_Waitall(4, request_recv, ... );

15

16 update_buffer(left_recv, right_recv, ... , sendbuf);
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Each rank enters this loop, which means that each iteration step represents a whole

sweep through the lattice. The MPI_Irecv calls are for receiving data from neighbours,

while the MPI_Isend calls are sending the local buffer to the neighbours. These calls

are non-blocking calls, which means that they return immediately. Therefore, one has

to make sure that the communication is done by using MPI_Waitall. Afterwards, the

sendbuffer will be updated using the received data from the neighbours. It is important to

wait not only for MPI_Irecv but also for MPI_Isend, because otherwise the sendbuffer

will be overwritten by update_buffer while still in use by the sending calls (One could

avoid this by introducing a second sendbuffer). These MPI functions ensure that each

MPI_Isend call has only one corresponding MPI_Irecv call. That means, if one rank is

one iteration step further than one of his neighbours, he can not send his new computed

buffer to him, because the neighbour did not call the corresponding MPI_Irecv function

so far.

5 One sided communication
So far, we just used two sided communication calls. Hence both processes are involved

in communication as shown in figure 5.1a. If one rank wants to send something to

another rank, then the sending rank has to send a sending request to the receiving

rank first. After that, the sending rank has to wait until the receiving rank sends a so

called “handshake”. As soon as the receiving rank did that, the sending rank is allowed

to send his data to the receiving rank. In theory these handshakes are causing more

communication overhead. To avoid this, one could use one sided communication calls

as shown in figure 5.1b. With these calls, only one rank is involved in communication.

Hence, if one rank wants to send something to another rank, it just puts its data into

the memory of the other rank without waiting for a handshake. The effect should be

seen when we measure how long the program needs to get through all iterations. In

theory the one sided version should finish earlier than the two sided version as shown in

figure 5.2, because the ranks do not need to wait for handshakes anymore. This effect

should become clearer when we increase the iteration count. In MPI the corresponding

one sided communication call would be MPI_Put:

Listing 12.4: MPI_Put Interface

1 int MPI_Put(const void *origin_addr, int origin_count,

2 MPI_Datatype origin_datatype, int target_rank,

3 MPI_Aint target_disp, int target_count,

4 MPI_Datatype target_datatype, MPI_Win win)

Among other arguments this function essentially takes the sendbuffer, the target rank,

the displacement in the target buffer and the window as arguments. A window object is

created with MPI_Win_allocate and specifies a “window” in the memory of a process

that is made accessible for access by remote processes. MPI_Put can only be called

within a so called “epoch”. In our work we are using a passive target epoch for all

remote memory access (rma) calls. A passive target epoch starts with MPI_Win_lock

and ends with MPI_Win_unlock.
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Figure 5.1: Two sided communication (left) compared to one sided communication (right).

Circles indicate ranks, while thin arrows represent communication. One can see that two sided

communication needs more communication calls than one sided communication.
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Figure 5.2: Schematic timeline of three ranks performing two iterations. The picture above

represents a two sided communication pattern while the picture below shows a one sided

communication pattern. Since the waiting times in the second picture disappear, the second

method should finish earlier.
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6 Double buffered communication
The communication pattern described in section 4 is not really efficient. The reason

is that in step 3 the process is wasting communication time. The process can not

communicate the new buffer and has to wait for the neighbours. To avoid this, we can

introduce a second receivebuffer. Then the communication pattern would look like that:

1. Send my local values to my neighbours

2. Calculate new local value out of my old value and the received values of my

neighbours

3. Send the new calculated value to the second receivebuffer of my neighbours

4. continue computing

Using that pattern the communication step for the new calculated value is already done,

which means that the process does not need to wait for the neighbours before sending

the new buffer. Figure 6.1 visualizes the difference between the single buffer approach

(left) and the double buffer approach (right). In the single buffer visualization, each rank

has only one receivebuffer per neighbour, whereas in the double buffer visualization,

each rank has two receivebuffers respectively. In figure 6.1a some ranks have already

exchanged some data, thus rank 1 got all data needed to compute the new data out

of the receiving- and sendingbuffer. This is shown in figure 6.1b, where the dark blue

filled rectangle denotes the new data. Meanwhile rank 0 and 2 did not get all required

information. Figure 6.1c shows the advantage of the double buffer approach. In the

single buffer approach, rank 1 can not send its sendbuffer to rank 2, because there is still

data in the receiving slot of rank 2, which is required for further calculation. Therefore,

rank 1 has to hold on communication, until rank 2 is done. In the double buffer approach

instead, rank 1 does not need to wait and can send its buffer immediately to the second

buffer of rank 2.
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Figure 6.1: Single buffered method (left) compared to double buffered method (right). Within one

dimension three ranks are communicating with each other (thin arrows). The big rectangles

with rounded corners represent the memory of each rank, while the smaller rectangles inside

represent the communication buffer. The single upper rectangle stands for the sending buffer,

while the lower rectangles represent receiving buffers. White filled rectangles denote empty

buffers, whereas colored rectangles represent buffers with valid data.
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7 Implementation

In MPI a double buffered communication algorithm with one sided communication calls

can be implemented as follows:

Listing 12.5: Implementation

1 for(int i= 0; i<maxupdates; i+=2){

2 MPI_Put(sendbuf, 1, buffer_type, right, left_displ, ... , win);

3 MPI_Put(sendbuf, 1, buffer_type, left, right_displ, ... , win);

4 ...

5 MPI_Win_flush_local_all(win);

6 ... compute something ...

7 while(1){

8 MPI_Iprobe(cart_rank, MPI_ANY_TAG, MPI_COMM_WORLD, &flag, &status);

9 MPI_Win_sync(win);

10 if(left_recv[length] == i && ... top_recv[length] == i) break;

11 }

12 update_buffer(left_recv, right_recv, ... , sendbuf, i+1);

13

14 MPI_Put(sendbuf, 1, buffer_type, right, left_displ, ... , win2);

15 MPI_Put(sendbuf, 1, buffer_type, left, right_displ, ... , win2);

16 ...

17 MPI_Win_flush_local_all(win2);

18 ... compute something ...

19 while(1){

20 MPI_Iprobe(cart_rank, MPI_ANY_TAG, MPI_COMM_WORLD, &flag, &status);

21 MPI_Win_sync(win2);

22 if(left_recv2[length] == i+1 && ... top_recv2[length] == i+1) break;

23 }

24 update_buffer(left_recv2, right_recv2, ... , sendbuf, i+2);

In this example, the step size in the for loop is not 1 anymore but 2. This is due

to the double buffering method, because we are fusing two iterations. After the first

MPI_Put calls we need to call MPI_Win_flush_local_all in order to make sure that

the MPI_Put operations are locally done. That does not necessarily mean that the target

has already received this data. But for our purposes we do not need to know this. As soon

as everything is flushed locally, we can compute something to overlap communication

with computation. The while loop afterwards checks if the receivebuffer holds new

data. To do this we should always synchronize public memory with private memory

before, since some systems are using a so called RMA seperate model. In that model,

there is only one instance of each variable in process memory, but a distinct public

copy of the variable for each window that contains it. Additionally one has to call

MPI_Iprobe to advance communication, otherwise some ranks would not return from

MPI_Win_flush_local_all. MPI_Put does not need a corresponding receive call like

MPI_Isend. That means that we also have to send information about the status of the

receivebuffer. If we would not do that, then the receiving rank would not know whether

it can proceed with that buffer or not. In our case we send an additional integer value

together with our data, which indicates in which iteration step this data was computed.

Then the if statement in the while loop checks for the additional integer. When the

while loop returns, the sendbuffer can be updated by using the receivebuffer. After

this is done, the rank can immediatly continue with sending the new computed data to

the second receivebuffer of the target. This is done by using a different communication

window (win2).
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Figure 8.1: Two sided and one sided communication in comparison.

8 Results
To measure the difference between the two sided version and the double buffered one

sided version, we measured the time required for both programs to finish different

counts of iterations. The x-axis in figure 8.1 refers to the maximum iteration count and

the y-axis shows how long it takes to compute that number of iterations. We tested

our programs on 8 JURECA nodes with one core per node. Each node holds two Intel

Xeon E5-2680 v3 Haswell CPUs with a clock rate of 2.5GHz. The nodes are connected to

each other via Mellanox EDR InfiniBand. As MPI implementation we are using IntelMPI

version 5.1.3.181. The reason why we are choosing only one core per node is that we

only want to measure the performance of internode communication. For intranode

communication there are better approaches available than MPI.

Figure 8.1 shows that our one sided program is slower than the two sided version.

Since in theory our approach has less communication overhead, we were expecting

that the one sided line would be flatter than the two sided line. The reason for the bad

performance is probably due to the details of the MPI implementation. Most of the

MPI programs today are using only two sided calls. Therefore, the implementations

are not optimized for one sided communication. Moreover, we do not know how the

two sided calls in MPI are implemented. Even though in theory the two sided functions

should follow the “handshake” protocol described in section 4, the implementation could

handle it completely differently.

9 Conclusion
In this work we compared two communication methods for stencil based operations on

a lattice. The first method is based on simple two sided communication calls and uses

only one receivebuffer for each neighbour. The second method is based on one sided

communication calls and uses two receivebuffers. Since the second method should have

in theory less communication overhead and less waiting times, we expected that this

method should be faster than the first method. As it turns out, the second method is

slower than the first one. This is probably due to the MPI implementation, which is
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not fully optimized for one sided communication calls. This reminds us once again that

MPI is just a standard and not an implementation. One should also test this program

on different MPI Implementations like MPICH, OpenMPI, etc. Furthermore, the double

buffering method can also be tested using other two sided communication calls. As

a final remark, we conclude that using one sided communication is (with the given

implementation) not worth the effort. One has to mind a lot of pitfalls and in the end,

the program is not faster. As long as the implementation is not optimized for one sided

communications, one should stay with two sided communication calls.
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A Violin Plot Plug-in for Cube
Performance Analysis With Style

Abstract Cube is an open source software used for displaying

performance data of HPC applications. Extending the toolset

of Cube with an additional plug-in which is capable of making

violin plots for numerical data sets will be of great help for

the HPC community dealing with performance analysis. In

this paper, a step-by-step description of the Violin Plot Plug-in

is made, starting from the mathematical concept of a violin

plot, up to the improvements on the algorithm as well as

performance measurements of the algorithm.
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1 Introduction
Nowadays, studies in topics like Computer Science, Physics, Biology, Medicine etc.,

generate complex problems that often require simulations which can become too complex

to run them on a desktop environment. Fortunately, there is an increasing number of HPC

centres which can run these simulations, helping in this way the scientific community.

Even though a supercomputer is a powerful machine, capable of computing speed which

surpasses any modern PC, its internal structure is so complex, that the developers of

any application must write the code in such a way that the application could use that

computing power as much as possible. All the applications which are meant to be

executed on a supercomputer require a parallel behaviour, which means that all the

processors are executing calls at any given moment. Any serialization or inefficient

routines in the code will make the running time increase, making a supercomputer to

perform slower than its normal capabilities. Because making an application capable

of running on large-scale computer systems is not an easy task, HPC community come

with an affordable solution: Performance Analysis. This step assures the developer that

his application takes advantage of (more or less) the entire computing power of the

machine. This process require a preliminary measurement of the unoptimized application,

then based on the measurement data, an in-depth analysis which will give options for

further improvement/tuning of the application (see figure 1.1).

From this workflow, one can observe that performance analysis is an iterative process,

which means that it can be performed multiple times on the same application, until it

meets the desired degree of optimization.

However, in order to make performance analysis, the HPC community needs some

tools capable of making the optimization of parallel applications both more effective

and more efficient. Many research centres developed their own tools for optimizing

applications; from tools which measure the performance of an application or search for

inefficiencies in the application up to programs which display the measurement data.

Performance analysis tools will help the developer to find the root causes of potential

bottlenecks, serialization or any other inefficient behaviour in the application. Tuning

the code in order to avoid such problems will increase the scalability of the application.

The only issue which arises after the performance measurement has been done is that

the reports contain information about the entire code. Is not hard to realise that, for a
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Figure 1.1: Scheme for developing an optimized algorithm.

complex algorithm, such reports can be very hard to analyse by the developers due to the

enormous data. So, they need methods for quick data visualization, with a summarized

view on the program behaviour. Cube is a software which is displaying the performance

reports in a user-friendly way and aggregated information of the HPC application can be

visualized in a scalable fashion. Cube has several plug-ins which extend user capabilities

to interpret the numerical data. Examples of such plug-ins: Topology, SystemBoxPlot. In

this paper, the description of a new plug-in is realised: Violin Plot. With this new tool,

one can see the graphical representation of the distribution of data from the performance

report. The remainder of this article is organized as follows: a short overview about

performance analysis tools, an introduction into Cube software together with description

of SystemBoxPlot plug-in. The next discussion is about the actual project: Violin plot;

with theoretical background and algorithm implementation into Cube. Three methods

for computing the violin plot are represented with performance results for each version.

Finally the user interface of the plug-in is shown followed by conclusions and future

work.

2 Performance analysis tools

Developers of parallel application can choose from a variety of performance-analysis

tools. According to [2], these tools can be categorized into the following way:

On-line Provides immediate feedback on the performance behaviour while the applica-
tion is still running, allowing the user to intervene if necessary.

• Periscope (Technische Universität München, Germany)

• Paradyn (University of Wisconsin, USA)

Post-mortem They record performance behaviour at runtime and then analyse it after

the target application has terminated.

• Scalasca (Forschungszentrum Jülich & German Research School for Simulation
Sciences – Aachen, Germany)

• Vampir (Technische Universität Dresden, Germany)

• TAU (University of Oregon, USA)
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3 Cube Uniform Behavioural Encoding
Cube is a software suitable for displaying a wide variety of performance data for parallel

programs (like MPI, OpenMP). It has been designed around a high-level data model

of program behaviour called performance space [4]. This space is organized in three

dimensions.

The metric dimension contains all the quantities that can be measured during the

runtime of an application, like execution time, cache misses, visits and can also contain

derivedmetrics. The program dimension contains the program’s call tree, which is basically

the set of all the calls from the application. Finally, system dimension contains the items

which are executing in parallel the code. Such items can be processes, or threads,

depending on the parallel programming mode. Any point q(m, c, s) can be mapped into a
number, which represents the actual measurement for metric m while the process/thread

s was executing the call c. This mapping is called the severity of the performance space.

[5]

Each of the mentioned dimensions are organized into hierarchies. The metric di-

mension is organized in an inclusion hierarchy where each metric at a lower level is

a sub-parent of its parent (see figure 3.1). The program dimension is organized in a

call-tree hierarchy, with the same inclusion property. The system dimension is actually

the hardware structure of the machine which executed the application and its organized

in a multi-level hierarchy consisting on items like processes or threads, up to racks and

machine.

Cube has two components: library and display. The library is able to read and write

the data files in the .cubex format. The display component can load such files and

display information about each dimension with the help of three interactive browsers.

The connection between browsers is made in such a way that the user can view one

dimension with respect to another dimension (see figure 3.1). For more information

about Cube, see the user manual [4] or references [5], [3].

3.1 Using the Cube display
All three browsers represent the performance space. By default, the dimensions are

organized form left to right as follows: metric tree, program tree and system tree. Each

node from the metric tree represents a metric. The nodes form the program dimension

represent all the call paths which form the program tree. System tree contains nodes

which represent the machine and all the hardware structure. Each node has an associated

value: severity. User can expand or collapse nodes form each tree. By collapsing or

expanding a node, its severity changes accordingly (inclusive value or exclusive value;

see figure 3.2). When a node is collapsed/expanded it causes the change of the current

values in the trees on its right-hand side.

3.2 SystemBoxPlot plug-in
The performance report of an application contains numerical information about the

entire runtime of the program, including the severity of all the threads which were

executing it. In most cases the number of threads is large, reaching even the order of

nt = 106. Analysing this amount of data is almost impossible without some summarized

schemes which describe numerical behaviour of the data set. One useful scheme which

can help the user is a Box Plot.
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Figure 3.1: Cube-GUI display window.

Figure 3.2: Cube display window with expanded metric MPI time and system tree.
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3.2.1 Box Plot

In descriptive statistics, a boxplot is a non-parametric way of showing information about

numerical data. Typically, a boxplot shows:

1. Minimum and Maximum (1, 2)

2. Q1 and Q3 (3, 4)

3. Mean (5)

4. Median (6)

56

1

2

3

4

For such a plot, Cube has already the SystemBoxPlot tool. This plug-in is making a

boxplot from the all the severities of the processes/threads in the system tree.

Figure 3.3: The graphical interface of BoxPlot plug-in in Cube display.

Implementing a boxplot in Cube is not complicated due to the fact that for showing

only six data points, the algorithm is straightforward. It is advantageous because it

shows four main features about the severities: center, spread, asymmetry and outliers.

The only drawback is that a boxplot shows six numbers, and only a hint about the

distribution of the data. If one is interested into the actual distribution of the data, a

boxplot is not the best approach.
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Motivation: Cube-GUI must be extended with a new plug-in capable of showing the

correct data distribution across the severities from system dimension.

4 Violin Plot – Theoretical Background
In descriptive statistics, violin plot is a method for plotting numerical data. It is a boxplot

with a rotated Kernel density estimation.

Figure 4.1: The difference between a boxplot and a violin plot.

With the addition of the kernel density estimation to the boxplot, violin plots provides

a better information about the shape of the distribution. It can show clusters or bumps

in the data keeping in the same time the information provided by the boxplot (see figure

4.1).

4.1 Kernel Density Estimation (KDE)

In statistics, KDE is a way of showing the probability density function of a random

variable. Let

x1 x2 ... xn

be an independent sample of numerical data. Then, its kernel density estimator is:

KDE(x) = 1

nh

n

∑
i=1

K (x − xi
h

) , (4.1)

• h − is a smoothing parameter called bandwidth, with h > 0 ;

• K(⋅) is the kernel: a non-negative function with mean zero and which integrates to
one.

Observation: Choosing the right bandwidth is crucial. An improper value of h can result

in undersmoothing or even oversmoothing of the estimator.
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4.1.1 Kernel

In non-parametric statistics, a kernel is a weighting function used for estimation tech-

niques. There are several types of kernel functions which can be used in construction of

the KDE: Uniform, Triangle, Epanechnikov, Quartic, Tricube, Triweight, Gaussian, Cosine,

Logistic, Sigmoid, Silverman. In the figure 4.2 are some examples.
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Figure 4.2: Example of kernels.

4.1.2 Influence of bandwidth in estimation

The bandwidth is usually specified in percentages of data range. According to [1], values

near 15% of the data range give good results. Values bigger than 40% of the range will
result in oversmooth of the density and values smaller than 10% of the range will result
in undersmooth (producing strange artefacts). For a good estimation, the data should

have at least 30 samples. Importance of h is shown in figure 4.3.
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Figure 4.3: Comparison between different values of h for a sample.
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Aim: Having now mathematical knowledge about the boxplot and the method for

constructing the violin plot, it is possible to implement an algorithm into Cube.

5 Implementation of Violin Plot in Cube
5.1 Workflow
The plug-in will consist from two major parts. The first one takes the severity of all the

threads in the system tree as input and computes the KDE and stores it. The second part

displays on the screen the KDE using Qt libraries. The workflow can be represented as

in figure 5.1.

Input:

sev[i]

KDE:

kde[i]

Violin plot

displayC++ C++,Qt



Figure 5.1: General scheme of the workflow.

5.2 Requirements
Cube is used by the HPC community for a long time so providing users with a new

plug-in should be done with care. The user interface must correspond to Cube standards.

Having large summary files loaded into Cube, can become a problem because the input

data will contain up to millions of entries.

As a result, the algorithm must be fast enough to paint the plot on the screen in a

reasonable time; this way assuring a fluent user experience. The entire code of the

program must be written in C++ and Qt libraries must be used for displaying the plot.

5.3 First implementation - straightforward algorithm
For this approach, the formula 4.1 is used as a starting point. Direct implementation for

computing the KDE can be seen in the following sketch:

Listing 13.1: Naive algorithm for computing KDE

1 // h is the bandwidth

2 // chosen_kernel is one of the 11 available types of kernels

3 double sum = 0;

4 for ( unsigned i = 0; i < n; ++i )

5 {

6 for ( unsigned j = 0; j < n; ++j )

7 {

8 double temp = ( data[i] - data[j] ) / h;

9 sum += chosen_kernel ( temp );

10 }

11 KDE[i]=sum / ( n * h );

12 sum = 0;

13 }

Listing 13.2: Example of subroutine which calculates the kernel

1 // this subroutine computes the Triweight kernel

2 double chosen_kernel( double arg )

3 {

4 val = abs( arg );

5 if ( val > 1 )

6 {

7 return 0;

8 }
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9 double kernel=( 35.0 / 32.0 ) * pow(1 - val * val, 3);

10 return kernel;

11 }

The nested loop in the naive violin plot algorithm causes the runtime to be quadratic

in n. This corresponds to the measurement shown in figure 5.2.
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Figure 5.2: Performance measurements for the algorithm.

With this version, the performance is poor even for small files (nthreads = 32000). The

user must wait a long period of time for the violin plot to show up on the display. One

important aspect of the program is the process of painting; the algorithm is computing

the KDE for each element in the data, then in the Cube window Qt is drawing pixel

by pixel each data point. Usually a monitor has 1080 pixels across the vertical axis

and painting 32000 points on a 1080 pixels line will produce oversampling. To avoid

oversampling a new method of the algorithm should be developed.

5.4 Second version
The key thing for improvement is to reduce data batch for which the KDE will be showed

on the screen. If the height of the Cube window is M (pixels), then the KDE should

be computed only for M points in the data. As a reminder, most of the time M will be

smaller than 1080 pixels.

By sampling, a new data set can be created where all the points for which the KDE

should be calculated are stored. The set will depend on the number of pixels M, which

was previously defined and it will contain values normalized with respect to the window

size (see figure 5.3). Having the new array created, all it remains is to calculate the

KDE for each element. Because in the formula 4.1, x − xi represents the difference of

all the values in the data with respect to x, the same approach should be adopted here.

By running from 0 to M (or from maxp to minp) each element within the original data

should be subtracted from the current element of the new data. The element xi from new

data has its closest element (as value) somewhere in the original data and that position

is unknown; for each new element there will be such a corresponding position. If the

position can be somehow calculated, then starting from that element in the old data,
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the second loop will split in two parts: one which runs down to the first element and

one which runs up to the last element. Within these branches, calculation of KDE can

be done as in the first algorithm. The same result can be obtained without splitting the

for loop, but in this approach branching the sum could lead to possible improvements.

The input data is sorted from minimum value to maximum value, so all the other sets

keep the same ascending structure.

CUBE-GUI Window

maxpix

minpix

M

Figure 5.3: The coordinates of the upper and lower part of the Cube window are integer numbers

ranging from minpix to maxpix. Once the program gets these two numbers, M will be automati-

cally calculated: M = minpix − maxpix. Because pixel increment is done from top to bottom,

the upper part should be subtracted from the lower part.

Listing 13.3: Performing sampling & creating array with new data and positions

1 // maxd and mind are the extreme values from the original data

2 // minp and maxp are the pixel coordinates of the CUBE window

3 for ( int i = minp; i >= maxp; --i )

4 {

5 // new element is created and normalized

6 double tx = ( minp - i ) / ( minp - maxp ) * ( maxd - mind ) + mind;

7 // value is stored in the new data array

8 newdata.push_back( tx );

9 // position of the closest element from the old data is calulated

10 pos = std::lower_bound( data.begin(), data.end(), tx );

11 // position is stored in a separate array

12 newindex.push_back( pos - data.begin() );

13 }

Listing 13.4: Algorithm for the second method

1 // newdata is the sample

2 // data is the original array with n entries

3 int M = minp - maxp;

4 double sum = 0;

5 for ( unsigned i = 0; i < M; ++i )

6 {

7 jpos = newindex.at( i ); // setting the starting point of the splitting to the correct index

8 // performing the branched summation trough the entire old data

9 for ( int j = jpos; j < n; ++j )

10 {

11 double temp = ( newdata.at( i ) - data.at( j ) ) / h;

12 sum += chosen_kernel( temp );

13 }

14 for ( int j = jpos - 1; j >= 0; --j )

15 {

16 double temp = ( newdata.at( i ) - data.at( j ) ) / h;

17 sum += chosen_kernel( temp );

18 }
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19 sum = sum / ( n * h );

20 KDE.push_back( sum );

21 sum = 0;

22 }

23 }

M is constant so it will not affect the performance behaviour of the algorithm. As a

result, the first loop has been reduced from a linear O(n) to a constant O(M), with M ≪
n . Inside the sampling procedure, the function lower_bound has O(log

2
n) complexity

while the branched summation still behaves linearly O(n). By making calculation of the
total complexity of the algorithm, the following result is expected:

R = O(M log
2
n) +O(Mn) .

x1

j=1

... data[j] ... xn

j=n

DATA

y1 ... yi ... yM NEW_DATA

i=1 i=M

id1 ... idi ... idM

i=1 i=M

NEW_INDEX

j = idi

Figure 5.4: The new data will have a corresponding new index pointing to the position of its

closest element in the original data.

The obtained results verify the expected complexity of the program and one can

observe that the performance has improved by a large factor even for a file with data

from 32000 threads and this result was achieved only by using a sampling procedure.

But still, good performance should be obtained for n = 106, so further optimization in

this algorithm must be made. The major impact is represented by the linear part of the

calculation and reducing the O(n) to a smaller complexity should improve the execution
time of the plug-in even more.

5.5 Third version
In order to decrease the branched loop from n to a smaller value, the algorithm must

be adjusted in such a way that will behave selectively. In the kernel subroutine, the

condition for which the function will return zero is

𝛾 = [(newdata.at(i) − data.at(j)) / h] ∉ [−1,1] ,

and the summation term will not change after this condition due to the zero result of

K (𝛾). If it would be possible to know after how many iterations 𝛾 will be outside the
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Figure 5.5: Performance measurements for the algorithm in a loglog plot.

range, then the branched loop can stop (with a halt condition) before completing the

entire 1 ⟷ n loop (see figure 5.4). As a result, a cutting limit for each branch must

be found so that the algorithm will finish computing the KDE before the entire original

data is completed, and the linear O(n) behaviour will become O(𝜁), where 𝜁 is smaller
than n. The difference of the approach is shown in figure 5.6.

The importance of 𝜁 lies in the fact that one can find the exact location in the data
where

newdata[i] − data[j] < h, j ∈ [ jleft_limit , jright_limit ] .

With the new limits, it is possible to go back in the second version and introduce

them as cutting conditions for the branched loop. Unfortunately by doing this, the

improvement in time performance will be insignificant (due to linear complexity of the

loop and find_if). A better way is to make an approximation by calculating only the

first kernel of

𝜂 = newdata[i] − data [ newindex[i] ]
h

,

and then just multiply this result (call it with the allowed number if iterations, which is

𝜁. Even if this can result in some inaccuracy for KDE, it will get rid off the branched
loop, which could help improving the execution time even more, because the algorithm

will compute M KDEs trough a simple multiplication KDE = 𝜂𝜁. Each element in the
newdata will have its corresponding newindex for the closest element in the original

data as well as the left and right limits. The entire problem can be solved now in only

one for loop which runs through the number of pixels.
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Figure 5.6: Improved selective algorithm.

Listing 13.5: Selective algorithm of the third version

1 // find left and right limits for data

2 for ( unsigned i = 0; i < M; ++i )

3 {

4 tx = ( minp - i ) / ( minp - maxp ) * ( maxd - mind ) + mind;

5 newdata.push_back( tx );

6 // find (in original data) the position of closest element for newdata

7 glob_pos = std::lower_bound( data_batch.begin(), data_batch.end(), tx );

8 // store the position

9 newindex.push_back( glob_pos - data_batch.begin() );

10 // find the left limit

11 pos = std::find_if( data_batch.begin(), glob_pos, k_condition_upper );

12 // store position of left limit for each element in newdata

13 iterations_left.push_back( std::distance( pos, glob_pos ) );

14 // find the right limit

15 pos = std::find_if( glob_pos, data_batch.end(), k_condition_lower );

16 // store position of the right limit for each element in newdata

17 iterations_right.push_back( std::distance( glob_pos, pos ) );

18 }

19 // calculate kernel

20 for ( unsigned i = 0; i < M; ++i )

21 {

22 jpos = newindex.at( i );

23 left_limit = iterations_left.at( i );

24 right_limit = iterations_right.at( i );

25 zeta = right_limit - left_limit;

26 double rez = ( newdata.at( i ) - data_batch.at( jpos ) ) / width;

27 sum = zeta * chosen_kernel( rez ); // improved calculation(approximation)

28 sum = sum / ( n * h );

29 KDE.push_back( sum );

30 }

Finding these limits can be done with a C++ template called find_if. This function

searches and returns the first position in an array where an arbitrary condition is true.

For the left limit the required condition is that newdata[i] − data[j] < h and for

the right limit the condition is newdata[i] − data[j] > h. The reason is that beyond

this limits, the condition for the value inside the kernel to be in the range of [−1,1] is
not any more valid. The complexity of find_if is up to linear between first and last

element.
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5.5.1 A closer look upon h

During the description of all the algorithms, h was ignored. It is necessary to check if the

value of the bandwidth has some influence on the behaviour of the algorithm. Importance

of h for the KDE was already mentioned, so analysing the change in performance of the

program with respect to the bandwidth is crucial now. 𝜁 is the number which shows
the location of all the elements in the original data which satisfy the condition for

chosen_kernel subroutine. As a reminder, that condition is

∣newdata[i] − data[j]
h

∣ < 1 .

This formula clearly shows the importance of bandwidth: a larger value of h will

result in a larger interval between the left limit and the right limit, which means that

the value of 𝜁 is closely related to the value of h :

𝜁 = f (h) .

The plug-in allows the user to adjust the bandwidth in a range from 0% to 100% (see
5.8). During the measurements, the change of h did not produce significant changes in

performance. However, for a large array, it is possible that h will have an influence on

execution time due to the larger interval that find_if needs until the halt condition is

satisfied.

Going back to the performance of the program, the expected behaviour depends on the

complexity of this algorithm. Based on the properties of the third version total complexity

can be calculated with the following formula: R = O(M log
2
n) + O (M𝜁(h)) + O(M)

where the first term belongs to find_if function, the second term corresponds to

calculation of the limits and the third term is from the actual computation of KDE in

the program. Because M is constant during program execution, one can neglect the

influence of third term, resulting in a final complexity of

O (M log
2
n) + O (M𝜁(h)) .

As it was intended from the beginning, the linear term in n was reduced to a smaller

value, which could produce more improvements in time performance.

5.5.2 Final results

The performance measurements for all three versions can be seen in the figure below:
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Figure 5.7: Performance measurements for all the versions in a loglog plot.

Figure 5.8: Graphical representation of violin plot in Cube. Information given by boxplot can still

be visualized. Users can choose the kernel (right radio buttons) and also change the value of

the bandwidth (bottom slider). Different value of h will result in undersmooth or oversmooth.

In this example the undersmooth problem can be seen in the right picture.
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6 Summary & Conclusions
Having a violin plot for the Cube software will provide the distribution of data across the

system tree which can potentially help the HPC application. A closer look at the system

threads severity, especially the groups with high values, will reveal potential hardware

malfunction (e.g. communication problems between nodes, processors which are thermal

throttling). As a result, the violin plot will not only improve the HPC application, but

also the HPC system. The third version of the plug-in has the best performance of all the

versions, and it is reasonably fast when working with summary reports of medium size.

Based on extrapolation a calculation time of t ≈ 20 s for a violin plot on a system with

106 threads. The plug-in provides the user possibility of choosing the kernel estimation

and value of h in order to give a live feedback with the change in shape of the violin plot

(see figure 5.8).

Observation: The choice of kernel should not make any major change in the shape of

the KDE and the kernel should not influence the time execution of the program (even

if the function require different number of mathematical operations). Fortunately, the

kernel type is not important in time performance. Performance measurements for the

algorithms were realized with SCORE-P, using sampling. Sampling is an interrupt-based

event measurement technique. For more details on performance measurements with

SCORE-P see reference [2]. Below, a graphical representation of Violin Plot plug-in

working mechanism is shown.

for 1 nfor 1 nfor 1 nfor 1 nfor 1 nfor 1 n

O (n2)

for 1←x

for x→n
for 1←x

for x→n
for 1←x

for x→n

O (Mn)

∑right_limit

left_limit∑right_limit

left_limit∑right_limit

left_limit

𝜂 ⋅ 𝜁𝜂 ⋅ 𝜁𝜂 ⋅ 𝜁

O (M𝜁)

V .2 V .3

n M

Figure 6.1: This figure contains a short review for all the version of the algorithm. Each element

in a stack represents an iteration for the calculation of KDE. First version (represented by

n elements in the left stack, where each element is a KDE) was the naive implementation

directly from equation 4.1, which lead to quadratic behaviour. By sampling, the complexity

was reduced in the second version (represented by the middle stack, with only M elements)

to O(Mn), keeping the branched loop linear in n. The alternative of V.2 is to introduce a
halt condition in the branched loop with the help of cutting limits, but the time performance

will not change. Finally, the third version (represented by the right stack with M elements,

where each element is just a multiplication of two numbers) removes the branched loop by

approximating the KDE with KDE = 𝜂𝜁 , reducing in this way the runtime to O (M𝜁).

7 Outlook / Future work
Because most of the time, HPC applications are running on machines with allocated

space on the order of nthreads = 104 – 105, the V.3 of the plug-in is ready for a possible
implementation into a new version release of CUBE. Even though, for a large file 20 s can

be a drawback for the user, the third version has possibilities for further improvements:
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reduction of 𝜁 with a new selective algorithm or some UI tweaks, so there is a possibility
of reducing the waiting time even more.
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