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1 Introduction

The evaluation of economic policies is a central goal of econometrics.1 Economists

have long used instrumental variables (IV) to identify policy-relevant parameters.2

Early econometricians used IV in linear models to identify parameters in systems of

multiple equations. In those frameworks, economists could safely be agnostic about

the models generating choices in estimating a variety of interesting policy counterfac-

tuals if their instruments satisfied rank and exogeneity conditions.

This agnostic stance is not justified in models with heterogeneous responses in

which decisions to take treatment are based on unobserved3 components of those

responses. Without additional assumptions, instrumental variables do not identify

economically interpretable parameters. Choice mechanisms play a fundamental role

in interpreting what instruments identify.

For binary and ordered versions of IV models, monotonicity facilitates inter-

pretability. It requires that responses to changes in instruments move all people

toward or against the same choices.4 It is a condition about the uniformity of re-

sponses across all persons in response to changes in instruments.5 In binary and

ordered choice models, monotonicity coupled with standard IV assumptions allows

economists to identify the causal effects on outcomes of changes in the choices induced

by variation in the instruments.6

For a nonparametric binary choice Generalized Roy model, Vytlacil (2002) shows

that monotonicity is equivalent to assuming that the treatment choice equation is

characterized by an additively-separable latent-variable threshold-crossing model. Sep-

arability is defined in terms of observed and unobserved (by the economist) variables.

Vytlacil (2006) extends his analysis to the case of ordered multiple choice models

1See the statement of purpose for the Econometric Society by Ragner Frisch (1933).
2Theil (1953, 1958) developed two stage least-squares—the leading instrumental variable estima-

tor.
3By the economist.
4This concept is more accurately interpreted as “uniformity” and does not correspond to ordinary

mathematical definitions of monotonicity. See Heckman and Vytlacil (2005, 2007a).
5See Heckman et al. (2006).
6For the binary choice model, this is the LATE parameter of Imbens and Angrist (1994). Their

extension of LATE to situations with multiple choices assumes that indicators of choice are naturally
ordered (e.g., years of schooling). It assumes a meaningful scalar aggregator can be constructed that
is monotonic in the ordered indicators of choice (Angrist and Imbens, 1995). In general, LATE does
not identify a variety of policy relevant parameters. See Heckman and Vytlacil (2007b) or Heckman
(2010).
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where the order is placed on the possible outcome variables (e.g., years of schooling).

This paper contributes to the literature by analyzing a general model of unordered

choices. We develop a new condition—Unordered Monotonicity—that applies to mod-

els of multiple choices without a natural order among the choice values. For example,

consider the choice of a pet among the set { cat, dog, bird }. These choices are only

ordered by the preferences of agents across choices and not necessarily by the char-

acteristics of outcomes of choices. Unordered Monotonicity preserves the intuitive

notion of weak uniformity of responses to changes in instruments across persons with-

out imposing any cardinalization on choices or choice outcomes. It restricts the set

of counterfactual choices can take as instruments vary. However, in a general model,

unordered monotonicity along with standard instrumental variable assumptions does

not necessarily identify causal parameters.

Unordered choice models are studied by Heckman et al. (2006), Heckman and Vyt-

lacil (2007b) and Heckman et al. (2008) who identify a variety of economically relevant

treatment effects. They assume that the equations generating choice of treatment

are governed by additively separable threshold-crossing models. Their identification

strategy relies critically on instruments that assume values on a continuum. They also

invoke “identification at infinity,” as does a large literature in structural economics.7

In this paper, we show that these assumptions can be relaxed and identification of

economically interpretable treatment effects can still be secured. We only rely on

discrete-valued instruments—the case commonly encountered in empirical work.8

This paper establishes an equivalence result that connects Unordered Monotonic-

ity with separability of choice equations. We do not impose separability on the un-

derlying choice equations. However, Unordered Monotonicity implies and is implied

by representations of choice equations that are additively separable in observed and

unobserved variables. This equivalence arises from the properties of binary matrices

that characterize choice sets. This paper introduces economists to the identifying and

interpretive power of binary matrices. We show that the potential identifying prop-

erties of Unordered Monotonicity arise from the restrictions it poses on the kernels of

7See Heckman and Vytlacil (2007b) and Blevins (2014).
8Continuity of instruments and full support produce identifiability in our model, but are not

required. See Heckman and Pinto (2015a). In related work, Lee and Salanié (2016) use a general
framework to investigate multivalued choice models defined by an arbitrary number of separable
threshold-crossing rules. They show that the identification of causal effects is possible with enough
variation in instrumental variables defined on a continuum.
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discrete mixtures. For an empirical application of Unordered Monotonicity, see Pinto

(2016a), who evaluates the Moving to Opportunity Experiment.

The paper proceeds in the following way. Section 2 defines a general model of

multiple choices and categorical instrumental variables. Section 3 presents a gen-

eral framework for studying identification in that model. Our framework is based

on partitioning the population into strata corresponding to counterfactual treatment

choices. Section 4 presents a new characterization of the IV identification problem

using a finite mixture model with restrictions on admissible vectors of counterfactual

choices. We state necessary and sufficient conditions for identifying causal parame-

ters. We illustrate these conditions for a binary choice (LATE) model. We show the

simplicity and power of our analytical framework by deriving Vytlacil’s equivalence

result (2002) in a transparent way. Section 5 defines Unordered Monotonicity and il-

lustrates how Unordered Monotonicity arises from choice-theoretic models. Section 6

presents equivalence theorems that relate the properties of Unordered Monotonicity

and the separability of choice equations. We interpret this equivalence in light of eco-

nomic theory. Section 7 applies this analysis to identify causal parameters. Section 8

concludes.

2 A Choice-Theoretic Model of Instrumental Vari-

ables

Our model consists of five random variables defined on probability space (Ω,F , P ),

two policy-invariant equations that determine causal relationships among the vari-

ables, and an independence condition:9

Choice Equations : T = fT (Z,V ) (1)

Outcome Equations : Y = fY (T,V , εY ) (2)

Independence Condition : V , Z, εY are mutually independent, (3)

9By policy-invariant, we mean functions whose maps remain invariant under manipulation of the
arguments. This is the notation of autonomy developed by Frisch (1938) and Haavelmo (1944). For
a recent discussion of these conditions, see Heckman and Pinto (2015b).
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Variables (Z, T, Y, εY ,V ) have the following properties. P1: Instrument Z is a cat-

egorical random variable with support supp(Z) = {z1, . . . , zNZ
};10 P2: Treatment

(or Choice) indicator T is a discrete-valued random variable with support supp(T ) =

{t1, . . . , tNT
}; P3: Y is an observed random variable denoting outcomes arising from

treatment; P4: εY is an unobserved error term;11 P5: V is a confounder—an unob-

served random vector (possibly infinite dimensional) affecting both choices and out-

comes. We assume that the expectation of Y exists, i.e., E(|Y |) < ∞. We also

assume that the distribution of T varies conditional on each value of Z, that is,

P (T = t|Z = z) > 0 for all t ∈ supp(T ) and z ∈ supp(Z). Vector (Zω;Tω;Yω;Vω)

denotes the realization of these variables for an element ω ∈ Ω. To simplify nota-

tion, background variables unaffected by treatment are kept implicit. Our analysis is

conditional on such variables.

Counterfactual outcome Y (t) is defined by fixing the argument T of the outcome

Equation (2) to t ∈ supp(T ), that is, Y (t) = fY (t,V , εY ), The observed outcome Y

(Equation (2)) is the output of a Quandt (1972) switching regression model:

Y =
∑

t∈supp(T )

Y (t) · 1[T = t] ≡ Y (T ), (4)

where 1[α] is an indicator function that takes value 1 if α is true and 0 otherwise.

Counterfactual choice T (z) = fT (z,V ) is defined by fixing the argument Z of the

choice equation (2) to z ∈ supp(Z).12 Observed choice is given by

T =
∑

z∈supp(Z)

T (z) · 1[Z = z] ≡ T (Z). (5)

Remark 2.1 . The binary Generalized Roy Model (Heckman and Vytlacil, 2007a) is
a special case of this model in which V is a scalar random variable V, the choice
is binary T ∈ {0, 1}, and the choice equation is defined by an indicator function

10The assumption that Z is a multiple-valued scalar is a convenience. We can vectorize a matrix
of instruments into a scalar form. Thus, we accommodate multiple instruments defined in the usual
way.

11Such errors terms are often called “shocks” in structural equation models. fT is a random
function that could be written as a deterministic function if we introduced shock εT of arbitrary
dimension as an argument of the function, where εT is independent of V and εY .

12Fixing is a causal operation that captures the notion of external (ceteris paribus) manipulation.
It is central concept in the study of causality and dates back to (Haavelmo, 1943). See Heckman
and Pinto (2015b) for a recent discussion of fixing and causality.
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that is separable in Z and V, namely T = fT (Z, V ) ≡ 1[τ(Z) ≥ V ]. In this paper,
we analyze multiple choices and impose no restriction on the functional forms of
the choice equation (1) or outcome equation (2). Instead, we make restrictions on
counterfactual choices and examine how those restrictions affect the characterization
of choice equations.

Independence condition (3) generates the following model properties:

Exclusion Restriction: (V , Y (t)) ⊥⊥ Z (6)

Conditional Independence (Matching) Property: Y (t) ⊥⊥ T |V . (7)

Equation (6) states that instrument Z is independent of counterfactual outcome Y (t)
and the confounding variable V that generates selection bias. It implies that in-
strument Z affects Y only through its effect on T . Equation (7) states that Y (t) is
independent of treatment choice T after conditioning on V . Counterfactual outcomes
can be evaluated by conditioning on V :

E(Y (t)|V ) = E(Y (t)|V , T = t) = E

(( ∑
t′∈supp(T )

Y (t′) · 1[T = t′]

)
|V , T = t

)
= E(Y |V , T = t).

(8)

Any solution to the problem of selection bias requires that the analyst control for, or

balance, unobserved V across treatment and control states.13

We control for V by partitioning the sample space Ω so that the treatment indica-

tor T is independent of counterfactual outcomes within each partition set. Consider

a partition of Ω: Ω = ∪Nn=1Ωn; Ωn ∩ Ωn′ = ∅,∀ n, n′ ∈ {1, . . . , N}, n 6= n′, with

an associated indicator Hω that takes the value n ∈ {1, . . . , N} if ω ∈ Ωn, i.e.,

Hω =
∑N

n=1 n · 1[ω ∈ Ωn]. If the following relationship holds within each partition,

Y (t) ⊥⊥ T |(H = n); ∀ n ∈ {1, . . . , N}, (9)

T is effectively randomly assigned conditional on H = n. If such partitions were

known, one could apply the logic underlying Equation (8) to evaluate counterfactual

outcome E(Y (t)|H = n) using E(Y |T = t,H = n). If T takes the value t with

strictly positive probability in all partition sets, i.e., Pr(T = t|H = n) > 0; n ∈
{1, . . . , N}, E(Y (t)) can be constructed from E(Y (t)) =

∑N
n=1E(Y |T = t,H =

13Counterfactual E(Y (t)) and conditional expectation E(Y |T = t) differ if the conditional and
unconditional distributions of V are different: E(Y (t)) =

∫
E(Y (t)|V = v)dFV (v) 6=

∫
E(Y |V =

v, T = t)dFV |T=t(v) = E(Y |T = t) where FV is the CDF of V and FV |T=t is the CDF of V
conditional on T = t. See Heckman and Pinto (2015b).
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n)P (H = n). Our identification strategy uses instrumental variable Z to generate

partitions {Ωn}Nn=1 that satisfy Equation (9). To do so we use response vectors which

we define next.

3 Response Vectors and the Identification Prob-

lem

Central to our analysis is the concept of Response Vector S, a NZ-dimensional random

vector of counterfactual treatment choices T for Z fixed at each value of its support:

S = [T (z1) , . . . , T (zNZ
)]′ = [fT (V , z1) , . . . , fT (V , zNZ

)]′ ≡ fS(V ), (10)

where T (z) denotes a counterfactual treatment choice when instrumental variable Z

is fixed at z ∈ supp(Z). Let supp(S) = {s1, · · · , sNS
} denote the finite support of

S. The NZ-dimensional vectors s ∈ supp(S) are termed response-types or strata.14

S plays a fundamental role in our analysis. T is related to S in the following way:

T = [1[Z = z1] , . . . , 1[Z = zNZ
]] · S ≡ gT (S, Z).15 (11)

Equation (10) uses the fact that after fixing Z = z, S is a function only of unobserved

V . Conditioning on S effectively conditions on the regions of V that map into S by

Equation (10).16 It is a coarse way of conditioning on V .

3.1 Properties of Response Vectors

Lemma L-1 establishes four useful properties of response vectors analogous to prop-
erties shared with V .

14Different notions of response vectors are used in the literature. In our notation, response vectors
correspond to the choices a person of type V would make when confronted by different values of
Z. Robins and Greenland (1992) initiated the literature. Frangakis and Rubin (2002) use the term
“principal strata.” They do not explicitly model V or use the econometric framework (1)-(3) so the
relationship between strata and V and the fact that conditioning on S is equivalent to conditioning
on regions of V is only implicit in their analysis. T (z) can potentially take as many as NT values
for each value z ∈ supp(Z). Since Z has | supp(Z)| = NZ elements, supp(S) can have at most NNZ

T

elements.
15Figure B.3 in Web Appendix B displays our IV model with response vector S as a Directed

Acyclic Graph (DAG).
16The regions are distinct because fT (·) is a function.
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Lemma L-1. The following relationships for S hold for IV model (1)–(3):

(i) Y (t) ⊥⊥ T |S, (ii) S ⊥⊥ Z, (iii) Y ⊥⊥ T |(S, Z), (iv) Y ⊥⊥ Z|(S, T ).

Proof. See Web Appendix A.1.

Relationship (i) states that counterfactual outcomes Y (t) for all t ∈ supp(T ) are

independent of treatment choices conditional on S. Thus S shares the same condi-

tional independence (matching) properties as V in (7). Relationship (ii) states that

the potential treatment choices in S are independent of the instrumental variables.

Relationship (iii) states that outcomes are independent of treatment choices condi-

tional on S and Z. Indeed, from (11), T is deterministic conditional on S and Z.

Relationship (iv) is closely related to (iii). It states that outcome Y is independent

of instrumental variable Z when conditioned on S and T .

Remark 3.1 . Response vector S generates a partition of the sample space Ω that has
independence property (9). Function fS : supp(V )→ supp(S) in (10) is constructed
using function fT defined by (1). Thus, for each ω ∈ Ω, there is a single value
v ∈ supp(V ) such that Vω = v and a single value s ∈ supp(S) such that fS(v) = s.
We define a partition of the sample space Ω by:

Ωn = {ω ∈ Ω; fS(Vω) = sn} for each sn ∈ supp(S). (12)

In partition (12), Sω = sn and ω ∈ Ωn are equivalent. This partition satisfies (9)
because Y (t) ⊥⊥ T |(ω ∈ Ωn) holds due to item (i) of Lemma L-1. Hence treatment
choice can be interpreted as being randomly assigned conditional on S. Indeed, con-
ditional on S, treatment T only depends on Z which is statistically independent of
V .

Response vector S is a balancing score for V .17 It exploits the properties of instru-

ments Z to generate a coarse partition of unobserved variable V while maintaining

the independence properties arising from conditioning on V . The matching condition

Y (t) ⊥⊥ T |S is analogous to Y (t) ⊥⊥ T |V in (7). If S (or V ) were known, coun-

terfactual outcomes (conditional on S (or V )) can be identified by conditioning on

S or V .18 Thus, S plays the role of a control function (Heckman and Robb, 1985).

From Equation (8), Y (t) ⊥⊥ T |S implies that E(Y (t)|S = s) = E(Y |T = t,S = s).

17S being a balancing score means that properties of V are inherited by S. Formally, S = fS(V )
is a surjective function of V that satisfies Y (t) ⊥⊥ T |V ⇒ Y (t) ⊥⊥ T |fS(V ), and σ(S) ⊆ σ(V )
where σ denotes a σ-algebra in the probability space (Ω,F , P ).

18See Heckman (2008) for a survey of a wide array of methods that implement this principle.
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If P (T = t|S = s) > 0 for all s ∈ supp(S), counterfactual mean outcomes can be

expressed as:

E(Y (t)) =
∑

s∈supp(S)

E(Y (t)|S = s)P (S = s) =
∑

s∈supp(S)

E(Y |T = t,S = s)P (S = s).

(13)

S acts as a coarse surrogate for V and identifies treatment effects within strata by

balancing unobservables V across treatment states.

3.2 The Strata Identification Problem

The problem of identifying counterfactual mean outcomes defined over strata con-

sists of identifying unobserved E(Y (t)|S = s) and P (S = s) for s ∈ supp(S) and t ∈
supp(T ), from observedE(Y |T = t, Z = z) and P (T = t|Z = z) for z ∈ supp(Z) and

t ∈ supp(T ). Theorem T-1 uses the relationships of Lemma L-1 to express unob-

served objects in terms of observed ones.

Theorem T-1. The following equality holds for the IV model (1)–(3):

E(κ(Y ) · 1[T = t]|Z) =
∑

s∈supp(S)

1[T = t|S = s, Z]E(κ(Y (t))|S = s)P (S = s), (14)

where κ : supp(Y )→ R is an arbitrary known function.

Proof. See Web Appendix A.2.

Setting κ(Y ) to 1 generates the propensity score equality:19

P (T = t|Z = z) =
∑

s∈supp(S)

1[T = t|S = s, Z = z]P (S = s). (15)

Replacing κ(Y ) by any variable X such that X ⊥⊥ T |S, we obtain:20

E(X|T = t, Z)P (T = t|Z) =
∑

s∈supp(S)

1[T = t|S = s, Z]E(X|S = s)P (S = s). (16)

19If we set κ(Y ) = Y, we equate expected values of observed outcomes with expected counterfactual
outcomes. Setting κ(Y ) = 1[Y ≤ y], we equate the cumulative distribution function (CDF) of the
observed outcome with the unobserved CDF of counterfactual outcomes.

20Candidates for X are baseline variables caused by V . Knowledge of the X variables helps to
identify the observed characteristics of persons within strata.
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Remark 3.2 . Equation (14) characterizes the problem of identifying counterfactual
outcomes within strata. There are NZ observed objects on the left-hand side for each
t ∈ supp(T ) totalling NZ · NT . Without further restrictions, the total number of
latent response-types on the right-hand side is NNZ

T , i.e., the number of strata. Thus,
the number of observed quantities (NT ·NZ) grows linearly in NZ while the number
of possible response-types (NNZ

T ) grows geometrically in NZ .21 Identification requires
that constraints be placed on the number of admissible strata (S). Choice theory can
produce such restrictions, as can other assumptions, such as those about functional
forms.

Indicator 1[T = t|S = s, Z = z] in Equation (14) is deterministic because T is

deterministic given Z and S in Equation (11). Our identification strategy develops

economically interpretable restrictions on these indicators that govern the choice of

treatment as Z varies. Such restrictions reduce the number of admissible response-

types and characterize the indicators 1[T = t|S = s, Z = z], facilitating identification

of causal parameters.

We note, for later use, that the probability of treatment choice conditional on

response-types is

P (T = t|S = s) =
∑

z∈supp(Z)

1[T = t|S = s, Z = z]P (Z = z|S = s),

=
∑

z∈supp(Z)

1[T = t|S = s, Z = z]P (Z = z), (17)

where the last equality is a consequence of S ⊥⊥ Z (item (ii) of Lemma L-1).

Note that Equation (14) is a discrete mixture latent class model, a feature we

exploit below.22 Our paper differs from previous work on nonparametric instrumental

variables. Instead of forming the usual nonparametric IV moment equations (see, e.g.,

Carrasco et al., 2007), we use instruments to construct strata that generate the kernels

of finite mixture equations and choice theory to place restrictions on the kernels.

We then use finite mixture methods to examine the identification of counterfactual

outcomes.

21Across the two equation systems for T and scalar Y there are (2·NT −1)·NZ observed quantities
and (NT )2·NZ+1 unknown parameters.

22See, e.g., Clogg (1995) and Henry et al. (2014).
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4 Identifying Response Probabilities and Counter-

factual Outcomes

We now present general conditions for identifying response probabilities, counter-

factual mean outcomes, and pre-program variables conditioned on strata. To do

so, it is useful to express Equations (14)–(15) as a system of linear equations. De-

fine PZ(t) = [P (T = t|Z = z1), . . . , P (T = t|Z = zNZ
)]′, the vector of observed

choice probabilities (“propensity scores”). Define PZ as the vector that stacks PZ(t)

across t ∈ supp(T ): PZ = [PZ(t1), . . . ,PZ(tNT
)]′. QZ(t) is defined in an analo-

gous fashion for outcomes defined for different values of T (i.e., multiplied by the

treatment indicators). In a similar fashion, LZ(t) stands for vector X such that

X ⊥⊥ T |S, Z. The left-hand sides of Equations (14) and (16) are given respec-

tively by: QZ(t) = [E(κ(Y ) · 1[T = t]|Z = z1), . . . , E(κ(Y ) · 1[T = t]|Z = zNZ
)]′,

and LZ(t) = [E(X · 1[T = t]|Z = z1), . . . , E(X · 1[T = t]|Z = zNZ
)]′, where

LZ = [LZ(t1), . . . ,LZ(tNT
)]′.

Let PS be the vector of unobserved response probabilities PS = [P (S = s1), . . . ,

P (S = sNS
)]′ and LS = [E(·1[S = s1]), . . . , E(X · 1[S = sNS

])]′ be the unobserved

vector of X-expectations times response indicators. We denote the vector of the

expected outcomes multiplied by response indicators by: QS(t) = [E(κ(Y (t)) ·1[S =

s1]), . . . , E(κ(Y (t)) · 1[S = sNS
])]′.

The following notation and concepts are used throughout the rest of this paper.

Define response matrix R as an array of response-types defined over supp(S), i.e.,

R = [s1, . . . , sNS
]. To avoid trivial degeneracies we delete redundant rows (where

different values of Z produce the same pattern for T ) and redundant columns (where

the same choices are made for the same value of Z. Matrix R has dimension NZ×NS.

An element in the i-th row and n-th column of R is denoted by R[i, n] = (T |Z =

zi,S = sn); i ∈ {1, · · · , NZ}, n ∈ {1, . . . , NS}. We use R[i, ·] to denote the i-th row of

R,R[·, n] for the n-th columnR. LetBt denote a binary matrix of the same dimension

as R and whose elements take value 1 if the respective element in R is equal to t and

zero otherwise. Notationally, we define an element in the i-th row and n-th column

of matrix Bt by Bt[i, n] = 1[T = t|Z = zi, S = sn]; i ∈ {1, · · · , NZ}, n ∈ {1, . . . , NS}.
We also use the short-hand notation Bt = 1[R = t] to denote Bt. Let BT be a

binary matrix of dimension (NZ ·NT )×NS generated by stacking Bt as t ranges over

supp(T ) : BT = [B′t1 , . . . ,B
′
tNT

]′.
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In this notation, Equations (14), (15), and (16) can be written respectively as

QZ(t) = BtQS(t), (18)

PZ = BTPS (19)

LZ = BTLS. (20)

If Bt and BT were invertible, QS(t), PS, and LS would be identified. However,

such inverses do not always exist. In their place, we can use generalized inverses.

Let B+
T and B+

t be the Moore-Penrose pseudo-inverses23 of matrices BT and Bt

respectively for t ∈ supp(T ). The following expressions are useful for characterizing

the identification of response probabilities and counterfactual means:

KT = INS
−B+

TBT and Kt = INS
−B+

t Bt; t ∈ supp(T ), (21)

where INS
denotes an identity matrix of dimension NS. KT and Kt are orthogonal

projection matrices.24

Applying the Moore-Penrose inverse to (18) and (19), we obtain:

PS = B+
T PZ +KTλ (22)

QS(t) = B+
t QZ(t) +Ktλ̃ (23)

where λ and λ̃ are arbitrary NS-dimensional vectors (same dimension as PS). In

this notation, Theorem T-2 states general conditions for identification of response

probabilities and counterfactual means:

Theorem T-2. For IV model (1)–(3), if there exists a real-valued NS-dimensional
vector ξ such that ξ′KT = 0, then ξ′PS and ξ′LS are identified. In addition, if there
exists a real-valued NS-dimensional vector ζ such that ζ ′Kt = 0, then ζ ′QS(t) is
identified.

Proof. See Web Appendix A.3.

Theorem T-2 shows the identifying properties of the response matrix. For ex-

23The Moore-Penrose inverse of a matrix A is denoted by A+ and is defined by the four following
properties: (1) AA+A = A; (2) A+AA+ = A+; (3) A+A is symmetric; (4) AA+ is symmet-
ric. The Moore-Penrose matrix A+ of a real matrix A is unique and always exists (Magnus and
Neudecker, 1999).

24See Appendix A.3.
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ample, suppose that BT has full column-rank. Then B+
TBT = INS

and KT = 0 .

Therefore ξ′PS is identified for any real vector ξ of dimension NS. In particular, ξ′PS

is identified when ξ is set to be each column vector of the identity matrix INS
. In

that case, each n-th column of INS
identifies P (S = sn) and all the response-type

probabilities are identified.25

Note that full-rank for BT does not imply full-rank for each Bt; t ∈ supp(T ).

Therefore, the identification of the response-type probabilities does not automatically

produce identification of corresponding mean counterfactual outcomes. Corollary C-1

formalizes this discussion.

Corollary C-1. The following relationships hold for the IV model (1)–(3):

Vectors PS and LS are point-identified ⇔ rank(BT ) = NS. (24)

Vector QS(t) is point-identified ⇔ rank(Bt) = NS, (25)

Also, if (25) holds, then E(κ(Y (t))) is identified by ι′B+
t QZ(t), where ι is a NS-

dimensional vector of 1s.

Proof. See Web Appendix A.5.

Versions of Corollary C-1 are found in the literature on the identifiability of

finite mixtures.26 Given binary matrices BT , Bt, and t ∈ {1, NT} the problem

of identifying PS,LS and QS(t) is equivalent to the problem of identifying finite

mixtures of distributions where the BT and Bt play the roles of kernels of mixtures.

Mixture components are the corresponding counterfactual outcomes conditional on

the response types and mixture probabilities are the response-type probabilities.

One approach to identifiability is to simply assume that conditions (24) and (25)

apply to R. A more satisfactory approach, and the one taken here and in Pinto

(2016a), investigates how alternative specifications of choice relationships generate

response matrices R that satisfy the identifiability requirements of Theorem T-2 and

Corollary C-1.

25See Section A.4 of the Web Appendix for bounds on the response-type probabilities and coun-
terfactual outcomes.

26See, e.g., Yakowitz and Spragins (1968) and Prakasa Rao (1992).
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4.1 Example: Binary Choice (LATE)

To familiarize the reader with our notation and concepts, and anticipate our general-

ization of it, consider the binary choice model implicit in the Local Average Treatment

Effect – LATE. Treatment variable T takes two values: Tω = t1 if agent ω chooses to

be treated and Tω = t0 if not. Instrument Z is binary valued (supp(Z) = {z0, z1})
with the property 0 < P (T = t1|Z = z0) < P (T = t1|Z = z1) < 1. A standard

example is the problem of identifying the causal effect of college education on income

Y . Agent ω decides between going to college (Tω = t1) or not (Tω = t0). Instrumental

variable Z represents randomly assigned college scholarships. For example, Zω = z1

if a scholarship is assigned to agent ω and Zω = z0 if agent ω does not receive a

scholarship.

The response vector is S = [T (z0) , T (z1)]′. Without further restrictions, S can

take four possible values described by the following response matrix:

s1 s2 s3 s4

R =

[
t1 t0 t1 t0

t1 t1 t0 t0

]
values for T (z0)

values for T (z1)
· (26)

In the language of LATE, the response-types s1, s2, s3, s4 are always-takers, compliers,

defiers, and never-takers, respectively. Bt1 is the binary matrix that has the same

dimension as R, whose elements take value 1 if the corresponding element in R is t1

and value 0 if the element in R is t0. Thus, Bt1 = 1[R = t1] and Bt0 = 1[R = t0]

indicate whether elements in R are equal to t1 or t0, respectively.27

The 4 × 4 binary matrix BT = [B′t0 , B
′
t1

]′ has rank equal to 3, which is less

than the number of response-types NS = 4. Therefore, by C-1, neither response-type

probabilities nor the counterfactual outcomes are point identified. To identify them,

it is necessary to reduce the number of response-types.

LATE solves this non-identification problem by assuming that each agent ω can

only change his decision in one direction as the instrument varies. The monotonicity

condition of Imbens and Angrist (1994) is:

Assumption A-1. Monotonicity for the Binary Choice Model: The following

27We also have that Bt1 = ιNZ
ι′NS
−Bt0 , where ιN denotes a N -dimensional vector of elements

1.
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inequalities hold for any z, z′ ∈ supp(Z) :

1[Tω(z) = t1] ≥ 1[Tω(z′) = t1] ∀ ω ∈ Ω or 1[Tω(z) = t1] ≤ 1[Tω(z′) = t1] ∀ ω ∈ Ω.28

(27)

In our example, condition A-1 assumes that each agent is inclined to decide

towards college if a scholarship is granted, i.e., 1[Tω(z1) = t1] ≥ 1[Tω(z0) = t1] for all

ω ∈ Ω. This eliminates the response-type s3 (the defiers) in matrix (26), generating

the following matrices:

s1 s2 s4 s1 s2 s4 s1 s2 s4

R =

[
t1 t0 t0

t1 t1 t0

]
, Bt1 =

[
1 0 0

1 1 0

]
, Bt0 =

[
0 1 1

0 0 1

]
, BT =

[
Bt0

Bt1

]
. (28)

Under monotonicity condition A-1 the three response-type probabilities

(P (s1), P (s2), P (s4)) and the four counterfactual outcomes

(E(Y (t0)|S = s2), E(Y (t0)|S = s4), E(Y (t1)|S = s1), E(Y (t0)|S = s4)) are identi-

fied. These results can be demonstrated by applying T-2 and C-1. For instance the

rank of the binary matrix BT in (28) is 3, which is also the number of response-types.

Thus, by C-1, all the response probabilities PS are identified. The identification

of counterfactual outcomes depends on the properties of matrices Kt0 , Kt1 that are

calculated using the pseudo-inverse matrices B+
t0 ,B

+
t1 as described in (21):

B+
t0

=

 0 0

1 −1

0 1

⇒Kt0 =

 1 0 0

0 0 0

0 0 0

 and B+
t1

=

 1 0

−1 1

0 0

⇒Kt1 =

 0 0 0

0 0 0

0 0 1

 .
The observed vectors of propensity scores and conditional outcome expectations

are PZ = [P (T = t|Z = z0), P (T = t|Z = z1)]′ and QZ(t) = [E(Y · 1[T = t]|Z =

z0), E(Y ·1[T = t]|Z = z1)]′, for t ∈ {t1, t0}. The unobserved 3×1 vectors of response-

type probabilities and counterfactual outcomes are given by PS = [P (S = s1), P (S =

s2), P (S = s4)]′ and QS(t) = [E(Y (t)|S = s1)P (S = s1), E(Y (t)|S = s2)P (S =

28Imbens and Angrist (1994) do not use indicator functions. This is an innovation of this paper.
They compare the values of the counterfactual choices directly, e.g., Tω(z) ≥ Tω(z′), assuming the
T are ordered. In their analysis, the values that choice T takes must be ordered. Our approach
does not require T to be ordered. The two monotonicity criteria are equivalent for the binary choice
model.
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s2), E(Y (t)|S = s4)P (S = s4)]′. Applying (22) and (23), E(Y (t0)|S = s2) = ζ′QS(t0)
ζ′PS

where ζ = [0, 1, 0]′, so that ζ ′PS = P (S = s2) is the population probability of the

compliers. Note that ζ ′Kt0 = 0, thus, by T-2, E(Y (t0)|S = s2) is identified. From

Equation (22)–(23), we have:

E(Y (t0)|S = s2) =
ζ ′B+

t0QZ(t0)

ζ ′B+
t0PZ(t0)

=
E(Y · 1[T = t0]|Z = z0)− E(Y · 1[T = t0]|Z = z1)

P (T = t0|Z = z0)− P (T = t0|Z = z1)
.

By a parallel argument, the counterfactual outcome E(Y (t1)|S = s2) = ζ′QS(t1)
ζ′PS

.

Since ζ ′Kt1 = 0, by T-2, E(Y (t1)|S = s2) is identified from the expression

E(Y (t1)|S = s2) =
ζ ′B+

t1QZ(t1)

ζ ′B+
t1PZ(t1)

=
E(Y · 1[T = t1]|Z = z1)− E(Y · 1[T = t1]|Z = z0)

P (T = t1|Z = z1)− P (T = t1|Z = z0)
.

LATE is the causal effect for compliers E(Y (t1) − Y (t0)|S = s2). Since P (T =

t0|Z = z) = 1− P (T = t1|Z = z), ζ ′B+
t1PZ(t1) = ζ ′B+

t0PZ(t0) = P (S = s2).

Putting these ingredients together,

E(Y (t0)− Y (t0)|S = s2)

=
ζ ′
(
B+

t1QZ(t1)−B+
t0QZ(t0)

)
ζ ′B+

t1PZ(t1)
=

E(Y |Z = z1)− E(Y |Z = z0)

P (T = t1|Z = z1)− P (T = t1|Z = z0)
.

LATE is the causal effect conditioned on the values of V associated with strata

s2. It does not identify the average treatment effect E(Y (t1) − Y (t0)) because we

cannot identify Y (t1) for s4 (t0-always-taker) nor Y (t0) for s1 (t1-always-taker). The

counterfactual outcomes for the always-takers can be expressed in terms of QS(t) and

PS by:

E(Y (t0)|S = s4) =
ζ′0QS(t0)

ζ′0PS
; ζ0 = [0, 0, 1]′ and E(Y (t1)|S = s1) =

ζ′1QS(t1)

ζ′1PS
; ζ1 = [1, 0, 0]′.

Since ζ ′0Kt0 = 0 and ζ ′1Kt1 = 0, by Theorem T-2, E(Y (t0)|S = s4) andE(Y (t1)|S =

s1) are identified. In Section 7, we use the properties of the generalized inverse to

extend our analysis to a general model of multiple choices.

4.2 Revisiting Vytlacil’s Equivalence Theorem

A by-product of our analysis is a simple derivation of Vytlacil’s (2002) fundamental

equivalence result. He shows that monotonicity condition A-1 holds if and only if
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the treatment choice can be expressed as a function that is separable in Z and V ,

i.e., there exist deterministic functions, ϕ : supp(V )→ R and τ : supp(Z)→ R such

that: (
1[T = t1]|V = v, Z = z

)
= 1[τ(z) ≥ ϕ(v)]. (29)

Monotonicity A-1 generates a key property of the binary matrix Bt1 = 1[R = t1].

We can always reorder its rows and columns so that Bt1 becomes a lower-triangular

matrix.29 Consider the binary choice model where T takes values in {t0, t1} and Z

takes values in {z1, . . . , zNZ
} that are indexed by increasing values of the propensity

score, i.e., P (T = t1|z1) ≤ · · · ≤ P (T = t1|zNZ
). Arrange the columns of binary

matrix Bt1 in decreasing order of the column-sums. Under Monotonicity A-1, Bt1

has dimension NZ×(NZ +1) and is lower triangular. An explicit expression for Bt1 is

given by Equation (28) for NZ = 2.30 Under triangularity, for all i ∈ {1, · · · , NZ}, n ∈
{1, · · · , NZ + 1},

Bt1 [i, n] = 1 for i ≥ n and Bt1 [i, n] = 0 for i < n. (30)

Propensity score equality (15) generates the following expressions:

P (T = t1|Z = zi) =

NS∑
n′=1

1[T = t1|Z = zi,S = sn′ ] · P (S = sn′)

=

NZ+1∑
n′=1

Bt1 [i, n
′] · P (S = sn′)

=
i∑

n′=1

P (S = sn′). (31)

The second equality uses the definition of an element in the i-th row and n-th column

of Bt1 [i, n
′], that is Bt1 [i, n

′] = 1[T = t1|Z = zi,S = sn′ ] and because NS = NZ + 1

due to monotonicity A-1. The third equality uses triangularity property (30). Thus

29Recall R does not have redundant rows or columns. Otherwise stated, .
30In Section 6, we present a generalization of the triangular property for matrices called “lonesum

matrices.”
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the following inequalities hold:

Since P (T = t1|Z = zi) =
i∑

n′=1

P (S = sn′),

then P (T = t1|Z = zi) ≥
n∑

n′=1

P (S = sn′) for i ≥ n (32)

and P (T = t1|Z = zi) <
n∑

n′=1

P (S = sn′) for i < n. (33)

We can combine Equations (30) and (32)–(33) to express the elements Bt1 [i, n]

as:

Bt1 [i, n] = 1 [P (T = t1|Z = zi) ≥ φ(sn)] , (34)

where φ(sn) = P (S ∈ {s1, . . . , sn}) =
n∑

n′=1

P (S = sn′). (35)

Vytlacil’s theorem emerges since Bt1 [i, n] = 1[T = t1|Z = zi,S = sn] and S is a
balancing score for V , i.e., S = fS(V ). Thus, for any v ∈ supp(V ) there is an
s ∈ supp(S) such that s = fS(v), and

1

[
T = t1|Z = z,V = v

]
=1

[
T = t1|Z = z,S = fS(v)

]
= 1

[
P (T = t1|Z = z)︸ ︷︷ ︸

τ(z)

≥ φ(fS(v))︸ ︷︷ ︸
ϕ(v)

]
(36)

This expression captures the key idea that the response variable S summarizes V .

Section 6 generalizes Vytlacil’s analysis to the case of a general unordered model. The

triangularity property generating separability carries over to that general setting.

5 Multiple Unordered Choices

In the published literature, when LATE is extended to analyze multiple choices, T

is assumed to be a scalar index defined over an ordered finite set of natural num-

bers {1, . . . , NT} where the index is monotonically increasing (or decreasing) in the

indicators of t (Angrist and Imbens, 1995). Treatment effects are defined in terms of

variations in this index:

Assumption A-2. Ordered Monotonicity. The following inequalities hold for
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any z, z′ ∈ supp(Z), and each treatment t ∈ supp(T ):

Tω(z) ≥ Tω(z′) ∀ ω ∈ Ω or Tω(z) ≤ Tω(z′) ∀ ω ∈ Ω. (37)

Under standard assumptions about IV, A-2 is equivalent to the assumption that

choices are generated by an ordered choice model (Vytlacil, 2004). To extend mono-

tonicity to the unordered case, we retain the core feature of a monotonic relationship:

shifts in Z move all agents toward or against making treatment choice t in supp(T ).

We do not require any order among the values of T , nor do we rely on a scalar repre-

sentation of T . Instead, we replace comparisons of T with inequalities that compare

indicator functions of the values taken by T for each pair of values z, z′ in supp(Z).

If the support of T has no natural order, Assumption A-2 is meaningless.

This section extends the literature to define a concept of monotonicity for an

unordered choice model. We discuss restrictions on the response matrix R that follow

from this definition. We present some examples that build intuition.

5.1 Monotonicity for Unordered Models

Assumption A-3. Unordered Monotonicity. The following inequalities hold for
any z, z′ ∈ supp(Z), and each treatment t ∈ supp(T ):

1[Tω(z) = t] ≥ 1[Tω(z′) = t] ∀ ω ∈ Ω or 1[Tω(z) = t] ≤ 1[Tω(z′) = t] ∀ ω ∈ Ω,
(38)

where 1[Tω(z) = t] indicates whether or not agent ω chooses treatment t ∈ supp(T )
when Z is set to z.

Using indicator functions, we can make pairwise comparisons for all values of Z

for each choice t ∈ supp(T ) without imposing an arbitrary ordering on the values of

the treatment choices T or creating a scalar index of T . Condition (38) preserves the

key intuitive notion of monotonicity: a shift in an instrument moves all agents uni-

formly toward or against each possible choice. A-3 prohibits non-uniform movements

induced by the instruments and is ruled out in Theorem T-3 below.

In the case of binary treatment, Ordered Monotonicity A-2 and Unordered Mono-

tonicity A-3 generate the same monotonicity restriction A-1.31 In Appendix C, we

31Heckman and Pinto (2015c) show that in the general case of multi-valued treatments, Ordered
Monotonicity A-2 and Unordered Monotonicity A-3 do not imply each other.
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present a simple example that demonstrates the benefits of using choice indicators

rather than cardinal measures of outcomes to define monotonicity.

5.2 Linking Unordered Monotonicity to Choice Theory

Under Unordered Monotonicity, treatment choice can be characterized as the solu-

tion to a problem in which agents maximize utility Ψ(t, z,v), the utility arising from

choosing t ∈ supp(T ) for agent ω whose unobserved variable V takes value v when the

instrument Z is set at z. We present a formal analysis of the properties of Ψ(t, z,v)

generated by Unordered Monotonicity in Section 6. In this section we build economic

intuition of how Unordered Monotonicity arises. We use revealed preference argu-

ments to restrict R and generate monotonicity conditions. We give examples where

plausible restrictions on choice theory, coupled with standard instrumental variable

conditions, produce identification of various strata counterfactuals and response-type

probabilities. We also examine cases in which the point identification of response-type

probabilities fails.

Consider a model of car purchase in which each agent buys a single car from three

possible options:
{
a, b, c

}
. Let Tω = tj if agent ω buys car j, supp(T ) = {ta, tb, tc}.

Instruments are randomly assigned car-specific vouchers that offer price discounts to

the car (or cars) specified by an offered voucher. We use za, zb, zc for vouchers that

offer a discount to cars a, b and c respectively. We use zbc for the voucher whose

discount can be used to buy car b or c. zno denotes no discount. If the voucher

assigned to agent ω is za, he faces a price-discount if he decides to buy car a. Instead,

if agent ω decides to buy car b or c, the agent will pay full price. If the agent were

assigned voucher zbc then the cars b and c become cheaper and car a is full price.

We compare experimental designs that randomly assign different combinations of 3

out of the 5 voucher-types described above. Each agent ω is assumed to buy some

car. In this section and in Web Appendix D, we give some examples of how choice

restrictions facilitate identification and where they fail.

Our main example carried throughout the rest of this paper considers vouchers in

supp(Z) = {zno, za, zbc}. The response vector S is given by the 3-dimensional vector

of counterfactual choices: S = [T (zno), T (za), T (zbc)]
′. Each of the three counterfac-

tual choices T (z); z ∈ {zno, za, zbc} takes values in {ta, tb, tc}, which gives a total of

27 (= 33) possible response-types.32 Without restrictions on admissible strata, the

32See Web Appendix Table D.1.
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model of strata-contingent counterfactuals is not identified.33 There are four intuitive

monotonicity relationships arising from changes in z:

1[Tω(zno) = ta] ≤ 1[Tω(za) = ta], (39)

1[Tω(zbc) = ta] ≤ 1[Tω(za) = ta], (40)

1[Tω(zno) ∈ {tb, tc}] ≤ 1[Tω(zbc) ∈ {tb, tc}], (41)

1[Tω(za) ∈ {tb, tc}] ≤ 1[Tω(zbc) ∈ {tb, tc}]. (42)

Relationship (39) states that the agent is induced toward buying car a when the in-

strument changes from no voucher (zno) to a voucher for car a (za). Relationship (40)

states that the agent is induced toward buying car a when the instrument changes

from a voucher to buy b or c (zbc) to a voucher for car a (za). Relationship (41)

states that the agent is induced toward buying either car b or c when the instrument

changes from no voucher (zno) to a voucher for either car b or c (zbc). Relationship (42)

states that the agent is induced toward buying either car b or c when the instrument

changes from a voucher for car a (za) to a voucher that applies to either car b or c

(zbc). Monotonicity relationships (39)–(42) eliminate 12 response-types out of the 27

possible ones, leaving the 15 admissible response-types presented in Table 1.34

Table 1: Response Matrix Generated by Monotonicity Relationships (39)–(42)

Instrumental Response-types of S

Variables Choices s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

No Voucher T (zno) ta ta ta tb tb tb tb tb tb tc tc tc tc tc tc

Voucher for a T (za) ta ta ta ta ta tb tb tc tc ta ta tb tb tc tc

Voucher for b or c T (zbc) ta tb tc tb tc tb tc tb tc tb tc tb tc tb tc

Thus, by Corollary C-1, our model for counterfactuals is not identified. In addi-

tion, some of the remaining strata are not consistent with Unordered Monotonicity A-

3. More stringent application of revealed preference analysis can generate additional

choice restrictions. Let Λω(z, t) be the consumption set of agent ω when assigned

33If we assume an ordered choice model, we can readily secure identification. If we only assume a
partially ordered model we lose identification. Heckman and Pinto (2015c) discuss these cases.

34See the elimination analysis in Table D.1 of Web Appendix D.
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instrument z ∈ supp(Z) when treatment is set to t ∈ supp(T ). Let γ ∈ Λω(z, t)

represent a consumption good. Agent ω is assumed to maximize a utility func-

tion uω defined over consumption goods γ and choice t. Thus, the choice function

Chω : supp(Z)→ supp(T ) of agent ω when the instrument is set to value z ∈ supp(Z)

is:

Chω(z) = argmax
t∈supp(T )

(
max

g∈Λω(z,t)
uω(g, t)

)
. (43)

For budget set Λω(z, t) for agent ω, we assume the following relationships:

Λω(zno, ta) = Λω(zbc, ta) ⊂ Λω(za, ta), (44)

Λω(zno, tb) = Λω(za, tb) ⊂ Λω(zbc, tb), (45)

Λω(zno, tc) = Λω(za, tc) ⊂ Λω(zbc, tc). (46)

Relationship (44) compares the budget sets of agent ω for each possible voucher

assignment given the car choice is fixed at a. The budget set of agent ω is enlarged

when she has a voucher for car a (za) compared to when she does not (za is the only

voucher that applies to car a). Thus, assigning consumer ω who buys car a, voucher

za provides additional income. Vouchers zno and zbc offer no discount for car a and

produce the same budget set for this choice. Relationship (45) examines the agent’s

budget set if ω purchases car b. The budget set of agent ω is enlarged if she has

a voucher that subsidizes car b when compared to vouchers that do not affect the

choice set (za, zno). Relationship (46) examines the agent’s budget set when car c is

assigned and is consistent with the budget analysis of relationship (45).35 For this

example, the Weak Axiom of Revealed Preference (WARP) generates the following

choice rule:

if Chω(z) = t and Λω(z, t) ⊆ Λω(z′, t) and Λω(z′, t′) ⊆ Λω(z, t′)⇒ Chω(z′) 6= t′.36 (47)

In particular, Choice Rule (47) applied to budget set relationships (44)–(46) generates

the choice restrictions 1–6 in Table 2.

Under additional assumptions about choice, we generate additional restrictions

on the admissible strata. It is reasonable to assume that if an agent decides to buy a

car without a discount, then the agent will not alter his choice if assigned a voucher

35Under this rationale, it follows that: Λω(zb, ta) = Λω(zno, ta), Λω(zb, tb) = Λω(zbc, tb), and
Λω(zb, tc) = Λω(zno, tc).

36See Pinto (2016a).
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Table 2: Choice Restrictions Generated by Revealed Preference Analysis for
supp(Z) = {zno, za, zbc}

Choice Restriction 1 : Chω(zno) = ta ⇒ Chω(za) = ta
Choice Restriction 2 : Chω(zno) = tb ⇒ Chω(za) 6= tc and Chω(zbc) 6= ta
Choice Restriction 3 : Chω(zno) = tc ⇒ Chω(za) 6= tb and Chω(zbc) 6= ta
Choice Restriction 4 : Chω(za) = tb ⇒ Chω(zno) = tb and Chω(zbc) 6= ta
Choice Restriction 5 : Chω(za) = tc ⇒ Chω(zno) = tc and Chω(zbc) 6= ta
Choice Restriction 6 : Chω(zbc) = ta ⇒ Chω(zno) = ta and Chω(za) = ta
Choice Restriction 7 : Chω(zno) 6= ta ⇒ Chω(zbc) = Chω(zno)

that makes his choice of car cheaper. Specifically consider the agent who decides

between cars b and c when voucher assignment shifts from zno to zbc. There is no

discount under zno whereas zbc offers a discount for either car. If most of the income

increase is spent on goods, then the agent’s car choice remains the same.37 Under

this condition, an income increase should not decrease its consumption of a good. If

the agent is already consuming one unit of car b and his income is increased, then the

agent will not decrease his car consumption, hence the agent still buys car b if the

voucher changes from zno to zbc.
38 This restriction on choice generates the 7 admissible

response types in Table 2. The choice restrictions of Table 2 eliminate 20 out of the

27 possible response-types generating the admissible response matrix in Table 3.39

Table 3: Response-types Generated by Revealed Preference Analysis for supp(Z) =
{zno, za, zbc}

Instrumental Response-types of S
Variables Choices s1 s2 s3 s4 s5 s6 s7

No Voucher T (zno) ta ta ta tb tb tc tc
Voucher for car a T (za) ta ta ta ta tb ta tc

Voucher for car b or c T (zbc) ta tb tc tb tb tc tc

For the response matrix of Table 3, the rank of the indicator matrixBT associated

37This would occur if utility is quasilinear in γ.
38A stronger assumption is homothetic preferences on consumption goods.
39See the elimination analysis in Table D.5 of Web Appendix D.
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with this response matrix is equal to 7 which is also equal to the number of response-

types. From Corollary C-1, response-type probabilities are identified. We can also

identify mean counterfactual outcomes defined in terms of the strata in the table.

The response matrix of Table 3 is generated by the nine Unordered Monotonicity

relationships of Table 4.40 The choice restrictions generated by the revealed preference

analysis in Table 2 produce Unordered Monotonicity A-3.

Remark 5.1 . The response matrix in Table 3 is uniquely generated by the Unordered
Monotonicity relationships of Table 4. By uniquely we mean that a change in the
direction of any of these inequalities produces a response matrix that differs from the
one in Table 3. This property is useful for testing the model assumptions as each
monotonicity relationship implies a propensity score inequality that can be tested on
observed data.

Table 4: An Identified Pattern of Response Matrices

Monotonicity Relationships Implied Propensity Score Inequalities
Relation 1 1[Tω(zno) = ta] ≤ 1[Tω(za) = ta] P (T = ta|Z = zno) ≤ P (T = ta|Z = za)
Relation 2 1[Tω(zno) = ta] ≥ 1[Tω(zbc) = ta] P (T = ta|Z = zno) ≥ P (T = ta|Z = zbc)
Relation 3 1[Tω(za) = ta] ≥ 1[Tω(zbc) = ta] P (T = ta|Z = za) ≥ P (T = ta|Z = zbc)
Relation 4 1[Tω(zno) = tb] ≥ 1[Tω(za) = tb] P (T = tb|Z = zno) ≥ P (T = ta|Z = za)
Relation 5 1[Tω(zno) = tb] ≤ 1[Tω(zbc) = tb] P (T = tb|Z = zno) ≤ P (T = ta|Z = zbc)
Relation 6 1[Tω(za) = tb] ≤ 1[Tω(zbc) = tb] P (T = tb|Z = za) ≤ P (T = ta|Z = zbc)
Relation 7 1[Tω(zno) = tc] ≥ 1[Tω(za) = tc] P (T = tc|Z = zno) ≥ P (T = tc|Z = za)
Relation 8 1[Tω(zno) = tc] ≤ 1[Tω(zbc) = tc] P (T = tc|Z = zno) ≤ P (T = tc|Z = zbc)
Relation 9 1[Tω(za) = tc] ≤ 1[Tω(zbc) = tc] P (T = tc|Z = za) ≤ P (T = tc|Z = zbc)

Unordered Monotonicity can arise under different configurations of the instru-

mental variable. Thus, in the previous example, consider changing the support of

the instrumental variable Z from {zno, za, zbc} to {zno, zb, zbc}. We can apply the

same revealed preference analysis of the first example to {zno, zb, zbc}. This analysis

generates the response matrix shown in Table 5 which is also uniquely generated by

nine inequalities consistent with Unordered Monotonicity A-3. The response matrix

also identifies response-type probabilities and an associated set of counterfactual out-

40See the elimination analysis in Table D.6 of Web Appendix D.
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comes. However, three out of seven response-types in Table 5 differ from the ones in

Table 3.

Table 5: Response-types Generated by Revealed Preference Analysis for supp(Z) =
{zno, zb, zbc}.

Instrumental Response-types of S
Variables Choices s1 s2 s3 s4 s5 s6 s7

No Voucher T (zno) ta ta ta ta tb tc tc
Voucher for car b T (zb) ta ta tb tb tb tc tb

Voucher for car b or c T (zbc) ta tc tb tc tb tc tc

Choice restrictions alone do not necessarily produce identifiability. For an ex-

ample, see Web Appendix D.2. We further note that Unordered Monotonicity A-3

is not a necessary condition for identification of model parameters. In Web Ap-

pendix D.3, we modify the example of Table 5 by assuming that Z takes values in

supp(Z) = {zc, zb, zbc}. WARP alone generates the response matrix described in

Table 6.41 The rank of its associated binary matrix BT is equal to 7. Thus, response-

type probabilities are identified. However, the response matrix in Table 6 is not

consistent with Unordered Monotonicity A-3. There is no sequence of monotonic

relationships consistent with A-3 that generates this response matrix. For example,

consider the change in voucher assignment from voucher for c (zc) to voucher for b

(zb) in Table 6. This change induces those in s4 to move towards ta (from tc to ta),

while those in s2 to move away from ta (from ta to tb). This pattern of counterfactual

choices is inconsistent with monotonicity.42 Unordered Monotonicity in the general

choice model coupled with standard IV conditions, does not necessarily guarantee

identifiability, unlike its counterpart in the binary choice model and in the ordered

choice model.43 Moreover, revealed preference analysis may or may not identify the

choice model, depending on the patterns of restrictions imposed on the variation in

41See Table D.13 in Web Appendix D.3 for the elimination analysis.
42This claim is formally proved in the next section using Condition (iii) of Theorem T-3.
43See the discussion in Web Appendix D.2.
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the instruments.44

Table 6: Response-types Generated by Revealed Preference Analysis for supp(Z) =
{zc, zb, zbc}.

Instrumental Count. Response-types of S
Variables Choices s1 s2 s3 s4 s5 s6 s7

Voucher for c T (zc) ta ta tb tc tc tc tc
Voucher for b T (zb) ta tb tb ta tb tb tc

Voucher for b or c T (zbc) ta tb tb tc tb tc tc

6 Equivalent Conditions for Characterizing Un-

ordered Monotonicity

This section presents and interprets general properties shared by all response matrices

that satisfy Unordered Monotonicity A-3. We explore a variety of ways to express

A-3 including separability of choice equations.

6.1 Properties of Binary Matrices

To establish a relationship between identifiability and the properties of response ma-

trix R, it is helpful to use concepts from the literature on binary matrices. A binary

matrix is lonesum if it is uniquely determined by its row and column sums.45 We

establish that response matrix R is an unordered monotone response matrix (hence-

forth “monotone”) if each binary matrix derived from it, Bt = 1[R = t]; t ∈ supp(T ),

is lonesum. Lonesum matrices can be used to characterise monotonicity conditions

in choice models. We show that identification and equivalence results arise from the

properties of lonesum matrices.

44This paper does not consider issues of estimation and inference. If certain parameters are over-
identified from different instrument configurations, the obvious approach is to combine estimators
using efficient GMM (Hansen, 1982).

45See Ryser (1957), Brualdi (1980), Brualdi and Ryser (1991) and Sachnov and Tarakanov (2002)
for surveys of the properties of binary matrices.
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Let ri,t be the i-th row sum of the binary matrix Bt: ri,t =
∑NS

n=1Bt[i, n]. Let cn,t

denote the sum of the n-th column of Bt, that is, cn,t =
∑NZ

i=1Bt[i, n]. The maximal

of matrix Bt is a matrix whose i-th row is given by ri,t elements 1 followed by 0s.

Two matrices are equivalent if one can be transformed into the other by a series of

row and/or column permutations.

Table 7 displays matrix Bta = 1[R = ta], where R is the response matrix of

Table 3. The first column of Table 7 gives the row sums of Bta . The last row of

Table 7 presents its column sums. To show that matrix Bta is lonesum, reorder its

columns and rows based on decreasing values of column sums and increasing values

of row sums. The maximal of Bta is obtained by a reordering of Bta based only on

row and column sums. Note that there are different orderings for different t. The

reordered matrix of Table 3 is given in Table 8. It is a maximal matrix because the

matrix rows are described by elements 1 followed by 0s. For example, if a maximal

matrix has 7 columns and its first row sum is 1, the first row is [1, 0, 0, 0, 0, 0, 0]. Thus

a maximal matrix is uniquely determined by its row sums. Therefore we conclude

that Bta is a lonesum matrix. One can check that matrices Btb and Btc of Table 3

are also lonesum. Thus, following our definition, response matrix R of Table 3 is

unordered monotone. In our analysis of LATE in Section 4.1, Bt1 and Bt0 are both

lonesum.

Table 7: Row and Column Sums of Matrix Bta of Response Matrix in Table 3

Row Sum Row Index Matrix Bta = 1[R = ta] of Table 3
s1 s2 s3 s4 s5 s6 s7

3 r1,ta 1 1 1 0 0 0 0
5 r2,ta 1 1 1 1 0 1 0
1 r3,ta 1 0 0 0 0 0 0

Column Index c1,ta c2,ta c3,ta c4,ta c5,ta c6,ta c7,ta
Column Sum 3 2 2 1 0 1 0

26



Table 8: Reordered Matrix Bta According to Increasing Values of Row Sums and
Decreasing Values of Column Sums

Row Sum Row Index Reordered Rows and Columns by Sums
s1 s2 s3 s4 s6 s5 s7

1 r3,ta 1 0 0 0 0 0 0
3 r1,ta 1 1 1 0 0 0 0
5 r2,ta 1 1 1 1 1 0 0

Column Index c1,ta c2,ta c3,ta c4,ta c6,ta c5,ta c7,ta
Column Sum 3 2 2 1 1 0 0

6.2 The Main Theorem

The following conditions are necessary and sufficient for characterizing Unordered

Monotonicity A-3:

Theorem T-3. The following statements are equivalent characterizations of A-3 for
the IV model (1)–(3):

(i) R is an unordered monotone response matrix, i.e., each binary matrix Bt =
1[R = t]; t ∈ supp(T ) is lonesum;

(ii) For any t, t′, t′′ ∈ supp(T ), there are no 2× 2 sub-matrices of R of the type:(
t t′

t′′ t

)
or

(
t′ t
t t′′

)
,where t′ 6= t and t′′ 6= t.46 (48)

(iii) Unordered Monotonicity: For any z, z′ ∈ supp(Z), and for each treatment
t ∈ supp(T ), we have that:47

1[Tω(z) = t] ≥ 1[Tω(z′) = t] ∀ ω ∈ Ω or 1[Tω(z) = t] ≤ 1[Tω(z′) = t] ∀ ω ∈ Ω.

(iv) Unordered Separability: treatment choice can be represented by separa-
ble choice functions in V and Z, i.e., there exist functions ϕ : supp(V ) ×

47Alternatively, this can be written as: for any z, z′ ∈ supp(Z) and t ∈ supp(T ), we have that:(
1[T = t]|Z = z,V = v

)
≥
(
1[T = t]|Z = z′,V = v

)
for all v ∈ supp(V )

or
(
1[T = t]|Z = z,V = v) ≤

(
1[T = t]|Z = z′,V = v

)
for all v ∈ supp(V ).
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supp(T )→ R and τ : supp(Z)× supp(T )→ R such that:

1[T = t|V = v, Z = z] = 1[Ψ(t, z,v) ≥ 0] = 1[ϕ(v, t) + τ(z, t) ≥ 0]. (49)

Proof. See Web Appendix A.6.

Condition (i) states our main condition for equivalence: if and only if response ma-

trix R is unordered monotone, each indicator matrix formed from it (Bt = 1[R = t])

is lonesum, and conversely. Condition (ii) states that if R is an unordered monotone

response matrix, each 2 × 2 sub-matrix in R is not of the form in (48). Condition

(iii) states that the conditions preceding it hold if and only if Unordered Monotonic-

ity A-3 holds. As previously noted, condition (iii) implies monotonicity A-1 for the

binary choice model. Condition (iv) is a separability property that characterizes the

choice functions. Vytlacil’s equivalence theorem (2002) is generated by the equiva-

lence of conditions (iii) and (iv) when we specialize the model to the case of a binary

treatment.48

6.3 Interpreting T-3

Condition (i) describes a key property of response matrices: the lonesum property of

treatment choice indicators. Lonesum matrices are not only useful for characterizing

Unordered Monotonicity, but they are key concepts for investigating properties of

choice models.49

Condition (i) of T-3 implies that Bt is fully characterized by its column and row

sums. This condition implies that the response matrix R is also characterized by

its row and column sums. However, the reverse is not true. We illustrate this in

Remark 6.1 :

Remark 6.1 . If R is an unordered monotone response, each matrix Bt is lonesum
and therefore fully characterized by its column and row sums ri,t, cn,t; t ∈ supp(T ), i ∈
{1, . . . , NZ}, n ∈ {1, . . . , NS}. Since Response matrix R can be written as
R =

∑
t

t∈supp(T )

Bt, R is characterized by its column and row sums ri,t, cn,t as well. However,

48See Web Appendix E for a derivation.
49Heckman and Pinto (2015c) show that lonesum matrices also play a key role in equivalence

results for ordered monotonicity. Pinto (2016b) develops a framework for the design of social in-
terventions using lonesum matrices that rely on revealed preference relationships to identify causal
parameters. He shows that incentive designs based on lonesum matrices generate a range of mono-
tonicity conditions.

28



the reverse is not true. R being characterized by its column and row sums does not
imply that R is an unordered monotone response. To illustrate this claim, let response
matrix R be defined by:

R =

(
t1 t2
t2 t3

)
, thus

r1,t1 = 1, r1,t2 = 1, r1,t3 = 0,
r2,t1 = 0, r2,t2 = 1, r2,t3 = 1,︸ ︷︷ ︸

row sums

, :
c1,t1 = 1, c1,t2 = 1, c1,t3 = 0,
c2,t1 = 0, c2,t2 = 1, c2,t3 = 1.︸ ︷︷ ︸

column sums

R is not lonesum because B2 = 1[R = t2] exhibits one of the prohibited patterns (50).
Therefore, it is not unordered monotone. Nevertheless, R is fully characterized by
its column sums and row sums: r1,t1 = 1 and c1,t1 = 1 ⇒ R[1, 1] = t1; r2,t3 =
1 and c2,t3 = 1 ⇒ R[2, 2] = t3; r1,t2 = 1 and R[1, 1] = t1 ⇒ R[1, 2] = t2; r2,t2 =
1 and R[2, 2] = t3 ⇒ R[2, 1] = t2.

All response matrices for the case of binary treatment are equivalent under mono-

tonicity A-1. This property does not hold for the general unordered case:

Remark 6.2 . Consider the binary choice model in which the instrument takes NZ val-
ues and T takes values in {0, 1}. Unordered Monotonicity generates a monotonicity
inequality for each pair of Z-values. Different sets of inequalities generate different
response matrices. However, each of these response matrices is equivalent to the same
lower triangular binary matrix with NZ rows and NZ + 1 columns (see the example
in Section 4.1) and produces an identified model. However, in the case of multiple
choices, Unordered Monotonicity does not generate response matrices that are equiv-
alent to the same matrix. For example, the response matrices of Tables 3 and 5 are
monotone responses but they are not equivalent, because one matrix cannot be trans-
formed into another by row and/or column permutations. The response matrices in
Tables 3 and 5 consist of seven response-types for NT = 3 and NZ = 3. There are 27
possible response-types for NT = 3 and NZ = 3. The combination of 7 response-types
out of these 27 generates 888,030 possible response matrices. Among them, 66 re-
sponse matrices satisfy Unordered Monotonicity condition (iii).50 Response matrices
of Tables 3 and 5 are two examples of these matrices.

Condition (ii) of T-3 imposes a restriction on counterfactual choices that does not

depend on the number of treatment choices in supp(T ) or the number of values that

Z takes. The condition rules out two-way flows generated by changes in instruments.

Thus the response matrix of Table 6 is not unordered monotone. The forbidden type

of condition (ii) is obtained using the first and second rows of response-types s2 and

s4 in Table 6.51 The change from zc to zb shifts people away from a in s2 but toward

50Web Appendix F presents all of the 66 response matrices that consist of distinct sets of 7
response-types generated by Unordered Monotonicity A-3.

51In this case, we obtain the following forbidden sub-matrix:

(
ta tc
tb ta

)
.
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a in s4.

Remark 6.3 . We note that a consequence of condition (ii) in T-3 is that under A-3,
no 2× 2 sub-matrix of any Bt; t ∈ supp(T ) is of the type:(

1 0
0 1

)
nor

(
0 1
1 0

)
. (50)

Unordered Monotonicity A-3 holds if and only if no prohibited patterns (50) occur

for any Bt; t ∈ supp(T ). An example clarifies the equivalence between the require-

ments for Unordered Monotonicity A-3 and the absence of prohibited patterns (50).

Suppose that
(
1[T = t]|Z = z,V = v

)
≥
(
1[T = t]|Z = z′,V = v

)
holds for all

v ∈ supp(V ). Then it must be the case that:

(
1[T = t]|Z = z,S = s

)
≥
(
1[T = t]|Z = z′,S = s

)
(51)

holds for all s ∈ supp(S) because for each v ∈ supp(V ) there is s ∈ supp(S) such

that s = fS(v) (see (10)) and (T |S = s, Z = z) = (T |V = v, Z = z). Inequality (51)

generates three possible sub-vectors of dimension 2 × 1 that indicate whether T is

equal to t when Z takes value z and z′ or any response-type s ∈ supp(S):(
(1[T = t]|Z = z, S = s)

(1[T = t]|Z = z′, S = s)

)
∈

{(
0

0

)
,

(
1

0

)
,

(
1

1

)}
for all s ∈ supp(S). (52)

The matrix generated by a combination of sub-vectors in (52) for any two response-
types s, s′ ∈ supp(S) is:(

(1[T = t]|Z = z,S = s) (1[T = t]|Z = z,S = s′)

(1[T = t]|Z = z′,S = s) (1[T = t]|Z = z′,S = s′)

)
.

It cannot be of the form: (
1 0

0 1

)
or

(
0 1

1 0

)
,

which are prohibited patterns (50). Hence the weak inequality
(
1[T = t]|Z = z,V =

v)
)
≥
(
1[T = t]|Z = z′,V = v)

)
∀ v ∈ supp(V ) implies that Bt is lonesum. On the

other hand, suppose that v,v′ ∈ supp(V ) are such that (1[T = t]|Z = z,V = v) >

51These are termed “prohibited” or “forbidden” patterns (see Ryser, 1957).
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(1[T = t]|Z = z′,V = v) and (1[T = t]|Z = z,V = v′) < (1[T = t]|Z = z′,V = v′).

Then there must exist s, s′ ∈ supp(S) where s = fS(v), s′ = fS(v′) that generates

the prohibited pattern:(
(1[T = t]|Z = z,S = s) (1[T = t]|Z = z,S = s′)

(1[T = t]|Z = z′,S = s) (1[T = t]|Z = z′,S = s′)

)
=

(
1 0

0 1

)
. (53)

The equality of the first columns in the right and left side of Equation (53) means

that, for some type s, treatment t is chosen when the instrument shifts from z′ to z.

The equality of the second columns of Equation (53) states the opposite. For some

type s′, the instrument shift from z′ to z causes treatment t not to be chosen. This

behavior violates the intuitive notion and formal definition of monotonicity because

the instrument shifts some agents to change their choice towards t while others change

their choice away from t.52 Condition (iii) is implied by super (or sub) modularity

of Ψ(t, z,v) in terms of v and z for all t, but that condition is stronger than what is

required to produce A-3. Strictly speaking, the requirement is that component-wise

sgn(∆Ψ(T,z,v)
∆z

) is the same for all V = v for each T = t and Z = z.

6.4 Understanding Condition (iv) of T-3

We draw on and generalize the binary-treatment model of Sections 4.1–4.2 to build

the intuition underlying condition (iv). In the binary case, monotonicity implies

that Bt1 is lower triangular (28).53 Triangularity generates Equation (36) which

expresses treatment choice T as an indicator function that is separable in the observed

propensity score P (T = t1|Z), which depends on Z, and a sum of response-type

probabilities, which depends on V.

Theorem T-3 applies to choice models with multiple treatments, which include

the binary case. If Unordered Monotonicity (condition (iii) of T-3) holds, then each

binary matrix Bt; t ∈ supp(T ) is characterized solely by its row and column sums so

that Bt; t ∈ supp(T ) are lonesum (Item (i) of T-3). This property can be understood

as a generalization of the lower triangular property in the binary case, but applied

to each Bt.
54 Generalized triangularity generates condition (iv) which characterizes

52Violation of Condition (ii) is not necessarily a violation of rationality. Table 6 is based on an
application of WARP, but violates Condition (ii) and Unordered Monotonicity.

53Recall that we eliminate all redundancies in the rows or columns of R.
54With the caveat that we eliminate any redundancies in the rows and columns of R.
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treatment choice as an indicator function that is separable in Z and V . We present

a detailed discussion of this condition in Appendix G.

To interpret separability condition (iv), suppose that agent ω with Vω = v ∈
supp(V ) chooses t ∈ supp(T ) when an instrumental variable is set to z ∈ supp(Z),

so that 1[T = t|V = v, Z = z] = 1. According to condition (iv), there exist functions

ϕ and τ such that ϕ(v, t) + τ(z, t) ≥ 0.55 It is clear that expressions of this type

rule out the prohibited patterns (50) and therefore generate Unordered Monotonicity.

What is less obvious is that (iii) implies representation (iv), which is not necessarily

unique.56

Note that 1[T = t|V = v, Z = z] = 1 implies that 1[T = t′|V = v, Z = z] = 0 for

all t′ ∈ supp(T ) \ {t}. Therefore it must be the case that ϕ(v, t′) + τ(z, t′) < 0 for all

t′ that differs from t. In particular, condition (iv) implies that:

1[T = t|V = v, Z = z] = 1⇔ t = argmax
t′∈supp(T )

(
Ψ(t′, z,v)

)
= argmax

t′∈supp(T )

(
ϕ(v, t′) + τ(z, t′)

)
.

(54)

Condition (iv) does not claim that the functions ϕ and τ are unique. Indeed if t

maximizes ϕ(v, t′) + τ(z, t′), it also maximizes m(ϕ(v, t′) + τ(z, t′)) where m is any

strictly increasing function.

Condition (iv) does not impose rationality or perfect foresight. Suppose that agent

ω decides among t1, t2, t3 and that his treatment choice is generated by maximization

of a utility function Ψ(t, z,v) where Vω = v and Zω = z. Condition (iv) states that

if Unordered Monotonicity A-3 holds, the maximized choice value Ψ(t, z,v) can be

characterized as arising from the maximization of a separable function ϕ(v, t)+τ(z, t).

Specifically, if ω chooses t1, then t1 is the maximum among Ψ(t, z,v) for t ∈ {t1, t2, t3}.
In this case, t1 also maximizes ϕ(v, t) + τ(z, t) for t ∈ {t1, t2, t3} :

t1 = argmax
t∈{t1,t2,t3}

Ψ(v, t, z) ⇔ t1 = argmax
t∈{t1,t2,t3}

(
ϕ(v, t) + τ(z, t)

)
.

55Web Appendix H discusses the threshold property of condition (iv) in greater detail.
56Consider a binary choice model: T = 1[α + V · Z ≥ 0] T ∈ {0, 1} where (α, V ) is a random

vector and V , Z, and α are scalar. Suppose that we impose the requirement that V > 0 while
Z is unrestricted. This is a monotone response model that is nonseparable. However, it can be
represented as a separable model: T = 1[ αV + Z ≥ 0]. This highlights the non-uniqueness of
the representation of Ψ(t, Z, V ) and that separability is only one characterization of preferences
consistent with A-3.
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Condition (iv) does not imply that the ranking of treatment utilities generated by

Ψ(t, z,v) is necessarily the same as the ranking generated by ϕ(v, t) + τ(z, t). For

instance, if Ψ(t1, z,v) > Ψ(t2, z,v) > Ψ(t3, z,v) then ω prefers t1 to t2, and t2 to

t3. This does not necessarily imply that ϕ(v, t1) + τ(z, t1) > ϕ(v, t2) + τ(z, t2) >

ϕ(v, t3) + τ(z, t3). Indeed, ϕ(v, t1) + τ(z, t1) > ϕ(v, t3) + τ(z, t3) > ϕ(v, t2) + τ(z, t2)

may also occur. It is the ranking of t1 relative to the next best that generates agent

choices of t1. Variation in instruments only identify preferences relative to the next

best choice and not an order among the remaining elements in the choice set.

To formalize this discussion, we establish that Unordered Monotonicity arises if we

assume that utilities of a choice compared to the next best choice can be represented

as additively separable functions:57

u(v, t) + h(z, t) = Ψ(t, z,v)− max
t′∈supp(T )\{t}

Ψ(t′, z,v).

The following theorem formalizes this point.

Theorem T-4. If there exist functions u : supp(V )×supp(T )→ R and h : supp(Z)×
supp(T )→ R such that

u(v, t) + h(z, t) =

(
Ψ(t, z,v)− max

t′∈supp(T )\{t}
Ψ(t′, z,v)

)
∀ v ∈ supp(V ), z ∈ supp(Z),

then the response matrix R associated with this choice model is unordered monotone.

Proof. See Web Appendix A.7.

As before, the separable representation is not necessarily unique.

Remark 6.4 . T-4 imposes stronger functional form assumptions than T-3. Summa-

57This transformation does not change an agent’s preferences towards choices in supp(T ) :

Ψ(t, z,v) ≥ Ψ(t′, z,v)⇔
(

Ψ(t, z,v)− max
t′∈supp(T )\{t}

Ψ(t′, z,v)

)
≥

(
Ψ(t′, z,v)− max

t′∈supp(T )\{t̃}
Ψ(t′, z,v)

)
.
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rizing:

Unordered Monotonicity⇒(
argmax
t∈supp(T )

ϕ(v, t) + τ(z, t)

)
=

(
argmax
t∈supp(T )

(
Ψ(t, z,v)− max

t′∈supp(T )\{t}
Ψ(t′, z,v)

))

while u(v, t) + h(z, t) =

(
Ψ(t, z,v)− max

t′∈supp(T )\{t}
Ψ(t′, z,v)

)
⇒ Unordered Monotonicity

Heckman et al. (2006, 2008) assume separability in the underlying preference

functions and show that IV estimates a LATE that compares the outcome of one

choice to the outcome for the next best option. Our condition is weaker. Theorem T-

4 states that Unordered Monotonicity only requires that the utility of a choice relative

to the next best choice be separable. To clarify, the impact of instrument Z on the

treatment choice is summarized by the term h(z, t). Suppose Z changes from z′ to

z. If h(z, t) − h(z′, t) > 0, each agent is induced towards t. If h(z, t) − h(z′, t) < 0

agents are induced against t. This analysis applies for all pairwise values of (z, z′) ∈
supp(Z)× supp(Z) and for all t ∈ supp(T ). The collection of all of these inequalities

characterizes Unordered Monotonicity A-3.

6.5 Verifying Unordered Monotonicity condition A-3

Verifying condition (ii) of Theorem T-3 is a daunting combinatorial task. It would

require checking each 2 × 2 sub-matrix in R, which is impractical for large R. We

show that a single calculation based on a simple multiplication of binary matrices

suffices to check condition A-3. Our criterion is based on a binary matrix M :

For each tj ∈ supp(T ) = {t1, . . . , tNT
},

let Mtj = [1NZ ,NS
, · · · , 1NZ ,NS︸ ︷︷ ︸

j − 1 times

,Btj ,0NZ ,NS
, · · · , 0NZ ,NS︸ ︷︷ ︸

NT − j times

],

then M = [M ′
t1 , . . . , M

′
tNT

]′, (55)

where 1NZ ,NS
is a matrix of elements 1 and 0NZ ,NS

is a matrix of elements 0 of same

dimension. Matrix M is block diagonal with matrices Bt on the diagonal, where,

again, we eliminate any redundancies. M has elements 1 below this diagonal and

elements 0 above it.

Theorem T-5. For the IV model (1)–(3), the response matrix R is an unordered
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monotone response, that is, each binary matrix Bt = 1[R = t]; t ∈ supp(T ) is
lonesum, if and only if,

ι′c

( (
M ′(ιrι

′
c −M )

)
�
(
M ′(ιrι

′
c −M )

)′)
ιc = 0, (56)

where ιr is an NT ·NZ vector 1s and ιc is an NT ·NS vector 1s. Moreover, if Equa-
tion (56) holds, then matrix M is lonesum.

Proof. See Web Appendix A.8.

Unordered monotonicity condition A-3 holds if and only if this value is equal to

zero. Moreover, if equation (56) holds, then all the conditions stated in Theorem T-3

also hold.

7 Identification of Counterfactuals

This section establishes which components of a model are identified under Unordered

Monotonicity A-3. We build on our analysis of binary LATE in Section 4.1. We

generalize the notions of “compliers” and “always takers” to a general unordered

choice model.

To this end, it is helpful to introduce some additional notation. Let Σt(i) be the

set of response-types in which t appears exactly i times:

Σt(i) =

{
sn, such that sn ∈ supp(S) and

NZ∑
j′=1

Bt[j
′, n] = i

}
where i ∈ {0, . . . , NZ}.

(57)

For example, Σta(2) for the response matrix of Table 3 consists of the response-types

for which the value ta appears exactly twice. They are Σta(2) = {s2, s3} (see Table 9).

Those are also the response-types whose column-sum of Bta in Table 7 is 2.
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Table 9: Partition of Response-types in Table 3 where supp(Z) = {zno, za, zbc}

Instrumental Count. Response-types of S

Variables Choices s1 s2 s3 s4 s5 s6 s7

No Voucher T (zno) ta ta ta tb tb tc tc

Voucher for car a T (za) ta ta ta ta tb ta tc

Voucher for car b or c T (zbc) ta tb tc tb tb tc tc

Response-types in Σta(0) s5 s7

Response-types in Σta(1) s4 s6

Response-types in Σta(2) s2 s3

Response-types in Σta(3) s1

ta-Compliers s2 s3 s4 s6

ta-Always-takers s1

ta-Never-takers s5 s7

For each t ∈ supp(T ), we can partition the set of response-types by the number

of times a treatment value t appears: supp(S) = ∪NZ
i=0Σt(i). Table 7 displays these

partitions for Σta(i); i = 0, . . . , 3. Let bt(i) be the NS-dimensional binary row-vector

that indicates if response-type s belongs to Σt(i), that is, bt(i)[n] = 1 if sn ∈ Σt(i)

and zero otherwise. In the example of Table 3, bta(2) = [0, 1, 1, 0, 0, 0, 0]. Using this

notation, we prove the following identification theorem:

Theorem T-6. If Unordered Monotonicity A-3 holds for the IV model (1)–(3), then,
for all t ∈ supp(T ) and for all i ∈ {1, . . . , NZ}, the probabilities P (S ∈ Σt(i)) and
the outcome counterfactual expectations E(κ(Y (t))|S ∈ Σt(i)) are identified from:

P (S ∈ Σt(i)) = bt(i)B
+
t PZ(t) and E(κ(Y (t))|S ∈ Σt(i)) =

bt(i)B
+
t QZ(t)

bt(i)B
+
t PZ(t)

,

(58)

where κ : supp(Y )→ R denotes an arbitrary function in the support of Y .

Proof. See Web Appendix A.9.

This expression uses the tools for identification based on the generalized inverse
developed in Section 4.
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Remark 7.1 . A direct implication of Theorem T-6 is that if there exists t, t′ ∈ supp(T )
and i, i′ ∈ {1, . . . , NZ} such that Σt(i) = Σt′(i

′) then E(Y (t)−Y (t′)|Σt(i)) is identified.

We generalize the terminology of Angrist et al. (1996) to the case of multiple

treatments. The appropriate generalization is t-specific. In the binary case, there is

no need to specify a particular t since the specification of one value automatically

implies the other possible value.

Σt(0) consists of response-types in which t does not occur. We call these t-Never-takers .

Σt(NZ) consists of a single response-type whose elements are all t. It stands for

the t-Always-takers . The set of remaining response-types are named t-Compliers ≡⋃NZ−1
i=1 Σt(i) and consists of all strata for which the choice of treatment t varies as Z

ranges in its support. Those sets can alternatively be defined as:

t-Never-takers = {s ∈ supp(S);P (T = t|S = s) = 0} ≡ Σt(0);

t-Always-takers = {s ∈ supp(S);P (T = t|S = s) = 1} ≡ Σt(NZ);

t-Compliers = {s ∈ supp(S); 0 < P (T = t|S = s) < 1} ≡
NZ−1⋃
i=1

Σt(i).

These sets for the response matrix of Table 3 are: ta-Always-takers = {s1}, ta-Never-takers =
{s5, s7}, and ta-Compliers = {s2, s3, s4, s6} (see Table 9). Corollaries C-2–C-3
present identification results based on this terminology:

Corollary C-2. For the IV model (1)–(3) in which Unordered Monotonicity A-3
holds, the following probabilities are identified for each t ∈ supp(T ):

P (S ∈ t-Always-takers) = P (S ∈ Σt(NZ)) = bt(NZ)B+
t PZ(t);

P (S ∈ t-Compliers) = P (S ∈ ∪NZ−1
i=1 Σt(i)) =

(
NZ−1∑
i=1

bt(i)

)
B+

t PZ(t);

P (S ∈ t-Never-takers) = P (S ∈ Σt(0))

= 1− P (S ∈ t-Always-takers)− P (S ∈ t-Compliers).

Proof. See Web Appendix A.10.

Corollary C-3. Assume the IV model (1)–(3) for which Unordered Monotonicity A-
3 holds. The mean counterfactual outcomes for the t-Always-takers and
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t-Compliers for each t ∈ supp(T ) are identified by:

E(Y (t)|t-Always-takers) = E(Y (t)|S ∈ Σt(NZ)) =
bt(NZ)B+

t QZ(t)

bt(NZ)B+
taPZ(t)

;

E(Y (t)|t-Compliers) =

NZ−1∑
i=1

E(Y (t)|S ∈ Σt(i)) ·
P (S ∈ Σt(i))

P (S ∈ t-Compliers)
,

where

NZ−1∑
i=1

P (S ∈ Σt(i))

P (S ∈ t-Compliers)
= 1;

Also E(Y (t)|t-Compliers) =

(∑NZ−1
i=1 bt(i)

)
B+

t QZ(t)(∑NZ−1
i=1 bt(i)

)
B+

taPZ(t)
. (59)

Proof. See Web Appendix A.11.

Corollary C-2 relies on the result in T-6 that P (S ∈ Σt(i)) is identified for all
i ∈ {1, . . . , NZ}. Corollary C-3 is obtained by setting κ(Y ) = Y and using the
fact that E(Y (t)|S ∈ Σt(i)) is identified for all i ∈ {1, . . . , NZ}. To illustrate these
corollaries we present an example.

Remark 7.2 . Corollary C-2 states that the expected value of counterfactual outcomes
for response-types s ∈ supp(S) such that P (T = t|S = s) = 1 (the t-Always-takers)
or 0 < P (T = t|S = s) < 1 (t-Compliers) are identified. According to Remark 3.1 ,
these response-types refer to the values v ∈ supp(V ) such that 0 < P (T = t|V =
v) ≤ 1. Therefore, C-3 implies that E(Y (t)|V ∈ {v; 0 < P (T = t|V = v) ≤ 1}) is
identified. The remaining set of response-types are the t-Never-takers , which consists
of the response-types s ∈ supp(S) such that P (T = t|S = s) = 0. This set refers
to the set of values v ∈ supp(V ) such that P (T = t|V = v) = 0. If the set of
t-Never-takers is empty, then all response-types belong to either t-Always-takers or
t-Compliers and E(Y (t)) is identified.

Example 7.1 . According to C-3, the counterfactual outcome mean for ta-Compliers
in the response matrix R of Table 3 is given by:

E(Y (ta)|ta − Compliers) = E(Y (ta)|S ∈ {s2, s3, s4, s6}) =

(∑2
i=1 bta(i)

)
B+

taQZ(ta)(∑2
i=1 bta(i)

)
B+

taPZ(ta)

(60)

The components of Equation (60) that can be estimated from observed data are:

PZ(ta) = [P (T = ta|Z = zno), P (T = ta|Z = za), P (T = ta|Z = zbc)]
′;

QZ(ta) = [E(Y · 1[T = ta]|Z = zno), E(Y · 1[T = ta]|Z = za), E(Y · 1[T = ta]|Z = zbc)]
′.

38



The components of (60) that depend on the response matrix are:

2∑
i=1

bta(i) = [0, 1, 1, 1, 0, 1, 0];

Bta =

 1 1 1 0 0 0 0
1 1 1 1 0 1 0
1 0 0 0 0 0 0

⇒ B+
ta =



0 0 1
1/2 0 −1/2
1/2 0 −1/2
−1/2 1/2 0

0 0 0
−1/2 1/2 0

0 0 0


.

Equation (60) produces the following expression:

E(Y (ta)|ta-Compliers) =
E(Y · 1[T = ta]|Z = za)− E(Y · 1[T = ta]|Z = zbc)

P (T = ta|Z = za)− P (T = ta|Z = zbc)
.

Web Appendix A.16 presents additional results on identification.

7.1 Maximum Number of Admissible Response-types to Se-

cure Identification

The identification of strata probabilities P (s),∈ S can be achieved under weaker con-

ditions than are required for identifying counterfactual outcomes. The identification

of response-type probabilities depends on the column-rank of BT while the identifica-

tion of counterfactual outcomes for a choice t ∈ supp(T ) depends on the column-rank

of Bt. The rank of BT is always greater than the rank of each Bt; t ∈ supp(T )

because BT is generated by stacking Bt across t ∈ supp(T ) (Equation (24)).

We characterize the maximum number of response-types NS in R that facilitate

the identification of all response-type probabilities, that is, the maximum NS such

that NS ≤ rank(BT ).

Theorem T-7. Consider the IV model (1)–(3). Let R be the response matrix con-
sisting of NS response-types. If response-type probabilities are point identified, then it
must be the case that:

NS ≤ 1 + (NT − 1)NZ −
NZ∑
i=1

NT∑
j=1

1[P (T = tj|Z = zi) = 0],

where NZ is the number of possible values that the instrument takes and NT is the
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number of possible values that the treatment choice T takes. In particular, if P (T =
t|Z = z) > 0 for all z ∈ supp(Z) and t ∈ supp(T ) then the maximum number of
response-types NS in R for the model to be identified is:

NS = 1 + (NT − 1)NZ .

Proof. See Web Appendix A.12.

To identify choice-response probabilities, choice restrictions should eliminate at

least NNZ
T − [1 + (NT − 1)NZ ] response-types to generate identification of response-

type probabilities. T-6 shows that even if we are not able to identify each probability

P (S = s); s ∈ supp(S), it may still be possible to identify counterfactual means

E(Y (t)|S ∈ Σt(i)) and associated probabilities P (S ∈ Σt(i)) for strata Σt(i). See

Web Appendix A.13 for additional results on identification of strata probabilities.

8 Summary and Conclusions

This paper extends the literature on instrumental variables in general unordered

choice models with heterogenous responses which affect choice and present a new

monotonicity condition. Using discrete instruments, we identify the counterfactuals

associated with general unordered multiple discrete choice models. We represent IV

equations using discrete mixtures. Identification is achieved by imposing restrictions

on the kernels of the mixtures. We generalize the notion of monotonicity to unordered

choice models. We do not invoke separability of preferences or identification at infinity

to achieve these results, although a version of separability of choice equations emerges

as one representation of the underlying choice process.

Unordered monotonicity can sometimes be justified by economic choice models.

It can be represented in multiple ways. These representations are linked to properties

of binary matrices that characterize the admissible response-types generated by the

available instrumental variables. We develop a variety of criteria to determine if

Unordered Monotonicity is satisfied. We interpret each of these criteria and explain

how they can be used in practice. We show that “principal strata” in the statistics

literature are coarse versions of control functions.

This paper demonstrates the power of binary matrices in generating identification

and in unifying apparently diverse approaches to identification. The broader lesson

of this paper is that in general unordered discrete choice models restrictions on choice
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behavior, encoded in our generalized version of monotonicity, play a fundamental role

in identifying counterfactuals using instrumental variables.
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