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1 Introduction

The regression discontinuity (RD) design has been widely emphasized for its internal va-
lidity to estimate local average treatment effects and has been widely used since the late
1990s (Imbens & Lemieux, 2008, Lee & Lemieux, 2010). Such a method relies on the
fact that assignment to the treatment is determined (at least partially) by a continuous
running variable being on either side of a fixed threshold. If the joint distribution of the
realized outcome, the treatment and the running variable is observed, then a local aver-
age treatment effect (LATE) is identified (Hahn et al., 2001). However, running variables
may be subject to measurement error. In some instances, survey data or administrative
data at hand are not specifically designed to measure the running variable of interest and
they lack the information needed to compute the running variable according to the exact
definition of the eligibility criteria. Then, smoothly distributed measurement errors in the
running variable have important consequences: the discontinuity in the assignment proba-
bility vanishes (see e.g., Hullegie & Klein, 2010 or Cahuc et al., 2014). As a consequence,
the identification of the LATE fails and the usual RD estimators using the running variable
observed with measurement error are inconsistent.1

In this paper, we show that the identification of the LATE can be recovered when the
econometrician observes auxiliary information on the discrepancy between the running
variable and its noisy measure in a sample of treated individuals.2 This happens when the
agency/institution in charge of delivering the treatment collects data on treated individ-
uals, specifically their eligibility - the true running variable. The auxiliary information is
particularly useful in two-sided fuzzy RD designs with treated individuals at any value of
the running variable, as the econometrician then observes the error structure on the treated
on the whole support of the true running variable. In that case, to recover identification,
we only need to assume that conditional on the true running variable, its noisy measure
is independent of the treatment and of the potential outcomes, i.e. the measurement error
is non-differential (see, e.g., Bound et al., 2001). In particular, we do not need to assume
that the difference between the noisy and the true running variable is independent of the
true running variable, i.e. classical measurement errors, and we do not need supplementary
parametric assumptions. As usual in the nonparametric IV literature (Newey & Powell,
2003), we assume that the noisy measure is sufficiently related to the true running vari-
able, which formally corresponds to a completeness condition. These conditions allow us to

1The only formal discussion of identification failure that we are aware of, is in the Appendix of Battistin
et al. (2009). Consequently, we provide a formal proof of this result in this paper.

2The use of auxiliary data on the measurement error is a usual route to recover identification, as
described by Carroll et al. (2006) or Chen et al. (2011)
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use the structure of the error observed on treated individuals to identify the true running
variable for non-treated individuals. More generally, we identify the joint distribution of
the treatment, the mismeasured and the true running variables and the realized outcome.
Consequently, the LATE is identified. Besides, the density of the true running variable is
also identified and can be used to test for non-manipulation in the running variable in the
spirit of McCrary (2008).

We then propose a nonparametric estimator of the LATE. We adopt a sieve estimation
strategy, commonly used in the nonparametric IV literature (e.g. Ai & Chen, 2003; Newey
& Powell, 2003; Chen, 2007; Chen & Pouzo, 2012). To take into account the specificity of
our framework, we adapt the usual regularity conditions of the nonparametric IV estimation
literature. First, we take into account the discontinuity of our functions of interest, the
take-up rate and the expected outcome, at the threshold of the RD design. Second, we
relax usual conditions on the density of the instrumental variable to cope with the fact that
a mismeasured variable usually vanishes at the boundary of its support. We prove that
under those relaxed conditions, our sieve estimator is consistent. Monte-Carlo simulations
show that our estimator behaves well in finite samples, while naive estimators ignoring
measurement error behave quite erratically.

We apply our method to the analysis of the effect of receiving Unemployment Insurance
(UI) benefits. We analyze the French context, where dismissed workers are eligible for
UI if they have worked more than 182 days or more than 910 hours in the previous year.
We use Social Security (SS) data, covering both UI claimants and non-claimants, and
we match the data with the UI register to determine claiming status. First, as we do
not observe the number of hours worked in our main SS data, the eligibility rule gives
rise to a two-sided fuzzy design with respect to the number of days worked.3 Second,
we only observe a noisy measure of the number of days worked in our main SS data.
Consequently, the UI take-up conditional on the noisy running variable is continuous at
the RD threshold. The matching of our main SS data with the UI registers also yields the
number of days worked considered by the UI agency to grant eligibility. Assuming non-
differential measurement error, we then follow our proposed estimation procedure. We find
that claimants induced to start a UI claim (lasting at most 7 months) because they worked
more than 182 days in their previous job, are more likely to find jobs in the same industry
as the pre unemployment job. Ignoring measurement error in this application yields to
estimators with non finite variance and then to unstable estimates of the LATE. On the
contrary, our method provides a consistent estimator. Interestingly, we estimate a new

3Below the days-threshold, some workers are eligible because they worked enough hours. Above the
threshold, the non-compliance may be explained by stigma effects.
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treatment effect - receiving UI vs. not receiving at all - while most RD analysis document
the effect of UI at the intensive margin - receiving UI during a long period vs. receiving
UI during a short period (for example, Card et al., 2007; Lalive, 2008). The focus on the
intensive margin in the previous literature could be partly explained by the difficulty to
observe without error the running variables for non-claimants.

Our main contribution is to provide a new tool for practitioners who face continuous
measurement error in RD designs with treated individuals on the whole support of the
true running variable. Our approach enables the RD analysis of government programs
(UI, health insurance, hiring credits...), when the econometrician only observes a proxy of
one running variable and the take-up is then a continuous function of the proxy variable.
This happens when the econometrician cannot compute from the data the running variable
following the exact definition stated by the program agency. For example, in Hullegie &
Klein (2010), the survey only reports monthly income, while annual income is used by the
government to allocate the treatment. In Cahuc et al. (2014), administrative data do not
contain the workers’ labor contract types, while this information is used to compute the
firm size conditioning the access to treatment. Other examples of common proxies of the
running variable are past values, or predicted values based on covariates. More generally,
our approach can be applied as soon as individuals (or firms) self-select into the treatment,
whose cost is a discontinuous function of private information, disclosed for the treatment
group only. For example, our approach is well suited to the estimation of the returns to
an extra year of education - the treatment of interest here - when households with income
below a given threshold are eligible to reduced tuition fees. The population of interest is
then pupils at school in year N − 1, while treated individuals are those who stay at school
in year N . Schools usually keep a record of the income of the current pupils’ parents to
apply reduced fees. Then the econometrician only observes the year N − 1 income for the
untreated pupils and the probability to stay at school in year N would be a continuous
function of year N − 1 income. However our method could be applied as the evolution of
parental income between year N − 1 and year N is observed for the treated sample and
there are pupils going to school in year N for any level of year N income.

Our paper complements previous RD work facing non-continuous forms of mismeasure-
ment in the running variable. Dong (2014), Barreca, Guldi, Lindo & Waddell (2011) and
Barreca, Lindo & Waddell (2011) consider rounding errors.4 Battistin et al. (2009) con-
sider contaminated or corrupted data sampling, in which the observed running variable Z

4Lee & Card (2008) also study the consequences of discrete running variables, however they do not
explicitly consider that the discreteness of the observed variable is the result of measurement error of a
true continuous underlying variable. Their approach is to allow for specification errors in the model, which
affects the precision of the estimated treatment effect.
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is a mixture of the true running variable (Z∗) and of a noisy proxy (i.e. P(Z = Z∗) > 0,
see Horowitz & Manski, 1995). Our paper also complements recent contributions adopt-
ing parametric approaches in one-sided RD designs, where individuals cannot be treated
if their true running variable is below the RD threshold (Hullegie & Klein, 2010, Pei,
2011). In a working paper version (Davezies & Le Barbanchon, 2014), we adapt our ap-
proach to one-sided RD designs. As Hullegie & Klein (2010) and Pei (2011), we then need
to add structure on the measurement error and use a deconvolution argument to restore
identification.

The paper is organized as follows: in the second section, we discuss how a continuous
measurement error in the running variable smooths any discontinuity in assignment and
leads to the loss of identification and of consistency of usual RD estimators. In the third
section, we present and discuss our identification results. The fourth section is devoted to
estimation issues, we then provide Monte-Carlo simulations to investigate the finite sample
properties of our estimator. In the fifth section, we apply our method to the analysis of
the effect of receiving unemployment benefits. The last section concludes. We provide on
our personal websites programs to perform our proposed estimation.5

2 Framework

2.1 Regression Discontinuity design

Let T be a binary variable of treatment, Z∗ a continuous random variable with support
Supp(Z∗) ⊂ R and 0 an interior point of this support, 0 is the cutoff/threshold of the Re-
gression Discontinuity (RD) design. Following Rubin’s framework, we define (Y (0), Y (1))

the potential outcomes with respect to T and Y = Y (0)(1 − T ) + Y (1)T is the observed
outcome. The actual treatment status T depends on the running variable Z∗. We also
define the potential treatment T (z∗) for any z∗ ∈ Supp(Z∗). We consider the following
assumptions of the RD design:

Assumption 1 (RD Design)

1. Discontinuity in the take-up: limz→0+ E (T |Z∗ = z) > limz→0− E (T |Z∗ = z)

2. Monotonicity: It exists a neighborhood of 0 included in Supp(Z∗), such that with
probability 1, z∗ 7→ T (z∗) is non-decreasing for z∗ in that neighborhood.

5Matlab programs are posted. Stata programs are under production.
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3. Continuity in the potential outcomes: z∗ 7→ E(Y (0)|Z∗ = z∗, T (0+), T (0−) = 0) and
z∗ 7→ E(Y (1)|Z∗ = z∗, T (0+) = 1, T (0−)) are almost-surely continuous at z∗ = 0 .

4. Continuity in the proportions of individual types (compliers, never- and always-
takers): z∗ 7→ P (T (0−) = t−, T (0+) = t+|Z∗ = z∗) is continuous at z∗ = 0 for (t−, t+) =

(0, 1) or (0, 0) or (1, 1).

Assumption 1.1 states that the assignment probability (or take-up) is discontinuous at the
cutoff, whose value is known by the econometrician. Assumption 1.2 is a form of mono-
tonicity condition. It rules out the existence of defiers who would abandon the treatment
had they crossed the cutoff, ie individuals such that T (0−) = 1 and T (0+) = 0. Compliers
correspond to individuals such that T (0−) = 0 and T (0+) = 1. Never-takers are such
that T (0−) = T (0+) = 0 and always-takers such that T (0−) = T (0+) = 1 (Imbens &
Angrist, 1994). Assumption 1.3 states that the conditional expectations of the potential
outcomes for compliers (respectively for always-takers and for never-takers) are continuous
at the cutoff (Imbens & Lemieux, 2008). Last, Assumption 1.4 ensures that the propor-
tions of compliers, never-takers and always-takers are the same just below and just above
the threshold, so that the change in the take-up rate at the cutoff equals the proportion
of compliers (at the cutoff). In their seminal paper, instead of Assumptions 1.3 and 1.4,
Hahn et al. (2001) assume a local independence condition that ensures the continuity of
the average treatment effects and of the proportions of compliers, never-takers and always-
takers around the threshold.6 Here we directly state our assumptions in term of continuity
of the potential outcomes and of the types proportion, as in Assumption E in Rokkanen
(2015) or Assumption 1 in Gerard et al. (2015). Under Assumption 1, the law of iterated
expectation applied to E(Y |Z∗ = 0±) ensures that the Local Average Treatment Effect
(LATE, see Imbens & Angrist, 1994 and Hahn et al., 2001),

θ = E
[
Y (1)− Y (0)|Z∗ = 0, T (0+) = 1, T (0−) = 0

]
, (2.1)

is equal to a Wald’s ratio:
E(Y |Z∗ = 0+)− E(Y |Z∗ = 0−)

E(T |Z∗ = 0+)− E(T |Z∗ = 0−)
.

It follows that if the joint distributions of (Y, Z∗) and (T, Z∗) are identified, θ is identified.
In this paper, our general framework is less favorable: we observe a proxy variable of Z∗.

6We refer here to Theorem 3 of Hahn et al. (2001).
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2.2 Measurement error

We denote Z the noisy measure of the true running variable Z∗. We adopt the following
assumptions on the measurement error generating process:

Assumption 2 (Non-differential Continuous Measurement error)

1. The measurement error is non-differential: Z ⊥⊥ (T, Y (0), Y (1))|Z∗.

2. Z|Z∗ = z∗ admits a continuous density with respect to the Lebesgue measure for all
z∗.

The first part of this assumption states that the noisy measure does not yield any supple-
mentary information on the treatment status or outcomes of interest if information on the
true running variable is available (Bound et al., 2001). Classical measurement error, where
Z = Z∗ + ε with ε is independent of (T, Y (0), Y (1), Z∗), verifies this assumption. More
generally, if Z = h(Z∗, ε) with h an unknown function and ε ⊥⊥ (T, Y (0), Y (1), Z∗), such
assumption also holds.
The second part of Assumption 2 specifies that the measurement error is continuous. In the
RD context, where Z∗ is a continuous variable, assuming that the measurement variable
is continuous seems a natural starting point. Indeed, it is empirically relevant in many
contexts: when the running variable is the score to test A and only scores to test B are
observed, when the running variable is the population size of a given area at date t and only
size at date t− 1 is observed, when the running variable is total income and only taxable
income is observed... The assumption of continuity makes our approach complementary
to Battistin et al. (2009) and Dong (2014). Battistin et al. (2009) considers contaminated
data, where only a fraction of the data is observed with error. Dong (2014) considers
that the running variable is rounded. In practice, the econometrician may apply each
methodology depending on the type of error at hand. Note that our main identification
result can be extended to situations with noncontinuous measurement error. However, the
completeness assumption presented below, and which is essential to our result, is more
likely to hold when measurement error is continuous. That is why we prefer to assume
continuity in the first place.

2.3 Lack of identification

When the measurement error in the running variable is continuous, it is known that the
identification of the LATE fails (see for example the formal discussion of the consequences
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of classical measurement error in the Appendix of Battistin et al., 2009). Intuitively, when
the econometrician only observes the noisy variable, it is no longer possible to isolate indi-
viduals whose true running variable is just above or just below the cutoff. More precisely,
Proposition 1 below states that non-differential continuous measurement error in the run-
ning variable smooths out the discontinuity in the take-up rate (as a function of the noisy
variable) at the cutoff. Consequently, the denominator of the previous naive Wald ratio
E(T |Z = 0+)− E(T |Z = 0−) is equal to zero.

Proposition 1 (Continuity of the take-up and of the marginal density)
Under Assumption 2, if the measurement error is such that E

(
supz fZ|Z∗(z)

)
< ∞, then

both functions z 7→ E(T |Z = z) and z 7→ fZ(z) are continuous on the interior of the
support of Z.

The proof of Proposition 1 is a direct application of the dominated convergence theorem.
Our function of interest verifies:

E[T |Z = z]fZ(z) = E[E[T |Z∗ = z∗, Z = z]|Z = z]fZ(z)

= E[E[T |Z∗ = z∗]|Z = z]fZ(z)

=
∫
E[T |Z∗ = z∗]fZ|Z∗=z∗(z)fZ∗(z

∗)dz∗,

where we use that the error is non-differential (Z ⊥⊥ T |Z∗). We also have:

fZ(z) =
∫
fZ|Z∗=z∗(z)fZ∗(z

∗)dz∗ .

The dominated convergence theorem then ensures that z 7→ E[T |Z = z]fZ(z) and z 7→
fZ(z) are both continuous for all z. As a consequence, z 7→ E[T |Z = z] is continuous on
any interior point of Supp(Z).

Similarly, the expectation of the outcome conditional on the noisy variable is continuous
at the cutoff and the numerator of the Wald ratio is zero. As a consequence, the naive
estimator of the LATE, where the running variable is just proxied by the noisy variable,
features pathological properties (see Proposition 2 in the Appendix). This contrasts with
the consequences of covariate measurement error in a treatment effect analysis relying
on conditional independence assumptions, for example matching estimators (Battistin &
Chesher, 2014). In such an analysis, ignoring measurement error leads usual estimators to
converge at the standard rate to a biased value. The asymptotic bias can be approximated
at the first order when the measurement error variance goes to zero, and the bias becomes
negligible for sufficiently small variance of measurement error. In such a context, Bat-
tistin & Chesher (2014) advocate to perform sensitivity analysis based on bias correction.
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Proposition 2 in the Appendix shows that continuous measurement error in the running
variable has more adverse consequences: even a very small variance of the measurement
error results in the inconsistency of the usual estimator. The strategy followed by Battistin
& Chesher (2014) cannot be applied in our context. Our situation is similar to what hap-
pens for a two-stages least squares estimation where the instrument is uncorrelated with
the endogenous variable (the denominator of the estimator tends to zero).
The result of Proposition 1 also contrasts with what happens when the data are only con-
taminated, i.e. when only a fraction of the data is observed with error. Battistin et al.
(2009) show that, provided that the measurement error is non-differential, the LATE is
identified in contaminated data and the usual naive Wald estimator is consistent. Intu-
itively, when a fraction of individuals is observed without error, there is still a discontinuous
jump in the take-up rate at the cutoff. Ironically, the asymptotic theory reveals that small
continuous measurement errors in the running variable for all individuals have more dra-
matic consequences on identification than large errors on a fraction of the data.
Lastly, when the measurement error is continuous, the marginal density of the noisy run-
ning variable Z is also continuous (see Proposition 1). This means that the widely used
McCrary test of non-manipulation of the observed noisy running variable never rejects the
null hypothesis of non-manipulation (McCrary, 2008). Similarly, the continuity of the con-
ditional expectation of the covariates with respect to the mismeasured running variable can
never be rejected.7 The presence of continuous measurement error has also consequences
on the econometrician’s ability to evaluate the credibility of the RD design.
In the next section, we show that if auxiliary information is available on the treated (and
only on the treated), we are able to identify the LATE and the density of the true running
variable Z∗. Namely, the identification of the density Z∗ allows to investigate manipulation
behaviors, revealed by discontinuities of fZ∗ , as in McCrary (2008).

3 Identification with auxiliary information

To recover the identification of the LATE in the presence of continuous measurement errors
in the running variable, we rely on an auxiliary sample of treated individuals, for whom
we observe both the noisy and the true running variables (Z,Z∗). Such auxiliary data is
particularly informative when there are treated individuals at any value of the true running
variable (large support condition). In this section, we first state the assumptions necessary
to derive our identification result and discuss empirical applications where they are likely

7This is true as long as the measurement error is non-differential in the most general terms: for any
covariate X, if Z ⊥⊥ X|Z∗ then under the weak regularity conditions given in Proposition 1, z 7→ E(X|Z =
z) is continuous.
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to hold. Second, we present our main identification result.

3.1 Assumptions

Assumption 3 (Observation from the data)
FY,T,Z is identified by the observation of a main iid sample and FZ,Z∗|T=1 is identified by
the observation of an auxiliary iid sample of treated units.

Assumption 3 holds when we observe a sample of (Y, Z, T, TZ∗), i.e. when the auxiliary
sample is a subset of the main sample and when we can match the two samples. However
Assumption 3 is more general: samples may not be nested.8 Observing the true running
variable for the treated naturally occurs when individuals apply voluntarily to an inde-
pendent agency in order to be treated and then, declare their running variable on their
application form. In such a context, it is likely that the agency in charge of the treatment
checks the eligibility conditions and keeps a record of the correct running variable for the
treated. The agency data can then be matched with the main sample to obtain the joint
distribution of Z,Z∗ for the treated individuals. Many programs, which could be evaluated
in RD designs, feature this institutional process: means-tested treatment as in Hullegie &
Klein (2010), conditional subsidies to firms as in Cahuc et al. (2014), unemployment in-
surance as in Section 5 etc.

Assumption 4 (Large support condition/ two-sided fuzzy RD design)
For any z∗ ∈ Supp(Z∗), P(T = 1|Z∗ = z∗) > 0

This support condition on the take-up (propensity score) states that there are treated
individuals on the whole support of the true running variable. We refer hereafter to this
Assumption as two-sided fuzzy Regression Discontinuity, to convey the idea that there
are treated individuals on both sides of the threshold. Combined with Assumption 3,
Assumption 4 implies that the econometrician observes the distribution of the measurement
error for any value of the true running variable. As a result, the identification of the
LATE, proposed below, will not need any parametric assumptions on the measurement
error structure.
Assumption 4 rules out one-sided RD, i.e. when P(T = 1|Z∗ < 0) = 0, such as sharp RD.
It also rules out designs where there exists η < 0 such that P(T = 1|Z∗ < η) = 0. We adapt

8Note that we cannot adopt the approach of Chen et al. (2005) who also use information from an
auxiliary sample to recover identification in the presence of measurement errors. Their approach require
that the auxiliary sample identifies FY,T,Z∗|Z . However, our auxiliary sample is less informative, as it
is restricted to treated individuals and it does not contain the outcome variable. Note also that the
approach of Chen et al. (2005) requires a parametric model for T (z∗), while we do not need any parametric
assumption here.
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our method to these designs in our working paper (Davezies & Le Barbanchon, 2014). In
such designs, the auxiliary data is less informative and we need parametric assumptions
on the measurement error structure, as in Hullegie & Klein (2010) or Pei (2011). Namely,
we assume classical measurement error, where Z = Z∗+ ε with Z∗ and ε independent, and
we use a deconvolution argument to restore identification.
Two-sided fuzzy designs occur when the treatment eligibility is granted to individuals
satisfying at least one condition among several criteria. Let us consider an agency deliv-
ering a program if one of the two running variables (Z∗ or S∗) crosses the 0-threshold:
T = max (1(Z∗ > 0),1(S∗ > 0)). When the econometrican observes only a proxy Z of Z∗

and has no information on the second criteria S∗ for the whole population, the support con-
dition is verified provided that 0 is an interior point of Supp(S∗|Z∗ = z∗) for all z∗. Our
application in Section 5 illustrates this situation: eligibility to unemployment insurance
depends on several criteria, but we only observe one of them.
Two-sided fuzzy designs also occur more generally when the discontinuous rule is an in-
strument for a “second-round” treatment. Let us take the example of the estimation of the
returns to schooling. The treatment is defined as attending school during an extra year
(Card, 2001). It is often the case that reductions in tuition fees are granted if the parents’
income are below a given threshold. This rule generates a discontinuity in the take-up rate
at the parents’ income cutoff, although some kids above the threshold attend school for
an extra year anyway (Assumption 4 holds). Because schools usually record the income
of the parents of the current pupils, Assumption 3 holds. However, the income for former
pupils who stopped schooling, could only be proxied by the parents’ income observed in
the school records of the previous year (Assumption 2 holds). Alternatively the income for
former pupils could be observed in another dataset and probably with error.
The example of the estimation of the returns to schooling highlights that our Assumptions
are likely to hold in the general case when individuals (or firms) select themselves into
the treatment, whose cost is a discontinuous function of a private information Z∗, only
disclosed for the treated.
Lastly, we make the following technical assumption, which is untestable without supple-
mentary restrictions (Canay et al., 2013).

Assumption 5 (Completeness Condition)
∀g such that E(|g(Z∗)|) < +∞, E (g(Z∗)|Z) = 0⇒ g = 0.

Assumption 5 means that there is enough variation in Z to identify g ∈ L1(Z∗) when we
observe E(g(Z∗)|Z). Note that, given Assumptions 2 and 4, the completeness condition
also holds conditional on treatment T = 1, which is used in the proof of Theorem 1.9

9Consider g such that E(|g|(Z∗)|T = 1) <∞ and E(g(Z∗)|T = 1, Z) = 0 and let g̃(Z∗) = g(Z∗)E(T |Z∗).
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Assumption 5 is common in the nonparametric IV framework (Newey & Powell, 2003) or
in models with measurement error (Hu & Schennach, 2008). It means that the mapping
from the unknown distribution of Z∗ to the observed distribution of Z is injective. It
generalizes the rank condition necessary for identification of the distribution of Z∗ when
random variables Z∗ and Z have finite support.10 Examples of data generating processes
such that the completeness condition holds can be found in Newey & Powell (2003) and
D’Haultfœuille (2011). Let us detail some examples. A first example is a Berkson type
error model: Z∗ = Z + η with η ⊥⊥ Z, where η has a nonzero characteristic function
and has heavy tails (see Wansbeek & Meijer, 2000, Section 2.5 for a simple exposition of
Berkson’s model or the original paper of Berkson, 1950). This type of error arises when the
econometrician imputes the running variable, such that Z = E(Z∗|X) whereX are observed
covariates. The underlying imputation model is then Z∗ = E(Z∗|X)+η with η ⊥⊥ X, which
follows the Berkson type error structure. Second the standard classical measurement error
model Z = Z∗ + ε with ε ⊥⊥ Z∗ also verifies the completeness condition under regularity
condition on the distribution of ε. The more general error model Z = µ (ν(Z∗) + ε) with
ε ⊥⊥ Z∗, ensures that Assumption 5 holds, provided that µ and ν are bijective and the
Fourier transform of ε has isolated zeros (see Proposition 2.4 in D’Haultfœuille, 2011).

3.2 Main identification result

Theorem 1 (Identification of FZ∗,Z,T,Y and of the LATE θ)
Under Assumptions 1, 2, 3, 4 and 5, the joint distribution of (Z∗, Z, T, Y ) and the LATE
θ are identified.

The complete proof of the identification of the joint distribution (Z∗, Z, T, Y ) and of the
LATE is reported in the Appendix. We now briefly give some guidelines about the identi-
fication of the LATE θ.
To identify θ, we need to identify P(T = 1|Z∗ = z∗) = p(z∗) and E(Y |Z∗ = z∗) = m(z∗)

in the neighborhood of z∗ = 0. Under Assumption 2, we have E(T |Z,Z∗) = p(Z∗),
E(Y |Z,Z∗) = m(Z∗) and E(Y |Z) = E(m(Z∗)|Z). Next, under Assumptions 2 and 4, the
law of iterated expectation ensures that m and p are solutions of the following moment

Assumption 4 ensures that g = 0 if and only if g̃ = 0. The law of iterated expectation and Assump-
tions 2 and 4 ensure that E(|g̃|(Z∗)) = E(|g|(Z∗)T ) = E(|g|(Z∗)|T = 1)E(T ) < ∞ and E(g̃(Z∗)|Z) =
E(g(Z∗)E(T |Z,Z∗)|Z) = E(g(Z∗)|Z, T = 1)E(T |Z) = 0. The completeness condition ensures that g̃ = 0
and we conclude that g = 0.

10If Z and Z∗ were discrete, the rank condition writes rk[P(Z∗ = i|Z = j)]i=1,...,I,j=1,...,J = I where I
is the cardinality of the support of Z∗.
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conditions:

E
(

T

p(Z∗)
|Z
)

= E
(
E
(

T
p(Z∗)
|Z,Z∗

)
|Z
)

= 1 (3.1)

E
(
Tm(Z∗)

p(Z∗)
|Z
)

= E
(
E
(
Tm(Z∗)
p(Z∗)

|Z,Z∗
)
|Z
)

= E(Y |Z) (3.2)

The left hand side of these equations can not be directly estimated, because the joint
distribution of (Z,Z∗, T ) is not directly identified from the data. But using again the law
of iterated expectation, these equations are equivalent to:

E
(

1

p(Z∗)
|T = 1, Z

)
=

1

E(T |Z)
(3.3)

E
(
m(Z∗)

p(Z∗)
|T = 1, Z

)
=

E(Y |Z)

E(T |Z)
(3.4)

Under Assumption 3, the right-hand sides of these equations are identified because the
distribution of (Y, T, Z) is identified from the data. Moreover, for given p and m the left-
hand sides are also identified because the distribution of (Z∗, Z)|T = 1 is identified from
the auxiliary sample. Assumptions 4 and 5 then ensure that 1/p(z∗) and m(z∗)/p(z∗) are
identified and then, m(z∗), p(z∗), and finally θ are identified.
The first moment condition (3.1) is close to the one used by D’Haultfœuille (2010) in
a different framework, namely in a sample selection model. Applying Theorem 2.3 of
D’Haultfœuille (2010) would actually yield the identification of p(Z∗). On the contrary,
the second moment condition (3.2) differs from D’Haultfœuille (2010) and the proof of
identification of θ and of the full distribution (Y, T, Z, Z∗) is more involved in this case.

Theorem 1 also allows the econometrician to adapt the usual tests of the RD assumptions,
when there is continuous measurement error in the running variable. McCrary (2008)
proposes to test for the presence of discontinuity in the density of the running variable at
the threshold. Theorem 1 actually implies that the density of the true running variable is
identified. The intuition is as follows. Recall that P(T = 1|Z∗ = z∗) = p(z∗) is identified
by the moment condition (3.1) and that fT=1(z∗) and P(T = 1) are observed. Then, the
Bayes formula, together with the support condition, yields the identification of fZ∗(z∗):

fZ∗(z
∗) =

P(T = 1)

P(T = 1|Z∗ = z∗)
fZ∗|T=1(z∗). (3.5)

The full adaptation of the McCrary test involves taking into account the uncertainty as-
sociated with the estimation of the conditional take-up rate, which is out of the scope of
this paper.
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4 Nonparametric estimation

We now propose an estimation strategy of the LATE, based on our identification result.
Our identification strategy relies on conditional moments being equal to zero. Hence,
following Ai & Chen (2003), Newey & Powell (2003), Blundell et al. (2007), Chen (2007),
and Chen & Pouzo (2012), we adopt a sieve estimator. First, we prove the consistency of
our estimator. Second, we perform Monte-Carlo simulations to illustrate its finite sample
performance.

4.1 Consistency

The LATE depends on the values in the neighborhood of 0 of three functions: p(z∗) =

E(T |Z∗ = z∗), m0(z∗) = E(Y |T = 0, Z∗ = z∗) and m1(z∗) = E(Y |T = 1, Z∗ = z∗). It
writes:

θ0 =
m0(0+) [1− p(0+)] +m1(0+)p(0+)−m0(0−) [1− p(0−)]−m1(0−)p(0−)

p(0+)− p(0−)

In this section, we write the LATE as a function of both m0 and m1, whereas in the
previous section it is written as a function of m(z∗) = E(Y |Z∗ = z∗) only. Accordingly, we
adapt the moment conditions (3.3) and (3.4) to identify the three functions p, m0 and m1.
Denoting W = (T, Z, Z∗, Y ), the conditional moment conditions write:

E(ρp(W ; p)|Z) := E(T/p(Z∗)− 1|Z) = 0 (4.1)

E(ρ0(W ; p,m0)|Z) := E(m0(Z∗)(1/p(Z∗)− 1)T − Y (1− T )|Z) = 0 (4.2)

E(ρ1(W ;m1)|Z) := E((m1(Z∗)− Y )T |Z) = 0 (4.3)

The moment condition (4.1) is the same as the moment condition (3.1). The moment
conditions (4.2) and (4.3) are obtained following the same lines as in the proof of Theorem
1.11 Note that rewriting the moment conditions into three components shows that m1 can
be estimated separately from p and m0. This is particularly useful when the auxiliary data
also include the outcome variable: FY,Z,Z∗|T=1 is identified. Then m1 can be estimated by
local linear regression of Y on Z∗ on the sample of treated individuals, while the conditions
(4.1) and (4.2) are sufficient to estimate p and m0.

11Indeed, for any function g(Y, T ) we have: E
(

TE(g(Y,T )|Z∗)
p(Z∗) |Z

)
= E(g(Y, T )|Z). The moment condition

(4.2) corresponds to g(Y, T ) = Y (1− T ) and the moment condition (4.3) corresponds to g(Y, T ) = Y T .

13



The previous identification conditions ensure that

Q(p̃, m̃0, m̃1) := E
(
E (ρp(W ; p̃)|Z)2)+ E

(
E (ρ0(W ; p̃, m̃0)|Z)2)+ E

(
E (ρ1(W ; m̃1)|Z)2)

is null only for (p̃, m̃0, m̃1) = (p,m0,m1). Our estimation strategy is based on the minimiza-
tion of an empirical counterpart of Q. We consider a sieve GMM estimator of (p,m0,m1)

(or equivalently a sieve minimum distance estimator, see Chen (2007), Section 2.2.4).

First, we define series estimators of the conditional moments. Let us denote S and Sa

the main and auxiliary samples of Assumption 3 with respective sizes n and na. Let Ipn,na
(respectively I0

n,na and I
1
n,na) be a sequence of finite dimensional subspaces of L∞(Z), such

that
⋃
n,na
Ipn,na is dense in L∞(Z) for the supremum norm. Let lp(n, na) be the dimension

of Ipn,na . Let Bp(z) = (bp1(z), ..., bplp(n,na)(z)) (respectively B0(z), B1(z)) be a row vector of
elements of L∞(Z) such that span(Bp) = Ipn,na . The series estimator of E(ρj(W )|Z = z)

based on Bj (for j = p, 0, 1) is:

Ê(ρj(W )|Z = z) = Bj(z)Ê(Bj′(Z)Bj(Z))−1Ê(Bj′(Z)ρj(W )).

It is natural to choose Ê(Bj′(Z)Bj(Z)) as the empirical mean in the main sample. We
can define two functions qj(z∗) and rj(y, t) such that ρj(W ) = qj(Z

∗)T + rj(Y, T ). Then a
consistent estimator for Ê(Bj′(Z)ρj(W )) is:

Ê(Bj′(Z)ρj(W )) =

(
1

n

∑
i∈S

Ti

)(
1

na

∑
i∈Sa

Bj′(Zi)qj(Z
∗
i )

)
+

(
1

n

∑
i∈S

Bj′(Zi)rj(Yi, Ti)

)

Given the above definition of series estimators, the sieve-GMM estimator (p̂, m̂0, m̂1) is the
solution to the following minimization program:

min
(p,m0,m1)∈Hn,na

Q(n,na)(p,m0,m1) := min
(p,m0,m1)∈Hn,na

∑
j=p,0,1

1

n

∑
i∈S

Ê(ρj(W ; p,m0,m1)|Z = Zi)
2,

where Hn,na = Hp
n,na ×H

0
n,na ×H

1
n,na is a sequence of finite dimensional functional spaces

such that
⋃
n,na
Hn,na is dense for a given norm in H = Hp × H0 × H1, a functional

space containing (p,m0,m1). To avoid that the minimization of Qn,na gives an infin-
ity of solutions, we impose that dim(Ipn,na) ≥ dim(Hp

n,na), dim(I0
n,na) ≥ dim(H0

n,na) and
dim(I1

n,na) ≥ dim(H1
n,na).

The convergence of (p̂, m̂0, m̂1) depends on the rate of uniform convergence in probability
of Qn,na towards Q, which we control assuming the following regularity conditions on
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the data generating process. In the following assumptions, f(z) ∼z↓0 g(z) means that
f(z) = g(z)× (1 + o(1)) where o(1) is a function tending to 0 when z decreases to 0.

Assumption 6 (Regularity Conditions)

1. The support of Z∗ is [−1; 1],

2. The conditional probability p(z∗) = P (T = 1|Z∗ = z∗) is bounded below by a known
constant c > 0, and m0 and m1 are bounded by a known constant c,

3. p, m0 and m1 are continuously differentiable on [−1; 0[ and on ]0; 1] and their first
derivatives are bounded by a known constant C,

4. The random variable Z admits a density fZ with a compact support [l;u], such that fZ
is bounded below on any compact included in ]l;u[, and such that it exists Cu, Cl > 0

and αu, αl ≥ 0 such that:

fZ(u− z) ∼z↓0 Cuzαu and fZ(l + z) ∼z↓0 Clzαl ,

5. The conditional distribution of Z∗|Z admits a density fZ∗|Z with respect to the Lebesgue
measure and it exists K > 0, κ ≥ 0 such that for any δ > 0 and any z, z′ ∈]l+δ;u−δ[∫

|fZ∗|Z=z(z
∗)− fZ∗|Z=z′(z

∗)|dz∗ ≤ K|z − z′|δ−κ.

Assumption 6.1 essentially means that Z∗ has a compact support, which comprises the
discontinuity threshold. The choice of [−1; 1] is a normalization that can be assumed
without loss of generality.
Assumption 6.2, which implies a reinforcement of the support condition (Assumption 4),
and Assumption 6.3 define the space H containing ξ = (p,m0,m1).12 Assumptions about
bounds for (p,m0,m1) and their derivatives ensure that (p,m0,m1) belongs to a compact.13

Such a compactness assumption has two advantages. First, (p,m0,m1) is a well-separated
minimum of Q. This kind of property is necessary even in parametric framework (see for
instance Chapter 5.2 and Problem 5.27 of van der Vaart, 2000). Second, the compactness of

12Under Assumptions 6.2 and 6.3, the consistency of our estimator holds under the bounded completeness
condition, which is a weaker version of the completeness condition (Hu & Schennach, 2008, D’Haultfœuille,
2011). The bounded completeness condition holds if the implication in Assumption 5 holds for any bounded
function g(.).

13Compactness is defined relative to the topology of the uniform convergence (see the Arzela-Ascoli
Theorem).
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H ensures that our estimation strategy is a well-posed inverse problem.14 In nonparametric
frameworks, such a compactness assumption has been used by Ai & Chen, 2003 and Newey
& Powell, 2003 (cf. in particular Section 3 for more detailed explanations). Relaxing the
compactness assumption is possible using high level conditions as in Chen (2007), and/or
using penalization, or regularization, as suggested by Carrasco et al. (2007) or by Chen &
Pouzo (2012). Such an extension is out of the scope of this paper.
Assumption 6.4 is necessary to control the rate of uniform convergence of Qn,na to Q.
Burman & Chen (1989), Newey (1997), Huang (1998), Blundell et al. (2007), or Chen
& Pouzo (2012) use a stronger assumption, assuming that fZ is bounded below on its
support. In our framework, this is not a credible assumption, because measurement errors
entail that the density fZ converges to zero at the boundary of its support. For example,
in the case of classical measurement error, Z = Z∗ + ε with Z∗ and ε independent, with
convex compact support and fZ∗ and fε bounded below by positive constants on their
supports, fZ tends towards 0 at the bounds of its support. However, classical measurement
error verifies Assumption 6.4 with αu = αl = 1. More generally, Lemma A.1 in the
Appendix gives sufficient conditions to ensure simultaneously Assumptions 5, 6.4 and 6.5
when Z = µ(ν(Z∗) + ε) with µ and ν two increasing functions and ε ⊥⊥ Z∗.
Last, for the choice of Ipn,na presented below, Assumptions 6.4 and 6.5 altogether ensure
that E(ρp(W ; p)|Z = .) could be approximated uniformly in p ∈ Hp by an element of Ipn,na ,
and that similar approximations hold for E(ρ0(W )|Z = .) and E(ρ1(W )|Z = .).

In practice, we consider for H0
n,na the piecewise linear functions bounded by the known

constant c and with Lipschitz constant C. More precisely, it exists δ0, δ
0 (independent of

(n, na)), integers k0+
n,na , k

0−
n,na and knots (1 = z0+

k0+n,na+1
> z0+

k0+n,na
> ... > z0+

1 > z0+
0 = 0 =

z0−
0 > ... > z0−

k0−n,na
> z0−

k0−n,na+1
= −1) verifying δ0

k0±n,na
≤ |z0±

j − z0±
j−1| ≤ δ

0

k0±n,na
, such that:

H0
n,na =


f : ∃(a+

j )j=1,...,k0+n,na
, (a−j )j=1,...,k0−n,na

such that

f(z∗) = f(0+)1{z∗>0} +
∑k0+n,na

j=0 a+
j (z∗ − z0+

j )1{z∗−z0+j >0}

+f(0−)1{z∗<0} +
∑k0−n,na

j=0 a−j (z∗ − z0−
j )1{z−z0−j <0}

supz∗ |f(z∗)| < c and supz∗ |f ′(z∗)| < C


.

We obtain a sequence of such functional spaces H0
n,na by increasing the number of knots

with n and na. The union of the resulting sequence enables us to approach any function m0

verifying Assumptions 6.1, 6.2 and 6.3. Similar spaces are considered for H1
n,na , associated

with constants δ1, δ1 and k1±
n,na knots z1±

j . Hp
n,na is defined similarly except that the

14Under compactness of H, (p̃, m̃0, m̃1) ∈ H 7→ (E(ρp(W ; p̃)|Z),E(ρ0(W ; p̃, m̃0)|Z),E(ρ1(W ; p̃, m̃1)|Z))
is an homeomorphism and then admits a continuous inverse (see for instance: Theorem 26.6 in Munkres,
2000).
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condition supz∗ |f(z∗)| < c is replaced by c ≤ f ≤ 1.
Last, for Ipn,na (and similarly for I0

n,na , I
1
n,na), we consider linear splines with ln,na − 1

interior and approximatively equidistant knots on [l;u]. So it exist δ and δ (independent
of n, na) and knots (l = z0 < z1 < ... < zln,na = u) verifying δ

ln,na−1
≤ |zj − zj−1| ≤ δ

ln,na−1
,

such that:

Ipn,na =

{
f : ∃(aj)j=0,1,...,ln,na−1 such that

f(z) = a0 +
∑ln,na−1

j=1 aj(z − zj)1{z−zj>0}

}
.

The following Theorem ensures consistency of our estimator.

Theorem 2 (Consistency)
Under Assumptions 1, 2, 3, 4, 5 and 6, if n

na
→ λ ∈]0; +∞[, then:

θ̂ =
m̂0(0+)(1− p̂(0+)) + m̂1(0+)p̂(0+)− m̂0(0−)(1− p̂(0−))− m̂1(0−)p̂(0−)

p̂(0+)− p̂(0−)

converges in probability to θ0 if minj=p,0,1(kj+n,na , k
j−
n,na) → ∞ with maxj=p,0,1(dim(Ijn,na)) =

o(n1/(2+max(αu,αl))).

The proof of Theorem 2 is reported in the Appendix. In Theorem 2, we show that, when n
and na tend to infinity, the estimator (p̂, m̂0, m̂1) consistently estimates (p,m0,m1), if the
dimension of Hn,na tends to infinity and the dimension of Ijn,na (for all j = p, 0, 1) tends to
infinity sufficiently slowly. This last condition also constrains the increase in the dimension
of Hn,na , as dim(Ijn,na) ≥ dim(Hj

n,na) = kj+n,na + kj−n,na + 2. This means that the number of
knots needs to tend to infinity only at a o(n1/(2+max(αu,αl))) rate to ensure consistency of θ̂.
This is a lower rate than o(

√
n), the rate obtained under the assumption that the density

of Z is bounded below on its support (in that case αl = αu = 0). Here, the higher the
rate of decreasing of fZ at the boundaries of its support, the more we have to smooth the
estimation of p(.),m0(.) and m1(.) to ensure the consistency of θ̂.

Deriving the asymptotic behavior of θ̂ and the corresponding inference properties is left
for future research. In the application in Section 5, we use percentile bootstrap for in-
ference. Chen & Pouzo (2015) prove that bootstrapping is valid in sieve semi-parametric
IV estimation in a framework that slightly differs from ours. Adapting their result to our
framework is also left for future research.

Contrary to other sieve estimator in nonparametric IV frameworks, our parameter of inter-
est is local and we cannot expect its rate of convergence to be

√
n. Fundamentally, in a RD

design, even without measurement errors, the rate of convergence of the estimators of the
LATE depends on the local smoothness of z∗ 7→ E(Y |Z∗ = z∗) and z∗ 7→ E(T |Z∗ = z∗),
around the threshold. We thus provide, in the next section, Monte-Carlo simulations to
show the finite sample properties of our estimator.
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4.2 Monte-Carlo Simulations

In this section, we investigate the finite sample properties of our main sieve estimator
by Monte-Carlo simulations. We assume that Z∗ is uniformly distributed on [−1; 1] and
that P(T = 1|Z∗ = z∗) = 1/8 + 1/4Φ(5z∗) + 1/2 · 1{z∗ ≥ 0}, where Φ is the cdf of the
standard normal distribution. The conditional probability to be treated increases with
Z∗ from 1/8 in -1 to 7/8 in 1 and jumps from 1/4 to 3/4 when Z∗ crosses the threshold
0. Consequently, the proportion of compliers is 1/2 whereas always-takers (respectively
never-takers) represent 1/4 of the population. The DGPs of the potential outcomes are:

Y (0) = 4 + 3Z∗ + v0,

Y (1) = 1{CO}+ 3 · 1{AT,NT}+ 3Z∗ + v1,

where 1{CO} and 1{AT,NT} are dummies for the types of individuals (compliers and
always- or never-takers) with CO,AT,NT ⊥⊥ Z∗ and (v0, v1)|Z∗, CO,AT,NT ∼ N (0,Σ)

with Σ11 = Σ22 = 1
16

and Σ12 = 1
32
. The true LATE θ0 = E(Y (1) − Y (0)|Z∗ = 0, CO) is

then equal to 1− 4 = −3.
The noisy running variable is drawn from the following multiplicative process:

Z + 1 = (Z∗ + 1)(ε+ 1),

with ε uniformly distributed and independent of (Z∗, T, Y (0), Y (1)). To investigate the
impact of the size of the measurement error, we let the dispersion of ε vary. Below we
consider two cases: (i) small measurement error with ε ∼ U[−0.1;0.1], and (ii) large measure-
ment error with ε ∼ U[−0.2;0.2]. The dispersion of the small measurement error is half the
dispersion of the large error. In the Appendix, we also present simulations in the case of
additive classical measurement error.

Following the usual practice in RD-design, we first give a graphical illustration plotting esti-
mated take-up p̂(z∗) and estimated mean outcome m̂(z∗) = m̂1(z∗)p̂(z∗)+m̂0(z∗)(1−p̂(z∗)).
Figure 1 plots the take-up (upper panel) and the mean outcome (lower panel) conditional
on the true running variable, obtained with both our estimation and the naive estima-
tion ignoring measurement error, for two samples of 25,000 observations. The left panel
corresponds to a sample with a small measurement error (case (i)), while the right panel
corresponds to a sample with a large measurement error (case (ii)). Here, the naive es-
timates correspond to a local linear regression with a gaussian kernel on each side of the
threshold. Figure 1 illustrates that the discontinuity vanishes when measurement error is
ignored: dashed lines do not reproduce the discontinuity of full lines. The loss of disconti-
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nuity is clear in all graphs, except maybe in the left lower panel. When the measurement
error is small, the conditional expectation is steep at the cutoff value. Consequently, it
may appear as discontinuous if the bandwidth of the local linear regression is too large.
Figure 1 also illustrates that our proposed estimator is able to recover the discontinuity of
the true conditional expectation.

This first graphical illustration is not enough to investigate finite sample properties on θ̂,
which is our main parameter of interest. For various sample sizes (1000, 5000 and 25000),
we simulate 1000 samples according to the DGPs presented previously. For each sample,
we estimate the LATE θ with various methods. We consider two types of naive estimators
ignoring measurement error. The first naive estimator, denoted IK hereafter, is based on
local linear regressions, with an MSE-optimal choice of bandwidth proposed by Imbens &
Kalyanaraman (2012). The second one, denoted CCT hereafter, is a bias-corrected esti-
mator proposed by Calonico et al. (2014b). Both naive estimations are performed using
the Stata instruction rdrobust - provided by Calonico et al. (2014a) - with default op-
tions (in particular it uses Epanechnikov kernels). Concerning our sieve estimation derived
in Section 4, we choose the same space for Ipn,na , I

0
n,na and I1

n,na , namely linear splines
with equidistant knots on Supp(Z). Similarly, Hp

n,na , H
0
n,na and H1

n,na have the same
equidistant knots. The numbers of knots k are chosen such that dim(Ipn,na) = dim(Hp

n,na).
Consequently, all the functional spaces manipulated have the same dimension correspond-
ing to k + 2. We investigate how the finite sample properties of our estimators vary when
the number of knots k vary. When the number of knots is null, the estimated functions
p̂, m̂0 and m̂1 are linear on both sides of the threshold. When the number of knots is one
(resp. two), we allow for one (resp. two) change in slope on each side. Last, concerning
the bounds c, c, and C of functions in Hn,na , we choose 0.05, 15 and 10. Note that, given
the underlying DGP, every value lower than 1/8 is admissible for c, every value larger than
7 is admissible for c and every constant larger than max( 5

4
√

2π
, 3) ' 3.14 is admissible for

C.

Table 1 reports the average bias, variance, median and interquartile range of the LATE
estimates. Moreover for the naive estimates (IK and CCT), we report the average size of
the data-driven bandwidths (denoted hn for the bandwidth used in IK estimation and bn
for the supplementary bandwidth used to estimate asymptotic bias in CCT estimation).
Overall, the magnitude of the average bias of our estimators is below one, whatever the
size of the measurement error, the sample size or the number of knots. It outperforms
both naive estimators which are almost always over one in Table 1. The variance of our
estimator is always lower than the one of the naive estimators. Consistently with Propo-
sition 2, the mean bias and empirical variance of the IK estimator are quite erratic across
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Figure 1: Monte-Carlo simulations
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Notes: the panel plots the take-up (upper panel) and the mean outcome (lower panel) conditional
on the running variables. The left panel plots the simulations obtained with a small measurement
error, while the right panel corresponds to the case with large measurement error. On each
graph, we plot the true conditional expectation (E(T |Z∗) or E(Y |Z∗)), the naive estimation of
the conditional expectation obtained by ignoring measurement error (ÊLLR(T |Z) or ÊLLR(Y |Z))
and our sieve estimator (p̂(Z∗) = Ê(T |Z∗) or m̂(Z∗) = Ê(Y |Z∗)). The naive estimation relies
on a a standard local linear regression with bandwidth around 0.1, where Z∗ is directly replaced
by Z. Our sieve estimator is obtained with three positive and three negative knots. We select
for each column one simulation of the DGP described in section 4.2 with 25,000 observations.
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Table 1: Estimation of the LATE in finite samples, Multiplicative Error

A. Small Error, ε ∼ U[−0.1;0.1] B. Large Error, ε ∼ U[−0.2;0.2]

Sample Size Sample Size
Estimator Stat. 1000 5000 25000 1000 5000 25000

Bias -0.969 0.344 0.678 -0.009 0.681 0.806
Our (k = 0) Variance 10.63 1.009 0.024 2.818 0.127 0.018

Median -2.555 -2.381 -2.331 -2.410 -2.270 -2.191
IQ range 2.318 0.2874 0.149 0.794 0.246 0.165

Bias -0.530 0.351 0.512 -0.188 0.349 0.512
Our (k = 1) Variance 24.98 0.328 0.078 31.85 0.423 0.110

Median -2.740 -2.493 -2.443 -2.663 -2.482 -2.443
IQ range 1.343 0.538 0.328 1.344 0.767 0.460

Bias -0.738 0.074 0.172 0.249 0.142 0.174
Our (k = 2) Variance 325.0 0.578 0.097 943.9 2.639 0.573

Median -2.948 -2.756 -2.796 -2.426 -2.766 -2.778
IQ range 1.833 0.829 0.417 3.319 1.705 1.094

Bias 1.396 1.018 2.058 0.226 5.433 1.495
Variance 540.9 2083 1702 317.6 5975 284.1

Naive (IK) Median -2.477 -2.431 -1.811 -1.799 -1.629 -1.607
IQ range 1.964 2.574 2.865 3.056 3.104 3.004
Bdw. hn 0.276 0.179 0.115 0.292 0.209 0.156

Bias -71.33 -588.3 -15.35 0.599 738.3 -84.96
Variance 1×106 2×108 7×107 3×105 5×108 5×106

Naive (CCT) Median -2.501 -2.528 -2.174 -1.880 -1.887 -1.959
IQ range 2.438 2.681 2.556 2.931 3.079 2.966
Bdw. bn 0.508 0.423 0.352 0.535 0.449 0.363

Note: Computation obtained with 1000 simulations. The same set of simulations is used in each
column. For our estimators k is the common number of knots selected to defined our linear
splines. When k = 0, functions p, m0 and m1 are approximated by linear functions on [−1; 0]
and [0; 1]. When k = 1 (resp. 2), change in slope is allowed at −1/2 and 1/2 (resp. −2/3, −1/3,
1/3, 2/3). For the Naive estimators, (IK) is the estimator proposed by Hahn et al. (2001) using
the bandwidth hn proposed by Imbens & Kalyanaraman (2012) and (CCT) is the bias-corrected
estimator proposed by Calonico et al. (2014b) with bandwidth bn used to estimate asymptotic
bias of (IK).
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the Table. The variance and the interquartile range of the IK estimates do not tend to 0
with the sample size illustrating the lake of consistency of the IK estimator. According to
Proposition 2, the IK estimator is a Cauchy for large samples. Given our choice of DGPs,
we compute its theoretical median (-1.85 for the small error and -1.64 for the large one)
and interquartile range (2.93 for the small error and 3.06 for the large one).15 We verify
that the empirical median and its interquartile range in Table 1 are close to these limits.
Although we have no theoretical results on the limit distribution of the CCT estimator,
Table 1 confirms that it also behaves quite erratically. This is not surprising as the CCT
estimator corrects the IK estimates with an estimation of its asymptotic bias, which is not
well-defined in our case according to Proposition 2.

Table 1 informs us about the influence of the number of knots on our sieve estimator. For
sufficiently large sample size (5000 for the large error and 25000 for the small one), when
the number of knots k increases, the bias decreases and the variance increases, accordingly
to the usual influence of smoothing parameters on the trade-off between bias and variance.

In the Appendix, we report supplementary Monte-Carlo simulations. First, we explicitly
consider the case when the main and auxiliary samples are matched. As explained above,
we can estimate the conditional mean of the outcome on the treated m1 by a local linear
regression. The results are very close to those of our main sieve estimator (see Table 3 in
the Appendix). Second, we compare our main estimator to the Donut estimator sometimes
used in contexts with measurement error (see Barreca, Guldi, Lindo & Waddell, 2011 or
Dong, 2014). The Donut estimator corresponds to a naive estimator in a truncated sample.
Observations around the threshold (according to the noisy measure) are removed from the
estimation sample. The bias of the Donut estimator is large (around 2) and greater than
the bias associated with the naive estimators (see the last rows of Table 3 in the Appendix).
Third, we repeat all the previous Monte-Carlo exercises, replacing the multiplicative error
by an additive classical measurement error. Our estimator clearly outperforms the naive
estimators when the sample size is larger than 5,000. The influence of sample size on the
interquartile range is qualitatively similar to the case with multiplicative error, but sample
sizes have to be larger to get reliable estimates (see Tables 4 and 5 in the Appendix).

15These limits have been estimated using formula given in Proposition 2 and simulations based on 107

drawn. For these simulations, we first draw Z∗ in the distribution of Z∗|Z = 0 which is a truncated
exponential distribution for the multiplicative error. Next, we draw (Y, T ) in the distribution of (Y, T )|Z∗.
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5 Application

In this section, we use our method to evaluate of the effects of more generous unemployment
insurance (UI) on across-industries mobility. The Regression Discontinuity design has been
used by a significant number of papers to estimate the effect of UI (for example, Card et al.,
2007; Lalive, 2008). All these papers estimate the effect of an increase in potential benefit
duration for UI claimants. For example, Card et al. (2007) estimate the effect of increasing
the potential benefit duration from 20 to 30 weeks, using as a running variable the past
tenure of claimants. Our method enables us to go further and to estimate the effect
of UI at the extensive margin, i.e. the effect of having some UI benefits as opposed to
having no benefits at all. Usual RD designs that rely on UI data only, cannot answer this
question. Indeed, assessing the extensive margin requires not only data on unemployed
people eligible for benefits, but also data on unemployment people who do not qualify
for benefits. We thus need a broader data source, such as Social Security (SS) data. In
this data source, the running variables of the RDD (for example, past tenure) may be
observed with measurement error. For instance, it may be difficult to compute the UI-
agency definition of tenure in the SS data. Our approach addresses this measurement error
issue and we apply it to estimate the effect of UI in the French context. We first describe
the institutional context and data, and we then discuss our estimation results.

5.1 Institutions and data

In France, between 2003 and 2006, the unemployed were eligible for UI if they had worked
at least 182 days or 910 hours in the two years before becoming unemployed. When eligible,
the unemployed could draw benefits during 7 months.16 This UI eligibility rule naturally
generates a Regression Discontinuity design, as in Card et al. (2007). We can define two
running variables: Z∗ the past tenure in the last firm before becoming unemployed and S∗

the number of hours worked. As we do not observe S∗ in our data, the design is a priori
fuzzy with individuals treated on both sides of the 182 days cutoff. In addition, our design
has another source of fuzziness, as Z∗ only measures the tenure in the last job, while the
UI rules enable claimants to add up tenure in different firms to obtain eligibility. We verify
below that the design is indeed a two-sided fuzzy design with treated individuals at any
value of the running variable Z∗.

We match the French employment registers, i.e. Déclarations Annuelles de Données So-
ciales (DADS), with the administrative records of the Unemployment Insurance agency,

16The potential benefit duration increased to 23 months when the unemployed had worked at least 14
months before becoming unemployed.
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i.e. Fichier Historique (FH), at the individual level.17 From the DADS, we compute for
any worker separating from her firm, the past tenure in her last firm (Z) and the outcome
of interest (Y ) defined below. In the UI records, we observe for every claimant the past em-
ployment duration in the last job (Z∗) used by the UI agency to compute UI entitlement.18

Matching the two registers, we define T = 1 if the individual appears in the UI data and
starts a claim after her job separation. As a result, we observe the joint distribution of
(Y, Z, T, T × Z∗).

We now describe the DADS in greater detail and highlight some technical reasons for the
measurement error in employment duration. The DADS records, for every firm worker year
pair, the annual wage and the first and last dates of employment in the firm within the
calendar year. The DADS also records the number of hours worked, but the information is
missing for a large fraction of the records. The main use of the DADS is the computation
of a specific payroll tax -Contribution Sociale Généralisée (CSG)-, which is not affected by
the actual job duration. Consequently the administration does not make specific quality
controls on employment dates and employers have no monetary incentives associated with
the declaration of spells. We can thus expect that the employment dates provided are often
inaccurate and that the employment duration Z computed from them is measured with
error. There are also several technical reasons why the variable Z differs from the true
running variable, as defined by the UI agency. First, the DADS only contains the first and
last dates of employment in the firm within the calendar year. The difference between these
two dates is larger than the true past tenure, if individuals have several non-consecutive
spells in the same firm. Second, DADS dates are coded on a scale from 1 to 360, with
every month made up of 30 days. This recording type tends to underestimate the true
tenure. Third, errors in firm/worker identifiers make it difficult to follow individuals over
time, and lead us to underestimate past tenure.

From the DADS, we also compute our outcome (Y ), which relates to the mobility across
industries of the unemployed. It is equal to one, if the job-seeker finds a new job in the
same sector as her job before separation, and 0 otherwise.19 This is an important outcome,
because when cash-constrained individuals lose their jobs, UI may help them to wait for
high-paying jobs, making use of their sector-specific skills (Mortensen, 1977). Matching
job-seekers with jobs in the same sector as their previous jobs would probably lead to less
skill-mismatch, and provide a rationale for UI.

Our main sample comprises 382,037 workers who separate from their firms between 2003
17More precisely, we use a random subsample, comprising all individuals born in October of even years.
18We do not observe the number of hours worked in the data that the UI agency shared with us.
19Note that we observe job findings up to December 2004. Employers’ industries are split into 36 groups.
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and 2004. Out of these workers, 11.5% claim UI benefits. While this fraction may seem to
be low at first sight, one should keep in mind that the data do not allow us to concentrate on
lay offs. Many workers actually quit their job for a job-to-job transition and are therefore
not eligible for UI. Moreover, even eligible workers do not necessarily claim UI benefits, for
example if they fear the stigma associated with social insurance. Usual estimates of the
UI take-up rate in the U.S. range from 30% to 50% (Anderson and Meyer, 1997).

Around 20% of workers separating from their firms between 2003 and 2004 actually find a
job in the same sector by the end of December 2004. This low fraction does not necessary
mean that labor mobility across sectors is very high in France, as some workers do not find
any jobs at all before our data end. For these workers, we set Y = 0. An alternative strategy
would be to focus on workers who find a job before December 2004. However, we prefer
to analyze unconditional across-sector mobility, as mobility conditional on employment is
actually conditional on an endogenous outcome.

Figure 2 plots the take-up rate and the probability to find a job in the same sector, as
functions of the past tenure measured in the DADS (Z). Past tenure is centered on 182
days and divided by 182 days, so that the cutoff is equal to 0. Workers with one day of work
experience have Z close to −1 and workers who spend one year in their previous firm have
Z close to 1. We adopt this normalization in the remainder of the Section. In Figure 2,
we plot the estimates of E(T |Z) and E(Y |Z) using local linear regression with a Gaussian
kernel of bandwidth 0.1. The take-up rate slightly increases from 5% for workers with very
short past tenure to around 10% at the cutoff value. There is no significant discontinuity
at the cutoff value in the take-up rate.20 Consequently, a standard RD analysis fails to
identify any treatment effects. Similarly, there is no significant discontinuity in the mean
outcome at the cutoff value.

Before turning to the results obtained with our alternative method, we report in Figure 3
the density of the true running variable (Z∗) on the treated sample and the densities of
the proxy (Z) on both the treated and the non-treated sample. As the density of the true
running variable of claimants is strictly positive over its whole support, Assumption 4 is
verified (two-sided fuzzy RD design). The density of the proxy of the running variable for
UI claimants is shifted to the left of the density of the true running variable, highlighting the
extent of measurement error. The characteristics of the measurement error are investigated
further in the next section. The density of the mismeasured running variable on non-
claimants is further shifted to the left, reflecting selection into treatment. The unemployed
with lower tenure are less likely to be eligible to UI and claim benefits.

20The robust tests developed by Calonico et al. (2014b) do not reject the continuity of the take-up and
zero treatment effect at the 5% level.
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Figure 2: Policy effects retrieved from (Y,T,Z)

Source: DADS (Insee). Notes: This Figure plots the take-up rate (E(T |Z)) and the probability
to find a job in the same sector (E(Y |Z)), as functions of the past tenure measured in the DADS
(Z). Past tenure is centered on 182 days and divided by 182 days. Consequently the cutoff value
of UI eligibility is at 0. Estimates are obtained using local linear regressions with a Gaussian
kernel of bandwidth 0.1. Dashed lines represent 95% confidence intervals.
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Figure 3: Observed densities of the true running variable on claimants
and of its proxy on both claimants and non-claimants
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5.2 Results

Figure 4 plots our main estimation results: the take-up rate and the mean outcome, as
functions of the true running variable. Estimation is carried out along the lines of Section
4. The dimension of the sieve spaces is 3 on each side of the cutoff and we choose exactly
the same dimensions for our instruments. We use equidistant linear splines. Figure 4 also
plots 90% confidence intervals, obtained by bootstrap.

The left panel of Figure 4 clearly shows that there is a significant jump in the take-up
rate at the cutoff value. The fraction of claimants increases by 33 percentage points, from
34% to 67%. The right panel shows that the fraction of workers finding jobs in the same
sector increases from 6% to 25% at the cutoff value. This is a large increase, although
it is not statistically significant at the 10% level. The resulting LATE estimate is 56.7
percentage points. The lower bound of the confidence interval is 8.3, so that the LATE is
significantly different from 0. In sum, compliers who are induced to claim unemployment
benefits because their last job crosses the 182 days threshold and are entitled to 7 months
of benefits, are more likely to find a new job in their past industry. This result illustrates
the strength of our new method, as it would not have been obtained with a standard RD
design ignoring measurement error. Thus, unemployment insurance enables job-seekers to
find jobs in industries where they have already accumulated some specific human capital. In
other words, UI seems to limit downgrading effects associated with unemployment shocks.
However, low mobility across sector may also be inefficient, especially when the economy
is hit by permanent asymmetric shocks across industries and labor should be reallocated
across industries. Analyzing the efficiency consequences of this treatment effect is left for
future research.

To apply our identification strategy, we make a few assumptions. Some of these have
testable implications. For example, the non-differentiality of the measurement error implies
that there is no supplementary information in the noisy running variable about potential
outcomes, once we condition on the true running variable, especially for the treated sample.
Indeed, Assumption 2 implies that Y ⊥⊥ Z|Z∗, T = 1. We thus regress Y on Z and Z∗ in
the treated sample, where we observe all the variables, and test if the coefficient of Z is
equal to zero. Table 2 reports the estimation results and shows that we cannot reject the
non-differentiality of the measurement error at the 1% level in the treated sample.

Finally, one crucial assumption of the RD design is the absence of sorting around the cutoff.
McCrary (2008) develops a test of the manipulation of the running variable, based on the
absence of discontinuity in the density of the running variable. Actually, our methodology
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Figure 4: Policy effects retrieved from (Y, T, Z) and (Z,Z∗)|T = 1

Take-up: P(T = 1|Z∗) Average outcome: E(Y |Z∗)
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Data: DADS (Insee). Notes: This Figure plots the estimated treatment probability in the left
panel and mean outcome in the right panel, as a function of the true running variable (Z∗). The
cutoff value is 0. The dimension of each sieve subspace is 3. The functional basis is compounded
of linear splines with equidistant knots. 90% confidence interval are computed by bootstrap (100
replications) and plotted in dashed lines.

Table 2: Test of non-differential measurement error on the treated sample

Y
Z -0.00555

(0.00625)
Z∗ -0.0346***

(0.00658)
Constant 0.206***

(0.00363)
Observations 15,931
R-squared 0.002

Note: This Table presents the estimation results of the regression of Y on Z and Z∗ on the
treated sample. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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identifies the density of the true running variable. Figure 5 plots the estimated density
which does not feature bunching around the cutoff.

Figure 5: Estimated density of the true running variable on both
claimants and non claimants
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Source: DADS (Insee). Notes: This Figure plots the density of the true running variable (Z∗).
The cutoff value is 0. The bin width is 0.05. The Y-axis is the estimated fraction of the
population in each bin.

6 Conclusion

Continuous measurement errors in the running variable have dramatic consequences for the
identification of treatment effects in Regression Discontinuity designs. As soon as there
is no mass of individuals with correct values of their running variable, all discontinuities
are smoothed out in the noisy data. The usual estimator of the Local Average Treatment
Effect (LATE) is then inconsistent. In this paper, we proposed to take advantage of
naturally-occurring auxiliary data to recover identification. Agencies/institutions in charge
of delivering the treatment usually keep records of the correct running variable for the
treated individuals. Under the assumption of non-differential measurement error and under
a large support condition, the auxiliary information can be used to extrapolate the true
running variable distribution on the non-treated, and to identify the joint distribution of
the true running variable, the treatment and the outcomes. We then proposed a sieve
estimator of the LATE, showed its consistency and investigated its performance in finite

30



samples. We illustrated the usefulness of our method by applying it to the estimation of
the effect of receiving unemployment benefits.

31



A Appendix: Proofs

A.1 Proof of the inconsistency of the usual RD estimators

Proposition 2 Let us assume that Assumption 2 holds and that Z|Z∗ admits a twice
continuously differentiable density with respect to the Lebesgue measure (continuous mea-
surement error) such that E

(
supzf

(j)
Z|Z∗(z)

)
< ∞ for j = 1, 2. Moreover let us assume

that it exists δ > 2 such that E
(
|Y |δ

)
< ∞ and that z∗ 7→ E(Y 2|Z∗ = z∗) is bounded.

For a sample of n iid observations, for a decreasing sequence hn = O(n−1/5) and for any
K bounded, symmetric and nonnegative valued kernel with compact support, let the naive
adaption of the estimator of the Wald ratio based on local linear regression defined by:

θ̂naiveLLR =
a+
Y − a

−
Y

a+
T − a

−
T

, with a±U = arg min
α

min
β

n∑
i=1

(Ui − α− βZi)2K

(
Zi
hn

)
1{Zi ∈ R±}.

Then
θ̂naiveLLR

law−−−→
n→∞

C

where C is Cauchy of location Cov(Y,T |Z=0)
V(T |Z=0)

and scale
(

V(Y |Z=0)
V(T |Z=0)

− Cov2(Y,T |Z=0)
V2(T |Z=0)

)1/2

.

Let us introduce some notations:

B+ = 1
2

(
∫+∞
0 u2K(u)du)

2
−(
∫+∞
0 u3K(u)du)(

∫+∞
0 uK(u)du)

(
∫+∞
0 u2K(u)du)(

∫+∞
0 K(u)du)−(

∫+∞
0 uK(u)du)

2

B− = 1
2

(
∫ 0
−∞ u2K(u)du)

2
−(
∫ 0
−∞ u3K(u)du)(

∫ 0
−∞ uK(u)du)

2(
∫ 0
−∞ u2K(u)du)(

∫ 0
−∞K(u)du)−(

∫ 0
−∞ uK(u)du)

2

V + =
∫+∞
0 [(

∫+∞
0 s2K(s)ds)−(

∫+∞
0 sK(s)ds)u]

2
K(u)2du

fZ(0)
[
(
∫+∞
0 u2K(u)du)(

∫+∞
0 K(u)du)−(

∫+∞
0 uK(u)du)

2
]2

V − =
∫ 0
−∞[(

∫ 0
−∞ s2K(s)ds)−(

∫ 0
−∞ sK(s)ds)u]

2
K(u)2du

fZ(0)
[
(
∫ 0
−∞ u2K(u)du)(

∫ 0
−∞K(u)du)−(

∫ 0
−∞ uK(u)du)

2
]2

Under assumptions of Proposition 2, the dominated convergence Theorem ensures that fZ
and E(T |Z) are twice differentiable on the interior of the support of Z, similar reasoning
holds for E(Y 2|Z) and E(Y |Z), because E(Y 2|Z∗) and then |E(Y |Z∗)| are bounded. Then
Assumptions 1, 2, 3 and 5 of Hahn et al. (1999) hold.
The conditions on the kernel K ensure that Assumptions 4 of Hahn et al. (1999) holds.
Last, the condition E(|Y |δ|Z) <∞ of Proposition 2 ensure that E(|Y −E(Y |Z)|δ|Z) <∞,
which is a sufficient condition to Assumption 6 of Hahn et al. (1999), when δ ≥ 3.
Hence, we can directly use Lemma 1 to Lemma 7 of Hahn et al. (1999) when δ ≥ 3

and hn ∼ n−1/5. Moreover, their reasoning, which is based on Lyapounov’s central limit
Theorem, also holds for δ ∈]2; 3[ and all their asymptotic approximations are valid for
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hn = O(n−1/5). So, we obtain:

(nhn)1/2

(
â+Y − E(Y |Z = 0+)

â+T − P(T = 1|Z = 0+)

)
−n1/2h

5/2
n B+

(
∂2zE(Y |Z = 0+)

∂2zP(T = 1|Z = 0+)

)
→ N

(
0, V +

(
V(Y |Z = 0+) Cov(Y, T |Z = 0+)

Cov(Y, T |Z = 0+) V(T |Z = 0+)

))

(nhn)1/2

(
â−Y − E(Y |Z = 0−)

â−T − P(T = 1|Z = 0−)

)
−n1/2h

5/2
n B−

(
∂2zE(Y |Z = 0−)

∂2zP(T = 1|Z = 0−)

)
→ N

(
0, V −

(
V(Y |Z = 0−) Cov(Y, T |Z = 0−)

Cov(Y, T |Z = 0−) V(T |Z = 0−)

))

The symmetry of K ensures that B+ = B− and V + = V −. Moreover, the continuity of
z 7→ ∂2

zE(T |Z = z) on the interior of the support of Z ensures that ∂2
zE(T |Z = 0+) =

∂2
zE(T |Z = 0−) = ∂2

zE(T |Z = 0). Similar continuity argument holds for ∂2
zE(Y |Z = 0),

V(Y |Z = 0), Cov(Y, T |Z = 0), V(T |Z = 0) = E(T |Z = 0)(1 − E(T |Z = 0)), E(Y |Z = 0)

and E(T |Z = 0). The continuous mapping Theorem ensures that:

(nhn)1/2

(
â+
Y − â

−
Y

â+
T − â

−
T

)
→ N

((
0

0

)
, 2V +

(
V(Y |Z = 0) Cov(Y, T |Z = 0)

Cov(Y, T |Z = 0) V(T |Z = 0)

))

It follows that θ̂LLR tends in distribution to a Cauchy of location Cov(Y,T |Z=0)
V(T |Z=0)

and scale(
V(Y |Z=0)
V(T |Z=0)

− Cov2(Y,T |Z=0)
V2(T |Z=0)

)1/2

.

Finally we discuss how technical assumptions could be relaxed. The domination con-
dition E

(
supzf

(j)
Z|Z∗(z)

)
< ∞ for j = 1, 2 ensures that E(T |Z) are twice continuously

differentiable. Associated with the boundedness of E(Y 2|Z∗), this also ensures also that
E(Y |Z), E(Y 2|Z) and V(Y |Z) are twice differentiable. This domination condition is made
for technical convenience and can be replaced by alternative restrictions (see Davezies &
Le Barbanchon, 2014, Proposition 2.2). The condition E(|Y |δ) <∞ is mild but allows us
to apply the Lyapounov’s Central Limit Theorem to derive the asymptotic properties of
the estimator. If K is not symmetric, the limit distribution is no more a Cauchy but a
ratio of normal with non null expectation. It is well known that such ratio do not have
finite expectation. The assumption on the support of K is made for simplicity but can
also be relaxed with simple conditions on the tails of K.

A.2 Proof of Theorem 1

We first prove that P(T = 1|Z∗) = p(Z∗) is identified, following an argument of D’Haultfœuille
(2010). Let us consider the derivation of the following moment condition:

E
(

1

P(T = 1|Z∗)
|T = 1, Z

)
=

1

P(T = 1|Z)
. (A.1)
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Under Assumption 4, we can consider the following expectation:

E
(

T

P(T = 1|Z∗)
|Z
)

= E
(

1

P(T = 1|Z∗)
|T = 1, Z

)
P(T = 1|Z). (A.2)

We then apply the law of iterated expectation on the left-hand side of the previous equation
and simplify its expression using Assumption 2:

E
(

T

P(T = 1|Z∗)
|Z
)

= E
(
E
(

T

P(T = 1|Z∗)
|Z,Z∗

)
|Z
)

(A.3)

= E
(

E (T |Z,Z∗)
P(T = 1|Z∗)

|Z
)

(A.4)

= E
(

E (T |Z∗)
P(T = 1|Z∗)

|Z
)

(A.5)

= 1. (A.6)

Combining expressions A.2 and A.6 yields the moment condition A.1. Under Assumption
3, the right hand side of this equation is identified because the distribution of (Y, T, Z) is
identified from the main sample. Moreover, for any known function f , E(f(Z∗)|T = 1, Z)

is identified because the distribution of (Z∗, Z)|T = 1 is identified from the auxiliary data.
It follows that the region of identification of 1/p(z∗) is the set of functions f such that
E(f(Z∗)|T = 1, Z) = 1/E(T |Z). Suppose that there exist two functions f and g verifying
equation (A.1). Then their difference verifies: E(f(Z∗) − g(Z∗)|T = 1, Z) = 0. Using
Assumption 2 and the law of iterated expectation, we have: E((f(Z∗)−g(Z∗)).p(Z∗)|Z) =

E(f(Z∗)− g(Z∗)|T = 1, Z).P(T = 1|Z). This ensures that E((f(Z∗)− g(Z∗)).p(Z∗)|Z) =

0. Following the completeness condition (Assumption 5), this implies that (f(Z∗) −
g(Z∗)).p(Z∗) = 0. Because of the support condition, we obtain that f = g. The region of
identification reduces to one single element and p(Z∗) is identified.
For any function g, we now prove identification of E(g(Y, T )|Z∗ = z∗) = h(z∗). Let us
consider the derivation of the following moment condition:

E
(

h(z∗)

P(T = 1|Z∗)
|T = 1, Z

)
=

E(g(Y, T )|Z)

P(T = 1|Z)
. (A.7)

It follows the same steps as above. Under Assumption 4, we can consider the following
expectation:

E
(

h(Z∗).T

P(T = 1|Z∗)
|Z
)

= E
(

h(Z∗)

P(T = 1|Z∗)
|T = 1, Z

)
P(T = 1|Z). (A.8)

We then apply the law of iterated expectation on the left-hand side of the previous equation
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and simplify its expression using Assumption 2:

E
(

h(Z∗).T

P(T = 1|Z∗)
|Z
)

= E
(
E
(

h(Z∗).T

P(T = 1|Z∗)
|Z,Z∗

)
|Z
)

(A.9)

= E
(
h(Z∗).E (T |Z,Z∗)

P(T = 1|Z∗)
|Z
)

(A.10)

= E
(
h(Z∗).E (T |Z∗)
P(T = 1|Z∗)

|Z
)

(A.11)

= E (E(g(Y, T )|Z∗)|Z) (A.12)

= E (E(g(Y, T )|Z∗, Z)|Z) (A.13)

= E (g(Y, T )|Z) . (A.14)

Combining expressions A.8 and A.14 yields the moment condition A.7. We obtain that the
ratio h(z∗)/p(z∗) is identified. As p(z∗) is identified above, h(z∗) = E(g(Y, T )|Z∗ = z∗) is
identified. As this is true for any function g, the joint distribution of (Y, T )|Z∗ is identified.
This is sufficient to identify the Wald ratio θ.
Assumption 3 ensures that FZ|Z∗,T=1 is identified. And next, Assumption 2 ensures that
FZ|Z∗ is identified. Because FY,T |Z∗ and FZ|Z∗ are identified, FY,T,Z|Z∗ is also identified under
the Assumption 2. Identification of P(T = 1|Z∗) using Equation (A.1), identification of
FT and FZ∗|T=1 by Assumption 3 and the Bayes formula altogether ensure that FZ∗ is
identified. It follows that FZ∗,Z,T,Y is identified.

A.3 Discussion of Assumptions 5, 6.4 and 6.5

The following Lemma shows that Assumptions 5, 6.4 and 6.5 are compatible with classical
measurement error model, but more generally with a large class of measurement error
process.

Lemma A.1 (A Class of models of measurement error)
Let Z∗ a random variable with support [−1; 1] that admits a density fZ∗ with respect to the
Lebesgue measure such that fZ∗ is continuous on ]− 1; 1[.
Let ε a random variable with support [ε; ε] independent of Z∗ that admits a density fε with
respect to the Lebesgue measure such that fε admits a bounded total variation.
Let

Z = µ(ν(Z∗) + ε),

with ν an increasing and bounded C1 diffeomorphism from ] − 1; 1[ to ]ν; ν[ and µ an
increasing and bounded C1 diffeormorphism from ]ν + ε; ν + ε[ to ]l;u[.
Assume that it exists constants C±k > 0 and α±k such that for x ↓ 0:
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1. fZ∗(1− x) ∼ C+
1 x

α+
1 and fZ∗(−1 + x) ∼ C−1 x

α−1

2. (ν−1)′(ν − x) ∼ C+
2 x

α+
2 and (ν−1)′(ν + x) ∼ C−2 x

α−2 ,

3. (µ−1)′(ν + ε− x) ∼ C+
3 x

α+
3 and (µ−1)′(ν + ε+ x) ∼ C+

3 x
α−3

4. fε(ε− x) ∼ C+
4 x

α+
4 and fε(ε+ x) ∼ C−4 x

α−4 ,

5. α+
1 + α+

2 + α+
1 α

+
2 ≥ 0 and α−1 + α−2 + α−1 α

−
2 ≥ 0.

Assumptions 5, 6.4 and 6.5 hold with
αu = 1 + α+

1 + α+
2 + 2α+

3 + α+
4 + α+

1 α
+
2 + α+

1 α
+
3 + α+

2 α
+
3 + α+

1 α
+
2 α

+
3 + α+

3 α
+
4 ,

αl = 1 + α−1 + α−2 + 2α−3 + α−4 + α−1 α
−
2 + α−1 α

−
3 + α−2 α

−
3 + α−1 α

−
2 α
−
3 + α−3 α

−
4

and κ = max(αu − α+
3 , αl − α−3 , 0)−min(α+

3 , α
−
3 , 0)

as soon as αu ≥ 0 and αl ≥ 0.

If µ and ν admit derivatives bounded away from 0 with bounded variations, then Conditions
2 and 3 hold with α+

2 = α−2 = α+
3 = α−3 = 0. In that case, fZ∗ and fε fulfill the other

conditions as soon as:

- they admit non negative finite limits at the boundary of the support (i.e. uniform,
truncated normal, any continuous density bounded away from 0 with bounded vari-
ation close to the boundary of its support),

- or they admit limits 0 at the boundary of the support with a polynomial decay
(triangular, Beta distribution with parameter greater than 1)

- or they are any convolutions of such distributions.

Proof:
First note that fε has bounded variation and then is bounded, it follows that α+

4 ≥ 0 and
α−4 ≥ 0.
We first prove the completeness condition. Because ε has a bounded support, it has finite
exponential moment: E (|euε|) <∞ for any u ∈ C. Then u 7→ E (euε) is a Laplace-Fourier
transform with domain C. Any Laplace-Fourier transform on C is an entire function (see
for instance Schwartz (1997), Chapter VIII) and then admits only isolated zeros. Then,
Proposition 2.4 in D’Haultfœuille (2011) ensures that completeness condition holds.
Let fµ−1(Z) the convolution product of fν(Z∗)(v) = fZ∗(ν

−1(v))[ν−1]′(v) and fε, fµ−1(Z) is a
density with respect to the Lebesgue measure of µ−1(Z) = ν(Z∗) + ε.
Because fZ∗ , (respectively ν−1 and [ν−1]′) is continuous respectively on ]−1; 1[ (respectively
on the interior of ]ν; ν[), fν(Z∗)(v) is continuous on ]ν; ν[ and next is bounded on R as soon

36



as limx↑ν fν(Z∗) and limx↓ν fν(Z∗) are well defined and finite. For x ↓ 0: 1 − ν−1(ν − x) ∼
C+

2 x
α+
2 +1 and ν−1(ν − x) = 1− C+

2 x
α+
2 +1 + o(xα

+
2 +1) and then:

fν(Z∗)(ν − x) = fZ∗(ν
−1(ν − x))(ν−1)′(ν − x)

= fZ∗(1− C+
2 x

α+
2 +1 + o(xα

+
2 +1))× (C+

2 x
α+
2 + o(xα

+
2 ))

∼ C+
1 (C+

2 )α
+
1 +1xα

+
1 +α+

2 +α+
1 α

+
2 ,

and for x ↑ 0: fν(Z∗)(ν + x) ∼ C−1 (C−2 )α
−
1 +1xα

−
1 +α−2 +α−1 α

−
2 .

Then
∣∣fµ−1(Z)(v1)− fµ−1(Z)(v2)

∣∣ ≤ ||fν(Z∗)||∞
∫
|fε(v1 − u)− fε(v2 − u)|du. Because fε has

a bounded total variation,

V (e) = sup{
N∑
i=1

|fε(ei)− fε(ei−1)|;N ∈ N∗, e0 < e1 < ... < eN ≤ e}

is an increasing and bounded function which is null for e < ε and constant on ]ε; +∞[. Let
TV (fε) the total variation of fε, ie supe∈R+ V (e).Following the Jordan decomposition, let
f+
ε (e) = 1

2
(V (e) + fε(e)) and f−ε (e) = 1

2
(V (e)− fε(e)). This two functions are both non

decreasing functions such that fε(e) = f+
ε (e) − f−ε (e), f+

ε (e) = f−ε (e) = 0 for e < ε and
f+
ε (e) = f−ε (e) = TV (fε)/2 for e ≥ ε. Let f̃+

ε (e) = limx↓e f
+
ε (x) and f̃−ε (e) = limx↓e f

−
ε (x).

We always have the relations fε(e) = f̃+
ε (e) − f̃−ε (e), f̃+

ε (e) = f̃−ε (e) = 0 for e < ε and
f̃+
ε (e) = f̃−ε (e) = TV (fε)/2 for e ≥ ε but now the variation of f̃±ε can be expressed as
Lebesgue-Stieljes integrals:
f̃±ε (e1)− f̃±ε (e2) =

∫
1{e2≤x≤e1}df̃

±
ε (x).

For v1 > v2 we have:∫
|fε(v1 − u)− fε(v2 − u)| du =

∫
|fε(v1 − v2 + u)− fε(u)| du

≤
∫
f̃+
ε (v1 − v2 + u)− f̃+

ε (u)du

+
∫
f̃−ε (v1 − v2 + u)− f̃−ε (u)du

=
∫ (∫

1{u≤x≤v1−v2+u}df̃
+
ε (x)

)
du

+
∫ (∫

1{u≤x≤v1−v2+u}df̃
−
ε (x)

)
du

=
∫ (∫

1{x−(v1−v2)≤u≤x}du
)
df̃+

ε (x)

+
∫ (∫

1{x−(v1−v2)≤u≤x}du
)
df̃−ε (x)

= (v1 − v2)
(∫

df̃+
ε (x) +

∫
df̃−ε (x)

)
= (v1 − v2)

(
f̃+
ε (ε) + f̃−ε (ε)

)
= (v1 − v2)TV (fε).

37



And similar reasoning holds if v1 < v2 and thus:∫
|fε(v1 − u)− fε(v2 − u)| du ≤ TV (fε)|v1 − v2|.

It follows that fµ−1(Z) is Lipschitz continuous on ]ν + ε; ν + ε[. Because µ−1 and (µ−1)′ are
continuous on ]l;u[, fZ(z) = fµ−1(Z)(µ

−1(z))× |(µ−1)′(z)| is a density of Z, continuous on
]l;u[.
Because ν and µ are C1 diffeormorphisms, we have∞ > µ′ > 0,∞ > ν ′ > 0,∞ > (µ−1)′ >

0 and ∞ > (ν−1)′ > 0. For z ∈]l;u[, if fZ(z) = 0 we have successively:

(fν(Z∗) ? fε)(µ
−1(z)) = 0,∫

fν(Z∗)(µ
−1(z)− e)fε(e)de = 0,

fZ∗(ν
−1(µ−1(z)− e))fε(e) = 0, for almost all e ∈ [min(µ−1(z)− ν, ε); max(µ−1(z)− ν, ε)],

which contradicts the fact that the support of fZ∗ and fε are conex set [−1; 1] and [ε; ε].
So fZ(z) > 0 for almost all z ∈]l;u[ and continuous on ]l;u[, then fZ is bounded below on
any compact of ]l;u[.

To ensure that Assumption 6.4 holds, we have to derive the behavior of fZ at the boundary
of its support. We consider here the limit for z ↑ u, but similar reasoning holds for the
lower bound l. For x ↓ 0:

1− ν−1(ν − x) ∼ C+
2 x

α+
2 +1,

ν−1(ν − x) = 1− C+
2 x

α+
2 +1 + o(xα

+
2 +1)

fν(Z∗)(ν − x) = fZ∗(ν
−1(ν − x))(ν−1)′(ν − x)

= fZ∗(1− C+
2 x

α+
2 +1 + o(xα

+
2 +1))× (C+

2 x
α+
2 + o(xα

+
2 ))

∼ C+
1 (C+

2 )α
+
1 +1xα

+
1 +α+

2 +α+
1 α

+
2 ,

(fν(Z∗) ? fε)(ν + ε− x) = x
∫ 1

0
fν(Z∗)(ν − x+ vx)fε(ε− vx)dv

∼ C+
1 (C+

2 )α
+
1 +1C+

4 x
α+
4 +1+α+

1 +α+
2 +α+

1 α
+
2

∫ 1

0
(1− v)α

+
1 +α+

2 +α+
1 α

+
2 vα

+
4 dv

∼ C+
1 (C+

2 )α
+
1 +1C+

4 x
α+
4 +1+α+

1 +α+
2 +α+

1 α
+
2

Γ((1+α+
1 )(1+α+

2 ))Γ(1+α+
4 )

Γ((1+α+
1 )(1+α+

2 )+1+α+
4 )
,

µ−1(u)− (µ−1)(u− x) ∼ C+
3 x

α+
3 +1,

µ−1(u− x) = µ−1(u)− C+
3 x

α+
3 +1 + o(xα

+
3 +1)

= ν + ε− C+
3 x

α+
3 +1 + o(xα

+
3 +1),
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fZ(u− x) = (fν(Z∗) ? fε)(µ
−1(u− x))× (µ−1)′(u− x)

= (fν(Z∗) ? fε)(ν + ε− C+
3 x

α+
3 +1 + o(xα

+
3 +1))× (C+

3 x
α+
3 + o(xα

+
3 )

∼ C+
1 (C+

2 )α
+
1 +1C+

4 (C+
3 x

α+
3 +1)α

+
4 +1+α+

1 +α+
2 +α+

1 α
+
2

Γ((1+α+
1 )(1+α+

2 ))Γ(1+α+
4 )

Γ((1+α+
1 )(1+α+

2 )+1+α+
4 )
× C+

3 x
α+
3

∼ Cux
αu ,

with Cu = C+
1 (C+

2 )α
+
2 +1(C+

3 )2+α+
1 +α+

2 +α+
1 α

+
2 +α+

4 C+
4

Γ((1+α+
1 )(1+α+

2 ))Γ(1+α+
4 )

Γ((1+α+
1 )(1+α+

2 )+1+α+
4 )

and
αu = 1 + α+

1 + α+
2 + 2α+

3 + α+
4 + α+

1 α
+
2 + α+

1 α
+
3 + α+

2 α
+
3 + α+

1 α
+
2 α

+
3 + α+

3 α
+
4 .

Similar reasoning hold for the lower l. And then Assumption 6.4 holds.
We now prove that Assumption 6.5 holds.
Let δ > 0 and (z, z′) ∈ I = [l + δ;u − δ]. Let g(z) and g(z′) denote respectively
fµ−1(Z)(µ

−1(z)) and fµ−1(Z)(µ
−1(z′)). Let g(z|z∗) and g(z′|z∗) denote respectively fµ−1(Z)|Z∗=z∗(µ

−1(z))

and fµ−1(Z)|Z∗=z∗(µ
−1(z′)):

∫
|fZ∗|Z=z(z

∗)− fZ∗|Z=z′(z
∗)|dz∗ =

∫ ∣∣∣g(z|z∗)g(z)
− g(z′|z∗)

g(z′)

∣∣∣ fZ∗(z∗)dz∗
≤ 1

2

∣∣∣ 1
g(z)
− 1

g(z′)

∣∣∣× ∫ [g(z|z∗) + g(z′|z∗)] fZ∗(z∗)dz∗

+1
2

(
1
g(z)

+ 1
g(z′)

)
×
∫
|g(z|z∗)− g(z′|z∗)| fZ∗(z∗)dz∗

= 1
2

∣∣∣ 1
g(z)
− 1

g(z′)

∣∣∣× (g(z) + g(z′))

+1
2

(
1
g(z)

+ 1
g(z′)

)
×
∫
|g(z|z∗)− g(z′|z∗)| fZ∗(z∗)dz∗

= 1
2

(
1
g(z)

+ 1
g(z′)

)
×{

|g(z)− g(z′)|+
∫
|g(z|z∗)− g(z′|z∗)| fZ∗(z∗)dz∗

}
≤

(
1
g(z)

+ 1
g(z′)

)
×
∫
|g(z|z∗)− g(z′|z∗)| fZ∗(z∗)dz∗.

Moreover,∫
|g(z|z∗)− g(z′|z∗)|fZ∗(z∗)dz∗ =

∫
|fε(µ−1(z)− ν(z∗))− fε(µ−1(z′)− ν(z∗))|fZ∗(z∗)dz∗

≤
∫
|fε(µ−1(z)− u)− fε(µ−1(z′)− u)| fν(Z∗)(u)du

≤ ||fν(Z∗)||∞TV (fε) |µ−1(z)− µ−1(z′)|

with |µ−1(z)− µ−1(z′)| ≤ supx∈I |(µ−1)′(x)| × |z − z′|.
Last, for δ ↓ 0, it exists K1, K2 > 0 such that infz∈I g(z) ∼ K1δ

max(γ+,γ−,0) with γ+ =

αu − α+
3 and γ− = αl − α−3 and supx∈I |(µ−1)′(x)| ∼ K2δ

min(α+
3 ,α
−
3 ,0). Then Assumption 6.5

holds with κ = max(γ+, γ−, 0)−min(α+
3 , α

−
3 , 0).

A.4 Proof of Theorem 2

Let ξ0 = (p,m0,m1) and ξ̂ = (p̂, m̂0, m̂1). Note that Q(ξ) ≥ 0 for any ξ ∈ H and the
condition of identification ensures that Q(ξ) = 0 ⇔ ξ = ξ0. Let ||ξ̂ − ξ0||∞ = sup(||p̂ −
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p||∞, ||m̂0 − m0||∞, ||m̂1 − m1||∞) We will prove that for any δ > 0, P
(
||ξ̂ − ξ0||∞ ≥ δ

)
tends to zero.
For any sequence ξn,na ∈ Hn,na the following inequalities hold:

Q(ξ̂) ≤ Q(ξ̂)−Qn,na(ξ̂) +Qn,na(ξ̂)−Qn,na(ξn,na)

+Qn,na(ξn,na)−Q(ξn,na) +Q(ξn,na)

≤ Qn,na(ξ̂)−Qn,na(ξn,na) + 2 supξ∈Hn,na |Qn,na(ξ)−Q(ξ)|+Q(ξn,na)

Let Un,na = infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ). Assume thatQ(ξn,na) = o (Un,na) and supξ∈Hn,na |Qn,na(ξ)−
Q(ξ)| = op (Un,na). In that case:

lim sup
n,na

P
(
||ξ̂ − ξ0||∞ ≥ δ

)
≤ lim sup

n,na

P
(
Un,na ≤ Qn,na(ξ̂)−Qn,na(ξn,na) + op(Un,na)

)
The right hand side tends to zero because Qn,na(ξ̂)−Qn,na(ξn,na) ≤ 0 and Un,na > 0, and
in that case the consistency of our estimator is ensured.
So the proof is decomposed is three steps:

1. Control of infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ)

2. Existence of a sequence ξn,na ∈ Hn,na such thatQ(ξn,na) = o
(
infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ)

)
3. Uniform control onHn,na : supξ∈Hn,na |Qn,na(ξ)−Q(ξ)| = op

(
infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ)

)
In the first step of the proof, we will show that it exists c(δ) an increasing function of δ
that does not depend on n, na such that infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ) ≥ c(δ) > 0. Then, in the
second and third step, we only need to show that Q(ξn,na) = op(1) and supξ∈Hn,na |Qn(ξ)−
Q(ξ)| = op (1).
In the following for any integer d > 0 and any vector in v ∈ Rd, ||v||2 denotes the Euclidian
norm of v.

1. First step: Control of infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ).

Let Cp = 1 + C,C0 = C1 = c + C, and BR closed balls of radius C· of the Hölder
space C1,1(] − 1; 0[∪]0; 1[), i.e. ||f ||H = ||f ||∞ + supz 6=z′

|f(z)−f(z′)|
|z−z′| < R. We have

Hn,na ⊂ H ⊂ BCp × BC0 × BC1 . The Arzelà-Ascoli Theorem ensures that BCp and
BC0,1 are compact for the supremum norm. Then BCp×B2

C0,1
is a compact space (for

the norm ||ξ||∞ = sup(||p||∞, ||m0||∞, ||m1||∞)). As a close subset of a compact, H
and then H ∩ {ξ : ||ξ − ξ0||∞ ≥ δ} are compact.
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Moreover Q(ξ) is continuous for the supremum norm on H, then Q(H ∩ {ξ : ||ξ −
ξ0||∞ ≥ δ}) is compact. And the condition of identification ensures that Q is mini-
mum (and null) only for ξ = ξ0.
So, it exists ξ∗ ∈ H ∩ {ξ : ||ξ − ξ0||∞ ≥ δ} that does not depend on n, na such that
infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ) ≥ infξ∈H,||ξ−ξ0||∞≥δ Q(ξ) ≥ Q(ξ∗) > 0. Because n/na →
λ ∈]0; +∞[, it follows that Xn,na = op

(
infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ)

)
if and only if

Xn,na = op(1) and xn,na = o
(
infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ)

)
if and only if xn,na = o(1).

2. Second step: Existence of a sequence ξn,na such that Q(ξn,na) = o (1).

The spline properties ensures that for every ξ0 inH, it exists ξn,na = (pn,na ,m0,n,na ,m1,n,na)

such that ||ξn,na − ξ0||∞ = O((min(kp+n,na , k
p−
n,na , k

0+
n,na , k

0−
n,na , k

1+
n,na , k

1−
n,na))

−1). Because
min(kp+n,na , k

p−
n,na , k

0+
n,na , k

0−
n,na , k

1+
n,na , k

1−
n,na) → +∞, we have ||ξn,na − (p,m0,m1)||∞ =

o(1) and then by continuity of Q on H, Q(ξn,na) tends to Q(ξ0) = 0.

3. Third step: uniform control of Qn,na(ξ)−Q(ξ) on Hn,na .

We have:

supξ∈Hn,na |Qn,na(ξ)−Q(ξ)| ≤∑
j=p,0,1 supξj∈Hn,na

∣∣∣ 1
n

∑
i∈S Ê (ρj(W, ξ)|Z = Zi)

2 − E (ρj(W, ξ)|Z = Zi)
2
∣∣∣

In the following, we prove that:

sup
ξ∈Hn,na

∣∣∣∣∣ 1n∑
i∈S

Ê (ρp(W, ξ)|Z = Zi)
2 − E (ρp(W, ξ)|Z = Zi)

2

∣∣∣∣∣ = Op(ln,na/n)

The same reasoning and the same results hold for the two others terms (j = 0, 1) of
the previous sum.

First, we restrict the proof to the case where we observe an iid sample of W =

(Y, Z, TZ∗, T ), in this case
∑

i∈Sa Ti = na and Sa = {i ∈ S : Ti = 1}.

For any ξ ∈ Hp
n,na , let ĝp(z, ξ) = Ê(ρp(W, ξ)|Z = z) = Bp(z)Ê(Bp′(Z)Bp(Z))−1Ê(Bp′(Z)ρp(W, ξ))

and gp(z, ξ) = E(ρp(W1, ξ)|Z1 = z), with ρp(W, ξ) = T
ξ(Z∗)

− 1. For any ξ ∈ Hp
n,na and

any i ∈ S, we have:

ĝ2
p(Zi, ξ)− g2

p(Zi, ξ) = (ĝp(Zi, ξ)− gp(Zi, ξ))2 + 2gp(Zi, ξ) (ĝp(Zi, ξ)− gp(Zi, ξ))
≤ (ĝp(Zi, ξ)− gp(Zi, ξ))2 + 2 |gp(Zi, ξ)| |ĝp(Zi, ξ)− gp(Zi, ξ)|
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Then by Cauchy-Schwartz inequality,

1
n

∑n
i=1 ĝ

2
p(Zi, ξ)− g2

p(Zi, ξ) ≤ 1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2

+2
(

1
n

∑n
i=1 gp(Zi, ξ)

2
)1/2 ( 1

n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2)1/2

≤ 1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2

+2 sup
(

1, 1
c
− 1
) (

1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2)1/2

Then to control 1
n

∑n
i=1 ĝ

2
p(Zi, ξ) − g2

p(Zi, ξ), uniformly on Hp
n,na , we have to control

uniformly 1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2.

Adapting the proof of Theorem 1 of Newey (1997), we can show that for any ξ ∈ Hp
n,na

that 1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2 = Op

(
ln,na
n

+ l−γn,na

)
. However this result is not

sufficient because it is not uniform. To show that this holds uniformly on Hp
n,na , we

will use various theorems related to the behavior of empirical process, as explained
in van der Vaart & Wellner (1996) or in van der Vaart (2000), Chapter 19.

Up to an affine change from [0; 1] to [l;u], the base B considered in Lemma A.2 verifies
Assumption 2 of Newey (1997), i.e. E (B′(Z)B(Z)) has a smallest eigenvalue bounded
away from 0 uniformly in ln,na := dim

(
Ipn,na

)
by λ and supz ||B(z)||2 ≤ ζ0(ln,na) =

l
[max(αu,αl)+1]/2
n,na . The condition of the Theorem 2 ensures that ζ0(ln,na)

2ln,na/n → 0.
Let B(z) = B(z)E (B′(Z)B(Z))−1/2, B is such that supz ||B(z)||2 ≤ ζ0(ln,na) =
1
λ
ζ0(ln,na), with ζ0(ln,na)

2ln,na/n→ 0 and E
(
B
′
(Z)B(Z)

)
= Iln,na+1. Because means

square prediction is invariant by linear transformation of regressors, we can assume
without loss of generality that B(Z) is used as the base of Ipn,na .

Let An = 1{infu∈Rk u
′Ê
(
B
′
(Z)B(Z)

)
u ≥ ||u||22/2}, the dummy variable that the

smallest eigenvalue of the empirical estimator Ê
(
B
′
(Z)B(Z)

)
= 1

n

∑n
i=1B

′
(Zi)B

′
(Zi)

is greater than 1/2 (or equivalently the dummy variable that the highest eigenvalue

of
[

1
n

∑n
i=1 B

′
(Zi)B

′
(Zi)

]−1

is lower than 2). Under the conditions of Theorem 2,

namely lpn,na = o(n1/(2+max(αu,αl))), An tends to 1 in probability.

Let B the matrix of size n× k of elements Bj(Zi), and let Gp(ξ) the column vector
of component E(ρp(W, ξ)|Z = Zi). We define g̃p(Zi, ξ) = B(Zi)(B

′
B)−1B

′
Gp(ξ).

Following the usual strategy (see for instance Newey (1997) or Chen & Pouzo (2012)),
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we use the triangle inequality to split 1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2 in three terms:

[
1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2]1/2 ≤ [

1
n

∑n
i=1 (ĝp(Zi, ξ)− g̃p(Zi, ξ))2]1/2

+
[

1
n

∑n
i=1

(
g̃p(Zi, ξ)−B(Zi)πξ

)2
]1/2

+
[

1
n

∑n
i=1

(
B(Zi)πξ − gp(Zi, ξ)

)2
]1/2

,

The second term can be bounded by the third one, because of the projection prop-
erties of B:

1
n

∑n
i=1

(
B(Zi)πξ − g̃p(Zi, ξ)

)2
= 1

n

∑n
1=1

(
B(Zi)(B

′
B)−1B

′
(Bπξ −Gp(ξ))

)2

= 1
n

(Bπξ −Gp(ξ))
′B(B

′
B)−1B

′
(Bπξ −Gp(ξ))

≤ 1
n

(Bπξ −Gp(ξ))
′ (Bπξ −Gp(ξ))

= 1
n

∑n
i=1

(
B(Zi)πξ − gp(Zi, ξ)

)2

Applying Lemma A.3 to the function z∗ 7→ E(ρp(W )|Z∗ = z∗), we know that there
exists πξ such 1

n

∑n
i=1

(
B(Zi)πξ − gp(Zi, ξ)

)2
= Op(l

−γ
n,na) uniformly on Hn,na .

The rest of the proof is dedicated to bound the first term of inequality 3. This is
sufficient to bound this term under the condition of event An (because An tends to 1
in probability). Let ε(ξ) the vector of component εi(ξ) = ρp(Wi, ξ)−gp(Zi, ξ). When
the smallest eigenvalue of Ê(B

′
(Z)B(Z)) = 1

n
B
′
B is greater than 1/2 (An = 1), we

have:
An supξ∈Hn,na

1
n

∑n
i=1 (ĝp(Zi, ξ)− g̃p(Zi, ξ))2

≤ An supξ∈H
1
n

∑n
i=1 (ĝp(Zi, ξ)− g̃p(Zi, ξ))2

= An supξ∈H
1
n
ε(ξ)′B

(
B
′
B
)−1

B
′
ε(ξ)

≤ 2An supξ∈H
1
n2 ε(ξ)

′BB
′
ε(ξ)

= 2An supξ∈H
∑ln,na

j=1

(
1
n

∑n
i=1Bj(Zi)εi(ξ)

)2

≤ 2An
∑ln,na

j=1 supξ∈H
(

1
n

∑n
i=1 Bj(Zi)εi(ξ)

)2

Moreover, the Markov inequality ensures that there exists a constant M (uniform in
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ln,na) such that:

P
(∑ln,na

j=1 supξ∈H
(

1
n

∑n
i=1Bj(Zi)εi(ξ)

)2
> M ln,na

n

)
≤ n

Mln,na
E
(∑ln,na

j=1 supξ∈H
(

1
n

∑n
i=1Bj(Zi)εi(ξ)

)2
)

≤ 1
M

max1≤j≤ln,na E
(

supξ∈H

(
1√
n

∑n
i=1Bj(Zi)εi(ξ)

)2
)

= 1
M

max1≤j≤ln,na E
((

supξ∈H

∣∣∣ 1√
n

∑n
i=1Bj(Zi)εi(ξ)

∣∣∣)2
)

Conditions of regularity imply that the class Ej of functions f(Wi) = Bj(Zi)εi(ξ)

indexed by ξ ∈ Hp has for enveloppe function

F Ej(Wi) = |Bj(Zi)| ×max

(∣∣∣∣Tic − E(T |Z = Zi)

∣∣∣∣ , ∣∣∣∣Ti − E(
T

c
|Z = Zi)

∣∣∣∣) ,
which is always square integrable and such that:

Bj(Z)2(1 + c−1)2 ≥ E
(
F Ej(W )2|Z

)
≥ Bj(Z)2(1− c)2.

Then for any j = 1, ..., ln,na , because E
(
Bj(Zi)εi(ξ)

)
= 0, Theorem 2.14.5 of van der

Vaart & Wellner (1996) ensures that it exists an universal constant M0 such that:

E
((

supξ∈H

∣∣∣ 1√
n

∑n
i=1 Bj(Zi)εi(ξ)

∣∣∣)2
)

≤M0E
(

supξ∈H

∣∣∣ 1√
n

∑n
i=1Bj(Zi)εi(ξ)

∣∣∣)
+M0(1 + c−1)

Theorem 2.14.2 of van der Vaart & Wellner (1996) ensures that it exists another
universal constant M1 such that:

E
(

supξ∈H

∣∣∣ 1√
n

∑n
i=1 Bj(Zi)εi(ξ)

∣∣∣) ≤M1(1 + c−1)
∫ 1

0

(
1 + LogN[]

(
u(1− c), Ej, ||.||L2(W )

))1/2
du

where, for a class of function F ⊂ Lr(W ), the bracketing number N[](u,F , Lr(W ))

denotes the minimum number of u-bracket necessary to cover F . A u-bracket in
Lr(W ) is a set of the form {f ∈ F : f ≤ f ≤ f} with f, f ∈ Lr(W ) and ||f −
f ||Lr(W ) ≤ u.

Let Oj the class of functions f(Wi) = Bj(Zi)ρp(Wi, ξ) indexed by ξ ∈ H. For any
f1, f2 ∈ Ej it exists ξ1, ξ2 ∈ Hp such that fq(W ) = Bj(Z)ρp(W, ξq)−Bj(Z)E(ρp(W, ξq)|Z).
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The triangle inequality ensures:

||f1 − f2||L2(W ) ≤ ||Bj(Z)ρp(W, ξ1)−Bj(Z)ρp(W, ξ2)||L2(W )

+ ||Bj(Z)E(ρp(W, ξ1)|Z)−Bj(Z)E(ρp(W, ξ2)|Z)||L2(W )

≤ 2||Bj(Z)ρp(W, ξ1)−Bj(Z)ρp(W, ξ2)||L2(W )

It follows that N[]

(
u, Ej, ||.||L2(W )

)
≤ N[]

(
u
2
,Oj, ||.||L2(W )

)
.

Moreover, for any f1, f2 ∈ Oj, it exists ξ1, ξ2 ∈ Hp such that |f1(w) − f2(w)| ≤
|Bj(z)|
c2
||ξ1 − ξ2||∞ with

(
E
(
Bj(Z)2

c4

))1/2

= 1
c2
.

Theorem 2.7.11 of van der Vaart & Wellner (1996) ensures that:

N[]

(
2u

c2
,Oj, ||.||L2(W )

)
≤ N (u,Hp, ||.||∞)

where the covering number N(u,F , Lr(W )) denotes the minimal number of Lr(W )

balls of radius u needed to cover the functional set F .

Under assumptions 6.1, 6.2, 6.3 defining Hp, Theorem 2.7.1 of van der Vaart &
Wellner (1996) ensures that it exists an universal constant M2 such that:

logN (u,Hp, ||.||∞) ≤M2u
−1.

It follows that:

P
(∑ln,na

j=1 supξ∈H
(

1
n

∑n
i=1Bj(Zi)εi(ξ)

)2
> M n

ln,na

)
≤ M0

M
(1 + c−1)

[
1 +M1

∫ 1

0

(
1 + 4M2

(1−c)c2u
−1
)1/2

du

]

Then
∑ln,na

j=1 supξ∈H
(

1
n

∑n
i=1Bj(Zi)εi(ξ)

)2
= Op(ln,na/n).

We now extend this result to the general case of Assumption 3, when the two samples
cannot be matched. Let ǧp(z, ξ) the previous unfeasible estimator of E(ρp(W )|Z = z)

computed under the assumption that (Y, T, Z, TZ∗) is observed in the main sample.

By triangle inequality,[
1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2]1/2 ≤ [

1
n

∑n
i=1 (ĝp(Zi, ξ)− ǧp(Zi, ξ))2]1/2

+
[

1
n

∑n
i=1 (ǧp(Zi, ξ)− gp(Zi, ξ))2]1/2 ,

45



We already have shown that the second term is such that supξ
1
n

∑n
i=1 (ǧp(Zi, ξ)− gp(Zi, ξ))2 =

Op(ln,na/n).

The first term is such that:

An supξ
1
n

∑n
i=1 (ĝp(Zi, ξ)− ǧp(Zi, ξ))2

≤ 2An
∑ln,na

j=1 supξ

([
1
n

∑
i∈S Ti

]
1
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )−

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )
)2

≤ 6An
∑ln,na

j=1 supξ
[

1
n

∑
i∈S Ti

]2 [ 1
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

)]2

+6An
∑ln,na

j=1 supξ
([

1
n

∑
i∈S Ti

]
E
(
Bj(Z)/ξ(Z∗)|T = 1

)
− E

(
Bj(Z)T/ξ(Z∗i )

))2

+6An
∑ln,na

j=1 supξ
(

1
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

))2

≤ 6An
∑ln,na

j=1 supξ

[
1
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

)]2

+6Anln,na
n

(
1√
n

∑
i∈S Ti − P(T = 1)

)2

max1≤j≤ln,na supξ E
(
Bj(Z)/ξ(Z∗)|T = 1

)2

+6An
∑ln,na

j=1 supξ
(

1
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

))2

The first inequality holds because Anu′
[
B
′
B
]−1

u ≤ 2Anu
′u and supx

∑
k fk(x) ≤∑

k supx fk(x). The second because (a + b + c)2 ≤ 3(a2 + b2 + c2) and again and
supx

∑
k fk(x) ≤

∑
k supx fk(x). The third inequality holds because T ≤ 1 and

E
(
Bj(Z)/ξ(Z∗)

)
= E

(
Bj(Z)/ξ(Z∗)|T = 1

)
P(T = 1) and

∑K
k=1 supx fk(x) ≤ K maxk supx fk(x).

We have
E
(
Bj(Z)/ξ(Z∗)|T = 1

)2 ≤ E
(
Bj(Z)2/ξ(Z∗)2|T = 1

)
≤ 1

c2P(T=1)
E
(
TBj(Z)2

)
≤ 1

c3
,

and
(

1√
n

∑
i∈S Ti − P(T = 1)

)2

= Op(1). Then,

6Anln,na
n

(
1√
n

∑
i∈S

Ti − P(T = 1)

)2

max
1≤j≤ln,na

sup
ξ

E
(
Bj(Z)/ξ(Z∗)|T = 1

)2
= Op(ln,na/n).

Moreover (by Markov inequality),

P
(∑ln,na

j=1 supξ

(
1
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

))2

> M ln,na
na

)
≤ 1

M
max1≤j≤ln,na E

((
supξ∈H

∣∣∣ 1√
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

)∣∣∣)2
)

and

P
(∑ln,na

j=1 supξ
(

1
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

))2
> M ln,na

n

)
≤ 1

M
max1≤j≤ln,na E

((
supξ∈H

∣∣∣ 1√
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

)∣∣∣)2
)
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The classes Fj = {f : f(z, z∗, t) = Bj(z)t/ξ(z∗), ξ ∈ Hp} (respectively F1
j =

{f : f(z, z∗) = Bj(z)/ξ(z∗), ξ ∈ Hp}) has for envelope function FFj(z, z∗, t) =

Bj(z)/c (respectively FF
1
j (z, z∗) = Bj(z)/c). We have E

(
FFj(Z,Z∗, T )2

)
= c−2

and E
(
FF

1
j (Z,Z∗, T )2|T = 1

)
= E

(
Bj(Z)2|T = 1

)
c−2 ∈ [c−1; c−3].

Theorems 2.14.5 and 2.14.2 of van der Vaart & Wellner (1996) ensure that it exists
positive numbers M3, ...M8 (depending only on c) such that:

E
((

supξ∈H

∣∣∣ 1√
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

)∣∣∣)2
)

≤M3 +M4

∫ 1

0

(
1 + LogN[](M5u,F1

j , ||.||L2(W |T=1))
)1/2

du

and

E
((

supξ∈H

∣∣∣ 1√
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

)∣∣∣)2
)

≤M6 +M7

∫ 1

0

(
1 + LogN[](M8u,Fj, ||.||L2(W ))

)1/2
du.

Moreover, |Bj(z)t
ξ1(z∗)

− Bj(z)t

ξ2(z∗)
| ≤ |Bj(z)|t

c2
||ξ1 − ξ2||∞, with E(Bj(Z)2T ) ≤ 1 and | Bj(z)

ξ1(z∗)
−

Bj(z)

ξ2(z∗)
| ≤ |Bj(z)|

c2
||ξ1 − ξ2||∞, with E(Bj(z)2|T = 1) ≤ c−1. Then Theorems 2.7.11 and

2.7.1 of van der Vaart & Wellner (1996) imply that it exists M9 and M10 depending
only on c and C such that:

N[](u,F1
j , ||.||L2(W |T=1)) ≤ N[](uc

1/2||Bj(Z)||L2(W |T=1),F1
j , ||.||L2(W |T=1))

≤ N(uc1/2/2,HP , ||.||∞) ≤ exp(M9u
−1),

and
N[](u,Fj, ||.||L2(W )) ≤ N[](u||Bj(Z)T ||L2(W ),Fj, ||.||L2(W )) ≤ N(u/2,HP , ||.||∞) ≤ exp(M10u

−1).

It follows that:

∑ln,na
j=1 supξ

[
1
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

)]2

= Op(ln,na/na),∑ln,na
j=1 supξ

[
1
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

)]2
= Op(ln,na/n).

And last, because n
na
→ λ ∈]0; +∞[,

ln,na∑
j=1

sup
ξ

[
1

na

∑
i∈Sa

Bj(Zi)/ξ(Z
∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

)]2

= Op(ln,na/na).

And then 1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2 = Op(ln,na/n).

Lemma A.2 (Smallest eigenvalue)
Let f be a positive continuous integrable function from [0; 1], bounded away from 0 on
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every compact included in ]0; 1[ and f(t) ∼t∼1 C1(1 − t)α1 and f(t) ∼t∼0 C0t
α0. Let

δ ≤ 1 ≤ δ, t0 = 0 < t1 < ... < tk = 1 such that ti+1 − ti ∈ [δ/k; δ/k] and bi(t) =
t−ti−1

ti−ti−1
1[ti−1;ti](t) + ti+1−t

ti+1−ti1[ti;ti+1](t) for i = 1, ..., k − 1, b0(t) = t1−t
t1
1[0;t1](t) and bk(t) =

t−tk−1

1−tk−1
1[tk−1;1](t). Let Bk(t) = [b0(t), ..., bk(t)] the row vector of size k + 1. The smallest

eigenvalue of kmax(α0,α1)+1
∫

[0;1]
B′k(t)Bk(t)f(t)dt is bounded away from zero.

Proof of Lemma A.2:

Let u = (u1, ..., uk+1) ∈ Rk+1, we have:

u

(∫
[0;1]

B′k(t)Bk(t)f(t)dt

)
u′ =

1

t21
(u1, u2)

∫ t1

0

(
(t1 − t)2 (t1 − t)t
(t1 − t)t t2

)
f(t)dt(u1, u2)′

+
k−2∑
i=1

1

(ti+1 − ti)2
(ui+1, ui+2)

∫ ti+1

ti

(
(ti+1 − t)2 (ti+1 − t)(t− ti)

(ti+1 − t)(t− ti) (t− ti)2

)
f(t)dt(ui+1, ui+2)′

+
1

(1− tk−1)2
(uk, uk+1)

∫ 1

tk−1

(
(t− 1)2 (tk−1 − t)(t− 1)

(tk−1 − t)(t− 1) (tk−1 − t)2

)
f(t)dt(uk, uk+1)′

For sufficiently large k then f(t) ≥ min(f(t1), f(1 − tk−1)) ≥ min(C0, C1)k−max(α0,α1) for
any t ∈ [t1; tk−1], we have:

k−2∑
i=1

1

(ti+1 − ti)2
(ui+1, ui+2)

∫ ti+1

ti

[
(ti+1 − t)2 (ti+1 − t)(t− ti)

(ti+1 − t)(t− ti) (t− ti)2

]
f(t)dt(ui+1, ui+2)′

≥ δ

3k

(
u2

2/2 +
k−1∑
i=3

u2
i + u2

k/2

)
Ck−max(α0,α1)

Because
∫ ti+1

ti

[
(ti+1 − t)2 (ti+1 − t)(t− ti)

(ti+1 − t)(t− ti) (t− ti)2

]
dt = (ti+1 − ti)3/3

[
1 1/2

1/2 1

]
The first term is bounded below by:

1

t21
(u1, u2)

∫ t1

0

[
(t1 − t)2 (t1 − t)t
(t1 − t)t t2

]
f(t)dt(u1, u2)′

≥ C0

2t21
(u1, u2)

∫ t1

0

[
(t1 − t)2 (t1 − t)t
(t1 − t)t t2

]
tα0dt(u1, u2)′

=
C0

2t21
(u1, u2)

[
tα0+3
1 ( 1

α0+1
− 2

α0+2
+ 1

α0+3
) tα0+3

1 ( 1
α0+2

− 1
α0+3

)

tα0+3
1 ( 1

α0+2
− 1

α0+3
) tα0+3

1 ( 1
α0+3

)

]
(u1, u2)′

≥ C0δ
α0+1λ

2kα0+1 (u2
1 + u2

2)
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Where λ is smallest eigenvalue of[
1

α0+1
− 2

α0+2
+ 1

α0+3
1

α0+2
− 1

α0+3
1

α0+2
− 1

α0+3
1

α0+3

]

Similarly, the last term is bounded below by K1

kα1+1 (u2
k + u2

k+1), where K1 depends only on
α1, C1 and δ.
At least, kmax(α0,α1)+1

∫
[0;1]

B′k(t)Bk(t)f(t)dt is bounded away from zero.

Lemma A.3 Let R be the set of function from [−1; 1] to R bounded by 1 and B the base
of linear normalized B-splines [l, u] of cardinal k + 1. Under Assumption 6.4 and 6.5, it
exists a constant M and γ > 0 such that for any ρ ∈ R it exists πρ ∈ Rk+1 such that:

E
(
[E(ρ(Z∗)|Z)−B(Z)πρ]

2) ≤Mk−γ

Consequently,

lim
M→∞

sup
ρ∈[−1;1][−1;1]

sup
n∈N

P

(∣∣∣∣∣ 1n
n∑
i=1

(E(ρ(Z∗)|Z = Zi)−B(Zi)πρ)
2

∣∣∣∣∣ > Mk−γ

)
= 0

Proof of Lemma A.3:

Let I =
[
l + bkβc/k;u− bkβc/k

]
with β < 1, it exists D1 > 0 such that for any (z, z′) ∈ I

and for any ρ:

|E(ρ(Z∗|Z = z)− E(ρ(Z∗|Z = z′)| ≤
∫
|ρ(z∗)||fZ∗|Z=z(z

∗)−fZ∗|Z=z′(z
∗)| ≤ D1|z−z′|k(1−β)κ.

Let πρ the vector of size k with ith component equal to 0 for i = 0, ..., bkβc − 1 and
i = k − bkβc + 1, ..., k and ith component equal to E (ρ(Z∗)|Z = i/k) otherwise. It exists
D2 such that for all ρ: supz∈I |E(ρ(Z∗)|Z = z) − B(z)πρ| ≤ D2k

(1−β)λ−1. It follows that∫
I

[E(ρ(Z∗)|Z)−B(Z)πρ]
2 fZ(z)dz ≤ D2

2k
2(1−β)λ−2.

Moreover, it exists D3, D4 such that:∫ l+bkβc/k

l

[E(ρ(Z∗)|Z)−B(Z)πρ]
2 fZ(z)dz ≤

∫ l+bkβc/k

l

fZ(z)dz ≤ D3k
(β−1)(αl+1)

∫ u

u−bkβc/k
[E(ρ(Z∗)|Z)−B(Z)πρ]

2 fZ(z)dz ≤
∫ u

u−bkβc/k
fZ(z)dz ≤ D4k

(β−1)(αu+1)
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For β sufficiently close to 1, we have γ := min (2− 2(1− β)λ, (1− β)(αu + 1), (1− β)(αl + 1)) ≥
0 and M = max(D2

2, D3, D4) such that:

E
(
[E(ρ(Z∗)|Z)−B(Z)πρ]

2) ≤Mk−γ

The Markov inequality implies that:

lim
M→∞

sup
ρ∈[−1;1][−1;1]

sup
n∈N

P

(∣∣∣∣∣ 1n
n∑
i=1

(E(ρ(Z∗)|Z = Zi)− Πρ(Zi))
2

∣∣∣∣∣ > Mk−γ

)
= 0

B Appendix: Supplementary Tables

Table 3: Estimation of the LATE in finite samples, Multiplicative Error

A. Small Error, ε ∼ U[−0.1;0.1] B. Large Error, ε ∼ U[−0.2;0.2]

Sample Size Sample Size
Estimator Stat. 1000 5000 25000 1000 5000 25000

θ̂ (k = 0) Bias -0.969 0.344 0.678 -0.009 0.681 0.806
Variance 10.63 1.009 0.024 2.818 0.127 0.018

θ̂ (k = 1) Bias -0.530 0.351 0.512 -0.188 0.349 0.512
Variance 24.98 0.328 0.078 31.85 0.423 0.110

θ̂ (k = 2) Bias -0.738 0.074 0.172 0.249 0.142 0.174
Variance 325.0 0.578 0.097 943.9 2.639 0.573

θ̃ (k = 0) Bias -1.091 0.212 0.541 -0.105 0.561 0.674
Variance 10.61 1.033 0.025 2.827 0.133 0.018

θ̃ (k = 1) Bias -0.547 0.291 0.444 -0.223 0.277 0.422
Variance 20.44 0.334 0.079 22.60 0.382 0.104

θ̃ (k = 2) Bias -0.790 0.054 0.137 0.044 0.122 0.119
Variance 312.0 0.562 0.100 700.2 1.430 0.441

Donut Bias 1.897 1.846 1.854 2.392 2.361 2.365
Variance 0.059 0.012 0.002 0.153 0.025 0.005

Note: Computation obtained with 1000 simulations. Z + 1 = (Z∗ + 1) · (1 + ε) with ε ∼
U[−0.1;0.1] for the DGP with small measurement error and ε ∼ U[−0.2;0.2] for the DGP with large
measurement error. Number of knots equal to 0 means that p, m0 and m1 are approximated by
linear functions on [−1; 0] and [0; 1]. When the number of knots is 1 (resp. 2), change in slope
is allowed at −1/2 and 1/2 (resp. −2/3, −1/3, 1/3, 2/3). θ̂ refers to the estimator we present
in the paper. θ̃ differs from θ̂ by the fact that m1 is estimated by local linear regression on the
treated. For the Donut estimator, the Wald ratio is estimated using averages of Y and T, on
individuals whose Z belong to [−0.2;−0.1] and [0.1; 0.2].
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Table 4: Estimation of the LATE in finite samples, Additive Error

A. Small Error, ε ∼ U[−0.1;0.1] B. Large Error, ε ∼ U[−0.2;0.2]

Sample Size Sample Size
Estimator Stat. 1000 5000 25000 1000 5000 25000

Bias -5.006 -1.729 -0.443 -4.040 -1.326 -0.149
Our (k = 0) Variance 269.3 8.133 2.688 123.9 6.770 1.843

Median -3.993 -3.262 -2.569 -3.122 -2.793 -2.488
IQ range 6.653 4.197 0.902 5.902 3.725 0.243

Bias -1.250 -0.445 -0.612 -2.231 -0.220 -0.309
Our (k = 1) Variance 120.4 3.475 0.882 890.4 3.520 1.122

Median -2.898 -2.776 -3.899 -2.888 -2.693 -3.290
IQ range 3.424 1.976 1.657 3.267 2.046 1.815

Bias 1.939 -0.124 0.027 -15.91 0.661 0.211
Our (k = 2) Variance 836.7 18.80 1.535 2×105 285.2 9.320

Median -2.524 -2.736 -2.851 -2.294 -2.564 -2.683
IQ range 3.237 2.022 1.964 4.274 2.753 2.070

Bias -1.198 -1.792 -0.702 2.287 4.009 1.935
Variance 2518 2766 4419 584.8 1×104 2×104

Naive (IK) Median -2.506 -2.431 -1.761 -1.750 -1.720 -1.583
IQ range 1.900 2.500 2.855 2.736 2.996 2.919
Bdw. hn 0.278 0.182 0.114 0.295 0.211 0.155

Bias -43.51 343.4 -1479 483.0 2350 -2704
Variance 3×108 2×108 1×109 2×108 5×109 3×1010

Naive (CCT) Median -2.555 -2.533 -2.136 -1.942 -1.982 -1.896
IQ range 2.436 2.543 2.669 2.560 2.776 2.757
Bdw. bn 0.509 0.426 0.345 0.541 0.460 0.365

Note: Computation obtained with 1000 simulations. For our estimators k is the common
number of knots selected to defined our linear splines. When k = 0, functions p, m0 and m1

are approximated by linear functions on [−1; 0] and [0; 1]. When k = 1 (resp. 2), change in
slope is allowed at −1/2 and 1/2 (resp. −2/3, −1/3, 1/3, 2/3). For the Naive estimators, (IK)
is the estimator proposed by Hahn et al. (2001) using the bandwidth hn proposed by Imbens
& Kalyanaraman (2012) and (CCT) is the bias-corrected estimator proposed by Calonico et al.
(2014b) with bandwidth bn used to estimate asymptotic bias of (IK).
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Table 5: Estimation of the LATE in finite samples, Additive Error

A. Small Error, ε ∼ U[−0.1;0.1] B. Large Error, ε ∼ U[−0.2;0.2]

Sample Size Sample Size
Estimator Stat. 1000 5000 25000 1000 5000 25000

θ̂ (k = 0) Bias -5.006 -1.729 -0.443 -4.040 -1.326 -0.149
Variance 269.3 8.133 2.688 123.9 6.770 1.843

θ̂ (k = 1) Bias -1.250 -0.445 -0.612 -2.231 -0.220 -0.309
Variance 120.4 3.475 0.882 890.4 3.520 1.122

θ̂ (k = 2) Bias 1.939 -0.124 0.027 -15.91 0.661 0.211
Variance 836.7 18.80 1.535 2×105 285.2 9.320

θ̃ (k = 0) Bias -5.244 -1.938 -0.644 -4.243 -1.528 -0.344
Variance 287.2 8.313 2.760 125.3 6.899 1.897

θ̃ (k = 1) Bias -1.344 -0.594 -0.767 -2.263 -0.37 -0.456
Variance 96.30 3.509 0.901 1008 3.474 1.106

θ̃ (k = 2) Bias 0.995 -0.237 -0.046 -4.12 0.426 0.097
Variance 793.6 15.61 1.357 20937 189.6 6.973

Donut Bias 1.861 1.846 1.839 2.356 2.309 2.303
Variance 0.060 0.012 0.002 0.135 0.025 0.005

Note: Computation obtained with 1000 simulations.
Z = Z∗ + ε with ε ∼ U[−0.1;0.1] for the DGP with small measurement error and ε ∼ U[−0.2;0.2]
for the DGP with large measurement error. Number of knots equal to 0 means that p, m0 and
m1 are approximated by linear functions on [−1; 0] and [0; 1]. When the number of knots is 1
(resp. 2), change in slope is allowed at −1/2 and 1/2 (resp. −2/3, −1/3, 1/3, 2/3). θ̂ refers to
the estimator we present in the paper. θ̃ differs from θ̂ by the fact that m1 is estimated by local
linear regression on the treated. For the Donut estimator, the Wald ratio is estimated using
averages of Y and T, on individuals whose Z belong to [−0.2;−0.1] and [0.1; 0.2].
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