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ABSTRACT

MAY 2017IZA DP No. 10755

Do Tournaments with Superstars Encourage 
or Discourage Competition?

To test and replicate the superstar effect reported by Brown (2011) we empirically study 

contests where a single entrant has an endogenously higher probability of winning. Unlike 

the previous literature, we test for the presence of the superstar effect in several different 

contexts. Ultimately, we collect and explore data from four sources: men’s and women’s 

professional golf, and men’s and women’s professional alpine skiing. Our baseline study 

of men’s professional golf serves as a replication of Brown’s (2011) study. Empirically, we 

find little robust evidence of the superstar effect in any of our datasets. In our replication 

exercise, we approximate the findings of Brown (2011), however, we cannot reject the null 

that the presence of a superstar has no impact on high ranked competitors. In our other 

settings, we cannot reject the null that superstars have no influence on the performances 

of highly ranked competitors.
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I like to win. If I lose, I'm not very happy. 

Hermann “The Herminator” Maier 

When I first came on tour, I was playing for money. 

Now I’m playing to win golf tournaments […]  

Annika Sörenstam 

I'm never tired of winning, and I'm never tired of skiing.  

Lindsey Vonn 

I want to be what I've always wanted to be: dominant.  

Tiger Woods 

1. Introduction 

Firms are often faced with finding means to incentivize workers to maximize both 

individual and group effort. One mechanism that has gained popularity and has been widely 

implemented is the use of rank order tournaments (Lazear and Rosen 1981). Examples of such 

tournaments include athletic events (Taylor and Trogdon 2002; Sunde 2009; Coffey and 

Maloney 2010), workplace promotion and CEO compensation (Main et al. 1993; Chan 1996; 

Bognanno 2001; DeVaro 2006; Eriksson 1999), and research and development contests (Taylor 

1995; Terwiesch and Xu 2008; Terwiesch and Ulrich 2009).  

Given their prevalence, economists have widely studied rank order tournaments, both 

empirically and theoretically, to understand how their design influences individual and group 

effort. In most cases, researchers have shown that increasing the steepness of the prize gradient 

leads to increased performance (Kale et al. 2009; Ehrenberg and Bognanno 1990; Moldovanu 

and Sela 2001; Freeman and Gelber 2010). Researchers have also shown how the prize gradient 

affects the strength of the field when entry into the tournament is endogenous (Cason et al. 2010; 

Morgan, Orzen, and Sefton 2012). Recent work has begun to examine how the composition of 

the field impacts behavior, for instance, given differences in the competitive attitudes amongst 

genders (Niederle et al. 2013; Booth and Nolen 2012).   
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Most relevant to this study is the growing literature examining the impact of participants’ 

heterogeneity on effort (Bhattacharya and Guasch 1988; Ryvkin 2009, 2011, 2013). Empirically, 

recent work has begun to focus on the potential disincentive to exert costly effort when facing a 

superstar competitor or a favored participant. One of the most influential empirical papers is 

Brown’s (2011) study, which highlights the disincentive to exert effort on the PGA Tour using 

exogenous variation associated with Tiger Woods peak performance in the early 2000s. Brown 

finds that when Tiger Woods was at the top of his game, golfers in the same tournament tended 

to underperform relative to their performance in tournaments in which Tiger did not participate. 

Thus, Tiger’s presence exogenously reduced the probability of victory for the other players and 

led to reduced effort. Several other studies have reinforced Brown’s findings. For example, 

Connolly and Rendleman (2009) with PGA data, as well as Tanaka and Ishino (2012) with 

Japanese golf data report similar relationships. In addition, Frank (2012) discovers effects among 

amateur golfers that are consistent with Brown’s (2011) findings. In other contexts, Boudreau et 

al. (2016) find that the presence of star computer programmers has a similar effect on less skilled 

programmers. Finally, Herbertz and Sliwka (2013) show that non-favored participants reduce 

their efforts in tournaments in which a participant is favored to win.  

While these findings show that the presence of a favorite or superstar may lead to 

reduced effort, empirical work on peer-effects in non-competing work environments suggests 

rather positive effects on the effort when low productivity individuals are matched with high 

productivity individuals (Falk and Ichino 2006; Bandiera, Barankay, and Rasul 2009; Lyle 2007, 

2009; Mas and Moretti 2009).1 In addition, recent theoretical contributions by Kräkel (2009), 

                                                           

1 At the same time Bandiera, Barankay, and Rasul (2009) report a negative effect on the output 

of high productivity individuals when matched with a low productivity individual.  
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Stracke and Sunde (2014), and Gürtler and Gürtler (2015) demonstrate that heterogeneous 

abilities can actually increase the effort provision within tournaments. Thus, it is not clear if the 

superstar effect can be generalized, or alternatively, how large a star has to be to create 

disincentives amongst peers.  

Along these lines, several questions have been raised regarding Brown’s (2011) initial 

study.  For instance, Guryan, Kroft, and Notowidigdo (2009) test for peer effects using the PGA 

Tour’s quasi-random pairing algorithm and find no evidence that being paired with Tiger Woods 

leads to worse performance throughout the tournament. While their intent was to study peer 

effects, one must question the superstar effect if players who are directly competing with Tiger 

are not intimidated by his presence. More directly, a comment by Connolly and Rendleman 

(2014) challenges Brown’s (2011) results by noting that the results are (1) not robust to changes 

in the sample specification, the addition of missing tournament data, and (2) not robust to 

alternative clustering that accounts for common (unobservable) shocks within a given 

tournament.2 

Our purpose in this paper is to test whether or not the superstar effect is generalizable to 

other settings. While the recent literature has provided a sharp critique of Brown (2011), there 

are several examples and counter-examples documenting the disincentives generated by 

competition with a superstar noted above. Thus, we extend the literature by expanding the set of 

environments in which we test for the superstar effect.  Tiger Woods, while at his peak, was a 

special player who completely dominated the field, thus the results in Brown (2011) may be 

Tiger specific. We examine a variety of contexts that vary according to their physical demands, 

                                                           

2 In Brown (2011), the author notes that the findings are qualitatively similar to changes in 

clustering (p997, fn. 17).  



5 
 

mental demands, and pay structures.  More specifically, in addition to the original environment 

of men’s golf, we test for the superstar effect in three new environments: 1.) women’s golf, a 

natural analogue to the original study, 2.) men’s World Cup Alpine Skiing and 3.) women’s 

World Cup Alpine Skiing. For each of these environments there exists a natural superstar: 

Annika Sörenstam, Hermann Maier, and Lindsey Vonn. We explain the choice of these 

environments and superstars in more detail below. 

Due to certain differences in observables between the datasets, such as the availability of 

TV ratings for all contests, we first replicate the main findings from Brown (2011) with a dataset 

we have compiled of PGA Tournament events to show how our baseline results differ with the 

omission of certain controls. We also show how these results change in response to concerns 

raised by Connolly and Rendleman (2014). This provides a starting point for our main analysis 

focusing on the LPGA Tour and the International Ski Federation (FIS) World Cups for men and 

women. As in Brown (2011), we exploit variation in the participation of the superstars to 

determine how the performance of entrants varies both when the superstars compete and do not 

compete in a given tournament. Given the panel nature of our data, we control for a wide variety 

of confounds, such as individual’s average performance on a particular course or slope.  This 

allows us to determine how each athlete’s performance changes with the participation of the 

superstar relative to an athlete’s average performance.  

Empirically, we find little robust evidence of the superstar effect in any of our datasets. In 

our replication exercise, we approximate the findings of Brown (2011), however, we cannot 

reject the null that the presence of a superstar has no impact. In our other settings, we cannot 

reject the null that superstars have no influence on the performance of highly ranked competitors. 

In fact, while we do not emphasize the result, we find weak evidence that in some contexts, such 
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as women’s alpine skiing, competing against a superstar improves performance amongst low 

ranked competitors, lending support to the hypothesis put forth by Stracke and Sunde (2013) and 

Gürtler and Gürtler (2015).   

2. Theoretical Background       

In the environment that we consider, there are two main features that may influence the effort 

decisions of participants (1) the relative ability of other participants and (2) the presence of 

multiple prizes (and their structure). Below we present two models from the existing literature to 

highlight how each of these features affects effort decisions. First, we review a model by Stein 

(2002), who considers the impact that heterogeneous players have on effort in a contest. We then 

discuss how the presence of multiple prizes influences effort, following the work of Symanski 

and Valletti (2005). The discussion that follows will closely mirror that found in Brown (2011).  

In Stein’s model, there are n players who invest effort in the hopes of winning a single prize, 

R. Each participant has a relative ability level, 𝜃𝑖, that orders the participants from most to least 

skilled, 𝜃1 > 𝜃2 > 𝜃3 > ⋯ > 𝜃𝑛 ≥ 1.  This relative ability suggests that for the same effort 

level, the first player is more likely than the second player to win the prize. We follow the 

literature, and assume that the success function takes the logistic form, and for simplicity, 

assume that the cost of effort is homogeneous and linear for each participant, and is thus 

normalized to one. Under these assumptions, we can write the expected profit function for a 

given player i as follows 

𝜋𝑖 = 𝑅
𝜃𝑖𝑥𝑖

∑ 𝜃𝑗𝑥𝑗
𝑛
𝑗=1

− 𝑥𝑖. 

We then solve for the optimal effort, and, to understand how an increase in relative ability 

affects effort, we take derivatives with respect to individual ability   
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𝑑𝑥𝑖

𝑑𝜃𝑗
= [

(𝑛−1)𝑅Γ2

𝑛2𝜃𝑖𝜃𝑗
2 ] [1 −

2(𝑛−1)Γ

𝑛𝜃𝑖
].3 

For effort to be decreasing in the ability of a rival, the second term in brackets must be less than 

zero. From this expression, it is easy to see that this is the case when 𝜃𝑖 ≤
2(𝑛−1)Γ

𝑛
. In the case 

with two players, this inequality is always satisfied, thus, the presence of a superstar always 

reduces effort. However, as n increases >2, the relative ability of the superstar must be 

sufficiently large for this inequality to hold.4  

 While the relative ability of players may influence effort, the presence of multiple prizes 

may affect effort as well. As Szymanski and Valletti (2005) note, if either of them were to enter a 

foot race against a world class runner, such as Ussain Bolt, they would not exert effort in the 

presence of a single prize. However, the introduction of a second prize is sufficient to encourage 

effort amongst these amateur athletes. To provide intuition, we consider the three person contest 

presented in Szymanski and Valletti (2005). In their model, three players compete to win a share 

of the prize purse, R, whereby the first place finisher receives a share of the purse 0.5<k<1, the 

second place finisher receives (1-k), and the third place finisher receives zero. Unlike Stein 

(2002), heterogeneity in ability can be introduced by allowing the effort cost to vary across 

players. We assume that cost is linear and that the success function is logistic, however, express 

the payoff more generally for compactness. Under these assumptions, we can define the expected 

payoff function as follows 

                                                           

3 Γ = 𝑛 (∑
1

𝜃𝑖

𝑛
𝑖=1 )

−1

 is the harmonic mean of the relative abilities of the players.  

4 Broadly, this finding is consistent with more recent work by Bourfeau, Lakhani, and Menietti 

(2016), Moldovanu and Sela (2001), who show that as participants are added to a contest, the 

effort response can be positive or negative depending on one’s own ability. 
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𝜋𝑖 = 𝑝𝑖𝑘𝑅 + ∑ 𝑝𝑗𝑝𝑖−𝑗(1 − 𝑘)𝑅 − 𝑐𝑖𝑥𝑖

𝑗≠𝑖

. 

The first term is the expected value of winning the first prize, the second term is the expected 

value conditional on not winning the first prize, and the third term is the effort cost. As in 

Szymanski and Valletti (2005), we allow one “strong” or “superstar” player to have a lower cost 

of effort, while the two weaker players are symmetric  (𝑐1 < 𝑐2 = 𝑐3).5 To solve the game, we 

differentiate the expected profit with respect to 𝑥𝑖, which yields the following first order 

condition  

𝑑𝜋𝑖

𝑑𝑥𝑖
=

𝑑𝑝𝑖

𝑑𝑥𝑖
𝑘𝑅 + ∑ (

𝑑𝑝𝑗

𝑑𝑥𝑖
𝑝𝑖−𝑗 + 𝑝𝑗

𝑑𝑝𝑖−𝑗

𝑑𝑥𝑖
) (1 − 𝑘)𝑅 − 𝑐𝑖

𝑗≠𝑖

. 

Given the cost and the logistic formulation for the success functions, equilibrium effort for each 

type (strong, weak) can be solved implicitly (as described in Sisak, 2009). Szymanski and 

Valletti show that as the superstar becomes more dominant (as the cost approaches zero), the 

efforts of the weak players decline, such that in the limit, the weak players behave as if they are 

in a two player contest, competing only for the second prize. Because these weak players are 

effectively competing for second place, the allocation of the purse towards the second place is 

highly important. For a fixed cost of effort for the superstar, increases in k, lead to reductions in 

effort by the weaker players.   

In what follows, we describe how we arrived at the contests that we examine within the 

paper and then provide some evidence that these settings should be influenced by superstars. 

                                                           

5 This deviates from Brown (2013) who address differences in ability including a parameter, 𝜆 >
1, that exogenously increases the likelihood of winning in the success function. Brown then 

considers how increasing 𝜆 affects effort.  
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That is, we provide evidence that an individual in each sport is more skilled by an order of 

magnitude than their closest rivals, and that the prize structure has a steep prize gradient.  

3. Selection Criteria 

The empirical exercise that follows involves making several ad hoc choices regarding the 

selection of athletic events and individuals whom are classified as superstars. To select the 

events and athletes, we considered several criteria: 

1. Each event must be an individual sport and the individual must compete alone.6  

 

The first restriction has several consequences for our sample. For example, even though sports 

such as swimming and track have obvious superstars, such as Michael Phelps and Usain Bolt, 

they simultaneously complete against their competitors, which may give rise to peer effects, 

violating the assumption that effort is predetermined. This type of feedback effect has been 

documented empirically by Coffey and Maloney (2010). This restriction also eliminates sports 

such as tennis, where players compete in matches that are winner take all. In golf, each golfer is 

the only individual to take a stroke on a given hole, while in alpine skiing events, each racer goes 

down the course one by one.  

 

2. Each sport must be scored on an objective or rank order scale, such that no part of 

the score is based on subjective judgment.  

 

 

This restriction effectively eliminates sports that have a portion of their scoring determined by 

judges. For instance, this eliminates prominent athletes such as Sean White in events like the 

                                                           

6 In golf, athletes play in pairs and groups, however, no player completes at the same time as 

another.  
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snowboarding halfpipe, or dominant figure skaters like Katarina Witt and Dick Button. The 

reasoning here was twofold, first, it is difficult to measure performance when the subjective part 

of the scoring is highly idiosyncratic to the judges and secondly, in some contests, such as figure 

skating, there have been rampant cases of corruption amongst judges and national federations 

(Zitzewitz, 2014).  

 

3. Each sport must have a clear superstar, whereby (i) an individual wins the majority 

of major events for consecutive years in a row and (ii) is the top three money winner 

multiple years in a row.  

  

Several sports satisfy conditions (1) and (2), but fail to produce a superstar. For example, the 

shot put satisfies (1) and (2), as throwers step into the ring one by one, and have their effort 

marked and measured in meters, however, there is not a dominant thrower who has won multiple 

World Championships or Olympic games. Similarly, professional bowling satisfies (1) and (2), 

but there is not a clearly dominant bowler. Alternatively, a sport may have a clear superstar by 

the stated definition, however, they may be so dominant that there is not sufficient variation in 

the data to identify an effect. On the professional darts tour, Englishman Phil Taylor has been the 

dominant force dating back to the early 1990s. Given his longevity and dominance, the existing 

data do not provide sufficient variation to identify an effect of his participation on rivals.  

4. There should be a clear superstar in both the men’s and women’s fields of the event.  

It has been heavily documented in the economics literature that men and women respond to 

economic settings differently (see Croson and Gneezy 2009 for a review). By observing men and 

women competing in the same event, we can test to see if the incentive effect of a superstar is 

generalizable to both sexes.   
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After careful consideration, we believe that we have identified two sports where both the 

men and women have a clear superstar: alpine skiing and golf. In golf, we follow Brown (2011) 

and identify Tiger Woods as a superstar in men’s golf. In the women’s game, Annika Sörenstam 

is the outstanding player of her generation. In the alpine skiing events, we believe we denote 

Herman Maier and Lindsey Vonn as superstars. In what follows, we discuss what qualifies each 

individual as a star, and provide evidence that the competitions have steep prize gradients.    

Evidence of Super Stardom 

As we previously noted, there are two conditions that are key for a player to have a negative 

effect on their rivals effort (1) the star must be significantly more skilled than their rivals (2) the 

contest needs to have multiple prizes with a sufficiently steep prize gradient.  

Table 1: Superstars 

Name Tiger Woods Annika Sörenstam Hermann Maier Lindsey Vonn 

     

Sport Men’s golf Women’s golf Alpine Ski Alpine Ski 

Time active 1996- 1992-2008 1996-2009 2000- 

Superstar years/season 1999-2006 2000-2006 1998-2001  

2004-2005 

2008-2013 

 

During superstar seasons (corresponding numbers in brackets for the runner ups): 

     

 - #wins  79(42) 72(31) 49(29) 52(20) 

 - prize money in millions $63.4 (32.6) $15.5 (8.4) 2.9 CHF (2.0) 2.5 CHF(1.9) 

     

     

     

Active period are the years in which the athletes competed in professional events. Woods turned professional 

when joining the PGA tour, Sörenstam when joining the Ladies European Tour (she joined the LPGA in 1994) 

and for Maier and Vonn when they first participated in a FIS World Cup race.  

  

 

We begin by discussing how dominant each superstar was in their own sport. Table 1 provides 

career statistics for the superstars and the time periods for which we consider them as the 

dominant athletes in their sports. Tiger Woods was dominant at the peak of his career, amassing 
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79 wins, while his closest rival, Phil Mickelson accumulated 42 wins. Within a given season, 

Woods’s earnings were significantly larger than any other player in the field. In Figure 1, Panel 

(a), we present the earnings distribution over the final ranks of the 2005 PGA Tour, the year of 

the Tiger slam, normalized to Woods’s tour earnings. Tiger’s closest rival in 2005, Vijay Singh, 

had earnings that were 75 percent of Woods’s, while Phil Mickelson’s were only 53 percent. 

Tiger’s earnings were equal to the cumulative sum of 94 other golfers who were awarded prize 

money on the tour (35 percent of all golfers awarded money).  

Figure 1: Season earnings relative to superstars’ earnings by sport. 

Only athletes with positive earnings included 

 

In the women’s draw, Annika Sörenstam was potentially an even larger star than Woods. 

Sörenstam has the most career wins of any female golfer in history and is the LPGA Tour’s all-

time leader in earnings. Over the sample period, Sörenstam amassed 72 wins, 31 wins more than 
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her closest rival and contemporary, Karrie Webb. Over an eleven year period, 1995 to 2005, 

Sörenstam was the top money earner and tour champion eight times.  In Figure 1, Panel (b), we 

present the earnings distribution from the 2001 LPGA Tour. In 2001, Sörenstam’s closest rival, 

Se Ri Pak, earned 77 percent of Sörenstam’s earnings, while Karrie Webb, the second closest 

rival, earned 72 percent. Her earnings were larger than those of 74 golfers combined, 

representing 42 percent of golfers receiving prizes on the LPGA Tour.  

In the men’s alpine skiing data, we denote Hermann Maier as a superstar. Maier 

dominated the FIS competition from 1998 to 2005 by winning 49 races. During this time he won 

the overall cup 4 times, and reached the podium 19 times in the 4 events that comprise the 

overall cup.7 Over his career he amassed 54 FIS wins, and was a podium finisher 96 times. His 

closest contemporary, Stephan Eberharter, had 29 wins, however, many of these came during the 

2002 and 2003 seasons, which Maier missed due to a horrific motorcycle accident. Upon his 

return, Maier continued to dominate the field. While we do not directly observe the earnings 

distribution of the FIS World Cup for seasons prior to 2012, we can construct the earnings 

distribution based on the prize structure and the observed finish of each racer in each event, and 

then aggregate over the athlete for the entire season. In Figure 1, Panel (c), we present the 

constructed distribution for the 2000-01 season, one of several years that Maier was the overall 

champion. Maier’s closest rivals (Benjamin Raich and Stephan Eberharter) earned 44 and 42 

percent of Maier’s earnings respectively. His earnings were larger than 50 skiers who posted 

earnings, 64 percent of all money winners in FIS competition. Many other entrants earned zero 

money.  

                                                           

7 In 1998, Maier won 2 gold medals at the Olympic Games in the Giant Slalom and the Super-G.  
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 Amongst female alpine skiers, we have identified Lindsey Vonn as a superstar. Between 

2008 and 2012, Vonn won 52 races and was the overall points leader in the World Cup four 

times (losing the 5th by a mere 3 points).8 Overall, Vonn has won 19 World Cup titles (4 overall, 

and 15 discipline specific titles) from 2008-2015.9 In all races combined, Vonn has won 67 races 

and has appeared on 113 podiums. Her closest rival, Maria Höfl-Riesch, has 27 wins and 81 

podiums. Given her success on the slopes, she has also earned significantly more than the 

majority of the field. In Figure 1, Panel (d), we present the FIS World Cup earnings totals for the 

2012 season (relative to Vonn). Vonn’s closest two rivals earned 50.3 and 50.2 percent of her 

earnings during the season. She also had more earnings than 63 other skiers who earned money, 

representing 70 percent of prize winners on the circuit.  

While the scale of earnings is lower in the FIS World Cup than either the men’s or 

women’s golf tour, the earnings gradient is much steeper. In part, the difference in the earnings 

gradient are a function of the prize structures in each event, which we now discuss. Thus, in a 

relative sense, both Maier and Vonn are relatively more dominant than either Woods or 

Sörenstam. 

Even though our superstars earn significantly more than their closest rivals, the 

disincentive to compete may be offset by a relatively flat prize structure, as discussed by 

Szymanski and Valletti (2005). In each of our settings, the prize gradients allocate a large share 

of the purse to the winner. In Figure 2, we present the prize structure for each sport. In Panel (a), 

we present the prize structure for the PGA Tour. On the PGA Tour, the purse from a tournament 

is divided such that the first place finisher earns 18 percent, second prize 10.8 percent, while the 

                                                           

8 http://data.fis-ski.com/dynamic/athlete-

biography.html?sector=AL&competitorid=30368&type=sum-WC 
9 In 2010, Vonn won a gold and a bronze medal Olympic games (Downhill and Super-G). 
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70th ranked player earns only 0.2 percent.10  Provided that the average golf tournament has 144 

entrants, roughly half of all participants receive a prize, with the top 10 finishers earning 60.5 

percent of the purse. In Panel (b) of Figure 2, we present the prize structure for the LPGA Tour. 

On the LPGA Tour, the top earner receives 15 percent of the purse, the second place finisher 

receives 9.2 percent, while the 75th finisher receives approximately 0.18 percent.11 In each case, 

the first place finisher receives about 1.6 times the prize of the second place finisher.   

 

Figure 2: Price gradient by sport.  

 

In Panels (c) and (d), we plot the prize structure for the average alpine event on the FIS-World 

cup for men and women respectively. The prize structure of each event (Downhill, Super G, 

Slalom, Giant Slalom) varies slightly and occasionally varies from location to location, yet these 

                                                           

10 http://golftips.golfsmith.com/calculate-payout-professional-golf-tournaments-20519.html 
11 Author Calculation from LPGA results found here: http://www.lpga.com/tournaments 
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deviations are usually small. The purse for each alpine during our sample is 100,000 Swiss 

Francs (this amount was recently increased to 110,000 Swiss Francs)12 and is the same for both 

the men’s and women’s competition. Across alpine events, the first place finisher receives a 

share of 30 to 35 percent of the purse (32.6 percent average for females, 33 percent average for 

males), while the second place finisher receives between 20 and 23 percent (21.4 percent average 

for females, 20.5 percent average for males) of the purse.13 Up to this year, the FIS World Cup 

only paid the top 10 finishers (with a few exceptions), creating a steep gradient throughout the 

distribution, as some races can have has many as 80 entrants.  

This exercise demonstrates that the prize structures are steep in both professional golf and 

alpine skiing. In golf, the ratio of prizes for first to second place are approximately 1.6, while in 

skiing they are 1.5 times larger. This slightly flatter structure at the top may be due to safety 

concerns, as noted by Che and Humphreys (2013).14 However, overall, fewer entrants are 

eligible for a prize in skiing than in golf, suggesting that throughout the entire field, skiing has 

the steeper prize gradient. 

4. Empirical Strategy 

Before we describe the data in detail, we outline our empirical strategy. To identify the impact of 

competing with a superstar, we specify a regression model that relates an individual’s 

performance in a given event, in a given season, to an indicator that equals 1 if the superstar is 

competing in the same event at the same time, and is zero otherwise. Given the panel nature of 

                                                           

12 Prior to the 2016-17 Season, the FIS World Cup had a purse of 100,000 Swiss Francs per 

event.  
13 The prize structure is computed from data reported in http://bmsi.ru/media/6b08ea81-e01e-

463f-a88f-82d99e1c828f/priz11.pdf.pdf  
14 One should note that in professional skiing and golf the largest part of an athlete’s income is 

based on advertising and endorsements. The likelihood of signing such a profitable contract 

increases with the number of wins; regardless of the prize structure of the events.     

http://bmsi.ru/media/6b08ea81-e01e-463f-a88f-82d99e1c828f/priz11.pdf.pdf
http://bmsi.ru/media/6b08ea81-e01e-463f-a88f-82d99e1c828f/priz11.pdf.pdf
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the data, we are able to examine how a given athlete’s performance varies when they compete 

both in the presence of the superstar and without the superstar, while controlling for their average 

performance at the same event/course. We are also able to control for several observables, which 

may also influence performance, such as extreme weather events or the strength and composition 

of the field.  

More formally, we follow the empirical specifications outlined in Brown (2011) relating 

individual performance to the superstar as follows:    

𝑦𝑖𝑗𝑡 = 𝛽1𝐻𝑅𝑎𝑛𝑘𝑖𝑡 × 𝑠𝑡𝑎𝑟𝑗𝑡 + 𝛽2𝐿𝑅𝑎𝑛𝑘𝑖𝑡 × 𝑠𝑡𝑎𝑟𝑗𝑡 + 𝛽3𝑈𝑅𝑎𝑛𝑘𝑖𝑡 × 𝑠𝑡𝑎𝑟𝑗𝑡 + 𝛼1𝐻𝑅𝑎𝑛𝑘𝑖𝑡 + 𝛼2𝐿𝑅𝑎𝑛𝑘𝑖𝑡 +

𝛾0 + 𝛾𝑋𝑗𝑡 + 𝜙𝑍𝑖𝑡 + 𝜀𝑖𝑗𝑡 .  (1) 

In this specification, 𝑦𝑖𝑗𝑡 is an individual performance measure for athlete i in event j, during 

season t. Depending on the specification, 𝑦𝑖𝑗𝑡 will be either a measure of strokes net of par, or   

the race time in an alpine skiing event. 𝐻𝑅𝑎𝑛𝑘𝑖𝑡 , 𝐿𝑅𝑎𝑛𝑘𝑖𝑡 , and 𝑈𝑅𝑎𝑛𝑘𝑖𝑡 are indicator variables 

equal to 1 if athlete 𝑖 is high ranked, low ranked or unranked during season t15, 𝑠𝑡𝑎𝑟𝑗𝑡 is an 

indicator variable equal to 1 if the star is in the event. We allow the star variable to vary over 

time, as some athletes may not be stars over their entire career.  𝑋𝑗𝑡 is a set of event-specific 

controls described below, while 𝑍𝑖𝑡 is a set of individual specific controls, and 𝜀𝑖𝑗𝑡 is a random 

error term. In some specifications we will allow the errors to have arbitrary correlation within 

player throughout the season as in Brown (2011), while in others we will allow the error terms to 

be correlated within events in a specific season (as in Connolly and Rendleman, 2014). Both 

error structures may be reasonable. For example, an individual athlete may be streaky, such that 

their performance in the current event is correlated with their performance in prior events. 

                                                           

15 For Golf the cutoffs are 20 and 200, these are roughly the 90th and 25th percentile of ranking. 

For skiing the cutoffs are chosen to match these percentiles giving 10 and 50.   
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Additionally, the performance of athletes within a tournament may also be correlated, for 

instance, because golfers face the same pin locations, which move from day to day within the 

tournament. Similarly, skiers’ times may be correlated in an event because of the gate locations, 

which vary season to season at the same resort, or unobserved snow conditions. Given that both 

approaches have their merits and shortcomings, we also cluster on both the player-year and 

event-season following the procedure outlined by Cameron, Gelbach, and Miller (2012). All 

specifications omit the scores of the superstar from the dataset. 

The choice of 𝑋𝑗𝑡 and  𝑍𝑖𝑡 differ by data set. For PGA events, 𝑋𝑗𝑡 contains an indicator 

denoting whether or not the tournament is a major, time varying weather data: temperature, wind 

speed, rainfall, as well as information on the size of the purse (in real 1982-84 dollars) and purse 

squared. We allow the purse to have a differential effect for high, medium, and low ranked 

individuals by interacting the purse with the ranking indicators. Finally, 𝑋𝑗𝑡 includes a measure 

of the field’s quality, as measured by the average World Golf ranking points for all other players 

in the tournament excluding the superstar. In the LPGA dataset, 𝑋𝑗𝑡 contains the same variables, 

except the weather variables, and an indicator if the tournament was held for three rounds. In 

both cases 𝑍𝑖𝑡 is a set of player-course fixed effects to control for a players’ average performance 

on a given course over time.    

In the alpine skiing dataset, 𝑋𝑗𝑡 contains a measure of the strength of the field, as measured 

by the average player ranking of all tournament participants excluding the superstar. 𝑍𝑖𝑡 contains 

player-tournament location fixed effects, and time varying observables of the skier: their age and 

age squared.    
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 Following the predictions derived in the model, we expect that the coefficients on the 

interactions terms, 𝛽1, 𝛽2, and 𝛽3, should all be positive, as higher scores relative to par, and 

slower ski times suggest decreased performance. One possible shortcoming of our empirical 

design is that we are estimating the net effect of competing with a superstar. If the superstar also 

creates a positive peer effect, then the interpretation of 𝛽1, 𝛽2, and 𝛽3 should be the composite effect 

of the peer effect and the disincentive effect. To an extent, our empirical design limits the impact of peer 

effects as each sample includes periods in which Woods, Sörenstam, Maier, and Vonn compete, but 

are not designated as superstars. Thus, for peer effects to drive our findings, there must be a 

differential peer effect when these athletes are at the peak of their career. Empirically, there is 

some evidence from golf that peer effects are limited (Guryan, Kroft, and Notowidigdo; 2009).  

5. Data 

Here we briefly outline each dataset that we have constructed. We first describe our golf 

datasets, and note any differences from Brown (2011), we then proceed to describe the alpine 

skiing data.  

For the men’s golf dataset, we begin by collecting every PGA Tour event from 1999-2006 

seasons via the PGA Tour’s Shotlink database. This data includes the individual tournament 

level score for every golfer as well as tournament level information, such as the event purse. We 

combine these sources with tournament weather events (temperature, wind, and rainfall) and 

Official World Golf Rankings. Unlike Brown (2011) and Connolly and Rendleman (2014), we 

omit information regarding television ratings, as we do not have this information for all of the 

athletic contests we study. Thus, our baseline will also serve as a test for the severity of omitted 

variables bias, which may be important when evaluating the other events.  
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We construct two separate datasets, one that is aimed at replicating the results presented by 

Brown to the best of our ability, and a second that includes several tournaments that were 

excluded by Brown but meet the inclusion criteria.  First, we omit small field tournaments 

(Mercedes and The Tour championship), tournaments held opposite Majors and World Golf 

Championship events, and tournaments scheduled for five rounds. This reduces the sample from 

368 to 311 tournaments, which correspond to those used by Connolly and Rendleman (2014). In 

specifications that examine the total score over all four rounds, we omit four tournaments that 

were cut short due to severe weather conditions. We further omit tournaments following the 

detailed descriptions in both Brown (2011) and Connolly and Rendleman (2014) to derive our 

dataset that is comparable to Brown, consisting of 264 tournaments, 261 for four rounds.  Lastly 

we require that the tournament be held each year during our sample period, this gives 272 

tournaments (268 for all four rounds) for our full data set and 232 tournaments (229 for all four 

rounds) when replicating the results found in Brown (2011).16  

The dataset for LPGA is similar to the PGA data set. We obtain round by round scores and 

purse amounts from www.golfstats.com. As with Woods we limit our data set to tournaments 

over the time when Sörenstam was at the peak of her career, 2000 – 2006, resulting in 227 

events. We then drop 3 tournaments that were cut short due to severe weather, leaving us with 

224 events when analyzing the entire event score. As with the PGA dataset we require 

tournaments be held each year during our data set, giving 147 tournaments (144 for event level 

scores). There are two major differences between the PGA and LPGA datasets. First, we do not 

observe weather data for each event. Secondly, the LPGA did not have an official ranking 

system until 2007.  

                                                           

16 All results are qualitatively similar if we drop this condition.  

http://www.golfstats.com/
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We address these concerns in the following way: First, given that we observe the weather 

correlates in the men’s sample, we test to see how sensitive the superstar coefficient is to the 

omitted variables bias. When we do this, we cannot reject the equality of the coefficients, 

reducing concerns of omitted variables bias in the women’s sample. To address the missing 

LPGA player ranking data, we construct our own ranking based on individual level performance 

data from our sample and the formulas associated with the PGA’s current ranking system.17 

 For alpine skiing we collected data for all World Cup events from the International Ski 

Federation (FIS) and include information on event type (Downhill, Super G, or Giant Slalom), 

time to finish event, location, and date. Our main dependent variable for alpine skiing will be the 

time to finish an event. In addition, we include a second dependent variable that measures if an 

athlete did not finish an event (due to a crash or missing a gate). As in the LPGA there is no 

official ranking system, so again we implement our own raking system.18 When looking at men’s 

skiing we use observations from the 1997 to 2010 seasons and focus at the three events in which 

Maier primarily competed (Downhill, Super G, and Giant Slalom). For women’s skiing we use 

observations from the 2002 – 2014 seasons and work with the two events that Vonn primarily 

competed in: Super G and Downhill.  

                                                           

17 All participants who complete an event are awarded points based upon the finish position: first 

place receives 50 points, second receives 30, third receives 20, … , 65th receives 0.75, and below 

receives 0, if the tournament is a major these values are doubled and all those who finish earn 

0.75 points. These points are then weighted over the past two years according to the following 

system. The first 13 weeks have full weight while the remaining 91 weeks decrease in equal 

increments to 0. The weighted points are then divided by the total number of tournaments played 

in the past two years.  
18  We adopt the previously discussed procedure for alpine skiing by adjusting the point system. 

Points are awarded using the same scale the FIS uses to determine season winners, first receives 

100 points, second receives 80 points, …, 30th receives 1 point, and below receives 0.  
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Before we proceed to the formal results, we first present some initial evidence that is 

suggestive of a superstar effect in golf and skiing. In Table 2, we present the differences in 

means of strokes net of par for PGA and LPGA players by ranking category when they play with 

and without a superstar. From this exercise, we can see that players on the PGA score between 

2.97 and 6.02 shots worse when a superstar is in the tournament, with stronger effects found for 

high ability players. In the women’s draw, we find that playing with a superstar increases a 

players score by 1.26-2.39 strokes per tournament. Both of these results are consistent with the 

superstar hypothesis, however, this simple difference in means is unconditional, and there are a 

variety of factors that we have previously mentioned that might influence performance, such as 

the difficulty of the course when superstars select into a tournament.   

Table 2: Difference in Means for Golf Events 

 Panel A: Men’s Golf (PGA) 

 High Ranked Low Ranked Unranked 

 Star No Star Difference Star No Star Difference Star No Star Difference 

Strokes -1.593 -7.615 6.022*** -0.302  -4.913  4.611***   -0.060  -3.035  2.974*** 

SE (7.819) (6.197) (0.355) (7.890) (6.274) (0.135)  (8.107) (6.169) (0.180)  

N 1,106 670 1,776 5183 5919   11,102   1,952 5,062 7,014 

    

 Panel B: Women’s Golf (LPGA) 

 High Ranked Low Ranked Unranked 

 Star No Star Difference Star No Star Difference Star No Star Difference 

Strokes -1.468 -4.931 2.396*** 2.069 0.208 1.363*** 5.565 4.300 1.264*** 

SE (7.582) (6.434) (0.397) (7.278) (6.602) (0.174) (8.120) (6.915) (0.602) 

N 1,260 461 1,721 4,301 2,629 6,930 644 233 877 

Table reports mean strokes net of par. Star is mean score in tournaments when the superstar is present; No Star is 

mean score in tournaments when the star is not present. Scores are event scores using the full data set, all estimates 

omit the superstar and players who did not make the cut. Standard deviations are in parenthesis below the estimates, 

for the estimated difference the standard error is given in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01, using a 

two tailed t test.  

 

In Table 3, we report these differences using the time to finish an event from the alpine 

skiing data. Table A.1. in the appendix analogously reports the differences for the frequencies of 
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finishing an event with the superstar present and without. Compared to the golf data, the pattern 

provided by the skiing data in Table 3 is less clear. In the men’s Super G, we see that competing 

with a superstar actually improves times for highly ranked individuals by 1.9 seconds.  

  Table 3: Difference in Mean Time for Alpine Skiing Events 

Panel A: Men’s FIS 

  High Ranked Low Ranked Unranked 

  Star No Star Difference Star No Star Difference Star No Star Difference 

Downhill          

Time 114.079 114.29 -0.211 115.209 115.995 -0.786 116.699 118.933 -2.234*** 

SE (0.623) (0.695) (1.013) (0.341) (0.367) (0.535) (0.441) (0.506) (0.713) 

N 437 715 1,152 1559 2,475 4,034 851 1248 2,099 

Super G          

Time 85.338 87.280 -1.942*** 85.361 88.375 -3.013*** 87.747 88.818 -1.071** 

SE (0.507) (0.428) (0.678) (0.257) (0.233) (0.357) (0.343) (0.302) (0.465) 

N 237 393 630 888 1,390 2,278 457 699 1,156 

Giant 

Slalom          

Time 145.502 145.22 0.280 147.183 146.45 0.737 148.146 147.693 0.453 

SE (0.575) (0.480) (0.753) (0.378) (0.322) (0.498) (0.977) (0.762) (1.223) 

N 327 492 819 830 1,170 2,000 125 177 302 

Panel B: Women’s FIS 

 High Ranked Low Ranked Unranked 

 Star No Star Difference Star No Star Difference Star No Star Difference 

Downhill          

Time 101.381 97.498 3.882*** 101.763 98.512 3.250*** 103.575 100.11 3.066*** 

SE (0.650) (0.513) (0.825) (0.329) (0.269) (0.425) (0.651) (0.449) (0.776) 

N 316 493 809 1252 1862 3114 384 703 1087 

Super G          

Time 80.479 79.377 1.101** 81.411 80.108 1.303*** 82.056 81.017 1.009** 

SE (0.360) (0.303) (0.481) (0.190) (0.160) (0.253) (0.383) (0.262) (0.450) 

N 243 410 653 950 1546 2496 356 599 955 

Table reports mean strokes net of par. Star is mean time in races when the superstar is present, No Star is mean time in 

tournaments when the star is not present.  All estimates omit the superstar and players who did not finish the event. 

Standard errors are in parenthesis below the estimates. * p < 0.10, ** p < 0.05, *** p < 0.01, using a two tailed t test. 

 

More generally, the presence of a superstar tends to improve times on the men’s side in 

Super G and Downhill. In the women’s events, we see that competing against a superstar can 

increase a racer’s time by up to 3.8 seconds in the downhill, and more generally, increases 
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racers’ times. In what follows, we control for a variety of features than may influence these 

unconditional differences in means.  

6. Results  

We first begin by reporting the results from our replication exercise, and then proceed to discuss 

the results from the other environments. 

A. Replicating the Tiger Woods Superstar Effect  

In Table 4, we present the results of from our replication exercise that correspond to 

equation (1). In Panel A, we present results that use the first round score as the outcome of 

interest. 19 In column 1, we re-print the coefficient estimates from Brown (2011). In column 2 we 

present our closest replication of her sample, while in column 3 we use a sample that includes 

additional events, following the criteria outlined in Connolly and Rendleman (2014). For each 

specification, we report three sets of standard errors, those clustered on the player-year (in 

parenthesis, used in Brown, 2011), errors clustered on the event (in brackets, reported in 

Connolly and Rendleman, 2014), and errors that are clustered on both dimensions, the player-

year and event (in curly brackets). We do this so the reader can see how the statistical inference 

changes under varying assumptions associated with the error structure. 

Our replication exercise closely matches the results reported by Brown (2011), as a t-test 

of the coefficients cannot reject equality. We find that playing against a superstar increases a 

player’s score by 0.868 strokes, and this result is statistically significant at the 5% level when 

                                                           

19 In Table A.2. in the appendix, we present additional results where we consider alternate 

definitions of player ranking by examining the number of wins and top finishes during the 

previous two seasons (i.e., won a tournament, finished in top 5, top 10, etc.). In Table A.3., we 

also estimate the potential superstar effect separately for each round in the tournament.  
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clustering the standard errors at the player-year level. Furthermore, the effect is concentrated in 

highly ranked players, who have the most at stake when playing against Tiger.   

   

Table 4: PGA Results 

 Panel A Panel B 

 First Round, Majors Included Event Scores, Majors Included 

 Brown Replication All Data Brown Replication All Data 

HRankStar 0.596 0.868 0.680 1.358 1.170 1.092 

 (0.281)** (0.287)*** (0.263)*** (0.726)** (0.712) (0.660)* 

 -- [0.364]** [0.353]* -- [1.196] [1.134] 

 -- {0.359}** {0.350}* -- {1.062} {1.028} 

       

LRankStar 0.161 0.329 0.174 0.804 0.119 0.056 

 (0.113) (0.120)*** (0.111) (0.318)** (0.322) (0.296) 

 -- [0.231] [0.245] -- [0.878] [0.816] 

 -- {0.206} {0.216} -- {0.736} {0.693} 

       

URankStar 0.202 0.366 0.218 0.596 0.026 -0.058 

 (0.126) (0.139)*** (0.126)* (0.396) (0.428) (0.389) 

 -- [0.241] [0.243] -- [0.940] [0.848] 

 
-- {0.213}* {0.215} -- {0.788} {0.724} 

N obs 34,986 32,851 38,735 18,805 16,923 19,892 

N 

Tournaments 
269 232 272 269 229 268 

Standard Errors in parenthesis are clustered by player year, standard errors in brackets are clustered by 

tournament, standard errors in curly braces are clustered by player year and tournament, All estimate omit 

the superstar. * p < 0.10, ** p < 0.05, *** p < 0.01 with respect to that standard error. 

 

Brown are results as reported in Brown (2011), Replication is our best attempt at replicating Brown (2011) 

and All Data only excludes tournaments listed in paper 

 

When we allow the errors to be correlated within tournament the standard errors increase slightly 

but the estimated coefficient is still statistically significant at the 5% level for high ranked 

players. When clustering the standard errors at both the player-year level and the tournament 

level the results remain qualitatively similar.  
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When we move to the larger sample (column 3), as suggested by Connolly and 

Rendleman (2014), the point estimate drops to 0.680. As more tournaments are added to the 

sample, precision increases, but due to the smaller point estimate, the significance level 

decreases under the assumption that errors are correlated within tournament. When clustering on 

both dimensions the standard errors are comparable to allowing for correlation within each 

tournament.  

 In Panel B of Table 4, we report the results using the tournament event score as the 

outcome of interest. This data differs from the first round score data in that it drops players who 

do not make the cut at the conclusion of the second day. Again, we report Brown’s original point 

estimates, as well as our replication using both samples. Our estimates, reported in columns 5 

and 6, are smaller in magnitude, but given the large standard errors, cannot be rejected as 

different from Brown’s original estimates. Unlike Brown, we do not find strong evidence of a 

superstar effect over the entire tournament, regardless of the sample or the assumptions regarding 

the error structure. Since the only major difference in the samples are television viewership, 

these differences may be attributed to that omission.20  

As previously noted, when we study the LPGA Tour and World Cup Skiing, we do not 

observe weather data, which likely influences performance (faster/slower greens, slushy/icy 

slopes). To test for the severity of the potential omitted variables bias (for golf), we re-estimate 

equation (1) on our PGA dataset, but omit the weather covariates. The results of this exercise are 

reported in Table A.4. in the appendix. When we omit the weather variables, the point estimates 

                                                           

20 Connolly and Rendleman (2014) successfully replicated event scores when including 

television viewership data. They also show that when the tournament sample size increases and 

the errors are allowed to be correlated within tournament, that the superstar effect loses statistical 

significance.  
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are generally larger, however, the estimates are not statistically different from the baseline 

estimates reported in Table 4. This provides some confidence that the potential omitted variables 

bias is not so large as to invalidate our main findings.21  

 Overall, in our re-examination of the previously documented superstar effect generated 

by Tiger Woods, we find that the original results reported in Brown (2011) are highly sensitive 

to the assumed error structure and the inclusion of omitted tournaments (as previously noted by 

Connolly and Rendleman, 2014). While it is reasonable to allow errors to be correlated within a 

player throughout the season to allow for serial correlation across tournaments, it is also likely 

that scores within a tournament are correlated due to unobservable variables, such as the 

moisture content of the grass, which can affect fairway and green speeds, or the pin location, 

which varies from day to day, and can affect the difficulty of the course. When we allow the 

error structure to depend on both of these sources of correlation, we generally cannot reject the 

null hypothesis of no superstar effect. Of course, allowing for a richer error structure naturally 

decreases the precision of the estimates, and imposes a stricter test of the data. In what follows, 

we examine other settings to see how generalizable the superstar effect may be, while remaining 

agnostic in regards to the true error structure.  

B. Generalizing the Superstar Effect 

 The mixed evidence from the PGA Tour raises several questions. Is it limited to males 

playing professional golf, to Tiger Woods, or does it depend critically on the assumptions on 

unobservables? In what follows, we examine three additional venues, women’s golf, and men’s 

and women’s professional alpine skiing. The theoretic models of the superstar effect suggest that 

                                                           

21 This is in the spirit of work by Altonji, Elder, and Tabor (2005) and Oster (2015), who develop 

formulas to quantify the severity of omitted variables bias.  
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there will be a disincentive effect when (i) the superstar is significantly more talented than the 

closest rival and (ii) the prize structure is sufficiently convex. In our other settings, both 

conditions are more likely to hold than in the PGA Tour. As we noted previously, Sörenstam was 

a more dominant competitor than Tiger Woods, and the prize gradient in FIS is steeper than 

either golf event.  

 While the LPGA Tour receives less attention than the men’s tour, it had an equally if not 

more dominant competitor than Tiger Woods: Anika Sörenstam. During the peak of her career, 

Sörenstam’s margin of victories over her next closest rival was larger than Tiger’s margin over 

Phil Mickelson. Therefore, understanding how a potentially brighter star than Woods impacts the 

competition in a similar environment will be useful in understanding the robustness of the 

superstar effect.     

To estimate the potential impact that Sörenstam had on her rivals’ performance, we re-

estimate equation (1) using the sample of LPGA events described in the data section. Here we 

briefly describe the main findings, reported in Table 5. As before, we continue to report multiple 

sets of standard errors so the reader can see how the statistical significance changes with the 

error structure. Table 5 reports the effect a superstar has on a high, low, and unranked golfer in 

the first round, second round, third round, fourth round, and overall effect across all four 

rounds.22   

For brevity, we focus our discussion on the first round scores and the overall tournament 

performance, which closely mirrors the discussion in Brown (2011). In column 1, we report that 

highly ranked female players perform worse (have a higher score) in the first round when 

                                                           

22 The number of observations decreases after the second round due to the winnowing of the field 

at the conclusion of the second round, and after the third round due to tournaments that were 

scheduled for three rounds.  
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Sörenstam plays in the tournament, however, regardless of the error structure, the estimated 

effect is not statistically different from zero. Low tier and unranked players also perform worse 

(more strokes above par) when Sörenstam participates in the tournament; however, the effect is 

also imprecisely estimated. 

Table 5: LPGA Results 

 1stRound 2ndRound 3rdRound 4thRound Event 

HRankStar 0.119 -0.369 0.059 -0.029 -0.570 

 (0.292) (0.282) (0.300) (0.426) (0.655) 

 [0.423] [0.363] [0.413] [0.489] [0.923] 

 {0.429} {0.363} {0.380} {0.448} {0.931} 

            

LRankStar 0.096 -0.239 -0.186 -0.312 -0.814 

 (0.106) (0.105)* (0.158) (0.197) (0.279)*** 

 [0.266] [0.244] [0.265] [0.325] [0.681] 

 {0.255} {0.217} {0.230} {0.267} {0.623} 

            

URankStar 0.062 0.196 0.038 -0.776 0.102 

 (0.293) (0.341) (0.712) (0.793) (1.216) 

 [0.402] [0.373] [0.686] [0.766] [1.426] 

 {0.461} {0.358} {0.574} {0.641} {1.538} 

N Obs 17,403 17,173 9,804 7,460 9,794 

N Tournaments 147 147 144 113 144 

Standard Errors in parenthesis are clustered by player year, standard errors in brackets are 

clustered by tournament, standard errors in curly braces are clustered by player year and 

tournament. All estimates omit the superstar. *p<0.10, **p<0.05, ***p<0.001 with 

respect to that standard error.      

 

The picture becomes even less clear when examining the estimates over the entire four rounds of 

the tournament. In column 5, we report the estimated coefficients using the overall tournament 

strokes net of par. We find that over the entire event, the presence of Sörenstam leads to an 

improvement in tournament outcomes for high and low ranked competitors (although the 

estimate is not statistically different from zero for high ranked players), and reverses sign for low 

ranked players (also not statistically different from zero). The effect for low ranked players is not 

consistently significant across rounds and choice of standard errors. The lack of statistical 
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significance for these findings is robust to alternate definitions/classification of highly ranked 

golfers.23 

 Our findings create some doubt as to how generalizable the superstar effect is to stars 

other than Tiger Woods, or at the very least suggest that there may be differences in how males 

and females respond to superstar competitors. One criticism of the LPGA dataset is that it omits 

climatic variables that might be correlated with an athletes score. Unless the climate variables are 

correlated with the decision of Sörenstam to enter the tournament, the estimated superstar effect 

will not be biased by this omission. In the PGA Tour sample, we demonstrate that excluding 

climate variables did not affect the superstar coefficient estimate, suggesting that Tiger Woods’s 

entry into a tournament and climate variables are uncorrelated, while this does not conclusively 

document that Sörenstam does not choose to enter on the basis of climatic conditions, it seems 

like a stretch that golfers on the LPGA Tour would respond differently to rain and cold than their 

male counterparts. Similarly, we do not control for media exposure/TV ratings. While media 

exposure may create pressure, affecting the score of a golfer, TV ratings will only bias the 

superstar coefficient if differential media exposure, conditional on the purse of the tournament, is 

correlated with the superstar’s decision to enter the tournament.  Both of these conditions seem 

unlikely, therefore, we believe that it is unlikely that our estimates suffer from this type of 

omitted variables bias.  

 At this point, it is unclear whether or not men and women respond differently to 

superstars, or if Tiger Woods was just a special athlete. In what follows, we turn our discussion 

to men’s and women’s FIS World Cup Alpine Skiing. We examine alpine skiing because it 

                                                           

23 In the appendix, we report estimates using alternative definitions of highly skilled by 

specifying that an athlete has finished in the top N places in the previous two season (Table A.5).   
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represents a completely different set of skills for the athlete, yet in each event, there is a well-

regarded star (Herman Maier and Lindsey Vonn). In what follows, we report coefficient 

estimates for two outcome variables: the overall time in the race and the probability of finishing 

the race. We report both measures, as the presence of a superstar competitor may lead less skilled 

skiers to take riskier paths down the mountain in an attempt to gain a time advantage. This type 

of risk taking may be the only way to offset the skill differential. Examining finishing times in 

isolation may be misleading if a large proportion of skiers adopt this risk taking strategy and do 

not complete the race and thus do not have an official race time.   

 In Panel A of Table 6, we report the coefficient estimates from the men’s field. We report 

6 outcomes: the race time in three events (Downhill, Super G, and Giant Slalom) and an 

indicator that denotes whether or not the racer completed the race. In the men’s downhill, the 

presence of Maier has no statistically significant impact on highly ranked skiers. For lesser 

ranked skiers, it appears as though Maier’s presence leads to an increase in the number or racers 

finishing, yet increases their run times. The increase in the likelihood of finishing is statistically 

significant regardless of the error structure assumption, while the slower race times have 

relatively large standard errors under the various assumptions.24 The rules of the FIS may 

partially influence our findings. In the downhill, racers are allowed several practice runs 

throughout the week, which may allow lower ranked competitors to study the lines taken down 

the slope by more experienced and more skilled competitors. If these paths down the slope are 

                                                           

24 In our baseline, we estimate linear probability models, which may allow predicted 

probabilities to lie outside of the [0,1] interval. Therefore, as a robustness check, we also 

estimated the model using a logit error structure. The results of this specification are reported in 

the Appendix, Table A.6. Additionally, we also consider alternative definitions of highly ranked 

skiers. Our estimates are robust to the alternate definitions. The results from these regressions are 

reported in Appendix Table A.7. 
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riskier or require more skill, then the lower ranked competitors may be making a tradeoff 

between risk and effort, independent of any disincentive effect.25 

In the Super G and Giant Slalom, Maier’s participation had little impact on the race times 

of highly ranked skiers. The lowest ranked skiers finished at higher rates when Maier 

participated, and in the case of the Giant Slalom remains marginally statistically significant 

under the various error assumptions. However, the mid-tier skiers were not influenced by Maier 

in either the Super G or Giant Slalom. Again, the rules governing skiing may partially explain 

why fewer skiers where influenced by Maier’s participation. In both the Super G and Giant 

Slalom, skiers are not permitted to make practice runs, but instead are only allowed to visually 

inspect the course one hour before the event begins. In the case of the Giant Slalom, the gates are 

repositioned between runs, limiting the scope for learning between runs down the slope by 

watching your competitors run.    

We now turn our attentions to the women’s FIS World Cup events to see if we find a 

similar pattern. In Panel B of Table 6, we report the estimated effect that Linsey Vonn’s 

participation has on her competitors’ race times and likelihood of completing an event. Because 

Vonn specialized in the Downhill and Super G (the speed events), we limit our study to these 

competitions. In Column 1, we present the results from the downhill event. When Vonn 

participates, the likelihood of finishing a race increases for highly ranked skiers (less likely to not 

finish), and they have faster race times (neither coefficient is statistically significant). Under the 

assumption that errors are only correlated within skier throughout the season, we find that 

Vonn’s participation leads to faster race times for low ranked skiers, which is suggestive of 

                                                           

25 Millner and Pratt (1991) demonstrate that more risk-averse experimental subjects reduce effort 

in contests. Similar findings in the experimental literature are summarized in Dechenaux, 

Kovenock, and Sheremeta (2015).  
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positive peer effects. Under alternative error term assumptions, this effect is statistically 

indistinguishable from zero. In the Super G, we find that Vonn’s participation has no effect on 

highly ranked skiers (for either outcome), and causes low ranked skiers to have slower times. 

This effect is only statistically significant when we cluster the standard errors on the skier-

season. Under the alternative error assumption’s Vonn’s participation has no impact on skiers of 

any ranking in any competition.26  

Discussion 

 Previous research has documented the superstar effect in men’s professional golf 

(Brown, 2011). We document that these findings are highly sensitive to sample selection 

(Connolley and Rendelman 2014), as well as the assumptions governing the error structure, 

calling into question the robustness of the initial findings in the literature. Our focus in this paper 

is to see whether or not other settings may allow us to identify the superstar effect using the same 

source of variation that Brown (2011) used in her study of professional golfers. Across three 

different athletic contests, (6 if each FIS event is counted as a separate competition), we fail to 

document any relationship between highly ranked athletes and the presence of a superstar in the 

contest. Instead, we document that lower ranked athletes actually perform better in the presence 

of the superstar, suggesting that there may be positive peer effects rather than a disincentive to 

exert effort amongst the closest rivals to the superstar.  

 

                                                           

26 Again, as a robustness check to complement our estimated linear probability models, we also 

estimated the model using a logit error structure. The results of this specification are reported in 

the Appendix, Table A.6. In addition, we again consider alternative definitions of highly ranked 

skiers and our estimates are robust to alternate definitions. The results are reported in Appendix 

Table  A.7.  
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Table 6: FIS Alpine Skiing Results 

 Panel A: Men’s Alpine Skiing Panel B: Women’s Alpine Skiing 

 Downhill Super G Giant Slalom Downhill Super G 

 Pr(¬finish) Time Pr(¬finish) Time Pr(¬finish) Time Pr(¬finish) Time Pr(¬finish) Time 

HRankStar 3.20610-4 1.277 0.020 0.360 0.036 1.465 -0.039 -0.930 0.025 0.677 

 (0.023) (0.985) (0.042) (0.607) (0.041) (0.762)* (0.028) (1.135) (0.046) (0.809) 

 [0.024] [2.071] [0.040] [1.444] [0.041] [2.048] [0.029] [3.555] [0.053] [1.782] 

 {0.028} {2.162} {0.046} {1.475} {0.046} {2.054} {0.028} {3.549} {0.055} {1.831} 

           

LRankStar -0.048 1.879 0.008 0.130 0.011 1.206 0.018 -2.271 -0.019 1.129 

 (0.013)*** (0.471)*** (0.025) (0.322) (0.031) (0.544)** (0.017) (0.582)*** (0.022) (0.446)** 

 [0.019]** [2.081] [0.040] [1.336] [0.031] [1.908] [0.018] [3.562] [0.027] [4.569] 

 {0.020}** {2.099} {0.042} {1.338} {0.037} {1.899} {0.020} {3.540} {0.028} {1.642} 

           

URankStar -0.083 2.078 -0.076 0.951 -0.083 2.250 -0.023 -1.989 -0.025 1.130 

 (0.022)*** (0.592)*** (0.037)** (0.492)* (0.033)** (1.773) (0.041) (1.523) (0.047) (0.818) 

 [0.028]*** [1.879] [0.056] [1.554] [0.044]* [2.604] [0.049] [4.270] [0.063] [1.639] 

 {0.028}*** {1.871} {0.056} {1.554} {0.046}* {2.594} {0.049} {4.589} {0.060} {1.666} 

           

N obs 8,299 7,285 5,163 4,069 7,318 3,121 5,555 5,010 4,972 4,104 

N events 151 151 90 90 117 117 108 108 92 92 

 

Standard Errors in parenthesis are clustered by player year, standard errors in brackets are clustered by tournament, standard errors in curly braces are 

clustered by player year and tournament. All estimates omit the superstar. When using the probability of not finishing as the dependent variable a linear 

probability model is used. * p < 0.10, ** p < 0.05, *** p < 0.01 with respect to that standard error. 
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Given the heterogeneous abilities amongst the athletes, this finding is consistent with 

recent findings by Gürtler and Gürtler (2015) and previous studies in the peer effects literature 

(for instance Sacerdote 2001, Zimmerman 2003, Lyle 2009). These findings also seem to be 

weaker in the female samples, which possibly suggest that peer effects differ by gender 

(Zimmerman 2001, Lundborg 2006), although we may simply lack statistical power.  

7. Conclusion 

Recently, there has been a growing literature that examines the role that participant heterogeneity 

has on individual effort in rank order tournaments. One suggestion has been that the presence of 

a superior competitor will lead other entrants in the tournament to reduce their effort. We further 

test this hypothesis by collecting data from four unique athletic settings with natural superstars. 

 To identify the effect of a superstar athlete on their competitor’s performance, we collect 

individual level data from four athletic contests, men’s golf, women’s golf, men’s alpine skiing, 

and women’s alpine skiing. We then use the entry decision of the superstar in a specific 

tournament/event as a source of exogenous variation. Exploiting within athlete-tournament 

variation, we find that professional athletes are not discouraged by the presence of superior 

talent. If anything, we find weak evidence that the presence of a superstar competitor leads to 

increases in individual effort among the weakest competitors, which is consistent with the large 

literature on peer effects. We also find that the potential peer effects are stronger for male 

competitors than females. Our findings highlight the importance of replication and the use of 

alternative samples to explore the robustness of previously documented phenomena.   
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Appendix A.: Additional Tables 

 

Table A.1.: Difference in Mean Finishes for Alpine Skiing Events 

Panel A: Men’s FIS 

  High Ranked Low Ranked Unranked 

  Star No Star Difference Star No Star Difference Star No Star Difference 

Downhill          

Pr(¬finish) 0.073 0.082 -0.009 0.095 0.113 0.018* 0.136 0.181 0.045*** 

SE (0.260) (0.274) (0.015) (0.294) (0.317) (0.009) (0.343) (0.358) (0.015) 

N 477 771 1,248 1,732 2,791 4,523 1,004 1,524 2,528 

Super G          

Pr(¬finish) 0.146 0.118 -0.028 0.176 0.169 -0.007 0.319 0.293 -0.027 

SE (0.354) (0.324) (0.026) (0.381) (0.375) (0.015) (0.455) (0.466) (0.023) 

N 280 446 726 1,090 1,673 2,763 686 988 1,674 

Giant 

Slalom          

Pr(¬finish) 0.226 0.197 -0.029 0.455 0.465 0.010 0.831 0.882 0.052*** 

SE (0.419) (0.398) (0.026) (0.498) (0.499) (0.016) (0.375) (0.322) 0.014) 

N 429 613 1,042 1,586 2,186 3,772 998 1,506 2,504 

          

Panel B: Women’s FIS 

 High Ranked Low Ranked Unranked 

 Star No Star Difference Star No Star Difference Star No Star Difference 

Downhill          

Pr(¬finish) 0.097 0.079 -0.019 0.092 0.070 -0.022** 0.181 0.142 -0.040* 

SE (0.297) (0.269) (0.019) (0.289) (0.256) (0.009) (0.386) (0.349) (0.021) 

N 350 535 885 1,379 2,003 3,382 469 819 1,288 

Super G          

Pr(¬finish) 0.155 0.107 -0.049** 0.141 0.141 3.89×10-4 0.245 0.249 0.005 

SE (0.363) (0.309) (0.025) (0.348) (0.348) (0.013) (0.433) (0.430) (0.025) 

N 296 459 755 1,137 1,800 2,937 482 798 1,280 

Star is mean time in races when the superstar is present, No Star is mean time in tournaments when the star is not present.  

All estimates omit the superstar and players who did not finish the event. Standard errors are in parenthesis below the 

estimates. * p < 0.10, ** p < 0.05, *** p < 0.01   
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Table A.2: PGA Round by Round Scores Using Number of Top Finishes in the Past Two 

Years 

 

 

 

 

 

  

 1stRound 2ndRound 3rdRound 4thRound Event 

Top1Star -0.033 0.047 -0.067 -0.008 -0.037 

 (0.075) (0.068) (0.079) (0.085) (0.178) 

 [0.075] [0.075] [0.080] [0.090] [0.167] 

 {0.088} {0.081} {0.081} {0.094} {0.188} 

Top5Star -0.013 0.049 0.005 -0.011 0.010 

 (0.025) (0.025)** (0.031) (0.032) (0.062) 

 [0.026] [0.025]* [0.031] [0.031] [0.067] 

 {0.028} {0.027}* {0.027}* {0.033} {0.068} 

Top10Star -0.005 0.018 0.008 -0.008 0.003 

 (0.015) (0.015) (0.020) (0.021) (0.039) 

 [0.016] [0.016] [0.021] [0.021] [0.044] 

 {0.017} {0.017} {0.017} {0.022} {0.044} 

Top20Star -0.004 0.018 0.004 -0.010 -0.002 

 (0.010) (0.010)* (0.014) (0.014) (0.026) 

 [0.011] [0.011]* [0.014] [0.015] [0.032] 

 {0.011} {0.011} {0.011} {0.015} {0.030} 

Top30Star 4.297×10-4 0.019 0.006 -0.012 4.892×10-4 

 (0.008) (0.008)** (0.011) (0.012) (0.022) 

 [0.009] [0.009]** [0.012] [0.012] [0.026] 

 {0.009} {0.009} {0.009} {0.012} {0.025} 

N obs 38,735 38,102 20,782 19,892 19,892 

N Tournaments 272 272 268 268 268 

Standard Errors in parenthesis are clustered by player year, standard errors in brackets are clustered by 

tournament, standard errors in curly braces are clustered by player year and tournament. * p < 0.10, ** p 

< 0.05, *** p < 0.01 with respect to that standard error.  
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Table A.3: PGA Round by Round Estimates  

 Round 1 Round2 Round3 Round4 

HRankStar 0.680 -0.092 0.342 0.172 

 (0.263)*** (0.281) (0.333) (0.341) 

 [0.353]* [0.364] [0.435] [0.434] 

 {0.350}* {0.360} {0.418} {0.422} 

LRankStar 0.174 -0.209 0.117 -0.074 

 (0.111) (0.112)* (0.153) (0.160) 

 [0.245] [0.250] [0.298] [0.286] 

 {0.216} {0.219} {0.256} {0.249} 

URankStar 0.218 -0.277 -0.036 -0.066 

 (0.126)* (0.136)** (0.202) (0.214) 

 [0.243] [0.237] [0.323] [0.318] 

 {0.215} {0.210} {0.279} {0.281} 

N obs 38,735 38,102 20,782 19,892 

N tournaments 272 272 268 268 

Standard Errors in parenthesis are clustered by player year, standard errors in brackets 

are clustered by tournament, standard errors in curly braces are clustered by player 

year and tournament. * p < 0.10, ** p < 0.05, *** p < 0.01 with respect to that 

standard error. 

 

Table A.4: PGA Results excluding weather controls 

 

First Round, Majors 

Included 

Event Scores, Majors 

Included 

 Replication All Data Replication All Data 

HRankStar 0.751 0.681 1.296 1.318 

 (0.292)** (0.271)** (0.728)* (0.675)* 

 [0.386]* [0.367]* [1.286] [1.195] 

 {0.378}** {0.363}* {1.128} {1.069} 

LRankStar 0.231 0.179 0.241 0.302 

 (0.117)** (0.108)* (0.321) (0.294) 

 [0.260] [0.248] [0.976] [0.891] 

 {0.228} {0.219} {0.814} {0.754} 

URankStar 0.132 0.118 0.014 0.090 

 (0.138) (0.127) (0.428) (0.389) 

  [0.271] [0.257] [1.035] [0.939] 

 {0.234} {0.225} {0.865} {0.797} 

N obs 32,851 38,735 16,923 19,892 

N tournaments 232 272 229 268 

Standard Errors in parenthesis are clustered by player year, standard errors in 

brackets are clustered by tournament, standard errors in curly braces are clustered 

by player year and tournament. * p < 0.10, ** p < 0.05, *** p < 0.01 with respect 

to that standard error.   
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Table A.5: LPGA Round by Round Scores Using Number of Top Finishes in the Past Two 

Years 

 1stRound 2ndRound 3rdRound 4thRound Event 

Top1Star -0.055 0.028 0.076 0.073 0.169 

 (0.105) (0.105) (0.112) (0.129) (0.248) 

 [0.120] [0.096] [0.114] [0.127] [0.240] 

 {0.125} {0.120} {0.121} {0.126} {0.260} 

Top5Star 0.016 -0.010 0.014 0.003 0.029 

 (0.029) (0.028) (0.031) (0.044) (0.071) 

 [0.036] [0.026] [0.033] [0.043] [0.064] 

 {0.036} {0.030} {0.033} {0.040} {0.067} 

Top10Star 0.016 -0.003 0.007 0.001 0.013 

 (0.018) (0.017) (0.020) (0.027) (0.043) 

 [0.022] [0.016] [0.021] [0.024] [0.040] 

 {0.022} {0.018} {0.021} {0.023} {0.042} 

Top20Star 0.006 -0.010 0.002 4.956×10-4 -0.009 

 (0.011) (0.011) (0.013) (0.017) (0.028) 

 [0.014] [0.010] [0.014] [0.017] [0.027] 

 {0.014} {0.011} {0.014} {0.016} {0.028} 

Top30Star 0.004 -0.011 -0.001 3.459×10-4 -0.015 

 (0.009) (0.009) (0.011) (0.015) (0.023) 

 [0.011] [0.008] [0.011] [0.014] [0.023] 

 {0.011} {0.009} {0.011} {0.013} {0.023} 

N 16,973 16,754 9,622 7,254 9,706 

      Standard Errors in parenthesis are clustered by player year, standard errors 

in brackets are clustered by tournament, standard errors in curly braces are 

clustered by player year and tournament. * p < 0.10, ** p < 0.05, *** p < 

0.01 with respect to that standard error.   
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  Table A.6: Fixed Effects Logit Probability of Not Finishing 

 
Panel A:  

Men’s Alpine Skiing 

Panel B:  

Women’s Alpine 

Skiing 

 Downhill SuperG 

Giant 

Slalom Downhill Super G 

HRankStar -0.008 0.210 0.223 -0.595 0.229 

 (0.294) (0.336) (0.217) (0.392) (0.325) 

LRankStar -0.524 0.073 0.041 0.319 -0.155 

 (0.137)*** (0.162) (0.103) (0.226) (0.172) 

URank Star -0.735 -0.464 -0.701 -0.192 -0.162 

 (0.189)*** (0.203)** (0.189)*** (0.337) (0.259) 

N 3,059 1,915 3,638 1,322 1,670 

N Events 151 90 117 108 92 

Standard Errors in parenthesis are clustered by player year, standard errors in 

brackets are clustered by tournament, standard errors in braces are clustered by 

player year and tournament. * p < 0.10, ** p < 0.05, *** p < 0.01 with respect to 

that standard error. 

 

Note: Observations are dropped if the outcome variable is constant within a fixed 

effects unit, hence the reduction in sample size.  
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Table A.7: Alternative Specifications for Top Finishes 

 Panel A: Men’s Alpine Skiing Panel B: Women’s Alpine Skiing 

 Downhill Super G Giant Slalom Downhill Super G 

 Pr(¬finish) Time Pr(¬finish) Time Pr(¬finish) Time Pr(¬finish) Time Pr(¬finish) Time 

Top1XStar 
1.926×10-4 

-0.016 0.000 0.079 0.019 -0.131 -0.009 0.454 0.010 -0.273 

 (0.008) (0.419) (0.033) (0.520) (0.020) (0.372) (0.015) (0.627) (0.027) (0.489) 

 [0.008] [0.229] [0.032] [0.467] [0.021] [0.273] [0.016] [0.403] [0.025] [0.438] 

 {0.009} {0.281} {0.036} {0.518} {0.023} {0.300} 
{0.016} 

{0.480} 
{0.027} 

{0.468} 

Top5XStar 0.005 -0.009 0.017 -0.061 0.003 -0.051 -0.006 0.246 0.001 -0.135 

 (0.003) (0.133) (0.011) (0.167) (0.008) (0.144) (0.006) (0.197) (0.009) (0.179) 

 [0.003] [0.116] [0.009] [0.115] [0.007] [0.140] [0.008] [0.218] [0.010] [0.153] 

 {0.004} {0.134} {0.011} {0.139} {0.008} {0.142} 
{0.008} 

{0.204} 
{0.011} 

{0.179} 

Top10XStar 0.004 0.016 0.009 -0.124 0.004 -0.052 -0.005 0.161 0.001 -0.131 

 (0.002) (0.089) (0.007) (0.107) (0.005) (0.115) (0.005) (0.136) (0.006) (0.126) 

 [0.002] [0.085] [0.006] [0.101] [0.005] [0.136] [0.005] [0.185] [0.008] [0.120] 

 {0.002} {0.094} {0.007} {0.110} {0.006} {0.138} 
{0.005} 

{0.169} 
{0.008} 

{0.137} 

Top20XStar 0.003 0.019 0.007 -0.107 0.007 -0.066 -0.003 0.092 0.001 -0.123 

 (0.002) (0.061) (0.005) (0.069) (0.004) (0.095) (0.003) (0.098) (0.005) (0.089) 

 [0.002] [0.070] [0.005] [0.077] [0.004] [0.142] [0.004] [0.173] [0.006] [0.112] 

 {0.002} {0.075} {0.005} {0.080} {0.004} {0.140} 
{0.004} 

{0.161} 
{0.006} 

{0.120} 

Top30XStar 0.003 0.029 0.006 -0.120 0.008 -0.077 -0.002 0.085 0.002 -0.113 

 (0.001) (0.053) (0.004) (0.063) (0.004) (0.101) (0.003) (0.092) (0.004) (0.082) 

 [0.002] [0.073] [0.005] [0.079] [0.004] [0.169] [0.004] [0.182] [0.006] [0.118] 

 {0.002} {0.075} {0.005} {0.082} {0.004} {0.167} 
{0.004} 

{0.172} 
{0.006} 

{0.122} 

N 8,299 7,285 5,163 4,064 7,318 3,121 5,555 5,555 4,972 4,930 

Standard Errors in parenthesis are clustered by player year, standard errors in brackets are clustered by tournament, standard errors in 

braces are clustered by player year and tournament. * p < 0.10, ** p < 0.05, *** p < 0.01 with respect to that standard error. 
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