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Preface

When we look up at night and view the stars, everything we

see is shining because of distant nuclear fusion.

Carl Sagan

Harnessing fusion power on earth is an extremely challenging task.

Yet, the potential impact on our future energy system is enormous.

These two things make it an interesting puzzle to solve. Although

the PhD research presented in this dissertation only contributes a

very small piece to this puzzle, I truly enjoyed it and had much fun

learning from others, trying new things, and seeing something finally

work after a hundred attempts. During this trial-and-error process

that—as I learned—is characteristic to research, I had the opportunity

to visit and work in many inspiring environments. In this preface, I

would like to seize the opportunity to thank some people in particular

that undoubtedly influenced this work either directly, or indirectly.

Let me start by thanking the one person that is—in my opin-

ion—wrongfully missing on the cover of this booklet. Tine (Bael-

mans)—as I learned to call you the last couple of years when around

colleagues—thank you for all your guidance, for helping me to struc-

ture my research, for interesting discussions in the car on our way to

Jülich or Brasschaat, and—most of all—for being a great mum!

Science is built up of facts, as a house is built of stones but

an accumulation of facts is no more a science than a heap of

stones is a house.

Henri Poincaré



I also owe a debt of gratitude to my supervisors Nicolas Gauger and

Detlev Reiter. To Nico, for introducing me to real one-shot optimiza-

tion and even more so for the hospitable welcomes in both Aachen

and Kaiserslautern. To Detlev, for sharing his physics insights, for

contextualizing this research in the bigger field of fusion research, and

for advocating this optimal design research in the fusion community.

I thank the Forschungszentrum Jülich (FZJ) for the financial support.

I would like to thank my examination committee for taking the time to

review the PhD research and text, and for their genuine interest in this

research. I thank Michael Rack for providing a German translation

of the abstract, and Lisa Kusch and Steffi Günther for proofreading

pieces of text.

As for my colleagues in Jülich, Kaiserslautern, and Leuven, I ap-

preciate your contribution to making these past couple of years an

unforgettable period. Let me mention just a few of the people here

that earn a special word of appreciation. Not knowing the German

language and culture was initially a serious difficulty. Fortunately, I

could always count on Petra Börner to help me out with German doc-

uments and all kinds of practical issues. Furthermore, the monthly

Gyros-lunches with her, Tina, and Tine were always something to

look forward to. Next, I want to thank Wouter Dekeyser for sharing

his passion for nuclear fusion research with me. The long inspiring

discussions we already had during my master thesis motivated me to

take on this PhD research. I hope we can have many more! Ruben

Gielen, thank you for teaching me the value of lean and aesthetical

research presentations. Moreover, you earn the title of most assis-

tant assistant I’ve encountered! Tijs van Oevelen, your scepticism is

something beyond compare that is both educative and entertaining,

and gave us some truly unforgettable discussions at the TME lunch

table. Geert (Buckinx), although I admire the distinctive rigour that

characterizes your research, you earned your place in this preface with

the many evenings we spent philosophizing, joking, and drinking ’till



the early hours of the morning in Leuven’s finest bars. A special men-

tioning also goes to all my colleagues at the TME division for the fun

we had at informal and entertaining lunch breaks, TME activities,

and weekends.

Also outside the workplace there are people I need to thank. My par-

ents, brothers, and friends I thank for their support and beguilement

when I needed it most. The final word of thanks goes to my beautiful

girlfriend Elza, who has throughout my PhD research given me love,

support, and a warm refuge that was like an infinite source of energy

to me.

Energy is the key to creativity. Energy is the key to life.

William Shatner



Abstract

The so-called divertor is the standard particle and power exhaust

system of nuclear fusion tokamaks. In essence, the magnetic configu-

ration hereby ‘diverts’ the plasma to a specific divertor structure. The

design of this divertor is still a key issue to be resolved to evolve from

experimental fusion tokamaks to commercial power plants. The focus

of this dissertation is on one particular design requirement: avoiding

excessive heat loads on the divertor structure. The divertor design

process is assisted by plasma edge transport codes that simulate the

plasma and neutral particle transport in the edge of the reactor. These

codes are computationally extremely demanding, not in the least due

to the complex collisional processes between plasma and neutrals that

lead to strong radiation sinks and macroscopic heat convection near

the vessel walls.

One way of improving the heat exhaust is by modifying the mag-

netic confinement that governs the plasma flow. In this dissertation,

automated design of the magnetic configuration is pursued using ad-

joint based optimization methods. A simple and fast perturbation

model is used to compute the magnetic field in the vacuum vessel. A

stable optimal design method of the nested type is then elaborated

that strictly accounts for several nonlinear design constraints and code

limitations. Using appropriate cost function definitions, the heat is

spread more uniformly over the high-heat load plasma-facing compo-

nents in a practical design example. Furthermore, practical in-parts

adjoint sensitivity calculations are presented that provide a way to

an efficient optimization procedure. Results are elaborated for a fic-

tituous JET (Joint European Torus) case. The heat load is strongly



reduced by exploiting an expansion of the magnetic flux towards the

solid divertor structure.

Subsequently, shortcomings of the perturbation model for magnetic

field calculations are discussed in comparison to a free boundary equi-

librium (FBE) simulation. These flaws in the magnetic model are

then overcome by elaborating a strategy to include the full FBE code

into the optimal design approach. Using the full model, results are

then presented in application to the novel WEST (tungsten (W) En-

vironment in Steady-state Tokamak) divertor.

Finally, one-shot optimization methods are considered for further ac-

celeration of the optimal design procedure. Instead of fully solving

state and adjoint equations in each optimization iteration, one-shot

methods perform only a single iteration of state and adjoint solver

in each optimization iteration. To reduce the cost of design updates,

a grid deformation method is derived for strictly flux-aligned grids.

Starting from a literature review, a novel one-shot strategy is then

elaborated that features the globalization approach of state-of-the-art

one-shot methods while yielding increased efficiency and practical us-

ability. On an unconstrained test case, the novel method shows stable

convergence.



Zusammenfassung

Der so genannte Divertor ist das übliche Abfuhrsystem für Teilchen

und Leistung in einem Kernfusionsreaktor der Gattung Tokamak.

Im Wesentlichen leitet die magnetische Konfiguration das Plasma

zu einer bestimmten Divertor-Struktur um. Das Design dieses Di-

vertors ist nach wie vor ein wichtiges zu lösendes Thema, um aus

Tokamak Fusionsexperimenten kommerzielle Kraftwerken zu entwick-

eln. Der Schwerpunkt dieser Arbeit liegt auf einer bestimmten

Designanforderung: Der Vermeidung übermäßiger Wärmelasten auf

der Divertor-Struktur. Der Designprozess des Divertors wird durch

Plasmarand-Transportcodes unterstützt, die den Plasma- und Neu-

tralteilchentransport im Rand des Reaktors simulieren. Diese Codes

sind rechnerisch extrem anspruchsvoll, vor allem aufgrund der kom-

plexen Kollisionsprozesse zwischen Plasma- und Neutralteilchen, die

zu starken Strahlungssenken und makroskopischer Wärmekonvektion

in der Nähe der Gefäßwände führen.

Eine Möglichkeit, die Wärmeabfuhr zu verbessern, ist durch Modi-

fizierung des magnetischen Einschlusses, der den Plasmafluss regelt.

In dieser Dissertation wird das automatisierte Design der mag-

netischen Konfiguration basierend auf adjungierten Optimierungsver-

fahren untersucht. Ein einfaches und schnelles Störungsmodell wird

verwendet, um das Magnetfeld in dem Vakuumbehälter zu berech-

nen. Eine stabile Methode des verschachelten Typs zur Ermittlung

des optimalen Designs wird ausgearbeitet, die mehrere nicht-lineare

Designeinschränkungen und Codelimitierungen berücksichtigt. Mit

entsprechenden Definitionen der Kostenfunktion ist in einem praktis-

chen Designbeispiel die Wärme gleichmäßiger über die stark wärme-



belasteten Wandkomponenten verteilt. Außerdem werden praktis-

che teilweise adjungierte Sensitivitätsrechnungen vorgestellt, die eine

Möglichkeit zu einem effizienten Optimierungsverfahren bieten. Die

Ergebnisse sind für einen fiktiven JET (Joint European Torus) Fall

ausgearbeitet. Die Wärmebelastung wird unter Verwendung einer

Aufweitung des magnetischen Flusses hin zur Divertor-Struktur stark

reduziert.

Anschließend werden Mängel des Störungsmodells für die magnetis-

che Feldberechnungen im Vergleich zu einer Gleichgewichtssimulation

mit freien Rändern (FBE) (Free-Boundary Equilibrium) diskutiert.

Diese Mängel in dem magnetischen Modell werden überwunden, in-

dem eine Strategie ausgearbeitet wird, die einen vollständigen FBE

Code in den Optimierungsansatz integriert. Unter Verwendung des

vollständigen Modells werden Ergebnisse einer Anwendung auf den

neuen WEST-Divertor (tungsten (W) Environment in Steady-state

Tokamak) präsentiert.

Abschließend werden One-Shot-Optimierungsverfahren für eine weit-

ere Beschleunigung des Optimierungsansatz betrachtet. Statt

Zustandsgleichungen und adjungierte Gleichungen in jeder Opti-

mierungsiteration vollständig zu lösen wird beim One-Shot-Verfahren

nur eine einzelne Iteration des Lösers für die Zustandsgleichung und

adjungierte Gleichung pro Optimierungsiteration durchgeführt. Um

die Kosten für Designanpassungen zu reduzieren wird eine Gitterde-

formationsmethode für streng Fluss-ausgerichtete Gitter hergeleitet.

Ausgehend von einer Literaturrecherche, wird eine neue One-Shot-

Strategie erarbeitet, die den Globalisierungansatz der modernsten

One-Shot-Verfahren besitzt, während gleichzeitig eine höhere Effizienz

und praktische Verwendbarkeit gegeben ist. Bei einem unbeschränk-

ten Testfall zeigt das neue Verfahren stabile Konvergenz.
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1 Fréchet-derivative

¯ Value at optimum

r Partially reduced function

J Transposition

a Species a

G Function or parameter corre-

sponding to Griewank’s publica-

tions

h Discrete

r Radial direction

xxiii



LIST OF SYMBOLS

e Electrons

i Ions

n Neutrals

K Diamagnetic direction

φ Toroidal direction

q Differentiation with respect to

state

eq Magnetic equilibrium

gg Grid generation

pe Plasma edge transport

θ Poloidal direction

* Adjoint complement

Operators

t¨uH Discretization operator

Δ˚ Second order differential operator

defined in equation (3.9)

δ Differential, directional derivative

x¨, ¨y Inner product

Δε
p¨q Finite difference approximation

of directional (partial) derivative

(with respect to optional sub-

script), with step size ε

P Projection onto feasible set (see

(4.7))

∇p¨q Gradient operator (with respect

to optional subscript)

Bp¨q Partial derivative with respect to

subscripted variable

L Second order differential operator

defined in equation (3.13)

Other symbols

� Indicator function

xxiv



1

Introduction

With an ever growing demand for energy and increasing environmental concerns,

mankind faces the challenge to conceive a sustainable energy supply. In this

process, all viable options for long term energy supply, compatible with our en-

vironment, will need thorough exploration. Amongst these, fusion energy stands

out as a prominent option for reliable and safe energy supply not in the least be-

cause of the carbon-free, easily accessible, and virtually inexhaustible fuel. With

the tokamak building of ITER, the first reactor-scale fusion project, currently

rising from the ground in Cadarache (France), fusion research faces the last hur-

dles on the road to a viable reactor design. Producing 500 MW of fusion energy,

this machine will bridge between current-day experiments and tomorrow’s fusion

power plants. The design of an exhaust system for power and Helium ashes is

one of the key issues to be resolved before such power plants can be built. This

thesis aims to address this very same task by developing design tools that al-

low state-of-the-art physics models to be used in an innovative design approach.

In this first introductory chapter, the objectives of this PhD thesis are situated

within the broader perspective of nuclear fusion and computational engineering

research.

1.1 Nuclear fusion: confining the energy of stars

In nuclear fusion reactions, light particles combine, thereby releasing a high

amount of energy. In the universe, it is the main source of energy. All stars,

1



1. INTRODUCTION

amongst which our sun, are driven by fusion reactions. Yet, the production of

large amounts of fusion energy on earth remains a challenge. One of the concep-

tual challenges is producing enough energy to ignite man-made fusion reactors.

The sun profits from a luxurious amount of space and an excellent gravitational

confinement. At the same time, with an energy density as low as 280 W{m3 , it

is clear that the amount of fusion reactions need to be significantly increased for

any practical fusion-based power plant concept on earth.

To this end, the cross sections of fusion reactions are increased by exchanging

the proton-proton reactions of the sun for a fuel based on deuterium (D) and

tritium (T), two hydrogen (H) isotopes. Resources of deuterium are abundantly

available as a stable isotope of hydrogen in water. Tritium on the other hand

is a rare radioactive isotope of hydrogen, but can be bred in the fusion reactors

themselves from Lithium, an element as common as lead on earth. Additionally,

the pressure in a fusion reactor needs to be sufficiently high. In practice, this ne-

cessitates temperatures ten times higher than that of the sun’s core (˘150 million

K). At these temperatures, atoms spontaneously dissociate to loose electrons and

ions in a state of matter known as plasma. Finally, the energy of the particles has

to be confined long enough for sufficient fusion reactions to take place. To this

end, the highly energetic particles of the fusion plasma need a strong insulation

from the cold solids of the containing vessel.

The most promising way to confine these plasma particles at present is using

a magnetic confinement :. In presence of a strong magnetic field, the Lorentz

force causes the charged plasma particles to gyrate around the magnetic field

lines, bounding their so-called guiding center close to the magnetic field lines.

In contrast, the motion along the magnetic field lines is virtually unrestricted.

Two magnetically confined fusion concepts at present compete, the tokamak and

the stellarator. Both concepts are illustrated in figure 1.1 . Because of its early

experimental successes, the tokamak is at present the most mature of these con-

cepts and the current favoured technique. In this concept, charged particles are

:Alternatively, so-called inertial confinement can be used to confine the plasma. In this

concept, lasers compress the fuel so rapidly that the fuel does not have the time to expand and

come in contact with the vessel. At current, the low efficiency of about 1 % of these lasers

prevents demonstrating the feasibility of net power production [34].
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effectively trapped in the center of a torus by a strong toroidal magnetic field. To

avoid that the plasma accelerates to the outer vessel wall:, an additional poloidal

field component is created by inducing a toroidal plasma current with a central

transformer. Combined, this results in a helical magnetic field as illustrated in

figure 1.1. Because the tokamak concept relies on this transformer for the plasma

current, it has to operate in a pulsed fashion;. Nevertheless, operating scenarios

are envisaged in which the pulses might be stretched to many hours [111].

In stellarators on the other hand, steady-state operation is inherent. This

is achieved by a complex coil configuration that constitutes a twisted magnetic

field with an intrinsically 3D layout. Additionally, the absence of strong plasma

currents simplifies the control of the machine. However, due to their complex

configuration, stellarators only gained momentum recently with the availability

of powerful supercomputers to assist design. At the moment of writing, a large

stellarator project called Wendelstein 7-X successfully entered operation. In the

coming years, studies on this device might clarify whether stellarators have the

potential to outperform tokamaks as future fusion devices.

The first reactor-size fusion machine ever built, ITER (International Ther-

monuclear Experimental Reactor, or ‘the way’ in Latin), will be a tokamak. Since

bigger tokamaks have lower heat losses per fusion volume, energy confinement,

and thus reactor efficiency, improves strongly with reactor size. Based on these

scaling laws, the large ITER reactor is designed to produce 10 times more heat

than it consumes for periods of more than 400 seconds. As such, it will bridge the

gap between today’s smaller experimental devices and tomorrow’s demonstration

power plants. Even if stellarators finally prove a better alternative, there is no

doubt that the knowledge gained from experiments on the ITER facility will be

highly needed in the design of a stellarator-based reactor concept. Indeed, many

issues such as the methods for tritium breeding and the effect of high amounts

of plasma heating by fusion reactions are similar. Meanwhile, design studies for

:A consequence of theEˆB forces, indirectly arising due to the radial decay of the magnetic

field.
;Inducing a constant plasma current requires a linear increase of the transformer magnetic

field, because of Faraday’s induction law. As a consequence, the primary current in the inner

transformer coils needs to increase continually during operation, necessitating pulsed operation.
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1. INTRODUCTION

Figure 1.1: The tokamak and stellarator concepts: two magnetic confinement

concepts for fusion reactors. The tokamak creates a helical and toroidally symmet-

ric magnetic field using toroidal field coils and central transformer coils that induce

a toroidal plasma current. In contrast, the complex 3D stellarator magnetic field

does not need the central transformer. ©Max-Planck Institut für Plasmaphysik
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1.2 The divertor: a tokamak exhaust system

the demonstration tokamak DEMO, that should prove the economical feasibility

of fusion power, have already been initiated. Before DEMO can be constructed,

a number of challenges need to be faced. These challenges are bundled in the

EFDA roadmap [120]. One of them is the design of a tokamak particle and heat

exhaust system that can deal with the heat fluxes of a commercial reactor. A

topic that will be further elucidated in the next section.

1.2 The divertor: a tokamak exhaust system

In the previous section, the magnetic confinement of plasma particles in tokamaks

was addressed. Although these charged particles have a strong tendency of follow-

ing magnetic field lines, slow radial transport caused by turbulent advection and

collisional processes will eventually transport particles to the edge of the reactor.

As particles move further outwards, they will finally cross the so-called last closed

flux surface (LCFS) that defines the last magnetic flux surface not intersecting

the solid vessel. This LCFS can either be created by a protruding solid object

called a limiter or by shaping the poloidal magnetic field using specific toroidal

coils in order to create a saddle point of the poloidal magnetic flux, a so-called X-

point, and divert the plasma fluxes towards a for the purpose designed structure,

known as the target plates (see figure 1.2). This configuration is therefore called

a divertor configuration and its LCFS is called the separatrix. The terminology

of the divertor is illustrated in figure 1.3.

Because of the strong transport along the field lines, plasma particles crossing

the LCFS will move very fast towards the solid limiter or divertor target surfaces.

Since the slow radial processes do not get the chance to transport the particles

much further outwards, the width of this so-called scrape-off layer (SOL) region

is therefore not more than a couple of centimetres [133]. This SOL region be-

tween LCFS and vessel wall is the only region in the tokamak where the hot

plasma meets cold vessel materials. It is characterized by a number of chemical

interactions that govern complex transport processes. An understanding of these

processes is essential to understand how particles reach the target and -above

all- to what extent heat is deposited on the material surfaces. Understanding
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Figure 1.2: Illustration of the limiter and divertor scrape-off layer (SOL) in the

Joint European Torus (JET) reactor. ©EFDA-JET

and modelling these plasma surface interactions is as such an important step in

regard of the design of fusion reactors, discussed further in section 1.3.

1.2.1 Why today’s tokamaks are equipped with divertors

Historically, first tokamaks were equipped with limiters. Yet, almost all of today’s

tokamaks feature a divertor configuration. For an extensive discussion on this

choice the reader is referred to Refs. [53, 133]. Here, only a brief overview of the

primary arguments is given.

Impurity transport

The original motivation to introduce divertor configurations was to reduce the

impurity content in the main plasma. When plasma particles reach the cold ves-

sel surface, electron and ions recombine to neutral atoms and molecules. These

neutrals are no longer confined to the magnetic field. From the target, they are

launched back into the plasma, where they can ionize again, a process called re-

cycling. Simultaneously, when these plasma particles impinge the vessel, material

of the vessel itself can be released due to physical sputtering, related to the impact
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Figure 1.3: Schematic representation of the divertor configuration indicating ter-

minology. �EFDA-JET

of highly energetic particles and chemical sputtering, or erosion, due to chemical

interactions between vessel and plasma:. These impurities are in general heavy

atoms that tend to radiate heat from the plasma when ionized. If too much of

these particles find their way to the core plasma, the increased radiation within

the core has detrimental consequences on the energy confinement. In a divertor

plasma, the majority of these impurities are born down at the divertor targets,

far away from the main plasma. In the limiter case, on the contrary, they emerge

close to the main plasma, resulting in much higher core impurity concentrations

than in the divertor configuration.

Pumping

An important task in a nuclear fusion reactor is continuously removing these

impurities and the Helium ashes, created in nuclear fusion reactions, from the

:Similar sputtering processes are present when highly energetic neutrals impinge vessel walls

[133].
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plasma. This is a necessity to avoid fuel dilution when operating on a longer time

scale than the present experimental devices (a typical pulse is in the order of

seconds). Only neutral particles can be efficiently pumped from the reactor. The

divertor configuration allows rather naturally to compress the neutral particles

near the pumping entrance. As such, compact pumping systems can be used.

Additionally, the reactor control benefits from these good pumping capabilities

since Hydrogen can be pumped to control the density in the reactor. In a pumped

limiter configuration, the neutral pressures are much lower.

New plasma and divertor regimes

The most important reason for the dominance of the divertor SOL in present-day

tokamak devices is the spontaneous occurrence of two highly beneficial phenom-

ena: the high confinement regime (H-mode) and plasma detachment. The former

is a phenomenon observed experimentally as the heating power is increased in a di-

vertor tokamak discharge. At some point, turbulent transport in the edge plasma

is drastically reduced, creating a so-called transport barrier [53]. At present, the

H-mode regime is not well understood theoretically. Nevertheless, the enhanced

energy confinement is of great advantage for the commercial exploitation of fusion

reactors.

The earlier mentioned recycling process lies at the basis of the detached plasma

regime. Plasma particles recombine to neutral atoms or molecules at the targets.

If not pumped, these neutrals ionize again after collisions with plasma particles.

Then, they augment the plasma flow that flows along the magnetic field towards

the targets in a recycling process. When the density of the core plasma is in-

creased, the recycling flux and the plasma-neutral collisions strongly increase.

As such, more momentum is extracted from the plasma, effectively cooling the

plasma before it reaches the target. When the density in the core is even further

increased, the temperature at the targets is lowered eventually to temperatures

below 5 eV at which volumetric recombination sets in. As such, a neutral cushion

forms in front of the targets, actually detaching the plasma flow from the targets

and protecting the integrity of the target tiles from excessive heat loads.
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1.2 The divertor: a tokamak exhaust system

Power exhaust limitations

Unfortunately, the divertor configuration has some downsides too. A straightfor-

ward disadvantage is the need for installing additional coils to divert the magnetic

field. In addition, the core region is smaller in divertor plasmas, which means

that a smaller part of vacuum chamber can be used for fusion reactions. Both

increase the cost of reactors with divertor plasmas considerably.

Moreover, one of the key problems in divertors SOL is that a relative large

part of the heat is transported along with the edge plasma towards the targets and

ultimately exhausted in a small zone on the target surface, the so-called plasma

wetted area. Therefore, special heat-resistant materials will need to be used for

the divertor targets. In ITER, tungsten tiles will be used that are designed to

handle constant power loads of „10 MW{m2 , twice as much as experienced on the

nose cone of a space shuttle at re-entry into earth’s atmosphere. Furthermore, the

tokamak should be carefully operated to avoid transient energy loads exceeding

„ 0.5 MJ{m2 in 250 μs [53]. Above these limits, excessive sputtering will destruct

the target tiles. To meet the requirement on transient energy deposition, it is

essential that strong periodic expulsions of plasma particles and heat from so-

called edge localized modes (ELM’s) are controlled. Also the steady-state material

heat load limits have to be carefully considered. In the baseline ITER scenarios,

the continuous target heat load will be reduced by:

1. Inclining the target surfaces with respect to the magnetic field to obtain a

larger projected plasma wetted area. The potential of this method is limited

to minimal glancing angles in order to prevent shadowing effects induced

by small misalignment between the magnetic field and the tiles.

2. Puffing impurities in the divertor SOL to increase volumetric energy losses

by radiation. Consequently, the radiated energy will be deposited more

uniformly on the target surface, avoiding excessive heat peaks.

3. Triggering a (partially) detached plasma operating regime. This can be

achieved by using a ‘closed’ divertor geometry, in which the neutrals are

trapped in front of the target surface. The vertical target configuration in

ITER will facilitate this [93].
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However, as discussed in the next section, respecting materials limits will be a

true challenge in commercial fusion reactors.

1.2.2 How to prevent excessive target erosion in DEMO?

Kotschenreuther et al. [85] estimated in a study based on simulations and scaling

laws, that if the standard divertor is used in the commercial DEMO reactor,

divertor target materials might be irreparably damaged. This is not surprising,

since commercial fusion will require a maximal power production and thus high

target heat loads. In comparison to ITER, the assumed fusion power output

will be at least three times higher and the size will be increased with about

50% [51, 142]. That DEMO will be an even larger fusion reactor than ITER is

mainly needed to ensure a sufficiently good energy confinement. Intuitively, this

can be explained using a simple reasoning. Since in larger reactors the relative

increase of fusion volume is proportionally larger than the increased area for heat

losses, the energy confinement benefits from an increased reactor size. The target

heat loading problem, in contrast, becomes worse because of exactly the same

argument. The EFDA roadmap [120] therefore lists the development of

an adequate solution for the high divertor power exhaust in DEMO as

one of the key challenges for confined fusion research.

The design of the divertor configuration is thus a crucial exercise with of-

ten conflicting requirements: maintaining the heat load on the divertor targets

steadily below 10 MW{m2 , the heat exhaust limit of state-of-the-art materials,

while maintaining good pumping capabilities:. In order to meet these require-

ments in DEMO, large amounts (over 50%) of the energy entering the SOL will

have to be disposed of through impurity radiation. Furthermore, current fu-

sion research actively examines alternative magnetic divertor configurations that

might comply better to these requirements [50, 142]. As such, novel divertor

configurations with increased plasma-wetted area have recently been proposed:

:A parallel research track aims at developing advanced plasma-facing components that

could exhaust still higher heat loads. In this context, liquid metal targets are amongst others

examined [50, 142]. Yet, plasma contamination by the liquid metal and influence of MHD forces

on the liquid targets pose some serious challenges for these concepts.
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the ‘X-divertor’ [85], the ‘Super X-divertor’ [143], and the ‘Snowflake divertor’

[122, 123, 124].

Figure 1.4: Illustration of the X-divertor configuration. At each side of the reac-

tor, additional coils are introduced to create a local expansion of poloidal magnetic

flux. As such, the concept is a proposal to increase the plasma-wetted area and

lower target heat loads. Figure reproduced from Ref. [85].

These concepts are often based on rather simple (geometric) reasoning. In the

X-divertor configuration, additional coils are used to create a local flux expansion

towards the divertor targets (see figure 1.4). As such, the plasma is smeared out

over the target surface, effectively increasing the plasma-wetted area and reducing

the heat load. The super X-divertor concept additionally uses very long divertor

legs. Consequently, the distance of particles travelling from the core plasma

to target surfaces, the so-called connection length, is increased and plasma has

more time to cool down by volumetric processes or by radial heat transport.

Furthermore, the outer divertor leg is located entirely at outer radius of the torus

to profit from additional flux expansion in the toroidal direction. The snowflake

configuration, finally, uses a second order null of the magnetic flux to exhibit a

snowflake-like divertor shape (see figure 1.5). Due to the second-order null, an

extreme flux expansion is achieved.
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1. INTRODUCTION

Figure 1.5: Schematic illustration of the difference between the separatrix in an

exact snowflake (blue) and a standard divertor configuration (grey). The second

order null in magnetic flux creates a snowflake-resembling magnetic divertor shape.

These concepts clearly indicate the potential of magnetic divertor

design to provide a solution for the heat exhaust. Further studies on these

alternative configurations and their characteristic plasma physics are a priority

in current fusion research [50, 120].

1.3 Computational divertor design

In absence of experiments with comparable parameters, design of ITER and

DEMO requires extrapolating current knowledge of edge plasma physics to these

reactor-sized machines. While scaling laws can be used to estimate the plasma

conditions in these reactors, a more reliable extrapolation can be achieved using

physics based models. Plasma edge models can as such be used to identify opera-

tional windows for plasma detachment and maximal fractions of SOL radiation in

ITER and DEMO. Such models furthermore play a key role in the interpretation

of experiment and understanding the edge plasma physics.
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1.3 Computational divertor design

Plasma edge codes model the transport processes in the SOL. These codes

feature a multifluid Navier-Stokes-like description of the plasma edge transport,

with equations for particle flux, momentum, and energy conservation, and are

typically discretized using finite volume methods. The highly kinetic neutral

atoms and molecules, however, need a different approach. For these neutrals,

Monte Carlo codes are used to statistically approximate the solution of the kinetic

equations. This leads to a set of partial differential equations that is strongly

coupled through source terms to account for the many collisional processes.

Although the plasma transport is in principle described by a form of the mag-

netohydrodynamics (MHD) equations, this approach is too difficult for practical

simulations of edge flow. Instead, the low current density in the edge plasma

justifies approximating the macroscopic MHD equilibrium as independent of the

edge flow. As such, the plasma edge simulations are performed using a fixed

magnetic field that is obtained from an (approximate) MHD solution:. The main

task of the plasma edge simulation then reduces to calculating the plasma trans-

port and interactions in the SOL, given imposed plasma conditions at a chosen

core-boundary interface. Additionally, the smallest time scales in edge codes are

averaged out, to come to a mean-flow description based on the so-called Bra-

ginskii equations [25] ;. Given the strong coupling between plasma and neutral

equations and the many impurity species with different ionized states (tungsten

has 74 of them!), plasma edge simulations still remain highly challenging.

In conclusion, edge plasma equations are solved using a hybrid fluid-kinetic

approach that combines a finite volume method for the plasma particles with

a Monte Carlo method for the neutrals. The fluid equations are typically dis-

cretized on quadrilateral curvilinear meshes. To accommodate for the strong

flow anisotropy and to circumvent excessive numerical diffusion, these meshes

are aligned to the poloidal magnetic flux surfaces. Examples of such hybrid

codes are B2-EIRENE [115], EDGE2D-NIMBUS [130]. EDGE2D-EIRENE [150],

SOLEDGE2D-EIRENE [27], and UEDGE-DEGAS [118, 135]. Especially the B2-

EIRENE code is used worldwide for analysis of experimental tokamaks [29, 84].

:In practice, the evaluation of the magnetic equilibrium is often based on the solution of

1.5D Grad-Shafranov equation for ideal static MHD equilibrium [60, 128].
;In some codes, slightly different closure schemes are used according to Balescu [6].
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Moreover, the SOLPS code package that includes the B2-EIRENE code has been

the workhorse for the design of the ITER divertor [86, 87, 88, 89] and to study

possible operation scenarios with impurity seeding [108]. Recently, it was adopted

by ITER as the standard tool for ITER divertor modelling in a new SOLPS-ITER

version [151]. Also for DEMO, B2-EIRENE simulations play an important role

to extrapolate current knowledge to reactor-scale divertor design [107].

Nevertheless, the computational time of the B2-EIRENE code is a serious bot-

tleneck in its use for design applications. In fact, CPU-time of a single simulation

might range up to a year (paralleled over a cluster) for simulation of power plant

relevant conditions [41]. Add to this the large number of design variables (coil

configuration, plate configuration, and plasma state controls), and one immedi-

ately realizes that divertor design is extremely CPU-demanding. Nevertheless,

present divertor design is based on a multitude of rather time-consuming one-

dimensional parameter scans. These studies therefore preclude by definition the

investigation of a wide range of design choices and operational points. Given

the need for better performing configurations, divertor design studies could

greatly benefit from the use of more efficient design approaches.

1.4 Optimal design

In other disciplines, similar design problems have been tackled using optimal

design methods. Introduced by Lions in the 70’s [92], optimal design strategies

for problems governed by partial differential equations (PDEs) have meanwhile

shown their virtues in many design applications, including a range of problems

in i.a. aerodynamics, structural mechanics, inverse imaging, chemical sciences,

heat transfer, and quantum mechanics (see e.g. Refs. [21, 109, 138] for several

industrial applications). For instance, a popular aerodynamics application is the

optimal drag reduction by shape design of a wing profile governed by the Navier-

Stokes equations [80]. The design goal is then recast into a so-called cost function

(the total drag force on the wing), which is minimized as a function of the design

variables (the parametrization of the wing profile).

Because of the complex and large-scale nature of these PDEs, specific algo-

rithms are needed to efficiently solve these optimization problems. For a thorough
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discussion of this subject, the reader is referred to Refs. [21, 73, 141]. Typically,

adjoint based optimization methods are used to reduce computational cost. In

fluid dynamics applications, they were first introduced by Pironneau [110]. After

solving the model or state equations, an additional set of adjoint equations is

then solved to find the sensitivity of the cost function with respect to the de-

sign variables. These adjoint equations can be derived both for the continuous

optimization problem or for the discretized optimization problem, known as the

continuous adjoint or discrete adjoint approach, respectively [59]. Using the ad-

joint method, the complete sensitivity vector can as such be calculated at the

computational cost of roughly two state simulations. This is in strong contrast

to direct sensitivity calculations, for which the computational cost scales linearly

with the number of design variables. Because of this property, the adjoint method

enables design applications with a very high number of design variables, such as

shape or topological optimization. To find the optimum of the cost function, these

adjoint sensitivities are then used in a gradient based optimization algorithm.

The convergence of this so-called nested optimization strategy that performs

a complete iterative solution of model and adjoint equations in each optimization

step can be significantly accelerated by the use of one-shot methods [90, 136].

These methods simultaneously converge the model equations, adjoint equations,

and the design equation, that represents the final condition for optimality. Dif-

ferent variants of the one-shot method have been successfully applied in aerody-

namics design [22, 54, 68, 69, 90, 105] and inverse modelling applications [22, 78].

One of the key features of one-shot methods is the non-intrusive way in which

the PDE-solver is incorporated in the optimization approach. Using one-shot

optimization, a typical equivalent computational cost of roughly 5-10 flow sim-

ulations is often found to suffice for the entire optimization process. However,

guaranteeing convergence of one-shot methods has long been a difficulty. State-

of-the-art one-shot methods now feature embedded line search strategies based

on exact penalty functions to overcome this issue and obtain global convergence

[65, 66].

In nuclear fusion applications, adjoint based sensitivity calculations have been

used in the reconstruction of magnetic equilibria [74, 91, 98] and for optimal

control of the magnetic equilibrium [18, 20, 72]. Recently, Dekeyser successfully
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applied one-shot methods for optimal design of the divertor target shape in his

PhD thesis [37, 38, 39, 40, 41, 42, 43]. In a first step, a slightly reduced version of

the B2-EIRENE code with a fluid neutral model was used to model the transport

in the edge plasma. Using a continuous adjoint framework and a non-parametric

approach for shape sensitivities, nearly perfectly uniform target heat loads were

achieved using a tracking-type objective functional for the heat load [39]. The

resulting strongly inclined and V-shaped targets are features that are retained

in the ITER divertor [89] and show the potential of the method to pinpoint

beneficial operating conditions. Moreover, the one-shot method enabled a full

optimal design within a computational time of 10 equivalent single runs. The

model has finally been extended with an adjoint Monte-Carlo method to account

for the effect of non-uniform radiation on the target surface.

The promising results of Dekeyser lie at the basis of this thesis work. Here,

adjoint-based optimal design methods will now be pursued for design

of the magnetic divertor configuration. Based on the recent striving within

the fusion community towards improved magnetic configurations, enabling auto-

mated design of the magnetic configuration is expected to even further increase

the power of the novel design tool. Used in combination with divertor shape

design, these tools are able to assist fusion research in finding a commercially

viable operating window in DEMO. Besides, in contrast to design of the target

shape, such a tool for magnetic divertor design might also find its use to set up

experiments in existing reactors, since no reactor components need replacement.

1.5 Goals and outline of the thesis

The primary objective of the thesis is the selection and development of suitable

models and optimal design strategies that meet the specific needs of magnetic

divertor design in nuclear fusion reactors. The aim is to come to an automated

design strategy that is able to retrieve magnetic divertor configurations with

improved capabilities to tackle the tremendous heat loads on the target plates.

Moreover, these design approaches need to account for the relevant design con-

straints.
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The methods are developed for eventual application on the full B2-EIRENE

code suite. This imposes several additional requirements on the optimization

strategies. First of all, the highest possible efficiency is needed to accommodate

for the high CPU-cost of the complex simulations. Secondly, the ease of imple-

mentation will be of primary importance. And finally, robustness will be a key

element in the implementation of the automated design strategy.

Since optimal design methods are state-of-the-art in the fusion community and

only recently pioneered by Dekeyser [41], the added value and use of the optimal

design strategy is extensively illustrated. Throughout the text, realistic examples

for current experimental tokamak devices are given that demonstrate the possi-

bilities of the methodology. Furthermore, the concepts and terminology of the

optimization community will be carefully introduced. Therefore, this monograph

is initiated with an introductory chapter on relevant optimization concepts.

In present-day tokamak analysis, the calculations of magnetic equilibrium and

plasma edge transport calculations are treated separately. The first accomplish-

ment of this thesis is therefore to extend the plasma edge model of Dekeyser [41]

with a model for magnetic field calculations. Initially, a perturbation model is

set up for this purpose. Furthermore, since the computational mesh needs to

be aligned to the magnetic equilibrium for accurate transport calculations, the

grid generator becomes an integral part of this integrated code. To achieve the

first integrated model that is able to evaluate the influence of divertor coils on

the target heat load in an automated fashion, an autonomous grid generator is

therefore developed. These subtle considerations with respect to modelling are

treated extensively in chapter 3.

In 4, the first automated design of a magnetic divertor configuration is pre-

sented. To this end, cost function and design constraints are carefully set up

to avoid that the optimization routine would exploit any modelling flaws. An

inequality-constrained nested quasi-Newton optimization routine is then imple-

mented to solve the PDE-constrained design problem. For robustness, a novel

globalization strategy is developed that combines an efficient line search algorithm

based on the generalized Wolfe conditions with a nonlinear gradient projection

to guarantee design feasibility. Results are presented and interpreted for a real-
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istic design study on the Joint European Torus (JET), the largest experimental

tokamak currently in operation.

Where the first magnetic divertor optimization study is based on finite differ-

ence evaluations of the gradient, the power of adjoint based methods is used in

chapter 5 to accelerate the design process. Given the complexity of the integrated

code with dependencies of the plasma edge domain on the magnetic equilibrium, a

full adjoint sensitivity calculation (discrete or continuous) is judged difficult and

impractical. A practical procedure to sensitivity calculation, which is in-parts

discrete finite differences, in-parts continuous adjoint, is therefore derived and

implemented. Special attention is hereby paid to the consistency between the

implemented boundary conditions of the plasma edge transport model and the

boundary multipliers from its adjoint counterpart. Using this method, a similar

acceleration of the sensitivity calculations is achieved as that for a full continuous

adjoint method. Furthermore, by exploiting forward sensitivity calculations on

the inexpensive part of the model, sensitivities to virtually any chosen code pa-

rameter can be calculated with this method without the usual derivational effort

of the continuous adjoint procedure. The sensitivities are verified with a grid

refinement study and used to treat a more challenging magnetic divertor design

problem, with an increased number of design variables.

In chapter 6, the magnetic equilibrium model, one of the suspected weak-

nesses in the model, is revisited. For this purpose, the model discrepancies with

the CEDRES++ finite element code for free boundary static MHD equilibrium

calculations are examined. Based on the results of this study, the CEDRES++

code is entirely integrated into the magnetic divertor design tool to improve the

accuracy of magnetic field and sensitivity evaluations. Again, in-parts adjoint

sensitivity calculations are used for efficient calculation of sensitivities. The ex-

tended optimal design framework is then demonstrated on the WEST divertor, a

new divertor currently under construction in the experimental tokamak at CEA

(Commissariat á l’Energie Atomique et aux Energies Alternatives), France.

In chapter 7, one-shot methods are considered for a further acceleration of the

automated magnetic divertor design. The chapter starts with a literature review

of one-shot methods. First, a basic one-shot method is then applied based on the
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simultaneous pseudo-time stepping method of Hazra et al. [69]. Next, a grid de-

formation method is derived for field-aligned curvilinear grids to reduce the cost

of design steps. Afterwards, one-shot globalization theory from literature [66] is

adapted to come to a novel globalized one-shot method that is more efficient and

better suited for practical applications. The novel method features a line search

strategy based on an augmented Lagrangian penalty function that systemati-

cally accounts for the feasibility of state and adjoint equations. Furthermore, a

consistent version of the well-known BFGS (Broyden-Fletcher-Goldfarb-Shanno)

approach is derived for superlinear convergence of one-shot optimization methods,

along with a practical strategy to bound the Hessian. Reasonable adaptations are

then made to come to a practical implementation based on the in-parts contin-

uous adjoint sensitivities. First results are shown for an unconstrained magnetic

divertor design problem. Extensions to a constrained version of the one-shot

method are discussed in an outlook section.

In chapter 8, the thesis is closed with a resume of the general conclusions and

an outlook to a number of promising tracks for future research.
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2

Optimal Magnetic Divertor

Design

The objective of this PhD is to examine the suitability of adjoint-based optimal

design methods for magnetic divertor design. Although these methods have been

well established for aeronautics design, these methods have barely been explored

in nuclear fusion design applications. Therefore, concepts, techniques, and no-

tations relevant for this particular optimization problem are introduced in this

chapter. First, the mathematical formulation of the optimization problem, the

optimality conditions and adjoint-based sensitivity calculation are introduced in

section 2.1. Next, in section 2.2, some known solution methods for optimiza-

tion problems governed by partial differential equations are summarized. Finally,

globalization strategies, which avoid divergence of the iterative optimization pro-

cedures, are briefly introduced in section 2.3. For further notions on general

optimization methods, the reader is referred to Ref. [103]. A book-length treat-

ment of the specific application to PDE-constrained optimization problems can

be found in Refs. [21, 73, 141].

2.1 Divertor design as an optimization problem

This thesis tackles the design problem of finding the divertor coil configuration

that leads to the best possible heat load at the divertor targets. The first step
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2. OPTIMAL MAGNETIC DIVERTOR DESIGN

to obtain an optimal design consists of reformulating the design problem into a

mathematical optimization problem with constraints:

min
ϕPΦad,q

I pϕ, qq (2.1)

s.t. cpϕ, qq “ 0,

where the distinction is made between two types of variables. The first are

the control or design variables ϕ P X, which are the independent variables that

need to be optimized. In this thesis, the controls of interest are clearly related to

the divertor coil currents that govern the magnetic divertor configuration. The

second are the state variables q P Y , which are dependent variables that can

be uniquely defined from the control variables by the state or model equations

cpϕ, qq “ 0, c : X ˆ Y ÞÑ Y . The state variables can therefore also be written

in short as a function qpϕq of the design variables. We assume that X and Y

are Hilbert spaces. This means that they are complete spaces equipped with an

inner product x¨, ¨y.
Particular for this optimization problem is that the model equations under

consideration are a set of partial differential equations (PDEs) that can only be

solved numerically at high computational cost using spatial discretization meth-

ods. The models that will be used to evaluate the target heat load are considered

in chapters 3 and 6, but they could for example include the Braginskii equations

[25] for plasma edge transport, solved for state variables q such as the density

of deuterium. Often, these PDEs cpϕ, qq “ 0 are solved in their weak form. A

set of test functions q˚ is hereby introduced to obtain the equivalent variational

form of the equations,

xq˚, cpϕ, qqy “ 0 @q˚ P Y. (2.2)

Remark that throughout this thesis, a suitable inner product choice is assumed

that accounts for the dimensionality of the arguments. Consider cΩ “ 0 as the

set of PDEs defined on a domain Ω, with boundary conditions cΣ “ 0 on the

domain boundary Σ ” BΩ, such that c “ rcΩ , cΣsJ. One could then choose to

use the standard L2 inner product for domain contribution as well as boundary
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conditions to obtain

xq˚, cpϕ, qqy “
ż
Ω

q˚
Ω ¨ cΩdω `

ż
Σ

q˚
Σ ¨ cΣdσ, (2.3)

with test functions q˚ “ rqΩ̊ , qΣ̊sJ.
The scalar-valued objective I pϕ, qq : X ˆ Y ÞÑ R is the mathematical rep-

resentation of the design goal. Remark that the state equations cpϕ, qq “ 0

can be used to eliminate the state variables qpϕq from the optimization prob-

lem (2.1). We can thus define the reduced objective Îpϕq :“ Ipϕ, qpϕqq. We

assume that the feasible or admissible set of control variables Φad Ă X is a

convex subset of the Hilbert space X. The feasible set can be represented by

Φad “ tϕ P X| h pϕq ď 0,h : X ÞÑ Hu, where hpϕq ď 0 are so-called design

constraints and H is a Hilbert space as well. The choice of the design objective

I and constraints h is treated in chapter 4.

2.1.1 First order necessary conditions for optimality

Before introducing solution procedures to solve the optimization problem (2.1),

the criteria are listed that indicate when ϕ and q reach an optimal value ϕ̄

and q̄, respectively. It will be conveniently assumed that Ipϕ, qq, cpϕ, qq and

hpϕq are continuously Fréchet-differentiable with respect to their arguments.

For the objective, this means that for all directions δϕ, it is possible to evaluate

the directional derivative δÎpϕ, δϕq “ Î1pϕqδϕ , where the Fréchet-derivative is

denoted using a prime. The gradient operator ∇ can then be defined from the

Riesz-representation of the directional derivative,

δÎpϕ, δϕq ”
A
∇Îpϕq, δϕ

E
@δϕ P X. (2.4)

In the specific case that the Hilbert space of the design variables, X, is finite-

dimensional, the relation between gradient and derivative is given by

∇Îpϕq “ Î1pϕqJ, (2.5)

where p¨qJ stands for transposition. A partial (Fréchet-)differentiation B¨{Ba with

respect to a variable ‘a’ is indicated further using the shorthand notation Bap¨q.
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Similarly, a subscripted ∇-operator will denote the gradient only with respect to

the variable in subscript. E.g., the gradient of the cost functional with respect

to the design variables can then be related to the partial derivative BϕIpϕ, qq
through

BϕIpϕ, qqδϕ ” @∇ϕIpϕ, qq, δϕD @δϕ P X. (2.6)

The Karush-Kuhn-Tucker (KKT) first order necessary conditions for optimality

of the state-constrained optimization problem are then found by equating the

derivatives of the Lagrangian

Lpϕ, q, q˚q “ Ipϕ, qq ` xq˚, cpϕ, qqy (2.7)

to zero, with q˚ the so-called Lagrange multipliers. The KKT conditions for an

optimal point pϕ̄, q̄, q̄˚q thus read$&%
∇q˚L “ c pϕ̄, q̄q “ 0
∇qL “ ∇qIpϕ̄, q̄q ` Bqc˚pϕ̄, q̄qq̄˚ “ 0@∇ϕL, δϕ

D “ @∇ϕIpϕ̄, q̄q ` Bϕc˚pϕ̄, q̄qq̄˚, δϕ
D ě 0 @δϕ P Ψad

, (2.8)

with Ψad the set of feasible design perturbations corresponding to the feasible set

of design variables as Ψad “ Φad ´ ϕ̄. The second and third sets of equations in

these KKT conditions include the adjoint operators Bqc˚ and Bϕc˚, respectively.
In general, the adjoint operator A˚ of a bounded linear operator A is defined with

respect to the inner product x¨, ¨y through

xx,Ayy “ xA˚x, yy . (2.9)

One can easily observe that the first set of equations in these KKT conditions

corresponds to the state equations. The second set of equations is called the

adjoint equations and the Lagrange multipliers q˚ that solve them are adjoint or

dual variables. This set of equations is found by differentiating the Lagrangian

with respect to the state variables q and then using the adjoint identity@
q˚, Bqcpϕ, qqδqD “ @Bqc˚pϕ, qqq˚, δq

D
. (2.10)

The last set of equations in (2.8) are called the design equations. When state and

adjoint equations are feasible and when no design constraints are applied, this
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simply reduces to ∇Î “ 0 (see section 2.1.2). As indicated in figure 2.1, these

KKT-conditions might hold multiple solutions ϕ̄, including maxima or saddle

points in a higher dimensional design space. To have a minimum, it is then

sufficient that the Hessian of Î at ϕ̄ is positive definite.

Figure 2.1: A one-dimensional cost functional landscape that demonstrates how

the KKT-conditions might yield multiple solutions. Notice that these solutions

might include maxima as illustrated here.

Whereas in equation (2.8) the inequality constraints hpϕq ď 0 are taken into

account implicitly in the feasible set Ψad, it is also possible to explicitly account

for them in the KKT conditions. Starting from the Lagrangian for the design

constrained problem

Lcpϕ, q, q˚,μq “ Ipϕ, qq ` xq˚, cpϕ, qqy ` xμ,hpϕqy , (2.11)

with Lagrange multipliers μ P H, the full KKT system yields$’’’’’’&’’’’’’%

∇q˚Lc “ c pϕ̄, q̄q “ 0
∇qLc “ ∇qIpϕ̄, q̄q ` Bqc˚pϕ̄, q̄qq̄˚ “ 0
∇ϕLc “ ∇ϕIpϕ̄, q̄q ` Bϕc˚pϕ̄, q̄qq̄˚ ` Bϕh˚pϕ̄qμ̄ “ 0
hpϕ̄q ď 0
μ̄ ě 0
xμ̄,hpϕ̄qy “ 0

. (2.12)

25



2. OPTIMAL MAGNETIC DIVERTOR DESIGN

The three latter conditions relate to the design constraints. They include design

constraint feasibility, dual design constraint feasibility, and a complementarity

condition, respectively. For each constraint hi and multiplier μ̄i, these conditions

guarantee that either the constraint is active so that hipϕ̄q “ 0 and μ̄i ą 0, or

that the constraint is inactive and thus hipϕ̄q ă 0 and μ̄i “ 0. In the latter case,

the constraint contribution disappears from the Lagrangian (2.11). A variety of

different approaches exists to solve design constrained optimization problems for

an optimal point pϕ̄, q̄, q̄˚, μ̄q (see e.g. [103]). The choice and adjustment of such

an approach for the particularities of the magnetic divertor design problem are

a challenge that will be discussed in chapter 4. In this chapter, the focus will be

on introducing the existing methods for optimization problems with exclusively

state constraints.

2.1.2 Gradient calculation

The forward approach to gradient calculation

To solve the optimization problem (2.1), first, a nested gradient based optimiza-

tion algorithm can be considered [103]. This class of methods finds the direction

of each optimization step based on evaluations of the gradient of the reduced

objective functional ∇Î. If combined with an appropriate globalization strategy

(discussed further in section 2.3), gradient based optimization algorithms offer a

guaranteed descent on the objective. Using the chain rule, the directional deriva-

tive of Î evaluates as

δÎpϕ, δϕq “ @∇ϕIpϕ, qq, δϕD ` @∇qIpϕ, qq, δqpϕ, δϕqD
, (2.13)

with q “ qpϕq, and δqpϕ, δϕq the directional derivative of qpϕqin the direction

δϕ. For ease of notation, the dependence q “ qpϕq and the arguments of the

directional derivatives δÎ and δq will be left out below whenever they are clear

from the context. If the state equation cpϕ, qq “ 0 has been solved for qpϕq,
linearizing the constraints cpϕ, qq “ 0 in direction δϕ yields that the directional

sensitivity δq is the solution to

Bqcpϕ, qq δq “ ´Bϕcpϕ, qq δϕ. (2.14)
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After discretization of equations (2.13) and (2.14) to a finite-dimensional setting,

the gradient vector ∇Î can be evaluated numerically via a solution of equation

(2.14) for the directional derivative δq in a specific direction δϕ for each of the

nϕ components of ∇Î. Clearly, this can become expensive if the control variable

vector ϕ has a large number of components. Hence, care has to be taken that

gradient evaluations do not unnecessarily dominate the computational cost of the

optimization algorithm.

The adjoint approach to gradient calculation

Adjoint sensitivity calculations offer an attractive alternative to the direct solu-

tion of equations (2.13) and (2.14), and a gradient evaluation cost that is indepen-

dent of the number of (discretized) control variables (see e.g. [21, 73]). Starting

from a solved state qpϕq, one possible derivation substitutes the linearized re-

lation (2.14) between flow and control variables into the chain rule (2.13). This

gives

δÎ “ @∇ϕIpϕ, qq, δϕD ´ @∇qIpϕ, qq, Bqcpϕ, qq´1Bϕcpϕ, qqδϕD
. (2.15)

Using the definition of the adjoint operator in equation (2.9) for the derivative

Bqcpϕ, qq´1, this can also be formulated as:

δÎ “ @∇ϕIpϕ, qq, δϕD ´ @Bqc´˚pϕ, qq∇qIpϕ, qq, Bϕcpϕ, qqδϕD
. (2.16)

Solving the adjoint equation

Bqc˚pϕ, qq q˚ “ ´∇qIpϕ, qq (2.17)

for

q˚pϕq “ ´Bqc´˚pϕ, qq∇qIpϕ, qq
and using the adjoint of the linearization with respect to the design variables,

Bϕcpϕ, qq˚, now allows reformulating this as an explicit expression for the reduced

objective gradient

∇Îpϕq “ ∇ϕI pϕ, qq ` Bϕc˚pϕ, qq q˚, (2.18)

:The notation A´˚ :“ pA´1q˚ is used here.
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where Bϕc˚pϕ, qq can often be obtained through an analytical differentiation.

For the scalar-valued objective function it can be seen that this approach might

significantly reduce the computational cost with respect to the direct evaluation

of equations (2.13) and (2.14).

Alternatively, the adjoint approach to sensitivity calculation can be derived

using the Lagrangian (2.7). First remark that

δÎ “ L̂1 “ BϕL δϕ ` BqL δq ` Bq˚L q˚1 ,

where the first equality trivially follows from the definition of the reduced La-

grangian L̂pϕq :“ Lpϕ, qpϕq, q˚pϕqq and cpϕ, qpϕqq fi 0. Then, observe that

the last two terms of this equality are equal to zero at primal (state) and dual (ad-

joint) feasibility (see equation (2.8)). After subsequently solving these equations

for qpϕq and q˚pϕq, respectively, only the partial derivative of the Lagrangian

with respect to the control variables ϕ is thus nonzero. The gradient ∇Î then

reads

∇Îpϕq “ ∇ϕLpϕ, q, q˚q (2.19)

“ ∇ϕIpϕ, qq ` Bϕc˚pϕ, qq q˚, (2.20)

which equals the expression found from the former derivation. Remark that

setting (2.20) to zero then again leads to the design equation of section 2.1.1 in

absence of design constraints.

Discretization and adjoint approaches

To solve the set of PDEs cpϕ, qq “ 0 numerically, these equations need to be

discretized to a discrete problem chpϕh, qhq, with a discrete control vector ϕh

and a spatially and/or temporally discretized state vector qh and where the sub-

script h refers to a characteristic spacing distance of the grid. In the adjoint

approach to sensitivity calculation as described above, a second set of PDEs is

obtained, namely the adjoint PDEs (equation (2.17)). Likewise, these adjoint

equations should be discretized before they can be evaluated numerically. Intro-

ducing the discretization operator t¨uH that densely approaches elements of an
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2.1 Divertor design as an optimization problem

infinite-dimensional Hilbert space in a finite-dimensional subspace, the discretized

adjoint equations �∇qI
(
H

` �Bqc˚(
H
q˚
H “ 0 (2.21)

are obtained, with q˚
H “ tq˚uH. Similarly, equation (2.18) can be discretized to

obtain a discrete approximation of the design sensitivity. This approach to sen-

sitivity calculation is called the Optimize-Then-Discretize (OTD) or continuous

adjoint approach.

Figure 2.2: The Optimize-Then-Discretize (OTD) or in short continuous adjoint

approach versus the Discretize-Then-Optimize (DTO) or discrete adjoint approach.

Figure based on Refs. [41, 44, 59].

An alternative approach, the so-called Discretize-Then-Optimize (DTO) or

discrete adjoint approach, starts from the discretized optimization problem

min
ϕhPΦh,ad,qh

Ih pϕh, qhq
s.t. chpϕh, qhq “ 0.

Analogous to the continuous case, an adjoint approach to sensitivity calculation

can now be elaborated. In this derivation, the use of standard discrete �2 inner

products

xx,yy “ xJy. (2.22)
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will immediately be assumed. Again, the discrete state equations are solved first

for qhpϕhq. The linearized discrete state equations

Bqh
chδqh ` Bϕh

chδϕh “ 0 (2.23)

can then be used in complement with the chain rule for the sensitivity

δÎh “ Bϕh
Ihδϕh ` Bqh

Ihδqh, (2.24)

to derive the set of discrete adjoint equations

∇qh
Ih ` Bqh

cJ
hq

˚
h “ 0 (2.25)

that are solved for q˚
hpϕhq and reduce the design sensitivity calculation to

∇Îh “ ∇ϕh
Ih ` Bϕh

cJ
hq

˚
h. (2.26)

In this equation, it can be easily seen that the cost of the gradient evaluation now

reduces to that of a matrix-vector product.

The difference between the discrete and continuous adjoint approach to sensi-

tivity calculation is shown schematically in figure 2.2. It is important to note that

they are not necessarily equivalent, since the continuous adjoint approach allows

for different discretization choices for state and adjoint equations. If, by careful

choice of inner product and discretization, the DTO and OTD approach are equiv-

alent, dual consistency has been achieved. In principle, the difference should be

mainly originating from discretization choices and the approaches should there-

fore both converge to the solution in infinite-dimensional space for infinitesimally

small grid cell sizes.

Advantages of the discrete and continuous adjoint methods have been dis-

cussed extensively in literature [41, 57, 59, 100, 101, 137]. The most notable

advantage of the discrete adjoint approach clearly being the consistency between

discretized model and gradient that allows full convergence to the discrete op-

timum. Using the continuous adjoint, gradients close to a minimum might no

longer point in a descent direction due to this inconsistency, stalling convergence.

Nevertheless, deriving the discrete adjoint equations by hand is more cumbersome

30



2.2 Optimization algorithms

than its continuous adjoint equivalent. Therefore, so-called Algorithmic Differen-

tiation (AD) tools are often exploited. Unfortunately, these methods often come

at an increased memory consumption and often also increased computational cost.

Nevertheless, new code developments are easily incorporated without additional

adjoint derivations. Similarly, it does not require deriving new adjoint boundary

conditions whenever the forward boundary conditions are changed. The flexibility

of this AD approach often outweighs the other arguments.

Another advantage of the discrete adjoint method is the ease of the sensitiv-

ity verification with finite difference gradients. In contrast, the continuous ad-

joint gradient can only be verified through systematic grid refinement. However,

straightforward application of the discrete adjoint method without consideration

of the dependencies in the continuous model and the continuity of their discrete

implementation might lead to inaccurate sensitivities. Although many more ar-

guments can be mentioned here, this short discussion already indicates that both

methods have their own advantages and drawbacks. In fact, one might even resort

to using hybrid continuous-discrete adjoint methods such as introduced in Ref.

[137], to exploit the advantages of both methods for different model equations in

a coupled system of equations.

2.2 Optimization algorithms

The PDE-constrained optimization problems under consideration are mostly

highly nonlinear optimization problems. Such problems thus need, in most practi-

cal applications, an iterative solver to obtain an optimum of the KKT-conditions

introduced in section 2.1.1. Two major categories of adjoint based optimization

methods can be used.

The first category includes the nested optimization methods. These methods

solve state and adjoint equations in each optimization step to find the cost func-

tion value Î and the gradient ∇Î and use them to calculate a design step ∆ϕ.

This approach successfully reuses the forward PDE-simulation as is, which is of

primary importance since these codes are often very large and result from specific

solver development for the particular application. Nested optimization methods

then build an external optimization layer around the solver (and adjoint solver).
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The relative simplicity being the main advantage of the approach. The obvious

disadvantage being that much CPU-time is ‘waisted’ converging the state and

adjoint equations until feasibility in each optimization iteration.

The second category includes methods that simultaneously solve for all KKT-

conditions, both feasibility and optimality. These two different types of opti-

mization approaches are briefly introduced here. For a more complete overview

of methods for PDE-constrained optimization the reader is referred to [21]. For

ease of notation, all terms in the remainder of this section will be either con-

sidered discrete or discretized, without explicitly writing the subscript h or the

discretization operator t¨uH.

2.2.1 Nested optimization methods

In absence of design constraints, finding a solution to the KKT system through

nested optimization methods reduces to iteratively looking for optimal design

variables ϕ̄ at which ∇Î “ 0. A variety of methods exist, amongst which the

steepest descent method is the simplest. This method updates the design ϕk in

the kth optimization iteration by making a step in the negative gradient direction

as ϕk`1 “ ϕk´α∇Î, using a constant scalar multiplier α. At the cost of increased

storage, convergence can often be accelerated by using a quasi-Newton method.

This method additionally approximates the reduced Hessian B « ∇ϕϕ Î and

then updates the design variables using the approximate Newton step ϕk`1 “
ϕk ´ B´1∇Î. B is called the reduced Hessian since it is based on the Hessian of

the reduced cost functional, from which the state variables q are eliminated using

the state equations. B is also known here as the design preconditioner, since it

serves as a preconditioner for the steepest descent step.

Since Hessian evaluations are expensive, B is estimated using exclusively

gradient data from previous optimization iterations. The well-known Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm performs in each optimization iter-

ation the rank-two Hessian update

Bk`1 “ Bk ´ Bksksk
JBk

skJBksk
` ykyk

J

yk
Jsk

, (2.27)
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with sk “ ϕk`1 ´ ϕk and yk “ ∇Îpϕk`1q ´ ∇Îpϕkq. If storing the entire Hes-

sian is too memory-intensive, the Limited-memory BFGS (L-BFGS) offers an

alternative [103]. When working with an unconstrained optimization problem, it

might moreover be convenient to use the Sherman-Morrison-Woodbury formula

to find a similar expression for the inverse design preconditioner H “ B´1 (see

e.g. [103]).

It is essential for the algorithm that B is sufficiently positive definite to have

bounded design steps in the direction of a minimum. A first option is to use

damped BFGS updates. This update rule relaxes the Hessian update to guarantee

the directional curvature sk
JBksk can maximally be decreased by a fraction γ

in the novel update [112]. More specifically, it applies the following rule: If

sk
Jyk ă γ sk

JBksk, substitute yk by ỹk “ θyk `p1´θqBksk, such that sk
Jỹk “

γ sk
JBksk. This is achieved when

θ “ p1 ´ γqskJBksk
skJBksk ´ skJyk

. (2.28)

The resulting ỹk then simply replaces yk in equation (2.27). Alternatively, one

can make sure in a line search algorithm that the accepted step obeys the Wolfe

conditions, as presented in section 2.3.

2.2.2 SQP, rSQP and one-shot methods

As an alternative to the nested optimization methods, one may aim at simul-

taneously attaining feasibility and optimality. A direct Newton solve on the

(state-constrained) KKT system (2.8) directly leads to the Sequential Quadratic

Programming (SQP) approach that solves for a change in costate Δq˚, design
Δϕ, and state Δq as»–∇qqL ∇qϕL Bqc˚

∇ϕqL ∇ϕϕL Bϕc˚
Bqc Bϕc 0

fifl »– Δq
Δϕ
Δq˚

fifl “
»– ´∇qL

´∇ϕL

´c

fifl , (2.29)

where one may note that in a discrete adjoint approach or a dually consistent

continuous adjoint approach the matrix on the left hand side is symmetric, since

Bqc˚ and Bϕc˚ may be replaced by BqcJ and BϕcJ, respectively.
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Often, it is more interesting to use the reduced SQP (rSQP) formulation»– 0 0 Bqc˚
0 B Bϕc˚

Bqc Bϕc 0

fifl »– Δq
Δϕ
Δq˚

fifl “
»– ´∇qL

´∇ϕL

´c

fifl , (2.30)

since the second derivatives in (2.29) are often too expensive to calculate. The

Hessian B can be seen as a result of projecting the Hessian of the Lagrangian onto

the nullspace of the model constraints [21, p. 55 and p. 62]. That is, consider

the Hessian of the quadratic program

H :“
„∇qqL ∇qϕL

∇ϕqL ∇ϕϕL

j
(2.31)

and define

Z :“
„ Bϕq

I

j
“

„ ´Bqc´1Bϕc
I

j
. (2.32)

The linearized model equations can then again be used to eliminate the depen-

dence qpϕq and obtain the reduced Hessian

B “ ZJHZ “ ∇ϕϕL ´ ∇ϕqL Bqc´1Bϕc ´ `Bqc´1Bϕc
˘J ∇qϕL``Bqc´1Bϕc

˘J ∇qqL Bqc´1Bϕc. (2.33)

Here, the reduced Hessian size can be efficiently exploited using a quasi-Newton

update technique as introduced in section 2.2.1. Additionally, the lower trian-

gular structure of the rSQP-matrix is very suitable for sequential solution by

elimination.

Yet, the complete constraint Jacobian is often not available in a typical PDE-

simulation code. Because of the large state space, iterative solvers are typically

used that approximate the constraint derivative Bqc with a more convenient ap-

proximation A, possibly including additional relaxation or a false time-stepping

term. Using this approximation in the rSQP method leads to an approximate

rSQP method »–0 0 A˚
0 B Bϕc˚
A Bϕc 0

fifl »– Δq
Δϕ
Δq˚

fifl “
»– ´∇qL

´∇ϕL

´c

fifl . (2.34)
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This approximate rSQP system can now be solved through elimination with a

Gauss-Seidel iteration or by further approximating this system as»–0 0 A˚
0 B 0
A 0 0

fifl »– Δq
Δϕ
Δq˚

fifl “
»– ´∇qL

´∇ϕL

´c

fifl . (2.35)

and using a parallel Jacobi-type iteration. These latter two types of iterative

approximate rSQP solvers that integrally reuse the existing state solver are so-

called single step one-shot methods, since they perform one iteration on the state

solver, one on the adjoint solver and perform one design update. The parallel

Jacobi-type iteration is used mostly if algorithmic differentiation is used, since

function value and design gradient are calculated simultaneously. Since these

one-shot methods—like nested methods—allow leaving the structure of the for-

ward solver unchanged, they are of special interest for typical PDE-constrained

applications. The difference between nested and one-shot optimization methods

is schematically shown in figure 2.3.

Figure 2.3: A schematic illustration of the difference between a) nested optimiza-

tion methods and b) one-shot methods.
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2.3 Globalization

In this section, the concept of globalization will be briefly introduced for nested

optimization. For one-shot methods, globalization is a relatively new topic, fur-

ther discussed in chapter 7. Newton-type methods only converge if the initial

solution is sufficiently close to the optimum. To achieve global convergence, a

globalization strategy can then be introduced. It should be stressed that global

convergence means converging from any initial starting point to a (possibly local)

stationary point. Typically, this is achieved by changing the design step such that

the cost functional is decreased in each optimization step.

Two important categories of globalization methods exist. Trust region meth-

ods and line search methods. Although both methods are effective and have their

own advantages, only line search methods will be discussed in this PhD thesis.

The choice for these methods mainly stems from the decoupling between search

direction calculation and globalization, leading to increased code transparency.

After the search direction calculation, an inexact line search procedure

searches along the resulting direction δϕk for a point ϕk`1 “ ϕk ` τkδϕk with

sufficient descent on the objective function. Typically, until a point is found that

satisfies the Armijo condition

Îpϕk ` τkδϕkq ď Îpϕkq ` c1τk

´
∇Îpϕkq, δϕk

¯
, (2.36)

with c1 P p0, 1
2
q a parameter relaxing the gradient. Additionally, the curvature

condition ˇ̌̌´
∇Îpϕk ` τkδϕkq, δϕk

¯ˇ̌̌
ď c2

ˇ̌̌´
∇Îpϕkq, δϕk

¯ˇ̌̌
(2.37)

can be imposed, with c2 P p0, 1q a parameter indicating how much the curvature

is to be reduced in each step. These two conditions together form the so-called

Wolfe conditions. Although gradient calculation is required at each line search

point when using the second Wolfe condition, it has several advantages. Firstly, it

inherently avoids that negative curvatures are found when using a quasi-Newton

approach. Secondly, it sets out a minimal step size so that in general less opti-

mization iterations are needed. For more information on globalization approaches

the reader is referred to Ref. [103].
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2.4 Summary

In this chapter, the optimization problem, its characteristics, and the KKT con-

ditions that govern its solutions were described first. Further, the direct and

adjoint approaches to sensitivity calculation were described. While the compu-

tational cost of a direct sensitivity evaluation scales strongly with the size of the

design vector, the adjoint approach calculates the sensitivity of a scalar-valued

cost functional efficiently. Moreover, it is pointed out that the choice between

using the adjoint on the continuous or discretized optimization problem has im-

portant consequences.

Subsequently, a brief overview of solution methods was presented to solve

the optimization problem. Nested quasi-Newton type optimization methods and

approximate rSQP type one-shot methods were indicated as potentially inter-

esting options, since the original simulation code can be augmented with the

optimization functionalities in a non-intrusive way. Yet, incorporation of de-

sign constraints still needs consideration. Finally, globalization was discussed for

nested optimization algorithms.

In this thesis, both nested and one-shot algorithms will be examined. The

application of the former in the context of magnetic divertor design is treated in

chapter 4. The latter is elaborated in chapter 7. There, the introduction of a

one-shot globalization approach will also be discussed in detail.
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3

Integral Magnetic Divertor

Model

In nuclear fusion tokamaks, plasma, target plates, and magnetic configuration

interact in a complex way. Yet, in current models, magnetic field and plasma edge

flow are treated independently. That is, plasma edge transport codes calculate

particle, momentum and energy flows on a precomputed and then fixed magnetic

field. This approximation is justified by the relatively small plasma current in

divertor and SOL.

Since the objective of this thesis is the automated design of the magnetic

configuration to improve the heat exhaust, the subject of this first chapter there-

fore comprises the development of an integrated model that governs both the

magnetics and the plasma edge transport of a tokamak in steady state. Fur-

thermore, both models should be incorporated into an automated code that is

able to evaluate the heat load, starting from the divertor coils that govern the

magnetic divertor configuration. A flow chart of such a procedure is presented in

figure 3.1. It should be noted that also the grid generation process is an inherent

component of this integrated code. This is due to the strongly anisotropic flow,

which is orders of magnitude greater along than perpendicular to the magnetic

field. Consequently, the grid on which the plasma edge transport equations are

discretized should be aligned to the magnetic field to avoid excessive numerical

diffusion. One of the challenges is therefore the development and inclusion of an

automated grid generator.

39
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Figure 3.1: The components of the forward simulation

A range of models with different levels of sophistication could be selected to

simulate the magnetic field and plasma edge flows. However, since the main goal

is the development of the optimal design techniques, we choose slightly reduced

models that are easy enough to test the concepts, but retain the principal de-

pendencies. At a later stage in the design process, one might replace both the

magnetic field and the plasma edge transport model with state-of-the-art simula-

tion software and use these very same or slightly adjusted design methods on the

more extended models. By doing so, an improved design might be achieved, still

bearing in mind that model deficiencies might influence the optimal solution.

In this chapter, we will treat the model components depicted in figure 3.1

one by one. For uniformity, we will consider both the continuous model and its

discretization in this chapter. In the first section of this chapter a very fast and

simple model is presented to account for small changes to a magnetic equilib-

rium. Next, in section 3.2, the coordinate transformation that governs the grid

generation process is outlined as well as its discrete equivalent. Since plasma edge

grid generators often heavily rely on user interaction, the automation of this grid
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generation process is briefly discussed here. Finally, in section section 3.3, the

plasma edge transport model that evaluates the target heat load is presented.:

3.1 Magnetic field modelling

3.1.1 Quasi-static magnetic field equations

Magnetic fields are governed by Maxwell’s equations. This is a set of 4 PDEs of

which two are of direct relevance for steady-state magnetic fields. The first one,

also known as Gauss’ law for magnetism, states that magnetic fields should be

divergence free or equivalently, that magnetic monopoles do not exist. Mathe-

matically this is expressed by the differential equation

∇ ¨ B “ 0, (3.1)

withB the magnetic field density vector in rTs. The second condition is Ampère’s

law for quasi-static fields,

∇ ˆ B

μ
“ J , (3.2)

with J the current density vector in
“

A
m2

‰
.

These laws can then be combined by writing Ampères law in terms of a vector

potential A, defined by

B :“ ∇ ˆ A (3.3)

Gauss’ law for magnetic fields (3.1) is then trivially fulfilled and Ampères law

then reads

∇ ˆ
ˆ
1

μ
∇ ˆ A

˙
“ J . (3.4)

However, the vector potential A is not uniquely defined, since adding curl-free

components to the potential will not change the magnetic field. The Coulomb

:Parts of this chapter have been published in “Blommaert, M., Dekeyser, W., Bael-

mans, M., Gauger, N. & Reiter, D. (2014). An Automated Approach to Magnetic Divertor

Configuration Design. Nuclear Fusion, 55” and “Blommaert, M., Heumann, H., Baelmans,

M., Gauger, N.R. & Reiter, D. (2016). Towards Automated Magnetic Divertor Design for

Optimal Heat Exhaust. ESAIM: Proceedings and Surveys, 53, 49–63”.
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gauge (∇ ¨ A “ 0) is therefore used to uniquely define A. Using this gauge and

the vector identity

∇ ˆ
ˆ
1

μ
∇ ˆ A

˙
“ ∇

ˆ
1

μ
∇ ¨ A

˙
´ ∇ ¨

ˆ
1

μ
∇A

˙
,

equation (3.4) can be simplified to

´ ∇ ¨
ˆ
1

μ
∇A

˙
“ J . (3.5)

Figure 3.2: Illustration of the pR, φ,Zq-coordinate system in a tokamak, and of a

poloidal plane in this coordinate system.

3.1.2 Exploiting toroidal (quasi-)symmetry

In steady-state tokamak analysis, toroidal symmetry is often assumed. Consider a

cylindrical pR, φ,Zq-coordinate system as depicted in figure 3.2, with unit vectors

eR , eφ and eZ. The poloidal magnetic field pBR eR ` BZ eZq in axisymmetric

configurations is entirely determined by Aφ through the toroidal component of

equation (3.5), „
´∇ ¨

ˆ
1

μ
∇A

˙j
φ

“ Jφ. (3.6)

In terms of the poloidal magnetic flux per radian ψ, defined as ψ “ RAφ, the

governing equation

´ R∇ ¨
ˆ

1

μR2∇ψ

˙
“ Jφ (3.7)
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is finally obtained. In vacuum, this equation reduces further to

Δ˚ψ “ ´μ0Jφ, (3.8)

with μ0 the magnetic permeability of vacuum (in absence of dia-, para- or ferro-

magnetic structures) and the elliptic operator Δ˚ defined as:

Δ˚ψ “ R
B

BR
ˆ
1

R

Bψ
BR

˙
` B2ψ

BZ2 . (3.9)

The magnetic field components BR an BZ can be retrieved from the poloidal flux

ψ as:

BR “ ´ 1

R

Bψ
BZ and BZ “ 1

R

Bψ
BR . (3.10)

Figure 3.3: A conceptual figure of a poloidal tokamak cut. The domain covered

by coils Ωc,i and the main plasma domain Ωmp are indicated in yellow and pink,

respectively.

:Remark that in literature instead of the poloidal flux per radian ψ sometimes the total

flux integrated over the toroidal direction Ψ “ 2πψ is used, leading to regular mismatches by

a factor 2π, as experienced by the author.
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3.1.3 Towards a free boundary equilibrium problem

In tokamaks, the magnetic field is constituted by the coils around the vacuum

chamber as well as the field induced by the plasma currents themselves. The

expression for the toroidal current density Jφ is therefore region dependent (see

figure 3.3). Within coil number i with domain Ωc,i and cross-section Si, the

current density is simply given by Iφ,i{Si , with Iφ,i the coil current. In the main

plasma domain Ωmp bounded by the last closed flux surface (LCFS), the magnetic

flux ψ is approximately described by the Grad-Shafranov (GS) equation for ideal

static magnetohydrodynamic (MHD) equilibrium [60, 129]

Δ˚ψ pR,Zq “ ´μ0R
2p

1 ´ FF
1
, (3.11)

with p and F flux functions associated to the pressure and the R-scaled toroidal

magnetic field component, respectively, and where the accent denotes a differ-

entiation with respect to the poloidal flux ψ. The ‘static’ assumption in this

equilibrium equation reduces the complexity of the original problem by assuming

that the plasma particle velocities are negligible. The remaining equation (3.11)

balances Lorentz force against plasma pressure. Outside the main plasma domain

Ωmp, plasma currents are typically neglected.

Rewriting the GS equation in terms of the toroidal plasma current density JP,

the governing equations thus read [18]

Lψ “ Jφ ,with (3.12)

Jφ “

$’&’%
JP “ Rp

1pψq ` 1{pμ0Rq FF 1pψq in Ωmp pψq ,
Iφ,i{Si in Ωc,i, i “ 1 . . . nc,

0 elsewhere,

where Iφ,i represents the current in the ith toroidal coil, nc represents the total

number of coils, and where we introduce the operator

Lp¨q “ ´R∇ ¨
ˆ

1

μpψqR2∇p¨q
˙

(3.13)

“ ´ B
BR

ˆ
1

μpψqR
Bp¨q
BR

˙
´ B

BZ
ˆ

1

μpψqR
Bp¨q
BZ

˙
´ B

Bφ
ˆ

1

μpψqR3

Bp¨q
Bφ

˙
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for ease of notation. Notice that the last term in equation (3.13) is zero because of

toroidal symmetry. The solution of this problem is non-trivial, since this PDE is

nonlinear in ψ through both the plasma current density JP and the main plasma

domain Ωmp. Because of the latter, these equations are also referred to as the

free boundary equilibrium (FBE) equations. Additionally, the permeability μ is

a nonlinear function of ψ in ferro-magnetic structures.

3.1.4 A simple and fast perturbation approach

Because of the problem complexity, a perturbation model is used in a first step.

In this perturbation model, it is assumed that magnetic field changes due to small

coil perturbations can be sufficiently described using the vacuum approximation.

This approximates the magnetic field resulting from external coil changes as if

they where coils in vacuum. The influence of altering plasma currents and their

position is hereby neglected for the small changes concerned. The vacuum ap-

proximation is used frequently in edge transport models for the study of resonant

magnetic perturbations [52, 94, 125]. The validity of the vacuum approximation

for this application is subject of discussion in [113] and will be further discussed

in chapter 6 for its application to magnetic divertor design.

To explain the methodology further, the equations (3.12) are formally com-

bined as

Lψ “
ncÿ
i“1

Iφ,i
Si

�Ωc,i
` JPpψq�Ωmppψq, (3.14)

using the indicator functions

�Ωc,i
prq :“

"
1 if r P Ωc,i

0 if r R Ωc,i
and (3.15)

�Ωmppψqprq :“
"
1 if r P Ωmppψq
0 if r R Ωmppψq (3.16)

to indicate whether a position vector r is included in the respective domain. Now

consider an unperturbed magnetic equilibrium ψ0 of a divertor configuration with

coil currents Iφ,i,0 and a corresponding plasma current density distribution JP,0,

which satisfy the magnetic equilibrium (3.12). The effect of small coil current
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changes δIφ,i can be described as a perturbation δψ to ψ0,

Lψ “Lpψ0 ` δψq « Lψ0 ´ 1

μ0R
Δ˚δψ (3.17)

“
ncÿ
i“1

Iφ,i,0
Si

�Ωc,i
`

ncÿ
i“1

δIφ,i
Si

�Ωc,i
`

JPpψ0q�Ωmppψ0q ` δJPpψqmaxp�Ωmppψ0q,�Ωmppψqq.

The operator L is nonlinear due to the presence of the permeability μpψq. Yet, the
approximation in (3.17) is justified by the fact that μ « μ0 in a large part of the

reactor. If iron components are present, the approximation is still reasonable if the

iron is close to saturation. However, the changes of the plasma currents δJPpψq are
still hard to calculate, as they are indirectly dependent on the external currents

Iφ,i through induced shifts in the flux functions p and F . The perturbation model

then neglects the plasma current change δJPpψq as well as all permeabilities

μ ‰ μ0. The main advantage being that only the linear equation

Δ˚δψ “ ´μ0R
ncÿ
i“1

δIφ,i
Si

�Ωc,i
(3.18)

needs to be solved for the poloidal flux perturbation δψ. The approach is illus-

trated in figure 3.4.

It important to note that in this perturbation approach, force balance, and

hence Equation (3.11), will in general no longer strictly apply if δψ ‰ 0. It

can however be reasoned that the vacuum approximation becomes more accurate

when the changes to the magnetic flux δψ are limited to the divertor and plasma

edge region, since the plasma currents are approximately zero there. This condi-

tion is for example realized if two divertor shaping coils are close to each other

and their current changes δIφ have opposed directions and similar magnitude.

The poloidal flux change δψ due to these coils then decays very quickly in space.

To speed up magnetic field calculations even further, the additivity of the

linear operator Δ˚ can be used to calculate the magnetic field contribution for

each coil separately. Assuming an infinitesimally thin toroidal conductor at (r1,
z1) and making use of the vacuum approximation, one can derive an explicit

46



3.1 Magnetic field modelling

Figure 3.4: A perturbed magnetic flux ψ (bottom) is evaluated by adding a

calculated perturbation δψ (top) onto an initial equilibrium ψ0(middle). Notice

the local changes in the divertor region of the perturbed magnetic flux compared

to the reference magnetic flux.

expression for the magnetic flux perturbation δψi due to one divertor coil current

change δIφ,i [48]:

δψi pR,Z, r1, z1q “ ´μ0R δIφ,i
kπ

c
r1

R

„ˆ
1 ´ k2

2

˙
Kpkq ´ Epkq

j
, (3.19)

where

k2 “ 4Rr1

pR ` r1q2 ` pZ ´ z1q2 (3.20)

and K and E are complete elliptical integrals of the first and second kind. These
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are respectively given by

Kpkq “
ż π

2

0

dθ?
1 ´ k2 sin2 θ

, (3.21)

Epkq “
ż π

2

0

a
1 ´ k2 sin2 θ dθ. (3.22)

When nc conductors are present, the total perturbation can be obtained as δψ “řnc

i“1 δψI . Using the approach presented above, small changes to the magnetic

field can be computed very fast by evaluation of the elliptic integrals (3.21) and

(3.22) at positions pR,Zq once and substitution in (3.19). Afterwards, the fields

resulting from the individual conductors only need to be rescaled to find δψ for

other δIφ,i. In contrast to the Grad-Shafranov equation, a space discretization

method is not needed here for the solution of δψ.

Within this approximation, an explicit formulation to compute the magnetic

flux ψ is now at hand. However, it is formulated in implicit form to define the

magnetic state equations ceq pϕ, qeqq “ 0, with the magnetic state qeq correspond-

ing here to the poloidal magnetic flux ψ,

ceq “
ncÿ
i

´μ0R δIφ,i
kiπ

d
r1
i

R

„ˆ
1 ´ k2

i

2

˙
Kpkiq ´ Epkiq

j
` ψ0 ´ ψ, (3.23)

and ψ0 being, again, the poloidal magnetic flux of the unperturbed equilibrium.

As such, the adjoint derivations in chapter 5 include any (nonlinear or implicit)

form of the magnetic state equations. The magnetic flux ψ will further be referred

to as the magnetic state qeq and the coil current changes δIφ,i can be combined

into the vector ϕ, representing the control or design variables.

3.2 Plasma edge grid generation

As discussed in the introduction of this chapter, plasma edge transport models

are typically discretized on a grid aligned to the magnetic field to avoid excessive

numerical diffusion [27, 115, 118, 130, 135, 150]. To enable the use of structured

grids, a coordinate transformation is typically used. Plasma edge grid genera-

tion is thus more than a spatial discretization process. A vector of continuous
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3.2 Plasma edge grid generation

state variables can therefore be attributed to this grid generator. Since an under-

standing of this continuous equivalent of the grid generator process is necessary

when examining the options for its sensitivity calculation, this continuous mean-

ing will be presented first. Afterwards, the discrete grid generation software that

is developed within the context of this dissertation is described, with a focus on

its automation. This requirement prohibits the straightforward use of existing

plasma edge grid generator codes.

3.2.1 Continuous

Plasma edge transport equations are typically solved in a curvilinear poloidal

coordinate system, that is aligned to the poloidal projection of the magnetic

field. In figure 3.5 we sketch two mappings that are involved. The mapping

G1pθ, rq : R
2 Ñ R

2,

ˆ
r
θ

˙
ÞÑ

ˆ
Rpθ, rq
Zpθ, rq

˙
describes the mapping from the poloidal section pθ, rq of the curvilinear pθ, φ, rq
coordinate system to the poloidal section pR,Zq of the basic cylindrical coordinate
system pR, φ,Zq [3, 46]. θ and r are respectively the coordinates along and perpen-

dicular to the isolines of the poloidal flux, with the r coordinate directed outwards

(see figure 3.5). The coordinate system pθ, φ, rq is again an orthogonal coordinate

system. The transformation can be characterized by its metric coefficient matrix

gij. In practice, since toroidal symmetry is assumed, only the metric coefficients

hr “ |BG1{Br |, hθ “ |BG1{Bθ | and the Jacobian J1 “ ?
g “ a

det rgijs of pR,Zq
with respect to pθ, rq are needed.

Due to the saddle point that the poloidal flux ψ exhibits at the X-point and

due to the closed flux lines within the LCFS, so-called cuts need to be introduced

to uniquely define the coordinate transformation. These cuts literally cut the

core part at X-E’line and place it in the pθ, rq-frame between the inner and outer

private flux zones, which are separated by the cut E-X. In the plasma edge solver,

steps will be taken to impose the appropriate connections of the domains at these

cuts.

Another important task of the grid generator is the choice of the plasma

edge simulation domain. Traditionally, target surfaces were aligned with a grid
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3. INTEGRAL MAGNETIC DIVERTOR MODEL

Figure 3.5: The grid generator mapping of the pR, φ,Zq coordinate system, via the

orthogonal pθ, φ, rq coordinate system, to the non-orthogonal px, φ, yq coordinate

system. Figure following Dekeyser [41].

boundary and the so-called outer wall boundary (B-C), core boundary (E’-E’)

and private flux boundary (A-E-D) have always been aligned with a magnetic

flux surface. The main reason was again the risk for excessive numerical diffusion.

To incorporate the domain choice in the grid generator state variable, the plasma

edge domain indicator function

Ωpeprq :“
"
1 if r P Ωpe

0 if r R Ωpe
(3.24)

is introduced.

Although the poloidal curvilinear pθ, φ, rq coordinate system is convenient

for exploiting the toroidal symmetry of the simulations, the transport equations

are best expressed in a parallel-diamagnetic-radial p‖,K, rq coordinate system,

because it separates best the various transport phenomena and their time-scales.

This is an orthogonal curvilinear coordinate system in which the e‖ axis is aligned

to the magnetic field. The eK and er coordinate axes are both perpendicular to

the magnetic field vector B. However, the diamagnetic axis lies in a surface

of constant poloidal magnetic flux, while er is perpendicular to it. Since the

momentum equation along the magnetic field lines will be projected onto the 2-D

(θ, r) poloidal plane, a geometrical projection factor is still needed. To this end,
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3.2 Plasma edge grid generation

the poloidal pitch bθ “ Bθ{‖B‖ is introduced, which is the cosine of the angle

between the magnetic field B and its poloidal component Bθ eθ. The state vector

of the grid generation can hence be defined as qgg “ `
hθ, hr,

?
g, bθ,�Ωpe

˘T
and

the explicit grid generation procedure is symbolized as qgg “ cggpqeqq.
In an attempt to further represent the objectives of the grid generator in a

continuous frame, one might introduce a second coordinate transformation that

maps the plasma edge domain Ωpe to a rectangular grid. Introducing the co-

ordinate system px, φ, yq, the discretization process simply reduces to choosing

appropriately spaced iso-x and y lines. This mapping

G2px, yq : R
2 Ñ R

2,

ˆ
x
y

˙
ÞÑ

ˆ
θpx, yq
rpx, yq

˙
then accommodates for the target geometry by relaxing the orthogonality con-

straint. The mapping G2 induces the transformation between the orthogonal co-

ordinates system pθ, φ, rq and the non-orthogonal curvilinear px, φ, yq coordinate

system, where x is the coordinate along the isolines of poloidal magnetic flux lines

(see a.o. [3, p. 88-89],[41, p. 71]). The x and y coordinates can in discrete sense

be interpreted as the matrix coordinates of grid cells. It is clear that the freedom

in this transformation entirely lies in the choice of the y-coordinate. Ideally, this

choice maximizes the grid orthogonality, while smoothly adjusting for the solid

geometry. Some algorithms directly pursuit this goal by using optimization algo-

rithms [97]. Essentially, this is the most challenging part of the grid generator.

It is understood that orthogonality in practice cannot be reached. In fact, or-

thogonality is often strongly abandoned near the target surface (see e.g. [126]).

Therefore, it is essential to correctly account for this non-orthogonality in the

discretization of plasma edge equations. Yet, up till present, non-orthogonality

corrections are absent in most plasma edge solvers .

If one uses recent methods to impose boundary conditions for computational

grids not aligned with the target structure [4, 27], the latter transformation be-

comes redundant, though the grid will not have a rectangular matrix form. Al-

though the second coordinate transformation G2 can be seen as the continuous

equivalent of the grid generator as presented in [15], it can equally be seen as

a part of the discretization process. Indeed, with an appropriate discretization
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that corrects for the non-orthogonality of grid cells, the mesh can be constructed

directly in the orthogonal pθ, φ, rq coordinate system, then requiring the complete

set of metric coefficients gij of the mapping G1 ˝ G2. It is mainly presented here

to give insight into how the grid is mapped into a rectangular matrix form.

3.2.2 Discrete

In discrete form, the transformation G1 is dealt with by a plasma edge grid gener-

ator. Isolines of the poloidal magnetic flux ψ are traced using contour algorithms

and each grid cell has two sides coinciding with two of these contours. Discrete

metric coefficients are calculated from the cell geometries and represent cell widths

in the direction of their coordinate axes. The Jacobian of the transformation is

computed in the discrete grid generator as the cell volume.

High quality computational grids for solving the plasma edge transport equa-

tions are needed, in order to obtain accurate plasma edge profiles, e.g. to asses

the target heat load. However, since such qualitative grids can only be achieved

using quadrilateral grid cells aligned to the poloidal magnetic flux, every change

in magnetic field induces a corresponding change in plasma edge grid. There-

fore, the grid generator is a substantial part of the coupled simulation chain in

figure 3.1 and must generate grids for the numerical evaluation of qggpqeqq in a

completely automated fashion. The challenge is to combine grid and automation

for each possible magnetic configuration.

In order to create these high quality grids, all spatial gradients should be suf-

ficiently resolved. Given the typical plasma profiles, it is necessary to have a fine

radial discretization towards the separatrix. Conversely, the poloidal resolution

of the 2D grid can be rather crude near the midplane, which results in cells with

a high aspect ratio. Grid cells are chosen here close to orthogonal for best numer-

ical accuracy. Since the streamlines of ∇ψ are locally orthogonal to the poloidal

flux per definition, they can be used to trace the radial grid lines [39]. This choice

avoids twisted cell edges in the strongly elongated cells near the separatrix, as

shown by the author in Ref. [11].

Further, the divertor region requires a strong poloidal grid refinement and a

continuous adjustment of the nearly orthogonal grid at the midplane towards a
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3.2 Plasma edge grid generation

grid aligned with the target shape. In figure 3.6, a grid of the MATLAB grid

generator is shown to illustrate these grid features. Here, no iterative proce-

dure is used to enhance grid orthogonality in this region in contrast to most

current plasma edge grid generators, such as CARRE [97]. Non-orthogonality in

plasma edge computation will now be tackled with an appropriately enhanced

discretization scheme [43]. The absence of this iterative procedure improves the

predictability of the grid generation process, which facilitates the robust grid

generation under different magnetic field inputs.

Figure 3.6: A computational grid for plasma edge transport simulations from

the MATLAB grid generator. Remark the strong refinement towards target plates

and separatrix. The blue circle highlights the point that determines the outer grid

boundary (see text).

The automation of the grid generation needs some additional care. A first

issue arises when detecting the X-points and the O-point (magnetic axis) of the

magnetic configuration as this often requires additional, case specific, input. In-

deed, X- and O-points can be detected by calculating the locations where∇ψ “ 0.

However, in general secondary X- and O-points may be present. The selection of

the correct stationary point is done by first looking at the eigenvalues of the 2ˆ2

curvature matrix at these locations. Their signs indicate whether the stationary
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point is a saddle point or maximum of the flux function and hence a X- or O-point

of the magnetic configuration, respectively. The primary X-point is then found

by taking the X-point with the largest ψ-value within the vacuum vessel.

Secondly, the outer radial boundaries of the domain BΩpe should be selected

in an appropriate way. The influence of the boundary conditions imposed here

should be as small as possible as they are typically very crude (constant decay

length boundary conditions for ion density and temperature and a recycling con-

dition for neutrals, see section 3.3.3). Therefore, the simulated region is chosen

to extend to the vessel wall as far as possible. In addition, the approximations

for the objective functional, as will be explained in section 4.1, will benefit from

these distant radial boundaries. However, until recently, these grid boundaries

where restricted to coincide with magnetic flux surfaces that are fully contained,

from target to target, in the vessel. For all these reasons, it is chosen to select the

outermost magnetic flux surface in the SOL that does not cross any solid material

in between the divertor targets. In figure 3.6, it can be seen that the outer grid

boundary in the scrape-off layer (SOL) indeed nearly touches the vessel at the

location highlighted with the blue circle.

In the private flux region, such a boundary can not always be found. Indeed,

the outermost flux surface there might be a point. Since gridding up till this

point would give a singularity in the grid cell sizes, an other approach is applied

at this boundary. Either, a fictitious ‘limiter’ line is added that limits the radial

extent of the simulated plasma in the private flux area. Alternatively, the private

flux grid is chosen to cover a fixed flux fraction between the X-point and this

singular point. Of course, a discretization scheme reaching all the way up to the

reactor wall, as presented in Ref. [4] or [27], is a now natural way to approach this

grid boundary problem. Given the additional complexity of the methods used in

[4, 27], extending the optimization approach elaborated in this PhD thesis to this

procedure is left for future work.

Finally, in order to verify robust behaviour of the grid generator, a test proce-

dure with random inputs was implemented. This procedure generates a series of

possible combinations for the controlled coil currents that obey the design con-

straints (discussed further in the next chapter). Using the perturbation approach,
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the magnetic flux is computed and a grid generation is attempted. Grid genera-

tor errors and twisted cells are automatically detected and listed. Based on the

results of these random input tests, implementations were generalized, and grid

as well as constraint parameters were tuned to have the best overall grid perfor-

mance. In this way, the chances that the simulations do not converge during the

optimization cycle are minimized.

3.3 Plasma edge modelling

Most plasma edge models are a reduced form of the Braginskii [25] plasma fluid

equations for electrons and ions, augmented with a model for neutral particles.

For general notions on the Braginskii equations in a field aligned curvilinear

coordinate system, the reader is referred to [3]. In this thesis, a simplified model

is used in comparison to the more advanced hybrid fluid-kinetic B2-EIRENE code

[115] to somewhat reduce computational time and facilitate the demonstration of

the optimal design procedure. The edge plasma transport model of [5] is chosen,

a slight variant of the model developed in the PhD thesis of Dekeyser [41]. The

reader is referred to [41] for a more elaborate discussion of the model assumptions

and implementation details.

3.3.1 Plasma model equations

Ion continuity equation

The model includes a single species plasma with ion mass m and charge state

Zi in a poloidal cross section of a toroidally symmetric tokamak for steady state.

Charge neutrality is assumed, so that ion and electron densities ni and ne are

related by ne “ Zini. The ion density ni is governed by the ion continuity

equation
Bni

Bt ` ∇ ¨ pniViq “ Sni
. (3.25)

The particle source

Sni
“ nennKi ´ nineKr
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includes a source term due to ionization of neutral particles, with nn the neutral

density, and a sink that accounts for volume recombination of ions and electrons

to neutrals. Ki and Kr are the rate coefficients for these ionization and volume

recombination interactions, respectively.

Ion parallel momentum equation

Due to the transport anisotropy, the ion velocity Vi is modelled differently in the

parallel and radial direction. The parallel velocity u‖ is modelled by the parallel

momentum equation

Bmniu‖
Bt ` ∇ ¨ `

mniu‖Vi ´ ηi∇u‖
˘ “ Smu‖ ´ ∇‖p, (3.26)

with p “ p1 ` ZiqniT the plasma pressure and T a combined ion-electron-neutral

temperature T “ Ti “ Te “ Tn, η
i “ diagpηiθ, ηirq the (anisotropic) ion viscosity

tensor, and where ∇‖ “ e‖ ¨∇. This equation results from adding the parallel mo-

mentum equations for ions and electrons and neglecting electron inertia because

of the small electron mass (me ! m). Furthermore, electron viscosity is small

(ηe „ m
1{2
e ) and thus neglected. Following the classic B2 code, several curvature

terms are neglected as well as viscosity tensor contributions including radial or

diagmagnetic velocities [3]. It should be noted that several of these terms are in-

cluded in more recent versions of the code [121]. The parallel momentum source

Smu‖ includes momentum loss due to volume recombination and momentum loss

due to charge-exchange collisions with neutral particles. The parallel momentum

source is thus given by

Smu‖ “ mnennKiun‖ ´ mnineKru‖ ´ mninnKcx

`
u‖ ´ un‖

˘
,

with Kcx the rate coefficient for charge-exchange collisions.

In the radial direction, the velocity ur is determined by the so-called anoma-

lous turbulent transport, which is at current not completely understood. There-

fore, radial transport is described by an empirical anomalous diffusion relation

niur “ ´Di∇rni,

where a spatially constant anomalous diffusion coefficient Di will be considered

in the work. This relation can be used to eliminate the radial ion velocity ur from

the plasma continuity equation and the energy equation, introduced below.
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Neutral pressure diffusion equation

The neutral flow is modelled using the pressure diffusion equation

Bnn

Bt ´ ∇ ¨ `
Dn

p∇pn
˘ “ Snn , (3.27)

which is solved for the neutral pressure pn “ nnT . Since neutrals are not confined

to magnetic fields, Dn
p is an isotropic neutral pressure diffusion coefficient. The

coefficient can be related to the ionization and charge exchange interactions by

reformulating the static neutral momentum equation, where a balance between

pressure gradient force and momentum source terms is kept [41]. The coefficient

is then given by

Dn
p “ 1

m pniKcx ` neKiq . (3.28)

Similar expressions can be found in a.o. [116]. The neutral sources Snn due to the

neutral-plasma interactions are given by Snn “ ´Sni
. As the neutral velocities

resulting from this simple pressure-diffusion model tend to be unrealistically high,

the neutral velocity un‖ is set to zero in the ion momentum source. The validity of

this assumption and the neutral model itself might be questioned, and should be

dealt with when moving from methodological development to true design studies.

Total internal energy equation

For the energy transport, it is assumed that ions, electrons and neutrals are in

perfect equilibrium. Denoting the density of species a (i “ ions, e “ electrons or

n “ neutrals) by na, the energy transport can thus be modelled by an internal

energy equation

B
Bt

˜
3

2

ÿ
a

na

¸
` ∇ ¨

˜
5

2

ÿ
a“i,e

ΓaT ´ κ∇T

¸
“ SE, (3.29)

solved for the equal-assumed species temperature T ” Te “ Ti “ Tn of ions,

electrons, and neutrals. The particle flux vectors Γa are given by Γi “ niVi and

Γe “ ZiΓ
i for ions and electrons respectively. Again, the energy convection due

to neutral flux Γn “ nnVn is neglected in the current model because of the over-

estimated values of un‖. The heat conductivity tensor κ “ ř
κa “ diagpκθ, κrq
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includes contributions from ions, electrons and neutrals. The plasma heat con-

duction is again anisotropic, while the neutral contribution is isotropic, and thus

κθ “ κe
θ ` κi

θ ` κn and κr “ κe
r ` κi

r ` κn. The included energy sources SE are

energy losses through carbon radiation and energy losses related to ionization

events. These sources are given by

SE “ ´EinennKi ´ cznineLz,

with a spatially constant impurity fraction cz, a radiative loss function LzpT q and
an energy loss Ei per ionization event. In order to simplify notation, the heat

flux Q is defined as

Q “ 5

2

ÿ
a“i,e

ΓaT ´ κ∇T,

with components

Qθ “ 5

2

ÿ
a“i,e

Γa
θT ´ κθ∇θT,

Qr “ 5

2

ÿ
a“i,e

Γa
rT ´ κr∇rT.

Rate coefficients, radiative loss function and transport coefficients

The same set of analytical expressions as in [41] is used to approximate the

strongly temperature-dependent rate coefficients for electron impact ionization,

radiative recombination, and for charge exchange, as well as for the radiative loss

function Lz. In the parallel direction, plasma transport coefficients are set accord-

ing to Braginskii [25]. Also these coefficients have a highly nonlinear dependence

on temperature. The poloidal transport coefficients are obtained by projecting

these parallel coefficients onto the poloidal plane and neglecting contributions

from diamagnetic transport:

ηiθ “ 4

3
b2θη

i
0,

κe
θ “ b2θκ

e
‖,

κi
θ “ b2θκ

i
‖.
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The parallel viscosity ηi‖ “ 4{3 ηi0 is obtained here from elaborating the contri-

bution of the first order viscosity tensor to the parallel momentum equation (see

e.g. Ref. [3, p. 41]).

The expression κn “ χnpnD
n
p is used for the neutral conductivity, with the

value χn “ 0.2 used further in this thesis. The radial plasma transport coefficients

are given by

ηir “ ν imni,

κe
r “ χeZini,

κi
r “ χini,

with ν i, χe and χi coefficients calibrated from experiments or turbulence models.

Remarks on the model choice

It should be noted that alternative formulations of the neutral fluid model and

its interaction with the edge plasma hold several potential improvements to this

model, such as e.g. the recent improvements to the neutral pressure diffusion

equation by Dekeyser [39]. Ultimately, more accurate neutral models as simulated

with Monte Carlo codes (e.g. EIRENE) are desirable. Similarly, the introduction

of a multispecies plasma edge model might improve the accuracy of the radiation

calculation. Yet, the plasma edge model is deliberately kept as simple as possible

while including main features to provide first results and the basic principles of the

new design approach. Although the presented plasma edge model is simplified

compared to these codes, it has shown to reproduce some important features,

such as low and high recycling, as well as roll-over to detachment [39]. Improved

modelling issues are planned to be addressed in future work.

3.3.2 Plasma model equations in convection-diffusion

form

It is convenient for further derivations to introduce the vector of plasma state

variables qpe “ pni, u‖, pn, T qT . The steady-state plasma edge transport equations
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can then be written succinctly as a set of coupled convection-diffusion equations

Bpqgg, qpeq = 0, with

Bpqgg, qpeq “ Spqgg, qpeq
´ 1?

g

B
Bθ

ˆ?
g

hθ

Cθpqgg, qpeq ´
?
g

h2
θ

Dθpqgg, qpeq
Bqpe

Bθ
˙

´ 1?
g

B
Br

ˆ?
g

hr

Crpqgg, qpeq ´
?
g

h2
r

Drpqgg, qpeq
Bqpe

Br
˙
.

(3.30)

Here, the vectors

Cθpqgg, qpeq “

¨̊
˚̋ niuθ

mniuθu‖
0

5
2

p1 ` ZiqniuθT

‹̨‹‚ and Crpqgg, qpeq “

¨̊
˚̋0
0
0
0

‹̨‹‚
represent the poloidal and radial convective flux, and uθ “ bθu‖ the ion poloidal

velocity. Dθpqgg, qpeq “ diagp0, ηiθ, Dn
p , κθq and

Drpqgg, qpeq “

¨̊
˚̋ Di 0 0 0

mDiu‖ ηir 0 0
0 0 Dn

p 0
5
2

p1 ` ZiqDiT 0 0 κr

‹̨‹‚
are matrices containing respectively the poloidal and radial diffusion coefficients.

The sources are combined in the vector:

Spqgg, qpe,∇θqpe,∇rqpeq “

¨̊
˚̋̊̊ nennKi ´ nineKr

´ bθ
hθ

Bp
Bθ ´ mnineKru‖ ´ mninnKcxu‖

nineKr ´ nennKi

´EinennKi ´ cznineLz

‹̨‹‹‹‚.

Using this form of the plasma edge transport equations will facilitate a compre-

hensive derivation of the adjoint equations.

:The arguments ∇θqpe and ∇rqpe are considered separately for further derivations. In

contrast to the source in the complete model of Dekeyser [41], a radial gradient of qpe does not

occur here. Nevertheless, the argument is kept for generality.
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3.3.3 Boundary conditions

To obtain a solution, the model equations B “ 0 are combined with appropriate

boundary conditions, written formally as C “ 0. Together, they form the plasma

edge state equations cpe “ `
BJ,CJ˘J “ 0. For convenience of the reader, the

different grid boundaries are illustrated in figure 3.7. The figure illustrates the

boundaries in the lay-out of the computational grid, that corresponds to the x´y

coordinate system of figure 3.5).

Figure 3.7: The plasma edge grid in the matrix layout (x ´ y coordinates in

figure 3.5) and its boundaries.

Target boundaries

At the solid targets, the ions and electrons of the plasma recombine to neutrals.

A plasma sink is thus formed, that accelerates the plasma towards the targets.

Due to the different masses and sound speeds of ions and electrons, electrons

will accelerate more than ions. Whereas the largest share of the plasma is quasi-

neutral, a thin electrostatic sheath will thus be formed near the targets. At the

entrance of this sheath, the Bohm criterium imposes that the parallel velocity

u‖ reaches isothermal sound speed cs “ ppTi ` Teq{mq1{2 “ p2T {mq1{2 [134].

Since the plasma flow is assumed ambipolar (Ve “ Vi) in the model, these

boundary conditions are imposed at the sheath entrance. However, the width

of this sheath is characterized by the Debye length and is only in the order of

10´5 m. The parallel velocity is therefore conveniently set to sound speed at the

61



3. INTEGRAL MAGNETIC DIVERTOR MODEL

target boundary itself as [41]

Γi ¨ ν “ Γt ¨ ν , with Γt ” niuθeθ “ ˘nicsbθeθ

with ν the unit vector perpendicular to the domain boundary and pointing out-

wards of the domain Ωpe, and where the sign of Γt is chosen to have outflow at

the considered boundary. A fraction Rc of the ions is recycled in the plasma as

neutrals. Hence, the boundary condition for neutrals is Γn ¨ ν “ ´RcΓt ¨ ν . The
boundary condition for the energy equation is finally given by

Q ¨ ν “ δshTΓt ¨ ν ” Qt ¨ ν .

The energy outflow is thus proportional to the total sheath transmission factor

δsh “ δish ` δesh ` δpotsh ´ αRc

`
δish ` δpotsh

˘
[39], with δish and δesh ion and electron

sheath transmission coefficients, respectively, and δpotsh the contribution of the

sheath potential to electron heat. Typical values are δish « 2.5, δesh « 2, and

δpotsh « 3.1, but depends on the underlying assumptions [3, 133]. The remaining

contribution αRc

`
δish ` δpotsh

˘
represents the energy recycled by the neutrals from

the ions, with α “ 0.5 a fixed fraction of energy that is recycled by the neutrals.

The total sheath transmission factor then becomes δsh « 4.8. In summary, the

target boundary conditions can be represented by the vector

0 “ Ct “

¨̊
˚̋

`´Γt ` Γi
˘ ¨ ν

˘cs ´ u‖
pRcΓt ` Γnq ¨ ν
p´Qt ` Qq ¨ ν

‹̨‹‚. (3.31)

Core boundary

The core boundary is typically a surface of constant magnetic flux ψ, on which

the plasma properties are more or less constant. Therefore, only boundary condi-

tions for the radial direction need to be imposed. For the ion continuity equation,

either the density nc or the flux can be specified. Similarly, the temperature or

the energy flux Qc can be imposed for the internal energy equation. Since the

objective is optimal design of the magnetic configuration, these boundary con-

ditions should be chosen to keep the operation point of the tokamak constant

throughout the design process. As such, the density and the total energy flux
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leaving the core are imposed, two typical operation parameters. For the momen-

tum equation, the parallel velocity is assumed to be zero at the core boundary.

For neutrals, one might assume that all neutral particles ionize before they ever

reach the core boundary, and therefore Γn
r “ 0. However, for smaller machines,

this is often not true. Since the realistic study of small present day machines

is aimed for in this PhD thesis, a leakage condition proportional to the prod-

uct of local neutral density and neutral thermal speed cn “ p8T {pπmqq1{2 used

here [33], Γn
r “ ´αccnnn. In short, the core boundary conditions can be jointly

represented as

0 “ Cc “

¨̊
˚̋ nc ´ ni

´u‖
´αccnnn ´ Γn

r

Qc ´ Qr

‹̨‹‚. (3.32)

Wall and private flux boundaries

The wall and private flux boundaries are treated similarly. Although recently

methods have been developed to calculate up to the physical wall [4, 27], a flux

surface is chosen to approximate the boundary in most simulations. Typically

exponential decay of density and temperature is imposed with prescribed decay

lengths λn and λT , and the radial component of the parallel velocity is assumed

zero. When a Monte Carlo code is used to solve the kinetic equations for these

neutrals, they are typically reflected at the physical boundary. Since a fluid

neutral model is used, the particles are assumed to recycle at the domain bound-

aries. Furthermore, the effect of the pump is incorporated by adding an outflow

term Γp “ αpcnnn, where the absorption coefficient αp can be obtained from the

volumetric pumping speed L rm3{ss according to [114]

L “ 36.38Aαp

c
T

m
, (3.33)

with A the surface over which particles are pumped in the model, T the particle

temperature in degrees Kelvin and m the particle mass in [a.m.u.]. The boundary
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conditions then read

0 “ Cp,w “

¨̊
˚̋ ´Di ni{λn ´ νrD

i∇rni

´νrη
i
r∇ru‖

´αpcnnn ` νrRcΓ
i
r ` νrΓ

n
r

´κr T {λT ´ νrκr∇rT

‹̨‹‚, (3.34)

where νr “ ν ¨ er.

3.3.4 Discretizing and solving the plasma edge equations

The plasma edge transport equations are solved using a Finite Volume Method

implementation by Dekeyser [41] that resembles the fluid part of more elaborate

plasma edge code packages, such as the B2-EIRENE [115] code. A detailed

treatment of the B2 code is found in [3]. Apart from the model simplifications,

a main feature of Dekeyser’s MATLAB implementation is the introduction of a

9-point stencil that corrects for the non-orthogonality of the grid cells [40, 41]. In

B2, these non-orthogonalities are thus far neglected. Especially for the isotropic

neutrals this is an important improvement.

Like in B2, the transport equations are solved using a segregated solver, in

which a pressure-correction equation for incompressible flows is used to simulta-

neously solve the continuity equation for a density correction and velocity updates

[3]. Pseudo-time stepping is used to iterate the equations from a chosen initial

guess until a steady-state solution is found.

Solving a correction equation

The individual equations are solved using a correction equation. To illustrate

the iterative solver, consider one of the time-dependent equations in a general

convection-diffusion form,

Bφ
Bt ` ∇ ¨ pCφ ´ D∇φq “ S, (3.35)

with C “ `
Cθ, Cr

˘J
and D “ diagpDθ, Drq the convective and diffusive coeffi-

cients of the equation, φ the unknown plasma state variable, and S the (nonlinear)
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source terms. Starting from a given initial source S0 and plasma state variable φ0,

the code solves for linearized updates Δφ from the implicit correction equation

BΔφ

Bt ` ∇ ¨
ˆˆ

C ` BC
Bφ φ

˙
Δφ ´ D∇pΔφq

˙
´ SvΔφ “ R, (3.36)

where the residual R is defined through

R “ S ´ ∇ ¨ pCφ ´ D∇φq (3.37)

and where the source S is decomposed in a constant Sc and a variable Svφ con-

tribution. Remark that this is an approximate linearization, since the highly

nonlinear transport coefficients in D are not linearized.

Boundary conditions

The boundary conditions are imposed using guard cells. As illustrated in fig-

ure 3.8, these cells are chosen to have a very small width so that only the flux

across the boundary will have a significant value. The boundary flux F can then

be imposed through the choice of source in the guard cell, since :

F ” Γ ¨ νΣ « SΩ “ pSc ` SvφqΩ,

with Σ the surface of the guard cell’s face and Ω the volume of the guard cell.

More difficult is imposing Dirichlet conditions like φ “ φ0. To impose such

conditions, a numerical trick is used. Through multiplying the sources using a

very big number B, the flux across the boundary becomes negligible and hence

S “ Sc ` Svφ « 0. (3.38)

The Dirichlet condition can thus be imposed by choosing Sc “ ´Bφ0 and Sv “
B. Similarly, Neumann and more complex mixed conditions can be imposed by

choosing appropriate source contributions [3].

:The vector ν refers in this expression to the outwards pointing guard cell normal, as

indicated in figure 3.8.
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Figure 3.8: Infinitesimal guard cells are used to impose boundary conditions.

Figure based on Refs. [3, 41].

3.4 Conclusions

As a first step towards optimal magnetic divertor design, the plasma edge trans-

port solver developed by Dekeyser [41] is integrated with a magnetic field solver

and a grid generation approach to automatically evaluate the effect of changes to

the control coils on the target heat load. More precisely, a combination of three

sequential code parts computes the target heat load from the control currents ϕ.

First, the magnetic flux function has to be evaluated, represented by the mag-

netic field equations ceq pϕ, qeqq “ 0. For this evaluation, a perturbation approach

has been presented that starts from an initial magnetic equilibrium and uses a

vacuum approximation for magnetic field changes. Then, a plasma edge grid is

generated that is fully aligned to this magnetic field to avoid excessive numeri-

cal diffusion. For this part, a new plasma edge grid generator is developed that

complies with the automation requirements. As such, the grid generator state

variables are automatically obtained from the function qgg “ cgg pqeqq. In the last

step, the set of plasma edge transport equations cpe
`
qgg, qpe

˘ “ 0 is solved for

the plasma state qpe (and thus the target heat load) using a segregated solver.

These plasma edge equations consist of ion continuity and momentum equation,

a pressure diffusion equation for neutral transport and a total internal energy

equation, with highly nonlinear sources and transport coefficients. The steady-

state solution is obtained through a slowly converging segregated solver. The

presented model now facilitates the study of optimization methods for magnetic

divertor design. This is the topic of the next chapter.
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Automated Design of a JET

Configuration

After introducing the basic principles of PDE-constrained optimization in chap-

ter 2 and after introducing the model in chapter 3, the path towards magnetic

divertor design has been cleared. Nevertheless, the design problem remains to

be converted into a numerical optimization problem. This is a crucial exercise,

which involves defining how designs should be compared, to what extent param-

eters can be controlled and which designs are desirable or impossible. To this

end, each of the components in the constrained mathematical optimization for-

mulation (2.1) should be defined. Including the model equations as defined in

the previous chapter, this optimization problem reads

min
ϕ,qeq,qgg,qpe

I
`
ϕ, qeq, qgg, qpe

˘
(4.1)

s.t. ceqpϕ, qeqq “ 0,

cggpqeqq ´ qgg “ 0,

cpepqgg, qpeq “ 0,

hpϕ, qeqq ď 0,

where the control vector ϕ includes the coil currents Iφ,i and with qeq, qgg, and

qpe the magnetic field, grid generator, and plasma state variables as defined in

chapter 3. The equations ceqpϕ, qeqq “ 0 and cpepqgg, qpeq “ 0 reflect the implicit

form of magnetic field and plasma edge equations, while the explicit expression
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qgg “ cggpqeqq reflects the explicit form of the grid generation process. Notice

that the admissible set of design variables Φad is accounted for explicitly through

the (inequality) design constraints hpϕ, qeqq ď 0. Again, the model equations

can be used to formally eliminate the state variables and obtain the reduced cost

function as Îpϕq :“ Ipϕ, qeqpϕq, qggpqeqpϕqq, qpepqggpqeqpϕqqqq.
In this thesis, the design focus is on spreading the target heat flux as homo-

geneously as possible, by means of magnetic field changes only. However, the

optimization framework is very well suited for finding compromises between sev-

eral design goals and constraints, such as simultaneously improving the pumping

capability of the configuration as well. Likewise, other design variables might

be included, such as the target shape parametrization of Ref. [37]. This chapter

first discusses the appropriate formulation of the design objective I in section 4.1.

Afterwards, the introduction of design constraints h is considered in section 4.2.

These constraints should avoid that undesirable magnetic configurations are con-

sidered or that the nominal coil currents are exceeded.

After defining all terms mathematically, a solution to the optimization prob-

lem is sought with a nested optimization approach. Although the basics of nested

optimization have been discussed in chapter 2, design constraints remain to be

incorporated. For this purpose, a nonlinear gradient projection method is chosen

in section 4.3 to assure optimization robustness. The constrained optimization

approach itself is subsequently introduced in section 4.4. Finally, the entire ap-

proach is illustrated using a sample case with typical Joint European Torus (JET)

[119] parameters in section 4.5.:

4.1 A suitable objective functional formulation

Following Dekeyser [39], the objective functional representing the level of heat

spreading can be expressed by

I0
`
ϕ, qeq, qgg, qpe

˘ “ 1

2

ż
St

pQo ´ Qdq2 dσ, (4.2)

:Parts of this chapter have been published in “Blommaert, M., Dekeyser, W., Bael-

mans, M., Gauger, N. & Reiter, D. (2014). An Automated Approach to Magnetic Divertor

Configuration Design. Nuclear Fusion, 55”.
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Figure 4.1: Computation of the objective functional. Outer grid boundaries

(solid green lines), gridded area (grey area), and predefined target area (red) are

illustrated in a close-up of the divertor region (top). Difference between the de-

sired (brown) and initial (not optimized, blue) heat flux along the projected target

area coordinate ‘y’ (bottom). (1) and (2) correspond to the surface over which is

integrated for terms (1) and (2) of Equation (4.4), respectively.

where the integral is taken over the target surface St and ν represents the out-

ward pointing unit normal. This objective aims at bringing the heat flux density

perpendicular to the target surface Qo “ Qo ¨ν as close as possible to a desirable

spatially constant heat flux profile Qd. The subscript ‘o’ refers here to the heat

load that is to be optimized. Indeed, the objective functional I0
`
ϕ, qeq, qgg, qpe

˘
is minimal when the target area is loaded as uniformly as possible. In this case

the best design relative to this particular choice of cost functional and plasma

model is achieved. The computation of the objective functional is illustrated in

69



4. AUTOMATED DESIGN OF A JET CONFIGURATION

figure 4.1. The target area St is a fixed predefined part of the vessel chosen by

the designer to serve this purpose and is typically covered with high-temperature

erosion-resistant materials.

The target surface is subject to different heat load contributions. The first

contribution is the heat Q ¨ ν , transported to the target by conduction and con-

vection of plasma and neutrals. According to the sheath conditions at the targets,

this heat flux density equals Qt “ Qt ¨ν “ δshTΓt ¨ν . Secondly, energy is released

when ions and electrons recombine to neutrals at the target surface. The heat

load due to this surface recombination amounts to Qsr “ Qsr ¨ν “ EpΓt ¨ν , with
Ep the potential energy of recombination, which equals 13.6 eV for Hydrogen. A

third contribution comes from the ion kinetic energy, which is not included in the

internal energy flux density Q. However, since part of this kinetic energy is con-

verted to neutral kinetic energy and the neutral kinetic energy is not modelled,

both ion and neutral kinetic contributions to the heat load are neglected. Finally,

also the contributions from electrical currents and radiation are neglected at this

stage. The electrical currents are neglected since divertor currents are neglected

throughout the model. Radiation is finally assumed to be distributed quite uni-

formly and therefore assumed not to affect the optimal heat load distribution.

However, since radiation sources are often located in the divertor legs, one might

consider calculating the heat load deposited by radiation using a Monte Carlo

code, as done in Ref. [43]. Given these assumptions, the total target heat load is

modelled in this thesis as

Qo “ Qt ` Qsr

“ pδshT ` Epqnuθeθ ¨ ν . (4.3)

A practical problem in the evaluation of the objective functional is that not

necessarily all heat load values for the target area are available from the code,

as parts of the area may not be covered by the computational grid. It can be

assumed however that in these regions, either far into the scrape-off layer (SOL)

or private flux (PF) zone, heat fluxes are orders of magnitude lower than those

near the separatrix. Moreover, as the grid extends to the flux surface that just

touches solid material, the radial decay of heat flux towards PF zone or to the

far SOL from this radial point on will be even steeper, due to shorter connection
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length further out. Therefore, it is chosen here to neglect parallel target heat

fluxes outside the numerical grid. It should be noted that these neglected zero

heat fluxes do still contribute to the cost functional, as the integration of (4.2) is

over the entire predefined target area, including the parts outside the numerical

grid. This contribution stimulates better use of this part of the target area, e.g.

by magnetic flux expansion. For a more precise treatment a discretization scheme

reaching all the way up to the reactor wall, as elaborated in [4] or [27], should be

considered.

As the first wall is not included into the objective functional (4.2), care has

to be taken that the optimization procedure is not misled by a deflection of heat

fluxes towards the first wall components to realize a decrease in cost functional.

Indeed, this would irreparably damage the first wall. Therefore, a penalty term is

added to the objective functional (term (2) in Equation (4.4) below). By setting

the desired heat flux to the first wall Qd,p equal to zero, this term becomes zero

when there is no parallel heat flux towards the first wall. To ensure convergence

of the optimization problem, a Tikhonov regularization term is added (term (3)

in Equation (4.4) below) [139, 140]. Notice that in this case, the regularization

term also has economical relevance, since it avoids configurations with excessive

Joule losses.

After adding these contributions to the main objective term I0, the total

objective functional becomes

I
`
ϕ, qeq, qgg, qpe

˘ “λQ

¨̊
˚̋̊

I0loomoon
p1q

` 1

2

ż
SP

rλP pQo ´ Qd,pqs2 dσlooooooooooooooomooooooooooooooon
p2q

‹̨‹‹‚ (4.4)

` 1

2
λϕ

nϕÿ
i“1

I2φ,ilooooomooooon
p3q

,

where SP is the area outside the predefined target area and λP , λQ, and λϕ

are weighting variables for the related terms. Additionally, λQ and λϕ contain

characteristic quantities for heat flux and current, respectively, to make the cost

functional dimensionless and of the order of unity.
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4.2 Introducing a core shape constraint

Given the objective functional of equation (4.4), the definition of additional con-

straints for the optimization problem is considered now. These constraints might

firstly be introduced from a modelling perspective. Indeed, depending on the al-

gorithms used for the three simulation blocks, the models might not be generally

applicable for any ϕ. Generalizing these blocks is very time-consuming and is

often conflicting with our demand for acceptably fast simulations and optimiza-

tion. A trade-off therefore arises. Either the models are improved for automated

usage, or alternatively, additional constraints are introduced to define practical

working limits. For example, a box constraint on the current can be applied to

limit the errors made by the perturbation approach to magnetic field calculations

presented in section 3.1.4. This means that an upper and lower limit, ϕi,max and

ϕi,min, are set for all currents ϕi:

ϕi P rϕi,min, ϕi,maxs . (4.5)

This can be easily included into the constraint vector h as hi “ ϕi,min ´ ϕi and

hi`nϕ “ ϕi´ϕi,max. Likewise, such constraints can be tuned to achieve robust grid

generation in the feasible set (set of allowed current combinations), e.g. avoiding

multiple X-points. It should be noted that the latter constraint is at present

mainly introduced to avoid additional complexity in plasma edge simulations.

A second reason to introduce constraints might be to incorporate design re-

quirements not accounted for by the objective functional. For example, even for

small magnetic field changes as will be considered in this work, the core might

outgrow the vessel, causing a loss of confinement. This is of course undesirable

from both a design as well as a robust simulation perspective. The resulting

limiter configuration would not meet design requirements as the provision of suf-

ficient neutral pumping possibilities or the guarantee of sufficient core purity.

Therefore, additional (indirect) constraints on ϕ are put in place to prevent this

phenomenon. A practical solution to guarantee confinement is constraining the

plasma core spatially within a box, as illustrated in figure 4.2. Numerically, the
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Figure 4.2: The constraints on the magnetic topology.

choice of constraints in figure 4.2 can be translated into inequality constraints:

h1`2nϕ “ max
θPθcore

pRcorepθqq ´ Rmax ď 0,

h2`2nϕ “ max
θPθcore

pZcorepθqq ´ Zmax ď 0,

h3`2nϕ “ Rmin ´ min
θPθcore

pRcorepθqq ď 0,

h4`2nϕ “ Zmin,X ´ ZX ď 0,

h5`2nϕ “ Rmin,X ´ RX ď 0 and

h6`2nϕ “ RX ´ Rmax,X ď 0,

(4.6)

with θ the coordinate along the last closed flux surface, Rcore pθq and Zcore pθq
the parametrization of the main plasma boundary, subscript X referring to the

location of the X-point and Rmin, Rmax, Zmax, Zmin,X, Rmin,X and Rmax,X preset

values for the constraint box. Convexity of the core shape is assumed so that

there cannot be multiple outer core points and the gradient of these inequal-

ity constraints thus always exists. For later use, the reduced design constraintsphpϕq :“ hpϕ, qeqpϕqq are defined, of which the magnetic state variables are elim-
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inated using the magnetic state equations ceqpϕ, qeqq “ 0.

4.3 Projection onto the design constraints

As inequality constraints are in general only obeyed after convergence of the opti-

mization problem, intermediate states of the optimization problem might demand

evaluating objective functional values for which these constraints are not obeyed.

This means that the core might be well outside the described box. Unfortunately

grid generation and therefore plasma calculations and objective functional evalu-

ations would be impossible in this case. The optimization procedure thus has to

obey these constraints at any time.

This can be achieved in several ways. Interior point methods, for example,

deal efficiently with many constraints by relaxing the complementarity conditions

during optimization. However, given this specific optimization problem, where

evaluations of Îpϕq are much more expensive than evaluations of phpϕq, a nonlin-

ear gradient projection method is chosen [103]. Accordingly, the optimal design

path is never compromised for feasibility gain, until a constraint boundary is

exceeded. Then, the design variables are projected to the closest point in the

admissible design space (in other words the point with the smallest change in

currents), which does satisfy all design constraints. As the separatrix box con-

straint is strongly nonlinear, the projection ϕ‹ “ P pϕq of a point ϕ onto a point

ϕ‹ that obeys all constraints is an optimization problem by itself and is given by

P pϕq “ arg min
ϕ‹PΦad

||ϕ‹ ´ ϕ||22 s.t. phpϕ‹q ď 0, (4.7)

with ||¨||2 the Euclidean norm, and “argmin” the argument ϕ for which the

function is minimal.

As this optimization problem can be as complex as the initial optimization

problem, gradient projection methods are in general only used in combination

with linear control constraints. However, in this case, the inequality constraints

only depend on magnetic field variables and the magnetic field computation is

many times faster than the plasma edge simulation. Therefore, the gradient

projection method turns out to be appropriate here.
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4.4 Solving the optimization problem

In order to solve the optimization problem (2.1), a (nested) Sequential Quadratic

Programming (SQP) strategy with damped BFGS Hessian updating is chosen

[103]. SQP was presented already in the context of one-shot optimization in

chapter 2, where the state constrained optimization problem was linearized to

obtain a linearly (equality) constrained quadratic subproblem in each iteration.

In the current nested context, where SQP is applied to the reduced optimization

problem

min
ϕ

Î pϕq (4.8)

s.t. phpϕq ď 0,

SQP has a somewhat different meaning. Here, the SQP method aims at solv-

ing the inequality constrained optimization problem by solving a sequence of

quadratic subproblems

min
p

∇Î pϕkqT p ` 1

2
pTBkp (4.9)

s.t. phpϕkq ` ∇ph pϕkqT p ď 0,

with k the optimization iteration index and p “ ϕk`1 ´ ϕk the step in control

variables that is optimized in each iteration. Bk is the Hessian estimate from

the damped BFGS approach presented in section 2.2.1. Remark that in presence

of inequality constraints, the vector yk “ ∇Îpϕk`1q ` μJ∇hpϕk`1q ´ ∇Îpϕkq ´
μJ∇hpϕkq should be used in the Hessian update rule of Eq. (2.27).

At this point, an adjoint based sensitivity calculation for evaluating the design

sensitivity ∇Î of the integrated code is not yet readily available. As further

discussed in chapter 5, especially the grid generator part hinders a full adjoint

sensitivity calculation at this point. A solution will be offered in the very same

chapter. For the time being, the gradients of the objective functional ∇Î and

the constraint function ∇ph with respect to the control variables ϕ are therefore

evaluated using finite difference calculations. In each direction δϕ the directional

sensitivity δÎ is then approximated with the (forward) finite difference evaluation

δÎpϕ, δϕq « ΔεÎpϕq :“ Îpϕ ` εδϕq ´ Îpϕq
ε

, (4.10)
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Figure 4.3: An overview of the implemented SQP optimization algorithm.

where the finite differentiation operation in direction δϕ and with step size ε is

denoted as Δεp¨q. Unfortunately, this means that for a control vector of length

nϕ , nϕ ` 1 cost function evaluations are needed, with a plasma edge transport

76



4.4 Solving the optimization problem

simulation for each evaluation. It should be noted that the evaluation of ∇Î

then requires many plasma edge simulations and is therefore computationally

extremely demanding. Ultimately, more efficient adjoint sensitivity calculations

of ∇Î are targeted (cfr. chapter 5). Computing the constraint gradient ∇ph, on
the other hand, is relatively cheap as it involves magnetic field calculations only.

Additionally, an adjoint approach to sensitivity calculation of ∇ph would not be

of great benefit. Indeed, the number of adjoint magnetic field simulations scales

with the number of nonlinear inequality constraints in the vector ph. Therefore,

an adjoint sensitivity calculation approach should only be considered in case a

significant number of controls nϕ is used.

The finite difference step ε should be chosen to balance truncation and can-

cellation errors. The former errors are associated to the validity of ignoring the

nonlinear terms in the Taylor expansion of Îpϕ ` εδϕq. Therefore, they increase

when the step size ε increases. The latter errors are due to the digital representa-

tion of numbers with a finite amount of digits and thus increase with decreasing

finite difference step. All numbers smaller than machine precision εm are there-

fore neglected. Since squaring operations are involved in the objective functional

calculation, one should especially make sure the step size is not too small. Indeed,

for every step smaller than ε “ ε
1{2
m , the cancellation error might lead to a total

loss of significant digits in the sensitivity:. Therefore, the finite difference step

size is chosen as ε “ ε
1{4
m .

Once the quadratic subproblem (4.9) is solved, an inexact line search is per-

formed along the obtained direction p. This comprises searching a step size that

sufficiently decreases the cost functional. To this end, the Wolfe criteria, equa-

tions (2.36) and (2.37), are used in the algorithm. When the search line crosses

constraints, the projection algorithm explained in section 4.3 is applied to bend

the search line along the constraint surface. In this way, the search direction can

become slightly altered compared to the initial search direction. Remark that the

general formulation of the Wolfe conditions in section 2.3 allows for this.

:Notice that for the step size ε to make sense, δϕ should have the same order of magnitude

as ϕ. In the code the design variables are simply normalized with a characteristic current

magnitude such that unit vectors can be used for δϕ.

77



4. AUTOMATED DESIGN OF A JET CONFIGURATION

The art of a good line search algorithm is finding a step length that obeys the

Wolfe conditions with as few cost functional evaluations as possible. Advanced

interpolation strategies can be applied that use former cost functional and gradi-

ent information to search the lowest value along the line. In our algorithm a line

search strategy developed by Moré and Thuente [99] is adapted to account for

the projection of infeasible control variable combinations onto the feasible set. A

schematic overview of the implemented SQP procedure is given in figure 4.3.

4.5 Automated design procedure applied to a

JET configuration

4.5.1 Test case specification

In this section the novel automated design method is, in a first feasibility study,

applied for a JET reference configuration obtained from earlier numerical edge

transport studies [146]. The results of this study have been published in Ref. [12].

Model parameters (detailed below) are chosen to keep the edge transport model

as simple as possible (low recycling conditions) to focus the attention on the ca-

pability of the magnetic optimization aspects in this first illustrative application.

Yet, realistic parameters are used to obtain a relevant test case. The initial mag-

netic field is an EFIT reconstruction of an experimental L-mode JET shot 80966

named HT3L from the c28b JET campaign (2011). It is characterized by a hori-

zontal outer target, a high triangularity (δ “ 0.38) and Ip{BT “ 0.8 MAT´1. A

poloidal cut of the magnetic configuration is displayed in figure 4.4. The electric

currents that will be optimized are those carried by four fictitious divertor coils.

The number of conductors is set to four to keep the computational costs for gradi-

ent computations manageable. These conductors, as well as the target area used

in the cost functional formulation (4.4), are illustrated in the same figure. Apart

from the box constraints on the design currents and the core shape constraints,

a linear constraint

ϕminsum ď
nϕÿ
i“1

ϕi ď ϕmaxsum (4.11)
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is introduced to limit the change to the more distant core magnetic field and

the according loss of grid quality and magnetic model validity. That is, if the

currents in negative and positive eφ-direction approximately add to zero, the far

magnetic field will be small. The constraint parameters are listed in table 4.1 for

completeness.

Figure 4.4: The set-up of the JET-case for magnetic field design. Four new con-

ductors (numbered) are placed near the predefined target area (red). The contour

lines represent magnetic flux surfaces.

The plasma edge simulation is performed on a 240 ˆ 80 grid. This is finer

than most plasma edge simulations to accommodate for the fluid neutral trans-

port. Transport and boundary condition parameters are set according to the

values in table 4.2. Remark that the temperature decay length λT is large in

comparison to models with a separate energy equation for the neutrals. This

accounts for the dominant contribution of the neutrals to heat transport in the

far SOL [33]. All ions reaching wall and target domain boundaries are recycled

as neutrals. At the private flux the same recycling condition is kept, but addi-

tionally neutrals are pumped here. As the area of the last private flux surface
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position [m] min. ϕ [kA] max. ϕ [kA]

ϕ1 p2.05,´1.55q ´97.1 97.1

ϕ2 p2.50,´1.95q ´97.1 97.1

ϕ3 p2.80,´1.95q ´97.1 97.1

ϕ4 p3.20,´1.55q ´97.1 97.1řnϕ

i“1 ϕi ´161.8 161.8

Rmin 1.83

Zmax 1.85

Rmax 3.85

Zmin,X ´1.44

Rmin,X 2.475

Rmax,X 2.83

Table 4.1: The values of the different parameters that appear in the constraint

expressions (4.5),(4.6),(4.11).

constant value units

Di 0.8 m2s´1

χi 1 m2s´1

χe 1 m2s´1

χn 0.2 m2s´1

ν i 0.8 m2s´1

λn 0.05 -

λT 1 -

nc 1.3 ¨ 1019 m´3

Qc 3 MW

L 7.34 m3s´1

αc 0.2 -

Table 4.2: The values of transport and boundary condition parameters used for

the JET case.

is varied during simulations, we keep the effective pumping fixed for an assumed

constant boundary temperature. The absorption coefficient αp is then found from
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4.5 Automated design procedure applied to a JET configuration

equation (3.33),

L “ 36.38Aαp

c
T

m
,

where L “ 7.34 m3s´1 at room temperature is maintained in all simulations.

Our choice of model parameters results in low recycling divertor conditions, as a

nearly constant temperature profile along flux surfaces in the divertor region and

a linear relation between target particle flux and upstream density were observed.

4.5.2 Results

Two magnetic field optimization applications will be discussed in this section.

They only differ in the weighting of the wall heating penalty term (term (2) of

Equation (4.4)), which is either λP “ 1 or λP “ 10. The weighting of this wall

heating term reflects to what extent one wants to tolerate a higher value for main

objective term (1) of Equation (4.4) to avoid the need for target area expansion.

If the magnetic configuration of an existing reactor is designed, one would rather

try to avoid changing the material configuration at the wall. In this case, the

λP parameter can be given a higher value. In case of a new reactor design, a

lower λP will explore the opportunity to enlarge the divertor target area. The

other objective functional weighting variables are λQ “ 2.85 ¨ 10´12 m2W´2 and

λϕ “ 1 ¨ 10´12 A´2.

Optimization with low wall heating penalty

In figure 4.5, the change of control variables and cost functional are given for the

different optimization stages in case of low wall heating penalty. Starting from

zero perturbation currents, negative and positive currents are introduced by the

optimization loop to reduce the cost functional value. In figure 4.5b, the different

contributions of equation 4.4 are presented. Although the total cost functional

is decreasing, not every single term in equation 4.4 is. One can observe that a

compromise is found between decreasing the heat flux to the targets and limiting

the increase in wall heating penalty and current penalty.
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Figure 4.5: a) The change of control current magnitudes (numbers of coils corre-

sponding to fig. 4.4) and b) the change of the different cost functional contributions

as a function of the number of optimization iterations performed for λP “ 1. :

total cost functional, ˛ and ˝ : respectively not simulated and simulated part

of term (1) in Equation (4.4), Ź : wall penalty (term (2) in Equation (4.4)), ˝ :

control (current) penalty (term (3) in Equation (4.4)):.

The dominant reduction in cost functional is achieved by decreasing the main

objective term for heat spreading over the target surface. To verify this, the sim-

ulated target heat flux is displayed in figure 4.6 at different optimization stages.

Indeed, a sharp reduction of the heat peaks is observed at the cost of a tolera-

ble heat flux increase outside the defined target area, as the increased heat peak

:This figure was first published “Blommaert, M., Dekeyser, W., Baelmans, M.,

Gauger, N. & Reiter, D. (2014). An Automated Approach to Magnetic Divertor Con-

figuration Design. Nuclear Fusion, 55”. Because of an inconsistency in the code in the usage of

the poloidal flux per radian ψ and total poloidal flux Ψ “ 2πψ, the currents ϕ were overesti-

mated by a factor 2π. This is resolved by rescaling all currents. The other results in the paper

remain correct.
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around y “ 0 remains well below the other two peaks. The maximal heat load

has decreased by 36%.

Figure 4.6: The change in heat loading from initial ( ) to optimized ( ) magnetic

configuration for λP “ 1.

In figure 4.7, the initial and optimized magnetic fields are shown. It can be

observed that the opposing current pairs 1, 2 and 3, 4 (Fig. 4.5) cause an expan-

sion of the field lines at the target area, spreading the heat flux analogously to

the X-divertor concept [85]. It should be noted, however, that this configuration

is by no means an optimization in general, in particular not for standard JET

operation conditions (high recycling or detached divertor states). The results

rather demonstrate that the automated procedure developed here provides plau-

sible trends relative to an underlying physical edge model. Although it is logical

to maximize flux expansion in this low recycling test case, an automated design

result for high recycling or even detached conditions might be harder to inter-

pret and is currently outside the validity range of our still simplified underlying

plasma model. Finally, it should be noted that the X-point is constrained to its

lower boundary Zmin,X (Table 4.1).
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Figure 4.7: The change in poloidal magnetic flux from initial ( ) to the opti-

mized ( ) configuration for λP “ 1.

Optimization with high wall heating penalty

Although the optimization procedure provides an interesting decrease in maximal

heat flux using a low wall heating penalty of λP “ 1, the 37% heat load increase

outside the target area would require changing some first wall tiles for target

material. In an existing reactor, this may be undesirable. Therefore, it is demon-

strated here how increasing the penalty factor λP can account for this. Thus, λP

is increased by a factor 10 to make the first wall heating penalty more dominant

in the objective functional compared to the other terms and the optimization is

repeated. Indeed, according to figure 4.8b, the main reduction in cost functional

is achieved by removing all wall heat load contributions at the inner target in

the first optimization step ( � curve). It is only afterwards that the target heat

term is reduced ( l curve). In figure 4.9 the reduction of this wall heating can

be verified. In order to achieve this result, the X-point was moved away from the

inner target area boundary by the optimization procedure (Figure 4.10), at the

cost of a narrowing of the flux tubes and a corresponding rise in the heat peaks.

When relaxing this design requirement one obviously retrieves again a heat peak
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reduction, as could be seen for the optimization with λP “ 1.

Figure 4.8: a) The change of control current magnitudes (numbers of coils corre-

sponding to fig. 4.4) and b) the change of the different cost functional contributions

as a function of the number of optimization iterations performed for λP “ 10. :

total cost functional, ˛ and ˝ : respectively not simulated and simulated part

of term (1) in Equation (4.4), Ź : wall penalty (term (2) in Equation (4.4)), ˝ :

control (current) penalty (term (3) in Equation (4.4)):.

4.6 Conclusion

An optimization-based approach for automated magnetic field design of tokamak

divertors has been presented. To this end, an objective functional for magnetic

divertor design is defined. Special care is taken to ensure design requirements not

accounted for in the objective functional, e.g. core purity and neutral pumping,

:See footnote of figure 4.5.
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Figure 4.9: The change in heat loading from initial ( ) to optimized ( ) magnetic

configuration for λP “ 10.

Figure 4.10: The change in poloidal magnetic flux from initial ( ) to the opti-

mized ( ) configuration for λP “ 10.
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are accounted for in appropriate optimization constraints that prevent limiter

configurations. Then, an SQP solver was proposed to solve the inequality con-

strained optimization problem. Finite difference sensitivities of cost functional

with respect to the coil currents were calculated, using the integrated modelling

code presented in chapter 3. A nonlinear gradient projection approach was used to

successfully robustify the optimization procedure against potential code crashes.

The optimal design approach has finally been demonstrated on a realistic JET

magnetic field as a test case. The results for this reduced plasma edge model

seem to indicate that the overall automated optimization loop provides plausible

trends, and a significant sensitivity of edge plasma flow solutions with respect to

magnetic configuration details. Additionally, it has been shown how the choice of

objective functional reflects the design requirements. To this end, the influence of

different weightings for cost functional terms, representing the relative importance

of different design criteria, is investigated for a JET configuration.

Although currently reduced models are used for magnetic field as well as for

plasma edge computations, other models can be integrated into the approach too.

Unfortunately, plasma edge simulations are still computationally very costly, even

for the reduced plasma model. The gradient evaluation cost could however greatly

be reduced by using the adjoint approach for gradient computation, discussed in

chapter 2. Using this approach, the time needed for a gradient calculation be-

comes in principle independent of the number of design variables. Hence, adjoint

methods would allow for more design freedom and more complex plasma models.

Therefore, the adjoint methods for magnetic field design are explored in the next

chapter.
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5

In-Parts Adjoint Sensitivities for

Efficient Magnetic Divertor

Design

In section 2.1.2, the adjoint approach to sensitivity calculation was introduced.

The most important advantage of this method is, that it provides an afford-

able gradient calculation for scalar valued objective functions, independent of the

number of design variables. Given that the plasma edge transport simulation

presented in section 3.3 easily takes several hours on a single workstation, adjoint

methods provide a reasonable efficiency gain already at a small number of con-

trol variables. If one wishes to include a more elaborated multispecies transport

code such as B2-EIRENE, CPU-time of a single simulation sharply increases and

might range up to a year (paralleled over a cluster) for simulation of power plant

relevant conditions [41]. It is clear that for design or sensitivity studies with the

latter code adjoint gradients are indispensable. Whether one aims for a combined

design of divertor shape and magnetic configuration or a single sensitivity study

of the target heat load with respect to a couple of coils, it is needless to say that

both would largely benefit from adjoint sensitivity calculation.

Yet, as will be discussed in section 5.1, the direct application of the adjoint

approach to the model chain of chapter 3 is rather cumbersome. Therefore, a

more practical semi-discrete in-parts adjoint approach to sensitivity calculation is

presented. This approach aims at using the continuous adjoint framework for the
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plasma edge model that had been established by W. Dekeyser at KU Leuven [41],

while circumventing excessive derivational efforts. The approach is conceptually

presented in section 5.2. After deriving the continuous adjoint equations and their

boundary equations in section 5.3, the method is further elaborated in section 5.4.

There, the effects of discretization and boundary condition implementation within

this semi-discrete approach are considered in detail. In section 5.5, the correctness

of the approach is verified using a grid sensitivity study. Finally, in section 5.6,

the advantages of this method are illustrated for magnetic configuration design.:

5.1 Motivation

For the optimization problem (4.1) the adjoint approach as introduced in section

2.1.2 can be directly applied if the model constraints and state variables are com-

bined into the vector functions c “ pceq, cggJ´qJ
gg, cpe

JqJ and q “ pqeq, qJ
gg, q

J
peqJ,

respectively. Remember that the grid generator state variables qgg are supposed

to be given by an explicit function call qgg “ cggpqeqq, which explains the different

shape of this component of c. The adjoint variable vector function q˚ can then

analogously be decomposed in its components q˚ “ pqe̊q, q˚
gg

J, q˚
pe

JqJ. Substi-

tuting these components of c, q and q˚ in equation (2.17) reveals the separate

adjoint model equations ;

Bqpe
cpe

˚pqgg, qpeq q˚
pe “ ´∇qpe

Ipϕ, qeq, qgg, qpeq,
´q˚

gg “ ´∇qgg
Ipϕ, qeq, qgg, qpeq ´ Bqgg

cpe
˚pqgg, qpeq q˚

pe,

Bqeqc˚
eqpϕ, qeqq q˚

eq “ ´∇qeqIpϕ, qeq, qgg, qpeq ´ Bqeqcgg˚pqeqq q˚
gg,

(5.1)

which are solved for the adjoint variables q˚
pe, q

˚
gg, and qe̊q. Notice that the adjoint

equations, like the state equations, can be performed sequentially, but in reversed

:Parts of this chapter have been published in “Blommaert, M., Heumann, H., Bael-

mans, M., Gauger, N.R. & Reiter, D. (2016). Towards Automated Magnetic Diver-

tor Design for Optimal Heat Exhaust. ESAIM: Proceedings and Surveys, 53, 49–63” and

“Blommaert, M., Baelmans, M., Dekeyser, W., Gauger, N. & Reiter, D. (2015).

A novel approach to magnetic divertor configuration design. Journal of Nuclear Materials ,

463, 1220–1224”.
;Notice that the mathematical liberty is taken here to suppose that the function

Ipϕ, qeq, qgg, qpeq can be analogously written with a vector argument q as Ipϕ, qq ”
Ipϕ, qeq, qgg, qpeq.
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order. In sequence, the system of equations (5.1) displays the adjoint plasma edge

equations, the adjoint grid generator, and the adjoint magnetic field equations.

The right hand sides of these equations contains the linearized objective function

source terms. In the last two equations, this source term exists of two parts:

the direct linearization of the source term with respect to the state variable of

that equation and the indirect contribution through the dependences qpepqggq
and qpepqggpqeqqq, respectively. After solving the state and adjoint equations, the

design sensitivity (2.20) reduces to

∇Î “ ∇ϕIpϕ, qeq, qgg, qpeq ` Bϕc˚
eqpϕ, qeqq q˚

eq. (5.2)

For this fully continuous adjoint gradient calculation, the linearizations of

the model equations cpe, cgg, ceq and the objective functional I with respect

to the control variables ϕ and the state variables qeq, qgg, and qpe are thus

needed. Notice that the continuous adjoint plasma edge equations Bqpe
cpe

˚q˚
pe and

their implementation were dealt with by Dekeyser [41] and will be presented in

section 5.3. The perturbation magnetic field model, presented in chapter 3, easily

reveals its derivatives as well. Also for the more elaborate magnetic field models,

e.g. based on the free boundary equilibrium equations, the derivatives could be

obtained with some effort. The discrete adjoint derivatives of the FBE simulation

software presented in chapter 6 are even readily available, since an exact Newton

solver is used [72]. Therefore, only the partial derivative of the plasma edge

transport equations with respect to the grid variables Bqgg
cpepqgg, qpeq and the

grid generator derivative Bqeqcggpqeqq are still needed.

For several reasons, obtaining these remaining derivatives is cumbersome:

� Deriving an expression for Bqgg
cpepqgg, qpeq is error-prone, since the metric

coefficients and geometric projection factors in qgg are present in all terms

of the equations cpe directly, and indirectly via e.g. transport coefficients.

Additionally, the dependence of the plasma edge transport equations on the

changing domain boundary Ωpe should be quantified :.

:The derivative Bqgg
cpe includes a derivative with respect to the indicator function Bqgg

�Ωpe
.

Note that in theory this derivative is only defined in a weak sense. These topological derivatives

are thoroughly discussed in literature (see e.g. Ref. [131]). Since this expression is only

91



5. IN-PARTS ADJOINT SENSITIVITIES FOR EFFICIENT
MAGNETIC DIVERTOR DESIGN

� A continuous adjoint approach independent of the plasma grid and dis-

cretization is difficult, since the domain boundaries are a part of the grid

generator state. Additionally, in chapter 6, the magnetic field model will

be improved by integrating a free boundary equilibrium solver. The equi-

librium equations are solved in this code using a first order finite element

solver. Since Hadamard formulations for the sensitivities of the grid bound-

ary movement require high smoothness of the magnetic state solution [67],

they are not compatible with this first order finite element solver. The latter

eliminates the option of reformulating the sensitivities based on boundary

data only to cancel out the mesh dependence.

� Also a linearization of the discrete grid generator is difficult, since the grid

generation code is not easily expressed in a closed equation. Additionally,

it is a complex routine containing several functions with hidden source and

many if-clauses. As such, also AD-tools are not easily applicable.

Luckily, the very low amount of computational time needed to solve the magnetic

equilibrium and perform the grid generation in comparison to the plasma edge

transport simulation triggers the use of a solely in-parts adjoint approach. It is the

hope that this approach might combine the advantages of the adjoint approach

for computational time gain on the plasma edge simulation with a more prac-

tical sensitivity calculation for the remainder. This pragmatic approach, which

essentially combines adjoint methods with finite differences, is presented in the

following section. Parts of this theory and the results in this chapter have been

published in Refs. [13, 15].

5.2 A problem-adapted efficient computation of

the objective gradient

In this section an in-parts adjoint approach is presented that exploits the fact

that the computational costs related to the numerical solution of the FBE prob-

lem ceqpϕ, qeqq “ 0 and coordinate transformation qgg “ cggpqeqq are at least

used here to argument the complexity of the “full adjoint” option, the correct definition and

formulation of these derivatives is not considered here.
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three orders of magnitude smaller than the cost associated with the plasma edge

transport computation.

The derivation starts by isolating the equations that will be treated with the

adjoint method from those that will be based on forward sensitivity calculations.

qeq and qgg are thus formally eliminated by introducing the partially reduced

objective and model constraints

rIpϕ, qpeq :“ Ipϕ, qeqpϕq, cggpqeqpϕqq, qpeq (5.3)

and rcpϕ, qpeq :“ cpepcggpqeqpϕqq, qpeq, (5.4)

where qeqpϕq solves ceqpϕ, qeqpϕqq “ 0. With this notation, the constrained

optimization problem (4.1) is equivalent to

min
ϕPΦad,qpe

rI `
ϕ, qpe

˘
(5.5)

s.t. rcpϕ, qpeq “ 0.

The partially reduced Lagrangian

rLpϕ, qpe, q
˚
peq “ rIpϕ, qpeq `

A
q˚
pe,rcpϕ, qpeq

E
, (5.6)

can then be introduced. Following the derivation of the adjoint approach using the

Lagrangian (see section 2.1.2), the directional derivative of the reduced objective

function in a direction δϕ is given by

δÎpϕ, δϕq “
A

Bϕ rLpϕ, qpe, q
˚
peq, δϕ

E
(5.7)

“
A

BϕrIpϕ, qpeqq, δϕ
E

`
A
q˚
pe, Bϕrcpϕ, qpeq δϕ

E
, (5.8)

where now the adjoint variables q˚
pepϕq solve the adjoint equation

∇qpe
rL “ ∇qpe

rIpϕ, qpeq ` Bqpe
rc˚pϕ, qpeq q˚

pe “ 0 (5.9)

and qpepϕq solves ∇qp̊e
rL “ rcpϕ, qpeq “ 0. Since Bqpe

rc “ Bqpe
cpe and ∇qpe

rI “
∇qpe

I, one observes that (5.9) are again the adjoint plasma edge transport equa-

tions from equation (5.1). However, the derivatives Bϕrcpϕ, qpeq and BϕrIpϕ, qpeq
in (5.8) are not explicitly available. Therefore, the adjoint operator Bϕrc˚pϕ, qpeq
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cannot be derived and, as a consequence, equation (5.8) cannot be written as an

explicit expression for ∇Î.

Nevertheless, the entire gradient can be found by using finite difference calcu-

lations with nϕ different perturbation vectors δϕ, where each evaluation retrieves

a directional derivative

δÎpϕ, δϕq « Δε
ϕ

rLpϕ, qpe, q
˚
peq, (5.10)

with qpe “ qpepϕq and q˚
pe “ q˚

pepϕq. Here, Δε
ϕ denotes a ‘directional’ finite

difference evaluation with respect to the argument ϕ in direction δϕ and with

step size ε. E.g., using a forward finite difference approximation this directional

derivative can be evaluated as

Δε
ϕ

rL :“
rLpϕ ` εδϕ, qpe, q

˚
peq ´ rLpϕ, qpe, q

˚
peq

ε

“
rIpϕ ` εδϕ, qpeq ´ rIpϕ, qpeq

ε
`

B
q˚
pe,

rcpϕ ` εδϕ, qpeq ´ rcpϕ, qpeq
ε

F
(5.11)

with ε fixed.

In conclusion, the idea is to first successively solve the forward equations

to obtain all state variables qeq, qgg ,qpe and the objective functional I. Af-

terwards, the adjoint plasma edge transport equations (5.9) are solved for the

adjoint plasma variables q˚
pe. Finally, to get each component δÎ “ Δε

ϕ
rL of

the gradient of the reduced objective function, the perturbed nonlinear prob-

lems ceqpϕ ` εδϕ, qeqpϕ ` εδϕqq and qgg “ cggpqeqpϕ ` εδϕqq are solved for

qggpqeqpϕ`εδϕqq. The latter can then be used to evaluate the objective functionrIpϕ`εδϕ, qpeq and the plasma residuals rcpϕ`εδϕ, qpeq necessary in expression

(5.11). Whereas a straightforward forward difference approximation of ∇Î with

ΔεÎ would lead to 2 ¨nϕ ` 1 full simulations, the in-parts adjoint method reduces

this to 2 ¨ nϕ ` 1 magnetic flux and grid evaluations, complemented with one

forward and one adjoint plasma edge simulation. Roughly, given the fast evalu-

ations of magnetic flux and gridding, this means the gradient evaluation cost is

reduced to twice the computational cost of a forward simulation.

Finally, it should be mentioned that if the forward magnetic and grid gener-

ation models would allow for an easy application of AD, one could use a similar
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approach to exploit the existing continuous adjoint model. Again, one would first

evaluate the forward equations and the adjoint plasma edge transport equations.

Finally, the remaining derivative ∇ϕ
rL could be evaluated through the use of AD

software on a function evaluating rL with q and q˚ following from forward and

adjoint plasma edge simulations.

5.3 Introducing the continuous adjoint plasma

edge model

Before interpreting the introduced approach in a discrete model setting, the con-

tinuous adjoint plasma edge equations

Bqpe
rc˚pϕ, qpeq q˚

pe “ ´∇qpe
rIpϕ, qpeq (5.12)

are derived in detail. As explained in section 2.1.2, the first step to ob-

tain the adjoint equations (5.12) consists of linearizing the transport equationsA
q˚
pe,rcpϕ, qpeq

E
, with respect to the plasma state qpe. Then, the linear differen-

tial operator can then be ‘pulled’ to the primal space using the adjoint identity

(2.9). Given the complex set of plasma edge equations and boundary conditions

introduced in section 3.3, this might sound easier than it is. Especially finding the

adjoint boundary conditions might be challenging using an approach as for ex-

ample in Refs. [44, 58, 145]. Therefore, a procedure called the formal Lagrangian

approach is followed here to derive the adjoint equations [21, 141].

This approach starts from the partially reduced Lagrangian in equation (5.6).

Many choices of the inner product x¨, ¨y in the Lagrangian definition are possible.

Since the appropriate inner product is not known in general applications, the

formal Lagrangian approach assumes standard L2-type inner products. Recall the

definitions of the domain contribution of the plasma edge equations Bpqgg, qpeq “
0 and its boundary conditions Cpqgg, qpeq “ 0 that jointly form the plasma edge

equations cpe “ pBJ,CJqJ “ 0. Using separate multipliers p˚ for the boundary

conditions C on Σ “ BΩpe, the inner product for the plasma edge equations is

thus chosen asA
q˚
pe,rcpϕ, qpeq

E
:“

A
q˚
pe,

rBpϕ, qpeq
E
Ωpe

`
A
p˚, rCpϕ, qpeq

E
Σ
. (5.13)
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Here, the domain and boundary inner products are defined as

xa, byΩpe
:“

ż
Ωpe

a ¨ b dω, (5.14)

xa, byΣ :“
ż
Σ

a ¨ b dσ, (5.15)

where rB and rC are partially reduced forms of B and C that eliminate qgg and qeq.

Like the state variables, each state equation has its own adjoint variable q˚
pe “

pn˚, u˚
‖ , pn̊, T

˚qT . Likewise, each boundary condition obtains an adjoint variable,

p˚ “ pnS̊, u
˚
‖,S, pn̊,S, TS̊ qT . Then, notice that the cost functional presented earlier

can be represented in the generic form

rIpϕ, qpeq “
ż
Σ

rFpϕ, qpeq dσ ` gpϕq, (5.16)

where the integrand rF and the term g are again appropriately reduced to only

depend on ϕ and q. Notice that only objective functions on the boundary are

considered here. The extension to include domain terms is straightforward. For

different types of objective functionals and the corresponding changes in adjoint

plasma edge equations, the reader is referred to [41]. Combining these compo-

nents, the Lagrangian is finally given as

rL “ rI `
A
q˚
pe,rcE

“
ż
Ωpe

q˚
pe ¨ rB dω `

ż
Σ

´rF ` p˚ ¨ rC¯
dσ ` g,

5.3.1 Linearization

Following the derivation in Dekeyser [41], the formal Lagrangian approach will

now be applied to the flexible convection-diffusion form of the plasma edge equa-

tions for generality. First, the Lagrangian is linearized with respect to qpe. Using

subscript p¨qq as a shorthand notation for the differentiation with respect to qpe,

this linearization is given by

rLqδqpe “
ż
Ωpe

q˚
pe ¨ rBq δqpe dω `

ż
Σ

´rFq ` p˚ ¨ rCq

¯
δqpe dσ. (5.17)

Now, the components of this equation can be identified one by one.
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The linearized form of the state equations is given by

rBqδqpe “ Sqδqpe ` S∇θq
1

hθ

Bδqpe

Bθ ` S∇rq
1

hr

Bδqpe

Br
´ 1?

g

B
Bθ

ˆ?
g

hθ

Cθ
qδqpe ´

?
g

h2
θ

ˆ
Dθ

Bδqpe

Bθ ` Dθ
q

Bqpe

Bθ δqpe

˙˙
´ 1?

g

B
Br

ˆ?
g

hr

Cr
qδqpe ´

?
g

h2
r

ˆ
Dr

Bδqpe

Br ` Dr
q

Bqpe

Br δqpe

˙˙
,

where subscripts ∇θq and ∇rq denote a differentiation with respect to the oc-

currence of poloidal or radial gradients of qpe, respectively
:. Similarly, the oc-

currence of poloidal and radial gradients in the objective functional and bound-

ary conditions can be accounted for by representing them with the functions

fpϕ, qpe,∇θqpe,∇rqpeq “ 0 and Cpϕ, qpe,∇θqpe,∇rqpeq “ 0, with

rCpϕ, qpeq :“ Cpϕ, qpe,∇θqpepqpeq,∇rqpepqpeqq “ 0,rFpϕ, qpeq :“ fpϕ, qpe,∇θqpepqpeq,∇rqpepqpeqq “ 0.

The linearized objective and boundary conditions can then be written as

rFqδqpe “ fqδqpe ` f∇θq
1

hθ

Bδqpe

Bθ ` f∇rq
1

hr

Bδqpe

Br “ 0,

rCqδqpe “ Cqδqpe ` C∇θq
1

hθ

Bδqpe

Bθ ` C∇rq
1

hr

Bδqpe

Br “ 0.

5.3.2 Integration by parts

The next step of the formal Lagrangian approach then consists in applying inte-

gration by parts on the domain integral. Hence, one obtains

rLqδqpe “
ż
Ωpe

´ rB˚
qq

˚
pe

¯
¨ δqpe dω `

ż
Σ

´rFq ` p˚ ¨ rCq ` BT
¯
δqpe dσ,

“
A rB˚

qq
˚
pe, δqpe

E
Ωpe

`
ż
Σ

´rFq ` p˚ ¨ rCq ` BT
¯
δqpe dσ,

:The linearized diffusion coefficients are defined here as pDθ
q qi,j,k :“ BqjDθ

i,k and pDr
q qi,j,k :“

BqjDr
i,k for convenience of the subsequent derivation.
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with rB˚
qq

˚
pe given by [41]

rB˚
qq

˚
pe “ SJ

q q
˚
pe ´ 1?

g

B
Bθ

ˆ?
g

hθ

SJ
∇θq

q˚
pe

˙
´ 1?

g

B
Br

ˆ?
g

hr

SJ
∇rqq

˚
pe

˙
` 1?

g

B
Bθ

ˆ?
g

hθ

pCθ
qqJq˚

pe `
?
g

h2
θ

pDθqJ Bq˚
pe

Bθ
˙

` 1?
g

B
Br

ˆ?
g

hr

pCr
qqJq˚

pe `
?
g

h2
r

pDrqJ Bq˚
pe

Br
˙

´ 1?
g

B
Bθ

ˆ?
g

hθ

pCθ
qqJ

˙
q˚
pe ´ 1?

g

B
Br

ˆ?
g

hr

pCr
qqJ

˙
q˚
pe

´ 1

hθ

BpqpeqJ

Bθ pDθ
qqJ 1

hθ

Bq˚
pe

Bθ ´ 1

hr

BpqpeqJ

Br pDr
qqJ 1

hr

Bq˚
pe

Br .

. (5.18)

and

BT δqpe “ q˚
pe ¨ pS∇θqδqpeqνθ ` q˚

pe ¨ pS∇rqδqpeqνr
´ q˚

pe ¨
ˆ
Cθ

qδqpe ´ Dθ 1

hθ

Bδqpe

Bθ ´ Dθ
q

1

hθ

Bqpe

Bθ δqpe

˙
νθ

´ q˚
pe ¨

ˆ
Cr

qδqpe ´ Dr 1

hr

Bδqpe

Br ´ Dr
q

1

hr

Bqpe

Br δqpe

˙
νr

´ 1

hθ

Bq˚
pe

Bθ ¨ `
Dθδqpe

˘
νθ ´ 1

hr

Bq˚
pe

Br ¨ `
Drδqpe

˘
νr

(5.19)

the boundary terms resulting from the integration.

Equating rLqδqpe to zero for all possible functions δqpe then leads to the adjoint

equations. The adjoint plasma flow equations are thus given by the domain

contribution rB˚
qq

˚
pe “ 0. The strong resemblance of these adjoint equations on

the forward equations (3.30) allows reusing the numeric routines of the forward

code to solve the adjoint equations. In comparison to the forward convection-

diffusion equations, additional sources arise due to the state-dependent transport

coefficients. More important, it should be noted that convection terms have

switched signs. This supports interpreting the adjoint flow equations as a set of

equations that propagate objective information in the reverse direction. Indeed,

it will be seen further that the linearized objective term serves as a source in the

adjoint boundary conditions.
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5.3.3 Adjoint boundary conditions

The adjoint boundary conditions are found by additionally equating the integrand

of the surface integral to zero for all possible perturbations δqpe. Isolating the

perturbations δqpe,
1
hθ

B
Bθδqpe and

1
hr

B
Brδqpe in the integrand gives

fqδqpe ` p˚ ¨
ˆ
Cqδqpe ` C∇θq

1

hθ

Bδqpe

Bθ ` C∇rq
1

hr

Bδqpe

Br
˙

` BT δqpe

“
´
∇qf ` CJ

q p
˚ ` νθS

J
∇θq

q˚
pe ` νrS

J
∇rqq

˚
pe

¯
¨ δqpe

´ νθ

ˆ
pCθ

qqJq˚
pe ´ 1

hθ

BpqpeqJ

Bθ pDθ
qqJq˚

pe ` pDθqJ 1

hθ

Bq˚
pe

Bθ
˙

¨ δqpe

´ νr

ˆ
pCr

qqJq˚
pe ´ 1

hr

BpqpeqJ

Br pDr
qqJq˚

pe ` pDrqJ 1

hr

Bq˚
pe

Br
˙

¨ δqpe

`
´
fJ
∇θq

` CJ
∇θq

p˚ ` νθpDθqJq˚
pe

¯
¨ 1

hθ

Bδqpe

Bθ
`

´
fJ
∇rq ` CJ

∇rqp
˚ ` νrpDrqJq˚

pe

¯
¨ 1

hr

Bδqpe

Br

(5.20)

Further manipulation of this equation by integrating the last two terms by parts

allows isolating δqpe and obtain the adjoint equations

0 “ rLqδqpe “
A rB˚

qq
˚
pe, δqpe

E
Ωpe

`
ż
Σ

´rFq ` p˚ ¨ rCq ` BT
¯
δqpe dσ,

“
A rB˚

qq
˚
pe, δqpe

E
Ωpe

`
A
∇q

rF ` rC˚
qp

˚ ` BT˚, δqpe

E
Σ
,

However, the adjoint boundary conditions can equally be found through imposing

in equation (5.20) directly that the multiplication factors of δqpe,
1
hθ

B
Bθδqpe and

1
hr

B
Brδqpe equal zero simultaneously and the integrand of the surface integral thus

also equals zero:$’’’’’’’’’&’’’’’’’’’%

0 “ ∇qf ` CJ
q p

˚ ` νθS
J
∇θq

q˚
pe ` νrS

J
∇rqq

˚
pe

´ νθ

´
pCθ

qqJq˚
pe ´ 1

hθ

BpqpeqJ
Bθ pDθ

qqJq˚
pe ` pDθqJ 1

hθ

Bqp̊e
Bθ

¯
´ νr

´
pCr

qqJq˚
pe ´ 1

hr

BpqpeqJ
Br pDr

qqJq˚
pe ` pDrqJ 1

hr

Bqp̊e
Br

¯
,

0 “ fJ
∇θq

` CJ
∇θq

p˚ ` νθpDθqJq˚
pe,

0 “ fJ
∇rq ` CJ

∇rqp
˚ ` νrpDrqJq˚

pe.

(5.21)
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As discussed in [41], one of the last two sets of equations is redundant. The two

remaining sets of equations give the adjoint boundary conditions and a relation

between the boundary multipliers p˚ and the domain multipliers at the edge

qpe. To reuse the forward code again, these adjoint boundary conditions are

reformulated finally into the form

Γ˚
b ¨ ν “ Sc ` Svφ,

in analogy to the forward boundary equation implementation (see section 3.3.4),

with Γ˚
b the adjoint flux of the considered equation at the boundary.

5.4 Derivation of a semi-discrete approach to in-

parts adjoint sensitivity calculation

Remark that in the introduction of the in-parts adjoint approach, discretization

effects were not considered. However, the finite differences suggest differentiation

of the discrete code, whereas the available adjoint plasma code is a continuous

adjoint code. This section will elaborate some considerations on the influence of

discretization effects in order to develop a practical implementation.

The boundary conditions in the (still continuous) adjoint equation and sensi-

tivity of section 5.2 are first isolated using the inner product definitions (5.14) and

(5.15). The adjoint equations are then given along with their boundary conditions

as

0 “ Bqpe
rI δqpe `

A rB˚
qq

˚
pe, δqpe

E
Ωpe

`
ArC˚

qp
˚ ` BT˚, δqpe

E
Σ

and the sensitivity by

δÎ “ BϕrIpϕ, qpeqδϕ `
A
q˚
pe,

rBϕpϕ, qpeqδϕ
E
Ωpe

`
A
p˚, rCϕpϕ, qpeqδϕ

E
Σ
.

In this equation, the subscript p¨qϕ indicates a differentiation with respect to the

design variables. Using the discretization operator t¨uiH to denote the ith element

of a discretization with characteristic distance H, the discretized continuous ad-

joint equations read

0 “
ÿ
i

! rB˚
q

)i

H
q˚
pe,H,iΩ

i
pe `

ÿ
j

ˆ!rFq

)j

H
`

!rC˚
q

)j

H
p˚
H,j ` tBT˚ujH

˙
Σj, (5.22)
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where the spatial integration over domain and boundary in the definition of the

continuous inner products is replaced by discrete summations over the finite vol-

umes Ωi
pe and boundary elements Σj. Similarly, discretizing the sensitivity gives

δÎH “
ÿ
i

pq˚
pe,H,iqJ

! rBϕ

)i

H
δϕΩi

pe `
ÿ
j

ˆ!rFϕ

)j

H
` pp˚

H,iqJ
!rCϕ

)j

H

˙
δϕΣj.

(5.23)

Remark that since a discrete control vector ϕ was chosen in the last chapter,

the control vector is not discretized. Otherwise, the control function needs to be

discretized as well. The first step to find the sensitivity δÎH is thus to numerically

solve the discretized adjoint equations (5.22) for q˚
pe,H,i and p˚

H,i and plugging

these values into the sensitivity expression (5.23).

Towards a semi-discrete approach to sensitivity calculation

The question of interest for the in-parts adjoint approach is if the discretized direc-

tional derivatives
!rFϕ

)
H
δϕ and more importantly

! rBϕ

)
H
δϕ and

!rCϕ

)
H
δϕ

can be approximated by finite differencing the discrete code. Note that using

finite difference evaluations on the actual code will resort in an approximation

of the discrete derivatives BϕrFhδϕ, Bϕ rBhδϕ, and Bϕ rChδϕ, with rFh the discrete

objective function, and rBh and rCh the discretized equations and boundary con-

ditions. Since these are components of the discrete optimization problem, a mix

between the discretize-then-optimize (DTO) and optimize-then-discretize (OTD)

approach is thus targeted (see discussion on discrete and continuous adjoints

in section 2.1.2). The question therefore arises when these DTO sensitivities

can substitute their OTD equivalents in the sensitivity expression (5.23). Of

course, an evident requirement is that the discretization should be executed on

the same grid. Obviously, they can only match up till the level of discretization

errors. Given these two remarks, the approximation of the objective function

term
!rFϕ

)
H
δϕ « BϕrFhδϕ is a reasonable assumption.

However, for
! rBϕ

)
H
δϕ and

!rCϕ

)
H
δϕ, the situation needs to be assessed

with more care. First of all, these sensitivities depend on the inner product choice

at the continuous level [21]. The inner products on discrete and continuous level

should therefore be chosen consistently. Moreover, it should be noted that any
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scaling of rB “ 0 and rC “ 0 with a constant multiplier will yield the same state

variables. Also the sensitivity will not change, since the adjoint variables from the

adjoint equations (5.22) will adjust accordingly. However, it should be made sure

that the model equations and boundary conditions in the discrete code rBh “ 0

and rCh “ 0 are scaled in the same way as the continuous expressions rB “ 0

and rC “ 0 used in the continuous adjoint derivation. For the same reason, they

should be expressed in the same dimensions.

For the domain contribution, this is naturally fulfilled. These equations are

both derived and implemented in the convection-diffusion form. For the boundary

conditions, however, this requirement is often not fulfilled. Indeed, looking back

into the boundary formulations in chapter 3, it can be seen that these boundary

conditions are often expressed in a convenient way. For example nc ´ ni “ 0

represents the Dirichlet boundary condition at the core for the plasma continuity

equation. In contrast, the same boundary condition in the discrete code will be

imposed in the form

Γb ¨ ν “ ´Bnc ` Bni,

with the dimension of a plasma flux. It is clear that if finite differences are used to

find the sensitivity of the code’s boundary conditions rBh, the discretized bound-

ary multipliers p˚
H will not be their correct adjoint multipliers. The derivation of

the adjoint boundary conditions should therefore be done such that they match

the discrete boundary conditions.

Finding the correct boundary multipliers

Consistent boundary multipliers p˚
H for the discrete implementation will now be

derived. First, the structure of the discrete code is accounted for by writing the

boundary conditions as

rCpϕ, qpeq “ Spϕ, qpe,∇θqpe,∇rqpeq
` νθ

ˆ
Cθ ´ Dθ 1

hθ

Bqpe

Bθ
˙

` νr

ˆ
Cr ´ Dr 1

hr

Bqpe

Br
˙
,

(5.24)

where the vector S includes the boundary condition sources imposed in the guard

cell. Linearizing these boundary conditions to qpe,∇θqpe,∇rqpe and substitution
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in (5.21) leads to$’’’’’’&’’’’’’%

νθ

´
pCθ

qqJq˚
pe ` pDθqJ 1

hθ

Bqp̊e
Bθ

¯
` νr

´
pCr

qqJq˚
pe ` pDrqJ 1

hr

Bqp̊e
Br

¯
“ ∇qf ` SJ

qp
˚ ` νθ

´
pCθ

qqJp˚ ` SJ
∇θq

q˚
pe

¯
` νr

´
pCr

qqJp˚ ` SJ
∇rqq

˚
pe

¯
,

0 “ fJ
∇θq

` SJ
∇θq

p˚ ´ νθpDθqJp˚ ` νθpDθqJq˚
pe,

0 “ fJ
∇rq ` SJ

∇rqp
˚ ´ νrpDrqJp˚ ` νrpDrqJq˚

pe.

(5.25)

Note that, since all terms associated to the boundary conditions rC “ 0 are

scaled with a separate multiplier, scaling a boundary condition will only affect

the boundary multiplier p˚. The adjoint boundary conditions themselves follow

from eliminating p˚ from the system (5.25) and are therefore not influenced by

this change. The adjoint boundary conditions from Dekeyser [41] can therefore

largely be reused (except for some new boundary condition terms).

The p˚ following from this particular choice for rC is now the correct multiplier

for the code’s boundary conditions. It can be seen that the solution of equations

(5.25) for p˚ would be significantly simplified if f∇θq “ 0, f∇rq “ 0, S∇θq “ 0,

and S∇rq “ 0. In that case, p˚ “ q˚
pe. Hence, the boundary value of q˚

pe can

simply be used as the boundary conditions multiplier, avoiding the cumbersome

and error-prone implementation of long expressions as in [41]. Finally, it should

also be noted that the first equation then directly gives the adjoint boundary

condition as a source for the adjoint flux, which is the natural discrete adjoint

boundary condition [100].

Therefore, it is analyzed now when the terms fJ
∇θq

, fJ
∇rq

, SJ
∇θq

, and SJ
∇rq

are effectively present. The first term fJ
∇θq

is related to the integrand of the

objective rF “ pQo ´ Qd,pq2. However, there is some flexibility in the formulation

of the target heat load Qo “ Qt ` Qsr. For example, Qt can either be given by

the boundary condition

Qt “ δshTniuθeθ ¨ ν ,

or by the heat flux

Q ¨ ν “
˜
5

2

ÿ
a“i,e

ΓaT ´ κ∇T

¸
¨ ν .
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Although these two expressions yield, in principle, the same value, their deriva-

tives do not. Moreover, Qt does not contain spatial derivatives, where Q ¨ν does.

For the components SJ
∇θq

and SJ
∇rq , a similar argument can be raised. The only

boundary condition source terms containing spatial derivatives are the flux terms

Γn and Q, through the occurrence of ion fluxes Γi. Similarly, these spatial deriva-

tives do not occur if the boundary flux Γi ¨ ν is substituted by the source Sni
of

the local boundary condition

Γi ¨ ν “ Sni
“ Sc,ni

` Sv,ni
ni, (5.26)

with Sc,ni
and Sv,ni

the constant and variable part of the boundary condition

source as outlined in section 3.3.4.

These observations motivate the following pragmatical approach. Instead of

deriving the multipliers p˚ for the specific choice of boundary condition formu-

lations in the code, the code is slightly altered. The boundary condition sources

Sni
of the continuity equation are stored for use in the neutral and energy bound-

ary conditions. Anywhere a flux occurs in the boundary condition source S of

objective function integrand rF, the occurrence is replaced by these sources. As

such, the consistent boundary multipliers for the code implementation obey the

equality p˚ “ q˚
pe. The discrete sensitivity then becomes

δÎH “
ÿ
i

pq˚
pe,H,iqJ

! rBϕ

)i

H
δϕΩi

pe `
ÿ
j

ˆ!rFϕ

)j

H
` pq˚

pe,H,jqJ
!rCϕ

)j

H

˙
δϕΣj,

with q˚
pe,H,j the values of the adjoint multipliers in the (very small) boundary

cell. This sensitivity expression, which is consistent with the discrete code, can

then be approximated by

δÎH «
ÿ
i

pq˚
pe,H,iqJBϕ rBhδϕΩi

pe `
ÿ
j

´
BϕrFh ` pq˚

pe,H,jqJBϕ rCh

¯
δϕΣj,

«
ÿ
i

pq˚
pe,H,iqJΔε

ϕ
rBhΩ

i
pe `

ÿ
j

´
Δε

ϕ
rFh ` pq˚

pe,H,jqJΔε
ϕ

rCh

¯
Σj,

where the finite difference evaluations Δε
ϕ

rBh, Δ
ε
ϕ

rFh, and Δε
ϕ

rCh can be evaluated

simultaneously.

In the discrete code, finding a directional finite difference sensitivity then

comprises evaluation of magnetic field and grid generator for the perturbed
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control variables ϕ ` εδϕ and using the perturbed grid generation variables

qggpqeqpϕ ` εδϕqq throughout one iteration of the plasma solver to compute all

residuals, without actually solving the correction equation and updating the state

qpe. It is important to realize that the cost of such a sensitivity evaluation is neg-

ligible with respect to the cost of a nonlinear iterative solution of the plasma

edge equations. Because of this low computational cost, a central difference ap-

proximation will be used for the in-parts adjoint gradient calculations to improve

accuracy.

An additional advantage that is offered by this in-parts adjoint approach is

the low derivational effort that it requires to change the design variables. The

differentiation with respect to other code parameters can be performed easily at

a low computational cost, without any additional derivational efforts. The ap-

proach therefore offers a significant advantage in applications where sensitivities

with respect to many different sort of variables are needed, such as parameter

estimation and robust design applications. It also allows easy extension of the

current magnetic field optimization to optimization of e.g. coil position or neutral

pump speed.

5.5 Sensitivity verification with a grid refine-

ment study

In order to verify the correct implementation of the in-parts adjoint approach,

the sensitivities are compared to simple forward finite difference sensitivities

δÎ « ΔεÎ :“ Îpϕ ` εδϕq ´ Îpϕq
ε

.

The in-parts adjoint sensitivities Δε
ϕ

rL are evaluated using central difference cal-

culations, because of the relatively low computational cost at which they can

be evaluated. Since the sensitivity calculation is based on a continuous adjoint

plasma edge simulation, a difference in discretization error is to be expected be-

tween the two sensitivities, in addition to the cancellation and truncation errors

of the finite difference calculations themselves. However, these differences should
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decrease with increasing grid accuracy. In principle, they can be made arbitrarily

small by grid refinement.

A grid refinement study is therefore performed here for the initial sensitivity of

the JET case presented in chapter 4. The sensitivities are subsequently evaluated

on grids of sizes 100 ˆ 24, 200 ˆ 48, and 400 ˆ 96. In each of these refinement

steps, the finer grids are created such that each second cell boundary coincides

with one of the rougher grid. Only using such consistent refinement steps, it

can be guaranteed that the discretization errors reduce. A refinement study of

the in-parts adjoint and finite difference sensitivities of the four coils is shown

in figure 5.1. Remark that grid dimensions in this refinement study are kept

small on purpose because of the strong increase of computational cost with grid

refinement and the associated cost of the finite difference calculations.

In the left subfigure, both sensitivities are shown as a function of grid res-

olution. Remark that, similar to the cost function normalization, the design

variables are normalized with a characteristic current size to come to sensitivity

components of the order of unity. Significant discrepancies between both sen-

sitivity approximations are found. By the relative size of the discrepancies, it

may be assumed that for these grids the discretization error dominates. Indeed,

observation learns that the error significantly reduces with grid refinement.

In the right subfigure, the decrease can be observed more clearly. There,

the difference is shown in a log-scale as a function of grid resolution. It can be

observed that especially when going from the 200ˆ48 to the finest 400ˆ96 grid,

the discrepancies start decreasing with the same grid convergence order. Analysis

shows this convergence order is slightly above one, as expected. Remark finally

that the sensitivities in this study change significantly with grid refinement, a

direct consequence of the rough discretization of the radial transport. It can

be concluded that sufficiently fine radial discretization is needed for an accurate

optimization. The 240ˆ80 grid, which is considered very fine in the plasma edge

community, is a compromise between accuracy and computational cost.
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Figure 5.1: A grid refinement study of the in-parts adjoint approach and the

finite difference approach to sensitivity calculation. The left subfigure shows a

comparison of the normalized sensitivity components of ∇Î approximated by the

in-parts adjoint approximation (dashed lines) and a regular forward finite difference

approximation (solid lines) as a function of grid resolution. On the right side, the

discrepancy between the two approximations is shown along with a reference slope

of first order decay. The different colours blue, red, yellow, and black correspond

to the sensitivity contributions of coils 1, 2, 3, and 4 of figure 4.4, respectively.

5.6 Application to optimal current design

In this section, the power of the adjoint based procedure is illustrated in a slightly

more challenging magnetic divertor design application. As explained earlier, the

adjoint-based methodology for sensitivity calculation reduces the computational

cost from approximately nϕ times the cost of a simulation to a fixed cost of about

two simulations. Therefore, it allows increasing the number of considered design

variables considerably. This is illustrated now by adapting the JET design case

of chapter 4 (with λP “ 1) to include more conductors (see figure 5.2).

A first application of the sensitivity approach could now be to estimate quickly

where to best locate additional shaping coils, given the fifteen suggested locations
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Figure 5.2: The set-up for magnetic field design. 15 new conductors (numbered)

are placed around the vessel. The contour lines are magnetic flux lines. The target

area protected by high-heat-flux plasma facing components (red line).

in figure 5.2. The sensitivity of the heat load cost functional (4.4) to all coil

currents indicates which coils affect the target heat load most dominantly. For

the initial flux function shown in figure 5.2, the conductors below the divertor

show the biggest potential reduction from a linearized point of view, with a clear

preference for conductor 6 (see figure 5.3). However, a sensitivity only contains

local information (in design space) and for quantitative design purposes one at

least needs information involving correlations between different control currents.

To obtain the combination of currents that mitigates best the target heat load,

an iterative optimization approach, like the one outlined in chapter 4, is therefore

needed. The same nested optimization approach is now applied, with the in-parts

adjoint routine replacing the costly finite difference evaluations. Figure 5.4 shows

the cost functional and its contributions at the different optimization iterations.

From this figure, it is clear that the different terms in the cost functional are

continuously balanced against each other throughout optimization. One can see

for example that after 6 optimization steps the target heat load is already signif-

icantly lowered (thin solid line). Nevertheless, a significant heat load on the first

wall is found (see intermediate heat load in figure 5.5). In the next steps, the
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Figure 5.3: The evolution of shaping coil currents ϕ throughout optimization

and the initial sensitivity
dI

dϕ
. Initial values ( ), values after 6 optimization steps

( ˚ ), final values ( ˛ ), initial sensitivity ( ):.

Figure 5.4: The evolution of the cost functional and its contributions during

optimization. : total cost functional, and : respectively not simulated and

simulated part of term (1) in Eq. (4.4), : wall penalty (term (2) in Eq. (4.4)),

: control (current) penalty (term (3) in Eq. (4.4)).

wall heating term is decreased, while the target heat term is again increased.

:This figure was first published “Blommaert, M., Baelmans, M., Dekeyser, W.,

Gauger, N. & Reiter, D. (2015). A novel approach to magnetic divertor configuration de-

sign. Journal of Nuclear Materials, 463, 1220–1224”. Because of an inconsistency in the code
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Figure 5.5: Target heat load before ( ), during (after 6 steps, ) and after

( ) optimization compared to the desired heat load profile ( ) as a function of a

coordinate y along the target surface.

Figure 5.6: Poloidal magnetic flux before ( ) and after ( ) optimization. Notice

the change in flux tube expansion at the targets.

Eventually, a better compromise is found, according to the considered objec-

tive functional, where heat load and first wall heating are reduced at the price

of increased current penalty/Joule losses. From figure 5.4, it is observed that in

comparison to the intermediate design, outer target heat load and inner first wall

in the usage of the poloidal flux per radian ψ and total poloidal flux Ψ “ 2πψ, the currents ϕ

were overestimated by a factor 2π. This is resolved here by rescaling the currents.
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heat loads have been reduced significantly, while inner target heat load slightly in-

creased. When studying the magnetic flux lines in figure 5.6, one clearly observes

that field lines have widened towards the target area. Like in the previous chap-

ter, the automated approach thus again evolves to a configuration that resembles

the X-divertor proposed in Ref. [85].

It should be noted that the results might differ when more elaborate plasma

edge models are used, although the same methodology for sensitivity studies can

be employed. Use of a Monte Carlo code for neutral particle transport might,

however, require careful analysis of the influence of noise on the overall proce-

dure. Also in other optimization applications, this in-parts adjoint approach can

be very valuable. A plasma edge application on which the author contributed is

the estimation of plasma edge model parameters fitting to experiments [5]. The

in-parts adjoint approach is of great value for this application, since often a multi-

plicity of parameters is estimated, such as parameters related to specific boundary

conditions, coefficients in nonlinear transport coefficients, or even the coefficients

in their spatial parametrizations as introduced in the master thesis of R. Dilissen

[47]. Using the in-parts adjoint method, the inclusion of new parameters comes

without derivational and implementational effort. The traditional continuous ad-

joint approach, in contrast, would require differentiating the equations by hand

and implementing the expression in the code at the risk of introducing bugs. First

steps have therefore been taken to include the in-parts adjoint approach also for

parameter estimation problems [16].

5.7 Conclusions

In this chapter, an in-parts adjoint procedure has been established to speed up

the design sensitivity calculations. It has been argued that the moving domain

boundaries and some hidden source functions in the plasma grid generation hinder

a full adjoint procedure. However, the low computational cost of magnetic field

calculation and grid generation justify a procedure in which only the sensitivity

of the plasma edge simulation is calculated using an adjoint methodology.

Such an in-parts adjoint methodology that includes the existing continuous

adjoint plasma edge routine has therefore subsequently been derived. The re-
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mainder of the sensitivity is then calculated using finite differences, avoiding all

derivations. This, however, leads to a semi-discrete approach to gradient calcu-

lation, in which special attention is needed for the differentiation of the plasma

edge boundary conditions. It has been found that by a slight reformulation of the

boundary conditions, consistent adjoint multipliers for the approximate boundary

condition sensitivities are trivially found.

These sensitivities were verified with full finite difference evaluations in a grid

sensitivity study. As expected, the difference between the in-parts adjoint and

finite difference sensitivities decreases monotonically as the grid is refined with a

convergence order above one. To show the advantages of the adjoint method, the

JET application of the last chapter has been repeated with an increased number of

design variables. Finally, it is pointed out that once a single adjoint plasma edge

simulation has been calculated, the in-parts adjoint method enables calculation of

sensitivities with respect to model parameters or other design variables with great

ease. Because of its high flexibility, it borrows itself for use in other applications

such as parameter inference from experiments or robust design applications.
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6

Integration of Free-Boundary

Equilibrium Magnetic Model

In chapter 3, a first model has been introduced for magnetic divertor optimiza-

tion. In a first stage, the magnetic field evaluations were based on a perturbation

model that uses the vacuum approach for small divertor coil changes. Hereby, the

influence is neglected of their respective magnetic field changes on the force bal-

ance in the main plasma. The validity of this model can therefore be questioned

already in the magnetic field optimizations carried out in the former chapters,

in which reasonably large optimal current changes have been found. Using this

model, the design freedom is therefore limited to small adjustments of configura-

tions that have already been assessed with more advanced magnetic equilibrium

codes. Therefore, this chapter deals with the inclusion of a more accurate and

consistent magnetic field model. As such, the design freedom of the new divertor

optimization tool will be greatly enhanced.

As explained in section 3.1, the static magnetohydrodynamic equilibrium in

tokamaks is governed by the Grad-Shafranov (GS) equation. However, many

equilibrium codes exist that solve this equation with different objectives and

functionalities. A large part of these codes are developed for reconstruction of

magnetic equilibria from experimental data, such as EFIT. Other so-called fixed-

boundary codes such as HELENA, can be used for accurate solution of the GS

equation with higher order finite element methods. These codes, however, require

that the plasma boundary is already known or count on the user to prescribe a

113



6. INTEGRATION OF FREE-BOUNDARY EQUILIBRIUM
MAGNETIC MODEL

desired boundary geometry. In a second step, the feasibility and coil configura-

tion then needs to be obtained using a free-boundary equilibrium (FBE) code in

inverse mode. For the purposes in this thesis, an FBE solver in direct mode is

needed. These direct calculations simulate the magnetic field resulting from the

coil currents without presumptions on the poloidal magnetic flux or the plasma

boundary.

In the latter category, the CEDRES++ equilibrium code is a suitable candi-

date, not least due to the fact that the nonlinear solver includes a full linearization

of the finite element code [61, 71, 72]. This enables first of all a fast and stable

Newton solver, which leads to robust convergence while other codes face con-

vergence issues related to physics-based vertical instabilities [72]. As a second

consequence, the discrete adjoint sensitivities of the magnetic equilibrium are

readily available. If a full adjoint procedure for the divertor design comes within

reach in the future, this will for sure be an additional asset. The recent coupling

of CEDRES++ to the European transport solver (ETS) [32] and CHRONOS

[2] transport codes additionally create possibilities for future model extensions.

Relevant for the current MATLAB divertor optimization code is the existence of

MATLAB version of CEDRES++, also referred to as ‘FEEQS.m’. Finally, it is

an asset that the code has been benchmarked against other equilibrium codes,

see e.g. [71].

This chapter is structured as follows. In a first section, the CEDRES++ FBE

code is briefly presented. Next, in section 6.2, a comparison is made between the

perturbation model and the CEDRES++ code to verify consistency of the model

outputs and analyse the discrepancies. As such, the legitimacy of the perturbation

model is studied. Subsequently, the integration of the CEDRES++ code with

grid generator and plasma edge model is considered. It is shown that the extreme

sensitivity of the plasma edge grid generator on the flux function accuracy around

the stationary points of the magnetic field necessitates adaptive refinement in the

FBE code. Afterwards, first divertor optimization studies are shown for the new

WEST (tungsten (W) Environment in Steady-state Tokamak) divertor, currently

under construction in the Tore Supra tokamak at CEA (Commissariat à l’Energie

Atomique, France) [24, 26]. The accuracy of the in-parts adjoint sensitivities is

first studied with finite difference calculations. Finally, after choosing a set of
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appropriate constraints for this new test case, the optimization algorithm is used

to optimally spread the heat load over the divertor target geometry.:

6.1 CEDRES++ free-boundary equilibrium

calculations

The CEDRES++ code is a free-boundary equilibrium code with many function-

alities. A full overview is given in Ref. [72]. For steady-state applications, the

FBE equations reduce to (3.12), which are repeated here for clarity:

Lψ “ ´R∇ ¨
ˆ

1

μpψqR2∇ψ

˙
“ Jφ ,with

Jφ “

$’&’%
JP “ Rp

1pψq ` 1{pμ0Rq FF 1pψq in Ωmp pψq ,
Iφ,i{Si in Ωc,i, i “ 1 . . . nc,

0 elsewhere.

In the core region, the Grad-Shafranov equation

Lψ “ Rp
1pψq ` 1{pμ0Rq FF 1pψq

is retrieved that describes the balance between Lorentz forces and plasma pres-

sure. In this expression, the flux functions p and F related to plasma pressure

and toroidal magnetic field appear. In theory, p and F can be found by aug-

menting this equation with a core transport model, such as for example done in

the Dina code [83]. Although recent projects aim at coupling CEDRES++ to

core transport codes [2, 32], they are at present not stable and mature enough

to incorporate in this optimization tool. Other disadvantages are the increased

CPU-cost, the absence of a full Newton solver and the significant increase in

complexity.

:Parts of this chapter have been published in “Blommaert, M., Heumann, H., Bael-

mans, M., Gauger, N.R. & Reiter, D. (2016). Towards Automated Magnetic Diver-

tor Design for Optimal Heat Exhaust. ESAIM: Proceedings and Surveys, 53, 49–63” and

“Blommaert, M., Baelmans, M., Heumann, H., Marandet, Y., Bufferand, H. et al.

(2016). Magnetic Field Models and their Application in Optimal Magnetic Divertor Design.

Contributions to Plasma Physics, 56, 796–801”.
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In the standard version of CEDRES++, it is assumed that the profiles p
1
and

FF
1
are given in the form [18, 96]

p
1pψq “ λ

β

R0

p1 ´ ψ̄αqγ and FF
1pψq “ λp1 ´ βqμ0R0p1 ´ ψ̄αqγ, (6.1)

with ψ̄ the normalized magnetic flux, which equals 0 at the magnetic axis and 1 at

the last closed flux surface (LCFS). The physical meaning and choice of the profile

parameters α, β, γ are dealt with in [18]. As explained there, a logical choice is

to choose α “ 1, after which the β coefficient is set by the choice of poloidal beta

(ratio of plasma pressure and magnetic pressure) and the γ coefficient is set by

the internal magnetic inductance of the plasma. The remaining parameter λ can

be determined as a scaling variable that is chosen as to match the total plasma

current

IP “ λ

ż
Ωmp

„ˆ
R

R0

β ` p1 ´ βqR0

R

˙
p1 ´ ψ̄αqγ

j
dω

in a certain configuration:.
The magnetic permeability is considered to be different from zero only in

ferromagnetic structures, where μ has a strongly nonlinear dependence due to

saturation effects. This is accounted for by linear interpolation from tables [72].

The code might both result in limiter or divertor configurations. In the former

case, the boundary of the plasma domain Ωmp touches an interior point of the

reactor wall (limiter configuration). In the latter, the boundary contains one or

more saddle points of ψ (divertor configuration). The equations are spatially

discretized using a finite element (FE) method with linear Lagrangian elements

on an unstructured triangular mesh (see figure 6.1). The discretized equation was

linearized by hand and is solved for ψ using a Newton method (see Ref. [72]). It is

clear that the nonlinear dependence of the plasma boundary Ωp on ψ contributes

to the complexity of this code [72].

:In the sensitivity calculations and optimization studies further in this chapter, the value

of λ is calculated from a desired plasma current IP for the initial configuration and then kept

constant. From a control point of view, it could be interesting to keep the total plasma current

IP itself constant during optimization. However, for the simulations shown in this work, this

option could not be activated yet in the FEEQS.m code. Recently, the code was extended with

this functionality.
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Figure 6.1: The triangular grid for the finite element simulation (left) and the

magnetic flux function resulting from an FBE simulation (right) are depicted for

the WEST reactor. In both figures, the iron structures are coloured light grey and

the coils orange.

Finally, the free-boundary equilibrium equations need to be complemented

with appropriate boundary conditions. At the symmetry axis, constant ψ is

imposed. By convention, ψ “ 0 is imposed here. The resulting effect of impos-

ing such constant poloidal flux at the symmetry boundary is that no flux lines

intersect with the boundary (see figure 6.1). In principle the other boundary

condition would comprise imposing constant flux at infinity. However, grids can

not be made infinitely large. In CEDRES++, this is solved by combining the

finite element method with a boundary element method [1, 30]. The MATLAB

version, on the contrary, does not include this feature and imposes conditions

at a sufficiently far boundary. For the WEST case under study in the following

sections, this is a reasonable approximation. Indeed, as can be seen in figure 6.1,
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the presence of an iron transformer will function here as a de facto boundary

condition that aligns all flux lines to the iron. As such, the exact location of the

boundary condition will only marginally influence the magnetic flux within the

vacuum vessel. For more details on the CEDRES++ code and its procedures the

reader is referred to Refs. [19, 72].

6.2 Comparison of magnetic models

In order to compare the perturbation model (PM) presented in section 6.2 to

the FBE model, the main assumptions specific to the perturbation approach are

briefly repeated. These assumptions include:

1. the plasma current density changes δJφ can be neglected,

2. the magnetic flux change δψ can be calculated in vacuum. In addition

to 1), this means that the permeabilities μ of surrounding materials are

approximated by the vacuum permeability μ0,

3. the coils can be approximated as having infinitesimal size.

6.2.1 Analysis of model assumptions

First, a consistency check is performed by verifying that the (MATLAB) CE-

DRES++ code reproduces the results of the perturbation model if similar ap-

proximations are introduced. As such, the correctness of implementation is ver-

ified and the effect of the different assumptions can be estimated. The WEST

tokamak, for which the study in this paper is performed, is shown in figure 6.2

with coils, iron and the vacuum chamber clearly indicated. The divertor coils

(numbered 10-17) will be of specific importance further on to control the mag-

netic configuration in the vacuum chamber. The reference magnetic equilibrium

ψ0 is obtained using the FBE code described in the previous section, with pa-

rameters α “ 1, β “ 1.5, γ “ 0.9, and Ip “ 0.47 MA. The divertor coil currents

of the reference configuration are found in table 6.1.
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Figure 6.2: The components of the WEST machine, as they enter the FBE

computation. The vacuum vessel is indicated by the black line, coils are indicated

in orange and numbered, iron structures are indicated in blue and passive structures

around the coils in grey.

Conductor 1 2 3 4 5 6 7 8 9 10

I (kA) 0 0 0 22.3 -186.4 -186.4 -22.3 0 0 41.9

Conductor 11 12 13 14 15 16 17

I (kA) 41.9 41.9 41.9 51.2 51.2 51.2 51.2

Table 6.1: Values of the coil currents used in the reference FBE simulation.

Conductor numbers corresponding to the numbers in figure 6.2.
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Figure 6.3: Close-up of the magnetic flux change δψ at a perturbation of 1kA

of coils 14-17 at the vacuum vessel (black line) using: a) the FBE finite element

simulation, b) the finite element simulation of the perturbation δψ with δJP “ 0,

c) the finite element simulation of δψ with δJP “ 0 and neglecting permeability of

iron, d) perturbation model (numerical evaluations of equations (3.19) and (3.20)).

The magnetic flux function ψ1kA following from a simultaneous increase of all

lower divertor coils (coil numbers 14-17) by 1 kA is now compared for the two

magnetic field models. In figure 6.3, the change in flux function δψ “ ψ1kA ´ ψ0

is shown for both the FBE model (figure 6.3a) and the PM (figure 6.3d). Figures

6.3b and c use the finite element code of the FBE simulation to simulate the same

change in flux function, but introduce additional assumptions of the PM into the

finite element code. In figure 6.3b the finite element code is used to simulate the

flux change δψ in absence of plasma currents, while in figure 6.3c, all relative

permeabilities are neglected in addition. The former is simply done by running

the code with input parameters IP “ 0 and loading the lower divertor coils

exclusively with the change in current δIφ “ 1kA, so that the additional plasma
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current density δJP is set to zero. The latter, in addition puts the nonlinear

relative permeability function in the code to one.

Comparing the difference δψ from two full FBE simulations in figure 6.3a

with that of the perturbation model in figure 6.3d, a significant difference is

observed. Especially in the core region, a clear difference in magnetic flux function

is present that can be attributed to the absence of the nonlinear interaction with

plasma currents in the PM. This is confirmed in 6.3b, where δψ is shown for the

finite element code without the effect of the plasma currents. Indeed, comparing

figures 6.3b and d, a better agreement is now found. Additionally removing the

relative permeability of iron from the CEDRES++ code finally gives an even

better agreement of the FE code with the PM (figures 6.3c and d). Nevertheless,

a remaining discrepancy can still be observed in the direct vicinity of the coils.

This discrepancy can be attributed to the assumption of infinitesimally sized coils

in the PM. The latter assumption, however, has almost no consequence on the

magnetic field in the vacuum chamber. It only makes the peaks in flux function

at the coil positions more pronounced.

6.2.2 Comparison of sensitivities

Next, we compare the first order behavior of the stationary points of ψ, i.e.

the X-points and magnetic axis, for both models. These points are an important

characteristic of the magnetic field. The aim is to estimate whether at least locally

the models show similar tendencies and thus to analyse whether the perturbation

model might suffice for sensitivity calculations.

The sensitivities Bp{Bϕ of the stationary point movement with respect to

the coil current magnitudes is found by using a simple forward finite difference

approach on both magnetic models. Here, p “ R eR ` Z eZ represents the po-

sition vector of the stationary point in the poloidal plane. A finite difference

perturbation size ε “ ε
1{3
m is used. It should be noted that the FE code solves the

FBE equations for the poloidal flux ψ on an unstructured triangular grid with

first-order elements. It is cumbersome in this unstructured grid to directly find

the stationary point location p, where the interpolated value of the derivative

Bp{Bϕ is zero. Therefore, the values of the poloidal flux are first interpolated
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to a fine rectangular mesh using natural interpolation, before searching for this

location. In the MATLAB version of the CEDRES code, a routine is readily

available that traces X-points based on the signs of flux differences between ad-

jacent nodes. However, this routine is not suited to calculate the sensitivity of

the X-point movement, since this approach leads to X-point positions that by

definition coincide with grid nodes. The location of the X-point would therefore

move in a discontinuous fashion when this routine would have been used.

Figure 6.4: Comparison of the perturbation model and FBE simulation sensitiv-

ities. Sensitivities of lower and upper X-point, and magnetic axis positions with

respect to the divertor coil currents are compared. The results of the finite el-

ement FBE simulation are shown with plain symbols, those of the perturbation

model with empty symbols (R-component: squares, Z-component: triangles). Coil

numbers are as given in figure 6.2.

The results of this study are shown in figure 6.4. Remark that overall, big dis-

crepancies are found in the sensitivity analysis and that both models sometimes

even have sensitivity contributions of opposite sign. However, reasonable agree-

ment is found for the sensitivities of the lower X-point with respect to coils 14-17

and those of the upper X-point with respect to coils 10-13. This is a logical con-

sequence of the fact that these coils are in the direct vicinity of these respective

X-points under consideration. The magnetic field caused by a an infinitesimal

piece of current conductor is inversely proportional to the squared distance from

the current source, so that close enough to the coils the influence of the coil

current dominates that of the plasma currents.
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Figure 6.5: Simplified analysis of the stationary point movement in the vacuum

approximation. The magnetic field change at the X-point due to a positive coil

perturbation δI is shown in red and the corresponding movement of the X-point

with a double arrow.

The discrepancies between the models are now illustrated with a simple ex-

ample. Suppose that X-points, magnetic axis and a divertor coil are aligned as

illustrated in figure 6.4. One can then easily study the linearized effect of plasma

currents on the X-point location, or equivalently for the magnetic axis location.

The displacement δp “ rδpR, δpZsJ of a stationary point in poloidal flux ψ can

be obtained by linearizing the spatial derivative of ψ around the stationary point

location p “ p0 with respect to δp. This reads

Bψ
Bp “ Bψ

Bp
ˇ̌̌̌
p0

` B2ψ

Bp2

ˇ̌̌̌
p0

δp and thus δp “ ´
˜

B2ψ

Bp2

ˇ̌̌̌
p0

¸´1 Bψ
Bp

ˇ̌̌̌
p0

, (6.2)

where the latter equality holds because Bψ{Bp fi 0 at a stationary point of ψ.

The X-point movement caused by a small change in coil current δIφ (in positive

φ̂ direction) is then given by

Bp
BI “ ´

˜
B2ψ

Bp2

ˇ̌̌̌
p0

¸´1 B2ψ

Bp BI
ˇ̌̌̌
p0

,with
B2ψ

Bp BI “
„
R

BBZ

BI ,´R
BBR

BI
jJ

(6.3)

and where �B “ BR eR ` Bφ eφ ` BZ eZ is the magnetic flux density. The Hes-

sian matrices with respect to R and Z, Hx “ B2ψ{Bp2 |px
at the X-points and

Hma “ B2ψ{Bp2 |pma
at the magnetic axis pma, are in this case of the form

Hx “ diag p´a1, a2q and Hma “ diag p´a3,´a4q, respectively, with coefficients
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a1, a2, a3, a4 P R
`. The well-known right hand rule can be used to find the di-

rection of B �B{BI δI at the lower X-point caused by a positive perturbation δI:.
Hence, equation (6.3) retrieves an upwards movement δpx “ Bpx{BI δI of the

lower X-point.

If one involves the plasma current IP, the conclusion is less straightforward.

Suppose the (toroidal) plasma currents can be represented using a thin toroidal

wire at the magnetic axis location. The movement of the magnetic axis and

therefore that of the plasma current can then be analyzed using equation (6.3).

Due to the negative definite Hessian, one finds that the magnetic axis moves in the

opposite direction of the X-point (downwards) and thus creates a counteracting

magnetic field at the lower X-point. The direction of the X-point movement

thus depends on the current IP, the mutual distances of the variables and the

coefficients a2 and a4. The resulting movement direction becomes less predictable

because of this indirect effect.

The simplified analysis without plasma current should thus show us an ap-

proximate tendency for the sensitivities of the perturbation model. Looking again

at figure 6.4, one sees this analysis indeed shows the right tendency for coils 14-17

of the lower X-point and for coils 10-13 at the upper X-point for the PM. One also

sees that all other sensitivities using the PM are relatively close to zero because

of the large distance between coil and stationary point. One may thus conclude

that in those cases, the indirect effect of the plasma currents dominates, since the

plasma currents are closer to those stationary points then the perturbed coil.

Finally, it appears from figure 6.4 that the (direction of the) movement of the

magnetic axis in the FBE model is not correctly predicted by the perturbation

model, so that the reduction of the plasma currents to a coil at the magnetic axis

will not suffice to improve the model. Indeed, it is rather the whole change of

the plasma core shape that effectively determines in which direction the plasma

currents move. Although further examination of alternative perturbative mod-

els with preprocessed determination of the plasma current “gravity center” is

possible, it may be concluded at this point that the results of the perturbation

model differ significantly of those of the FBE model. It is therefore decided to

incorporate the FBE model into the optimal design approach.

:The right hand rule follows directly from Ampères law.
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6.3 Adapting the FBE calculations for auto-

mated target heat load evaluations

The generation of a structured grid for the discretization of the plasma edge

transport equations cpepqgg, qpeq “ 0 is a very delicate procedure that requires

accurate approximations of poloidal and radial particle, momentum, and energy

fluxes. In this context it is crucial to locate accurately the X-point position. Yet,

when constructing a plasma edge grid, it is exactly this region around the X-

point that shows the most irregularities. Present-day plasma edge grid generators

therefore rely heavily on user-interaction to indicate the magnetic configuration

(e.g. CARRE [97]) and post-process sensitive regions such as the region around

X-points. Because of the automated character of the optimal design framework,

these issues need to be avoided at all cost.

In section 3.2, several measures were already discussed to automate the grid

generator. However, due to the specific synergy of the FBE code presented in

section 6.1 and the grid generator, additional steps are necessary when combining

them. In the first part of this section, it will be explained why these regions

around the stationary points show these irregularities. To resolve this, an adaptive

mesh refinement procedure has been introduced for the FBE code in collaboration

with H. Heumann [15]. The procedure is able to reduce the mesh distortion to

a desirable level, while keeping the memory consumption of the FBE solution

acceptable.

6.3.1 Estimation of contour line errors

When constructing a grid aligned to the magnetic field, contour lines of the

flux function are traced. Two sides of each grid cell will then coincide with

these contour lines. Since strong radial refinement of these grids towards the

separatrix is needed, it is needless to say that these contour lines need accurate

tracing. However, first grid generation trials on CEDRES++ grids showed rough

distortions around the X-point. To find out why, the position error on contour

lines is analysed here.
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It is clear that the positioning error of the contour lines exists of several

components, such as the discretization error of the FBE solution and the residual

error on the convergence of the nonlinear FBE equilibrium problem. However,

only the interpolation error following from the linear interpolation that is used

in the (standard MATLAB) contouring algorithm will be considered here. It will

become clear that it is this error that blows up near regions of stationary points.

Let ψ1 and ψ2 be two values of the discretized poloidal flux ψh resulting

directly from the solution of the discretized FBE and let Δx be the distance

between their two locations x1 and x2 (see figure 6.6). Suppose a contour line

with level value ψc is traced. The position αΔx (0 ă α ă 1) of the contour line

with level ψc (ψ1 ă ψc ă ψ2) is found by the contouring algorithm using linear

interpolation.

Figure 6.6: Error estimation on the contour line position when using linear in-

terpolation based on a quadratic interpolation. The dash-dot line represents the

contour level.

The error can then easily be estimated using a higher order interpolation. The

derivation of the error starts by taking the Taylor expansion of ψ around ψ1 to

find ψ at an undefined distance Δx1,

ψ “ ψ1 ` ψ1
1pΔx1q ` 1

2
ψ2
1pΔx1q2 ` . . . , (6.4)

where spatial derivatives are denoted with accents. Using only the linear part of

the expansion at a distance αΔx and Δx, leads to the expression for the fraction
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α following from linear interpolation

α “ ψc ´ ψ1

ψ2 ´ ψ1

(6.5)

The error ε on the interpolated location can now be estimated by comparing to

a quadratic interpolation. The expressions governing the quadratic interpolation

can be easily found by including the quadratic terms of the Taylor expansion in

Eq. (6.4) for points at distances of αΔx ` ε and Δx from the expansion center

x1 (see again figure 6.6). From these four relations, the error ε can then be

eliminated for small values of ε (neglecting ε2 terms), which gives

ε “ pα ´ α2qψ2
1Δx

2ψ1
1,qc ` 2αψ2

1Δx
, (6.6)

where the subscript p¨qqc refers to the quadratic approximation. Next, using the

relation ψ1
α,qc “ ψ1

1,qc ` αψ2
1Δx, the error becomes

ε “ pα ´ α2qψ2
1Δx

2ψ1
α,qc

. (6.7)

From equation 6.7, it can be clearly seen that the error in the contouring

algorithm significantly increases towards extrema in ψ, i.e. when ψ1
α,qc is approx-

imately zero. Simultaneously, it can be seen that the distance Δx between the

solution points can be decreased accordingly in order to keep sufficient accuracy

of the contour lines. This motivates the adaptive refinement procedure towards

X-points introduced next.

6.3.2 Introducing adaptive grid refinement

The refinement of the unstructured CEDRES++ mesh is based on the longest

edge bisection [7]. After each converged Newton iteration all triangles close to

the X-points are marked for refinement and longest edge bisection is applied to

generate a new triangular mesh with refined elements at the marked locations.

The Newton method is next restarted to solve the FBE problem on this new mesh.

The initial guess in the Newton iteration can be easily interpolated from the

previous numerical solution on the coarser mesh and hence the Newton method

converges in a couple of iterations.
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Figure 6.7: Fragment of the grid for FBE calculations within the vacuum vessel.

Notice the adaptive refinement with respect to the two X-points (magnetic flux

lines shown in brown).

Afterwards, more refinement steps are made until the desired accuracy is ob-

tained in the X-point region. To assure that the grid changes sufficiently smoothly

from rough to fine grid cells, the cells marked for refinement are based on the

distance in grid cells from the X-point. By keeping this distance in grid cells

constant, an ever smaller refined region will result from these grid adaptation

steps. For the WEST case under consideration, 5 refinement steps are made to-

wards the X-points. The result can be seen in figure 6.7. When optimizing, it

suffices to perform only the last 2 or 3 steps adaptively within the magnetic flux

calculation. The first grid adaptation steps are then simply performed for the

initial configuration.

6.4 Sensitivity calculation and verification

With the adaptive refinement procedure for CEDRES++ at hand, the FBE code

is integrated into the automated design framework. Sensitivity calculation and

optimal design of the new model are now envisaged. This section is structured
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as follows. In section 6.4.1, a topical WEST case will first be introduced. The

WEST reactor is currently under construction in the Tore Supra tokamak at CEA

(Commissariat à l’Energie Atomique, France) and is planned to start operation in

the first half of 2016 [24, 26]. It will function as a divertor test platform in prepa-

ration for ITER and is as such equipped with an actively cooled tungsten divertor

and novel divertor coils. Since operation scenarios for WEST are currently being

planned, it is an attractive setting to test and demonstrate the techniques for

magnetic divertor optimization. In section 6.4.2, the in-parts adjoint sensitivity

calculations will be performed and verified with finite difference calculations. As

such, it can be estimated whether the chosen plasma edge grid is sufficiently fine

for accurate in-parts adjoint sensitivities of the novel WEST case. Subsequently,

design constraints are set up in section 6.4.3 to finally study optimal design of

the WEST configuration in section 6.4.4.

6.4.1 Test case description

Given the limitations of the plasma edge transport model, a test case similar to a

SOLEDGE2D-EIRENE simulation discribed in Ref. [28] is chosen (the so-called

high power FAR configuration, with a puff of 1.1 ¨ 1021 #/s). The set-up of the

reference magnetic configuration was the one already described in section 6.2.

The plasma edge simulation is performed on a 210 ˆ 80 grid, as given in red in

figure 6.8.

Two important differences in the plasma edge model with respect to the

SOLEDGE2D-EIRENE simulation must be noted. At the one hand, a kinetic

code for neutrals is absent in our model and replaced by the fluid neutral model.

Therefore, additional assumptions on boundary conditions and neutral fluid prop-

erties need to be made. On the other hand, a methodology to simulate up to the

reactor wall, such as in [4] or [27], is absent in the radial (perpendicular to the

magnetic flux lines) direction. It can be seen in figure 6.8 that for the very

open WEST configuration, only a fraction of the reactor is effectively simulated.

While this is not expected to be a very crude approximation for the field aligned

plasma, the limited grid size might give a very crude approximation of the neutral
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transport. Therefore, extension to a simulation reaching up to the vessel wall is

planned in future research [4, 27].

constant value units

Di 0.6 m2.s´1

χi 2 m2.s´1

χe 2 m2.s´1

χn 0.2 m2.s´1

ν i 0.2 m2.s´1

λn 0.05 -

λT 0.3 -

nc 1.3 ¨ 1019 m´3

Qc 7.93 MW

L 6.59 m3s´1

αc 0.167 -

Rc 1 -

δish 2.5 -

δesh 2 -

δpotsh 2.5 -

Table 6.2: The values of transport and boundary condition parameters used in

the WEST case.

The model parameters are given in table 6.2. The proportionality constant

αc for the neutral flux to the core is chosen to match the total neutral flux to

the core region in the SOLEDGE2D-EIRENE simulation. Similarly, a smooth

variable sticking fraction is used along the radial boundaries, so that the total

pumped flux equals 7 ¨ 1020 #{s, matching the SOLEDGE2D-EIRENE pumped

flux. The resulting total pumping speed of 6.59m3s´1 is maintained through all

simulations.

6.4.2 Sensitivity calculation and results

Even including the adaptive refinement, the time for a CEDRES++ code evalu-

ation is in the order of ten seconds. This is still a negligible cost in comparison
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Figure 6.8: The grid for plasma edge calculations in the WEST vacuum chamber.

The boundaries are indicated by a tick black line. The blue lines indicate the grid

cuts that are used to unfold the grid onto a topologically rectangular computational

mesh.

to the plasma edge transport simulation, that already takes a couple of hours

for one code evaluation with the current physics model. Additionally, remark

that the derivations in chapter 5 were carried out for a general nonlinear function

ceqpqeq, qggq “ 0. The in-parts adjoint approach can thus be applied. Although

an adjoint procedure is at hand for the CEDRES++ part, it is inefficient to use

adjoint sensitivity calculations for the FBE model as long as the grid generator

code needs forward sensitivity calculations [11]. Indeed, the number of adjoint

FBE solutions will then scale with the number of components of qeq.

Again, a central difference approximation is used for the in-parts adjoint sen-

sitivity

Δε
ϕ

rL :“
rLpϕ ` εδϕ, qpe, q

˚
peq ´ rLpϕ ´ εδϕ, qpe, q

˚
peq

2ε
,

131



6. INTEGRATION OF FREE-BOUNDARY EQUILIBRIUM
MAGNETIC MODEL

Figure 6.9: Evaluation of the design gradient ∇Î “
”

dI
dI10

dI
dI11

. . . dI
dI17

ıT
using:

the approximations ΔεÎ (thick dashed line) and Δε
ϕ

rL (thick solid line) with per-

turbation size ε “ ε
1
4
m.

after solving the adjoint plasma edge transport equations. Since no grid sensi-

tivity analysis will be made here, a central difference approximation can also be

afforded for the full finite difference evaluation

ΔεÎ :“ Î pϕ ` ε δϕq ´ Î pϕ ´ ε δϕq
2ε

.

The design vector ϕ for which the gradient of the objective functional is verified,

consists of the shaping coil currents, i.e. ϕ “ rI10 I11 . . . I17sT . The comparison

of the two gradient calculations is given in figure 6.9.

As can be seen from this figure, the partially adjoint gradient is reasonably

accurate and remains close to the “full” central difference calculations, although it

slightly overestimates the value of the different gradient components. Especially

for the first four components it can be seen that there is a systematic (but small)

deviation. This deviation can be mainly attributed to the discretization error

corresponding to the use of a continuous adjoint procedure.

In table 6.3 the discrepancy

Errpεq “
ˇ̌̌
Δε

ϕ
rL ´ ΔεÎ

ˇ̌̌
,
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of the two derivative approximations Δε
ϕ

rL and ΔεÎ is provided for different finite

difference step sizes ε. One can see that if ε is decreased from ε “ ε
1
4
m to ε “

ε
1
5
m, the discrepancy decreases. Remark that apart from the cancellation and

the truncation error, also the discretization error is influenced by the step ε.

Of course, each change in control variable causes a changed plasma edge grid.

Therefore, a typical balance between truncation and cancellation errors as in

many finite difference step studies is not necessarily to be expected here, as one

can observe in table 6.3. This confirms that the discretization error represents a

prominent part of the discrepancy.

ε I10 I11 I12 I13 I14 I15 I16 I17

ε
1
3
m 0.0235 0.0254 0.0271 0.0267 0.0242 0.0252 0.0178 0.0094

ε
1
4
m 0.0236 0.0254 0.0271 0.0267 0.0376 0.0364 0.0431 0.0471

ε
1
5
m 0.0120 0.0136 0.0150 0.0144 0.0131 0.0171 0.0138 0.0130

Table 6.3: The absolute difference of the finite difference and in-parts adjoint

evaluations of the design gradient components δÎ, using the central difference ap-

proximations ΔεÎ and Δε
ϕ

rL, respectively. The difference is shown as a function

of the finite difference perturbation size ε, which is expressed relative to machine

precision εm.

As predicted, the plasma edge simulation dominated the computational cost.

The gain of the in-parts adjoint approach with respect to the central difference

calculation was thus roughly the predicted factor
`
2 ¨ nϕ ` 1

˘L
2 « nϕ “ 8.

However, the gain slightly decreased for smaller finite difference step sizes. In

this case, the perturbed plasma edge simulations can benefit more from using the

reference simulation as a good initial solution.

6.4.3 Setting up design constraints

Before optimal design can be initiated, appropriate design constraints have to be

considered for the WESTmagnetic divertor design problem. In practice, only very

few design freedom is foreseen in the WEST reactor since only two power supplies

are currently present. One is foreseen for the lower and one for the upper divertor
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Figure 6.10: An overview of the magnetic configuration constraints in the WEST

case. The brown lines represent the magnetic field lines of the primary and secon-

dary X-point. The blue circle accentuates the first point that touches the magnetic

field lines and thus determines the outer grid boundary.

coils. The coils are then connected in series. However, if worthwhile, investments

in more current sources can always be made. To illustrate the potential of the

method, it will be assumed that each coil has a separate bi-directional current

source with a limit of 80 kA in a first hypothetical optimization study. This will

lead to a set of 16 box constraints.

In addition, nonlinear constraints on the magnetic configuration are intro-

duced. To guarantee a divertor configuration is kept, the X-point is forced to

keep an orthogonal distance of 3.1 cm with respect to the target surface. Or

equivalently, the X-point has to stay above the dotted line in figure 6.10. Finally,

in order to be able to generate grids at all times, the scrape-off layer (SOL) width

is constrained to a minimal poloidal flux span of 1.2 ¨ 10´3Wb
rad

. As discussed in

chapter 3, the computational grid in the SOL extends to the outermost flux line

that runs from plate to plate without touching other vessel parts. However, since

the MATLAB plasma edge code is not adapted for simulation of configurations

with multiple X-points, the SOL grid boundary is reduced to the flux surface of

the second X-point if necessary.
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It has been pointed out in chapter 4 that for an SQP optimization, the lin-

earization of these constraints with respect to the coil currents is needed. To avoid

discontinuities in the constraint sensitivities, the minimal SOL width enters as

two separate constraints (flux span between the X-points enters as a separate

constraint). An overview of the constraints is given in figure 6.10. To calculate

the gradient of the constraints with respect to the coil currents ∇ph, finite differ-

ence evaluations are used. Notice that adjoint evaluations are not very beneficial

here since the constraint vector h consists of at least three components here.

Moreover, the constraint derivatives include i.a. the derivative of the X-point

location. As can be seen from Eq. (6.3), second order spatial information of ψ

is needed for an analytical description of the X-point movement, while the finite

element FBE simulation leads to unstructured piecewise linear data. Since the

constraints only involve magnetic field evaluations, the gradient cost is finally not

of great influence.

6.4.4 Optimal design results

The optimization algorithm including FBE calculations is now used to find an

improved magnetic configuration for WEST by designing the coil currents in coils

10-17 (see figure 6.2a). The optimization algorithm was stopped when it settled

after five optimization cycles. Moreover, 92% of the changes in cost functional

was realized in the first two cycles. The entire optimization came at the cost

of roughly twelve plasma edge simulation equivalents, with free-boundary equi-

librium calculation and grid generation cost negligible to that of a plasma edge

simulation. Remark that this can be easily reduced to six plasma edge simulation

equivalents for practical design purposes. Indeed, given the model accuracy, one

might question the relevancy of the final 8% cost function changes.

In figure 6.11 a and b, the heat load and magnetic field change resulting from

the optimization are given, respectively. It is observed in figure 6.11a that the

peak heat load is reduced by 56%. From figure 6.11b it can be seen that this

is realized by a significantly enlarged projected area through flux expansion. In

comparison to the JET optimization in chapter 4, it is even more visible here

that the X-point is drawn towards the target surface and limited eventually by
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Figure 6.11: a) Heat load profile on the target surface in comparison to the

desired profile Qd, before (dotted) and after optimization (solid line). b) Close-up

of the magnetic configuration change at the divertor region from initial (dashed)

to optimized (solid). The colorbar indicates the change in current magnitudes δI.

The dotted line represents the design constraint.

the constraint. Indeed, since the X-point is a magnetic flux null, the poloidal flux

expansion reaches a maximum here.

The flux expansion effect on the heat load clearly dominates the effect of the

reduced connection length in the current plasma regime. Note that a detached

configuration might hold a different balance between these two means to spread

the heat flux. In the detached regime, the enhanced radial heat convection due

to the recycling processes might diffuse the heat better over the target surface

and therefore favour a long connection length. Similar studies should therefore be

repeated for the more interesting but more computationally intensive detached

regime. It should be noted that the introduction of a constraint on the minimal

distance between X-point and target was essential to avoid the optimization al-

gorithm from retrieving a near-limiter configuration in which excessive quantities

of impurities might find their way to the plasma core. This would namely lead

to increased core impurity radiation and as a consequence deteriorated energy

confinement.
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Another magnetic configuration that combines enhanced connection length

with increased flux expansion is the snowflake divertor configuration [122, 124].

However, given the current coil configuration, it is not expected that a snowflake

divertor can be reproduced in WEST for reasonable ranges of the coil currents.

Moreover, the current code is not capable of performing simulations for this type

of configurations. Code extensions to study optimization of snowflake configura-

tions have therefore been initiated recently [144].

Apart from moving the X-point, also the increase and decrease of neighbouring

coils 14 and 15, respectively, realizes an additional flux expansion. These results

are in agreement with the results of the JET optimal design study in chapter 4,

since a clear similarity with the X-divertor concept is again found [85]. Finally, it

should be noted that the total coil current was reduced by 94 kA. The optimiza-

tion algorithm was thus able to produce a better configuration while reducing the

Joule losses.

model perturbation FBE

ΔÎ
M
Î (%) -36.8 -55.8

Ī10 (kA) 63.6 32.4

Ī11 (kA) 53.4 30.1

Ī12 (kA) 25.3 28.6

Ī13 (kA) -11.0 32.7

Ī14 (kA) 80.0 75.3

Ī15 (kA) 18.7 13.4

Ī16 (kA) 31.8 31.6

Ī17 (kA) 28.4 34.3

Table 6.4: Comparison of optimal configurations achieved with perturbation and

FBE model. The relative change in cost function ΔÎ
M
Î and optimal coil currents

are shown for both the optimization studies with the perturbation model and the

FBE model. Subscripted conductor numbers corresponding to the numbers in

figure 6.2.

The optimization procedure was also repeated with the perturbation model.

A similar tendency was found there. Again, the movement of the X-point towards
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the target accompanied flux expansion and a decreased heat load. Nevertheless,

the peak heat load was only reduced by 34 % in the optimal configuration. To

explain this difference, the optimal coil currents and relative change in cost func-

tion are compared for both magnetic field models in table 6.4. It is observed that

the perturbation model shows a lower relative decrease in cost function ΔÎ
M
Î

from initial to optimum. This indeed reflects the smaller decrease in peak heat

load. The cause may be found in the values of the coil currents. Changes in

currents have to be significantly larger in the perturbation model to realize a

similar change in magnetic configuration (currents are initialized at 41.9 kA for

coils 10-13 and 51.2 kA for coils 14-17, as listed in table 6.1). This in turn causes

conductor 14 to reach its maximal value of 80 kA during optimization, impeding

further improvement. It can be concluded that by ignoring plasma currents, the

perturbation model significantly underestimates the effect coil currents can have

on the magnetic configuration.

6.5 Conclusions

In this chapter, the perturbation model (PM) that uses the vacuum approach is

evaluated and compared to a more complete free-boundary equilibrium (FBE)

model. In a comparison of both models, it is found that an upgrade to an FBE

model is indispensable for magnetic divertor design. Therefore, a MATLAB ver-

sion of the CEDRES++ finite element FBE code is integrated into the code

framework. In an automated combination with the plasma edge code, the stan-

dard grid accuracy of CEDRES++ in the X-point regions is found to be insuffi-

cient. By introducing an adaptive refinement strategy, smooth mesh adjustment

towards these X-points is achieved.

Next, a topical WEST case is introduced in order to demonstrate the func-

tionalities of the improved code. After setting up plasma edge grid and plasma

edge model for the new case, sensitivities of the cost functional are shown to

hold reasonably good accuracy. Finally, an optimal design was retrieved with a

CPU-cost of about 12 times that of a plasma edge simulation. With a peak heat

load reduction of 56% and a coil current reduction of 94kA, the optimal design

strategy again shows its virtues. The obtained results are very plausible. No
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doubt, however, that further improvements to the neutral model would increase

the relevancy of the design tool for the very open WEST configuration.
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One-shot Optimization

The nested optimization approach elaborated in the previous chapters decouples

the optimization algorithm from the solution of the state and adjoint equations.

The latter only serve as tools for objective function and gradient evaluation.

This has several advantages. First of all, the approach allows leaving the

forward solver and its iteration scheme untouched. Additionally, it facilitates

integration of the state and adjoint solver in an almost arbitrary state-of-the-art

optimization approach. This means for example that globalization approaches

can be directly applied. Furthermore, inequality constraints can be treated with

an appropriate constrained optimization approach, such as the one described in

chapter 4. For all these reasons, nested optimization methods are widely used

for industrial applications [109]. However, the nested approach might not lead

to the fastest convergence of the optimization problem. Indeed, demanding full

convergence of the state and adjoint equations in the first optimization stage, far

from the optimum, is redundant and will only slow down the optimization process.

An alternative approach for PDE-constrained optimization was first introduced

by Ta’asan, who proposed to treat the design equation rather like a boundary

condition for the forward and adjoint partial differential equations [136].

This attractive alternative to the nested optimization approach was the first

so-called one-shot optimization approach. In general, these methods aim at a

simultaneous iterative solution of state, adjoint, and design equations. Specific

to one-shot methods is that they again leave the iterative structure of the state
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and adjoint solver untouched, and use them to construct an appropriate iterative

solution procedure for the KKT conditions.

The promise of increased optimization efficiency motivates a further investi-

gation of one-shot optimization methodologies. Many challenges have to be met

though before one-shot optimization can be applied to magnetic divertor design

and compete with the nested approach in terms of robust convergence and treat-

ment of design constraints. First, in section 7.1, an overview of relevant existing

one-shot approaches will be given to assist the reader. The remainder of the

chapter addresses the challenges of one-shot optimization.

In section 7.2, the potential of one-shot will be tested by using a straightfor-

ward one-shot approach to an unconstrained magnetic divertor design problem.

Although the unconstrained setting is somewhat artificial, this first study will

give an indication of the one shot approach’s challenges and gains. One of the

conclusions is that the increased number of grid generations slows down the one-

shot optimization process. Another conclusion is that robust convergence is not

achieved due to discontinuous changes of the gradient values in design space. In

section 7.3, the one-shot procedure will then be further accelerated. To this end,

a grid deformation method for field aligned grids is developed.

In an attempt to robustify the one-shot procedure, section 7.4.2 discusses a

novel strategy to achieve global convergence based on an augmented Lagrangian

penalty function. The strategy is based on the doubly augmented Lagrangian

function for one-shot optimization of Hamdi and Griewank [65, 66], but adapted

to reduce computational costs and implementation efforts. In addition, a one-

shot version of the BFGS technique is consistently derived, including a prac-

tical method to bound the Hessian. After motivating and explaining the novel

methodology, section 7.5 discusses a number of adaptations to ensure the compat-

ibility between the in-parts continuous adjoint sensitivity calculation, introduced

in chapter 5, and the novel one-shot method. Results of this algorithm are then

presented for an unconstrained divertor design problem. Although the approach

is developed for magnetic divertor design, the novel one-shot method presented in

this chapter is more generally applicable. By combining the global convergence of

Griewank’s method with reduced computational costs and implementation effort,

the method offers an attractive alternative to other one-shot methods.
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Finally, inequality constraints should be considered. In aerodynamics appli-

cations, one-shot methods have been adjusted to handle a single state constraint

by either assuming the constraint to be active [55] or by using a penalty multi-

plier method [106]. However, in the present optimization problem with multiple

design constraints, these approaches are not suitable. In section 7.6, an outlook

is therefore given on a strategy to incorporate the design constraints in the one-

shot approach. This constrained optimization strategy, however, remains to be

verified in future research.:

7.1 Literature review on one-shot approaches

In section 2.2, one-shot methods were introduced as approximate rSQP methods

that directly solve for the KKT conditions of the PDE-constrained optimization

problem. Of course, one-shot methods are more than a direct Newton solution of

the KKT system. Indeed, a vast amount of literature exists on the stable iterative

solution of partial differential equations. Often, a stable solution of stationary

PDEs is only found using pseudo-timestepping methods or strong relaxation.

Considering again the generic PDE-constrained optimization problem

min
ϕ,q

I pϕ, qq (7.1)

s.t. cpϕ, qq “ 0,

the straightforward iterative solution of the approximate rSQP system»–0 0 A˚
0 B Bϕc˚
A Bϕc 0

fifl »– Δq
Δϕ
Δq˚

fifl “
»– ´∇qL

´∇ϕL

´c

fifl (7.2)

from equation (2.34) might therefore simply diverge. Only if the A, B, and A˚

matrices include sufficient relaxation, stable convergence of the one-shot method

can be achieved. Therefore, the matrices A and A˚ preferably include the relax-

ation of the original state solver.

:Parts of this chapter have been submitted for publication in “Blommaert, M.,

Dekeyser, W., Baelmans, M., Gauger, N.R. & Reiter, D. (2017). A practical globaliza-

tion of one-shot optimization for optimal design of tokamak divertors. Journal of Computational

Physics, 328, 399–412”.
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In fact, one-shot methods always aim at integrally reusing the original solver

in an attempt to inherit its stable convergence. The first introduction of one-shot

methods by Ta’asan as a novel boundary condition to the state and adjoint solver

illustrates this best [136]. The method solves the equations

Bq
Bt ´ cpϕ, qq “ 0,

Bq˚

Bt ´ ∇qLpϕ, q, q˚q “ 0,

∇ϕLpϕ, q, q˚q “ 0,

(7.3)

using the usual pseudo-time stepping iterations for state and adjoint equations

followed by a solution of the design equation. Hazra et al. [68, 69] later advocated

a simultaneous pseudo-time stepping framework, in which also the design equation

was relaxed using pseudo-time stepping. The equations

Bq
Bt ´ cpϕ, qq “ 0,

Bq˚

Bt ´ ∇qLpϕ, q, q˚q “ 0,

Bϕ
Bt ´ ∇ϕLpϕ, q, q˚q “ 0.

(7.4)

are then said to be preconditioned with an approximate rSQP matrix in the form

of equation (7.2) and iteratively solved.

The approach has been proven efficient for a number of aerodynamics de-

sign problems [69, 70, 127]. Although this is an interesting approach, it should

be noted that whereas the adjoint equations inherit the time scale of the state

equations, the design equations do not. One might therefore wonder what an ap-

propriate time scale for the design equation is. In the end, one thus still ends up

looking for an appropriate design relaxation. Moreover, it might be questioned

under which conditions this approach leads to convergence. A first step in the

direction of a convergence proof was taken in Ref. [79], where convergence of

linearly constrained quadratic optimization problems has been addressed.

In a more general context of fixed-point solvers, Griewank and Faure [64]

promoted simultaneous solution of state and adjoint equation using so-called

piggyback iterations. The name ‘piggyback’ stems here from the fact that the

state is continuously varying in the adjoint equations. The adjoint solvers is thus
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heading for a moving target and depends on state convergence to converge. These

piggyback iterations are especially useful when AD is applied, since functions and

derivatives are then evaluated simultaneously.

A subsequent publication extended the approach to one-shot optimization and

necessary conditions on the design preconditioner B were derived [62]. Eventu-

ally, Hamdi and Griewank [65] obtained a local convergence proof using a design

preconditioner B based on a doubly augmented Lagrangian merit function. The

convergence proof is then induced by proving descent of the one-shot method on

this penalty function that augments the Lagrangian with state and adjoint feasi-

bility penalties. Where the approach was illustrated in Ref. [65] for an academic

problem, Özkaya and Gauger first applied this new preconditioner for aerody-

namic shape optimization [104, 105]. The approach was afterwards extended to

global convergence by introducing line search algorithms based on this doubly

augmented Lagrangian merit function [66]. Further extensions comprise the in-

clusion of additional design constraints [147] and an extension of the convergence

theory to functional spaces [81, 82], allowing for adaptive grid refinement.

Bosse et al. finally examined so-called multi-step one-shot methods in the

fixed-point framework [23]. In these multi-step methods a design step is no longer

followed by a single state and adjoint step. Instead, multiple state and adjoint

iterations are performed after each design step. A lower bound for the number of

state and adjoint iterations per design step was then derived for local convergence.

An overview of some of these recent advances and some applications can be found

in Ref. [22].

In sections 7.2 and 7.3, a simple one-shot method based on the approach of

Hazra et al. is used for first tests. Afterwards, in section 7.4, the globalized one-

shot method of Hamdi and Griewank [65, 66] will be further discussed and will

serve as a basis for the introduction of a novel one-shot procedure. Throughout

the chapter, all optimization approaches are introduced in the generic optimiza-

tion framework (7.1) for easy referencing. It should be noted that the interpre-

tation in the in-parts adjoint framework of chapter 5 is easily done by replacing

the state q by the plasma state qpe. Similarly, model equations cpϕ, qq “ 0, cost

function Ipϕ, qq, and Lagrangian Lpϕ, q, q˚q should be replaced by rcpϕ, qpeq “ 0,rIpϕ, qpeq, and rLpϕ, qpe, q
˚
peq, respectively.
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7.2 A first attempt to one-shot magnetic diver-

tor design

7.2.1 One-shot approach

In a first step, the potential of one-shot algorithms for magnetic divertor design

is tested with an approach similar to that described by Hazra et al. [68, 69]. The

one-shot algorithm performs the following steps in each iteration.

Algorithm 7.1. A simple unconstrained one-shot optimization algorithm

1. Make a pseudotime-step Δt in the state equations and update q by perform-

ing one step on the state equations.

2. Make a pseudotime-step Δt in the adjoint equations and update q˚ by per-

forming one step on the state equations.

3. Using sk “ ϕk ´ ϕk´1 and yk “ ∇Îpϕkq ´ ∇Îpϕk´1q from the last two

iterations, calculate the design preconditioner Bk from

Bk “ β̄
sk

Jyk

skJsk
δij, with βmin ă β̄sk

Jyk

skJsk
ă βmax, (7.5)

and with β̄ a constant.

4. Make a design step by calculating ϕk`1 from ϕk`1 “ ϕk ´ B´1
k ∇Îpϕkq.

In this algorithm, the exact reduced gradient ∇Îpϕkq is obviously never avail-

able during one-shot optimization. The estimation ∇Îpϕkq « ∇ϕLpϕk, qk, qk̊q is
therefore used. This estimate improves as state and adjoint equations converge.

It can also be seen that the estimation of B from Eq. (7.5) will merely lead to

a scaled steepest descent step. Therefore, it will most probably not lead to the

computationally most efficient algorithm. Nevertheless, it allows the straight-

forward introduction of Hessian bounds that contribute to the robustness of the

algorithm.

In this first test, conservative bounds are chosen on the one-shot approach.

In the philosophy of simultaneous pseudotime-stepping, one might choose the

Hessian bounds βmin and βmax such that state and optimization convergence go

146



7.2 A first attempt to one-shot magnetic divertor design

at about the same pace. The order of magnitude for this Hessian relaxation (for

the normalized control variables in the code) can then be obtained by dividing

the typical number of iterations needed for state convergence by the number of

optimization iterations typically needed for nested optimization. One then arrives

at typical values of about 104. The bounds are therefore chosen as βmin “ 2000

and βmax “ 20000. β̄ is set to 1 for now, but can be increased to have additional

relaxation in the design steps. The one-shot procedure is started from a converged

state and costate for the initial configuration.

7.2.2 Set-up of an unconstrained WEST test case

The test case for this first one-shot study is based on the WEST case of the

previous chapter. The perturbation model is used for magnetic field calculations,

to reduce computational efforts and to simplify the setting for this first study

as much as possible. Since the introduction of design constraints clearly poses

additional challenges for the one-shot approach, an unconstrained framework is

favoured for this study. The design constraints hpϕq ď 0 are therefore removed

at this stage. As discussed, however, they are crucial since they avoid the occur-

rence of configurations that cause code crashes. Therefore, the cost functional

is modified with a penalty of augmented Lagrangian type. That is, the original

cost functional from (4.4) is replaced by

IApϕ, qq “ Ipϕ, qq ` μh� ` η‖h�‖2, (7.6)

with h� the active contraints, and μ and η weighting parameters of the penalty

terms. If μ approaches the Lagrangian multipliers of the constrained optimization

problem and if η is chosen sufficiently big, this is an exact penalty function and the

optimum of the original constrained optimization problem is a stable optimum

of the new penalty function (7.6) [103]. From a nested optimization study, it

is found that the maximal current limit on coil 14 is the only active constraint

at the optimum. Its corresponding Lagrange multiplier μ “ 0.9 can thus be

adopted. The quadratic penalty parameter is set to η “ 10. Of course, further

developments towards a constrained one-shot approach will later be necessary

after the application to this unconstrained problem is proven successful. Since
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this unconstrained setting is used for the one-shot tests throughout this chapter,

the augmented objective IA will simply be referred to as the objective I.

7.2.3 Discussion of first results

Starting from a converged state and costate, 5000 iterations of the one-shot

method are performed for a first convergence check. Notice that this is a low

number of iterations since full state convergence would require at least around

20000 iterations. Yet, it is sufficient to see whether the one-shot approach tends

to converge and to highlight some features of the one-shot method. The main

reason for applying this approach is the high computational cost as discussed

below.

In figure 7.1a, the feasibility of the different equations is analysed as a func-

tion of the one-shot iteration count. State and adjoint feasibility are represented

by their scaled residuals. The feasibility of the design equation is represented by

the norm of the design gradient ‖∇ϕL‖2. When analyzing the results, disturbing

jumps in residuals immediately draw the attention. Nevertheless, the cost func-

tional in figure 7.1b initially shows a good decrease and stagnates afterwards,

dominated by the gradient noise. However, the one-shot method is not able to

converge smoothly here, since the occurrence of the large gradient jumps leads

to sudden increases of the design steps and associated rises in state and adjoint

residuals.

Since these jumps thus impede one-shot convergence, a logical next step is to

trace their source and see whether they can be avoided. In figure 7.2, the design

gradient is shown for a nested optimization of the same unconstrained problem.

A similar jump in the design gradient is observed here at the third iteration,

although this does not prevent further optimality convergence. A quick scan of

objective and its directional derivative along the design step in the third iteration

(at constant state and adjoint) reveals that discontinuous gradient changes lie at

the basis of the problem. This can be clearly seen from figure 7.3, where objective

and directional derivative are depicted as a function of relative step size.

Studying this discontinuity in the design gradient ∇ϕL further in depth, the

source is pinpointed in the grid generator part of the code. As discussed in
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7.2 A first attempt to one-shot magnetic divertor design

Figure 7.1: Convergence of the first one-shot optimization attempt. The left fig-

ure shows (from top to bottom) the state (blue) and adjoint (red) scaled residuals,

and the scaled design feasibility ‖∇ϕL‖2 as a function of one-shot iterations. Dis-

continuities in ∇ϕL clearly impede proper one-shot convergence, though the cost

function (right) initially decreases normally as a function of the one-shot iteration

count.

Figure 7.2: The reduced gradient ∇Î is shown during nested optimization con-

vergence of the same unconstrained test case. Notice the gradient jump around

iteration 3.

chapter 6, the outer grid boundary in the SOL is either chosen at a magnetic

field line that includes the second X-point, or at the first field line that touches a
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Figure 7.3: Analysis of the cost function and directional derivative between iter-

ation 3 and 4 of the nested optimization study (indicated grey in figure 7.2) shows

a discontinuous derivative. The left figure shows the cost function value as a func-

tion of the relative step size and evaluated at constant plasma state. The right

figure shows its discontinuous derivative (evaluated at constant plasma state and

costate). The dots represent the values at which these quantities where evaluated.

vessel boundary different from the target plates. Coincidence wants that in this

case, these two field lines appear to coincide during optimization (see figure 7.4).

This results in regular switching between the two possible grid boundaries. Since

the location of the 2nd X-point is strongly influenced by the divertor coil currents,

the switching gives rise to an associated strong change in design sensitivity.

Finally, the one-shot algorithm can be compared to the nested solution of

the same unconstrained problem. After 16 optimization iterations, the nested

optimization algorithm reaches the same cost function value (I “ 1.16) as the

one-shot algorithm. Notice that, in principle, the cost function value can still

change if state and adjoint equations are converged at the final design. Never-

theless, this indicates that the one-shot method tends to find the right direction.

The evolution of the design variables is shown in figure 7.5. A similar trend is

found here as well for nested and one-shot optimization. Given the similarity, it

can be informative to compare the computational cost spent so far in the two ap-

proaches. In table 7.1, it can be seen that while the nested approach needs 670000

iterations on state and adjoint equations, only 10000 are needed for one-shot. Of
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7.2 A first attempt to one-shot magnetic divertor design

Figure 7.4: An illustration of the grids that are found near gradient discontinu-

ities. Notice that the two means to choose the outer SOL grid boundary, the second

X-point location or the first vessel encounter of a magnetic field line in between

two target plates, coincide. This causes the discontinuities in the gradient observed

in figure 7.1.

course, evaluations of Î and ∇Î in line search contribute to the total number of

function evaluations during nested optimization. It therefore seems the potential

gain in computational cost of using one-shot optimization is enormous (approx-

imately a factor 70). These differences are, however, much less pronounced in

wall-clock time. The wall-clock time indicated in table 7.1 is given for the 20-

core workstation with 2 Intel® Xeon® processors of type E5-2670 v2, on which

the routines are run. It should be noted that the values are purely indicative

since it is subject to coincidental parameters like the amount of jobs being pro-

cessed. Although a speed-up of about a factor 3 in wall-clock time is indicated

in the table for one-shot optimization, it only obtains this speed-up if the finite

difference parts of the gradient calculations are parallelized. The obvious reason

that the reduction in iterations is not reflected as pronounced in wall-clock time
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Figure 7.5: Preliminary comparison of the design variable history of the one-shot

optimization approach with that of the nested approach. Remark that the compar-

ison is only indicative since design variables are still evolving in both the one-shot

and the nested optimization approach. In comparison, optimization iterations in

the nested approach demand 40000 system solves of state and costate for each

design step, while one-shot only demands two.

(and not at all in CPU-time) is the significant increase in in-parts adjoint design

gradient evaluations. While the computational cost of these gradient calculations

was negligible in the nested optimization approach, they dominate in the one-shot

approach. In comparison, state and adjoint equations jointly take about 3 sec-

onds per iteration, while evaluation of ∇ϕL takes slightly more than 30 seconds

for each design variable when approximated by central difference calculations. A

closer examination reveals that grid generation accounts for the majority of the

gradient evaluation cost.

In conclusion, the one-shot method shows bad convergence behaviour because

of the non-smooth choice of grid boundary. It should be noted that this boundary

is artificially chosen in absence of state-of-the-art plasma edge techniques calcu-

lating up to the vessel wall [5, 27] and should therefore not appear if optimization

is combined with such a code. Given the huge potential gain in computational

cost of one-shot methods, one-shot divertor optimization will be studied further

in the next section in absence of this gradient discontinuity near the optimum.

However, the high computational cost from evaluating the in-parts adjoint gra-
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Nested One-shot

# state/adjoint iterations 670000 10000

# gradient evaluations 39 5000

wall-clock time (hours) 320 109

Table 7.1: Comparison of nested and one-shot optimization efficiency. From top

to bottom, total number of state and adjoint iterations, design gradient evalua-

tions ∇ϕL, and wall-clock time are listed for the nested and one-shot optimization

studies in figure 7.5. The wall-clock time is given for the 20-core workstation with

2 Intel� Xeon� processors of type E5-2670 v2, on which the routines are run

and is subject to coincidental parameters like the amount of jobs being processed.

Gradient calculations are parallelized for one-shot optimization.

dient in each one-shot iteration is tackled first. To this end, a more efficient

alternative to grid generation will be developed.

7.3 Acceleration of the one-shot procedure

It is clear that in one-shot optimization, the increased number of sensitivity cal-

culations urges for faster sensitivity calculations. Indeed, the argument from

chapter 5 that the influence of magnetic field calculation and mesh generation

on the total computational cost is relatively low does no longer hold. Although

the in-parts adjoint procedure is kept for now, a reduced CPU-time associated to

computing grid derivatives and design updates is aimed for by evaluating qggpψq
using a grid deformation algorithm instead of a full mesh generation step. Grid

deformation methods have shown their virtue both for moving boundary prob-

lems and for optimal design[49]. Since no such method exists for field aligned

grids, a grid deformation methodology for structured curvilinear field-aligned

grids is elaborated in this section. More specifically, a grid deformation method

is developed based on the spring deformation analogy [8, 10].
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7.3.1 Grid deformation method

The objective of the grid deformation method is twofold. On the one hand, the

grid deformation method needs to realign an original grid with node locations

xG to the new magnetic flux function ψ. On the other hand, it needs to ensure

that the grid is sufficiently smooth and orthogonal. In figure 7.6, the concept

of the spring deformation method is illustrated. The initial grid is deformed to

match the new flux function, while the equilibrium in the springs is retrieved.

Remark that because of the nonlinear flux function ψ, an iterative approach is

necessary to tackle the spring deformation problem. For the radial movement of

the grid nodes, the nonlinearity of ψ necessitates successive linearizations to find

node locations that lie on the new flux surfaces. If the nodes lie on the desired

flux surfaces, the problem reduces to moving the nodes along the flux surfaces to

retrieve the spring equilibrium. For this poloidal movement, the curved geometry

of the flux surfaces is an additional source of nonlinearity that needs linearization.

The iterative grid deformation proposed below linearizes both radial and poloidal

movements and moves the nodes in both directions until both criteria are met.

Let x “ R eR ` Z eZ be the Cartesian coordinates of a set of grid nodes that

satisfies the spring equilibrium on the new flux surfaces. The grid deformation

solver then seeks the movement dx “ dR eR ` dZ eZ, which governs the trans-

formation between an initial grid x0 and the deformed grid x “ x0 ` dx. A

robust choice of the initial node locations x0 will be further discussed at the end

of this section.

Expressing the movement dx of the grid nodes in the curvilinear coordi-

nate system peθ, erq aligned with the magnetic field will significantly simplify the

expressions of the grid deformation solver and will lead to a block diagonal defor-

mation matrix as will be shown further. Considering a linearized step Δxk, the

grid deformation dx is then approximately found by dxn after n iterations that

solve for the linearized steps Δuk and Δvk, in the poloidal and radial directions,

respectively:

dx « dxn “
nÿ

k“1

Δxk “
nÿ

k“1

Δuk eθpxkq ` Δvk erpxkq. (7.7)
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Figure 7.6: The concept of the novel grid deformation method for flux-aligned

curvilinear coordinate systems. Starting from an initial grid with grid nodes (empty

dots) lying on an initial set of flux surfaces (dashed lines), the grid deformation

method adapts the node positions to lie on the flux surfaces of a new poloidal

flux function ψ (solid lines). Simultaneously, the final node positions (solid dots)

retrieve force balance along the magnetic flux surfaces in a system of springs that

connects neighbouring nodes. The springs connected to one particular node are

illustrated in red.

Here, eθpxkq and erpxkq are the Cartesian unit vector representations of the eθ

and er directions at locations xk.

Let us now consider the linearized equations after l iterations of this iterative

solver. The first condition demands alignment of the grid edges with the magnetic

field. This can be solved for with Newton’s method (at least for limited magnetic

field changes) once one knows on which flux lines the grid nodes must lie. The

desired flux values for each node of the grid are combined in a vector ψd. A

linearized deformation step Δvl can then be solved for as

r∇rψsl Δvl “ ψd ´ ψl, (7.8)

with ψl and r∇rψsl the values of flux function ψ and its radial gradient ∇rψ at

the nodes xl. Remark that the poloidal movement Δul does not appear, since
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∇θψ ” 0.

Finding the poloidal movement is somewhat more complex. The grid should

be stretched to match the same domain boundaries (the target surfaces) again,

while it retains the refinements towards crucial zones (targets, separatrix,...). For

this purpose, the spring deformation method is used [8, 10]. Each node i is

connected to its N neighbouring nodes j “ 1 : N (N “ 8 in this case) using

fictitious springs with linear deformation constant

Ki,j “ 1

Lij,init

, (7.9)

and with Lij,init the initial length of the springs. Since the radial movement (in

direction er) is constrained by the demand that the grid cells lie on the flux

lines ψd, the spring equilibrium is then solved as if the grid nodes can only slide

along bars of constant ψ. Static equilibrium is then found by demanding that

the poloidal force Fθ “ FR peR ¨ eθq ` FZ peZ ¨ eθq “ 0 at all nodes. Denote the

component of the linearized step Δxl at node i as Δζi. Additionally, consider

the spatial decomposition of this component using non-boldfaced symbols as

Δζi “ ΔRi eR ` ΔZi eZ “ Δui eθ,i ` Δvi eθ,i. (7.10)

The iteration number l is left out from these expressions for ease of notation.

Similarly, consider the component dζi at node i of the total deformation dxl

from all previous iterations 1, . . . , l according to (7.7) as

dζi “ dRi eR ` dZi eZ. (7.11)

Given Hooke’s law for the spring forces, the requirement for static equilibrium at

node i is then given by

Fθ,i “
Nÿ
j“1

Ki,j pdRi ´ dRjq peR ¨ eθ,iq `
Nÿ
j“1

Ki,j pdZi ´ dZjq peZ ¨ eθ,iq “ 0, (7.12)

with N the number of neighbouring nodes. Linearizing this equation in the

peθ, erq coordinate system leads to

BFθ,i

Bθ Δui “
Nÿ
j“1

Ki,j pΔui ´ Δuj peθ,j ¨ eθ,iq ´ Δvj per,j ¨ er,iqq , (7.13)
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where the iteration number k is left out for ease of notation. Rewriting the spring

equilibrium at node i, Fθ,i ` BFθ,i

Bu Δui = 0, to isolate all sources of the equation

on the right hand side finally gives

Nÿ
j“1

Ki,j pΔui ´ Δuj peθ,j ¨ eθ,iqq “
Nÿ
j“1

Ki,j Δvj per,j ¨ eθ,iq ´ (7.14)

Nÿ
j“1

Ki,j pdRi ´ dRjq peR ¨ eθ,iq ´
Nÿ
j“1

Ki,j pdZi ´ dZjq peZ ¨ eθ,iq.

After solving equation (7.8) for Δvl, this last equation can be solved for the

components of Δul.

The boundary conditions of this equation are given by fixing the position of

the target nodes. Starting from a position X1 of the node, the movement Δub

of a boundary node is given by solving for the intersection with a section of the

target polygon rXt,Xt ` ΔXts (see figure 7.7). The intersection can be found

from the system of equations#
X1 ` Δub eθ,1 ` Δv er,1 “ X0

Xt ` tΔXt “ X0

(7.15)

that solves for the intersection point X0. Eliminating t and X0 and substituting

X2 “ X1 ` Δv er,1 yieldsˆ
Rθ

ΔRt

´ Zθ

ΔZt

˙
Δub “ Rt ´ R2

ΔRt

´ Zt ´ Z2

ΔZt

, (7.16)

where Rθ and Zθ represent the R and Z components of the unit vector eθ, respec-

tively. Similarly, the Cartesian decompositions of the vectors Xt, ΔXt, and X2

are given by Xt “ RteR `ZteZ, ΔXt “ ΔRteR `ΔZteZ, and X2 “ R2eR `Z2eZ,

respectively. In conclusion, since Δvl can be solved for independently by (7.8), a

sequential solver can be used that iteratively solves for the radial movement Δvl

and the poloidal movement Δul from the spring equilibrium equations (7.14)

with boundary conditions given by (7.16).

It should be noted that the choice of the initial grid node locations x0 is not

trivial for this grid deformation method. Whereas in typical grid deformation

solvers x0 are the points of the original node locations, a similar approach would
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Figure 7.7: Illustration of the boundary condition for the poloidal node movement

Δu. The nodes are shifted to lie on the target surface.

lead to unwanted results here. That is, if the magnetic field is altered, the so-

called X-point location is changed. Recall, however, that the X-point is a saddle

point of the magnetic flux function ψ. Therefore, for each value ψd close to the

flux function value of the X-point ψX , two solutions can be found in the radial

direction. Namely, one at each side of this saddle point. If for the novel magnetic

flux ψ, some of the nodes at initial locations x0 are not at the correct side of the

X-point anymore, (7.8) will converge for these nodes to a location at the wrong

side of the X-point. Therefore, one cannot simply use the locations xG of the

initial grid as initial node locations. To circumvent the problem, the initial node

locations are chosen as

x0 “ xG ` prX ´ rX,Gq eR ` pzX ´ zX,Gq eZ, (7.17)

with XX “ rX eR `zX eZ the new location of the X-point and XX,G “ rX,G eR `
zX,G eZ the location of the X-point on which the original grid was constructed.

Remark that when multiple X-points are present, one might need to extend this

approach to shift the initial locations only in a narrow region around the X-points.

The grid deformation procedure gives significant speed-up with respect to full

mesh generation. Using grid deformation, the total computational time of the

grid construction is reduced by approximately a factor of ten. Nevertheless, larger

deformations might lead to qualitatively inferior grids. For the WEST configu-

ration, presented in the next section, such grid irregularities are mainly situated

at the crossing of vessel structure and private flux grid boundary. In literature, a

local stiffening of the springs is proposed to circumvent these irregularities near
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boundaries [10]. In our algorithm, a stiffening of the poloidal springs (those con-

necting 2 points on the same flux line) on the first couple of flux lines near the

private flux boundary has proven the most effective way to resolve the problem.

In the optimization procedure, qualitatively inferior grids are easily avoided by

creating a new grid after a fixed number of (one-shot) optimization iterations or

when the design change since the last mesh generation event exceeds a limit, that

is ‖ϕ´ϕG‖ ą ζ, with ϕG the control variables associated to the last constructed

grid with node locations xG and ζ a fixed code parameter. Finally, the grid

deformation method is a step further towards future extension of the in-parts

adjoint approach to full adjoint sensitivity calculations including grid deforma-

tion (and eventually magnetic field calculation), similar to the procedure found

in Ref. [102]. The further elaboration of this full adjoint approach, however,

still requires a lot of derivational effort and is therefore left for future work. The

grid deformation method will be used to accelerate design updates and (in-parts

adjoint) sensitivity calculations in the further tests on one-shot optimization.

7.3.2 Adapted test case

It is clear that with the grid deformation method at hand, the computational

efficiency of the one-shot method is much more competitive. A remaining problem

is the presence of the gradient discontinuities. In an attempt to change the case

as little as possible but avoiding the discrete switching of grid boundaries, the

currents in coils 12 and 13 (see figure 6.2) are set to the optimum of the nested

optimization study, while the currents in coils 10 and 11 are kept fixed to their

initial values. This choice of currents aims at keeping the grid boundary as far as

possible from the gradient discontinuity in the initial stage of the optimization,

while the inequality constraints are still likely to be obeyed at the novel optimum

using the same penalty parameters in the objective function IA.

Using the grid deformation method for design updates and within the in-parts

adjoint sensitivity evaluations, the one-shot method from the previous section

is now used to optimize the lower divertor coils (coils 14-17). This time, the

one-shot algorithm consists of three stages. First, state and adjoint iterations

are alternated to converge the initial state. This is the so-called piggybacking
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technique described in section 7.1. Then, a one-shot optimization follows. When

optimization stagnates, piggybacking is again used to converge state and adjoint

equations. These stages are clearly indicated in the figures using roman numbers

I, II, III.

7.3.3 Results and discussion

Convergence behaviour

In figure 7.8, the evolution of the (in-)feasibility of state, adjoint, and design

equation is shown. Because of the changed test case, gradient discontinuities

related to grid boundary switching are now only retrieved entirely at the end of

the optimization cycle II (around iteration 21000). Smaller discontinuities do,

however, still seem to appear in the course of one-shot optimization. This can

be seen by analyzing the design feasibility ‖∇ϕL‖2 (green curve in figure 7.8).

Looking at state and adjoint residuals, one notices that they remain very noisy.

Partially, these residual jumps are due to the regular remeshing. The sudden

grid change causes the residuals to increase instantaneously, but they decrease

quite quickly again afterwards. Notice that the occurence of remeshing events

is shown just above figure 7.8. The other sources of gradient discontinuities

have not been traced. In a mesh generator, they are probably hard to entirely

eliminate since linear interpolations, for instance, are omnipresent. Nevertheless,

better convergence is already observed in comparison to the first trial. Moreover,

compared to a nested algorithm that optimizes the same unconstrained test case

without grid deformation, the match in both control variables and cost function

value at the optimum is good. This can be seen in table 7.2, by comparing the

first two columns.

Optimization efficiency

Given the very strict choice of relative step bounds βmin and βmax, the used op-

timization method could be interpreted as a glorified one-shot equivalent of the

steepest descent method. Further acceleration of optimality convergence could

therefore be obtained if these step bounds are “loosened” and eventually opting

for a more refined Hessian estimation technique than equation (7.5). As such,

160



7.3 Acceleration of the one-shot procedure

Figure 7.8: Convergence plots for an adjusted one-shot optimization attempt

including the novel grid deformation method. The figure shows (from top to bot-

tom) the state (blue) and adjoint (red) residuals, and the design feasibility ‖∇ϕL‖2
(green) as a function of one-shot iterations. Before and after one-shot optimiza-

tion, piggybacking iterations are used to simultaneously converge state and adjoint

residuals. Remeshing events are indicated above the figure.

superlinear convergence of the optimization procedure might be found. The relax-

ation of these step bounds is therefore tested on the same case. In table 7.2, the

parameters β̄, βmin, and βmax are listed for these two tests, along with the final

cost function value and design variables after optimization and state convergence.

The values βmin and βmax in the first additional test called ‘one-shot 2’ are

chosen to relax both the minimal and maximal Hessian bounds in the algorithm.

By decreasing βmin from 2 ¨103 to 1 ¨102 with respect to ‘one-shot 1’, the maximal

design step increases by a factor of 20. To avoid that this increased step size would

lead to divergence of the one-shot optimization, β̄ is also increased by a factor

of two to give some more design relaxation. Since increasing the upper Hessian
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bound βmax would not directly be expected to trigger convergence problems at

first sight, it is increased by a factor 250. In the ‘one-shot 3’ case, βmin, βmax,

and β̄ are all increased by a factor of ten with respect to ‘one-shot 2’. This is

equivalent to relaxing the design step size by an additional factor of ten. These

two additional one-shot tests are run for the same amount of one-shot iterations

(25000) as the ‘conservative’ one-shot test ‘one-shot 1’.

Nested one-shot 1 one-shot 2 one-shot 3

β̄ z 1 2 20

βmin z 2 ¨ 103 1 ¨ 102 1 ¨ 103
βmax z 2 ¨ 104 5 ¨ 106 5 ¨ 107
Îpϕ̄q 1.08 1.07 1.07 1.18

ϕ̄1 0.76 0.77 0.78 0.75

ϕ̄2 0.07 0.08 0.07 0.28

ϕ̄3 0.61 0.57 0.56 0.28

ϕ̄4 -0.19 -0.16 -0.15 0.27

wall-clock time (hours) 437 210 198 222.5

Table 7.2: A summary of the results obtained using different parameters β̄, βmin,

and βmax in the one-shot routine compared to the nested optimization study. Cost

function value and design variables are listed after 25000 one-shot iterations and

state convergence. The wall-clock time is estimated for the 20-core workstation with

2 Intel� Xeon� processors of type E5-2670 v2, on which the routines are run, and

is subject to coincidental parameters like the amount of jobs being processed. It

excludes initial and final state and costate convergence for both nested and one-

shot optimization. In comparison to the calculations listed in table 7.1, the finite

difference parts of the gradient calculation are not parallelized here.

It can be seen that the last attempt with wider bounds (one-shot 3 in table 7.2)

did not converge to the same optimum yet. For this test, convergence stalls

at regular times. This can be seen from figure 7.9, where the cost function

is shown for the different one-shot attempts. The red curve indeed stalls at

intermediate values of the cost function. Further analysis shows that 93% of the

one-shot iterations use the highest possible value of the Hessian, B “ βmaxδij.

This leads to the smallest possible step in design space and thus a convergence
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stall. With βmin as large as 5 ¨107, they are even smaller than the finite difference

steps in the in-parts adjoint gradient calculations. Therefore, they might give

very misleading gradient estimations. Additionally, small steps near gradient

discontinuities might lead to very large Hessian estimations that in turn give rise

to even smaller steps. Therefore, a sufficiently restrictive upper Hessian bound

βmax seems an important condition for convergence.

Looking into the ‘one-shot 2’ case in table 7.2, it can be seen that the same

optimum is retrieved as the one found from the nested optimization study and

the first one-shot case. However, looking at the blue curve of figure 7.9, one

can see that convergence is very irregular. It seems rather shear luck that the

optimization procedure does not diverge. It is clear that the increased maximal

step size is the cause of this under-damped oscillatory convergence. Convergence

would greatly benefit here from the use of a globalization approach. In conclusion,

the Hessian bounds can thus not be relaxed much more without tolerating further

convergence irregularities.

In regard to wall-clock times, it can be seen from table 7.2 that the grid

deformation method turned the balance in favour of the one-shot method. In-

deed, while in table 7.1 the one-shot method needed parallelization of the finite-

difference gradient part to obtain a speed-up, this is no longer necessary when

the grid deformation method is used. Moreover, while performing 5 times as

much iterations now in comparison to the one-shot trial without grid deforma-

tion and simultaneously dropping the parallelization, the wall-clock time only

doubled going from the first one-shot trial in table 7.1 to the one-shot runs in

table 7.2.

Conclusions

A field-aligned grid deformation method is introduced that efficiently accelerates

design steps in the one-shot method. Additionally, an adjusted test case is set-up

to study one-shot convergence behaviour in absence of the gradient discontinuities

introduced by the evitable choice of outer grid boundary. Indeed, the remaining

gradient discontinuities are much smaller, but they do not disappear. In a study

that attempts different parameters for the design step calculation, it is found
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Figure 7.9: The evolution of the cost function value during one-shot optimization

using different values β̄, βmin, and βmax in the one-shot routine. The values for

the different cases, one-shot 1 (black curve), one-shot 2 (blue curve), and one-shot

3 (red curve) are summarized in table 7.2.

that convergence is additionally very dependent on these parameters. To find

parameter-independent convergence behaviour, a globalization procedure such as

the one proposed by Hamdi and Griewank [66] might be considered. Using a line

search procedure, the influence of the gradient discontinuities might additionally

be eliminated. Therefore, the application of such a globalized one-shot procedure

is the subject of the next section. Since the existing theory on one-shot globaliza-

tion was derived for use in combination with algorithmic differentiation, the main

focus of the next section will be on adapting this globalization strategy for its

practical and efficient use in the present (in-parts) continuous adjoint framework.

Additionally, a more sophisticated approach to Hessian estimation will be pro-

posed that is less sensitive to the sporadic occurrence of gradient discontinuities.
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7.4 A novel one-shot strategy with a practical

augmented Lagrangian globalization

In the nested approach to optimal magnetic divertor design, globalization was

achieved through a line search strategy that enforces the strong Wolfe conditions

[12]. It is clear that in combination with one-shot optimization, these meth-

ods need revisiting. Indeed, looking solely at the objective function data in line

searches is misleading since state and costate are not converged in each optimiza-

tion step. In section 7.4.1, the doubly augmented Lagrangian method of Hamdi

and Griewank [65, 66] is considered for this purpose. This requires introducing

general notions on fixed-point solvers first, along with their use in optimization.

After summarizing their methodology, remaining challenges for practical appli-

cation are indicated. Throughout this section, a discrete setting is supposed for

the model equations, since the original theory of Hamdi and Griewank is per-

formed in a discrete setting. For ease of notation, the subscript p¨qh introduced

in section 2.1.2 to indicate discretized variables will not be explicitly written.

Nevertheless, the methods could in principle entirely be introduced in functional

spaces. The reader is referred to Kaland et al. [81, 82] for the extensive treat-

ment of the convergence theory in functional spaces. Next, starting from this

sound theoretical basis, an adjusted strategy for globalized one-shot optimization

is derived in sections 7.4.2 and 7.4.3 that aims at reducing implementation efforts

and increasing the efficiency. Furthermore, a robust BFGS approach to Hessian

estimation for one-shot optimization is elaborated in section 7.4.4. Recall from

the previous section that curvature bounds were found to be important for the

simplified Hessian calculation of Ref. [69]. Therefore, a strategy will be proposed

here to include curvature bounds on the BFGS Hessian estimate. Finally, in sec-

tion 7.5, the novel one-shot method is applied to the unconstrained optimization

problem.
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7.4.1 One-shot optimization using a doubly augmented

Lagrangian function

Optimization with fixed-point solvers

The essential assumption of the fixed-point theory is that the model equations

cpϕ, qq “ 0 can be transformed in a fixed-point iteration form

q “ Gpϕ, qq, (7.18)

where the Jacobian BqG should have a spectral radius ρ ă 1, in order to have a

contractive iteration procedure qk`1 “ Gpϕ, qkq that leads to a feasible solution

q “ qpϕq. Remark that the fixed-point solver G can easily be linked to the

model contraint c by the relation

c “ ApGpϕ, qq ´ qq,
where A is given by the solution procedure. For a direct Newton solver, A “
´Bqc. In the plasma edge code, a pseudo-time stepping scheme is used to iterate

the equations Bq
Bt “ c to steady state. One could roughly say that this would

correspond to A “ ´ 1{ω `Bqc ´ I{Δt
˘
, with I an identity matrix of appropriate

dimensionality and ω a constant relaxation factor. In reality, the state equations

are solved with a segregated solver that gives rise to an inexact approximation of

the latter expression, as discussed in section 3.3.4.

Using the fixed-point iteration form of the discrete model equations, the KKT

conditions can be derived from the Lagrangian [65]

LGpϕ, q,y˚q “ Ipϕ, qq ` pGpϕ, qq ´ qqJy˚ “ Npϕ, q,y˚q ´ qJy˚, (7.19)

with Npϕ, q, q˚q the so-called shifted Lagrangian. The KKT-conditions then read$&%
q̄ “ Gpϕ̄, q̄q State

ȳ˚ “ ∇qN “ BqI pϕ̄, q̄qJ ` BqG pϕ̄, q̄qJ ȳ˚ Adjoint

0 “ ∇ϕN “ BϕI pϕ̄, q̄qJ ` BϕG pϕ̄, q̄qJ ȳ˚ Design

. (7.20)

In comparison to the KKT conditions based on the model equations cpϕ, qq “ 0,$&%
∇q˚L “ c pϕ̄, q̄q “ 0 State

∇qL “ BqI pϕ̄, q̄qJ ` Bqc pϕ̄, q̄qJ q̄˚ “ 0 Adjoint

∇ϕL “ BϕI pϕ̄, q̄qJ ` Bϕc pϕ̄, q̄qJ q̄˚ “ 0 Design

,
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the equations (7.20) give rise to slightly different adjoint variables ȳ˚ “ AJq̄˚

that are found using the adjoint iterator [62]

y˚
k`1 “ ∇qNpϕ, qk,y

˚
kq. (7.21)

If iterations of qk`1 “ Gpϕ, qkq are used to converge the state q and the adjoint

iterations yk̊`1 “ ∇qNpϕ, qk,yk̊q are used to converge the adjoint variables, the

gradient of the reduced objective∇Î equals the design sensitivity∇ϕN pϕ, q̄, ȳ˚q.
Note that this framework is the natural representation of gradient calculations

if backward mode AD is used. Indeed, the variables yk̊ “ dI{dqk correspond

to the intermediate variables that are used in the backward swipe of AD to

evaluate the objective gradient ∇Î with the chain rule [63]. However, these type

of gradient calculations are memory-intensive since all forward state variables

qk have to be kept to evaluate the adjoint iterates yk̊`1 with equation (7.21).

Therefore, if a steady-state solution is sought, one might rather use a technique

called reverse accumulation that replaces qk in the evaluation of yk̊`1 by the final

value of the state variables qn “ qpϕq [31]. Alternatively, the earlier introduced

piggyback iterations might be used to converge the state and adjoint equations

simultaneously [64].

In this fixed-point framework, it can easily be seen that the adjoint iterator

has the same spectral radius ‖Bqy˚N‖ “ ‖BqG‖ as the forward equation, which

means that primal and adjoint have the same contraction rate. Since the adjoint

equation depends on the state q, the adjoint in general lags somewhat behind,

a phenomenon called dual retardation. In Ref. [66], it was proven that asymp-

totically, for very demanding convergence criteria, the dual retardation becomes

smaller than one. That is, the adjoint residuals catch up with the state residuals.

The essential last step is now the extension to one-shot optimization. In the

next section, the convergence theory of Hamdi and Griewank is presented for a

Jacobi-type one-shot iteration [65]. In each iteration, one step on state, adjoint,

and design equation is performed as»– qk`1

yk̊`1

ϕk`1

fifl “
»– Gpϕk, qkq

BqNpϕk, qk,yk̊qJ
ϕk ´ B´1

k BϕNpϕk, qk,yk̊qJ

fifl . (7.22)
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For a specific choice of preconditioner B, convergence can then be shown if the

design space is assumed locally convex. Additionally, since the convergence proof

is based on obtaining descent on an augmented Lagrangian type function, the use

of a globalization approach that uses the same merit function is a quite natural

extension elaborated in Ref. [66].

Doubly augmented Lagrangian theory

The one-shot method of Hamdi and Griewank looks for descent on the doubly

augmented Lagrangian function

La
G pϕ, q,y˚q “ αG

2
‖Gpϕ, qq´q‖2`βG

2
‖∇qNpϕ, q,y˚q´y˚‖2`Npϕ, q,y˚q´qJy˚,

(7.23)

with αG and βG positive weighting coefficients for the forward and dual feasibility

penalties, respectively. It was proven in [65] to be an exact penalty function if

the weighting coefficients obey the inequality

αGβG p1 ´ ρq2 ą 1 ` βGθ , with θ “ ‖BqqN‖. (7.24)

This means that minimizing the augmented Lagrangian (7.23) yields the same

solution as those given by the KKT system of the original problem. Furthermore,

it is shown that the step increment vector

s pϕ, q,y˚q “
»– Δq “ Gpϕ, qq ´ q

Δy˚ “ BqNpϕ, q,y˚qJ ´ y˚
Δϕ “ ´B´1BϕNpϕ, q,y˚qJ

fifl , (7.25)

is a descent direction of the doubly augmented Lagrangian, if the stronger con-

dition a
αGβG p1 ´ ρq ą 1 ` βG

2
θ (7.26)

is met and if a sufficiently large design space preconditioner B is chosen.

To prove this last property, the gradient of the augmented Lagrangian is

decomposed in [65] as

∇La
G pϕ, q,y˚q “ ´Ms pϕ, q,y˚q ,where (7.27)

M “
»– αGΔGJ

q ´I ´ βGBqqN 0
´I βGΔGq 0

´αGBϕGJ ´βGBqϕNJ B

fifl , and ΔGq “ I ´ BqG.
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Requiring the step s to yield descent on La
G corresponds to requiring that

sJ∇La
G “ ´sJMs “ ´sJM ` MJ

2
s ă 0, (7.28)

or, equivalently, that M or pM ` MJqL
2 is positive definite. Further elaboration

shows that it is sufficient to choose B large enough, and

αGβGΔḠq ą
ˆ
I ` βG

2
BqqN

˙ `
ΔḠq

˘´1

ˆ
I ` βG

2
BqqN

˙
, (7.29)

where ΔḠq “ 1{2 pΔGq ` ΔGJ
q q. Condition (7.29) is then shown to be implied

by equation (7.26).

Moreover, in [66] a sufficient condition for B was derived. Using large param-

eters αG and βG, equation (7.29) can easily be satisfied. However, increasing the

penalties αG and βG leads to reduced design steps Δϕ and therefore slower con-

vergence of the optimization procedure. The penalties should therefore be chosen

as small as possible to obtain a fast convergence of the one-shot iterations. Using

(7.26) as equality and minimizing αG leads to the choice of weighting coefficients

αG “ 2θ

p1 ´ ρq2 and βG “ 2

θ
. (7.30)

For the design preconditioner B, it is pointed out in [66] that B « BϕϕL
a
G,

which turns to an equality at primal and dual feasibility. A quasi-Newton BFGS

update strategy was therefore proposed where

BΔϕ « ∇ϕL
a
Gpϕ ` Δϕ, q,y˚q ´ ∇ϕL

a
Gpϕ, q,y˚q (7.31)

is employed as a secant equation for the Hessian update, with

BϕLa
G “ αGΔqJBϕG ` βGΔy˚JBqϕN ` BϕN. (7.32)

Furthermore, a set of globalization strategies is listed that look for descent on La
G

in the direction s. Global convergence could then be proven under reasonable

assumptions.
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Discussion

The procedure of Hamdi and Griewank is the first one-shot procedure that guar-

antees convergence. However, implementation might be more cumbersome than

the classical ad-hoc one-shot methods and the method might not be the fastest in

terms of CPU time. In view of implementation efforts, especially the need of a sec-

ond order adjoint (SOA) for the evaluation of BqϕNJΔy˚ in (7.32) is a drawback.

In particular in a continuous adjoint framework, the additional derivation and

implementation of this second derivative are impractical. Furthermore, it adds

two new equations to be solved to the iterative optimization procedure, namely

the perturbed forward and the SOA equation, having also significant repercus-

sions on computational cost. Alternatively, a finite difference approximation for

this term is proposed in [66]. Also with this approach at least one additional

state calculation is needed in each one-shot iteration. A solution to this problem

is offered in the first part of section 7.4.2.

Secondly, the parameters derived are sufficient for convergence but not strictly

necessary, so that smaller penalties might still be adequate and may lead to ac-

celerated convergence. Also, it should be noted that the choice of an appropriate

norm for the feasibility penalties in equation (7.23) is not straightforward. Es-

pecially in application of the approach to a problem governed by a system of

PDE’s, it is clear that using a regular 2-norm might lead to unwanted results.

Indeed, depending on the units or scaling of individual equations, the conver-

gence of the one-shot approach might then be significantly altered. Especially in

nuclear fusion applications, where densities and temperatures are not in everyday

ranges, one equation (e.g. ion continuity equation) in ‖Gpϕ, qq ´q‖ might dom-

inate all other equations so that the feasibility penalty of other equations ends

up in the range of numerical error. Additionally, line searches on the augmented

Lagrangian function are quite expensive, since they require design, state, and

costate evaluations. These arguments motivate a further reformulation of the

feasibility penalty in section 7.4.2.

Thirdly, the evaluation of ∇ϕL
a
Gpϕ`Δϕ, q,y˚q needed in the Hessian update

requires an additional evaluation of the design gradient. As appeared in the pre-

vious section, the evaluation of the design gradient has a dominant contribution
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to the total computational cost. In section 7.4.4, a more convenient alternative

will be offered, based on theoretical considerations.

7.4.2 Derivation of a practical augmented Lagrangian

merit function

Considerations on the adjoint feasibility penalty

As discussed in section 7.4.1, the adjoint feasibility penalty in the doubly aug-

mented Lagrangian (7.23) complicates implementation and slows down the one-

shot optimization. Therefore, it may be worthwhile questioning the necessity

of this term. In several applications, the θ occurring in the “optimal” penalty

parameters (7.30) might well be approximated by θ « 1 [105]. It is clear that

for the slowly converging fixed-point solvers under consideration (ρ close to 1),

αG is several orders of magnitude larger than βG. Additionally, the dynamics of

the adjoint residuals often correlate very well with those of the state residuals.

These arguments intuitively suggest that dropping the adjoint feasibility penalty

might well be reasonable. Moreover, a similar argument may be raised as for

piggyback iterations, in which bounded dual retardation is found [64]. Because

of the typically observed bounded retardation, we assume here that the ratio of

dual and primal updates is bounded by a coefficient L as ‖Δy˚‖ ď L‖Δq‖.
Using the above arguments, we derive under which conditions the step s1 is

a descent direction of the alternative augmented Lagrangian

La
S pϕ, q,y˚q “ αG

2
‖Gpϕ, qq ´ q‖2 ` Npϕ, q,y˚q ´ y˚Jq, (7.33)

which only has a single state penalty and with

s1 pϕ, q,y˚q “
»– Δq “ Gpϕ, qq ´ q

Δy˚ “ BqNpϕ, q,y˚qJ ´ y˚
Δϕ “ ´B´1BϕLa

Spϕ, q,y˚qJ

fifl , (7.34)

where BϕLa
S is used instead of BϕN in the design step calculation to avoid a priori

any possible inconsistencies between descent on cost function and augmented La-

grangian function in the line search algorithm (further explained in section 7.4.3).
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Similar to equation (7.27), requiring descent on La
S for a one-shot iteration cor-

responds to

s1
J∇La

S « ´s1
JM1s1 ă 0,with (7.35)

M1 “
»– αGΔGJ

q ´I 0
´I 0 0
0 0 B

fifl .

Remind that ΔGq is defined cfr. equation (7.27). For a general vector v “
rv1,v2,v3sJ, one can observe that

vJM1v “ αGv
J
1ΔGJ

q v1 ´ 2vJ
2 v1 ` vJ

3Bv3,

ě αGp1 ´ ρq‖v1‖2 ´ 2‖v1‖‖v2‖ ` λminpBq‖v3‖2,

with λmin pBq the smallest eigenvalue of B. Using the bounded retardation of the

adjoint residuals, descent is implied by

pαGp1 ´ ρq ´ 2Lq ‖Δq‖2 ` λminpBq‖Δϕ‖2 ą 0.

It is thus sufficient to choose the design preconditioner B to be positive definite

and

αG ą 2L

1 ´ ρ
. (7.36)

Since coupled state-costate-design iterations continuously descend on the aug-

mented Lagrangian function La
S, the one-shot method will converge to the op-

timum pq̄, ȳ˚, ϕ̄q. In conclusion, the adjoint residuals in the doubly augmented

Lagrangian can thus be disregarded. As such, the approach is simplified consid-

erably.

A practical augmented Lagrangian merit function

In section 7.4.1, it was also pointed out that the choice of norm in the penalty

contributions is not evident, as the different PDE’s have different units and scales.

Indeed, state variables of continuity, momentum or energy equation have all dif-

ferent dimension and different orders of magnitude. It seems therefore more

appropriate to penalize state feasibility using the normalized residuals of the dis-

cretized equations instead of using the state step Δq. In many codes they serve
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as convergence monitor and are therefore at hand. This gives an augmented

Lagrangian function of the form

Lapϕ, q,y˚q “ α

2

nEÿ
i“1

‖cipϕ, qq{sc,i‖2 ` LGpϕ, q,y˚q, (7.37)

with nE then the number of equations, sc,i a normalization factor and i an index

denoting the corresponding equation. When the equations are normalized in

advance one can write this as

Lapϕ, q,y˚q “ α

2
‖cpϕ, qq‖2 ` LGpϕ, q,y˚q. (7.38)

It may be interesting to see whether also in this form, an α and B can be found

so that a coupled state-design step

s2 pϕ, q,y˚q “
»– Δq “ Gpϕ, qq ´ q

Δy˚ “ BqNpϕ, q,y˚qJ ´ y˚
Δϕ “ ´B´1BϕLapϕ, q,y˚qJ

fifl , (7.39)

offers descent in La. The only change with respect to the derivation in section

7.4.2 is of course the feasibility penalty term. Using the relation c “ AΔq, the

descent condition can be written similar to equation (7.35), namely

s2
J∇La « ´s2

JM2s2 ă 0,with (7.40)

M2 “
»– ´α BqcJA ´I 0

´I 0 0
0 0 B

fifl ,

and where the only difference between M2 and M1 is clearly the ´α BqcJA term

in the matrix M2. Therefore, a lower bound is sought for this term. For this

purpose, one should first notice that

BqcΔq “ ´AΔGqΔq ` BqAΔqΔq « ´AΔGqΔq,

where the latter is a good approximation since Δq tends to zero during iterations

and BqA, typically approximating ´Bqqc, is a higher order term. Using this

approximation, one finds

´αΔqJBqcJAΔq « αΔqJΔGJ
qA

JAΔq

ě αa2p1 ´ ρq‖Δq‖2, (7.41)
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where a2 is the lowest eigenvalue of AJA. Combining the lower bound for the

new term in (7.41) to a similar reasoning as the previous derivation, the condition`
αa2p1 ´ ρq ´ 2L

˘ ‖Δq‖2 ` λminpBq‖Δϕ‖2 ą 0.

is found to be a sufficient condition for descent on La. Again, one concludes that

choosing a large positive preconditioner B and a large enough penalty parameter

α to meet the condition

α ą 2L

a2p1 ´ ρq (7.42)

will lead to decrease in La for one-shot iterations and therefore ultimately to a

solution of the KKT-system (7.20).

7.4.3 A simple line search procedure for globalization

One can now use the novel augmented Lagrangian formulation (7.37) as a merit

function to globalize the one-shot optimization procedure. This will extend the

local convergence to convergence from any initial design point. For this purpose,

a simple line search algorithm based on the augmented Lagrangian function La

is introduced. A design step Δϕ will only be accepted if it obeys the Armijo

condition

Lapϕ ` Δϕ, q,y˚q ă Lapϕ, q,y˚q ` γ∇ϕL
aJΔϕ, (7.43)

with γ P p0, 1q. Otherwise, the step Δϕ is reduced with a constant fraction

(a procedure commonly known as backtracking) until the Armijo condition is

satisfied. In this perspective, the augmented Lagrangian formulation La defined

in (7.37) has clear advantages, since during line search, there is no need for

an adjoint update in this case. In contrast, the original approach of Hamdi

and Griewank requires also calculating the adjoint update for the dual feasibility

penalty. Assuming that the Lagrangian LG in fixed-point form can be substituted

in the augmented Lagrangian La by the Lagrangian

L “ Ipϕ, qq ` cpϕ, qqJq˚

in residual form, the line search cost can be further reduced. Then, only the

residuals of the state equations are needed in each line search iteration. Therefore,

one avoids the solution of the system Δq “ A´1c as well.
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7.4.4 A robust approach to Hessian estimation

The choice of a suffiently large design preconditioner B is clearly essential for

the convergence of the one-shot iterations. On the other hand, superlinear con-

vergence is desired, while additional efforts to calculate B should be minimal.

The BFGS approach is therefore a good candidate. However, as concluded in

section 7.4.1, the choice B « BϕϕL
a
G suggested by Hamdi and Griewank requires

an additional design sensitivity evaluation. Therefore, the approximation is re-

considered. As will appear from what follows, a consistent derivation of a design

preconditioner B based on the minimization of a second-order expansion of La

will lead to a different (and cheaper) result than the tangent rule (7.31) proposed

by Hamdi and Griewank.

To find the best design preconditioner B, the design step

Δϕ “ ´B´1∇ϕL
apϕ, q,y˚q (7.44)

is sought that maximizes the descent on a quadratic approximation of La. This

Δϕ solves the minimization problem

min
Δϕ

sJ∇Lapϕ, q,y˚q ` 1

2
sJ∇2Lapϕ, q,y˚qs. (7.45)

Keeping only the terms that depend on Δϕ, the minimization problem reduces

to

min
Δϕ

EpΔϕq,
with

EpΔϕq “ 1

2
ΔϕJ∇ϕϕL

aΔϕ ` ΔϕJ `∇ϕL
a ` ∇ϕqL

aΔq ` ∇ϕy˚LaΔy˚˘
.

To find the minimum, we impose that the derivative of E with respect to Δϕ

equals zero:

∇ϕL
apϕ, q,y˚q ` ∇ϕϕL

aΔϕ ` ∇ϕqL
aΔq ` ∇ϕy˚LaΔy˚ “ 0.

Eliminating the design gradient ∇ϕL
a using the design step relation (7.44) then

leads to

BΔϕ “ ∇ϕϕL
aΔϕ ` ∇ϕqL

aΔq ` ∇ϕy˚LaΔy˚.
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From this equality, we may now derive a secant equation for Hessian updates:

BΔϕ « ∇ϕL
apϕ ` Δϕ, q ` Δq,y˚ ` Δy˚q ´ ∇ϕL

apϕ, q,y˚q. (7.46)

During one-shot optimization, we therefore use the BFGS update formula,

Bk`1 “ Bk ´ Bksksk
JBk

skJBksk
` ykyk

J

yk
Jsk

,

with sk “ ϕk`1 ´ ϕk and

yk “ ∇ϕL
apϕk`1, qk`1,y

˚
k`1q ´ ∇ϕL

apϕk, qk,y
˚
kq,

to update the design preconditioner B. If the convergence of state or adjoint

residuals is noisy, one might decide to use other secant equations then equation

(7.46), such as the secant equation (7.31). As argued by Hamdi and Griewank

[66], these approximations becomes valid at primal and dual feasibility. Notice

that this issue therefore only arises in one-shot approaches.

To safeguard the positive definiteness of the Hessian estimate B, Powell’s

damped update rule can be used. This update rule relaxes the Hessian update to

guarantee that the directional curvature can maximally be decreased by a fraction

γmin [112]. The damped BFGS approach thus consists of applying the following

rule: If sk
Jyk ă γmin sk

JBksk, substitute yk by ỹk “ θyk ` p1 ´ θqBksk, such

that sk
Jỹk “ γmin sk

JBksk. This is achieved when

θ “ p1 ´ γminqskJBksk
skJBksk ´ skJyk

. (7.47)

To make the Hessian estimation more robust, absolute bounds can be added

on the curvature as in the simplified approach of Hazra et al. [69]. Indeed, one

needs to avoid that the Hessian definiteness is decreased up to machine accuracy in

successive iterations, resulting in unrealistically large design steps. Additionally,

a safety margin should be kept, since Powell’s trick is a rank-two update and

only the definiteness of the Hessian in the step direction is monitored. Similarly,

an unbounded increase of the Hessian causes numerical problems as well. As

was discussed in section 7.3.3, too small design steps will cause the gradient

differences yk to be in the error margin of the gradients, which might lead to a
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further misleading increase of the Hessian estimate. Especially when using (in-

parts) finite difference sensitivity calculations, it seems reasonable to demand that

the design steps are an order of magnitude bigger than the finite difference steps.

Additionally, small steps near gradient discontinuities might lead to very large

Hessian estimations that give rise to even smaller steps. For all these reasons,

(7.47) is used to bound the relative decrease as well as the relative increase. The

latter is then done when sk
Jyk ą γmax sk

JBksk.

Similar to the simple method of Hazra et al. [69], absolute bounds βmin and

βmax on the directional curvature can be imposed in addition. To this end, it is

proposed here to modify Powell’s trick as follows. The directional curvature of

each step should be adjusted so that

βmin ă sk
Jyk

skJsk
ă βmax. (7.48)

If any of the two above constraints is violated ỹk can be calculated from

sk
Jỹk “ βsk

Jsk, (7.49)

where β represents either of the two bounds βmin or βmax. Solving (7.49) for θ

leads to

θ “ sk
J pBk ´ β Iq sk

skJBksk ´ skJyk

. (7.50)

Finally, it should be noted that in one-shot optimization a lot more updates

are done to the Hessian than in regular optimization. It is therefore logical to

relax the Hessian updates as well. This is achieved when θ is substituted by

θ̃ “ μθ, with μ ă 1 the relaxation factor.

7.5 Application of the globalized one-shot

method to the unconstrained test problem

With the novel one-shot methodology developed in section 7.4 at hand, applica-

tion to magnetic divertor design can now be considered. First, some comments

are made with respect to the practical implementation of the algorithm. Next, an

improved approach to in-parts adjoint sensitivity calculation of the augmented
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Lagrangian is introduced. The applied algorithm is then summarized in sec-

tion 7.5.3. In the last part of this section, the results of the novel one-shot

method are presented.

7.5.1 From theory to practice

It should be noted that only in the fixed-point iteration form, the adjoint equa-

tions are guaranteed to have the same contraction rate as the forward equations.

Therefore, one-shot convergence can only be derived in this framework. In the

more general continuous adjoint framework on which the adjoint plasma edge

equations are based, the contraction rate of the adjoint solver depends on the

choice of the discretization and the iteration procedure. However, if a consis-

tent approach is used to implement the adjoint equations, one might retrieve

this property for continuous adjoint methods. Looking back at the piggyback

iterations after optimization in figure 7.8 (part III), it can indeed be seen that

also for the continuous adjoint plasma equations, used in this work, this seems to

hold. For sure, the presence of a consistent adjoint pressure-correction equation

contributes to this consistency [40]. It is therefore assumed that the continuous

adjoint framework can be reused.

In practice, descent is then sought on the partially reduced augmented La-

grangian

rLapϕ, qpe, q
˚
peq “ α

2

nEÿ
i“1

‖rcpe,ipϕ, qpeq
sc,ipϕ, qpeq ‖22 ` rLpϕ, qpe, q

˚
peq, (7.51)

with rL the discretization of the partially reduced Lagrangian defined in Eq.

(5.6). The Euclidian norm ‖¨‖2 is used here in the state constraint penalty.

Recalling the definition of the partially reduced plasma edge transport equationsrcpϕ, qpeq :“ cpepcggpqeqpϕqq, qpeq, rcpe,ipϕ, qpeq is defined as the ith (discretized)

partial differential equation in partially reduced form. For the plasma edge trans-

port model used in this work, consisting of plasma continuity, parallel momen-

tum, total internal energy, and neutral pressure diffusion equations, the number

of equations nE “ 4. Next, it should be mentioned that although the derivations

of section 7.4 are done for a Jacobi-type iteration of state, adjoint, and design
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equations, Gauss-Seidel-type iterations will still be used. In practice, they are

often found to converge much faster [23, 62].

It should also be noted that the Hessian updates for the selected results follow

the methodology as discussed in section 7.4.4 but are based on the secant rule

BΔϕ « ∇ϕ
rLapϕ ` Δϕ, q ` Δq, q˚q ´ ∇ϕ

rLapϕ, q, q˚q.
That is, in comparison to the secant rule that followed from theory, the variable

q˚ is kept constant. Both approximations have been tested but the choice was

not observed to be of great importance for these cases. The final design step is

relaxed by a further factor of two so that most first line search steps are accepted.

Finally, finding a suitable approach to estimate the parameters L and a2 in

the sufficient condition for the penalty parameter α (equation (7.42)) remains a

challenge for future work. Furthermore, the condition itself might be too restric-

tive. For these reasons, the feasibility penalty parameter α is not chosen based on

this sufficient condition. Rather, α was chosen experimentally by trying several

values for a limited amount of iterations. Results for different values of α will be

given.

7.5.2 Notes on sensitivity calculation

An accurate and fast evaluation of the design gradient ∇ϕ
rLa is essential for the

success of the novel one-shot method. Similar to the in-parts adjoint approach

of chapter 5, finite difference evaluations can be applied to directly approximate

the directional derivatives of the augmented Lagrangian: prLaq1 :“ Bϕ rLaδϕ «
Δε

ϕ
rLa. However, the finite difference steps should be small enough to avoid

inconsistencies in line searches. It is obvious that especially the sensitivity of

the squared terms in rLa will suffer from poor accuracy for small finite difference

perturbations ε. Indeed, since only a finite amount of significant digits is used, the

squaring operation will cause a loss of accuracy due to cancellation errors and will

restrict the user to use rather large values for the finite difference perturbation

ε. Therefore, a semi-analytical approach is proposed to eliminate the squaring

operation. E.g., for the derivative of the feasibility penalty term this gives˜
α

2

nEÿ
i“1

‖rcpe,i
sc,i

‖22
¸1

« α
nEÿ
i“1

rcpe,iJΔε
ϕrcpe,i

s2c,i
´ α

nEÿ
i“1

‖rcpe,i
sc,i

‖22
Δε

ϕsc,i

sc,i
. (7.52)

179



7. ONE-SHOT OPTIMIZATION

It may be noticed that the scaling variables sc,ipϕ, qpeq that make the residuals

dimensionless depend indirectly on the control variables through the coordinate

transformation qggpψpϕqq. This leads to the second term on the right-hand side of

equation (7.52). A similar method is applied to other squared objective function

terms of the original objective functional in (4.4). Because the cancellation error

in the finite difference approximations can be significantly reduced in this way,

the finite difference step can be decreased from ε “ ε
1{4
m to ε “ ε

1{2
m . Finally, the

minimal design step in line search is limited to 10 times the finite difference step

size ε to avoid inconsistencies in line search.

7.5.3 Overview of the applied one-shot algorithm

The different steps in the applied one-shot algorithm are summarized here.

Algorithm 7.2. A practical globalized one-shot algorithm for magnetic divertor

design

1. Perform one iteration on the state solver of the plasma edge equationsrcpϕ, qpeq “ 0. For the current model, this requires calculating sequentially

the poloidal magnetic flux ψ, the metric coefficients of the deformed grid

qgg, and performing a pseudo-time step of the plasma edge solver for the

updated state variables qpe,k`1.

2. Perform one pseudo-time step in the segregated solver of the continuous

adjoint plasma edge equations to obtain the updated adjoint variables qp̊e,k`1.

3. Evaluate the gradient of the augmented Lagrangian. This is done here by

approximately evaluating the gradient ∇ϕ
rLa of the augmented LagrangianrLa (equation (7.51)) with finite differences. To increase the accuracy of

the finite difference evaluations, the semi-analytical approach illustrated in

equation (7.52) is used.

4. Calculate the design preconditioner B from the robust BFGS strategy de-

scribed in section 7.4.4 and calculate a search direction from

Δϕk “ ´B´1∇ϕ
rLa.
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5. Reduce the design step Δϕk in a backtracking line search until the Armijo

condition

rLapϕk ` Δϕk, qpe,k`1, q
˚
pe,k`1q ă rLapϕk, qpe,k`1, q

˚
pe,k`1q ` γΔϕJ

k ∇ϕ
rLa,

is met and evaluate the updated design variables ϕk`1 “ ϕk ` Δϕk.

These steps are then repeated until design, state, and adjoint variables are

converged to the solution of the KKT conditions. Remark that this algorithm

has been tailored to meet the requirements of the current application and the

existing continuous adjoint framework. Different variants of the proposed one-

shot algorithm are possible that may use both continuous or discrete adjoint (AD)

sensitivity calculations to suit a specific application.

7.5.4 Results

As explained, the penalty parameter α in the augmented Lagrangian function was

determined experimentally. For α “ 10´8, fast, yet steady convergence was found.

After first discussing the results for this particular choice of α, the influence of a

different choice of α on convergence will be addressed.

The residuals are shown in figure 7.10. After converging the initial plasma

state and adjoint using piggybacking, apparently noisy residuals changes are

found. Again, many of the sudden surges of the residuals coincide with remeshing

steps. The design residuals (green curve) reveal that gradient discontinuities are

still present. However, these sudden increases in the design gradient do not au-

tomatically lead to large design steps, since sufficient descent on the augmented

Lagrangian is required.

Indeed, looking at the augmented Lagrangian function value throughout op-

timization in figure 7.11, one may see that it decreases almost monotonically,

despite the gradient discontinuities. Only the remeshing stages induce peaks dis-

turbing this monotonic decrease. One might observe here that the increases in

state and adjoint residuals in figure 7.10 (e.g. around iteration 0 and 40.000)

are compensated by decreases in objective functional. Furthermore, it can be

seen that cost functional and augmented Lagrangian functional differ significantly

when the state and adjoint residuals are high. Notice that the cost function and
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Figure 7.10: Convergence of the one-shot optimization procedure. State residuals

are indicated with a solid blue line, adjoint residuals with a dashed red line, and

design residuals with green dots. Piggy-backing iterations are used for feasibility

convergence before (I) and after (III) one-shot optimization.

the augmented Lagrangian were not evaluated for the first 10000 iterations of the

initial piggybacking stage. The difference is mainly attributed to term (2) of the

Lagrangian rLpϕ, qpe, q
˚
peq “ rIpϕ, qpeqlooomooon

term (1)

`
A
q˚
pe,rcpϕ, qpeq

E
looooooooomooooooooon

term (2)

.

One may interpret this term as a linearized estimation of the effect that converging

the state equation will have on the objective functional. Finally, it should be

noted that further converging state and adjoint equations after optimization using

piggybacking does not greatly change the cost functional, indicating that the

one-shot procedure was sufficiently converged. Remark that full convergence of

the one-shot optimization is not possible, since a continuous adjoint approach is
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used. Also convergence of the state residuals in the one-shot iterations is not

possible because of the presence of the minimally allowed design step, introduced

in section 5.2.

Figure 7.11: The augmented Lagrangian function rLa (solid blue line) and the cost

function value rI (dashed red line) during one-shot and feasibility convergence with

the novel one-shot method. The Roman numbers indicate the different regimes

and correspond to the numbers in figure 7.10. The numbers I and III indicate

piggybacking before and after one-shot optimization (II), respectively.

In comparison to the nested optimization method, very similar design vari-

ables and cost function value are retrieved. This can be seen in table 7.3 in

the column “AL1”. When increasing the penalty parameter α by a factor of

10, however, this optimum is no longer retrieved (see “AL2”). In that case, the

optimization procedure suddenly stops at a higher cost function value. Further

analysis indicates that convergence stalls at a gradient discontinuity, after which
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the line search decreases the step size in each iteration up to the minimal value.

Since design steps oscillate around the same design value, a local optimum seems

to be created by the gradient discontinuity. If the bound βmax on the Hessian is

decreased, convergence stalls at yet another cost function value (see “AL3”).

Nested AL 1 AL 2 AL 3

α z 1 ¨ 10´8 1 ¨ 10´7 1 ¨ 10´7

βmin z 10 10 10

βmax z 5 ¨ 105 5 ¨ 105 1 ¨ 104
θ z 0.02 0.02 0.02

γmin z 0.2 0.2 0.2

γmax z 10 10 10

Îpϕ̄q 1.08 1.07 1.36 1.18

ϕ̄1 0.76 0.75 0.68 0.74

ϕ̄2 0.07 0.12 0.39 0.40

ϕ̄3 0.61 0.61 0.40 0.18

ϕ̄4 -0.19 -0.22 0.37 0.43

Table 7.3: A summary of the results obtained using different parameters α, βmin,

and βmax in the novel one-shot routine. The nested optimization study is shown

for comparison. Final cost function value and design variables are listed.

While the simple one-shot method of section 7.2 lacks robust convergence,

the current method will become slow if many inconsistencies of gradients are

found because of the increased number of line search iterations. Furthermore, the

method might converge to the local optima these discontinuities possibly create.

Though increased robustness is found in terms of convergence towards these local

optima, they are clearly suboptimal in terms of cost function decrease. It is clear

that the step size plays a big role in the chance of getting stuck in such a local

optimum. If big steps are taken, one might simply jump over them. Therefore,

the augmented Lagrangian method converges to lower cost function values for

smaller penalty factors α or lower Hessian bounds βmax. It is for the same reason

that the nested optimization method is less sensitive to these local optima of the

discrete cost function.
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In conclusion, the novel one-shot method based on a singly-augmented La-

grangian cost function converges robustly, even in the presence of gradient dis-

continuities. Therefore, the method might serve as a practical and cheap al-

ternative for the method of Hamdi and Griewank [66] in a number of one-shot

optimization applications that encounter difficulties to converge in the absence

of a line search globalization. In the current application, however, the method

stalls at discrete local optima near gradient discontinuities. Furthermore, rela-

tive and absolute bounds on the BFGS estimation in combination with an update

relaxation successfully avoid that sporadic discontinuities dominate the Hessian

estimate. Nevertheless, given the noisy gradient, the accuracy of this estimate

can be questioned.

Further research could therefore consider taking the preconditioner as a scaled

identity matrix B “ β̄I, turning the algorithm in a globalized steepest descent

version of the novel one-shot method. Alternatively, efforts could be spent on

increasing the smoothness of the code. Finally, increasing the Tikhonov regu-

larization might improve the conditioning of the problem and remove some local

optima.

7.6 One-shot optimization for constrained mag-

netic divertor design

Since the original problem examined in this work is a constrained optimization

problem, a short outlook is given here for a strategy that includes the constraints

in a one-shot approach. Especially for inequality-constrained optimization, few

literature is available. In the thesis of Gherman [55], the approach of Hazra et

al. [69] is extended to include a single inequality state constraint on aerodynamic

lift. However, since it is assumed a priori that this state constraint is active

at the optimum, it is de facto treated as an equality constraint. Özkaya and

Gauger [106] later proposed a penalty multiplier method to treat this inequality

constraint. Recently, the convergence theory of Hamdi and Griewank has been

extended to equality-constrained optimization in ref. [147]. Extensions of this

theory to inequality constraints have not been reported yet.
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The divertor design problem is converted in this work into a PDE-constrained

optimization problem with multiple nonlinear ‘design’ constraints. Since this

problem therefore differs fundamentally from the problems treated with one-shot

optimization so far, an outlook is given in this section on how to solve the prob-

lem in a one-shot fashion. More specifically, a practical approach is proposed

here that reduces the nonlinear inequality-constrained optimization problem to

solving a simple quadratic problem in each one-shot iteration. Although a gen-

eral convergence theory for inequality constrained one-shot optimization is out of

the scope of this thesis, it is explained how the line search globalization can be

adapted to account for the constraint feasibility. Further elaboration and testing

of the one-shot solution to the inequality constrained divertor design problem is

left for future work.

7.6.1 Constrained one-shot optimization based on an ac-

tive set strategy

In section 2.1.1, the KKT conditions of an inequality constrained optimization

problem were listed. Given a discrete vector of constraints hpϕq ď 0 on the

design space, the Lagrangian of the constrained optimization problem reads

Lcpϕ, q, q˚,μq “ Ipϕ, qq ` xq˚, cpϕ, qqy ` hJpϕqμ.

In addition to the classical conditions$&%
∇q˚Lc “ c pϕ̄, q̄q “ 0
∇qLc “ ∇qIpϕ̄, q̄q ` Bqc˚pϕ̄, q̄qq̄˚ “ 0

∇ϕLc “ ∇ϕIpϕ̄, q̄q ` Bϕc˚pϕ̄, q̄qq̄˚ ` BϕhJpϕ̄qμ̄ “ 0
,

three conditions appear that are related to the inequality constraints:$&%
hpϕ̄q ď 0
μ̄ ě 0
μ̄Jhpϕ̄q “ 0

.

As these last three KKT-conditions are non-smooth, they cannot be treated

directly by an approximate Newton method. Therefore, a so-called active set

method may be applied to divide the constraints in a set of active and inactive
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constraints. If a component hi of the vector h equals zero, then it is considered

active. Conversely, if hi is strictly smaller then zero, it is considered inactive.

Formally, the index sets A Ă t1, . . . , nhu and I “ t1, . . . , nhu zA can be intro-

duced to denote the indices of te active and inactive constraints at the optimum.

As such, the constraint vector h “ ph1, . . . , hnh
qJ equals

h “
ˆ
hA

hI

˙
. (7.53)

The question of interest is of course how to find this active set. Assuming

for now that the sets A and I are known, the Lagrangian of the constrained

optimization problem reduces to

Lcpϕ, q, q˚,μ
A

q “ Ipϕ, qq ` xq˚, cpϕ, qqy ` hJ
A

pϕqμ
A
.

A minimizer pϕ̄, q̄, q̄˚, μ̄q is then found if and only if there exist index sets A and

I so that $’’&’’%
∇Lcpϕ̄, q̄, q̄˚,μ

A
q “ 0

hIpϕ̄q ă 0
μ̄

A
ą 0

μ̄
I

“ 0

.

If these index sets are known, one may use an approximate rSQP approach to

solve for ∇Lc “ 0. This approximate rSQP matrix then reads»——–
0 0 0 A˚

0 B BϕhJ
A

Bϕc˚
0 BϕhA 0 0
A Bϕc 0 0

fiffiffifl
»——–

Δq
Δϕ
Δμ

A

Δq˚

fiffiffifl “

»——–
´∇qLc

´∇ϕLc

´hA

´c

fiffiffifl , (7.54)

with A and A˚ being approximations of Bqc and Bqc˚ that include relaxation and

account for the iterative state and adjoint solver. The linearized model equations

have been used here (cfr. section 2.2.2) to eliminate the dependence on qpϕq and
obtain the exact reduced Hessian

B “ ZJHZ “ ∇ϕϕLc ´ ∇ϕqLc Bqc´1Bϕc ´ `Bqc´1Bϕc
˘J ∇qϕLc``Bqc´1Bϕc

˘J ∇qqLc Bqc´1Bϕc, (7.55)
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with

H :“
„∇qqLc ∇qϕLc

∇ϕqLc ∇ϕϕLc

j
(7.56)

and

Z :“
„ Bϕq

I

j
“

„ ´Bqc´1Bϕc
I

j
. (7.57)

Ref. [79] indicates, however, that for the approximate rSQP solver, fastest con-

vergence is achieved using the approximate reduced Hessian

BA “ ZJ
AHZA, (7.58)

with

ZA :“
„ ´A´1Bϕc

I

j
. (7.59)

Notice that, since the constraints hA “ 0 are not eliminated from the origi-

nal problem, this method is in literature referred to as a partially reduced SQP

(prSQP) method. The Hessian BA can thus be estimated using a BFGS method

like the one outlined in section 7.4.4, but now using the gradient of the constrained

Lagrangian ∇ϕLc in the BFGS formula.

A Gauss-Seidel iteration can be used to solve the approximate prSQP problem

(7.54) in a one-shot manner. The first row then corresponds to a step of the

adjoint solver. The second and third row have to be solved jointly, since the

prSQP matrix is not lower triangular. After solving the adjoint equations for a

new costate qk̊`1 these two rows read„
Bk BϕhJ

A
pϕkq

BϕhApϕkq 0

j „
Δϕ
Δμ

A

j
“

„ ´∇ϕLcpϕk, qk, qk̊`1,μkq
´hApϕkq

j
. (7.60)

In the right hand side of this equation, we can formally rewrite the first component

as

´ ∇ϕLc “ ´∇ϕL ´ BϕhJpϕqμ̄, (7.61)

where

Lpϕ, q, q˚q “ Ipϕ, qq ` xq˚, cpϕ, qqy
is the Lagrangian of the optimization problem excluding design constraints. Ad-

ditionally, ∇ϕL approaches ∇Î as state and adjoint converge. Therefore, these
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two equations simply solve the quadratic optimization problem

min
p

∇Î pϕkqT p ` 1

2
pTBkp (7.62)

s.t. hApϕkq ` ∇hA pϕkqT p “ 0,

with p “ Δϕ the design step. Moreover, since Robinson [117] showed that the

active set of this quadratic problem converges to the active set of the original

nonlinear program, the second step of the one-shot algorithm comprises solving

the quadratic problem

min
p

∇Î pϕkqT p ` 1

2
pTBkp (7.63)

s.t. hpϕkq ` ∇h pϕkqT p ď 0.

Finally, solving the last row of the prSQP matrix corresponds to an iteration of

the state equation at ϕk`1, qk, qk̊`1.

Reordering thus leads to the following one-shot optimization algorithm

Algorithm 7.3. Constrained one-shot algorithm

1. Make a pseudo-time step Δt in the state equations to update q.

2. Make a pseudo-time step Δt in the adjoint equations to update q˚.

3. Update/calculate the design preconditioner B

4. Solve the quadratic problem

min
p

∇Î pϕkqT p ` 1

2
pTBkp (7.64)

s.t. hpϕkq ` ∇h pϕkqT p ď 0.

5. update ϕ.

It is clear that this algorithm strongly resembles the nested inequality-

constrained optimization algorithm outlined in section 4.5. In fact, the algorithm

can be kept exactly the same but just requires reducing the number of state and

adjoint iterations to a single iteration per optimization step. Notice that if con-

straints are imposed that depend on the state variables q, the algorithm is to
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be augmented with an additional adjoint iteration for each state constraint be-

tween steps 2 and 3 in the above algorithm. These additional adjoint equations

of the constraints then need to be converged along with state, adjoint, and design

equation in order to converge to a solution of the KKT conditions.

7.6.2 Globalization of the constrained one-shot method

In the spirit of the globalized one-shot of section 7.4.2, one may consider adding

a line search method based on the augmented Lagrangian (7.51). To cope with

the additional constraints in line searches, several options exist. One might fur-

ther augment this augmented Lagrangian merit function with a penalty term for

feasibility of the design constraints. The reader is referred to Ref. [103] for an

overview of penalty functions. Such a term is in general non-smooth for inequal-

ity constraints. Therefore, one might consider using a slack variable approach to

translate them into equality constraints during line searches. Alternatively, one

might resort to a projection method. However, solving the full nonlinear pro-

jection problem (4.7) might be computationally very demanding in this one-shot

optimization setting. Nevertheless, this might be compensated by the smaller

design steps (and thus relatively low infeasibility and low number of required

projection iterations) that are taken in one-shot optimization and the still rel-

atively cheap constraint evaluations that do neither require plasma edge grid

evaluation nor evaluations of the plasma solver.

7.7 Discussion and conclusions

In this chapter, one-shot methods are considered for use in magnetic divertor

design. Throughout the chapter, both the reduction in computational cost com-

pared to nested optimization methods and the robustness of one-shot convergence

are central considerations. First tests with a relatively simple method based on

the method of Hazra et al. [69] indicated that the potential speed gain of one-

shot methods is significant, but that slow grid generation steps impede reaching

its full potential. Therefore, a grid deformation method has been elaborated for

flux aligned grids. This reduced the wall-clock time needed to make a grid by a
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factor of 10. Thus, both cost function and sensitivity calculations are significantly

accelerated.

Further acceleration might be reached using multi-step one-shot methods.

Using such methods, it can be entirely avoided that the costs of the design step

dominates the one-shot method. One could for example choose the number of

state and adjoint iterations performed next to one design update to spend an equal

amount of time on state, adjoint, and design updates. With the grid deformation

method at hand, also a full adjoint sensitivity calculation comes within reach.

Both multi-step one-shot methods and full adjoint sensitivity calculations are

interesting topics for further research.

Looking at computational cost solely, the one-shot method presents itself at

present already as an attractive alternative for nested optimization methods.

From a convergence point of view, however, robust convergence is difficult to

achieve in magnetic divertor design. Discontinuities in design gradients have

been found to be the source of convergence irregularities. Although the presence

of these discontinuities could be significantly reduced using a plasma edge grid

extending up to the walls, removing all sources of discontinuities might be a very

demanding task. Nevertheless, for well-chosen parameters, the one-shot method

of Hazra et al. converges to the same design variables as the nested optimization

studies. It may, however, be questioned whether it is not rather the choice of

test case that tolerates the very noisy convergence behaviour. For a test case

with more complicated physics, such as a detached test case, the contribution of

cost function changes due to state convergence is expected to increase. As such,

the irregular state convergence observed using the one-shot method of Hazra et

al. could affect the overall one-shot convergence. Since such detached cases are

computationally very demanding, they are left for future research.

In an attempt to achieve fast and guaranteed convergence, a novel globalized

one-shot method has been developed. In comparison to state-of-the-art global-

ized one-shot methods, it avoids the need of second order adjoint derivatives and

reduces line search costs. A secant rule for one-shot BFGS updates is then consis-

tently derived that avoids multiple sensitivity calculations per one-shot iteration.

Techniques from damped BFGS updates are adapted to make the Hessian esti-

mation bounded and more robust. The method is subsequently combined with
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practical in-parts adjoint sensitivity calculations of the augmented Lagrangian.

To obtain good accuracy for the finite difference part of these sensitivity calcula-

tions, a semi-analytical approach is applied. In presence of gradient discontinu-

ities, the globalization strategy achieves robust convergence of state and adjoint

equations. This is a clear asset of the novel one-shot method. Nevertheless, local

optima seem to impede convergence to the same optimum as those of the nested

optimization if high state feasibility penalties are used. In conclusion, the method

holds promising results for use in more test cases or applications that encounter

difficulties achieving convergence. Yet, for magnetic divertor design, a further

examination should aim to find the sources of the local optima, and to eliminate

them if possible.

Finally, an outlook has been given on an approach to embed additional design

constraints in the one-shot procedure. The proposed method would in principle

be able to completely reuse the inequality constrained approach of the nested

optimization algorithm. If desired, the method could be combined with the novel

globalization strategy, though convergence theory for inequality-constrained one-

shot optimization is to be further developed. Alternatively, further testing is

needed to assess the convergence of the constrained one-shot approach.
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Discussion and Conclusions

8.1 General conclusions

One of the key challenges on the road to commercial fusion power plants is find-

ing a solution for the divertor power and particle exhaust. Therefore, improved

magnetic configurations are currently high-priority research in the fusion commu-

nity. Motivated by the recent successful formulation of divertor structure design

as a shape optimization problem, this dissertation examined the applicability of

optimal design methods to magnetic divertor design. One of the main challenges

in this application is the immense computational cost associated to the complex

multi-fluid codes that describe the transport processes in the plasma edge. Given

the cost-efficiency of adjoint-based gradient calculation, this approach is pursued

in this dissertation to achieve a practical optimization method.

Because of the novelty in the nuclear fusion community, the main concepts

of optimization with partial differential equations were carefully introduced. The

remainder of the dissertation described the development of models and techniques

for the first automated magnetic divertor design strategy. In this section, general

conclusions are first formulated with respect to modelling and divertor design.

Then, a second part focuses on the more technical conclusions in regard to de-

velopment of optimization algorithms.
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Modelling and magnetic divertor designs

The first step comprises the development of an integrated modelling approach

for magnetic equilibrium and plasma edge transport. An intuitive perturbation

model for magnetic field calculations is combined with a reduced plasma edge

transport model in first magnetic design trials. Moreover, due to the strong

flow anisotropy in fusion tokamaks, the plasma edge transport calculations are

preferentially discretized on a curvilinear grid that is aligned to the poloidal

magnetic flux. The grid generator as such becomes an important link in the

integrated model. A unique plasma edge grid generator is therefore developed

that complies with the requirement for an automated model. This integrated

model is the first tool that automatically allows the assessment of external coil

changes on the divertor heat exhaust.

Subsequently, the magnetic field model is revisited. A comparison is made

between the perturbation model and a free boundary equilibrium model. After

analyzing the different magnetic fields and their sensitivities, it is concluded that

a model for the core plasma currents is indispensable for accurate magnetic flux

calculations in the plasma edge. A MATLAB version of the CEDRES++ finite

element code for FBE calculations is therefore integrated into the model. To

achieve a fully automated coupling with the current-free plasma edge transport

calculations, an adaptive mesh refinement strategy is implemented in the mag-

netic equilibrium code in collaboration with Holger Heumann (INRIA Sophia-

Antipolis, France). As such, accurate discretization of the plasma edge transport

equations is also obtained in the regions around the X-points.

Based on these models, first optimal design studies are performed. A tracking-

type cost function is defined that aims for uniform heat loads onto the target sur-

face. To obtain physically relevant results, appropriate penalty terms are included

that avoid significant parallel heat loads to the sensitive first wall components

outside the divertor targets as well as excessive Joule losses in the divertor coils.

By imposing constraints, it is guaranteed that the thermal limits of the coils

are respected and that a single-null divertor configuration is kept. Additional

constraints are imposed to account for the model validity.
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Realistic test cases are set up in this dissertation for design of the JET and

WEST magnetic divertors. These first trials demonstrate the potential of the pro-

posed schemes for magnetic divertor design. Plausible design trends are found

that strongly resemble the X-divertor concept. Since these results, however, de-

pend on the plasma parameters, this should not be considered as a general con-

clusion. Both the perturbation model and the FBE model show this trend, but

the currents needed to realize such configurations are seriously overestimated us-

ing the perturbation model. For this reason, the author recommends including

an FBE code for steady-state magnetic divertor design. It is clear that this aug-

ments the code complexity. On the other hand, such FBE calculations are very

fast and do therefore barely contribute to the computational cost.

Although in this thesis X-divertor-like concepts are found, less intuitive di-

vertor concepts might be retrieved in a plasma regime close to detachment. It

should be noted that the presented test cases (JET and WEST) as well as the

code implementation exclude interesting snowflake-type magnetic configurations.

Yet, a peak heat load reduction of over 50% is found for the WEST case, indi-

cating a great potential of these methods to assist divertor design. Furthermore,

it is illustrated how the choice of penalty factors leads to different optimal target

profiles that are both optimal, depending on whether the method is applied to an

existing or new reactor. Eventually, a true multi-objective optimization approach

might be considered.

Development of optimal design algorithms

Given the complex and CPU-demanding nature of plasma edge transport simu-

lations, robust, efficient, and implementation-friendly algorithms are pursued to

enable computational magnetic divertor design.

First, a nested quasi-Newton type SQP optimization algorithm is implemented

to deal with the nonlinearly-constrained optimization problem. In a first stage,

sensitivities of the integrated code are calculated automatically using finite dif-

ference calculations. To ensure robustness, an efficient line search algorithm by

Moré and Thuente [99] is adapted with a nonlinear gradient projection method
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and generalized Wolfe conditions. As such, constraint feasibility can be guaran-

teed at every instance in the optimization algorithm. This optimization strategy

is found to achieve robust convergence to the constrained optimum.

Next, the efficiency is significantly increased by replacing the finite differ-

ence gradients with adjoint-based gradient calculations. However, moving domain

boundaries and hidden source functions hinder a full adjoint sensitivity calcula-

tion. Therefore, a practical in-parts adjoint sensitivity calculation is elaborated.

This leads to a semi-discrete approach, in which the existing continuous adjoint

plasma edge solver can be used in combination with practical discrete finite dif-

ference calculations for the remaining sensitivity contribution. It is shown in this

dissertation that the consistent treatment of the boundary terms in the sensitivity

calculation needs special care. This is guaranteed in practice by a slight modifi-

cation to the boundary condition implementation. Asymptotic grid convergence

is demonstrated between in-parts adjoint and full finite difference sensitivity cal-

culations. Because of the relatively low computational cost of grid generator

and magnetic field evaluations, nearly the same efficiency gain is achieved as

compared to full adjoint sensitivity calculations. Furthermore, in contrast to

standard adjoint methods, the strategy circumvents analytical derivations of the

design sensitivity expression. As such, after evaluation of the adjoint plasma

state, a virtually unlimited set of parameter sensitivities can be calculated with-

out any derivational effort and at low computational cost.

Finally, one-shot methods are studied for optimal magnetic divertor design.

Using an unconstrained design case, a strong reduction of the number of system

iterations is already found for a standard one-shot approach. Despite, gradient

discontinuities in the grid generator software are found to disturb convergence.

Moreover, the increased number of mesh generation events added to the com-

putational cost of the one-shot algorithm. A further contribution of this thesis

therefore focusses on exploiting the full potential of one-shot optimization by

reducing the computational cost of design steps. To this end, a grid deforma-

tion strategy is developed for flux-aligned curvilinear grids. The strict necessity

for alignment is efficiently combined with smooth deformation and solved with a

Gauss-Seidel type iterative solver. The wall-clock time for constructing new grids

is as such reduced by an order of magnitude.
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In comparison to a nested optimization method, the one-shot method was

found to reduce computational costs. Despite, it sacrifices the monotonic conver-

gence that the nested method attains using globalization strategies. For the cases

studied, the one-shot strategy still tends to converge to the same optimal config-

urations as found by the nested algorithm. This, however, might no longer be the

case when optimizing under detached plasma conditions, since these conditions

yield higher dependence of the heat load on the collisional processes and thus state

convergence. A novel one-shot method has therefore been derived that combines

state-of-the-art globalization techniques for one-shot methods with increased ef-

ficiency and a practical implementation. The method searches for descent on an

augmented Lagrangian function that includes a penalty based on the normalized

residuals of the transport equations. In comparison to state-of-the-art one-shot

methods, it avoids the implementation and calculation of second order adjoint

contributions. Furthermore, a consistent BFGS approach is derived for super-

linear convergence in one-shot optimization along with practical Hessian bounds

that increase the robustness. A simple and inexpensive line search algorithm pro-

vides globalization. The method is applied to the unconstrained design case using

an accurate semi-analytical version of the in-parts adjoint sensitivity calculations.

Robust convergence is indeed achieved. Yet, it is found that high penalties and

thus small design steps increase the chance to get stuck in a local optimum, prob-

ably created by the gradient noise. Further steps might therefore be needed for

application to magnetic divertor design. Nevertheless, the method shows great

assets for design applications with difficult one-shot convergence behaviour.

8.2 Suggestions for further research

In this dissertation, the focus was on developing methods for computational “op-

timal magnetic divertor design” and examining their potential. Since promising

results are achieved, further accuracy of the designs might now be aimed at by

using a state-of-the-art plasma model. Some model extensions, like modelling of

impurities and kinetic neutrals might strongly influence the target heat load since

they might trigger the detachment regime. One possibility would be to involve

the full B2-EIRENE code in the design cycle. However, to enable these adjoint
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optimization methods for the B2-EIRENE code [115], further research is still

needed. First of all, the correct adjoint complement of such a coupled finite vol-

ume method/Monte-Carlo simulation should be derived. Secondly, the effect of

statistical noise on the design gradient needs to be studied. Ease of maintenance

will furthermore be of great importance given the size and worldwide usage of

this code. In this regard, it would be already of great advantage if the boundary

conditions could be set automatically based on the choice of forward boundary

conditions. In principle, the general adjoint boundary condition formulation de-

rived in chapter 5 could be used for this purpose. It remains to be verified though

whether this also holds for Dirichlet conditions, which are imposed in a numerical

way using very big fluxes (see section 3.3.4). In regard to ease of maintenance,

also backward mode AD could be considered as an alternative to the continuous

adjoint method [63]. However, due to the memory-intensity of these approaches,

one might rather further develop a hybrid approach [137]. In DEMO, neutral

interactions will become significant such that a fluid assumption might not be

such a bad approximation after all. Therefore, extending the neutral model with

a momentum equation and energy equation such as in Ref. [76] could be done as

an intermediate step with much lower efforts. Finally, the optimal design method

would benefit from a wide grid approach, extending the plasma edge simulation

up to the vessel walls [4].

Furthermore, one of the final goals should be assessing and improving novel

magnetic configurations, such as snowflake divertors. At present, such plasma

edge simulations are out of the scope of the B2-EIRENE code (and its reduced

MATLAB version). The snowflake divertor poses challenges for the cut approach

that lies at the basis of the curvilinear grid structure. Extensions to a more general

treatment have been initiated by Van den Kerkhof [144]. However, the presence

of the second-order null in poloidal magnetic field might also require revisiting

the modelling of radial transport using a spatially constant anomalous diffusion

coefficient. Indeed, experiments indicate a strong increase of radial transport due

to the low poloidal field at the snowflake X-point [95].

Up to now, the cost function is chosen to solely reflect the heat exhaust de-

sign criterion. Nevertheless, other design goals might equally well be incorporated
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in the optimal design framework as alternative design goals, penalty terms, de-

sign constraints, or possibly even in a multi-objective optimization approach.

Optimizing the pumping capabilities of Helium ashes is one of the fascinating

possibilities of these design methods. Studies to enable adjoint optimization of

the Helium exhaust have been initiated by Dedoncker [36]. Another example is

the stability of the plasma operation, which imposes constraints on the magnetic

design. For example, designs sensitive to MHD instabilities could be excluded

from the optimization by extending the model with an MHD stability code (see

e.g. [9, 77]). Approximate relations for simplified geometries such as in Ref.

[148, 149] might provide an alternative. Furthermore, a threshold on the vertical

plasma acceleration could be included to account for vertical stability. In con-

trollers, they are generally substituted by constraints on the plasma shape, the

so-called plasma elongation [35, 132].

The practical in-parts adjoint approach also makes some other interesting ap-

plications possible. It is indeed a practical way to calculate several sensitivities

to virtually any parameter without the derivational effort of a regular continuous

adjoint. As such, it might serve well for robust design with respect to uncertain

model parameters, e.g. anomalous transport coefficients or core boundary condi-

tions. These robust design methods aim at achieving optimal configurations with

lower sensitivity to small variations of these parameters. Robust design studies

for target shape optimization have been initiated by Horsten and Bauweraerts

[75]. Similarly, in-parts adjoint sensitivities could be exploited for parametric in-

ference of model coefficients from experiments. Such parametric inference meth-

ods might be of primordial importance to analyse experiments, by calibrating

transport coefficients or even build correlations. First steps towards an adjoint-

based estimation of anomalous transport coefficients and a number of boundary

conditions have been taken in [5, 45, 47].

Finally, ever more efficient algorithms should be pursued for plasma edge sim-

ulation and optimization. Indeed, B2-EIRENE simulations of the DEMO reactor

come at a tremendous computational cost due to the high neutral collisionality.

With respect to the optimization methods for magnetic divertor design, the in-

vestigation of one-shot methods for optimization with design constraints could

be continued. Especially multi-step one-shot algorithms are expected to yield
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increased efficiency. Similarly, full adjoint strategies for sensitivity calculations

based on the novel grid deformation method would give a further acceleration of

the one-shot algorithm. Of course, the primary source of the high computational

cost remains the plasma edge code itself. Therefore, research should primarily

aim at speeding up this code. Several options are currently under investigation

as a part of the European fusion work plan [50, 56].
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