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Demographic Aging and Employment 
Dynamics in German Regions: 
Modeling Regional Heterogeneity*

Persistence of high youth unemployment and dismal labour market outcomes are imminent 

concerns for most European economies. The relationship between demographic ageing 

and employment outcomes is even more worrying once the relationship is scrutinized at the 

regional level. We focus on modelling regional heterogeneity. We argue that an average 

impact across regions is often not very useful, and that – conditional on the region’s 

characteristics – impacts may differ significantly. We advocate the use of modelling varying 

level and slope effects, and specifically to cluster them by the use of latent class or finite 

mixture models (FMMs). Moreover, in order to fully exploit the output from the FMM, we 

adopt self-organizing maps to understand the composition of the resulting segmentation 

and as a way to depict the underlying regional similarities that would otherwise be missed 

if a standard approach was adopted. We apply our proposed method to a case-study of 

Germany where we show that the regional impact of young age cohorts on the labor 

market is indeed very heterogeneous across regions and our results are robust against 

potential endogeneity bias. 
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1 Introduction

Many European countries witness the persistence of high youth unemployment rates
over decades despite a steady decline in the ratio of youth population to working-
age population. The decrease in relative youth shares due to demographic aging did
not improve the chronic unemployment of youth across Europe. Long-term unem-
ployment rates are even more worrying, being record high after the 2008 financial
crisis. The youth unemployment rate is twice as high as the overall unemployment
rate in the EU where the aggregate statistics actually mask large differences between
countries (e.g., Germany sees the lowest youth unemployment rate of 7 percent and
Greece the highest with 50 percent).2 These trends are contrary to the expectations
that the decline in the supply of youth workers would lead to lower youth unem-
ployment rates. Moreover, country level analysis makes mapping the relationship
between demographic aging and labour market outcomes of the youth workers par-
ticularly more challenging, as there is a large variation across regions in the way
they withstand demographic shocks. This is because a supply impact of youth pop-
ulation on employment and unemployment rates can be materialized in a number
of ways. Youth population is typically unexperienced and lack specific information
about labour markets. This not only leads to poor matching of workers with em-
ployers, but also increases on the job search due to skills mismatch of workers’
qualifications with job-specific requirements. Therefore, an increase in the youth
share would directly influence the employment opportunities available to others in
the same age cohorts. Additionally, differently aged cohorts may impact each other
to the extent of the substitutability between the workers, and between those in dif-
ferent skill groups (Biagi and Lucifora 2008). The magnitude of the impact would,
however, depend on the degree of substitution among these groups. Labor market
policies, economic downturns and business cycles, and rigidity of labour market
institutions are other factors which intervene with this supply-demand adjustment.

Various studies already addressed the possible mechanisms through which the in-
crease in youth share of total working age population may impact the employment
opportunities of their own cohort while at the same time impact other age groups
as well. Empirical evidence have repeatedly found cohort size to be an important
determinant of (un-)employment. One of the very early studies by Bloom et al.
(1988), by documenting the findings of 18 studies, launched a wide discussion on
cohort size effects of the youth population on labour markets. They show that there
is general agreement in the literature on the wage and employment impacts: entry
of large cohorts of a certain age group adversely effected the wage and employment
opportunities of the same cohort in relative terms. Korenman and Neumark (2000),
in another influential work, extend the analysis of Bloom et al. (1988), by using
panel data on 15 OECD countries for the period 1970–1994. They predict elastici-
ties between youth unemployment and cohort size of around 0.5. A conflicting but
influential result from the US case provided by Shimer (2001) presents much larger
and negative impacts of large youth cohorts on both youth and adult unemploy-

2 http://ec.europa.eu/social/main.jsp?catId=1036, Accessed on September 23rd, 2016
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ment rates. His theoretical model rationales his findings such that, assuming labour
market frictions, employee’s on the job search behaviour will benefit himself, but
also firms as the hiring costs are lower in younger labour markets. This will then
consequently lead to job creation which would also improve employment of older
workers. A significant contribution to emphasise from these conflicting findings is
that in different country contexts not only the impacts can vary, but also the mech-
anisms through which youth cohorts alter employment prospects of their own and
other cohorts.

A number of studies from a European perspective produced mixed results in
favour of both Shimer (2001) and Korenman and Neumark (2000). For example, by
using a long panel of population and (un-)employment data with ample information
on age and gender groups, Garloff et al. (2013) show that labour market entry cohort
size is an important determinant of employment and unemployment rates in West-
ern Germany. In constrast to Shimer (2001) they find that small entry cohorts are
likely to decrease the unemployment rates and small youth cohort entry increases
the employment rates. Foote (2007) reports similar findings from the US labour
market, while he demonstrates that the findings are sensitive to correcting for spatial
correlation. The cross-sectional dependencies should be taken into account, as the
regions’ response to demographic shocks can be rather similar based on commut-
ing or similarities in labour market structure of the adjacent regions. Skans (2005)
points out contrasting findings from Sweden such that youth workers benefit from
being in labour markets with large youth cohorts, where his findings confirms those
of Shimer (2001). Biagi and Lucifora (2008) extend these analyses by introducing
the role of education. In the period 1975–2002 in European countries, they disaggre-
gate the data by education level and cohorts to analyse whether the unemployment
rates are impacted differently by cohort size and education shocks simultaneously.
A significant point they raise is the importance of demand in accommodating de-
mographic and education shocks and the imperfect substitution between different
skill groups. In advance economies, a demographic shock, for example a higher
share of more educated workers can be accommodated better, if it coincides with
a positive aggregate demand for skilled labour. They indeed show that higher edu-
cated and adult workers experience lower unemployment rates. Finally, Moffat and
Roth (2013) study how the probability of being unemployed changes with the na-
tionally and regionally defined age-cohort size. They use a more flexible (wider)
definition to identify the age cohorts and utilise data from the European countries.
They report that once the analysis is conducted at the regional level rather than the
national level, the age-cohort size effect on the probability to become unemployed
is stronger. Subsequently, the studies show a large hetefogeneity in a number of di-
mensions from spatial scales to methods, from characteristics of the labou rmarkets
to characteristics of the youth cohorts.

A shortcoming of the literature has been its inadequacy to reconcile with varia-
tion of findings at differing level of spatial aggregation. Furthermore, though many
studies are conducted at the regional level, it has still been not clear how regions’
heterogeneous responses to demographic aging should be taken on board in pol-
icy making. An original contribution we make to this literature is to study regional
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heterogeneity, while showing regions even within the same country can be differ-
ently impacted by the same demographic shocks. In other words, the focus is on the
possible variation in regions’ responses to the changes in the relative share of the
youth population. Theoretically, each region within a country can react uniquely to
a supply shock of labour, while it is plausible to assume a certain degree of gener-
ality among sub-group of regions considering the similarity in production structure,
location characteristics and demographic attributes. Our innovative methodologi-
cal approach which employs a latent class analysis combined with self-organizing
maps (SOM) displays a powerful segmentation and analysis of these sub-groups of
homogeneous regions that show a similar pattern towards supply of youth popula-
tion share in working-age workers. The next section discusses how we can model
and map out regional heterogeneity, and especially how we can interpret finite mix-
ture output using self-organizing maps. Section 3 provides an application of our
proposed techniques by looking at the impact of youth shares on employment rates
in Germany. The final concludes and offers suggestions for further research.

2 Modeling Regional Heterogeneity

The standard approach to model regional heterogeneity is to apply a fixed effects
model where each region is modeled with its own level effect. In subsection 2.1
we discuss this approach and argue that the standard fixed effects model can be
easily extended by a model with varying slope parameters— sort of like a multi-
level model— if there are repeated observations over time. Varying slope parameters
are appropriate when unobserved variables interact with the independent variables.
For example, the impact of regional population growth on regional GDP growth
might interact with the educational level of the regional population. Such a mod-
elling approach has two large disadvantages. First, the estimation produces ineffi-
cient and usually inconsistent parameter estimates. Namely, most fixed effects (and
most slope parameters for that matter) are not statistically different from each other
and it is well known that when the time period is relatively short (as is usually the
case) fixed effects suffer from an inconsistency problem. Secondly, if one is inter-
ested in what drives the underlying (regional) heterogeneity, then using a fixed ef-
fects approach is not appropriate as well as the fixed effects are typically discarded
from the analysis.3 In subsection 2.2 we deal with these disadvantages by employing
a finite mixture model (henceforth as well denoted as FMM), a latent class cluster
analysis that enables us to group region in clusters with similar parameter estimates.
This is similar to the method of spatial regimes, although with a finite mixture esti-
mation we are not restricted to assign regions exogenously into groups. One general
drawback of cluster analysis, is that the resulting clusters are hard to interpret and
to visualise. Therefore, we finally apply in subsection 2.3 a self-organising map ap-

3 One can apply second-stage models, where the first stage estimates the fixed effects and the
second stage analyses the determinants of those fixed effects. However, note again, that this is only
an analysis on the levels and not on the slopes.
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proach which allows us to display the varying multivariate regional characteristics
in geographic space (see, e.g., Spielman and Folch 2015).

2.1 Regional heterogeneity

We start by assuming that one is interested in the effect of a regional input vari-
able x on a regional output variable y and that she has repeated observations over a
set of regions. Then a straightforward and intuitive appealing model would be the
following linear regression model:

yrt = β0 +β1xrt + εrt , (1)

where r denotes the region (r ∈ 1, . . .R), t the year (t ∈ 1, . . .T ) and ε an i.i.d. error
term. The parameter β0 denotes a level effect and β1 is our parameter of interest and
gives the marginal effect of x on y or dy

dx .
If there is another regional variable z that is correlated with both y and x, then our

estimation of β1 is biased, or E(β̂1) 6= β1 (see, e.g., Stock and Watson 2003). If z is
known then including z in model (1) removes the bias. Unfortunately, z is very often
not known or difficult to measure. However, by assuming that z enters the model
linearly and does not vary over time—thus as yrt = β0+β1xrt +γzr +εrt—, one can
control for z by using the following fixed model:

yrt = β0,r +β1xrt + εrt (2)

Here, β0,r now controls for all variables (including z) which enters the model linearly
and do not vary over time.

However, the unobserved variable z might as well interact with the impact of x on
y, so that in the most simplified version the model in fact reads as: yrt = β0+β1(zr×
xrt)+ γzr + εrt . Given that there are repeated regional observations the model can
now be estimated as:

yrt = α0,r +β1,rxrt + εrt , (3)

where both the level and the slope parameter is regional specific. Note that this is
rather data demanding. Given that there are R regions, one need at least 2R+1 ob-
servations. Or the number of years should be at least 3 when there is a symmetric
panel. Moreover, for both consistent level and slope parameters, the temporal di-
mension should be sufficiently large (say more than 40 time periods). Usually, the
latter is not the case. Therefore models such as (3) are seldom applied, although the
possibility of significant regional heterogeneity in the effect parameter β1,r is widely
recognized.

One way to overcome this inefficiency is a cluster analysis in the form of multi-
variate mixture model, which is dealt with in the next subsection.



6 Thomas de Graaff, Daniel Arribas-Bel and Ceren Ozgen

2.2 Regional finite mixture modelling

Instead of estimating separate parameters for each region, it is far more (statistically)
efficient and even consistent to estimate separate parameters for groups of regions.
Assume that there are c more or less homogeneous groups of regions, then model
(3) becomes:

yrt = β0,c +β1,cxrt + εrt , (4)

where the number of parameters now amount to c× k, with c being the number of
groups and k the number of parameters.

To do so, we adopt a finite (or multivariate) mixture modelling approach. A sta-
tistical technique which became especially popular since the 1990s in marketing (a
seminal contribution is Wedel and Kamakura 2012), but since then permeated in
other economic fields, although mainly applied in the econometric realm (see, e.g.,
Deb et al. 1997, Arcidiacono and Jones 2003, Alfo et al. 2008) and in tackling het-
erogeneity in discrete choice modelling (Greene and Hensher 2003).4 The approach
works as follows.

We divide our sample of regions into an, a priori unknown, number of subsam-
ples (clusters) of regions. So we assume that our sample consists of a mixture of C
clusters, with proportions π1, . . . ,πC. We can now decompose the density function
of y conditional on the parameter vector β as follows:

f (y|β ) =
C

∑
c=1

πc f (y|βc)). (5)

To estimate model (5) usually the expectation maximization (EM) procedure as in-
troduced by Dempster et al. (1977) is applied. It starts by introducing a latent vari-
able, urc, denoting whether region r belongs to cluster c. Thus:

urc =

{
1, if region r belongs to cluster c
0, otherwise

(6)

We then assume the following distribution for urc:

f (ur|π) =
R

∏
r=1

π
zrc
r , (7)

with ur a vector of (6) for each cluster, c. Let U denote the matrix of all ur then the
complete log-likelihood can now be written as:

4 Interestingly, the underlying algorithm and implementation where only the constants αc are al-
lowed to vary over groups is heavily applied in labour economics by, e.g., Lancaster (1992), Munch
et al. (2006), and De Graaff and Van Leuvensteijn (2013), usually in a multivariate setting where
the constants αc are then argued to remove unobserved heterogeneity.
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ln[L (β |y,U)] =
R

∑
r=1

C

∑
c=1

urc f (y|βc)+
R

∑
r=1

C

∑
c=1

urc ln(πc). (8)

The EM algorithm now proceeds as follows:

E-step : We estimate the cluster probabilities for each region, so that the proba-
bility that region r belongs to cluster c is:

ûrc =
πc ∏

C
c=1 f (ln(yrc|βc))

∑
C
g=1 πg ∏

C
c=1 f (ln(yrc|βg)

. (9)

So, in this step, all ûrc are estimated so that they can be used in the log likelihood
given by (8).

M-step : First, we need to derive the proportions πc by applying the equality:
π̂c =

1
R ∑

R
r=1 ûrc. Using now both ûrc and π̂c enables us to estimate β by using (5)

and conventional likelihood procedures. We repeat the E- and M-step until the
log likelihood (5) stops improving.

Although the EM algorithm is computationally cumbersome it is parsimonious
as well. It results in a parameter estimation of C endogeneously and robustly formed
clusters. However, cluster analyses are notoriously difficult to interpret and analyse
because one not only gets a different set of regression parameters for each cluster,
but a full set of probabilities of each region belonging to each cluster. To help vi-
sualize, explore, and clarify the clustering outcome we therefore propose to use a
self-organising maps as a novel approach for the interpretation of the output of an
FMM regression, hence facilitating the understanding of complex regional charac-
teristics in geographic space.

2.3 Interpreting Mixture Modeling Output with Self-organising
maps

A self-organising map (SOM, Kohonen 2001) is a kind of computational neural net-
work that is able to simultaneously reduce the number of dimensions (projection)
as well as observations (quantization) in a multidimensional data set. Although the
mathematics underlying the algorithm are more intricate, the intuition is relatively
straightforward. Given that, in this context, it is only required to be able to inter-
pret its output, not necessarily the mechanism by which the algorithm reaches it,
this is what we will focus on.5 The essence of the SOM is to translate the statisti-
cal properties of the original dataset (Ω ) onto a network of interconnected neurons
represented by a two-dimensional grid of hexagons (H). Each of these neurons has
a vector of as many dimensions as Ω whose values, after the process of training the

5 For a detailed explanation of the underlying learning mechanism and its implementation, please
refer to Kohonen (2001) The analysis in this paper was carried out using the kohonen library in
the statistical software platform R (Wehrens et al. 2007).
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network, capture the statistical variation contained in Ω . The power of the SOM re-
sides in the fact that, once the network has been trained and its neurons have learned
the properties of the original dataset, it is possible to map the original observations
onto the network. Because H preserves information topologically, statistical simi-
larity is turned into spatial relationships. This allows to represent multi-dimensional
relationships and make intuitive comparisons through a visual display that maps the
original observations to the network’s neurons. In a sense, this property of the SOM
is akin to other projection techniques such as Principal Component Analysis (PCA)
or Multi-Dimensional Scaling (MDS), with the advantage that the output space onto
which the data is projected—the network H—is limited and known. Additionally,
the non-parametric and learning nature of the SOM algorithm has been shown to
be more robust when it comes to capturing complex, non-gaussian relationships
(Yan and Thill 2009). In the context of this paper, we use the SOM to explore the
distribution of the probability that each German region belongs to each of the clus-
ters specified by the FMM model. It is important to note that this is in essence a
multi-dimensional dataset: we have several probabilities associated to every region.
FMM output returns probabilities for each region to belong to each cluster (though
in some cases probability for a region can be zero in well segmented distributions).
For a given region r, the probability of belonging to different clusters can vary in
magnitude. This makes visualizing it at once difficult simply because regions may
belong to multiple clusters at the same time, while with varying probabilities. The
usual approach in the literature to work around this challenge is to implicitly reduce
the dimensionality to a single one, the cluster for which every region displays a
highest probability of belonging. In other words, this is equivalent to “rounding up”
the highest probability of each region to one, and setting all the others to zero, then
focusing only on the former one. Although convenient this approach implies simpli-
fying the FMM output greatly and it imposes an artificial degree of certainty about
each region’s cluster membership. In cases where the set of probabilities are not
very far from this case (i.e., when there is only one cluster with a high probability
and all the others are negligible), this assumption is reasonable and valid. However,
in cases where the situation is less clearcut, this can be a problem, and neglecting
the nuances of the distribution of probabilities can lead to incorrect interpretations.
In this context, our approach is to feed the set of probabilities (a matrix of R rows
and C columns) to the SOM algorithm and use its output to explore how each region
r relates to others when it comes to membership to each of the clusters identified by
the FMM. This is articulated through the visual display the SOM offers. By plotting
in a single graph the similarity between regions based on their probabilities, as well
as the cluster each region would have received under the traditional methodology,
our approach will enable the exploration of nuances and cases where cluster mem-
bership is not a clearcut decision. This approach is novel and produces results that
help the interpretation of an otherwise complex and obscure output.
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3 Empirical application: Ageing in Germany

3.1 Data

The empirical application of this paper focuses on the impact of regional youth share
on employment in German regions. Furthermore, it explores the degree of variation
of this impact across the regions. To this end, we have collected repeated observa-
tions of regional employment shares—the total number of the employed relative to
the population aged between 18 and 64 —and youth shares— the number of indi-
viduals aged between 18 and 24 relative to the population in the age group 18–64—
in Germany.

The data we employ has some distinctive attractive features. First of all, it
presents a geographically complete picture of employment and aging dynamics in
Germany by covering both Eastern and Western regions in our empirical analysis.
Secondly, we use labour market areas defined on the basis of commuting distances,
meaning each region represents a self-contained labour market area. Labor market
areas can be formed by one or multiple districts (kreise) which are equivalent to a
NUTS 36 level region. The demarcation of the regions is in line with the definition
provided by Kosfeld and Werner (2012). The employment data is obtained from the
Institute for Employment Research (IAB), and population variables are constructed
by using German Statistical Office data.

Our analysis include 141 labour market areas in the period 2000–2010. Due to a
number of restrictions on data availability our sample period is confined to a decade.
We control for possible sectoral demand-side shocks regions face by including a
measure (the Bartik index)7 which resorts on occupation data which is broken down
on the basis of the complexity of tasks required in each occupation. Using task
complexity levels rather than the standard yet very broad sector division has the
advantage of properly accounting for the common nature of tasks, that cuts across
the sectors and the respective demand conditions. Unfortunately, the occupation data
that we use to construct the Bartik index is not available after 2011.

Figure 1 displays the geographical distribution of both employment rates (5a) and
youth shares (5b) across German regions. Clearly, there is much variation in regional
employment levels ranging from more than 60% in Frankfurt and München to less

6 Nomenclature of Territorial Units for Statistics
7 The particular measure we employ reads as:

L̂rt = ∑
k

[
Ek,t

Ek,t−1
Erk,t−1

]
, (10)

where L̂ is the weighted sum of employment across all sectors k in region r in and year t−1, with
the weights being given by the rate of sector-specific employment in year t and year t− 1 at the
national level. As such, this variable represents the level of employment in region r that is predicted
for the case in which employment in each sector grows at the same rate as the corresponding sector
at the national level indicated by E. This variable is used as an exogenous measure for demand
changes for labour.



10 Thomas de Graaff, Daniel Arribas-Bel and Ceren Ozgen

Kie
LübDit

Fle

Ham

Bra

Wol

Göt

Gos

Han

Ham

Cel
Lüc

Sta

Uel

Emd

Old

Osn

Ems

Wil

Vec

Bre

Bre

Düs

Ess

Wup

Kle

Bon
Köl

Aac
Olp

MünBor Bie

Höx

Min

Boc Dor

Hag

Sie

Soe

Dar

Fra

Gie

Lim

Kas

Ful

Wal

Kob

Alt

Bad

Bit
Vul

Tri

Kai

Lan

Lud

Mai

Stu

Böb Göp

Hei
Sch

Hei

Kar

Hei

Pfo

Fre

Ort

Rot

Kon
Lör Wal

Reu
Zol

Ulm

Rav
Sig

Ing

Mün

Alt

Tra

Wei

Deg Fre

Pas
Lan

Cha

Amb

Reg

Bam Bay

Cob
HofKro

Erl

Nür
Ans

Wei

Asc

Sch

Wür

Aug

Mem

Don

Kem

Saa

Pir

Ber
Fra

Elb

Hav Mär

ObeOst

Pot

Pri

Cot

Tel

Uck

Sch Mec

Ros

Nor

Süd

Che

Dre

BauLei

Des

Mag

Hal

Ste

Erf
GerJen

Nor

Eis

Uns

Suh
Saa

65%

60%

55%

50%

45%

40%

35%

Percentage of employment in
 German labor market regions in 2010

(a) Employment rate
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(b) Youth share

Fig. 1 Employment rate and youth share across German regions

than 40% in regions as Freiburg and Oberhaven. In general, employment rates are
higher in Southern Germany (with some exceptions) and lower in Eastern Germany.
There is much less variation in youth shares which range from 11% to 15%. The
lowest youth shares in Germany can be found in Eastern Germany (and Frankfurt)
and the regions that host the highest share of youth is in Western Germany.

3.2 The generic impact of youth shares on regional employment
rates

We start our analysis by first applying our linear model (1) in natural logarithmic
form as follows:

ln(Ert) = β0 +β1 ln(Y Srt)+β2Brt +νt + εrt , (11)

where Ert defines the employment rate in region r, measured as the number of work-
ers between 18 and 64 years old, divided by the working population between 18 and
64 years old. Y S denotes the youth share in region r, and it is defined as the number
of individuals between 18 and 25 years old divided by the working population be-
tween 18 and 64 years old in the same region. B is the Bartik index which controls
for regional specific demand effects and νt denotes a vector of year specific effects.
Model 1 in Table 1 provides the estimation results of the model (11). Clearly, there is
a statistically significant negative impact of youth share on employment rate, where
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Table 1 Generic impact of youth share (18–64) on log(employment rate)

log(employment)
OLS First-diff First-diff First-diff IV

Model 1 Model 2 Model 3 Model 4

log(Youth share) −0.202∗∗∗ −0.153∗∗∗ −0.174∗∗∗ −0.255∗∗∗

(0.060) (0.018) (0.023) (0.004)
Bartik index 0.058∗∗∗ 0.634∗∗∗ 0.260∗∗∗ 0.285∗∗∗

(0.007) (0.023) (0.030) (0.021)
Region first-differenced No Yes Yes Yes
Time dummies No No Yes Yes
N 1,410 1,269 1,269 1,269
R2 0.272 0.561 0.755 0.748
∗p < .05; ∗∗p < .01; ∗∗∗p < .001

in this model the elasticity is around −0.2. Allowing for regional fixed effects by
estimating model (2) leads to Models 2 and 3 of Table 1. 8

Youth shares still have a significant negative impact on regional unemployment
rates, but the size of the elasticity increased slightly to around −0.15. Thus, allow-
ing for regional heterogeneity that has a linear impact on employment rates has a
moderate impact on the size of the estimate.

An important issue is the potential endogeneity that would bias the OLS estima-
tion. Young people are likely to sort systematically to regions with better employ-
ment opportunities. We address this by instrumental variables (IV) estimation. Our
identification relies on predicting the size of youth cohort that currently resides in
labour market areas in our sample with the young cohort lagged by 15 years. So our
instrument is the log of the number of individuals aged between 3 and 9 relative to
the population in age groups 3–49, 15 years prior to the study period. It is likely
that the cohort 15 years past cannot be attracted by economic opportunities of to-
day while the size of the age groups of past is likely to strongly correlate with the
size of the age groups of today. The first-stage statistics strongly confirm our expec-
tation. Model 4 of Table 1 displays the IV regression. The result is in line with the
impact found in OLS estimations; youth share has a negative and statistically signif-
icant impact on employment rate at 1 percent level. The magnitude of the predicted
coefficients is fairly similar, which reduces our concerns for sorting of youth.

In addition, although we correct for demand side effects, one might be concerned
with the possibility that youth cohorst are influenced by employment rates, mostly
by interregional migration. Using instrumental variables, we reconfirm Garloff et al.
(2013) and show that the potential endogeneity bias (where one of which underlying

8 Because of strong temporal autocorrelation in both the employment rates and the youth shares,
we estimate model (2) by applying first differencing. Thus, we estimate: ln(Er,t)− ln(Er,t−1) =
β1(ln(Y Sr,t)− ln(Y Sr,t−1))+(εr,t − εr,t−1). Although less efficient than the usual within estimator,
first differencing requires less strong identification assumptions. For the linear model, this should
only affect the standard errors and indeed, both fixed effects estimation strategies lead to similar
results. It matters however for the clustering analysis.
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drives can be migration of young employees to highly prosperous areas) does not
overturn our findings neither in terms of magnitude nor significance of the estimated
relationship.9

Combining clustering and instrumental variable estimations is still however cum-
bersome. Therefore we do not focus on IV estimations within FMM context, given
the IV-panel estimation results of above. Next, we assess whether unobserved vari-
ables might actually interact with the impact of youth share.

3.3 Region slope parameters

The results of an estimation of model (3) are depicted in Figure 2. So, every region
now is associated with a value of β1,r. Taken at face-value, there is an enormous re-
gional variation in β1,r, ranging from−1 to 1. Unfortunately, most of these estimates
are not statistically significant and even not consistent, given that the total number
of time periods T per region r is 10. So, every β1,r is based on 10 observations,
which is too few to comply with the usual properties of ordinary least squares.

Clearly, however, there is evidence that there is a large regional variation in the
impact of regional youth shares on employment rates. To reveal this spatial pattern
in a consistent manner, we therefore resort to estimating our clustering model of (4).

3.4 Finite Mixture Results

The exact model we estimate deviates slightly from (4) and boils down to:

ln(Ert) = β0,r +β1,c ln(Y Srt)+β2,cBrt +νt,c + εrt , (12)

where t denotes a vector of year dummies. Note that this is a very exhaustive
model, where we allow for regional fixed effects with β0,r and cluster specific impact
of youth share β1,c, regional demand effects β2,c and year effects νt,c. Before we
estimate an FMM, we first difference our data and effectively remove the regional
fixed effects.

The number of clusters or components in finite mixture modelling is determined
by the researcher herself. However, using information criteria the optimal number
of clusters from a statistical point of view can be assessed. Figure 3 provides three
information criteria: the Akaike information criterion (AIC), the Bayesian informa-
tion criterion (BIC), and the integrated classification likelihood (ICL) criterion. The

9 Sander (2014) points out that the internal migration patterns in Germany have been predominantly
within East Germany, while significant trends to urban cores from nearby suburban areas as well as
metropolitan hinterlands during our study period. At the same time young adults with families out-
migrated to urban agglomerations in many non-metropolitan cities. We expect that using labour
market areas which includes daily commuting patterns and FMM for our analysis to some extent
should tackle with potential bias internal migration patterns might cause.
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Fig. 2 Regional specific varying impacts of the youth share on the employment rate

latter two are well known to ‘punish’ the criterion severely for the number of pa-
rameters used. Strikingly, according to the BIC and the ICL the optimal number of
clusters is 2 (in our case, these are the largest city regions versus the rest). According
to the AIC the optimal number of clusters is 8. For illustration purposes, we choose
to settle in the middle and opt for 4 clusters.

When allowing for four clusters we get the estimation results of model (12) as
displayed in Table 2.

As we focus on the the impact of the youth share on employment rate, we see
that the impact differs from−0.33 (cluster 2) to−0.06 (cluster 3). To visualise these
clusters, Figure 4 displays the cluster with the largest probability for each region.
Clearly, there is spatial autocorrelation except for cluster 2. This cluster contains the
largest and most important cities of Germany, including Berlin, Hamburg, Munich
and Frankfurt. Cluster 1 is formed predominantly by clusters in the northern and
western part of the cluster (and some in the periphery). Cluster 3 displays mostly
regions in Eastern Germany and some in the periphery and cluster 4 is a very distinc-
tively southern Germany and Ruhr area phenomenon. This spatial autocorrelation is
most likely caused by spatial unobserved heterogeneity where variables as local in-
stitutions, history and sector structure might play an important role. Note that the
impact of youth shares is statistically similar for these clusters 1 and 4. The differ-
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Table 2 Finite mixture estimation results (dependent variable: ln(Employment rate))

Cluster
1 2 3 4

ln(Youth share) −0.206∗∗∗ −0.329∗∗ −0.056∗ −0.258∗∗∗

(0.033) (0.108) (0.026) (0.033)
Bartik index 0.184∗∗∗ 0.272∗∗ 0.277∗∗∗ 0.336∗∗∗

(0.060) (0.085) (0.042) (0.040)

Region fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
N 1,269 1,269 1,269 1,269
∗p < .05; ∗∗p < .01; ∗∗∗p < .001

ence is formed by the Bartik index, where cluster 4 seems to be more affected by
regional demand effects.

As FMM works each region received a probability to ‘belong’ to a cluster. Typ-
ically, these probabilities are close to 0 or 1 (about 65% of the regions have a dom-
inant probability larger than 0.8). However, some regions are more difficult to clas-
sify and have significant probabilities for two clusters or more (in this case, usually
for cluster 1 and 4). To visualise these probabilities, the next subsection applies a
SOM analysis.
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Fig. 4 Clusters in Germany of the impact on employment rates

3.5 A Self-organising Map of Ageing regions in Germany

Figure 5 (a) displays the SOM output. We use 900 neurons laid out as a 30 by 30 grid
in order to allow the 141 regions to spread freely within the output space. The figure
presents the location where the region has been assigned in the network although,
for visibility regions, we slightly alter their location randomly. As explained above,
the properties of the SOM algorithm imply that the location of each observation in
the network is representative of its statistical attributes. Thus, being similar in the
attribute space translates into being located nearby in the SOM space. This means
that, for instance, Chemnitz and Bautzen, both regions located in the top-left corner
of the SOM can be assumed to have a very similar distribution of probabilities of
belonging to each clustering. Equally, both can also be assumed to have a rather
different profile than Ingolstadt, in the bottom-right corner.

The name of each region is coloured using a scheme that follows the traditional
approach of assigning each observation into the cluster with largest probability (and
that is displayed geographically in Figure 4). As expected, most regions that the
traditional approach would group into the same cluster locate in the same part of the
SOM. This allows for an additional advantage of the SOM: the clusters themselves
can be explored further by considering their distribution across the network. For
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(a) Cluster memberships

(b) Stability of membership

Fig. 5 SOM of probabilities
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example, cluster 2 (yellow) is more similar to cluster 4 (purple) than to cluster 3
(green).

The most interesting aspect of using a SOM to interpret results from a FMM
model comes when we consider cases where the probability profile is not as clear-
cut as we would like it to be. For example, Prignitz (in the middle of the network)
has a probability of 0.48 of belonging to cluster 1 but also one of 0.46 of belonging
to cluster 3. As such, it is coloured as cluster 1 (blue), but located close to many
others labeled as cluster 3 (green). This degree of nuance and detail is completely
eliminated when we adopt the traditional approach, as we would only observe the
region is assigned into cluster 1. However, the SOM is capable of representing it
in an intuitive and useful way, allowing the researcher to explore the FMM output
much more richly.

A complementary way to understand the value of the SOM in this context is pro-
vided in Figure 5 (b), which colors the name of each region on a yellow to purple
gradient by the difference in probability of belonging to the two most likely clusters.
In other words, a region in yellow features a large difference between the probability
of belonging to its most likely cluster and the next one (i.e. the difference between
the largest and second largest probabilities for that region is large). In contrast, a
region in purple displays a relatively high probability of belonging to more than
one cluster and can thus be considered as “on the border”. On-the-border regions,
which we could only identify through combining FMM with SOM, are those that
are impacted by a youth shock similarly while in the FMM output they appear in
completely different clusters. This approach helps highlight regions for which the
traditional simplification of selecting the cluster of largest probability is a valid ap-
proach (regions in yellow) and those for which a significant amount of information
may be lost with such simplification (regions in purple).

4 In Conclusion

Demographic aging is a significant concern for many developed countries. In order
to correctly address the associated problems, it is crucial to properly identify the
needs of the labour markets. In this paper we focus on the impact of youth on re-
gional employment rates in 141 German labour market areas. We show that fixed
effects models with varying β coefficients are not adequate to reflect and handle
the heterogeneity. By employing an innovative methodology that is combining a
latent class analysis with self-organising maps, this research depicts a great deal
of variation of how ageing impacts employment opportunities of the working age
population at the regional level. Although our OLS and IV estimations are in line
with previous research on German local labour markets (e.g., with Garloff et al.
(2013))—although contradicts with the work of Shimer (2001), we offer further ex-
planations for a number of issues not yet addressed in the literature.

First, although the OLS predicts an aggregate elasticity for the youth impact on
employment rate around −0.2, we find that the elasticities actually vary in the or-
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der of −0.06 to −0.33 in 4 types of regions in Germany. FMM analysis partitions
Germany into four unique clusters of broader regions, namely metropolitan areas,
Southern Germany, West Germany with industrial core and finally Eastern Germany
(excluding Berlin). Second, we show that the labour market areas with highest em-
ployment rates are hurt the most by a demographic shock of youth share. These
are large metro regions like Munich, Frankfurt, Düsseldorf, Stuttgart, Hamburg and
Berlin. In contrast, eastern German labour markets which experience significantly
large internal migration within, are those which are affected the least from increas-
ing youth population. Note that however, as a result of FMM estimation, typically
some regions receive probabilities that allow them to be assigned in more than one
of these clusters. SOM helps visually mapping the distribution of these probabilities
across all the regions in the analysis. Therefore, this extension allows us to interpret
the FMM output in further detail and to identify regions for which a single cluster
membership might not reflect the output of the model. Through this approach we are
able to exactly pinpoint which regions better embody the characteristics of the clus-
ter and which ones are found to be “on the border” between two clusters. Finally,
our results also show that regions exhibit different levels of resilience to regional
demand shocks.

Our results imply that policy challenges for demographic ageing require to look
beyond a country as a whole. Given the extension in longevity does not meet
increase in active labour period, an economic perspective taking regional labour
market heterogeneity into account is crucial. Our results are suggestive for policy-
makers to consider the possible impacts of aging on employment opportunities in
varying regional economic contexts both for adults and also for the youth. As shown
in our analysis local resources, regions sector structure and characteristics of the lo-
cal youth workforce are important factors to influence employment rate.As shown
in our analysis local resources, region’s sector structure and characteristics of the
local youth workforce are important factors to influence employment rate. We hope
that our methodological application sheds some light on the contrasting empirical
findings in the literature and opens new avenues for research to analyse further the
determinants behind the differing impacts found, possibly based on the economic
character of the labour markets. On the methodological side, this application can be
useful for studies trying to uncover a range of issues where there is significant un-
derlying heterogeneity in a number of dimensions of locations, workers, firms and
regions.
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