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Kurzfassung

In den vergangenen 15 Jahren wurden signifikante Unterschiede zwischen einzelnen
Zellen im Bezug auf Wachstum, Stressresistenz und andere zelluläre Merkmale in
monoklonalen Bakterienpopulationen beobachtet [1]. Fortschritte in Mikrofluidik und
Mikroskopie ermöglichen es die Entwicklung einzelner Zellen mit bisher nicht gekannter
räumlicher und zeitlicher Auflösung zu untersuchen. In Verbindung mit optimierten,
mikrofluidischen Labs-on-a-Chip [2], können hunderte Bakterienpopulationen unter
kontrollierten Umweltbedingungen kultiviert und Bildsequenzen aufgezeichnet werden.

Mit der Möglichkeit große Datenmengen automatisiert zu erzeugen, ist die Auswer-
tung der Bilddaten zu dem entscheidenden Schritt für die Erhebung von quantitativen,
zeitaufgelösten Informationen geworden. Daher wurde eine erweiterbare Bildanalyse-
Pipeline für die Auswertung von Bildsequenzen des biotechnologischen Modellorganis-
mus Corynebacterium glutamicum entwickelt. Die Pipeline ist für die Identifizierung
von Zellen in gedrängten Umgebungen optimiert, sowie für das Tracking von Zellen bei
großer räumlicher Verschiebung. Zusätzlich können eine Vielzahl von Zelleigenschaften,
wie zum Beispiel morphologische Parameter und Fluoreszenzintensitäten, extrahiert
werden.

Die Bildanalysepipeline ist als Plugin für die ImageJ(2) Plattform implementiert
worden. ImageJ(2) stellt fortschrittliche Datenstrukturen zu Verfügung und ermög-
licht das Steuern von Abläufen mit Hilfe einer graphischen Benutzeroberfläche. Die
zugrundeliegende Service-Architektur fördert die Erweiterbarkeit und Flexibilität von
Modulen, so dass diese auch in anderen Plugins verwendet werden können.

Mit einer Kombination aus Mikrofluidik, Live-Cell Imaging Verfahren und Bildanaly-
setechniken ist man in der Lage Heterogenität in mikrobiellen Populationen auch bei
niedriger zeitlicher Auflösung zu quantifizieren. Während die Analyseplattform für eine
Vielzahl von Untersuchungen angewendet wurde, liegt der Fokus in dieser Arbeit auf
zwei Anwendungsfeldern: mikrobielles Wachstum undMorphologie sowie Prophagenin-
duktion in C. glutamicum. Im Rahmen der Wachstumsstudien wird die Übertragbarkeit
von etablierten Quantifizierungsmethoden auf Einzelzelldaten untersucht. Eine zwei-
te Anwendung auf diesem Gebiet überträgt die gewonnenen Erkenntnisse auf eine
Screening-Studie von C. glutamicum, in welcher der Einfluss der Medienkomposition
auf das Wachstum und die morphologischen Parameter untersucht wird.

In einem zweiten Anwendungsfeld wird eine Analyse der mikrobiellen Stressantwort
und die Induktion eines Prophagen in C. glutamicum beleuchtet. Zu diesem Zweck
ist ein Dual-Reporter-Stamm (d.h. ein Stamm mit beiden Reportern für SOS-Antwort
und Prophagen-Induktion) in mikrofluidischen Labs-on-a-Chip kultiviert und mittels
Fluoreszenzmikroskopie analysiert worden. Aus den zeitaufgelösten Reporterdaten
wurde ein Zellzustandsmodell abgeleitet, welches für die Populationsmodellierung von
C. glutamicum verwendet wurde.
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Abstract

Significant cell-to-cell variation with respect to growth, stress resistance, and other cel-
lular traits are observed in clonal microbial populations [1]. Advances in lab-on-a-chip
research and time-lapse microscopy have recently extended the experimental capabil-
ities to observe the development of individual cells with unprecedented spatial and
temporal resolution. In combination with appropriate cultivation devices, e.g., custom
microfluidic lab-on-a-chip devices [2], image sequences are acquired for hundreds of
developing populations in parallel under controlled environmental conditions.

With the possibility to generate such large-scale datasets, the role of image analysis
has become a crucial step for the elicitation of quantitative, time-resolved information
for direct interpretation as well as modeling purposes. We have developed an extensi-
ble image analysis pipeline for the evaluation of time-lapse videos of the industrially
competitive amino-acid producer Corynebacterium glutamicum. The pipeline has been
optimized for the identification of cells in crowded environments, tracking of cells with
large spatial displacements, and the extraction of a multitude of cellular characteristics,
for instance, cell morphology and fluorescence reporter intensities.

The presented pipeline is implemented as a plugin for the well established ImageJ(2)
platform. The platform provides advanced data structures and allows for visual controls
of workflow composition and parameters. The underlying service architecture promotes
extensibility of modules and flexibility to use implementations in alternative contexts.

The combination of microfluidic system, live-cell imaging setup, and image analysis
techniques is capable to address challenges of population heterogeneity in microbial
populations even at low temporal resolution. While the analysis platform has been
applied for a variety of studies, applications from two fields are highlighted in this
thesis.

First, investigations of microbial growth and morphology of C. glutamicum. Here,
the applicability of growth quantification methods from bulk experiments to single-cell
data are investigated. A second application transfers this knowledge to a profiling study
of C. glutamicum in which the influence of medium composition (i.e., carbon sources)
on growth and morphology parameters is analyzed.

Furthermore, an analysis of the microbial SOS response and the induction of a
prophage in C. glutamicum is presented. To that end, a dual reporter strain (i.e.,
reporters for SOS response and prophage induction) is cultivated in lab-on-a-chip de-
vices and analyzed using fluorescence microscopy. From the time-resolved reporter
outputs, we have established a cellular state model that is used for comprehensive
population modeling.
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Symbols

r(t) A closed curve in the plane, where t ∈ R is a continuous, artificial parameter

R The region that is enclosed by a closed contour R̄

R̄ A contour (closed curve)

H Hessian matrix

I Identity matrix

I General 8-bit image. I(x) : Ω→ [0, 28)

Ω Image domain

ε2 Optimization criterion for pyramid approach to registration

P A parameter vector of a transformation Q

R A reference image that is used as the registration target

T An target image used for registration of stacks

Q A transformation of an image

W(x;p) Warp of coordinates x with parameter vector p

ϕ Basis function

M Number of control points of a parametric snake

Esnake Snake energy

EEdge Edge energy term of a snake energy Esnake

ERegion Region energy term of a snake energy Esnake

xv



xvi SYMBOLS

α Trade-off parameter

ES Splitting energy for two points

µ Mean of a probability density function

σ Standard deviation of a probability density function

σ2 Variance of a probability density function

C(x, y) Contrast of a window centered at (x, y): C(x, y) = max(x, y)−min(x, y)

θ A (gray value) threshold.

tdiv Time between two cell divisions, i.e., the duration of one cell cycle

tdiv_detected Time between two cell divisions as observed using time-lapse microscopy

∆t Time between to frames of an image sequence

A Assignment matrix for frame-to-frame linking

g Cost for closing a gap between two track segments

l Linking cost for a one-to-one assignment between two cells

Cglobal Cost matrix for global track segment linking, shown in Figure 5.4

Clocal Cost matrix for frame-to-frame linking, shown in Figure 5.2

m Cost for merging two track segments

s Cost for creating a split event
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1 Introduction

In recent years, the general focus of many countries has shifted from a petrochemical-
based to a bio-based economy. These sustainability concepts have resulted in the
engineering of bacteria, yeast, and fungi to so-called (microbial) cell factories [3]. It is
nowadays possible to produce a multitude of compounds, i.e., pharmaceuticals [4, 5],
food additives, e.g., lysine [6], as well as biofuels [7, 8], in large-scale biotechnological
processes using microbes. An important future step in the direction of sustainability,
should be the coupling of biological and chemical methods for producing chemical build-
ing blocks and intermediates based on a “green” bioconversion instead of petrochemical
processes.

According to literature, the global industrial biotechnology sector is expected to grow
to around 515 billion euros in 2020 and further [9]. This shift to a bio-based economy
is further emphasized by various global initiatives investing millions of euros (e.g.,
Innovation Initiative Industrial Biotechnology [10], Industrial Biotechnology Catalyst
by BBSRC [11]) in industrial biotechnology and bioeconomy-related fields [12].

Driven by advances in biotechnology [13], the importance of heterogeneity of popula-
tions and cellular characteristics for processes like metabolism, growth, and production,
is currently under investigation [14, 15]. In contrast to bulk experiments that are
investigating processes on a population average level, specialized experiments with
single-cell resolution have to be performed to yield information about cellular hetero-
geneity and the governing mechanisms [2, 16]. This knowledge can in turn be used
for further optimization of bio-based production processes. Hence, single-cell studies
are currently considered to be an additional layer of bioprocess optimization [15] (cf.
Figure 1.1).

Many current studies are based on the understanding that clonal bacterial populations
can be physiologically heterogeneous [17]. Single-cell investigations of microbial (pro-
duction) strains have lead to unexpected discoveries, such as the existence of biological
noise and phenotypic switching in persistence [18], toxicity [19], and bacterial growth
[20–23]. Investigations of such phenomena have greatly profited from the progress
in handling individual cells under constant conditions as well as microscopy. With
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Figure 1.1: Different scales of microbial analysis. A. Lab-scale bioreactor. B. Shaking flask. C.
Microtiter plates. D. Microfluidic LOC devices (adapted from [15]).

micro-scale experiments executed on LOC devices, researchers are able to run up to
thousands of cultivations in parallel [2]. In combination with state-of-the-art live-cell
imaging setups [24, 25] even more detailed information about microbial systems is
obtained. Due to parallelization of experimental methods, large amounts of data are
generated within hours. This is especially important for generating statistically sound
data about rare events that happen with low frequency.

While optical measurements are helpful to determine cell numbers in a population
or investigate cell morphology, fluorescent biosensors increase the dimensionality of
data that is acquired for individual cells [26]. The general concept of biosensors is to
construct bacterial strains with genes coding for fluorescent proteins integrated into
their genome or on plasmids [27]. Those reporter genes are fused to promoters of
interest such that they underly the same control mechanism as the gene of interest.
In a live-cell imaging experiment, such cells will express fluorescent proteins that are
excitable. The emission intensity after excitation is measured, resulting in an optical
readout that is used to characterize the expression pattern of a studied gene [27].

Because the use of fluorescent reporters helps to resolve translational heterogene-
ity [28], it can ultimately lead to a deeper understanding of microbial processes on
the systems level. Nevertheless, bulk analyses are useful for extracting trends with
averaging measurements for entire microbial populations. However, to resolve the
distributions that generate this average, single-cell technologies have to be applied (cf.
Figure 1.2). An often referred to example is the analysis of lac operon induction levels
in Escherichia coli [29]. The smooth increase in protein expression that is observed
on population level is not due to a gradual induction of all cells but rather due to the
formation of subpopulations that are fully induced, while the rest of the population is
fully repressed.

Unlike other single-cell analysis techniques, e.g., flow cytometry, live-cell imaging
approaches are able to temporally resolve data. While this opens up great opportunities



1.1. PROJECT OBJECTIVES 5

A B

N
um

be
r o

f c
el

ls

x

Intensity
N

um
be

r o
f c

el
ls

x

Intensity

Figure 1.2: Population heterogeneity at different resolutions. A. Bulk measurements extract
one averaged fluorescence intensity value for all cells. B. Single-cell analysis enables the
extraction of spatially-resolved information from individual cells. The resulting population
distribution has the same mean value as extracted from bulk analysis, but resolves two
subpopulations.

for understanding biological processes, it also burdens the data analysis with the
additional temporal dimension to be considered. With the microfluidic LOC devices
made in Jülich, image sequences of up to hundreds of microfluidic single-cell cultivation
(MSCC) are acquired in parallel. Hence, the LOC platform, which has been developed
in the Microscale Bioengineering group of Dietrich Kohlheyer, creates opportunities
for high-throughput, single-cell investigations. However, to be able to explore these
opportunities, data evaluation workflows have to be established. The challenge remains
to extract quantitative, time-resolved data from large image sequences in a robust,
accurate, and automated way.

1.1 Project Objectives

When this PhD project started in 2012, the production procedure for microfluidic LOC
devices made in Jülich had been established and the live-cell imaging setup with bright-
field and fluorescence microscopy was already available. While the first acquired images
were only analyzed qualitatively, it was clear that the quantification of image contents
was required. Hence, a workflow for the extraction of quantitative cell properties
(descriptive data) from image sequences (raw data) had to be established at the institute
as presented in Figure 1.3.

The extraction of quantitative cell descriptors was achieved using manual selection of
cells in the vendor software before this PhD project. If the extraction of time-resolved
information for individual cells was desired, the assignments between subsequent im-
ages and the final visual representation had to be done manually. As already mentioned,
both task are tedious, time consuming (in the order of days per cultivation chamber),
and error prone.

Therefore, the objective was set to establish a (semi-)automated workflow for the
extraction of time-resolved information from image data. This (semi-)automated
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Figure 1.3: Extraction of time-resolved, single-cell information from image sequences enables
the investigation of dynamics of cellular processes. Establishing the process for the automatic
extraction as well as the statistical analysis of extracted data is the objective of this PhD
project.

workflow should be implemented in close collaboration with experimentalists to a) have
direct contact with the users and b) optimize the quality of image data for processing
and analysis. It is, therefore, not an objective of this project to create a completely
automated solution for information extraction that is not practically applicable to the
data that is generated in our labs.

The workflow is implemented as a ready-to-use software package that helps experi-
mentalists with analyzing acquired image data. Hence, the software has to be flexible
and extensible for the various use cases encountered at the institute. A modular software
architecture (with sensible interfaces) supports these requirements and opens up the
software for future improvements and optimization of individual modules.

In addition to the design and implementation of the analysis workflow, a server
solution for storing acquired image data in a consistent and collaboration-enabling way
is desired. This solution should feature a centralized storage of images in combination
with additional (experimental) information. Additionally, the software solution should
be ready to act as a central processing hub. The ideal case for an experimentalist would
be to directly execute analysis tasks on a server instead of their desktop computers.
Such tasks could be distributed on available computation infrastructure without users
noticing.

All in all, the objective on a technical level is to establish image analysis as an integral
part of the microfluidics LOC platform made in Jülich and, in a broader context, the
single-cell analysis (SCA) at IBG-1.

The aforementioned workflow will be applied in this work to generate additional
knowledge on several topics of IBG-1. In close collaboration with the Population Het-
erogeneity group of Julia Frunzke, the connection between SOS response in Corynebac-
terium glutamicum and the prophage CGP3 is investigated. To that end, experimental
data is acquired, analyzed, and used formodeling purposes in the context of the federally
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funded (DFG) priority program SPP1617 “Phenotypic heterogeneity and sociobiology
of bacterial populations”.

Furthermore, microbial growth in the context of process optimization and screening
studies is one focus in close collaboration with Alexander Grünberger in the Kohlheyer
lab.

1.2 Outline

Chapter 2 presents experimental procedures as well as additional information on LOCs
devices and live-cell imaging for the generation of time-lapse image sequences. This
chapter also elaborates on improvements to the data management life cycle at the
IBG-1.

The implemented data extraction and image analysis workflow is described in detail
in Part II. Each chapter is concerned with the theoretical background of one module of
the pipeline. This part is concluded by a chapter on the implementation of the presented
pipeline as an ImageJ/Fiji plugin.

Part III shows a subset of the experiments that have been evaluated using the image
analysis workflow as presented in this thesis. The first chapter presents the contribu-
tions of the presented pipeline to characterizing the microfluidic chips. The subsequent
Chapter 10 highlights the opportunities as well as the pitfalls of using image analy-
sis techniques for microbial growth quantification. The following chapter describes
a screening study that presents data on the connection between nutrients and the
morphology of bacteria. Furthermore, a focus is on the modeling of the SOS response
in C. glutamicum and prophage induction from experimental data in Chapter 12 using
fluorescence reporters.

The final part concludes the thesis with a short summary and final remarks about the
extracted insights from this project. Also, future directions and projects for the image
analysis at IBG-1 are presented in Chapter 14.





2 Data Generation

Since the major objective of my PhD project is the establishment of an image analysis
pipeline in the context of microfluidic SCA for C. glutamicum, this chapter present the
already established workflows and the (experimental) infrastructure at IBG-1. While the
focus in on the internal experimental workflow, most of the concepts can be transferred
to other setups or are universally applicable.

Figure 2.1 sketches an exemplary investigation workflow for SCA at IBG-1. Several
persons and groups are involved in the presented workflow: single-cell experiments
are executed in the Kohlheyer lab to investigate a bio(techno)logical question posed by
members of bio(techno)logical groups, e.g., the Population Heterogeneity group of Julia
Frunzke. Data extraction, analysis, and modeling tasks are executed by members of
the Modeling and Simulation group.
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Figure 2.1: General SCA workflow. Bacterial strains that contain biosensors are engineered.
Strains are cultivated in microfluidic LOC devices that are imaged in a state-of-the-art live-cell
imaging setup. Image analysis techniques are used for the extraction of descriptive data, that
is stored in OMERO together with raw data. Statistical data analysis and modeling generate
new knowledge systems level knowledge about intracellular processes.
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This chapter provides fundamental knowledge as well as background information
on the individual steps that are sketched in Figure 2.1 apart from “Image Analysis”
(cf. Part II) and “Statistical Data Analysis / Modeling” (cf. Part III). Starting with
the platform organism that is at the center of presented applications, this chapter
includes a short introduction of C. glutamicum that also highlights its importance as a
versatile microbial cell factory and why it is subject of basic research. An overview of
the microfluidic LOC platform as well as the live-cell imaging setup is provided to show
the origins of the raw data that is to be processed with the image analysis pipeline.
Finally, this chapter describes the storage solution for acquired image sequences that
has been established in this project.

2.1 Corynebacterium glutamicum

Corynebacterium glutamicum is a gram positive, non-pathogenic soil bacterium that
is one of the major platform organism for the biotechnological production of various
amino acids, e.g., L-glutamate, L-valine, and other food and feed additives, e.g., nucleic
acids and vitamins, at industrial scale. For example, C. glutamicum is used in a highly
optimized biobased process to produce L-valine, a food additive, in the order of million
tons per year [30]. In the last decade, C. glutamicum has also been engineered for
new applications in the “white” biotechnology. Strains have been developed and
optimized for the production of biofuels [8] as well as organic acids [31, 32]. Although
briefly mentioned in the introduction, the contribution of C. glutamicum in health-
related fields is mostly due to the usage of amino acids as pharmaceutical raw material.
Additionally, C. glutamicum is subject to research as it is a close relative to the pathogenic
Mycobacterium tuberculosis [33].

For an overview of the production capabilities of C. glutamicum, the reader is re-
ferred to the comprehensive introductory chapter “The Biotechnological Potential of
Corynebacterium glutamicum” of [34] as well as [30, 35].

2.1.1 Morphology, Growth, and Division Behavior

C. glutamicum belongs to the family of rod-shaped bacteria. The typical wildtype
strains range from cell lengths of 2µm to 5µm, while the width is about 1µm [36].
The general morphology of cells is shown in an scanning electron microscopy image of
a small population in Figure 2.2A.

In contrast to other rod-shaped bacteria, Actinobacteria including Corynebacteria grow
by apical insertion of peptidoglycan into the cell wall [37]. Which components play an
integral role in the apical growth machinery and how it is located, is a topic of active
research [38, 39].

C. glutamicum shows a “snapping” division behavior that is illustrated in Figure 2.2B.
Cells will abruptly (in less than 1µs) move post-fission, effectively creating a V-shape
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Figure 2.2: Cellular shape and division behavior of C. glutamicum. A. A scanning electron
microscopy image of several C. glutamicum cells (taken from [30]). B. Excerpt from an image
sequence of a small C. glutamicum population. Time between image acquisitions 15 min. The
first image shows four cells. The second image shows six cells with four in V-shaped position
directly after cell division.

that is characteristic for C. glutamicum. Such division behavior has previously been
described in Mycobacteria [40, 41]. A detailed understanding of the mechanisms that
drives the snapping in C. glutamicum is not available yet. There are, however, advances
in understanding cell morphogenesis [37] and the resulting V-snapping [42] in recent
years.

In contrast to the cell division of other model organisms, e.g., E. coli and Bacillus sub-
tilis, the V-snapping and the attachment of cells after division in C. glutamicum poses
challenges for major parts of the image analysis pipeline. Detection of individual cells
is hard to achieve because of the stickiness of cells post-fission making the separation
of microbial populations a challenging task. What is even more challenging is finding
correspondences between subsequent images, when the majority of cells in a population
are dividing in a snapping manner at the same time. In this case, depending on the
location in the population, cells might be moved farther than two-fold of their cell
length between two subsequent frames.

2.1.2 Bacteriophages

The C. glutamicum chromosome has a total number of approximately 3.3 Mbp (cf.
Figure 2.3). Analyses of the sequenced chromosome have identified regions with
putative bacteriophage origin [43, 44]. The CGP1, CGP2, CGP3, and CGP4 termed
prophages (i.e, a bacteriophage genome integrated into the host chromosome) differ
significantly in their contribution to the C. glutamicum genome. In contrast to the smaller
CGP1, CGP2, and CGP4, the CGP3 element is one of the largest known prophages
(~187 kbp), constituting ~6% of the entire C. glutamicum genome.

Such prophages are bacteriophage genomes that have been integrated into the host
genome [45]. Hence, the C. glutamicum strain, that we are investigating has already
been infected by various bacteriophages. Upon injection into a host cell, the phage
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Figure 2.3: Genotypic characteristics of Corynebacterium glutamicum. Genome sequence pub-
lished in 2003 [43]. The 3.3 Mbp genome contains four regions of putative prophages denoted
by CGP1-4, which together make up ~10% of the genome.

integrates into the host genome and stays dormant for longer periods of time (cf.
“temperate prophage” in Figure 2.4). During this lysogenic life cycle, stresses trigger
the switching from the lysogenic to the lytic lifecycle [45–47]. In the lytic life cycle,
the bacteriophage replicates in the host cell and is released when the host is lysed.

In preliminary flow cytometry (FC) experiments, we have observed that the prophage
CGP3 is induced in absence of external stress (e.g., antibiotics) in a minority of
C. glutamicum cells. While CGP3 can not be packaged into a fully functional phage,
the induction apparatus seems to be stochastically triggered. We will focus on those
findings in Chapter 12.

2.1.3 Fluorescence Reporters

Several fluorescence reporters for various applications are commercially available. Since
C. glutamicum is a microbiological model organism, standard cloning procedures to
integrate fluorescence reporters into cells are well established [30]. There are several
possibilities for the integration of reporters into a host. One possibility is the direct
integration into the genome of the host organism as fusion protein (i.e., reporter gene
and gene of interest are joined) or as “standalone” gene with the promoter of interest.
Second is the generation and introduction of a plasmid (cf. Figure 2.5) that contains
the genes for the fluorescent reporters under control of the target promoters [26].

Fluorescence reporters differ in their excitation and emission wave length and are
dubbed according to the part of the spectrum where their emission wave length is
located. Yellow fluorescent proteins have their emission peak at around 530 nm, while
red fluorescent proteins are located in the higher energy region of the wave length
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Figure 2.4: Schematic of the life cycle of bacteriophages (adapted from [45]). Upon injection
into a bacterial host, bacteriophages can enter the lytic or the lysogenic life cycle. The
lytic lifecycle will kill the host to produce more bacteriophages for continuation of infection.
Bacteriophages can also enter a dormant state in which they are integrated into the host
genome. A switch between the states is possible.
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Figure 2.5: The plasmid pJC1-term that has been used for the transformation of C. glutamicum
in the studies of presented in this thesis. Gen X denotes the gene that is introduced into the
organism.

spectrum (over 600 nm). Additionally, many improvements have been achieved in
the field of fluorescent protein design to improve the signal strength as well as other
properties.

The reporters used in the applications presented in Part III are Venus (red, [48])
and E2-Crimson (yellow, [49]). E2-Crimson and Crimson will be used synonymously
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throughout the thesis unless stated otherwise. Both fluorescent proteins have been
selected such that the excitation as well as the emission wave length are well separable
during fluorescence microscopy (cf. Figure 2.6).
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Figure 2.6: Schematic of emission wavelengths of Venus and E2-Crimson.

In live-cell imaging, fluorescent proteins are most commonly employed to track
dynamics of proteins (if temporal resolution allows). To that end, a sequence coding
for a fluorescent protein is placed under transcriptional regulation of the promoter
belonging to a gene of interest. Hence, this approach provides a directly visible readout
of the expression pattern of the gene of interest in the living organism. This is in stark
contrast to dyes where foreign molecules need to be introduced to the host.

2.2 Microfluidic Single-Cell Cultivation

Originally LOC devices have been developed to miniaturize standard laboratory pro-
cesses to a scale where several processes are executed on a chip of the size of a coin.
Figure 2.7 shows such a LOC device manufactured from polydimethylsiloxane (PDMS).
This chip consists of channels of tens of micrometers diameter, and even below, through
which a fluid is pumped with constant flow rate. Such microfluidic LOCs offer the
potential for different applications in all fields of the life-sciences [15, 50–54]. Drug
development, bioanalyses, and cultivation of single-cell samples are only a few possible
applications within microfluidic systems.

Such microfluidic LOC devices are especially important for the investigation of mi-
crobial population heterogeneity. When bacteria are cultivated in shaking flasks at
lab-scale, cells are subject to environmental changes due to shaking or stirring. This
effect is especially significant in batch processes, where the nutrient supply changes over
time and side products might accumulate. These permanently changing environments
contribute to cellular heterogeneity in a cultivation. If the objective of an experiment,
however, is to study heterogeneity due to inherent stochasticity of cellular processes,
environmental influences have to be eliminated as far as possible. This is hardly possible
for large-scale experiments due to mixing constraints. This also holds for cultivations
on agarose pads for single-cell investigations [55], where the environment of individual
cells will slightly change over time. Mostly, due to nutrient uptake but also due to
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Figure 2.7: The fabricated microfluidic chip device at different levels. A. A PDMS chip bonded
to a 170µm glass slide. B. An excerpt from the blueprint of the chip. Five parallel channels
with a bioreactor each. C. Scanning electron microscopy image of one cultivation chamber
(adapted from [2]).

the excretion of (side)products into the environment. Besides nutrients, the cellular
environment comprises additional parameters, like temperature, pH value, and oxygen
supply, that directly impact intracellular processes.

Microfluidic LOC devices for MSCC work according to the principle of constantly
flushing fresh medium through the devices. The flushing of the chip helps to keep the
nutrient situation in growth chambers constant over time. The general idea behind
single-cell cultivation is to catch individual cells in specifically engineered and manu-
factured growth sites. In combination with an incubator the temperature is precisely
controlled. The incubator, furthermore, allows for the control of oxygen concentra-
tion as well as nitrogen concentration during an experiment. Hence, growth sites are
state-of-the-art structures in which clonal population can develop.

The overall chip design as well as the design of the growth sites is determined by the
respective application. The growth sites that have been used for the studies in this thesis
can harbor microbial populations of several generations (up to 10). The microfluidic
devices used for this project are intended for the growth analysis of bacterial cells on
single-cell level. In contrast to agarose pads, data are obtained in high-throughput in
microfluidic devices [56]. To that end, the number of parallel cultivations is raised
(cf. Figure 2.7B) as well as the degree of automation. A typical LOC device contains
hundreds of growth sites. Figure 2.8 shows two cultivation chambers that are used to
grow clonal populations from individual cells. While many designs have been proposed
for MSCC [57, 58], the focus in this thesis is on the rectangular monolayer growth
chamber (MGC) shown in Figure 2.8. At some time during the experiment, the size of
this population will exceed the space that is available in the chamber and cells will be
pushed out of the chamber through the so-called overflow channels.

Although the whole design of the described cultivation chambers is complex, the role
of the height of such a chamber should be highlighted. In order to obtain quantitative,
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Figure 2.8: Growth sites for cultivation of bacteria. Cells are growing to a full population inside
the chamber. Once the chamber is filled with cells, the surplus exits through the overflow
channels into the supply channel. This deeper channel is constantly flushed with medium
and provides the population with nutrition. A. The pico-litre bioreactor (illustration adapted
from [2]). B. Several MGCs with the respective main channels.

time-resolved information for each cell, cells have to be visible over the course of
an experiment. While the height of MGCs varies between 800 nm and 1.2µm, it is
guaranteed that cells do not overlap to their full extent but only partially, if at all. Since
the effect of overlapping can not be eliminated entirely in the presented bioreactor, this
challenge has to be approached with image analysis means (cf. Section 4.6). Details of
the fabrication process and the mode of operation are presented in [2] and [59].

Complementing the MGC and other population growth chambers, designs like the
mother-machine [60] have been proposed to cultivate individual cells for extended
periods of time. The possible cultivation time in the mother-machine is increased at the
expense of population information. The mother-machine is used as an alternative to
population-based growth sites at IBG-1, when population information can be discarded
or population influences are unwanted. Since this is not the case for the applications
presented in this work, focus of this thesis is on MGCs.

2.2.1 Operating Microfluidic Devices

Although the standard operating protocols for MSCCs differ in details, a common
scheme can be defined on how microfluidic LOCs are operated in a live-cell imaging
experiment.

Setup Syringes are filled with medium. The syringes are connected to a syringe pump
as well as the chip. The pump will push the medium through the chip at constant
speed.
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Seeding To seed bacteria into the traps/growth sites, medium that is charged with
precultivated bacteria is flushed through the chip. In order to increase the seeding
efficiency, a special procedure [61], which has been optimized with image analysis
techniques, is applied.

Cultivation After the initial seeding phase, fresh medium (without bacteria) is flushed
through the chip for the complete runtime of an experiment.

2.3 Live-Cell Imaging Setup

A fully motorized, inverted epifluorescence microscope (Ti-Eclipse, Nikon GmbH, Düs-
seldorf, Germany) is used to obtain high resolution time-lapse images (shown in
Figure 2.9). Due to the motorized stage, different predefined locations on a chip are
imaged in a completely automated manner (cf. Figure 2.10). Fundamental bright field,
fluorescence, and phase-contrast microscopy are possible with the technical equipment.

Figure 2.9: Live-cell imaging setup. In the center a Nikon Eclipse Ti with a stage surrounded by
an incubator keeping environmental conditions (temperature, oxygen supply, etc.) constant.
A system of syringe pumps that are connected to the LOC is located on the right side. Controls
for the microscope are found to the left of the microscope right next to the computer used for
setting up experiments.

Phase-contrast microscopy is one of the most widely used imaging techniques in
live-cell imaging. It is based on the conversion of phase shifts of light passing through
a specimen, to brightness changes in the resulting image. Especially when working
with unstained biological specimen, the contrast between a cell and the surrounding
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Figure 2.10: Acquisition scheme of images with the experimental setup.

is low when using bright field illumination. Comparable techniques like differential
interference contrast (DIC) microscopy are also used for live-cell imaging, but show
weaknesses, like reduced contrast and visibility of cells [62].

An oil-immersion objective (Apo 100× Oil N) with a numerical aperture (NA) of
1.45 and a magnification of 100x is used for the experiments. According to Abbe’s law,
the resolution limit r of the used system is at approximately 200 nm:

r =
λ

2×NA
, (2.1)

with wavelength λ and the numerical aperture of the objective NA.

In addition to phase-contrast images with an LED light source (pE-100 white, CoolLed
Ltd., Andover, UK), the microscope can also generate fluorescence images using a Nikon
fluorescence excitation light source (Intensilight). Images are acquired in combination
with high quality filters for Venus (EX 520/30 nm, DM 510 nm, EM 540/20 nm) and
E2-Crimson (EX 600/37 nm, DM 630 nm, EM 675/67 nm; AHF Analysentechnik AG,
Tübingen, Germany).

The used CCD cameras (Clara DR-3041 and Neo sCMOS, Andor Technology Plc.,
Belfast, United Kingdom) generate images with a spatial resolution of 1600 px×1200 px
and 2560 px× 2160 px, respectively. Hence, images of common growth sites are about
800 px×800 px in size. At the aforementioned resolution, an image sequence of a single
cultivation chamber at 16-bit, consisting of 120 images, takes up 450 MB to 1300 MB
of disk space. Since one lab-on-a-chip device features several hundreds of cultivation
chambers, the data generated per month is in the order of terabytes.
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While it is theoretically possible with the technical setup to resolve differences in
objects down to the resolution limit of 200 nm, the observation of bacteria with lengths
between 2µm and 4µm remains challenging. A higher resolution of the acquired
images leads to more refined cell contours because they are sampled more of often and,
hence, consists of more pixels. Benchmarks of the influence of imaging resolution on
cell detection results are provided in Chapter 7.

2.4 Central Storage for Biological Image Data: OMERO

The integrated NIS-Elements software (Nikon GmbH, Düsseldorf, Germany) is used for
controlling the image acquisition setup. Experimental output is stored in the proprietary
file format ND2 [63]. Such files contain, in addition to the raw image data additional
information, for instance, experimental settings, like position of an acquired image, and
settings like exposure time. This additional information is termed meta information.
With the NIS-Elements software, a comfortable image viewer is available, that can load
even large ND2 files from an external location, like a network share.

At IBG-1, experimentalists have started to create a folder structure of ND2 files to
keep experimental data in order. To have the files sorted according to the date of
experiment, the structure usually looks like:

USERNAME
+-- YEAR-MONTH-DAY_EXPERIMENT_NAME
+----- EXPERIMENT1.nd2
+----- EXPERIMENT2.nd2
+----- EXPERIMENT3.nd2

While this folder structure serves the purpose of organizing data of an individual
reasonably well, it is not feasible for collaborative experiments and analyses. In case of
collaborations, multiple people are part of the data generation and analysis workflow
Figure 2.1. Common practice in this case is the duplication of the experimental data,
which leads to inconsistencies in the worst case.

In addition to the organization of image data, experimental meta data are lost,
when only ND2 files stored. This information is namely a) the cultivated organism,
b) cultivation medium, c) protocol of preparation procedure, and d) notes and remarks
to the experiment. This is crucial information about imaging data, which is intrinsically
tied to the images, and has to be stored as annotations, for instance.

The aforementioned tasks are of general nature and have been tackled with great
efforts by the recently established Open Microscopy Environment (OME) consortium.
The consortium works in close contact with laboratories and imaging facilities around
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the world to decide on a consensus for storing biomedical image data. One result of
this process is the client/server application OME Remote Objects (OMERO) for storing
biological image data in connection with available meta data.

ImageJ(2)

Explorer

OMERO
.insight

Samba share

100 TB

ibt�lesrv2

Figure 2.11: Overview of OMERO infrastructure at IBG-1. Large boxes denote dedicated
machines, clients as well as servers. Arrows denote interactions between clients and the
server. Clients architecture is heterogeneous, Windows, and Linux.

Figure 2.11 shows the heterogeneous infrastructure that has been established at the
IBG-1 during the time of my PhD project. In addition to storing image data combined
with meta and experimental information, a long term goal is to foster collaborations
using the data sharing features. Furthermore, the computer ibtfilesrv2 is designed to
be the central machine for a network of distributed compute nodes that are used for
demanding image processing and analysis tasks.
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Image Analysis
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Image Analysis of C. glutamicum

The extraction of quantitative or qualitative, time-resolved information from time-lapse
image sequences requires advanced image processing and analysis approaches. On the
one hand, images need to be processed so that they can be more easily interpreted. On
the other hand, an image analysis pipeline for the extraction of information has to be
established.

The reader might ask the question of the necessity of yet another image analysis
pipeline. This question is easily answered in a broader context. State-of-the-art image
processing tasks require highly optimized approaches for very specific problems [64].
Following this paradigm, general image processing solutions are barely available or
under perform with real data with respect to accuracy, computational time, or computa-
tional demand. While these issues might be of technical origin, the additional challenges
in biological image analysis are peculiarities of the imaged biological specimen.

It is these peculiarities of C. glutamicum in combination with the microfluidic setup
that requires adaptations of available algorithms to fit the needs of experimentalists.
Three of those peculiarities will be highlighted in the following chapters to argue for
the necessity of refining available approaches:

1. microfluidic device structures that are not of interest,

2. dense microbial populations in MGCs, and

3. unpredictable division behavior of C. glutamicum.

The processing workflow established during this PhD project is separated into several
subsequent image processing and analysis steps (cf. Figure 2.12). In contrast to
recent developments [65], a sequential approach that contains several submodules was
implemented. These submodules will be described in detail in the following chapter.
This procedure allows for re-using modules and optimization of the pipeline for different
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Figure 2.12: Schematic of an image analysis pipeline for the extraction of time-resolved data.
Raw images (generated as described in Chapter 2) have to be preprocessed to remove unneces-
sary chip structures and spatial shifts in image sequences. To extract quantitative information,
cells are detected in each image of a sequence. Correspondences are subsequently established.
Finally, the time-resolved information is visualized and structured in lineage trees that are
also used for further postprocessing.

applications. This would not be possible with an integrated approach comprising all
steps of a pipeline.

In the first step of the pipeline, raw input image sequences have to be prepared
for further processing. Growth sites are determined as regions of interest (ROIs) and
are cropped to discard structures that are not of interest and speed up subsequent
computations. The preprocessing also removes spatial shifts between subsequent
images (also called frames) in an image sequence. Such shifts occur regularly due to
the applied image acquisition scheme (cf. Figure 2.10).

The concept of image segmentation is to transform an image such that it is easier
to analyze and quantify with respect to specific research questions [66]. Hence, the
general objective is to assign each pixel in an image a label such that pixels that share a
specific characteristic are assigned the same label. We are, however, not only looking for
the best segmentation of an image but for context awareness. That is, the objective is to
identify individual cells and their contours in a population rather than only connected
regions.

After cell detection, it is possible to extract quantitative information for individual
cells in a clonal population. However, it is not possible to investigate dynamics without
time-resolved data. Depending on the imaging frequency in the time-lapse microscopy
setup, an individual cell is imaged multiple times during a cell cycle. Finding the
correspondence of each cell throughout a sequence of images is called tracking [67].

The quantitative information that has been extracted for cells, finally, needs to be
combined with the development information that has been extracted in the cell tracking
step. One possible solution is the visualization of cellular properties over time (the
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so-called traces) in line plots. This requires an information visualization approach for
the data as well as an elaborate data model that can be accessed for advanced analysis
tasks (e.g., machine learning techniques, information extraction, parameter extraction
for simulation studies).

The following chapters will highlight approaches to solve the aforementioned tasks
and challenges of an image analysis pipeline for the extraction of time-resolved, quan-
titative data from time-lapse microscopy. The chapter is concluded by details of the
implementation of the presented modules and the image analysis pipeline as a whole.
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3 Preprocessing

While image sequences that have been acquired with state-of-the-art live-cell imaging
setups are of high quality, raw images cannot be used directly as input to cell detection
procedures. In the particular case of microfluidic LOC devices, two challenges have to
be tackled originating from the experimental setup. First, a spatial shift in xy-plane
that is due to the image acquisition scheme. Second, the detection and cropping of
individual growth sites for removing unnecessary image information for the subsequent
processing steps.

This chapter presents approaches that have been implemented as modules of the
image analysis pipeline for the conversion of raw images to input images for subsequent
steps.

3.1 Registration

Because of the microscopic and experimental setup, in which not only one, but multiple
positions are observed in parallel, the stage of the microscope moves between two
subsequent acquisitions of one particular position (cf. Figure 2.10). Although this
movement is rather small (1µm to 3µm) in comparison with the overall size of the image,
time-resolved analyses require compensating for those spatial shifts (see Figure 3.1 for
an example). While this shift will influence the results of the cell assignment step (that
takes into account the spatial location of cells), cell detection is independent of the
position of a cell. Since finding assignments between cells is a demanding task on its
own, spatial shifts are not desirable.

On an abstract level, approaches to solve the image registration or image alignment
problem can be divided into two categories. Feature-based methods overlay one image
(target) onto another (reference) such that prominent features from both image are
aligned. In order to use such methods, characteristic features have to be determined in
the reference as well as the target image. Commonly, geometric structures like corners
and edges are used, however, the extraction and computation of more sophisticated
features is still a field of ongoing research (e.g., Scale-Invariant Feature Transform
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(SIFT) [68], Speeded-Up Robust Features (SURF) [69], Binary Robust Independent
Elementary Features (BRIEF) [70]).

In contrast, intensity-based methods are maximizing the similarity between two
images by computing correlation metrics. Hence, major parts of subsequent images
have to be (gray value) constant. If this is not the case, such approaches get fragile
and solutions for the posed optimization problem might be hard to find. Furthermore,
methods relying on intensity values are rather unstable for cases where the differences
in illumination are striking in the images that are to be registered.

A B C

D E

Figure 3.1: Spatial shift between two subsequent frames. A. Frame f0. B. Frame f1. C.
Difference between f0 and f1 revealing registration errors. D. Frame f1 registered to frame
f0 creating f1,registered. E. Difference between f0 and f1,registered. Only minor differences
around the two cells in the center are visible.

Image registration algorithms share the four common steps:

1. Feature detection

2. Feature matching

3. Transformation model estimation

4. Image resampling and transformation
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Although the aforementioned approaches are different in their underpinnings, they
share the common necessity to find suitable transformations of the target to align it
to a reference. In general, the target can be transformed in several ways, e.g., scaling,
rotation, translation, or shearing. Due to the large number of possible transformations,
finding the best one is computationally demanding.

However, we know that the reason for the spatial shift between two images is the
movement of the microscopes stage in x,y-direction (cf. Figure 2.10). With this ex-
planation in mind, we can safely exclude scaling as well as shearing from the set of
“applicable” transformations. Hence, we are only considering translation and rotation
to overlay the structures of the MGCs in two subsequent frames.

While we have evaluated several approaches for solving the registration problem
of MGCs, the following sections will only present the two most promising ones: the
Lucas-Kanade algorithm and the approach described by Thevenaz et al. [71]. The
reader is referred to two excellent reviews on image registration for further information
and a broader overview of the field [72, 73].

3.1.1 Lucas-Kanade Algorithm

The basic idea of the Lucas-Kanade algorithm [74] is to align a target image T (x)
with a reference image R(x), where x = (x, y)T ∈ [0, H) × [0,W ) = Ω is a vector
of pixel coordinates with H and W the image height and width, respectively. The
operations which are allowed during the alignment procedure are noted as a set of
warps W(x;p), with p = (p1, p2, . . . , pn)T being the vector of parameters for the
operations. An element of the set W(x;p) takes pixels of the target image T and maps
them to sub-pixel locations in the coordinate frame of the reference R. Hence, a generic
set of transformations that features rotations, scaling, and translations, is formulated
as:

Wcomplex(x;p) =

(
cos p1 − sin p1

sin p1 cos p1

)
︸ ︷︷ ︸

Rotation

· p2·︸︷︷︸
Scaling

(
x
y

)
+

(
p3

p4

)
︸ ︷︷ ︸
Translation

(3.1)

Using the available set of warps, the goal of the Lucas-Kanade algorithm is to minimize
the sum of the squared error between the reference image R and the target image T
warped onto the coordinate frame of the reference. Thus, the goal can be formulated
as a non-linear optimization problem:

p̂ = argmin
p

∑
x

[
R(W(x;p))− T (x)

]2
(3.2)

The optimization problem is solved with a Gauss-Newton gradient descent approach.
An overview of the approach is provided in Algorithm 1. A through evaluation of the
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Lucas-Kanade framework, the optimization problem, and the computational demand is
available in a review paper by Baker and Matthews [75]. This review also considers
improvements to the original formulation and implementation of the algorithm [74].

1: p← initial guess
2: ∆p←∞
3: while ||∆p|| > ε do
4: Warp T with W(x;p) to compute T (W(x;p))
5: Compute error image R(x)− T (W(x;p))
6: Warp the gradient ∇T with W(x;p)
7: Evaluate the Jacobian at (x,p)
8: Compute steepest descent images
9: Compute the Hessian matrix

10: Compute ∆p
11: p← p + ∆p
12: end while

Algorithm 1: The Lucas-Kanade algorithm as presented in [74].

3.1.2 Pyramid Approach to Subpixel Registration

As already stated in [75], the original Lucas-Kanade algorithm can be improved in a
variety of ways. While we have used an implementation by Kang Li [76] during the first
months of this project, the required robustness was not given. The problem was the
constant updating of the reference image, which propagated misalignments throughout
the sequence. Hence, we have moved to an implementation that is based on the work
of Thévenaz et al. [71].

While the general scheme of the Lucas-Kanade algorithm for finding the best fitting
transformation to register two images is also applied in the presented approach, sig-
nificant improvements in three parts of the scheme are presented: a) improvements
of the optimization scheme (adapted Marquardt-Levenberg (ML) algorithm), b) inte-
grations of multiresolution image pyramids into the computational scheme of ML, and
c) improved image interpolations based on cubic splines .

The optimization criterion ε2 is formulated as ε2 = ‖R(x) − QP(T (x))‖2 where
QP(T ) is a transformation of an image T parametrized by P, R is the reference image,
and T denotes the target image. This formulation of the optimization criterion already
emphasizes the intensity-based nature of the ansatz. The proposed method takes into
account all the available image information (i.e., R and T ) by treating each pixel
intensity value as a feature [71]:

P̂ = argmin
P

ε2 = argmin
P

‖R(x)−QP(T (x))‖2 (3.3)
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We are interested in finding an affine transformation QP(T ) that is defined by a 3× 3
(rotation) matrix R, a translation vector t, and a gray level scaling factor γ. While
R can in principle also incorporate skewing or shearing, we are only interested in
rotations around the center of the image. Hence, we are seeking the ε2 optimizing
transformation QP̂ with P̂ = (R̂, t̂, γ̂).

The traditional ML optimization scheme searches for P̂ such that ∂ε
2(P)
∂P

= 0. This is
done in an iterative scheme where in each step an update component is computed that
is then applied to the previous step:

Pt+1 = Pt + δPt (3.4)

In order to compute the update component δPt, the gradient of ε2 has to be computed
with respect to each component of P. A recomputation of the gradient in each step of
the algorithm is required, due to its dependence on the previous step. The modified
Marquardt-Levenberg (ML*) algorithm, however, will in each iteration not try to find
parameters P1 such that ‖R − QP1(T )‖2 < ‖R − QP0(T )‖2 but instead will find
parameters P2 such that ‖QP−1

0
(R) − QP2(T )‖2 < ‖QP−1

0
(R) − T‖2, where QP−1

0
is

the inverse transformation of the initial guess applied to the reference image.

With this new strategy the gradient of criterion ε2 with respect to P2 is independent
of the previous resultsPi and is, hence, computed around a fixed point in the parameter
space. In summary, the inverse transformation QP−1 that is applied to R is updated
instead of the direct transformation P that is applied to T . For further details on the
modification, the reader is referred to the original publication [71].

Furthermore, instead of using commonly applied nearest neighbor interpolation (e.g.,
bilinear) methods [77, p. 87-90], a cubic cardinal spline is well suited for processing
data that are approximately bandlimited by nature. The advantages of using this kind of
interpolation are amplified by the fact, that each evaluation of the criterion ε2 involves
a transformation of the coordinate space of an image to the reference space which is
equivalent to an interpolation operation.

In addition to that, the approach proposed by Thévenaz et al. incorporates a multi-
resolution scheme into the optimization procedure. The multi-resolution image pyra-
mids that are subject to transformations are constructed from cubic splines (as described
in the the previous paragraph). Due to the iterative nature of the ML* (as well as the
original ML) it is possible to apply a hierarchical scheme. Here, the idea is to run the
ML* iterations on different levels of the image pyramid and propagate parameters
between the levels to the next step. The upside of this approach is, that most iterations
are executed on the coarsest level of the pyramid while only moving onto more detailed
levels for more fine-grained changes. This procedure decreased the overall runtime of
the procedure immensely while optimizing the convergence properties.
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3.1.3 Conclusions

The spatial shift and rotation that occurs within an image sequence is based on the
acquisition scheme for time-lapse imaging. The stage of the microscope moves between
subsequent images (in the same channel) with a precision of about 2µm. Image
registration techniques [72] are applied to counter this unwanted effect to improve the
quality and robustness of following processing steps.

Now that the acquired image sequence is registered, it is possible to detect the growth
region of the MGC in the previously used reference image. Because of the static nature
of the growth site, it is then possible to directly transfer the extracted region of interest
to subsequent images. The detection of growth sites will be discussed and a solution
will be presented in the following section.

3.2 Growth Site Detection

While the available information from chip structures can be used to register time-lapse
image sequences, the data is not of practical interest when detecting and tracking cells.
Therefore, it is desired to crop the growth site of MGCs from the original image and
continue processing with the extracted ROI. Figure 3.2 provides an overview of the
procedure with the additional step of rotating the ROI.

Crop Rotate

Figure 3.2: Cultivation chamber with the growth site boundaries as the red, dashed rectangle.
The image is cropped to this region and subsequently rotated.

Several approaches to finding rectangular structures in gray scale images have been
proposed in literature. Most of them are based on a transformation of the image into
a domain, where prominent features of lines or rectangles are emphasized. Those
approaches can be put into two categories based on their input.

If it is possible to describe the structure of interest in a functional way (i.e., an
analytical expression is known), a Hough transform [77, p. 755-760] is well-suited.
The basic concept of the Hough transform is to transfer points from the xy-plane to a
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parameter space based on the analytical expression of the geometry of interest. The
concept will be shortly explained on the example of finding lines in a binary image in
the following.

Considering a point (xi, yi) in the x, y-plane, infinitely many lines yi = axi + b pass
through that point. Rewriting the line equation as b = −xia + yi results in a single
line in the a, b-plane for the fixed point (xi, yi) (cf. Figure 3.3). When adding an
additional point (xj, yj) to the image, the a, b-plane will have a second line for all the
lines passing through (xj, yj). If the two lines are intersecting, the point of intersection
(a′, b′) denotes a parameter configuration and, thus, a line that passes through both
points (xi, yi) and (xj, yj).

A B

Figure 3.3: Transformation from xy- to ab-plane. A. A line passes through two points (xi, yi)
and (xj , yj). Dashed lines are some examples for lines that pass through (xi, yi). B. (xi, yi)
and (xj , yj) in x, y-plane are lines in a, b-plane. The connecting line is reduced to one point
(a′, b′).

An algorithmic approach to finding lines in a binary image would thus be, to look
for points in the parameter space where many lines are crossing. In the same spirit, a
Generalized Hough Transform (GHT) [78] might be used for finding rectangles in an
image. Furthermore, it is possible to explore geometric characteristics of a rectangle
in the domain of the Hough transform and use such characteristics for the rectangle
detection directly in Hough space [79].

The second category of approaches are template matching approaches [80]. Here, the
general concept is to find instances of a provided, abstract template in the (unprocessed)
image. To that end, a template is constructed that highlights prominent features of the
structures one is looking for. When convolving the original image with the template,
pixels with high values will denote regions where the overlap between the image and
the template is high. Such approaches are, however, problematic for complete images
of MGCs because of production uncertainties and their sensitivity to noise.
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We have, hence, decided to stick with a simple but robust method that is based
on proven theory and is available as an optimized implementation. This approach is
presented in the following section.

3.2.1 Realization of Growth Site Detection

This method combines a custom edge detection technique (can be replaced with a
Canny edge detection [81]) that generates a binary, edge-focused version of an image,
with a traditional Hough transform to find lines in the image. Combining this approach
with a heuristic to find matching pairs of parallel lines that connect to rectangles of the
size of previously know chip structures determines the ROI for further processing steps.

Data: Image I
Result: Image cropped to growth site Icropped
Detect edges in I;
Apply Hough transform and store n lines;
Find lines that are on opposite sites of the center of the image in horizontal and
vertical direction, respectively;
while lines available do

while lines on opposite sites available do
if distance is known distance and orientation is the same then

store pair of lines;
else

continue;
end

end
end
Crop image to the found rectangle;

Algorithm 2: Pseudo code of box detection.

The edge detection is based on templates that are characteristic for the edges of a
MGC in a bright-field image. The general concept is to convolve the input image with
the template images (cf. Figure 3.4). This convolution will assign each pixel in the
input image a value that denotes how much the template and the surrounding of a pixel
overlap. When there is more than 90 % overlap, a pixel will be marked as belonging to
one of the edges of a growth site.

In the last step, the cropped ROI is rotated such that the top and bottom edges are
horizontally aligned. This rotation step is implemented to avoid artifacts along the
edges of the ROI in the remaining processing steps.
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Left Top Right Bottom

Figure 3.4: Reference images extracted from the four sides of a growth site in a phase-contrast
image of an MGC. References are used for the detection of growth site boundaries and the
subsequent cropping. Intensity profiles are presented next to the reference image.

3.2.2 Conclusions

While the proposed method for growth site detection is robust, in its current form it is
only applicable for rectangular MGCs. Due to the optimized form of edge detection
with pre-built references, finding the growth sites is still feasible with a brute force
approach. More sophisticated methods (i.e., not limited to lines) on the other hand
allow for a more general approach to growth site detection.

Template matching methods, e.g., the GHT, provide a general framework to find
instances of provided templates in an image. Although we have to provide a template,
it does not necessarily have to show a rectangular region. In a template matching
framework it would be possible to detect round growth chambers (see [59]). A further
upside is, that templates are readily available due to the fact that the LOC devices
are custom designed and produced at the Helmholtz Nanoelectronic Facility (HNF)
of the Forschungszentrum Jülich. Hence, schematics of cultivation chambers can
be used after some conversions as input for such algorithms, provided CAD files are
available. Nevertheless, the computational demand of general template matching
approaches is immense even for optimized approaches. For a comprehensive assessment
of computational aspects of template matching see [80, p. 201-11].





4 Cell Detection

In order to be able to extract and quantify information about individual cells from
microscopic images, cells and their contours have to be detected. While it might be
enough for some applications, to determine the absolute cell number in an image, we
are in most applications interested in cellular quantities such as cell length, cell area,
and fluorescence reporter intensities. Cell contours contain additional information
when studying microbial growth, but especially, when working with fluorescence re-
porters they are mandatory. In such applications the main goal is to extract mean
fluorescences over an individual cell area. As an example, Figure 4.1 shows two rather
dense populations of C. glutamicum cells. The goal of the cell detection pipeline is to
detect individual cells in entire image sequences.

BA

Figure 4.1: Dense populations of C. glutamicum. A. Phase contrast image only. B. Composite
image of one phase contrast and two fluorescence channels.

The major challenges for segmentation in such images are

1. touching cells, where there is little to no gray value difference between the
boundaries of two cells;

37



38 CHAPTER 4. CELL DETECTION

2. high frequency noise in the background (i.e., growth site regions without cells);

3. uneven intensity distributions throughout populations, such that cells near the
center appear to be lighter compared to cells at the perimeter.

In the following sections, different approaches for the segmentation of images, which
have various disadvantages for the acquired image data, are highlighted. Finally, the
realization of the cell detection pipeline that has been developed in this PhD project is
presented with the extension of a high-quality segmentation for post-processing.

4.1 Histogram-based Approaches

The most simple approach (after manual segmentation) is the concept of considering
intensity values of each pixel in an image. Most of these approaches are working on
the so called gray value histograms and do, therefore, not take into account the spatial
location of a pixel. Due to the independence of the spatial location these approaches
do not preserve object integrity. This means, that pixels that are spatially located in
proximity might be on two opposites in the domain of the gray value intensities.

4.1.1 Thresholding

Thresholding is a generic concept that describes the separation of foreground and
background based on a threshold in a gray value histogram. Various approaches to the
separation problem are available [82]. Some are based on the shape of the histogram
and use curvature, others apply classification methods to find clusters that correspond
to the image regions. Figure 4.2 shows an example of a gray value histogram as well as
the idea of thresholding. A thorough comparison of available thresholding techniques
is given in Sezgin and Sankur’s survey on the topic [82].

After the computation of a threshold, each pixel’s gray value is compared to a computed
threshold and based on that either classified as foreground or background. Therefore,
the resulting output image will be of binary format as computed by

o(x, y) =

{
0 if I(x, y) ≤ θ
1 else

(4.1)

where I(x, y) denotes the gray value of a pixel (x, y).

Techniques differ in the computation of the threshold θ, especially which region of the
image, i.e., the whole image or just a window is considered. While global thresholding
techniques, e.g., Otsu’s method [83], work on the histogram of a complete image,
local adaptive thresholding techniques, e.g., Sauvola’s method [84], compute a local
threshold θ(x, y) for each pixel.
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Figure 4.2: Histogram-based approaches. A. The grey value histogram of the image shown in
B. Two different thresholds are selected (orange and red). B. A composite image of the input
and the resulting segmentations from the two selected thresholds in A. Pixels in orange and
red, respectively, are classified as foreground. All other pixels are background.

Global Thresholding. The method proposed by Otsu in 1979 [83] is based on inter-
preting the histogram of an image as probability density distribution. To that end, the
occurrences of gray values (i.e., the height of bins) have to be converted to probabilities
by normalizing to the total number of pixels of the image. The separation procedure
is based on the assumption that the image consists of two classes, foreground and
background. Therefore, the final threshold is selected to separate those two classes as
well as possible. In mathematical terms, the within-class variance (σ2

W ) is subject to
minimization:

σ2
W (θ) = ω1(θ)σ2

1(θ) + ω2(θ)σ2
2(θ), θ ∈ [0, 255] for 8-bit images (4.2)

with weighting factors

ω1(θ) =
θ∑
i=0

p(i) and ω2(θ) =
255∑

i=θ+1

p(i).

In the above formulations, p(i) denotes the probability of gray value i, and σ2
1 and

σ2
2 the threshold-dependent variances of the two classes, foreground and background,

respectively. The basic idea is to find a constant threshold θ that minimizes the within-
class variance. In an iterative manner, the variance for each value of θ is computed in
order to determine the optimal global threshold.

The evaluation of Equation 4.2 involves the computation of variances σ2
1 and σ2

2.
The relationship between the within-class variance and the between-class variance
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(σ2
B), however, can be facilitated to ease the computational effort. Equation 4.3 shows

the aforementioned relation. With σ being the standard deviation of the complete
histogram and, thus, being a constant factor, the inter-class variance is maximized in
order to find the optimal threshold θ. This only involves computation of mean values
µ1 and µ2 instead of standard deviations (second order).

σ2
B(θ) = σ2 − σ2

W (θ) = ω1(θ)ω2(θ)[µ1(θ)− µ2(θ)]2 (4.3)

with mean values

µ1(θ) =
θ∑
i=0

p(i) · i and µ2(θ) =
255∑

i=θ+1

p(i) · i (4.4)

In mathematical terms, the optimal threshold is defined as

θ̂ = argmax
1≤θ≤255

σ2
B(θ).

Local Adaptive Thresholding. Sauvola’s method, reported in [84], uses information
from a w × w pixel window of the original image to determine a location-dependent
threshold θ(x, y) for each pixel (x, y) ∈ Ω. Using localized information from a win-
dow instead of a global histogram avoids effects of uneven gray values of foreground
and background in different regions of an image. The threshold θ(x, y) is computed
according to

θ(x, y) = µ(x, y)

[
1 + k

(
σ(x, y)

R
− 1

)]
(4.5)

where R is the theoretical maximum value of the standard deviation, i.e., in case of an
8-bit gray-scale image R = 128. Additionally, the first-order statistic of the local mean
values, µ(x, y), is incorporated, as well as k as a weighting factor. The calculation of
σ(x, y) as well as µ(x, y) are based on the w × w window centered at (x, y).

Phansalkar et al. [85] have proposed a refined method of Sauvola’s thesholding, with
an additional (exponential) weighting factor

θ(x, y) = µ(x, y)

[
1 + p · exp(−q · µ(x, y)) + k · (σ(x, y)

r
− 1)

]
(4.6)

Bernsen [86] proposes a local gray range technique. In this technique the range
between the maximum max(x, y) and minimum min(x, y) gray value within a local
window centered at (x, y) is used to determine the threshold value

θ(x, y) =

{
0.5(max(x, y) + min(x, y)) if C(x, y) ≥ 15
0 else

(4.7)
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with the local contrast C(x, y) = max(x, y)−min(x, y).

Thresholding works particularly good if foreground and background are separated
well in the location-independent gray value domain. That is, cells have a more or less
constant gray value, whereas the background has a significantly deviating gray value.
In this case, the two regions are separated by setting a value in the histogram such that
pixels with a value above the threshold are assigned to one region and the other way
around for pixels below the threshold (see Figure 4.2).

Especially for our acquired images, where the mean gray value of cells is location
dependent, global thresholding techniques are not applicable. This effect is visualized
in Figure 4.2 where the yellow threshold covers a significantly reduced portion of cell
area for cells near the center of the population. In addition, segmenting touching cells
while separating them from the background is barely possible, when the detected cell
area is of interest.

4.2 Non-histogram-based Approaches

Histogram-based approaches utilize gray values of pixels irrespective of their spatial
location. Taking spatial location into consideration allows for using neighborhood
information of pixels. The algorithms that fall in this category will be discussed in the
following paragraphs. General advantages as well as disadvantages will be highlighted
when the algorithms are applied to the images that are acquired using the setup
described in Section 2.3.

Watershed Segmentation. Another segmentation strategy is the popular Watershed
transform [87, 88]. The general concept is to interpret gray value intensities of an
image as the height for each pixel. Hence, the image can be interpreted as a topographic
relief map with basins and watersheds. To separate the basins, the concept is to flood
the relief over time (in an iterative procedure) and observe when sinks are merged
together. When two basins are merged, a ridge can be extracted from the previous
iteration.

The downside of this approach is its sensitivity to changes in gray value. Hence,
images have to be typically smoothed before the Watershed transform can be applied.
Otherwise, it tends to heavily oversegment regions of almost constant gray value.
Figure 4.3 shows the Watershed transform applied to an example image with and
without smoothing.

Template Matching. A more sophisticated method that does not only take into ac-
count the pixel information of images are so called template matching approaches. The
general idea of template matching is to find a predefined template or set of templates
(i.e., in our case cell images) in the input image for the algorithm [80]. To that end, a
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A B C

Figure 4.3: Watershed segmentation applied to image data. A. Input image of a C. glutamicum
population. B. Watershed transform applied to the input image showing the issue of overseg-
mentation. C. Watershed transform applied to a smoothed version of the input image.

multitude of templates has to be produced for the different types of objects. However,
this process can be eased by parameterizing the templates and checking for different
parameter sets in the image.

These approaches are formulated as an optimization problem and can, hence, be
solved using available optimization algorithms. A disadvantage for such approaches is
the necessity for good templates that match the objects depicted in the input image. If
only little information is known about the objects in the image, i.e., objects can occur
with any rotation angle and any scaling parameter, template matching approaches are
computationally very demanding.

Furthermore, template matching approaches will barely result in good detections if
the quality of the template is low. While for most of cell types, it is possible to come up
with an appropriate template, this is rather restricting with templates that feature high
degrees of freedom, e.g. rods. With each possible degree of freedom in the template,
the search space for the optimal fit of the template in the acquired image is extended
by a new dimension.

Active Contours. An even more sophisticated approach to image segmentation using
deformable models has been published almost 30 years ago but has been refined in recent
years: active contours [89]. Active contours or snakes are a very popular approach
in this category, though rather computationally intensive. A snake is a closed curve
in two-dimensional space that is optimized to split the image domain into object and
outside of an object along the object’s boundary. In an iterative procedure, an initial
curve is set (either manually or by a heuristic) that is evolved in the image domain
either in outward direction or to the inside. During the iteration procedure the snake
evolves like a wave front. The curve converges to a minimal energy that is defined by
the user, usually referred to as snake energy. In our case, the energy is defined in a way
that the curve reaches the minimal energy when it is on the contour of a cell.

An advantage of using active contours is the interactivity. Users can select the
initialization of the iterative evolution of the snake and, furthermore, can select points
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of interest that should be parts of the converged snake. That said, active contour
approaches are very flexible but their performance heavily relies on a good initialization.
For this reason, we have decided to discard active contours as a putative method
for the automated segmentation of entire images. However, we have implemented a
specialized snake representation and energy formulation for refinement cells that are
hard to split with the realized segmentation procedure. Details on this will be provided
in Section 4.7.

Machine Learning Approaches. Machine learning approaches use specified feature
vectors for pixels that are used for classification. The approaches fall into two categories.
Unsupervised approaches, will try to classify pixels only based on each pixels feature
vector. In contrast, supervised approaches have to be trained on data. Hence, the input
to supervised approaches is a combination of feature vectors of pixels and the desired
classification.

One implementation of a supervised classification approach is a Support Vector
Machine (SVM). An SVM is trained on a set of data for which classifications of individual
pixels are available (the so called training step). The trained model is subsequently
used for the classification of images that share similar characteristics as the image (set)
the model was trained on.

The feature vector for each pixel can for example contain several gray values from
different representations of an image [90]. A possible representation that contains
additional information is the gradient image or the second-order derivative image.
Such representations span an additional axis in the feature space for each individual
pixel. Using the feature vectors of known samples, an SVM determines a separating
(hyper)plane in the multidimensional feature space such that the gap between the data
points and the (hyper)plane is maximized.

In contrast, unsupervised clustering techniques aim at clustering pixels in an im-
age into K clusters, without being previously trained. To that end, algorithms are
initialized with K clusters. Each pixel in an image is assigned to the cluster that is
closest. Upon adding the pixel to this cluster, the center of said cluster is recomputed
and the computation is continued with another pixel. The definition of closeness in
such algorithms can incorporate prior information. Popular metrics are the spatial
location in the image domain as well as the gray value. Weighted combinations of the
aforementioned characteristics are also possible, and even advisable.

K-means clustering and its fuzzy equivalent, fuzzy c-means (FCM) has proven to be a
solid approach to detecting clusters in various fields of computer science and image
processing in particular [91]. However, it lacks the possibility to deviate from the initial
number of clusters. Although heuristics for finding good values for K are available
[92], they have to be optimized for specific use cases.
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4.3 Realization of Cell Detection

Although sophisticated segmentation approaches are available (see previous section),
they are in many cases not performing reliably for our use cases. Due to the spe-
cific nature of images that are to be processed with the image analysis pipeline, we
have implemented an optimized segmentation procedure for dense populations of
C. glutamicum. A general overview of the pipeline with all major steps is presented in
Figure 4.4.

Arguably the most complex step of the pipeline is the computation of the so-called
Shape Index Map (SIM). The SIM is a curvature descriptor in the spatial domain that is
computed for each pixel in an input image I (Figure 4.4- 0 ) resulting in Isim (Figure 4.4-
1 ). More details on the computation of the SIM are presented in Section 4.4. The
following sections will provide a general overview of the steps involved in the realized
pipeline.

First, the input image is blurred with a Gaussian kernel (step omitted in Figure 4.4)
because methods based on the gray value gradient or higher order derivatives are
sensitive to noise. Parameters for the smoothing kernel depend on the acquisition
settings. Here, the major influencing factor is the signal-to-noise ratio (SNR) of raw
images. From experience, we have set the default size of the Gaussian kernel to
5 px× 5 px.

Subsequently, the SIM is globally thresholded. The selection of an appropriate thresh-
old depends on the specific application and the investigated organism. The SIM is
constructed such that values near −0.25 denote regions where cells are touching. The
output of this thresholding will henceforth be called Ithresholded_sim (Figure 4.4- 2 ).

Next, a median filter is applied to Ithresholded_sim. In general, a median filter replaces
the center pixel of the processing window with the median of the gray values in the
window. Median filters are quite popular for image processing tasks as they provide
excellent noise reduction capabilities for certain types of noise [77, p. 178]. In practice,
applying a median filter to Ithresholded_sim removes smaller holes in cellular structures
that are due to not perfectly constant gray values within a cell, creating Icleaned_sim
(Figure 4.4- 3 ). Additionally, the filter also removes salt-and-pepper artifacts (i.e., high
frequency noise) in regions of the growth site where no cells are located. Parameters
for the median filter are set in accordance with the resolution of the camera that is
used for image acquisition. While the cameras that have been used in the beginning of
the project have a spatial resolution of about 7 px/µm, newer cameras have a 2-fold
increased resolution of 15 px/µm. Hence, the width of the filter kernel is adapted to be
approximately thrice the width of an individual C. glutamicum cell, i.e., 20 px× 20 px
and 40 px×40 px, respectively. Figure A.1 shows enlarged versions of the postprocessing
steps of the SIM. The aforementioned artifacts will be removed in a second branch of
the processing procedure, described in the following.
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Figure 4.4: A general overview of the cell detection procedure that is applied in the image
analysis pipeline. Starting from a preprocessed input image I, two parallel branches create a
segmentation of a population and a mask for the population, respectively. Results from the
branches are combined to create Ifinal. The resulting segments are filtered and clustered
cells are further processed. Detailed information is provided in the text.
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In a first step, I is locally thresholded with one of the previously described local
thresholding method (cf. Section 4.1.1, resulting in Ilocal (Figure 4.4- A ). The default
local thresholding approach is Sauvola’s method [84]. Please mind that the input to
the local thresholding is the original image I, not Ithresholded_sim. Parameters are again
subject to changes and optimization for the experimental setup.

In order to remove salt-and-pepper noise that is prevalent in regions surrounding
the population, multiple erosions are applied (Ieroded, Figure 4.4- B ). A morphological
erosion effectively removes objects from the image, that are smaller than the kernel.
By repeatedly applying an erosion, larger objects will basically be slimmed down to
the size of the kernel along their boundaries. Hence, multiple dilations will in practice
enlarge the population’s cells such that a mask image for the population is generated
(Imask, Figure 4.4- C ). One can see in the images in the overview that the population
is surrounded by a band of artifacts. These artifacts could have been removed by more
erosions. However, this poses the risk of disappearing cells, rendering the subsequent
dilations useless. Detailed images of the outputs of the previously described branch of
the cell detection scheme are shown in the appendix (cf. Figure A.2).

To generate a binary image Ifinal, Ithresholded_sim and Imask are combined (Figure 4.4-
4 ). This is achieved by applying an OR operation to each pixel coordinate in the
two thresholded, binary images (convention: white pixels = 1, black pixels = 0).
The concept behind the pixel-wise OR operation is, that in the outer regions of the
population the thresholded image Imask is 1 so that those region are effectively cleaned
in the output image (no matter what the value is in Ithresholded_sim). Since the population
region in Ilocal is 0, the values from the processed SIM image Ithresholded_sim are pivotal.

This step effectively creates a binary image, where foreground and background
are separated. Subsequently, a labeling algorithm scans the image in rows until a
foreground pixel is found. Starting from that pixel, the contour of the region is traced
[77, p. 818-20]. The contour tracing is based on a robust 8-connected neighborhood
of each pixel. Details on how the SIM is used for detecting individuals cells in dense
populations are provided in the following section.

4.4 Processing Dense Populations with the Shape
Index Map

Dense bacterial populations are characterized by a high number of cells in a defined
volume. As a result, cells are touching with little change in gray value along the cell
boundary. Figure 4.5 shows an exemplary population of four cells in a three-dimensional
representation, where the z-axis denotes the gray value.

Instead of only using the image gradient (first derivative) the principal curvatures of
the Hessian can be used for characterizing the connection points of cells. A measure
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Figure 4.5: Image of a microbial population, where the gray value intensity is shown in z-
direction. The color codes for the gradient, where pink and cyan denote opposite ends of the
spectrum.

based on the principal curvature is the SIM as introduced by Robbin and Salmon [93]
in their publication on shape theory.

The differential structure of a surface is captured by the local Hessian matrix, which
is approximated in terms of surface normals by

H =

(
−(∂n

∂x
)x −(∂n

∂x
)y

−(∂n
∂y

)x −(∂n
∂y

)y

)
(4.8)

where (· · · )x and (· · · )y denote the x and y components, respectively. The principal
curvatures of the surface are the eigenvalues of the Hessian matrix, found by solving
|H − κI| = 0 for κ, where I is the identity matrix. Koenderink and van Doorn [94]
developed a single-value, angular measure to describe local surface topology in terms
of the principal curvatures. This shape index is defined as
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 (4.9)

in terms of surface normals. The partial derivatives are approximated by first-order
differences. Examples for the measure are shown in Figure 4.6.

4.5 Detecting Cell Clusters

After application of the previously described pipeline it is possible that multiple cells
are assigned one label (i.e., individual cells have not properly been detected). In this
case, we refrain from further massaging the available image information and instead
incorporate additional information about the objects we seek to detect. In case of
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Figure 4.6: Examples of the nine categories into which the values of the SIM fall (adapted from
[94]).

C. glutamicum we are looking for rod- to ellipse-shaped bacteria that form characteristic
clusters when close to each other.

However, before we are able to further process such clustered cells it is necessary to
detect those cases. To that end we have analyzed cells to find cellular properties that
help discriminate individual cells from cell clusters. Additionally, this step is crucial to
reduce the computational load of the pipeline because it reduces the amount of cells
that have to be processed in order to generate a correct segmentation. In general, this is
implemented as an iterative procedure, where a filtering step is proceeded by a splitting
step and so forth (with an upper limit for the number of iterations). The procedure
stops because clusters are split up into individual cells leaving only individual cells after
some time. The implemented filters are presented in the following sections as well as
some thoughts on how these methods could be further improved or extended.

4.5.1 Cell Size Filter

A rather simple but robust approach is a size filter. The concept is to disregard objects
that are too large to be a cell cluster of more than ten times the average cell area
and smaller than one tenth of the average cell area. Objects that fall in the range
between the two boundaries are categorized into single cells when their size is below
a given threshold and multiple cells when their size is above a provided threshold
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(cf. Figure 4.7). Further processing is done on objects that fall into the multiple cells
category.

Cell area [µm2]

Cell area
after division

Cell area
before division

10 • Cell area
before division

Single cells Multiple cells

Figure 4.7: Different thresholds of the size filter explained.

4.5.2 Convex Hull Filter

The concept of the convex hull filter is to compute the convex hull of an object and
compute the ratio of its area to the convex hull as shown in Figure 4.8. This ratio is
also called solidity in literature. The deviation from a ratio of 1 should be set to about
0.20. The lower the value is set, the more perfectly shaped a single cell has to be to not
be split.

cell area

convex hull

Figure 4.8: Two artificial cells (motivated by the V-snapping of C. glutamicum) that are detected
as one object and, therefore, have only one outer contour. The red line shows a schematic of
the convex hull of the contour.

4.5.3 Size and Convex Hull Filter Combined

The idea is to filter small and large objects according to the minimal cell and maximal
cell size, respectively (see Figure 4.7). Consequently, the solidity filter is applied to the
remaining objects.

4.6 Splitting Cell Clusters

All aforementioned segmentation methods produce unsatisfying results for overlapping
cells. Although overlaps of cells are minimized by the structure of the cultivation
chambers in the used LOC devices (see Section 2.2), such issues are frequently observed.
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Bai et al. [95] propose a method exploiting the convexity of cells. Hence, the ap-
proach is only applicable to cells that are convex. Touching cells, however, do rarely
generate convex objects but have regions of concavity. This observation is used for the
computation of putative splitting points. Figure 4.9 shows two cells with the proposed
splitting points. Algorithmically, the splitting points are determined by computing an
approximation of the contour of a cell cluster as a polygon. Consequently, normal
vectors to the approximated contour are constructed.

In the next step, the angle between two adjoint vectors is calculated. If an angle
that exceeds a given threshold is identified, a splitting point is proposed, as shown in
Figure 4.9. Subsequently, the points are connected with a line that separates the two
cells.

...

...

...

...

Figure 4.9: Two cells that have divided but still appear overlapping. The black lines, orthogonal
to the contour, denote the outward directed normal vectors. The red points mark the proposed
splitting points that are connected via the red dashed line which is the splitting result.

Wang et al. [96] have proposed an approach that finds the best fitting pair of splitting
points for overlapping cells by computing an energy for each pair of points of the contour.
So-called bottleneck positions are found by minimizing the energy function

ES(A,B) =
‖A−B‖2

min
(
length(A→ B), length(B → A)

) (4.10)

where A and B are the points for which the energy is to be computed. Let R̄ be the
set of points on the contour. Furthermore, length(X → Y ) denotes the length of the
contour segment, walking from X to Y on the contour. Vice versa, length(Y → X) is
the distance that has to be walked along the contour to reach X, starting from Y .

Finally, the two splitting points Â and B̂ are determined by solving the optimization
problem:

(Â, B̂) = argmin
A,B∈R̄

ES(A,B). (4.11)

Figure 4.9 illustrates that at the two proposed splitting points Â, B̂ the distance between
the points is minimal and the length of the two contour segments is approximately
equal.
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4.7 Incorporating Additional Knowledge into the
Segmentation Process

If knowledge about the image composition (i.e., the objects in an image) is available,
segmentation procedures can integrate that information for improving results. The
splitting approach that has been presented in the previous chapter already takes into
account information about the the morphology of bacteria for finding putative splitting
points. This is, however, not done during segmentation but is established as a post-
processing procedure for cell clusters.

In her Master’s thesis, Karin Bokelmann has implemented a cell segmentation pro-
cedure based on a deformable model, i.e., parametric snakes. Such models can be
used to describe cellular properties and, hence, incorporate prior knowledge in to the
segmentation process. The snake energy that determines the convergence of the snake
is a functional of the snake representation itself. Hence, the objective is to find the
best snake (i.e., a function) that minimizes the snake energy. The segmentation is
embedded in a variational framework [97] because of the functional nature of the snake
energy (cf. Figure 4.10 for example). The adaption and implementation of an energy
formulation for ellipse-reproduction and the extension to rods will shortly be described
in the following. For more details, the reader is referred to Karin Bokelmann’s thesis
[98].

While it is in theory possible to use this method for stand-alone segmentation, the
computational demand for segmenting a complete image of a growth site is immense.
This is further emphasized by the fact that snakes have to be sensibly initialized to
generate results in reasonable time. In cases, however, where a user initializes a
snake for an individual cell, the approach successfully reconstructs cell contours with
subpixel resolution. Therefore, we use the below described method as a post-processing
step where the previously describe cluster splitting has failed. In such cases, the user
manually removes the splitting result and initializes a snake for a cell. The snake will
converge to the cell contour, when a reasonable parameter set is used.

Iteration 1 Iteration 2 Iteration n

...

Figure 4.10: Snake evolving to the final contour of the cell. The snake has been initialized with
an ellipse that is extended in direction of the outward normal to reach convergence at the
final state.
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4.7.1 Active Contours and Snakes

Active contours and, in particular, snakes are effective tools for the segmentation of im-
ages. The multitude of snake variants differ in their type of curve representation and in
the formulation of energy terms [89, 99–104]. With regard to the curve representation,
snakes can be categorized into three major groups:

1. point snakes,

2. parametric snakes, and

3. implicit snakes.

For a point snake, the curve is solely represented with points along the contour. This
represents a special case of a parametric snake with many control points. While the
curve of a parametric snake is represented continuously by coefficients of a set of basis
functions at control points on the contour, implicit snakes rather evolve a 2-D surface.
In the latter cases, the curve is implicitly described by the “level set” of a surface. A
level set in that particular case is mathematical function φ(x, y), that assigns to each
coordinate (x, y) ∈ Ω a value such that:

φ(x, y) =


< 0 if (x, y) ∈ R
0 if (x, y) ∈ R̄
> 0 if (x, y) /∈ R ∪ R̄

(4.12)

where R denotes the region that is defined by the contour R̄.

Snake Representation. A closed curve r(t) in the plane is described by the Cartesian
coordinate functions x(t) and y(t), where t ∈ R is an artificial, continuous parameter.
The two functions x and y are parameterized by linear combinations of suitable basis
functions ϕ. When looking at closed curves that are specified by a sequence of M
control points {c[k]}k∈Z (M -periodic), the following vectorial equation describes the
curve (e.g., Figure 4.11):

r(t) =
∞∑

k=−∞

c[k]ϕ(Mt− k). (4.13)

Delgado-Gonzalo et al. [97] propose a minimum-support, ellipse-reproducing basis
that is based on exponential B-splines:

ϕ(t) =


cos

2π|t|
M

cos π
M
−cos 2π

M

1−cos 2π
M

, 0 ≤ |t| < 1
2

1−cos
2π( 32−|t|)

M
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2
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, t ∈ R (4.14)
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Control points

Anchor/node points

Figure 4.11: Parametric representation of a closed curve with control points and an artificial
generating function.

The general idea of active contours approaches is to find a curve which resembles the
boundary of an object in an image best, thus, segmenting the image. Starting with an
initial guess for the wave (usually the image boundary), the evolution of this wave is
driven by forces exerted by the image. Finally, the wave stops evolving when it resembles
the object boundary and, therefore, has reached the minimal energy configuration.
Hence, any active contour algorithm is driven by the chosen energy function.

Snake Energy. The proposed snake energy term comprises two factors, i.e., the
influence of an edge as well as the region. Both terms are combined with a tradeoff
parameter α ∈ [0, 1] that determines how balanced the contribution of the two terms is
in the final formulation,

Esnake = αEEdge + (1− α)ERegion. (4.15)

The edge energy EEdge can be expressed as a surface integral using Green’s theorem.
The theorem gives the relationship between a line integral around a closed curve r(t)
and a double integral over the plane region R bounded by r(t).

EEdge = −
∮
r

kT (∇I(x1, x2)× dx) (4.16)

= −
∫
R

∆I(x)dx1dx2 (4.17)

The region-based energy ERegion is built such that it discriminates an object from its
surroundings, i.e. a defined shell around the snake. This is implemented by maximizing
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the contrast between the intensity averaged within the region R and intensity of the
data averaged over the elliptical shell Rλ. The elliptical shell is constructed by finding
the best fitting ellipse around the snake and scaling its axes by a factor λ. ERegion can
thus be expressed as

ERegion =
1

|R|

(∫
R
I(x)dx1dx2 −

∫
Rλ\R

I(x)dx1dx2

)
(4.18)

where |R| is a scaling factor that can be interpreted as the signed area.

4.8 Conclusions

While image segmentation is still a field of active research, the first approaches have
already been presented in the 1950s [105]. It is commonly acknowledged that there is
no one-fits-all approach that serves the specific needs (i.e., reliability, robustness, and
accuracy) of biological applications [106, 107]. We have approached the presented
challenges, i.e., dense populations with touching cells and uneven illumination, with a
custom binarization pipeline and an advanced post-processing approach.

This pipeline consists of several modules that are executed serially. The first step
is a heavily optimized binarization procedure, effectively separating cells from the
image background. The resulting segments are filtered according to organism specific
parameters, where clustered cells are detected. These clusters are treated by a custom
splitting procedure that takes into account the morphology of individual cells. Finally,
the user has the possibility to use the previously presented parametric snakes for
segmentation of single cells where the splitting has failed.

All in all, the presented cell detection pipeline strikes a balance between organism
specific features, flexibility, and robustness to the peculiarities of the acquired image
sequences. We have developed and improved the cell detection module with great care
due to its importance for the subsequent step in the pipeline: once cells are detected in
each image of a sequence, correspondences of cells between subsequent images have
to be found. Thus, the output of the cell detection procedure is used as the input for
the tracking of cells.



5 Tracking of Cells in Image Sequences

The human brain is exceptionally good at identifying objects (that are visually perceiv-
able) and recognizing their movement. There are, however, several factors where the
tracking of cells in image sequences differs from the tracking of (immutable) objects
with our eyes. Images are acquired at a much lower frame rate than the human per-
ception and, more importantly, bacterial cells are not immutable objects. Bacteria are
highly volatile cells that change drastically during a cell cycle. Between two subsequent
images of an image sequence, cells can

1. change their volume and the observed cell area,

2. move in the MGC,

3. rotate,

4. split into two (or more) cells, and

5. leave the field of view.

In addition to tracking movements of individual cells, all these case have to be taken
into account to reasonably capture the development of microbial populations in MSCC.
Due to these challenges, algorithmic approaches are still under active development
[108].

Given two (segmented) images of the same object, the process of finding the cor-
responding object in both images is referred to as “tracking”. Figure 5.1 visualizes
the problem with dots denoting centers of cells (output of the detection step is shown
in yellow solid lines) at different time points tn−1 to tn+1. The dashed lines show the
potential assignments between cells between the subsequent images.

In general, given an image sequence of a single moving object, the goal is to reconstruct
the trajectory of this object. If, however, several objects are present, the challenge is
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Figure 5.1: An image sequence where the yellow contours denote the detected cell areas, red
dots are a simplification of the cells, and red lines are assignments between cells. Solid lines
denote the correct assignment, dashed lines all the possible reconstructions.

to find corresponding objects throughout the image sequence. This task is referred to
as “correspondence problem” or “assignment problem” in literature. For the simple
example of Figure 5.1, optimal assignments have to be chosen from more than 10,000
possible lineage reconstructions for three frames.

As microbial cells are only loosely attached to the LOC devices and are not restricted
in the x, y-plane in growth sites, cells will move during an experiment. This is on the
one hand owing to the constant flow in the chips, on the other hand due to cellular
growth in a population (i.e., volume increase in a confined space). Because of this
spatial movement, solving the correspondence problem in the acquired image sequence
remains a challenging task. In addition to movements, cells are undergoing mitosis.
Therefore, it is not enough to find one-to-one assignments between consecutive frames,
but it is necessary to take one-to-two relationships into account.

Many approaches have been proposed and discussed in literature in recent years
(see [108–110] for reviews). The presented approaches can be categorized according
to their ansatz: tracking after detection and tracking with detection. The former
approaches work with a separate cell detection step after which extracted information
is used for finding optimal assignments. The latter algorithms are to the most extent
based on deformable models [102, 111]. The general concept is to use models that
have been extracted from frame t as input to the detection procedure for frame t+ 1
while keeping track of the explicit connection between models. Such approaches are
particularly useful for image data from experiments with an immobile specimen or
a high imaging frequency compared to the mobility. A comprehensive benchmark of
theoretical approaches as well as implementations has been conducted in context of
a Particle Tracking Challenge [112] at the International Symposium on Biomedical
Imaging (ISBI) 2012. The benchmark for the challenge and the results have previously
been published by Maška et al. [113] and Chenouard et al. [114], respectively.

Due to the challenging image data from MSCC, we have developed a highly opti-
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mized cell detection pipeline for SCA of C. glutamicum. An integration of the previously
presented cell detection approach (cf. Chapter 4) is only possible with approaches that
have decoupled the cell detection and the tracking step. Within the category of tracking
after detection, approaches can be further structured according to the mathemati-
cal framework they are based on: linear program/assignment problem formulations,
probability-based Bayesian approaches, straight forward nearest-neighbor linking. The
latter algorithms are underperforming due to limited amount of information consid-
ered for finding assignments [114]. The former methods are using multiframe and/or
multitrack information, effectively incorporating additional data and, hence, improving
the tracking results.

In the following section, I will present two approaches for finding optimal assignments
that are based on an assignment problem and a Bayesian formulation, respectively.

5.1 Single-Particle Tracking

One method for solving the assignment problem has been proposed by Jaqaman et al.
[115]. The proposed procedure is composed of two consecutive steps, namely the frame-
to-frame linking and the global linking of tracks. While the approach is formulated in a
general manner for the tracking of particles and is referred to as single-particle tracking
(SPT) rather than cell tracking, the ability to handle merging as well as splitting events
makes it applicable for investigations of cellular development.

5.1.1 Frame-to-Frame Linking

In the first step of the algorithm, assignments are established between objects (so-called
particles) in two consecutive frames, discarding information from other frames. The
resulting assignments are termed track segments, implying that they have not been
linked together to complete tracks. A completed track contains the development of an
individual cell over the course of an experiment.

In order to find potential correspondences and create track segments, three types of
assignment are considered:

1. A cell in frame t is assigned to a cell in frame t+ 1 (“one-to-one”/“continue”)

2. A cell in frame t does not have a correspondence in frame t+ 1 (“track end”)

3. A cell in frame t+ 1 cannot be linked to a cell in frame t (“track start”)

The computation of optimal assignments is based on the similarity of particles in two
consecutive frames. The more similar two particles are, the lower is the cost for an
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assignment. In the most basic case, the cost is a function of the spatial distance between
the centroids of two cells ci and cj:

lij =
∥∥ci − cj∥∥2

. (5.1)

From the calculated costs for each possible assignment between frames t and t+1 a cost
matrix Clocal is created (structure shown in Figure 5.2). In addition to linking two cells
(upper, left block of the matrix) the aforementioned three types of correspondences
(i.e., one-to-one assignments, segment starts, and segment ends) are also taken into
account. The costs for starting or ending a segment are determined using information
about the costs of one-to-one assignments.

Frame t+ 1
1 2 . . . m 1 2 . . . n
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Figure 5.2: Cost matrix Clocal for linking cells in two consecutive frames. The matrix contains
four blocks. The upper left block contains the cost lij for linking cells of frame t and t+ 1.
The Segment end and Segment start blocks are alternatives, if no direct correspondence is
found. The lower right filling block is the transposed linking block, to fulfill the requirements
for an LAP formulation (adapted from [115]).

Entries are considered not feasible according to a defined cut-off value. Usually this
cut-off is defined by a maximum distance that cells can move between two subsequent
frames, such that an assignment of cells which are unrealistically far apart is not
taken into account. In practice, this helps to reduce the memory consumption in the
implementation of the LAP.

Having established the cost matrix Clocal, shown in Figure 5.2, it is the goal to
find the set of most fitting assignments. This is achieved by formulating an objective
function with side constraints in a LAP framework. In this context, the combination
of assignments with the minimal sum of costs is searched for by Equation 5.2. The
following formulation states the mentioned goal as a general LAP:

Â = argmin
Aij

∑
i,j

AijClocal,ij (5.2)
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subject to∑
i

Aij = 1,∀j and
∑
j

Aij = 1,∀i. (5.3)

In Equation 5.2, the assignment matrix A is defined as

Aij =

{
1 if assignment is selected
0 else

(5.4)

The feasibility constraints established by Equation 5.3 exclude the case that more than
one possible assignment is selected for a cell in frame t and t+ 1, respectively. Equa-
tion 5.2 and Equation 5.3 poses a constrained linear program (LP). This optimization
problem is solved with well established techniques and implementations, for example
the Simplex algorithm [116, pp. 864-879]. The formulation of this linking step as a
LAP, however, allows the use of optimized algorithms, i.e., the Munkres-Kuhn algorithm
[117] or the improved Jonker-Volgenant algorithm [118]. The latter has improved the
runtime of the original Hungarian algorithm from O(n4) to O(n2 log n) by leveraging
the sparseness of LAPs.

5.1.2 Global Track Linking

The frame-to-frame linking step establishes correspondences between pairs of consec-
utive frames of a complete image sequence. Subsequent to this step, the role of the
global track segment linking is to join track segments where necessary, but also to split
or merge tracks. This is necessary to handle situations where no correspondence is
found but a track segment start might be connected with a track segment for a split.
Possible explanations for this are objects leaving the image or moving to far, resulting
in a cut-off. Thus, the tracks (several consecutive correspondences in a row) that
have been computed during the previous step have to be linked to each other, taking
into account the information of the whole image sequence. Additionally, splitting and
merging (which is not biologically interpretable) events have to be determined.

Therefore, global optimization is performed in the temporal domain. This is achieved
by formulating the problem as an LP. In contrast to Cglobal, the cost matrix Cglobal (see
Figure 5.4) in the global track segment linking step considers the following hypotheses
(visualized in Figure 5.3):

Close gap: Connect one track segment end with a track segment start where the cells
do not necessarily have to be in subsequent frames

Merge track segments: Connect a track segment end to a cell in another track segment

Split track segments: Connect a track segment start with a cell from another track
segment
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Initiate or terminate tracks: Keep a track segment start or track segment end, respec-
tively

Gap closing Merging Splitting Initiating Terminating

Figure 5.3: Hypotheses considered in the global track linking step of the SPT approach.

The cost for closing a gap is computed from the distance between cell J at the end of
track segment J and the cell K at the start of track segment K:

gJK =‖cJ − cK‖2 . (5.5)

The costs for merging and splitting are also based on information about the distance
between the proposed merging and splitting points, respectively. Per convention, J
denotes the start or end of a track segment J and K denotes a middle point of track K:

mJ,K =‖cJ − cK‖2 = sJ,K (5.6)

Hence, the merging cost m3,10 in Cglobal (cf. Figure 5.4) denotes the merging of the
track segment end 3 and track segment 10 at cell 20 of this segment. The same notation
is used for splitting in Cglobal.

Initiation and termination cost of tracks are computed according to alternatives,
leaving the track segments unchanged. For details on the computation, the reader is
referred to [115].

Hence, the global cost matrix Cglobal contains blocks for the aforementioned possibili-
ties. The general structure of Cglobal is setup to adhere to the LAP framework. Thus,
the top row as well as the left column contain indexes for all available track segments
that have been created during the frame-to-frame linking step (cf. Subsection 5.1.1).
This also applies for the bottom row and the right column of the cost matrix.

The middle row and middle column have indexes for all cells that are not located a
track segment start or track segment end in conjunction with a track segment identifier.
In essence, the index 1/5 denotes the cell c5 in track 1.

The general concept of the matrix construction is similar to the construction of Clocal.
For each row (or column) one assignment has to be selected. Therefore, each track
segment of the top block is assigned a gap closing, a merging event with a cell from
another track segment, or it can be terminated. The termination is achieved by assigning
the track segment to itself in the top right block of Cglobal.

Cglobal is constructed such that the problem formulation is equivalent to Equation 5.2
with Equation 5.3. In this step, however, all track segments throughout the entire image
sequence compete which each other, thus, the solution to the LAP is global in time.
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Figure 5.4: Cost matrix Cglobal for global track linking (adapted from [115]). gi,j denotes the
gap closing costs (cf. Equation 5.5), mJ,K the merging cost (cf. Equation 5.6), and sJ,K the
splitting cost (cf. Equation 5.6). The two blocks for terminating and initiating tracks compete
with the other alternatives. The remaining blocks are constructed such that the matrix can be
used in the LAP framework.

5.2 Probability-Based Approach

The approach proposed by Al-Kofahi et al. [119] is based on the computation of like-
lihood values for an ensemble of possible assignments between cells in frame t and
t+ 1. The likelihoods are formulated as multivariate Gaussian distributions, based on
a comparison between the cells for which a correspondence is to be established.

To be able to evaluate the similarity or dissimilarity of cells, a characterization is
needed. For each detected cell cti, some easy to calculate measures are computed in each
image t. This includes the cell’s center of mass (x, y)ti, the cell area a

t
i, the eccentricity

eti, major axis length lti, and orientation θti (defined as angle between the major axis
and the x-axis). The visual representation of the cell descriptors is shown in Figure 5.5.
The characterization and, hence, the tracking is based on the so-called feature vector
f ti = ((x, y)ti, a

t
i, e

t
i, l

t
i, θ

t
i).

Different hypotheses are tested and, therefore, different likelihoods have to be com-
puted. A cell can either

1. move and deform (Equation 5.7), or

2. divide into two new cells (Equation 5.8).
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(x,y)

θ
l

e=l/m

a

Figure 5.5: Cell descriptors from which the feature vector f ti of a cell cti is constructed.

These likelihoods are modeled as multivariate Gaussian distributions. Hence, the
probability for the move hypothesis is formulated:

pmove(f
t
i , f

t+1
j ) =

1√
(2π)N |Σ|

exp

{
−1

2
(dtij − µ)TΣ−1(dtij − µ)

}
(5.7)

where N denotes the number of elements in the feature vector and dtij is the absolute
difference between the two feature vectors dtij = |f ti − f t+1

j | (i.e., the vector of absolute
differences between corresponding cell descriptors). µ denotes the mean value and Σ
the covariance matrix of the difference vector dtij . Both parameters have to be calculated
for a training set, but can usually be assumed constant. Hence, the estimation is done
for one type of experiment and can then be used for experiments where the imaging
setup and cell behaviors are similar to the training sequence.

The formulation of the likelihood for the second hypothesis, namely that one cell,
characterized by the feature vector f ti , divides into two new cells with feature vectors
f t+1
j and f t+1

k , is similar to Equation 5.7:

pdivide(f
t
i , f

t+1
jk ) =

1√
(2π)N |Σ|

exp

{
−1

2
(dtijk − µ)TΣ−1(dtijk − µ)

}
. (5.8)

The computation of the difference vector dtijk, however, has to be adapted: an artificial
cell ct+1

jk is created which comprises pixel of both cells ct+1
j and ct+1

k . Consequently, a
feature vector f t+1

jk is computed for this dummy cell as well as the difference vector that
is computed as dtijk = |f ti − f t+1

jk |.

The problem of finding the most likely hypothesis is stated as a LP. For this reason a
matrix D is constructed, such that each possible hypothesis for two frames generates
one row in the matrix (see artificial example in Table 5.1). The first columns of the
matrix denote the cells of frame t, followed by the cells in frame t+ 1. All entries in
one row are zero except for the columns of the cells that are part of the hypothesis. For
this reason, the likelihoods computed in the previous step are split equally between
two cells, if the hypothesis is move and deform. In case of a division event, the initial
cell is given half the likelihood and each of the others is assigned 25 %.

In a LP framework, the goal is stated as finding a selection vector x̂ that maximizes the
overall sum of likelihoods, but only selects one hypothesis per cell. The mathematical
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Frame t Frame t+ 1
1 2 3 4 5 a b c d e f

1→ a 0.43 0 0 0 0 0.43 0 0 0 0 0
1→ b 0.09 0 0 0 0 0 0.09 0 0 0 0
1→ c 0.08 0 0 0 0 0 0 0.08 0 0 0
1→ f 0.08 0 0 0 0 0 0 0 0 0 0.08
2→ b 0 0.18 0 0 0 0 0.18 0 0 0 0
2→ f 0 0.18 0 0 0 0 0 0 0 0 0.18
2→ c 0 0.11 0 0 0 0 0 0.11 0 0 0
3→ c 0 0 0.42 0 0 0 0 0.42 0 0 0
3→ f 0 0 0.10 0 0 0 0 0 0 0 0.10
4→ d 0 0 0 0.46 0 0 0 0 0.46 0 0
5→ e 0 0 0 0 0.44 0 0 0 0 0.44 0

1→ a, b 0.02 0 0 0 0 0.02 0.02 0 0 0 0
2→ b, f 0 0.28 0 0 0 0 0.28 0 0 0 0.28
3→ c, f 0 0 0.04 0 0 0 0 0.04 0 0 0.04

Table 5.1: Excerpt of the matrix referred to as D in Equation 5.9. Rows correspond to the
different hypotheses stated in the first column of the matrix. Details on constructing the
matrix are described in the text (adapted from [119]).

formulation of the objective function and the constraints are formulated as:

x̂ = argmax
x

(Dv)Tx (5.9)

subject to

BTx ≤ v

where v is a vector with the number of possible hypotheses in length and all entries 1.
Furthermore, the companion matrix B is constructed from D by keeping an entry if it
is zero in D and setting it to 1 otherwise. With that restriction, only one hypothesis is
selected for each row and thereby each cell.

An example for an assignment matrixD in combination with calculated likelihoods of
hypotheses is given in Table 5.1. The likelihoods have been adapted from the original
publication [119] for illustration purposes.

5.3 Conclusions

Although the challenges for cell tracking approaches are manifold in microfluidic LOC
devices, the aforementioned approaches are promising concepts. These approaches
have been evaluated with respect to their applicability to the acquired images at IBG-
1 as well as the possibility of integration into the existing ecosystem of the already
established modules of the image analysis pipeline.
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The probability-based approach offers flexibility with respect to used cellular charac-
teristics and makes the integration of additional cellular characteristics straight-forward.
However, integration of prior information is hard do achieve in this framework. In
addition, an implementation of the proposed algorithm was not available for further
benchmarking.

In contrast to the approach proposed by Al-Kofahi et al., the SPT algorithm was avail-
able as an original implementation u-track [120] for preliminary tests. The approach
was furthermore implemented, adapted, and optimized by Jean-Yves Tinevez as a Fiji
(cf. Section 6.1) plugin. TrackMate [121] is actively developed and maintained by
the Fiji community. Furthermore, it integrates well with the established ecosystem at
IBG-1.



6 Implementation

The previously presented image analysis pipeline has been implemented as a suite of
plugins and macros for the image processing and analysis software ImageJ/Fiji. The
following sections will introduce ImageJ/Fiji, provide a general overview of the code
base and highlight selected implementation details.

6.1 ImageJ

ImageJ is an open source framework for image processing and image analysis tasks.
While it started out in 1997, more as a tool than a framework, it has developed into
providing the (bio)image analysis community with a scaffold for a variety of tasks.
The development approach is community-driven (i.e., academic as well as industrial
contributors) and, hence, many contributors have implemented a plethora of plugins
(>100) for additional functionality. Furthermore, the main contribution of ImageJ is
that it provides a user interface and the means to load and save images. Additionally,
many basic image processing tasks are already implemented and can be accessed
conveniently through the (barely changing and thus consistent) user interface and via
a custom macro language.

In recent years, the development of ImageJ has moved into a new direction that was
later termed ImageJ2. This development was mainly driven by the developers of Fiji
[122] who had previously set out to bundle create a distribution of ImageJ with useful
plugins bundled and configured. Parallel to the advent of imglib2 [123], the underlying
data model of ImageJ was greatly improved with generic data structures that were
not restricted by implementation details of the legacy/vanilla ImageJ as developed by
Wayne Rasband.

While ImageJ2 features newer user interfaces, they are not loaded by default. Hence,
the changes are mostly hidden from the end user but open up new opportunities for
developers. The underlying plugin framework underwent a major rewrite (starting in
2012, stable in 2014) in whichmuch of the functionality was refactored to SciJava [124].
The plugin mechanism is now based on services that can provide functionality and are

65
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discovered automatically at runtime. This is an important and major step forward in
that plugins can now provide functionality for other plugins and this functionality can
be distributed in Plugin A but is discovered at runtime by Plugin B. We are leveraging
this functionality to extend other plugins in the ImageJ ecosystem by bundling and
distributing one jar-file, which eases the use for end users. Furthermore, we do not
have to fork other plugins for custom implementations, if they have been designed and
implemented to discover new functionality using ImageJ’s service architecture.

ImageJ is available in three different flavors:

• ImageJ, also ImageJ1

• ImageJ2

• Fiji

ImageJ1 is the spiritual successor of NIH Image (development started in 1987 [125]).

Although ImageJ2 is a major rewrite and advancement of ImageJ, a compatibility
layer has been implemented. This layer enables the execution of ImageJ1 plugins
in ImageJ2 context as well as on-the-fly conversion of ImageJ2 datasets for use with
ImageJ1 plugins. Furthermore, core functionality that is not necessarily only usable in
the image processing context has been modularized for use in other projects.

Fiji and ImageJ2 use the Bioformats library [126] for both loading and writing all
major image formats used in the (bio)imaging community.

6.2 General Overview

Figure 6.1 shows the general structure of the code base of the proposed image analysis
pipeline. In the remainder of this thesis, the implementation of the image analysis
pipeline will be referred to as Jülich Next Generation Lineage Extractor (JuNGLE).

MasterPlugin When an image is open, the MasterPlugin shows the user interface
in which the steps of the image analysis pipeline can be selected for execution (cf.
Figure 6.2). Depending on the activated modules, parameters are set by the user. This
includes the profile that is used for the execution of the SegmentationPlugin (i.e., in
Figure 6.2 “Default”) as well as filter settings for the splitting of dense populations, as
described in Section 4.6.
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Figure 6.1: Main components of the implemented image analysis pipeline as ImageJ plugin in
a UML diagram.
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Figure 6.2: Central user interface component for controlling parameters for the preprocessing
procedures as well as the cell detection step. In addition to selecting which parts of the
pipeline are executed, segmentation profiles (Section 6.5) as well as filter (Section 4.5) can
be configured.

PreprocessorPlugin The PreprocessorPlugin implements the workflow for process-
ing raw image data according to Chapter 3. The run() method creates and executes
the MultiChannelStackReg_ plugin for registering images. Afterwards, the user has
either manually selected a ROI, in which case the image sequence will be cropped and
rotated using this ROI, or the box detection procedure is activated. Once the growth
site has been detected, it is, just like in the manual case, cropped and rotated.

The box detection procedure consists of three steps. A custom edge detection is
implemented in EdgeDetector and is described in more detail in Section 6.4.

The inner while loops (the classification) of Algorithm 2 are implemented in the
*BoxClassifier classes. RatioBoxClassifier implements an improved classification
scheme, that is not based on the absolute size of growth sites, but rather on the ratio
of length to width. While this approach is more compute intense, it will also detect
boxes in zoomed out images where the absolute dimensions might not be available for
DimensionBoxClassifier.

SegmentationPlugin The SegmentationPlugin applies the in Chapter 4 presented
cell detection pipeline to all images of an image stack. Since the segmentation of
one image is independent of the rest of the sequence, processing is executed in par-
allel threads. Due to the nature of this parallelization, the memory consumption of
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SegmentationPlugin scales linearly with the number of threads that is used for pro-
cessing.

Due to the branching in the cell detection pipeline (cf. Figure 4.4), each thread uses
at least twice the memory of the input image. Furthermore, images are upscaled before
processing to improve the segmentation results. Hence, each thread minimally uses
eight times the memory of the input image. During the processing, temporary images
of the same size as the upscaled input image have to be kept in memory.

6.3 MultiChannelStackReg_

The original StackReg plugin [127] by Philippe Thévenaz that implements the pyramid
approach for image registration (cf. Subsection 3.1.2) only works for single-channel
image stacks. The main functionality of the original implementation was to register
a single stack using the TurboReg plugin [128], using the first image of a stack as
template. During this project, the necessity for multi-channel registration as lead to an
extension of its functionality to work with multi-fluorescence stacks.

The computation of the best transformation is achieved in the first channel of an
image only. The transformation for each frame is subsequently applied to the other
channels of the image sequence with a recomputation of the transformation.

6.4 EdgeDetector

The EdgeDetector convolves the image with a kernel created from a phase contrast
image. This kernel has been generated by manual selection of an edge image of a
growth site under typical experimental conditions. Hence, regions where this kernel is
found in the image will produce a high value in the resulting edge image. This edge
image is globally thresholded such that regions with a similarity score higher than 0.95
are considered edges. This procedure can easily be replaced with a standard method
like Canny’s method for edge detection. It has, however, proven to be useful to take
into account how the CAD designed growth sites appear in the phase contrast image as
described in Section 3.2.

6.5 Processing Profiles

All modules of the pipeline have been implemented with flexibility in mind. This
flexibility should not only be benefit developers, working with the code, but more for
experimentalists to refine their results. Hence, the pipeline allows for the creation of
so-called profiles that store parameters. There are many prebuilt profiles with parameter
sets that have been optimized and tested for C. glutamicum with a specific experimental
setup.
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The user can select profiles before starting the execution of JuNGLE. This is shown in
Figure 6.2, where “Balaban” is selected. This is a profile that has been optimized for a
specific sets of experiments, with a high temporal resolution and low exposure.

In addition to those profiles, the settings that are used for the execution, are stored
locally for the processing of further images with the same settings.

6.6 Splitting Tool

The splitting tool is one of several macros that are part of the JuNGLE suite. Once
the tool is selected, it is activated for the currently active image and can be used to
manually curate segmentation results (cf. Figure 6.3). Because the segmentation results
are stored in an overlay/regions of interest, it is also possible to use the all available
functionality of ImageJ for this. The splitting tool, however, provides a convenient
way to select cells and split them along a line with some visual help with minimal user
interaction.

In addition to splitting, it is also possible to merge two cells with the help of the tool.
To that end, the user has to select multiple cells while pressing Shift. When the Shift
key is released, the segments are merged together to form a new cell.

Furthermore, the cells follow a specific naming convention. Therefore, users are not
advised to add manual selections to the overlay, but use a macro that generates unique
names for ROIs. Again, all available tools can be used for the selection, when “A” is
pressed, this ROI is added to the segmentation results.

6.7 Snakes

The models of ellipse- and rod-reproducing snakes have been implemented as a stan-
dalone plugin for ImageJ/Fiji. We have decided to pack it as standalone plugin, so
that it can be used independently of the image analysis pipeline. When executed, the
plugin uses a polygon selection and the active image as input and requires parameters
through an user interface (cf. Figure 6.4). Once the mandatory parameters are set, the
iterative procedure starts and energies are logged for the user to observe the progress
of the computation.

In addition to execution of the plugin the standalone way, it has also been integrated
with JuNGLE. The optimization of a ROI is started with a keyboard shortcut in an
output image of the cell detection module. This is possible, because parameters for
the snakes can also be defined through an API that allows the plugin to be executed in
headless mode.

More details on the implementation are provided in [98].
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Figure 6.3: Screenshot of Fiji with the activated JuNGLE Splitting Tool. The population has
been processed, but contains an error. The Splitting Tool shows the red, dashed line along
which the cell will be split. The blue contour denotes the currently selected cell that is about
to be split.

Figure 6.4: Screenshot of an image with an active polygon ROI. Snakes Plugin is started and
requires parameter input.
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6.8 Link to TrackMate

TrackMate is a full-fledged tracking framework that is based on the Single Particle
Tracking approach by [115] (cf. Section 5.1). Improvements to the proposed imple-
mentation have been made to speed up computations and reduce memory consumption
during the computations.

Internally, TrackMate establishes a data model that consists of Spots and Tracks,
where the connection between the spots is stored in tracks. The fundamental spot
descriptors, i.e. location, are readily available with the package. There is, however, the
possibility to enhance TrackMate’s functionality by adding new or extending existing
modules of the pipeline.

Because TrackMate has been built with extensibility in mind, it is possible to add
new SpotDetectors (extract Spots from image sequences), Views (visualize Spots and
Tracks on the input image), as well as Trackers by implementing provided interfaces.
In addition to the implementing classes, Factory classes provide additional information
about the implementations, i.e., which features are provided. These factory classes
are annotated such that they can be discovered by TrackMate (through SciJava, cf.
Section 6.1) at runtime.

6.8.1 OverlayDetector

As already mentioned, TrackMate provides Detectors that take an image sequence as
input and extract a collection of Spots from the image sequence. I have implemented
a custom detector that converts ImageJ regions of interest to Spot object, effectively
linking those together.

6.8.2 SpotAnalyzer

Since a connection has been established between Spots and ROIs, it is possible to use
built-in functionality of ImageJ to extract information about the ROI and store it in the ac-
cording Spot object. To that end, a SpotMeasurementAnalyzer has been implemented
that extracts cell area, cell length, and centroids for each spot. In addition to themeasure-
ments that are extracted from the bright-field image, a SpotFluorescenceAnalyzer
is available, that extracts the fluorescence intensity values (absolute, mean, standard
deviation) for available fluorescence channels.

6.8.3 Actions

Several so-called Actions have been implemented that can be executed directly after
the tracking has been finished. Most actions have been developed in the context of the
applications that are going to be presented in Part III. Since, more complex analysis
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tasks with time-resolved data are supposed to be executed with Vizardous, the actions
are rather small scripts that can, for instance, be used for screening purposes.

The FluorescenceThresholdScreener has been developed to test if a cultivation
contains cells that exceed specific fluorescence intensity thresholds. For this action, it
is not necessary to have executed the tracking step already. It can rather be used for
checking if this cultivation contains an occurrence of a rare event and decided based
on the output if further processing is advisable. The FluorescenceMaximumScreener
extracts the maximum fluorescence intensities that are encountered in the analyzed
cultivation.

In contrast to the previously described screening actions, the most import action is
the JungleExporter, which exports the tracks and extracted cellular characteristics to
the PhyloXML and MetaXML format for visualization and analysis with Vizardous (cf.
Chapter 8).





7 Quality Assessment

We assess the quality of the proposed methods and implemented modules with respect
to three different factors: a) correct detection of cells, b) influence of contrast changes
on cell detection results, and c) correct assignments of cells in two subsequent im-
ages. These factors enable the assessment of the quality of the proposed cell detection
procedure as well as the tracking approach and highlight challenges.

To that end, the number of false positive detections of cells with respect to a manually
curated gold standard was computed. Gold standards were generated during the
evaluation of the respective datasets for the applications described later in this thesis
(cf. Part III). The cell detection procedure was executed using predefined profiles (cf.
Section 6.5) optimized for the respective dataset (i.e., mainly the resolution of image).
We have selected the ratio of correctly detected cells to the overall number of cells
(that has been determined manually) as a criterion for assessing the quality of the cell
detection module. In the same spirit, the ratio of correct assignments between cells to
the overall number of assignments has been determined. The assessment of the quality
of the tracking module is based on manually curated lineage trees for C. glutamicum
datasets.

With respect to the applications (Part III), it is possible to categorize the data according
to the spatial as well as the temporal resolution (cf. Figure 7.1). Furthermore, the
exposure time heavily influences the SNR as well as the gray value difference between
background and foreground pixels.

All below mentioned computations have been executed on an Intel©Core™i7-2600
(3.4 GHz × 4) central processing unit (CPU) and 16 GB of random access memory
(RAM). The benchmarks are based on the implemented plugin of the modules (cf.
Chapter 6) executed on Ubuntu 12.04.
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Figure 7.1: Schematic of the location of the used datasets in the temporal/spatial resolution
plane. One dataset has a low temporal and low spatial resolution. A second one offers a high
spatial as well as temporal resolution.

7.1 High Temporal Resolution

We have generated a set of image sequences with a high image acquisition frequency
(∆t = 2 min) to accurately determine division times of C. glutamicum ATCC 13032
on complex brain-heart infusion (BHI) medium. This dataset is called HighRes in the
following. It has been used for general growth studies and a systematic comparison of
quantification procedures for microbial growth in Chapter 10. Figure 7.2 shows two
images from different growth sites of the dataset.

A B

Figure 7.2: Exemplary raw images from the HighRes dataset. Each image has two growth sites
in the field of view. A. Position 16, 4.8 h into the experiment. B. Position 33 at 5.8 h.

7.1.1 Preprocessing

Spatial shifts between two frames are in the order of 1µm to 3µm for this dataset.
Hence, the registration of image stacks works without problems. The computational
demand, however, is also increased in comparison with sequences of lower temporal
resolution because of the increased number of frames that have to be processed.
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In this special case, the field of view does not only contain one, but two MGCs. Hence,
we had to split the images before applying the box detection module. Once images are
separated into individual MGCs, manual selection of growth sites had to be done for
3 out of 41 growth sites for this dataset (not all of the 41 available growth sites have
been used in this or later studies).

The runtime of the preprocessing procedure depends on the ratio of moving and
immobile contents in an image. Registration takes about 2 s per frame in the beginning
of a sequence. When the number of cells in a growth site increases, registration times
increase to 5 s per frame when an MGC is filled with more than 300 cells. A complete
image sequence is preprocessed in 10 min to 15 min depending on the length of the
sequence and the size of the images.

7.1.2 Cell Detection

Due to the high spatial resolution of the images (>15 px/µm) and a reasonable signal-to-
noise ratio, the cell detection module performs well. We have computed statistics of how
many cells had to be manually corrected during the generation of a gold standard. For
the evaluated growth sites the percentage of cells that were detected (and split) correctly
is around 98 %. The complete set of statistics is provided in Table 7.2. Exemplary images
extracted from the output of the cell detection module for growth site 16/2 are shown
in Figure 7.3.

Table 7.1: Quality of the cell detection module for different cultivations from the HighRes
dataset. The number of assignments denotes the number of all available assignments between
cells. Corrected assignments have been manually curated to be correct.

DatasetID Number of Cells Corrected Cells % Correct
03/1 12279 216 0.9824
16/2 15743 102 0.9935
33/2 8003 99 0.9876
35/1 7412 51 0.9931
39/2 5344 123 0.9770

Figure 7.3C shows a C. glutamicum colony of high cell density. When zooming on a
later frame in the image sequence (cf. Figure 7.4), an underestimation of the cell area
is detectable near the center of the population. This is on the one hand due to the set
of parameters that is not able to capture image characteristics for the complete image.
On the other hand, the image contrast changes harshly near the population center.
A possible explanation for this observed effect is the applied contrast enhancement
technique for bright field images (phase-contrast).

The overall runtime for one image sequence ranges from 20 min to 40 min. The
most influential factor for the runtime of the cell detection module is the cluster split-
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A B C

Figure 7.3: Results of the cell detection module for dataset with ID 16/2. Time points of the
images are 1 h (A), 4.6 h (B), and 5.9 h (C).

Figure 7.4: The overview image on the left shows frame 200 from the image sequence of
growth site 16/2. The panel on the right shows a zoom to the center of the population. Yellow
contours denote the results from the cell detection module, while the blue contour shows a
manually set cell contour for reference.
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ting approach. The better the presented binarization procedure performs, the fewer
optimizations have to be executed (cf. Section 4.6).

7.1.3 Tracking

With an increase in cell density in a population the frequency of misassignments in-
creases (cf. Table 7.2). Especially near the end of a cultivation, the distance traveled
between two frames increases for cells that are located near the perimeter of a popula-
tion. The volume increase of cells in the center forces the former cells to the outside.
In the worst case (heavily depending on the image acquisition frequency) the traveled
distance is a multiple of an average cell length.

Table 7.2: Quality of the tracking approach for different cultivations from a dataset with a
high temporal resolution. The number of assignments denotes the number of all available
assignments between cells. Corrected assignments have been manually curated to be correct.

DatasetID Number of Assignments Corrected Assignments % Correct
03/1 12320 167 0.9864
16/2 15732 194 0.9877
33/2 7996 87 0.9891
35/1 7239 59 0.9918
39/2 5342 45 0.9916

The runtime of the tracking procedure for this dataset is in the sub-second range for
each growth site.

7.2 Low Temporal and Spatial Resolution

We have generated a dataset that is located on the opposite side of the spectrum in
Figure 7.1 for a screening application (referred to as Screening dataset). The low spatial
resolution of images (∆t = 15 min) is due to the fact, that the data has been generated
using a subpar CCD camera. Furthermore, to test as many medium conditions as
possible in parallel (cf. Chapter 11), the image acquisition frequency has to be lowered
to increase throughput.

Nevertheless, the influence of lower resolutions on the preprocessing module is
marginal. Information from Subsection 7.1.1 apply as well for this low resolution dataset.
Runtimes are, however, comparably shorter because of the lower spatial resolution of
images.

7.2.1 Cell Detection

Statistics of how many cells had to be manually corrected during the generation of a
gold standard have been prepared for the Screening dataset. The percentage of cells
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that were detected (and split) correctly ranges from 75 % to 98 %. Unsteady image
quality between different cultivation conditions determines the outcome of the cell
detection module. The complete set of statistics is provided in Table 7.4. Exemplary
images extracted from the output of the cell detection module for different cultivation
conditions are shown in Figure 7.5.

A B C

Figure 7.5: Results of the cell detection module for datasets with IDs nd055/100 (A), nd013/15
(B), and nd070/20 (C). Images have been extracted from sequences at 5 h (A), 4 h (B), and
5 h (C).

Table 7.3: Quality of the cell detection module for different cultivations from the Screening
dataset.

DatasetID Number of Cells Corrected Cells % Correct
nd055/100 1428 293 0.7948
nd055/102 2247 58 0.9742
nd055/105 1853 114 0.9385
nd013/2 684 172 0.7485
nd013/14 656 107 0.8370
nd013/15 577 103 0.8215
nd070/10 658 43 0.9347
nd070/12 886 71 0.9199
nd070/20 977 146 0.8506

7.2.2 Tracking

The percentage of correctly assigned cells ranges between 70 % and 93 % (Table 7.4).
One possible explanation for the broad range, in the particular case of the Screening
dataset, is the difference in growth rates of the populations based on medium composi-
tion. Hence, the constant imaging interval of ∆t = 15 min will produce less samples
of generations of fast growing cells than of slower growing cells. Thus, the already
mentioned movement between images is influenced by the growth characteristics as
well.
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Table 7.4: Quality of the tracking approach for different cultivations from the Screening dataset.
The number of assignments denotes the number of all available assignments between cells.
Corrected assignments had to be manually corrected during data curation.

DatasetID Number of Assignments Corrected Assignments % Correct
nd055/100 1417 103 0.9273
nd055/102 2234 279 0.8751
nd055/105 1828 218 0.8807
nd013/2 653 190 0.7090
nd013/14 636 174 0.7264
nd013/15 553 79 0.8571
nd070/10 637 47 0.9262
nd070/12 864 122 0.8588
nd070/20 971 198 0.7961

7.3 Snakes

A thorough evaluation of the Snakes plugin with artificial data and a comparison to
results from an alternative implementation is available in Karin Bokelmann’s thesis
[98]. Furthermore, sample segmentations of real image data of different organisms are
presented in there to give an overview of the application spectrum of the plugin.

7.4 Conclusions on Quality

The presented data on cell detection and tracking quality provides an idea of the
possibilities of the image analysis pipeline in contexts of real data. For common image
qualities, the correctness of cell detection results is greater than 90 %, as are the tracking
results. Hence, the presented pipeline enables the investigation of biological questions
with high-throughput MSCCs. Furthermore, the presented results suggest that an
imaging setup has to be planned and adapted with the automated image analysis in
mind.





8 Visualization and Analysis of Lineages

The following chapter is based on the publication “Vizardous: Interactive Analysis of
Microbial Populations with Single Cell Resolution” [129].

SCA togetherwith time-lapse (fluorescence)microscopy has been widely established in
the life sciences in recent years [15, 52, 53]. Whereas flow cytometry yields population
level data at a particular point in time, time-lapse live-cell imaging targets the assessment
of individual cell parameters in their spatial and temporal (development) context.
Microfluidic LOC technologies have enabled the highly parallel cultivation of hundreds
of cells over several generations [2, 130, 131]. Combined with time-lapse imaging, it
has been used to study the dynamics of cellular regulation mechanisms, to investigate,
among others, cellular size homeostasis [60, 132] and phenotypic heterogeneity in
dependence of stressors as well as the detection of rare events [133, 134].

The easy availability of time-resolved data poses new challenges on data analysis by
the mere amounts and complexity of acquired information. While several, typically
organism-specific, image analysis tools are available for cell detection, feature extrac-
tion, and tracking (for review see: [105]), tools for the generic task of analyzing and
understanding this information are lacking.

Hence, we have developed the software tool Vizardous to assist researchers with the
following single cell data related tasks: a) visualize data with single cell resolution in
the lineage context, b) visually detect emerging structural patterns such as symmetries
in subtrees, and c) assessing joint cellular property and structural motifs. A major
contribution to the implementation has beenmade by Charaf E. Azzouzi in his internship
as well as his Master thesis on “An interactive visualization and analysis tool for similarity
testing of lineage trees”.

8.1 Description of Vizardous

The single cell community has adopted phylogenies, to visualize mother-daughter
relationships in context of cellular development and to link time-resolved data to the
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Figure 8.1: Screenshot of Vizardous user interface. The depicted lineage tree is taken from a
nutrient limitation experiment. The chart at the bottom is zoomed in and, hence, just shows
the beginning of the experiment.

tree structures. The use case for SCA is a different when compared to evolutionary
biology. In SCA, lineage trees denote the connection between different “instances” of a
cell across various frames in an image sequence.

Hence, a flexible “pattern and outlier” detection based on spatio-temporal phenotypic
observables of individual cells is essential. Because the objectives in single cell analysis
are notably different from those in evolutionary biology, conventional software tools
for analyzing phylogenies are unsuitable in the single cell domain.

Vizardous is an open-source software that is designed as out-of-the-box solution to
deal with the data from live-cell imaging experiments. The software is implemented
using published methods and available libraries wherever appropriate (see Table B.1).
Mother-daughter relationships are provided in the standardized phyloXML format [135]
and cellular characteristics (e.g., cell length, area, volume, fluorescence reporter signal)
as well as population average information in the specially designed document format
MetaXML, respectively (cf. Subsection 8.3.2).

The intuitive user interface enables experimentalists to browse quantitative single
cell data in the lineage context (cf. Figure 8.1). While the major use case of Vizardous is
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the visualization of lineage trees, the underlying information can be also acquired from
the data models using an API (cf. Figure 8.3) which allows users with programming
experience to script the data analysis tasks directly with Java, Jython [136], or any
other data analysis tool by using the available export capabilities. The next section
will present a typical analysis workflow using Vizardous. Within this workflow, further
interesting features will be highlighted.

8.2 Vizardous Analysis Workflow for SCA

The most important analysis steps are explained with a representative evaluation
workflow using preprocessed time-lapse videos of a growing C. glutamicum population
under transient carbon limitation (for details see Subsection 12.1.6 and Figure E.6):

Step 1: Importing Experimental Data Single cell data are read from phyloXML and
MetaXML files pairs containing lineage information and figures about individual cells,
respectively. One or more of such file pairs can be imported from a local file system or
an external storage location, e.g., OMERO [137].

Step 2: Visualization of Lineage Trees Lineage trees are generated and visualized
alongside population distributions for a complete experiment or a specific time point
(temporal slice). As an indicator of population heterogeneity statistical moments (mean,
SD) are calculated for the selection.

Step 3: Highlighting Individual Cells When screening for rare events or outliers
in populations, the highlighting of single cells in a lineage tree according to cellular
properties is especially useful. Three different approaches are implemented:

1. Change the property of a lineage tree element (node or branch) according to a
specified cellular property, e.g., nodes are sized according to the cell area.

2. Set a threshold for a cellular property and highlight all cells that exceed the
defined value.

3. Sort nodes and complete trees according to cellular properties (note that a to-
tal sorting of leaves might not be possible because of structural constrains, cf.
Section 8.4)

Step 4: Selecting Cells for Inspection The user has the possibility to interactively
select (and deselect) individual cells of interest from the lineage tree. The associated
information is visualized in trace charts Figure 8.1. These charts unlock the contextual
interpretation of feature dynamics along the temporal axis therewith bridging the gap
between the ancestral relationships of cells and their meta-information.
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Step 5: Exporting Lineage Trees and Charts The lineage trees and single cell traces
are fully customizable and exportable to publication ready vector graphics (SVG) or
bitmap formats (JPEG, PNG). Additionally, the data underlying single cell traces can
be saved to tabular data formats (XLS, CSV) for further processing.

8.3 The Vizardous Data Model for Lineage Trees

The mother-daughter relationships of lineage trees as well as cellular information are
read from a pair of XML files. Lineage information is stored in the well established
PhyloXML format [135]. Cellular information and information that is not directly
attachable to edges or nodes in a lineage tree are loaded from a new file format
MetaXML. The development of a new format was necessary due to the lack of an
established solution in the single-cell community.

8.3.1 PhyloXML

PhyloXML is a format that has been established by Han and Zmasek [135]. It is an
XML-based, extensible file format for the storing of phylogenetic trees (mainly in the
context of evolutionary biology) and their associated information. We have based our
tool on PhyloXML to be able to use already available software for visualizing generated
lineage trees from PhyloXML data although without meta-information. We refer the
technically interested reader to [135] for further insights and the original XML schema
definition.

8.3.2 MetaXML

While PhyloXML is very flexible and extensible, it is a purely graph centered file format.
In general, information can only be attached to the elements of a graph, more precisely
nodes and edges. This, however, hinders the integration of information that cannot
directly be attached to such entities modeled by nodes (cells) or edges (mother-daughter
relationships). A prominent example is information about an individual frame of an
image sequence, e.g., background fluorescence or information about the population of
cells as a whole, e.g., the center point of a population.

Therefore, we have developed a new, XML-based format that stores additional infor-
mation regardless of their connection to cells. Following common naming schemes for
markup languages, we have dubbed this format Meta-information Extensible Markup
Language (MetaXML). The complete definition as XML Schema Definition (XSD) is
supplemented as well (cf. metaXML-2.7.0.xsd). In the latest version of MetaXML (2.7.0
as of June 2015) the following cellular and non-cellular features are integrated:

• Experimental information



8.3. THE VIZARDOUS DATA MODEL FOR LINEAGE TREES 87

• Cell length per frame

• Cell area per frame

• (Approximated) Cell volume per frame

• Fluorescence reporters per cell per frame

– Mean

– Standard deviation

• Population center per frame

• Population area per frame

• Background / average fluorescence per frame

This list is continuously extended to incorporate additional information. An abstract
description of the structure and the data in MetaXML files is provided in Figure 8.2.
In-detail explanations of the file format are provided in Section B.3. An exemplary
MetaXML file is listed in Listing B.1.

metaInformation: MetaXML

projectName: String

experimentDuration: Double

frame: Frame

id: String

file: String

elapsedTime: Double

cell: Cell

backgroundFluorescence: Fluorescene

population: Population

description: String

*

1

*

1

Legend
Attribute

Element

Optional

Figure 8.2: Schematic overview of the MetaXML format and the defined tags. Details on the
different tags are provided in Section B.3.
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8.3.3 The Internal Data Model of Vizardous

During the parsing of the previously described file formats, an internal data model is
filled with the extracted information bridging the gap between the two file formats.
This is necessary because the information that is stored in separate files describes the
same biological entities that are accessed during a common (scripted) workflow.

MIFrame

Phylogeny

CellPopulation

Clade

PhyloXML

Forest

MetaXML

DataModel

*

0..1

0..1

0..1

*

1

*

1

1

1

11

1

*

1

1

1

*

Figure 8.3: Simplified UML diagram of Vizardous’ internal data model. Classes represent the
structure of PhyloXML as well as MetaXML where appropriate. The Forest and DataModel
classes bridge the gap between the structural and the cellular information. A DataModel can
hold multiple Forests for comparative analyses of different experiments.

Figure 8.3 shows the connection between the main classes of the data model. The
user will create a Forest from the pair of files. Subsequently, each Phylogeny that can
be accessed from a Forest denotes an individual lineage tree for an individual cell at
the beginning of an experiment. Phylogeny objects can be used to iterate the lineage
tree in various ways using Iterator instances. It is also possible to directly gain access
to the leaves of a lineage tree for deep assessment of those.

There are additional helper classes that model the data as stored in the file formats,
e.g., Cell and MIFrame. Those can be used for accessing information with a cellular
context (e.g. Cell.getX()).
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8.4 Sorting Lineage Trees

One of the first steps after importing a PhyloXML/MetaXML pair is to identify cells of
interest. What the characteristics of such a cell are and how “interesting” is defined
differs from investigation to investigation. In many cases, for instance, outliers are
of particular interest. An outlier usually is defined by a higher than usual or average
value of a given cellular characteristic, e.g., cell length or fluorescence intensity. In
order to identify such outliers, while still being able to visually compare the outliers
property with the rest of a population, a lineage tree (i.e., its leaves) may be sorted
such that cells with high (or low) values are at one end of the lineage tree, with low
(or high) cells being on the opposite side of the tree. Hence, the possibility of sorting
trees augments the highlighting of cells according to some fixed threshold.

In general, a sorting can be achieved for every cellular characteristic that has an
implicit ordering. This means, that two cells have to be comparable. While this is
true for two quantitative properties at any given time-point, taking into account the
history and fate of a cell is challenging. For instance, taking into account a window of
the last five time-points of a given characteristic. The mean value for this window is
directly comparable, but “quantifying” the patterns in this window for a comparison is
non-trivial.

As a working student, Johannes Seiffarth has implemented several sorting modes in
Vizardous for solving the aforementioned challenges:

Subtree Sorting. In this mode, two different methods of sorting have been imple-
mented. First, it is possible to sort a tree by considering cells with two children and
bringing the two children in order. Using this approach, the subtrees that are rooted at
these children are sorted implicitly. Second, it is possible to explicitly take into account
values from the subtrees when looking at cells with more than one child. The general
concept that was implemented is to compute a mean value for the subtree rooted at
each of the children and sort according to the computed mean value. This approach is
flexible in how a single quantity is extracted from the set of successors or leaves of the
cell that is considered. While this is not available yet, it is trivial to implement a sorting
that is, for instance, based on the standard deviation of all successor cells.

Leaves Sorting. In leaves sorting mode the goal is to only sort leaves according to
a specified property. The previously mentioned remarks also apply to this sorting
mode. Currently implemented are the trivial comparisons of directly accessible cellular
quantities. However note, that it is not necessarily possible to sort the leaves due to
limitations that are imposed by the structure of the lineage tree.

This limitation surfaces when two leaves that should be located next to each other
according to the sorting of a cellular property do not have a common ancestor apart
from the root cell. In this case, the leaves are located in completely different subtrees
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of the lineage tree. Hence, it is not possible to obtain a complete sorting of the leaves
without having edges of the lineage tree overlap.

With this limitation in mind, we are actively investigating possibilities to overcome
the issue. One possibility is to use an alternative visualization scheme for mother-
daughter relationships that relaxes the structural constraints on edges. Tree maps are
such an alternative visualization to lineage trees with a more flexible way to visualize
assignments. Figure 8.4 shows an example of a tree map.

A B C

D E F

Figure 8.4: Tree map example. A. - C. Tree maps that are corresponding to different parts of
the tree in D. - F. The area of the different parts denote the magnitude of an arbitrary cellular
characteristic. D. - F. According lineage trees to the tree maps.

The general concept of a tree map is to denote mother-daughter relationships via
inclusion in areas of the tree map. In the artificial example of Figure 8.4, the area
of one contour might denote a specified cellular characteristic, for instance cell area.
Hence, starting with the outer contour of the tree map, the enclosed area will contain all
leaves of the lineage tree. At this stage, however, the area denotes the area of the root
cell (as visualized in Figure 8.4D). When progressing in the experiment, Figure 8.4B
shows the comparable area of the two daughter cells and so on. The advantage of this
visualization technique is the addition of an additional dimension that can be used for
a better position according to a sorting scheme.
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8.5 Comparing Lineage Trees

Since cultivations are executed in a parallel manner in microfluidic LOC devices, lineage
trees from such cultivations might be comparable. While such comparisons might
dismissed as artificial, the motivation behind them is obvious. While sorting lineage
trees can be used for finding individual outlier cells, comparing complete lineage trees
can in practice be used to find outlier cultivations in a complete set of lineage trees
from an experiment.

Hence, the comparison of lineage trees is motivated by two similar questions:

1. Are two or multiple trees similar with respect to a specific characteristic?

2. Is a lineage tree more or less heterogeneous than another lineage tree with respect
to a specific characteristic?

While the first question focuses on the general problem of the similarity of two trees, the
second question opens up a different perspective of similarity: heterogeneity. Although
heterogeneity in a microbial populations is a complex topic in itself, a first concept to
approach is, is to look at the similarity of subtrees within a cultivation.

These questions show that a comparison of either complete trees or subtrees is
inherently coupled to the underlying property for which they are compared. Therefore,
a comparison algorithm as well as a meaningful property that describes the specific
research question adequately is required. Both will be described in the following
sections.

8.5.1 Tree Comparison Properties

As previously mentioned, the properties or measures that are used for comparing trees
are very specific to the data at hand. The cases can be roughly divided into two
categories: structural data and cellular properties, where both categories are compared
separately.

However, if one only compares structural data, cellular properties are completely
discarded. This will effectively result in an analysis of cellular growth (patterns) since
growth characteristics are encoded in the structure of a lineage tree. Approaches for
this kind of comparison are described in Subsection 8.5.2 in more detail.

If only cellular characteristics are taken into account for comparison, the developmen-
tal context of a cell is completely neglected. In this case, for instance, it is only possible
to compare the distributions of characteristics for cells or subsets of cells. Possible
comparison properties are the mean value or standard deviation of the leaves of trees.
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Combining both comparison approaches opens up a new field of research. This
challenge can be tackled, for instance, by using available structural information for
iterating trees and combining cellular properties in a recursive fashion. Such properties,
however, have to be tailored to very specific use cases and investigations. Nonetheless,
such metrics are of great interest for the classification of cultivations based on structural
as well as meta information.

8.5.2 Tree Comparison Algorithms

Phylogenetic trees from evolutionary biology usually comprise labeled leaves from a
fixed alphabet (i.e., species or sequence alignments). Hence, phylogenetic trees with
the same set of leaves can be compared by transforming one tree into another using a
predefined set of operations, e.g., insertion, deletion, renaming. The objectives of this
approach are to find the minimal set of operations that transforms one tree into another
by overlaying concordant labels. The size of this set (i.e., the number of required
operations) is called the Tree Edit Distance (TED) [138].

Comparing lineage trees extracted from single-cell experiments with this approach is,
however, not possible. This is due to the fact that we are comparing lineage trees of
different alphabets because individual cells are never part of two cultivations. Hence,
the aforementioned TED algorithm is not applicable for the data from MSCC.

In addition, the original TED algorithm adheres to the ordering of trees which is not
given in single-cell data, although trees might be ordered as presented in the previous
section. This ordering is, however, artificial and user-generated. In general, two lineage
trees are assumed to be equal irrespective of the ordering of children of cells with
multiple children.

Therefore, we are looking to compare unlabeled, unsorted, “mostly” binary trees.
Trees are “mostly” binary because only in rare cases a bacterial cell will split into more
than two cells. This might not be true when analyzing algae or fungi. In our case,
however, misassignments are a result of errors in the tracking process. While solutions
exist for comparing labeled trees [138], they are not applicable for main use-case.

There is, however, an application for tree comparisons in a rather different field:
automated comparison of the fragmentation patterns of small molecules in mass spec-
trometry. Hufsky et al. have developed a dynamic program approach for aligning
unordered, unlabeled mass spec trees [139]. Since there is no implementation readily
available, we have not tested the approach yet with data from MSCCs.

The previously mentioned approaches compute a single value for a pair of trees. Hence,
to compare several trees with each other requires the computation of pairwise metrics.
We are currently investigation alternative approaches for one-to-many comparisons. The
differences between the concepts are depicted in Figure 8.5. One-to-many comparisons
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{ }
} }

Figure 8.5: Schematic of one-to-one approaches and one-to-many approaches. On-to-one
approaches are shown on left side, where one comparison metric f1(T1, T2) is established.
The concept of one-to-many approaches is to compute a metric f2 for each tree individually
and subsequently compare the computed values.

enable, among other use cases, the clustering and with that the comparison of multiple
trees with a reduced computation cost. On a more general note, such approaches are
required for finding patterns in the comparison values in a larger set of lineage trees.

8.6 Results and Conclusions

Vizardous has been used for the analysis of data of the studies in Part III. Apart from
that, Vizardous has been used in several studies, e.g., [26, 46, 140, 141], by scientists
with different backgrounds to answer a variety of scientific questions. These studies
show that Vizardous is a versatile tool that supports researchers in various aspects
with the discovery-driven analysis of single cell experiments. By supporting additional
input formats and seamless integration with available bioimage analysis software we
anticipate that a range of fields including biological and medical sciences will benefit.
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Overview

Microfluidic single-cell cultivation combined with time-lapse microscopy opens up a
plethora of possible applications [53]. In the following, a short and concise overview of
the types of experiments that are possible with SCA and are executed in a biotechno-
logical context at IBG-1 is provided.

• Characterizing microfluidic LOC devices

– Readouts:

1. Growth rate for a whole population
2. Cell position in the growth site
3. Cell position with respect to the population

• Investigating bacterial growth

– High temporal resolution to keep uncertainties in the reconstructed lineage
tree to a minimum

– Rather few MGCs because of the high temporal resolution (experimen-
tal/technical limitation)

– Readouts:

1. Growth rate for a whole population (if it is based on cell number then
we do not need a lineage tree: less error-prone)

2. Distribution of division times
3. Elongation rates for individual cells
4. Cell position with respect to the population

• Investigations of (intra)cellular processes

– Population patterns are of interest (formations of subpopulations)

– Outliers / rare events are of interest

– In case of rare events: many MGCs to sufficiently sample rare events
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– Readouts: Time-resolved fluorescences intensities for up to 3 (usually 2)
fluorescence channels

The following chapters will focus on specific applications and case studies from the
aforementioned fields. While most of the applications are driven by a biological question,
there are also applications that are driven by the technological advances. This is on
the one hand the optimization of LOC designs, on the other hand the image analysis
pipeline.

98



9 Device Characterization

A main motivation for research on microfluidic LOC devices is their broad range of
applications in the field of bioprocess development [15, 25]. This is derived from the
fact that microfluidic chips can provide a constant cellular environment in contrast to
large scale bioreactors [142]. In order for microfluidic LOCs to be used as tools by
the process engineering and biotechnology community, devices have to be thoroughly
characterized.

During the development of microfluidic LOC devices, chip designs have to be re-
peatedly characterized using different technologies. The set of technologies spans
computational fluid dynamics (CFD) simulations [143] as well as analyses based on
fluorescence-labeled latex beads that are used to visualize the flow through the chip
[61]. These approaches are a first step in the direction of a “[. . . ] better understanding
of the mass transport within the microfluidic chip systems [. . . ]” [144].

Such characterization approaches have in common, that they omit the biological
system and the influence of the chip on the organism. In order to analyze these
influences and investigate the assumption of constant nutrient supply, advanced image
analysis techniques are required for cell identification and data processing. Hence,
pipelines like the one presented in Part II are used for characterizing devices in the
context of biological applicability.

9.1 Nutrient Limitation in Growth Sites

One major goal of the device characterization approaches is to show that cells in a
microfluidic growth site are not nutrient-limited, regardless of their location in the
population and the growth site. First investigations based on CFD simulations with
uptake modeling have been conducted by Westerwalbesloh et al. [143]. Figure 9.1
shows the population that has been modeled in an MGC and the glucose concentration
at constant flow through the chip. The authors suggest from their simulations “that the
cells in the middle of the center of the large colony reach uptake rates above of 97 % of
the ones in pure growth medium.”
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Figure 9.1: CFD simulation results for MGC. A. Model of a large colony extracted from an
exemplary microscopic image of a real colony in a MGC. B. Glucose concentrations in an
MGC. The striped area indicates the position of the bacterial colony (adapted from [143]).

In order to investigate nutrient limitation effects under real conditions we are using the
developed image analysis pipeline to extractmorphological parameters, i.e., cell area, for
individual cells. To that end we are computing the center of mass for each individual cell
in a population together with the population center. Judging from previous experiments
and from the images that are shown in the left column of Figure 9.3, a correlation
between the parameters seems reasonable.

This is, however not the case, as the right column of Figure 9.3 suggests. The last
frame of the image sequence is particularly interesting for this investigation. Figure 9.2
shows an enlarged version of the scatter plot together with a regression using a first
as well as a second order polynomial. The first order polynomial does not capture
the relation between the properties with a reasonable confidence. The second order
polynomial seems a better fit for the data but lacks a biological interpretation.

One hypothesis is that cells near the perimeter of a population are consuming the
nutrients so fast, that at some point during an experiment cells are not growing anymore.
Hence, the data might better be fitted with a biphasic regression model. The MGC used
for the experiment has dimensions of 80 µm× 80 µm. Hence, the nutrient supply might
indeed be a problem in comparison with the MGC designs that are 40 µm× 40 µm.

Hence, this example is rather of artificial nature, but shows the limitations of microflu-
idic LOCs that can be investigated using image analysis techniques. The image analysis
pipeline can complement and confirm previously published simulation studies.
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A B C

Figure 9.2: Effect of nutrient gradients on cells in a population. A. Schematic of nutrient
limitation in a MGC (adapted from [144]). B. Scatter plot of cell area over distance to
the population center. Data taken from the last frame of Figure 9.3 with a second order
polynomial fit to the data. C. Correlation between cell area and distance to population center
for a single cultivation (complete data are presented in Chapter 10).

9.2 Optimizing Inoculation Procedures for Single
Bacteria

Microfluidic cultivation devices can contain many different geometries for bacterial
cultivation. 2D MGCs where cells are not able to overlap and grow into monolayer
populations; 1D growth channels where cells are trapped in such a way that they only
grow in one direction; 0D traps that are only able to hold one individual cell at a time
[145]. All the aforementioned geometries have different characteristics [15].

Since a considerable number of applications for microfluidics are concerned with
population or cellular heterogeneity, the objective is to investigate clonal populations.
To that end, it is beneficial that a MGC is only filled with an individual cell at the
beginning of a cultivation. If that is, however, not the case, it is still possible to decouple
the development of cells using image analysis techniques. Then, the assumption that
each cell in the cultivation chamber stems from one cell (i.e., they shares the same
genetic origin) might be violated in such cases.

Up until recently, the seeding procedure (i.e., the filling of MGCs with bacteria)
was based solely based on diffusion. Recently, Probst et al. [61] have proposed a new
procedure to seed bacteria into the cultivation chamber. The general concept of the
method is the insertion of an air bubble into the microfluidic chip, which transiently
changes the laminar flow through the chip in such a way, that cells are flushed into the
growth sites. This is in strong contrast to the previous procedure, where mass transport
was diffusion-based because of equal flow in parallel media channels.
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Figure 9.3: Analysis of microbial growth with respect to the position in a population grown in
a monolayer growth chamber. The left column shows a sequence of images from a cultivation
experiment. At the end of the sequence, it seems that cells near the population center are
smaller in comparison to the outside. The right column shows plots of cell area vs. the distance
to the population center for individual cells. The first frames barely show a correlation. At
higher cell densities a linear correlation might be devised.
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In order to prove the applicability of the procedure and find the optimal experimental
parameters (geometry size and optical cell density of seeding suspension) the presented
image analysis pipeline has been applied. To that end, four parameter sets have been
evaluated in a comprehensive cell trapping analysis. This analysis features the number
of cells per cultivation chamber and the spatial location of cells in a MGC. Chambers
have been categorized according to their number of seeded cells where chambers
without cells are also taken into account to compute a chip-wide seeding efficiency
Figure 9.4.

The location of cells is of increased interest, because cells that are located near exits
are more likely to leave the growth site during an experiment. In most cases, the reason
for a single cell leaving a growth site is the flow through the cultivation chamber. In
addition, populations that are developing from cells near exits are prone to growing
into the exits and out of the region of observation. The computational analysis of
populations with cells near a boundary or an exit of a growth site is more demanding
than exposed cells in the center of an MGC.

9.3 Conclusions

While microfluidic LOC devices are on the advance, the characterization of such devices
is not exhaustive until the biological specimen is taken into account. With automated
image analysis techniques (e.g., the image analysis pipeline proposed in this thesis)
this gap can be diminished if not closed. Especially, the dependency of microbial growth
on the location in the MGC is worth further investigations. First results from which a
slight correlation might be extracted have been presented, if only for a subpopulation.

On a second note, automated image analysis has been used to improve the seeding
procedure for microfluidic chips. To be as close as possible to reality, we have used
bacteria in the seeding tests instead of beads. This way, the peculiarities of bacteria are
already taken into account with the evaluation method.
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Figure 9.4: Cell trapping analysis (N = 3) of C. glutamicum at 300 mbar and different cell
suspension densities for growth sites of 50µm × 60µm (N = 592) and 40µm × 60µm
(N = 592). (a and b, e and f) OD 0.1: inoculation efficiency distribution and single-cell
location plot; (c and d, g and h) OD 1: inoculation efficiency distribution and single-cell
location plot (adapted from [61]).



10 Quantifying Bacterial Growth

This chapter will focus on the question of how to evaluate single-cell cultivations in the
context of bacterial growth. Before the fact that modeling approaches for microbial
growth in bulk experiments are not necessarily applicable to MSCCs is highlighted,
an introduction on microbial growth in general will be presented. Subsection 10.1.1
focuses on the general (i.e., not organism specific) question of how to extract growth
rates for MSCC. The underlying data for this investigation have been acquired for
C. glutamicum cultivations.

In contrast, Section 10.2 contains results on the investigation of the individual, single-
cell growth of C. glutamicum. At the core of this section is the question of the underlying
growth model for individual C. glutamicum cells.

The chapter concludes with some hints and best practices on how to evaluate single-
cell experiments with comparability in mind. While the focus is here on the compa-
rability between MSCCs on LOC platform, comparability with bulk measurements is
discussed as well.

10.1 Population Growth

Growth and division of individual cells are fundamental for all living organisms, ranging
from humans to bacteria. Gaining an increased understanding of bacterial growth
and division patterns is indispensable for many fundamental and applied research
fields. The applications range from understanding and developing novel antibiotics
against bacterial pathogens [146] to improvements in bacterial production processes of
industrially relevant bulk chemicals [147]. Especially investigations of growth-coupled
production processes have been executed in batch and chemostat cultivations of varying
scale for many decades. To determine colony responses to process parameter changes,
different bulk methods including cell counting and cell density measures have been
used.
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Under conditions where nutrients are limiting, the growth of a bacterial population
can be divided into several phases according to Monod [148]: lag, exponential, sta-
tionary, death. A microbial growth curve (i.e., cell density over time) of this shape
can be described with a variety of phenomenological models (see [149] for review).
Among others, it can be modeled with a logistic (Verhulst) function. While also more
sophisticated methods have been reported in literature [150], their applicability to
data generated with microfluidic LOC devices is limited.

This is mostly due to the fact, that LOC platforms have been developed to provide a
constant cellular environment and are operated under conditions that are not limiting
growth. In this cultivation mode, cells are constantly kept in the exponential growth
phase [59, 151]. Thus, growth models that describe the classical multiple growth
phases model of Monod [148] cannot be applied when investigating growth of microbial
populations in MGCs.

The most prominent parameter for bacterial growth, i.e., specific growth rate µ, can be
extracted from experimental data using multi-phase growth models as well as simpler
ones. The specific growth rate is unique for a bacterial species in conjunction with
experimental parameters. Historically, µ refers to a constant in the exponential growth
law [148]. Hence, the practical implementation of the computation of µ changes for
limiting and non-limiting cultivations and their (non-exponential) growth curves.

In addition, bulk measurements average over a large numbers of cells and so they
mask cell-to-cell variability in division times, sizes at division, growth rates, and other
properties like single-cell production potential. In the last years microfluidic tools
have increasingly been used for quantitative studies of these masked single-cell growth
parameters [152–154].

Recently, different concepts of colony-based bioreactors on single-cell level have
been published [59, 155]. They offer the possibility to investigate complete colonies,
comparable to large-scale experiments (cf. Figure 10.1), but still provide the chance to
probe individual cells under constant environmental conditions.

Hence, these technologies allow to also address more fundamental questions of
growth and division at single-cell level:

• How can we quantify bacterial growth processes in a robust and comparable way?

• How comparable is a growth phenotype from a macroscopic (e.g. growth rate of
a population) and microscopic (e.g. cell division rate of a single cell) perspective?

To answer those questions, we have comprehensively determined and compared
the specific growth rates of C. glutamicum populations during microfluidic cultivation.
The focus here is to use the advantages of MSCC, namely a high temporal resolution
combined with the throughput of the method. We also consider the fact, that the
experiments are challenging as well as the extraction and evaluation of acquired data.
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Figure 10.1: Comparison of large-scale and micro-scale cultivation techniques.
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Figure 10.2: Schematic of measurement accuracy. The center of the board denotes the true
value in each case. Red points are read-outs using measurement techniques with different
accuracy characteristics. Adapted from [156].

10.1.1 Quantification of Population Growth in SCA

We are looking for a quantification method of the specific growth rate in MSCCs that
complies with the maximum specific growth rate as extracted from batch cultivations.
In addition to this objective, the quantification method should have a high trueness
(replicate the underlying, true value) as well as a high precision (accurately determine
the true value). These two objectives, as well as other undesired outcomes are shown
in Figure 10.2. A method with low precision but high trueness is usually biased by a
random effect and is, therefore, hard to optimize. A low trueness with a high precision,
in contrast, is a challenge inherent to the measurement method and might be solved by
improving the method itself. First, however, such systematic errors have to be uncovered
which is barely possible, if measures are not comparable with available methods.

The bacterial growth rate is defined as the increment ratio of a population, which is
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measured by the increment in cell mass or in viable cell number. Since bacteria grow
in a monolayer on the LOC devices made in Jülich, the sum of cell masses in a colony
is considered to be directly proportional to the population area. The population area,
however, could be extracted with more crude measures that do not integrate knowledge
about individual cells.

In literature, several methods for determining growth rates for microbial colonies are
presented [16, 36]. We have summarized the available methods in Figure 10.3.

Population area Cumulative cell area Cell number Division times

Figure 10.3: Different quantification methods.

10.1.2 Comparing Quantification Methods

In order to systematically compare the previously described quantification methods for
growth rates, we have cultivated C. glutamicum in MGCs using complex BHI medium
(cf. Section C.1). During the cultivation, images were acquired every two minutes
(∆t = 2 min), compared every 5 min to 15 min in typical experiments. While the high
imaging frequency does not improve accuracy of “spatial measures” (areas and cell
numbers), division times tdiv for individual cells are determined more accurately with
a higher acquisition frequency. The division time is defined as the time between two
cellular division events. Hence, the improvement is due to the fact that when a cell
division is detected, it has actually happened in between the last frame and the frame
of detection (i.e., tdiv_detected). The division time and the time between two images ∆t
are, therefore, related by

tdiv = (tdiv_detected −
∆t

2
)± ∆t

2
.

We have computed growth rates for five selected cultivations using the aforementioned
quantification methods. The resulting growth rates using the area-based measures
were µarea = 0.75± 0.01 h−1 and µpop = 0.74± 0.02 h−1 for the cumulative cell area
and the population area, respectively. In contrast to that, using the cell number as
basis for the computation yields a specific growth rate of µnumber = 0.81± 0.01 h−1. A
side-by-side comparison of the cell number plot as well as the cumulative cell area over
time with the respective exponential fits is shown in Figure 10.4.
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Figure 10.4: Comparison between an exponential fit to the cumulative cell area of a population
and the cell number of the same population (DatasetID 35/1). The blue line denotes mea-
surement data, while the green line is the fit evaluated at the same positions as measurement
data. The inlays show the fitted function with the optimal parameters and the R2 value of the
fit. The lower row shows residual plots for both quantification methods. The blue line denotes
the exponential fit, the green line shows the deviation from experimental data in percent.

While the difference in the computed growth rates is about 7.5 % (µnumber > µarea),
both measures almost perfectly fit to an exponential growth model. When looking
closer at the underlying fits, the R2 values are comparable. Hence, we have decided to
take a closer look at the fits with residual plots (cf. Figure 10.4 bottom row). These
plots reveal the fact, that especially at lower cell densities, the quantification based on
cell number performs poorly in comparison to using the cumulative cell are. Hence, we
suggest that one has to determine cellular growth via cell area when focusing on the
beginning of an experiment where the cell density is comparably low. Furthermore,
we confirm that when taking into account a broader temporal context and higher cell
densities, both measures lead to comparable results.

From lineage trees it is possible to deduce exact division times with a high precision,
as already described in the first paragraph of this section. Therefore, we have also
reconstructed trees for the same five cultivations. Using the mean value of the division
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time distribution that is shown in Figure 10.5, we have computed

µdiv =
ln(2)

tmean
= 0.80± 0.01 h−1.
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Figure 10.5: Histogram of division times computed from various cultivations (n = 5).

In order for this computation to be accurate, the average cell length has to converge
to a constant value for cell number N → ∞. At the core of the problem is the case
where the average cell length decreases during an experiment while the division time
remains constant. In this case, the division time can not be used as a proxy for the
biomass increase over time anymore. This is not the case for our experimental dataset,
the resulting data is visualized in Figure 10.6.
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Figure 10.6: Average cell length converges with increasing number of cells.

All in all, Figure 10.7 sketches the possible quantification methods and their connec-
tion. With respect to the objective of finding a method with high trueness and high
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precision, we cannot elicit a general statement. This heavily depends on which mea-
surement is used as a reference for the “true” value (Figure 10.7 uses µdiv as reference).
In the end, the decision for a quantification method has to be based on the experimental
data (short term or long term) as well as the information that is desired. Hence, we
extend the conclusion drawn by Dusny et al.: “Consequently, growth rate determination
on the basis of cell volume or mass measurement is clearly superior to mere cell number
or elongation rate determination [...]”, when in the regime of low cell density [54].
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Figure 10.7: Precision of the different quantification methods. A. At the beginning of an
experiment. B. At high cell densities, when individual cell cycles are asynchronous.

10.2 Single-Cell Growth

The previous section has described general methods for the quantification of microbial
growth, i.e., specific growth rates. The presented quantification approaches are neither
organism specific nor do they directly incorporate single-cell growth. In that regard,
these measures are comparable to bulk measurements from large-scale cultivations like
measures of optical density.

However, to investigate single-cell growth, microfluidics or other SCA techniques are
required. With the wealth of information such techniques provide and the availability
of automated image analysis, the underlying mechanism and growth model of indi-
vidual cells can be investigated. Furthermore, single-cell growth rates, per convention
called elongation rates in the following, might be a factor worth considering for future
optimization of bioprocesses and production strains. While the specific growth rate of a
population is a good indicator for microbial growth, it covers growth heterogeneity of
individual cells. For example, the growth properties of a strain that produces a slow
growing subpopulation during cultivation offers room for improvement of the slow
growing population on the single-cell level.

Knowledge about the growth of individual cells has been generated for decades
[157]. Two competing hypotheses, linear or exponential growth, have been tested for
C. glutamicum for the first time by Dusny et al. [36]. This in strong contrast to the
available data sets and literature about E. coli in that field [14, 60, 132, 158, 159].
Hence, we have evaluated a dataset with a high temporal resolution not only for the
population growth rates but also cell area traces for individual cells. Figure 10.8 shows
all extracted cell area traces of the dataset.
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Figure 10.8: Traces of cell area for a selected number of cells (n ≈ 1200) from lineage trees.
The first generation of an image sequence as well as the last generation till the end of an
experiment have been discarded. The histogram on the right shows the distribution of cell
areas irrespective of time.

We have decided to use the cell area as a proxy for determining the traditionally
used parameter of cell volume or biomass. The decision is based on the fact that
C. glutamicum is rod-shaped and keeps its cell width constant during a generation.
Therefore, the connection between the elongation rate from cell area and the one
extracted from cell length (data not shown) is described as:

Earea =
dA

dt
=

d(L ·W )

dt
withW const. = W · dL

dt
= W · Elength. (10.1)

To show how the two proposed growth models, i.e., linear and exponential, perform
on single-cell area traces of C. glutamicum cultivations, Figure 10.9 highlights several
traces alongside linear and exponential fits.

10.2.1 Linear or Exponential Growth Model of C. glutamicum
cells?

While Figure 10.9 only shows a few, selected traces, we have evaluated hundreds more
individual cell traces of their respective cell area. In order to determine the goodness of
fit, we have computed R2 for both linear and exponential fits for each extracted trace.
The results from the study are presented in Figure 10.10.

The general impression is, that a majority of the fits are located in the upper right
corner of the plot. Points in that particular area have high R2 values for both growth
models. In contrast to that high density region of data points, a trend seems to emerge
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Figure 10.9: Selected cell area traces. Red lines show the measurement data, green lines a
linear fit, and blue lines an exponential fit.

for fits where both R2 are suboptimal. Visual inspections give the impression, that
exponential fits performs better in this regime. Nevertheless, the impact of this trend is
low because the deviations between the two models are less that 10 % in all cases (as
illustrated by the band around the R2

linear = R2
exp line).

In cases where the data is very noise, e.g., Figure 10.9F, neither model shows prefer-
able results when compared to each other. Since both growth models feature two
parameters, i.e., the cell area at the beginning of a generation and the increase over
time, we cannot determine which model to select based on Occam’s razor. The principle
of Occam’s razor states that if two competing hypothesis perform equally well, then
one with less parameters or fewer assumptions should be selected.

In the top right area of the scatter plot, which is magnified in the inlet of Figure 10.10,
a trend is hard to elicit. To resolve that issue, we have computed the count of fits above
and below the equality line of the two growth models, i.e., linear and exponential.
There are 757 values over the equality line in contrast to 531 below the line, while most
of the fits show less than 5 % deviation from each other (all fits are in the 10 % band).

With this data at hand, it is hard to come up with a biologically motivated conclusion
about whether growth of individual C. glutamicum cells follows a linear or an exponential
model. For C. glutamicum cultivated in BHI medium, there seems to be hardly a
difference between the two competing hypotheses. While the presented data renders
an exponential growth model more likely, the number of fits where a linear models is
more appropriate is not negligible.
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Figure 10.10: Goodness of fit compared for linear and exponential model. The yellow and blue
band is the 5 % and 10 % deviation from the equality line, respectively.

Recently published literature [60, 132, 160] has focused on growth investigations with
E. coli and Bacillus subtilis in microfluidic devices. The presented data originates from
mother machine data, where individual cells can be observed for prolonged periods of
time. The length of individual cells is an easily accessible and robust growth parameter
[60], that is barely influenced by the cellular neighborhood and image analysis artifacts.

WithC. glutamicum cultivated inMGCs, the accuracy of cell detection for the extraction
of cell length or cell area might still shadow the underlying growth model. For the
presented data, we deem both models applicable due to the minimal deviations from
one another.

10.3 Conclusions

We have showed in a systematic study, that especially at the beginning of an experiment
the cell number is not a reasonable indicator for microbial growth. Hence, we conclude
that one has to determine specific growth rates from cumulative cell area at low densities.
At higher cell densities, we confirm that both measures lead to comparable results,
where the computation of cell area at high cell densities is biased.

In contrast to the exponential growth of bacterial populations, the single-cell growth
study has revealed that a clear distinction between linear and exponential growth cannot
be derived. Since the growth of individual cells is determined by the metabolic state
of a cell, data for different medium compositions is required. In Chapter 11 we apply
the presented quantification methods to a dataset with different medium compositions.
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However, in this study we have focused on complex BHI medium, where we could
neither accept nor decline the hypothesis of exponential single-cell growth.

All in all, if one is comparing single-cell growth measures with bulk approaches, it
seems that the only viable approach is to extract division times for individual cells. This
ansatz, however, comes with a major drawback: required analysis and computation
times (cf. Figure 10.11). Therefore, the extraction of single-cell division times might
be a very accurate measure for individual growth, but the advantages diminish, when
looking at the time effort for construction of required lineage trees.
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Figure 10.11: Schematic of the analysis and curation time for different growth quantification
methods in comparison with the information content.





11 Morphology Screening

SCA enables the extraction of organism parameters that are of great interest for systems
biology. By executing MSCC with an analysis on single-cell level, additional parameters
for process engineering can be obtained. With SCA, instead of looking at population
average information like maximum growth rate, it is possible to zoom in on individual
cells. Correlations between parameters that might be covered by the averaging over
a complete microbial population by bulk measurements can be resolved. This study
demonstrates that a (semi-)automated image analysis pipeline is vital to take advantage
of the potential of MSCC for the extraction of and the screening for systems biology
relevant parameters, i.e., single-cell growth and morphology.

The cultivations for the data shown in this chapter have been executed in the context
of Johanna Heinrich’s Master’s project. This project was supervised by Alexander
Grünberger, who has presented preliminary results on population level in his PhD thesis
[144].

11.1 Screening for Cell Morphology

When screening for particular cultivation parameters, e.g., medium composition, and
their influence on bacteria, a high reproducibility of experiments is required. Especially
in the context of medium composition, a plethora of additives and components have
to be screened. Agar-pads that are usually used for the execution of such studies are
not applicable if tens to hundreds of cultivation regimes have to be tested in short time
under constant conditions. Microfluidic LOC devices offer the possibility to expose
all cells to the same medium composition, in contrast to a shaking flask or lab-scale
bioreactor. State-of-the-art time-lapse microscopy is used for the acquisition of image
sequences of population development. This allows for visual parameter control and
monitoring during the cultivation. Images are acquired at 15 min intervals resulting in
image sequences of growing microbial populations.

In this case study we are investigating and characterizing the physiology of C.
glutamicum in different environments. C. glutamicum is a model organism for the
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biotechnological production of amino acids as well as higher value compounds [34].
Many studies have focused on metabolism and resolving cellular metabolic pathways
[30, 161]. In addition, it is well known that C. glutamicum is able to grow on and use
various carbon sources including glucose, fructose, sucrose, xylose, and arabinose [162].
Building on the available information, we are investigating the cellular response, i.e.,
growth and morphology patterns, to several key carbon sources of the glycolysis and the
central carbon metabolism as an example for the screening of different environments.

Screening different carbon sources for their influence on population growth, cell
elongation, and size regulation in C. glutamicum extends available literature on these
topics [163–165] with regard to the set of nutrients.

PPP

EMP

GLC GNT
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Figure 11.1: Schematic of the central carbon metabolism. Entry points of the studied carbon
sources into the central carbon metabolism are highlighted with rectangles.
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11.2 Results

MSCCs of C. glutamicum are carried out in well-defined minimal medium (CGXII [166])
with addition of various carbon sources, namely glucose, gluconate, fructose, pyruvate,
acetate, citrate, as well as without one of these carbon sources. In the latter case,
protocatechuic acid (PCA) is metabolized as sole carbon source that is also added in the
other medium compositions for experimental reasons. The carbon sources of interest
are close to the central carbon metabolism (cf. Figure 11.1). They are, however, located
in different pathways, i.e., the glycolysis and the pentose phosphate pathway.

For these cultivations, we have extracted population-based growth rates, single-cell
elongation rates, as well as morphological parameters for individual cells.

11.2.1 Population Growth

The population growth rates µpop of C. glutamicum populations have been determined
under varying cultivation conditions. Subsequently, a subset of three MGCs has been
evaluated such that the cell number for each frame can be extracted as well as cumulative
cell area. This enabled the computation of the growth rate from both cell number and
cumulative cell area according to the methods published by Grünberger et al. [2].

While we have applied different quantification methods to obtain maximum growth
rates, Figure 11.2 shows the growth rate mean value and the standard deviation
computed from the evaluated triplicates based on cell number. A closer look at the
differences between the two quantification methods has been provided in Chapter 10.

Under default conditions (i.e., CGXII without glucose with PCA) a growth rate of
µ = 0.10± 0.01 h−1 was computed. A significantly higher growth rate was computed
for pyruvate (µPYR = 0.36± 0.01 h−1), acetate (µAC = 0.46± 0.01 h−1), and glucose
µGLC = 0.51± 0.02 h−1. A slightly increased growth rate was observed for fructose
µFRU = 0.55± 0.01 h−1 and citrate µCIT = 0.63± 0.01 h−1. Cultivations with gluconate
as carbon-source showed the highest growth rate of µGNT = 0.71± 0.03 h−1 of the
minimalmedium compositions. The highest overall growth rate, however, was computed
for cultivations on BHI with µBHI = 0.84± 0.04 h−1. In addition, the last two mentioned
cultivations show the highest variance in the set of compositions.

All in all, the values ranged from µmin = 0.09 h−1 to µmax = 0.88 h−1 for default
conditions and BHI, respectively. It is also interesting to note, that there seems to be a
trend for higher growth rates to have higher standard deviations.

11.2.2 Single-Cell Growth

When applying the complete image analysis pipeline and evaluating the available data
to the full extent, it is possible to investigate parameters of growth and morphology for
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Figure 11.2: Population-based growth rates for different carbon sources. Carbon sources are
sorted according to the median of their growth rates.

individual cells. Hence, we have computed cellular elongation rates as a read-out for
single-cell growth as a proxy for the biomass increase over time (cf. Section 10.2).

We have extracted the elongation rates under the assumption that the cell area
increases linearly over time for C. glutamicum. The question if a single bacterium grows
exponentially or linearly is a long standing problem [167–169]. However, internal
studies (cf. Chapter 10) have revealed that the differences in computed elongation
rates are negligible. Therefore, we have executed a linear fit to the area trace of each
cell, where the slope denotes the elongation rate. The data for the different carbon
sources is depicted in Figure 11.3 with the sorting adapted to Figure 11.2.

Without the explicit addition of a carbon source, elongations rate of E= 0.005± 0.002
µm2min−1 were obtained. Cultivations on pyruvate and acetate resulted in elongation
rates of EPYR = 0.010± 0.003µm2min−1 and EACT = 0.021± 0.004 sm2min−1, respec-
tively. Addition of glucose and fructose showed elongation rates of EGLC = 0.020± 0.007
µm2min−1 and EFRU = 0.020± 0.005µm2min−1. MGCs with citrate and gluconate
showed considerable higher elongation rates of ECIT = 0.028± 0.008µm2min−1 and
EGNT = 0.031± 0.009µm2min−1. The highest elongation rate is computed for cultiva-
tions with BHI medium (EBHI = 0.050± 0.010µm2min−1). The extracted elongation
rates show the same trend that has already been described for the population growth.
Namely, higher elongation rates also show higher standard deviations in our cultivations.

11.2.3 Single-Cell Morphology

Looking at individual cells of a cultivation/population, it becomes obvious that the
morphology of cells changes with the different carbon sources. Building on previously
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Figure 11.3: Single-cell elongation rates obtained for different carbon sources under the as-
sumption of a linear elongation model. The plot is sorted according to Figure 11.2 for
comparison.

observed cultivations, we have extracted cell length and cell area, respectively, before
and after a cell division as well as the average of a cellular generation. Figure 11.4 and
Figure 11.5 show the resulting distributions together with an excerpt from the image
sequences (at higher cell densities) obtained by time-lapse microscopy.

On average, the smallest cells are observed when cultivations are conducted with-
out additional carbon sources with l = 1.76± 0.23 µm2. Cells cultivated with pyru-
vate are in the same order of magnitude: lPYR = 1.90± 0.23 µm2. Fructose and glu-
cose show average cell lengths of lFRU = 2.49± 0.29 µm2 and lGLU = 2.45± 0.37
µm2, respectively. The next group of carbon sources are about 20 % bigger with
gluconate (lGNT = 2.89± 0.37 µm2), acetate (lACT = 2.98± 0.29 µm2), and citrate
(lCIT = 2.93± 0.33 µm2). The by far largest cells are observed for cultivations with BHI
which show an average cell lengths of lBHI = 3.55± 0.54 µm2.

11.3 Discussion

We have analyzed MSCCs in LOC devices using the proposed (semi-)automatic image
analysis pipeline to screen various cultivation conditions. Cultivations were done with
different main carbon sources added to a well-defined minimal medium with the goal
to investigate the impact on the growth and morphology of C. glutamicum.

To that end, we have extracted population growth rates for different carbon sources
of the central metabolism of C. glutamicum over 5 to 6 generations. While we could
not find a direct correlation between the entry point of the carbon source into the
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Figure 11.4: Morphology parameters for each carbon source. Histograms of cell area before
and after a cell division.
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Figure 11.5: Morphology parameters for each carbon source. Histograms of cell area before
and after a cell division.
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central metabolism, the C-sources seem to cluster into different categories. Within
these categories, the variance between the C-sources is negligible.

On the population level, growth rates show a clear correlation with morphological
parameters for the investigated carbon sources (as depicted in Figure 11.6). Hence,
the single-cell data followed established patterns known as the “growth law” [157,
170]: the average cell size increases as the growth rate µ increases. The same trend
is observed when zooming in to single-cell elongation rates. In the end, population
growth is governed by the growth of individual cells.
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Figure 11.6: Correlation between population growth rate and morphological parameters for
different carbon sources.

Taking into account morphological information for individual cells, it is possible to
investigate the mechanism of size homeostasis. Figure 11.4 and Figure 11.5 show
characteristic distributions of cell area for different carbon sources. The question
remains, how these characteristic distributions are generated by individual cells and
how this is orchestrated.

In literature, three competing models for size homeostasis are discussed [163]. A
timer-based model assumes that the division time for individual cells remains constant
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irrespective of the cell length at birth [171]. The second model, sizer, assumes a cell
size threshold that has to be exceeded for a cell to divide [172]. A recently established
hypothesis is the adder principle that states that cells add a constant factor ∆ to their
size and divide when this criterion is reached [160, 163, 173]. To answer the question
which model is implemented by C. glutamicum we have derived various correlations
between crucial growth and morphology parameters (Figure 11.7 and Appendix D).

Figure 11.7: Connection between single-cell growth and cell morphology in a correlation plot
for phenotypic features based on cultivations with BHI medium. The values in the lower half
of the matrix denote the Pearson correlation coefficient. Histograms for each characteristic
are shown on the diagonal. The upper block of the matrix shows scatter plots of pairs of
characteristics with a regression line and the 95% confidence band of a linear model.

The negative correlation between the area of cells at the beginning of a generation
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and the division time precludes the previously described timer model for cultivations
with BHI medium. With our systemic screening of carbon sources we could show
furthermore, that the Pearson correlation coefficients range from −0.56 to −0.38 for
pyruvate and BHI cultivations, respectively (cf. Figure 11.7). Correlation plots for the
remaining carbon sources are provided in Appendix D.

Furthermore, we cannot hypothesize a sizermodel due to the high correlation between
cell area before splitting and the cell area at birth. A size threshold as described by
the sizer model would show a constant (up to stochastic fluctuations) cell size at the
end of a generation irrespective of the size at birth. The correlation coefficients for our
single-cell date range from 0.29 to 0.74 for pyruvate and BHI, respectively. In addition
to ruling out a sizer-based model, the linear correlation suggests that cells add a specific
size before dividing, according to the adder principle.

To investigate the applicability of this principle, ∆ = Lend− Lstart has been computed
for the extracted single-cell information. According to literature, ∆ remains approxi-
mately constant for cells of microbial model organisms, e.g., E. coli and B. subtilis [160,
163, 173]. Our data does not suggest a direct correlation between the parameters,
hence, neither entirely supporting the adder hypothesis nor ruling it out.

In contrast to these correlations, there seems to be barely any correlation between
the cell area at the beginning of a generation and the elongation rate over the course
of the same generation. The highest correlation coefficient is computed with 0.39 for
cultivations in bare CGXII medium (PCA as sole carbon source). However, the strong
correlation between Lstart and tdiv suggests, that the size control is rather effected by
adaptations in doubling time than the individual elongation rate. These findings are in
consent with the work published by Osella et al. [159], presenting a size correction
based on the modulation of doubling time.

11.4 Conclusion

In this study, we have used a microfluidic LOC platform for the parallel cultivation
of C. glutamicum under varying conditions. We have cultivated bacteria in minimal
(CGXII) medium that has been charged with different carbon sources to screen the
space of media compositions.

In addition to looking at the growth of cells on population as well as on single-cell level,
we have also extracted morphological parameters for individual cells. A connection
between the average cell size and the population growth (also single-cell growth) could
be established for different carbon sources. In addition to the charged minimal medium
we have also looked at cultivations with the commonly used BHI medium. Cultivations
in BHI medium show the highest growth rate and the longest cells on average.
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The dependence of cell morphology on the available nutrients has to be addressed
in future experiments. Information on specific parts of the machinery that regulates
cellular growth in bacteria [174, 175], and more specifically in C. glutamicum [38,
176, 177], has recently been published but does not relate to medium composition and
cultivation conditions.





12 Modeling SOS and Phage Dynamics

This chapter is based on the publication “Live cell imaging of SOS and prophage dynamics
in isogenic bacterial populations” [178].

DNA of viral origin is a prevalent element of bacterial genomes and can account for
up to 20% of the whole genome [179, 180]. Genomically integrated bacteriophage
DNA not only comprises fully functional prophages which are able to undergo a lytic
life cycle, but also cryptic prophages or single phage genes which were trapped in the
genome due to genomic rearrangements and gradual decay.

Due to the integration into the genetic circuitry of the bacterial host, these elements
may have a significant impact on host fitness by equipping their host with genes for
virulence factors or toxins [181–183], stress resistance [184] or metabolic traits [185].
Typically, the lysogenic, dormant state of temperate phages is very stable andmaintained
by action of a central phage repressor protein [45]. Early in the last century, however,
free phage particles were found in cultures of lysogenic bacteria in the absence of an
external trigger, leading to the term spontaneous prophage induction (SPI) [186, 187].

SPI was long considered as a potentially detrimental process, since a certain fraction of
cells is continuously lost by the activation of lysogenic phages. Remarkably, several recent
studies revealed the beneficial impact of SPI on the fitness of bacterial populations as it,
for instance, contributes to the release of extracellular DNA (eDNA) which represents
an important component of several microbial biofilms [188, 189], to the release of
toxins or adhesion factors [190, 191], and has an important impact on horizontal gene
transfer [187, 192, 193].

DNA damage, causing the induction of the cellular SOS response, represents the
best-studied trigger for the switch of lysogenic phages to the lytic development [45].
As a result of DNA damage, the occurrence of single-stranded DNA (ssDNA) is sensed
by the protein RecA, which binds to ssDNA, oligomerizes, and enters an active state,
RecA*, in which it triggers the autoproteolysis of the SOS repressor protein LexA [194].
Derepression of the SOS genes results in the expression of more than 40 genes involved
in DNA repair, recombination, and inhibition of cell division.
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In previous studies, single-cell analysis of reporter strains revealed a spontaneous
activation of the SOS response caused by the sporadic occurrence of DNA damage
[195–197]. Previous fluorescence microscopy and flow cytometry based approaches
were not able to unravel the transient character of this stress response. It is reasonable
to assume that a prolonged induction of the SOS response by sporadic DNA damage
will also impact the activation of lysogenic phages in a certain fraction of cells.

The genome of C. glutamicum strain ATCC 13032 contains four cryptic prophage
elements (cf. Subsection 2.1.2). The largest prophage CGP3 (187 kbp) was shown
to be induced in a small fraction of cells under standard cultivation conditions [198].
Flow cytometry based studies suggested spontaneous SOS induction as an important
trigger of CGP3 SPI [46].

In this study, we have applied an MSCC setup with live-cell imaging to monitor the
dynamics of the SOS response and prophage induction in single cells of C. glutamicum
populations. This time-lapse image based single-cell analysis of reporter strains sup-
ported the hypothesis that the sporadic induction of the SOS response is an important
trigger of CGP3 SPI, but also disclosed a considerable fraction of SOS-independent SPI.

12.1 Results

Previous studies disclosed the spontaneous induction of the CGP3 prophage in C.
glutamicum populations and revealed the SOS response as a prominent trigger of CGP3
SPI [46, 198]. These flow cytometry based analyses of reporter strains, however, were
not able to resolve the ongoing phenotypic dynamics.

Therefore, we set out to monitor SOS response and prophage induction in single
bacterial cells at spatio-temporal resolution using time-lapse microscopy. For our study,
we have constructed a C. glutamicum ATCC 13032 strain that contains a genomically
integrated PrecA-venus fusion and a plasmid-encoded phage reporter where Plys was
fused to crimson.

Treatment with the antibiotic Mytomycin C (MMC) resulted in a significant induction
of the SOS reporter showing normally distributed single-cell fluorescence intensities. In
contrast, the output of the phage reporter Plys-crimson showed two peaks of reporter
fluorescence reflecting the bistable nature of the decision between the lysogenic and
lytic state of CGP3 (Figure E.5).

12.1.1 Spontaneous Induction of SOS and Prophage CGP3

To enable time-lapse fluorescence microscopy under stable micro-environmental condi-
tions, we performed growth experiments of C. glutamicum in microfluidic LOC devices
(for a detailed description of the setup, see Section E.1). Single cells of the dual reporter
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strain C. glutamicum ATCC 13032::PrecA-venus/pJC1-Plys-crimson were seeded into the
chambers and growth and fluorescence in standard glucose minimal medium (CGXII
+ 4 % glucose) was monitored for roughly 8 h (cf. Figure 12.1, Figure E.2). Lineage
information (Figure 12.1B) and single cell fluorescence traces (Figure 12.1C) were
extracted for 20 independent microcolonies (4248 cells) with our semi-automated
image analysis tool.
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Figure 12.1: Live Cell Imaging of SOS and prophage induction. A. A series of processed
images of a selected microcolony (MGC-16). Yellow contours denote the detected cell bound-
aries that were used for further processing. B. Lineage tree with highlighted traces of selected
cellular events for image sequence of A. C. Fluorescence traces of Venus and Crimson reporters
of traces highlighted in B. Dashed lines show time points where the reporter output passed
the threshold (details on the computation in Figure E.3).

Under the chosen conditions, an average growth rate of 0.47 h−1 was observed which
is in the range of the growth rate of C. glutamicum ATCC 13032::PrecA-venus/pJC1-Plys-
crimson determined in shaking flask cultivations. Using this experimental setup, 5.7 %
of the cells exhibited spontaneous induction of the SOS response and 0.7 % displayed
CGP3 SPI.
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12.1.2 From Continuous Signal to Discrete Cellular State

We have defined eight discrete cellular states (Figure 12.2) based on the (continuous,
thresholded) fluorescence reporter intensities of the dual reporter strain as well as the
potential of an individual cell to generate offspring. The offspring state is determined
by tracking a cell throughout an experiment to see whether it has daughter cells.
Considering the fact that cells can only be in one of the states at one time-point at the
experiment with the reconstructed lineage trees, enables us to investigate the fate of
cells, i.e. the transition between states. We constructed a model consisting of cellular
states and possible transitions, in which transition probabilities are extracted from
experimental data.

The state of a cell is determined by applying an adapted threshold method (cf. Fig-
ure E.3) to each fluorescence reporter signal at a specific time point with thresholds
TSOS = 130 a.u. and TPhage = 160 a.u. The threshold method also considers the history
and future of cells to avoid over-interpretation of fluctuations in fluorescence intensities.
That is, if the threshold is exceeded only marginally and for a short period of time (in
hindsight) a cell will not be assigned the ON state (details in Section E.3). Furthermore,
the thresholds have been set in a way that their influence on state transitions (in which
we are ultimately interested in) is minimized (cf. Figure E.4). Additionally, the number
of offspring for each cell is computed for determining the “Offspring” state of a cell.

Taking into account the temporal context of cells (predecessors as well as successors),
the transition of cells between the states of two time points tn and tn+1 (imaging
interval, ∆t = 8 min) was investigated. This is done by quantifying the number
of state transitions in between two subsequent frames of acquired image sequences
(Figure 12.2). Integration of experimental knowledge, i.e., image acquisition intervals
(here ∆t = 8 min), enables us to compute conditional state transition probabilities (per
∆t) from the previously obtained absolute counts.

Because probabilities are conditioned on different initial states, a direct comparison
of transitions with different initial states is not advisable.

12.1.3 Transient Induction of the SOS Response

Previous studies have shown that the spontaneous induction of SOS-responsive promot-
ers is likely due to the sporadic occurrence of DNA damage, including DNA double-strand
breaks or stalled replication forks [46, 196, 199]. However, the snap-shot measurement
of reporter output (e.g. using flow cytometry) obscures the transient nature of this DNA
damage response. The frequency of state transitions from SOS+/Phage– to SOS–/Phage–

(Figure 12.2) nicely illustrates the transient expression of the SOS reporter in a subset of
SOS+ cells. Whereas the majority of SOS+ cells exhibits a prolonged induction, staying
in an SOS+ state for more than one imaging interval, 18.6 % of those cells recover
from stress (re-entering the non-induced state and generating progeny). Whereas cells
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Figure 12.2: Frequency of state transitions. A. Illustration of the transitions between the
four states based on the fluorescence reporter intensities (SOS–/Phage–, SOS+/Phage–,
SOS–/Phage+, SOS+/Phage+). Fluorescence images of all cultivation chambers were taken
every eight minutes and the states of all cells were compared to the states found in the
previous image. The red box shows the matching transition in the Markov Model. B. Markov
model of cellular states and transitions. Rounded rectangles denote states, while arrows
denote possible transitions between the states. The arrow points from the initial state to the
destination state. Values on the arrows show the conditional probability that a cell that was
in the initial state at tn is in the destination state at tn+1. For details on data evaluation and
the calculation of state transitions see Section E.1 and Figure E.3, respectively.
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which recover from SOS induction show an overall reduced growth rate their growth
rate is not significantly altered before induction in comparison to uninduced cells (cf.
Figure E.1)).

The capability of cells to recover from SOS+ is also reflected by the fact that more than
one offspring originates from SOS+ cells (Figure 12.3). This is particularly interesting
considering that formerly SOS+ cells have suffered from an increased mutation rate,
but resume growth and thereby significantly contribute to the overall mutation rate
of the whole population. On the other hand, prolonged SOS induction is followed by
the induction of the CGP3 prophage (SOS+/Phage+) in a considerable fraction of SOS+

cells (10.1 % versus 0.7 % in the overall experiment).

12.1.4 CGP3 SPI Leads to Cell Death/Senescence

In contrast to the transient nature of the SOS induction, activation of the phage reporter
coincides — in all cases — with a stop of cellular growth and likely cell death. This is
in agreement with the cellular state and transition model (cf. Figure 12.2), where we
do not observe transitions into one of the Phage+/Offspring+ states. Furthermore, the
model topology (as extracted from the experimental data) shows that cells entering
a Phage+ state remain in this state throughout the experiment (cf. Figure 12.3 and
Figure 12.4). Thus, this live cell imaging approach nicely demonstrates that induction
of the cryptic prophage CGP3 results in cell death or senescence of the affected cells.

12.1.5 Correlation of SOS and prophage induction

Previous flow cytometry-based studies suggested that spontaneous SOS induction is a
prominent trigger of CGP3 SPI [46]. In the present study, we analyzed the correlation
of SOS and phage reporter output at spatio-temporal resolution in order to visualize
how often these two responses correlate at the single-cell level.

To that end, we evaluated the temporal development of all single cell traces exhibiting
SOS and/or prophage induction over the course of the experiment and analyzed their
correlation (Figure 12.4). In agreement with previous findings these data revealed that
a significant fraction of SOS+ cells (>8 %) also exhibited prophage induction over the
course of the experiment (cf. Figure 12.4B). Furthermore, SOS induction preceded
CGP3 activation in >60 % of Phage+ cells, supporting a causal connection between
these rare single cell events (Figure 12.4C). Remarkably, a considerable fraction of
SOS-independent SPI (>30 %) was observed under the chosen experimental conditions.
Thus, these data clearly indicate the existence of further factors, besides the SOS
response, that are involved in the activation of the cryptic prophage CGP3.
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Figure 12.3: Recovery of SOS+ and Phage+ cells. A. Color-coded scheme for the computation
of offspring of SOS+ or Phage+ cells. To compute the number of offspring of a cell c, the
number of leaves of the subtree rooted at c is computed. Thus, cells that do not divide until
the end of an experiment are denoted by an offspring of 1. B. Scatter plot of the number of
offspring vs. the maximum Venus fluorescence (PrecA) of each generation. C. Normalized
occurrences of ratios of SOS– offspring of SOS+ cells that do not divide and spawn offspring,
respectively. D. Maximum Crimson fluorescence (Plys) per generation plotted against the
number of daughter cells.
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C D E2-Crimson signal of Phage+ cells
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E2-Crimson signal of SOS+ cells

Figure 12.4: Correlation between spontaneous SOS and prophage induction. Colored
traces are highlighted as examples from the complete set of traces (gray lines). A. Fluo-
rescence traces (Venus) of all cells that have been identified as SOS+ during the experiment.
B. Fluorescence traces (Crimson) of all cells identified as Phage+ during the experiment.
C. SOS-dependent prophage induction: fluorescence traces (Crimson) of all SOS+ cells. D.
SOS-dependent and -independent SPI: fluorescence traces (Venus) of all Phage+ cells.

12.1.6 Generation-Dependency of Spontaneous SOS and
Prophage Induction

Recent studies suggested that the majority of sporadic SOS inductions occurs in a
replication-dependent manner, e.g. due to polymerases stalled at replication forks
[200]. In the following, we set out to compare SPI and SOS induction in exponentially
growing versus non-growing cells.

In order to discriminate between time- and generation-dependent induction of SOS
and prophage, respectively, we performed a starvation experiment, where the supplied
medium was switched after 8 h of exponential growth to minimal medium without
carbon source. After ≈ 24 h of starvation, the medium supply was switched back
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to standard glucose minimal medium in which cells resumed growth. Whereas cells
cultivated in the reference channels (+ carbon source) continued exponential growth,
carbon-starved cells showed a significant drop in the growth rate, but exhibited residual
growth for the next ≈ 12 h (Figure 12.5). After approximately 12 h of starvation, the
total cell number reached a plateau and no significant increase in population area was
observed for the following ≈ 10 h. Remarkably, even in this time span spontaneous SOS
induction occurred at a lower but still considerably high frequency (1.35 h−1) suggesting
the significant contribution of replication-independent mechanisms (cf. Figure 12.4).
In contrast, no SPI was observed in the starvation phase. This is in line with the finding
that prophage induction is only triggered in actively proliferating cells [201] (see also
Figure E.6).

12.2 Discussion

In the present study, we used a state of the art microfluidics-based live-cell imaging
platform to monitor SPI in C. glutamicummicrocolonies with spatio-temporal resolution.
These experiments provide detailed insights into the dynamics of prophage activa-
tion and stress responses at the single cell level and highlight the value of single-cell
approaches in comparison to standard bulk assays.

The host SOS response represents the by-far best-characterized trigger of lambdoid
prophages [194]. Interestingly, previous single-cell studies showed that a small fraction
of cells exhibits a spontaneous induction of this stress response— likely caused by the spo-
radic occurrence of DNA damage [195–197]. Using a flow cytometry- and microscopy-
based analysis of reporter strains, the spontaneous induction of SOS-responsive pro-
moters (E. coli: sulA, umuCD, lexA and recA, C. glutamicum: recA) was measured to
range between 0.09 % to 3.1 % [46, 196, 202]. These numbers reflect the high depen-
dency of absolute values of suchlike measurements on the organism, the experimental
procedures, and the data evaluation. More importantly, such values were generated to
describe a stress response exhibiting a highly dynamic nature. A snap-shot measure-
ment (e.g. flow cytometry analysis) of single cells at a certain time cannot reveal the
actual fate, i.e., the development of particular cells over time. In order to visualize these
transient changes of the SOS response, we applied a threshold (TSOS ≈ 1.18 − fold
mean), which resulted in a comparably high fraction of SOS+ cells in this live cell
imaging study (5.7 %). The setting of this threshold is also supported by the fact that
SOS+ cells displayed in almost all cases a significant drop in growth and showed an
elongated morphology typical for an induction of SOS genes encoding cell division
inhibitor proteins [203, 204].

Sporadic DNA damage, e.g., the spontaneous occurrence of DNA double-strand breaks,
may for instance occur by the collapse of replication forks [200] and is a frequent cause
for genomic rearrangements or mutation hot spots [205–207]. Under stress conditions
this may significantly accelerate evolution of bacterial strains or communities [208,
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Figure 12.5: Time-dependent SOS and prophage induction in cells of the dual reporter strain
ATCC 13032::PrecA-venus/pJC1-Plys-crimson. A. Counts of the total cell number, SOS+ and
Phage+ cells were plotted against the time. The starvation phase is shaded in blue. B. Control
experiment where the cells were grown in the presence of a carbon source in standard CGXII
minimal medium. C. The number of SOS and phage positive cells divided by the total cell
number plotted against the time. During the starvation phase, SOS induction is still increasing
whereas no additional SPI events were observed. D. Picture series of a selected microcolony
cultivated as described in A. One cell exhibiting SOS induction during the starvation phase is
highlighted (white arrow).
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209]. In contrast to previous studies that have measured spontaneous SOS induction,
the live-cell imaging approach of this work allowed not only the quantification of the
frequency of spontaneous induction but also enabled to measure the fraction of cells
(18.6 %) that recovered from this stress. In the course of SOS induction, affected cells
have likely suffered from an increased mutation rate, e.g. due to the action of error-
prone polymerases. Consequently, recovering cells likely have considerable impact on
the overall mutation rate of the population; thereby also affecting its adaptability and
potential to evolve [210]. A recovery of about 18.6 % is in a similar range as previous
measurement of E. coli SOS+ cells, where about 35 % of the cells isolated via FACS
formed colonies on plates [196]. The authors concluded from negative propidium iodide
(PI) staining that the rest of the SOS+ cells remained in a senescence-like, dormant
state. However, previous studies ignored another factor impacted by a spontaneous
induction of the SOS response, namely the activation of lambdoid prophages, mobile
elements or cryptic (degenerated) prophages. In contrast to SOS, their induction often
leads to a “dead end”.

In this work, we could show that under the chosen assay conditions more than 8 %
of the SOS+ cells also induced the cryptic prophage CGP3 (Figure 12.4). In all cases,
the signal of the SOS reporter preceded the signal of the phage reporter supporting
the causal connection between the SOS induction and prophage induction. Due to
the limited observation time, this value, however, rather represents a lower bound for
SOS-induced CGP3 induction.

Remarkably, this study could also demonstrate a considerable high fraction of SOS-
independent CGP3 induction (>30 %). This is in line with the finding that a ∆recA mu-
tant still exhibits CGP3 induction in 0.12 % of the cells. Alternative (RecA-independent)
pathways for the induction of lambdoid prophages have been described in a few studies
and include for instance the induction of Pseudomonas aeruginosa prophages by the
accumulation of acyl-homoserine lactones (AHL) as a density-dependent mechanism
[211] or the RcsA- or DsrA-mediated induction described for E. coli [212]. The iden-
tification of SOS-independent induction mechanisms of CGP3 will be target of future
studies.

DNA replication has been previously reported as an important source for the occur-
rence of sporadic DNA damage, e.g. replication fork collapses [200]. Recent single-cell
studies also have addressed the question whether spontaneous SOS induction is triggered
by a generation- or time-dependent mechanism [196, 197]. Those studies suggested
that spontaneous DNA breakage is precisely correlated with the number of cell divisions
[197]. In contrast, the starvation experiment conducted in this study clearly revealed
continued SOS induction in the starvation phase (cf. Figure 12.5). Given that colony
area and cell number stayed constant for about 10 hours these data suggest that also
time-dependent mechanisms feed into the spontaneous induction of the SOS response.
In fact, it is possible that, for instance, oxidative stress or changes in iron availability
may cause spontaneous DNA damage in resting cells [213]. In contrast, CGP3 induction
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occurred only in proliferating cells which is in agreement with the finding of Pearl
et al. who reported that persistent cells, existing in a dormant state, are protected
from prophage induction [201]. In fact, persistence might represent an important
mechanism of bacterial populations and communities to avoid complete eradication
upon prophage induction under certain stressful conditions.

In all cases, SOS-dependent and SOS-independent, induction of the cryptic prophage
CGP3 led to a stop of growth and likely cell death. However, lysis of the affected cells
was only observed for a few examples, which could, however, also be an artifact of the
experimental approach since secreted hydrolytic phage enzymes might be removed by
the continuous medium flow applied during microfluidic cultivation. During microscopy
on agar pads, CGP3 induction frequently coincided with the lysis of the particular
cell [198]. If CGP3 induction, or, more generally, the induction of several (cryptic)
prophages, leads to cell death, why does this degenerated viral DNA remain in bacterial
genomes in the course of evolution? Which selection pressure enforces the maintenance
of degenerated prophage elements? Interestingly, several recent studies highlighted the
beneficial effects prophages may have on the fitness of their bacterial host (reviewed in
[187, 214]. Cryptic E. coli phages were reported to contribute significantly to the overall
fitness and stress resistance of populations [184, 215]. Sacrificing a small fraction of
cells by SPI is exploited by several bacterial strains for the development of biofilms [188,
189, 215–217], the release of toxins [190], or host microbe interactions [191, 218].

In conclusion, SPI represents a common but often unnoted phenomenon of lysogenic
bacterial populations. This study provided a first insight into SPI at spatio-temporal
resolution. Whereas our data confirmed the spontaneous induction of the SOS response
as a prominent trigger evidence was provided for further RecA-independent factors
contributing to SPI in bacterial populations. Future studies will reveal how host-phage
interaction has shaped the diversity of trigger inputs to adjust SPI to an optimal level
depending on the particular environmental and physiological conditions of the host.

12.3 Population Modeling

We have presented a model that cellular state and transition model with SOS–/SOS+,
Phage–/Phage+, and Offspring–/Offspring+ states (cf. Figure 12.2). This model consid-
ers individual cells and connected states as entities. While this is useful for extracting
and modeling information on single-cell level, it does not take into account effects that
might occur on population level. A prominent example for population effects is the
emergence of persister cells (resistance to antibiotics) [219, 220] as well as bet hedging
strategies [221]. Such bet-hedging strategies offer a species an evolutionary advantage
in fluctuating and unpredictable environments to which the species has to adapt.

It is a longstanding question how such population behavior is implemented and how it
evolves. Is it the behavior of individual cells that leads to a consistent and interpretable
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population behavior? To investigate the reason, we have adapted the cellular state and
transition model shown in Figure 12.2 to a stochastic population model. This model is
initialized with a number of cells in SOS–/Phage– state that change states (via possible
transitions) over time. We have modeled the Offspring–/Offspring+ states implicitly by
allowing cells from Phage– states to generate offspring of the same state. The offspring
will be subject to the same transitions as other cells.

The model has subsequently been implemented in StockKit2 [222]. The complete
set of equations is provided in Table E.1. The results of an exemplary simulation of the
implemented model is shown in Figure 12.6. In this simulation, we have simulated
an external stress that effectively increases the parameter for state changes to SOS+

states while the stress is applied. The duration of the stress signal is increased during
an experiment to see the influence on the complete population. Once the simulated
stress pulse has vanished, the population recovers, if cells in an Phage– state have
survived. The observation seems reasonable since cells are able to recover from SOS+

states. Nonetheless, there is a high dependency between the outcome of the simulation
and the parameters for state transitions. In this particular case, the transitions from
SOS+/Phage– to SOS–/Phage– and SOS+/Phage+ have the same initial state. Hence,
the ratio between the transition probabilities to the destination states influences the
outcome of the population simulation.
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Figure 12.6: Simulation of the population model with three perturbations of different length
(increasing). The reaction of the population and the regeneration after each pulse can be
observed.
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12.4 Approaching Molecular Modeling of SOS and
Phage Dynamics

While the previously presented models are purely based on observations from SCA, the
interesting question of how the observed patterns are generated on a molecular level
remains unanswered. A fact that is hampering investigations, is the general lack of
knowledge about molecular mechanisms in C. glutamicum. Reports on the structure of
the bacterial SOS network have identified key genes and proteins, however, mostly in
the model organism E. coli [223–225]. It was reported that also in C. glutamicum the
gene regulatory network of the SOS response has a complex structure involving the
LexA and RecA proteins [226]. Genes under control of LexA code for proteins with a
variety of physiological functions, but for nearly half of them their function remains
unknown [227].

Tomodel the connection between the SOS response in C. glutamicum and the prophage
CGP3, we have adapted the phage λ and an SOS response model from E. coli [228] to
C. glutamicum. The two systems, i.e., SOS and prophage induction, are connected via a
yet to be identified key protein or regulatory pathway, denoted as X in Figure 12.7.

While key players of the SOS response have been extracted from literature, crucial
genes and proteins for the prophage induction have been experimentally identified using
transcriptome analysis of stressed C. glutamicum populations. Because the SOS response
triggers prophage induction in C. glutamicum, prophage regions are actively transcribed
in stressed cells [46]. The most robustly expressed genes have been selected as reporters
for prophage induction and are, hence, also essential parts of the constructed molecular
model. Results of the transcriptome analysis are shown in Figure 12.8.

12.4.1 Realization of the Model

Complex regulatory processes are involved in the coupling of the SOS response with
the CGP3 induction in a single model. This is mostly owing to the fact that key proteins,
e.g., LexA, are acting as transcriptional regulators for other genes, e.g., recA. Therefore,
the model has to incorporate the complete process from transcription, translation,
to regulation, for each involved player. Since SOS response as well as the prophage
induction are dynamic (and stochastic) process at low molecule concentrations in a
cell, processes have to be modeled in a stochastic framework. Biological knowledge
is incorporated into this framework via species (e.g., promoters, mRNA, proteins)
and reactions that are transforming species. In a stochastic framework, reactions
are not running at fixed rates but are executed with a given probability. This is of
utmost importance for systems that show undeterministic behavior because of low
concentrations of proteins (up to hundreds of molecules). Because we are looking at
a small number of promoters, stochastic effects might drive the transcription of key
regulators.
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Figure 12.7: Illustration of the regulatory processes and connections between the SOS response
and the prophage induction. LexA and RecA are well known components of the bacterial
SOS system. Int is a putative integrase that is responsible for the excision of the prophage (if
activated). eYFP and Crimson are used as fluorescence reporters for the SOS response and
the phage induction, respectively. X denotes the yet to be determined connector between the
two systems.
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A

B

Figure 12.8: Identification of phage promoters. Time-resolved transcriptome analysis of stressed
C. glutamicum cells upon treatment with antibiotics (Mitomycin C). A. Fold increase of
transcription before and after treatment with Mytomycin C. The zoom window denotes the
prophage CGP3 region. B. Fold increase of transcription in the CGP3 region at 1 h, 3 h and
6 h after induction (courtesy of Frunzke lab).

Since transcription, translation, and regulation reactions are similar for different
proteins, one example is picked and described in detail with matching equations.

Example: RecA

The creation of one protein (RecA, LexA, EYFP) comprises several steps:

Regulation: Free promoter is bound by a regulator

Transcription: DNA is transcribed to matching mRNA if a free promoter is available

Translation: mRNA is translated into protein

The transcription of recA is negatively regulated by the amount of LexA molecules in a
cell. The transcription is modeled as fr −−→ fr +mr, where fr denotes a free promoter
of recA and mr a recA mRNA molecule. This reaction does not directly incorporate the
regulation of the recA promoter (PrecA) by LexA molecules. However, the regulation is
achieved by transiently converting free promoters fr to the bound state br by means of
a LexA molecule: l + fr −−→ br. Promoters in a bound state cannot generate mRNA
molecules. The complex of LexA and a promoter is of transient nature and LexA can
dissociate to free the promoter (bl −−→ fl + l). Furthermore, mRNA molecules undergo
degradation: mr −−→ Ø.
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In a second step, mRNA is translated into protein: mr −−→ mr + r. Additionally,
RecA marks LexA for cleavage (r+ l −−→ r), effectively removing LexA molecules from
the system.

While the previous description of RecA acts as an example, this scheme can be directly
translated to the other promoters, mRNAs, and proteins of the model. The complete set
of reactions and parameters used for the simulation studies are provided in Table E.2
in Section E.5. All in all, the model contains about 40 parameters for reactions and the
initial molecule numbers as additional inputs. Initial values as well as parameter values
for the SOS network have been adapted from [224].

Simulations with the proposed model (Figure 12.9) reveal that the regulation scheme
is able to model the recovery of a cell from external stress with the phage integrase re-
maining active. All in all, the proposedmodel captures the characteristics of experiments
with a set of adapted parameter values.

The parameter values that are underlying the model, have either been extracted from
literature or are based on educated guesses. Additionally, the model simplifies complex
biological processes into single reactions (e.g., translation) to which a single parameter
is assigned. Therefore, most of the parameters of the model cannot be biologically
interpreted and can hence not be determined experimentally. An alternative to the
direct measurement of parameters are forward simulations that are fitted to single-cell
data from microfluidics using eYFP and Crimson signals. The use of forward simulations
of stochastic models for parameter estimations is a current topic of research where too
little knowledge is yet available for complex applications [229].
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Figure 12.9: Stochastic simulations of the presented gene regulation model. Overall simulation
time about 72,000 s. An antibiotics pulse was simulated from 500 s to 2000 s. Afterwards, the
system returns to the initial state. Plot shows the mean values for 50 stochastic simulation of
the described system.
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13 Summary

Microfluidics-based live-cell imaging shows a great potential for investigating bacterial
processes on a per cell basis. The full potential, however, can only be harnessed
when using image analysis approaches for the extraction of time-resolved, quantitative
information from image sequences.

We have described the challenges that are imposed by the experimental setup for
an image analysis pipeline in the introduction of Part II. Driven by these challenges,
a customized image analysis pipeline for the investigation of C. glutamicum in LOC
devices has been developed and implemented as a ready-to-use software package (cf.
Chapter 6) that is applied by experimentalists. Advanced visualization techniques are
required to make the plethora of data easily accessible. To facilitate investigations on
single-cell data we have developed the visualization and analysis software Vizardous
(cf. Chapter 8).

Several applications have shown the quality of data that is extracted from acquired
image sequences. The investigation of cellular heterogeneity in populations of C.
glutamicum is enabled by the combination of methods from different fields (engineering,
biology, computer science). Especially, investigations of microbial growth with respect
to nutrients and medium composition is of great interest for bioprocess optimization.
We have shown, that the implemented image analysis pipeline has been used for the
characterization of microfluidic platforms (Chapter 9). Furthermore, LOC devices are
used for screening purposes in the context of cultivation optimization when combined
with advanced imaging and image analysis techniques (Chapter 11).

In addition to questions of microbial growth, the heterogeneity in the activation of
the prophage CGP3 in prominent C. glutamicum strains has been investigated in depth
(cf. Chapter 12). Experimental results did not yield further insights into the molecular
underpinnings of the trigger. We were, however, able to show that the induction of
CGP3 might be a strategy to kill cells that have experienced DNA damage. This could be
seen as a means to remove those cells from a population although they might recover
from the damage.
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Section 12.4 has presented first principles of a gene regulatory network that combines
the microbial SOS response with the induction of the prophage CGP3. Pushing the
modeling of the molecular regulation of the CGP3 induction further requires further
data from transcriptome and protein interaction analysis to identify further players in
the activation process and set up hypotheses. In addition to refining the topology of
the gene regulatory network, model parameter have to be determined experimentally
or with computational means (parameter estimations for gene regulatory networks).

The applications of the presented image analysis pipeline that have been described in
this work (cf. Part III) are only an excerpt of the whole range of possible studies. The
pipeline, including Vizardous, has been used in a multitude of studies by researchers
from different [26, 46, 140, 141]. The JuNGLE suite for image analysis in conjunction
with Vizardous has been established as the prevalent solution for SCA of rod-shaped
bacteria at IBG-1.



14 Outlook

The presented image analysis pipeline is used for the extraction of time-resolved,
quantitative data, therewith contributing to or enabling different applications. Still there
is room for improving different modules by incorporating additional knowledge that is
available but also continuously generated in experiments. Moreover, a sophisticated
way of storing information and making them more accessible is desired. This chapter
will highlight several projects that are worth further investigation.

14.1 Beads for Comparable Fluorescence Intensities

To show biological reproducibility, biological experiments are in most cases executed
in at least triplicates. This approach is furthermore used to effectively detect outliers
in experiments. This line of action, however, proves to be a challenge for experiments
on microfluidic chips. First of all, chips are manufactured manually and, hence, show
production variability. As second challenge are minor deviations in experimental
procedures between experimentalists. However, the biggest technical challenge is
fluorescence microscopy with respect to comparability. Time-resolved fluorescence
intensity signals heavily depend on the configuration (i.e., exposure time, used light
source) and adjustment of the microscope. Hence, a method for the quantitative
comparison of experiments that have been not been executed in parallel (with same
settings on the same microscope) is desirable.

To that end, a normalization element has to be added to experiments which shows
constant fluorescence signals between experiments. One way to tackle that challenge is
the introduction of fluorescent (polystyrene) beads into the system. Using the signal of
beads, that by manufacturing have the same amount of fluorescent protein enclosed, will
result in normalized fluorescence intensities for the biological specimen. This, however,
requires a tightly controlled manufacturing process and a thorough characterization of
the beads.

A first approach would be to introduce the beads and image them before the seeding
phase has even been initiated. Later on, all extracted fluorescence values are normalized
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to the mean value of selected beads. The goal is to generate a reference frame for
relative fluorescence intensities instead of absolute ones that are generally regarded as
less robust.

The presented image analysis pipeline can be used to detect beads in an image and
track them over time. While this adds additional computational burden, it enables the
adaptation to changes in the experimental setup after the experiment has already been
executed. Nonetheless, establishing an normalization step as a postprocessing measure
is only the first step. Using the generalized data structures of imglib2 and ImageJ2 it is
possible to implement normalized intensity images in such a way, that implementations
working with images do not have to be adapted. Only the intensities that are returned
would be normalized on the fly. To achieve this objective, a normalization matrix
could be extracted automatically and imported for a dataset that should be normalized
according to this matrix.

14.2 Improve Detection of Regions of Interest

The presented approach for the detection of regions of interest (see Section 6.4) operates
on complete images. Although the LOCs are designed in-house and schematics are
readily available, this additional information is currently not integrated. Additionally,
the chip designs feature a cross-like structure that has more prominent features than
the MGC as shown in Figure 14.1. These cross-like structures cannot be overgrown by
the bacterial population during a cultivation and are, hence, detectable throughout an
experiment. Once, this cross has been detected, it is easy to find the matching region
of interest for an alignment cross based on the MGC design.

Figure 14.1: Alignment cross on LOC device located between two MGCs.

Additionally, this alignment cross can be used for tackling the registrations problem.
As described in Section 3.1, the registration procedure operates in a hierarchical way
on the complete image. Due to the runtime of O(n2), quartering the size of the images
to be registered will decrease the computational demand of the computations by a
factor of 16 for each image of a sequence. This reduction could be facilitated because
the alignment cross’ registration parameters can be applied to the complete image.
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14.3 Incorporating Additional Knowledge into the
Tracking Process

Also, there is room for improving different modules by incorporating additional knowl-
edge that is continuously generated in experiments. Especially the tracking module
could benefit from the integration of additional knowledge. This knowledge is available
in different forms like integrating the approximate duration of one cell cycle to render
splits at the end of a cell’s lifetime more likely than otherwise.

Another improvement that is worth exploring in future is the integration of population
information for tracking individual cells. While this may seem counterintuitive, the
assumption that cells are moving independent of each other in a population does not
hold for our experimental setup. In the MGCs, a population of cells inhabits a very
restricted volume. Hence, the per cell increase in volume will translate (since the height
is restricted) into a spatial movement. Therefore, tracking results can be significantly
improved by taking into account the population structure and an extrapolated growth
direction in dependence of the position of cell in the population.

Approaches that integrate a priori knowledge have been investigated by Axel Theorell.
He has worked on a Bayesian approach for reconstructing lineage trees from time-
lapse image sequences. In the so-called multiple hypothesis tracking (MHT) approach
[230, 231], possible reconstructions (qk) are constructed in a framework based on
Bayes’ theorem. Here, a distribution of possible reconstructions is computed from
observed cells denoted as Zk. In an iterative procedure, reconstructions for a frame k
are generated from lineage trees up to the previous frame k − 1:

p(qk|Zk−1, qk−1) = p(Ψk|Zk−1, qk−1)p(qk|Zk−1, qk−1,Ψk) (14.1)

This approach allows first for the quantification of uncertainty in lineage tree recon-
structions and, second, for the integration of additional knowledge in form of a priori
probability densities.

14.4 Centralized Computation

The focus of the implemented image analysis workflowwas on usability and applicability.
Nonetheless, a future goal is to further robustify and improve the automatic execution
of modules that currently require user interaction. It is in practice possible to run
Fiji with the JuNGLE plugin on a terminal server that currently has to provide a user
interface for interaction with JuNGLE. In contrast to an interactive mode that requires
user interaction, most modules of the image analysis pipeline can be initialized and
then executed in a batch mode.

The already established OMERO server (cf. Section 2.4) can for instance act as a
central node for the distribution of computation task. The idea is, to have users upload
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their experimental data into OMERO and assign it a processing template with defined
parameters. The processing template will be executed in a headless mode, and the
extracted information is again stored in OMERO. After a computation job is finished,
the user is informed via e-mail and is able download or view the resulting data in an
OMERO client.

First functionality is already in place to support this long-term goal, namely the
imagej-omero [232] project that lets users execute ImageJ plugins (more specifically:
wrappers for ImageJ operations) on an OMERO server. The surrounding infrastructure,
i.e., distributing task, storing results in OMERO, and notifying users, has yet to be
established.

In future, this distributed analysis structure can potentially improve data analysis
and modeling tasks by evaluating more experiments.
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A Image Analysis

1 2

3 4

Figure A.1: Postprocessing of the Shape Index Map. 1. Input image of a C. glutamicum popu-
lation, I. 2. SIM of the input image, denoted Isim. 3. Thresholded SIM, Ithresholded_sim. 4.
Median filter version of Ithresholded_sim, denoted Icleaned_sim.
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1 2

3 4

Figure A.2: Processing of images for carving out the microbial population. 1. Input image I
of a C. glutamicum population. 2. Locally thresholded version Ilocal of I. 3. Several erosion
operations applied to Ilocal for removing speckles, denoted as Ieroded. 4. Several dilation
operations applied to 3, resulting in Imask.

A.1 JuNGLE Features

• MasterPlugin for user interaction (i.e., configuration of pipeline parameters) and
control of the overall image analysis pipeline (Section 6.2)

• PreprocessorPlugin registers image sequences and detects growth sites in images
(Section 6.2)

• SegmentationPlugin detects cells in images and generates and an overlay of ROIs
(Section 6.2)

• Filters allow for the filtering of detected cells for further processing (Section 4.5)

• BottleneckDetector separates touching cells based on knowledge about cell mor-
phology (more information in Section 4.5)
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• SnakesPlugin implements a post-processing procedure for cell detection where
SegmentationPlugin and BottleneckDetector have failed (Subsection 4.7.1)

• OverlayDetector converts ROIs to TrackMate data structures

• JuNGLE Displayer displays TrackMate data structures and allows for the correction
of segmentation results after the conversion step with OverlayDetector

A.1.1 Tools / Macros

• Splitting Tool

– Easy selection of cells (i.e., ROIs) for processing

– Splitting cells with virtual split line for preview of result

– Merge cells together

• Generate Results Table Tool gathers per-frame information of microbial populations

– cell number

– cumulative cell area

– cell area mean

– cell area standard deviation

– fluorescence intensity mean

– fluorescence intensity standard deviation

• Generate Traces Tool for bead characterization

– Takes ROIs in the first frame and computes fluorescence intensity traces for
the whole image sequence

– Output as Results Table that can conveniently be exported to CSV and XLS(X)

• Add ROI to Overlay Tool takes a ROI (which has been created with the built-in
ImageJ selection tools) and adds it as cell to the cell detection overlay of an image





B Visualization

B.1 Vizardous Features

• Import trees from standard formats (PhyloXML)

– from file system

– from external source (OMERO)

• Visualize single experiments in lineage tree

• Visualize multiple experiments in lineage trees

• Annotate tree entities with extended information

• Analysis

– of single-cell data

– of all cells in an individual frames

– of complete populations

• Visual comparison of cells from a single tree

• Visual comparison of multiple trees

• Filter tree elements according to structural information

• Filter tree elements according to meta information

• Sort trees according to meta/structural information

• Export trees

– to vector graphics

– to bitmap
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• Export charts

– to vector graphics

– to bitmap

• Export tabular data

B.2 Libraries

Vizardous uses available (open source) libraries wherever appropriate. We have com-
piled a list of the external libraries that are used for building Vizardous in Table B.1.

B.3 MetaXML Description

This section provides a detailed overview of the information contained in a MetaXML
file. An example file is provided in Listing B.1 for reference.

Listing B.1: Exemplary MetaXML file with a single cell in a one frame sequence.
<?xml version="1.0" encoding="UTF−8"?>
<metaInformation xmlns="http://13cflux.net/static/schemas/metaXML/2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xsi:schemaLocation="http://13cflux.net/static/schemas/metaXML/2 metaXML−2.6.0.xsd">

<projectName>default</projectName>
<experimentDuration unit="min">512</experimentDuration>
<frame id="0">
<elapsedTime unit="min">0</elapsedTime>
<population id="0">
<center>
<x unit="um">16.38</x>
<y unit="um">29.53</y>

</center>
</population>
<cell id="0">
<center>
<x unit="um">16.38</x>
<y unit="um">29.53</y>

</center>
<length unit="um">2.52</length>
<area unit="um^2">2.11</area>
<fluorescences>
<fluorescence channel="yfp">
<mean unit="au">113.30</mean>
<stddev unit="au">0.0144</stddev>

</fluorescence>
<fluorescence channel="crimson">
<mean unit="au">106.95</mean>
<stddev unit="au">0.0084</stddev>

</fluorescence>
</fluorescences>

</cell>
</frame>

</metaInformation>
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Both elements <projectName> as well as <experimentDuration> describe the gen-
eral experiment. The <metaInformation> tag furthermore contains as many <frame>
elements as there are in the image sequence from which the file pair is generated. Each
<frame> is uniquely identifiable and can be connected to an image file as well as a
time-point in the experiment (<elapsedTime>).

One frame contains information about the background fluorescence in this frame
(which could be used for normalization purposes in future versions), as well as about
the microbial population (<population>) that is present in this frame.

population: Population

id: String

center: Coordinate

x: Double

y: Double

z: Double

1

roi: String

Legend
Attribute

Element

Optional

Figure B.1: Overview of the contents of the <population> tag.

Depending on the definition of the population, different characteristics are of interest.
The information of a population mostly concerns the spatial (and via the connection to
a specific frame also temporal) location of the <center> point.

The <cell> element is, however, the most important part of the MetaXML definition
because it describes the extracted characteristics of cells. Figure 8.2 provides a visual
overview of the characteristics defined in MetaXML. Further information about the
structure of the <cell> and <population> tag are provided in Figure B.2 and Figure B.1,
respectively.
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cell: Cell

id: String

length: Double

area: Double

fluorescences

fluorescence: Fluorescence

channel: String

mean: Double

stddev: Double

center: Coordinate

x: Double

y: Double

roi: String

Legend
Attribute

Element

Optional

z: Double

1

*

Figure B.2: Overview of the contents of the <cell> tag.





C Growth Quantification

C.1 Microfluidic Device Cultivation

An in-house developed microfluidic platform was used for C. glutamicum single-cell
analysis [2, 59]. The microfluidic device incorporates a few hundred cultivation cham-
bers with dimensions to ensure monolayer growth of isogenic microcolonies, with up
to a few hundred cells maximum each. Phase contrast and fluorescence time-lapse
imaging was performed at 15 min intervals.

Medium was supplied continuously to ensure stable and constant environmental
conditions. Minimal medium (CGXII [166]) charged with different carbon sources (cf.
Table C.1) was infused at a rate of 300 nL/min with a high-precision syringe pump
(neMESYS, Cetoni GmbH, Korbussen, Germany). The concentrations were adjusted
to achieve equal molar concentration of carbon in each medium. PCA (0.2 mm) was
used as chelating agent. A constant cultivation temperature of 30 ◦C was ensured by
an incubation chamber (PeCon GmbH, Erbach, Germany).

The microfluidic chip was mounted on a fully motorized inverted epifluorescence
microscope (TI-Eclipse, Nikon GmbH, Düsseldorf, Germany) for time lapse imaging
whichwas equippedwith, the Nikon Perfect Focus System for thermal drift compensation,
a Nikon Plan Apo 100 Ph3 DM Oil objective, the Nikon fluorescence excitation light

Table C.1: Carbon sources of MSCC experiments

Carbon source Concentration
Glucose 27 mm D-glucose
Gluconate 27 mm D-gluconate
Fructose 27 mm D-fructose
Acetate 80 mm acetate
Pyruvate 53 mm pyruvate
Citrate 27 mm citrate + CaCl2 (5 mm)
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source (Intensilight), digital camera (Clara DR-3041, Andor Technology Plc., Belfast,
United Kingdom) and LED light source (pE-100 white, CoolLed Ltd., Andover, UK).

C.2 Quantification Methods

Table C.2: Growth rates computed using different quantification methods for different datasets.

DatasetID µnumber (95%) µarea (95%) µdiv
16/2 0.804 (0.798, 0.810) 0.745 (0.743, 0.748) 0.798
03/1 0.809 (0.798, 0.821) 0.770 (0.766, 0.773) 0.811
33/2 0.822 (0.811, 0.832) 0.745 (0.742, 0.747) 0.788
35/1 0.816 (0.809, 0.823) 0.762 (0.758, 0.765) 0.806
39/2 0.821 (0.812, 0.831) 0.750 (0.746, 0.753) 0.813
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Figure C.1: Comparison between an exponential fit to the cumulative cell area of a population
and the cell number of the same population (DatasetID 16/2). The blue line denotes mea-
surement data, while the green line is the fit evaluated at the same positions as measurement
data. The inlays show the fitted function with the optimal parameters and the R2 value of the
fit. The lower row shows residual plots for both quantification methods. The blue line denotes
the exponential fit, the green line shows the deviation from experimental data in percent.
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Figure C.2: Comparison between an exponential fit to the cumulative cell area of a population
and the cell number of the same population (DatasetID 03/1). The blue line denotes mea-
surement data, while the green line is the fit evaluated at the same positions as measurement
data. The inlays show the fitted function with the optimal parameters and the R2 value of the
fit. The lower row shows residual plots for both quantification methods. The blue line denotes
the exponential fit, the green line shows the deviation from experimental data in percent.
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Figure C.3: Comparison between an exponential fit to the cumulative cell area of a population
and the cell number of the same population (DatasetID 33/2). The blue line denotes mea-
surement data, while the green line is the fit evaluated at the same positions as measurement
data. The inlays show the fitted function with the optimal parameters and the R2 value of the
fit. The lower row shows residual plots for both quantification methods. The blue line denotes
the exponential fit, the green line shows the deviation from experimental data in percent.
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Figure C.4: Comparison between an exponential fit to the cumulative cell area of a population
and the cell number of the same population (DatasetID 39/2). The blue line denotes mea-
surement data, while the green line is the fit evaluated at the same positions as measurement
data. The inlays show the fitted function with the optimal parameters and the R2 value of the
fit. The lower row shows residual plots for both quantification methods. The blue line denotes
the exponential fit, the green line shows the deviation from experimental data in percent.





D Growth Parameter Correlations
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Figure D.1: Connection between single-cell growth and cell morphology in a correlation plot
for phenotypic features based on cultivations with acetate. The values in the lower half of
the matrix denote the Pearson correlation coefficient. Histograms for each characteristic
are shown on the diagonal. The upper block of the matrix shows scatter plots of pairs of
characteristics with a regression line and the 95% confidence band of a linear model.
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Figure D.2: Connection between single-cell growth and cell morphology in a correlation plot
for phenotypic features based on cultivations with citrate. The values in the lower half of
the matrix denote the Pearson correlation coefficient. Histograms for each characteristic
are shown on the diagonal. The upper block of the matrix shows scatter plots of pairs of
characteristics with a regression line and the 95% confidence band of a linear model.
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Figure D.3: Connection between single-cell growth and cell morphology in a correlation plot
for phenotypic features based on cultivations with fructose. The values in the lower half
of the matrix denote the Pearson correlation coefficient. Histograms for each characteristic
are shown on the diagonal. The upper block of the matrix shows scatter plots of pairs of
characteristics with a regression line and the 95% confidence band of a linear model.
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Figure D.4: Connection between single-cell growth and cell morphology in a correlation plot
for phenotypic features based on cultivations with gluconate. The values in the lower half
of the matrix denote the Pearson correlation coefficient. Histograms for each characteristic
are shown on the diagonal. The upper block of the matrix shows scatter plots of pairs of
characteristics with a regression line and the 95% confidence band of a linear model.
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Figure D.5: Connection between single-cell growth and cell morphology in a correlation plot
for phenotypic features based on cultivations with glucose. The values in the lower half of
the matrix denote the Pearson correlation coefficient. Histograms for each characteristic
are shown on the diagonal. The upper block of the matrix shows scatter plots of pairs of
characteristics with a regression line and the 95% confidence band of a linear model.
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Figure D.6: Connection between single-cell growth and cell morphology in a correlation plot
for phenotypic features based on cultivations with PCA only. The values in the lower half
of the matrix denote the Pearson correlation coefficient. Histograms for each characteristic
are shown on the diagonal. The upper block of the matrix shows scatter plots of pairs of
characteristics with a regression line and the 95% confidence band of a linear model.



180 APPENDIX D. GROWTH PARAMETER CORRELATIONS

Figure D.7: Connection between single-cell growth and cell morphology in a correlation plot
for phenotypic features based on cultivations with pyruvate. The values in the lower half
of the matrix denote the Pearson correlation coefficient. Histograms for each characteristic
are shown on the diagonal. The upper block of the matrix shows scatter plots of pairs of
characteristics with a regression line and the 95% confidence band of a linear model.



E SOS/Phage Modeling

E.1 Experimental Procedures

E.1.1 Bacterial Strains and Growth Conditions

E. coli cells of the strain DH5αwere cultivated in LB (Lysogeni Broth) medium or on agar
plates at 37 ◦C. For growth studies and fluorescence based assays with C. glutamicum
(e.g., preparation of cells for flow cytometry) cells were first cultivated in BHI (brain
heart infusion, DifcoTM BHI, BD, Heidelberg, Germany) media at 30 ◦C and were then
used to inoculate a main culture in CGXII [166] with 2 % glucose. When necessary,
50µgmL−1 (E. coli) or 25µgmL−1 (C. glutamicum) kanamycin was added.

E.1.2 Cloning Techniques

Standard methods for example PCR or DNA restriction were performed according
to established protocols [233]. Gibson assembly was used for plasmid construction
[234]. DNA sequencing and oligonucleotides synthesis were conducted by Eurofins
MWG Operon (Ebersberg, Germany). Plasmids and oligonucleotides used in this study
are listed in Tables 1 and 2, respectively. The chromosomal integration of the SOS
reporter (PrecA-venus) was performed using the two-step homologues recombination
method [235]. Correct integration into the intergenic region of cg1121 and cg1122
was verified by colony PCR with the oligonucleotides Cg1121-Int-fw and Cg1122-
Int-rv. Construction of the recA mutant of was performed analogously to the genomic
integration by homologues recombination [235]. Correct deletion of the ATPase domain
of recA was verified by colony PCR using the oligonucleotides D_recA_5 and D_recA_6.

E.1.3 Flow Cytometry

Flow cytometry analysis and cell sorting experiments were performed with a FAC-
SAria II flow cytometer (BD, Heidelberg, Germany). A blue solid state laser with an
excitation wavelength of 488 nm (to excite Venus) and a red gas laser for excitation
at a wavelength of 633 nm (to excite E2-Crimson) were used. Cytometer set-up and
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performance tracking was conducted with tracking beads labeled with a mixture of
fluorochromes (BD, Heidelberg, Germany). Forward-scatter characteristics (FSC) and
side-scatter characteristics (SSC) were detected as small and large angle scatters of the
488-nm laser. Fluorescence emitted by Venus was detected using a 502-nm long-pass
and a 530/30-nm band pass filter set. E2-Crimson fluorescence was detected using a
660/20-nm band pass filter set. Analyses of cells were performed at a threshold rate
of 2,000 to 5,000 events/s. Data were analyzed using FlowJo V10 (Tree Star, Inc.,
Ashland, OR).

E.1.4 Microfluidic Device Cultivation

An in-house developed microfluidic platform was used for C. glutamicum single-cell
analysis [2, 59]. The microfluidic device incorporates a few hundred cultivation cham-
bers with dimensions to ensure monolayer growth of isogenic microcolonies, with up
to a few hundred cells maximum each. Phase contrast and fluorescence time-lapse
imaging was performed at 8 min intervals.

Medium was supplied continuously to ensure stable and constant environmental con-
ditions. Minimal medium (CGXII + 4 % glucose) with addition of 25µg/mL kanamycin
was infused at a rate of 300 nL/min with a high-precision syringe pump (neMESYS,
Cetoni GmbH, Korbussen, Germany). For initiation of the starvation phase the medium
was switched to minimal medium lacking glucose and protocatechuate (- carbon source)
after an initial growth phase of 8 h. Cells were exposed to carbon limitation for ≈ 24 h.
Then growth on standard CGXII minimal medium (+ carbon source) was resumed.
A constant cultivation temperature of 30 ◦C was ensured by an incubation chamber
(PeCon GmbH, Erbach, Germany).

The microfluidic chip was mounted on a fully motorized inverted epifluorescence mi-
croscope (TI-Eclipse, Nikon GmbH, Düsseldorf, Germany) for time lapse imaging which
was equipped with, the Nikon Perfect Focus System for thermal drift compensation, a
Nikon Plan Apo 100 Ph3 DMOil objective, the Nikon fluorescence excitation light source
(Intensilight), digital cameras (Clara DR-3041 and Neo sCMOS, Andor Technology Plc.,
Belfast, United Kingdom) and LED light source (pE-100 white, CoolLed Ltd., Andover,
UK). Optical filter blocks were installed for Venus fluorescence (EX 520/30 nm, DM
510 nm, EM 540/20 nm) and E2-Crimson fluorescence (EX 600/37 nm, DM 630 nm,
EM 675/67 nm; AHF Analysentechnik AG, Tübingen, Germany).

E.1.5 Image Analysis and Data Visualization

Time-lapse movies of monolayer growth chambers were analyzed using a custom,
specialized workflow implemented as an ImageJ/Fiji plugin [125]. Cell identification
was performed using a segmentation procedure tailored to detect individual rod-shaped
cells in crowded populations using an advanced Watershed-type approach. Detected
cells are subsequently tracked throughout image sequences using the single particle
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tracking approach [115] as implemented in TrackMate [122]. The image analysis
allows the extraction of measurable quantities of individual cells, i.e. mean fluorescence
intensities, cell area, as well as derived quantities (i.e., growth rate). Mother machine
image analysis was performed using custom software tuned for fast extraction of cell
information from 1D growth channels [236]. All data sets were subsequently processed
using the analysis and visualization software Vizardous [129].

E.2 Trigger of Phage Induction

History and future of SOS+ cells. Here, we performed an analysis of the recorded
lineage data in order to compare the growth of SOS-induced with uninduced cells
even before the induction event. Do cells which will suffer from SOS induction in the
future show an altered growth already before the induction of the stress response? For
example, are fast growing cells even more prone to spontaneous SOS? Or in contrast,
do we even see a reduction in growth rate since the cell is already suffering from e. g.
oxidative stress?

A B

SOS Response

Before After

Figure E.1: A. Schematic lineage tree illustrating the dissection of single traces in a “before”
and “after” state upon SOS induction. B. Distribution of the growth rate of cells “before” and
“after” SOS induction. These values are compared to cells which did not exhibit SOS induction
(gray bars) throughout the experiment. Growth rates µ were computed as µ = ln(2)

tgen
. For

complete generations, tgen is defined as the time between two cell divisions. For incomplete
generations, the end of the experiment is defined as cell division. Consequently, a growth
rate >0 h−1 is computed even for non-growing cells.
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Figure E.2: Cells were grown in microfluidic chip device in CGXII minimal medium with 2 %
glucose (for a detailed description, see material and methods). An average growth rate of
0.47 h−1 was observed.

E.3 Setting of Thresholds for Fluorescence Data
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Figure E.3: Biological as well as technical noise may result in small fluctuations of fluorescence
reporter outputs. Applying a single threshold would result in many false-positive state
transitions when the signal fluctuates around the threshold. To prevent such effects, an
UNDEFINED state around the selected threshold (T ) was established (between 95 % and
105 % of T ) in which the temporal context of a cell is taken into account to determine the
cells’ correct state: Cells that enter but leave the UNDEFINED state to an OFF state are not
counted as entering the ON state. A cell is assigned the ON state at the time point where the
fluorescence reporter intensity exceeds the upper threshold of the UNDEFINED state. The
same applies for cells entering the UNDEFINED state from the ON state and for the lower
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threshold of the UNDEFINED state.

Figure E.4: Appropriate thresholds for Venus (TSOS) and E2-Crimson (TPhage) intensities were
set, for both reporters separately, to approximately half the maximum value of observed
intensities. TSOS is more than 3 standard deviations above the mean of the SOS uninduced
population (Mean: 117.31 h−1, StdDev: 3.85 h−1). TPhage has been set empirically in a
way that cells that exceed the threshold do not generate offspring. Furthermore, we have
conducted a study about the influence of TSOS on transition probabilities.
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Figure E.5: Construction and verification of the reporter strain. A. The reporter strain used in
the following studies carries a genomically integrated SOS (PrecA-venus) and a plasmid-based
phage reporter (Plys-crimson) construct. B. The dual reporter strain shows a strongly increased
activity of both reporters after six hours cultivation in glucose minimal medium upon addition
of 600 nmol Mitomycin C (MMC) in comparison to the cells without MMC. C. Comparison
of the output of the SOS and phage reporter in wild type and ∆recA cells containing the
plasmid pJC1-PrecA-crimson, pJC1-Plys-crimson, or the empty vector control after six hours
cultivation in glucose minimal medium upon addition of different concentrations of MMC.
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A
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Figure E.6: Nutrient limitation case study. A. Images extracted from the experiment showing
a growing population with experimentally restricted growth between 8 h and 24 h. B. Excerpt
of the lineage tree from the nutrient limitation experiment. C. Time-resolved data for the
fluorescence reporter processed with Vizardous. The red rectangle denotes the nutrient
limitation phase. Regular growth phases with fast division patterns seen in the lineage tree
are characterized by low fluorescence intensities in the first 8 h in comparison to the starvation
phase. Apparently, fluorescent signals as well as their heterogeneity are increasing after this
time. Notably, these signals not decrease after nutrients are again available.
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E.4 Population Modeling

Description Reaction Parameter
SOS–Phage– to SOS+Phage– S0P0 −−→ S1P0 k1 = 0.0001
SOS+Phage– to SOS–Phage– S1P0 −−→ S0P0 k2 = 0.001
SOS+Phage– to SOS+Phage+ S1P0 −−→ S1P1 k3 = 0.002
SOS+Phage+ to SOS–Phage+ (inactive) S1P1 −−→ S0P1 k4 = 0.001
SOS–Phage– to SOS–Phage+ S0P0 −−→ S0P1 k5 = 0.00001
SOS–Phage– doubling S0P0 −−→ 2 · S0P0 k6 = 0.00045
SOS+Phage– doubling S1P0 −−→ 2 · S1P0 k7 = 0.0003
SOS+Phage+ removed S1P1 −−→ Ø k8 = 0.005
SOS–Phage+ removed S0P1 −−→ Ø k9 = 0.005

Table E.1: Reactions that describe the regulatory scheme of Figure 12.2 in a stochastic simulation
framework. Reactions follow the law of mass action and depend on the amount of reactants
and the associated parameters.
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E.5 Molecular Modeling of SOS and Phage Dynamics

Description Reaction Propensity
recA mRNA transcription fr −−→ fr +mr gmr · (1− br)
lexA mRNA transcription fl −−→ fl +ml gml · (1− bl)
RecA protein translation mr −−→ mr + r gr
LexA protein translation ml −−→ ml + l gl
recA mRNA degradation mr −−→ Ø dmr
lexA mRNA degradation ml −−→ Ø dml
RecA protein degradation r −−→ Ø dr
LexA protein degradation l −−→ Ø dl
LexA binding to recA promoter l + fr −−→ br cr · (1− br) · l
LexA binding to lexA promoter l + fl −−→ bl cl · (1− bl) · l
LexA binding to x promoter l + fx −−→ bx cx · (1− bx) · l
LexA dissociation from recA br −−→ fr + l ur
LexA dissociation from lexA bl −−→ fl + l ul
LexA dissociation from X bx −−→ fx + l ux
RecA marks LexA for cleavage r + l −−→ r cp
eyfp mRNA transcription fg −−→ fg +mg gmy · (n− by)
eYFP translation mg −−→ mg + g gy
eyfp mRNA degradation mg −−→ Ø dmy
LexA binding to eyfp promoter l + fg −−→ bg cy · (n− by) · l
LexA dissociation from eyfp promoter bg −−→ fg + l uy
eYFP degradation g −−→ Ø dy
X binding to int promoter x+ fi −−→ bi ci · (1− bi) · x
X dissociation from int promoter bi −−→ fi + x ui
int mRNA transcription fi −−→ fi +mi gmi · (1− fi)
Int protein translation mi −−→ mi + i gi
int mRNA degradation mi −−→ Ø dmi
Int protein degradation i −−→ Ø di
crimson mRNA transcription bc −−→ bc +mc gmc · (m− fc)
Crimson translation mc −−→ mc + c gc
crimson mRNA degradation mc −−→ Ø dmc
X binding to crimson promoter x+ fc −−→ bc cc · (m− bc) · x
X dissociation from crimson promoter bc −−→ fc + x uc
Crimson degradation c −−→ Ø dc
x mRNA transcription fx −−→ fx +mx gmx · (1− bx)
X translation mx −−→ mx + x gx
x mRNA degradation mx −−→ Ø dmx
X degradation x −−→ Ø dx

Table E.2: Reactions that describe the regulatory scheme of Figure 12.7. Each reaction is
furthermore coupled to a parameter that is defined in Table E.3. Initial values for reactants
(species) are provided in Table E.4.
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Parameter Value
gmr 0.05
gml 0.03
gr 0.04
gl 0.1
dmr 0.02
dml 0.003
dr 0.02
dl 0.002
cr 0.02
cl 0.01
ur 0.04
ul 0.01
cp 0.0001
gmy 0.15
gy 0.08
dmy 0.3
cy 0.05
uy 0.04
dy 0.00025
ci 0.05
ui 0.1
gmi 0.1
gi 0.02
dmi 0.05
di 0.0002
cc 0.2
uc 0.2
gmc 0.05
gc 0.2
dmc 0.2
dc 0.01
cx 0.05
ux 0.05
gmx 0.05
gx 0.2
dmx 0.02
dx 0.03

Table E.3: Parameters used for the simulations that are depicted in Figure 12.9.
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Description Variable Initial value
Free recA promoter fr 0
recA mRNA mr 0
Free lexA promoter fl 0
lexA mRNA ml 0
RecA r 1
LexA l 25
Bound recA promoter br 1
Bound lexA promoter bl 1
Free yfp promoter fy 0
yfp mRNA my 0
Bound yfp promoter by 1
YFP y 0
Free integrase promoter fi 1
Bound integrase promoter bi 0
integrase mRNA mi 0
Integrase i 0
Free crimson promoter fc 10
Bound crimson promoter bc 0
mRNA crimson mc 0
Crimson c 0
Free x promoter fx 0
Bound x promoter bx 1
x mRNA mx 0
X x 0

Table E.4: Initial values for reactants (species) of the reactions described in Table E.2.
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High-Throughput Live-Cell Imaging for Investigations of 
Cellular Heterogeneity in Corynebacterium glutamicum
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