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Abstract

This thesis attempts to shed light on the microscopic mechanisms underlying the
current-induced magnetic torques in ferromagnetic heterostructures. We have devel-
oped first principles methods aiming at the accurate and efficient calculation of the
so-called spin-orbit torques (SOTs) in magnetic thin films. The emphasis of this work
is on the impurity-driven extrinsic SOTs.

The main part of this thesis is dedicated to the development of a formalism for
the calculation of the SOTs within the Korringa-Kohn-Rostoker (KKR) method. The
impurity-induced transitions rates are obtained from first principles and their effect
on transport properties is treated within the Boltzmann formalism. The developed
formalism provides a mean to compute the SOTs beyond the conventional constant
relaxation time approximation.

We first apply our formalism to the investigation of FePt/Pt and Co/Cu bilayers in
the presence of defects and impurities. Our results hint at a crucial dependence of the
torque on the type of disorder present in the films, which we explain by a complex
interplay of several competing Fermi surface contributions to the SOT. Astonishingly,
specific defect distributions or doping elements lead respectively to an increase or a
sign change of the torque, which can not be explained on the basis of simple models.
We also compute the intrinsic SOT induced by electrical and thermal currents within
the full potential linearized augmented plane-wave method.

Motivated by recent experimental works, we then investigate the microscopic origin of
the SOT in a Ag2Bi-terminated Ag film grown on ferromagnetic Fe(110). We find
that the torque in that system can not be explained solely by the spin-orbit coupling
in the Ag2Bi alloy, and instead results from the spin-orbit coupling in all regions of
the film.

Finally, we predict a large SOT in Fe/Ge bilayers and suggest that semiconduc-
tor substrates might be a promising alternative to heavy metals for the development
of SOT-based magnetic random access memories. We show the strong dependence
of the SOT on the stacking direction, thereby providing important guidelines for
future experimental works. We also compute the sublattice-resolved SOTs in an
antiferromagnetic Fe/Ge thin film and find a large anisotropy of the torkance tensor.
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Notations and Abbreviations

In this thesis, we use the following notations:

Not. Meaning Not. Meaning

µB Bohr magneton e positive elementary charge

a0 Bohr radius ei unit vector in i direction

ε0 permittivity of free space

The following abbreviations are used:

Abbr. Meaning Abbr. Meaning

2DEG two-dimensional electron gas LLG Landau-Lifshitz-Gilbert

ASA atomic sphere approximation MLWF maximally localized

bcc body-centered cubic Wannier function

BZ Brillouin zone SHC spin Hall conductivity

CPU central processing unit SHE spin Hall effect

DFT density functional theory SNE spin Nernst effect

DOS density of states SOC spin-orbit coupling

fcc face-centered cubic SOI spin-orbit interaction

FLAPW full potential linearized aug- SOT spin-orbit torque

mented plane-wave (method) SRA scalar-relativistic

FS Fermi surface approximation

GGA generalized gradient approximation STT spin-transfer torque

IBZ irreducible part of the BZ T-SOT thermal spin-orbit torque

KKR Korringa-Kohn-Rostoker VWN Vosko-Wilk-Nusair

LDA local density approzimation XC exchange-correlation
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1 Introduction

From the early age of information technologies there has been a constant dichotomy
between volatile and non-volatile memories. On the one hand, storing the astronomic
and ever growing amount of information generated by private users, companies and
public administrations requires memory devices that are able to store data for an
indefinitely long time. The market of this non-volatile type of memories has been
historically dominated by magnetic memories generally called hard disks. On the
other hand, the very fast processing of data allowed by modern computer processing
units (CPUs) requires a correspondingly fast access to the stored information and
short writing times. This need for high performances has led to the development of
very efficient but volatile transistor-based memories known as static and dynamic
random-access memories (SRAM and DRAM respectively).

The development of non-volatile magnetic random access memories (MRAMs) has
brought a new paradigm in the field of information technologies. The fact that
MRAMs are intrinsically non-volatile and never require a refresh drastically reduces
power consumption as compared to SRAM and DRAM. With the development of
electrically switchable MRAMs based on spin-transfer torques (STTs), STT-MRAMs
might become a universal memory that combines non-volatility, high performance
and high density. However, the very large writing current density flowing through
the tunnel barrier of STT-MRAMs is currently limiting the performance and the
reliability of this type of memories [1].

The recent discovery of spin-orbit torques (SOTs) provides an alternative writing
scheme where the read and write paths can be fully decoupled. In the so-called
SOT-MRAMs, the writing current is injected in the plane of the storage layer, which
circumvents the problems due to the heating of the tunnel barrier in STT-MRAMs.
This discovery paves the way to the development of a universal memory, which com-
bines the advantages of non-volatile memories with the scalability and performance of
SRAM and DRAM [2].

Spin-orbit torques are a class of magnetic torques that rely on the transfer of angular
momentum from the crystal lattice to the magnetization [3–5]. They differ from
the conventional spin-transfer torques in that they do not imply a transfer of spins
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Introduction

between two regions of different magnetization direction and they can be observed
in any non-centrosymmetric magnetic system with sizeable spin-orbit interaction
(SOI) [6, 7]. Spin-orbit torques have been intensively studied in the last years and it
has been shown that they can lead to the reversal of the ferromagnetic magnetization
without the help of an additional polarizing layer [8–10].

The microscopic origin of SOTs has been a matter of intense debate. However,
the numerous experimental results that have been obtained over the last few years
suggest that two mechanisms play a central role in giving rise to the SOTs in ferromag-
netic/heavy metal bilayers. The first mechanism is the generation of a spin current in
the heavy metal by the spin Hall effect (SHE) [11, 12] , which injects a net spin angular
momentum into the ferromagnetic layer, where it ultimately gives rise to a torque on
the magnetization [9, 10, 13]. The second mechanism arises from the SOI-induced
spin polarization of the conduction electrons [4, 5, 13–15] at the interface between
the ferromagnetic and the heavy metal layer, where magnetism, spin-orbit coupling
and broken inversion symmetry coexist. While the magnitude of the SHE-induced
SOT can be to some extent estimated from the value of the spin Hall conductivity of
the substrate, the second contribution to the SOT has a pure interfacial character
and can not be easily related to the bulk properties of the individual materials. The
sensitivity of the SOT on the atomistic details of the interface makes the application
of simple models such as the Rashba model very questionable.

The density functional theory (DFT) offers a systematic and accurate manner to
compute the electronic properties of solids from first principles. The development
of very efficient methods such as the full potential augmented plane-wave (FLAPW)
and the Korringa-Kohn-Rostoker (KKR) methods, combined with state of the art
high performance computing (HPC), has made possible the investigation of transport
properties in large systems of many atoms in the unit cell. This thesis is dedicated
to the development and the application of highly efficient first principles methods
for the investigation of SOTs in ferromagnetic bilayers. We focus in particular on
the importance of atomistic details such as layer thickness, disorder strength and
scattering on impurities, which can not be accessed from model approaches.

A large part of this thesis is dedicated to the implementation of a formalism for
the calculation of extrinsic SOTs within the KKR method. Our motivations for the
use of the KKR formalism are twofold. First, the KKR method can easily be applied
to very large systems because it uses a minimal basis set and it scales linearly with
the number of atoms in its tight-binding formulation. Second, the KKR formalism is
a Green function method based on scattering theory, in which it is very natural to
obtain the scattering properties of impurities. Therefore, the KKR method is an ideal
choice for the development of a highly scalable code to compute extrinsic SOTs in
thin films.

This thesis is structured as follows: Chapter 2 gives an introduction about spin-
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orbit torques in thin films from the phenomenological aspects to the microscopic
mechanisms. We show how the SOT can be formally separated into even and odd
components with respect to magnetization direction and discuss their relation to the
underlying mechanisms. The spin-orbit torques induced by thermal gradients (T-SOT)
are also discussed on the basis of the Mott relation.

In Chapter 3, we present the implementation of the Kubo formalism for the SOT
within the full potential augmented plane-wave method. We first give an introduction
about density functional theory and the FLAPW basis set. Then, we discuss the
Wannier interpolation technique and present the parallelization scheme that was
developed as part of this thesis for the calculation of the maximally localized Wannier
functions. Finally, we give the formal Kubo expression that we use to compute the
SOT within the FLAPW method.

Chapter 4 presents the KKR method and its application to the calculation of the
scattering properties of impurities in otherwise periodic crystals. Then, we discuss
the implementation of the torque and spin flux operators within the Jülich KKR
code, which was achieved as a part of this thesis. Finally, we show how the scattering
properties of impurities can be incorporated into the Boltzmann transport formalism
for the calculation of impurity-driven extrinsic spin-orbit torques.

We proceed in Chapter 5 with the application of the FLAPW and KKR formalisms to
calculate the SOTs in various types of ferromagnetic thin films. We first compute in
Section 5.1 the SOTs induced by electric fields and thermal gradients in L10-FePt/Pt
thin films. We discuss in detail the mechanisms giving rise to intrinsic and extrinsic
SOTs in this system. We then investigate in Section 5.2 the SOT in Co/Cu thin films,
where spin-orbit interaction is small compared to most bilayers previously investigated
with respect to SOTs. We find a sizeable torque and discuss the crucial role of doping
by impurities in that system. Next, we present in Section 5.3 the first ab initio
calculations of SOTs in a Ag2Bi-terminated Ag film grown on ferromagnetic Fe(110).
Our study provides deep insight into recent experimental and theoretical works on
similar systems. Finally, we conclude this thesis in Section 5.4 with the investigation
of the SOT in Fe/Ge bilayers, where we discuss the advantages of using semiconductor
substrates. We also consider the case of an antiferromagnetic Fe layer deposited on a
Ge substrate.
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2 Spin-orbit torques

The possibility of manipulating the magnetization of a ferromagnet by mean of
electric currents was first pointed out by Berger [16] and Slonczewski [17]. Their
original idea was based on the current-mediated exchange of spin angular momentum
between two ferromagnetic layers of different magnetization directions: an electric
current acquires a net spin polarization when it flows through a first layer (polarizer)
and then exerts a magnetic torque on a second layer (analyser) by exchange interaction.

While the conventional spin-transfer torques (STTs) rely on the exchange of spin
angular momentum between two ferromagnetic layers, the so-called spin-orbit torques
(SOTs) discussed in this thesis rely on the spin-orbit-mediated exchange of angular
momentum between the crystal lattice and the magnetization [3–5, 8, 9]. Beside the
difference in the microscopic origin of the torques, the SOTs differ from the STTs in
that they also exist in collinear magnetic systems as long as inversion symmetry is
broken [6, 7], while the STTs require the magnetization to vary in space.

The goal of this section is to give an insight into the phenomenology of current-
induced SOTs and discuss shortly the underlying mechanisms. First, we show how the
phenomenological Landau-Lifshitz-Gilbert (LLG) equation is modified to account for
current-induced SOTs and we discuss basic symmetry properties. Then, we discuss
the microscopic origins of the SOTs in a simplified manner based on the spin Hall
effect (SHE) and the Rashba model. After that, we give a short introduction into the
linear response theory for the torque and discuss the different contributions on a more
formal level. Finally, we show how the SOTs induced by thermal gradients are related
to the SOTs induced by electrical currents.

2.1. Phenomenology of SOTs

A magnetic torque is by definition a rate of change of the spin angular momentum
in a magnetic system. The discussion of magnetic torques, in particular of SOTs, is
therefore closely related to the problem of describing the magnetization dynamics.
The dynamics of the electrons spin in a magnetic material is quite different from the
dynamics of an isolated spin in that there can be dissipation and exchange of angular
momentum with the crystal lattice. The description of the magnetization dynamics
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in a solid is usually based on the phenomenological LLG equation, where dissipation
and magnetocrystalline anisotropy can be accounted for in a satisfying manner based
on empirical parameters [18].

The LLG equation for a magnetization M in the presence of spin-orbit torques
reads

dM̂

dt
= −|γ|M̂ × Seff + αM̂ × dM̂

dt
− |γ|
µ0MV

T (E), (2.1)

where M̂ and M are respectively the direction and the magnitude of the magnetization.
The factor |γ| is the gyromagnetic ratio of the electrons and α is the damping factor.
Also the permeability constant µ0 and the volume of the unit cell V (if the torque T is
defined for a unit cell) enter the LLG equation. The first term on the right hand side
of Eq. 2.1 describes the precession of the magnetization around the effective field Seff ,
which contains the effect of external magnetic fields and magnetocrystalline anisotropy.
The second term is a dissipative term that tends to align the magnetization with the
effective field Seff . The last term describes the effect on the magnetization of the
electric field-induced spin-orbit torque T (E).

We consider in this work the linear regime where the SOT is related to the elec-
tric field E by the equation

T (E) = tE, (2.2)

where t is the so-called torkance tensor [19].

A finite response of the torque to the electric field, i.e., a non zero torkance ten-
sor, is possible only in a non-centrosymmetric system. To justify this let us observe
how the torque, the electric field and the torkance entering Eq. 2.2 transform under
inversion operation I. The torque is a pseudovector since it relates to a change of
magnetization and therefore is invariant under inversion: I[T ] = T . The electric
field is a polar vector that changes sign under inversion: I[E] = −E. The torkance
tensor can be seen as a function of the position of the particles in the system {Ri}
and be written as t({Ri}). Inversion means that a particle at position Ri is moved to
I[Ri] = −Ri (if the origin is chosen at the inversion center) and vice versa. If the
system is centrosymmetric, the same particle is found at Ri and −Ri, which implies
I[t] = t. Inversion symmetry therefore enforces that tE = −tE, which means that
the linear response of the torque to the electric field has to vanish in a centrosymmetric
system. Furthermore, it is clear that the torque in a collinear ferromagnetic system
can only arise from spin-orbit coupling: conservation of total angular momentum
implies that the spin angular momentum transferred to the magnetization is taken
from the lattice.

We focus in this work on bilayer systems where inversion symmetry is structurally
broken by having a ferromagnetic layer sandwiched between vacuum on one side and
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2.2 Discussion of the mechanisms

a non-magnetic layer on the other side1 (see Figs. 2.1b and 2.1c). The formalisms
that are presented in this thesis in Sections 3 and 4 aim at computing from first
principles the torkance tensor, i.e., the response of the torque to an external electric
field. The motivations for this are twofold. First, the amplitude of the torkance
computed for a typical value of current density, along with its symmetry, gives a
good indication whether the system under consideration is a good candidate for an
electrically switchable memory device. Second, among all parameters entering Eq. 2.1,
the torkance is the only one with a pure interfacial character: it is a property of a
stack of layers of different materials but is not easily related to the bulk properties of
individual materials (unless the ferromagnetic material is itself non-centrosymetric).
This is in contrast to the gyromagnetic ratio that deviates at surfaces from the bulk
value by only a few percents, and to the damping factor that converges to the bulk
value for thick ferromagnetic layers. This interfacial character of the torque, along
with its strong sensitivity to the atomistic details of the interface, makes first principles
calculations of the torkance tensor very valuable.

2.2. Discussion of the mechanisms

The origin of current-induced spin polarization and spin-orbit torques have been a
matter of intense debate in the last years. Overall, the numerous experimental and
theoretical investigations of SOTs in ferromagnetic bilayers suggest a classification of
the torques according to two categories: the SOTs arising from the spin Hall effect
(SHE) [9, 10] in the substrate and the SOTs due to interfacial spin-orbit coupling [3, 5,
6, 14]. The torques arising from the SHE rely on a transfer of spin angular momentum
from the substrate to the ferromagnetic layer. It differs from the conventional spin
transfer torque (STT) only by the origin of the spin current, which is in the present
case generated by the spin-orbit interaction (SOI). The other type of torque does
not rely on a spin Hall current but rather on the peculiar electronic structure of
the interfacial region where SOI, magnetism and broken inversion symmetry coexist.
These interfacial contributions to the torque are often discussed in the framework of
the Rashba model. In this section we show how the origin and the symmetry of the
different types of torques can be understood based on simplified approaches.

2.2.1. Spin Hall effect

The spin Hall effect (SHE) is a tool to generate a transverse spin current by applying an
external electric field [11, 12]. In bilayers where a ferromagnetic thin film is deposited
on a heavy metal (HM) substrate, the spin Hall current generated in the HM is injected
into the ferromagnetic layer and thereby exerts a torque on the magnetization [9, 10].
This torque has in common with the conventional spin-transfer torque (STT) used in
STT-MRAMs that it relies on the injection of a spin current into the ferromagnetic

1In fact there exist also bulk crystals that are themselves non-centrosymmetric and where a net
torque is also induced by an external electric field, but they are not the focus of this work.
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Spin-orbit torques

Figure 2.1.: (a) Conventional STT in a spin valve device. The left and right layers
have the roles of the polarizer and the analyzer, respectively. (b) SOTs
generated by the spin Hall effect in the heavy metal substrate according
to Eq. 2.3. (c) SOTs generated by the interfacial spin-orbit coupling in
the ferromagnetic Rashba model, see Eq. 2.10. The small blue arrows are
an illustration of the spin currents and the induced spin accumulation.
The large blue and green arrows give the direction of the torque T and
the charge current j, respectively. Red arrows show the direction of the
local magnetization.

layer, but differs by the origin of the spin current. In the case of the conventional
STT an electric current is polarized by an external polarizer (Fig. 2.1a) while in the
case of the SHE-SOT the spin current originates from the spin-orbit coupling in the
heavy metal substrate (Fig. 2.1b)2.

The magnitude of the SOT arising from the SHE is closely related to the value of
the spin Hall conductivity σs of the material used as a substrate. Assuming that (a)
there are no other spin-flip processes taking place in the ferromagnet than those due
to the exchange interaction and (b) there is no reflexion of the spin current at the
interface, one finds a simple expression for the SHE-SOT:

T SHE =
2µB

~MSlFM

∑
sj

M̂ × (ês × M̂)σszjEj, (2.3)

where σszj is the spin Hall conductivity of the substrate, the indices s and j are x or
y and ês is a unit vector pointing in the s-direction. We also used the saturation
magnetization MS and the thickness of the ferromagnetic layer lFM .

The torque defined by Eq. 2.3 is clearly an even function of the magnetization
direction. This is a consequence of the spin continuity equation written under the
assumption (a) that exchange interaction is the only source of spin-flip processes in
the ferromagnet. If other sources of spin-flip processes exist in the ferromagnetic
layer, such as spin-orbit interaction, the torque may also have an odd component.

2For the development of electrically switchable MRAMs, it is highly desirable to inject the writing
current in the plane of the storage layer, as the read and write paths can then be fully decoupled.
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2.2 Discussion of the mechanisms

However, exchange interaction is typically the dominant mechanism of spin-loss in the
ferromagnet so that the odd part of the SHE-SOT is normally small compared to the
even part.

Because the assumption (b) that there is no reflexion of the spin current at the
interface is in general not valid, the amplitude of the SHE-SOT might be significantly
smaller than suggested by Eq. 2.3. We define the SHE-to-SOT efficiency

ξ =
|T |
|T SHE|

(2.4)

as the ratio of the actual torque |T | to the ideal torque |T SHE|. The ideal SHE-SOT
defined by Eq. 2.3 can be easily computed from the knowledge of the spin Hall
conductivity σs of the material used as a substrate, which can be obtained from a bulk
calculation. However, there is no general method to obtain the SHE-to-SOT efficiency
for a given system. In fact, the SHE-to-SOT efficiency might strongly depend on
the quality of the interface and the stacking direction, which makes the use of first
principles calculations the method of choice for quantitative predictions of the torque.

2.2.2. Interfacial spin-orbit torques

The coexistence of spin-orbit coupling, magnetism and broken inversion symmetry
yields a very peculiar electronic structure in the interfacial region of ferromagnetic
bilayers. This property of the interface leads to new contributions to the torque that
are not related to the spin Hall effect in the substrate. In order to illustrate the
mechanisms that are involved in this type of interfacial torques, it is very instructive
to consider the Rashba model, where the electronic states at the interface are modelled
by a two-dimensional electron gas (2DEG) sandwiched between two different media.

Let us consider a 2DEG that models the valence electrons at the interface between
two materials. A simple way to model the asymmetric environment seen by the 2DEG
is to introduce an out-of-plane electric field E = Eez that is felt by the electrons. In
the frame of the moving electrons the electric field transforms into a magnetic field
B = −(p/m×E)/c2 according to the relativistic Lorentz transformation, where p is
the electron momentum. This magnetic field interacts with the spin of the electrons,
which leads to a spin-orbit coupling Hamitonian of the form3

HSO = α(p× êz) · σ, (2.5)

where α = µBgE/2mc
2 is the so-called Rashba coupling constant.

The full Hamiltonian for a 2DEG in the presence of Rashba spin-orbit coupling

3This form can also be obtained from the general spin-orbit coupling Hamiltonian HSO =
µBg/2mc

2(p×E) · σ for the special case E = Eêz.
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then reads

H(k) =
~2|k|2

2m
+ α~(êz × k) · σ, (2.6)

where the first term is the kinetic energy of free electrons. The second term is the
Rashba spin-orbit coupling, which can be understood in terms of so-called k-dependent
spin-orbit fields

BSO(k) = −α~
µB

(êz × k) (2.7)

acting on the spin of the electrons. The spin-orbit fields lift the spin degeneracy of
the 2DEG, which yields the very peculiar two-band electronic structure shown in
Fig. 2.2a. For both bands the spin of the states is locked to the wave vector k, but it
is rotating clockwise in the one case and anticlockwise in the other case (Fig. 2.2b).
The popularity of the Rashba model in the field of spintronics relies on the fact that
the symmetry of the spin-orbit fields in k-space for real surfaces or interfaces is often
well described by Eq. 2.7. Therefore, much of the transport properties of interfaces
can be qualitatively understood based on this model. This is in particular true for
current-induced spin polarization and SOTs, which is the main focus of this thesis.

We discuss now the spin polarization induced by an external in-plane electric field
within the Rashba model. When an external electric field is applied to the system, the
states with k ·E < 0 are populated while the ones with k ·E > 0 are depopulated.
This yields a net spin polarization of different sign for each band, as shown in Fig. 2.2c.
Because the two bands have different radii and density of states, the sum of the spin
polarization has a finite value. It has been shown by Edelstein [14] that within the
Rashba model the total current-induced spin polarization reads

s =
2αm

e~εF

(j × êz), (2.8)

where j is the charge current density and εF is the Fermi energy.

In a ferromagnetic system Eq. 2.6 has to be modified to account for the strong
exchange interaction that couples the conduction electrons to the local magnetic
moments. This yields the Hamiltonian

H(k) =
~2|k|2

2m
+ α~(k × ez) · σ + Jex σ · M̂ , (2.9)

where Jex is the strength of the exchange interaction and M̂ = M/|M | is the magne-
tization direction. Since the exchange interaction is normally much stronger than the
spin-orbit coupling, the spin of the electrons is essentially parallel to the magnetization
direction while the spin-orbit field acts as a small perturbation. For simplicity we will
focus on the case where magnetization lies in the plane of the film, which we illustrate
in Fig. 2.2d.
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Figure 2.2.: (a) Band structure of the Rashba Hamiltonian defined by Eq. 2.6. (b)
Spin expectation value of the states at the Fermi energy. (c) Illustration
of the redistribution of the electrons when an external electric field is
applied.(d) Spin expectation value of the states at the Fermi energy for
the ferromagnetic Rashba Hamiltonian (Eq. 2.9) (e) Illustration of the
redistribution of the electrons when an external electric field is applied
for the ferromagnetic Rashba Hamiltonian (Eq. 2.9).

As previously, an external electric field applied in the plane of the field populates the
states with k ·E < 0 and depopulates those with k ·E > 0, as shown in Fig. 2.2e.
The spin accumulation thereby created in the ferromagnetic Rashba model yields a
torque [6, 20]

T R =
2αmJex

e~2εF

j(M̂ · Ê)êz (2.10)

acting on the magnetization of the ferromagnetic layer, as shown in Fig. 2.1c.

The torque defined by Eq. 2.10 is clearly an odd function of magnetization direction.
This is a consequence of the fact that the direction of the spin-orbit field felt by the
electronic states is predominantly determined by the direction of the wave vector k,
but does not depend primarily on the magnetization direction.

2.3. Kubo formalism

In the following we present the formal linear response expressions for the torque that
will be used in Section 3, and which ultimately leads to the Boltzmann description
pursued in Section 4. We show that two qualitatively different types of torques can
be identified in terms of their symmetries and discuss their relation to the SHE-SOT
and interfacial SOT introduced in the previous chapter.

Within linear response theory the torkance tensor t defined by Eq. 2.2 has three
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contributions [19]:

t
I(a)
ij = − e

h

∫ ∞
−∞

dε
df(ε)

dε
Tr〈TiGR(ε)vjG

A(ε)〉,

t
I(b)
ij =

e

h

∫ ∞
−∞

dε
df(ε)

dε
<Tr〈TiGR(ε)vjG

R(ε)〉,

t
II
ij =

e

h

∫ ∞
−∞

dεf(ε) <Tr〈TiGR(ε)vj
dGR(ε)

dε

− Ti
dGR(ε)

dε
vjG

R(ε)〉,

(2.11)

where GR(ε) and GA(ε) are the retarded and advanced Green functions, vj is the jth
Cartesian component of the velocity operator, Ti is the ith Cartesian component of
the torque operator and f(ε) is the Fermi-Dirac distribution function. The first two
terms in Eq. 2.11 require the knowledge of the Green functions at the Fermi energy
only because the derivative of the Fermi-Dirac distribution function df(ε)/dε reduces
to a Dirac distribution in the zero temperature limit. These contributions are referred
to as Fermi surface terms. The third term requires to integrate up to the Fermi level
and is called the Fermi sea term.

The torque operator used in Eq. 2.11 is defined by

T (r) = −µBσ ×Bxc(r) (2.12)

where σ is the vector of Pauli spin matrices. The exchange field Bxc(r) varies rapidly
at the atomic scale, analogously to the electrostatic potential, and its accurate de-
scription requires the use of ab initio calculations. The naive approximation of a
constant exchange field B̄xc would greatly simplify the formalism, since the knowl-
edge of the spin 〈σ〉 of the electron would suffice to determine the exerted torque
〈T 〉 = −µB〈σ〉 × B̄xc. However, this usually gives a poor estimate of the torque,
and it is necessary to account for the inhomogeneity of the exchange field to obtain
accurate results.

At this step, we model the influence of disorder in the system by a constant effective
band broadening Γ, which is equivalent to a constant relaxation time approxima-
tion. Within this model the retarded and advanced Green functions are given by
GR(ε) = ~[ε − H + iΓ]−1 and GA(ε) = ~[ε − H − iΓ]−1, where the parameter Γ
characterizes the disorder strength and H is the Hamiltonian describing the electrons
in the potential of the nuclei. This model offers two advantages from the technical
point of view. First, the expansion of the Green function for the disordered system in
terms of eigen states of the Hamiltonian H is straightforward within this model, see
Eqs. 3.63 and 3.65. Second, it is possible to derive insightful analytical expressions for
the clean system by taking the limit Γ→ 0. In the following we discuss in details this
so-called clean limit.

22



2.3 Kubo formalism

It is very instructive to decompose the torkance tensor t into even and odd components
with respect to the direction of magnetization: tij = teven

ij + todd
ij . In the clean limit we

obtain:

teven
ij =

2e

N
êi ·
∑
k,n

f(εkn)

[
M̂ ×=

〈
∂ukn

∂M̂

∣∣∣∣ ∂ukn∂kj

〉]
, (2.13)

and

todd
ij = − e~

2ΓN
∑
kn

〈ψkn|Ti|ψkn〉〈ψkn|vj|ψkn〉
∂f(εkn)

∂ε
, (2.14)

where N is the number of k-points in the Brillouin zone, n is a band index, εkn are the
eigenenergies of the system, ψkn and ukn are the Bloch states and their lattice-periodic
parts, and êi is a unit vector along the ith Cartesian direction. The even torkance
has the form of a Berry curvature and it is independent of Γ in the clean limit.
It constitutes the intrinsic contribution to the torkance, and it is analogous to the
intrinsic spin Hall conductivity [21]. The odd part of the torkance, on the other hand,
has the form of a Fermi surface integral and diverges like 1/Γ, i.e., it is proportional
to the quasi-particle lifetime. It reduces to the Boltzmann response function in the
limit T → 0 and it is governed by the change of the distribution function induced by
the external electric field. We will discuss in Section 4 how it is possible to treat the
odd torkance beyond the constant relaxation time approximation by taking explicitly
into account the effect of impurity scattering.

It is important to note that, while the even torkance defined by Eq. 2.13 is for-
mulated as an intraband contribution (there is only one band index), the derivatives
of ukn with respect to M̂ and kj have to be expanded into eigen states of different
energies. This yields an alternative expression for the even torkance in the clean
limit [19]:

teven
ij =

2e~
N
∑
k

occ∑
n

∑
m 6=n

Im

[
〈ψkn|Ti|ψkm〉〈ψkm|vj|ψkn〉

(εkm − εkn)2

]
, (2.15)

in which the off-diagonal elements of the torque and velocity operators enter explicitly,
and where two band indices are used. It is immediately clear from Eq. 2.15 that the
intrinsic torkance arising from the Berry curvature is related to interband transitions
from the point of view of Eq. 2.11. This is in sharp contrast to the odd torkance, which
is a pure intraband contribution and is governed by the change of the distribution
function induced by the external electric field.

It is useful to discuss how the even and odd torkances defined by Eqs. 2.13 and 2.14
relate to the different mechanisms presented in Section 2.2. The predominant even
parity predicted in Section 2.2.1 for the SHE-SOT suggests that this mechanism enters
mostly the even torkance. This is strongly supported by the intrinsic character of both
the even torkance and the spin-Hall conductivity in the clean limit. The interfacial
SOT discussed in Section 2.2.2, on the other hand, is an odd function of magnetization
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direction. It diverges like 1/Γ in the limit of small Γ, similarly to the odd torkance
defined by Eq. 2.14.

2.4. Thermal spin-orbit torques

Similarly to the spin Hall or anomalous Hall conductivities, the torkance tensor
describes the SOT arising from an applied electric field, i.e., it corresponds to the situ-
ation where the torque is driven by a mechanical force. A torque can also be induced
by a temperature gradient, i.e., it can also originate from statistical forces. In this
section we discuss how the thermal torques can be computed on the basis of general
relations between thermal and electrical transport coefficients known as Mott relations.

Within the semiclassical theory of electronic transport, both thermal and electrical
response functions arise from the change of the distribution function: a temperature
gradient induces a position dependent distribution function while an electric field mod-
ifies the distribution of the electrons in k-space. The exact relation between electrical
conductivity and its thermal counterpart is given by the Mott relation. However, it is
not obvious at first sight by which mechanisms Berry-phase-induced phenomena, such
as the intrinsic anomalous Hall effect or spin-orbit torques, can arise from thermal
gradients. A first explanation has been proposed for the case of the anomalous Nernst
effect by Xiao et al. [22], who have shown that the Berry-phase correction to the
orbital magnetization is the key to understand anomalous thermoelectric transport.
An analogous theory has been developed by Freimuth et al. [23] for the case of the
thermally induced SOTs, where the thermal torque arises from the so-called twist
torque moments. This theory gives a microscopic justification to the Mott relation
between electrical and thermal SOTs.

While the existence of the thermally induced SOT has been shown, there has been no
experimental evidence reported so far. This raises the question of the magnitude of
this effect, which we address in this thesis in Section 3 for the case of L10-FePt/Pt
bilayers. We discuss in the following the Mott relation, which we use to compute the
thermal torkance from the electrical torkance computed from first principles.

In analogy to the torkance driven by electrical currents (Eq. 2.2), we define the
thermal torkance tensor β by the expression

T (E) = −β∇T, (2.16)

where ∇T is the temperature gradient. We decompose the thermal torkance into even
and odd components with respect to the magnetization direction: βij = βeven

ij + βodd
ij .

The intrinsic even part of the thermal torkance is analogous to the intrinsic anomalous
Nernst [22, 24] and spin Nernst conductivities [25–28], while the odd part of the
thermal torkance is similar to the Seebeck effect. Both even and odd components of
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2.4 Thermal spin-orbit torques

the thermal torkance can be computed directly from their mechanical counterparts
employing the Mott relation [23]:

βij(T ) = −1

e

∫
dε
∂f(ε, µ, T )

∂µ
tij(ε)

ε− µ
T

(2.17)

where tij(ε) is the torkance tensor with Fermi energy set to ε and µ is the chemical
potential.

The relation between electrical and thermal torkances appears much more clearly if
one investigates the limit of T → 0. For this let us define the function

S(ε) = −tij(ε)
1

e

ε− µ
T

(2.18)

and rewrite Eq. (2.17) as

βij(T ) =

∫
dε
∂f(ε, µ, T )

∂µ
S(ε). (2.19)

We can compute this integral by a method similar to the well known Sommerfeld
expansion [29]. At low temperature the derivative of the Fermi function is appreciable
only close to the chemical potential µ. We can therefore use the second-order Taylor
series expansion

S(ε) = (ε− µ)
∂S

∂ε

∣∣∣∣
ε=µ

+
1

2
(ε− µ)2∂

2S

∂ε2

∣∣∣∣
ε=µ

+ ...

= −1

e

(ε− µ)

T
tij(µ)− 1

e

(ε− µ)2

T

∂tij
∂ε

∣∣∣∣
ε=µ

+ ...

(2.20)

Inserting this expansion in Eq. (2.19) yields

βij(T ) =− 1

e

∫
dε
∂f(ε, µ, T )

∂µ

(ε− µ)

T
tij(µ)

− 1

e

∫
dε
∂f(ε, µ, T )

∂µ

(ε− µ)2

T

∂tij
∂ε

∣∣∣∣
ε=µ

.

(2.21)

The first term in the previous equation vanishes because the integrand is the product
of the even function ∂f(ε, µ, T )/∂µ with the odd function (ε− µ)/T . The remaining
part can be rewritten as

βij(T ) = −1

e
k2
BT

∂tij
∂ε

∣∣∣∣
ε=µ

∫
dx(− ∂

∂x

1

ex + 1
)x2 (2.22)

where we introduced a new variable x = ε−µ
kBT

. The integral in Eq. (2.22) is equal to

π2/3 [29]. The final expression for the thermal torkance in the limit of low temperature
is then given by

βij(T ) = −π
2k2
BT

3e

∂tij
∂ε

∣∣∣∣
ε=µ

, (2.23)
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i.e., the thermal torkance is directly proportional to the derivative of the torkance at
a given energy, rather than its magnitude.
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3 SOTs in the FLAPW method

In the previous chapter we have introduced the general expressions for the calculation
of electrical and thermal spin-orbit torques within the Kubo formalism. We discuss now
the implementation of the Kubo formula in the full potential linearized augmented
plane waves (FLAPW) method, which is widely recognized as the most accurate
computational method to perform density functional theory (DFT) calculations of
periodic systems. We first introduce the essential elements of DFT and discuss
in particular its Kohn-Sham formulation. We then discuss the construction of the
FLAPW basis set and its advantages over other augmented plane wave methods.
Next, we introduce the Wannier interpolation technique and the parallelization of the
WANNIER90 code that has been achieved as part of this thesis. Finally, we give the
exact expressions for the torkance in terms of the Bloch states and their corresponding
energies, which we use in Section 5.1 to investigate electrical and thermal SOTs in
L10-FePt/Pt bilayers.

3.1. Density Functional Theory (DFT)

3.1.1. The many body problem

Most properties of solids can be understood from the motion of the electrons in the
electrostatic potential created by the nuclei. The problem of finding the many body
electronic wave function Ψ(r1, r2, ..., rN ) for a system of N electrons can be addressed
by solving the Schrödinger equation

HΨ(r1, r2, ..., rN) = EΨ(r1, r2, ..., rN), (3.1)

where H is the many body Hamiltonian

H =
N∑
i=1

(
− ~2

2m
∆i + vext(ri)

)
+

N∑
i 6=j

e2

4πε0

1

|ri − rj|
. (3.2)

The first and second terms in Eq. 3.2 correspond respectively to the kinetic energy
and to the interaction of the electrons with the electrostatic potential vext(r) created
by the nuclei. The last term is the Coulomb interaction between electrons, which gives
rise to a correlation of the motion of the different electrons in the system. This means
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in practice that the many body wavefunction Ψ(r1, r2, ..., rN) solution of Eq. 3.1 can
not be written as a Slater determinant of single particle wavefunctions ψi(r). It is then
not possible to reduce the many body problem defined by Eq. 3.1 to a single particle
problem and one has to work with the full many body wavefunction Ψ(r1, r2, ..., rN)
of correlated electrons. However, for systems with more than a few electrons it is not
possible to solve Eq. 3.1 exactly, because the number of values necessary to represent
the wavefunction Ψ(r1, r2, ..., rN) becomes intractable.

In most practical applications one is not directly interested in the electronic wavefunc-
tion itself, but in the expectation value of an observable O given by

〈O〉 = 〈Ψ|O|Ψ〉. (3.3)

Therefore, the development of ab initio methods that enable the calculation of expec-
tation values without the knowledge of the exact many body wavefunction is of strong
interest. The so-called density functional theory yields an exact and systematic scheme
for solving many body problems, where the calculation of the electronic wavefunction
is circumvented by the use of functionals of the electronic density for the expectation
values of observables.

3.1.2. Hohenberg-Kohn theorem

The basic idea of DFT is to use the electronic density instead of the many body
wavefunction as the central quantity of the theory. This can be achieved by using the
Hohenberg-Kohn theorem, which states that the electronic density n(r) contains the
same information as the ground-state wave function Ψ(r1, r2, ..., rN). In other words,
all observables can be expressed as functionals of the density, which is in particular
true for the total energy

〈Ψ|H|Ψ〉 = E[n]. (3.4)

Therefore, one can obtain the electronic density n(r) by minimizing the energy
functional E[n]. This energy functional can be written as

E[n(r)] = T [n(r)] + Vext[n(r)] + Vee[n(r)], (3.5)

where T [n(r)] is the kinetic energy, Vext[n(r)] is the potential energy due to the
interaction of the electrons with the external potential and Vee[n(r)] is the potential
energy due to the electron-electron interaction.

Although the existence of a universal total energy functional E[n(r)] has been shown,
its exact form is unknown and the calculation of the ground state density in DFT
calculations relies on approximations to the true energy functional. In particular, a
difficulty immediately arises for the determination of the kinetic energy, which is given
by the second space derivatives of the many body wave function in the Schrödinger
equation. The Kohn-Sham formulation of DFT yields a practical algorithm for the
determination of the kinetic energy and for the minimization of the total energy
functional E[n(r)].
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3.1.3. Kohn-Sham equation

The Kohn-Sham formulation of DFT relies on the introduction of a fictitious system
of non-interacting electrons, which has the same ground-state density as the real
interacting system. The Kohn-Sham equation is the Schrödinger equation for this
non-interacting system: [

− ~2

2m
∇2 + veff(r)

]
ψi(r) = εiψi(r). (3.6)

The Kohn-Sham orbitals solutions of Eq. 3.6 yield a convenient way to estimate the
kinetic energy of the many body system:

TKS[n(r)] =
occ∑
i

~2

2m
〈ψi|∇2|ψi〉. (3.7)

The total energy of the system can be rewritten as

E[n(r)] = TKS[n(r)]+

∫
dr n(r) vext(r)+

e2

2

∫ ∫
drdr′

n(r)n(r′)

|r − r′|
+Exc[n(r)], (3.8)

where Exc[n(r)] is the so-called exchange and correlation functional that contains the
unknown remaining part of the energy.

The effective potential veff(r) should be chosen in such a way that the ground state
density obtained from Eq. 3.6 minimizes the energy functional E[n]. This condition is
fulfilled by the following expression [30]:

veff(r) = vext(r) + e2

∫
n(r′)

|r − r′|
dr′ +

δExc[n]

δn(r)
. (3.9)

Since the effective potential veff(r) depends itself on the charge density n(r), Eqs. 3.6
and 3.9 have to be solved self-consistently.

Different approximations exist for the exchange and correlation energy functional
Exc[n] in the literature. We use in this thesis the local density approximation (LDA),
where ELDA

xc [n] depends only on the value of r at each point in space

ELDA
xc [n(r)] =

∫
dr εLDA

xc (n(r)), (3.10)

and the generalized gradient approximation (GGA), where EGGA
xc [n] also depends on

the gradient of the density

EGGA
xc [n(r)] =

∫
dr εGGA

xc (n(r),∇n(r)). (3.11)

There exist different parametrizations for the exchange and correlation energy density
εLDA
xc (n(r)) and εGGA

xc (n(r),∇n(r)). We use for LDA the one from Vosko, Wilk and
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Nusair [31] and for GGA the one from Perdew, Burke, and Ernzerhof [32].

Besides the convenient scheme it provides for the determination of the electronic
density, the Kohn-Sham formulation of DFT yields an elegant alternative to Eq. 3.3
for the calculation of the expectation values of observables

〈O〉 =
occ∑
i

〈ψi|O|ψi〉. (3.12)

Therefore, the Kohn-Sham formulation of DFT yields an effective and systematic
approach for the calculation of physical quantities, where it is not required to diago-
nalize the full many-body Hamitonian. Instead, we can use the Kohn-Sham orbitals,
solutions of a more simple single particle Hamitonian, to compute expectation values
of observables according to Eq. 3.12.

3.2. FLAPW method

The solutions of Eq. 3.6 can be calculated using an expansion of the wave functions on
a set of basis functions. A simple choice of basis functions are plane waves, which are
orthogonal and allow a straightforward expansion of the Hamiltonian. However, a very
high number of plane waves would be needed to capture the very rapid oscillations
of the wave functions close to the nuclei. In order to restrict the number of basis
functions and thus increase the performance of the calculation, an alternative approach
has been proposed by Slater [33], which is known as the augmented planewave method
(APW).

Within the APW approach, space is decomposed between atomic spheres (muffin-tins)
centered on the nuclei and the remaining part (interstitial region) between the nuclei.
The basis functions are given by plane waves in the interstitial region and by products
of spherical harmonics with radial wave functions inside the muffin-tins:

φG(k, r) =

 ei(G+k)·r interstitial region∑
L

AµGL (k)uµl (r)YL(r̂) muffin-tin µ. (3.13)

where G is a reciprocal lattice vector and L = {l,m} a combined index for azimuthal
quantum number l and magnetic quantum number m. The coefficients AµGL (k) are
chosen such that the basis functions are continuous at the muffin-tin boundary. The
radial wave functions uµl (r) are the solutions of the radial Schrödinger equation{

− ~2

2m

∂2

∂r2
+

~2

2m

l(l + 1)

r2
+ V µ(r)− Eµ

l

}
ruµl (r) = 0, (3.14)

where Eµ
l is an energy parameter and V µ(r) the spherical potential inside muffin-tin µ.

It turns out the basis functions defined by Eq. 3.13 offer enough variational freedom
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only if the energy parameters Eµ
l are chosen k- and G-dependent. This makes the

determination of the band energies way more complicate than if the energy parameters
could be kept fixed. This is the major drawback of the APW method and we discuss
in the following how this problem is circumvented within the linearized augmented
planewave (LAPW) method.

Within the LAPW method the basis functions in the muffin-tins are linear com-
binations of the radial functions uµl (r) (Eq. 3.14) and of their energy derivatives u̇µl (r).
The corresponding basis functions in the LAPW method read1

φG(k, r) =

 ei(G+k)·r interstitial region∑
L

[
AµGL (k)uµl (r) +BµG

L (k)u̇µl (r)
]
YL(r̂) muffin-tin µ,

(3.15)

and the derivatives u̇µl (r) are obtained by taking the derivative of Eq. 3.14 with respect
to the energy, which yields{

− ~2

2m

∂2

∂r2
+

~2

2m

l(l + 1)

r2
+ V µ(r)− Eµ

l

}
ru̇µl (r) = ruµl (r). (3.16)

The additional coefficients BµG
L (k) in Eq. 3.15 drastically increases the variational

freedom of the basis set. Unlike in the APW method, it is now sufficient to define a
single set of uµl (r) and u̇µl (r) radial wave functions for fixed energy parameters Eµ

l .
This greatly simplifies the determination of the band energies by diagonalization of
the Hamiltonian, which explains the popularity of the LAPW method over the APW
method.

The Bloch states are then expanded into the basis functions φG(k, r) according
to

ψmk(r) =
∑
G

cmG(k)φG(k, r), (3.17)

where m is the band index. The problem of solving Eq. 3.6 therefore reduces to the
determination of the cmG(k) coefficients.

Historically the LAPW method has been used with the approximation that atomic
potentials exhibit a spherical shape. This approximation yields good results in many
cases for bulk systems, but is lacking accuracy for film calculations. The generalization
of the LAPW method to the case of arbitrary shape of atomic potentials is called the
full potential linearized augmented planewave (FLAPW) method.

3.3. Wannier functions

The evaluation of the Kubo formula for the torque (Eq. 3.67) requires the knowledge
of the Bloch states for a very large number of k-points in the Brillouin zone. Typically,

1For film calculations it is necessary to define the basis functions also in the vacuum regions. For
details of the implementation in the FLEUR code, see Ref.[34].
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between 106 and 109 k-resolved Hamiltonians have to be set up and diagonalized
(depending on the dimension of the system) in order to achieve convergence of the
torque with respect to the number of k-points. The corresponding computational
cost is way too high and one needs an efficient interpolation scheme to avoid brutal
force diagonalization of too many matrices. A very efficient scheme is provided by the
Wannier interpolation technique.

In the following we give a short view of the theoretical background that under-
lies the Wannier interpolation technique. First, we give the definition of Wannier
functions and discuss the importance of the gauge choice for their localization proper-
ties. Then, we give an overview of the method developed by Marzari and Vanderbilt
[35] for computing maximally localized Wannier functions (MLWFs) and we describe
how the WANNIER90 code [36] has been parallelized as part of this thesis. Finally,
we show how the Bloch states for millions of k-points can be interpolated from a
comparatively very small number of Wannier functions.

3.3.1. Definition

We start by considering the case of a band well separated from all other bands, and
we will generalize to the case of a group of bands later on. The Wannier function for
an isolated band n is defined by the Fourier transform of the Bloch states ψnk(r), i.e.,

WnR(r) =
V

8π3

∫
BZ

e−ik·R ψnk(r) dk, (3.18)

where V is the volume of a unit cell and R is a lattice vector. The Wannier functions
for different lattice vectors are related to each other by the corresponding translations,
i.e., WnR′(r) = WnR(r +R−R′). In Eq. 3.18 the eigen states ψnk(r) are defined up
to a phase constant ϕn(k), i.e., we have the gauge freedom

ψnk(r)→ eiϕ
(k)
n ψnk(r). (3.19)

It turns out that the shape of the Wannier functions defined by Eq. 3.18 strongly
depends on the choice of the gauge. For an efficient interpolation scheme it is nec-
essary to generate Wannier functions that are to some extent localized, so that the
interpolated Bloch states can be obtained by an inverse Fourier transform truncated
to a small number of unit cells (see Section 3.3.4). The choice of the ϕ

(k)
n phases is

therefore crucial.

In the case of N energy bands forming an isolated group (composite band), one
can allow for an additional gauge freedom that mixes the Bloch states according to

ψnk(r)→
N∑
m=1

U (k)
nm ψmk(r) = ψ̃nk(r). (3.20)
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and their periodic parts according to

unk(r)→
N∑
m=1

U (k)
nm umk(r) = ũnk(r). (3.21)

This can be seen as a generalization of Eq. 3.19 where the U (k) matrix was chosen
diagonal. The rotated Bloch states ψ̃nk(r) are not eigen states of the Hamiltonian if
the U (k) matrix has off-diagonal elements, but can still be used to define generalized
Wannier functions according to

WnR(r) =
V

8π3

∫
BZ

e−ik·R
N∑
m=1

U (k)
nm ψmk(r) dk (3.22)

=
V

8π3

∫
BZ

e−ik·R ψ̃nk(r) dk. (3.23)

Therefore, the problem of finding well localized (generalized) Wannier functions now
reduces to the choice of a suitable U (k) gauge transformation.

A systematic way of constructing maximally localized Wannier functions for composite
bands has been proposed by Marzari and Vanderbilt [35], which have paved the way
to the use of Wannier functions as a powerful interpolation technique. The method
can be extended to the case of entangled bands, i.e., to bands that do not form an
isolated group [37]. We use the implementation of the Wannier functions within the
FLAPW formalism developed by Freimuth et al. [38].

3.3.2. Maximally localized Wannier functions

The WANNIER90 program [36] addresses the question of minimizing the spread of
the Wannier functions by finding the optimal choice for the gauge U (k). We give in
the following an overview of the method developped by Marzari and Vanderbilt [35]
and finally describe how the code has been parallelized for this thesis.

Spread of Wannier functions

We define the total spread of the Wannier functions by

Ω =
∑
n

[〈W0n|r2|W0n〉 − |〈W0n|r|W0n〉|2] =
∑
n

[〈r2〉n − |〈r〉n|2], (3.24)

where the sum runs over all occupied bands. For a given set of Bloch states computed
from ab initio, the spread depends only on the gauge choice U (k) and can be written
as a functional Ω[U (k)].
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It is fruitful to decompose the spread as the sum of three contributions:

ΩI =
∑
n

[〈r2〉n −
∑
Rm

|〈WRm|r|W0n〉|2], (3.25)

ΩD =
∑
n

∑
R 6=0

|〈WRn|r|W0n〉|2, (3.26)

ΩOD =
∑
n

∑
m6=n

∑
R

|〈WRn|r|W0n〉|2. (3.27)

The contributions ΩI, ΩD and ΩOD are respectively independent from the gauge
U (k), diagonal and off-diagonal with respect to band indices. The total spread to be
minimized finally reads

Ω[U (k)] = ΩI[U
(k)] + ΩD[U (k)] + ΩOD[U (k)]. (3.28)

In order to obtain the gradient of the functional Ω[U (k)], it is necessary to rewrite the
expressions for the spread in a form that depends explicitly on the gauge U (k). This
is achieved by rewriting the contributions to the spread in terms of the rotated Bloch
states ψ̃nk(r) = U

(k)
nm ψmk(r) and their lattice periodic parts ũnk(r) = U

(k)
nm umk(r).

The matrix elements of the position operator in the Wannier basis appear in Eqs. 3.25,
3.26 and 3.27. They have to be evaluated using Eq. 3.23, which yields the expression

〈WRn| r |W0n〉 =
( V

8π3

)2
∫ ∫

dk dk′ eik·R〈ψ̃kn|r|ψ̃k′m〉. (3.29)

The action of the position operator on a Bloch state ψ̃kn(r) can be reformulated in
terms of a gradient in momentum space according to

r ψ̃kn(r) = i eik·r∇k ũnk(r)− i∇k ψ̃nk(r), (3.30)

which leads after a few lines of calculus to

〈WRn| r |W0n〉 = i
V

8π3

∫
dk eik·R〈ũkn|∇kũkm〉, (3.31)

where the periodicity of the Bloch states in momentum space was used (see Ref. [35]
for a derivation).

Similarly, we obtain the expectation value of the square of the position operator

〈r2〉n = 〈W0n|r2|W0n〉 =
V

8π3

∫
dk eik·R|∇k|ũkn〉|2. (3.32)

by using the expression

r2ψ̃kn(r) = −2ir∇kψ̃kn(r) + ∆kψ̃kn(r)− eik·r∆kũkn(r). (3.33)
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3.3 Wannier functions

The spread can now be evaluated by inserting Eqs. 3.31 and 3.32 into Eqs. 3.25, 3.26
and 3.27. However, we first have to reformulate the previous expressions for the case
of a discrete set of k-points. The following expressions have been derived in Ref [35]:

〈ũkn|∇kũkm〉 =
∑
b

wb b [〈 ũkn|ũk+bm〉 − δnm ], (3.34)

|∇k|ũkn〉|2 =
∑
b

wb [ 2− 2Re〈ũkn|ũk+bn〉 ], (3.35)

where b are vectors that connect two neighboring k-points in momentum space and
wb are the corresponding weights for the numerical integration. The spread evaluated
from a discrete set of k-points are therefore given by the scalar products 〈ũkn|ũk+bm〉,
which can be used to define a set of matrices

M (k,b)
nm = 〈ũkn|ũk+b,m〉. (3.36)

The three contributions to the spread in terms of the M (k,b) matrices finally read

ΩI =
1

Nk

∑
kb

wb
∑
n

{
1−

∑
m

|M (k,b)
mn |2

}
(3.37)

ΩD =
1

Nk

∑
kb

wb
∑
n

[
Im lnM (k,b)

nn + b · 〈r〉n
]

(3.38)

ΩOD =
1

Nk

∑
kb

wb
∑
n

∑
m6=n

|M (k,b)
mn |2, (3.39)

with

〈r〉n = − 1

Nk

∑
kb

wb b Im lnM (k,b)
nn . (3.40)

The invariant and off-diagonal spread funcionals can be more conveniently summed
up into one single contribution

ΩI/OD = ΩI + ΩOD =
1

Nk

∑
kb

wb
∑
n

(
1− |M (k,b)

nn |2
)
, (3.41)

which involves only diagonal elements of the M (k,b) matrices.

The functional dependence of the spread functional Ω[U (k)] is clear, because they
depend only on the M (k,b) matrices (Eq. 3.36) defined by the scalar products of the
rotated Bloch states (Eq. 3.21). The knowledge of the gradient of the functional
would provide a systematic way of reducing the spread of the Wannier functions by
an iterative steepest-descent algorithm.
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Gradient of the spread functional

We want now to obtain an explicit expression for the gradient of the spread functional.
For this let us consider an infinitesimal gauge transformation

U (k)
nm = δnm + dW (k)

nm , (3.42)

where W (k) is an anti-Hermitian matrix. Applying the infinitesimal gauge transforma-
tion to the Bloch states yields

|ũkn〉 → |ũkn〉+
∑
m

dW (k)
mn |ũkn〉. (3.43)

The Eq. 3.43 can be used to compute the change of the M (k,b) matrices (Eq. 3.36)
under the infinitesimal gauge transformation according to

M (k,b)
nn →

(
〈ũkn|+

∑
m

(dW (k)
mn)∗〈ũkn|

)(
|ũk+b,n〉+

∑
m

|ũk+b,n〉dW (k+b)
mn

)
(3.44)

≈ 〈ũkn|ũk+b,n〉+
∑
m

(−dW (k)
nm)〈ũkn|ũk+b,n〉+ 〈ũkn|ũk+b,n〉dW (k+b)

mn (3.45)

= M (k,b)
nn + dM (k,b)

nn , (3.46)

where the change of the M (k,b) matrices is defined by

dM (k,b)
nn = −

[
dW (k)M (k,b)

]
nn
−
[
dW (k+b)M (k+b,−b)

]∗
nn
. (3.47)

The equations 3.46 and 3.47 can be used along with Eq. 3.41 to obtain the change
of the spread ΩI/OD when applying the gauge transformation (see Ref. [35] for a
derivation)

dΩI/OD =
4

Nk

∑
kb

wbReTr
(
dW (k)R(k,b)

)
, (3.48)

where we have defined the matrix

R(k,b)
mn = M (k,b)

mn (M (k,b)
nn )∗. (3.49)

In a similar way the change of the diagonal part of the spread functional ΩD is given
by

dΩD = − 4

Nk

∑
kb

wbImTr
(
dW (k)T (k,b)

)
, (3.50)

where we used the matrices

T (k,b)
mn = R̃(k,b)

mn q(k,b)
n , (3.51)

q(k,b)
n = Im lnM (k,b)

nn + b · 〈r〉n, (3.52)

R̃(k,b)
mn =

M
(k,b)
mn

M
(k,b)
nn

. (3.53)
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3.3 Wannier functions

The gradient of the total spread functional follows from Eqs. 3.48 and 3.50 and is
given by

G(k) =
dΩ

dW (k)
=

4

Nk

∑
kb

wb

[
A
(
R(k,b)

)
− S

(
T (k,b)

)]
, (3.54)

where we used the symmetrization and anti-symmetrization operators S(B) = (B +
B†)/2i and A(B) = (B −B†)/2.

3.3.3. Strategy for parallelization

The method discussed in the previous section for the minimization of the spread of
the Wannier functions paves the way to the use of Wannier functions as a powerful
interpolation technique. However, reaching convergence on a single CPU normally
takes more time than the self-consistent calculation of the Kohn-Sham potential
with an efficiently parallelized DFT code, so that the computation of the MLWFs
constitutes a bottleneck in the computational workflow. In order to compute MLWFs
of large systems in a reasonable amount of type, we have parallelized the WANNIER90
code using the message passing interface (MPI). We discuss in the following the
parallelization strategy that has been used.

The minimization of the spread of the WFs is based on an iterative scheme. In
each cycle the code starts by evaluating the gradient of the spread functional G(k)

from which a small gauge transformation dW (k) is proposed. Then, the U (k) and
M (k,b) matrices are updated and finally the corresponding spread Ω is evaluated. It
turns out that the calculation of the new U (k) and M (k,b) matrices is by far the part
that takes most time in the loop. Therefore, an efficient speedup of the program
can be achieved by parallelization of the corresponding code section, as illustrated in
Fig. 3.1.

We show in Fig. 3.2 a benchmark of the parallel code for a film calculation with
23 atoms per unit cell, 18 Wannier functions per atom and a 8 × 8 k-mesh. The
computation time is almost entirely spent in the calculation of the U (k) and M (k,b)

matrices when the code runs on a single CPU, which justifies the parallelization scheme
described in Fig. 3.1. The time per cycle is drastically reduced by a factor of about 6, 8
and 10 when running respectively on 8, 16 and 32 nodes. The deviation from a perfect
scaling is explained by the increase of the time spent in the communication between
nodes and in the serial section. Since a few thousands of iterations are normally
needed to converge the spread of the WFs, the parallelization of the code reduces the
time of calculation from about a week to less than a day.
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M
(k,b)
in , U

(k)
in FLEURG(k)

dW (k)

M (k,b), U (k)

(k ∈ K2)
M (k,b), U (k)

(k ∈ K1)
M (k,b), U (k)

(k ∈ K3)
Parallel section

Ω

continue

criteria
fulfilled?

stop MLWFsno

yes

Figure 3.1.: Flowchart of the WANNIER90 programm [36] parallelized as part of this
thesis. The parallel section includes the calculation of the U (k) and M (k,b)

matrices, where the total set of k-vectors is split between n independent
sets Kn distributed over n nodes (n = 3 is shown as an example). Once
the parallel section ends, all U (k) and M (k,b) matrices are communicated
to each node in order to compute the spread Ω.

38



3.3 Wannier functions

1 8 16 32
Number of CPUs

0

20

40

60

80

100

120
T
im

e
 p

e
r 

cy
cl

e
 (

s)
Communication

Serial section

Parallel section

Figure 3.2.: Benchmark of the parallel WANNIER90 code for a film calculation with
23 atoms per unit cell, 18 Wannier functions per atom and a 8× 8 k-mesh.
The time per cycle of the iterative procedure for finding MLWFs is shown
for 1, 8, 16 and 32 CPUs from the iff597 Jülich cluster. The parallel
section corresponds to the calculation of the U (k) and M (k,b) matrices
as shown in Fig. 3.1. The serial section corresponds to the calculation
of G(k), dW (k) and Ω. The remaining part of the time is spent in the
communication between nodes, i.e., to send and receive the different U (k)

and M (k,b) matrices.

3.3.4. Wannier interpolation

The interpolated Bloch state for arbitrary wave vector k̃ can be obtained from the
MLWFs WnR(r) by inverse Fourier transform

ψW
nk̃

(r) =
∑
|Ri|<Rci

eik̃·RWnR(r), (3.55)

where the sum over lattice vectors can be restricted to a small number of near lattice
vectors within a range Rc

i because the Wannier functions we use are well localized. The
interpolated Bloch states ψW

nk̃
(r) are in general not yet eigen states of the Hamiltonian

since they belong to the Wannier gauge (W ). A gauge transformation V (k̃) is still

needed to go back to the original ab initio gauge (see Eq. 3.20). The V (k̃) matrices

are defined as the ones that diagonalize the interpolated Hamiltonian operator H(k̃)
and are closely related to the U (k) gauge transformation used earlier.

We focus now on the interpolation of the Hamiltonian H(k) by the Wannier in-
terpolation technique. We construct the matrix elements of the Hamiltonian in the
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basis of the interpolated Bloch states by

〈ψW
nk̃
|H|ψW

mk̃′
〉 =

∑
|Ri|,|Ri|<Rci

e−ik̃·R eik̃
′·R′〈WnR|H|WmR′〉

=
∑

|Ri|,|Ri|<Rci

e−ik̃·R eik̃
′·R′〈Wn0|H|WmR′−R〉

=
∑

|∆Ri|,|Ri|<Rci

ei(k̃
′−k̃)·R ei(k̃

′+k̃)·∆R
2 〈Wn0|H|Wm∆R〉

= Nδk̃k̃′
∑

|∆Ri|<Rci

eik̃·∆R〈Wn0|H|Wm∆R〉,

(3.56)

where N is the number lattice vectors on which the sums run and we have used the
notations ∆R = R′ − R and R = (R′ + R)/2. As expected the Hamiltonian is

diagonal with respect to k̃ also in the Wannier gauge and can therefore be written as

HW
nm(k̃) = N

∑
|∆Ri|<Rci

eik̃·∆R〈Wn0|H|Wm∆R〉 (3.57)

Finally, the Hamiltonian obtained from Eq. 3.57 can be diagonalized using the suitable

rotation matrix V (k̃), i.e.,

HH
nm(k̃) =

[
[V (k̃)]†HW (k̃)V (k̃)

]
nm

= εn(k̃) δnm, (3.58)

which yields the interpolated band structure εn(k̃).

In a similar way we obtain in the Wannier gauge the matrix elements of the ve-
locity operators

vWj,nm(k̃) = 〈ψ̃nk̃|vj|ψ̃mk̃〉 = N
∑

|∆Ri|<Rci

i∆Rje
ik̃·∆R〈Wn0|H|Wm∆R〉 (3.59)

and of the torque operator

TWi,nm(k̃) = 〈ψ̃nk̃|Ti|ψ̃mk̃〉 = N
∑

|∆Ri|<Rci

eik̃·∆R〈Wn0|Ti|Wm∆R〉, (3.60)

where the torque operator is defined by Eq. 2.12. Both operators can be rotated back
to the ab initio gauge according to

vHj,nm(k̃) =
[
[V (k̃)]† vWj (k̃)V (k̃)

]
nm

(3.61)

and
THi,nm(k̃) =

[
[V (k̃)]† TWi (k̃)V (k̃)

]
nm
. (3.62)

Therefore, the Wannier interpolation technique provides a very efficient way of com-
puting the matrix elements vHj,nm(k̃) and THi,nm(k̃), as well as the band energie εn(k̃),

for arbitrary k̃-points. This is used in the next section for the evaluation of the Kubo
formula for the torque.

40



3.4 Kubo formalism

3.4. Kubo formalism

We discuss in the following the implementation of the Kubo formula for the torque
(Eq. 2.11) within the FLAPW method. We use the constant band broadening model for
disorder that was introduced in Section 2.3. The Green functions and their derivatives
for a band broadening Γ are given in the spectral representation by

GR
k (ε) = ~

∑
m

|ψmk〉〈ψmk|
ε− εm(k) + iΓ

, (3.63)

dGR
k (ε)

dε
= −~

∑
m

|ψmk〉〈ψmk|
(ε− εm(k) + iΓ)2

, (3.64)

GA
k (ε) = ~

∑
m

|ψmk〉〈ψmk|
ε− εm(k)− iΓ

, (3.65)

dGA
k (ε)

dε
= −~

∑
m

|ψmk〉〈ψmk|
(ε− εm(k)− iΓ)2

. (3.66)

The index m runs in principle over all eigen states. However, the number of states is
defined in practice by the number of Wannier functions, which needs to be chosen
sufficiently large in order to converge the torque calculation. Inserting the previous
expressions into Eq. 2.11 yields for the three terms of the torkance tensor:

t
I(a)
ij = − e

hNk

∫ ∞
−∞

dε
df(ε)

dε

∑
k

∑
mn

〈ψnk|Ti|ψmk〉〈ψmk|vj|ψnk〉
(ε− εm(k) + iΓ)(ε− εn(k)− iΓ)

,

t
I(b)
ij =

e

hNk

∫ ∞
−∞

dε
df(ε)

dε

∑
k

∑
mn

Re[〈ψnk|Ti|ψmk〉〈ψmk|vj|ψnk〉]
(ε− εm(k) + iΓ)(ε− εn(k) + iΓ)

t
II
ij =

e

hNk

∫ ∞
−∞

dεf(ε)
∑
k

∑
mn

Re[〈ψnk|Ti|ψmk〉〈ψmk|vj|ψnk〉]
(ε− εm(k) + iΓ)(ε− εn(k) + iΓ)2

− Re[〈ψnk|Ti|ψmk〉〈ψmk|vj|ψnk〉]
(ε− εm(k) + iΓ)2(ε− εn(k) + iΓ)2

.

(3.67)
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Using Eq. 3.67 one can derive explicit equations for the parts of the torkance that are
respectively even and odd with respect to magnetization direction:

teven
ij =

e~
2πNk

∑
k

∑
n6=m

Im
[
〈ψkn|Ti|ψkm〉〈ψkm|vj|ψkn〉

]{
Γ(εkm − εkn)

[(εF − εkn)2 + Γ2] [(εF − εkm)2 + Γ2]

+
2Γ

[εkn − εkm] [(εF − εkm)2 + Γ2]

+
2

[εkn − εkm]
2 Im ln

εkm − εF − iΓ
εkn − εF − iΓ

}
,

(3.68)

todd
ij =

e~
πNk

∑
k

∑
nm

Γ2Re [〈ψkn|Ti|ψkm〉〈ψkm|vj|ψkn〉]
[(εF − εkn)2 + Γ2] [(εF − εkm)2 + Γ2]

. (3.69)

The interpretation of teven
ij and todd

ij in the limit Γ→ 0 has been discussed in Section 2.3.
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4 Impurity-driven SOTs in
the KKR method

Most ab initio calculations of SOTs in ferromagnetic bilayers are based on the con-
stant relaxation time approximation [19, 39–41]. While the importance of impurity
scattering is well known in the field of charge and spin transport [42–48], the inter-
play between different types of disorder and current-induced SOTs in ferromagnetic
heterostructures is essentially unexplored. Nonetheless, the crucial role of surfaces
and interfaces giving rise to the spin accumulation suggests an enhanced sensitivity
of the spin-orbit torque to structural and chemical types of disorder in these regions.
This line of thought is supported by the large effect of annealing on the SOTs in
AlOx/Co/Pt and MgO/CoFeB/Ta thin films [49, 50]. This calls for a first principles
theory of SOT that is able to account for an effect of specific types of defects and
impurities, especially close to interfaces.

In this section, we present an implementation of ab initio Boltzmann formalism
for the spin-orbit torque based on the Korringa-Kohn-Rostoker (KKR) Green function
method, which is ideally suited for studying the effect of impurity scattering on the
SOT. The main features of the formalism have been published in Ref. [51] and we give
here a more detailed view of the underlying theory. We first give a short introduction
to Green functions in condensed matter physics. We then present the KKR formalism,
which we use to compute the electronic structure and investigate the scattering prop-
erties off impurities. Next, we discuss the implementation of the torque and spin flux
operators in KKR, which is a central result of this thesis. Finally, we show how the
impurity-driven spin-orbit torque can be computed within the Boltzmann formalism.

4.1. Green functions in physics

A central aim of solid states physics is to predict the expectation values of physical
observables in systems in equilibrium and driven out of equilibrium by an external
perturbation. The expectation value of an arbitrary observable O can be computed
based on the Kohn-Sham eigen states using Eq. 3.12. Alternatively, one can first
compute the Green function G(r, r′, ε) of the Kohn-Sham equation defined by[

− ~2

2m
∇2
r + veff(r)− ε

]
G(r, r′, ε) = −δ(r − r′) (4.1)
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and then obtain the expectation values by integration over energies:

〈O〉 = − 1

π
Im

∫
dε θ(εF − ε)

∫ ∫
drdr′ G(r, r′, ε)O(r′, r). (4.2)

The Green function can be obtained in two different ways. The first one is to make
use of the spectral representation of the Green function

G(r, r′, ε) =
∑
i

ψi(r)ψ∗i (r
′)

ε− εi
, (4.3)

where the index i runs over all eigen states. This requires the knowledge of the eigen
functions, i.e., one first needs to solve Eq. 3.6. Another possibility is to make use of
the Dyson equation

G(r, r′, ε) = G0(r, r′, ε) +

∫
dr

′′
G0(r, r′′, ε)∆V (r′′)G(r′′, r′, ε), (4.4)

where G0 is the Green function of a reference system and ∆V (r) = veff(r)− v0(r) is
the difference between the Kohn-Sham potential (Eq. 3.9) and the potential of the
reference system.

One advantage of using the Dyson equation instead of the spectral representation
is that it can be used to obtain the Green function of an impurity embedded in an
otherwise periodic host. In fact, determining the eigen functions and the eigen energies
used in Eq. 4.3 is possible only for a purely periodic system, by making use of the
Bloch theorem, or for a system of finite range, such as an isolated molecule. Beside
this flexibility, using the Dyson equation can also be computationally more efficient if
the Green function is needed at a single energy only. This is clearly the case when one
investigates the effect of impurity scattering, where the Green function at the Fermi
energy determines the transport properties.

4.2. KKR method

The KKR method aims at computing the electronic structure of solids using the
multiple scattering theory [52, 53]. Within multiple scattering theory the problem of
finding stationary solutions to the Schrödinger equation is separated into two parts.
First, one computes the scattering properties of individual atomic potentials. Second,
one enforces the incident wave at each scattering site to be equal to the sum of the
outgoing waves from all other sites. This yields a very elegant way of determining the
stationary solutions where the scattering properties of individual atoms are separated
from the geometrical properties of the crystal, e.g., from the lattice type.

Because the separation of the local properties of individual atomic potentials and
the geometrical properties of the crystal was realized to be an efficient method for
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4.2 KKR method

computing the Green function of the solid, the KKR method was reformulated in terms
of Green functions [54–57]. Within this formalism the Green function is explicitly
written as the sum of a single-site part, which can be computed for isolated atoms, and
a multiple scattering part which accounts for all possible series of scattering events
in the crystal. Using the Green function KKR formalism, the stationary solutions
of the Schrödinger equation are no longer required to compute expectation values of
physical observables, since the Green function already contains all the information
of the system. This makes in particular the calculation of the charge density very
efficient for self-consistent DFT calculations.

Because the KKR method is based on multiple-scattering theory, the scattering
properties of impurities can be computed on the very same footing as the properties
of the host. This makes it perfectly suitable to determine the transition rates and the
relaxation times of the electronic states in the presence of impurities, which allows
us to investigate the transport properties of disordered systems beyond the constant
relaxation time approximation. This stands in sharp contrast to the case of the
FLAPW method, where there is no obvious way to go beyond purely periodic systems.

4.2.1. Voronoi construction

In the KKR formalism the space is decomposed into atomic cells centered at the nuclei.
They are found by a Voronoi construction, which assigns each point of space to a
given atomic cell1. The aim of this space decomposition is to separate the calculation
of the Green function of the crystal into two parts. First, one considers a set of local
problems defined within each individual atomic cell (see section 4.2.2), which can be
solved independently. Second, one connects the solutions of all atomic problems to
obtain the full Green function of the crystal (see section 4.2.3). This separation is
made possible by the decomposition of the globally defined real space vector x as

x = Rn + r, (4.5)

where Rn is a global vector pointing to the center of cell n and r a local vector defined
only within the cell n. The Voronoi construction of the atomic cells and the system of
coordinates are illustrated in Fig. 4.2.1.

Following the same philosophy the (Kohn-Sham) potential is divided into local cell-
dependent potentials:

V (x) =
∑
n

V n(x−Rn), V n(r) =

{
V (Rn + r) if Rn + r ∈ cell n

0 otherwise.
(4.6)

The local potentials are then expanded into real spherical harmonics:

V n(r) =
∑
L

V n
L (r)YL(r̂), (4.7)

1We use in this thesis the so-called Wiegner-Seitz cells, where each point of space is assigned to the
cell of the closest atom.
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Impurity-driven SOTs in the KKR method

Figure 4.1.: Illustration of the atomic cells (black
lines) found by the Voronoi construction
and system of coordinates used in the
KKR formalism. The vector x is a glob-
ally defined real space vector while the
vector r is defined relatively to the po-
sition Rn of cell n. The atoms of the
crystal are shown in blue.

where the variables r = |r| and r̂ = r/r are respectively the magnitude and the
direction of r.

The regular scattering solutions of single atomic potentials (see Section 4.2.2) are
expanded in a similar way:

Rn
L(r, ε) =

∑
L′

1

r
Rn
L′L(r, ε)YL′(r̂). (4.8)

In the KKR formalism the potential and the regular scattering solutions enter in
various integrals where the domain of integration has to be restricted to the volume
of a given atomic cell. This is for example the case when one computes the KKR
representation of the torque operator, see Section 4.3. A very elegant way to restrict
the integral to the volume of a given cell is to define for each cell the shape function

θn(r) =

{
1 if Rn + r ∈ cell n

0 otherwise.
(4.9)

The shape functions can be expanded into real spherical harmonics:

θn(r) =
∑
L

θnL(r)YL(r̂). (4.10)

The integration of a locally defined function Un(r) =
∑

L U
n
L(r)YL(r̂) can be easily

restricted to the volume of the cell if one replaces the function by the product

u(r) = U(r)θn(r) =
∑
LL′L′′

CLL′L′′Un
L(r)θnL(r)YL′′(r̂), (4.11)

where we have used the Gaunt coefficients

CLL′L′′ =

∫
dΩ YL(r̂)YL′(r̂)YL′′(r̂). (4.12)

4.2.2. Single-site Green function

Following the idea of Eq. 4.4, we aim at finding the single-site Green function from
the Green function of a reference system (here of free space). However, we will take a
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slightly different route than a direct use of the Dyson equation, and will make use
of the Lippmann-Schwinger equation instead. This is motivated by the fact that the
so-called scattering solutions yielded by the Lippmann-Schwinger equation provide a
simple expansion of the single-site Green function and are also used later to obtain
the full Green function of the crystal.

Expansion of the Green function of free space

In this section we remind the expressions of the eigen functions and Green function
of free electrons in spherical coordinates, which are used later on to compute the
scattering solutions of single atomic potentials. The eigen functions of free space are
given by

ϕk(r) = eik·r

=
∑
L

4πiljl(κr)YL(r̂)YL(k̂),
(4.13)

where jl(κr) are the spherical Bessel functions, YL(r̂) the real spherical harmonics and
κ =
√
ε. We have used a combined index L = {l,m} for azimuthal quantum number

l and magnetic quantum number m.

The Green function of free space is known analytically and is given by

g(r, r′, ε) = − eiκ|r−r
′|

4π|r − r′|

=
∑
L

YL(r̂)
1

rr′
gl(r, r

′, ε)YL(r̂′),

(4.14)

where the expansion coefficients

gl(r, r
′, ε) = κrr′[θ(r′ − r)jl(κr)hl(κr′) + θ(r − r′)hl(κr)jl(κr′)] (4.15)

are given by the spherical Bessel functions jl(κr) and the spherical Hankel functions
hl(κr). We use in this work the definition hl(κr) = nl(κr) − ijl(κr) for the Hankel
function, where nl(κr) is the Neumann function.

Expansion of the Green function of a finite range atomic potential

Let us now consider the problem of a finite range atomic potential V (r) embedded in
free space. The eigen functions of the corresponding Hamiltonian are obtained from
the solutions in free space (Eq. 4.13) using the Lippmann-Schwinger equation:

ψsk(r) = eik·rχs +

∫
dr′ g(r, r′, εk)V (r′)ψsk(r′), (4.16)

where εk = ~2k2/2m is the energy of a free particle of wave vector k and χs is a spin
state with spin quantum number s.
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The eigen functions computed from Eq. 4.16 are the sum of an incoming plane
wave (first term) and a scattered wave (second term). They inherit a k index from the
corresponding wavefunction of free space but are neither pure plane waves nor eigen
states of the momentum operator. Similarly, they inherit a s index but are not pure
spin states if the effect of spin-orbit coupling is included in the scattering potential
V (r).

Proceeding in the same way as in the case of free space (Eq. 4.13), the depen-
dence of the wavefunctions on the wave vector k can be expanded in real spherical
harmonics:

ψsk(r) =
∑
L

4πilRs
L(r, εk)YL(k̂), (4.17)

where Rs
L(r, εk) depends on the norm of the wave vector k via the energy parameter

εk = ~2k2/2m.

Inserting Eqs. 4.13 and 4.17 into Eq. 4.16 yields a new Lippmann-Schwinger equation
for each L-component of the wavefunctions:

Rs
L(r, ε) = jl(κr)YL(r̂)χs +

∫
dr′ g(r, r′, εk)V (r′)Rs

L(r′, ε). (4.18)

Because jl(κr)YL(r̂)χs are eigen states of the free-space Hamiltonian, it is clear that
the scattering solutions Rs

L(r, ε) are also eigen states of the perturbed Hamiltonian
but differ from ψsk(r) by the incoming boundary conditions. The scattering solutions
Rs
L(r, ε) are intensively used in the KKR formalism because they provide a very

elegant expansion of the Green function2:

Gs(r, r
′, ε) = κ

∑
L

[θ(r′ − r)RL(r)S̄L(r′) + θ(r − r′)SL(r)R̄L(r′)]. (4.19)

Both the regular and irregular scattering solutions are needed for the expansion of the
Green function in Eq. 4.19. The irregular scattering solutions SL(r) are defined by

SsL(r, ε) =
∑
L′

hl′(κr)YL′(r̂)βsLL′(ε) +

∫
dr′ g(r, r′, εk)V (r′)SsL(r′, ε) (4.20)

with

βsLL′(ε) = δL,L′χs − κ
∫
dr jl(κr)YL(r)V (r)SsL′(r, ε). (4.21)

These expressions ensures that the irregular scattering solutions correspond to the
Hankel functions (solutions of free space) outside the scattering region, as demon-
strated by Drittler [58]. This in turn ensures that the Green function computed using

2The eigen functions ψsk(r) are useful to determine the transition rates induced by a scattering
potential from a state k to a state k′. An equation similar to Eq. 4.16 is actually used in Section
4.2.5 to compute the transition rates induced by impurities in an otherwise periodic crystal.
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4.2 KKR method

Eq. 4.19 has the good boundary conditions.

The regular and irregular scattering solutions as defined by Eqs. 4.18 and 4.20 are
called right solutions. Also the left solutions are required to compute the Green
function according to Eq. 4.19, as explained in Ref. [59]. They are defined by the
expressions

R̄s
L(r, ε) = χsjl(κr)YL(r̂) +

∫
dr′ R̄s

L(r′, ε)V (r′)g(r′, r, εk), (4.22)

S̄sL(r, ε) =
∑
L′

β̄sLL′(ε)hl′(κr)YL′(r̂) +

∫
dr′ S̄sL(r′, ε)V (r′)g(r′, r, εk) (4.23)

and

β̄sLL′(ε) = δL,L′χs − κ
∫
dr R̄s

L′(r, ε)V (r)hl(κr)YL(r). (4.24)

All scattering solutions are expanded in real spherical harmonics according to

Rs
L(r, ε) =

∑
L′

1

r
Rs
L′L(r, ε)YL′(r̂) (4.25)

and

R̄s
L(r, ε) =

∑
L′

1

r
R̄s
LL′(r, ε)YL′(r̂) (4.26)

and similarly for SsL(r, ε) and S̄sL(r, ε). The corresponding expansion coefficients are
obtained by

Rs
L′L(r, ε) = JL(r, ε)δL′,L χ

s +

∫
dr′′ gl′(r, r

′′, ε)VL′L′′(r′′)Rs
L′′L(r′′, ε) (4.27)

R̄s
LL′(r, ε) = δL′,L χ

sJL(r, ε) +

∫
dr′′ R̄s

LL′′(r′′, ε)VL′′L′(r′′)gl′(r
′′, r, ε) (4.28)

SsL′L(r, ε) = HL(r, ε)δL′,L χ
s +

∫
dr′′ gl′(r, r

′′, ε)VL′L′′(r′′)SsL′′L(r′′, ε) (4.29)

S̄sLL′(r, ε) = δL′,L χ
sHL(r, ε) +

∫
dr′′ S̄sLL′′(r′′, ε)VL′′L′(r′′)gl′(r

′′, r, ε) (4.30)

where we have introduced the notations JL(r, ε) = rjl(κr) and HL(r, ε) = rhl(κr)
with κ =

√
ε. All right and left scattering solutions defined by Eqs. 4.27 to 4.30 are

respectively 2 × 1 and 1 × 2 spinors. We note the corresponding spin components
Rσ,s
L′L(r, ε), R̄s,σ

LL′(r, ε), S
σ,s
L′L(r, ε) and S̄s,σLL′(r, ε).

Atomic t-matrix

The atomic t-matrix will be an essential element in the subsequent section on multiple
scattering theory. We give its definition already here to conclude our study of scattering
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properties of single atomic potentials:

tss
′

LL′(ε) =
∑
σ,σ′

∫ R

0

dr JL(r, ε)δsσ
∑
L′′

V σσ′

L,L′′(r)Rσ′s′

L′′L′(r, ε). (4.31)

The atomic t-matrix is an essential property of a scattering potential because it gives
the behaviour of the regular scattering solutions outside the scattering region:

Rσs
L′L(r, ε) = δL′,LδsσJL(r, ε) + κ tσsL′L(ε)HL′(r, ε), r ≥ R. (4.32)

4.2.3. Multiple scattering theory

In this section we show how the scattering properties of single atomic potentials
obtained previously can be used to obtain the Green function of the whole crystal.
For this we separate the Green function into local parts defined within each atomic
cell and a non-local part that couples different cells with each other.

Expansion of the Green function of free space

The expansion of the potential-free Green function in real spherical harmonics was
already given by Eq. 4.14. We use here a somewhat more concise formulation

g(x,x′, ε) = κ
∑
L

jL(x<, ε)hL(x>, ε) (4.33)

where x< = min(x, x′) and x> = max(x, x′). We also introduced the notation
jL(x, ε) = jl(κx, ε)YL(x̂) and hL(x, ε) = hl(κx, ε)YL(x̂).

We rewrite Eq. 4.33 explicitly in terms of the vectors Rn and r to obtain a form that
is suitable for multiple scattering theory. This can be done using a formula to expand
Hankel functions centered around Rn into Bessel functions centered around Rn′ :

hL(r′ +Rn′ −Rn, ε) =
1

κ

∑
L′

gnn
′

LL′(ε)jL′(r′, ε). (4.34)

The coefficients gnn
′

LL′(ε) are called structure constants and are given by

gnn
′

LL′(ε) = 4π(1− δn,n′)κ
∑
L′′

il−l
′+l′′CLL′L′′hL′′(Rn −Rn′ , ε), (4.35)

where CLL′L′′ =
∫
dΩ YL(r̂)YL′(r̂)YL′′(r̂) are the Gaunt coefficients. Inserting Eq. 4.34

into Eq. 4.33 yields the expansion of the potential-free Green function in terms of the
variables Rn and r:

g(r +Rn, r
′ +Rn′ , ε) = δnn′κ

∑
L

jL(r<, ε)hL(r>, ε) +
∑
LL′

jL(r, ε)gnn
′

LL′(ε)jL′(r′, ε)

(4.36)
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Expansion of the Green function for a periodic potential

An equation similar to Eq. 4.36 can be found for the Green function of the periodic
potential [60]:

G(r +Rn, r
′ +Rn′ , ε) = δnn′Gs(r, r

′, ε) +
∑
ΛΛ′

RΛ(r, ε)Gnn′

ΛΛ′(ε)R̄Λ′(r′, ε), (4.37)

where Gs(r, r
′, ε) is the single site Green function defined by Eq. 4.19 and Λ = (L, s).

The second term in Eq. 4.37 is given by the matrix elements of the structural Green
function Gnn′

ΛΛ′ , which can be computed from the structure constants (see Eq. 4.35) by
the following Dyson equation:

Gnn′

ΛΛ′(ε) = gnn
′

ΛΛ′(ε) +
∑

n′′Λ′′Λ′′′

gnn
′′

ΛΛ′′(ε) tn
′′

Λ′′Λ′′′(ε)Gn′′n′

Λ′′′Λ′(ε). (4.38)

It is interesting to note that while the structure constants vanish for n = n′ in Eq. 4.35,
the structural Green function does not, i.e., the multiple scattering term of Eq. 4.37
gives a contribution to the total Green function for n = n′. Therefore, the modification
of charge density at site n due to the presence of the surrounding atoms is interpreted
in the KKR formalism as electrons that leave the site n and then come back after a
series of scattering events on the other atoms of the crystal. Clearly, no back scatter-
ing can happen in the case of free space, which explains the factor (1−δn,n′) in Eq. 4.35.

In a periodic crystal the structural Green function clearly depends only on the
relative position of the sites Rn − Rn′ . We define the Fourrier transform of the
structural Green function

GΛΛ′(k, ε) =
∑
nn′

Gnn′

ΛΛ′(ε) eik·(Rn−Rn′ ), (4.39)

which can also be computed using a Dyson equation

GΛΛ′(k, ε) = gΛΛ′(k, ε) +
∑

Λ′′Λ′′′

gΛΛ′′(k, ε) tΛ′′Λ′′′(ε)GΛ′′′Λ′(k, ε). (4.40)

The Fourier transform of the Green function of the reference system (e.g. free space)

gΛΛ′(k, ε) =
∑
nn′

gnn
′

ΛΛ′(ε) eik·(Rn−Rn′ ) (4.41)

has to be computed first. The sum over n and n′ can be restricted to a finite number
of sites for a numerical estimate of gΛΛ′(k, ε)3.

3In the Jülich KKR code we employ the so-called tight-binding or screened KKR formalism, where
we use instead of free space a lattice of repulsive potentials as reference system. This drastically
accelerates the decay of the Green function elements gnn

′

ΛΛ′(ε) as a function of Rn −Rn′ , which
strongly reduces the computational cost for computing the Fourier transform of the Green function
of the reference system gΛΛ′(k, ε).
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KKR secular equation

In this section we aim at finding the stationary solutions of the Schrödinger equation
and the corresponding eigen energies for electrons in a periodic crystal by enforcing
the incident wave at each site to be equal to the sum of the outgoing waves from all
other sites. For this let us consider the wavefunction ψk as the sum of an incoming
wave and a scattered wave at site n:

ψk(r +Rn) = ψin,n
k (r +Rn) + ψsc,n

k (r +Rn) (4.42)

where ψin,n
k (r +Rn) and ψsc,n

k (r +Rn) can be expanded respectively into Bessel and
Hankel functions:

ψin,n
k (r +Rn) =

∑
L

cin,n
kL jL(r, ε) (4.43)

ψsc,n
k (r +Rn) =

∑
L′

csc,n
kL′hL′(r, ε) (4.44)

The incoming wave can be regarded as the sum of the scattered waves from all other
sites n′ 6= n, i.e.,

ψin,n
k (r +Rn) =

∑
n′ 6=n

ψsc,n′

k (r +Rn)

=
∑
n′ 6=n

∑
L′

csc,n′

kL′ hL′(r +Rn −Rn′ , ε)

=
1

κ

∑
n′ 6=n

∑
LL′

csc,n′

kL′ g
n′n
L′L(ε)jL(r, ε),

(4.45)

where we used for the last line the transformation formula for Hankel functions
(Eq. 4.34). Comparing Eqs. 4.43 and 4.45 yields by identification

cin,n
kL =

1

κ

∑
n′ 6=n

∑
L′

csc,n′

kL′ g
n′n
L′L(ε). (4.46)

For the wavefunction to be a stationary solution it has to fulfil the Bloch theorem,
which implies that

csc,n′

kL′ = csc,n
kL′ e

ik·(Rn′−Rn). (4.47)

Inserting Eq. 4.47 into Eq. 4.46 yields a relation between the coefficients of the
incoming and scattered wavefunctions at the same site n:

cin,n
kL =

1

κ

∑
L′

csc,n
kL′

∑
n′ 6=n

gn
′n

L′L(ε)eik·(Rn′−Rn). (4.48)

We define the Fourier transform of the structure constant

gL′L(k, ε) =
∑
n′ 6=n

gn
′n

L′L(ε)eik·(Rn′−Rn). (4.49)
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to obtain the relation between incoming and scattered wavefunctions as a simple
matrix multiplication:

cin,n
kL =

1

κ

∑
L′

csc,n
kL′ gL′L(k, ε), (4.50)

The relation between incoming and scattered waves given by Eq. 4.50 relies solely on
the geometry of the system. On the other hand, the scattered wave is also related to
the incoming wave by a Lippmann-Schwinger equation. This yields a second relation
between wavefunction coefficients that is given by the t-matrix:

csc,n
kL = κ

∑
L′

tLL′(ε)cin,n
kL′ , (4.51)

Combining Eqs. 4.50 and 4.51 leads to the KKR secular equation∑
Λ′

[
δΛΛ′ −

∑
Λ′′

gΛΛ′′(k, ε)tΛ′′Λ′(ε)
]
cin
kΛ′ = 0, (4.52)

where we have dropped the arbitrary index n. This equation has solutions only for
certain pairs of k and ε, corresponding to the energy of the bands. This implies to
scan all energies for a given k-point when performing a band structure calculation.
This is in contrast to the FLAPW method (see Section 3), where a single eigen value
problem is solved at each k-point to obtain the band energies.

We aim now at finding the eigen states ψk in terms of the regular scattering so-
lutions Rµ

Λ(r, ε) (Eq. 4.18). We make the ansatz

ψk(r +Rn) =
∑

Λ

cnkΛRΛ(r, ε), r +Rn ∈ cell n (4.53)

and we explain in the following how to find the expansion coefficients cnkΛ. Starting
again from Eq. 4.42, we expand explicitly the eigen state into Bessel and Hankel
functions:

ψk(r +Rn) =
∑

Λ

cin,n
kΛ jΛ(r, ε) +

∑
Λ′

csc,n
kΛ′hΛ′(r, ε). (4.54)

Using Eq. 4.51 again yields:

ψk(r +R) =
∑

Λ

{∑
Λ′

jΛ(r, ε) δΛΛ′ + κ hΛ′(r, ε) tLL′

}
cin,n
kΛ (4.55)

The term appearing in the bracket in Eq. 4.55 can be identified to be the regular
scattering solution RΛ(r, ε) outside the scattering region, see Eq. 4.32. Because the
wavefunction and the regular scattering solutions must be continuous at the cell
boundary, the expansion coefficients cnkΛ in Eq. 4.53 have to be equal to cin,n

kΛ .
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4.2.4. Generalization to multiple atoms in the unit cell

This thesis is dedicated to the calculation of spin-orbit torques in ferromagnetic
bilayers. This class of systems obviously exhibit more than a single atom per unit cell,
which requires a generalization of the expressions used in the previous section. We
give here the general expressions for the most important quantities that will be used
in the subsequent chapters.

The decomposition of the real space vector x defined by Eq. 4.5 requires to use
an additional index µ to label the atom type within a unit cell. This decomposition
in the case of multiple atoms in the unit cell reads

x = Rn +Rµ + r, (4.56)

where n is the index for the unit cell and µ the index for the atom type within the
unit cell.

The potential of the crystal (Eq. 4.57) is now divided into cell- and atom-dependent
potentials according to

V (x) =
∑
nµ

V nµ(x−Rn −Rµ), (4.57)

V nµ(r) =

{
V (Rn +Rµ + r) if r ∈ cell {n, µ}
0 otherwise.

(4.58)

The corresponding scattering solutions Rs,µ
L (r, ε) and Ss,µL (r, ε) are obtained from

Eqs. 4.18 and 4.20 by replacing the potential by V nµ(r).

This yields for the t-matrix (Eq 4.31) and the structure constants (Eq 4.35) the
expressions

tss
′,µ

LL′ (ε) =
∑
σ,σ′

∫ R

0

dr JL(r, ε)δsσ
∑
L′′

V σσ′,µ
L,L′′ (r)Rσ′s′,µ

L′′L′ (r, ε) (4.59)

and

gnn
′,µµ′

LL′ (ε) = 4π(1− δn,n′δµ,µ′)
∑
L′′

il−l
′+l′′CLL′L′′hL′′(Rn +Rµ −Rn′ −Rµ′ , ε). (4.60)

The secular equation (Eq. 4.52) in the case of multiple atoms in the unit cell takes
the form ∑

Λ′µ′

[
δΛΛ′δµµ′ −

∑
Λ′′

gµµ
′

ΛΛ′′(k, ε)t
µ′

Λ′′Λ′(ε)
]
cµ

′

kΛ′ = 0, (4.61)

and the expansion of the wavefunction (Eq. 4.53) is given by

ψk(r +Rµ +Rn) =
∑

Λ

cµkΛR
µ
Λ(r, ε), r +Rµ +Rn ∈ cell {n, µ}. (4.62)

This expansion of the wavefunction will be used in Sections 4.2.5 and 4.3.
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4.2.5. Scattering off impurities

When the periodicity of the crystal is broken by the presence of an impurity, the eigen
states can not be found from Eq. 4.52. Instead, the calculation of the eigen states of
an impurity embedded in a periodic host has to be considered as a scattering problem.
It is conceptually similar to the determination of the scattering solutions of individual
atomic potentials from Eqs. 4.18 and 4.20, but differs by the boundary conditions.
While the use of products of spherical harmonics with Bessel and Hankel functions in
Eqs. 4.18 and 4.20 was motivated by the use of free space as reference system, it is now
natural to use the Bloch states of the periodic host as incoming boundary conditions.

We define the scattering solutions of the impurity potential by

ψimp
k (x) = ψk(x) +

∫
dr′G(x,x′)∆V (x′)ψimp

k (x′), (4.63)

where ψk(x) are the host eigen states (Eq. 4.53), G(x,x′) is the host Green function
(Eq. 4.37) and ∆V (x′) is the difference between host and impurity potentials. The
index k used for the impurity scattering solution ψimp

k (x) is to be understood as a
label inherited from the host wavefunction. It is not a good quantum number for the
impurity scattering solutions since they do not fulfil the Bloch theorem.

In practice we use a slightly different form of the Lippmann-Schwinger equation:

ψimp
k (x) = ψk(x) +

∫
dr′Gimp(x,x′)∆V (x′)ψk(x′), (4.64)

where Gimp(x,x′) is the impurity Green function, which is connected to the host
Green function by a Dyson equation.

It is fruitful to introduce the scattering amplitudes (T -matrix) for the Bloch states:

Tk′k =

∫
d3x ψ†k′(x)∆V (x)ψimp

k (x). (4.65)

Beside the insight it gives on the scattering properties of impurities, the T -matrix
yields simple expressions for the transition rates of wave packets in a solid in the
presence of a finite concentration of impurities. The expression is valid in the dilute
limit and reads [45]

Pkk′ =
2π

~
Nδ(ε(k)− ε(k′))c|Tkk′ |2, (4.66)

where N is the number of atoms in the crystal and c is the concentration of impurities.
The corresponding relaxation times are given by

τ−1
k =

∑
k′

Pk′k. (4.67)
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Impurity-driven SOTs in the KKR method

These expressions for the transition rates and the relaxation times will be used in Sec-
tion 4.4 within the Boltzmann formalism to investigate the impurity-driven spin-orbit
torques in disordered bilayers.

It is straightforward to generalize Eq. 4.68 to the case of different types of impurities
by

Pkk′ =
2π

~
Nδ(ε(k)− ε(k′))

∑
m

cm|Tmkk′ |2, (4.68)

where cm and Tmkk′ are the concentration and the scattering amplitudes for impurity
type m. A similar expression has been used successfully in the past for the study of
the spin Hall and spin Nernst effects in ternary alloys [61].

We now discuss the implementation of Eqs. 4.64 and 4.65 in the KKR formalism. A
difficulty for solving Eq. 4.64 is that the Bloch states ψk are expanded into the regular
scattering solutions of the host Rµ

Λ(r, ε) (Eq. 4.53), while the impurity scattering
solutions ψimp

k are expanded into the regular scattering solutions of the perturbed
atomic potentials Rimp,µ

Λ (r, ε) 4, defined by

Rimp,i
Λ (r, ε) = jl(κr)YL(r̂)χs +

∫
dr′ g(r, r′, εk)V

imp(r′)Rimp,i
Λ (r′, ε). (4.69)

The corresponding expansion for the impurity scattering solutions ψimp
k reads

ψimp(r +Rµ) =
∑

Λ

cimp,i
Λ Rimp,i

Λ (r, ε), r ∈ Vi (4.70)

where the index i is used to label the atoms in the impurity region.

Most convenient is to obtain the coefficients cimp,i
Λ in terms of the coefficients cµΛ

of the expansion of the Bloch states (Eq.4.53). The following expression was derived
by [62]:

cimp,i
Λ =

∑
Λ′,i′

{
δΛΛ′δii′ +

∑
Λ′′

Gimp,ii′

ΛΛ′′ ∆timp,i′

Λ′′Λ′

}
cµ

′

Λ′e
ik·Rn′ (4.71)

where the equality ci
′

Λ′ = cµ
′

Λ′eik·Rn′ was used. The t-matrix elements ∆timp,i′

Λ′′Λ′ are defined
by

∆timp,i
Λ,Λ′ =

∑
Λ′′Λ′′′

∫
dr R̄i

ΛΛ′′(r)∆V i
Λ′′Λ′′′(r)Rimp,i

Λ′′′Λ′(r) (4.72)

4An expansion of the impurity scattering solutions ψimp
k into the regular scattering solutions of

the host RµΛ(r, ε) would in principle be possible, but the number of regular scattering solutions
needed would be higher for the same accuracy.
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4.3 KKR representation of operators

and Gimp,ii′

ΛΛ′ are the matrix elements of the structural impurity Green function5.

The structural host Green function Gii′

ΛΛ′ and impurity Green function Gimp,ii′

ΛΛ′ are
related by a Dyson equation

Gimp,ii′

ΛΛ′ = Gii′

ΛΛ′ +
∑

Λ′′Λ′′′

∑
i′′

Gii′′

ΛΛ′′∆ti
′′

Λ′′Λ′′′G
imp,i′′i′

Λ′′′Λ′ , (4.73)

where ∆ti
′′

Λ′′Λ′′′ = timp,i′′

Λ′′Λ′′′ − thost,i′′

Λ′′Λ′′′ with both t-matrices computed according to Eq. 4.31.

Now that we know how to compute the expansion coefficients of the impurity scattering
solutions cimp,i

Λ , it is straightforward to obtain the scattering amplitudes

Tk′k =
∑
ΛΛ′

∑
i

[cik′,Λ]∗∆i
ΛΛ′c

imp,i
k,Λ′ , (4.74)

where we have defined the ∆-matrix

∆i
Λ,Λ′ =

∑
Λ′′Λ′′′

∫
dr [Ri

ΛΛ′′(r)]∗∆V i
Λ′′Λ′′′(r)Rimp,i

Λ′′′Λ′(r). (4.75)

Combining Eqs. 4.71 and 4.74 yields a very elegant expression for the scattering
amplitudes where only the expansion coefficients of the Bloch states enter:

Tk′k =
∑
ΛΛ′

∑
i,i′

[cik′,Λ]∗T i,i
′

ΛΛ′c
i′

k,Λ′ . (4.76)

We have used in the previous equation the {Λ, i}-representation of the T -matrix

T i,i
′

ΛΛ′ =
∑
Λ′′

∆i
Λ,Λ′′

(
δii′δΛ

′′Λ′ +
∑
Λ′′′

Gimp,ii′

Λ′′Λ′′′ ∆t
imp,i′

Λ′′′,Λ′

)
, (4.77)

which is independent of k and therefore must be computed only once.

4.3. KKR representation of operators

We aim at computing the torque and the spin accumulation induced by an external
electric field. This implies to be able to compute the torque and spin expectation
values of individual electronic states. In this section we derive the expressions for the
torque and spin operators in the KKR formalism. We then proceed with the spin
flux operator, which is useful to determine how much of the torque arises from spin
currents. Finally, we discuss how the velocity of the states can be obtained from the
relativistic velocity operator (α-matrix).

5The full expression for the impurity Green function reads Gimp(r+τi, r
′ +τi′) = δii′G

imp,i
s (r, r′) +∑

ΛΛ′
Rimp,i

Λ (r) Gimp,ii′

ΛΛ′ R̄imp,i′

Λ′ (r′), but the single-site term is not needed to determine the scattering

amplitudes Tkk′ . It is however used to compute the charge density when the impurity potential
is determined self-consistently, see [59].
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Impurity-driven SOTs in the KKR method

4.3.1. Spin operator

The contribution of a state to the i-th component of the spin at the atom µ is given
by:

〈σiµ〉k = 〈ψk|σiµ|ψk〉 =

∫
Vµ

d3r [ψk(r)]†σiψk(r), (4.78)

where the integration is performed over the volume of the atomic cell Vµ. In the
KKR formalism the wavefunction ψk at site µ is expanded into the regular scattering
solutions of the corresponding atomic potential (Eq. 4.53). The spin expectation value
then reads

〈σiµ〉k =
∑
Ls

∑
L′s′

[cs,µL ]∗cs
′,µ
L′

∫
Vµ

d3r θµ(r)[Rs,µ
L (r, ε)]†σiR

s′,µ
L′ (r, ε), (4.79)

where the integration could be extended to entire space by the introduction of the
shape function θµ(r) (Eq. 4.9) in the integral. The previous equation can be written
in the form of a matrix multiplication:

〈σiµ〉k =
∑
Ls

∑
L′s′

[cs,µL ]∗Σss′,µ
LL′,i c

s′,µ
L′ , (4.80)

by defining the matrix elements [62, 63]

Σss′,µ
LL′,i =

∫
Vµ

d3r θµ(r)[Rs,µ
L (r, ε)]†σiR

s′,µ
L′ (r, ε). (4.81)

Both the shape function and the regular scattering solutions are expanded into
spherical harmonics according to Eqs. 4.10 and 4.25. The spin matrix elements in the
KKR formalism finally read

Σss′,µ
LL′,i =

∑
L1L2L3

CL1,L2,L3

∫
dr θµL1

(r)[Rs,µ
L2L

(r)]†σiR
s′,µ
L3L′(r), (4.82)

were CL1,L2,L3 are the Gaunt coefficients (Eq. 4.12). Since the regular scattering
solutions are always computed for the eigen energy of state ψk, we have omitted the
energy parameter ε in Eq. 4.82.

4.3.2. Torque operator

According to Eq. 2.12, the components of the torque operator are given by:

Ti(r) = −µB
∑
jk

εijkσjBk(r), (4.83)

where εijk is the Levi-Civita symbol and the indices i, j and k are x, y or z. The
derivation of the torque matrix elements is somewhat more complicated than for the
spin matrix elements, because the exchange field B(r) enters explicitly the definition
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4.3 KKR representation of operators

of the torque operator in Eq. 4.83. In the following we show in detail how to obtain
the torque matrix elements in the KKR formalism.

The torque exerted on a state at the atom µ is given by:

〈Tiµ〉k = 〈ψk|Tiµ|ψk〉

= −µB
∑
jk

εijk

∫
Vµ

d3r [ψk(r)]†σjψk(r)Bk(r).
(4.84)

Similarly to Eq. 4.80 this can be cast into the form

〈Tiµ〉k =
∑
Ls

∑
L′s′

[cs,µL ]∗ Tss
′,µ

LL′,i c
s′,µ
L′ , (4.85)

where the matrix elements Tss
′,µ

LL′,i are defined by

Tss
′,µ

LL′,i = −µB
∑
jk

εijk

∫
Vµ

d3r [Rs,µ
L (r)]†σjR

s′,µ
L′ (r)Bµ

k (r). (4.86)

Using the shape functions θµ(r) of the voronoi cells (Eq. 4.9), we can extend the space
integration to the entire space. This yields the expression

Tss
′,µ

LL′,i = −µB
∑
jk

εijk

∫
d3r θµ(r)[Rs,µ

L (r)]†σjR
s′,µ
L′ (r)Bµ

k (r). (4.87)

where we introduced the notation Bµ
k (r) = Bk(r +Rµ).

The scattering solutions Rs,µ
L (r), the shape functions θµ(r) and the exchange field

Bµ
k (r) are all expanded in real spherical harmonics as:

Rs,µ
L (r) =

∑
L2

1

r
Rs,µ
L2L

(r)YL2(r̂), (4.88)

θµ(r) =
∑
L1

θµL1
(r)YL1(r̂), (4.89)

Bµ
k (r) =

∑
L4

Bµ
L4,k

(r)YL4(r̂). (4.90)

To avoid the integration of the product of four spherical harmonics, we first compute
the convoluted exchange field bµk(r) = Bµ

k (r)θµ(r) and then replace the two spherical
harmonics expansions of Bµ

k (r) and θµ(r) by a single one for bµk(r):

bµk(r) =
∑
L5

bµL5,k
(r)YL5(r̂). (4.91)

Inserting Eqs. 4.88, 4.89 and 4.91 into Eq. 4.87 yields the torque matrix elements in
the KKR formalism:

Tss
′,µ

LL′,i = −µB
∑
jk

εijk
∑

L2L3L5

CL2L3L5

∫
dr [Rs,µ

L2L
(r)]†σjR

s′,µ
L3L′(r)b

µ
L5,k

(r). (4.92)

59



Impurity-driven SOTs in the KKR method

4.3.3. Spin flux operator

We derive in the following the expression for the spin flux operator, which is useful to
determine how much of the torque arises from spin currents. The contribution of a
state to the spin flux flowing into the atom µ is given by:

〈Qiµ〉k = −µB~
2ie

∫
Sµ

dS · [ψ†k(r)σi∇ψk(r)−∇ψ†k(r)σiψk(r)], (4.93)

where the surface Sµ corresponds to the muffin-tin (MT) sphere of the atom µ.

In the KKR representation the expectation values of the spin-flux operator can
be cast into the form

〈Qiµ〉k =
∑
Ls

∑
L′s′

[cs,µL ]∗ qss
′,µ

LL′,i c
s′,µ
L′ , (4.94)

where the matrix elements qss
′,µ

LL′,i are defined by

qss
′,µ

LL′,i = −µB~
2ie

∫
Sµ

dS ·
[
[Rs,µ

L (r)]†σi∇Rs′,µ
L′ (r)− [∇Rs,µ

L (r)]†σiR
s′,µ
L′ (r)

]
. (4.95)

Because the integration is performed on the MT sphere, radial and angular variables
can be separated. The infinitesimal surface elements in Eq. 4.95 take the form
dS = r2

MTeΩdΩ, where eΩ is a unit vector pointing towards the center of the MT.
The integration over the surface of the MT can be replaced by an integration over
the solid angle Ω and the ∇ operator can be replaced by a simple derivative with
respect to r (with a minus sign). Using the expansion of the scattering solutions in
spherical harmonics the orthogonality of the spherical harmonics gives after a few
lines of calculus the expression for the spin flux matrix elements

qss
′,µ

LL′,i = −µB~
2ie

∑
L1

[
[Rs,µ

L1L
(r)]†σi

∂

∂r

(
Rs′,µ
L1L′(r)

)
−Rs′,µ

L1L′(r)σi
∂

∂r

(
[Rs,µ

L1L
(r)]†

)]
r=rMT

.

(4.96)

4.3.4. Relativistic velocity operator (α-matrix)

The definition of an appropriate velocity operator is essential for the investigation
of transport properties of solids. In relativistic quantum mechanics the information
on the velocity of a state is encoded in the coupling between the four components
of the wavefunction6 ψk(r) = (ψ↓kL(r), ψ↑kL(r), ψ↓kS(r), ψ↑kS(r))T . The exact velocity
operator is given in units of the velocity of light by the α-matrix:

αi =

(
0 σi
σi 0

)
. (4.97)

6Although not specified in the previous sections, the scattering solutions defined by Eqs. 4.18, 4.20,
4.22 and 4.23 are four-component spinors computed in the scalar relativistic approximation, see
Ref [59]. Because the small component is normally much smaller than the large component, it is
not essential for the spin, torque and spin flux operators, but is crucial for the α-matrix, which
couples both components.
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4.3 KKR representation of operators

The velocity for state ψk(r) is given by the expectation value

〈ψ|vi|ψ〉 =

∫
u.c.

d3r ψ†(r)cαiψ(r) (4.98)

where c is the velocity of light.

Using the element-wise notation for the α-matrix, one obtains

〈ψ|vi|ψ〉 =
∑
σβ

∑
σ′β′

cασβ,σ
′β′

i

∫
u.c.

d3r [ψσβ(r)]∗ψσ
′

β′ (r) (4.99)

where σ = {↓, ↑} is the spin index and β = {large, small} is the index for large and
small components.

Expanding the wavefunction in terms of the regular scattering solutions Rs,µ
L′ (r, ε)

(Eq. 4.18) and introducing the shape functions θµ(r) (Eq. 4.9) in the integration yields

〈ψ|vi|ψ〉 =
∑
µ

∑
Ls

∑
L′s′

[cs,µL ]∗cs
′,µ
L′

∑
σβ

∑
σ′β′

cασβ,σ
′β′

i

∫
u.c.

d3r θµ(r)[Rσβs,µ
L (r)]∗Rσ′β′s′,µ

L′ (r)

(4.100)
Proceeding in a similar way as for the spin and torque operators, one finds the
following expression for the KKR representation of the velocity operator in terms of
the α-matrix :

Vss
′,µ

LL′,i =
∑
σβ

∑
σ′β′

cασβ,σ
′β′

i

∑
L1L2L3

CL1,L2,L3

∫
dr θµL1

(r)[Rσβs,µ
L2L

(r)]∗Rσ′β′s′,µ
L3L′ (r). (4.101)

The expectation values then read

〈ψ|vi|ψ〉 =
∑
µ

∑
Ls

∑
L′s′

Vss
′,µ

LL′,i[c
s,µ
L ]∗cs

′,µ
L′ . (4.102)

In the equation Eq. 4.100, it is important to note that Rs,µ
L (r) and Rs′,µ

L′ (r) must be
approximated solutions of the Dirac equation for the single site problem (formulated
in terms of a Lippmann-Schwinger equation). In the way the scalar relativistic
approximation is implemented in the Jülich KKR code, the scattering solutions
Rs,µ
L (r) need to be slightly modified in order to provide an approximate solution to

the Dirac equation. We thus need a new set of scattering solutions

R̃s,µ
L (r) =

(
R̃s,µ,large
L (r)

R̃s,µ,small
L (r)

)
=

(
Rs,µ,large
L (r)

−iσ·r
r
Rs,µ,small
L (r)

)
, (4.103)

which can be used to compute the matrix elements of the velocity operator from the
α-matrix.
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Using the expansion

σ · r
r

=

√
4π

3

(
Y1,1(r̂)σx + Y1,−1(r̂)σy + Y1,0(r̂)σz

)
(4.104)

yields the following expression for the small component of the new scattering solutions:

R̃s,µ,small
L (r) =

∑
L′′

1

r
(−i)

√
4π

3

[(
Y1,1(r̂)YL′′(r̂)σx + Y1,−1(r̂)YL′′(r̂)σy

+ Y1,0(r̂)YL′′(r̂)σz

]
Rs,µ,small
L′′L (r).

(4.105)

The products of spherical harmonics can be themselves expanded in spherical harmonics
using the Gaunt coefficients, which leads to the expression

R̃s,µ,small
L (r) =

∑
L1

1

r
YL1(r̂)

[
− i
√

4π

3

∑
L′′

(
GL1L′′(1,1)σx +GL1L′′(1,−1)σy

+GL1L′′(1,0)σz

)
Rs,µ,small
L′′L (r)

]
,

(4.106)

where L1 should run in principle from 1 to (lmax + 1)2 + 4 but can be restricted to
(lmax + 1)2 for consistency with the rest of the code.

In the previous equation one can easily identify the radial parts of the scattering
solutions

R̃s,µ,small
L1L

(r) = −i
√

4π

3

∑
L′′

(
GL1L′′(1,1)σx +GL1L′′(1,−1)σy +GL1L′′(1,0)σz

)
Rs,µ,small
L′′L (r).

(4.107)

4.4. Boltzmann formalism for the torque

The Heisenberg uncertainty principle states that position and momentum of a particle
cannot be known simultaneously. However, it is possible to build a wavepacket of
Bloch states with a width ∆k in reciprocal space, whose wavefunction spreads only
over a distance ∆R ∼ 1/∆k in real space. Such a wavepacket of Bloch states taken
from band n obeys the following semiclassical equations of motion :

ṙ = vn(k) =
1

~
∂εn(k)

∂k
, (4.108)

~̇k = −eE(r, t) +
e

c
vn(k)×H(r, t). (4.109)

We can define the distribution function fn(r,k, t) so that fn(r,k, t)drdk/(2π)3 gives
the number of electrons in band n in a volume drdk of the semiclassical phase space
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4.4 Boltzmann formalism for the torque

at time t. In the absence of collisions, the motion of the electrons in phase space is
fully defined by the equations Eqs. 4.108 and 4.109. The distribution function then
obeys the relation

dfn
dt

=
∂fn
∂t

+ ṙ ∇rfn + k̇ ∇kfn. (4.110)

It is important to note at that point that the semiclassical equations of motions
Eqs. 4.108 and 4.109 rely on the bandstructure εn(k) of a periodic system and
therefore can not account for scattering on defects. Nevertheless, it is crucial to
incorporate the effect of scattering on the distribution function, since the absence of
scattering would lead to unphysical results, such as infinite conductivity in metals.
The Eq. 4.110 then becomes

∂fn
∂t

+ ṙ ∇rfn + k̇ ∇kfn =
∑
n′k′

(
gn′(k′)P nn′

kk′ − gn(k)P n′n
k′k

)
, (4.111)

where P nn′

kk′ is the rate of the transition from the state n′k′ into the state nk that is
induced by the scattering off impurities. We have defined the deviation of the distribu-
tion function gn(k) = fn(k)− f 0

n(ε(k)) as the difference between the non-equilibrium
distribution function fn(k) and the equilibrium Fermi-Dirac distribution f 0

n(ε(k)).

In the case of a time-independent homogeneous electric field, the Eq. 4.111 sim-
plifies to

k̇ ∇kfn =
∑
n′k′

(
gn′(k′)P nn′

kk′ − gn(k)P n′n
k′k

)
. (4.112)

For a weak electric field, the gradient of the distribution function ∇kfn can be well

approximated by ∂f0
n(ε(k))
∂ε(k)

vn(k). This yields the relation

−e∂f
0
n(ε(k))

∂ε(k)
vn(k) ·E =

∑
n′k′

(
gn′(k′)P nn′

kk′ − gn(k)P n′n
k′k

)
, (4.113)

where vn(k) = ∇kεn(k) is the group velocity.

For a weak electric field, the variation of the distribution function gn(k) is expected
to be linear in E and sizeable only close to the Fermi energy, which suggests the
following Ansatz:

gn(k) = e
∂f 0(εn(k))

∂εn(k)
λn(k) ·E. (4.114)

Inserting Eq. 4.114 into Eq. 4.113 yields a self-consistent equation for the vector mean
free path λ:

λ(k) = τk

(
v(k) +

∑
k′

Pkk′λ(k′)

)
, (4.115)

where τk is the relaxation time for state k as defined by Eq. 4.67. We drop the
band indices because the transition rates Pkk′ are energy-conserving. The equation
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for the mean free path can be solved numerically on the Fermi surface. It is then
straightforward to find the variation of the distribution function g(k) according to
Eq. 4.114.

The torque induced by the electric field on atom µ is given by

Tµ = − 1

SBZ

∑
n

∫
d2k gn(k)〈T µ〉nk

= − 1

SBZ

∑
n

∫
d2k e

∂f 0(εn(k))

∂εn(k)

(
λn(k) ·E

)
〈T µ〉nk,

(4.116)

where 〈T µ〉nk is the torque expectation value of the state computed using Eq. 4.85
and SBZ is the surface of the Brillouin zone. From this point we restrict the discussion
to the case of two-dimensional systems, for which the integral in Eq. 4.116 is per-
formed on the two-dimensional Brillouin zone. The generalization of the expressions
for the torque, spin accumulation and spin fluxes for the three-dimensional case is
straightforward. The minus sign in Eq. 4.116 is used to obtain the torque exerted by
the electronic state on the magnetization, while the torque operator is defined as the
torque exerted by the magnetization on the electronic states.

Because the derivative of the Fermi-Dirac distribution ∂f0(εn(k))
∂εn(k)

is significant only close
to the Fermi energy, the domain of integration in Eq. 4.116 can be restricted to narrow
regions of k-space enclosing the isoenergy lines. This allows us to decompose the
integral into a first integration over the isoenergy lines (Fermi surface) and a second
integration in the perpendicular direction. The infinitesimal elements d2k are then
replaced by the elements dk‖ and dk⊥ that are respectively parallel and perpendicular
to the isoenergy lines. This yields the expression

Tµ = − 1

SBZ

∑
n

∫
FS

dk‖
∫
dk⊥ e

∂f 0(εn(k))

∂εn(k)

(
λn(k) ·E

)
〈T µ〉nk. (4.117)

Replacing the energy derivative of the Fermi-Dirac distribution ∂f0(εn(k))
∂εn(k)

by −δ(k⊥ −
kF)/(~|vn(k)|), we can rewrite the torque exerted on atom µ as a Fermi surface
integral:

Tµ =
e

~SBZ

∫
FS

dk

|v(k)|

(
〈T µ〉k ⊗ λ(k)

)
E. (4.118)

The torque in a ferromagnet/heavy metal bilayer usually has a large contribution
arising from spin currents. It is therefore very instructive to compare the atom-resolved
torques to the spin fluxes on the corresponding atoms. A similar equation to Eq. 4.121
can be found for the spin flux absorbed by the atom µ:

Qµ = − e

~SBZ

∫
FS

dk

|v(k)|

(
〈Qµ〉k ⊗ λ(k)

)
E, (4.119)
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and similarly for the spin accumulation induced on atom µ:

sµ =
eµB
~SBZ

∫
FS

dk

|v(k)|

(
〈σµ〉k ⊗ λ(k)

)
E. (4.120)

The expectation values for the spin accumulation 〈σµ〉k and the spin fluxes 〈Qµ〉k are
computed according to Eqs. 4.80 and 4.94.

We define the response tensors for the torque, tµ, the spin flux, qµ and the spin
accumulation, χµ, according to:

Tµ = tµE, (4.121)

Qµ = qµE, (4.122)

sµ = χµE. (4.123)

All three response tensors are given by:

tµ =
e

~SBZ

∫
FS

dk

|v(k)|
〈T µ〉k ⊗ λ(k), (4.124)

qµ = − e

~SBZ

∫
FS

dk

|v(k)|
〈Qµ〉k ⊗ λ(k), (4.125)

χµ =
eµB
~SBZ

∫
FS

dk

|v(k)|
〈σµ〉k ⊗ λ(k). (4.126)

The above atom-resolved response functions provide a deep insight into the mechanisms
giving rise to spin-orbit torques in magnetic systems. However, the magnetization
dynamics in a ferromagnet is rather driven by the total torque T =

∑
µ Tµ, since all

magnetic atoms are exchange-coupled. Therefore, we also define the total torkance
tensor t according to

T = tE. (4.127)

The total torkance tensor is given by

t =
e

~SBZ

∫
FS

dk

|v(k)|
〈T 〉k ⊗ λ(k), (4.128)

where we have used the total torque operator T =
∑

µ T µ.

4.4.1. Finite temperature

In real systems at room temperature, many sources of scattering may exist and not all
can be computed explicitly from their corresponding scattering potentials. In particu-
lar, the scattering on phonons is crucial to explain room temperature conductivities
in metals. In order to mimic the effect of a finite temperature, we add for all states a
constant contribution to lifetimes and scattering probabilities.

65



Impurity-driven SOTs in the KKR method

We thus replace the lifetimes τk used in Eq. 4.115 and defined by Eq. 4.67 by τ̃k,
which we define by the relation

1

τ̃k
=

1

τk
+

2Γ

~
, (4.129)

where Γ has the dimension of an energy and can be set to 25 meV to mimic the effect
of room temperature.

The matrix elements Pk′k of the scattering-in term in Eq. 4.115 shall be modified in a
consistent way, i.e., it must ensure that τ̃k

−1 =
∑
k′ P̃k′k. This condition is fullfilled

by the generalized transition rates

P̃k′k = Pk′k +
2Γ

~n(ε(k′))
δ(ε(k)− ε(k′)), (4.130)

where n(ε) is the density of states.

The relaxation times and the transition rates from Eq. 4.129 and 4.130 can be
used to compute the effect of specific types of defects or impurities in a system where
other sources of scattering exist, as it is the case at room temperature.
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5 Results

5.1. SOTs induced by electrical and thermal

currents in L10-FePt/Pt films

The results presented in this section have been published in Ref. [41] and [51].

We present in this section first principles calculations of SOTs driven by electri-
cal and thermal currents in L10-FePt/Pt thin films. The choice of these materials
is motivated by its potential for applications: like the more conventionally studied
Co/Pt bilayers [5, 8, 10], L10-FePt/Pt thin films exhibit a large out-of-plane magne-
tocrystalline anisotropy energy (MAE) [64], which is desirable for the development
of memory devices. The strong advantage of L10-FePt/Pt over Co/Pt thin films is
the good matching of the lattice constants of the materials, which makes it possible
to grow these bilayers epitaxially [65, 66]. The ability to grow samples with a very
high level of interfacial crystallinity will allow a direct comparison of experimental
and theoretical SOTs in order to shade light on the underlying mechanisms.

This section is organized as follows. First, we investigate in Section 5.1.1 the SOTs
induced by electrical currents within the Kubo formalism that was described in Sec-
tion 3.4. Then, we compute in Section 5.1.2 the SOTs induced by thermal currents
using the Mott relation as discussed in Section 2.4. Finally, we investigate the SOTs
driven by scattering off impurities in disordered L10-FePt/Pt films using the Boltz-
mann formalism that was described in Section 4.

5.1.1. Spin-orbit torques driven by electrical currents

Computational details

We consider a system of two layers of L10-FePt oriented along the [001]-direction and
terminated with Fe atoms (Fe/Pt/Fe/Pt/Fe) deposited on a Pt(001) film, see Fig. 5.1,
where the number of atomic layers N in the Pt(001) substrate varies from 6 to 18.
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Figure 5.1.: Illustration of 2 layers of L10-FePt oriented along the [001]-direction and
terminated with Fe atoms (Fe/Pt/Fe/Pt/Fe) deposited on a Pt(001) film
of 6 layers. We show the Fe and Pt atoms in red and gray respec-
tively. The in-plane lattice constant was set to its experimental value
a = 2.7765 Å.

We compute the electronic structure of the film using the FLEUR code [67] with the
Perdew, Burke, and Ernzerhof (PBE) functional. The in-plane lattice constant was
set to its experimental value a = 2.7765 Å and the out-of-plane coordinates of the
atoms were relaxed until forces were smaller than 10−5 Hartree/a0, see Table 5.1. The
DFT calculations were performed with 576 k-points in the two-dimensional Brillouin
zone. The plane wave cutoff and muffin-tin radii were set respectively to 3.7 a−1

0 and
2.4 a0. The atomic magnetic moments for the case N = 6 are listed in Table 5.1.
We find a magnetic moment for the Fe atoms that varies between 3.02 and 3.08µB

depending on the layer. The magnetic moment for the Pt atoms in the FePt layer
(Pt1 and Pt2) is about 0.4µB. The induced magnetic moment in the Pt substrate
reaches 0.3µB in the layer closest to the interface (Pt3).

We have made use of the Wannier interpolation technique to generate the torque,
velocity and energy matrix elements for the calculation of the SOT. For this we have
used the parallel version of the WANNIER90 code (see Section 3.3.3) to construct 18
MLWFs per atom based on the Bloch states on an 8×8 k-points mesh. The torkances
were computed using a 2048×2048 or 4096×4096 k-points mesh depending on the
broadening.

The symmetries of the torkance tensor directly reflect the symmetry of the crys-
tal. The C4 symmetry of L10-FePt/Pt films implies that the even (Eq. 3.68) and
odd (Eq. 3.69) torkances are respectively off-diagonal and diagonal matrices, whose
matrix elements follow the relations teven

yx = −teven
xy and todd

xx = todd
yy .

Even and odd torkances as a function of disorder strength

We first compute the even and odd SOTs for varying disorder strength Γ according
to Eqs. 3.68 and 3.69. The results are shown in Fig. 5.2 for different thicknesses of
Pt substrate. One clearly observes that the even torkance converges to a finite clean
limit value in the limit of Γ → 0 corresponding to the Berry curvature expression
given by Eq. 2.13. We find that the clean limit value for the even torkance lies in
the range of 0.65 to 0.85 ea0 depending on the substrate thickness. With increasing

68



5.1 SOTs induced by electrical and thermal currents in L10-FePt/Pt films

atomic layer dz ∆(%) µFLAPW
at µKKR

at

Fe1 1.790 -3.9 3.080 3.060

Pt1 1.869 0.4 0.403 0.363

Fe2 1.862 0.0 3.021 2.934

Pt2 1.874 0.6 0.383 0.337

Fe3 1.816 -2.5 3.040 2.950

Pt3 2.100 3.6 0.297 0.268

Pt4 2.039 0.6 0.047 0.038

Pt5 2.027 0.0 0.022 0.015

Pt6 2.019 -0.4 0.009 0.005

Pt7 1.982 -2.2 0.008 0.006

Pt8 0.007 0.006

Table 5.1.: Computational details for the calculation of the electronic structure of
the L10-FePt/Pt thin films: interlayer distances dz from one atomic layer
to the next one (in units of Å); variation ∆ = (dz − dref)/dref of the
interlayer distances with dref = dz(Fe2) for the first five atomic layers and
dref = dz(Pt5) for the other ones; atomic magnetic moments µFLAPW

at and
µKKR

at (in units of µB) obtained respectively with the FLEUR and Jülich
KKR codes.

disorder strength these values start to deviate from the Berry curvature value and the
dependence on the substrate thickness is reduced. At room temperature, i.e., around
Γ = 25 meV, the even torkance is relatively close to the Berry curvature values and
lie in the same range as those computed for Co3/Pt10(111) bilayers [19].

The odd torkance has a very distinct behavior from the even torkance and diverges
like 1/Γ in the limit of Γ→ 0 in accordance with Eq. 2.14. The odd torkance is larger
than the even torkance for disorder strength below 10 meV, but rapidly decays when
increasing Γ. At room temperature the magnitude of the odd torkance is about twice
as small as the even torkance. At larger values of Γ the odd torkance finally changes
sign but its magnitude remains relatively small.

Even and odd torkances as a function of Fermi energy

We now compute the even and odd torkances as a function of the Fermi energy in
order to describe the effect of gating or doping the system. The results are shown in
Fig. 5.3 for three different thicknesses of Pt substrate and a value of disorder strength
Γ = 25 meV. The even torkance is close to its maximal value at the true Fermi energy
and it varies within the range of [−0.25,+1] ea0 depending on the Fermi energy.
Overall, the variation of the even torkance in the energy range of [−0.1,+0.5] eV is
well reproduced by the “hypothetical” SHE-SOT T SHE given by Eq. 2.3. For the
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Figure 5.2.: a) Even torkance teven
yx and b) odd torkance todd

xx in L10-FePt2/PtN for N
= 6 (green solid), 12 (orange dashed) and 18 (blue dot-dashed). Solid
vertical lines correspond to the value of disorder strength Γ = 25 meV.

geometry of the film considered here the SHE-torkance reads

tSHE
yx = Sσyzx, (5.1)

where σyzx is the SHE conductivity of Pt and S = 7.71 Å2 is the in-plane area of
the unit cell. We estimated the intrinsic spin Hall conductivity σyzx = 2184 (~/e)
S/cm from a bulk calculation of fcc Pt employing the Kubo formalism. In the range
[−0.1,+0.5] eV the SHE-to-SOT efficiency defined by Eq. 2.4 varies smoothly in the
range of 0.5 < ξ < 0.7 and depends moderately on the substrate thickness. Outside of
this range the “hypothetical” SHE-torkance tSHE

yx deviates significantly from the first
principles torkance and even fails to predict the sign of the torque in several energy
windows. Overall, the comparison of our first principles results with the model of
SHE-SOT discussed in Section 2.2.1 shows that such models have to be employed
with much cautious, but suggests that the spin Hall effect in the Pt substrate is an
essential mechanism giving rise to the SOT in that system.

The odd torkance shows a much more pronounced dependence on the Fermi en-
ergy as compared to the even torkance. It is of moderate magnitude at the true
Fermi energy, while it reaches as much as 4 ea0 when the Fermi energy is increased
by 1 eV. This suggests that an increase of the odd SOT can be achieved by proper
engineering of the Fermi level using gating of doping techniques. The dependence on
the thickness of the Pt substrate is not especially large except in the energy range of
about [−0.7,−0.3] eV, where the odd torkance for the case N = 6 is smaller by 1 ea0

as compared to the cases N = 12 and 18.

The band structures of the films are shown in Fig. 5.4 for the cases N = 6 and 18,
where we have marked the states by the weights of the wave functions on the atoms
seating at the interface and at the bottom of the Pt substrate. The bandstructures
are overall very similar but we observe in the case of the 6-layer film an hybridization
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Figure 5.3.: (a) Even torkance teven
yx and (b) odd torkance todd

xx as a function of the
Fermi energy (with respect to the true Fermi energy EF ≈ −4.33 eV for
all three thicknesses) at Γ = 25 meV in L10-FePt2/PtN films for N = 6
(green solid), 12 (orange dashed) and 18 (blue dot-dashed). The line of
circles in the (a) corresponds to the SHE-torkance tSHE

yx estimated from

Eq. (5.1) with a spin Hall conductivity equal to σyzx = 2184 (~/e) S/cm.

of the states at the interface with those at the bottom of the Pt substrate, see black
circles in Fig. 5.4. This hybridization occurs in the energy range of [−0.7,−0.2] eV,
i.e., precisely where the odd torkance differs most for the 6-layer film as compared to
the 12- and 18-layer films, see Fig. 5.3. This suggests that the cross-talk between the
states at the interface and at the bottom of the Pt substrate results in the decrease
of the odd torkance observed for the thinnest film.

5.1.2. Thermal spin-orbit torques

We compute now the even and odd thermal torkances using the Mott relation defined
by Eq. 2.17 and based on the first principles electrical torkances discussed in the
previous section. The results are shown in Fig. 5.5 as a function of the Fermi energy.
By comparison with the electrical (Fig. 5.3), it is immediately clear that the thermal
torkance is closely related to its electrical counterpart. Indeed, the zeros of the ther-
mal torkance correspond roughly to the local extrema of the electrical torkance and
the maximal values for the former correspond to the largest slopes of the latter. This
is in agreement with the Mott relation in the limit of T → 0, see Eq. 2.23, where the
thermal torkance is directly given by the energy derivative of the electrical torkance.
The maximal values of the even torkances are reached around 0.2 eV below the below
Fermi energy, while the magnitude of the odd torkance is maximal around 0.6 eV
above the Fermi energy. Overall, the even and odd thermal torkances are much more
dependent on the thickness of the Pt substrate than its thermal counterpart.

Following the philosophy of the model for the SHE-SOT (Eq. 2.3), one can esti-
mate the “hypothetical” SNE-SOT arising from the spin Nernst effect (SNE) in the
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Figure 5.4.: Band structures of (a) L10-FePt2/Pt6 and (b) L10-FePt2/Pt18 thin films.
States with large weight of the wavefunction on specific atoms are marked
by green (Pt atoms at the bottom of the slab), cyan (Pt substrate atoms
closest to the FePt/Pt interface) and black (Fe atoms closest to the
FePt/Pt interface). The radius of the dots is proportional to the weight of
the wave function on the corresponding atom. (a) States are marked only
if the portion of the wave function in a given atomic layer is larger than
9.6% for Pt-atoms and 7.7% for Fe-atoms. (b) These values are reduced
to 4.5% for Pt-atoms and 3.6% for Fe-atoms, to account for the twice
larger thickness. All states are marked by light gray dots in background.
The energy scale is given in eV.
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substrate. This is achieved by replacing the spin Hall conductivity σszj by the spin
Nernst conductivity βszj and the electric field Ej by the applied thermal gradient
∇Tj in Eq. 2.3. For the geometry of the film considered here, this yields for the
SNE-torkance the following expression:

tSNE
yx = Sβyzx, (5.2)

where the value of the spin Nernst conductivity βyzx = −8383 (~/e)µA cm−1 K−1 was
computed from the Mott relation based on the first principles spin Hall conductivity
σyzx, see line of circles in Fig. 5.3a.

Comparing tSNE
yx to the first principles even thermal torkance in Fig. 5.5, we find

a good correlation in a range of [−0.2,+0.6] eV around the Fermi energy. Outside of
this energy window, the SNE-model fails to predict the variations of the torkance as
a function of the Fermi energy and can even fail to predict the sign. Overall, these re-
sults demonstrate that the rapid variations of the even thermal torkance as a function
of the Fermi energy can only be captured by first principles calculations, but suggests
that the SNE is an essential mechanism giving rise to the thermal torkance in L10-
FePt/Pt thin films. Therefore, it might be a promising line of research to consider
substrates where SNE is large such as Ir, Pd or Rh, whose spin Nernst conductivities
reach as much as −8744, +20 804 and −20 779 (~e) µA cm−1 K−1, respectively.

As for the odd thermal torkance, it is of rather small amplitude at the Fermi en-
ergy but increases by orders of magnitudes when the Fermi energy is set to ∼ 0.6 eV
above its true value. In a rough approximation, this can be achieved by considering
a L10-(Fe1−xCox)(Pt1−xAux)/Pt1−xAux film instead of L10-FePt/Pt, with x ∼ 0.6 if
we assume a constant density of states of ∼ 1 eV−1 per atom for Fe1−xCoxPt1−xAux
and Pt1−xAux.

From the first principles torkances and conductivities, we can conclude that a tem-
perature gradient of the order of ∼ 2 K/nm reproduces the same torque as a current
density of ∼ 107 A/cm2. Therefore, although the T-SOT might not be large enough to
switch the magnetization in L10-FePt/Pt thin films, it should be possible to observe
the fingerprints of the effect.

5.1.3. Impurity driven spin-orbit torques

In the previous sections, we have considered the SOT and T-SOT in L10-FePt/Pt
thin films within the constant relaxation time approximation, i.e., the same broaden-
ing Γ was used for all bands. In the following, we go beyond the constant relaxation
time approximation and we compute from first principles the electronic transition
rates induced by scattering off impurities. We use the Boltzmann formalism for the
SOT discussed in Section 4.4 to compute the current-induced SOT in the presence of
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Figure 5.5.: (a) Even thermal torkance teven
yx and (b) odd thermal torkance todd

xx as
a function of the Fermi energy (with respect to the true Fermi energy
EF ≈ −4.33 eV for all three thicknesses) at Γ = 25 meV in L10-FePt2/PtN

films for N = 6 (green solid), 12 (orange dashed) and 18 (blue dot-
dashed). The line of circles in the (a) corresponds to the SNE-torkance
tSNE
yx estimated from Eq. (5.2) with a spin Nernst conductivity equal to

βyzx = −8383 (~/e)µA cm−1 K−1.

specific types of defects in the L10-FePt2/Pt6 layer1.

The electronic structure of the film was computed with the Jülich KKR code and
the VWN functional. The in-plane lattice constant and out-of-plane atomic coordi-
nates are the same as in the previous sections, see Table 5.1. We used an angular
momentum cutoff of lmax = 3 for the Green functions and the wave functions. We
show in Table 5.1 the KKR atomic magnetic moments, which are in good agreement
with the FLEUR magnetic moments. The impurity potentials were computed in a
cluster of atoms including the first and second nearest neighbors with the Jülich KKR
impurity-embedding code (KKRimp) [59]. The Fermi surface is charted by 24 148 k-
points in the two-dimensional Brillouin zone.

Scattering due to defects in the FePt (T = 0)

We compute the zero-temperature response tensors for the torque, the spin fluxes and
the spin accumulation using Eq. 4.124, 4.125 and 4.126 based on the vector mean free
path solution of Eq. 4.115. We focus on defects consisting of Fe atoms being replaced

1In the constant relaxation time approximation, the Boltzmann torkance (Eq. 4.128) is equivalent
to the odd part of the Kubo torkance (Eq. 2.14) in the limit of T → 0. The intrinsic even part
of the Kubo torkance (Eq. 2.13) is not captured by the Boltzmann formalism, as it arises from
interband transitions. We focus in this section in this section on the dependence of the odd part
of the torkance on the details of the disorder in the film.
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by Pt atoms and vice versa. In order reproduce experimentally relevant situations, we
define three distributions of defects A, B and C shown in Fig. 5.6 (blue shaded areas).
In the case A, defects are distributed homogeneously within the FePt layer, while they
seat preferentially on the suface or interface side for cases B and C, respectively. The
blue shaded areas in Fig. 5.6 define the average number of impurities per unit cell
cm in a given atomic layer m and c̄imp =

∑
m cm is the average number of impurities

per unit cell for all layers. If not specified otherwise, the impurity distributions are
normalized such that c̄imp = 0.1 defects per unit cell. Since the defects are distributed
over six atomic layers, this corresponds to an average impurity concentration of 1.7%.

We first discus the zero-temperature response tensor component for the spin accu-
mulation χ0K

yx,µ. For all impurity distributions we find that the spin accumulation is
one order of magnitude larger at the bottom of the film than in the Fe layers, due
to the competition of the spin-orbit fields with the strong exchange field in the FePt.
Comparing the results for the different defect distributions, we observe that the spin
accumulation at the bottom of the film is larger by a factor of 3 for distribution B,
owing to the absence of defects in the Pt film in that case. For the atoms of the
FePt film, we show in Fig. 5.7 the expectation values of the spin operator 〈−σyµ〉
across the Brillouin zone. Overall, we find a larger induced spin polatization for Pt
atoms, due to the stronger SOI as compared to Fe atoms. Comparing the induced
spin polarization between Pt atoms, we find much larger spin expectation values for
Pt3. This is a consequence of the proximity of the Pt3 layer with the Pt substrate
that also provides a strong SOI. Comparing Fig. 5.7 and Fig. 5.8, we observe that the
sign of the torque expectation values 〈Txµ〉 follows the sign of the spin expectation
values 〈−σyµ〉, in accordance with Eq. 2.12.

Next, we compute the torkance tensor t0K
xx,µ for the three defect distributions. Overall,

we find a torkance that is much larger on Fe atoms compared to Pt atoms, owing to
the much larger magnetic moments (see Table 5.1). This difference in the magnitude
of the torkance is directly reflected in the expectation values of the torque opera-
tor 〈Tx,µ〉k across the Brillouin zone, see Fig. 5.8. It is interesting to note that the
torkance on Pt3 can be as large as on Fe, even though the expectation values 〈Tx,µ〉k
of the states at the Fermi energy are much smaller in the case of Pt3. This is a direct
consequence of the stronger asymmetry of the local environment seen by Pt3, which
seats between the last Fe atom and the Pt substrate. This explains to a large extent
that the torkance for Pt3 is much larger than for Pt1 and Pt2, which have a nearly
inversion symmetric environment.

Comparing the atom-resolved torkance to the response of the spin fluxes q0K
xx,µ in

Fig. 5.6, we find that the torque on Fe2 and Fe3 is essentially mediated by spin cur-
rents, while the torque acting on Fe1 also has local contributions. The deviation of
the torkance from the spin flux on Fe1 is the signature of the more pronounced break-
ing of inversion symmetry at the surface of the film. The spin flux contribution is
much larger on Fe3 because of its proximity with the Pt substrate. As for the torque

75



Results

Figure 5.6.: Blue shaded areas give the average number of impurities per unit cell and
per atomic layer for distributions A, B and C. The average total number of
defects per unit cell is equal to c̄imp = 0.1 for all three distributions. The
scale for zero-temperature torkances (triangles) and spin-flux response
coefficients (circles) is shown on the left. The scale for spin-accumulation
response coefficients (squares) is given on the right.
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Figure 5.7.: Expectation values 〈−σyµ〉 (color code) for µ = {Fe1, Pt1, Fe2, Pt2,
Fe3, Pt3} for the states at the Fermi surface of the FePt/Pt film. The
thickness of the lines is proportional to the absolute values of 〈−σyµ〉.

Figure 5.8.: Expectation values 〈Txµ〉 in meV (color code) for µ = {Fe1, Pt1, Fe2,
Pt2, Fe3, Pt3} for the states at the Fermi surface of the FePt/Pt film.
Values are multiplied by a factor of ten for Pt atoms to help visualization.
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Figure 5.9.: Expectation values 〈−Qxµ〉 in meV (color code) for µ = {Fe1, Pt1, Fe2,
Pt2, Fe3, Pt3} for the states at the Fermi surface of the FePt/Pt film. The
thickness of the lines is proportional to the absolute values of 〈−Qxµ〉.

exerted on the induced magnetization of the Pt layers, there is no clear correlation
with the spin fluxes, due to the large angular momentum transferred to the lattice
by SOI. This is in accordance with the expectation values of the spin flux operator
〈−Qxµ〉 in Fig. 5.9, which are in agreement with the torque expectation values 〈Txµ〉
in Fig. 5.8 for Fe atoms but not for Pt atoms2.

It is fruitful to compute the effective magnetic fields that give rise to the same torque
as a given current density. This gives a good feeling of the magnitude of the effect
and the comparison to experimental results is made easier. We compute the ratio of
the effective magnetic field B0K

y to the current density j0K
x using the equation

B0K
y

j0K
x

=
1

MS

t0K
xx

σ0K
xx

, (5.3)

where MS is the total magnetic moment per unit cell and σ0K
xx is the longitudinal

charge conductivity. Interestingly, this ratio is independent of impurity concentration
since both quantities scale with the inverse of the concentration. We give in Table 5.2
the values of effective magnetic fields for a current density of jx = 107A/cm2 and for

2We compare the torque 〈Txµ〉 to the opposite of the spin flux 〈−Qxµ〉 (with a minus sign). This is
because the torque operator Txµ (Eq. 2.12) is defined as the torque exerted by the magnetization
on the electronic states.
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5.1 SOTs induced by electrical and thermal currents in L10-FePt/Pt films

impurity distribution B0K
y (mT) t0K

xx (ea0)

A −0.67 −4.5

B −1.13 −21.5

C −0.14 −0.7

Table 5.2.: Effective magnetic fields B0K
y for a current density of jx = 107A/cm2 and

torkances t0K
xx for the FePt/Pt film with a concentration of defects per unit

cell of c̄imp = 0.1.

the different impurity distributions. We find that the effective magnetic fields vary
from −1.13 (case B) to −0.14 mT (case C) depending on the impurity distribution.

The strong dependence of the effective magnetic fields on the impurity distribution
can be understood by looking at the atom-resolved torkance in Fig. 5.6. In the
case of distribution A, the large negative torque acting on Fe3 dominates the positive
torques of smaller magnitude on Fe1 and Fe2, which leads to a negative total torkance
of −4.5 ea0, see Table 5.2. In the case of distribution B, the very large torque act-
ing on Fe3, allowed by the small amount of defects in the Pt3 layer, reaches about
−14 ea0 and the total torkance increases to the value of −21.5 ea0. For distribution
C, the contributions on different atoms cancel to a larger extent than for distribu-
tions A and C, which leads to a much smaller torkance equal to −0.7 ea0. Overall,
the strong variation of torkances and effective magnetic fields with the detail of the
impurity distribution is a consequence of the torque being the sum of different atomic
contributions that partially cancel. The cancellation of the atomic contributions can
be tuned by varying the disorder, which leads to a surprisingly large variation of the
total torque.

The total torkance can also be decomposed in terms of Fermi surface contributions,
as shown in Fig. 5.10. We find that the distribution of the torkance across the Bril-
louin zone is drastically different in case B as compared to cases A and C. Very large
negative contributions to the torkance can be observed in the case B that are almost
absent in cases A and C. The very large negative torque acting on the Fe3 atom (see
Fig. 5.6) suggests that the corresponding states are located close to the FePt/Pt in-
terface, where disorder is strongly reduced for distributions B. Overall, the variation
of the magnetic effective field and of the torkance with the impurity distribution can
be explained by a complex interplay of several competing Fermi surface contributions
to the SOT. Although the overall distribution of the torkance in the Brillouin zone
is rather similar in cases A and C, the total torkance t0K

xx is about 6 times larger for
distribution A, which we explain by a larger unbalance between positive and negative
contributions in case A. To conclude on the zero-temperature torkance in FePt/Pt
films, we want to stress the importance of a first principles description of the ex-
change field in the ferromagnetic layer. Comparing the contributions of the states at
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.

Figure 5.10.: Distribution of 〈Tx〉kλx(k)/|v(k)| in the Brillouin zone, in units of ~,
for an FePt/Pt film with a concentration of defects per unit cell of
c̄imp = 0.1. The impurity distributions A, B and C are shown in Fig. 5.6.

.

Figure 5.11.: Distribution of 〈−σy,FePt〉k λx(k)/|v(k)| in the Brillouin zone, in units
of 100× ~/Ry, for an FePt/Pt film with a concentration of defects per
unit cell of c̄imp = 0.1. The spin operator σy,FePt gives the spin of a
state that is localized on Fe1, Pt1, Fe2, Pt3, Fe3 or Pt3. The impurity
distributions A, B and C are shown in Fig. 5.6.

80



5.1 SOTs induced by electrical and thermal currents in L10-FePt/Pt films

the Fermi energy to the response tensors for the torque (Fig. 5.10) and for the spin
accumulation in the FePt film (Fig. 5.11), we observe that the spin accumulation
alone do not explain the magnitude of the computed torque and fails to predict the
sign for many bands. Therefore, the naive approximation of a constant exchange field
in the FePt layer would give a poor estimate of the torque.

Defects in FePt at room temperature (Γ = 25 meV)

At room temperature additional sources of scattering are present such as phonons. In
the following, we investigate the interplay between the scattering off impurities and
other sources of scattering. The former is computed from first principles as discussed
in the previous section, while the later is treated within the constant relaxation time
approximation. We compute the relaxation times and the electronic transition rates
using Eqs. 4.129 and 4.130 with a disorder strength Γ = 25 meV to include the effect
of room temperature.

We show in Fig. 5.12 the room temperature torkance tRT
xx,µ and the response of the

spin accumulation χRT
yx,µ for room temperature. As compared to the zero temperature

values, we find that the spin accumulation is reduced by a factor of 100 for case B and
a factor of 25 for case C. The values for case A are intermediate between cases B and
C, we therefore omit them in Fig. 5.12 for clarity. Overall, we find that the strong
differences in the zero temperature values between impurity distributions is washed
out by the inclusion of the additional finite disorder strength Γ. This is consistent
with the values of the impurity-induced relaxation times being such that ~/2τav0K is
always smaller than 8 meV, i.e., much smaller than the broadening induced by room
temperature. The same trend is observed for the room temperature torkance tRT

xx,µ,
which is reduced by a factor of 15 and 5 for distributions B and C, as compared to
the zero temperature case. Overall, the scattering off impurities at room temper-
ature tends to reduce the magnitude of the torkance and the spin accumulation as
compared to the CRTA case, see Fig. 5.12. However, the variations between different
distributions is of moderate amplitude.

We show in Fig. 5.13 the effective magnetic field and the total torkance as a function
of impurity concentration. Within the range of concentration considered, we find a
pronounced dependence of the SOT on the concentration of impurities, which stands
in sharp contrast with the rather moderate differences in the individual atomic con-
tributions (Fig. 5.12). This paradox can be explained by the observation that the
atomic contributions to the SOT in the ferromagnetic layer partially cancel out in
the CRTA case, leading to a total SOT of reduced amplitude. Depending on the dis-
tribution of impurities, the cancellation of atomic contributions is either enhanced or
reduced, which leads to a strong variation of the total torkance or effective magnetic
field in Fig. 5.13. In the case B, this mechanism leads to a strong increase of the
torkance, which is a very counter-intuitive result and stands in sharp contrast with
the case of longitudinal conductivity.
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Figure 5.12.: (a) Response coefficient of the spin accumulation, and (b) torkance, com-
puted for three different types of disorder: (squares) constant relaxation
time, i.e. Pk′k = 0 in Eq. (4.130); (triangles) defects located preferen-
tially at the surface, case B; (circles) defects located preferentially at the
interface, case C. The concentration of defects per unit cell is equal to
c̄imp = 0.1 for cases B and C. All calculations where performed setting
Γ = 25 meV in Eq. (4.130).
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Figure 5.13.: (a) Effective fields per unit of current density, and (b) total torkances,
computed as a function of defect concentration for distributions A, B
and C. Horizontal dashed lines and numbers stand for the 0K values,
computed with c̄imp = 0.1 for total torkances. Full lines show the values
at room temperature, i.e., using Eq. (4.130).
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5.2 Influence of doping by various impurities in Co/Cu films

5.2. Influence of doping by various impurities in

Co/Cu films

The results presented in this section have been published in Ref. [51].

In this section we investigate the SOT in a single layer of Co deposited on a six-layer
Cu(111) film (Fig. 5.14) and the effect of doping with light (C, N) and heavy (Bi, Ir)
impurities. This study is motivated by the experimental and theoretical findings that
Ir and Bi impurities have a huge impact on the spin-dependent transport properties
of Cu [43, 44, 46]. Therefore, the question arises whether the spin-orbit torque in a
ferromagnetic layer deposited on a Cu substrate can be tuned with the amount and
type of doping impurities.

We compute the electronic structure of the film with the Jülich KKR code and the
VWN functional. The in-plane lattice constant was set to a/

√
2 = 2.556 Å, where

a = 3.615 Å is the lattice constant of bulk fcc Cu. The distance between Cu layers
was set to a/

√
3 = 2.087 Å. The distance between the Co layer and the first Cu layer

was set to 1.959 Å, which was obtained by relaxation of the Cu/Co interface [68].
Interlayer distances are summarized in Table 5.3. The angular momentum cutoff was
set to lmax = 3 for the Green functions and the wave functions. The magnetic mo-
ment of the Co atom is equal to 1.664µB and the induced magnetic moments in the
Cu substrate are negligible, see Table 5.3. The impurity potentials were computed
in a cluster of atoms including the first and second nearest neighbors with the Jülich
KKR impurity-embedding code (KKRimp) [59]. The Fermi surface is charted by
15 810 k-points in the Brillouin zone.

Scattering due to impurities (Γ = 0)

We show in Fig. 5.15 the zero-temperature response coefficients for the torque, t0K
xx ,

the spin accumulation, χ0K
yx , and the spin fluxes, q0K

xx , in the presence of Bi, Ir, C or

Figure 5.14.: Illustration of the unit cell of one layer of Co deposited on six layers of
Cu(111). Co and Cu atoms are shown in yellow and red respectively.
The in-plane lattice constant and out-of-plane distance are given in the
text.
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atomic layer dz µat

Co 1.959 1.664

Cu1 2.087 0.004

Cu2 2.087 -0.010

Cu3 2.087 -0.003

Cu4 2.087 -0.004

Cu5 2.087 -0.004

Cu6 2.087 0.000

Table 5.3.: Computational details for the calculation of the electronic structure of
the Co/Cu thin films: interlayer distances dz from one atomic layer to
the next one (in units of Å) and atomic magnetic moments µat obtained
within the Jülich KKR code (in units of µB).

N impurities in the Co/Cu film. We consider the case of a homogeneous distribution
of impurities, i.e., the average number of impurities is the same for all Co and Cu
atomic layers, see blue shaded areas in Fig. 5.15. If not specified otherwise, the im-
purity distributions are normalized such that the average number of impurities per
unit cell is equal to 0.1 for all impurity types.

We fist discuss the zero-temperature response tensor for the spin accumulation χ0K
yx .

We find that the spin accumulation at the bottom of the film is three orders of mag-
nitude smaller than in the case of the FePt/Pt film (Section 5.1), due to the smaller
spin-orbit interaction in Cu and to the presence of impurities in the Cu layers. For
Bi, C and N impurities, the spin accumulation is positive in all layers. On the Co
layer, it reaches 0.00, 0.34 and 0.18 × 10−9µB/(V/cm) for Bi, C and N impurities
respectively. The situation is quite different in the case of Ir impurities, where the
spin accumulation is negative in most layers, in particular on the Co layer where it
reaches −2.61× 10−9µB/(V/cm).

The torkance follows the general trend of the spin accumulation. It reaches 0.4 ea0

for Ir impurities, −0.1 ea0 for C and N impurities, and vanishes for Bi impurities.
In contrast to the FePt/Pt film (Section 5.1), the torque in entirely exerted on the
ferromagnetic Co layer itself and the torkance on the very small induced magneti-
zation (∼ 0.004µB) of the neighboring Cu layer is negligible. The variation of the
spin fluxes in the region close to the interface (Co, Cu1, Cu2) indicates that angular
momentum is taken from the lattice in the Cu layers (where spin fluxes are negatives)
and transferred to the Co layer (where spin fluxes are positive). The spin flux in the
Co layer is of similar order of magnitude as the torkance. However, the spin flux does
not correlate with the torkance on the Co layer for any of the impurity types. This
clearly demonstrates that a large part of the SOT in Co/Cu films arises from the
local SOI on the Co atoms. This is a strong difference with the FePt/Pt films where

84



5.2 Influence of doping by various impurities in Co/Cu films

Figure 5.15.: Blue shaded areas mark the homogeneous distributions of Bi, Ir, C and
N impurities. The concentration of impurities per unit cell is equal to
c̄imp = 0.1 for all distributions. The scale for zero temperature torkance
(triangles) and spin-flux response coefficient (circles) is shown on the
left. The scale for the spin-accumulation response coefficent (squares)
is given on the right.
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Impurity type B0K
y (mT) t0K

xx (ea0)

Bi 0.00 0.00

Ir 1.61 0.38

C −0.33 −0.07

N −0.22 −0.05

Table 5.4.: Effective magnetic fields B0K
y for a current density of jx = 107A/cm2 and

torkances t0K
xx for the Co/Cu film with a concentration of impurities per

unit cell of c̄imp = 0.1.

the SOT originates essentially from spin currents generated in the substrate.

We show in Table 5.4 the total torkances and effective magnetic fields for Bi, Ir,
C and N impurity distributions. The very strong dependence of the SOT on the im-
purity type can be related to the FS contributions to the torkance shown in Fig. 5.16.
In the case of C and N impurities, the torkance is dominated by states in the outer
part of the Brillouin zone, which yields total torkances of −0.07 and −0.05 ea0 for
C and N impurities, respectively. In the case of Bi impurities, the contributions
from the outer part of the Brillouin zone are strongly suppressed, due to the larger
scattering cross-section of Bi impurities as compared to C and N impurities. As a
result, the total torkance vanishes by cancellation of the contributions from different
states in the Brillouin zone. The situation is very different for Ir impurities, where
an additional contribution to the torkance arises from a FS loop around the Γ point,
resulting in a much larger positive total torkance of 0.38 ea0 in that case. Given the
similar atomic numbers of Ir and Bi, the large difference in the induced torkances is
rather surprising. The fact that Ir and Co have similar valence shells, respectively,
5d76s2 and 5d76s2, provides an explanation for the weaker scattering induced by Ir
impurities in Co, as compared to Bi impurities.

To conclude our study of the zero-temperature spin-orbit torques in Co/Cu bilay-
ers, we show in Fig. 5.17 the contribution of the states at the Fermi energy to the
current-induced spin accumulation on the Co layer. We find that the overall distribu-
tion of the spin accumulation across the Brillouin zone closely follows the distribution
of the torkance (Fig. 5.16). This stands in sharp contrast to the case of the FePt/Pt
film (Section 5.1), where the spin accumulation and the torque differ even in sign at
many k-points, due to the much more complex structure of the exchange field in FePt
as compared to a Co monolayer. Overall, we conclude that doping with different types
of impurities provide a very powerful mean to engineer both the spin accumulation
and the SOT in ferromagnetic heterostructures.
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5.2 Influence of doping by various impurities in Co/Cu films

Figure 5.16.: The total torkance in terms of the Fermi surface distribution of
〈Tx〉kλx(k)/|v(k)| [see Eq. (4.128)], in units of ~, for a Co/Cu film with
a concentration of Bi, Ir, C or N impurities per unit cell of c̄imp = 0.1.
The irreducible Brillouin zone is shown by solid lines and the dashed
line is a guide to the eyes.

Figure 5.17.: Distribution of 〈−σy,Co〉k λx(k)/|v(k)| in the Brillouin zone, in units of
~/Ry, for a Co/Cu film with a concentration of Bi, Ir, C or N impurities
per unit cell of c̄imp = 0.1.
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Figure 5.18.: (a) Response coefficient of the spin accumulation, and (b) torkance, in
a Co/Cu film for the clean system in CRTA (full squares), and in the
presence of Bi (circles), Ir (triangles up), C (triangles down) and N
(open squares) impurities. The concentration of impurities per unit cell
is equal to c̄imp = 0.1 for all impurity types. All calculations where
performed with Γ = 25 meV in Eq. (4.130).

Impurities at room temperature (Γ = 25 meV)

In the following we investigate the effect of impurities at room temperature, when
other sources of scattering exist. In analogy to Section 5.1.3, we compute the relax-
ation times and scattering rates from Eqs. 4.129 and 4.130 with a disorder strength
Γ = 25 meV that accounts for the effect of room temperature. We present the room
temperature (RT) spin accumulation coefficients χRT

yx and torkances tRT
xx in Figs. 5.18

and 5.19.

As shown in Fig. 5.18, the spin accumulation in the Co/Cu film is reduced by about
two orders of magnitude as compared to the zero temperature case. The sign of the
spin accumulation is consistent with the zero temperature calculations, i.e., it is pos-
itive in all layers for Bi, C and N impurities, but it is negative in the Co layer for
Ir impurities. The same trend is observed for the torkance, which is negative for Bi,
C and N impurities but positive for Ir impurities. Overall, the variation of the zero-
temperature torkance with the type of impurity is strongly reduced by the addition of
the constant smearing Γ = 25 meV. However, the variation is more pronounced than
for the FePt/Pt film studied in Section 5.1.3, especially when comparing the case of
Ir impurities to the case of Bi, C and N impurities.
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Figure 5.19.: (a) Effective fields per unit of current density, and (b) total torkances,
computed as a function of concentrations of Bi, Ir, C and N impurities.
Horizontal dashed lines and numbers stand for the 0K values, computed
with c̄imp = 0.1 for total torkances. Full lines show the values at room
temperature, i.e., using Eq. (4.130).

We show in Fig. 5.19 the total torkance and effective magnetic field as a function
of impurity concentration. The torque is affected in two ways by the presence of
impurities. On the one hand, the torkance tends to decrease as a function of the im-
purity concentration, owing to the reduced relaxation times. For an average number
of impurities of c̄imp = 0.1, it results in a torkance reduced by a factor of 10 for Bi
impurities and a factor of 4 for C and N impurities. On the other hand, the scat-
tering induced by impurities tends to push the torkance and effective magnetic field
toward the zero temperature values, resulting in the splitting of the curves observed
in Fig. 5.19. In the case of Ir impurities, the splitting is so large that it changes the
sign of the SOT.

In summary, our results clearly demonstrate that doping with proper type and amount
of impurities provides a powerful mean to tailor the SOT in magnetic thin films for a
given application. Astonishingly, even the sign of the SOT can be changed at room
temperature and the effective magnetic fields per unit of current density follow the
trend of the zero-temperature values, which are independent of impurity concentra-
tion.
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5.3. Contributions from the Rashba effect to the

SOT in Ag2Bi/Ag/Fe

In this section we investigate the spin-orbit torque in a Ag2Bi-terminated Ag(111)
film grown on ferromagnetic Fe(110). This system has been proposed by Carbone et
al. [69] as an ideal system to study the interplay of exchange and spin-orbit Rashba
interactions. On the one hand, the Ag2Bi alloy at the surface is known to have Rashba
bands with an extremely large spin splitting [70]. On the other hand, the quantum
well states in Ag are exchange-split due to the neighboring ferromagnetic Fe. The
simultaneous breaking of time reversal and spatial inversion symmetry yields a k-
asymmetric band structure, where the asymmetry arises from the relative orientation
of the spin-orbit and exchange fields.

It has been suggested by Carbone et al. [69] that the peculiar asymmetry of the
band structure in this system can have a strong effect on transport properties. The
current-induced magnetization precession has been investigated by Jungfleisch et al.
in a similar stack of Bi/Ag/Py [71]. In their paper they suggest that the Rashba
effect at the Bi/Ag interface generates a spin-current flowing out-of-plane that drives
the magnetization precession in the Py. However, the origin of the torque acting on
the ferromagnet in an experiment can be only indirectly inferred and the distribution
of the spin currents within the thickness of the stack can not be measured. Therefore,
first principles calculations of the SOT in that system would be very valuable.

In the following we perform a first-principles investigation of the transport proper-
ties of the Ag2Bi/Ag/Fe system originally proposed by Carbone et al. [69]. We use
the Boltzmann formalism discussed in Section 4.4 to compute the spin-orbit torques
and the spin fluxes in order to shed light on the underlying mechanisms.

5.3.1. Electronic structure

We use the Jülich KKR code to compute the electronic structure of the film using
the VWN functional. We construct a film that contains 5 layers of Fe(110), 9 layers

Figure 5.20.: Illustration of the unit cell of a Ag2Bi-terminated Ag(111) film grown
on ferromagnetic Fe(110). Bi, Ag and Fe atoms are shown in yellow,
gray and red respectively. Atomic coordinates are given in Table 5.5.
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5.3 Contributions from the Rashba effect to the SOT in Ag2Bi/Ag/Fe

atom x y z µat atom x y z µat

Fe -2.165 1.250 -31.528 2.95 Ag 0.000 0.000 -14.147 0.00

Fe 0.721 1.250 -31.528 2.95 Ag -1.443 2.500 -14.147 0.00

Fe -0.721 3.751 -31.528 2.95 Ag 1.443 2.500 -14.147 0.00

Fe 0.000 0.000 -29.499 2.70 Ag 0.000 1.667 -11.789 0.00

Fe -1.443 2.500 -29.499 2.70 Ag -1.443 4.168 -11.789 0.00

Fe 1.443 2.500 -29.499 2.70 Ag 1.443 4.168 -11.789 0.00

Fe -2.165 1.250 -27.471 2.69 Ag 0.000 3.334 -9.431 0.00

Fe 0.721 1.250 -27.471 2.69 Ag -1.443 5.835 -9.431 0.00

Fe -0.721 3.751 -27.471 2.69 Ag 1.443 5.835 -9.431 0.00

Fe 0.000 0.000 -25.442 2.69 Ag 0.000 0.000 -7.073 0.00

Fe -1.443 2.500 -25.442 2.69 Ag -1.443 2.500 -7.073 0.00

Fe 1.443 2.500 -25.442 2.69 Ag 1.443 2.500 -7.073 0.00

Fe -2.165 1.250 -23.413 2.83 Ag 0.000 1.667 -4.715 0.00

Fe 0.721 1.250 -23.413 2.83 Ag -1.443 4.168 -4.715 0.00

Fe -0.721 3.751 -23.413 2.83 Ag 1.443 4.168 -4.715 0.00

Ag 0.000 0.000 -21.220 0.00 Ag 0.000 3.334 -2.357 0.00

Ag -1.443 2.500 -21.220 0.00 Ag -1.443 5.835 -2.357 0.00

Ag 1.443 2.500 -21.220 0.00 Ag 1.443 5.835 -2.357 0.00

Ag 0.000 1.667 -18.862 0.00 Bi 0.000 0.000 0.849 0.00

Ag -1.443 4.168 -18.862 0.00 Ag -1.443 2.500 0.000 0.00

Ag 1.443 4.168 -18.862 0.00 Ag 1.443 2.500 0.000 0.00

Ag 0.000 3.334 -16.504 0.00

Ag -1.443 5.835 -16.504 0.00

Ag 1.443 5.835 -16.504 0.00

Table 5.5.: Computational details for the calculation of the electronic structure of
the Co/Cu thin films: x, y and z Cartesian atomic coordinates (in units
of Å) and atomic magnetic moments µat obtained within the Jülich KKR
code (in units of µB). The direct Bravais vectors in Cartesian coordinates
are defined by a = (4.331, 3.334, 0) and b = (−4.331, 3.334, 0) (in units of
Å).
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of Ag(111) and one layer of Ag2Bi in accordance with Ref. [69], see Fig. 5.20. The
atomic coordinates are given in Table 5.5 along with the atomic magnetic moments.
In order to include the Ag2Bi layer in the calculation, it is necessary to use a supercell
of 3 atoms per atomic layer, i.e., a total number of 45 atoms per unit cell3.

We show in Fig. 5.21a and Fig. 5.21b the band structure for k-vectors respectively
parallel and perpendicular to magnetization direction (see Fig 5.22b for an illustration
of the corresponding k-paths P-Γ-P’ and K-Γ-K’). We find that the band structure
is k-symmetric for k-vectors parallel to magnetization direction (path P-Γ-P’) while
it is strongly k-asymmetric for the other case (path K-Γ-K’). Overall, the electronic
structure is very complex with a large number of bands crossing the Fermi energy.
The k-asymmetry is even more pronounced for the local density of states on the
Ag2Bi layer, shown in Fig. 5.21c and Fig. 5.21d. The Rasbha bands are clearly sym-
metric along the P-Γ-P’ path and strongly asymmetric along the K-Γ-K’ path. The
asymmetry of the bands is illustrated in a most prominent way by the asymmet-
ric band-gap openings observed along the K-Γ-K’ path. An example of asymmetric
band-gap opening is marked by the letter A in Fig. 5.21d.

The different symmetries of the Rashba bands along P-Γ-P’ and K-Γ-K’ paths can be
explained by the relative orientation of the exchange field with the Rashba spin-orbit
fields. According to the symmetry of the Rashba bands illustrated in Fig. 2.2b, the
spin-orbit field is always perpendicular to the k-vector and rotates either clockwise or
anti-clockwise depending on the band. This implies that the spin-orbit fields are al-
ways parallel to the exchange field along the K-Γ-K’ path, but their relative direction
depends on the sign of the k-vector. This leads to a strong asymmetry of the bands
along the K-Γ-K’ path, which is not possible along the P-Γ-P’ path where spin-orbit
fields are always perpendicular to the exchange field.

As observed in Figs. 5.21c and 5.21d the Fermi energy in that system is located
almost exactly at the top of the Rashba bands. We show in Fig. 5.22a the states
at the Fermi energy marked by the portion of their wave functions located on the
Ag2Bi layer. The symmetry of the weights along the P-Γ-P’ and K-Γ-K’ is consistent
with the spectral density of states (Fig. 5.21c and Fig. 5.21d), i.e., the weights are
symmetric along the P-Γ-P’ path but very asymmetric along the K-Γ-K’ path. On
the one hand, the states for the band closest to the Γ point are located on the Ag2Bi
layer at more than 75% and they follow the nearly circular shape expected for a
Rashba band. On the other hand, the next states found when moving away from the
Γ point are strongly asymmetric and overall have a smaller weight on the Ag2Bi layer.

We show in Fig. 5.22b the states at the energy 930 meV below the Fermi energy
marked by the portion of their wave functions located on the Ag2Bi layer. As ob-

3The screened KKR formalism is the method of choice for systems of this size because it scales
linearly with the number of atoms.
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5.3 Contributions from the Rashba effect to the SOT in Ag2Bi/Ag/Fe

Figure 5.21.: (a,b) Spectral density of states for a Ag2Bi-terminated Ag film grown on
ferromagnetic Fe(110) along the two different k-paths shown in Fig. 5.22.
(c,d) Corresponding local density of states on the Ag2Bi layer. An
example of asymmetric band-gap opening is marked by the letter A.

Figure 5.22.: (a) States at the Fermi energy and (b) 930 meV below the Fermi energy
marked by the portion of their wave functions located on the Ag2Bi
layer.

served in Figs. 5.21c and 5.21d (dashed lines), both Rashba bands are present at this
value of energy and their asymmetry along the K-Γ-K’ path is large. Overall, the
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Figure 5.23.: Distribution of (a) Tz(k)λx(k)/|v(k)| and (b) Tz(k)λy(k)/|v(k)| in the
Brillouin zone in units of ~. The Fermi energy is set to its true value.

distribution of the states in the Brillouin zone shown in Fig. 5.22b is very similar
to the case of the Rashba model (Fig. 2.2b), i.e., it consists mainly of two bands of
nearly circular shapes. However, the first principles electronic structure captures the
fine details of the hybridization of the Rashba bands with the other states, which is
not accessible by simple models.

5.3.2. Torkance at the true Fermi energy

We start by computing the torkance at the true Fermi energy using Eq. 4.128. We
used the constant relaxation time approximation where the vector mean free path
is given by λ(k) = (2Γ/~)v(k) with Γ = 25 meV and v(k) the group velocity.
We find two non-vanishing components of the torkance tensor tzy = −0.37 ea0 and
tzx = −0.18 ea0. The distribution of the torkance in the Brillouin zone is shown
in Fig. 5.23. Overall, we find that a very large number of bands contribute to the
torkance. By comparison with Fig. 5.22a, we observe states with strong portion of
the wave functions on the Ag2Bi layer that yields a contribution to the torkance of
large intensity but of limited surface. This suggests that the Rashba bands hybridize
to some extent with the Fe states via the quantum well states of the Ag. However,
this does not appear as the main mechanism giving rise to the SOT in that system,
since the overall contributions from the other bands (the background torkance) in the
Brillouin zone seem to dominate.

The position of the Fermi energy is usually dependent on the thickness of the layers
and can also be varied by doping or gating the materials. Therefore, it is relevant to
compute the SOT with the Fermi energy shifted into the Rashba bands to observe
their effect on the magnetization dynamics. In the following section, we compute
the SOT for 930 meV below Fermi energy, where we can capture the effect of the
asymmetric Rashba bands.
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5.3 Contributions from the Rashba effect to the SOT in Ag2Bi/Ag/Fe

Figure 5.24.: Distribution of (a) Tz(k)λx(k)/|v(k)| and (b) Tz(k)λy(k)/|v(k)| in the
Brillouin zone in units of ~. The Fermi energy is set 930 meV below its
true value.

5.3.3. Torkance at a shifted Fermi energy

We show in Fig. 5.24 the distribution of the torkance in the Brillouin zone 930 meV
below Fermi energy. Many bands contribute to the torkance, resulting in two non-
vanishing components tzy = −0.69 ea0 and tzx = −0.29 ea0, which is roughly twice as
much as at the true Fermi energy. Compared to the case at the true Fermi energy,
there are a few bands with very high intensity, but their surface is now much larger.
By comparison with Fig. 5.22b, we observe that these bands are not the Rashba
bands, but rather bands that hybridize with the Rashba bands to some extent and
are localized at roughly 15% on the Ag2Bi layer. They yield positive and negative
contributions to tzx, which suggests a partial cancellation of different k-points for this
component. Their contribution to tzy is only positive so that a net effect of this band
is expected for this component. However, the total torkance tzy = −0.69 ea0 is neg-
ative, which implies that the SOT is in fact dominated by the background torkance,
originating from all other bands.

In order to bring deeper insight into the mechanisms giving rise to the torkance,
we compare in Fig. 5.25 the layer-resolved torkance, spin flux and spin accumulation.
The integrated values of the response coefficients over three different regions of the
film are given in Table 5.6. The current-induced spin accumulation at the bottom of
the film, i.e., on the Ag2Bi side, is large and follows the Rashba symmetry χxy >> χxx
(see Eq. 2.8). The magnitude of the spin accumulation in the Fe is strongly reduced
as compared to the Ag2Bi side, due to the competition of the spin-orbit fields with
the very strong exchange field in the ferromagnet. There, the response coefficients
χxy and χxx do not respect the Rashba symmetry anymore, as the two coefficients
χxy = 0.6 × 10−8µB(V/cm) and χxx = 0.3 × 10−8µB(V/cm) have the same order of
magnitude.

Comparing for the Fe region the components of the torkance, tzy = −0.68 ea0 and
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Figure 5.25.: Components of the atom-resolved response tensors for the torque t, spin
accumulation χ and spin fluxes q in a Ag2Bi-terminated Ag film grown
on ferromagnetic Fe(110).

χxy χxx tzy tzx qzy qzx
Fe 0.6 0.3 −0.68 −0.29 −0.36 −0.13

Agup −2.1 1.1 -0.01 0 0.83 −0.11

Aglow −11.4 1.2 0 0 −0.51 0.21

Table 5.6.: Integrated values of response coefficients for the spin accumulation (units
of 10−8µB(V/cm)), torque and spin fluxes (units of ea0) over the regions
defined in Fig. 5.25.

tzx = −0.29 ea0, with the components of the spin flux response tensor, qzy = −0.36 ea0

and qzx = −0.13 ea0, we find that the spin flux taken from the substrate to the ferro-
magnet only explains roughly half of the computed SOT. Therefore, half of the SOT
originates from the spin-orbit coupling in the ferromagnet itself. We compare now
the spin fluxes computed in the different regions of the film to understand what is
the origin of the spin currents that contribute to the computed torkance. We see in
Table 5.6 that the spin fluxes in the Fe qzy(Fe) = −0.36 ea0 and at the bottom of
the film qzy(Ag

low) = −0.51 ea0 have the same sign, which suggest that the part of
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5.3 Contributions from the Rashba effect to the SOT in Ag2Bi/Ag/Fe

the torkance due to spin currents do not originate from the Ag2Bi layer. Instead, the
positive spin flux in the upper part the Ag film qzy(Ag

up) = +0.83 ea0 suggests that
it is the transfer of spin angular momentum from Ag atoms at the interface with Fe
that is responsible for the spin current mediated part of the torkance. As for the qzx
spin flux components in the different regions, the respective signs suggests that there
is a transfer of spin angular momentum from the Ag2Bi layer to the Fe layer, which
contributes to the computed torque. Overall, we conclude that the torque in the
considered system originates from all three regions of the film and the use of simple
models such as the Rashba model would not alone explain the computed torque.
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5.4. SOTs in semiconductor-based thin films:

example of Fe/Ge bilayers

In the past most studies of spin-orbit torques have been carried out on systems com-
posed of a ferromagnetic layer deposited on a heavy metal substrate. This choice was
motivated by the expectation that the strong spin-orbit coupling in the heavy metal
substrate generates large current-induced spin currents injected into the ferromagnet.
The large discrepancy between the spin flux flowing into the ferromagnet and the
torkance observed in Sections 5.2 and 5.3 suggests that the spin-orbit coupling within
the ferromagnet itself can also yield large contributions to the SOT. This provides a
very different way of looking at spin-orbit torques in bilayers, where the spin-orbit
fields felt by the electrons is an intrinsic property of the ferromagnetic layer and the
substrate only acts as a perturbation that breaks inversion symmetry. In this picture
the effect of the substrate is not in generating and injecting spin currents into the
ferromagnet but rather in perturbing the orbitals of the adjacent ferromagnetic atoms.

In this section we compute the spin-orbit torques in Fe/Ge bilayers in the ferro-
magnetic and antiferromagnetic phases. Since bulk Ge is a semiconductor, we do not
expect the substrate to be the source of large spin currents in that system. Instead,
the SOT we are discussing in the following originates from the spin-orbit coupling
within the Fe itself, while the effect of Ge is to break inversion symmetry by hy-
bridization of the atoms seating at the interface.

5.4.1. SOTs in ferromagnetic Fe/Ge(111)

We show in Fig. 5.26 a unit cell of a 5-layer Fe film grown on 12 layers of Ge(111).
The atomic coordinates are given in Table 5.7 along with the atomic magnetic mo-
ments. The electronic structure of the film has been computed using the Jülich KKR
code with the VWN functional. We used an angular momentum cutoff of lmax = 3
for the Green functions and the wave functions.

We show in Fig. 5.27 the states at the Fermi energy marked by the portion of their
wave functions on three different regions of the film (Fe layers, 6 Ge layers closest

Figure 5.26.: (a) Side and (b) top view of 5 layers of Fe deposited on a Ge(111) film of
12 layers. We show the Fe and Ge atoms in red and violet respectively.
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atom x y z µat atom x y z µat

Fe 2.2956 0.0000 12.7984 2.79 Ge 0.0000 0.0000 2.4349 0.00

Fe 0.0000 0.0000 12.0515 2.22 Ge 0.0000 0.0000 0.0000 0.00

Fe -2.2956 0.0000 11.4645 2.32 Ge -2.2956 0.0000 -0.8116 0.00

Fe 2.2956 0.0000 10.3603 2.20 Ge -2.2956 0.0000 -3.2465 0.00

Fe 0.0000 0.0000 9.6946 1.97 Ge 2.2956 0.0000 -4.0581 0.00

Ge -2.2956 0.0000 8.9460 -0.06 Ge 2.2956 0.0000 -6.4930 0.00

Ge -2.2956 0.0000 6.4885 0.03 Ge 0.0000 0.0000 -7.3046 0.00

Ge 2.2956 0.0000 5.6896 0.01 Ge 0.0000 0.0000 -9.7395 0.00

Ge 2.2956 0.0000 3.4392 0.00

Table 5.7.: Computational details for the calculation of the electronic structure of the
Fe/Ge(111) thin film: x, y and z Cartesian atomic coordinates (in units
of Å) and atomic magnetic moments µat obtained within the Jülich KKR
code (in units of µB). The direct Bravais vectors in Cartesian coordinates
are defined by a = (3.443,−1.988, 0) and b = (3.443, 1.988, 0) (in units of
Å).

to the interface and 6 Ge layers closest to the bottom of film). One can identify the
bulk states of Ge close to the Γ point that spread over the entire Ge substrate, see
Fig. 5.27. The surface state located roughly in the middle of the Γ−K and Γ−M
paths is observed at the bottom of the film (Fig. 5.27c) but disappears on the side of
the interface with Fe (Fig. 5.27b). All other bands are strongly localized on the Fe
layers, as shown in Fig. 5.27a.

We compute the torkance using Eq. 4.128 for three different magnetization direc-
tions. We use in a first step the constant relaxation time approximation where the
vector mean free path is given by λ(k) = (2Γ/~)v(k) with Γ = 25 meV and v(k) the

Figure 5.27.: States at the Fermi energy marked by the portion of their wave functions
on different regions of the Fe/Ge(111) film: (a) Fe atoms, (b) 6 Ge atoms
closest to the interface and (c) 6 Ge atoms at the bottom of the film.
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group velocity. The torkance tensors for magnetization along êx, êy and êz read

t(M//êx) =

 0 0 0

0 0 0

0.56 0 0

 (5.4)

t(M//êy) =

0 0 0

0 0 0

0 0.56 0

 (5.5)

t(M//êz) =

−0.56 0 0

0 −0.56 0

0 0 0

 . (5.6)

The dependence of the torkance tensor on magnetization direction follows the cross
product with the exchange field in the definition of the torque, see Eq. 2.12. This
shows that the spin accumulation in that system is insensitive on magnetization di-
rection. Overall, the computed values are of the same order of magnitude as in the
case of the FePt/Pt film studied in Section 5.1. This demonstrates that the use of
semiconductors instead of heavy metals as a substrate is a promising line of research
for the development of SOT-based magnetic memories.

We show in Fig. 5.28 the contribution of different states to the torkance across the
Brillouin zone. The bulk states do not appear to play an important role as their in-
tersection with the Fermi energy is relatively small and the intensity of the torkance
for these states is moderate. The surface state of Ge at the bottom of the film is
hardly visible in Fig. 5.28, due to the spatial separation with the Fe layers. Overall,
the torkance has large contributions from the Fe bands, but most of them seem to
cancel partially. Only the last band crossing the Γ−K path (marked by the letter R
in Fig. 5.28) yields contributions of same sign for all k-points, in accordance with the
sign of the total torkance tensors in Eqs. 5.4, 5.5 and 5.6. By visual integration of the
torkance in Fig. 5.28, it seems to be this band that provides the largest contribution
to the torkance.

We now investigate the influence of impurity scattering on the torkance by using
Eq. 4.115 to compute the vector mean free path in the presence of Bi impurities. We
show in Table 5.8 the torkance values obtained for an impurity concentration equal
to 3% and a constant smearing of Γ = 25 meV. We consider the case of Bi adatoms
and replacement of Ge or Fe atoms by Bi atoms. We find that the torkance is very
sensitive to the presence of Bi impurities inside (substitutional impurity) or on top of
(adatom) the Fe layers but is not affected at all by the replacement of Ge atoms. This
is in full agreement with Fig. 5.28, where we see that the torkance arises essentially
from the Fe states.
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Figure 5.28.: Distribution of −Tz(k)λx(k)/|v(k)|, −Tz(k)λy(k)/|v(k)| and
Tx(k)λx(k)/|v(k)| in the Brillouin zone in a ferromagnetic Fe/Ge(111)
film for three different magnetization directions. Components of the
torkance that are not shown vanish for the specified magnetization
direction, see Eqs. 5.4, 5.5 and 5.6.

CRTA ad Fe1 Fe2 Fe3 Fe4 Fe5 Ge1 Ge2 Ge3 Ge4

txx 0.56 0.47 0.47 0.45 0.48 0.44 0.41 0.56 0.56 0.56 0.56

Table 5.8.: Torkance values for a Fe/Ge(111) film in the presence of Bi adatoms (ad)
and Bi substitutional impurities in different Fe and Ge layers. The value
for the CRTA is given as a reference. The vector mean free path is com-
puted from Eq. 4.115 with a concentration of impurity equal to 3% and
Γ = 25 meV.

We conclude that the SOT in Fe/Ge(111) films arise essentially from the spin-orbit
coupling within the Fe itself. The effect of the Ge layer is to be understood as a way of
breaking the inversion symmetry of the Fe layer by modification of the Fe orbitals at
the interface. This stands in sharp contrast to the case of FePt/Pt films (Section 5.1),
where the torque arises from a transfer of spin from the Pt to the ferromagnet.

5.4.2. SOTs in ferromagnetic Fe/Ge(001)

In systems with C3 or C4 symmetry, the part of the torkance tensor that is odd with
respect to magnetization direction reduces to a single independent value txx = tyy.
The lack of C3 or C4 rotation symmetry axis in Ge(001) films allows for three inde-
pendent components of the odd torkance txx, tyy and txy = tyx. We investigate in the
following the impact of the stacking direction of Ge on the torkance of Fe/Ge(001)
and Fe/Ge(111) films. We restrict our study to the case of out-of-plane magnetiza-
tion, where the Fe/Ge(111) film exhibits C3 symmetry but the Fe/Ge(001) film does
not. The atomic coordinates are given in Table 5.9 along with the atomic magnetic
moments. An illustration of a unit cell of the Fe/Ge(001) film is given in Fig. 5.29.

The torkance tensor computed within the CRTA approximation for the Fe/Ge(001)
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Figure 5.29.: (a) Side and (b) top view of 5 layers of Fe deposited on a Ge(001) film of
12 layers. We show the Fe and Ge atoms in red and violet respectively.

atom x y z µat atom x y z µat

Fe 0.000 0.000 -11.312 2.93 Ge 0.000 2.828 -2.828 0.03

Fe 0.000 2.828 -11.312 2.93 Ge -1.414 1.414 -1.414 0.00

Fe 1.414 1.414 -9.898 2.21 Ge 0.000 0.000 0.000 0.00

Fe -1.414 1.414 -9.898 2.21 Ge 1.414 1.414 1.414 0.00

Fe 0.000 2.828 -8.484 2.29 Ge 0.000 2.828 2.828 0.00

Fe 0.000 0.000 -8.484 2.28 Ge -1.414 1.414 4.242 0.00

Fe -1.414 1.414 -7.070 2.12 Ge 0.000 0.000 5.656 0.00

Fe 1.414 1.414 -7.070 2.17 Ge 1.414 1.414 7.070 0.00

Fe 0.000 0.000 -5.656 2.18 Ge 0.000 2.828 8.484 0.00

Fe 0.000 2.828 -5.656 2.10 Ge -1.414 1.414 9.898 0.00

Ge 1.414 1.414 -4.242 -0.05 Ge 0.000 0.000 11.312 0.00

Table 5.9.: Computational details for the calculation of the electronic structure of the
Fe/Ge(001) thin film: x, y and z Cartesian atomic coordinates (in units
of Å) and atomic magnetic moments µat obtained within the Jülich KKR
code (in units of µB). The direct Bravais vectors in Cartesian coordinates
are defined by a = (2.828, 2.828, 0) and b = (−2.828, 2.828, 0) (in units of
Å).
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Figure 5.30.: Distribution of Tx(k)λx(k)/|v(k)| and Tx(k)λy(k)/|v(k)| in the Bril-
louin zone in a ferromagnetic Fe/Ge(001) film.

film reads4

t(M//êz) =

−0.15 0.08 0

0.08 −0.15 0

0 0 0

 ,
where the relation txx = tyy is a consequence of the choice made for the x and y axis.
Let us compare the torques induced by an electric field ES = E0(ex/

√
2 + ey/

√
2)

and EL = E0(ex/
√

2 − ey/
√

2). The definition of the torkance (Eq. 2.2) yields the
induced torques T S = −0.07T0(ex/

√
2+ey/

√
2) and T L = −0.23T0(ex/

√
2−ey/

√
2),

with T0 = E0 ea0. Therefore, the longitudinal torque induced by an electric field in
Fe/Ge(001) varies by a factor of 3 depending on the direction of the electric field and
is always much smaller than the torque −0.56T0 induced by the same electric field
in Fe/Ge(111). This has very strong implications for the experimental investigation
of SOTs in Fe/Ge bilayers. In fact, our results suggest an extreme dependence of the
SOT on the stacking direction and on the relative alignment of the electric field with
the crystallographic axis.

5.4.3. SOTs in antiferromagnetic Fe/Ge(111)

Antiferromagnets have become very popular in the last few years in the spintronics
community [72]. They have emerged as a potential replacement for ferromagnets in
SOT-based magnetic memories with two main benefits: first, they do not induce stray
fields, which are known to limit the scalability of magnetic memories; second, they
have a much faster dynamics than ferromagnets. In the following, we apply our KKR
formalism to compute the SOT exerted on each sublattice of an antiferromagnetic

4In order to construct a Fe film on top of Ge(001), it is necessary to include two Fe atoms per Fe
layer and per unit cell. Therefore, there are twice as much Fe atoms per unit cell for Fe/Ge(001)
than for Fe/Ge(111). In order to account for that difference, the torkance and torque values for
the Fe/Ge(001) film have been divided by two.
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atom x y z µat atom x y z µat

Fe 0.000 0.000 9.488 2.65 Ge 0.000 2.296 -0.812 0.00

Fe 1.988 3.443 9.488 -2.65 Ge 1.988 5.739 -0.812 0.00

Ge 0.000 2.296 8.783 0.03 Ge 0.000 2.296 -3.247 0.00

Ge 1.988 5.739 8.783 -0.03 Ge 1.988 5.739 -3.247 0.00

Ge 0.000 2.296 6.374 0.00 Ge 0.000 4.591 -4.058 0.00

Ge 1.988 5.739 6.374 0.00 Ge 1.988 1.148 -4.058 0.00

Ge 0.000 4.591 5.584 0.00 Ge 0.000 4.591 -6.493 0.00

Ge 1.988 1.148 5.584 0.00 Ge 1.988 1.148 -6.493 0.00

Ge 0.000 4.591 3.181 0.00 Ge 0.000 0.000 -7.305 0.00

Ge 1.988 1.148 3.181 0.00 Ge 1.988 3.443 -7.305 0.00

Ge 0.000 0.000 2.399 0.00 Ge 0.000 0.000 -9.740 0.00

Ge 1.988 3.443 2.399 0.00 Ge 1.988 3.443 -9.740 0.00

Ge 0.000 0.000 0.000 0.00

Ge 1.988 3.443 0.000 0.00

Table 5.10.: Computational details for the calculation of the electronic structure
of the antiferromagnetic Fe/Ge(111) thin film: x, y and z Cartesian
atomic coordinates (in units of Å) and atomic magnetic moments µat

obtained within the Jülich KKR code (in units of µB). The direct Bravais
vectors in Cartesian coordinates are defined by a = (3.976, 0, 0) and
b = (3.443, 6.886, 0) (in units of Å).

Fe monolayer deposited on 12 layers of Ge(111). The atomic coordinates are given
in Table 5.10 along with the atomic magnetic moments. According to Ref. [72], the
torque we obtain from the Boltzmann formalism does not have the desirable symme-
try to switch antiferromagnets, as it is an odd function of the magnetization direction.
However, it is relevant to consider the SOT acting on each sublattice as it gives a
good indication of the strength of the spin-orbit fields.

The torkance tensors for sublattices A and B computed within the CRTA approxi-
mation read

tA =

−0.22 0 0

0 −0.17 0

0 0 0

 (5.7)

tB =

0.22 0 0

0 0.17 0

0 0 0

 . (5.8)

104



5.4 SOTs in semiconductor-based thin films: example of Fe/Ge bilayers

The symmetry of the torkance tensor is drastically modified by the antiferromag-
netic order. As in the case of the ferromagnetic Fe/Ge(001) film, there is no C3

symmetry that enforces txx = tyy anymore. Indeed, we find a large anisotropy of
the longitudinal torkance, which varies by 30% depending on the direction of the
electric field. The magnitude of the computed SOT is 2 or 3 times smaller than in
ferromagnetic Fe/Ge(111) (Section 5.4.1) but as large as in ferromagnetic Fe/Ge(001)
(Section 5.4.2).

The torques exerted on the two sublattices have equal magnitudes and opposite signs.
We show in Fig. 5.31 the distribution of the torkance across the Brillouin zone for
each sublattice. Comparing the tAxx and tBxx components, we find that each state
contributes to the torkance with different signs on each sublattice. The same obser-
vation can be made for the tAyy and tByy components. Because also the magnitudes
of the torkance differs between the two sublattices, we find that most of the states
yield a finite contribution to the torkance. However, the total torkance obtained by
integration of the state-resolved torkance vanishes, as shown by the opposite signs of
tA and tB, see Eqs. 5.7 and 5.8.

Figure 5.31.: Distribution of Tx(k)λx(k)/|v(k)| and Ty(k)λy(k)/|v(k)| in the Bril-
louin zone for each sublattice of an antiferromagnetic Fe/Ge(111) film.
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To summarize, we find in antiferromagnetic Fe/Ge bilayers a SOT acting on indi-
vidual sublattices of similar order of magnitude as in ferromagnetic Fe/Ge bilayers.
Our results suggest that semiconductor-based heterostructures such as Fe/Ge bilayers
might also be promising candidates for the development of antiferromagnetic memory
devices.
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6 Conclusion

In summary, the first principles methods developed in this work provide an accurate
and efficient way of computing intrinsic and extrinsic spin-orbit torques in ferromag-
netic systems.

The main accomplishment of this thesis is the implementation in the Jülich KKR
code of a formalism for the extrinsic spin-orbit torques. The impurity-induced transi-
tion rates are computed from first principles and its influence on transport properties
is treated within the Boltzmann formalism. The formalism provides a way to compute
spin-orbit torques in complex ferromagnetic heterostructures beyond the conventional
constant relaxation time approximation.

Taking FePt/Pt and Co/Cu thin films as examples, a pronounced dependence of
the SOT on the specific types of scattering has been demonstrated. In the case of
FePt/Pt bilayers, the presence of disorder at surfaces and interfaces crucially modifies
the net torque acting on the magnetization. If the distribution of defects are such
that they preferentially suppress the surface contributions to the torque, a significant
and unexpected increase of the net torque was observed. In the case of Co/Cu bilay-
ers, the doping with various types of impurities was found to be a powerful mean for
engineering the torque in such systems. Astonishingly, a sign change of the torque
can be achieved when Co/Cu thin films are doped with Ir impurities.

Motivated by recent experimental results, the developed formalism has been applied
to the investigation of spin-orbit torques in a Ag2Bi-terminated Ag film grown on
ferromagnetic Fe(110). The analysis of the spin fluxes and the Fermi surface decom-
position of the torkance tensor coefficients clearly rules out that the torque exerted
on the Fe originates solely from the spin-orbit coupling in the Ag2Bi layer. Instead,
the total torque exerted on the magnetization appears to have three different com-
ponents, arising from the spin-orbit coupling in the Fe itself, at the Fe/Ag interface
and at the Ag2Bi surface.

The large spin-orbit torque predicted in Fe/Ge bilayers within this work suggests
that semiconductor substrates might be a promising alternative to heavy metals for
electrically switchable magnetic devices. The drastic influence of the stacking direc-
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tion and the large anisotropy predicted by our formalism provides important guide-
lines for future experiments. We also computed the spin-orbit torques acting on each
sublattice of an antiferromagnetic Fe/Ge bilayer and found a large anisotropy of the
sublattice-resolved torkance tensor.

As a part of this work, also the spin-orbit torques induced by thermal gradients
have been investigated. We found that the corresponding response coefficients are
large enough for the phenomena to be observed experimentally.
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A Perspectives: Kubo formal-
ism for the torque in KKR

We have presented in Section 4 a KKR formalism to investigate the impurity-driven
spin-orbit torques within the semi-classical theory of transport. A possible extension
of our work is to go beyond the Boltzmann response by using the Kubo formalism for
the torque [19], which was used in Section 3 within the FLAPW method. One of the
advantage of the KKR method is its ability to treat impurity scattering in a rigorous
manner. Therefore, an implementation of the Kubo formula in the KKR code would
pave the way for a linear response theory that goes beyond the constant relaxation
time approximation used in Section 3. Even though this development goes beyond
the scope of this thesis, we discuss in this appendix a possible way to achieve it.

The Kubo formula for the torkance reads

t
I(a)
ij =

e

hN
Tr〈TiGR(εF )vjG

A(εF )〉,

t
I(b)
ij = − e

hN
<Tr〈TiGR(εF )vjG

R(εF )〉,

t
II
ij =

e

hN

∫ εF

−∞
dε <Tr〈TiGR(ε)vj

dGR(ε)

dε
− Ti

dGR(ε)

dε
vjG

R(ε)〉,

(A.1)

where we have introduced the number of unit cells N to normalize the torque to a
single unit cell.

It is essential to evaluate Eq. A.1 to have a practical implementation of the velocity
operator v in the KKR formalism. A possible implementation is to use the α-matrix
as discussed in Section 4.3.4.

The retarded Green function in KKR is given by Eq. 4.37. This expression can
be generalized to the case of multiple atoms in the unit cell by

GR(r +Rµ +Rn, r
′ +Rµ′ +Rn′ , ε) = δnn′δµµ′

o

G
R

µ (r, r′, ε)

+
∑
ΛΛ′

Rµ
Λ(r, ε)GR,nn′

ΛΛ′,µµ′(ε)R̄
µ′

Λ′(r
′, ε).

(A.2)
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The advanced Green function GA is connected to the retarded Green function GR by
the relation

GA(r′ +Rµ′ +Rn′ , r +Rµ +Rn) = [GR(r +Rµ +Rn, r
′ +Rµ′ +Rn′)]†. (A.3)

It is convenient to expand the advanced Green function according to

GA(r′ +Rµ′ +Rn′ , r +Rµ +Rn, ε) = δnn′δµµ′
o

G
A

µ (r′, r, ε)

+
∑
ΛΛ′

[R̄µ′

Λ′(r
′)]†(GA,n′n

Λ′Λ,µ′µ)[Rµ
Λ(r)]†,

(A.4)

because Eq. A.3 gives a direct relation between the retarded and advanced structural
Green functions:

[R̄µ′

Λ′(r
′)]†GA,n′n

Λ′Λ,µ′µ[Rµ
Λ(r)]† =

[
Rµ

Λ(r, ε)GR,nn′

ΛΛ′,µµ′(ε)R̄
µ′

Λ′(r
′, ε)
]†

= [R̄µ′

Λ′(r
′, ε)]†(GR,nn′

ΛΛ′,µµ′(ε))
∗[Rµ

Λ(r, ε)]†,

(A.5)

where GA,n′n
Λ′Λ,µ′µ = (GR,nn′

ΛΛ′,µµ′(ε))
∗ can be directly identified as the conjugate transpose

of the retarded Green function.

Inserting Eq. A.2 into Eq. A.1 yields for the tI(b) component of the torkance ten-
sor

t
I(b)
ij = − e

hN

∑
nµ

∫
Vµ

dr

∫
Vµ

dr′ <Tr〈Tiµ(r)
o

GR
µ(r, r′)vj

o

GR
µ(r′, r)〉

− e

hN

∑
nn′

∑
µµ′

∑
ΛΛ′Λ′′Λ′′′

∫
Vµ

dr

∫
Vµ′

dr′

<Tr〈Tiµ(r)Rµ
Λ(r)GR,nn′

ΛΛ′,µµ′R̄
µ′

Λ′(r
′)vjR

µ′

Λ′′(r
′)GR,n′n

Λ′′Λ′′′,µ′µR̄
µ
Λ′′′(r)〉

(A.6)

The first and second terms in the previous equation can be identified respectively as
on-site and off-site terms. The on-site term involves only the single site Green func-
tion and can be computed independently for each atomic potential. The off-site term
corresponds to the multiple scattering part that implies the structural Green function.

We first discuss the off-site term of the tI(b) component of the torkance tensor. The
invariance of the trace by cyclic permutation in Eq. A.6 allows us to move R̄µ

Λ′′′(r) to
the front of the trace, which yields

t
I(b),off
ij = − e

hN

∑
nn′

∑
µµ′

∑
ΛΛ′

∑
Λ′′Λ′′′

∫
Vµ

dr

∫
Vµ′

dr′

<Tr〈R̄µ
Λ′′′(r)Tiµ(r)Rµ

Λ(r)GR,nn′

ΛΛ′,µµ′R̄
µ′

Λ′(r
′)vjR

µ′

Λ′′(r
′)GR,n′n

Λ′′Λ′′′,µ′µ〉.

(A.7)
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We introduce the matrices T̃
I(b)
i and ṽ

I(b)
j whose elements are defined by

T̃
µ,I(b)
ΛΛ′,i =

∫
Vµ

dr R̄µ
Λ(r)Tiµ(r)Rµ

Λ′(r), (A.8)

ṽ
µ,I(b)
ΛΛ′,j =

∫
Vµ

dr R̄µ
Λ(r)vjµR

µ
Λ′(r). (A.9)

This allows us to rewrite Eq. (A.7) in the much more concise way

t
I(b),off
ij = − e

hN

∑
nn′

<Tr〈T̃I(b)
i GR

nn′ ṽ
I(b)
j GR

n′n〉. (A.10)

In order to overcome the summation over the many unit cells, we introduce the Fourier
transform of the Green functions GR(k), so that

GR
nn′ =

1

SBZ

∫
BZ

dk GR(k)e−ik·(Rn−Rn′ ). (A.11)

Using the relation (
∑

n e
−i(k−k′)·Rn)(

∑
n′ e−i(k−k

′)·Rn′ ) = δ(k−k′)N leads to the final
expression

t
I(b),off
ij = − e

hS2
BZ

∫
BZ

dk <Tr〈T̃I(b)
i GR(k)ṽ

I(b)
j GR(k)〉. (A.12)

Using the expansion of the advanced Green function given by Eq. A.4, we obtain the
off-site term of the tI(a) torkance tensor

t
I(a),off
ij =

eN

hS2
BZ

∫
BZ

dk Tr〈T̃I(a)
i GR(k)ṽ

I(a)
j GA(k)〉, (A.13)

where the matrix elements of T̃
I(a)
i and ṽ

I(a)
j are given by

T̃
µ,I(a)
ΛΛ′,i =

∫
Vµ

dr [Rµ
Λ(r)]†Tiµ(r)Rµ

Λ′(r), (A.14)

ṽ
µ,I(a)
ΛΛ′,j =

∫
Vµ

dr R̄µ
Λ(r)vjµ[R̄µ

Λ′(r)]†. (A.15)

Because the off-site terms of the Kubo formula are the ones that carry the effect of
the spin currents, they should be sufficient to compute the torque that arises from
the spin Hall effect. One advantage of a KKR implementation of the Kubo formula
over a FLAPW implementation is that there is no conceptual difficulty to include the
effect of impurity scattering on the transport properties. This can be done by defining
a disordered Green function G

R/A
dis connected to the clean Green function GR/A by a

Dyson equation:
G

R/A
dis = GR/A +GR/A Σ G

R/A
dis , (A.16)

where the self-energy Σ can be connected to the impurity-induced transition rates
Pkk′ (Eq. 4.66) in the dilute limit. This would probably include the effect of impurity
skew-scattering on the spin-orbit torque in a satisfying manner.
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