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Abstract 

At the land surface, the hydrologic cycle is strongly linked to soil water content (SWC). Land 

surface models describe the mass and energy fluxes at the land surface and to the atmosphere 

with a spatial resolution of a few km2 at the catchment scale. The calibration and evaluation of 

land surface models requests observation data, ideally at the same spatial resolution. SWC 

characterization by model prediction and observation remains a challenge in land surface 

hydrology. Recently, cosmic-ray probes (CRPs) were developed for continuous passive SWC 

estimation from neutron flux measurements at a scale relevant for land surface models. One 

objective of this work was to set up a network of ten CRPs and to evaluate SWC estimates by 

CRPs. For evaluation, the footprint average SWC of the CRPs was compared to the horizontally 

and vertically weighted signal of two distributed networks of in-situ SWC sensors. Three 

different parameterization methods to estimate SWC from neutron flux were compared. 

Numerical complexity and potential applications distinguish the three parameterization 

methods. The three parameterization methods resulted in close SWC estimates at the ten study 

sites although the neutron flux – SWC relationships were slightly different amongst the 

parameterization methods. SWC estimated by the calibrated CRPs was very close to SWC 

measured by alternative SWC measurements. Root mean square errors (RMSEs) of the SWC 

were 0.031 cm3/cm3 at the distributed in-situ SWC sensor networks.  

 

The second part of this dissertation focuses on empirically quantifying the impact of 

aboveground biomass on SWC estimates by CRPs. The footprint average aboveground biomass 

was estimated for ten calibrated CRPs. The calibration data set of the ten calibrated CRPs was 

used to derive an empirical correction for the influence of vegetation on neutron flux. The 

vegetation correction is applied directly on measured neutron flux. Additional field 

measurements along a strong gradient in biomass were done to evaluate the empirical 

vegetation correction method. Sensor specific counting efficiency was determined for each CRP 

and the CRPs were normalized to a standard efficiency. The study found a reduction of 0.9% in 

fast neutrons per kg of dry above ground biomass per m2. The empirical vegetation correction 

was applied successfully to the hmf-method and the COSMIC operator, two measurement 

operators to determine SWC from neutron flux and vice versa. Including the vegetation 

correction for CRP-based SWC estimates could explain 95% of the measured neutron flux 

variability compared to 76% if vegetation correction was not included. In future work, the 
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empirical vegetation correction should be tested also at other CRP networks but sensor specific 

counting efficiencies needs to be taken into account if more than one individual CRP is used. 

 

In the third part of this dissertation, the benefit of a CRP network for improving the 

characterization of states and parameters of a land surface model was analyzed. The 

Community Land Model (CLM) was set up with a regional high resolution (~1km2) surface and 

subsurface parameterization. Two soil maps, a regional and a biased soil map were used for the 

soil texture. The uncertainty of forcing data, soil texture, and organic matter content was 

characterized by perturbing these input data. CLM was coupled to the COSMIC operator and the 

Local Ensemble Transform Kalman Filter (LETKF), a sequential data assimilation algorithm. Over 

a two year period (2011-2012), data of the CRPs were assimilated daily if available for either 

only state updates or joint state-parameter updates. The third year (2013) served as verification 

period and no data assimilation was done. Modeled SWC was evaluated against SWC measured 

by CRPs. Modeled SWC with the regional soil map was already close to observed SWC 

(RMSE=0.04 cm3/cm3). Data assimilation even improved these results in the assimilation period 

for state (RMSE=0.028 cm3/cm3) and joint state-parameter (RMSE=0.028 cm3/cm3) updates. 

Modeled SWC with the biased soil map resulted in higher RMSEs on average. If only states were 

updated with the biased soil map, SWC characterization improved significantly during the 

assimilation period (open loop: 0.109 cm3/cm3; update: 0.03 cm3/cm3), which was also the case 

for joint state-parameter estimation (update: 0.03 cm3). During the verification period, joint 

state-parameter estimation improved SWC if the biased soil map was used as prior information 

(open loop: 0.115 cm3/cm3; update: 0.044 cm3/cm3), but not if the regional soil map was used 

(open loop: 0.041 cm3/cm3; update: 0.047 cm3/cm3). A second jackknife evaluation was done by 

assimilating eight CRPs with joint state-parameter updates and using the ninth CRP observations 

for evaluation. In the evaluation period 2013, eight out of nine CRPs showed improved SWC in 

case of the biased soil map. In case of the regional soil map, seven out of nine CRPs showed 

improved SWC compared to open loop SWC. In conclusion, the results suggest that the network 

of CRPs was suited for improving the characterization of states and parameters of a land surface 

model by data assimilation, but not in case of a good quality soil map as prior information. 

  



vii 
 

Zusammenfassung 

Der hydrologische Kreislauf an der Landoberfläche ist eng mit der Bodenfeuchte (BF) verknüpft. 

Landoberflächenmodelle (LOM) modellieren die Masse und Energieflüsse an der Landoberfläche 

mit einer räumlichen Auflösung von wenigen km2 auf regionaler Ebene. Deren Kalibrierung und 

Bewertung erfordert Beobachtungsdaten idealerweise in einer ähnlichen räumlichen Auflösung. 

In dieser Auflösung bleibt Modellierung und Beobachtung von BF eine Herausforderung. Für 

diesen Zweck wurden vor kurzem Cosmic-Ray Sensoren (CRS) entwickelt, um invers BF auf Basis 

detektierter Neutronendichte zu bestimmen. Ein Ziel der vorliegenden Arbeit war es ein 

Netzwerk von CRS aufzubauen und die Messgenauigkeit zu bestimmen. Hierzu wurde an zwei 

CRS Standorten die gewichtete mittlere BF über die CRS Messfläche (~30 ha) mit Hilfe eines 

verteilten Bodenfeuchtesensornetzwerkes bestimmt. Die gemittelten BF ergaben eine gute 

Übereinstimmung zu denen der CRS (mittlere quadratische Abweichung (MQA)=0.030 cm3/cm3) 

an beiden Standorten. Es wurde weiterhin die Güte von drei verschiedenen Parametrisierungen 

zur Bodenfeuchtebestimmung mit CRS verglichen. Die Methoden unterschieden sich in der 

numerischen Komplexität und künftige Anwendungsmöglichkeiten. Diese drei Methoden 

resultierten in leicht unterschiedliche Kalibrierungskurven, welche jedoch den MQA nicht 

beeinflussten. 

 

Der zweite Teil dieser Arbeit war auf die Ermittlung einer empirischen Korrektur für oberirdische 

Biomasse fokussiert. Für die zehn kalibrierten CRS wurde die oberirdische Biomasse ermittelt, 

um den Einfluss von Biomasse auf gemessene Neutronendichte zu quantifizieren und dafür eine 

geeignete Korrekturmethode zu entwickeln. Zur Evaluierung der Korrektur wurden zusätzliche 

Messungen mit CRS und einem Bodenfeuchtesensornetzwerk entlang eines starken 

Biomassegradienten durchgeführt. Es wurde eine Reduktion um 0.9% der Neutronendichte pro 

kg überirdische Biomasse pro m2 ermittelt. Weiterhin wurde die Vegetationskorrektur 

erfolgreich auf die hmf-Methode und den COSMIC Operator angewendet, zwei Messoperatoren 

zur Berechnung von BF von Neutronendichte und vice versa. Unter Einbeziehung der 

Vegetationskorrektur konnte BF 95% der Variabilität in bemessener Neutronendichte erklären, 

im Gegensatz zu 76% wenn die Vegetationskorrektur nicht angewendet wurde. In künftigen 

Projekten könnte die Vegetationskorrektur auch auf andere CRS Netzwerke angewendet 

werden. Wie diese Studie gezeigt hat ist es hierfür unabdingbar, dass für den sensorabhängigen 

Zählwirkungsgrad korrigiert wird. 
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Im dritten Teil dieser Dissertation, wurden die Möglichkeiten untersucht, Zustandsvariablen und 

Parameter in einem LOM mit der Assimilierung von realen CRS Messdaten zu verbessern. Für 

das hydrologische Rureinzugsgebiet wurde das Community Land Model (CLM) in einer 

Auflösung von ~1km2 aufgesetzt und parametrisiert. Die Bodentextur wurde mit einer 

regionalen und einer polarisierten Bodenkarte initialisiert. Unsicherheiten in atmosphärischem 

Antrieb, Bodentextur und Organischem Bodenanteil wurden durch Perturbierung der 

Eingabedaten charakterisiert. CLM wurde mit dem COSMIC Operator und dem Local Ensemble 

Transform Kalman Filter (LETKF), einem sequentiellen Datenassimilierungsverfahren, gekoppelt. 

Es wurden in einigen Experimenten lediglich Zustandsvariablen, in andern zusätzlich 

Bodenparameter aktualisiert. Daten von CRS wurden über einen Zeitraum von zwei Jahren 

assimiliert (2011-2012). Anschließend wurde ein drittes Jahr (2013) zur Evaluierung der 

Parameterabschätzung ohne Assimilierung modelliert. Die modellierte bzw. assimilierte BF 

wurde mit gemessenen CRS BF (Referenz) verglichen. Die anhand der regionalen Bodenkarte 

modellierte BF stimmte bereits im Leerlauf (LL) gut mit den beobachteten BF überein 

(MQF=0.04 cm3/cm3). Während der Assimilierungsperiode konnte diese Übereinstimmung noch 

verbessert werden, sowohl für die Aktualisierung von Zustandsvariablen, als auch für die 

kombinierte Aktualisierung von Zustandsvariablen und Parametern (beide MQF=0.028 

cm3/cm3). Der LL mit polarisierter Bodenkarte resultierte in wesentlich höhere Fehlerwerte. 

Auch diese konnten mit der Aktualisierung von Zustandsvariablen und Parametern (MQF=0.03 

cm3/cm3) im Vergleich zum Leerlauf (MQF=0.109 cm3/cm3) wesentlich verbessert werden. 

Parameterabschätzung führte auch zu starken Verbesserungen im Evaluierungszeitraum im Falle 

der polarisierten Bodenkarte (MQF=0.072 cm3/cm3 Verbesserung), nicht jedoch im Falle der 

regionalen Bodenkarte (MQF=-0.006 cm3/cm3 Verbesserung). Es wurden weitere 18 Jackknife 

Evaluierungsläufe durchgeführt, in welcher für beide Bodenkarten jeweils Daten von acht CRS 

assimiliert wurden und der jeweils neunte CRS zur Evaluierung genutzt wurde. In dem 

Evaluierungsjahr 2013 zeigten acht von neun Läufen verbesserte BF im Falle der polarisierten 

Bodenkarte, und sieben von neun Läufen verbesserte BF im Falle der regionalen Bodenkarte. 

Insgesamt konnte anhand dieser Beispiele gezeigt werden, dass CRS Netzwerke die 

Verbesserung von Bodenparametern mit Hilfe des LETKF Datenassimilierungsverfahrens 

ermöglichen. Die Verbesserung wurde nicht nur an den Beobachteten Gitterzellen erbracht, es 

wurde mit der Jackknife Methode auch gezeigt, dass an unbeobachteten Gitterzellen des 

Modelles Verbesserungen erreicht werden können. Der LETKF zeigte sich somit geeignet, die 

Beobachtungen an den einzelnen Punkten auch in den Raum zu übertragen. 
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1 Introduction 

1.1 General context 

The global hydrologic cycle is of unchallenged importance to sustain life on Earth and the well-

being of mankind. Presently, it is estimated that a total of 73 x 103 km3 water per year is given 

back to the atmosphere through evapotranspiration over the land surface, 40 x 103 km3 per year 

runoff is generated while 413 x 103 km3 water per year evaporates from oceans from a total of 

486 x 103 km3 precipitation over land and ocean (Dingman 2008). From this quantitative point of 

view the contribution of soil moisture, the soil water content in the unsaturated zone, is small 

(<0.009 %) compared to the global water resources (Dingman 2008). Nevertheless, soil moisture 

is a major variable in the global hydrological cycle governing the link at the land surface 

between aquifers, vegetation, ecology, and the atmosphere. Amongst other processes, root 

zone soil moisture controls groundwater recharge (Brutsaert 2005), partitioning of net radiation 

into latent and sensible heat fluxes (Shukla and Mintz 1982), runoff generation processes after 

precipitation events (Robinson et al. 2008a; Vereecken et al. 2008), and evapotranspiration 

during periods of limited soil moisture availability (Denmead and Shaw 1962; Jung et al. 2010). 

Hence, an improved understanding of the role of soil moisture is compulsory to better quantify 

hydrologic processes at the land surface. Land Surface Models (LSM) describe the coupled 

water, energy and bio-geochemical cycles at the land surface and to the atmosphere. Modeling 

the land surface resolves transport processes of water and energy within soils, the ecosystem 

and between the land and the atmosphere. Soil water content is an important state variable of 

LSMs. LSMs can represent the lower boundary condition of atmospheric circulation models and 

therefore allow estimating for example the intensity of soil moisture-precipitation feedbacks 

(Eltahir 1998; Koster et al. 2004), and summer climate variability and drought (Oglesby and 

Erickson 1989; Seneviratne et al. 2006; Sheffield and Wood 2008). Increasing computational 

capacities lead to higher model resolution of LSMs. In addition, novel emerging observation 

technologies and increasing amounts of observation data allow for a more precise calibration 

and evaluation of land surface processes posing new challenges to land surface modeling itself. 

In this respect, computational parameter estimation techniques that consider observation 

uncertainties and model uncertainties experience an increasing research interest for model 

calibration and state estimation. Amongst other observations, soil moisture observations are of 
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high relevance as a source for hydrologic LSM calibration and validation (Brocca et al. 2012; 

Koster et al. 2004). Common scales of soil moisture measurements are local scale (several dm3), 

field scale (from several tens of m2 to ha) and regional scale (several km2) soil moisture 

observations. The intrinsic characteristic of each method is that the large scale observations 

ideally represent spatial averages of small scale soil water content while neglecting sub-scale 

variability. However, the spatial and temporal structure of soil moisture is highly heterogeneous 

(Vereecken et al. 2014). This poses a challenge to measure soil moisture at the field scale which 

is the scale relevant for high resolution LSMs. In the following subchapters of the introduction, 

the most important soil moisture measurements across scales that prevailed cosmic ray soil 

moisture estimation are briefly outlined. The state of the art of soil moisture measurements is 

followed by a brief description of the community land model, a LSM, and an introduction to 

ensemble Kalman filtering. The dissertation’s introduction is finalized with naming the research 

objectives and stating the outline of the dissertation.  

 

1.2 State of the art 

1.2.1 Soil water content measurements 

The most exact method to determine soil water content of a small sample is gravimetric soil 

sampling and determining the weight difference between wet and dry soil. For the gravimetric 

sampling a fixed volume of soil is extracted from the ground, weighed to determine the wet 

weight, and oven-dried at a fixed temperature of at least 70 degree Celsius for at least 48 hours. 

When several weighing repetitions show no further weight reduction, the dry weight can be 

determined. Soil water content can be expressed now as gravimetric soil water content 𝜃𝑔𝑟𝑎𝑣 in 

g/g:  

𝜃𝑔𝑟𝑎𝑣 = (𝑚𝑤𝑒𝑡 −𝑚𝑑𝑟𝑦) 𝑚𝑑𝑟𝑦⁄   1 

where 𝑚𝑤𝑒𝑡 and 𝑚𝑑𝑟𝑦 are the wet and dry mass of soil, respectively, in g. Alternatively, soil 

water content is expressed as volumetric soil water content 𝜃𝑣𝑜𝑙  in cm3/cm3:  

𝜃𝑣𝑜𝑙 =
𝑉𝑤𝑎𝑡𝑒𝑟
𝑉𝑡𝑜𝑡𝑎𝑙

=
𝑚𝑤𝑒𝑡 −𝑚𝑑𝑟𝑦

𝑚𝑑𝑟𝑦
×

𝜌𝑏𝑑
𝜌𝑤𝑎𝑡𝑒𝑟

 
2 

where 𝑉𝑤𝑎𝑡𝑒𝑟 is the volume occupied by water in cm3 with respect to the total volume of the 

sample 𝑉𝑡𝑜𝑡𝑎𝑙 in cm3, 𝜌𝑤𝑎𝑡𝑒𝑟 is the density of water in g/cm3 and 𝜌𝑏𝑑 is the density of soil in 
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g/cm3. Since gravimetric soil sampling is very time consuming, a range of sensors has been 

developed within the last four decades to measure soil moisture continuously. 

 

1.2.1.1 Local Scale Soil Moisture Measurements 

Topp et al. (1980) were pioneers in geophysical soil moisture determination by relating the 

dielectric conductivity of wet soil to soil water content using time domain reflectometry (TDR) 

probes. TDR probes use the contrasting high dielectric conductivity of water to the low dielectric 

conductivity of dry soil to estimate soil water content from empirical equations. TDR probes 

have a length of several cm and determine soil water content in a volume of a few dm3. They 

can be installed at a fixed location in the field or can be used as mobile invasive sensors 

(Robinson et al. 2003). For these point measurements, alternative sensors were developed 

which use the surrounding soil as sensor capacitor (Kelleners et al. 2005) or electromagnetic 

time domain transmission (TDT) sensors which use the water-affected time of an 

electromagnetic wave to travel a certain soil domain (Blonquist et al. 2005). A large number of 

point measurements interconnected to a sensor network is able to monitor soil moisture at the 

field scale or the scale of a small watershed (Robinson et al. 2008a; Rosenbaum et al. 2012). 

Local soil moisture measurements are advantageous for continuous monitoring of soil moisture 

in space and time at a high resolution but they are invasive and require considerable 

maintenance and investment costs (Bogena et al. 2010; Brocca et al. 2012). 

 

1.2.1.2 Field Scale Hydro-geophysical Soil Moisture Measurements 

Research interest and advances in hydro-geophysical methods to characterize field scale soil 

water content (several tens of m2 or ha) increased in recent years (Robinson et al. 2008b). The 

three main principles are electromagnetic induction (EMI) (Mcneill 1980), electrical resistivity 

tomography (ERT) (Kemna et al. 2000) and ground penetrating radar (GPR) (Eppstein and 

Dougherty 1998). These three techniques have the potential to measure soil moisture on the 

field scale with a resolution up to several meters (Vereecken et al. 2014). EMI systems use a 

transmitter to induce a current into the soil which generates two electromagnetic fields in the 

sub-surface. A receiver measures the electromagnet field as a response showing the apparent 
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electrical conductivity distribution of the soil. ERT systems consist of at least two electrodes to 

inject an electric current into the soil (transmitter) and two electrodes to measure the potential 

difference (receivers). This potential difference represents the apparent electrical conductivity 

distribution of the soil between transmitter and receiver. Generally, ERT systems consist of 

several tens of electrodes that are used to measure apparent electric conductivity of a cross 

section. However, the apparent electrical conductivity does not only depend on soil moisture 

but also on other soil properties such as clay content, salinity and temperature and their spatial 

structure (Abdu et al. 2008). High heterogeneity of soil properties makes it challenging to infer 

soil water content from EMI or ERT measurements alone, because apparent electrical 

conductivity is a combined signal mainly of these four soil properties (Loke et al. 2013). Similar 

to TDR, GPR is founded on the electromagnetic wave propagation of soils that is used to 

determine the dielectric permittivity of the soil. In contrast to TDR, GPR is non-invasive like EMI 

and GPR. Electromagnetic waves are emitted into the sub-surface by a transmitter and their 

signal is received by a receiver several meters apart. However, GPR faces several limitations that 

limit the applicability of GPR for soil moisture estimation on the field scale such as surface 

roughness, vegetation scattering and elevated clay content (Lambot et al. 2006; Vereecken et al. 

2014). 

 

1.2.1.3 Regional scale soil moisture remote sensing 

On the regional scale (several km2) surface soil moisture is frequently estimated by active or 

passive microwave remote sensing techniques from space. These techniques can determine soil 

water content for the upper few centimeters of soil. Passive remote sensing instruments are 

receivers that measure electromagnetic waves emitted by the earth surface. These radiometers 

can either be mounted on ground, or on vehicles, or can be airborne or satellite based. The 

spatial resolution of the radiometer increases depending on the sensor mounting height from 

several m2 (ground based) to several km2 (space). The frequency of emitted waves is between 1 

and 12 GHz and relates to the backscattering behavior of the dielectric soil properties (Njoku 

1977). Under bare or cropped soil conditions it was shown that passive microwave remote 

sensing can map soil moisture accurately (e.g. Jonard et al. 2011; Wigneron et al. 1995). 
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However, the emitted signal is strongly influenced by surface roughness, roughness distribution 

and vegetation. These limitations also exist for soil moisture estimation with active microwave 

remote sensing techniques (Satalino et al. 2002). Active remote sensing or radar uses an 

airborne or space borne transmitter that emits an electromagnetic pulse and an antenna to 

capture the backscattering signal. The backscattering signal relates to the soil roughness and to 

the dielectric soil permittivity which is linked to soil moisture (Altese et al. 1996; Satalino et al. 

2002). Soil roughness varies under bare soil conditions and needs to be determined accurately 

for soil moisture estimation with radar (Verhoest et al. 2008). Soil moisture determination with 

radar under vegetation cover is potentially also possible if biomass water content and plant 

structure is accounted for (Ulaby et al. 1996; Vereecken et al. 2012). The contributions of the 

different factors soil roughness, vegetation and soil moisture can be decomposed by expensive 

modeling approaches (e.g. Jagdhuber et al. 2013). Additionally, common single frequency based 

approaches are being expanded by multi-frequency techniques and show promising results 

(Reigber et al. 2013). 

 

1.2.1.4 Soil moisture determination with cosmic-ray probes 

While a large number of local scale soil moisture measurements may be adequate to represent 

field scale soil moisture measurements, they are linked to high investment and maintenance 

cost. In contrast, regional scale soil moisture measurements by remote sensing are too coarse 

for representing soil moisture at the scale of high resolution LSMs and are prone to vegetation 

effects. Hydro-geophysical methods were developed for measuring field scale soil water 

content, but these methods are limited by soil surface roughness, vegetation effects and 

variable soil texture. A recently emerging observation technology for non-invasive soil moisture 

estimation is the cosmic-ray probe (CRP) (Desilets et al. 2010; Zreda et al. 2008). CRPs bridge the 

gap between point scale soil moisture measurements and regional scale remote sensing soil 

moisture measurements. One advantage of CRPs compared to other hydro-geophysical 

methods is a higher sensitivity to soil water content but low sensitivity to soil properties of 

secondary interest while measuring soil water content continuously (resolution of 1 hour or 

more). The measurement principle of CRPs is based on neutron particle physics. High energetic 
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primary cosmic rays, mainly protons, enter the Earth’s atmosphere from space and are 

moderated on their trajectory through the atmosphere by terrestrial particles and become high 

energetic neutrons. At the soil surface, neutrons are moderated to lower energetic neutrons 

primarily by the presence of water. Hydrogen acts as the most effective neutron moderator 

amongst all chemical elements because the mass of its atomic nuclei is closest to the mass of a 

neutron. Hence, the presence of water in the top soil causes the formation of a homogeneous 

layer of neutrons in the first few meters above the soil surface. The horizontal footprint for soil 

moisture measurements of a CRP ranges between 130 and 240 meter, and vertically between 

15 and 83 cm into the soil depending on soil water content, air humidity, and biomass (Kohli et 

al. 2015). The setup and footprint of a CRP is illustrated in Figure 1. CRPs continuously measure 

neutron flux and allow inferring the integral areal average soil water content over the footprint 

from a single measurement. Temporal resolution (~1 hour or longer) and measurement noise 

depend on sensor location and sensor size. 

 

Research on the use and accuracy of CRPs increased in recent years. Results of simulations with 

the extended Monte Carlo Neutron Particle Model (MCNPx) (Pelowitz 2005) suggested that the 

passive measurement of neutron flux above the soil surface shows a good correlation with soil 

water content (Zreda et al. 2008). This led to first measurements to test the performance and 

design of CRPs on a high altitude test site with a dry climate in Tucson, Arizona. It was found 

that soil water content can be measured with CRPs (Zreda et al. 2008) and a simple shape 

defining function, the N0-function, could relate gravimetric soil water content 𝜃𝑔𝑟𝑎𝑣 to corrected 

neutron flux N in neutrons per hour measured by a CRP (Desilets et al. 2010):  

𝜃𝑔𝑟𝑎𝑣 = 0.0808 × (𝑁 𝑁0⁄ − 0.372)−1 − 0.115 3 

where N0 is a site specific time-constant calibration parameter in neutrons per hour under dry 

soil conditions. However, neutron flux strongly varies also by other factors that need to be 

corrected for. Correction methods were developed for incoming cosmic ray intensity (Desilets et 

al. 2006), air pressure (Desilets and Zreda 2003), and air humidity (Rosolem et al. 2013). These 

first advances were followed by a number of evaluation studies initiated in Germany on a crop 

field (Villarreyes et al. 2011), in North America on an arid grass land (Franz et al. 2012b) and 

again in Germany in a dense spruce forest (Bogena et al. 2013), in which CRPs were found to be 
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capable of monitoring soil water content using the N0-method. However, evaluation sites were 

few and two new methods were developed based on simulations with MCNPx, the hydrogen 

molar fraction method (hmf-method) (Franz et al. 2013a) and the COsmic ray Soil Moisture 

Interaction code (COSMIC) (Shuttleworth et al. 2013). The advances in soil moisture estimation 

with CRPs lead to the financing and realization of networks of CRPs in North America (Zreda et 

al. 2012), Germany (Baatz et al. 2014) and Australia (Hawdon et al. 2014). At the beginning of 

this dissertation, the evaluation of CRP measurement accuracy and the choice of the soil 

moisture estimation method were questions that needed to be addressed. Further research 

aimed to quantify the impact of above ground biomass on neutron counts and soil water 

content, which was first included in the hmf-method (Franz et al. 2013a). Franz et al. (2013a) 

illustrated the beneficial impact of including biomass in the calibration of CRPs using MCNPx 

simulations, but also pointed out that vegetation distribution is of major importance for 

parameterizing the impact on expected neutron flux. It was also shown that continuous soil 

moisture measurements are affected by above ground biomass for maize fields (Franz et al. 

2013c). In the context of this dissertation, (Baatz et al. 2015) developed an empirical vegetation 

correction method for high biomass stands (e.g. forests). However, the quantification of the 

biomass effects on neutron flux and soil moisture estimates from CRPs are under ongoing 

investigation. 

 

The advances and accuracy in soil moisture estimation using CRPs led to the application of CRPs 

in hydrologic models. Shuttleworth et al. (2013) developed the COSMIC operator for 

reproducing measured neutron flux from modeled vertical soil water content profiles in 

hydrologic data assimilation frameworks. COSMIC was applied with the Data Assimilation 

Research Testbed DART (Anderson et al. 2009) for improving soil moisture states in the Noah 

LSM (Shuttleworth et al. 2013). In addition, the COSMIC operator was applied to inversely 

determine soil moisture from measured neutron flux (Baatz et al. 2014; Rosolem et al. 2014). 

Villarreyes et al. (2014) used a Parameter ESTimation software (PEST) for estimating soil 

hydraulic parameters in the HYDRUS-1D model using CRP soil moisture measurements and the 

N0-method. Han et al. (2015) used CRP measurements and the N0-method in a data assimilation 

framework for estimating a systematic model forcing bias of the Community Land Model (CLM). 
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At the moment, applications of CRP measurements to hydrologic models are rare and 

constrained to single CRPs only. While many hydrologic models and LSMs operate on regional 

and global scale, the potential of CRP networks for improving spatially distributed LSM states 

and parameters remains a question for research. The present dissertation addresses this 

question by assimilating measured CRP data in the community land model, a LSM of the most 

recent generation.  

 

 

 
Figure 1: CRP set up at a pole at the Rollesbroich pasture test site (left side), and schematic 
diagram illustrating a CRP on a pasture, the horizontal footprint in the atmosphere and the 
vertical footprint in soil (right side, adapted from (Rosolem et al. 2014)). 
 

1.2.2 Community land model 

In this dissertation, the Land Surface Model (LSM) of choice is the Community Land Model 

version 4.5 (CLM). CLM is the land component of the community earth system model (CESM) 

and the community atmosphere model (CAM) (Oleson et al. 2013). The land component 

supplies the CESM and the CAM with mass and energy fluxes to the atmospheric component. A 

first version of a common land model CLM Version 2 was released in 2003 (Dai et al. 2003). 

From then onwards CLM has improved and expanded its modelling capabilities. It includes 

biogeophysical and biogeochemical processes, the hydrologic cycle and a dynamic vegetation 

component (Figure 2). There are a number of LSMs of different complexity: the Noah LSM (Niu 

et al. 2011; Yang et al. 2011) or the Joint UK Land Environment Simulator (JULES) (Best et al. 
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2011; Clark et al. 2011) to name a few. Like CLM, these two LSM also include strong capabilities 

in modeling bio-geochemical processes, mass and energy fluxes within soils as well as to and 

from the atmosphere. However, one of the differences amongst LSMs is soil depth 

parameterization. In CLM, Noah and JULES, the depth of the uppermost soil layer in default 

configuration is 0.7 cm, 10 cm and 30 cm, respectively. CRPs are highly sensitive to surface soil 

water content distribution of the first few centimeters. Therefore the high resolution of surface 

soil water content distribution could turn out as a key advantage of CLM when using CLM for 

assimilating CRP measurements. 

 

Figure 2: The biogeophysical, biogeochemical, hydrologic and land surface processes modeled 
by the community land model version 4.5 (adapted from (Oleson et al. 2013)). 
 

In CLM, the land surface of a grid cell is covered by one or more of five major land cover types: 

vegetated, glacier, lake, urban and wetland. Each of the land cover types possesses its own 

parameterization scheme. The vegetated land unit is used exclusively in this dissertation 
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therefore it is described solely here. The vegetated fraction of a grid cell consists of one or more 

plant functional types (PFTs) (Oleson and Bonan 2000). PFTs are essentially biomes that may co-

exist within a single grid cell. There are in total 16 PFTs in CLM plus bare soil: eleven PFTs for 

different forests, three PFTs for grass lands and two PFTs for crops. PFTs are distinguished by 

PFT specific physiological and structural parameters: root distribution parameters, optical-, 

radiation specific-, aerodynamic- and photosynthetic properties. Soil surface mass and energy 

transport processes to and from the atmosphere are moderated on the PFT level.  

 

The grid cell’s sub-surface is modeled by one vertical soil column. The soil columns surface and 

sub-surface is parameterized by a set of hard coded parameters in the CLM source files and a 

set of input data. Some relevant input data are: sand and clay content (soil texture), organic 

matter content, soil color, and maximum fractional saturated area. Some relevant hard coded 

sub-surface parameters are: max sub-surface drainage, sub-surface drainage decay factor, and 

overland flow decay factor. The vertical soil column is partitioned into ten permeable soil layers 

and five impermeable bed rock layers. Layer thickness is calculated by an exponential function 

and increases from 0.7 cm (layer one) to 2.8 m (layer ten) and even thicker for bed rock. 

Individual grid cell processes are modeled one-dimensionally in the vertical direction and are 

unconnected in the horizontal direction.  

 

At the surface, the total net radiation is the sum of incoming shortwave radiation minus 

outgoing shortwave radiation (reflected solar radiation related to the albedo factor) plus 

incoming longwave radiation (mainly from water vapor and atmospheric CO2) minus outgoing 

shortwave radiation (emitting land according Stefan Boltzmann´s law). The amount of incoming 

shortwave radiation depends on radiation transport processes such as ground and canopy 

absorption, reflectance and emittance, and canopy transmittance. Momentum, sensible heat 

and latent heat fluxes are calculated at the reference height of the atmospheric forcing data 

based on Monin-Obukhov similarity theory for vegetation and soil surface. At vegetated 

surfaces, momentum, sensible heat and latent heat fluxes depend on gradients in air 

temperature and humidity close to the land surface as well as the roughness coefficient. The 

coupling of vegetation temperature and sensible heat fluxes is solved with Newton-Raphson 
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iteration. Resulting updates of energy and water states of the upper soil layer are propagated as 

forcing to the soil for the next time step. 

 

The heat transport in CLM is based on heat conduction in the vertical direction (1D). The heat 

conducted depends on the spatial temperature gradient times the thermal conductivity of the 

medium. Based on the law of energy conservation, the 1D continuity equation is solved 

numerically for the fifteen soil layers with a zero-flux lower boundary condition. The energy 

transport to and from the atmosphere form the upper boundary condition.  

 

For hydrology, atmospheric precipitation is separated at the top of the canopy into canopy 

interception and throughfall depending on canopy storage capacity, canopy surface, current 

canopy water storage, and water fluxes to and from the canopy. Canopy water evaporates or 

drips onto the soil during the next time step. The grid cell’s precipitation on the soil includes the 

sum of drip water and throughfall of the current time step. Precipitation can result in runoff, 

surface water storage and infiltration. Grid cell surface runoff is calculated by the fractional 

saturated area, the overland flow decay factor and water table depth. If the maximum 

infiltration capacity is exceeded infiltration excess runoff is generated. Infiltration into the soil 

surface layer forms the upper boundary condition for sub-surface water transport processes. 

The lower boundary condition depends on the water table depth. Water flow follows the mass 

conservation principle:  

𝜕𝜃𝑣𝑜𝑙
𝜕𝑡

=
𝜕𝑞

𝜕𝑧
− 𝑄 

4 

where the change in volumetric soil water content 𝜃𝑣𝑜𝑙  in mm3/mm3 by time t (s) is described as 

the change of soil water flux q in mm/s by soil layer depth z in mm. Q is a soil water content sink 

term in s-1 (e.g. evapotranspiration by plants through root water update). In CLM, Darcy’s law 

describes the soil water flux q by:  

𝑞 = −𝑘
𝜕(𝜓 + 𝑧)

𝜕𝑧
 

5 

where k is the hydraulic conductivity in mm/s and 𝜓 is the hydraulic potential in mm. Replacing 

Darcy’s law into equation 4 and assuming Q = 0 yields the 1D Richards equation:  



12 Chapter 1. Introduction 
 

 
 

𝜕𝜃𝑣𝑜𝑙
𝜕𝑡

=
𝜕

𝜕𝑧
[𝑘 (

𝜕𝜃𝑣𝑜𝑙
𝜕𝑧

𝜕𝜓

𝜕𝜃𝑣𝑜𝑙
)] + 1 

6 

A slightly modified form of the Richards equation (Zeng and Decker 2009) is solved numerically 

with a finite-difference scheme. Chapter 4 of this dissertation describes how the soil hydraulic 

properties like hydraulic conductivity, soil matric potential, the exponent B and porosity are 

derived from soil texture and organic matter content. Grid cell drainage is calculated by layer 

from the variable water table depth, the sub-surface drainage decay factor and maximum sub-

surface drainage. For a complete technical description of CLM the technical manual of CLM can 

be consulted (Oleson et al. 2013). 

 

1.2.3 Data assimilation with the ensemble Kalman filter 

A general formulation for parameter estimation problems is Bayes Theorem stating that the 

posterior probability distribution of model states and parameters is proportional to the prior 

probability distribution of states and parameters times the conditional probability of the 

measurement data given the prior states and parameters. Growing computational resources 

allow solving Bayes Theorem by estimating the posterior pdf with Monte Carlo based methods. 

The Markov Chain Monte Carlo methods (MCMC) (Hastings 1970; Kuczera and Parent 1998; 

Metropolis et al. 1953) generate a large random sampling space to solve Bayes Theorem 

without simplifying assumptions. Recently, some efficient MCMC variants were developed: the 

Shuffled Complex Evolution (SCE) algorithm (Duan et al. 1992), the Shuffled Complex Evolution 

Metropolis (SCE-UA) algorithm (Vrugt et al. 2003), and the Differential Evolution Adaptive 

Metropolis (DREAM) algorithm (Vrugt et al. 2009). These methods need a large number of 

model runs to find optimal parameter sets and to estimate model uncertainty. They are not 

suited for problems with many unknown parameters like a distributed LSM. A further 

disadvantage is that they often neglect the uncertainty in model forcing and initial conditions 

which impact model state and parameter estimates. In contrast, the ensemble Kalman filter 

propagates a model in time with an ensemble of forcing data from an ensemble of initial 

conditions of a previous forecast step (Kurtz et al. 2012). 
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Assuming a normally distributed model and observation error, the Ensemble Kalman Filter 

(EnKF) (Evensen 1994) is a sequential filter which estimates optimal model states from an 

ensemble of model runs taking into account parameter uncertainty, forcing uncertainty and 

measurement uncertainty. Optimal means the minimization of the difference between model 

states and observations under consideration of both being uncertain and at exactly one point in 

time. Sequential means that the optimization is done at each succeeding assimilation time step. 

The EnKF was developed as extension to the Kalman Filter which solves a linear problem based 

on the assumption of Gaussian distributed process noise (model uncertainty) and observation 

noise (measurement uncertainty) (Kalman 1960). The EnKF is robust for non-linear model 

dynamics and quantifies model uncertainty by an ensemble of model realizations with uncertain 

inputs (Burgers et al. 1998). A state augmentation approach allows the EnKF to update model 

states and model parameters simultaneously. According to Hendricks Franssen and Kinzelbach 

(2008), there are at least three approaches to propagate an update from an augmented state 

vector to the analysis: by a non-iterative (e.g. Chen and Zhang 2006), an iterative (Wen and 

Chen 2006) and a restart approach (e.g. Gu and Oliver 2007). Alternative techniques for joint 

state-parameter estimation are particle filters (Montzka et al. 2011; Moradkhani et al. 2005a), 

and simultaneous optimization and data assimilation (Vrugt et al. 2005). 

 

An EnKF cycle consists of a forecast step and an analysis step which are repeated sequentially 

each time observations become available. The dimensions that play a role for the EnKF are the 

number of observations (nobs), the ensemble size (N), the number of model states (m) and the 

number of parameters updated (p). In the forecast step, the model M is propagated from time 

step t-1 to timestep t when observations become available for assimilation 

𝐱𝑖
𝑡 = 𝑀(𝐱𝑖

𝑡−1) 7 

where 𝐱𝑖
𝑡  ∈  ℝ𝑚 is the model state vector for the realization i at the time of assimilation and 

𝐱𝑖
𝑡−1  ∈  ℝ𝑚 the model state vector at the previous time step. At the timestep t, the model 

covariance 𝐏𝑓  ∈  ℝ𝑚×𝑁 is determined from the ensemble of model state vectors 

𝐏𝑓 =
1

𝑁 − 1
∑(𝐱𝑖

𝑡 − �̅�𝑡)(𝐱𝑖
𝑡 − �̅�𝑡)𝑇

𝑁

𝑖=1

 
8 
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where f marks the prior, forecasted, model covariance matrix 𝐏𝑓, 𝐱𝑖
𝑡 the model state of a single 

realization and �̅�𝑡 ∈  ℝ𝑚 is the mean of the model states over all realizations. This equation 

stresses the importance of a good prior ensemble model state estimate, as the successive 

calculations depend on the spread of model realizations and the mean of model state 

realizations as best prior estimate. The model states are related or mapped to the available 

observations at time t using the measurement matrix H  ∈  ℝ𝑛𝑜𝑏𝑠×𝑚 

�̂�𝑖
𝑡 = 𝐇𝐱𝑖

𝑡 9 

where �̂�𝑖
𝑡 is the mapped model state vector. The observation error 𝜀 is specified by the modeler, 

and used to perturb the observations with Gaussian random noise 𝜀 = 𝑁(0, 𝜎) with mean zero 

and the measurement standard deviation 𝜎: 

𝐲𝑖
𝑡 = 𝐲𝑡 + 𝛆𝑖  10 

Where 𝐲𝑡 ∈  ℝ𝑛𝑜𝑏𝑠 is the vector containing the observations, 𝛆𝑖 ∈  ℝ
𝑛𝑜𝑏𝑠 is the vector with 

perturbations for each observation, and 𝐲𝑖
𝑡 is the perturbed observation for realization i. The 

observation error covariance matrix 𝐑𝑡  ∈  ℝ𝑛𝑜𝑏𝑠×𝑛𝑜𝑏𝑠 is calculated analogue to (8) with  

𝐑𝑡 =
1

𝑁 − 1
∑𝛆𝑖𝛆𝑖

𝑇

𝑁

𝑖=1

 
11 

This allows to deduce the Kalman gain K ∈  ℝ𝑚×𝑛𝑜𝑏𝑠 from model forecast error covariance 𝐏𝑓, 

measurement error covariance R and the measurement matrix H with 

𝐊 = 𝐏𝑓𝐇T(𝐇𝐏𝑓𝐇T + 𝐑𝑡)−𝟏 12 

where -1 indicates the inversion of a matrix and T indicates matrix transposition. Consequently, 

the Kalman gain accounts for the weighting of model errors versus observation errors, taking 

into account the spatial correlation of model states and therefore the spatial influence function 

of observations. The Kalman gain 𝐊 is used in the analysis step to calculate the state analysis by 

weighting the observations 𝐲𝑖
𝑡 and the model state forecast 𝐱𝑖

𝑓
 for each realization i as in 

𝐱𝑖
𝑎 = 𝐱𝑖

𝑓
+ 𝐊(𝐲𝑖

𝑡 − 𝐇𝐱𝑖
𝑓
) 13 

which can be rewritten as  

𝐱𝑖
𝑎 = (1 − 𝐊𝐇)𝐱𝑖

𝑓
+ 𝐊(𝐲𝑖

𝑡) 14 

where the model state analysis 𝐱𝑖
𝑎 ∈  ℝ𝑚 is more clearly expressed as weighted average of 

model state forecast and observation. The difference between state analysis and model state 
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forecast is called increment and the difference between observation and model state forecast is 

called innovation. The model M is propagated forward in time with the model state analysis 𝐱𝑖
𝑎 

until the next observation becomes available. 

 

Parameters can be optimally updated with the EnKF using a state augmentation approach (e.g. 

Annan and Hargreaves 2004; Chen and Zhang 2006; Hendricks Franssen and Kinzelbach 2008; 

Zupanski and Zupanski 2006). For state augmentation, the model state forecast vector is 

extended by the parameter vector to form a new augmented state vector 𝐱𝑖
𝑡 

𝐱𝑖
𝑡 = {

𝐱𝑠
𝑡

𝐱𝑝
𝑡 } 

15 

where 𝐱𝑠
𝑡 ∈  ℝ𝑚 is the model state vector and 𝐱𝑝

𝑡 ∈  ℝ𝑝 is the parameter vector. Equations 7-14 

need to be modified accordingly to include model parameters in calculation of the model error 

covariance matrix 𝐏𝑓, the measurement matrix H, the Kalman gain K and finally the updated 

state-parameter vector 𝐱𝑖
𝑎. The Kalman gain than weights also the parameter space vector so 

that the augmented analysis includes model states and model parameters. Studies on joint 

state-parameter estimation in LSMs with an EnKF variant are limited, particularly with real data. 

This dissertation presents a study on the potential of the local ensemble transform Kalman 

filter, an EnKF variant, in improving sub-surface states and parameters of a regional high 

resolution LSM using real data of a novel cosmic-ray soil moisture observation network. 

 

1.3 Research objectives 

Cosmic-ray probes (CRPs) are particularly promising for updating soil moisture states and sub-

surface parameters of the Community Land Model (CLM). Yet, CRPs are a novel observation 

technology that was tested at few locations only. The first research objective is therefore to 

evaluate CRP measurements against alternative soil moisture measurements. It is tested 

whether the promising characteristics of CRPs documented in earlier studies are also valid for 

field experiments in the moist temperate climate of Central Europe, Germany. The pre-installed 

distributed soil moisture sensor networks at Wuestebach (Rosenbaum et al. 2012) and 

Rollesbroich (Qu et al. 2014) are used for evaluation and validation of the CRP footprint and 

measurement accuracy. Hydrogen in biomass can have a significant contribution to the total 
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signal of a CRP. A second challenge facing the application of CRPs and a second objective of this 

work is to determine the influence of biomass on the CRP signal. Biomass changes within a CRP 

footprint occur on pasture land with regular mowing and hay extraction activities, at agricultural 

sites with crop cycling, and where woody biomass is removed. Therefore the quantification of 

the contribution that biomass may have to the CRP signal and to soil moisture estimation by 

CRPs is of high importance. Once the accuracy of soil moisture estimates from CRPs has been 

evaluated, and sources of errors such as biomass changes are quantified, CRP measurements 

are ready to be used in CLM for data assimilation experiments. The third objective of this work 

is to investigate the potential of CRPs for improving model state estimation and sub-surface 

parameter characterization of a LSM. The study is carried out with real data. The measurement 

operator is to be evaluated with alternative soil moisture measurements and against other 

possible measurement operators. A regional LSM of the Rur catchment is set up with regional 

model parameterization and real atmospheric high resolution forcing data. A data assimilation 

framework that has been developed, and tested previously in synthetic test cases (Han et al. 

2014; Han et al. 2015) is then applied with real measurements to evaluate how real CRP 

measurements can improve model states and model parameters in a data assimilation 

framework. Regarding LSMs, the results of this study point to opportunities, limitations and 

challenges for the use of CRPs as a new measurement device for providing data to condition 

LSMs. 

  

1.4 Outline 

The dissertation is structured in five chapters. In Chapter 2, the measurement accuracy of soil 

moisture estimates from cosmic-ray probes (CRPs) is evaluated. The setup of a network of ten 

CRPs in the Rur catchment in western Germany is outlined. Soil moisture is determined at all 

sites continuously in time from corrected neutron flux measurements using three different 

parameterization methods. Soil water content from CRP measurements is evaluated at two sites 

against soil water content measurements made by a distributed sensor network. Further 

evaluation measurements were made at five sites. In Chapter 3, the impact of biomass within 

the CRP footprint on neutron flux and soil water content estimation is quantified empirically. 

Calibration results of sixteen CRP calibration campaigns are analyzed towards the influence of 
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biomass on the neutron flux signal. An empirical correction method is developed that allows to 

correct CRP measurements for changes of biomass within the CRP footprint. Changes of 

biomass may occur in case of moving CRPs over large areas for areal soil water content 

quantification or in case of calibrated CRPs when biomass is removed from or added to the 

footprint. The empirical vegetation correction aims for high biomass stands where biomass 

impacts are most prominent. The vegetation correction can be applied with either of the three 

available soil moisture estimation methods known for CRPs. In Chapter 4, the value of CRPs for 

improving soil moisture states and parameter estimation in the community land model version 

4.5 (CLM), a LSM, is explored. The regional CLM is set up with regional parameterization and 

high resolution atmospheric forcing data. Data of nine CRPs are assimilated over a period of 

almost two years, followed by a one year evaluation period. Soil moisture states and 

parameters are evaluated over the total simulation period at the nine CRP sites. Spatial 

parameter estimation is evaluated with additional simulations where data of eight CRPs are 

assimilated and the data of the ninth CRP are used for evaluation. In the last Chapter, the results 

of this dissertation are summarized and perspectives are drawn towards future research 

directions. 
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*adapted from: Baatz, R., Bogena, H.R., Hendricks Franssen, H.-J., Huisman, J.A., Qu, W., Montzka, C., 
and Vereecken, H. (2014), Calibration of a catchment scale cosmic-ray probe network: A comparison of 
three parameterization methods. Journal of Hydrology, doi:10.1016/j.jhydrol.2014.02.026. 

2 Calibration and evaluation of a cosmic-ray probe network* 

 

2.1 Introduction 

Soil water content is a key variable in the global hydrologic cycle. Important hydrologic 

processes such as evapotranspiration are controlled by root zone soil water content in case of 

water limitation (Denmead and Shaw 1962; Jung et al. 2010). This is generally the case in (semi-

)arid environments and may also occur in temperate regions during summer time. Therefore, 

agricultural production can be limited by soil water availability, which raises the need for 

irrigation in large parts of the world to sustain food supply (Siebert et al. 2005). Furthermore, 

climate and weather conditions are influenced by mass and energy fluxes between the land 

surface and the atmosphere (Shukla and Mintz 1982). To better understand hydrologic 

processes on relevant scales, soil water content measurements are important for validating and 

calibrating hydrologic models (Brocca et al. 2012), and land surface and climate models (Koster 

et al. 2004). Recent publications emphasize the need for soil water content measurements at 

the field scale to derive process variables and parameters (Crow et al. 2012; Vereecken et al. 

2008). However, high spatial variability and temporal dynamics of soil water content pose a 

challenge for soil water content measurements at relevant scales. 

 

Current state-of-the-art methods for soil water content measurements include point 

measurements using electromagnetic sensors or gravimetric sampling, sensor networks, 

geophysical measurements, and air- and space-borne remote sensing (Vereecken et al. 2008). 

The main limitation of electromagnetic soil water content sensors and gravimetric sampling is 

that they only provide information for a small volume of soil (~ 10-3 m3). Given the high spatial 

variability of soil water content, a large number of point measurements is required to provide 

wireless sensor networks were developed that allow continuous monitoring of soil water 

adequate information on soil water content at larger scales (Crow et al. 2012). Therefore, 

content at a large number of locations (Bogena et al. 2010; Dorigo et al. 2011; Schaefer et al. 

2007). Although sensor networks achieve a high temporal resolution, the spatial extent of 

sensor networks is still relatively small (< 1 km2). 
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Soil water content derived from space-borne remote sensing techniques is based on the use of 

active and passive microwave sensors with the advantage of global coverage (Kerr 2007). 

However, L-band passive microwave sensors (e.g. Soil Moisture and Ocean Salinity satellite 

(SMOS)) are only sensitive to soil water content of the upper few cm of the soil, and additional 

information on vegetation characteristics and surface roughness is needed to estimate soil 

water content from measured brightness temperature (Kerr et al. 2012). C-band active 

microwave measurements have an even smaller penetration depth and are strongly affected by 

vegetation and surface roughness (Jackson and Schmugge 1989). The accuracy of future soil 

water content products of the upcoming Soil Moisture Active Passive Mission (SMAP) will also 

be limited by vegetation cover, and may also suffer from radio frequency interference 

(Entekhabi et al. 2010).  

 

Geophysical techniques, such as ground penetrating radar (Eppstein and Dougherty 1998; 

Huisman et al. 2003) and electromagnetic induction (Akbar et al. 2005; Sheets and Hendrickx 

1995), show promising results to overcome the existing gap between continuous point 

measurements in time and temporally sparse but global remote sensing data (Robinson et al. 

2008b), although they are labor-intensive when large-scale surveys (> 1 km2) are required. 

 

Recently, passive neutron sensors, so called cosmic-ray probes (CRP), were proposed to 

measure soil water content at the field scale (Zreda et al. 2008). The general measurement 

principle is similar to that of active neutron probes. Soil water content monitoring using passive 

neutron probes relies on the determination of the time-variable fast neutron flux near the earth 

surface. High energy protons from space, or primary cosmic rays, serve as natural radiation 

source. Proton interaction in the Earth’s atmosphere with terrestrial atoms produces high 

energy neutrons, so called secondary cosmic rays. Subsequent collision and moderation of 

secondary cosmic rays with terrestrial nuclei produces fast neutrons in the atmosphere. Only 

fast neutrons are then effectively moderated and absorbed by hydrogen. Therefore, the fast 

neutron flux shows a strong inverse correlation with the abundance of hydrogen atoms in the 

upper soil layer and thus can be used to determine soil water content (Zreda et al., 2008). The 

most attractive feature of the CRP is the relatively large measurement volume. Because of the 
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large mean free path in air traveled by fast neutrons before collisions, the horizontal footprint 

has an approximate radius of about 300 meters around the CRP at sea level or somewhat less 

depending on air density (Desilets and Zreda 2013). The effective measurement depth varies as 

a function of soil water content between ~12 cm for moist soils up to 70 cm for dry soils (Franz 

et al. 2012b). 

 

Recently, the use of CRPs for soil water content sensing has increased considerably. Several 

methods are now available to estimate soil water content from the fast neutron flux: i) a site-

specific shape-defining function (N0-method) (Desilets et al. 2010), ii) a universal calibration 

function (hmf-method) (Franz et al. 2013a) and iii) a COsmic-ray Soil Moisture Interaction Code 

(COSMIC operator) (Shuttleworth et al. 2013). All three parameterization methods were 

calibrated with the Monte Carlo Neutron-Particle eXtended model (MCNPx) (Pelowitz 2005). 

The MCNPx model is a state-of-the-art particle transport model developed mainly at the Los 

Alamos National Laboratory. The site-specific N0-method is the computationally simplest 

method requiring only one parameter for soil water content estimation. However, it requires 

intensive soil sampling for the parameter estimation. The universal calibration function was 

developed to overcome the necessity of local calibration campaigns in case of logistic or 

practical difficulties. However, bulk density, lattice water and aboveground biomass need to be 

measured or derived from maps, if these variables cannot be measured directly within the 

footprint. The COSMIC operator was developed to reproduce the time-costly modeling of 

neutron soil water interaction processes with the MCNPx code. The COSMIC code also requires 

site-specific calibration of three parameters. Inputs and calibration are therefore similar to the 

N0-method.  

 

All three methods are parameterized based on an imperfect representation of reality in the 

MCNPx model, and are, therefore, subject to uncertainties in user-defined model 

parameterization, initial and boundary conditions. It has also been reported that the three 

methods differ in how neutron detection by the CRP is modelled. Initial modelling work 

assumed that only fast neutrons are detected by the polyethylene-shielded detector. However, 

very recently it was realized that a larger part of the detected neutrons (about 30 %) may also 
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come from the thermal energy range (D. Desilets and T.E. Franz, personal communication). 

Documentation of these aspects is limited in previous publications and can therefore not be 

analyzed in further detail in this paper. Clearly, the availability of three different methods to 

estimate soil water content from cosmic-ray probe (CRP) measurements raises the question 

how well each of the three parameterization methods performs under various soil, 

meteorological, and vegetation conditions. 

 

Within this context, the main objective of this study is to compare the three available methods 

of soil water content determination from CRP measurements at several test sites against 

independent in-situ soil water content measurements. The test sites are located in the Rur 

catchment in western Germany and are part of the Terrestrial Environmental Observatories 

(TERENO) infrastructure (Zacharias et al. 2011). The test sites are particularly well suited for an 

inter-comparison study because of their low altitude and the fact that they are located close 

together within 0.63 degree latitude. Additionally, the test sites have different types of 

vegetation cover, a wide range in mean annual precipitation (from 743 to 1401 mm), and two of 

the test sites are equipped with distributed in-situ soil water content sensor networks. Two of 

the parameterization methods (hmf-method and the COSMIC operator) were developed to 

reproduce measured neutron flux data from measured soil water content (Franz et al. 2013a; 

Shuttleworth et al. 2013). In this study, these two methods are used inversely for soil water 

content determination along with the N0-method. Repeated gravimetric in-situ sampling 

campaigns and the two distributed sensor networks are used to evaluate the reliability of the 

three methods. 

 

2.2 Materials and methods 

2.2.1 Site description and instrumentation 

The Rur catchment is situated in western Germany and covers an area of 2354 km² (Figure 3). It 

is part of the TERENO project that established four terrestrial observatories in Germany (Bogena 

et al. 2012; Zacharias et al. 2011). The Rur catchment exhibits distinct gradients in topography, 

land use, and climate. The elevation ranges from 15 m in the lowland region in the North up to 

690 m in the hilly region in the South. The lowland region is characterized by intensive 
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agriculture, whereas the southern part is mainly covered by forest and grassland. The total land 

use distribution in the catchment is 14% coniferous forest, 17% deciduous forest, 32% 

grassland, and 34% crop land (mainly wheat, maize, sugar beet and barley). In the northern part 

of the Rur catchment, the mean annual precipitation and potential evapotranspiration are 

about 700 mm and 600 mm, respectively. At the higher altitudes in the southern part of the 

catchment, mean annual precipitation increases to 1200 mm and the potential 

evapotranspiration decreases to less than 500 mm (Bogena et al. 2005). 

 

 

Figure 3: Locations of the ten CRPs installed in the Rur catchment (left), setup of the 
Rollesbroich test site (upper right) and the Wuestebach test site (lower right panel) with the 
SoilNet sensor units. 
 

Ten cosmic-ray probes (type CRS1000, HydroInnova LLC, 2009) were installed in the Rur 

catchment at a height of 1.5 meters (Figure 4). Five probes are equipped with two neutron 

detectors to measure neutron flux at two different energy levels (epithermal and fast neutron 
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counters), whereas the other CRPs solely measure fast neutrons. Neutrons are detected by 3He 

filled tubes (diameter = 3 cm; length = 30 cm). A neutron colliding with 3He in these tubes 

produces charged particles that trigger ionization processes and electronic pulses that can be 

detected by a connected pulse module. Pulses are counted over an hourly interval and sent 

remotely to a database (Zreda et al. 2012). 

 

 

Figure 4: Cosmic-ray probe located at the test site Rollesbroich is shown with the slow (white, 
dashed) and fast (white) neutron counter with the pulse modules on top. 
 

The CRPs were installed between February 1st, 2011 and May 22nd, 2012. Altitudes of the 

measurement sites range between 51 and 627 m asl. The sites Gevenich, Merzenhausen, 
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Rollesbroich, RollesbroichN, Rur Aue, Wildenrath and Wuestebach are additionally equipped 

with a Vaisala Weather Transmitter WXT520 (Vaisala, 2010) to monitor air humidity, air 

temperature and air pressure at 2.0 m height. Table 1 provides more information on the 

different locations. All land use types within the catchment are represented by the CRP 

network. Table 2 lists the main land use fractions within the CRP footprints. The land use 

fractions were determined from a 15 m resolution land use map (Waldhoff 2012) assuming a 

horizontal footprint with a radius of 300 m for the CRP.  

 

Table 1: Site characteristics of the ten CRPs installed in the Rur catchment (annual average 
temperature (TAV) and annual average precipitation (PAV)). 

 Latitude Longitude Start of  Altitude TAV PAV 

   measurement m asl °C m 

Aachen 50.798550 N 6.024716 E 13/01/2012 232 9.94 952 

Gevenich 50.989220 N 6.323550 E 07/07/2011 108 10.16 884 

Heinsberg 51.041104 N 6.104238 E 09/09/2011 57 10.25 814 

Kall 50.501332 N 6.526450 E 15/09/2011 504 7.71 935 

Merzenhausen 50.930325 N 6.297468 E 19/05/2011 94 10.22 825 

Rollesbroich 50.621911 N 6.304241 E 19/05/2011 515 7.88 1307 

RollesbroichN 50.624190 N 6.305142 E 22/05/2012 506 7.91 1309 

RurAue 50.862329 N 6.427335 E 08/11/2011 102 10.13 743 

Wildenrath 51.132744 N 6.169175 E 07/05/2012 76 10.28 856 

Wuestebach 50.503487 N 6.333017 E 01/02/2011 605 7.47 1401 
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Table 2: Land use fractions at the ten sites within the CRP footprint.  

  Grassland 
[%] 

Crops [%] 
Coniferous 
forest [%] 

Deciduous 
forest [%] 

Water 
body [%] 

Urban [%] 

Aachen 19 72 0 0 0 9 

Gevenich 0 85 0 0 0 15 

Heinsberg 35 39 0 2 0 24 

Kall 72 11 0 0 0 17 

Merzenhausen 1 82 0 0 0 16 

Rollesbroich 92 0 0 0 0 8 

RollesbroichN 87 0 0 0 0 12 

RurAue 58 25 0 10 1 6 

Wildenrath 3 7 54 34 0 2 

Wuestebach 7 0 92 1 0 0 

 

The grassland test site Rollesbroich and the forest test site Wuestebach are equipped with in-

situ distributed soil water content sensor networks (SoilNet) developed at the 

Forschungszentrum Jülich GmbH. At Wuestebach (Figure 3), the SoilNet consists of 600 ECHO2O 

EC-5 and 300 ECHO2O 5TE sensors at depths of 5, 20 and 50 cm and installation was completed 

in August 2009 (Bogena et al. 2010). These sensors were evaluated and calibrated in earlier 

studies and the accuracy of the sensors was quantified with a RMSE of ≤ 0.02 cm3 cm-3 

(Rosenbaum et al. 2010; Rosenbaum et al. 2012). Dry aboveground biomass at the Wuestebach 

site was estimated using allometric functions by Etmann (2009). She found a dry above ground 

biomass of 30 kg m-2, which consisted mainly of Norway Spruce (Picea abies L.) with an age of 

more than 60 years. Precipitation is monitored at the nearby weather station Kalterherberg by 

the German Weather Service. In contrast to the previous study on the Wuestebach catchment 

by Bogena et al. (2013), we neglect the presence of the litter layer in the analysis. In our 

approach, we used only in-situ calibration by gravimetric samples while in the paper of Bogena 

et al. (2013) a one-dimensional soil hydraulic model was used to account for the influence of 

water dynamics in the litter layer on neutron count rates. At Rollesbroich (Figure 3), 504 SPADE 

sensors were installed in May 2011 to measure soil water content at depths of 5, 20 and 50 cm 

(Qu et al. 2013). The sensors were calibrated using laboratory measurements (Qu et al. 2013). 

The grassland fields belong to several farmers and are mowed two or three times per year 
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between May and November. Precipitation is measured on site by tipping buckets operated in 

the vicinity of the CRP. 

  

2.2.2 Corrections of neutron counts 

Neutron flux was corrected for each sensor to account for environmental and technical issues 

that are independent from the hydrogen content within the footprint. Measurements acquired 

with voltages below 11 V were also removed to maintain a stable sensor counting efficiency. 

Neutron flux is strongly dependent on atmospheric pressure (Desilets et al. 2006). Therefore, 

neutron count rates in the Rur catchment were normalized to standard atmospheric pressure at 

sea level Pref = 1013.25 hPa using: 

𝑁𝑝 = 𝑁𝑟𝑎𝑤 × 𝑒𝑥𝑝[𝛽 × (𝑃 − 𝑃𝑟𝑒𝑓)]  16 

where pressure-corrected neutron flux Np was calculated from measured uncorrected neutron 

flux Nraw, measured atmospheric pressure P [hPa], and the barometric pressure coefficient 𝛽 = 

0.0076 hPa-1. 

 

The secondary cosmic ray intensity at the earth surface also depends on incoming primary 

cosmic ray intensity (Desilets and Zreda 2001). Therefore, pressure and efficiency corrected 

incoming primary cosmic ray intensity provided by the Neutron Monitor Database (NMDB) was 

used to correct for this effect. The stations Kiel (KIEL) located in northern Germany and 

Jungfraujoch (JUNG) located in Switzerland were used to normalize all CRPs to a reference 

incoming cosmic ray intensity Iref as follows (Zreda et al. 2012): 

𝑁𝑝𝑖 = 𝑁𝑝 × (𝐼𝑟𝑒𝑓 𝐼⁄ )   17 

where 𝐼 is incoming cosmic ray intensity, Np is pressure corrected neutron flux, and Npi is 

pressure and incoming cosmic ray intensity corrected neutron flux. Both stations have data gaps 

for our study period, and relative differences of both stations match closely. Therefore, we 

decided to use the average of both stations to correct neutron flux using Eq. 17. 

 

Measured neutron flux is also affected by absolute atmospheric water vapor content (Rosolem 

et al. 2013). Neutron flux is normalized to fixed reference water vapor content with: 
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𝑁𝑝𝑖ℎ = 𝑁𝑝𝑖 × [1.0 + 0.0054 × (𝜌𝑤𝑣 − 𝜌𝑟𝑒𝑓)]  18 

where Npih is neutron flux corrected for pressure, incoming cosmic ray intensity and water 

vapor, 𝜌𝑤𝑣  is measured water vapor content [g m-3] and 𝜌𝑟𝑒𝑓 = 0 g m-3 is reference water vapor 

content. Water vapor content is measured at all locations and was interpolated for times when 

no data was available. Hereafter, the terminology “measured neutron flux” refers to the 

neutron flux that was corrected for pressure, incoming cosmic ray and air humidity. 

 

2.2.3 Measurement support volume 

The effective measurement support volume is defined as the volume from where 86% of the 

detected neutrons originate (Zreda et al., 2008). For this study, we assume a horizontal 

footprint with a radius of 300 m around the CRP (Desilets and Zreda 2013). The effective sensor 

depth is the vertical extent of the measurement support volume, and was characterized by 

Franz et al. (2012b) as:  

𝑧∗ = 5.8 × (𝜌𝑏𝑑  ×  𝜏 + 𝜃𝑣𝑜𝑙 + 0.0829)
−1  19 

where z* is the effective measurement depth [cm], 𝜌𝑏𝑑 is mean soil bulk density [g cm-3], τ is the 

lattice water content [g g-1] and 𝜃𝑣𝑜𝑙  is soil water content [cm3 cm-3]. Horizontally and vertically 

homogeneous distribution of soil water content, lattice water, and bulk density were assumed 

when using this equation. Effects of horizontal soil water content heterogeneity on neutron flux 

were reported to be small (Franz et al. 2013b). 

 

In case of vertically heterogeneous soil water content, vertical weights for individual soil layers 

were calculated and assigned to calculate vertical weighted soil water content using the method 

of Bogena et al. (2013). Weights (CFoCz) were iteratively determined for each layer with Eq. 20 

depending on the depth z [cm] of the layer i and the sum of hydrogen pools Hp in g cm-3 (i.e. 

lattice water and soil water content): 

𝐶𝐹𝑜𝐶𝑖 = 1 − 𝑒𝑥𝑝(−𝑧 𝛾⁄ )  20 

with 

𝛾 = −5.8 × (𝑙𝑛(0.14))
−1
× (𝐻𝑝 + 0.0829)

−1
  21 
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At first, the weight for the first layer CFoC1 is determined with Eq. 20 and 21 using the 

arithmetic mean of the measured hydrogen pools. Subsequently, the weights of the layers 

below are determined with 𝐶𝐹𝑜𝐶𝑖 = 𝐶𝐹𝑜𝐶𝑖 − 𝐶𝐹𝑜𝐶𝑖−1. The weight of the deepest layer is 

calculated by assigning a residual weight equal to 100% minus the sum of all other weights. The 

weighted mean soil water content is calculated with these weights and the procedure is 

repeated with the weighted mean soil water content until the change in weighted mean soil 

water content is negligible (<0.0001 cm cm-3). We used the arithmetic mean of bulk density and 

lattice water measurements of the top soil (see Section 2.2.4.2). 

 

2.2.4 Quantification of hydrogen pools 

2.2.4.1 Hydrogen pools 

Hydrogen pools within the effective measurement volume include subsurface hydrogen sources 

(soil water content, lattice water, belowground biomass), aboveground biomass, snow, and 

intercepted and ponded water. Bogena et al. (2013) showed that even in a forested site the 

hydrogen pool of intercepted water is relatively small compared to other hydrogen pools. For 

this reason and because ponded water only has a short-term effect on neutron count rates, 

ponded water and intercepted water were excluded from the analysis. Bogena et al. (2013) also 

showed that during days with snow cover, the estimated soil water content can exceed the 

expected values by more than 0.5 cm3 cm-3. Since an appropriate method to estimate snow 

water equivalent from neutron flux is not available, we excluded days with significant snow 

cover from the analysis. 

 

2.2.4.2 Soil sampling for calibration of CRPs  

Several soil sampling campaigns were conducted in 2012 and 2013 to quantify above and below 

ground hydrogen pools. A HUMAX soil corer (Martin Burch AG, Switzerland) with a diameter of 

50.8 mm and a length of 30 cm was used to extract soil samples. In radii of 25, 75 and 175 m 

around the CRP, six soil samples were collected on each radius with an approximate radial 

distance of 60 degree between samples. This resulted in 18 sampling locations for each CRP. For 
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exact dates and calibration results, we refer to Table 3. Each 30-cm long soil sample was split 

into six sub-samples of 5 cm length. Soil water content and dry bulk density (ρbd) were 

determined by drying the samples at 105 °C for 48 hours. Subsequently, the soil samples were 

sieved and merged to generate a mixed sample for each depth. Three 15 mg aliquots were 

taken from these bulk samples and burned at 1000°C. For lattice water determination, hydrogen 

atoms were detected through a heat conductivity detector. The total organic carbon was 

measured using a Vario EL Cube (Elementar Analysensysteme GmbH). The arithmetic mean of 

the three samples was used to calculate average values of the soil properties for each depth. In 

July 2013, a 20x20 cm sample of wet aboveground biomass was taken at each soil sampling 

location for the sites Merzenhausen, Gevenich and Aachen. Wet biomass samples were 

weighted before and after drying at 105 °C for 2 days according to ASTM E-1756 to determine 

total solids in biomass. The water lost by drying is hereafter called vegetation water. 
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Table 3: Results from the 16 calibration campaigns (IDs) carried out in 2012 and 2013 at the ten 
sites in the Rur catchment, corresponding soil properties and calibration parameters (mean bulk 
density (bd), lattice water (lw), soil water content (𝜃𝑣𝑜𝑙), wet aboveground biomass (AGBwet), 
measured corrected neutron flux, hydrogen molar fraction (hmf) and the calibration parameters 
N0, NS and NCOSMIC).  

IDs Location Date of 𝜌𝑏𝑑  lw 𝜃𝑣𝑜𝑙 AGBwet Neutron 
flux 

hmf N0 NS NCOSMIC 

   calibration g 
cm

-3
 

cm
3
 

cm
-3

 
cm

3
 

cm
-3

 
kg m

-2
 cph moles 

moles
-1

 
cph cph cph 

1 Wuestebach 23/08/2012 0.83 0.067 0.35 68.2 472 0.30 936 699 166 

2 RollesbroichN 18/07/2012 1.09 0.072 0.56 0.8 526 0.20 1081 435 192 

3 Rollesbroich 18/07/2012 1.09 0.068 0.46 0.7 613 0.19 1208 479 213 

4 Merzenhausen 10/08/2012 1.39 0.039 0.19 4.3 798 0.14 1202 452 194 

5 Gevenich 19/10/2012 1.31 0.034 0.26 4.4 759 0.16 1242 485 207 

6 Heinsberg 19/10/2012 1.27 0.039 0.34 3.3 705 0.17 1242 492 213 

7 Kall 10/08/2012 1.31 0.086 0.33 1.2 705 0.18 1268 497 219 

8 RurAue 12/09/2012 1.11 0.046 0.28 6.1 641 0.17 1109 447 188 

9 Wildenrath 12/09/2012 1.21 0.027 0.14 37.3 699 0.18 1014 517 158 

10 Aachen 18/10/2012 1.12 0.058 0.38 3.9 620 0.19 1169 477 203 

11 Merzenhausen 19/11/2012 1.27 0.035 0.27 4.3 728 0.16 1212 476 203 

12 RurAue 23/11/2012 1.12 0.047 0.35 6.1 603 0.19 1109 456 191 

13 Wildenrath 16/11/2012 1.15 0.026 0.19 37.3 628 0.20 988 526 160 

14 Merzenhausen 18/07/2013 1.34 0.037 0.12 4.3 875 0.12 1212 432 185 

15 Gevenich 19/07/2013 1.42 0.037 0.15 4.4 846 0.13 1206 440 189 

16 Aachen 18/07/2013 1.20 0.063 0.27 3.9 680 0.17 1174 466 199 

 

2.2.4.3 Above ground biomass estimation 

Total aboveground biomass for each sensor was calculated based on the fractions of land use 

types in each CRP footprint (Waldhoff 2012) and was assumed to be constant in time. For the 

spruce forest of the Wuestebach site, dry aboveground biomass was assumed to be 30 kg m-2 

(Etmann 2009). For other locations, a dry aboveground forest biomass of 18.4 kg m-2 was 

assumed (Oehmichen et al. 2011). Vegetation water in forest was assumed to be 56 % of the 

total aboveground forest biomass (Nurmi 1999). Grassland and crop biomass were sampled in 

July 2013 at Merzenhausen, Gevenich and Aachen. The resulting average dry aboveground 

biomass and vegetation water for grassland and crops were assigned to the respective land use 

fractions given in Table 2. Urban fractions and water bodies were not considered. Belowground 
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biomass is not estimated separately, because the samples taken with the HUMAX soil corer 

included medium and fine root biomass.  

 

2.2.5 Cosmic-ray probe soil water content determination 

Results of the soil sampling campaigns were used for calibration of the ten CRPs using three 

different parameterization methods (i.e. the N0-method, the hydrogen molar fraction based 

(hmf) method and the COSMIC operator). The three methods are outlined in the following three 

sections. The main differences amongst the methods are the complexity of the applied 

parameterizations, and whether the methods include above ground biomass explicitly in the 

parameterization (i.e. hmf-method) or not (i.e. N0-method and COSMIC operator). All methods 

use a single calibration parameter NX. 

 

2.2.5.1 N0-method 

Desilets et al. (2010) developed a shape-defining function, hereafter called N0-method, to 

determine volumetric soil water content 𝜃𝑣𝑜𝑙  [cm3 cm-3] directly from corrected neutron flux: 

𝜃𝑣𝑜𝑙 = (𝑎0 × 𝜌𝑏𝑑) × (𝑁𝑝𝑖ℎ 𝑁0⁄ − 𝑎1)
−1
− (𝑎2 × 𝜌𝑏𝑑)  22 

where the parameters a0 = 0.0808, a1 = 0.372, a2 = 0.115 are dimensionless and N0 is a site 

specific calibration parameter. It is assumed that the parameters a0, a1 and a2 are constant in 

time and independent of soil chemical composition (Zreda et al, 2008; Desilets et al., 2010). N0 

is a time-constant site-specific calibration parameter that depends mainly on the site-specific 

environment and reference conditions. Following Zreda et al. (2012), lattice water [cm3 cm-3] is 

added to the left side of Eq. 22 to acknowledge the presence of additional hydrogen pools that 

are not removed during the oven drying process. N0 is then calibrated by fitting measured 

neutron flux over a 12 hour time interval at the time of calibration to vertically weighted soil 

water content, taking into account bulk density and lattice water as detailed in Bogena et al. 

(2013). 
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2.2.5.2 Molar fraction based method (hmf-method) 

The universal calibration function was developed by Franz et al. (2013a) to provide reasonable 

estimates of soil water content on the basis of measurements of neutron flux in combination 

with other measurable hydrogen pools (water vapor content of air, soil lattice water, soil 

carbon, and aboveground biomass) without the need of a site-specific calibration using in-situ 

soil water content measurements. It assumes a monotonic relationship between the amount of 

hydrogen present in the CRP support volume and neutron flux (Franz et al. 2013a). The total 

moles in the cosmic-ray support volume and the hydrogen molar fraction are calculated using 

average soil properties and average aboveground biomass. The hydrogen molar fraction is the 

fraction of all hydrogen moles within the sensor footprint ∑𝐻 [mol/mol] divided by the sum of 

all moles of all elements ∑𝐸𝑎𝑙𝑙  [mol/mol] including air (NO), (vegetation) water (H2O), dry soil 

(SiO2), dry aboveground vegetation (C6H12O6), carbon (C):  

ℎ𝑚𝑓 = ∑𝐻 ∑𝐸𝑎𝑙𝑙⁄   23 

For simplicity, air and soil elements are reduced to nitrogen (N), oxygen (O), silicate (Si), 

hydrogen (H) and carbon (C). Vegetation is assumed to consist of a wet part and a dry part as 

outlined in Section 2.2.4. According to Franz et al. (2013), the relationship between hydrogen 

molar fraction (hmf) and neutron flux can be approximated with: 

𝑁𝑝𝑖ℎ 𝑁𝑠⁄ = 4.486 exp(−48.1 × ℎ𝑚𝑓) + 4.195exp (−6.181 × ℎ𝑚𝑓)    24 

where NS is a time-constant site-specific calibration parameter [cph] and Npih is the neutron flux 

corrected for pressure, incoming cosmic ray and air humidity. NS is calibrated for each probe 

with the average measured neutron flux Npih of a 12 hour time window at the time of calibration 

and the calculated hydrogen molar fraction based on the sampling campaign results. The fully 

calibrated hmf-method is then used to inversely derive the hydrogen molar fraction and soil 

water content from measured neutron flux using a one-dimensional optimization scheme (Brent 

1973). For this, we minimized the squared difference between modeled and measured neutron 

flux to an accuracy of 10-5 cph. 
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2.2.5.3 COSMIC operator  

The COSMIC operator was developed to represent a simplified interaction of cosmic-rays with 

the subsurface for use in data assimilation (Shuttleworth et al. 2013). The main processes 

represented in the COSMIC operator are i) an exponential reduction of high energy neutron flux 

towards deeper soil layers, ii) the generation of fast neutrons from high energy neutrons at 

different depths, and iii) an additional depth-dependent reduction of lower energy neutrons 

before they are detected at the surface. The code requires parameterization of several site-

specific time-constant parameters. The COSMIC-specific parameters L1 = 162.0 g cm-2, L2 = 129.1 

g cm-2 and L4 = 3.16 g cm-2 were found to be constant for all locations through calibration with 

the MCNPx code (Shuttleworth et al., 2013). The parameters L3 [g cm-2] and α [cm3 g-1] are 

calculated using mean soil bulk density (0-30 cm) according to: 

𝐿3 = −31.65 + 99.29 × 𝜌𝑏𝑑  

𝛼 = 0.404 − 0.101 × 𝜌𝑏𝑑 

 25 

26 

Additionally, the site-specific time-constant calibration parameter NCOSMIC is required to run the 

COSMIC operator. We derived NCOSMIC by one-dimensional optimization (Brent 1973) of 

measured neutron flux (12 hour average at the time of calibration) and reproduced neutron flux 

by the COSMIC operator given measured soil water content, bulk density and lattice water. The 

fully calibrated COSMIC operator can then be used to inversely determine soil water content 

from measured neutron flux Npih at each site. A detailed description of the COSMIC code is given 

in Shuttleworth et al. (2013). 

 

2.2.6 Evaluation of soil water content estimated with CRP 

The soil sampling for CRP calibration was repeated for several locations during November 2012 

and July 2013. This was done to compare site-specific time-constant calibration parameters of 

the first campaign (NX1) to calibration parameters of the second campaign (NX2). Also in-situ 

measured soil water content during the second campaign (VWCgrav.-2) was compared to soil 

water content determined from the CRP (VWCcosmic-ray-2) using calibration parameters of the first 

campaign.  
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In order to compare soil water content measurements of the SoilNet in Rollesbroich and 

Wuestebach with soil water content measurements of the CRPs, a horizontally and vertically 

weighted average of the soil water content measurements with SoilNet is required. For this, we 

first averaged the SoilNet measurements horizontally for each layer as described in Bogena et 

al. (2013). The area around the CRP was split into seven annular segments with radii to the CRP 

of 50 to 350 meters. Horizontal weights were assigned according to the relative cumulative 

fraction of neutron counts detected by the sensor following Zreda et al. (2008). Vertical weights 

were assigned to each layer as described in Section 2.3. Days with snow or soil temperatures 

below 0 °C were removed from the time-series. To reduce noise, soil water content determined 

from CRP and SoilNet were averaged over one day.  

 

The correspondence between the two time series (xt,1 and xt,2, measured and predicted) was 

quantified using the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE): 

𝑀𝐴𝐸 =
1

𝑛
∑(𝑥𝑡,1 − 𝑥𝑡,2)

𝑛

𝑡=1

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑡,1 − 𝑥𝑡,2)

2𝑛
𝑡=1

𝑛
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where n is the total number of time steps.  

 

2.3 Results 

2.3.1 Measured neutron flux 

Average corrected neutron fluxes were derived for all ten CRP sites. Average incoming cosmic 

ray intensity was 156.94 neutrons per second at KIEL and 166.95 neutrons per second at JUNG 

in 2012. These values were taken as reference incoming cosmic ray intensity at both locations. 

Minimum and maximum incoming cosmic ray intensity were 137.84 neutrons per second and 

175.37 neutrons per second, respectively. The correction for incoming cosmic ray intensity 

ranged from 0.95 to 1.13 in 2012. Maximum air humidity in 2012 was 17.86 g m-3 corresponding 

to a maximum correction factor for air humidity of 1.099. The pressure correction factor ranged 

between 0.4786 and 1.244 for the ten stations. After correction, average corrected daily 
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neutron flux varied between 463 neutron counts per hour (cph) at the forested site Wuestebach 

and 794 cph at the agricultural site Gevenich during the second half of 2012 when all CRP were 

operational.  

 

Figure 5 shows the temporal evolution in neutron flux. Drying periods in summer led to an 

increase in neutron flux, whereas intensive rain events and days of consecutive rain led to a 

decrease in neutron flux. Absolute fluctuations in neutron flux are larger for sensors with high 

count rates than for sensors with low count rates. Overall, Figure 5 shows strong correlations in 

neutron flux amongst the sites because they were subject to the same regional weather events. 

However, the neutron flux data also show that high precipitation and low evapotranspiration 

and the associated higher average soil water content and high amounts of aboveground 

biomass were factors that reduced neutron flux. For example, locations at higher altitude with 

high average soil water content generally showed lower neutron fluxes (e.g. Wuestebach, 

Rollesbroich, RollesbroichN and Kall). Of these high-altitude locations, Wuestebach had the 

lowest neutron flux at a given water content because it additionally had a high aboveground 

biomass. Wildenrath had very low average soil water content, but due to the high amount of 

aboveground biomass the measured neutron flux is equally low as at the wet grassland site Kall. 
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Figure 5: Hourly measured and corrected neutron flux (grey dots), daily average measured 
corrected neutron flux (black line) and calibration points (red dots) for the ten CRPs installed in 
the area. Main land use and average soil water content derived with the COSMIC operator 
during the measurement period in 2012 at the ten locations are also indicated. 
 

2.3.2 Calibration results 

Results of the calibration campaigns are summarized in Table 3. Mean bulk densities ranged 

between 0.83 g cm-3 at the forest site Wuestebach to 1.42 g cm-3 at the agricultural site 

Gevenich. Mean lattice water ranged from 0.026 cm3 cm-3 to 0.086 cm3 cm-3. Weighted mean 

soil water content at times of calibration ranged between 0.12 cm3 cm-3 and 0.56 cm3 cm-3. The 

sites with highest wet aboveground biomass were Wuestebach (68.2 kg m-2) and Wildenrath 

(38.0 kg m-2) due to the high proportion of forest within the CRP footprint (Table 2). 

Correspondingly, the lowest values for the calibration parameter N0 were found for both forest 

sites (936 and 988 for Wuestebach and Wildenrath, respectively). Also the COSMIC calibration 

parameter NCOSMIC was lowest at these locations (166 and 160 for Wuestebach and Wildenrath, 
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respectively). NCOSMIC and N0 showed a high positive linear correlation (R2 = 0.76) for the 16 

calibration data sets (Figure 6). However, we found less correlation between NS and N0 (R2 = 

0.38), and NS and NCOSMIC (R2 = 0.18). The calibration parameters N0, NCOSMIC and NS correlate 

well with wet above ground biomass with R2 = 0.72, R2 = 0.62 and R2 = 0.79, respectively. The 

hydrogen molar fractions calculated from measured variables ranged from 0.12 at a soil water 

content value of 0.12 cm3 cm-3 in Merzenhausen at July 18th, 2013 to 0.30 at a soil water 

content value of 0.35 cm3 cm-3 in Wuestebach at August 10th, 2012 (Table 3). The high hmf in 

Wuestebach is mainly caused by high amounts of aboveground biomass in the form of trees 

within the footprint. 

 

 

Figure 6: Correlation between N0 and NCOSMIC derived from measured neutron flux and in-situ 
calibration. 
 

Figure 7 shows the site-specific and method-specific CRP calibration curves for all three 

methods. For each calibration, we used in-situ data of the first calibration campaign performed 

at each site. The calibration curves of the COSMIC and hmf-methods were similar, although only 

the hmf-method considered aboveground biomass. The N0-method deviated from the other two 

parameterization methods and showed stronger changes in estimated soil water content for a 

given change in neutron flux rate, particularly for low water content. In the remainder of this 

paper, we focus on the results of the N0-method and the COSMIC operator because the hmf 
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derived neutron flux – soil water content relationships were very close to the ones of the 

COSMIC operator. 

 

 

Figure 7: Calibration curves showing site-specific and method-dependent relationships between 
neutron flux and soil water content. The black asterisks indicate the calibration measurements. 
The methods shown are the N0-method (black), the COSMIC operator (dashed) and the hmf-
method (gray). 
 

2.3.3 Comparison of soil water content results from N0-method and COSMIC 

operator 

Soil water content determined from CRP measurements using the N0-method and the COSMIC 

operator is shown in Figure 8 for four selected locations. The results show that different 

calibration methods yield soil water content deviations up to 0.06 cm3 cm-3. The drier locations 

(Merzenhausen and Wildenrath) showed larger deviations than the wetter locations 

(Wuestebach and Rollesbroich). The range of COSMIC-derived soil water content is smaller than 
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that of the N0-method for all four sites. Therefore, dry periods were interpreted drier and wet 

periods were interpreted wetter with the N0-method than with the COSMIC operator. In 2012, 

MAE between the COSMIC and the N0 derived soil water content at Wuestebach, Rollesbroich, 

Merzenhausen and Wildenrath were 0.015 cm3 cm-3, 0.012 cm3 cm-3, 0.024 cm3 cm-3 and 0.024 

cm3 cm-3, respectively.  

 

 

Figure 8: Daily average soil water content [cm3 cm-3] measured by four CRPs derived using the 
N0-method (a and b) and derived with the COSMIC operator (c and d). Figure 8e and f show the 
difference of N0-derived soil moisture and COSMIC derived soil moisture. 
 

2.3.4 Results of repeated calibration campaigns 

Calibration results for repeated calibration campaigns in November 2012 and July 2013 are 

shown in Table 3. Table 4 provides a comparison between two calibration campaigns for each 

location. The calibration parameters NX differed considerably in magnitude amongst the 
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methods (being highest for N0 and lowest for NCOSMIC). Therefore, the first part of Table 4 shows 

the relative difference between the site-specific calibration parameter NX obtained from the 

first and second calibration campaign. The relative differences were lowest for the N0-method, 

and higher for NS and NCOSMIC. 

 

Table 4: Summary results of the comparison between the first calibration campaigns (Table 3, 
calibrations 1 to 10) and the repeated calibration campaigns (Table 3, calibrations 11 to 16). 
Absolute difference soil water content is the difference between soil water content predicted 
(using calibrated parameters from first calibration campaign) and soil water content measured 
(at repeated campaign). The calibrations compared are identified by calibration ID in Table 3.  

Location Calibration 
Percentage 

difference calibration 
parameter 

Absolute difference 
soil water content 

 
IDs % cm3 cm-3 

 
 N0 NS NCOSMIC N0 NS NCOSMIC 

Merzenhausen 4 & 11 0.8 5.2 4.8 0.016 0.022 0.021 
RurAue 8 & 12 0.0 2.1 1.9 0.016 0.014 0.010 
Wildenrath 9 & 13 2.6 1.7 1.6 0.034 0.002 0.001 
Merzenhausen 4 & 14 0.8 4.4 4.7 0.002 0.022 0.022 
Gevenich 5 & 15 2.9 9.2 8.9 0.009 0.039 0.038 
Aachen 10 & 16 0.4 2.4 2.0 0.023 0.009 0.005 

MAE 
 

1.3 4.2 4.0 0.017 0.018 0.016 

 

The calibration curves from the first campaign were used to predict soil water content at the 

time of the second calibration campaign for all three methods. Table 4 shows the absolute 

differences between estimated soil water content with the CRP and in-situ measured vertically 

averaged soil water content. Again, the differences between the calibration methods were small 

with a slightly larger MAE for the hmf-method (0.018 cm3 cm-3) than for the N0-method (0.017 

cm3 cm-3) and the COSMIC operator (0.016 cm3 cm-3). 

 

2.3.5 Comparison with two sensor networks 

Daily average soil water content at three depths (from SoilNet) and daily precipitation are 

shown in Figure 9 for the Rollesbroich and Wuestebach test sites. Both sites showed similar soil 

water content dynamics, which were highly responsive to precipitation. In both sites highest soil 

water content was observed at 5 cm depth. Two periods with long drying events can be 
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observed in April and late summer, especially in the Wuestebach site. Only in summer, soil 

water content in the top layer was lower than at 20 cm and 50 cm depth (Figure 9). Days with 

rainfall > 5 mm or consecutive days of rainfall were necessary to cause a soil water content 

increase at 20 cm and 50 cm depth. Vertically weighted mean soil water content was derived 

from the SoilNet measurements for comparison with the CRP measurements. For Rollesbroich, 

the average weight for the SoilNet measurements at 5 cm depth was 0.852, whereas the 

average weights for 20 cm and 50 cm depth were 0.146 and 0.002, respectively. The high weight 

for the sensor at 5 cm depth is related to the high average soil water content (0.42 cm3 cm-3) 

and the high fraction of lattice water (0.068 cm3 cm-3). For the Wuestebach test site similar 

weights were found: 0.832, 0.153 and 0.015 for 5 cm, 20 cm and 50 cm depth, respectively. As a 

consequence, the weighted average soil water content used in the evaluation of the CRP 

measurements is very similar to soil water content at 5 cm depth. 
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Figure 9: Precipitation and average, depth dependent, soil moisture of the sensor networks at 
the Rollesbroich and Wuestebach test site. Vertical weighting was performed using the 
weighting scheme of Bogena et al. (2013). 
 

Cosmic-ray derived soil water content from all three calibration functions fitted well to the 

weighted soil water content of the SoilNet (Figure 10). Rain events, particularly strong rain 

events, are well captured by the cosmic-ray signal. Cosmic-ray derived soil water content is 

consistently larger than SoilNet derived soil water content after strong rain events due to the 

high sensitivity of the neutron flux to near-surface water. This can be seen particularly well in 

July and December 2012. Figure 10 also shows that the N0-method captures the dry phases in 

April and August 2012 better than the COSMIC operator. The soil water content derived with 

the hmf-method is not shown in this figure, because it matches the COSMIC derived soil water 

content with a difference in RMSE of only 0.003 cm3 cm-3. Table 5 summarizes the results of the 

four methods to estimate soil water content at Rollesbroich during 2012. The RMSE between 

the parameterization methods and the sensor network was somewhat higher for the N0-method 

(RMSE = 0.032 cm3 cm-3) as compared with the hmf-method and the COSMIC operator (RMSE = 



Chapter 2. Calibration and evaluation of a CRP network 43 
 

 

0.030 cm3 cm-3). Similarly, the average soil water content determined with the hmf-method and 

the COSMIC operator were slightly closer to the average soil water content obtained from 

SoilNet than the one of the N0-method. 

 

 

Figure 10: Soil water content at Rollesbroich measured by the sensor network (blue), measured 
daily averaged neutron flux (black) and cosmic-ray derived soil water content using two 
different methods: The N0-method (red) and the COSMIC operator (green). Gaps in the data are 
due to snow cover, lack in power supply or soil temperatures below 1°C. 
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Table 5: Summary results at Rollesbroich and Wuestebach for daily averaged soil water content 
measurements in 2012. The upper part of the table provides RMSE of estimated soil water 
content. The second part of the table gives minima, maxima, range (maximum minus minimum) 
and mean soil water content.  

 Rollesbroich (units in cm3 cm-3) Wuestebach (units in cm3 cm-3) 

 SoilNet N0 hmf COSMIC SoilNet N0 hmf COSMIC 
SoilNet 0 0.032 0.030 0.030 0 0.033 0.032 0.032 
N0  0.032 0 0.022 0.019 0.033 0 0.018 0.018 
hmf 0.030 0.017 0 0.003 0.032 0.018 0 0.001 
COSMIC 0.030 0.014 0.003 0 0.032 0.018 0.001 0 
Min 0.26 0.28 0.32 0.31 0.31 0.30 0.31 0.31 
Max 0.50 0.52 0.50 0.51 0.51 0.54 0.50 0.50 
Range 0.240 0.238 0.183 0.192 0.198 0.247 0.197 0.198 
Mean 0.413 0.398 0.412 0.410 0.422 0.424 0.409 0.410 

 

Estimated soil water content using the calibrated cosmic-ray measurements and the sensor 

network data for the Wuestebach test site are shown in Figure 11. The cosmic-ray signal shows 

stronger fluctuations in Wuestebach than in Rollesbroich. This might be the result of the low 

neutron count rates at the Wuestebach site (Bogena et al. 2013). Because neutron count rates 

are very low due to high additional hydrogen pools besides soil water content, the signal to 

noise ratio is smaller in Wuestebach than in Rollesbroich and the CRP signal is more sensitive to 

the dynamics of other hydrogen sources besides soil water (e.g. litter layer). This is also 

indicated by the fact that the standard deviation of daily soil water content values derived with 

e.g. the COSMIC operator at Wuestebach is slightly higher (0.039 cm3 cm-3) than at Rollesbroich 

(0.036 cm3 cm-3) although the standard deviation of daily averaged neutron flux at Wuestebach 

is much smaller (9.1 cph) than at Rollesbroich (13.8 cph). 
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Figure 11: Soil water content at Wuestebach measured by the sensor network (blue), measured 
daily averaged neutron flux (black) and cosmic-ray derived soil water content using two 
different methods: The N0-method (red) and the COSMIC operator (green). Gaps in the data are 
due to snow cover, lack in power supply or soil temperatures below 1°C. 
 

Like in Rollesbroich, the RMSE of the N0-method (0.033 cm3 cm-3) was slightly larger than the 

RMSE for the hmf-method (0.032 cm3 cm-3) and the COSMIC operator (0.032 cm3 cm-3) (see 

Table 5). However, the mean soil water content (0.424 cm3 cm-3) obtained by the N0-method 

was closest to the weighted mean soil water content of the sensor network (0.422 cm3 cm-3) at 

the Wuestebach site. 

 

2.4 Discussion 

The N0-method was the first method proposed to determine soil water content directly from 

neutron flux (Desilets et al. 2010) and is based on synthetic MCNPx simulations. Since this 

methods is straightforward to implement computationally, it is the most commonly used 

method (Bogena et al. 2013; Desilets and Zreda 2013; Franz et al. 2012b; Villarreyes et al. 2011). 
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The straightforward applicability of this method goes along with a possibly too simplified 

representation of the interaction between secondary cosmic-rays and hydrogen present in the 

soil. However, the results of the present study have shown that the N0-method performs well 

for the given humid climatic conditions and the range of observed soil water content.  

 

Results of the hmf-method have shown that consideration of the aboveground biomass has a 

minor effect on the shape of the calibration curve under various environmental and soil 

conditions (Figure 7). However, the calibration parameter NS (Eq. 24) differed considerably for 

all test sites and the expected catchment wide constant NS value was not found. A fixed value of 

NS for all test sites did not provide accurate soil water content estimates (results not shown). 

This clearly limits the applicability of the hmf-method as a universal calibration method and 

local soil sampling campaigns and calibration of the NS parameter are still necessary for the hmf-

method to produce accurate soil water content measurements using our network of CRP. 

 

The goal of the COSMIC operator is to represent the processes of the MCNPx model in a 

simplified manner and to allow the consideration of vertically heterogeneous soil water content 

(Shuttleworth et al. 2013). In this study, the COSMIC operator was used in an inverse mode to 

determine soil water content at the ten locations from observed neutron fluxes. The complexity 

of the calculations and the required time to run the COSMIC operator are significantly higher 

than for the hmf-method and the N0-method. In this study, the COSMIC operator was not 

calibrated with the MCNPx model, but was still able to obtain soil water content close to the 

one measured by the two sensor networks. This result clearly indicates that the COSMIC 

operator can be used for data assimilation applications for the ten locations in the Rur 

catchment. 

 

Wet aboveground biomass was estimated with a 15 m resolution land use map. Biomass at the 

forest sites Wuestebach and Wildenrath was higher than wet aboveground biomass reported by 

Franz et al. (2013a), but corresponded well with values found in other German and European 

forests (Ciais et al. 2008; Dieter and Elsasser 2002). The resulting hydrogen molar fractions were 

above the theoretical threshold value for the case of pure water beneath the sensor (hmf = 
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0.23), which was also the case for some COSMOS sites (Franz et al. 2013a). Uncertainty in the 

estimation of aboveground biomass propagates into the calibration of the CRP. This is 

particularly true when biomass changes with time (e.g. at agricultural sites). In this study, 

aboveground biomass was assumed to be constant in time due to the lack of information on 

crop development. This may have introduced an error in the calibration of the agricultural sites 

Merzenhausen, Gevenich and Aachen, where seasonal changes in aboveground biomass are 

expected to be larger due to crop growth and harvest compared to grassland and forest sites. 

Therefore, the calibration parameters N0 and NCOSMIC are not expected to remain constant in 

time at the agricultural sites Merzenhausen, Gevenich and Aachen. This is reflected well for the 

three sites in the NCOSMIC parameter, while N0 exhibits smaller changes (Table 4). In this light, the 

single-point calibration and evaluation results of RurAue (grassland) and Wildenrath (forest) 

shown in Table 3 and Table 4 are potentially more reliable than the single-point calibration and 

evaluation results at Merzenhausen, Gevenich and Aachen. Clearly, the validation of cosmic-ray 

derived soil water content using continuous measurements of soil water content should be 

preferred when significant changes in biomass with time are expected.  

 

The calibration parameters NCOSMIC and N0 were expected to indirectly include effects of biomass 

(Franz et al. 2013c). A comparison of N0 and NCOSMIC across all sites indicates that the lowest 

values were found at the Wuestebach and Wildenrath sites where aboveground biomass was 

highest (Table 3). Additionally, a good linear correlation between NCOSMIC and N0 was observed. 

Assuming that NX values of one method should be the same under reference conditions, one 

more method to compare model performance is the normalized standard deviation of NX. 

Calculation of the normalized standard deviation (𝜎𝑛 = 𝜎 𝜇⁄ ) using the NX values in Table 3 

yields the lowest 𝜎𝑛 for N0 (0.086), a larger 𝜎𝑛 for NCOSMIC (0.095) and the largest 𝜎𝑛 for NS 

(0.131). Exclusion of sites with high wet aboveground vegetation (> 5 kg m-2), thus reducing the 

impact of vegetation, yields normalized standard deviations of 0.041, 0.051 and 0.054 for N0, NS 

and NCOSMIC, respectively. This indicates that for sites with substantial aboveground biomass (e.g. 

forests) the calibration parameters of all three methods will be significantly influenced by 

vegetation. 
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2.5 Conclusions 

Ten cosmic-ray probes in the Rur catchment in western Germany were calibrated using three 

parameterization methods to estimate soil water content from fast neutron flux (i.e. N0-

method, hmf-method and COSMIC operator). The probes were calibrated using arithmetically 

averaged bulk density, lattice water and total soil carbon, vertically weighted soil water content 

and estimated aboveground biomass. The soil water content estimates resulting from the three 

methods were compared individually to independent measurements of two distributed soil 

water content sensor networks (SoilNet) and repeated gravimetric in-situ sampling.  

 

We conclude that all three methods gave soil water content estimates with an acceptable error 

not much larger than the expected measurement uncertainty. CRP measurements represented 

soil water content dynamics well at all ten test sites (RMSEs ≤ 0.033 cm3 cm-3), although the 

sites had different characteristics (e.g., land use, aboveground biomass, meteorological 

conditions, soil properties). Calibration curves of the hmf-method and the COSMIC operator 

were very similar, but the calibration curves obtained for the N0-method differed more strongly 

from the other two. Using the N0-method for soil water content estimates led to a larger range 

in soil water content values than using the hmf-method or the COSMIC operator, with 

particularly strong deviations for low soil water content. This discrepancy was not reflected in 

our validation results because soil water content remained relatively high throughout our study 

period because of the humid climatic conditions. The capability of the COSMIC operator to 

directly include vertical gradients in soil water content and soil properties, together with the 

good performance in validation experiments, may make the COSMIC operator a favorable 

method for soil water content determination from neutron flux. 

 

A direct relation of neutron flux to above ground biomass was already observed by Franz et al. 

(2013c), and is confirmed by the linear correlation of N0 and NCOSMIC with the amount of above-

ground biomass found in this study. This may give rise to an empirical vegetation correction for 

the calibration parameters N0 and NCOSMIC in future research. Systematic deviations amongst the 

three parameterization methods (Figure 7), neutron flux uncertainty and correction for sensor 

efficiency need to be accounted for when empirical neutron flux correction factors are derived 
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for aboveground biomass. The results at Wildenrath and Wuestebach (see also Bogena et al. 

2013) have shown that possible changes in the calibration function due to high above ground 

biomass (which shows limited temporal variability) are limited and present no obstacle to soil 

water content determination with CRPs.  

 

The area-average soil water content determined using the CRP network is valuable for a broad 

community of environmental modelers for model verification, model calibration and data 

assimilation experiments. Future work should focus on (i) quantification of aboveground 

biomass effects on neutron flux and (ii) the effect of vertical gradients in bulk density on soil 

water content determination with CRP measurements. This will enable scientists to consider 

seasonal changes of aboveground biomass in neutron flux signal interpretation, particularly at 

agricultural sites, and to produce spatially distributed soil water content maps with mobile 

cosmic-ray probes (i.e. the cosmic-ray rover (Chrisman and Zreda 2013)) considering spatially 

heterogeneous soil properties and aboveground biomass. 
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*adapted from: Baatz, R., Bogena, H.R., Hendricks Franssen, H.-J., Huisman, J.A., Montzka, C., and 
Vereecken, H. (2015). An empirical vegetation correction for soil water content quantification using 
cosmic-ray probes. Water Resour. Res., 51,2030–2046, doi:10.1002/2014WR016443. 

 

3 Development of an empirical vegetation correction for cosmic-ray probe 

measurements* 

 

3.1 Introduction 

Hydrologic processes at the land surface are strongly influenced by surface soil water content 

because it controls water availability for transpiration, evaporation and groundwater recharge 

(Brutsaert 2005). Soil water content measurements are therefore a valuable source of 

information for hydrologic (Brocca et al. 2012), land surface (Jung et al. 2010) and atmospheric 

circulation models (Koster et al. 2004). The wealth of available soil water content measurement 

techniques at various temporal and spatial scales has extensively been reviewed (e.g. Robinson 

et al. 2008a; Vereecken et al. 2008; Vereecken et al. 2014). Amongst these techniques, cosmic-

ray probes (CRPs) are an emerging technology to determine soil water content from passive 

neutron counting (Zreda et al. 2008). This new technique addresses the need for continuous soil 

water content measurements at the horizontal scale of several tens of ha. The method utilizes 

the fact that hydrogen moderates secondary cosmic-ray neutrons much more effectively than 

other atoms present in the soil. There are two main reasons for this. First, hydrogen nuclei have 

a similar mass as fast neutrons and thus fewer fast neutron-hydrogen nuclei collisions are 

needed to slow down a fast neutron to the thermal level. Second, hydrogen has the highest 

elastic scattering cross-section of the most abundant elements in the soil (Zreda et al. 2012). 

This results in an inverse relationship between the abundance of hydrogen atoms near the soil 

surface and secondary cosmic-ray intensity or neutron intensity (Hendrick and Edge 1966). 

Spatially averaged soil water content determined using in-situ calibrated CRPs was found to be 

in good agreement with independently determined areal average soil water content at sites 

where biomass showed little variation over the year (Baatz et al. 2014; Bogena et al. 2013; 

Desilets et al. 2010; Franz et al. 2012a; Zreda et al. 2008). However, it was also shown that 

aboveground biomass within the CRP footprint reduced measured fast neutron intensity due to 

the moderating power of hydrogen contained in vegetation water and plant tissue 

(Coopersmith et al. 2014; McJannet et al. 2014). Hence, dynamic changes in aboveground 
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biomass were shown to affect the CRP counting rate, and thus the accuracy of the soil water 

content measurements (Franz et al. 2013c; Villarreyes et al. 2011). 

 

At present, three methods of different complexity exist to convert measured neutron intensity 

into soil water content: the N0-method (Desilets et al. 2010), the hydrogen molar fraction 

method (hmf-method) (Franz et al. 2013a), and the COSMIC operator (Shuttleworth et al. 2013). 

These methods were recently compared and evaluated by Baatz et al. (2014). Of these methods, 

only the hmf-method explicitly accounts for additional hydrogen contained in aboveground 

biomass. However, it is limited by a maximum hydrogen molar fraction of 0.23 moles moles-1 

that corresponds with liquid water. Several studies have shown that this maximum hydrogen 

molar fraction can be exceeded in the case of high aboveground biomass (Baatz et al. 2014; 

Franz et al. 2013a). Moreover, numerical experiments with a neutron interaction model 

demonstrated that hydrogen contained in forest trees cannot simply be conceptualized as an 

additional layer of water on top of the soil (Franz et al. 2013c). Instead, these simulations 

indicated that the impact of aboveground biomass on neutron moderation depends on forest 

structure and tree geometry (e.g. tree spacing, tree trunk diameter etc.). 

 

In principle, neutron interaction models (e.g. Pelowitz 2005) are viable tools to develop 

correction functions to account for biomass effects on soil water content estimates derived 

from CRPs. However, the accuracy of such physically-based modeling of neutron interactions 

with biomass is limited by the complexity of accurately representing and parameterizing total 

above- and belowground biomass, which depends on plant species and generally is strongly 

heterogeneous (Franz et al. 2013c). In addition, such simulations are computationally intensive, 

and thus unfavorable for practical applications of the CRP method. 

 

Here, we aim to develop a simple empirical framework to account for aboveground biomass 

effects on fast neutron moderation. Such a correction method for biomass would enhance the 

functionality of the N0-method and the COSMIC operator by eliminating the need for in-situ 

calibration when dry aboveground biomass is known or can be estimated with reasonable 

accuracy. In addition, such a correction for biomass would enable CRP applications in locations 
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with strong changes in aboveground biomass and the use of mobile CRP surveys (e.g. Chrisman 

and Zreda 2013) in areas with strong spatial variation in aboveground biomass. To develop the 

empirical framework, we quantified the moderating effect of aboveground biomass at a range 

of sites with different environmental conditions by calibrating ten permanent CRPs using soil 

sampling campaigns. Measured fast neutron intensity was corrected for air pressure, incoming 

cosmic-ray intensity, atmospheric humidity, and sensor-specific counting efficiency. We 

evaluated the efficiency of the correction method for aboveground biomass using several 

different datasets acquired on sites with different amounts of aboveground biomass. 

 

3.2 Materials and methods 

3.2.1 Site description and instrumentation 

All measurements were made in the Rur catchment that covers an area of 2354 km2 and is 

located at the western border of Germany (Figure 1). It is part of the Terrestrial Environmental 

Observatories (TERENO) infrastructure (Bogena et al. 2012; Zacharias et al. 2011). Elevation 

ranges between 15 m in the lowland region in the north and 690 m in the low-mountainous Eifel 

region in the south. Mean annual precipitation increases from less than 600 mm in the north to 

1400 mm in the south (Montzka et al. 2008). The lower northern part of the catchment is 

dominated by crop land, while the low-mountainous part is dominated by grassland and forest. 
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Figure 12: Locations of the ten permanently installed CRPs in the Rur catchment (top right), the 
Rollesbroich test site equipped with an in-situ soil water content sensor network (top left) and 
the Wuestebach test site with the temporary CRPs, the deforested area and radii used for 
calibration at 25, 75 and 175 meter (lower panel), and a photograph taken from the 
meteorological tower in 2014 with locations of in-situ SoilNet nodes (red), 9 of 13 temporary 
CRPs (yellow), and the Wuestebach stream (lower right). 
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We installed ten permanent cosmic-ray probes (CRPs) at a height of 1.5 m (CRS1000, 

HydroInnova LLC, 2009) in the Rur catchment (Figure 12). All ten probes contain a moderated 

neutron counter that consists of a metal tube (3 cm in diameter, 30 cm in length) filled with high 

pressure 3He gas mantled with polyethylene. Five of the CRPs contain a second bare neutron 

counter without polyethylene mantle. A high voltage is applied to both ends of the tubes, which 

triggers an ionization process that produces a charged cloud that is registered as a single count 

by the pulse module when a neutron passes through the 3He-tube. The network of CRPs has 

been operational since May 2012 and the CRP stations cover the main land use types of the Rur 

catchment: grassland (Rollesbroich, RollesbroichN, Kall, Rur Aue), crop land (Aachen, Gevenich, 

Heinsberg, Merzenhausen) and forest (Wildenrath, Wuestebach). Detailed information on 

altitude, mean annual precipitation and temperature, and land use fractions are presented in 

Table 6 for all sites. 
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Two sites with CRPs (Rollesbroich and Wuestebach) were additionally equipped with a wireless 

soil water content sensor network (SoilNet, Forschungszentrum Jülich GmbH) described by 

Bogena et al. (2010). Soil water content sensors were installed in 5, 20 and 50 cm depth and 

provide soil water content estimates at 15 minute intervals. Calibration and data analysis of the 

SoilNet installed in the Wuestebach catchment is described by Bogena et al. (2010) and 

Rosenbaum et al. (2012), whereas Qu et al. (2013) provide this information for the Rollesbroich 

test site. The use of SoilNet data for calibration and evaluation of soil water content derived 

from neutron intensity measurements is described in more detail by Bogena et al. (2013) and 

Baatz et al. (2014). 

 

As part of a deforestation experiment (Bogena et al. 2014), 9 ha of Norway Spruce trees were 

removed in August 2013 within a part of the Wuestebach catchment (Figure 12). The 

permanently installed CRP at Wuestebach was removed during the deforestation activities, and 

afterwards reinstalled at the original location. Additionally, neutron flux measurements for 

short periods (between 24 and 405 hours) were taken at 13 locations at the Wuestebach test 

site from January to May 2014 (Figure 12). These locations were selected in such a way that the 

CRP footprint contained distinctly different amounts of aboveground biomass. 

  

3.2.2 Derivation of soil water content from CRP measurements 

3.2.2.1 Required fast neutron flux corrections  

The use of CRP measurements to determine soil water content requires a range of corrections 

of the measured neutron flux. Large-scale networks of CRPs need to consider corrections 

associated with varying cutoff rigidity (e.g. Zreda et al. 2012) but this is not required for the 

relatively small Rur catchment. In this study, we corrected measured fast neutron flux to 

standard air pressure (1013 hPa), a reference level of incoming cosmic ray intensity, and zero air 

humidity using the procedures described by Baatz et al. (2014). The corrected neutron flux is 

denoted as Npih: 

𝑁𝑝𝑖ℎ = 𝑁𝑟𝑎𝑤 × {𝑒𝑥𝑝 (𝛽 × (𝑃 − 𝑃𝑟𝑒𝑓))} × {𝐼𝑟𝑒𝑓 𝐼⁄ } × {1 + 0.0054 × (𝜌𝑤𝑣 − 𝜌𝑟𝑒𝑓)} 29 
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where the term {𝑒𝑥𝑝 (𝛽 × (𝑃 − 𝑃𝑟𝑒𝑓))} describes the correction of air pressure P [hPa] at the 

time of measurement to a reference pressure Pref = 1013 hPa using the barometric pressure 

coefficient 𝛽 = 0.0076 hPa-1 (Desilets and Zreda 2003), {𝐼𝑟𝑒𝑓 𝐼⁄ } describes the correction of 

incoming cosmic ray intensity 𝐼 [counts per second] to a reference incoming cosmic ray intensity 

𝐼𝑟𝑒𝑓 [counts per second] (Zreda et al. 2012) obtained from the Neutron Monitor Database 

(NMDB), and {1 + 0.0054 × (𝜌𝑤𝑣 − 𝜌𝑟𝑒𝑓)} describes the correction for atmospheric water 

content at 2 meter height [g m-3] to a reference atmospheric water content of 𝜌𝑟𝑒𝑓 = 0 g m-3 

(Rosolem et al. 2013).  

 

This study also considers corrections for sensor-specific counting efficiency as introduced by 

McJannet et al. (2014). Counting efficiency of a CRP may vary due to differences in the 

polyethylene shielding thickness or in the pressure of the Helium gas and should be considered 

to improve comparability between CRPs within a network. For this correction, a reference CRP 

with two moderated counters was placed next to each permanent CRP station for a period of at 

least 10 hours. An efficiency scaling factor 𝜂𝑟𝑒𝑓 was determined for each CRP from these 

reference CRP measurements using: 

𝜂𝑟𝑒𝑓 = 𝑁𝑟𝑒𝑓 𝑁𝑖⁄  30 

where Nref [cph] is the mean raw neutron flux of the reference CRP over the measurement 

interval and Ni [cph] is the corresponding mean neutron flux of the CRP that requires correction 

for counting efficiency. The final corrected neutron flux that also considers counting efficiency, 

Nepih, was then obtained using: 

𝑁𝑒𝑝𝑖ℎ = 𝑁𝑝𝑖ℎ × 𝜂𝑟𝑒𝑓 31 

 

3.2.2.2 Support volume of CRPs 

The support volume of CRP measurements is often defined as the volume from which 86% of 

the fast neutrons originate (Zreda et al. 2008). According to Desilets and Zreda (2013), the 

horizontal CRP footprint is approximately 300 meter in radius at sea level, depending on air 

density, elevation, and air humidity. If soil water content within the CRP footprint follows a 

Gaussian random field model, the spatial variability of soil water content has a negligible impact 
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on fast neutron flux. In this case, the weighted horizontal average soil water content is 

measured by the CRP (Franz et al. 2013b). The decrease in sensitivity with distance from the CRP 

needs to be considered when environmental factors that affect CRP measurements, such as soil 

water content and biomass, are heterogeneously distributed within the footprint. This can be 

achieved with the COSMOS calibration scheme (Zreda et al. 2012), which divides the horizontal 

footprint into three radii at 25, 75 and 175 meters, and proposes to take calibration 

measurements every 60 degrees (i.e. 6 points). This results in a set of 18 calibration samples 

that can be arithmetically averaged to obtain the mean properties within the footprint because 

of the appropriately chosen radii (Zreda et al. 2012). A second approach for horizontal weighting 

was suggested by Bogena et al. (2013). They used the cumulative fraction of counts in the 

horizontal footprint (Zreda et al. 2008) to calculate appropriate weighting factors for horizontal 

segments with increasing radii up to 300 meters (Franz et al. 2013b). 

 

The depth of the CRP support volume was investigated by  Franz et al. (2012b) and ranges from 

10 cm for moist soils up to 70 cm for dry silicate soils. We adopted the vertical weighting 

scheme developed by Bogena et al. (2013) to assign weights to vertical layers of soil water 

content. Similar to the exponential weighting used in the COSMIC operator (Shuttleworth et al. 

2013), this scheme considers non-linear weighting for the vertically heterogeneous soil water 

content distributions that are typically encountered in real-world conditions. 

 

3.2.2.3 Conversion of fast neutron flux to soil water content 

We used three methods to convert neutron flux to soil water content: (i) the N0-method, (ii) the 

COSMIC operator and (iii) the hmf-method. The N0-method allows direct conversion of 

measured fast neutron flux (Nepih) to soil water content (Desilets et al. 2010) using: 

𝜃𝑔𝑟𝑎𝑣 = 𝜃𝑣𝑜𝑙 × 𝜌ℎ2𝑜 𝜌𝑏𝑑⁄ = 𝑎0 × (𝑁𝑒𝑝𝑖ℎ 𝑁0⁄ − 𝑎1)
−1
− 𝑎2  32 

where a0 = 0.0808, a1 = 0.372, and a2 = 0.115 are semi-empirical parameters that are constant 

for all sites, N0 is a site-dependent time-constant calibration parameter, 𝜃𝑔𝑟𝑎𝑣 is the total 

gravimetric soil water content (soil water content plus lattice water in g g-1) (Zreda et al. 2012), 

𝜃𝑣𝑜𝑙  is the total volumetric soil water content [cm3 cm-3], 𝜌ℎ2𝑜 is the density of water [g cm-3], 
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and 𝜌𝑏𝑑 is the dry soil bulk density [g cm-3]. N0 is determined using weighted mean total 

gravimetric soil water content and measured corrected neutron flux over a short time interval. 

 

The COSMIC operator was developed to use CRP measurements in data assimilation 

(Shuttleworth et al. 2013). The conversion of the neutron signal into soil water content profiles 

by the COSMIC operator was analyzed in detail by Rosolem et al. (2014). A recent evaluation by 

Baatz et al. (2014) showed that COSMIC can also be used to obtain accurate soil water content 

estimates from fast neutron flux measurements. In this study, the COSMIC operator was 

parameterized with a site-specific mean bulk density (0-30 cm), high-energy neutron-soil 

interaction constants L1 = 162.0 g cm-2 and L2 = 129.1 g cm-2, fast neutron-soil interaction 

constants 𝐿3 = −31.65 + 99.29 × 𝜌𝑏𝑑 and L4 = 3.16 g cm-2, and an efficiency factor 𝛼 =

0.404 − 0.101 × 𝜌𝑏𝑑 for the relative efficiency to create fast neutrons. Like for the N0-method, 

lattice water and soil water content make up the total soil water content. A site-specific 

calibration parameter NCOSMIC was determined using measured corrected neutron flux and 

weighted mean total soil water content at the time of calibration. 

 

The universal calibration function or hydrogen molar fraction method (hmf-method) was 

developed to enable calibration of CRPs at locations where it is difficult to undertake in-situ 

calibration measurements (Franz et al. 2013a). The hydrogen molar fraction (hmf) is calculated 

with: 

ℎ𝑚𝑓 =∑𝐻 ∑𝐸𝑎𝑙𝑙⁄  33 

where ∑𝐻 in mol is the sum of all moles of hydrogen within the CRP footprint and ∑𝐸𝑎𝑙𝑙 in mol 

is the sum of all moles of all elements which include for simplicity air (NO), dry soil (SiO2), soil 

carbon (C), and vegetation besides the sources of water and hydrogen (H2O). In this simplified 

approach, vegetation consists of water and cellulose (C6H12O5) only, and it was initially assumed 

that vegetation was present as a layer on top of the soil. Using the MCNPx code, Franz et al. 

(2013a) found a monotonic decreasing exponential relationship between neutron flux and hmf: 

𝑁𝑒𝑝𝑖ℎ 𝑁𝑠⁄ = 𝑎× exp(𝑏 × ℎ𝑚𝑓) + 𝑐 × exp (𝑑 × ℎ𝑚𝑓)  34 

where NS is a universal calibration parameter and a = 4.486, b = -48.1, c = 4.195 and d = -6.181 

are constants. McJannet et al. (2014) updated the parameters of Eq. 34 to a = 3.007, b = -
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48.391, c = 3.499 and d = 5.396 based on their calibration data and additional MCNPx 

simulations which assumed that CRPs measure an additional 30% of slow neutrons. We consider 

both parameterizations in the remainder of this study. Additional simulations and explicit 

modeling of tree trunks with the MCNPx code revealed that tree biomass cannot be simplified 

as a layer upon the soil as assumed in the derivation of hmf in Eq. 33 (Franz et al. 2013c). 

Therefore, Franz et al. (2013c) proposed an additional correction factor (CBWE) which has to be 

multiplied with corrected neutron flux to relate the moderation efficiency of water located in 

discrete objects (i.e. tree trunks) to an equivalent layer of water. One method to determine 

CBWE is to model trunk size, distribution and volume of trees in the CRP footprint using a 

neutron interaction model. Alternatively, NS can be treated as a calibration parameter that 

includes the effect of all hydrogen pools and an appropriate value of NS can be estimated from 

measured corrected neutron flux at the time of calibration.  

 

3.2.3 Quantification of surface and sub-surface parameters 

3.2.3.1 CRP calibration with in-situ soil sampling 

Soil samples for calibration of the permanent CRPs were taken with a HUMAX soil corer (Martin 

Burch AG, Rothenburg, Switzerland; dimensions: 300 mm in length, 50 mm in diameter), 

following the COSMOS sampling scheme described earlier. Each soil core was split into six 

segments of 5 cm length and subsequently dried in the oven at 105°C for 48 hours. This resulted 

in 108 samples for which the gravimetric soil water content, dry soil bulk density, and 

volumetric soil water content were determined from the wet and dry weight and the known 

sample volume. Lattice water was determined through combustion of 15 mg aliquots of dried, 

grinded, and 2 mm sieved soil at 1000°C using a heat conductivity detector. Lattice water in the 

present study includes hydrogen from organic and inorganic compounds. Root biomass was not 

considered in this study because measurements of root biomass are difficult to make and 

subject to large uncertainty. In addition, hydrogen of root biomass contributes only to a small 

degree to the total hydrogen pools within a CRP footprint Bogena et al. (2013). Neutron flux was 

averaged over a 12 hour time window at the time of calibration to determine N0, NCOSMIC and NS 

from the sampling results (see Table 7). 
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3.2.3.2 CRP calibration with SoilNet data 

Temporary CRP measurements were made at several locations in the deforested area of the 

Wüstebach catchment (see Figure 12). These temporary CRP measurements were calibrated 

using the mean soil water content determined from SoilNet for each time period and 

measurement location , the mean dry bulk density of the A and B horizon determined from soil 

samples at each SoilNet location (Bogena et al. 2014), and the mean lattice water content 

determined by Bogena et al. (2013) for this catchment (see Table 8). For this, SoilNet data were 

averaged to obtain hourly values. Periods with snow and soil temperatures below 0°C were not 

considered and soil water content measurements with unrealistic values (< 0 cm3 cm-3 or > 1 

cm3 cm-3) were excluded from the analysis. After adding lattice water to the volumetric soil 

water content measured by SoilNet, the mean vertically weighted total soil water content was 

calculated for each SoilNet node using the method described in Bogena et al. (2013). For each 

individual calibration for a particular time period and CRP measurement location, a variogram 

was estimated based on temporally averaged vertically weighted total soil water content at 

each SoilNet node. This variogram served to interpolate soil water content on a grid with 1 m 

resolution using ordinary kriging. The mean total soil water content for the CRP footprint was 

then obtained by averaging 360 interpolated total soil water content values at the three radii 

from the COSMOS sampling scheme (25, 75 and 175 m).  
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3.2.3.3 Quantification of aboveground biomass 

Aboveground biomass was estimated from biomass samples and land use maps at the 

permanent CRP locations. On the 18th and 19th of July 2013, 18 aboveground biomass samples 

were taken at the permanent CRP locations Aachen, Merzenhausen, and Gevenich with a 

clipper size of 20 by 20 cm. This resulted in samples of several different crop types (e.g. winter 

wheat, sugar beet, rape, maize and potato with 30, 9, 4, 3 and 1 sample each, respectively) and 

grassland (7 samples). These samples were weighted and dried individually at 105°C in a 

ventilated oven during 48 hours to determine dry aboveground biomass according to the ASTM 

E-1756 standard. The vegetation water content was estimated from the weight loss after drying. 

Total biomass water equivalent consists of vegetation water as well as hydrogen and oxygen 

present in other molecules within the dry aboveground biomass. Here, we assume that this 

water equivalent in dry aboveground biomass can be approximated by the amount of hydrogen 

and oxygen contained in cellulose (C6H10O5), i.e. ~55.6 % by weight. The aboveground biomass 

samples taken in the cropland and grassland of these three sites are assumed to be 

representative for all grassland and cropland in the Rur catchment. In addition, dry 

aboveground biomass of forest in the Rur catchment was assumed to be 18.4 kg m-2 

(Oehmichen et al. 2011) following average characteristics of coniferous and deciduous forests in 

Germany. We assumed that forest vegetation water content was 56 % (Nurmi 1999). Land use 

fractions within a 300 m radius around the CRP were determined using a 15 m resolution land 

use map obtained from remote sensing data (Waldhoff 2012). In a final step, the mean dry 

aboveground biomass and mean biomass water equivalent of each CRP footprint were 

determined from the biomass water equivalents and dry aboveground biomass for the 

respective land use fractions (Table 6). 

 

At the Wuestebach test site, aboveground forest biomass was determined directly on site by 

Etmann (2009). Vegetation is primarily (97 % by weight) cultivated Norway Spruce (Picea abies 

L.) with an age of ~65 years. Median breast height diameter was 38.0 cm with an average 

density of 370 trees per ha. Extensive field sampling and application of allometric functions 

yielded a dry aboveground forest biomass of 30 kg m-2 (Etmann 2009), which is much higher 
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than the average aboveground biomass of German forests due to the high planting density of 

this Spruce stand. The vegetation water content at the Wuestebach site was found to be 

between 49 % and 67 % of total wet aboveground biomass (Etmann 2009), similar to what was 

found by Nurmi (1999). 

 

For the deforested area at Wuestebach (Figure 12), we assumed that a small amount of 

aboveground biomass remained after deforestation as tree stumps, litter, and remaining or 

emerging vegetation (3 % or AGBdry = 1 kg m-2). The heterogeneous distribution of aboveground 

biomass within the footprints of the temporary CRPs located in the Wuestebach catchment 

(Figure 12) was considered using the radial segment-based weighting scheme described 

previously in Section 3.2.2.2. 

 

3.2.4 Analysis of vegetation impacts on neutron flux 

3.2.4.1 Regression of biomass and fast neutron flux 

From the calibration data set of the permanent CRPs (Table 7), a regression equation between 

site-specific N0 and dry aboveground biomass or biomass water equivalent was established: 

𝑁0 = −𝑟1 × 𝐴𝐺𝐵𝑑𝑟𝑦 + 𝑁0,𝐴𝐺𝐵=0 

𝑁0 = −𝑟2 × 𝐵𝑊𝐸 + 𝑁0,𝐵𝑊𝐸=0 

35 

36 

where r1 in cph per kg dry aboveground biomass per m2 and r2 in cph per kg of biomass water 

equivalent per m2 represent the change in N0 with aboveground biomass AGBdry [kg m-2] or 

biomass water equivalent BWE [kg m-2], and N0,AGB=0 and N0,BWE=0 [cph] is the reference N0 for an 

aboveground biomass and biomass water equivalent of 0 kg m-2.  

 

3.2.4.2 The empirical vegetation correction for neutron flux 

From the ratio 𝑁𝑒𝑝𝑖ℎ  𝑁0⁄  in Eq. 32 we derive the more general relationship 𝑁𝑒𝑝𝑖ℎ 𝑁0⁄ =

𝑁𝑒𝑝𝑖ℎ𝑣 𝑁0,𝐴𝐺𝐵=0⁄  where Nepihv is the fast neutron flux corrected for vegetation (v). In order to 

determine Nepihv directly, we substituted N0 with Eqs. 35 and 36. The new vegetation-corrected 

neutron flux Nepihv is then determined with the vegetation correction factor 𝑓𝑣𝑒𝑔 using: 
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𝑁𝑒𝑝𝑖ℎ𝑣 = 𝑁𝑒𝑝𝑖ℎ × 𝑓𝑣𝑒𝑔 = 𝑁𝑒𝑝𝑖ℎ × (1 − 𝑟1 𝑁0,𝐴𝐺𝐵=0⁄ × 𝐴𝐺𝐵𝑑𝑟𝑦)
−1

  37 

𝑁𝑒𝑝𝑖ℎ𝑣 = 𝑁𝑒𝑝𝑖ℎ × 𝑓𝑣𝑒𝑔 = 𝑁𝑒𝑝𝑖ℎ × (1 − 𝑟2 𝑁0,𝐵𝑊𝐸=0⁄ × 𝐵𝑊𝐸)
−1

  38 

The implementation of the vegetation correction into Eq. 32 yields the relationship between 

neutron flux and total gravimetric soil water content: 

𝜃𝑔𝑟𝑎𝑣 = 𝑎0 × (𝑁𝑒𝑝𝑖ℎ𝑣 𝑁0,𝐴𝐺𝐵=0⁄ − 𝑎1)
−1
− 𝑎2   39 

Eq. 39 represents a direct relationship between gravimetric soil water content, biomass, and 

fast neutron flux that should be valid across a wide range of soils. With knowledge on biomass 

variation in time and space, mean lattice water content, and the single vegetation independent 

calibration parameter N0,AGB=0, it should be possible to determine soil water content directly 

from fast neutron flux. It is important to realize that the relationship between volumetric water 

content and fast neutron flux is more complicated because of the dependence on soil bulk 

density that varies considerably between sites (see Table 7). Therefore, CRP results that 

compare soil water content of more than one site are presented in terms of gravimetric water 

content in the remainder of this study. Results at a single site are presented in volumetric soil 

water content for ease of interpretation by the reader. 

 

3.2.4.3 Evaluation of the proposed vegetation correction 

We evaluated the proposed vegetation correction in four different ways. In the first test case, 

the predictions by Eqs. 35 and 36 were compared with results from the temporary CRP 

measurements at the Wuestebach test site (Figure 12). The measurements were made along a 

steep biomass gradient, which required horizontal weighting to obtain mean aboveground 

biomass in the CRP footprints as described in Section 3.2.3.3. Average soil water content was 

than determined as described in Section 3.2.3.2. Using mean neutron flux and total soil water 

content over the measurement period, N0 was determined using Eq. 32 and compared to the 

predicted N0 from the regression equations (Eqs. 35 and 36). 

 

Secondly, we tested the vegetation correction (Eq. 35) for a case where an abrupt change in 

aboveground biomass occurred (i.e. a deforestation experiment). For this, the permanent 

Wuestebach CRP was calibrated using gravimetric sampling in 2012. The resulting soil water 
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content estimates were already compared to in-situ soil water content measurements from the 

SoilNet by Baatz et al. (2014). After the deforestation, both the measured neutron flux and the 

site-specific N0 are expected to increase due to the removal of hydrogen contained in 

vegetation from the CRP footprint. Therefore, we used the relative change in dry aboveground 

biomass to determine a new site-specific N0 from the previously in-situ determined N0 using Eq. 

35. From Apr. 3rd 2014 to May 27th 2014, daily soil water content estimates derived from CRP 

measurements using the N0 of the 2012 calibration campaign and the vegetation-corrected N0 

were then compared to in-situ soil water content measurements from SoilNet. 

 

In the third case, we compared in-situ SoilNet measurements of soil water content at locations 

with low, intermediate and high biomass with soil water content predictions obtained from CRP 

using efficiency and vegetation-corrected neutron flux measurements and a single N0, AGB=0 (Eq. 

39). The Rollesbroich test site is permanent grassland and represents the low biomass case. The 

Wuestebach test site before deforestation represents the high biomass case. For both sites, 

daily mean soil water content estimates derived from SoilNet and CRP were compared for 2012. 

These two sites were already used by Baatz et al. (2014) for evaluation of the CRP 

measurements. The difference in this study is that the neutron flux is corrected for counting 

efficiency and vegetation, and that a single N0,AGB=0 is used to estimate soil water content (Eq. 

39). For the intermediate biomass case, daily SoilNet data were compared with soil water 

content estimates derived from the permanent CRP measurements at the Wuestebach test site 

after the deforestation for the period from April to May 2014.  

 

In the fourth and final test case, the COSMIC operator and the hmf-method were used. The 

COSMIC operator is much more complex in architecture than the N0-method. The calibration 

parameter of the COSMIC operator NCOSMIC was determined for every CRP station in the Rur 

catchment using neutron flux data with and without a vegetation correction. The standard 

deviation of NCOSMIC was then used to test the efficiency of the vegetation correction in reducing 

variability of the site-specific NCOSMIC parameter. The same was done for the hmf-method, 

keeping in mind that vegetation is considered in the hmf-method (Eq. 33). The NS calibration 

parameter was determined from measured corrected neutron flux with and without the 
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empirical vegetation correction. When calibrating NS using vegetation-corrected neutron flux 

Nepihv, vegetation (C6H12O5 and H2O) was removed from the estimation of the hydrogen molar 

fraction (Eq. 33) because we assume that the vegetation correction also removes the vegetation 

signature in measured neutron flux. 

 

3.3 Results  

3.3.1 Calibration campaigns and vegetation estimates 

Mean soil parameters for the different calibration campaigns are presented in Table 7. Bulk 

density was lowest at the Wuestebach test site (𝜌𝑏𝑑 = 0.83 g cm-3) and highest at the Gevenich 

test site (𝜌𝑏𝑑 = 1.42 g cm-3). Lattice water content ranged from 0.03 cm3 cm-3 to 0.09 cm3 cm-3, 

volumetric water content from 0.12 cm3 cm-3 to 0.56 cm3 cm-3, and gravimetric soil water 

content ranged from 0.12 g g-1 to 0.58 g g-1. 

 

Mean dry aboveground biomass of cropland and grassland were 1.61 kg m-2 and 0.27 kg m-2, 

respectively, whereas the associated mean biomass water equivalent was 4.46 kg m-2 and 0.64 

kg m-2. These mean values compare well with other measurements in the Rur catchment during 

the same time of the year (Korres et al. 2013). After consideration of the land use fractions, the 

mean dry aboveground biomass within the footprint of the 10 CRP stations ranged from 0.2 kg 

m-2 to 30 kg m-2, or between 0.6 kg m-2 and 53.2 kg m-2 in terms of total biomass water 

equivalent (Table 7).  

 

3.3.2 Sensor-specific efficiency correction 

Sensor-specific counting efficiencies for all ten CRPs ranged from 0.90 to 1.19 (Table 7). This 

large variation in counting efficiency indicates a significant sensor-to-sensor variability for the 

CRP probe type used in this study. To test our efficiency correction approach, we compared fast 

neutron flux measurements of the permanent Wuestebach station (lowest counting efficiency) 

with data from a nearby temporary measurement location (<5 m) with a CRP that showed the 

highest counting efficiency. The uncorrected neutron flux measurements of both CRPs show 

considerable differences in magnitude (Figure 13). After application of the efficiency correction, 
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this offset has been removed, which demonstrates the effectiveness of this simple correction 

approach (Figure 13). 

 

 

Figure 13: Parallel neutron flux measurements of the permanent Wuestebach CRP (𝜂𝑟𝑒𝑓 = 0.90) 

and a temporary CRP (𝜂𝑟𝑒𝑓 = 1.19) placed next to the Wuestebach CRP for testing the efficiency 

correction. Hourly raw neutron flux measurements are shown as points. Ten hour running mean 
efficiency corrected neutron flux for both CRPs are shown as lines. 
 

3.3.3 Vegetation correction 

We used data from the sixteen in-situ soil sampling campaigns (Table 7) to determine site-

specific N0-values according to the approach of Baatz et al. (2014). The lowest N0 value was 

found for the permanent CRP at the Wuestebach site (forest, N0 = 848 cph), and the largest 

value was found for the CRP at the Kall site (grassland, N0 = 1277 cph). These N0 values show a 

strong correlation to dry aboveground biomass (R² = 0.87, Figure 14) and biomass water 

equivalent (R² = 0.86). Therefore, we used a linear regression to estimate N0 as function of dry 

aboveground biomass (Eq. 35). We found r1 = 11.2 cph per kg of dry aboveground biomass per 

m2 (i.e. a decrease of N0) and the intersection with the y-axis at 𝑁0,𝐴𝐺𝐵=0 = 1210 cph (i.e. for 0 

kg m-2 aboveground biomass). For BWE, we found r2 = 6.4 cph per kg of BWE per m2 and 

𝑁0,𝐵𝑊𝐸=0 = 1215 cph. For the more generalized form of the vegetation correction or reference 

conditions different than ours (efficiency, pressure, incoming cosmic ray intensity, air humidity 

and cutoff rigidity), we found a neutron flux reduction by 𝑟1 𝑁0,𝐴𝐺𝐵=0⁄ = 0.9 % per kg of dry 
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aboveground biomass or 𝑟2 𝑁0,𝐴𝐺𝐵=0 = 0.5 %⁄  per kg of biomass water equivalent (Eqs. 37 and 

38). 

 

 

Figure 14: Calibration parameter N0 in relation to aboveground biomass for the 16 field 
calibrations from Baatz et al. (2014) with sensor-specific efficiency correction included (dots), 
the regression of N0 to dry aboveground biomass (black line) and 95 % confidence interval, and 
the Wuestebach calibration parameters (triangles). Intercept and slope are 1210 cph and 11.18 
cph per kg of dry aboveground biomass per m2, respectively, R2 = 0.866 and p = 1.702e-07. 
 

3.3.4 Evaluation of biomass correction at the Wuestebach test site 

The temporary CRP measurement locations at the Wuestebach test site (Figure 12) were 

selected to cover a wide range of dry aboveground biomass. The aboveground biomass for 

every 5 meter segments for each of the thirteen temporary CRP locations is shown in Figure 15. 

It can be seen that CRPs located in the center of the deforested area showed low aboveground 

biomass at small distances to the CRP station, but biomass progressively increased with 

increasing distance. Even CRP stations located in the center of the deforested area were only 
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200 m away from the large amount of aboveground biomass in the nearby forest. CRP stations 

located in the forest show a decreasing aboveground biomass with increasing radius to the CRP. 

Weighted biomass of those stations is relatively high with AGBdry ≥ 20.8 kg m-2. After applying 

the horizontal weighting function (also see Figure 15) to these biomass distributions, we 

obtained weighted mean dry aboveground biomass ranging from 7.7 kg m-2 to 29.1 kg m-2 for 

the temporary CRP stations.  

 

 

Figure 15: Aboveground biomass estimates for radial segments of the temporary CRPs at 
Wuestebach using the horizontal weighting scheme of Bogena et al. (2013) with 5 meter steps. 
The dashed line shows the cumulative contribution of the segments to a total of 1. 
 

As expected, measured neutron flux (Nepih) was lowest in the forested part of the Wuestebach 

catchment (367 cph), and highest in the deforested area (464 cph) during the calibration period 

of the temporary CRP measurements. Mean total volumetric soil water content for calibration 

of the temporary CRPs ranged from 0.39 to 0.65 cm3 cm-3, and total gravimetric soil water 

content ranged between 0.44 and 0.82 g g-1. The derived N0 for the temporary CRP 

measurements decreased from 1129 cph for the deforested area to 840 cph for the forested 
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area (Figure 12). The evaluation data confirm the clear trend of a reduction in N0 with increasing 

aboveground biomass and were close to the regression line derived from the soil sampling 

calibration data set (Root Mean Squared Error (RMSE) = 47 cph). Overall, these measurements 

strongly support the relationship between N0 and dry aboveground biomass that was presented 

earlier. 

  

3.3.5 Evaluation of vegetation correction in case of an abrupt change in biomass 

The second evaluation of the vegetation correction uses data from the Wuestebach test site 

under forested (in 2012) and deforested (in 2014) conditions. The Wuestebach CRP was 

calibrated in 2012 with in-situ soil samples (Table 7) and we found N0 = 848 cph and an RMSE of 

0.03 cm3 cm-3 between soil water content estimates from CRP and SoilNet. After the 

deforestation, the corrected neutron flux (Nepih) showed a strong increase (Figure 16), as 

expected from the decrease in biomass. Soil water content estimates with the previously 

obtained N0 resulted in an underestimation of soil water content in 2014 and a high offset 

(RMSE = 0.29 cm3 cm-3). Using the previously derived vegetation correction, we found a new N0 

= 1037 cph for a vegetation reduction from 30 to 13.1 kg m-2. The accuracy of the soil water 

content estimates using the corrected N0 was close to the accuracy achieved in 2012 before 

deforestation (RMSE = 0.03 cm3 cm-3). 
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Figure 16: Measured corrected neutron flux (Nepih) from the Wuestebach CRP, hourly (gray dots) 
and daily averaged (dashed). The lower panel shows daily volumetric soil water content 
estimated with the calibrated site-specific N0 (blue) and with the N0 estimated from the 
vegetation correction function (red) under deforested conditions. The black line represents 
horizontally and vertically weighted soil water content measured with SoilNet. Gray shaded 
areas indicate periods with snow. 
 

3.3.6 Evaluation of vegetation-corrected neutron flux Nepihv at multiple sites 

The third evaluation of the vegetation correction compares soil water content derived with 

efficiency and vegetation-corrected neutron flux (Nepihv) and a single 𝑁0,𝐴𝐺𝐵=0 = 1210 cph for 

three sites with different aboveground biomass to independent SoilNet measurements. The 
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estimated dry aboveground biomass at Rollesbroich was AGBdry = 0.25 kg m-2. At Wuestebach, 

dry aboveground biomass was estimated to be 30 kg m-2 before deforestation and 13.1 kg m-2 

after deforestation. Hence, the vegetation correction (Eq. 37) was highest for the CRP station 

located in the forest of the Wuestebach catchment (fveg = 1.38), intermediate for the CRP station 

located in the deforested area (fveg = 1.14) and lowest for the grassland test site Rollesbroich 

(fveg = 1.002). Figure 17 summarizes the three independent daily averaged time series of total 

gravimetric soil water content generated from horizontally and vertically weighted SoilNet 

measurements and fast neutron flux measurements from the permanent CRPs with (Nepihv) and 

without correction (Nepih). The gray markers indicate neutron flux measurements without 

vegetation correction. The vegetation correction shifted the count rates observed at all sites 

towards the previously derived calibration curve for N0,AGB=0 = 1210 cph by the factor fveg. 

Ideally, all measurements should fall together on the single calibration curve. Indeed, the fully 

corrected neutron flux data are closely grouped and coincide with the neutron flux – soil water 

content conversion derived earlier for the Rur catchment (Eq. 39, 𝑁0,𝐴𝐺𝐵=0 = 1210 cph). 

Overall, the RMSE between gravimetric soil water content determined from CRP measurements 

and the reference gravimetric soil water content derived using SoilNet was 0.076 g g-1. In terms 

of volumetric soil water content, the RMSE was 0.066 cm3 cm-3. 
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Figure 17: Daily average measured total gravimetric water content by SoilNet, not vegetation 
corrected (gray, Nepih) and vegetation corrected neutron flux (black, Nepihv) at the permanent 
CRP locations Rollesbroich and Wuestebach in 2012 and 2014. The black line represents the 
calibration curve with N0,AGB=0 = 1210 cph to estimate soil water content from vegetation 
corrected neutron flux. 
 

3.3.7 Indirect evaluation of the vegetation correction 

In a fourth indirect evaluation of our method, we compared the standard deviation of the 

COSMIC calibration parameter NCOSMIC for calibrations with and without vegetation-corrected 

neutron flux. The standard deviation of NCOSMIC for the case without vegetation correction was 

20 cph with a mean NCOSMIC of 187 cph. For this case, NCOSMIC showed a strong correlation with 

dry aboveground biomass and biomass water equivalent (R2 = 0.80, Figure 18). If vegetation-

corrected neutron flux Nepihv was used for COSMIC calibration, the resulting NCOSMIC calibration 

parameters had a reduced standard deviation of 9 cph and a mean NCOSMIC = 206 cph. 

Furthermore, correlation of NCOSMIC with aboveground biomass was strongly reduced (R2 = 0.01). 

Our findings agree with Shuttleworth et al. (2013), who suggested that a large part of the 

NCOSMIC variability amongst different sites may be explained by variation in aboveground 

biomass amongst calibration sites. 
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Figure 18: The COSMIC calibration parameter NCOSMIC without (Nepih, σ = 20 cph) and with 
vegetation corrected neutron flux (Nepihv, σ = 9 cph). 
 

We also tested the hydrogen molar fraction method (hmf-method) (Franz et al. 2013a) with the 

complete calibration data set. After correction for sensor specific counting efficiency, the 

calibration parameter NS was determined with Nepih (Table 7 and Table 8) for the parameters in 

Eq. 34 introduced by Franz et al. [2013b] and McJannet et al. [2014]. As in an earlier study made 

in the Rur catchment (Baatz et al. 2014), we found that the calibration parameter NS correlated 

with aboveground biomass with R2 = 0.92 and R2 = 0.89 for the parameterizations of Franz et al. 

(2013a) and McJannet et al. (2014), respectively. The standard deviation of NS was 64 cph and 

44 cph, respectively. This strong correlation confirms that an additional hmf-specific correction 

factor (CBWE) is required by the hmf-method (Franz et al. 2013c). After application of the 

vegetation correction (Eq. 39) to neutron flux, the standard deviation of NS decreased to 21 cph 



Chapter 3. Development of an empirical vegetation correction 77 
 

 

and 17 cph for both parameterizations, respectively. The newly calculated hydrogen molar 

fraction without vegetation was then able to explain the variation of fast neutron flux at each 

location for both parameterizations to a satisfactory degree with R2 = 0.91 and R2 = 0.86, 

respectively. These results indicate that the empirical vegetation correction method is also able 

to enhance the hmf-method. 

 

3.3.8 Sensitivity of fast neutron flux to aboveground biomass 

Using the relationship between soil water content and vegetation-corrected neutron flux (Eq. 

39), a sensitivity analysis was conducted to determine how soil water content predictions (Eq. 

32) are affected by aboveground biomass. Figure 19 presents the calibration functions for four 

different amounts of dry aboveground biomass (0 kg m-2, 1.5 kg m-2, 15 kg m-2, and 30 kg m-2). 

The curves deviate from the reference calibration curve 𝑁0,𝐴𝐺𝐵=0 = 1210 cph due to enhanced 

neutron moderation by additional hydrogen contained in the vegetation (Eq. 39). Soil water 

content estimates from CRP measurements are more affected by vegetation if soil water 

content is high, as illustrated by the triangles in Figure 19. For example, suppose that a CRP was 

calibrated at point A with 𝜃𝑔𝑟𝑎𝑣 = 0.14 g g-1 and neutron flux equaled 833 cph. We assume an 

increase in dry aboveground biomass from 0 to 15 kg m-2 (surely an extreme case). If the next 

neutron flux measured would be 718 cph, neglecting the change in aboveground biomass would 

result in a wrong soil water content estimate of 𝜃𝑔𝑟𝑎𝑣 = 0.25 g g-1, at point C. Instead the true 

soil water content is much lower 𝜃𝑔𝑟𝑎𝑣 = 0.14 g g-1. Repeating this experiment for higher soil 

water content would increase this offset. In many agricultural sites, much smaller changes in 

aboveground biomass are expected (e.g. up to 1.5 kg m-2) due to growing crops. Using the 

calibration functions of AGBdry = 0 kg m-2 and AGBdry = 1.5 kg m-2 in Figure 19, it is possible to 

estimate the error introduced by neglecting this change in agricultural biomass. For low 

gravimetric soil water content of 0.1 g g-1, the error is small with 0.006 g g-1. For higher soil 

water content, the error increases to e.g. 0.025 g g-1 for a soil water content of 0.4 g g-1. 
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Figure 19: Sensitivity analysis of neutron flux soil water content calibration function (Eq. 29) for 
four cases of aboveground biomass. The four cases were calculated assuming N0,AGB=0 = 1210 
cph and the proposed neutron flux correction (Eq. 37). Applying the vegetation correction on 
measured fast neutron flux shifts the dashed and dotted to the solid line. As a result, the single 
extended N0-method (Eq. 39) could be used for soil water content estimation. If transient 
vegetation is not considered, the triangles illustrate how this will increasingly impact soil water 
content estimates from neutron flux with increasing soil water content.  
 

3.4 Discussion 

The major advance in this study is the representation of neutron flux variability by a single 

relationship between soil water content and vegetation-corrected neutron flux. In particular, 

our measurements are well described by a single N0,AGB=0 calibration function that explains 95 % 

of the observed vegetation-corrected neutron flux variability by soil water content variation for 

all sites analyzed in the Rur catchment (Figure 20). The remaining 5 % unexplained variability 

may be related to inter-annual changes in biomass, vegetation water content, the uncertainty of 

the empirical parameters in the vegetation correction, as well as uncertainties in the soil water 
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content and biomass estimation. In addition, strong spatial clustering of biomass in the CRP 

footprint might affect the relationship between CRP measurements and biomass (Franz et al. 

2013c). Finally, root zone biomass has not been considered in our study. In forest systems this 

hydrogen pool is temporally stable and of less significance (Bogena et al. 2013). For agricultural 

sites, root biomass is temporally dynamic, which might lead to additional uncertainties 

associated with the transferability of the vegetation correction from one site to another. If 

neutron flux is not corrected for aboveground biomass, only 76 % of the fast neutron flux 

variability can be explained by variations in gravimetric soil water content (Figure 21). 
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Figure 20: Neutron flux without vegetation correction (Nepih, R2 = 0.75) and a fitted calibration 
function (gray), and neutron flux with vegetation correction (Nepihv, R

2 = 0.95) together with the 
extended calibration function N0,AGB=0 = 1210 cph plotted jointly for the 16 calibration 
measurements in the Rur catchment and the 13 evaluation measurements at the Wuestebach 
test site. 
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Figure 21: Uncertainty in neutron flux assuming an uncertainty of ± 50 % AGBdry and N0,AGB=0 = 
1210 cph. The upper two panels, show resulting measured fast neutron flux Nepih for different 
biomass values, the lower panel shows the uncertainty of vegetation corrected neutron flux at 
the times of calibration based on biomass uncertainty. 
 

In order to assess how uncertainty in the biomass estimates affects soil water content 

predictions, we assumed that the accuracy of the dry aboveground biomass estimate is 50 % 

(Figure 21). This is a realistic value for low biomass and a rather high value for high biomass. The 

resulting uncertainty in uncorrected neutron flux is shown for four cases of aboveground 

biomass in Figure 21 (top panel). For low biomass, the uncertainty is minor, but for large 

biomass the uncertainty is up to ± 50 neutron counts (10 kg m-2) and ± 100 neutron counts (30 

kg m-2). We propagated this uncertainty using the vegetation correction on neutron flux into our 
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sets of calibration data (as in Table 7 and Table 8). The resulting uncertainty is shown as error 

bars in Figure 21. Particularly for conditions with high amounts of biomass, the error bars are 

large. This illustrates that a substantial part of the deviation from the N0,AGB=0 calibration curve is 

possibly explained by the uncertainty in the biomass estimates. 

 

It should be noted that hydrogen is the most important neutron moderator contained in 

vegetation. This highlights the relevance of vegetation water content for fast neutron 

moderation. Especially plants with high or variable vegetation water content (e.g. maize) 

require consideration of total hydrogen content. In such cases, vegetation correction should be 

based on BWE instead of AGBdry. 

 

The obtained results in the evaluation of the proposed correction confirm that reasonable soil 

water content estimates can be obtained using the empirically derived vegetation correction. 

Because of the additional uncertainty involved in the estimation of lattice water and bulk 

density, we found that site-specific calibration approaches provide more accurate volumetric 

soil water content estimates than e.g. regional and global calibration functions (see also Franz et 

al. 2013a). As shown in other studies (e.g. Franz et al. 2013c), a combined approach of site-

specific calibration and a vegetation correction for changing biomass appears to be the optimal 

approach for soil water content retrieval using CRPs. In future work, remote sensing of 

vegetation (e.g. Butterfield and Malmstrom 2009; Jackson et al. 2004) could be a viable tool to 

account for transient vegetation states and to complement soil water content retrieval with 

CRPs (e.g. Coopersmith et al. 2014).  

 

Another approach to correct fast neutron intensity for aboveground biomass was presented by 

Hawdon et al. (2014). In contrast to the findings in this study, Hawdon et al. (2014) suggested a 

non-linear relationship with an asymptotic behaviour towards intermediate wet aboveground 

biomass. However, our data set shows no asymptotic behaviour for high amounts of biomass. 

Indeed, the relationship between fast neutron flux and dry aboveground biomass could be 

weakly non-linear, particularly for small amounts of biomass. Given the current data set, we 

nevertheless believe that the assumption of linearity is the most conservative one. In addition, 
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the linear model provided a satisfactory fit to the evaluation data and required only few fitting 

parameters. Similar to the linear correction for absolute water vapor in air developed by 

Rosolem et al. (2013), our data set does not indicate a remarkable change in the shape of the 

N0-calibration function even for high amounts of aboveground biomass. 

 

The correction of neutron flux for aboveground biomass derived in this study relies heavily on 

data from forest ecosystems in humid climatic conditions. Future work should investigate 

whether the derived relationship is also valid for other forest types (e.g. with significant 

undergrowth). This may not be the case because of the known effects of the geometrical 

distribution of biomass on measured neutron flux (Franz et al. 2013c). It seems tempting to also 

consider the empirical vegetation correction for correcting soil water content measurements at 

agricultural fields with fast changing biomass during the crop growth season. However, the 

derived vegetation correction has not been evaluated yet for its ability to correct for dynamical 

changes in agricultural biomass. Since the expected range of dynamical change in agricultural 

biomass is much lower than the range of biomass used to derive the vegetation correction, it 

has to be used with caution in this case. Furthermore, given the apparent discrepancies 

between our data and those of Hawdon et al. (2014), and with respect to the effect of small 

amounts of biomass (< 5 kg m-2 AGBdry) on measured neutron flux, more research is required to 

address uncertainties associated with soil water content monitoring with CRP in agricultural 

fields. Finally, the obtained empirical relationship between the amount of aboveground biomass 

and N0 should be tested for other regions of the world. This was not possible in the context of 

this study because cut-off rigidities and sensor-specific counting efficiencies for installed CRPs at 

other locations (e.g., within the COSMOS network in North America) were not available. 

 

3.5 Conclusions 

We presented a new correction method that extends the capabilities of the N0-method, the 

COSMIC operator and the hmf-method to estimate soil water content from fast neutron flux to 

sites and areas with strong spatial variation in aboveground biomass. In addition, we present a 

simple approach to account for sensor-specific counting efficiencies amongst multiple CRPs. The 

vegetation correction was developed using an extensive data set from a network of ten CRPs 
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located in the Rur catchment, Germany. An evaluation was performed using additional CRP 

measurements, the COSMIC operator, and the hmf-method. The vegetation correction is 

applicable for either biomass water equivalent (BWE) or dry aboveground biomass (AGBdry). 

 

Overall, there are four main conclusions that could be drawn from this study. First, the variation 

in sensor-specific counting efficiency was higher than 10% amongst our 11 CRPs which is the 

same order of magnitude as the water vapor correction in humid climates (Rosolem et al. 2013). 

Without correction of this variable counting efficiency, the subsequent analysis of the effect of 

aboveground biomass on the fast neutron flux measurements would not have provided 

meaningful results. Second, a linear correlation was found between the calibration parameter 

N0 and dry aboveground biomass or biomass water equivalent, which was successfully used to 

develop a vegetation correction for fast neutron flux measurements. Third, the reduction in fast 

neutron flux was quantified to be 0.9 % per kg dry aboveground biomass per m2 or 0.5 % per kg 

of biomass water equivalent per m2 independent of the chosen reference conditions. Finally, 

our results indicate that the N0-method, the COSMIC operator and the hmf-method work 

similarly well for the Rur catchment with the empirical vegetation correction. It is desirable to 

extend the results of this study to other CRP networks (e.g. COSMOS) but this would require an 

accurate assessment of counting efficiency of each CRP. 
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*adapted from: Baatz, R., Hendricks Franssen, H.-J., Han, X., Hoar, T., Bogena, H. and Vereecken, H. 
(2016). Evaluating the value of a network of cosmic-ray probes for improving land surface modeling. 
Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-432. 

4 Assimilation of cosmic-ray soil moisture measurements into a land surface 

model* 

 

4.1 Introduction 

Soil water content (SWC) is a key variable of land surface hydrology and has a strong control on 

the partitioning of net radiation between latent and sensible heat flux. Knowledge of SWC is 

relevant for the assessment of plant water stress and agricultural production, as well as runoff 

generation as a response to precipitation events (Robinson et al. 2008a; Vereecken et al. 2008). 

In atmospheric circulation models, SWC is important as a lower boundary condition and is 

calculated as a state variable in land surface models. Coupling of atmospheric circulation models 

and land surface models allows quantifying the role of soil moisture on atmospheric processes 

such as soil moisture-precipitation feedbacks (Eltahir 1998; Koster et al. 2004) and summer 

climate variability and drought (Bell et al. 2015; Oglesby and Erickson 1989; Seneviratne et al. 

2006; Sheffield and Wood 2008). It is therefore important to improve the modelling and 

prediction of SWC, but this is hampered by model deficiencies and lack of high quality data 

(Vereecken et al. 2016). Soil moisture measured by space-born remote sensing technologies 

provides information over large areas (e.g. Temimi et al. 2014). However, space-born remote 

sensing supplies only information on the upper few centimeters, and data are not reliable for 

areas with dense vegetation. Therefore, in this paper an alternative source for soil moisture 

information is explored. Cosmic-ray probes (CRPs) measure fast neutron intensity which allows 

estimating SWC at an intermediate scale (Cosh et al. 2016; Desilets et al. 2010; Lv et al. 2014; 

Zreda et al. 2008) which is closer to the desired application scale of land surface models (Ajami 

et al. 2014; Chen et al. 2007; Shrestha et al. 2014). Fast neutrons originate from moderation of 

secondary cosmic particles from outer space by terrestrial atoms. These particles are mainly fast 

neutrons, which are moderated most effectively by hydrogen because of the similar atomic 

mass. Therefore, the corresponding neutron intensity measured by CRPs strongly depends on 

the amount of hydrogen within the CRP footprint, allowing for a continuous non-invasive soil 

moisture estimate over an area of ~15 ha (Kohli et al. 2015). The spatial extend of this 

measurement is desirable as it matches with the desired grid cell size of a 
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land surface model (Crow et al. 2012) and small scale heterogeneities are averaged over a larger 

area (Desilets and Zreda 2013; Franz et al. 2013b). Vertical measurement depth ranges from a 

maximum of ~70 cm under completely dry conditions and decreases to roughly ~12 cm under 

wet conditions (e.g. 40 vol. % soil moisture) (Bogena et al. 2013). Worldwide several CRP 

networks exist, like the North American COSMOS network (Zreda et al. 2012), the German CRP 

network (Baatz et al. 2014) installed in the context of the TERENO infrastructure measure 

(Zacharias et al. 2011) and the Australian COSMoZ network (Hawdon et al. 2014). 

 

Soil moisture data assimilation provides a way to improve imperfect land surface model 

predictions with measured soil moisture data by merging model predictions and data, and can 

consider the uncertainty of initial conditions, model parameters and model forcings. Ensemble 

Kalman Filtering (EnKF) is one of the most commonly applied data assimilation methods 

(Burgers et al. 1998; Evensen 1994). Soil moisture data assimilation has been the subject of 

intensive study for more than a decade now. An early contribution was provided by Houser et 

al. (1998) who assimilated remotely sensed soil moisture observations from a microwave 

radiometer into a land atmosphere transfer scheme using four-dimensional variational data 

assimilation. Rhodin et al. (1999) assimilated soil moisture data for a four-day period in order to 

obtain an improved characterization of the lower boundary condition for an atmospheric 

circulation model. They also used a variational data assimilation approach. More recently, the 

Ensemble Kalman Filter (Crow 2003; Dunne and Entekhabi 2005; Reichle et al. 2002a), the 

Extended Kalman Filter (Draper et al. 2009; Reichle et al. 2002b), four-dimensional variational 

methods (Hurkmans et al. 2006) and the Local Ensemble Transform Kalman Filter (Han et al. 

2015; Han et al. 2013) were applied for updating soil moisture states in land surface models. 

Reichle et al. (2002a) performed a synthetic experiment using L-band microwave observations 

of the Southern Great Plains Hydrology Experiment (Jackson et al. 1999) to analyze the effect of 

ensemble size and prediction error. Dunne and Entekhabi (2005) showed that an Ensemble 

Kalman Smoother approach, where data from multiple time steps was assimilated to update 

current and past states, can yield a reduced prediction error compared to a pure filtering 

approach.  
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More recent work addressed joint state-parameter estimation in hydrologic land surface models 

with data assimilation methods. Joint state-parameter estimation with EnKF is possible by an 

augmented state vector approach (Chen and Zhang 2006), a dual approach (Moradkhani et al. 

2005b) or an approach with an additional external optimization loop (Vrugt et al. 2005). 

Pauwels et al. (2009) optimized soil hydraulic parameters of a land surface model with synthetic 

aperture radar data. Lee (2014) used Synthetic Aperture Radar soil moisture data to estimate 

soil hydraulic properties at the Tibetan plateau using the EnKF and a Soil Vegetation 

Atmosphere Transfer model. Bateni and Entekhabi (2012) assimilated land surface temperature 

with an Ensemble Kalman Smoother and achieved a better estimate of the partitioning of 

energy between sensible and latent heat fluxes. (Han et al. 2014) updated soil hydraulic 

parameters of the Community Land Model (CLM) by assimilation of synthetic brightness 

temperature data with the Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al. 2007). 

Shi et al. (2014) used the Ensemble Kalman Filter for a synthetic multivariate data assimilation 

problem with a land surface model and then applied it to real data (Shi et al. 2015). The cases 

illustrated a way to use real world data for estimating several parameters in hydrologic land 

models. (Kurtz et al. 2016) developed a particular CPU-efficient data assimilation framework for 

the coupled land surface-subsurface model TerrSysMP (Shrestha et al. 2014). They successfully 

updated 2 × 107 states and parameters in a synthetic experiment. Whereas these studies were 

made with land surface models, also in soil hydrological applications recently data assimilation 

was used to estimate soil hydraulic parameters. Early work was by Wu and Margulis (2011, 

2013) in the context of real-time control of waste water reuse in irrigation. Erdal et al. (2014) 

investigated the role of bias in the conceptual soil model and explored bias aware EnKF as a way 

to deal with it. Erdal et al. (2015) focused on handling of strong non-Gaussianity of the state 

variable in EnKF under very dry conditions. Montzka et al. (2011; 2013) explored the role of the 

particle filter for handling non-Gaussianity in soil hydrology data assimilation. They showed that 

the ability of a data assimilation system to correct the soil moisture state and estimate hydraulic 

parameters strongly depends on the nonlinear character of the soil moisture retention 

characteristic. Song et al. (2014) worked on a modified iterative filter to handle the non-linearity 

and non-Gaussianity of data assimilation for the vadose zone. For a further literature review on 
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data assimilation in the context of hydrological and land surface models we refer to Reichle 

(2008) and Montzka et al. (2012).  

 

Shuttleworth et al. (2013) developed the Cosmic Ray Soil Moisture Interaction Code (COSMIC), 

which is a forward operator to be applied for assimilating neutron intensity observations from 

CRPs. The COSMIC code was evaluated for several sites (Baatz et al. 2014; Rosolem et al. 2014). 

Its capability to propagate surface soil moisture information into the deeper soil column was 

analyzed by Rosolem et al. (2014). The COSMIC operator was successfully implemented in the 

Data Assimilation Research Testbed (Rosolem et al. 2014) to allow for state updating by the 

Ensemble Adjustment Kalman Filter (Anderson 2001). The COSMIC operator was implemented 

in a python interface that couples the land surface model CLM and the LETKF for joint state 

parameter updating (Han et al. 2015). Neutron counts measured by CRP have been used in data 

assimilation studies to update model states (Han et al. 2015; Rosolem et al. 2014). Soil hydraulic 

parameters were also updated by assimilation of neutron counts (Han et al. 2016), but only for a 

synthetic study which showed its feasibility. CRPs were also used for inverse estimation of soil 

hydraulic parameters of the Hydrus-1D model (Villarreyes et al. 2014). 

 

This work further explores the value of measured neutron intensity by CRPs to improve 

modelling of terrestrial systems at the catchment scale (Simmer et al. 2015) using a land surface 

model. Compared to existing work the main novelties are: 

(i) Data from a network of nine CRPs were assimilated in the Community Land Model version 4.5 

(CLM) with an evaluation of the information gain by this assimilation at the larger catchment 

scale. Until now evaluations with CRPs were made for a single location, but not for a complete 

network of CRPs. It is a very important question whether CRPs can also improve the soil 

moisture characterization at the larger catchment scale and how dense the CRP network should 

be. The high variability of soil moisture at a short distance could potentially limit the CRP 

measurement value and make updating of soil moisture contents further away from the sensor 

meaningless. On the other hand, soil maps and atmospheric forcings show spatial correlations 

over larger distances which suggests that CRP measurements potentially carry important 

information to update soil moisture contents for larger regions. If it is found that CRP networks 
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with a density like in this study (10 stations per 2354 km2) can improve soil moisture content 

characterization at the larger catchment scale, this is of high relevance and importance for 

agricultural applications, flood prediction and protection, and regional weather prediction 

(Koster et al. 2004; Seneviratne et al. 2010; Whan et al. 2015). The main research question 

addressed in this paper is therefore whether a CRP network of the density in this study can 

improve large scale soil moisture characterization by state and parameter updates. 

(ii) Soil hydraulic parameters were updated together with the soil moisture states in a real-world 

case study at the larger catchment scale. The study in this paper also allows some evaluation of 

the feasibility of the updated large scale soil hydraulic parameters.  

 

In the following paragraphs are presented the model site and the measurements (4.2.1), the 

Community land Model and its parameterization (4.2.2), the COMIC forward model (4.2.3) and 

the data assimilation procedure (4.2.4). 

 

4.2 Materials and methods 

4.2.1 Site description and measurements 

The model domain, the Rur catchment (2354 km2), is situated in western Germany and 

illustrated in Figure 3. Most prominent vegetation types are agricultural land use (mainly in the 

North), grassland, and coniferous and deciduous forest. The altitude varies between 15 m a.s.l. 

in the flat northern part and 690 m a.s.l. in the hilly southern part. Precipitation, 

evapotranspiration and land use follow the topography. Annual precipitation ranges between 

less than 600 mm in the North to 1200 mm in the hilly South (Montzka et al. 2008). Annual 

potential evapotranspiration varies between 500 mm in the South and 700 mm in the North 

(Bogena et al. 2005). The Rur catchment CRP network comprises nine CRPs (CRS1000, 

HydroInnova LLC, 2009) which were installed in 2011 and 2012 (Baatz et al. 2014). Climate and 

soil texture of the CRP sites can be found in Table 9. The CRPs were calibrated in the field using 

gravimetric soil samples. At each site, 18 soil samples were taken along three circles with 

distances of 25, 75 and 175 meters from the CRP, six samples evenly distributed along each 

circle. Each sample was extracted with a 50.8 x 300 mm round HUMAX soil corer (Martin Burch 

AG, Switzerland). The samples were split into 6 sub-samples with 5 cm length each and oven 
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dried at 105 °C for 48 hours to measure dry soil bulk density and soil moisture. Lattice water 

was determined for each site using a heat conductivity detector. Soil bulk density, soil moisture, 

lattice water and 12 hour averaged measured neutron intensity were used to determine 

calibration parameters specific for each CRP and the COSMIC operator. 

 

Table 9: Site information on elevation (m.a.s.l.), average annual precipitation (mm/year), CLM 

plant functional type, sand content (%), clay content (%), and the date of the first SWC retrieval 

assimilated. 

Name m.a.s.l. Precip. Plant functional type Sand Clay Date of first assimilation 

Aachen 232 952 Crops 22 23 13.01.2012 

Gevenich 108 884 Crops 22 20 07.07.2011 

Heinsberg 57 814 Crops 18 19 09.09.2011 

Kall 504 935 C3 non arctic grass 20 22 15.09.2011 

Merzenhausen 94 825 Crops 21 22 19.05.2011 

Rollesbroich 515 1307 C3 non arctic grass 22 23 19.05.2011 

RurAue 102 743 C3 non arctic grass 19 26 08.11.2011 

Wildenrath 76 856 Broadleaf deciduous 

temperate tree 

65 12 07.05.2012 

Wuestebach 605 1401 Needleleaf evergreen 

temperate tree 

19 23 20.03.2011 

 

4.2.2 Community land model and parameterization 

The Community Land Model version 4.5 (CLM) was the land surface model of choice for 

simulating water and energy exchange between the land surface and the atmosphere (Oleson et 

al. 2013). Some of the key processes which are solved by CLM are radiative transfer in the 

canopy space, interception of precipitation by the vegetation and evaporation from intercepted 

water, water uptake by vegetation and transpiration, soil evaporation, photosynthesis, as well 

as water and energy flow in the subsurface. SWC in CLM is influenced by precipitation, 

infiltration into the soil, water uptake by vegetation, surface evaporation and surface and 

subsurface runoff. Oleson et al. (2013) provide further details on CLM4.5. To limit the scope and 

complexity of this study, CLM was run using satellite phenology, e.g. prescribed leaf area index 

data and the biogeochemical module turned off. 
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The spatial domain is discretized by rectangular grid cells by CLM. Each grid cell may have 

several types of land cover: Lake, urban, vegetated, wetland, and glacier. The vegetated part of 

the grid cell can be covered by several plant functional types which are all linked to a single soil 

column. The soil column is vertically discretized by ten soil layers and five bedrock layers. Layer 

thickness increases exponentially from 0.007 m at the surface to 2.86 m for layer 10. Vertical 

water flow in soils is modelled by the 1D Richards equation. Soil hydraulic parameters are 

determined from sand and clay content using pedotransfer functions for the mineral soil 

fraction (Clapp and Hornberger 1978; Cosby et al. 1984), and organic matter content for the 

organic soil fraction (Lawrence and Slater 2008).  

 

The following equations describe how soil texture and organic matter define the soil hydraulic 

properties in CLM such as porosity, hydraulic conductivity, the empirical exponent B and soil 

matric potential. Hydraulic conductivity (𝑘[𝑧] in mm/s) at the depth z between two layers (i and 

i+1) is a function of soil moisture (𝜃 in m3/m3 in layers i and i+1), saturated hydraulic 

conductivity (𝑘𝑠𝑎𝑡 in mm/s at z), saturated soil moisture (𝜃𝑠𝑎𝑡 in m3/m3) and the empirical 

exponent B:  

𝑘[𝑧] =

{
 

 𝜙𝑖𝑐𝑒𝑘𝑠𝑎𝑡,𝑧 [
0.5(𝜃𝑖+𝜃𝑖+1)

0.5(𝜃𝑠𝑎𝑡,𝑖+𝜃𝑠𝑎𝑡,𝑖+1)
]
2𝐵𝑖+3

               1 ≤ 𝑖 ≤ 𝑁𝑙𝑒𝑣𝑠𝑜𝑖 − 1

𝜙𝑖𝑐𝑒𝑘𝑠𝑎𝑡,𝑧 (
𝜃𝑖

𝜃𝑠𝑎𝑡,𝑖
)
2𝐵𝑖+3

                                                           𝑖 = 𝑁𝑙𝑒𝑣𝑠𝑜𝑖

    

}
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where 𝜙𝑖𝑐𝑒 is the ice impedance factor. The ice impedance factor was implemented to simplify 

an increased tortuosity of water flow in a partly frozen pore space. It is calculated with 

𝜙𝑖𝑐𝑒 = 10−Ω𝐹𝑖𝑐𝑒 using the resistance factor Ω = 6 and the frozen fraction of soil porosity 

𝐹𝑖𝑐𝑒 = 𝜃𝑖𝑐𝑒 𝜃𝑠𝑎𝑡,𝑖⁄ . Soil hydraulic properties are calculated separately for the mineral (min) and 

organic matter (om) soil components. Total porosity 𝜃𝑠𝑎𝑡,𝑖 is calculated using the fraction of 

organic matter (𝑓𝑜𝑚,𝑖) with:  

𝜃𝑠𝑎𝑡,𝑖 = (1 − 𝑓𝑜𝑚,𝑖)𝜃𝑠𝑎𝑡,𝑚𝑖𝑛,𝑖 + 𝑓𝑜𝑚,𝑖𝜃𝑠𝑎𝑡,𝑜𝑚  41 

where the organic matter porosity is 𝜃𝑠𝑎𝑡,𝑜𝑚 = 0.9 and sand content in % determines the 

mineral soil porosity 𝜃𝑠𝑎𝑡,𝑚𝑖𝑛 as:  

𝜃𝑠𝑎𝑡,𝑚𝑖𝑛 = 0.489 − 0.00126 ×%𝑠𝑎𝑛𝑑  42 

Analogous, the exponent B is calculated with 
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𝐵𝑖 = (1 − 𝑓𝑜𝑚,𝑖)𝐵𝑚𝑖𝑛,𝑖 + 𝑓𝑜𝑚,𝑖𝐵𝑜𝑚  43 

Where 𝐵𝑜𝑚 = 2.7 is the organic exponent and the mineral exponent 𝐵𝑚𝑖𝑛,𝑖 is determined by 

clay content in % with:  

𝐵𝑚𝑖𝑛,𝑖 = 2.91 + 0.159 ×%𝑐𝑙𝑎𝑦  44 

Saturated hydraulic conductivity is calculated for a connected and an unconnected fraction of 

the grid cell with:  

𝑘𝑠𝑎𝑡[𝑧𝑖] = (1 − 𝑓𝑝𝑒𝑟𝑐)𝑘𝑠𝑎𝑡,𝑢𝑛𝑐𝑜𝑛[𝑧𝑖] + 𝑓𝑝𝑒𝑟𝑐,𝑖𝑘𝑠𝑎𝑡,𝑜𝑚[𝑧𝑖]  45 

where 𝑓𝑝𝑒𝑟𝑐,𝑖 is the fraction of a grid cell where water flows with saturated hydraulic 

conductivity of the organic matter (𝑘𝑠𝑎𝑡,𝑜𝑚[𝑧𝑖] in mm/s) through the organic material only, the 

so called connected flow pathway, whereas the saturated hydraulic conductivity of the 

unconnected part (𝑘𝑠𝑎𝑡,𝑢𝑛𝑐𝑜𝑛[𝑧𝑖] in mm/s) depends on organic and mineral saturated soil 

hydraulic conductivity:  

𝑘𝑠𝑎𝑡,𝑢𝑛𝑐𝑜𝑛 = (1 − 𝑓𝑝𝑒𝑟𝑐) (
1 − 𝑓𝑜𝑚
𝑘𝑠𝑎𝑡,𝑚𝑖𝑛

+
𝑓𝑜𝑚 − 𝑓𝑝𝑒𝑟𝑐

𝑘𝑠𝑎𝑡,𝑜𝑚
)

−1
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where saturated hydraulic conductivity for mineral soil is calculated from the grid cell sand 

content as:  

k𝑠𝑎𝑡,𝑚𝑖𝑛[𝑧𝑖] = 0.0070556 × 10
−0.884+0.0153×%𝑠𝑎𝑛𝑑  47 

The fraction 𝑓𝑝𝑒𝑟𝑐 is calculated with:  

𝑓𝑝𝑒𝑟𝑐 = 0.908 × (𝑓𝑜𝑚 − 0.5)
0.139        𝑓𝑜𝑚 ≥ 0.5  48 

𝑓𝑝𝑒𝑟𝑐 = 0                                                    𝑓𝑜𝑚 < 0.5  49 

Soil matric potential (mm) is defined as function of saturated soil matric potential (mm) with:  

ψ𝑖 = ψ𝑠𝑎𝑡,𝑖 (
𝜃𝑖
𝜃𝑠𝑎𝑡,𝑖

)

−𝐵𝑖

= [(1 − 𝑓𝑜𝑚,𝑖)ψ𝑠𝑎𝑡,𝑚𝑖𝑛,𝑖 + 𝑓𝑜𝑚,𝑖ψ𝑠𝑎𝑡,𝑜𝑚] (
𝜃𝑖
𝜃𝑠𝑎𝑡,𝑖

)

−𝐵𝑖
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where saturated organic matter matric potential is ψ𝑠𝑎𝑡,𝑜𝑚 = −10.3 𝑚𝑚 and saturated mineral 

soil matric potential is calculated from sand content as:  

ψ𝑠𝑎𝑡,𝑚𝑖𝑛,𝑖 = −10.0 × 101.88−0.0131×%𝑠𝑎𝑛𝑑  51 

 

4.2.3 Cosmic-ray forward model 

SWC retrievals were calculated from neutron intensity observations with the Cosmic-ray Soil 

Moisture Interaction Code COSMIC (Shuttleworth et al. 2013) following calibration results and 
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the procedure of Baatz et al. (2014). COSMIC parameterizes interactions between neutrons and 

atoms in the subsurface, relevant for soil moisture estimation. COSMIC was calibrated against 

the more complex Monte Carlo Neutron Particle model MCNPx (Pelowitz 2005) and needs 

considerably less CPU-time than the MCNPx model. The reduced CPU-time need and the 

physically based parameterization make COSMIC a suitable data assimilation operator. The code 

was tested at multiple sites for soil moisture determination (Baatz et al. 2014; Rosolem et al. 

2014) and analyzed in detail by Rosolem et al. (2014). 

 

COSMIC assumes that a number of high energy neutrons enter the soil. In the soil, high energy 

neutrons are reduced by interaction with the soil leading to isotropic generation of fast 

neutrons with less energy in each soil layer. Before resurfacing, fast neutrons are reduced again 

by soil interaction (Shuttleworth et al. 2013). The number of neutrons 𝑁𝐶𝑅𝑃 that reaches the 

CRP can be summarized in a single integral as 

𝑁𝐶𝑅𝑃 = 𝑁𝐶𝑂𝑆𝑀𝐼𝐶∫ {𝐴(𝑧)[𝛼𝜌𝑆(𝑧) + 𝜌𝑤(𝑧)]𝑒𝑥𝑝(− [
𝑚𝑠(𝑧)

𝐿1
+
𝑚𝑤(𝑧)

𝐿2
])}

∞

0

∙ 𝑑𝑧 
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where 𝑁𝐶𝑂𝑆𝑀𝐼𝐶  is an empirical coefficient that is CRP specific and needs to be estimated by 

calibration, 𝐴(𝑧) is the integrated average attenuation of fast neutrons, 𝛼 = 0.404 − 0.101 ×

𝜌𝑆 is the site specific empirical coefficient for the creation of fast neutrons by soil, 𝜌𝑆 is the dry 

soil bulk density in g/cm3, 𝜌𝑤 is the total soil water density in g/cm3, 𝑚𝑠 and 𝑚𝑤 are the mass of 

soil and water, respectively, per area in g/cm2. 𝐿1 = 162.0 g cm-2 and 𝐿2 = 129.1 g cm-2 are 

empirical coefficients that were estimated using the MCNPx code (Shuttleworth et al. 2013). 

The integrated average attenuation of fast neutrons 𝐴(𝑧) can be found numerically by solving  

𝐴(𝑧) = (
2

𝜋
) ∫ 𝑒𝑥𝑝 (

−1

𝑐𝑜𝑠(𝜃)
[
𝑚𝑠(𝑧)

𝐿3
+
𝑚𝑤(𝑧)

𝐿4
])

π 2⁄

0

∙ 𝑑𝜃 
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where 𝜃 is the angle along a vertical line below the CRP detector to the element that 

contributes to the attenuation of fast neutrons, 𝐿3 = −31.65 + 99.29 × 𝜌𝑆 is determined from 

soil bulk density and 𝐿4 = 3.16 g cm-2 is another empirical coefficient estimated using the 

MCNPx code (Shuttleworth et al. 2013). The COSMIC operator is discretized into 300 vertical 

layers of one cm thickness up to a depth of three meters. For each CLM grid cell in the model 
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domain, simulated SWC is used to generate a SWC retrieval using the COSMIC code. Simulated 

SWC is handed from the CLM simulation history files to the COSMIC operator. Given the vertical 

SWC distribution of the individual CLM soil column, COSMIC internally calculates the 

contribution of each layer to the simulated neutron intensity signal at the COSMIC soil surface. 

In this study, the contribution of each layer was used to calculate the weighted CLM SWC 

retrieval corresponding to the vertical distribution of simulated SWC in each grid cell. Measured 

neutron intensity of CRPs was used to inversely determine a CRP SWC retrieval as by Baatz et al. 

(2014) assuming a homogeneous vertical SWC distribution. Then, the weighted CLM SWC 

retrieval is used in the data assimilation scheme to relate the CRP SWC retrieval to the model 

state. 

 

4.2.4 Data assimilation 

This study uses the local ensemble transform Kalman filter (LETKF) (Hunt et al. 2007) to 

assimilate SWC retrievals by CRPs into the land surface model CLM. Besides other Ensemble 

Kalman Filter variants, the LETKF is applied in atmospheric sciences (Liu et al. 2012; Miyoshi and 

Kunii 2012), ocean science (Penny et al. 2013) and also in land surface hydrology (Han et al. 

2014; Han et al. 2015). Updates were calculated either for states or jointly for states and 

parameters. For state updates only, the LETKF was used as proposed by Hunt et al. (2007). 

Calculations were made for an ensemble of model simulations which differed related to 

variations in model forcings and input parameters. The states of the different ensemble 

members are indicated by 𝐱𝑖
𝑓

 where i=1, …., N and N is the number of ensemble members. The 

individual state vectors 𝐱𝑖
𝑓

 contain the CLM-simulated SWC of the ten soil layers and the 

vertically weighted SWC retrieval obtained with the COSMIC operator. For each grid cell, a 

vector 𝐗𝑓can be constructed which contains the deviations of the simulated states with respect 

to the ensemble mean �̅�𝑓 :  

𝐗𝑓 = [𝐱1
𝑓
− �̅�𝑓 , … , 𝐱𝑁

𝑓
− �̅�𝑓]  54 

In case of joint state-parameter updates, a state augmentation approach was followed (Han et 

al. 2014; Hendricks Franssen and Kinzelbach 2008). In this case, the augmented model state 

vector 𝐗𝑓 is constructed from the weighted SWC, and the grid cell's sand, clay and organic 

matter content.  
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In order to relate the measured neutron intensity with the simulated SWC of CLM, the 

observation operator H (COSMIC) is applied on the measured neutron intensity in order to 

obtain the expected weighted SWC retrieval for each of the stochastic realizations:  

𝐲𝑖
𝑓
= 𝐇(𝐱𝑖

𝑓
)    55 

The ensemble realizations of the modelled SWC retrieval 𝒚1
𝑓

 to 𝒚𝑁
𝑓

 with respect to the ensemble 

mean �̅�𝑓 are stored in the vector Yf:  

𝐘𝑓 = [𝐲1
𝑓
− �̅�𝑓 , … , 𝐲𝑁

𝑓
− �̅�𝑓]     56 

The observation error correlation was reduced in space by the factor 𝑓𝑟𝑒𝑑 using the spherical 

model:  

𝑓𝑟𝑒𝑑 = 1 − (1.5 × 𝑑 𝑑𝑚𝑎𝑥⁄ ) + (0.5 × [𝑑 𝑑𝑚𝑎𝑥⁄ ]3)  57 

where d is the distance to the observation and 𝑑𝑚𝑎𝑥 = 40𝑘𝑚 is the maximum observation 

correlation length, about half the size of the catchment. Only SWC retrievals within the 

maximum observation correlation length were used for assimilation. This leads to a ‘localized’ 

size of 𝐘𝑓 and the observation error covariance matrix R. The intermediate covariance matrix 

𝐏𝑎 (also called analysis error covariance matrix) is calculated according to:  

𝐏𝑎 = [(N − 1)𝐈 + 𝐘𝑓𝑇𝐑−1𝐘𝑓]  58 

In addition, the mean weight vector �̅�𝑎 is obtained as follows:  

�̅�𝑎 = 𝐏𝑎𝐘𝑓𝑇𝐑−1(𝐲0 − �̅�𝑓)  59 

where 𝐲0 is CRP SWC retrieval. In the ensemble space, a perturbation matrix 𝐖𝑎 is calculated 

from the symmetric square root of 𝐏𝑎:  

𝐖𝑎 = [(𝑁 − 1)𝐏𝑎]1/2  60 

The final analysis 𝐗𝑎 is obtained from:  

𝐗𝑎 = �̅�𝑓 + 𝐗𝑓[�̅�𝑎 +𝐖𝑎]  61 

A more detailed description of the LETKF can be found in (Hunt et al. 2007) and details on the 

implementation of the LETKF in combination with CLM are given by (Han et al. 2015). 
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4.3 Model and experiment setup 

4.3.1 Model setup 

In this study, discretization and parameterization of the hydrological catchment was done on 

the basis of high resolution data. The Rur catchment domain is spatially discretized by 

rectangular grid cells of 0.008 degree size (~750 m, Figure 3: Locations of the ten CRPs installed 

in the Rur catchment (left), setup of the Rollesbroich test site (upper right) and the Wuestebach 

test site (lower right panel) with the SoilNet sensor units.Figure 3). The model time step was set 

to hourly. Land cover was assumed to consist of vegetated land units only, and a single plant 

functional type (PFT) for each grid cell was defined. The plant functional types were derived 

from a remotely sensed land use map using RapidEye and ASTER data with 15 m resolution 

(Waldhoff 2012). Sand content, clay content and organic matter content were derived from the 

high resolution regional soil map BK50 (Geologischer Dienst Nordrhein-Westfalen 2009). The 

BK50 soil map provides the high resolution soil texture for the catchment and is the most 

detailed soil map available for the defined region. As an alternative, simulations were also 

performed for a biased soil texture distribution with a fixed sand content of 80 % and clay 

content of 10 % (S80 soil map). This represents a large error with respect to the expected true 

soil properties. It allows evaluating the joint state-parameter estimation approach because 

given the expected bias, we can evaluate whether and to what extend the soil properties are 

modified by the data assimilation to be closer to the available high resolution soil map. In 

addition, in many regions across the Earth a high resolution soil map is not available and land 

surface models which are applied for those regions, for example in the context of global 

simulations, might be strongly affected by the error in soil properties. It was tested how this 

impacted the simulation results. Maximum saturated fraction, a surface parameter which is 

used for runoff generation, was calculated from a 10 meter digital elevation model (scilands 

GmbH 2010). Leaf area index data were derived from monthly averaged Moderate Resolution 

Imaging Spectrometer data (MODIS). CLM was supplied with hourly atmospheric forcing data 

from a reanalysis data set for the years 2010 to 2013 from the German Weather Service (DWD). 

The data was downscaled from a resolution of 2.8 km2 to the CLM resolution using linear 

interpolation based on Delaunay triangulation. Forcing data include precipitation in mm/s, 
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incident solar and longwave radiation in W/m2, air temperature in K, air pressure in hPa, wind 

speed in m/s and relative humidity in kg/kg at the lowest atmospheric level. 

 

4.3.2 Model ensemble 

Uncertainty was introduced into the regional CLM model by perturbed soil parameters and 

forcings. Contents of sand, clay and organic matter were perturbed with spatially correlated 

noise from a uniform sampling distribution with mean zero and standard deviation 10 % or 30 % 

(Han et al. 2015). By perturbing texture, soil parameters are also perturbed through the 

pedotransfer functions used in CLM as specified in Section 4.2.2. Precipitation (σ = 0.5 or 1.0; 

lognormal distribution) and shortwave radiation (σ = 0.3; lognormal distribution) were 

perturbed with multiplicative noise with mean equal to one. Longwave radiation (σ = 20 W m-2) 

and air temperature (σ = 1K) were perturbed with additive noise. The forcing perturbations 

were imposed with correlations in space (5 km) using a fast Fourier transform. Correlation in 

time was introduced with an AR(1)-model with autoregressive parameter=0.33. These 

correlations and standard deviations were chosen based on previous data assimilation 

experiments (De Lannoy et al. 2012; Han et al. 2015; Kumar et al. 2012; Reichle et al. 2010). In 

this work, only results for precipitation perturbation with σ = 0.5 will be shown as results for σ = 

1.0 were very similar. An ensemble size of 95 realizations was used in the simulations. Based on 

previous work (Baatz et al. 2015), the SWC retrieval uncertainty for CRPs was estimated to be 

0.03 cm3/cm3. 

 

4.3.3 Experiment set-up  

All simulation experiments in this study used initial conditions from a single five year spin-up 

run. For the five year spin-up run, a single forcing data set of the year 2010 was repeatedly used 

as atmospheric input. The soil moisture regime became stable after five years spin-up period, 

and additional spin-up simulations would not affect soil moisture in the consecutive years. After 

this five year spin-up, soil parameters and forcing data of the consecutive years were perturbed. 

From 1st Jan. 2011 onwards, CLM was propagated forward with an ensemble of 95 realizations. 

On 20th Mar. 2011, the first SWC retrieval was assimilated and assimilation of SWC retrievals 

continued until 31st Dec. 2012. From 1st January 2013 to 31st December 2013 the model was 
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propagated forward without data assimilation but with an ensemble of 95 realizations. The year 

2013 was used exclusively as evaluation period for data assimilation experiments. 

 

In total, 26 simulation experiments were carried out using different setups (Table 10). Two open 

loop simulations were run for the BK50 soil map (OL-BK50) and the S80 soil map (OL-S80), 

respectively, without data assimilation and soil parameter perturbation of 30 %. These 

simulations are referred to as reference runs for the respective soil map. Simulation results of 

data assimilation runs were compared to the reference runs for quantification of data 

assimilation benefits. Simulations were done with joint state-parameter estimation (PAR-), two 

for the S80 soil map (PAR-S80-) and two for the BK50 soil map (PAR-BK50-), for which soil 

texture was perturbed by 10 % and 30 %. Two simulations were done with state updates only 

for the BK50 soil map (Stt-BK50) and the S80 soil map (Stt-BK50), where soil texture was 

perturbed by 30 %. These eight simulations form the basic set of experiments. 

 

Table 10: Overview of simulation scenarios: Open loop (OL-*) with variation in the soil map 

BK50 or S80, data assimilation run with state update (Stt) or joint state- and parameter update 

(PAR) with variation in the soil map perturbation (-10 or -30), and jackknife evaluation runs (jk-

S80-1 to 9, and jk-BK50-1 to 9). 

Simulation Code 
Soil Perturbation Sand Content Update 

10 30 BK50 80 % fix State Parameter 

OL-BK50   + +       

OL-S80   +   +     

Stt-BK50   + +   +   

Stt-S80   +   + +   

PAR-BK50-30   + +    + + 

PAR-BK50-10 +   +    + + 

PAR-S80-30   +   +  + + 

PAR-S80-10 +     +  + + 

jk-BK50-1 to 9   + +    + + 

jk-S80-1 to 9   +   +  + + 
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Besides the data assimilation experiments also a larger number of jackknifing simulations was 

run to evaluate the data assimilation performance. These simulations allow evaluating the 

impact of the CRP network to improve SWC characterization at other locations, without CRP. In 

a jackknife experiment, data from eight CRP locations were assimilated and one CRP was 

excluded from the assimilation for evaluation purpose. At the evaluation location, simulated 

SWC (which is affected by the assimilation of the other eight probes) was compared to CRP SWC 

retrievals. For jackknife simulations, the perturbation of soil texture was set to 30 % and 

precipitation perturbation was done with σ= 0.5. States and parameters at these sites were 

jointly updated, and simulations were made using the BK50 and the S80 soil maps as input. 

Therefore, a total of 18 jackknife simulations (jk-S80-* and jk-BK50-*) was performed (two soil 

maps times nine different simulations leaving away one CRP at a time). 

 

Simulation results were evaluated with the root mean square error (RMSE): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑆𝑊𝐶𝑡,𝐶𝐿𝑀 − 𝑆𝑊𝐶𝑡,𝐶𝑅𝑃)

2𝑛
𝑡=1

𝑛
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where n is the total number of time steps, 𝑆𝑊𝐶𝑡,𝐶𝐿𝑀 is the CLM SWC retrieval at time step t and 

SWCt,CRP is the CRP SWC retrieval at time step t. In case SWC was assimilated at the 

corresponding time step, 𝑆𝑊𝐶𝑡,𝐶𝐿𝑀 is SWC prior to assimilation. In the case the RMSE is 

estimated at a single point in time over all CRPs available, the number of time steps n can be 

replaced by the number of CRPs available. The second evaluation measurement in this study is 

the bias: 

𝑏𝑖𝑎𝑠 =
∑ (𝑆𝑊𝐶𝑡,𝐶𝐿𝑀 − 𝑆𝑊𝐶𝑡,𝐶𝑅𝑃)
𝑛
𝑡=1

𝑛
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4.4 Results 

4.4.1 General results 

Table 11 summarizes the performance statistics in terms of RMSE for the assimilation period 

(2011 and 2012). Presented are results for the open loop scenario and six data assimilation 

scenarios. Errors of open loop simulations are higher for the S80-simulation than for the BK50-

simulation at all sites but Merzenhausen. At Merzenhausen RMSE was 0.054 cm3/cm3 for the 
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S80 soil map and 0.067 cm3/cm3 for the BK50 soil map. Open loop simulations with the S80 soil 

map resulted in RMSE-values above 0.10 cm3/cm3 at five of nine sites. At all sites data 

assimilation results with the S80 soil map improved SWC compared to the open loop 

simulations. This was also the case for the BK50 soil map simulations at all sites but Aachen 

where RMSE was larger than for the open loop run. In general, data assimilation improved 

simulations more for the S80 soil map (RMSE reduced by 0.079 cm3/cm3) than for the BK50 soil 

map (RMSE reduced by 0.01 cm3/cm3). Room for improvement with the BK50 soil map runs was 

more limited because of the smaller open loop errors. Nevertheless, after state updating alone 

the BK50 soil map still gave smaller errors than the S80 soil map. However, joint state-

parameter estimation further improved simulation results by reducing RMSE-values and the 

parameter updating resulted in similar RMSE-values for the BK50 (0.028 cm3/cm3) and S80 soil 

map (0.03 cm3/cm3). The ERMS for simulations with 10 % and 30 % perturbation of soil texture 

values did not show very different results. 

 

Table 11: RMSE (cm3/cm3) at CRP sites for open loop runs and different data assimilation 

scenarios, for the assimilation period (2011 and 2012). 

2011 & 2012 
Rolles-

broich 

Merzen-

hausen 

Geve-

nich 

Heins-

berg 

Kall RurAue Wueste-

bach 

Aachen Wilden-

rath 

Average 

RMSE 

OL-BK50 0.054 0.067 0.039 0.035 0.042 0.027 0.041 0.032 0.017 0.039 

Stt-BK50 0.033 0.041 0.021 0.022 0.030 0.024 0.038 0.023 0.017 0.028 

PAR-BK50-10 0.036 0.036 0.019 0.021 0.033 0.025 0.035 0.045 0.015 0.029 

PAR-BK50-30 0.031 0.034 0.018 0.019 0.027 0.023 0.040 0.044 0.016 0.028 

jk-BK50-* 0.070 0.058 0.073 0.035 0.048 0.050 0.053 0.050 0.091 0.059 

OL-S80 0.170 0.053 0.081 0.117 0.149 0.158 0.065 0.169 0.020 0.109 

Stt-S80 0.104 0.020 0.037 0.051 0.083 0.056 0.060 0.086 0.018 0.057 

PAR-S80-10 0.032 0.038 0.024 0.023 0.033 0.023 0.036 0.048 0.015 0.030 

PAR-S80-30 0.029 0.035 0.018 0.019 0.027 0.023 0.039 0.068 0.016 0.030 

jk-S80-* 0.082 0.038 0.063 0.026 0.062 0.034 0.038 0.073 0.095 0.057 

 

The temporal course of soil moisture in 2011 at the two sites Gevenich and Merzenhausen is 

shown in Figure 22. The figures illustrates that SWC at both sites was lower with the S80 soil 
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map than with the BK50 soil map. In Gevenich and Merzenhausen, mean open loop SWC in 

2011 was 0.17 cm3/cm3 for the S80 soil map at both sites and 0.27 cm3/cm3 for the BK50 soil 

map at both sites. CRP measurements at Merzenhausen started in May 2011. In the data 

assimilation runs SWC was immediately affected at the Merzenhausen and Gevenich sites as 

soon as Merzenhausen CRP SWC retrievals were assimilated. The simulated SWC for the PAR-

S80-30 data assimilation run increased as compared to the S80 open loop simulation. The first 

observation at Gevenich was recorded on July 7th, 2011. By that date, the simulated CLM SWC 

retrieval was already close to the CRP SWC retrieval at the Gevenich site (Figure 22) due to SWC 

updates which showed to have a beneficial impact. Figure 22 also shows that the BK50 open 

loop run was close to the observed SWC at both sites, even without data assimilation. 
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Figure 22: Temporal evolution of simulated SWC, calculated with open loop (OL-*) simulations 

and data assimilation including parameter updating (PAR-S80-30), together with the CRP soil 

water content retrieval (SWC) during the first year of simulation at the sites Merzenhausen and 

Gevenich. Simulated SWC was vertically weighted using the COSMIC operator to obtain the 

appropriate SWC corresponding to the CRP SWC retrieval. 

 

Figure 23 shows the temporal course of SWC from January 2011 to December 2013 at Heinsberg 

and Wildenrath. Assimilation and evaluation results are shown for the case of joint state-

parameter updates (PAR-S80-30), only state updates (Stt-S80), open loop (OL-S80) and CRP SWC 

retrievals. At Heinsberg, results show that assimilated SWC was closer to the CRP SWC retrieval 
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when both states and parameters were updated (PAR-S80-30) than if only states were updated 

(Stt-S80). This is the case in the assimilation period and in the evaluation period. At the 

beginning of the evaluation period, the Stt-S80 simulation shows an increase in bias between 

modeled CLM SWC retrievals and CRP SWC retrieval within the first few days of 2013. The bias 

of Stt-S80 remained throughout the evaluation period. In contrast, modeled SWC during the 

evaluation period was close to the CRP SWC retrieval if parameters were previously updated 

(PAR-S80-30). 
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Figure 23: Temporal evolution of simulated SWC retrievals, calculated with open loop (OL-S80), 

data assimilation with state update only (Stt-BK50), and data assimilation including parameter 

updating (PAR-S80-30), together with the CRP soil water content (SWC) retrieval at the sites 

Heinsberg and Wildenrath for the data assimilation period 2011 and 2012, and the evaluation 

period 2013. Simulated SWC was vertically weighted to obtain the appropriate SWC 

corresponding to the CRP SWC retrieval. 

 

The CRP at Wildenrath started operating on May 7th, 2012. SWC retrievals at other CRPs were 

assimilated already from May 2011 onwards and affected SWC at Wildenrath (Figure 23). Until 

May 2012, Figure 23 shows assimilated SWC (Stt-S80 and PAR-S80-30) was higher than open 

loop SWC. However, no SWC retrievals were available at the Wildenrath site for comparison 
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during this period. When SWC retrievals from the CRP at Wildenrath became available and were 

assimilated into the model, assimilated (Stt-S80 and PAR-S80-30) and open loop (OL-S80) SWC 

were close to CRP SWC retrievals. This was the case throughout the remaining assimilation and 

evaluation period. These results suggest that the high sand content of the biased soil map is not 

far from the optimal sand content at Wildenrath. Therefore, at Wildenrath, the high sand 

content of both soil maps (60 % and 80 %) resulted in good modeling results already for the 

open loop runs. This suggests that before May 2012, simulated SWC of the open loop runs with 

either soil map represented more realistic SWC than assimilated SWC during this period. This 

will be discussed further in the discussion section. 

 

4.4.2 Verification period 

The year 2013 was the verification year without data assimilation. RMSE values for the 

evaluation period 2013 are reported in Table 12. On the one hand, BK50 data assimilation runs 

with joint state-parameter estimation resulted in improved SWC at three out of the nine sites 

compared to open loop BK50-runs. For the other six sites results worsened compared to the 

corresponding BK50 open loop run. RMSE values increased from an average of 0.041 cm3/cm3 

(OL-BK50) over all sites to 0.047 cm3/cm3 (PAR-BK50-30). On the other hand, for the S80 soil 

map, all sites except Wildenrath had significantly reduced RMSE values for the case of data 

assimilation including parameter updating compared to the S80 open loop run. For the S80 

simulations, average RMSE over all sites for 2013 was on average 0.12 cm3/cm3 for the open 

loop run and 0.04 cm3/cm3 for the run including data assimilation. In case only states were 

updated (Stt-S80 and Stt-BK50), RMSE was also slightly reduced (compared to open loop runs) 

for the majority of sites during the evaluation period in 2013. On average, this reduction was 

0.016 cm3/cm3 for the S80 soil map (Stt-S80) and 0.002 cm3/cm3 for the BK50 soil map (Stt-

BK50). At sites, where RMSE was larger for data assimilation runs with state updating 

(compared to open loop runs), the increase was only 0.001 cm3/cm3. 
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Table 12: RMSE (cm3/cm3) at CRP-sites for open loop, data assimilation and jackknife 

simulations on the basis of a comparison with CRP SWC retrievals during the verification period 

(2013). For each jackknife simulation only one RMSE is reported: The RMSE of the location that 

is meant for evaluation. 

Year 2013 

Rolles-

broich 

Merzen-

hausen 

Geve-

nich 

Heins-

berg 

Kall RurAue Wueste

-bach 

Aachen Wilden-

rath 

Average 

RMSE 

OL-BK50 0.044 0.065 0.036 0.027 0.048 0.038 0.048 0.042 0.017 0.041 

Stt-BK50 0.041 0.054 0.034 0.027 0.049 0.038 0.048 0.041 0.018 0.039 

PAR-BK50-10 0.068 0.062 0.036 0.038 0.056 0.056 0.043 0.058 0.017 0.048 

PAR-BK50-30 0.052 0.061 0.035 0.033 0.068 0.048 0.043 0.048 0.035 0.047 

jk-BK50-* 0.036 0.047 0.028 0.025 0.042 0.031 0.040 0.054 0.106 0.045 

OL-S80 0.157 0.062 0.106 0.115 0.160 0.154 0.099 0.167 0.019 0.115 

Stt-S80 0.100 0.063 0.107 0.106 0.099 0.146 0.097 0.158 0.020 0.100 

PAR-S80-10 0.060 0.039 0.043 0.040 0.064 0.043 0.052 0.060 0.019 0.047 

PAR-S80-30 0.049 0.059 0.037 0.036 0.053 0.032 0.046 0.047 0.035 0.044 

jk-S80-* 0.079 0.046 0.042 0.036 0.059 0.038 0.063 0.044 0.105 0.057 

 

Bias calculated on the basis of a comparison of hourly SWC measured by CRP and simulated for 

2013 is reported in Table 13. The average bias for the S80 open loop run is 0.11 cm3/cm3 while it 

is 0.02 cm3/cm3 for the BK50 open loop run. Bias of the BK50 open loop run was positive at 

Merzenhausen, Gevenich, Heinsberg, and Aachen, and it was negative at Rollesbroich, Kall, 

RurAue, and Wuestebach. Bias was zero at Wildenrath for the BK50 open loop run. Bias of the 

S80 open loop run was negative at all sites indicating that modeled SWC was higher than 

measured SWC. Joint state-parameter updates reduced the absolute bias on average to 0.03 

cm3/cm3 (PAR-S80-30) and 0.02 cm3/cm3 (PAR-S80-10) for the S80 soil map. In case of the BK50 

soil map, the bias in 2013 increased to 0.03 cm3/cm3 by joint state-parameter updates. State 

updates without parameter updates reduced the biases only marginally to 0.01 cm3/cm3 for the 

BK50 soil map and to 0.09 cm3/cm3 for the S80 soil map. This indicates that state updates also 

can slightly improve SWC-characterization in the verification period due to improved initial 

conditions. 
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Table 13: Bias (cm3/cm3) at CRP-sites for open loop, data assimilation and jackknife simulations 

compared to CRP SWC retrievals during the verification period (2013). For each jackknife 

simulation only one bias is reported: The bias of the location that is meant for evaluation. 

Year 2013 

Rolles-

broich 

Merzen-

hausen 

Geve-

nich 

Heins-

berg 

Kall Rur- 

Aue 

Wueste-

bach 

Aachen Wilden-

rath 

Mean 

absolute 

bias 

OL-BK50 -0.03 0.06 0.01 0.00 -0.02 0.00 -0.02 0.01 0.00 0.02 

Stt-BK50 -0.01 0.04 0.00 0.00 -0.01 -0.01 -0.02 0.00 0.00 0.01 

PAR-BK50-10 0.06 0.05 0.01 0.02 0.04 0.04 0.02 -0.04 0.00 0.03 

PAR-BK50-30 0.03 0.05 0.00 0.02 0.04 0.03 -0.01 -0.03 0.03 0.03 

jk-BK50-* -0.02 0.04 0.01 -0.01 -0.03 -0.02 -0.03 -0.05 0.11 0.04 

OL-S80 -0.17 -0.05 -0.08 -0.12 -0.15 -0.16 -0.09 -0.17 -0.01 0.11 

Stt-S80 -0.09 -0.05 -0.10 -0.10 -0.08 -0.14 -0.09 -0.15 -0.01 0.09 

PAR-S80-10 0.03 0.05 -0.01 0.02 0.03 0.01 -0.01 -0.03 0.03 0.02 

PAR-S80-30 0.04 0.02 -0.03 0.02 0.05 0.03 0.03 -0.04 -0.01 0.03 

jk-S80-* -0.07 0.03 0.02 0.02 -0.04 -0.02 -0.04 -0.03 0.10 0.04 

 

4.4.3 Temporal evolution of mean RMSE 

Figure 24 shows the temporal evolution of the hourly RMSE calculated for all nine CRPs. RMSE 

was highest for the S80 open loop run and lowest for the PAR-S80-30 simulation. State updates 

did not improve modeled SWC as much as joint state-parameter updates improved modeled 

SWC. The RMSE in case of Stt-S80 also falls behind the RMSE of the BK50 open loop run through 

most of the time. Joint state-parameter updates for the S80 soil map improved the RMSE 

throughout most of the time compared to the open loop simulations based on the BK50 and S80 

soil maps. During the assimilation period 2011-2012, the PAR-S80-30 simulation performed best 

out of the four simulations. During the evaluation period 2013, OL-BK50 and PAR-S80-30 

performed equally well except in summer 2013 when the PAR-S80-30 simulation yielded much 

higher RMSE-values than the BK50 open loop run. 
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Figure 24: Temporal evolution of root mean square error (RMSE) for hourly SWC retrievals. 

RMSE is calculated hourly for nine CRP´s for open loop runs for soil maps S80 and BK50, joint 

state-parameter updates (PAR-S80-30) and state updates only (Stt-S80) during the assimilation 

period (2011 and 2012) and verification period (2013). 

 

4.4.4 Jackknife simulations 

The jackknife simulations investigated the impact of the network of CRPs for improving 

estimates of SWC at locations between the CRPs, outside the network. The errors shown in 

Table 12 refers to the two open loop simulations (for the S80 soil map and the BK50 soil map) 

and the 18 jackknife simulations. All simulations with the S80 soil map resulted in an improved 

RMSE in the jackknife simulations compared to the open loop simulation, except for Wildenrath. 

In all cases the RMSE was smaller than 0.10 m3/m3. Error reduction was smaller at sites where 

the open loop error was smaller. At sites with large open loop RMSE, the assimilation could 

reduce the RMSE by 50 % or more. In case of the BK50 soil map, the jackknife simulations 

resulted in RMSE-values below 0.10 m3/m3 at all sites. However, in this case only at 

Merzenhausen the RMSE was reduced during the data assimilation period. At Wildenrath, the 

RMSE was highest for jk-BK50 (0.091 m3/m3) and jk-S80 (0.095 m3/m3). The average absolute 

bias for the jackknife experiments was 0.04 cm3/cm3 for both soil maps, BK50 and S80, in the 

evaluation period 2013 (Table 13). Hence, bias in the jk-S80-* simulations improved compared 

to the open loop run but not in the jk-BK50-* simulations, where bias was already small. 
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4.4.5 Temporal evolution of parameters 

The temporal evolution of the percentage sand content during the assimilation period for the 

nine CRP sites is shown in Figure 25 for PAR-S80-30, PAR-S80-10, PAR-BK50-30, PAR-BK50-10, jk-

S80-30* and jk-BK50-30*. Time series start on March 20th, 2011, the date of the first assimilated 

CRP SWC retrieval at Wuestebach. Wuestebach and sites within the influence sphere of 

Wuestebach (Aachen, Kall and Rollesbroich) show also a change in sand content from this date 

onwards. All other sites show a change in sand content in May 2012 when Rollesbroich and 

Merzenhausen start operating and their data is assimilated. All sites show variability in sand 

content over time. Wuestebach, Kall, RurAue, Rollesbroich and Heinsberg show some peaks in 

the time series. Merzenhausen, Aachen, Gevenich, and Wildenrath show a smoother course 

compared to the other sites. Sand levels approach a constant site-specific value for the sites 

Merzenhausen (45 %), Kall (30 %), Gevenich (41 %), RurAue (30 %), Heinsberg (42 %) and 

Wildenrath (62 %) with a reasonable spread amongst the experiments. The spread in estimated 

sand content for the sites Wuestebach, Aachen and Rollesbroich is larger, and it seems not to 

have stabilized at the end of the assimilation. Sand content estimates of the jackknife 

simulations was close to the sand content of the other data assimilation experiments with joint 

state-parameter estimation at the sites Merzenhausen, Gevenich, RurAue and Heinsberg. 

Evolution of the sand content for the jackknife simulations showed larger deviations from the 

sand content estimated by other data assimilation experiments for the sites Wuestebach, Kall, 

Aachen, Rollesbroich and Wildenrath. 
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Figure 25: Temporal evolution of the percentage sand content for simulations with parameter 

update: PAR-S80-30 (green), PAR-S80-10 (light green), PAR-BK50-30 (red), PAR-BK50-10 (light 

red), jk-S80-30* (black) and jk-BK50-30* (black). 

 

The soil hydraulic parameter B and saturated hydraulic conductivity are shown in Figure 26 and 

Figure 27 for PAR-S80-30, PAR-S80-10, PAR-BK50-30, PAR-BK50-10, jk-S80-30* and jk-BK50-30*. 

Updates of soil hydraulic parameters start in March and May 2011 with the assimilation of SWC 

retrievals depending on the location. The B parameter increases for all simulations. Throughout 

the whole assimilation period B varies considerably within short time intervals. The total range 

of the B parameter is between 2.7 and 14 at all sites. At the sites Merzenhausen, Kall, Aachen, 

Gevenich and Rollesbroich, it generally ranges between 6 and 10. At Wuestebach, Heinsberg 

and RurAue, B ranges most of the time between 8 and 12, and at Wildenrath, B is below 8. 

Initial saturated hydraulic conductivity is rather high (𝑘𝑠𝑎𝑡>0.015 mm/s) in case of high sand 

content i.e. for the S80 soil map, and rather low (𝑘𝑠𝑎𝑡<0.005 mm/s) in case of low sand content 

i.e. for the BK50 soil map. In case of the S80 soil map, at all sites except Wildenrath, high initial 
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saturated hydraulic conductivity decreases quickly by parameter updates to values below 0.01 

mm/s. The initial spread in 𝑘𝑠𝑎𝑡 values amongst the simulation scenarios decreases at most 

sites. At Wuestebach, Merzenhausen, Aachen, Gevenich, RurAue and Heinsberg, the spread is 

rather small particularly at the end of the assimilation period, while at Wildenrath 𝑘𝑠𝑎𝑡 ranges 

from 0.005 to 0.015 for individual experiments at the end of the assimilation period. The 

discussion section will elaborate more on this. 

 

 

Figure 26: Temporal evolution of the B parameter (top 15cm) for simulations with parameter 

update: PAR-S80-30 (green), PAR-S80-10 (light green), PAR-BK50-30 (red), PAR-BK50-10 (light 

red), jk-S80-30* (black) and jk-BK50-30* (black). 
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Figure 27: Temporal evolution of saturated hydraulic conductivity (top 15cm) for simulations 

with parameter update: PAR-S80-30 (green), PAR-S80-10 (light green), PAR-BK50-30 (red), PAR-

BK50-10 (light red), jk-S80-30* (black) and jk-BK50-30* (black). 

 

4.4.6 Latent heat and sensible heat 

Latent heat flux or evapotranspiration (ET) is another important diagnostic variable of the CLM 

model and of importance for atmospheric models. Results of the data assimilation experiments 

showed that soil texture updates altered soil moisture states significantly. In Figure 28 it is 

shown that joint state-parameter estimation also altered ET. Figure 28 shows ET within the 

evaluation period 2013 across the whole catchment for four simulations. On the one hand, ET 

was similar for both open loop simulations in the South of the catchment. On the other hand, ET 

in the North was up to 80 mm per year lower for the S80 open loop run compared to the BK50 

open loop run. Regarding open loop runs, the differences can be linked to the drier soil 

conditions in case OL-S80 compared OL-BK50 simulation results. For PAR-S80-10, ET increased 

by up to 40 mm per year in the Northern part of the catchment through data assimilation. The 
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differences between open loop ET and data assimilation ET were larger for the S80 soil map 

than for the BK50 soil map. This could be related to the larger update in SWC in case of the S80 

scenario compared to the BK50 scenario. 

 

 

 

Figure 28: Annual evapotranspiration in the evaluation period (year 2013) for simulations OL-

S80, OL-BK50, PAR-S80-10 and PAR-BK50-10. 

 

4.5 Discussion 

The applied data assimilation scheme improved soil moisture characterization in the majority of 

simulation experiments with the regional Community Land Model (CLM). During 2011 and 2012, 

the biased S80 soil map gave a RMSE up to 0.17 cm3/cm3 (at Rollesbroich) in the open loop 

simulation which left plenty of room for improvements. The soil map BK50 led to RMSE-values 
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in open loop simulations below 0.05 cm3/cm3 which left little room for error reduction 

considering the measurement error of 0.03 cm3/cm3. For the simulations starting with 80 % 

sand content, sand content was closer to the values of the BK50 soil map after joint state-

parameter estimation. However, the temporal evolution of the updated soil texture and the soil 

hydraulic parameters was not stable. Temporal fluctuations imply that there may be multiple or 

seasonal optimal parameter values. This is also supported by the findings of the temporal 

behavior of RMSE during the evaluation period e.g. when in the dry summer 2013 the RMSE 

peaked in the PAR-S80-30 simulation. Many possible error sources were not subject to 

calibration in this study but they could be crucial for an even better soil moisture and more 

stable soil parameter estimation. In this study we only considered uncertainty of soil 

parameters, but also vegetation parameters are uncertain. Also a number of other CLM-specific 

hydrologic parameters (e.g. decay factor for subsurface runoff and maximum subsurface 

drainage) strongly influence state variables in CLM and hence show also potential for 

optimization. Considering this uncertainty could give a better uncertainty characterization. 

Precipitation is an important forcing for the model calculations and its estimate could be 

improved. For this study, precipitation data from the COSMO_DE re-analysis were used. A 

product which optimally combines gauge measurements and precipitation estimates from radar 

could give better precipitation estimates. This could improve the soil moisture characterization 

and also potentially lead to better parameter estimates. Also other error sources like the ones 

related to the model structure play a significant role. This should be subject of future 

investigation. 

 

Evaluation simulations for 2013 led to partly improved and partly deteriorated RMSE values 

when the BK50 soil map was used as prior information on the soil hydraulic properties. The 

simulations with the S80 soil map on the contrary showed an improved soil moisture 

characterization in all simulation scenarios and the updated soil hydraulic parameter estimates 

for those simulations approached the values of the BK50 soil map. These results indicate that 

the soil hydraulic parameters derived from the BK50 soil map were already well suited for soil 

moisture predictions and updating soil texture and soil parameters could not improve further 

the results. RMSE values for simulations with state updates only (Stt-BK50 and Stt-BK50) in 2013 
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imply the beneficial role of state updates only. However, the improvements in the evaluation 

period by state updates (without parameter values) are small compared to the improvements 

obtained by joint state-parameter estimation. This illustrates the benefits of joint state-

parameter updates compared to state updates only, and that soil moisture states are strongly 

determined by soil hydraulic parameters. It also illustrates that the improved characterization of 

soil moisture states in the assimilation period which results in improved initial states for the 

verification period loses its influence in the verification period fast over time. 

 

The jackknife simulations illustrated that a network of CRPs can improve modeled SWC if the 

soil map information is not sufficient. Temporal evolution of subsurface parameters of the 

jackknife simulations (e.g. jk-S80-*) was close to the evolution of parameter estimates by other 

simulations (e.g. PAR-S80-10). Parameter estimates at jackknife test sites were inferred from 

multiple surrounding CRP sites, while updates at sites with CRP information were strongly 

inferred from single site information. A comparison of parameter estimates at the end of the 

assimilation period indicates that initial soil parameterization has a limited effect on the 

resulting parameter estimates. Parameter estimates of jk-BK50-30* and jk-S80-30* are close 

together at the end of the assimilation period. The CRP network led to improved results for the 

jackknife evaluation simulations in case of the biased soil map. This suggests that assimilation of 

CRP data is particularly useful for regions with little information on subsurface parameters. We 

expect a tradeoff between the initial uncertainty on soil moisture content (related to the quality 

of the soil map and meteorological data) and the density of a CRP network. In case of a large 

uncertainty, like in regions with limited information about soils and a low density of 

meteorological stations, a sparse network of probes can already be helpful for improving soil 

moisture characterization. On the other hand, in regions with a high density of meteorological 

stations and a high resolution soil map it can be expected that a high resolution CRP network is 

needed to further lower the error of soil moisture characterization. Further experiments in 

other regions with networks of CRPs are needed to get more quantitative information about 

this. 
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A question that remains to be answered is whether it is more beneficial to assimilate neutron 

counts measured by CRPs directly or to assimilate CRP SWC retrievals derived from the neutron 

counts, as done in this study. Fast neutron intensity measured by CRPs is also affected by 

vegetation. Neutron count rate decreases with increasing biomass because of the hydrogen 

content in vegetation (Baatz et al. 2015). Seasonal biomass changes at a single site have a rather 

small impact on neutron intensity compared to differences between grass land site and a forest 

site (Baatz et al. 2015). Therefore, using measured neutron flux directly in a data assimilation 

framework in a catchment with different vegetation types would require to account for the 

effects of vegetation types on neutron intensity. Hence, vegetation estimates for each grid cell 

would be necessary. At present, there are two methods that include biomass in the CRP 

calibration process (Baatz et al. 2015; Franz et al. 2013a) but both methods naturally require 

accurate biomass estimates, which are typically not available. Besides the uncertainty 

associated with CRP methods using biomass in the calibration process, biomass estimates also 

come along with high uncertainties. Therefore, in the case of a catchment with different 

vegetation types, it is desirable to circumvent the use of biomass estimates, and assimilate 

directly SWC retrievals obtained at the observation sites instead of assimilating neutron 

intensity. Therefore, this study uses CRP SWC retrievals in the data assimilation scheme 

assuming that seasonal changes of biomass can be neglected. 

 

4.6 Conclusions and outlook 

This study demonstrates the benefits of assimilating data from a network of nine cosmic-ray 

probes (CRP) in the land surface model CLM version 4.5. Although information on neutron flux 

intensity was only available at few locations in the catchment, the local ensemble transform 

Kalman filter (LETKF) allows updating of soil water content (SWC) at unmonitored locations in 

the catchment considering model and observation uncertainties. Joint state-parameter 

estimates improved soil moisture estimates during the assimilation and during the evaluation 

period. The RMSE and bias for the soil moisture characterization reduced strongly for 

simulations initialized with a biased soil map and approached values similar to the ones 

obtained when the regional soil map was used as input to the simulations. RMSE-values in 

simulations with a regional soil map were not improved, because open loop simulation results 
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were already close to the observations. The beneficial results of joint state-parameter updates 

were confirmed by additional jackknife experiments. This real-world case study on assimilating 

CRP SWC retrievals into a land surface model shows the potential of CRP networks to improve 

subsurface parameterization in regional land surface models, especially if prior information on 

soil properties is limited. In many areas of the world, less detailed soil maps are available than 

the high resolution regional soil map applied in this study. In these areas, more advanced sub-

surface characterization is possible using CRP measurements and the data assimilation 

framework presented in this study. 

 

For now, CRP neutron intensity observations were not assimilated directly. In future studies it 

would be desirable to use the COSMIC operator for assimilating neutron intensity observations 

directly. However, in this case the impact of biomass on the CRP measurement signal would 

have to be taken into account. Therefore, it is desirable to further develop the COSMIC operator 

to include the impact of biomass on neutron intensities. Using the biogeochemical module of 

CLM would then allow to characterize local vegetation states as input for the measurement 

operator. Remotely sensed vegetation states are another option to characterize vegetation 

states as input for the measurement operator. Both methods require additional field 

measurements for the verification of vegetation state estimates. The further extension of the 

data assimilation framework would also enable the estimation of additional sub-surface 

parameters. The impact of other sub-surface parameters such as subsurface drainage 

parameters and the surface drainage decay factor on SWC states and radiative surface fluxes 

has already been shown (Sun et al. 2013). Estimation of these parameters is desirable because 

of the inherent uncertainty of these globally tuned parameters. However, estimation of soil 

texture and organic matter content was demonstrated to be already beneficial for improved 

SWC modeling. Hence, this study represents a way forward towards the integration of CRP 

information in the calibration of large scale weather prediction models. 
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5 Synthesis and outlook 

5.1 Synthesis 

The cosmic-ray probe (CRP) method for soil water content (SWC) estimation was first developed 

and tested in a dry desert-like environment in Arizona (Zreda et al. 2008). In less than a decade 

since the first publication on the CRP method, CRPs became an established SWC observation 

tool. However, the highly diverse environmental conditions encountered on the Earth challenge 

the precision of SWC estimates using CRPs. This dissertation investigated the accuracy of three 

CRP parameterization methods to relate measured neutron counts to SWC under humid climate 

conditions. A vegetation correction method was developed to enhance SWC estimation using 

CRPs in densely vegetated areas, e.g. forests. In addition, a record of more than two years of 

CRP measurements obtained from 2011 to 2013 was used in a data assimilation framework to 

investigate the benefits of a CRP network for characterization of soil moisture content at the 

larger catchment scale and estimating soil hydraulic parameters of a land surface model (LSM). 

 

In this study, it was shown that the CRP method works well in particularly challenging 

conditions, a temperate humid climate and the presence of high biomass. Ten CRPs were 

calibrated individually with gravimetric soil sampling campaigns. Six additional soil sampling 

campaigns confirmed that SWC is well estimated over a footprint of about 30 ha (average 

RMSE=0.017 cm3/cm3) for three parameterization methods (N0-method, hmf-method and 

COSMIC operator) and different land use types: grass land, agricultural crop land, forest and 

mixed land use. Moreover, the evaluation measurements highlighted for the first time 

simultaneously the high accuracy of all three parameterization methods for SWC estimation. 

The CRP SWC estimates also compared well with weighted in-situ SWC sensor networks at the 

grassland test site Rollesbroich (RMSE=0.031 cm3/cm3) and the forest test site Wuestebach 

(RMSE=0.031 cm3/cm3). Particularly challenging was the horizontal and vertical weighting of the 

heterogeneous SWC distribution measured by the in-situ SWC sensor networks. Certainly, 

homogeneous spatial distributions of hydrogen pools are favorable conditions for setup and 

evaluation of CRPs. However, homogeneous footprints are rarely met in natural environments. 

This stresses the importance to further development of horizontal weighting methods for 

interpreting CRP measurements. Some part of the discrepancy between CRP and in-situ SWC 
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sensor networks can result from the mismatch between the measurement volumes of CRP and 

the in-situ SWC sensors. The CRP is most sensible to SWC of the top cm of the soil. However, in-

situ sensors are typically installed at a certain depth, e.g. 5 cm, and thus are missing SWC 

information of the top four cm. By using appropriate LSMs that account for soil moisture 

dynamics (e.g. Community Land Model, HYDRUS1D) resolution of the vertical SWC distribution 

could be improved by supplying modeled SWC states of unobserved soil layers. In return, the 

LSM could be calibrated using in-situ SWC observations from sensor networks. The highly 

resolved vertical SWC profiles from calibrated LSMs could, for instance, be used for an improved 

CRP validation. 

 

It was shown that aboveground biomass significantly impacted neutron flux measured by CRPs 

for SWC estimation. Thus, in this dissertation the impact of aboveground biomass on neutron 

flux was directly quantified by measurements based on which a vegetation correction method 

for neutron flux measurements was developed. It was found that an increase in one kg of dry 

aboveground biomass per m2 or two kg of biomass water equivalent per m2 resulted in a 0.9% 

reduction of the counted neutron fluxes per hour observed by a CRP. The vegetation correction 

was successfully applied to a calibrated CRP to account for a strong decline in aboveground 

biomass by deforestation. Without vegetation correction a second calibration would have been 

necessary after the deforestation. Hence, the vegetation correction has the potential to save 

high labor costs for labor intensive soil sampling campaigns and analysis. A similar experiment 

successfully validated the vegetation correction by imitating a roving CRP across a strong 

biomass gradient and using an in-situ SWC sensor network as reference. The vegetation 

correction is particularly valuable for large CRP networks or difficult on-site conditions. In this 

case, parameterization of the N0-method, the hmf-method or the COSMIC operator could be 

done with soil and land use maps. In addition, the vegetation correction method opens the 

possibility for SWC measurements with roving CRP over large areas even with strong biomass 

gradients. 

 

CRP measurements were found to be well suited for soil hydraulic parameter estimation in 

LSMs. It can be expected that CRPs measurements are useful for estimating subsurface 
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parameters in hydrologic models. However, LSMs describe land surface states, mass and energy 

fluxes on the regional scale, and CRPs are only capable of measuring at few locations within a 

region but continuous in time. Data assimilation techniques allow CRP measurements to be 

propagated into space while taking into account parameter-, state- and observation 

uncertainties at individual grid cells. In this study, CLM was successfully coupled to the local 

ensemble transform Kalman filter (LETKF) and several data assimilation experiments were run to 

test state updates (SWC) compared to state-parameter updates (SWC, soil texture and organic 

matter content), the role of soil hydraulic parameter uncertainty, and the importance of the 

quality of prior information on soil texture. The LETKF was able to improve a biased soil map by 

assimilating SWC retrievals by CRPs. It was found that joint state-parameter estimation should 

be preferred over only state updates. In case of state updates, parameters of the biased soil 

map remained constant during the assimilation period and did not allow convergence of 

assimilated SWC towards SWC retrievals by CRPs at all sites. Joint state-parameter estimates 

produced an overall high accuracy in reproducing observed SWC (RMSE=0.030 cm3/cm3) which 

was better than only state updates (RMSE=0.057 cm3/cm3) and better than the open loop run 

with the biased soil map (RMSE=0.109 cm3/cm3) during the assimilation period. Furthermore, 

parameter updates had a lasting positive effect on the evaluation period which succeeded the 

assimilation period. In the evaluation period, parameter updates reduced the RMSE from 0.115 

cm3/cm3 (open loop) to 0.045 cm3/cm3. If prior information on the soil map was already good in 

terms of a regional soil map parameterization, data assimilation did not always improve 

modeled SWC with respect to SWC retrievals by CRPs. In this study, soil texture estimates 

showed still temporal variability during the assimilation period and did not converge stably 

towards one final value. The strong temporal soil texture variability at some sites indicated that 

a damping factor on parameter updates could add additional value to the assimilation scheme 

by reducing soil texture variability during the assimilation period.  

 

To conclude, in the very first evaluation study of this dissertation, the true CRP measurement 

uncertainty was quantified under challenging land use and climate conditions and then used in 

the LETKF data assimilation framework. This data assimilation study successfully utilized the 

measurements obtained by the CRP network for improved land surface modeling. Results of the 
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data assimilation experiments highlight the suitability of the LETKF for joint state-parameter 

estimation in LSMs using measured SWC retrievals of a catchment wide CRP network. Future 

research has the potential to further improve the obtained results of these first data 

assimilation experiments and to further reduce the uncertainty in SWC retrievals by CRPs. 

 

5.2 Outlook 

Until now, few studies have examined the impact of vegetation on neutron flux and SWC 

estimation. The development of the empirical vegetation correction in this study enables the 

N0-method, the hmf-method and the COSMIC operator to account for changes in aboveground 

biomass. In future, it would be desirable to test the empirical vegetation correction at other CRP 

networks. Further work should also investigate seasonal changes of biomass. Remote sensing 

observations may be a suitable tool to characterize key vegetation parameters for correcting 

the CRP SWC estimates for seasonal biomass changes. Not all relevant hydrogen pools (e.g. 

above and below ground vegetation, ponded and intercepted water, spatial 3D distribution of 

SWC) can be measured simultaneously and continuously in the field. Therefore, simultaneous 

measurements of more hydrogen pools within the CRP footprint than just SWC should be 

accompanied by modeling the most relevant hydrogen pools with appropriate models e.g. the 

Community Land Model. Modeling would enhance knowledge and continuous quantification of 

these additional hydrogen pools. This quantification would be beneficial for a better 

understanding of the CRP signal and to further develop CRP correction methods. Additionally, 

combining LSMs, CRP measurements and field measurements in a single framework would be 

optimal to evaluate neutron flux parameterization methods for vegetation and SWC. These 

neutron flux parameterization methods could be of empirical origin or from Monte Carlo 

Neutron Particle simulations. For evaluation, CRPs could also be co-located e.g. on a grass land 

and on a close-by agricultural crop field, or below canopy and above canopy. In addition, co-

location in homogeneous land use and heterogeneous SWC patterns could be helpful to 

characterize and validate the horizontal footprint of CRPs. As shown in this work, in future 

studies it is advisable to account for the measurement efficiency of each individual CRP used. 
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These first data assimilation experiments with measurements obtained by a CRP network have 

shown the capability of CRPs to improve subsurface parameters in a land surface model. The 

work was done in a catchment which was characterized in advance with a detailed soil map. In 

many areas of the world, there is less detailed information on soil maps available. In these 

regions, the data assimilation framework enables the characterization of subsurface soil 

parameters with appropriate CRP measurements. As in many real and synthetic case studies, 

the device’s observation (neutron flux) was not assimilated directly but soil water content 

retrievals from CRP observations were assimilated. Ideally, the CRP forward operator would be 

used to directly assimilate the neutron flux observation. However, neutron flux observations are 

strongly depending on aboveground biomass as illustrated in this study. Therefore, the 

assimilation of neutron flux observations at multiple sites should take into account the 

vegetation hydrogen content and the uncertainty in biomass estimates. In the present CLM, 

satellite phenology was used to characterize vegetation states. It is desirable to also use the 

biogeochemical module of CLM to characterize vegetation states depending on model forcings 

and states for enabling the measurement operator to appropriately reflect biomass changes in 

the neutron flux signal. This would enable the full functionality of the CLM. Verification of CLM 

vegetation states implies the need for further field measurements on the most important 

vegetation state variables (e.g. vegetation water content, dry aboveground biomass). 

 

Further development of the data assimilation framework can enable the estimation of a larger 

set of surface and sub-surface parameters. In this study, parameter updates were constrained 

to soil texture and organic matter content associated to soil hydraulic parameters. CLM specific 

subsurface parameters which were assumed constant in this study are the surface drainage 

decay factor, maximum subsurface drainage, and subsurface drainage decay factor. Literature 

has shown a sensitivity of SWC states and radiative surface fluxes to these parameters. Future 

work should attempt to increase the number of estimated parameters in order to address the 

inherent uncertainty in globally calibrated subsurface parameters. 

 

The presented results of this study on data assimilation represent a first step towards 

addressing parameter uncertainty in a land surface model by assimilation of CRP SWC retrievals. 
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The Rur catchment CRP network will not only be beneficial for future studies on parameter 

estimation, but also for validation of present and future Earth satellite observations on surface 

SWC. Furthermore, this study illustrated means and results that can be used as a basis for an 

improved characterization of terrestrial Earth surface processes by modeling and observations. 

Regarding the future challenges in water and food scarcity under growing population and more 

extreme climate, it is essential to further develop these tools which aim for a better 

understanding of terrestrial processes, a more efficient use of water resources and an increased 

agricultural production. 
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