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Risk and punishment revisited
Errors in variables and in the lab∗

Christoph Engel† Oliver Kirchkamp‡

9th July 2016

We provide an example for an errors in variables problem which might be
o�en neglected but which is quite common in lab experimental practice: In one
task, a�itude towards risk is measured, in another task participants behave in a
way that can possibly be explained by their risk a�itude. How should we deal
with inconsistent behaviour in the risk task? Ignoring these observations entails
two biases: An errors in variables bias and a selection bias.

We argue that inconsistent observations should be exploited to address the
errors in variables problem, which can easily be done within a Bayesian frame-
work.

Keywords: Risk, lab experiment, public good, errors in variables, Bayesian inference.
JEL: C91, D43, L41

1. Introduction
When we run laboratory experiments and when we try to structure the results of these ex-
periments, we sometimes combine two parts of an experiment. In one part of the experiment
we elicit individual traits. �ese traits are used to explain behaviour in another part of the
experiment. �e way the analysis is done o�en implicitly assumes that the elicitation of the
trait is free of any participant’s errors. �is presupposes that the trait will play itself out
the same way whenever it is elicited and in whichever context it happens to ma�er. Di�er-
ential psychology has long cast doubt on this assumption. Traits are unlikely to be stable
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across situations (Ross, Nisbe� and Gladwell, 2011). �is suggests that traits will o�en only
be imperfectly observed in post-experimental tests.

For the econometrician the problem of an explanatory variable that is only imperfectly ob-
served is well known as one of “errors in variables”. More technically, if we want to estimate
Y = β0 + β1X + u, but we can observe X only with an error, e.g. we observe ξ ∼ N(X,σξ),
then estimating Y = β0 + β1ξ + u with standard OLS usually fails to provide an unbiased
estimator for β1. Already Adcock (1877) mentions the problem of errors in variables. Since
then many authors have discussed this problem (see Gillard, 2010, for an overview). Errors
in variables are, indeed, acknowledged in surveys in the �eld (see, e.g., Kimball, Sahm and
Shapiro, 2008, who use survey data on risk tolerance). De�ciencies in the maximum likeli-
hood approach to estimate models with errors in variables were pointed out e.g. by Neyman
and Sco� (1948) and Solari (1969). Lindley and El-Sayyad (1968) and Florens, Mouchart and
Richard (1974) have proposed Bayesian inference to overcome these problems. During the
last decades Markov chain Monte Carlo methods have become a powerful and accessible tool
for Bayesian inference. �us, the Bayesian approach lends itself to estimate models with er-
rors in variables.

�is brings us to laboratory experiments in economics: Should we worry about errors in
variables in the lab? A�er all, when σξ in the above problem is small, the bias will be small,
too. Perhaps the situations we are studying as experimental economists are of the la�er kind
and the problem is more of academic than of practical interest?

In this paper we study an example which is meant to demonstrate that errors in variables
do ma�er for lab data. �e design, we think, is quite typical. In one part of the experiment we
a�empt to measure an a�itude towards risk with the help of a Holt and Laury (2002) task.1
In another part of the experiment we use this a�itude to explain reactions to punishment
in a public good game. In the Holt and Laury task, 18% of all participants behave “incon-
sistently”, in that they switch more than once between the lo�ery with the smaller and the
lo�ery with the larger spread. One of the options mentioned by Holt and Laury (2002) and
used by many experimentalists, is to simply drop the data from such participants. We show
why this solution can be problematic. We discuss a series of alternatives, and show how a
simultaneous estimation of both decision processes, here within a Bayesian framework, of-
fers an easy and e�ective solution. �e simultaneous estimation has two advantages: First,
one uses the data from all participants, and thereby avoids a selection bias.2 Second, since
the Holt and Laury task provides us with 10 separate choices per participant, we are also in
a position to estimate, separately for each participant, the precision of the measure for her
risk a�itude. �is allows us to address the errors in variables problem.

�ere are two reasons why a participant has been imprecise: (a) the measure is noisy, e.g.
since the participant has been ina�entive, or (b) the participant lacks con�dence. With just
the data from the Holt and Laury task, we cannot disentangle those reasons. But either way,
the more the individual estimate of risk aversion is precise, the more it should ma�er for
estimating the e�ect of risk aversion on choices in the public good. Even if it is not perfectly

1As is standard, participants were not admonished to switch at most once.
2Otherwise one does not estimate the e�ect of risk aversion on punishing behavior in the population, but the

e�ect of risk aversion on the punishing behavior of only those individuals whose reactions to risky choices
are highly consistent.
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precise, it should not be ignored altogether. As our sample demonstrates, results indeed
change substantially if one treats the results from the Holt and Laury task as an explanatory
variable measured with error.

�e remainder of the paper is organized as follows: Section 2 introduces the research
question and the design of the experiment from which the data are taken and that we use to
illustrate our methodological point. Section 3 discusses alternative methods for dealing with
inconsistency in the measurement of risk a�itudes. Section 4 uses simulations to assess the
size of the bias due to errors in variables in a more general context. Section 5 concludes.

2. Research�estion and Design of the Example
Experiment

Public goods face individuals with an n-person, continuous action space prisoner’s dilemma.
Standard theory therefore predicts zero contributions. �rough unraveling, this is also the
prediction for a repeated game with known end. It is well known that experimental results
look di�erent. In a typical group, at the beginning participants on average contribute about
half of their endowment. But contributions decay with repetition. Chaudhuri (2011), Led-
yard (1995), Zelmer (2003) summarize this literature. Fehr and Gächter (2000) show that if
participants are given the possibility to punish each other, at a cost, contributions stabilize
at a high level.

�e example experiment is interested in understanding how punishment is able to reduce
free riding. Arguably, free riders hold standard preferences. In principle they should anti-
cipate sanctions. If the expected value of the sanction is larger than the gain from defection,
they should contribute the amount they expect punishers to enforce. Now in a typical public
good experiment, punishment is meted out by other participants. Would-be free riders do
not know with certainty which norm the punishers will try to enforce, and how severe the
sanction will be. �is explains why punishment may change the dynamics of the game. In
the beginning of the game, participants tempted to free ride must rely on their beliefs. Exper-
ience makes it possible to update their expectations about the individually most pro�table
contribution level. In principle these adjustments should make contribution choices volatile,
but should not induce a trend. �is is di�erent if punishers condition intervention on the
overall cooperativeness in the group.

In the foregoing argument, experienced punishment is just information. Seeing another
group member punished should be as important as being punished oneself. Severity is only
relevant in a yes or no fashion: if free riding still pays (albeit a bit less), the free rider does not
change her behavior; as soon as punishment makes free riding a bad deal, the participant con-
tributes exactly the amount she expects to be enforced. �ere are several ways of explaining
why free riders might exhibit a marginal reaction to severity. A purely cognitive explana-
tion would be: severity informs them about the degree by which punishers are determined
to enforce their norm. Severity of experienced punishment would be information about the
expected certainty of future punishment. An alternative explanation is motivational. It re-
quires that free riders are not completely sel�sh. �ey hold some rudimentary form of social
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preferences. Yet on their own, these preferences are not strong enough to counteract the
pull of the pro�t motive. Punishment compensates for the insu�cient strength of the social
preference. Engel (2014) shows that social preferences may make punishment e�ective even
if its expected value is so low that a perfectly sel�sh individual would not be deterred. �e
more severe the sanction, the more likely it is to be strong enough.

�us far the argument assumes risk neutrality. Empirically, risk preferences are heterogen-
eous. �e majority of a typical experimental population is risk averse. A risk averse subject
evaluates the certainty equivalent more positively than a lo�ery with the same expected
value. �e subject has a preference for certainty. Consequently, for risk averse participants
the information about certainty is even more relevant. �ey expect to loose even more utility
from punishment. �is yields the following hypothesis:

Hypothesis 1 �e more a participant is risk averse, the more she increases her contributions
to a linear public good a�er having been punished in the previous period.

To test this hypothesis, we reanalyze data generated for testing the interplay between social
preferences and punishment. �e data is taken from Engel (2014). 4 participants i ∈ {1, . . . , 4}
in group k play in each round t a linear public good where pro�t πikt is given by (1)

πikt = e− cikt + µ
∑
i

cikt (1)

�e experiment uses standard parameters with endowment e = 20 and marginal per capita
rate µ = .4. To each group a ��h participant is randomly assigned. �is participant gains
a �xed period income of 25 tokens. She has an additional endowment of 20 · 1

4 tokens that
she can use to punish any of the active group members. Any token not used for punishment
she keeps for herself. �e �ne to fee ratio is 1 : 12. A�er the end of the �rst round, there
is a surprise restart with another 10 rounds of the same game. Participants are rematched
every period. Following the procedure that is standard in the experimental literature (see e.g.
Charness, 2000; Montero, Se�on and Zhang, 2008) participants are assigned to unannounced
matching groups of size 10, to preserve independence.

A�er the main experiment, a ba�ery of post-experimental tests is administered. For the
purposes of this paper, only the test for risk aversion is of interest. �e experiment uses the
test introduced by Holt and Laury (2002). Choices in the risk task for the 72 participants
holding the active role are shown in Figure 1. Vertical reference lines denote participants
with inconsistent choices.3

�e experiment was conducted in the Cologne Laboratory for Economic Research in 2012.
�e experiment was implemented in zTree (Fischbacher, 2007). Participants were invited
using the so�ware ORSEE (Greiner, 2004). Of 90 participants 80 were students of various
majors with a mean age 25.4. 44% were female. Participants on average earned 15.11 e

3If, for a given participant, a more risky choice (◦) is below a safer choice ( ), this participant preferred the
risky choice when the probability of the good outcome is small, but not when the probability of the good
outcome is large. We call this choice inconsistent. We also call a choice inconsistent if the probability of
the good outcome is p = 1 but still the lo�ery with the smaller spread (with the smaller payo�) is preferred
over the lo�ery with the larger spread.

4



0.2
0.6

1.0

Participants

p
=

P
(g
oo

d
ou

tc
om

e)

4 12 24 40 42 72
11 13 23 25 39 41 71

Figure 1: Choices in the risk task
�e panel shows choices for each participant: ◦ if the participant chose the lo�ery with the larger spread and
nothing if the participant chose the smaller spread. Vertical reference lines denote participants with inconsistent
choices (see Footnote 3). Participants are ordered by their risk a�itudes, with the more risk seeking participants
at the le�.

(19.82$ on the days of the experiment), 14.80e for active players, and 16.38e for authorities.
�e experiment had 3 sessions of 30 participants (6 groups of 4 active participants; 6 passive
authorities).

3. How to Deal with an Inconsistent Measure for Risk
A�itudes?

3.1. The estimation problem
We eventually want to estimate the following model:

∆cikt = β0 + βξξikt + βpp
c
ik + βξ×p ξikt · pcik + νk + ν ′ik + εikt (2)

∆cikt is the change of contribution to the public good of individual i from matching group
k at time t. ξikt is the total punishment received by individual i from group k at time t− 1,
i.e. the punishment received in the previous period. pcik is our measure for risk aversion of
individual i from group k. νk is a random e�ect for group k. ν ′ik is a random e�ect for
individual i from group k. εikt is the residual. In line with Hypothesis 1 we expect the
interaction term βξ×p to be positive.

To test our hypothesis, we need for each active participant a reliable measure pcik of her
risk aversion. �is is what we use the test by Holt and Laury for. �ey design a task where
participants choose between a (safe) lo�ery with a small spread, p · 2$+ (1− p) · 1.6$, and a
(risky) lo�ery with a large spread, p · 3.85$+ (1− p) · .1$, where the probability of the good
outcome is p ∈ {.1, .2, .3, . . . , 1}. If we assume that preferences for money follow e.g. CRRA,
i.e. u(z) = z1−r, then the critical value of pc where participants are indi�erent between the
more safe and the more risky choice is a monotonic function of their relative risk aversion r.
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We can then either describe participants by r or by their critical value of pc. In the following
we will use pcik to describe preferences of individual i in group k.4

Figure 1 shows behaviour in the risk task. Choices where a participant chose the lo�ery
with the larger spread are denoted with a ◦, choices where the participant chose the lo�ery
with the smaller spread are le� blank. In the �gure we have ordered participants from the
most risk loving on the le� to the most risk averse on the right. Ideally, we should expect
that each participant i in group k can be characterized by a single switching point pcik such
that the following holds:

choiceik(p) =


risky if p > pcik
either safe or risky if p = pcik
safe if p < pcik

(3)

We call a participant i in group k consistent i�

max{p|choiceik(p) = safe} < min{p|choiceik(p) = risky)} . (4)

For a consistent participant a pcik can be found such that all choices can be rationalised with
Equation 3. Indeed, 82% of the participants in this sample are consistent. We call a participant
inconsistent if 4 does not hold, i.e. not all their choices can be rationalised with Equation 3.
�e choices of 18% of the participants are inconsistent.

A certain amount of inconsistent choices is typical for this test. Some researchers react
by using an alternative test that forces consistency. Eckel and Grossman (2008) directly ask
participants for the switching point. Depending on the research question, this may be satis-
factory. But we note that this method does not obtain information about the consistency of a
participant’s choice. Below we will argue that information about consistency may be useful.

Sometimes inconsistent choices might result from a sub-optimal design, and a re-run of
an experiment might be recommended. However, an experimental design that mechanically
forbids inconsistencies also prevents the researcher from observing natural and informative
heterogeneity among participants. Should one just ignore this data? Or should one, instead,
try to make sense of this data? If so, should one make a distinction between participants who
gave consistent answers and those who did not? We think one should. If participants have
di�culties answering this task in a consistent way, it is essential to learn as much as possible
about these di�culties. At the least the fact that a participant had a hard time deciding
which lo�ery to prefer informs us about the reliability of our measure of risk a�itude. �e
inconsistency may even be more than confusion or fatigue; it may tell us something about
the con�dence a participant has in expressing her a�itude towards risk.

Looking at Figure 1 again we see that the be�er part of these inconsistencies can be found
among the more risk loving participants. Systematically dropping these observations might
not only introduce a selection bias but might also make the remaining measure of risk a�i-
tudes appear unrealistically precise and, thus, lead to a bias due to errors in variables.

4We later estimate, for each participant, the precision of the measure. �is can be done in a more straightfor-
ward way with pcik as a measure of risk aversion.
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3.2. No correction for errors in variables
In the example study, the aim is to explain punishment behaviour as a function of the a�itude
towards risk. �e la�er is described as a switching point pcik in the Holt and Laury task. In
Section 3.2 we comparatively assess four alternative approaches for dealing with inconsistent
choices. All four approaches can be used to estimate Equation 2, but all assume that pcik could
be measured with in�nite precision. As a result none of these four approaches addresses the
errors in variables problem. In Section 3.3 we present two more approaches which estimate
the decision process determining pcik simultaneously with Equation 2. �ese approaches
o�er a solution for the errors in variables problem.

Drop inconsistent observations (DROP) �is procedure would require to remove from
our sample the 18% of the participants which are inconsistent according to 4. In Figure 2
these are the participants which are crossed out by a vertical dashed line. For the remaining
82% of our participants we de�ne the switching point as follows:

p̂c,D
it =

max{p|choiceik(p) = safe}+ min{p|choiceik(p) = risky)}
2 (5)

Figure 2 suggests that inconsistent behaviour could be more likely with risk seeking par-
ticipants. �e DROP procedure might, hence, selectively remove risk seeking participants
from the sample. It also does not tell us anything about the precision of pcik, i.e. it does not
help us to address the errors in variables problem.

Counting the number of safe choices (COUNT) Holt and Laury (2002) propose to re-
place the switching point for inconsistent participants by simply counting the number of
safer choices. To ease the comparison with the other measures we use the following linear
transformation:

p̂c,C
it =

1
20 +

1
10

∑
p

[choiceik(p) = safe] (6)

Figure 2 shows the resulting estimates of risk preferences as a thick do�ed line. �is proced-
ure addresses the selection bias but not the errors in variables problem.

A logistic regression to estimate switching points (LOGIS) We could describe the
probability that individual i in group k chooses the lo�ery with the larger spread conditional
on the probability p of the good outcome as a logistic function L of a linear function of p:

P(riskyik|p) = L (β0,ik + β1,ikp) where p ∈ {.1, .2, . . . , 1} (7)

�e value of p where the P(riskyik|p) = 1/2, i.e. where individual i in group k chooses the
more risky and the safer lo�ery with equal probabilities, is our estimated switching point
p̂c,L
ik . It is given by

p̂c,L
ik = −β̂0,ik/β̂1,ik . (8)
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�e dashed line in the bo�om part Figure 2 shows for each individual the critical value p̂c,L
ik

obtained with this method.5 As Figure 2 demonstrates, the results obtained with LOGIS are
similar to COUNT, except for participants 13 and 42.6 �e top part of the same �gure shows
for each individual the coe�cient β̂1,ik. When this coe�cient is large then P(riskyik|p) is
either close to 1 or close to 0 for most values of p. A large coe�cient is, hence, a measure of
consistency. When we use maximum likelihood to estimate Equation (7) we should expect
that for consistent choices β̂1,ik → ∞. Since numerical precision is limited we �nd for
consistent choices in our estimation 432 6 |β̂1,ik| 6 447 which is clearly smaller than +∞,
but already su�ciently large to make sure that the actual choices are made almost with
certainty.7 Still, we should keep in mind that it is only numerical imprecision which yields
�nite values where we should see a +∞.

Looking at Figure 2 again we see two (related) problems:

1. For the 18% inconsistent choices we have β̂1,ik 6 13. �ese choices are clearly more
noisy than the 82% consistent choices with β̂1,ik > 432 but it is not obvious how to
re�ect this di�erence in precision in our estimate of Equation (2).

2. �e estimation of Equation 7 yields for two participants (13 and 42) negative values for
β̂1 (−6.1 and −445). �ese participants choose the safer lo�ery more frequently when
the probability of the good outcome is larger. �e LOGIS model does not tell us how
one should interpret the data for these cases.

We will argue below that these 18% inconsistent participants can serve two purposes. First,
although their observations are noisy, dropping them leads to a selection bias. Second, and
more importantly, the noise of these observations allows us to address the errors in variables
problem. If 18% of our participants clearly violate consistency we should perhaps not expect
that the remaining 82% are ultimately precise. �e inconsistent 18% will allow us to be�er
assess the precision of the remaining 82% consistent observations.

Estimation results for DROP, COUNT and LOGIS Table 1 shows the estimation results
for Equation 2 for di�erent ways to deal with inconsistent observations. We see that, regard-
less which method we use here, the di�erences are not very large. We �nd β̂ξ×p somewhere
between −1.17 and −0.876. Whichever approach we use, we have a negative e�ect. �e more

5Note that LOGIS (the same way as the Bayesian methods) easily handles “inconsistent” participants. Figure
1 shows that we have 13 such participants in the dataset.
We have no participants who, independent of p, always choose the risky lo�ery. �ese participants would

correspond to p̂c,L
ik < 0. We have two participants always choose the safe lo�ery. �ey correspond to p̂c,L

ik > 1.
6Since the logistic model is not fully identi�ed it is only a convenient artefact of the numerical implementation

to �nd a unique answer to the question for the optimal switching point. If a participant has chosen the safer
lo�ery for all choices p 6 .6 and the more risky lo�ery for all choices p > .7, the logistic model will estimate
a switching point just in the middle between .6 and .7 at almost exactly .65.

7If a participant is just indi�erent at pc, i.e. β0 + β1p
c = 0, then the next actual choice in the experiment

is made for p = pc + 1/20 and p = pc − 1/20. �e probability of a safe or risky choice there is, hence,
L(β1,ik/20) and L(−β1,ik/20). For β1,ik = 432 we have L(432/20) ≈ 1 − 4.16 × 10−10, L(−432/20) ≈
4.16× 10−10.
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DROP
β 2.5% 97.5%

0 -1.267 -2.776 0.171
ξ 1.356 0.663 2.050
p 1.130 -0.944 3.290

ξ× p -1.172 -2.198 -0.145
σ2 σ 1/σ2

ν ′ik 0.000 0.000 Inf
νk 0.287 0.536 3.483
εikt 10.381 3.222 0.096

COUNT
β 2.5% 97.5%

-0.809 -2.025 0.423
1.208 0.699 1.702
0.457 -1.322 2.190

-0.909 -1.632 -0.166
σ2 σ 1/σ2

0.000 0.000 Inf
0.375 0.612 2.666

10.296 3.209 0.097

LOGIS
β 2.5% 97.5%

-0.732 -1.962 0.496
1.190 0.673 1.692
0.339 -1.426 2.085

-0.876 -1.608 -0.126
σ2 σ 1/σ2

0.000 0.000 Inf
0.379 0.616 2.638

10.301 3.210 0.097

Table 1: ME estimate of Equations 2.

a participant is risk averse (on a scale from 0 for very risk loving to 1 for very risk averse),
the less she reacts to the amount of punishment she has received in the previous period.

To properly interpret this �nding, note the large coe�cient of βξ (1.19 6 βξ 6 1.36,
depending on the model): Irrespective of the estimation procedure, a perfectly risk loving
subject (pc = 0) increases her contributions by more than 1 unit in response to any unit of
punishment she has received in the previous period. �e more the participant is risk averse,
the less intense her reaction. Yet even a perfectly risk averse participant (pc = 1) still exhibits
a small increase of contributions in reaction to punishment (0.184 6 βξ + βξ×p 6 0.313
depending on the model).

A Bayesian approach We do not want to enter a discussion on the comparative merits
of the Bayesian versus the frequentist framework (Bayarri and Berger, 2004, or Kass, 2011
may provide a starting point for a discussion). Below we will employ the Bayesian approach
as a �exible and straighforward method to obtain an estimate for the two decision processes
simultaneously. To facilitate the comparison with the frequentist framework we base our
estimations on vague priors. Bayesian estimation has been shown to work well in the context
of errors in variables models for a long time and for a wide range of situations.8 We will also
demonstrate below that, as long as the frequentist and the Bayesian approach estimate the
same model, the results are (of course) almost indistinguishable.9 Very similar to Equations
7 and 8 above, we describe the probability to choose the risky lo�ery if the probability of the
good outcome is p as follows:

P(riskyik|p) = L ((p− pcik) ·
√
τik) with p ∈ {.1, .2, . . . , 1} (9)

�e idea is the same as in Equations 7 and 8. �e problem is now described in one equation.
We explicitely introduce the parameter τik to measures the precision of the choice of parti-

8Arminger and Muthén (1998), Dellaportas and Stephens (1995), Florens, Mouchart and Richard (1974) and
Polasek and Krause (1993).

9To estimate all Bayesian models we use JAGS 4.0.0. Estimates are based on four chains with each 1000 samples
for adaptation, 4000 samples for burnin, and, for each of the four chains, 10000 samples used for estimating
the distribution. To estimate the mixed e�ects model we use lme4 1.1-12. Frequentist con�dence intervals
are based on a normal bootstrap with 1000 samples.
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cipant ik. �e amount contributed to the public good is as speci�ed above in Equation 2. We
assume the following (vague) priors:10

For the coe�cients from Equation (2):
βl ∼ N(0, 100) with l ∈ {0, ξ,p, ξ× p} (10)

For the switching point from the risk task, Equation (9):
pcik ∼ B(αc,βc) with αc ∼ Γ(2, 1/2);βc ∼ Γ(2, 1/2) (11)

For the precision of the switching point:
τik ∼ Γ(m

2/d2,m/d2); withm ∼ Γ(1, 1); d ∼ Γ(10, 0.1) (12)
�e group speci�c random e�ect in Equation (2):

νk ∼ N(0, 1/
√
τν); with τν ∼ Γ(m

2
ν/d

2
ν,mν/d2

ν);mν ∼ Γ(1, 1); dν ∼ Γ(1, 1) (13)
�e individual speci�c random e�ect in Equation (2):

ν ′ik ∼ N(0, 1/
√
τν ′); with τν ′ ∼ Γ(m2

ν ′/d
2
ν ′ ,mν ′/d2

ν ′);
mν ′ ∼ Γ(1, 1); dν ′ ∼ Γ(1, 1) (14)

�e residual in Equation (2):
εikt ∼ N(0, 1/

√
τε); with τε ∼ Γ(m2

ε/d
2
ε,mε/d2

ε);mε ∼ Γ(1, 1); dε ∼ Γ(1, 1) (15)

Replicating LOGIS (B-LOGIS): Before we come to the results of the simultaneous es-
timation, let us replicate the result of the mixed e�ect estimation of Equation (2) with pcij
based on the LOGIS model within a Bayesian framework. As in the LOGIS case, we �rst
estimate pcik for each participant and then, as a separate problem, estimate Equation (2), but
now using Bayesian inference, and the priors given by (10), (13), (14), (15). �is procedure,
which we call B-LOGIS, can not take into account errors in variables. Estimation results for
the case where inconsistent observations are dropped are shown in Table 2. Here the value
for βξ×p is −0.89, i.e. similar to the corresponding estimate of the mixed e�ects model based
on the LOGIS estimate of pcik (βξ×p = −0.876).

3.3. Correcting for errors in variables
B-JOINT: Compared with LOGIS, the Bayesian framework allows us a simultaneous es-
timation of both decision processes. We can obtain an estimate of precision of pcik that lends
itself to meaningful interpretation. Furthermore, the simultaneous estimation of Equations
(2) and (9) automatically weighs the individual estimate of risk a�itude by its precision. As
a result, the estimation takes into account the errors in variables problem. As above we rely
on a “standard” mixed e�ects model here, with random e�ects only on the intercept. Priors
are as given by Equations (10)-(15).

Estimation results are shown in Table 3. �e le� part shows results for the entire data
set with 72 observations, the right part shows results only for the 59 consistent observations.

10We use N(µ,σ) for the normal distribution, Γ(α,β) for the Gamma distribution and B(α,β) for the Beta
distribution. �e second argument of N(µ,σ) is the standard deviation. τ = 1/σ2 is the precision. �e �rst
argument of Γ(α,β) is shape α, the second is rate β.
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B-LOGIS
Mean 2.5% 97.5%

0 -0.7565 -2.0902 0.5848
ξ 1.2121 0.6880 1.7219
p 0.3559 -1.5321 2.2766

ξ× p -0.8901 -1.6295 -0.1324
τν 7.9661 2.1946 29.9933
τ ′ν 2.2340 0.6166 5.2709
τε 0.0974 0.0875 0.1077

Table 2: Estimating Equations 2 and (9) separately in the Bayesian Framework.
No correction is made for errors in variables. Results are, as they should be, quite similar to the LOGIS or the
COUNT model. We use 4 chains with each 1000 samples and a thinning interval of 100. We obtain an e�ective
sample size of 3943 and a potential scale reduction factor of 1.0005 for ξ× p (Gelman and Rubin, 1992).

B-JOINT B-JOINT-CONSIST
Mean 2.5% 97.5%

0 -1.7651 -2.9991 -0.5696
ξ 3.2480 2.2234 4.3251
p 1.7451 0.1925 3.3990

ξ× p -3.6398 -5.2124 -2.2025
τν 6.8940 2.1041 23.3325
τ ′ν 2.3300 0.6502 5.8009
τε 0.1092 0.0974 0.1218

Mean 2.5% 97.5%
0 -2.4791 -4.0332 -1.0334
ξ 4.2483 3.0818 5.6085
p 2.7848 0.7883 4.9295

ξ× p -5.1555 -7.1253 -3.4713
τν 5.4334 1.6673 17.0042
τ ′ν 2.5509 0.6659 6.5969
τε 0.1136 0.1000 0.1282

Table 3: Simultaneous estimation of Equations 2 and (9) in the Bayesian Framework.
�e simultaneous estimation corrects for errors in variables. �e B-JOINT model uses all data (le� table). We
sample from 4 chains with each 1000 samples and a thinning interval of 100. We obtain an e�ective sample
size of 4334 and a potential scale reduction factor of 0.9998 for ξ× p. B-JOINT-CONSIST uses only consistent
participants (right table). We sample from 4 chains with each 1000 samples and a thinning interval of 100. We
obtain an e�ective sample size of 4105 and a potential scale reduction factor of 1.0010 for ξ× p.

11



0.2
0.4

0.6
0.8

1.0

Participants

p
=
P
(g
oo

d
ou

tc
om

e)

B-JOINT
LOGIS
COUNT

4 12 24 40 42 72
11 13 23 25 39 41 71

0
10

30
50

pr
ec
isi
on
τ
ik

-4
00

0
20
0

LO
GI
S
β
1

Figure 2: Choices, switching points pcik and precision of choice τik
�e bo�om panel shows for each participant the actual choices: ◦ if the participant chose the more risky
lo�ery. Participants are ordered by their median switching points pcik as estimated from the B-JOINT model.
�e solid line denotes the median estimated switching points pcik from B-JOINT. �e dashed line shows the
estimated switching points from LOGIS. Vertical reference lines denote participants with inconsistent choices,
i.e. with more than one switching point. �e panel in the middle shows the estimated values of the participant’s
precision, τ, from B-JOINT. �e top panel shows the estimated value of β1 from LOGIS.

Figure 6 in Appendix A shows posterior distributions forατ, βτ and pcik. �ese are, however,
only intermediate results which we skip here. Figure 2 shows the predicted switching points
pcik as a solid line. �e B-JOINT estimate for pcik follows the estimates based on COUNT or
LOGIS, in particular for the central values of pc. For participants where LOGIS and COUNT
estimate more extreme values of pc, B-JOINT takes a more conservative approach. E.g. the
extreme risk aversion of the rightmost participants in Figure 2 is not really in line with the
distribution of the remaining values of pcik. B-JOINT estimates, hence, a smaller precision
τik, and, accordingly, adjusts the value of pcik more towards the centre of the distribution.

For individuals 13 and 42 (those, who choose the safer lo�ery more frequently when the
probability of the good outcome was larger) LOGIS estimates with Equation (7) a negative
slope β1 and, hence, a meaningless switching point. For these two individuals the Bayesian
model estimates a precision τik very close to zero.

�e top panel in Figure 2 shows the value of β1 from Equation (7). �e panel in the middle
shows the estimated precision τik from Equation (9). Comparing both panels, one sees that
the B-JOINT estimates are more di�erentiated. �e LOGIS estimates forβ1 are either close to
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Figure 3: HPD and con�dence invervals for Equation 2.
�e �gure shows 95% con�dence intervals for the mixed e�ects model based on LOGIS, DROP and COUNT
estimates for pcik. �e �gure also shows 95% HPD intervals for three speci�cations of the Bayesian model:
B-LOGIS, which is a replication of the B-LOGIS model in the Bayesian framework based on consistent choices
only, B-JOINT-DROP, the joint model based on only consistent choices, and B-JOINT, the joint model for all
choices.

positive or negative in�nity, or close to zero. By contrast the B-JOINT estimates for precision
τik show a more detailed picture of deviation from utility maximising behaviour. For the
consistent choices the estimated parameter for τ is rather large with a median value of 57.4.
For the inconsistent choices τ covers a range from 1.68 to 47.6.

3.4. Selection bias versus errors in variables
While the results of B-JOINT are based on the entire dataset, including the inconsistent de-
cision makers, we also estimate B-JOINT-CONSIST, based on the same model but using only
data from the consistent decision makers. �e comparison of the two models, B-JOINT and
B-JOINT-CONSIST, allows us to decide whether our results are mainly driven by the cor-
rection for errors in variables or by avoiding selection bias. Both models take into account
errors in variables. Both models come to substantial e�ect sizes for ξ× p: −5.16 for B-
JOINT-CONSIST, and −3.64 for B-JOINT. Not controlling for errors in variables in the DROP,
COUNT, or LOGIT models yields e�ect sizes between−1.17 and−0.876. In other words: Cor-
recting for errors in variables (and thereby weighting the individual measure of risk a�itude
with its precision) changes the e�ect size by 210%. Once errors in variables are taken into
account, including inconsistent observations a�ects the e�ect size by only 30%.

Figure 3 compares the estimation results graphically. �e �gure shows con�dence inter-
vals for the uncorrected models and HPD intervals for the B-JOINT models. In particular
when it comes to βξ×p we observe a big di�erence between the B-JOINT model and the
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Figure 4: Predicted ∆c depending on the estimation method.

uncorrected models.
Figure 4 illustrates the bias when not correcting for errors in the measurement of risk. �e

B-LOGIS model suggests that the e�ect of punishment is small (the intercepts of the two lines
are much closer to zero), and that the e�ect of risk aversion on the sensitivity to punishment
is less pronounced (the slopes of both lines are much �a�er). When the bias is removed, one
sees that the e�ect of punishment is large (intercepts are far away from each other) and more
sensitive to risk aversion (both lines have a much steeper slope).

4. Simulation
Should one correct for errors in variables? �e above result seems to suggest that such a
correction is desirable, but how general is this �nding? Here we simulate 100 times a sample
that is similar to the one we studied above. Each sample has a size of 100 participants which
come in 25 groups.

Behaviour in the risk task and in the public good game follows Equations (2) and (9).
�e parameters of the regression are random and in the same order of magnitude as in our
experiment: βl ∼ N(0, 2) for l ∈ {0, ξ,p, ξ× p}. �e random e�ects have a similar variance:
νk ∼ N(0,

√
1/5), ν ′ik ∼ N(0,

√
2/7), εikt ∼ N(0,

√
10). �e risk aversion also follows a

distribution similar to the one in our experiment: pcik ∼ B(6.98, 3.63), τik ∼ Γ(0.847, 0.2).
For each of the 100 simulations we obtain an estimate for the coe�cients of Equation (2).

Here we are speci�cally interested in βξ×p. Figure 5 shows for both methods COUNT and
B-JOINT quartiles of the di�erence between the estimates and the true values, β̂ξ×p−βξ×p.
We see that B-JOINT performs fairly well. �e di�erence β̂ξ×p − βξ×p is close to zero. �e
estimates of COUNT are clearly biased. �ey are too large in the negative and too small in
the positive domain. �is bias is what we should expect if errors in variables are neglected.
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Figure 5: Simulation results
�e �gure shows 25%, 50%, and 75% quantiles of a B-spline (df=5) for di�erent values of βξ×p and for the
di�erent models.

5. Conclusion
We have the impression that a lot can and should be learned from behaviour which looks
inconsistent, i.e. which does not �t the model the experimenter has in mind. We have tried
to make use of seemingly inconsistent data in two ways: directly, by not dropping these
observations, thereby avoiding selection bias, and indirectly by taking more seriously the
lack of precision of all, thereby addressing the errors in variables problem.

We have seen that, even in a situation where errors in variables look small, the di�erence
between a model that neglects the error in variables and one that takes this error into account
can be substantial. �e aim of this paper is to convince the experimental community that it
makes sense to take errors in variables seriously, and that these errors can be handled in a
meaningful, and in a feasible way.

But the reanalysis of the example data set also yields a message that is relevant for criminal
policy: the experience of having been punished has the most profound e�ect on individuals
who are risk seeking. Regardless whether we neglect or take into account errors in variables
we always �nd strong evidence against hypothesis 1. �e size of the e�ect depends, however,
on whether errors are taken into account. For criminal policy, this is welcome news. It
has been claimed theoretically that criminals must in equilibrium be risk-seeking (Becker,
1968). Empirical evidence is only correlational, but supports the point (Cochran, Wood and
Arneklev, 1994; De Li, 2004; LaGrange and Silverman, 1999). Hence those individuals whose
behavior society is most interested to change by the experience of punishment are actually
most sensitive to this experience.

We have also seen that observations which are not, or not perfectly consistent with the-
ories of rational decision making, should not be cast away. Otherwise one risks to estimate
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e�ects that su�er from selection bias and one foregoes the opportunity to address the errors
in variables problem. �e fact that the Holt and Laury task asks each participant to take
multiple risky choices is not a nuisance. It enables the researcher to assess the precision of
his or her instrument.
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A. Posteriors for ατ, βτ and pcik
Figure 6 shows the prior and posterior distribution for pc and for the parameters ατ =
m2/d2, βτ = m/d2 which determine the distribution of τik. According to Equation (11) pcik
follows a Beta distribution. �e vague prior assumes that the parameters αc and βc for this
distribution are from a Gamma distribution (so that a priori pcik follows an almost uniform
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Figure 6: Posteriors for ατ, βτ and pcik

distribution). �e median of the posterior parameters are α = 7.89 and β = 3.95, i.e., as we
also see in the Figure, participants do avoid the extreme values of pc and, not surprisingly,
are more risk averse than risk loving.

According to Equation (12) we assume that the precision τik is drawn from a Gamma dis-
tribution. �e parameters of this distribution are endogeneous. �e median of the posterior
shape parameter is α = 1.16 and the median of the posterior rate parameter is β = 0.027.
Figure 7 shows the posterior distribution of τik as well as the median values of τik for the
individual participants. Conceptually, this is not entirely trivial. O�en we assume that “con-
sistent” choices are in�nitely precise, i.e. τ = ∞. However, if some choices, here 18% of all
participants, are inconsistent, i.e. contain a substantial lack of precision (1.68 6 τ 6 47.6), it
would be foolish to assume that the remaining 82% choices are in�nitely precise.

How can we assess the precision of choices? In Figure 7 we see how the estimator uses
the 18% inconsistent observations as a handle to estimate the le� part of the distribution of
τ. On the right side of the distribution the value of 57.4 for the median consistent decision
maker results from the discrete steps in the Holt and Laury (2002) task which implies a �nite
precision for the consistent choices.
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Figure 7: Precision of choices for τik
�e solid line show the posterior distribution of τik as in Equation 12. �e do�ed line shows the distribution
of the median of τik taken for each participant.
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