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Identification and Decompositions in 
Probit and Logit Models

Probit and logit models typically require a normalization on the error variance for 

model identification. This paper shows that in the context of sample mean probability 

decompositions, error variance normalizations preclude estimation of the effects of group 

differences in the latent variable model parameters. An empirical example is provided for 

a model in which the error variances are identified. This identification allows the effects of 

group differences in the latent variable model parameters to be estimated.
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Introduction

The objective of decomposition methodology is to identify and estimate the separate con-

tributions of differences in parameters and differences in characteristics when accounting for

mean differences in outcome variables for two different population groups. Standard decom-

position approaches appear in the context of a linear model. For nonlinear models some

modification of the standard decomposition methodology is required.

Unlike when one applies the Oaxaca decomposition after OLS estimation, the estimated

conditional expectations of outcome variables in nonlinear models generally are not equal

to the predicted outcome values at mean characteristics. Fairlie (2005) addresses this issue

and suggests a decomposition technique that allows for a detailed decomposition for the

entire set of explanatory variables in the context of probit and logit models. Yun (2004)

extends Fairlie’s approach by proposing a method that is free from path-dependency. Later

decomposition techniques are further extended to other models with discrete and limited

dependent variables (Bauer and Sinning, 2008). Wolff (2012) proposes a decomposition

method for non-linear models that employs simulated residuals. However, like others, the

paper encounters a decomposition identification problem as the error variances in the Probit

model are not identified and hence are normalized to one. The paper acknowledges the

difficulty in finding a solution to the decomposition identification issue.

Our paper closely examines the decomposition identification problem in probit and logit

binomial outcome models. This identification issue complicates the inferences one can draw

from a decomposition into characteristics (explained) effects and parameter (unexplained)

effects. The typical probit/logit model can be motivated along the lines of either a random

utility model or a latent variable model. For illustrative purposes we will first examine the

latent variable motivation in which a latent variable Y ∗
i is defined by

Y ∗
i = Xiβ

∗ + ε∗i ,
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where ε∗i is distributed either N(0, σ2
ε ) or logistic(0, σ2

ε ). In the case of the logistic distribution

σ2
ε = k2π2/3, where k is a scale factor. Although we do not observe Y ∗

i , we do observe the

binary variable Yi = 1 (Y ∗
i > 0). Accordingly, the probit and logit models are obtained from

Prob (Yi = 1|Xi) = Prob (Xiβ
∗ + ε∗i > 0)

= Prob (ε∗i > −Xiβ
∗)

= Prob (ε∗i < Xiβ
∗)

= Prob

(
ε∗i
σε
<
Xiβ

∗

σε

)
= Prob (εi < Xiβ)

= Φ (Xiβ) or Λ (Xiβ)

= Φ (Ii) or Λ (Ii) ,

where Ii = (Xiβ) is the index function, εi =
ε∗i
σε

, β =
β∗

σε
, Φ (Ii) is the CDF for the standard

normal distribution, and Λ (Ii) is the CDF for the standardized logistic distribution.

Typically, the parameter σε is not identified so it is normalized to 1 for the probit model,

and the scale parameter k is normalized to 1 for the logit model (σε = π/
√

3). For most

purposes these normalizations are innocuous. Unfortunately, in the context of decompo-

sition analysis for probit and logit models these normalizations are not so innocuous. In

decomposing mean differences in outcome probabilities for two populations, the natural ob-

jective would be to estimate how much group differences in the β∗ parameters from the latent

variable model contribute to the mean differences in outcome probabilities. Decompositions

based solely on the estimated β̃ probit/logit parameters estimate the effects of group dif-

ferences in
β∗

σε
rather than in β∗. Consequently, group differences in the β∗ parameters are

confounded with group differences in the σε parameters.

It is clear that unless the underlying theoretical latent variable or random utility model

identifies the variance parameter, the decomposition ambiguity is present. On the other hand
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identification could be achieved if the latent variable or random utility model contained a

theoretical restriction in which one of the coefficients in the pre-normalized index function

is unity. Unlike the normalization restriction on probit/logit error variances, this restriction

grounded in theoretical reasoning would not be arbitrary.

Below we provide an example of a random utility model in which the probit/logit vari-

ance parameter is identified through a theoretical restriction that specifies that one of the

coefficients in the index function is equal to 1.

Empirical Example

Although not the subject of a probit/logit decomposition, the mean-variance portfolio model

in Jung et al. (2016) is an example in which the variance of the error in the index function

is identified. The context for the portfolio model is one in which men and women in an

experimental setting choose between a risky typing task characterized by exogenous spells of

unemployment and a secure typing task not subject to unemployment spells. The risky job

carries a risk premium for typing performance and unemployment compensation for spells

of unemployment.

An individual’s expected earnings from the risky job (yri) and the secure job (ysi) are

determined according to

yri = φwu + (1− φ)γrψi

ysi = γsψi,

where φ is the probability of unemployment, wu is the amount of unemployment compensa-

tion, ψi is one’s expected productivity, and γr and γs are the respective returns to produc-

tivity on the risky and secure jobs (γr > γs).

Similarly, the conditional (on ψi) variances of earnings from the risky job (σ2
ri) and the
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secure job (σ2
si) can be shown to be determined according to

σ2
ri = (φ)(1− φ)(γrψi − wu)2

σ2
si = 0.

The additive random utilities of the job gambles are expressed as

Usi = ysi + εsi (secure job)

Uri = yri −
α

2
σ2
ri + εri (risky job),

where α is the Pratt-Arrow measure of constant relative risk aversion and εsi and εri are

independently and identically distributed extreme value disturbances. If we let Jr = 1 when

the risky job is chosen (0 otherwise), the probability that one would select the risky job is

given by

Prob(Jri = 1) = Prob (Uri > Usi)

= Prob
(
yri −

α

2
σ2
ri + εri > ysi + εsi

)
= Prob

(
yri − ysi −

α

2
σ2
ri > εsi − εri

)
= Prob

(
εsi − εri
σε

<
yri − ysi
σε

− α

2σε
σ2
ri

)
= Prob

(
εsi − εri
σε

< Ii

)
= Λ (Ii) ,

where σε =
√
V ar(εsi − εri), Ii = θ1 (yri − ysi) + θ2

(
−σ2

ri

2

)
, θ1 =

1

σε
> 0, and θ2 =

α

σε
T 0.

It follows that the logit standard deviation is identified from σε =
1

θ1
, and the variance

from σ2
ε =

1

(θ1)
2 . One can estimate α as α̃ =

θ̃2

θ̃1
. Furthermore, with this model one can

directly compare the α̃m and α̃f risk aversion parameter estimates for males and females and
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therefore identify the effect of the gender difference in the α’s on the probability of choosing

the risky job.

Unlike the case for probit, maximum likelihood estimation of a logit model with a con-

stant term has the property that the sample proportion for the binary outcome variable

is identical to the sample mean of the predicted probabilities. However this property does

not hold in the present case because of the absence of an intercept term. Consequently, we

add a remainder term to account for any deviations between sample proportions and mean

probability predictions.

We can now proceed with the logit decompositions of the observed gender difference in

the sample proportions of those choosing the risky job. The sample proportion and the mean

predicted probability for a given group are defined by

P̄rj =

Nj∑
i=1

Jri

Nj

P̃rj =

Nj∑
i=1

Λ(Ĩij)

Nj

,

where Ĩij = θ̃1j (yrij − ysij) + θ̃2j

(−σ2
rij

2

)
, j=m,f. The sample proportion is equal to the

mean predicted probability plus a remainder (δj):

P̄rj = P̃rj + δrj.

For a conventional decomposition one could define the counterfactual probability for women

as

P̃m
rf =

Nf∑
i=1

Λ(Ĩmif )

Nf

,

where Ĩmif = θ̃1m (yrif − ysif ) + θ̃2m

(−σ2
rif

2

)
. This counterfactual probability is an estimate
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of the mean probability of choosing the risky job if women had the same θ parameters as

the men but retained their own characteristics. Accordingly, the decomposition would be

P̄rm − P̄rf =
(
P̃rm − P̃m

rf

)
︸ ︷︷ ︸

explained

+
(
P̃m
rf − P̃rf

)
︸ ︷︷ ︸

unexplained

+ (δrm − δrf )︸ ︷︷ ︸
remainder

.

The “unexplained” component of the decomposition measures the gender probability gap

attributable to gender differences in all parameters, i.e. the α’s and the σε’s. However, this

decomposition does not answer the more interesting question of how much of the gender

difference in the probability of choosing the risky job stems from gender differences in risk

preferences.

Because the Pratt-Arrow constant relative risk aversion parameter α is identified, it is

feasible to construct a decomposition that measures the contribution of gender differences

in risk preferences to gender differences in the probability of choosing the risky job. Toward

this end we construct a new counterfactual probability for women:

P̃αm
rf =

Nf∑
i=1

Λ(Ĩαmif )

Nf

,

where Ĩαmif = θ̃1f (yrif − ysif ) + θ̃1f α̃m

(−σ2
rif

2

)
. This counterfactual probability is the esti-

mated mean probability that women would choose the risky job if they had the same risk

preference as the men but retained their own characteristics including their own logit error

term variance. This scenario gives rise to the following decomposition:

P̄rm − P̄rf =
(
P̃rm − P̃αm

rf

)
︸ ︷︷ ︸

endowments

+
(
P̃αm
rf − P̃rf

)
︸ ︷︷ ︸
risk preferences

+ (δrm − δrf )︸ ︷︷ ︸
remainder

.

The “risk preferences” component measures how much of the mean gender probability gap

arises purely from gender differences in the α constant relative risk aversion parameter. The

8



“endowment” component of the decomposition measures how much the gender probability

gap arises from a) gender differences in the difference between expected earnings in the risky

job and the secure job, b) gender differences in the conditional variance of earnings from the

risky job, and c) gender differences in the variance of the error term in logit model.

It is possible to further decompose the endowment component to identify the effects of

gender differences in the standard deviation σε of the logit error term. First, we introduce

an additional counterfactual probability for women:

P̃
σεm
rf =

Nf∑
i=1

Λ(Ĩ
σεm
if )

Nf

,

where Ĩ
σεm
if = θ̃1m (yrif − ysif ) + θ̃1mα̃f

(−σ2
rif

2

)
. This counterfactual is the predicted mean

probability for choosing the risky job if women had the same logit error term variance as the

men but retained their own characteristics and risk preferences. We start with the previous

decomposition and add and subtract the term
(
P̃
σεm
rf − P̃rf

)
to obtain

P̄rm−P̄rf =
[(
P̃rm − P̃αm

rf

)
−
(
P̃
σεm
rf − P̃rf

)]
︸ ︷︷ ︸

net endowment

+
(
P̃
σεm
rf − P̃rf

)
︸ ︷︷ ︸
standard deviation

+
(
P̃αm
rf − P̃rf

)
︸ ︷︷ ︸
risk preferences

+ (δrm − δrf )︸ ︷︷ ︸
remainder

.

The “net endowment” component measures the contribution of gender differences in char-

acteristics net of the effect of gender differences in the logit error term standard deviations,

and the “standard deviation” component measures how much of the gender probability gap

arises from gender differences in the logit error term standard deviation.

Table 1 reports the estimated logit job choice model. Nearly 75% of the males chose the

risky job compared with about 60% of the females. Although the estimated logit parameters

look quite different between males and females, only the estimated θ1 parameter for males is

statistically significant. This pattern carries over to the derived estimates of risk preference

and the logit standard deviation: only the estimated standard deviation parameter for males
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is statistically significant. A joint likelihood ratio test for equality of the logit parameters

between males and females indicated that one could not reject the hypothesis of equal pa-

rameters, though barely (p value = 0.11). Undoubtedly, small sample sizes contributed to a

lack of precision in estimating the logit models.

The implications of the estimated model for decomposition of the gender difference in

the proportion who chose the risky job are presented in Table 2. The gender gap in sample

probabilities is 15.2 percentage points. The first decomposition examines only the logit

parameters without reference to identification of the risk preference parameter and the logit

standard deviation. Only a negligible amount of the probability gap can be explained by

gender differences in expected earnings and expected variance of earnings (less than 1%). On

the other hand the unexplained component arising from gender differences in the estimated

logit parameters is quite substantial at nearly 88%. The remainder difference is nearly 12%

of the probability gap.

The second decomposition in Table 2 corresponds to the effects of gender differences in

the identified risk preference parameter. The endowment effect accounts for nearly 87% of

the gap while gender differences in the estimated risk preference parameter is quite small at

1.32% of the gap.

The third decomposition in Table 3 separates out the effect of gender differences in the

logit standard deviation. The net endowment effect is quite modest at only about 2% of the

gap. Accordingly, gender differences in the estimated logit standard deviation is substantial

at nearly 85% of the probability gap. What this finding reveals is that what appeared to be a

substantial unexplained gap based on the logit parameters derives from the gender difference

in the error standard deviations and not gender differences in the risk aversion parameters.

One can readily generalize from the above example. When a joint test of group differences

in all of the logit parameters reveals that one cannot reject the null hypothesis that there

are no group differences in the parameters, then one can conclude that all of the outcome

gap arises from differences in the characteristics (explained) plus differences in the remainder
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term. This is the case whether or not the standard deviation parameter is identified. On

the other hand if one can reject the null of equal parameters, then one cannot conduct the

decomposition without identification.

The same analysis can be applied to a probit model. Indeed the mean-variance portfolio

model in Jung et al. (2016) was estimated as a probit1. Empirically, probit and logit results

are quite similar. As is usually the case with decompositions in general, decompositions for

probit/logit are not unique because counterfactuals are not unique. For example we could

have constructed counterfactuals in which the estimated parameters for women are applied

to the characteristics of men. Nevertheless, the identification challenge and solution strategy

remain the same.
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Table 1: Logit Job Choice Model

Males Females

θ̃1 3.073*** 1.200
(0.886) (0.896)

θ̃2 0.168 0.071
(0.188) (0.233)

N 103 89
Chi2 21.38 3.63
α̃ 0.055 0.060

(0.049) (0.160)
σ̃ε 0.325*** 0.834

(0.094) (0.623)
Risky Job Choice 77 53
P̄r 0.748 0.596
P̄rm − P̄rf 0.152

* p < 0.1, ** p < 0.05, *** p < 0.01

Table 2: Decompositions

Decomposition 1
Explained 0.001 0.66%
Unexplained 0.133 87.50%
Remainder 0.018 11.84%
P̄rm − P̄rf 0.152

Decomposition 2
Endowment 0.132 86.84%
Risk Preferences 0.002 1.32%
Remainder 0.018 11.84%
P̄rm − P̄rf 0.152

Decomposition 3
Net Endowment 0.003 1.97%
Standard Deviation 0.129 84.87%
Risk Preferences 0.002 1.32%
Remainder 0.018 11.84%
P̄rm − P̄rf 0.152
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