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Different episodes of economic growth display widely varying distributional characteristics, 

both across countries and over time. Growth is sometimes accompanied by rising and 

sometimes by falling inequality. Applied economists have come to rely on the Growth 

Incidence Curve, which gives the quantile-specific rate of income growth over a certain 

period, to describe and analyze the incidence of economic growth. This paper discusses 

the identification conditions, and develops estimation and inference procedures for both 

actual and counterfactual growth incidence curves, based on general functions of the 

quantile potential outcome process over the space of quantiles. The paper establishes the 

limiting null distribution of the test statistics of interest for those general functions, and 

proposes resampling methods to implement inference in practice. The proposed methods 

are illustrated by a comparison of the growth processes in the United States and Brazil 

during 1995-2007. Although growth in the average real wage was disappointing in both 

countries, the distribution of that growth was markedly different. In the United States, 

wage growth was mediocre for the bottom 80 percent of the sample, but much more rapid 

for the top 20 percent. In Brazil, conversely, wage growth was rapid below the median, 

and negative at the top. As a result, inequality rose in the United States and fell markedly 

in Brazil.
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1 Introduction

Growth episodes have displayed widely different distributional characteristics across countries

and over time. The same rate of growth in average incomes has been accompanied by rising

inequality in some cases, and by falling inequality in others. A large literature on “pro-poor

growth”and, more generally, on the incidence of economic growth processes has developed,

and attracted attention among both researchers and policymakers.

Over time, this literature has come to rely heavily on the Growth Incidence Curve (GIC),

which describes the rate of income growth at each quantile τ ∈ (0, 1) of the (anonymous)

distribution (Ravallion and Chen (2003)). It has been used to compare the distributional

characteristics of growth processes both across countries and over time (see, e.g. Besley and

Cord (2007)). It has also been shown to underlie changes in certain widely-used classes of

poverty and inequality measures, which can be formally expressed as functionals of the GIC

(Ferreira (2012)).

Growth incidence curves have also featured in a long-standing literature that uses counter-

factual income distributions to decompose changes (or differences) in inequality and poverty

over time (or between countries), and to attribute such changes to different factors such as,

for example, changes in worker characteristics or in the returns to those characteristics. The

original contributions to this literature, including Juhn, Murphy, and Pierce (1993), Dinardo,

Fortin, and Lemieux (1996) and Donald, Green, and Paarsch (2000), predate the Ravallion

and Chen (2003) article that introduced the term GIC, and hence do not use it. Yet, each

of those papers sought to account for differences across entire wage or income distributions

– which can be formally expressed as GICs – using counterfactual distributions. Ferreira

(2012) defines counterfactual growth incidence curves as functionals of counterfactual distri-

butions, and establishes the link to this earlier literature on distributional change.

Despite their conceptual importance and widespread practical use, however, formal condi-

tions for identification and inference using growth incidence curves – actual or counterfactual

– have not been established. In this paper, we rely on the formal analogy between distribu-

tional change and treatment heterogeneity to fill that gap. More specifically, we write both

actual and counterfactual GICs in terms of vectors of potential outcomes (Rubin (1977)),

and then apply suitable variants of a number of results from the literature on quantile treat-

ment effects to formally establish the conditions for identification of the GIC. Specifically,

we adapt the identification results in Firpo (2007), where the relevant identification restric-
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tion is the ignorability assumption.1 In our context, it implies that the income distributions

that we observe in two different time periods are generated by two group of factors only: ob-

servable components whose distributions may vary over time, and unobservable components

whose conditional distributions given observables are fixed over time.

We then propose a simple three-step semiparametric estimator for both actual and coun-

terfactual growth incidence curves, which relies on established sample re-weighting and quan-

tile regression techniques. In the first step, a nonparametric estimator of the propensity score

is used, and weights are computed. In our setup, the propensity score is computed by pooling

the repeated cross-section data for initial and end periods and calculating the probability of

being observed at the final period, given covariates. In the second step, one obtains properly

weighted quantiles of the outcome from a simple weighted quantile regression. The third

step is the computation of the GIC as a function of the vector of quantiles of weighted out-

come distributions.2 When applied to counterfactual GICs, this procedure has the added

advantage that it requires no assumption on the structural relationships between income and

its covariates, as was the case with most of the previous literature.

We establish the asymptotic properties of these estimators, propose suitable test statis-

tics, and discuss inference procedures in practice. For practical inference we compute critical

values using resampling methods. We provide sufficient conditions and show the theoretical

validity of a bootstrap approach. Moreover, we discuss in detail an algorithm for its practi-

cal implementation. We also discuss computation of critical values through a subsampling

method.

The main technical contributions of the paper are as follows. The first is to develop

practical statistical inference procedures for the GIC. This enables researchers to conduct

estimation and inference for the GIC over the entire set of quantiles. Secondly, we can easily

extend our results to general functionals of the vector of quantiles of potential outcomes and

not only the one that yields the GIC, which allows us to develop testing procedures for

general hypotheses involving these functionals.3 An additional by-product contribution of

1This condition has been employed widely in the distributional treatment effect literature. See not only
Firpo (2007), but also, among others, Flores (2007), Cattaneo (2010), and Galvao and Wang (2015).

2A natural extension of our method – not pursued in this paper – would be to implement a fourth step,
which would involve estimation and inference of real-valued functionals of the GIC process, such as poverty
and income inequality growth.

3The theoretical results derived in this paper can be applied to other functionals of the quantiles of
potential outcomes processes. For instance, the quantile treatment effects in Firpo (2007), and the Makarov
bounds for the quantiles of the distribution of treatment effects discussed in Fan and Park (2010), although
following a more elaborate formula, are also functionals of the quantiles of the potential outcomes. In
general, our final estimator can be seen as a plug-in estimator of the functional using the estimated quantiles

2



this paper is to establish the asymptotic properties of the estimator of the vector of quantiles

of weighted outcome distributions for the quantile process, namely, uniform consistency and

weak convergence. The provision of uniform results over the set of quantiles is a necessary

condition to establish the results for the testing procedures. We also show that the esti-

mator is uniformly efficient, as the asymptotic variance of the estimator coincides with the

semiparametric efficiency bound.

These contributions are closely related to the literature on quantile treatment effects,

which is a particular functional of the vector formed by the quantiles of the potential out-

comes. That literature started with Doksum (1974) and Lehmann (1974) and has expanded

recently (see, e.g., Abadie, Angrist, and Imbens (2002), Chernozhukov and Hansen (2005),

Bitler, Gelbach, and Hoynes (2006), Firpo (2007), Cattaneo (2010), Donald and Hsu (2014),

Galvao and Wang (2015), and Firpo and Pinto (2015)).4

We illustrate the proposed procedure by comparing actual and counterfactual growth

incidence curves (for real hourly wages) for the two largest countries in the Western Hemi-

sphere, namely the United States and Brazil, in the twelve years prior to the onset of the last

great financial crisis: 1995-2007. Although growth rates in average wages were disappoint-

ing in both countries (especially in Brazil), there were substantial differences in inequality

dynamics. The GIC for the US was flat until approximately the 8th decile, and sharply

upward-sloping over the top quintile. In Brazil conversely, the GIC peaked around the first

quintile, and was downward sloping thereafter. As a result wage inequality rose sharply in

the US and declined in Brazil.

We use counterfactual GICs to examine whether these changes were driven primarily

by the composition of the labor force - in terms of observed worker characteristics such as

gender, age, and education - or by changes in the broader structure of the economy. In both

countries, we find that increases in worker age (and thus potential experience) and education

contributed to income growth in a roughly equiproportional manner. Changes in inequality

were driven almost entirely by changes in economic structure.

The remainder of the paper is organized as follows. Section 2 defines the GIC. Sec-

tion 3 presents the econometric results, describes the three-step estimator, establishes the

asymptotic properties of the estimator, discusses inference for the quantile process, and its

of potential outcomes.
4The results of this paper are also related to those on inference on the quantile process. See, e.g.,

Belloni, Chernozhukov, and Fernandez-Val (2011), and Qu and Yoon (2015) for the nonparametric case;
Gutenbrunner and Jureckova (1992), Koenker and Machado (1999), Koenker and Xiao (2002), Chernozhukov
and Fernandez-Val (2005), and Angrist, Chernozhukov, and Fernandez-Val (2006) for the parametric case.
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practical implementation. The empirical application to the US and Brazil is presented in

Section 4. Section 5 concludes. We relegate the proofs of the results to the Appendix.

2 Growth incidence curves: Actual and counterfactual

In this section we formally define the growth incidence curve (GIC), which was originally

introduced by Ravallion and Chen (2003). Let Y be the outcome variable of interest, say

an indicator of economic welfare such as income. There are two time periods, 0 and 1.

Let us say that an individual observation taken at time 1 belongs to group A, ie, G = A.

An observation taken at time 0 belongs to group B, or G = B. Assume that income is

continuously distributed over the population of interest, and denote its cumulative distri-

bution function (CDF) at time t as FY |T (·|t). The income level at the τ -th quantile for

groups A and B are given by, respectively, the inverse of the CDF, qA(τ) = F−1
Y |T (τ |1) and

qB(τ) = F−1
Y |T (τ |0). Then, the instantaneous GIC at a given time t and quantile τ can be

represented as
dF−1

Y |T (τ |t)/dt
F−1
Y |T (τ |t) . In discrete time, the income growth rate for a given quantile τ

between two time periods, 0 and 1, can then be written as

GICY (τ) =
qA(τ)− qB(τ)

qB(τ)
.

Motivated by the importance of the GIC for the economic analysis of social welfare, this

paper develops estimation and inference procedures for the GIC(τ), which is calculated as

the difference of quantiles in time periods 1 and 0 over the quantile in time zero, for the entire

set of quantiles τ ∈ (0, 1). We assume availability of a random sample of size n from the joint

distribution of (Y, T,X), where Y is the income, T is a time dummy variable that equals 1

at period T = 1, and X is a vector of length d of covariates. We could have represented the

data equivalently as (Y,G,X).

The covariates enable us to learn how changes in their joint distribution affect growth

and inequality. For an individual i in our sample, if Gi = A we observe Yi(1), otherwise

Gi = B and we observe Yi(0), where Yi(1) is what individual i’s outcome would be were

she observed at time T = 1, and Yi(0) is what individual i’s outcome would be were she

observed at time T = 0. Borrowing from the treatment effect literature, we call Y (1) and

Y (0) ‘potential outcomes’; we say that individual i is ‘treated’ if she is observed at period 1

or group A, and ‘untreated’ if observed at period 0 or group B. We may refer to T as the
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‘treatment assignment dummy’ or, more accurately, ‘time assignment dummy’. Thus, the

observed outcome is Y = (Y (1)− Y (0))T + Y (0).

Writing the problem in terms of potential outcomes is useful because it allows us to

easily write both actual and counterfactual distributions. For example, the actual outcome

distribution for those individuals from group B, that is, those who were observed at time

0, is FY (0)|T (·|0) and the actual outcome distribution for those individuals from group A,

that is, those who were observed at time 1, is FY (1)|T (·|1). The counterfactual outcome

distribution for those individuals who were observed at time 0, were they observed at time

1, is FY (1)|T (·|0) and the counterfactual outcome distribution for those individuals who were

observed at time 1, were they observed at time 0, is FY (0)|T (·|1).

Let τ be a real number in T ⊂ (0, 1) and t = 0, 1. Let qAt(τ) be infq Pr[Y (t) ≤ q|T =

1] ≥ τ , or the τth quantile of FY (t)|T (·|1), which is the distribution function of Y (t) for the

subpopulation A. For the B subpopulation, let qBt(τ) be infq Pr[Y (t) ≤ q|T = 0] ≥ τ , or

the τth quantile of FY (t)|T (·|0). For both subpopulations, those distribution functions share

the same support, which is Yt ⊂ R. Let us also define

QA (τ, τ ′) :=

[
qA1(τ)

qA0(τ ′)

]
, and QB (τ, τ ′) :=

[
qB1(τ)

qB0(τ ′)

]
.

Thus, the GIC can be derived from the previous variables as the growth rate of income

at the τth quantile between periods 0 and 1. We first define the observed or actual GIC as

GIC(τ) :=
qA1(τ)− qB0(τ)

qB0(τ)
=

[
1 0

]
QA (τ, τ)[

0 1
]
QB (τ, τ)

− 1. (1)

The graphical depiction of GIC, as proposed in Ravallion and Chen (2003), is obtained

by letting τ vary from zero to one and plotting the corresponding values of GIC against

the quantiles τ . The quantiles involved in the computation of equation (1) are based on the

ranking of individuals in each distribution of interest. Therefore, unless the individual i keeps

her ranking over time, GIC will not be an appropriate tool to infer individual gains over

time. This is a consequence of the veil of ignorance (anonymity) shrouding the comparison

of the two distributions (see Essama-Nssah, Paul, and Bassole (2013)).

The interpretation of the graphical depiction of GIC is simple. If the GIC is a decreasing

function for all τ in its domain of definition, then all inequality measures that respect the
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Pigou-Dalton principle of transfers and scale invariance will indicate a fall in inequality over

time. If instead, the GIC is an increasing function of τ , then the same measures will register

an increase in inequality (Ravallion and Chen (2003)). When no relative inequality measure

changes over time, then the GIC will present a constant growth rate over the process of

quantiles τ .

Using our previous notation, we can define GIC∗ as the counterfactual GIC. It can be

expressed as

GIC∗ (τ) :=
qB1 (τ)− qB0 (τ)

qB0 (τ)
=

[
1 −1

]
QB (τ, τ)[

0 1
]
QB (τ, τ)

=

[
1 0

]
QB (τ, τ)[

0 1
]
QB (τ, τ)

− 1, (2)

which is the growth incidence curve for quantile τ if the distribution of associated factors

(explanatory variables, or covariates) had remained fixed from period 0 to 1. GIC∗ captures

only that part of distributional change associated with changes in the conditional distribution

FY (·)|T , which we interpret broadly as changes in the structure of the economy.

Comparing GIC with GIC∗ allows us to understand whether heterogeneity in economic

growth is driven by changes in the joint distribution of observed covariates (X) that impact

income, or is driven by changes in the structure of the economy. For example, if GIC is

decreasing in τ but GIC∗ is uniform (flat) over τ , the decrease in inequality is driven by

changes in the distribution of covariates. This interpretation can be formally obtained by

decomposing the GIC(τ) into two components as following:

GIC (τ) = GIC∗ (τ) +GIC∗∗ (τ) · qB1 (τ)

qB0 (τ)
,

where

GIC∗∗ (τ) :=
qA1 (τ)− qB1 (τ)

qB1 (τ)
=

[
1 0

]
QA (τ, τ)[

1 0
]
QB (τ, τ)

− 1

is the growth incidence curve that would have occurred only because of time changes in the

distribution of covariates.

We will develop estimation and inference procedures for the GIC(τ) and GIC∗(τ) and,

more generally, for functionals of the quantile of potential outcomes. In that sense, our

theoretical framework provides a flexible method for the practical analysis of the growth

incidence curves.
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3 The econometric model

In this section we introduce the econometric model, discuss identification, estimation of the

parameters of interest, and inference procedures. As previously seen, GIC can be written

as a function of the vector of quantiles of potential outcomes. Thus, in this section, we

first obtain the results for the latter, and then, for the GIC. Notation: Let E and E be

expectation and sample average, respectively. Let  ,
p→, and

p∗→ denote weak convergence,

and convergence in probability and in outer probability, respectively. Let |g(z)|∞ denote

supz |g(z)| for z ∈ Z.

3.1 Identification

In order to make our setup comparable with the treatment effects literature, we maintain

all definitions and notation as it is commonly used in that framework. Therefore, we have a

random sample of size n from the joint distribution of (Y, T,X), where Y is the outcome of

interest, T is a dummy variable of treatment assignment, and X is a vector of length d of

covariates. For completeness, in this section, we also define qt(τ) as infq Pr[Y (t) ≤ q] ≥ τ ,

for t = 0, 1, which is the unconditional τth quantile of FY (t), the distribution function of

Y (t) whose support is Yt ⊂ R.

Now we define the p-score, the conditional probability of being treated (observed at time

1) given X, as p (X), and the unconditional probability as p. Let X ∈ X ⊂ Rd.

In what follows, it is also useful to define the function m as: m(a, b; τ) = τ − 1{a < b}.
We state assumptions on the general model for identification of the parameters of interest.

I.I For each τ ∈ T , t = 0, 1, qt(τ) uniquely solves E[m(Y (t), qt(τ); τ)] = 0; qAt(τ) uniquely

solves E[m(Y (t), qAt(τ); τ)|T = 1] = 0; and qBt(τ) uniquely solves E[m(Y (t), qBt(τ); τ)|T =

0] = 0.

I.II For all τ ∈ T , we have (Y (1), Y (0)) ⊥ T |X;

I.III For some c > 0, c < p(X) < 1− c, a.e. X.

Assumptions I.I–I.III are standard in the literature, as in Firpo (2007). Condition I.I

is in general not a sufficient identification condition for qt(τ) because Y (t) is not always

observable from the data. Therefore, the untestable condition I.II, the so-called ignorability

assumption, is fundamental. According to condition I.II, the assignment to the treatment is
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random within subpopulations characterized by X. This assumption has been used, among

others, by Heckman, Ichimura, Smith, and Todd (1998), Dehejia and Wahba (1999), Hirano

and Imbens (2004), Firpo (2007). Within the GIC framework this assumption implies that

conditional on X, there is a random mechanism that assigns individual i to the exact period

that she is observed (either period 0 or 1). In our model the triple (Y, T,X) is observable,

and a random sample of size n can be obtained. Condition I.III states that for almost all

values of X, both treatment assignment levels have a positive probability of occurrence.

Under conditions I.I–I.III the quantities q1(τ), q0(τ), qA1(τ), qA0(τ), qB1(τ) and qB0(τ)

are identified from the joint distribution of (Y, T,X). These six objects can be written as

implicit functions of the observed data. For all τ ∈ T ,

E [w1 (T,X)m(Y, q1(τ); τ)] = E [w0 (T,X)m(Y, q0(τ); τ)]

= E [wA1 (T,X)m(Y, qA1(τ); τ)] = E [wA0 (T,X)m(Y, qA0(τ); τ)]

= E [wB1 (T,X)m(Y, qB1(τ); τ)] = E [wB0 (T,X)m(Y, qB0(τ); τ)] = 0,

where w1(T,X) = T
p(X)

, w0(T,X) = 1−T
1−p(X)

, wA1(T,X) = T
p
, wA0(T,X) =

(
1−T
p

)(
p(X)

1−p(X)

)
,

wB1(T,X) =
(

T
1−p

)(
1−p(X)
p(X)

)
and wB0(T,X) = 1−T

1−p . This main identification result follows

directly from Lemma 1 in Firpo (2007).

Finally, given that the elements in the vectors Q(τ, τ ′), QA(τ, τ ′) and QB(τ, τ ′) are iden-

tified, since q1(τ), q0(τ), qA1(τ), qA0(τ), qB1(τ) and qB0(τ) are identified, it follows from

equations (1) and (2) that GIC(τ) and GIC∗(τ) are also, respectively, identified from the

joint distribution of (Y, T,X).

Remark 1. We note that one can also obtain other functionals of interest based on Q (τ, τ ′),

QA (τ, τ ′) and QB (τ, τ ′), which highlights the potential relevance of the proposed methods in

practice. Given the identification result, general functionals of parameters of interest are also

identified, since they can be written as functions of qt(τ), qAt(τ), qBt(τ), and consequently

as functions of the observable variables (Y, T,X). For example, the quantile treatment effect

(QTE) will be ∆ ( τ) = q1(τ)− q0(τ) = [1 − 1]Q (τ, τ) and for quantile treatment effect on

the treated (QTT) will be ∆A (τ) = qA1(τ)− qA0(τ) = [1 − 1]QA (τ, τ). Less common than

the previous two treatment effect parameters, the QTU, the quantile treatment effect on the

untreated, is defined as ∆B (τ) = [1 − 1]QB (τ, τ) = qB1(τ) − qB0(τ). Other functionals,

such as the Makarov bounds for the CDF of Y (1)−Y (0) (Fan and Park (2010)) that explicitly

depend on QA (τ, τ ′) and QB (τ, τ ′) at different points (τ, τ ′), can similarly be obtained from
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the quantiles of potential outcomes.

3.2 Estimation

We are interested in estimation and inference for the GIC(τ) and GIC∗(τ). Equations

(1) and (2) show that GIC can be written as a function of the quantiles of potential out-

comes. Thus, we estimate each component of the vectors Q (τ, τ ′), QA (τ, τ ′) and QB (τ, τ ′)

to construct estimators for the GIC(τ) and GIC∗(τ).

Given identification, we are able to estimate the parameters of interest using a multi-step

estimator as follows.

Step 1 Estimate p(X) parametrically or nonparametrically and obtain an estimator p̂ (X).5

The estimator of p is the sample average of T , i.e., p̂ = n−1
∑n

i=1 Ti.

Step 2 For each (τ, τ ′) ∈ T × T , obtain

Q̂ (τ, τ ′) =

[
q̂1(τ)

q̂0(τ ′)

]
, Q̂A (τ, τ ′) :=

[
q̂A1(τ)

q̂A0(τ ′)

]
, and Q̂B (τ, τ ′) :=

[
q̂B1(τ)

q̂B0(τ ′)

]
,

where, for t = 0, 1, q̂t(τ), q̂At(τ) and q̂Bt(τ) satisfying the following conditions:

E[ŵt(τ − 1{Y < q̂t(τ)})] = 0 (3)

E[ŵAt(τ − 1{Y < q̂At(τ)})] = 0 (4)

E[ŵBt(τ − 1{Y < q̂Bt(τ)})] = 0, (5)

where ŵ1,i = Ti/p̂ (Xi), ŵ0,i = (1− Ti) / (1− p̂ (Xi)), ŵA1,i = Ti/p̂,

ŵA0,i = [(1− Ti) / (1− p̂ (Xi))] [p̂ (Xi) /p̂], ŵB1,i = [Ti/p̂ (Xi)] [(1− p̂ (Xi)) / (1− p̂)]
and ŵB0,i = (1− Ti) / (1− p̂).

In practice, estimators of qt(τ), qAt(τ) and qBt(τ) can be obtained by weighted quantile

5Appendix 6.3 discusses the practical estimation of p(X).
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regressions (QR)

q̂t(τ) = arg min
q

E [ŵt,iρτ (Yi − q)] , (6)

q̂At(τ) = arg min
q

E [ŵAt,iρτ (Yi − q)] and (7)

q̂Bt(τ) = arg min
q

E [ŵBt,iρτ (Yi − q)] , (8)

where ρτ (u) := u(τ − 1{u < 0}) is the check function as in Koenker and Bassett (1978).

Step 3 Finally, we can plug-in estimates of the quantiles of the potential outcomes into the

expressions to estimate GIC in (1) as following

ĜIC (τ) =
q̂A1 (τ)− q̂B0 (τ)

q̂B0 (τ)
=

[
1 0

]
Q̂A (τ, τ)[

0 1
]
Q̂B (τ, τ)

− 1,

where we estimate q̂A1(τ) and q̂B0(τ) as in (7) and (8), respectively. To compute the

corresponding weights, we estimate the propensity score, p(X), by approximating its

log-odds ratio by a polynomial and use the logistic link function with covariates given

below in the data description.

Analogously, we can also estimate the counterfactual GIC∗ in (2) as

ĜIC
∗
(τ) =

q̂B1 (τ)− q̂B0 (τ)

q̂B0 (τ)
=

[
1 0

]
Q̂B (τ, τ)[

0 1
]
Q̂B (τ, τ)

− 1,

which, as described previously, is the growth incidence curve for quantile τ if the distri-

bution of explanatory variables of income had remained fixed from period 0 to 1.

There are other alternative estimators available in the literature for the quantile objects

of interest defined in Step 2 above. Donald and Hsu (2014) discuss an estimator that makes

use of the inverse of the cumulative distribution function (CDF) of the potential outcomes.

Their approach to estimate the quantiles is a three-step procedure. In the first step one needs

to compute weights; in the second step the CDF is computed for all points on its support

by using an inverse probability weighted estimator; and in the third step one obtains the

quantile by inverting the CDF. We show below that the estimator proposed by Donald

and Hsu (2014) and our proposed method are asymptotically equivalent. Nevertheless, the
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estimator discussed in this paper has several practical advantages. First, our estimator for

the quantiles is a two-step method: the first step coincides with the one of Donald and

Hsu (2014), but unlike that method, our QR estimator for the object of interest is obtained

without having to invert the CDF. This is possible because of the second advantage of our

method: QR has a linear program representation, which makes practical computation simple

and allows using weights directly into the objective function that is solved. Finally, if one is

interested in quantiles, and its transformations, using the proposed estimator is attractive

due to its computational efficiency and accuracy in finite samples.6

Remark 2. One can also easily use the multi-step estimator defined above to obtain estimates

for other functionals of interest. For example, the estimator of QTE will be ∆̂ (τ) = q̂1(τ)−
q̂0(τ) = [1 − 1] Q̂ (τ, τ) and for QTT will be ∆̂A (τ) = q̂A1(τ)− q̂A0(τ) = [1 − 1] Q̂A (τ, τ).

Other functionals, such as the Makarov bounds for the quantiles of the distribution of treat-

ment effects, Y (1)− Y (0), are estimated using the analytical expressions of these estimated

bounds as functions of Q̂A (τ, τ ′) and Q̂B (τ, τ ′).

3.3 Asymptotic properties

In this section, we derive the asymptotic properties of the multi-step estimator for the

quantile process. We first focus on the properties of the estimator of qt(τ) and establish

the uniform consistency and the weak limit of q̂t(τ), in `∞(T ). The extension to q̂At(τ) and

q̂Bt(τ) is direct. We also establish the consistency and the weak limit of Q̂(τ, τ ′), Q̂A(τ, τ ′)

and Q̂B(τ, τ ′) in `∞(T ) × `∞(T ). The asymptotic properties of the ĜIC(τ) and ĜIC
∗
(τ)

follow from these results. In addition, we derive the uniform semiparametric efficiency of the

estimator. Finally, we discuss how in practice we estimate weights used to compute q̂t(τ).

The two last results are collected in the Appendix.7

3.3.1 Consistency

Consistency is a desired property for most estimators. For the consistency of process q̂t(τ)

over τ ∈ T , consider the following conditions.

6We refer the reader to Koenker, Leorato, and Peracchi (2013) for a discussion and comparison on the
statistical properties of the distribution regression and the quantile regression approaches.

7In Appendix 6.2, we provide results for the uniform semiparametric efficiency of the estimator. In
Appendix 6.3 we discuss the practical estimation of the corresponding nuisance parameters, wt(·), wAt(·),
and wBt(·).
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QC.I For s, t ∈ {0, 1}, the densities fY (s)|T (·|t) are bounded above and, uniformly in τ ,

positive. Also, for any δ > 0,

inf
|qt(τ)|∞>δ

|E[wt(T,X)(τ − 1{Y < qt(τ)})]∞ > εδ.

QC.II There exists 0 < Mw <∞ such that wt(T,X) < Mw, a.e. (T,X).

QC.III |ŵt − wt|∞ = op(1).

These conditions are standard in the literature. We state QC.I and QC.II for self-

containedness. As usual in the QR literature, QC.I requires the density to be bounded

away from infinity. The second part of QC.I is a standard identification condition. It is

similar to Angrist, Chernozhukov, and Fernandez-Val (2006) and Firpo (2007), and it follows

from I.I–I.III for each τ . QC.II imposes boundedness on the density of X. It is analogue to

Assumption 1(ii) of Firpo (2007) and follows directly from I.III. QC.III requires consistent

estimation of the nuisance parameter. This is a usual requirement corresponding to (1.4) of

Theorem 1 of Chen, Linton, and Van Keilegom (2003).

The following result establishes consistency of the estimator over the set of quantiles.

Theorem 1. Suppose that E[wt(T,X)m(Y, qt(τ); τ)] = 0, and that conditions QC.I–

QC.III are satisfied. Then, for t = 0, 1, as n→∞

sup
τ∈T
|q̂t(τ)− qt(τ)| = op∗(1).

The extension of Theorem 1 to q̂At(·) and q̂Bt(·), t = 0, 1 is direct. The assumptions

QC.I– QC.III are analogous.

3.3.2 Weak convergence

Now we derive the limiting distribution of the general q̂t(τ) estimator. We impose the

following sufficient conditions.

QG.I The functions ŵt(T,X) ∈ Π and ŵt(T,X)
p→ wt(T,X) uniformly in (T,X) over

compact sets, where wt(T,X) ∈ Π, and Π is a function class of uniformly smooth

functions in (T,X) with domain {0, 1} × X .
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QG.II
√
n (E[(ŵt(T,X)− wt(T,X))(τ − 1{Y < qt(τ)})] + E[wt(T,X)(τ − 1{Y < qt(τ)})])

converges weakly.

QG.III |ŵt(T,X)− wt(T,X)|∞ = op(n
−1/4).

Assumptions QG.I–QG.III concern the properties of the weights. They are high level

conditions and will be discussed in the section of the estimation of wt. Conditions QG.I

and QG.II allow for estimated weights. Assumption QG.II is similar to Cattaneo (2010).

Examples satisfying QG.II include smooth function classes. These assumptions allow for

a wide variety of nonparametric and parametric estimators. QG.III strengthens QC.III

such that the estimator of the nuisance parameter converges at a rate faster than n−1/4. A

similar assumption appears in Chen, Linton, and Van Keilegom (2003).

Now we present the weak convergence result.

Theorem 2. For t = 0, 1, suppose that |E[wt(T,X)m(Y, qt(τ); τ)]|∞ = 0, that |q̂t − qt|∞ =

op∗(1), and that conditions QC.I–QC.II, QG.I–QG.III are satisfied. Then, in `∞(T ),

√
n(q̂t − qt) Gt,

where Gt is a mean zero Gaussian process with covariance function E[Gt(τ)Gt(τ
′)>] =

D−1
t (τ)Stt(τ, τ

′)[D−1
t (τ ′)]>, with, for t = 0, 1, and l = 0, 1,

Dt(τ) =
∂E[wt(T,X)m(Y, qt(τ); τ)]

∂qt(τ)
|qt(τ)=qt(τ)

Stl(τ, τ
′) = E [(wt(T,X) (m(Y, qt(τ); τ)− E [m(Y, qt(τ); τ)|X,T = t]) + E [m(Y, qt(τ); τ)|X,T = t])

· (wl(T,X) (m(Y, ql(τ
′); τ ′)− E [m(Y, ql(τ

′); τ ′)|X,T = l]) + E [m(Y, ql(τ
′); τ ′)|X,T = l])] .

The result in Theorem 2 shows that the limiting distribution of the estimator is a Gaussian

process. Thus, if one fixes a quantile at τ̄ , then the limiting distribution collapses to a

simple normal distribution, as in Firpo (2007). For practical inference, below we provide

inference methods over the set of quantiles that are simple to implement in applications.8

As before, the extension of Theorem 2 to q̂At(·) and q̂Bt(·), t = 0, 1 is direct. The assumptions

corresponding to QG.I–QG.III are analogous.

8Firpo and Pinto (2015) present a similar result to Theorem 2. Nevertheless our proof technique is different
on the treatment of both infinite dimension parameters. In addition, we do not require compactness of the
support of X and impose weaker assumptions on ŵt.
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Given the result in Theorem 2, it is simple to establish the weak convergence to the

vector Q̂(τ, τ ′). The results for Q̂A(τ, τ ′) and Q̂B(τ, τ ′) are analogous.

Corollary 1. Assume the conditions of Theorem 2, as n→∞, in `∞(T )× `∞(T )

√
n(Q̂−Q) =

√
n

[
(q̂1 − q1)

(q̂0 − q0)

]
 G =

[
G1

G0

]
,

where G is the vector of Gaussian processes with covariance function

E[G(τ, τ ′)G(τ ′′, τ ′′′)>] =

[
D−1

1 (τ)S11(τ, τ ′′)[D−1
1 (τ ′′)]> D−1

1 (τ)S10(τ, τ ′′′)[D−1
0 (τ ′′′)]>

D−1
0 (τ ′)S01(τ ′, τ ′′)[D−1

1 (τ ′′)]> D−1
0 (τ ′)S00(τ ′, τ ′′′)[D−1

0 (τ ′′′)]>

]
.

In order to perform inference on functions of the Q(τ, τ ′) , we impose a differentiabil-

ity condition on such functions and state a functional delta method result. Consider the

following assumption.

QG.IV (Hadamard) The functional h : `∞(T )× `∞(T )→ `∞(T ) defined over the distribu-

tion of potential outcomes is Hadamard differentiable at Q, with Hadamard derivative

given by h(·)′.

The following result is a well known application of the functional delta method, we include

it for completeness.

Lemma 1. Assume the conditions of Theorem 2, and QG.IV, as n→∞,

√
n(h(Q̂)− h(Q)) h(G)′.

Donald and Hsu (2014) establish the weak convergence of a quantile estimator that

makes use of the inverse of the CDF in their Theorem 3.8. Their result is similar to that

in Theorem 2 above. Nevertheless, as mentioned previously, the quantile estimators are

different. In addition, the assumptions required to establish the results are different. On

the one hand, Donald and Hsu (2014) impose strong conditions to derive the result. For

instance, their Assumption 3.1 requires that the distributions of Y (0) and Y (1) have convex

and compact supports. Their Assumption 3.2 requires all the covariates to be continuous
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and the support of the vector of covariates, X, to be compact. We are able to somewhat

relax these assumptions. Given that we work with a standard semiparametric estimator,

and a quantile regression framework in the second step, we do not require such assumptions

to derive the asymptotic properties of our proposed estimator.

Now we to return to the main object of interest and analyze the growth incidence curves,

GIC(τ) and GIC∗(τ). As an application of Theorem 2 and Lemma 1, we derive the asymp-

totic distribution for GIC(τ). Corollary 1 implies that

√
n(Q̂A −QA) GA, and

√
n(Q̂B −QB) GB,

where GA(τ) and GB(τ) are Gaussian processes with variance-covariance functions that can

be obtained as an application of Corollary 1.

Recall that GIC(τ) = [1 0]QA(τ,τ)
[0 1]QB(τ,τ)

− 1, and GIC∗(τ) = [1 0]QB(τ,τ)
[0 1]QB(τ,τ)

− 1. These functionals

are differentiable at (QA, QB), as long as qB0(τ) 6= 0 with derivatives defined by

GIC(GA,GB)′ =
1

[0 1]QB

[1 0]GA −
[1 0]QA

([0 1]QB)2 [0 1]GB,

and for GIC∗ we have that

GIC∗(GB)′ =

(
1

[0 1]QB

[1 0]− [1 0]QB

([0 1]QB)2 [0 1]

)
GB.

Therefore, from a functional delta method we have the following results.

Corollary 2. Assume the conditions of Theorem 2, as n→∞, in `∞(T )

√
n(ĜIC −GIC)  GIC(GA,GB)′ (9)

√
n(ĜIC

∗
−GIC∗)  GIC∗(GB)′. (10)

3.4 Inference procedures

In this section, we turn our attention to inference procedures on the GIC. Important

questions posed in the econometric and statistical literatures concern the nature of the
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impact of a policy intervention or treatment on the outcome distributions of interest. The

corresponding questions for the GIC are, for example, whether there is significant income

growth at any quantile (the null hypothesis being GIC (τ) = 0 for all τ); and whether growth

is uniform or heterogeneous (GIC (τ) equals the average growth rate, for all τ). One can

also ask if growth is non-decreasing in τ (GIC (τ)′ ≥ 0 for all τ). Since the main objective

of this paper is to study the growth incidence curve, and these questions and hypotheses

are formulated for the entire GIC process, we develop inference procedures for the quantile

process over the set of quantiles indexed by τ .

3.4.1 Test statistics

We seek to develop inference for GIC over the index set of quantiles T . We present

results for functionals of quantiles of the marginal distributions of potential outcomes, and

in particular, the GIC(τ) and GIC∗(τ). Let β(τ) be a functional of Q, QA, and QB, that

is, β(τ) = h(Q(τ, τ)). In particular, we are interested in β(τ) = GIC(τ) = [1 0]QA(τ,τ)
[0 1]QB(τ,τ)

− 1,

and the counterfactual one β(τ) = GIC∗(τ) = [1 0]QB(τ,τ)
[0 1]QB(τ,τ)

− 1.

We discuss three main hypotheses of interest. First, we consider the following standard

null hypothesis

H0 : β(τ)− r(τ) = 0, τ ∈ T , (11)

uniformly, where the vector r(τ) is assumed to be known, continuous in τ over T , and

r ∈ `∞(T ). More generally, the hypothesis in (11) embeds several interesting hypotheses

about the parameters of the quantile function.

Example (The uniformly null effect hypothesis). A basic hypothesis is that the growth inci-

dence curve, GIC(τ), is statistically equal to zero for all τ ∈ T . The alternative is that the

it differs from zero at least for some τ ∈ T . In this case, r(τ) = 0, and relative inequality

remains stable.

The basic inference process to test the null hypothesis (11) is

Wn(τ) := β̂(τ)− r(τ), τ ∈ T .

To derive the asymptotic properties of the above statistic, we need to compute the es-

timator β̂(τ), which is given by β̂ = h(Q̂). The GIC(τ) estimate is β̂(τ) = ĜIC(τ) =
[1 0]Q̂A(τ,τ)

[0 1]Q̂B(τ,τ)
− 1, and the estimate for GIC∗(τ) is β̂(τ) = ĜIC

∗
(τ) = [1 0]Q̂B(τ,τ)

[0 1]Q̂B(τ,τ)
− 1, which for

a fixed quantile τ , has an asymptotic normal distribution as given in Corollary 2.
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General hypotheses about β (τ) can be accommodated through functions of Wn(·). We

consider the Kolmogorov-Smirnov and Cramér-von Mises type test statistics, Vn = f(Wn(·)),
where f(·) is a general functional of the process Wn(·). In particular, we consider different

functionals that lead to different test statistics, such as

V1n :=
√
n sup
τ∈T
|Wn(τ)|, V2n :=

√
n

∫
τ∈T
|Wn(τ)| dτ.

There are many alternative possible statistics as: V3n :=
√
n supτ∈T Wn(τ)2 and V4n :=

√
n
∫
τ∈T Wn(τ)2, dτ , among others. In this paper we concentrate on V1n and V2n.

These statistics and their associated limiting theory provide a natural foundation for

testing the null hypothesis. Now we present the limiting distributions of the test statistics

under the null hypothesis. From Corollary 1 and Lemma 1 under the null hypothesis (H0 :

β = h(Q) = r), it follows that
√
n(h(Q̂) − h(Q))  h(G)′. Thus, the following lemma

summarizes the limiting distributions.

Lemma 2. Assume the conditions of Theorem 2, and QG.IV. Under H0 : β(τ) =

h(Q(τ)) = r(τ), τ ∈ T , as n→∞,

V1n  sup
τ∈T
|h(G(τ))′|, V2n  

∫
τ∈T
|h(G(τ))′| dτ.

When performing tests for the GIC, the limiting distributions of the test statistics under

the null hypothesis follows from Theorem 2. Under the null hypothesis (H0 : GIC(τ) = r(τ)),

it follows
√
n(ĜIC(τ) − r(τ))  GIC(GA,GB)′. Thus, the following corollary summarizes

the limiting distributions. The result for H0 : GIC∗(τ) = r(τ) is analogous.

Corollary 3. Assume the conditions of Theorem 2. Under H0 : GIC(τ) = r(τ), as n→∞,

V1n  sup
τ∈T
|GIC(GA,GB)′|, V2n  

∫
τ∈T
|GIC(GA,GB)′| dτ.

The second hypothesis of interest concerns an unknown r(τ), which needs to be estimated.

In many examples of interest, the component r(τ) in the null hypothesis (11) is unknown

or defined as a function of the conditional distribution and thus needs to be estimated (see,

e.g., Koenker and Xiao (2002) and Chernozhukov and Fernandez-Val (2005)). r(τ) might,
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for example, be GIC(τ) for a different country, or period. Or it might be GIC∗(τ). The

natural expedient of replacing the unknown r in the test statistic by estimates introduces

some fundamental difficulties. The estimate will be denoted as r̂(τ). Let

W̄n(t) := β̂(τ)− r̂(τ), τ ∈ T .

In this framework, we follow Chernozhukov and Fernandez-Val (2005) and assume that the

quantile estimates and nuisance parameter estimates satisfy the following:
√
n-consistent

estimators for β̂(·) and r̂(·), such that
√
n(β̂(·)−β(·)) h(G(·))′ and

√
n(r̂(·)−r(·)) Gr(·)

jointly in `∞(T ), where (h(G(·))′,Gr(·)) is a zero mean continuous Gaussian process with a

non-degenerate covariance kernel. Thus, we have that
√
n(β̂(τ)− r̂(τ)) h(G(τ))′−Gr(τ).

The process remains asymptotically Gaussian; however, the estimation of r(τ) introduces a

new drift component that additionally complicates the covariance kernel of the process.

Under the null hypothesis H0 : β(τ) = r(τ), the test statistics become:

V̄1n :=
√
n sup
τ∈T
|W̄n(τ)|, V̄2n :=

√
n

∫
τ∈T
|W̄n(τ)| dτ.

Example (The uniformly constant (but unknown) effect hypothesis). A basic hypothesis is

that the growth incidence curve, GIC(τ), is statistically equal to the mean growth rate for

all τ ∈ T . , i.e., growth has no distributional heterogeneity. The alternative is that GIC(τ)

differs from the mean at least for some τ ∈ T . In this case, r̂(τ) = γ̂AGR, (where γAGR is

the mean growth rate).

Now we display the limiting distributions of these test statistics under the null hypothesis.

Lemma 3. Assume the conditions of Theorem 2 and that
√
n(β̂(·) − β(·))  h(G(·))′ and

√
n(r̂(·)− r(·)) Gr(·) jointly in `∞(T ), where (h(G(·))′,Gr(·)) is a zero mean continuous

Gaussian process with a non-degenerate covariance kernel.. Under H0 : β(τ) = h(Q(τ)) =

r(τ), τ ∈ T , as n→∞,

V̄1n  sup
τ∈T
|h(G(τ))′ −Gr(τ)|, V̄2n  

∫
τ∈T
|h(G(τ))′ −Gr(τ)| dτ.

This result can be applied to test for the GIC. The limiting distributions of the test

statistics under the null hypothesis follow from Lemma 3 . Under the null hypothesis (H0 :
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GIC(τ) = r(τ)), it follows
√
n(ĜIC(τ) − r(τ))  GIC(GA,GB)′, and

√
n(r̂(τ) − r(τ))  

Gr(τ). The following corollary summarizes the limiting distributions. The result for H0 :

GIC∗(τ) = r(τ) is analogous.

Corollary 4. Assume the conditions of Lemma 3, with β(τ) = GIC(τ), as n→∞,

V̄1n  sup
τ∈T
|GIC(GA,GB)′ −Gr(τ)|, V̄2n  

∫
τ∈T
|GIC(GA,GB)′ −Gr(τ)| dτ.

Finally, we consider testing hypotheses concerning inequalities on both null and alterna-

tive hypotheses as

H0 : β(τ) ≥ 0 vs H1 : β(τ) < 0, τ ∈ T . (12)

The following is an example of hypotheses that may be considered.

Example (The first-order stochastic dominance hypothesis). An important practical hy-

pothesis involves the composite null GIC(τ) ≥ r(τ), for all τ ∈ T , versus the alternative

of GIC(τ) < r(τ), for some τ ∈ T . When r(τ) = 0 and because GIC(τ) = qA1(τ)−qB0(τ)
qB0(τ)

,

such that for qB0(τ) 6= 0, testing whether GIC(τ) ≥ 0 is equivalent to test whether qA1(τ) ≥
qB0(τ), ie, that FY (1)|T=1 stochastically dominates FY (0)|T=0 in first-order.

Therefore, the above example describes a test which is analogous to a first order stochastic

dominance as in Donald and Hsu (2014). These null hypotheses of interest can be formalized

as H0 : β(τ) ≥ 0, and the test statistic becomes:

Ṽ1n :=
√
n sup
τ∈T

W̃n(τ),

where W̃n(τ) = β̂(τ).

We employ the test statistic Ṽ1n since it has been known in the literature that when

the null hypothesis involves an inequality, the set of points satisfying the null hypothesis is

usually not a singleton (see, e.g., Linton, Maasoumi, and Whang (2005)). The typical way

to resolve this is to apply the least favorable configuration (LFC) to find a point in the null

hypothesis least favorable to the alternative hypothesis. Hence, to derive the asymptotic

properties of the above statistic, Ṽ1n, one computes the estimator β̂(τ) and plugs it in, and

given the LFC the limiting distribution is analogous to that in Lemma 2 and Corollary 2.
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To perform practical inference we suggest the use of resampling techniques to approximate

the limiting distributions and obtain critical values. To obtain the critical value for the

first two criteria we use a bootstrap procedure, and for the inequality test we make use of

subsampling.

3.4.2 Practical implementation of testing procedures

Implementation of the proposed tests in practice is simple. First, we discuss the test H0

in (11). To implement the tests one needs to compute the statistics of test V1n or V2n.

Analogously, when r(τ) is unknown, one computes V̄1n or V̄2n. We suggest the use of a

recentered bootstrap procedure to calculate critical values. The steps for implementing the

tests in practice are as follows.

First, the estimates of β(τ) are computed by solving the problems in equations (6)–(8)

and calculating β̂(τ). Second, Wn is calculated by centralizing β̂(τ) at r(τ), and V1n or V2n

is computed by taking the maximum over τ (V1n) or summing over τ (V2n). For the general

case with unknown r(τ), the tests are computed in the same fashion. The only adjustment

is the use of r̂(τ) to compute W̄n. Third, after obtaining the test statistic, it is necessary to

compute the critical values. We propose the following scheme. We use the test statistic V1n

as an example, but the procedure is the same for the other cases. Take B as a large integer.

For each b = 1, . . . , B:

(i) Obtain the resampled data {(Y b
i , T

b
i ,X

b
i ), i = 1, . . . , n}.

(ii) Estimate β̂b(τ) and set W b
n(τ) := (β̂b(τ)− β̂(τ)).

(iii) Compute the test statistic of interest V̂ b
1n = maxτ∈T

√
n|W b

n(τ)|.

Let ĉB1−α denote the empirical (1 − α)-quantile of the simulated sample {V̂ 1
1n, . . . , V̂

B
1n},

where α ∈ (0, 1) is the nominal size. We reject the null hypothesis if V1n is larger than ĉB1−α.

In practice, the maximum in step (iii) is taken over a discretized subset of T .

A formal justification the simulation method is stated as follows. Consider the following

conditions.

QG.IB For any δn ↓ 0, sup||w||Π≤δn |
1
n

∑n
i=1wt(T,X)− E[wt(T,X)]|∞ = op∗(1/

√
n).

QG.IIB
√
n 1
n

∑n
i=1[(τ−1{Yi < qt(τ)})(ŵ∗t (Ti,Xi)−ŵt(Ti,Xi))] converges weakly to a tight

random element G in `∞(T ) in P ∗-probability.
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Theorem 3. Under QC.I–QC.II, QG.IB–QG.IIB and QG.III with “in probability”

replaced by “almost surely”, then, for t = 0, 1, the bootstrap estimator
√
n(q̂∗t (τ)− q̂t(τ)) 

G(τ) in P ∗ -probability in `∞(T ).

Theorem 3 establishes the consistency of the bootstrap procedure. It is important to

highlight the connection between this result and the previous section. In fact, Theorem 3

shows that the limiting distribution of the bootstrap estimator is the same as that of Theorem

2, and hence the above resample scheme is able to mimic the asymptotic distribution of

interest.

Now we move our attention to testing the H0 displayed in (12). As discussed in Linton,

Maasoumi, and Whang (2005), even when the data are i.i.d. the standard bootstrap might

not work well when testing the inequality under the null hypothesis. This is because one

needs to impose the null, which is difficult because it is defined by a complicated system of

inequalities. Thus, we follow Linton, Maasoumi, and Whang (2005) and suggest the use of

a subsampling method, which is very simple to define and yet provides consistent critical

values.

We first define the subsampling procedure. Let Zi = {(Yi, Ti,Xi) : i = 1, ..., n} and

construct all possible subsets of size b. The number of such subsets Bn is “n choose b.”

Let Sn denote our test statistic Ṽ1n computed over the entire sample. With some abuse of

notation, the test statistic Sn can be re-written as a function of the data {Zi : i = 1, ..., n}:

Sn =
√
nsn(Z1, ..., Zn),

where sn(Z1, ..., Zn) is given by supτ∈T [W̃n(τ)], where W̃n(τ) = β̂(τ). Let

Jn(w) = P
(√

nsn(Z1, ..., Zn) ≤ z
)

denote the distribution function of Sn. Let sn,b,i be equal to the statistic sb evaluated at the

subsamples {Zi, ..., Zi+b−1} of size b, i.e.

sn,b,i = sb(Zi, Zi+1, ..., Zi+b−1) for i = 1, ..., n− b+ 1.

This means that we have to recompute q̂t(Zi, Zi+1, ..., Zi+b−1) using each subsample as well.

We note that each subsample of size b (taken without replacement from the original data)
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is indeed a sample of size b from the true sampling distribution of the original data. Hence,

it is clear that one can approximate the sampling distribution of Sn using the distribution

of the values of sn,b,i computed over n − b + 1 different subsamples of size b. That is, we

approximate the sampling distribution Jn of Sn by

Ĵn,b(w) =
1

n− b+ 1

n−b+1∑
i=1

1
(√

bsn,b,i ≤ w
)
.

Let gn,b(1− α) denote the (100− α)-th sample quantile of Ĵn,b(·). We call it the subsample

critical value of significance level α. Thus, we reject the null hypothesis at the significance

level α if Sn > gn,b(1−α). The computation of this critical value is not particularly onerous,

although it depends on how big b is.

The validity of the subsampling methods for the quantile regression process was estab-

lished by Chernozhukov and Fernandez-Val (2005).

A Supplemental Appendix collects Monte Carlo simulations conducted to evaluate the

finite sample properties of the proposed tests. We conduct simulations to evaluate the

performance of these tests in terms of size and power. The results provide evidence that the

empirical levels of the tests approximate well the nominal or theoretical levels. Moreover, the

tests possess large power against selected alternatives. The results are improved when the

sample size increases, nevertheless they are not very sensitive to the numbers of bootstraps.

4 Wage distribution dynamics in the United States and

Brazil, 1995-2007

This section illustrates the usefulness of the proposed methods with an empirical example.

We compute the GIC and GIC∗ for the two most populous nations in the Western Hemi-

sphere, namely the United States and Brazil, for the 1995-2007 period, and compare results.

In particular, we emphasize the role of the following decomposition of the GIC, introduced

in Section 2 and reproduced below:

GIC (τ) = GIC∗ (τ) +GIC∗∗ (τ) · qB1 (τ)

qB0 (τ)
.

The first term in this decomposition is the counterfactual GIC, which keeps the joint
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distribution of observed covariates fixed (see equation 2). Under Assumptions I.I–I.III, this

term can be interpreted as describing the growth process that would have obtained in the

absence of any changes in that joint distribution. The second term of the decomposition is

correspondingly interpreted as the effect of changes in the joint distribution of covariates.

Our reweighting method allows for the direct construction of the counterfactual GIC,

with no need to postulate a structural relationship between wages, covariates and unobserved

terms, as was required by the earlier literature that followed Juhn, Murphy, and Pierce

(1993). Under that approach, economists would typically estimate OLS regressions for the

two time periods separately and then construct a counterfactual wage distribution using

estimated parameters and residuals from time t = 1 but covariates from time t = 0. This

would yield a counterfactual distribution of wages at time t = 1, with a distribution of

covariates that was fixed at time t = 0 (see, for example, Bourguignon, Ferreira, and Leite

(2008)). In addition to requiring strong functional form assumptions, however, it is not clear

how one would perform statistical inference on the counterfactual GIC using that method.

In this section we report the estimates for GIC and its counterfactual counterpart GIC∗,

ĜIC(τ) and ĜIC
∗
(τ) respectively, over τ ∈ T . We also report the corresponding growth

rates in average wages, γAGR and γAGR∗ , respectively, for comparison. Moreover, using the

techniques developed in the previous section, we perform inference on both sets of curves.

Specifically, we apply the uniform tests, Kolmogorov-Smirnov (KS) and Cramér-von Mises

(CVM), to test the following hypotheses:

(i) Constant distribution: (H0 : GIC(τ) = 0 versus HA : GIC(τ) 6= 0);

(ii) Distribution-neutral growth (H0 : GIC(τ) = γAGR versus HA : GIC(τ) 6= γAGR, where

γAGR is the growth rate in the average wage);

(iii) Constant distribution, conditional on covariates, (H0 : GIC∗(τ) = 0 versus HA :

GIC∗(τ) 6= 0);

(iv) Distribution-neutral growth, conditional on covariates (H0 : GIC∗(τ) = γAGR∗ versus

HA : GIC∗(τ) 6= γAGR∗ , where γAGR∗ is the counterfactual growth rate in average

wage).
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4.1 Data

4.1.1 CPS – US

Our data for the United States come from the March supplement to the Current Population

Surveys (CPS) for 1995 and 2007.9 The dataset provides the distribution of labor earnings in

the US in 1995 and 2007 for full-time workers of both genders. We use the following variables

for our analysis. Y denotes real hourly labor earnings (sum of annual pretax wages, salaries,

tips, and bonuses, divided by the number of hours worked annually). The vector X consists

of three covariates of Y , namely: (i) the worker’s age in years; (ii) a gender dummy; and

(iii) a categorical variable for the highest educational level attained (“high school”, “some

college” or “college”).

We restrict the sample to individuals aged 16 to 65 that reported a positive value for

real hourly earnings in the previous year. Individuals with missing values for any of the

four variables in Y and X were excluded from the sample. After applying these filters, we

trimmed the sample by dropping the top and bottom 0.5% of the distribution of hourly

wages in each year, to eliminate outliers. Hourly wages are in US dollars of March 2007.

The Consumer Price Index was used to inflate 1995 incomes: nominal values in 1995 were

multiplied by 1.36 to be expressed in 2007 dollars. The final sample contains a total of

165,245 observations. Summary statistics are presented in Table 1.

Table 1: Summary Statistics – US

Mean S.D. Min. Max. Observations

CPS 1995

Hourly Work Earnings 16.730 11.402 1.047 74.162 69,494
Age 37.039 12.090 16 65 69,494
Male 0.527 69,494

High School 0.333 69,494
College Incomplete 0.295 69,494

College 0.243 69,494

CPS 2007

Hourly Work Earnings 19.626 16.748 1.202 168.280 95,751
Age 39.284 12.807 16 65 95,751
Male 0.525 95,751

High School 0.305 95,751
College Incomplete 0.291 95,751

College 0.297 95,751

9http://www.census.gov/programs-surveys/cps.html
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4.1.2 PNAD – Brazil

The Brazilian data come from the Pesquisa Nacional por Amostra de Domićılios (PNAD),

an annual Brazilian household survey that samples households across (almost) the entire

country.10 It collects information on various household characteristics, as well as individual

incomes and education levels. We use PNAD data for 1995 and 2007. For comparability,

we use the same four variables as for the CPS: real hourly labor earnings, age, gender, and

a categorical educational attainment variable. IBGE, the Brazilian Statistics Bureau that

is responsible for running PNAD, started including the rural Northern region in the PNAD

sample after 2004 but, for comparability across years, we do not use information on the rural

North for 2007.

As for the US, we restrict the sample to individuals aged 16 to 65 that reported a positive

labor income in the previous year. Individuals with missing values for income or any of our

three covariates were excluded from the sample. The top and bottom 0.5% of the distribution

of hourly wages in each year was trimmed, as in the CPS. Hourly wages are in Brazilian reais

(BRL) of September 2007, which means that nominal values in 1995 were multiplied by 2.89

to be expressed in 2007 prices. The final sample contains a total of 275,749 observations.

Summary statistics are presented in Table 2.

Table 2: Summary Statistics – Brazil

Mean S.D. Min. Max. Observations

PNAD 1995

Hourly Work Earnings 5.565 7.312 0.300 61.317 119,770
Age 34.924 11.936 16 65 119,770
Male 0.631 119,770

High School 0.131 119,770
College Incomplete 0.046 119,770

College 0.064 119,770

PNAD 2007

Hourly Work Earnings 5.659 6.978 0.312 62.500 155,979
Age 36.367 12.025 16 65 155,979
Male 0.589 155,979

High School 0.259 155,979
College Incomplete 0.085 155,979

College 0.094 155,979

A comparison of Tables 1 and 2 reveals considerable differences between the two labor

10In 1995, PNAD did not survey households in the rural areas of Acre, Amapá, Amazonas, Pará, Rondônia
and Roraima — six states in the Amazon region.
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forces. US full-time workers are on average some three years older than their Brazilian

counterparts, and earn much higher wages: the nominal exchange rate in September 2007

was 1.90 BRL to the USD, so average wages in 2007 in this sample were approximately 6.6

times higher in the US than in Brazil. US workers are also much more educated, and the

female share of the labor force is higher there. Over the twelve years between 1995 and

2007, both labor forces became a little older, and more educated. Educational attainment

rose in both countries, but more markedly in Brazil, which started from a much lower level.

Completion of high school in Brazil almost doubled over the period, and the college-educated

share also rose from 6.4% to 9.4%. The female share of the labor force was essentially stable

at 47% in the US, but rose from 37% to 41% in Brazil, driven primarily by a higher rate of

female labor force participation (Ferreira, Firpo, and Messina (2016)).

4.2 Results

Before we present results for the GIC, we compute standard inequality measures for hourly

real wages for both countries. Table 3 summarizes some of the main changes in the wage

distributions in the US and Brazil over this period. The first panel presents five common

measures of relative wage inequality for the two countries in 1995 and 2007, as well as

for the counterfactual wage distribution FY (1)|T (·|0). The inequality measures are the Gini

coefficient, the Theil-T index (that is, the Generalized Entropy measure with parameter = 1),

the mean log deviation (also known as Theil-L, or GE (0)), the relative mean deviation, and

the standard deviation of logarithms. The second panel presents the growth rate in mean

hourly wages (γAGR) and the average of quantile-specific growth rates, across quantiles,

denoted Mean GIC.

Table 3: Inequality measures hourly real wages (HRW) – US and Brazil

US Brazil
Factual Counter Factual Factual Counter Factual

1995 2007 1995 2007

Gini 0.355 0.383 0.381 0.539 0.490 0.473
Theil Entropy 0.205 0.260 0.258 0.536 0.457 0.444

Theil mean log deviation 0.218 0.254 0.250 0.511 0.411 0.383
Relative mean deviation 0.257 0.274 0.272 0.404 0.366 0.348

Standard deviation of logs 0.682 0.710 0.703 0.963 0.852 0.814

Growth of mean wage (γAGR) 0.173 0.101 0.017 -0.150
Mean GIC 0.127 0.063 0.138 -0.016
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Below we discuss the findings for each country separately, including the KS and CVM

tests of the four hypotheses listed earlier, before briefly comparing results across countries.

4.2.1 United States

Figure 1 presents the estimates for the GIC and GIC∗, and their corresponding 95% con-

fidence intervals, for the US in the period 1995-2007. The blue line displays the GIC, and

the straight horizontal black line represents the corresponding average growth rate, γAGR.

The green line displays the counterfactual growth incidence curve, GIC∗, and the dashed

red line shows its corresponding mean effect, γAGR∗ . The number of bootstrap replications

used to construct confidence intervals is 300.

The growth incidence curve for the US is essentially flat at a cumulative growth rate of

approximately 10% for the first eight deciles of the distribution. From τ = 0.8 onwards it

begins to slope upwards, and the slope increases sharply for the uppermost decile. A growth

rate of 10% over twelve years translates into an average annual wage growth rate of less than

one percent over the period, supporting earlier descriptions of wage stagnation for most US

workers, even during the “Goldilocks” economy that preceded the great financial crisis of

2008-09 (see, e.g. Kopczuk, Saez, and Song (2010) and Mishel, Bivens, Gould, and Shierholz

(2012)). The fact that the growth in the average wage was considerably higher, at 17.3%,

reflects the much better performance of the top quintile. This is also why it was higher than

the average quantile-specific growth rate across quantiles, of 12.7%. The more rapid growth

of wages among the top fifth of full-time workers naturally translated into rising inequality,

as shown by all five inequality measures in Table 3. The commonly used Gini coefficient rose

by almost three percentage points.

The basic finding that there was positive but heterogeneous wage growth in the US

is found to be statistically significant by the inference results for the formal hypotheses

formulated earlier, namely constant distribution and distribution-neutral growth for the

GIC. These results are presented in Table 4, which reports the Kolmogorov-Smirnov (KS)

and Cramér-von Mises tests (CVM) (V1n and V2n, respectively). First, we test the constant

distribution hypothesis for the GIC uniformly over quantiles (H0 : GIC(τ) = 0), which

is rejected at the 1% level of significance for both tests. Thus, we reject the hypothesis

that the US wage distribution did not change at all. Second, we test whether growth was

distribution-neutral over the period, i.e. whether GIC(τ) = γAGR . In this test we have an

estimate (r̂) under the null hypothesis and apply the V̄1n and V̄2n tests. Again, we strongly
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Figure 1: GIC US 1995–2007
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reject the null hypothesis, which is in line with the heterogeneity observed across quantiles

in Figure 1.

The second interesting finding from our analysis is that the counterfactual growth inci-

dence curve, GIC∗, lies everywhere between the no-growth line at zero, and the actual GIC,

and its shape is very similar to that of the latter. This implies that both changes in (broadly

defined) economic structure - encompassing changes in returns to observed worker attributes,

as well as changes in both the distribution of and returns to unobserved characteristics - and

changes in the joint distribution of age, gender and education contributed to the modest

increase in US wages during the study period. Since the GIC∗ is also flat until τ = 0.8 or

thereabouts, and then sharply increasing, we can conclude that the rise in wage inequality

is not driven by changes in the gender, age and educational make-up of the workforce. It is

driven instead by changes in economic structure and by their impact on the remuneration

structure of various worker attributes.

This finding is confirmed by an inspection of the wage inequality measures for the US

counterfactual distribution, FY (1)|T (·|0), in Table 3 above. All five measures lie strictly

between the actual wage inequality levels in 1995 and 2007, but are all much closer to the

higher 2007 levels. Taking the mean log deviation as an example, the decomposition indicates

that changes in economic structure between 1995 and 2007 shifted the measure from 0.218

in 1995 to 0.250. Changes in the joint distribution of covariates - i.e. the age, gender and
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Table 4: Kolmogorov-Smirnov (KS) and Cramér-von Mises (CVM) Tests – US

Null Hypothesis KS Critical Values CVM Critical Values

1% 5% 10% 1% 5% 10%

No Effect: GIC(τ) = 0 0.378 0.067 0.0601 0.057 15.677 1.661 1.379 1.184

Mean Effect: GIC(τ) = γAGR 0.306 0.058 0.055 0.051 7.689 1.333 1.252 1.093

No Effect: GIC∗(τ) = 0 0.205 0.080 0.069 0.059 6.590 2.235 1.849 1.694

Mean Effect: GIC∗(τ) = γAGR∗ 0.204 0.075 0.063 0.054 5.648 1.472 1.269 1.186

educational make up of the full-time labor force - account only for the residual change from

0.250 to 0.254. Formal tests, also presented in Table 4, confirm that the GIC∗(τ) was neither

constant nor distribution neutral over the period. We first test whether GIC∗(τ) = 0. The

results indicate rejection of the null at 1% level for both the KS and CVM tests. And when

we test distribution neutrality of growth conditional on the joint distribution of covariates,

GIC∗(τ) = γAGR∗ the null is again rejected at all reported levels of significance.

4.2.2 Brazil

The results for the Brazilian GIC and GIC∗(τ) for 1995-2007 are displayed in Figure 2. As

before, the blue line displays the actual GIC, and the dashed black line denotes the growth

rate of mean wages, γAGR. The green line displays the counterfactual growth incidence curve,

GIC∗, and the dashed red line shows its corresponding mean effect, γAGR∗

Remarkably, there was even less growth in average wages for full-time workers in Brazil

than in the US over this period. Cumulative growth in real wages was a paltry 1.7% - a

tenth of the US rate.11 However, the distribution of that growth was completely different

from the US case. Brazil’s GIC rises sharply up until the first quintile, at which point in

the distribution wages grew by 40% or more over the period. The GIC is then downward

sloping from τ = 0.2 to τ = 1.0. It crosses the x-axis near the 7th decile, and is negative

thereafter. This growth pattern is consistent with a substantial decline in wage inequality

among full-time workers, as shown in Table 3. Whereas all five inequality indices reported

rose for the US, all five declined for Brazil. The Gini coefficient fell by almost four points,

11It is quite likely that this dismal performance is due, at least in part, to a composition effect. Ferreira,
Firpo, and Messina (2016) report that formal employment in Brazil rose by a fifth, from 48 to 58% of the
labor force, between 1995 and 2012. While not strictly the same, formal employment is highly correlated
with full-time status. The same authors also report that the formalization of labor contracts was more
common among lower earners. Such a process is likely to lower average earnings in that sample through a
composition effect.
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Figure 2: GIC Brazil 1995–2007
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and the mean log deviation, which is more sensitive to income gaps at the bottom of the

distribution, lost almost 20% of its initial value.

This pro-poor pattern is also evident in the fact that the average growth rate across

quantiles was 13.8% - higher than in the US - despite a near stagnant average wage. Un-

surprisingly, then, both the constant distribution and the distribution-neutral growth hy-

potheses are resoundingly rejected at 1% level of significance for Brazil as well, in both

the Kolmogorov-Smirnov and Cramér-von Mises tests. This can be seen in Table 5, which

collects the results for the KS and CVM tests (V1n and V2n, respectively).

As in the US case, the counterfactual growth incidence curve lies everywhere below

the GIC, and has a very similar shape. This parallelism suggests that the main drivers

of distributional heterogeneity - which in this case were highly equalizing - belong to the

realm of changes in economic structure, affecting remuneration patterns and unobserved

worker characteristics. One plausible such candidate driver was the sustained rise in Brazil’s

minimum wage over this period, which is both consistent with the shape of the GIC, and

with earlier findings in the literature (e.g. Ferreira, Firpo, and Messina (2016)). Changes in

the joint distribution of observed attributes - gender, age and education - on the other hand,

had roughly equi-proportional effects across the distribution. These effects were generally

positive - i.e. wage-increasing - as one would expect from rising experience and educational

levels.
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Table 5: Kolmogorov-Smirnov (KS) and Cramér-von Mises (CVM) Tests – Brazil

Null Hypothesis KS Critical Values CVM Critical Values

1% 5% 10% 1% 5% 10%

No Effect: GIC(τ) = 0 0.522 0.0648 0.058 0.055 20.187 1.267 1.151 1.027

Mean Effect: GIC(τ) = γAGR 0.504 0.066 0.062 0.057 19.395 2.024 1.686 1.532

No Effect: GIC∗(τ) = 0 0.383 0.081 0.066 0.059 20.268 1.112 1.045 1.018

Mean Effect: GIC∗(τ) = γAGR∗ 0.533 0.090 0.067 0.055 22.666 1.423 1.264 1.178

Once again, this finding is consistent with the inequality measures for the Brazilian

counterfactual distribution, reported in the last column of Table 3. These are all lower than

the actual inequality values in both 1995 and 2007, suggesting that the observed decline in

inequality was due entirely to changes in economic structure. This may well reflect both

the effects of a rising minimum wage and the decline in the economy-wide skill premium,

as discussed earlier in the literature (see, e.g. Barros et al., 2010). The effect of changes

in the observed composition of the labor force was actually to partly offset those declines,

through a mildly unequalizing effect of the second term of the decomposition.12 In terms of

formal inference, as should be expected from Figure 2 and the above discussion, both null

hypotheses (constant distribution and the distribution-neutral growth) are rejected at the

1% level of significance for both KS and CVM tests. See Table 5.

A comparison of results suggests that the 1995-2007 period saw very different distribu-

tional dynamics for real hourly wages among full-time employees across the two countries.

Growth in average wages was muted in both countries; and almost zero in Brazil. But such

an aggregated description misses important differences in the distribution of that growth:

whereas wages were growing at less than 1% per year in the US for all but the top fifth of

workers (who experienced much faster increases), Brazil saw relatively rapid wage growth

for the bottom half of the distribution, while wages were actually falling for the top fourth.

As a result, wage inequality rose in the US and fell markedly in Brazil.

Despite these very disparate headline stories, there were similarities too. In both cases,

changes in the observed composition of the labor force - notably higher levels of education

and experience - contributed to wage growth, and did so roughly equi-proportionately across

12The unequalizing effect of educational expansions when returns are (artificially) held constant is not a
novel finding. Bourguignon, Ferreira, and Lustig (2005) refer to this as the ’paradox of progress’ and explain
that it reflects the generally observed convexity of returns to schooling. As workers become more educated,
mass in the schooling distribution shifts to ranges where returns are steeper, and inequality rises.
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the distribution. In other words, changes in the joint distribution of X were not responsible

for the sharp movements in inequality in either country. Those changes were attributable

almost entirely to changes in the distribution of wages conditional on those observables,

interpreted here broadly as changes in economic structure.

5 Conclusion

The recent rise in interest in inequality within the economics profession has not been ac-

companied by a corresponding ability to properly identify the sources of changes in income

or wage distributions. The development of the growth incidence curve (GIC) by Ravallion

and Chen (2003) has spurred a wave of descriptive studies of the distributional character-

istics of economic growth, across many countries and time periods. Hitherto, however, the

precise requirements for identification and inference using the GIC had not been formally

established.

This paper fills that gap by writing the growth incidence curve as a functional of the

vector formed by the quantiles of potential outcomes, where treatment assignment is formally

replaced by time assignment. We establish the conditions under which both actual and

counterfactual growth incidence curves are identified, and propose a simple semi-parametric

procedure that allows for the estimation of the GIC with no need for restrictive functional

form assumptions on the relationship between income and its covariates. We establish the

asymptotic properties of these estimators, and propose practical inference procedures for

general functions of the quantile potential outcome. Statistical inference procedures are

developed uniformly over the set of quantiles T . We propose testing for general hypotheses

and consider both the Kolmogorov-Smirnov and the Cramér-von Mises type statistics. Since

the parameter of interest is infinite dimensional, for practical inference, we compute critical

values using a bootstrap method. We provide sufficient conditions under which the bootstrap

is valid, and discuss an algorithm for its practical implementation.

Finally, we use the proposed methods to estimate the actual and counterfactual growth

incidence curves for the US and Brazil, during the 1995-2007 period. The results document

important heterogeneity across the quantiles of the income distribution in both growth pro-

cesses. Neither country had a constant income distribution over that period, and neither

growth process was distribution-neutral. Growth in average wages was disappointing in

both countries, particularly in Brazil. But these averages hide very different distributional
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pictures: Wage stagnation was observed in the US for the bottom 80% of the distribution,

while the top fifth, and particularly the top tenth, grew much more rapidly. Conversely,

wages rose rapidly below the median in Brazil, and actually fell for the top 25% or so of the

distribution. As a result, inequality fell substantially in Brazil and rose in the United States.

In both cases, changes in economic structure, rather than in the observed make-up of the

labor force, were responsible for changing inequality.
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6 Appendix

6.1 Proofs of the main results

This appendix collects the proofs of the results given in the text. To demonstrate Theorems

1, 2, and 3 below we make use of Lemmas 4, 5, and 6, respectively, given in the Online

Supplemental Appendix. These lemmas establish, respectively, uniform consistency, weak

convergence, and validity of the bootstrap for generic Z-estimators with possibly non-smooth

functions and a nuisance parameter, when both the parameter of interest and the nuisance

parameter are possibly infinitely dimensional. The results allow for the case of profiled

nonparametric estimator, i.e., it depends on the parameters.

For clarity, the demonstrations make use of the superscript zero to denote the true pa-

rameters.

Proof of Theorem 1. The general result for consistency of Z-estimator is given in Lemma

4 in the Online Supplemental Appendix. To prove the result we apply the lemma to

our continuous treatment model with θ0 = q0(·), h0 = w0(·), Z(θ, h)(τ) = Eψq,w,τ , and

Z(θ, h)(τ) = Eψq,w,τ , where ψq,w,τ = m(y, q(τ); τ)w(x) = (τ − 1{Y < q(τ)})w(x). Notice

that w(T,x), and since T = {0, 1} we write w(x) = w(T,x) in the demonstrations.

In this case, Θ = L = `∞(T ) and || · ||Θ = || · ||L = | · |∞, while H = Π, a function

class with domain {0, 1} × X , and || · ||H = || · ||Π = supx∈X | · | = | · |∞. For any δ > 0,

Πδ = {w ∈ Π : |w − w0|∞ < δ}.
To establish the result we verify the conditions of Lemma 4. Thus, under QC.I–QC.III

we can check the general conditions C.1–C.5 in the Supplemental Appendix. Condition C.1

is satisfied by the computational properties of quantile regression estimator of Theorem 3.3

of Koenker and Bassett (1978) and conditions QC.II and QC.III such that we have

|E[(τ − 1{Y < q̂t(·)})ŵ(X)]| ≤ const · sup
i≤n

ŵt(Xi)

n

≤const · ||ŵt(X)||Π
n

= const · ||w
0
t (x)||Π + op(1)

n
= Op∗(1/n).

Condition C.2 holds by condition QC.I.

We now show that condition C.3, the continuity of E[m(Y ; qt(τ))wt(X)] at w0
t uni-

formly over qt(τ) ∈ `∞(T ), is satisfied. For any ||wt − w0
t ||∞ ≤ δ, which is equivalent to
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supτ∈T supx∈X |wt(x)− w0
t (x)| ≤ δ, we have

sup
τ∈T

sup
x∈X
|E[m(Y, qt(τ); τ)wt(X)]− E[m(Y, qt(τ); τ)w0

t (X)]|

= sup
τ∈T

sup
x∈X
|E[m(Y, qt(τ); τ)(wt(X)− w0

t (X))]| ≤ sup
τ∈T
|E[m(Y, qt(τ); τ)]|δ.

Therefore, condition C.3 is satisfied because τ − 1{y < qt(τ)} is a bounded function.

Note that the functional class {ψq,w,τ = (τ − 1{Y < q(τ)})w(X), q ∈ Θ, w ∈ Π, τ ∈ T }
is formed as (T − F)w(X), where F = 1{Y < q(τ)} is a VC subgraph class and hence

a bounded Donsker class. Hence T − F is also bounded Donsker, and using assumption

QC.II, (T −F)w(X) is therefore Donsker with a square integrable envelope 2 maxt |w(X)|t,
by Theorem 2.10.6 in Van der Vaart and Wellner (1996). The stochastic equicontinuity then

is a part of being Donsker, which implies condition C5S which in turn implies C.5.

Hence, all the conditions of Lemma 4 are satisfied.

Proof of Theorem 2. To establish the result we apply Lemma 5 in the Online Supplemental

Appendix and we verify its conditions.

Condition G.1 was verified in the proof of Theorem 1. For condition G.2, note that

|E[(τ − 1{Y ≤ qt(·)})w0
t (X)]− E[(τ − 1{Y ≤ q0

t (·)})w0
t (X)] + E[w0

t (X)fY (q0
t )(qt(·)− q0

t (·))]|∞

=|E[{1{Y ≤ q0
t (·)} − 1{Y ≤ qt(·)}+ fY (q0

t )(q(·)− q0
t (·))}w0

t (X)]|∞

�|E[{1{Y ≤ q0
t (·)} − 1{Y ≤ qt(·)}+ fY (q0

t )(qt(·)− q0
t (·))}]|∞Mw

=|FY (q0
t (·))− FY (qt(·)) + fY (q0

t )(qt(·)− q0
t (·))|∞Mw = o(|qt(·)− q0

t (·)|∞).

Now we verify condition G.3. To find the pathwise derivative of Z(qt, w
0
t ) with respect

to wt, we conduct the following calculations. For any w̄t such that {w0
t + α(w̄t − w0

t ) : α ∈
[0, 1]} ⊂ Π,

E[m(Y, qt; τ)(w0
t + α(w̄t − w0

t ))]− E[m(Y, qt; τ)w0
t ]

α
= E[m(Y, qt; τ)(w̄t − w0

t )]

and has the limit E[m(Y, qt; τ)(w̄t − w0
t )] as α → 0. Therefore Z2(qt, w

0
t )[wt − w0

t ] =

E[m(Y, qt; τ)(wt − w0
t )] in all directions [wt − w0

t ] ∈ Π. Condition G.3.1 is satisfied by
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noting that

|E[m(Y, qt(·), ·)w0
t (X)]− E[m(Y, qt(·), ·)wt(X)]− E[m(Y, qt(·); ·)(wt − w0

t )(X)]|∞ = 0.

And condition G.3.2 is verified by

|E[m(Y, qt(·); ·)(wt − w0
t )(X)]− E[m(Y, q0

t (·); ·)(wt − w0
t )(X)]|∞

=|E[m(Y, qt(·); ·)−m(Y, q0
t (·); ·)(wt − w0

t )(X)]|∞

≤|E[m(Y, qt(·); ·)]− E[m(Y, q0
t (·); ·)]|∞o(1) = δno(1),

where the last equality follows because the distribution function of Y is continuous.

Condition G.4 is automatically satisfied by QG.III. Now we check condition G.5. Note

that {ψq,w,τ : q ∈ `∞δ (T ), w ∈ Π, τ ∈ T } is Donsker. This follows because by QG.I the

bracketing number of Π by Corollary 2.7.4 in van der Vaart and Wellner (1996) is finite,

thus Π is Donsker with a constant envelope. The class F is Donsker by exploiting the

monotonicity and boundedness of indicator function and bounded density condition assumed

in QC.I. Finally, the result follows because the class is formed by taking products and sums

of bounded Donsker classes F , Π, and T , which is Lipschitz over (F × Π × T ). Hence by

Theorem 2.10.6 in van der Vaart and Wellner (1996) {ψq,w,τ} is Donsker and we have that

G.5’ is satisfied by Lemma 3.3.5 of van der Vaart and Wellner (1996). Therefore, we obtain

condition G.5 by condition G.1 and inequality (4) in Lemma 5 in the Online Supplemental

Appendix.

Finally, condition G.6 holds by QG.II. Hence, all the conditions of Theorem 2 are

satisfied.

Proof of Corollary 1. The proof follows directly from the result in Theorem 2, which estab-

lish Donsker properties, and therefore tightness, for each element of the vector. By noticing

that marginal tightness implies joint tightness, and from joint finite-dimensional asymptotic

normality, the result follows.

Proof of Lemma 1. The proof follows from the result in Theorem 2 and Corollary 1 and

the functional delta method. Corollary 1 implies the weak convergence result,
√
n(Q̂(τ) −
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Q0(τ))  G(τ). From the assumptions and the differentiability condition in QG.IV of

h(qt(τ)) at qt Theorem 3.9.5 in van der Vaart and Wellner (1996) applies and the result

follows.

Proof of Corollary 2. The proof follows directly from the result in Theorem 2, Lemma 1,

and the Hadamard differentiable of GIC and GIC∗.

Proof of Lemma 2. The assertion holds by Corollary 1, Lemma 1, and the continuous

mapping theorem.

Proof of Corollary 3. The assertion holds by Lemma 2 and the continuous mapping the-

orem.

Proof of Lemma 3. The assertion holds by Corollary 1, Lemma 1, and the continuous

mapping theorem.

Proof of Corollary 4. The assertion holds by Lemma 3 and the continuous mapping the-

orem.

Proof of Theorem 3. This theorem is a restatement of the Lemma 3 in the Supplemental

Appendix.

6.2 Semiparametric efficiency of the two-step estimator

In this section, we establish the uniform semiparametric efficiency of the two-step estimator.

We first calculate the efficient influence function of the parameter qt(τ) in the following

semiparametric model

F = {Fq,w : q ∈ `∞(T ), w ∈ Π},
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where Fq0,w0 is the distribution function of the observed data. Then, we provide sufficient

conditions under which the proposed two-step estimator is uniformly semiparametric effi-

cient.

Proposition 1. Suppose Γ0(τ) := ∂E[m(Y (t),q0(τ);τ)]
∂β(τ)

exists for t = {0, 1}. For each τ ∈ T , the

efficient influence function of the parameter q(τ) is

Ψq(y, t,x, τ) = −Γ−1
0 (t, τ)ψ(y,x, t, q0(τ), w0, e0),

where ψ(y,x, t, q0(τ), w0, e0) = m(y, q0(τ); τ)w0(x)−e0(x, q0(τ))(w0(x)−1) with e0(x, q(τ)) =

E[m(Y, q0(τ); τ)|X = x].

Proof. The proof is given in Theorem 3 of Firpo (2007).

Based on the efficient influence function of q(τ), we show that the two-step estimator is

uniformly semiparametric efficient provided the following condition

E.
√
nE[m(Y, q0(τ); τ)ŵ(X)] =

√
nE[ψ(Y,X, t, q0(τ), w0, e0)] + op(1).

Condition E is critical to the efficiency of the two-step estimator, and it is similar to its

corresponding condition for the multi-valued model is condition (4.2) of Cattaneo (2010).

Theorem 4. Assume that the conditions of Theorem 2 in the main text and condition E

hold. Then the two-step estimator is uniformly semiparametric efficient.

This result guarantees that the two-step estimator is uniformly semiparametric efficient.

Hypothesis testings based on this estimator are expected to be optimal.

Proof of Theorem 4. We first verify that
√
nE[ψ(Yi,Xi, t, q

0
t , w

0
t , e

0)] converges weakly in

`∞(T ). Proceeding in the exact same way as in the proof of Theorem 2, conditions QC.I and

QG.I imply G.5 (in the Online Supplemental Appendix), and hence ψt = ψ(y,x, t, q0
t , w

0
t , e

0)

is Donsker, which in turn implies the weak convergence.

The uniform semiparametric efficiency follows from the weak convergence above and the

pointwise semiparametric efficiency (Theorem 3 in Firpo (2007)) by Theorem 18.9 of Kosorok

(2008).
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Now we verify that the formula in condition QG.II equals the left hand-side of condition

E., which implies that the influence function of the two-step estimator is efficient. Recall

that m(Y (t), qt(τ); τ) = τ − 1{Y (t) < qt(τ)}. To this end, we begin with the formula in

condition QG.II.

√
nE[(τ − 1{Y < q0

t (τ)})(wt(X)− w0
t (X))]|w=ŵ

=
√
n(Em(Y, q0

t (τ); τ)(wt(X)− w0
t (X))|w=ŵ

=
√
n(Em(Y, q0

t (τ); τ)(ŵt(X)− w0
t (X))

=
√
n(Em(Y, q0

t (τ); τ)ŵt(X),

where the first equality uses the definition of m(·), and the second equality follows by con-

dition G5’ which in turn was verified in the proof of Theorem 2.

6.3 Estimation of weights w(X)

The estimation of the nuisance parameter in the first step is very important for practical

implementation of the proposed methods. We have been assuming that the estimator ŵt of

the nuisance parameter w0
t satisfies various conditions (QC.III and QG.I– QG.III). In this

section we discuss the estimation of the weights for QTE, QTT, and QTU.

Recall that w1(X) = T
p(X)

, w0(X) = 1−T
1−p(X)

, wA1(X) = T
p
, wA0(X) = 1−T

p
p(X)

1−p(X)
,

wB1(X) = T
1−p

1−p(X)
p(X)

and wA0(X) = 1−T
1−p . The estimators are defined by the plug-in

method as following: ŵ1(X) = T
p̂(X)

, ŵ0(X) = 1−T
1−p̂(X)

, ŵA1(X) = T
p̂
, ŵA0(X) = 1−T

p̂
p̂(X)

1−p̂(X)
,

ŵB1(X) = T
1−p̂

1−p̂(X)
p̂(X)

and ŵA0(X) = 1−T
1−p̂ . Therefore, the important pieces for estimation

are the conditional probability of being treated, p(X) = Pr[T = 1|X = x], and the un-

conditional p = Pr[T = 1]. The latter can be estimated by its sample counterpart, that

is, p̂ =
∑n

i=1 Ti
n

. For the former, we follow Firpo (2007). Following the propensity score

estimation strategy employed by HIR, we use a logistic power series approximation, i.e., a

series of functions of X is used to approximate the log-odds ratio of the propensity score.

The log-odds ratio of p(x) is equal to log(p(x)/(1 − p(x))). These functions are chosen to

be polynomials of x and the coefficients that correspond to those functions are estimated by

a pseudo-maximum likelihood method.

Start by defining HK(x) = [HK, j(x)] (j = 1, ..., K), a vector of length K of polynomial

functions of x ∈ X satisfying the following properties: (i) HK : X → RK ; and (ii)

HK, 1(x) = 1. If we want HK(x) to include polynomials of x up to the order n, then it is
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sufficient to choose K such that K ≥ (n+ 1)r. In what follows, we will assume that K is a

function of the sample size N and grows without bounds as n grows without bounds, that

is, K = K(n) → ∞ as n → ∞.

Next, the propensity score is estimated. Let p̂(x) = L(HK(x)′π̂), where L : R →
R, L(z) = (1 + exp(−z))−1; and

π̂ = arg max
w

1

n

n∑
i=1

(Ti log(L(HK(Xi)
′π)) + (1− Ti) log(1− L(HK(Xi)

′π))) .

The asymptotic properties of the logistic power series as discussed in Hirano, Imbens,

and Ridder (2003) and Newey (1997). The required conditions (QC.III and QG.I–QG.III)

are satisfied when using the logistic power series estimator. QG.I follows directly from the

asymptotic properties of estimator. QG.II is satisfied by exploiting the monotonicity and

boundedness of indicator function and bounded density condition assumed in QC.I. Finally,

QC.III and QG.III follow from the mean value theorem.
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7 Supplemental Appendix (Online)

This supplement contain two parts. First, it presents results for the asymptotic theory for

the generic Z-estimator. Second, we provide Monte Carlo simulations to evaluate the finite

sample performance of the proposed methods. The simulations provide evidence that the

methods perform well in finite samples. The empirical size of the test approximates the

nominal one, and the tests have large empirical power.

7.1 Asymptotic Theory

In this appendix, we establish the asymptotic properties of a generic Z-estimator. More

specifically, we describe the model, the regularity conditions, and state the asymptotic re-

sults.

In Lemmas 4 and 5 below, we provide verifiable sufficient conditions for general consis-

tency and weak convergence of generic moment restriction estimators (Z-estimators) with

possibly non-smooth functions and a nuisance parameter, when both the parameter of in-

terest and the nuisance parameter are possibly infinite dimensional. The results allow for

the case where the nonparametric estimator is profiled, i.e., is allowed to depend on the

parameters. Lemma 6 establishes the validity of the bootstrap. These general results are

used to prove the asymptotic properties of the two-step estimator discussed in the main text.

In this general setting, the data need not be independent and identically distributed (i.i.d.).

These approaches and results are similar to those in van der Vaart (2002) and van der Vaart

and Wellner (2007). While these later works provide high level conditions, we describe sim-

pler verifiable conditions for Z-estimators. The results for the general theory presented here

extend those of Chen, Linton, and Van Keilegom (2003) in that the parameter of interest

is a Banach valued quantity instead of a Euclidean vector. Moreover, the results extend

Theorem 3.3.1 of van der Vaart and Wellner (1996) in that a possibly infinite dimensional

nuisance parameter needs to be estimated in the first step.

Let Θ and L denote Banach spaces, and H a norm space, with norms || · ||Θ, || · ||H,

and || · ||L, respectively. Let Zn : Θ × H 7→ L, Z : Θ × H 7→ L be random maps and a

deterministic map, respectively. We suppress the dependence of Z on n for simplicity. The

Z-estimator θ̂ is defined as the approximate root of

Z(θ, ĥ) = 0,
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where ĥ is a first step estimator of a possibly infinite dimensional nuisance parameter.

7.2 Consistency

We first derive a general consistency result for a Z-estimator in a Banach space. To obtain

the consistency of the generic Z-estimator, we impose the following conditions.

C.1 ||Z(θ̂, ĥ)||L = op∗(1).

C.2 ||Z(θn, h0)||L → 0 implies θn → θ0 for any sequences θn ∈ Θ.

C.3 Uniformly in θ ∈ Θ, Z(θ, h) is continuous at h0.

C.4 ||ĥ− h0||H = op∗(1).

C.5 For all sequences δn ↓ 0,

sup
θ∈Θ,||h−h0||H≤δn

||Z(θ, h)− Z(θ, h)||L
1 + ||Z(θ, h)||L + ||Z(θ, h)||L

= op∗(1).

Condition C.1 requires that θ̂ solves the estimating equation ||Z(θ, ĥ)||L = 0 only asymp-

totically. Condition C.2 is an identification of the parameter. Condition C.3 is a smooth

assumption of Z in h only at h0. Condition C.4 requires that the nuisance parameter is

consistently estimated. Condition C.5 is a high level assumption and can be stated in more

primitive conditions for specific cases. Further, condition C.5 is implied by the following

uniform convergence condition of Z to Z.

C5S For any sequences δn ↓ 0,

sup
θ∈Θ,||h−h0||H≤δn

||Z(θ, h)− Z(θ, h)||L = op∗(1).

This set of conditions are similar to conditions of Theorem 1 of Chen, Linton, and Van

Keilegom (2003).

The following lemma summarizes the consistency of the generic Z-estimator.

Lemma 4. Suppose that θ0 ∈ Θ satisfies Z(θ0, h0) = 0 with h0 ∈ H and that conditions

C.1–C.5 hold. Then ||θ̂ − θ0||Θ = op∗(1).
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Proof. By condition C.2, it suffices to show that ||Z(θ̂, h0)||L = op∗(1). Using the triangle

inequality,

||Z(θ̂, h0)||L ≤ ||Z(θ̂, h0)− Z(θ̂, ĥ)||L + ||Z(θ̂, ĥ)− Z(θ̂, ĥ)||L + ||Z(θ̂, ĥ)||L.

By conditions C.3 and C.4, ||Z(θ̂, h0)−Z(θ̂, ĥ)||L = op∗(1). By condition C.1, ||Z(θ̂, ĥ)||L =

op∗(1). In addition,

||Z(θ̂, ĥ)− Z(θ̂, ĥ)||L = op∗(1) + op∗(||Z(θ̂, ĥ)||L) + op∗(||Z(θ̂, ĥ)||L)

= op∗(1) + op∗(1) + op∗(||Z(θ̂, h0)||L) + op∗(1),

where the first equality follows by condition C.5 and the second equality is a result of

conditions C.1 and C.3. Therefore, inequality implies ||Z(θ̂, h0)||L ≤ op∗(1) and hence the

result.

7.3 Weak Convergence

Now we provide a general result of weak convergence for the Z-estimator. For the proof

of weak convergence of the Z-estimator, consistency is assumed without loss of generality.

Therefore, the parameter space is replaced by Θδ×Hδ where Θδ := {θ ∈ Θ : ||θ− θ0||Θ < δ}
as in Chen, Linton, and Van Keilegom (2003) and Hδ := {h ∈ H : ||h− h0||H < δ}.

Because the parameter spaces are a Banach and a normed space, we need notions of

derivatives for maps from a Banach or a normed space to a Banach space. Let Θ and L
denote Banach spaces, and H a normed space. Fréchet differentiability of a map φ : Θ 7→ L
at θ ∈ Θ means that there exists a continuous, linear map φ′θ : Θ 7→ L with

||φ(θ + hn)− φ(θ)− φ′θ(hn)||
||hn||

→ 0

for all sequences {hn} ⊂ Θ with ||hn|| → 0 and θ + hn ∈ Θ for all n ≥ 1 ; see, e.g., p. 26 of

Kosorok (2008). Pathwise derivative of a map ϕ : H 7→ L at h ∈ H in the direction [h̄−h] is

ϕ′h[h̄− h] = lim
%→0

ϕ(h+ %(h̄− h))− ϕ(h)

%

with {h+%(h̄−h) : % ∈ [0, 1]} ⊂ H, provided that the limit exists. To obtain the weak limit,

we impose the following sufficient conditions.
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G.1 ||Z(θ̂, ĥ)||L = op∗(n
−1/2).

G.2 The map θ 7→ Z(θ, h0) is Fréchet differentiable at θ0 with a continuously invertible

derivative Z1(θ0, h0).

G.3 For all θ ∈ Θδ the pathwise derivative Z2(θ, h0)[h−h0] of Z(θ, h0) exists in all directions

[h− h0] ∈ H. Moreover, for all (θ, h) ∈ Θδn ×Hδn with a positive sequence δn = o(1):

G.3.1 ||Z(θ, h0)− Z(θ, h)− Z2(θ, h0)[h− h0]||L ≤ c||h− h0||2H for a constant c ≥ 0.

G.3.2 ||Z2(θ, h0)[h− h0]− Z2(θ0, h0)[h− h0]||L ≤ o(1)δn.

G.4 The estimator ĥ ∈ H with probability tending to one; and ||ĥ− h0||H = op∗(n
−1/4) .

G.5 For any δn ↓ 0,

sup
||θ−θ0||≤δn,||h−h0||H≤δn

||
√
n(Z− Z)(θ, h)−

√
n(Z− Z)(θ0, h0)||L

1 +
√
n||Z(θ, h)||L +

√
n||Z(θ, h)||L

= op∗(1).

G.6
√
n(Z2(θ0, h0)[ĥ−h0] + (Z−Z)(θ0, h0)) converges weakly to a tight random element G

in L.

Condition G.1 requires θ̂ to solve the estimating equation only asymptotically. Condi-

tions G.2 and G.3 are smoothness conditions for Z. Condition G.4 is the same as condition

(2.4) of Chen, Linton, and Van Keilegom (2003). Conditions G.5 and G.6 are high level

assumptions, and more primitive conditions are provided for more specific cases. Moreover,

condition G.5 is implied by

G.5’ For any δn ↓ 0,

sup
||θ−θ0||≤δn,||h−h0||H≤δn

||
√
n(Z− Z)(θ, h)−

√
n(Z− Z)(θ0, h0)||L = op∗(1).

Now we provide a general result for Z-estimators.

Lemma 5. Suppose that θ0 ∈ Θδ satisfies Z(θ0, h0) = 0, that θ̂ = θ0 + op∗(1), and that

conditions G.1–G.6 hold. Then,

√
n(θ̂ − θ0) Z−1

1 (θ0, h0)G.
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Proof. The proof is divided in two steps. First, we establish
√
n-consistency. Second, we

establish the weak convergence.

Step 1:
√
n-consistency

We start the proof by showing that θ̂ is
√
n-consistent for θ0 in Θ. By definition, the

Fréchet differentiability of Z(θ, h0) implies the existence of a continuous linear map Z1(θ0, f0)

such that

||Z(θ, f0)− Z(θ0, f0)− Z1(θ0, f0)(θ − θ0)||L
||θ − θ0||Θ

= o(1).

By the triangle inequality, it follows

||Z1(θ0, h0)(θ − θ0)||L ≤ ||Z(θ, h0)− Z(θ0, h0)||L + o(||θ − θ0||Θ).

Since the derivative Z1(θ0, h0) is continuously invertible by condition G.2, there exists a

positive constant c such that ||Z1(θ0, h0)(θ1 − θ2)||L ≥ c||θ1 − θ2||Θ for every θ1 and θ2 ∈ Θδ.

Therefore, it follows

(c− o(1))||θ − θ0||Θ ≤ ||Z(θ, h0)− Z(θ0, h0)||L, (13)

and

(c− op∗(1))||θ̂ − θ0||Θ ≤ ||Z(θ̂, h0)− Z(θ0, h0)||L = ||Z(θ̂, h0)||L, (14)

with probability tending to one. By the triangle inequality and conditions G.1 and G.6,

the right hand side of the previous inequality is bounded by

||Z(θ̂, h0)− Z(θ̂, ĥ)||L + ||Z(θ̂, ĥ)− Z(θ̂, ĥ) + Z(θ0, h0)− Z(θ0, h0)||L +Op(n
−1/2). (15)

For the first term, we have that

||Z(θ̂, h0)− Z(θ̂, ĥ)||L ≤||Z(θ̂, h0)− Z(θ̂, ĥ)− Z2(θ̂, h0)[ĥ− h0]||L
+ ||Z2(θ̂, h0)[ĥ− h0]− Z2(θ0, h0)[ĥ− h0]||L + ||Z2(θ0, h0)[ĥ− h0]||L

≤op∗
(
n−1/2

)
+ op∗

(
||θ̂ − θ0||Θ

)
+Op∗

(
n−1/2

)
≤||Z(θ̂, h0)||L × op∗(1) +Op∗

(
n−1/2

)
,
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where the first inequality follows from the triangle inequality, the second one by conditions

G.3 and G.6, and the third by inequality (13).

As for the second term in (15), by condition G.5,

||Z(θ̂, ĥ)− Z(θ̂, ĥ) + Z(θ0, h0)− Z(θ0, h0)||L =op∗(1/
√
n+ ||Z(θ̂, ĥ)||L + ||Z(θ̂, ĥ)||L)

=op∗(1/
√
n) + op∗(||Z(θ̂, ĥ)||L).

The second equality follows from condition G.1, ||Z(θ̂, ĥ)||L = op∗(1/
√
n). By the triangle

inequality,

||Z(θ̂, ĥ)||L ≤ ||Z(θ̂, ĥ)− Z(θ̂, ĥ) + Z(θ0, h0)− Z(θ0, h0)||L +Op∗(1/
√
n).

It then follows

(1− op∗(1))||Z(θ̂, ĥ)− Z(θ̂, ĥ) + Z(θ0, h0)− Z(θ0, h0)||L ≤ op∗(1/
√
n).

Thus, equation (15) is bounded by

||Z(θ̂, h0)||L × op∗(1) +Op∗
(
n−1/2

)
,

and the right side of the equality in (14) satisfies

(1− op∗(1))||Z(θ̂, h0)||L ≤ Op∗
(
n−1/2

)
. (16)

Therefore, (c− op(1))
√
n||θ̂ − θ0||Θ ≤ Op∗(1) and θ̂ is

√
n-consistent for θ0 in Θ.

Step 2: Weak Convergence

Now we show the weak convergence. By conditions G.2 and G.3,

|| − Z(θ̂, ĥ) + Z(θ0, h0)− Z1(θ0, h0)(θ̂ − θ0)− Z2(θ0, h0)[ĥ− h0]||L
=||-Z(θ̂, ĥ) + Z(θ̂, h0)− Z2(θ̂, h0)[ĥ− h0] + Z(θ̂, h0)− Z(θ0, h0)− Z1(θ0, h0)(θ̂ − θ0)

+ Z2(θ̂, h0)[ĥ− h0]− Z2(θ0, h0)[ĥ− h0]||L
≤|| − Z(θ̂, ĥ) + Z(θ̂, h0)− Z2(θ̂, h0)[ĥ− h0]||L + ||Z(θ̂, h0)− Z(θ0, h0)− Z1(θ0, h0)(θ̂ − θ0)||L

+ ||Z2(θ̂, h0)[ĥ− h0]− Z2(θ0, h0)[ĥ− h0]||L
=op∗(n

−1/2) + op∗
(
n−1/2

)
+ op∗

(
n−1/2

)
= op∗

(
n−1/2

)
.
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Therefore, it follows that

Z1(θ0, h0)
√
n(θ̂ − θ0) +

√
nZ2(θ0, h0)[ĥ− h0] =

√
n(−Z(θ̂, ĥ) + Z(θ0, h0)) + op∗(1)

=
√
n(Z(θ̂, ĥ)− Z(θ0, h0)) + op∗(1)

=
√
n(Z(θ0, h0)− Z(θ0, h0)) + op∗(1),

and

Z1(θ0, h0)
√
n(θ̂ − θ0) = −

√
n(Z2(θ0, h0)[ĥ− h0] + (Z− Z)(θ0, h0)) + op∗(1) G,

by condition G.6.

Now by condition G.2 and the continuous mapping theorem, we have that

√
n(θ̂ − θ0) Z−1

1 (θ0, h0)G.

7.4 The Validity of the Bootstrap

A formal justification for the simulation method discussed for the two-step estimator is stated

in in the main text. In the following Lemma 6 we provide a result for the validity of the

bootstrap for general Z-estimator. It is also an extension of that in Chen, Linton, and Van

Keilegom (2003).

There are two potential difficulties when constructing the confidence bands for the QTE.

First, closed-form expressions of the covariance kernel are hard to calculate. This mainly is

due to the estimation of the nuisance parameters. Second, even if closed-form expressions of

the covariance kernel are available, they are useful only when the set T is finite. Thus, we use

the ordinary nonparametric bootstrap method to determine the rejection regions of the tests

for the case when Z (θ, h) = Em† (Wi, θ;h (Wi, θ)) and Z (θ, h) = 1
n

∑n
i=1m

† (Wi, θ;h (Wi, θ)),

where {Wi} is i.i.d and m† (·) is some known function. It is without loss of generality to

study only the validity of bootstrap for
√
n(θ̂(t)− θ0(t)). Let ĥ∗ be an estimator of h0 using

resampled data. Let Z∗(θ, h) denote the resampled average. The bootstrap estimator θ̂∗

satisfies

||Z∗(θ̂∗, ĥ∗)|| = op∗(n
−1/2).
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Following Chen, Linton, and Van Keilegom (2003), an asterisk denotes a probability or

moment computed under the bootstrap distribution conditional on the original data set.

Consider the following conditions:

G.4B With P ∗-probability tending to one, ĥ∗ ∈ H and ||ĥ∗ − ĥ||Π = op∗(n
−1/4).

G.5B For any δn ↓ 0,

sup
||θ−θ0||≤δn,||h−h0||Π≤δn

||
√
n(Z∗ − Z)(θ, h)−

√
n(Z∗ − Z)(θ0, h0)||L = op∗(1).

G.6B
√
n(Z2(θ̂, ĥ)[ĥ∗ − ĥ] + (Z∗ − Z)(θ̂, ĥ)) converges weakly to a tight random element G

in L in P ∗-probability.

Conditions G.4B–G.6B are the bootstrap analog to the conditions to establish weak

convergence.

Lemma 6. Suppose θ0 ∈ int(Θ) and θ̂
a.s.→ θ0. Assume that conditions G.1,G.4,G.5, and

G.6. are satisfied with “in probability” replaced by “almost surely”. Let conditions G.2 and

G.3 hold with h0 replaced by h ∈ Hδn . Also, assume that Z1(θ;h) is continuous in h at

θ = θ0 and h = h0. Then, under conditions G.4B– G.6B,
√
n(θ̂∗ − θ̂)  Z−1

1 (θ0, h0)G in

P ∗-probability.

Proof. The assertion that ||θ̂∗ − θ̂|| = Op∗(n
−1/2) a.s. P can be shown in a similar way as

the proof of the
√
n-consistency of θ̂. Therefore we omit the proof and only show the weak

convergence in probability of the bootstrap estimator.
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Note that

||Z∗(θ̂∗, ĥ∗)− Z∗(θ̂, ĥ)− Z1(θ̂, ĥ)(θ̂∗ − θ̂)− Z2(θ̂, ĥ)[ĥ∗ − ĥ]||

=||Z(θ̂∗, ĥ∗)− Z(θ̂∗, ĥ)− Z2(θ̂, ĥ)[ĥ∗ − ĥ] + Z(θ̂∗, ĥ)− Z(θ̂, ĥ)− Z1(θ̂, ĥ)(θ̂∗ − θ̂)

+ [(Z∗(θ̂∗, ĥ∗)− Z(θ̂∗, ĥ∗))− (Z∗(θ̂, ĥ)− Z(θ̂, ĥ))]

+ [(Z(θ̂∗, ĥ∗)− Z(θ̂∗, ĥ∗))− (Z(θ̂, ĥ)− Z(θ̂, ĥ))]

+ Z2(θ̂, ĥ)[ĥ∗ − ĥ]− Z2(θ̂∗, ĥ)[ĥ∗ − ĥ]||

≤||Z(θ̂∗, ĥ∗)− Z(θ̂∗, ĥ)− Z2(θ̂, ĥ)[ĥ∗ − ĥ]||+ ||Z(θ̂∗, ĥ)− Z(θ̂, ĥ)− Z1(θ̂, ĥ)(θ̂∗ − θ̂)||

+ ||(Z∗(θ̂∗, ĥ∗)− Z(θ̂∗, ĥ∗))− (Z∗(θ̂, ĥ)− Z(θ̂, ĥ))||

+ ||(Z(θ̂∗, ĥ∗)− Z(θ̂∗, ĥ∗))− (Z(θ̂, ĥ)− Z(θ̂, ĥ))||

+ ||Z2(θ̂, ĥ)[ĥ∗ − ĥ]− Z2(θ̂∗, ĥ)[ĥ∗ − ĥ]||

=op∗(n
−1/2).

The first term is op∗(n
−1/2) by condition G.3 (version of this lemma) and G.4B. The second

term is op∗(n
−1/2) by condition G.2 (version of this lemma) and

√
n-consistency of θ̂∗. The

third and fourth terms are op∗(n
−1/2) by the triangle inequality and conditions G.5’ (almost

sure version) and G.5B. And the fifth term is op∗(n
−1/2) by condition G.3 (version of this

lemma) and
√
n-consistency of θ̂∗.

Therefore, it follows

Z1(θ̂, ĥ)
√
n(θ̂∗ − θ̂) +

√
nZ2(θ̂, ĥ)[ĥ∗ − ĥ] =

√
n(Z∗(θ̂∗, ĥ∗)− Z∗(θ̂, ĥ)) + op∗(1)

=−
√
n(Z∗(θ̂, ĥ)− Z(θ̂, ĥ)) + op∗(1)

and

Z1(θ̂, ĥ)
√
n(θ̂∗ − θ̂) = −

√
nZ2(θ̂, ĥ)[ĥ∗ − ĥ]−

√
n(Z∗(θ̂, ĥ)− Z(θ̂, ĥ)) + op∗(1) G

in L in P∗-probability by condition G.6. We can replace Z1(θ̂, ĥ) by Z1(θ0, h0) with prob-

ability one. Now by condition G.2 (version of this lemma) and the continuous mapping

theorem, we have
√
n(θ̂∗ − θ̂) Z−1

1 (θ0, h0)G,

and the result follows.
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8 Monte Carlo

In this section we conduct numerical experiments to evaluate the finite sample properties of

the proposed methods. We report results for the empirical size and power of the uniform

tests. We are mainly interested in studying the properties of the tests based on QTE over

T .

8.1 Experiment Design

In the experiments, we use the same data generating process (DGP) as in Firpo (2007). The

generated data follow a very simple specification. Starting with X = [X1, X2]>, we set

X1 ∼

[
µX1 −

√
12

2
, µX1 +

√
12

2

]

X2 ∼

[
µX2 −

√
12

2
, µX2 +

√
12

2

]

which will be independent random variables with the following means and variances: E[X1] =

µX1 , E[X2] = µX2 , and V [X1] = V [X2] = 1. The treatment indicator is set to be T = 1{δ0 +

δ1X1 +δ2X2 +δ3X
2
1 +η > 0}, where η has a logistic c.d.f. as F (u) = (1+exp(−πu/10

√
3))−1.

The potential outcomes are Y (0) = γ1X1 + γ2X2 + ε0 and Y (1) = Y (0) + ε1 − ε0, where ε0

and ε1 are, respectively, distributed as N(0, σ2
ε0

) and N(β, σ2
ε1

). The variables X, η, ε0, and

ε1 are mutually independent. Under this specification, Y (1) and Y (0) will be distributed as

the sum of two uniforms and a normal.

The parameters were chosen to be µX1 = 1, µX2 = 5, δ0 = −1, δ1 = 5, δ2 = −5,

δ3 = −0.05, γ1 = −5, γ2 = 1. For the simple experiment, the parameters β, σ2
ε0

, σ2
ε1

control

the testing procedure under the null and alternative.

To investigate the empirical size, we consider the above DGP with β = 0 and σ2
ε0

= σ2
ε1

=

5. To evaluate the power of the test we use two different configurations: (i) varying the

parameter β ∈ {0, 6}; (ii) varying the parameter σ2
ε0
∈ {5, 20}, while keeping σ2

ε1
= 5. In

the later case, by using a σ2
ε0

different from σ2
ε1

we are able to achieve a positive treatment

across the quantiles.

We implement tests for the null hypothesis that the treatment effect is ineffective. Thus,

we estimate ∆(τ) = q1(τ) − q0(τ) and test whether ∆(τ) = 0 for all τ . We report results

for the Cram ér-von Mises test for the simulations. The results for the Kolmogorov-Smirnov
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B=250 B=500

α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

n = 500 0.008 0.035 0.079 0.010 0.039 0.080

n = 750 0.009 0.045 0.084 0.010 0.046 0.085

n = 1000 0.009 0.048 0.091 0.011 0.049 0.092

Table 6: Size of the uniform tests (β = 0 )

tests are similar. For the estimation of w0
t in the first-step, we use a nonparametric estimation

with a local linear logit and a leave-one-out for choice of the number of polynomials.

We examine the empirical rejection frequencies for 1%, 5%, and 10% (α = {0.01, 0.05, 0.10})
nominal levels tests for different choices of sample size n = {500, 750, 1000}. We also inves-

tigate different numbers of bootstraps {250, 500}. The number of replications is 2,000.

8.2 Results

We present the empirical size and power for the proposed tests. Table 6 collects the results

for empirical size and Figures 3 and 4 display the empirical power functions when varying β

and σ2
ε0

, respectively.

In Table 6 we report the empirical sizes for different samples and nominal sizes. First,

we observe that the empirical sizes (β = 0) are close to the respective nominal ones, 1%,

5%, and 10%. We also study the impact of sample size and number of bootstraps on the

size. The size improves with the sample size, but it is not very sensitive to the number

of bootstraps, implying that smaller number of bootstraps is satisfactory. Overall, Table 6

shows that the uniform tests have good size property even in small samples.

The empirical power functions are displayed in Figures 3 and 4. In Figure 3 we vary β.

The results show that the power of test improves as the sample size increases. The main point

is that as the parameter β increases, the treatment increases, and so does the probability

of the test rejecting the null of effect of the treatment. Figure 4 displays the results for

empirical power when varying σ2
ε0

. The results are qualitatively similar and show that the

power increases as the heterogeneity increases. In addition, as the sample size increases

the improves the raises. As in the previous case, the results suggest that the number of

bootstraps does not have a substantial effect on the power.

Overall the simulations show the usefulness of our uniform inference procedures in de-
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Figure 3: Empirical power function when varying β. Left box plots the power function for different

sample sizes and number of bootstraps 250. Right box plots the power function for different sample

sizes and number of bootstraps 500.
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Figure 4: Empirical power function when varying σ2
ε0 . Left box plots the power function for

different sample sizes and number of bootstraps 250. Right box plots the power function for

different sample sizes and number of bootstraps 500.
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tecting cases where heterogeneity is an important concern. The results suggest the proposed

methods have good finite sample performance, leading to reliable, powerful, and computa-

tionally attractive inference. Our main proposal, the uniform tests, in addition to having

good power properties, makes the bootstrap method a practical inference procedure.
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