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This paper estimates the large array of life-cycle benefits of an influential
early childhood program targeted to disadvantaged children. The program
has substantial impacts on the lives of its participants. Monetizing benefits
and costs across multiple domains, we estimate a rate of return of 13.7% per
annum and a benefit/cost ratio of 7.3. There are substantial differences across
genders favoring males.

Our analysis contributes to a growing literature on the value of early-life
programs for disadvantaged children.! Long-term evidence on their effective-
ness is surprisingly limited.? For want of follow-up data, many studies of early
childhood programs report few outcomes for early ages after program comple-
tion, e.g. 1Q scores, school readiness measures.® Yet it is the long-term returns
that are relevant for policy analysis.

We analyze the costs and benefits from two virtually identical early child-
hood programs evaluated by randomized trials conducted in North Carolina.
The programs are the Carolina Abecedarian Project (ABC) and the Carolina
Approach to Responsive Education (CARE)—henceforth ABC/CARE. Both
were launched in the 1970s and have long-term follow-ups through the mid
30’s. The programs started early (at 8 weeks of life) and engaged participants
to age 5. We analyze their impacts on a variety of life outcomes such as health,

the quality of life,* participation in crime, labor income, 1Q, schooling, and

1See, e.g., Currie (2011) and Elango et al. (2016).

2The major source of evidence is from the Perry Preschool Program (see Schweinhart
et al., 2005 and Heckman et al., 2010a,b), the Carolina Abecedarian Project (ABC) and the
Carolina Approach to Responsive Education (CARE) (Ramey et al., 2000, 2012), and the
Infant Health and Development Program (IHDP) (Gross et al., 1997; Duncan and Sojourner,
2013). THDP was inspired by ABC/CARE (Gross et al., 1997).

3See, e.g., Kline and Walters (2016) and Weiland and Yoshikawa (2013).

4Throughout this paper, we refer to health-related quality of life as quality of life. It is



increased parental labor income arising from subsidized childcare.’

Evidence from these programs is relevant for contemporary policy dis-
cussions because their main components are present in a variety of current
interventions. About 19% of all African-American children are eligible for
these programs today.”

Analyzing the benefits of programs with a diverse array of outcomes across
multiple domains and periods of life is both challenging and rewarding. Doing
so highlights the numerous ways through which early childhood programs en-
hance adult capabilities. We use a variety of measures to characterize program
benefits. Instead of reporting only individual treatment effects or categories of
treatment effects, our benefit/cost analyses account for all measured aspects of
these programs, including the welfare costs of taxes to publicly finance them.
We display the sensitivity of our estimates excluding various components of

costs and benefits.?

the weight attached to each year of life as a function of disease burden, as we discuss further
below.

5The parental labor income we observe is aggregated across the parents. Only 27% of
the mothers lived with a partner at baseline, so we refer to the gain in parental labor income
as a gain in mother’s labor income.

6Programs inspired by ABC/CARE have been (and are currently being) launched
around the world. Sparling (2010) and Ramey et al. (2014) list numerous programs based on
the ABC/CARE approach. The programs are: IHDP—eight different cities around the U.S.
(Spiker et al., 1997); Early Head Start and Head Start in the U.S. (Schneider and McDonald,
2007); John’s Hopkins Cerebral Palsy Study in the U.S. (Sparling, 2010); Classroom Liter-
acy Interventions and Outcomes (CLIO) study in the U.S. (Sparling, 2010); Massachusetts
Family Child Care Study (Collins et al., 2010); Healthy Child Manitoba Evaluation (Healthy
Child Manitoba, 2015); Abecedarian Approach within an Innovative Implementation Frame-
work (Jensen and Nielsen, 2016); and Building a Bridge into Preschool in Remote Northern
Territory Communities in Australia (Scull et al., 2015). Educare programs are also based
on ABC/CARE (Educare, 2014; Yazejian and Bryant, 2012).

743% of African-American children were eligible in 1972. (Author’s calculation using
the Panel Study of Income Dynamics (PSID).)

8Barnett and Masse (2002, 2007) present a cost/benefit analysis for ABC through age
21, before many benefits are realized. They report a benefit/cost ratio of 2.5, but give



A fundamental problem in evaluating any intervention is assessing out-
of-sample future costs and benefits. Solutions to this problem are based on
versions of a synthetic cohort approach using the outcomes of older cohorts who
did not have access to the program and are otherwise comparable to treated
and control persons to proxy future treatment effects.” Using this approach,
we combine experimental data through the mid 30’s with information from
multiple auxiliary panel data sources to predict benefits and costs over the
lifetimes of participants.'’

Our analysis is simplified by the fact that all eligible families offered partic-
ipation in the program took the offer. This motivates a revealed preference ap-
proach to constructing synthetic control groups. We develop a synthetic treat-
ment group drawing on and extending the analysis of Heckman et al. (2013).
They show that program treatment effects are produced through changes in in-
puts in a stable (across treatment regimes) production function for outcomes.
We use the estimated production function to make out-of-sample predictions
based on inputs caused by treatment.

We account for sampling uncertainty arising from combining data, esti-

mating parameters of behavioral equations, and simulating models. We con-

no standard errors or sensitivity analyses for their estimate. They do not disaggregate by
gender. For want of the data collected on health at the mid 30’s, they do not account for
health benefits. They use self-reported crime data (unlike the administrative crime data
later collected that we analyze) and ignore the welfare costs of financing the program. We
use cost data from primary sources not available to them.

9Mincer (1974) addresses this problem using a synthetic cohort approach and provides
evidence on its validity. See the discussion of the synthetic cohort approach in Heckman
et al. (2006).

0Ridder and Moffitt (2007) provide a valuable discussion of data combination methods.
These methods are related to the older “surrogate marker” literature in biostatistics (see
e.g., Prentice, 1989).



duct sensitivity analyses for outcomes for which sampling uncertainty is not
readily quantified. Our approach to combining multiple data sets and analyz-
ing blocks of outcomes is of interest in its own right as a template for evaluating
other programs with numerous long-run outcomes using intermediate outcome
measures.

Our analysis accounts for control group substitution.!! Roughly 75% of
the control-group children in ABC/CARE enroll in some form of lower quality
alternative childcare outside of the home.'?> We define and estimate parameters
accounting for the choices taken by the control groups in our study.

We find pronounced gender differences in treatment effects comparing high
quality treatment with lower quality alternatives. Males benefit much less from
alternative market childcare arrangements compared to females, a result con-
sistent with the literature on the vulnerability of male children when removed
from their mothers, even for short periods.!

We contribute to the literature on the effectiveness of early childhood
programs by considering their long-term benefits on health. We estimate the
savings from life-cycle medical costs and from improvements in the quality of
life.!* There are benefits for participants in terms of reduced crime, gains in
life-cycle labor income, reduced special education costs and enhanced educa-
tional attainment. The program subsidizes the childcare of the mothers of

participants and facilitates their employment and earnings.

1See Heckman (1992), Heckman et al. (2000), and Kline and Walters (2016).

12We refer to alternatives as alternative childcare or alternative preschool centers. See
Appendix A for a precise description of these alternatives.

13See Kottelenberg and Lehrer (2014) and Baker et al. (2015).

4 Campbell et al. (2014) show the substantial adult (mid-30s) health benefits of ABC
but do not present a cost/benefit analysis of their results.



Figure 1 summarizes the main findings of this paper. It displays the
discounted (using a 3% discount rate) life-cycle benefits of the program and
costs (2014 USD), overall and disaggregated by category.'> We report separate
estimates by gender, and for the pooled sample of males and females. Costs are
substantial, as has frequently been noted by critics.'® But so are the benefits,
which far outweigh the costs.

Table 1 summarizes results from numerous sensitivity analyses that we
conduct throughout the paper. We set to zero the net present value of each
of the four main components of our analysis and recalculate our cost-benefit
analysis. Our estimates are statistically and economically significant even
after eliminating the benefits from anyone of the four main components that
we monetize. No single component drives our results.

The rest of the paper justifies and interprets these estimates. We pro-
ceed in the following way. Section 1 discusses the ABC/CARE intervention.
Section 2 presents our notation and the definitions of the treatment effects
estimated in this paper. Section 3 discusses our approaches to inference for
vectors of treatment effects. We use combining functions that summarize the
number of beneficial outcomes, as well as the number of statistically significant
beneficial outcomes. Section 4 reports estimated treatment effects.

Our analysis of treatment effects establishes that the program had sub-

stantial impacts on multiple domains. It motivates our benefit-cost ratio and

15The baseline discount rate of 3% is an arbitrary decision. In Table 7 and Table 9, we
report benefit-cost ratios using other discount rates. Using discount rates of 0%, 3%, and
7%, the estimates for the benefit-cost ratios are 17.40 (s.e. 5.90), 7.33 (s.e. 1.84), and 2.91
(s.e. 0.59), respectively. We report estimates for discount rates between 0% and 15% in
Appendix 1.

16See, e.g., Whitehurst (2014) and Fox Business News (2014).
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internal rate of return analysis to summarize these effects using economically
meaningful metrics. Section 5 presents our approaches for predicting life-cycle
outcomes and the evidence supporting the assumptions that justify these ap-
proaches. Section 6 reports our estimates of benefit/cost ratios and rates of
return. It reports outcomes from a variety of robustness checks. Section 7

summarizes the paper.

1 Background and Data Sources

1.1 Overview

ABC/CARE targeted disadvantaged, predominately African-American chil-
dren in Chapel Hill/Durham, North Carolina.!” Table 2 compares the two
virtually identical programs. Appendix A describes these programs in detail.
Here, we summarize their main features.

The goal of these programs was to enhance the early-life skills of disad-
vantaged children. Both programs supported language, motor, and cognitive
development as well as socio-emotional competencies considered crucial for
school success including task-orientation, ability to communicate, indepen-
dence, and pro-social behavior.'®
The programs individualized treatment. Each child’s progress was recorded

and learning activities were appropriately adjusted every 2 to 3 weeks. En-

vironments were organized to promote pre-literacy and provide access to a

1"Both ABC and CARE were designed and implemented by researchers at the Frank
Porter Graham Center of the University of North Carolina in Chapel Hill.
18Ramey et al. (1976, 1985); Sparling (1974); Wasik et al. (1990); Ramey et al. (2012).



rich set of learning tools.'” The curriculum emphasized active learning experi-
ences, dramatic play, and basic concepts of order and category (“pre-academic
skills”), as well as discipline and the ability to interact with and respect oth-
ers. At later ages (3 through 5), the program focused on the development of
“socio-linguistic and communicative competence.”?’

ABC recruited four cohorts of children born between 1972 and 1976.
CARE recruited two cohorts of children, born between 1978 and 1980. The
recruitment processes for each study were identical. Potential participant fam-
ilies were referred to researchers by local social service agencies and hospitals
at the beginning of the mother’s last trimester of pregnancy. Eligibility was
determined by a score on a childhood risk index.?!

As shown in Table 2, the design and implementation of ABC and CARE
were very similar. ABC had two phases, the first of which lasted from birth
until age 5. In this phase, children were randomly assigned to treatment. The
second phase of the study consisted of child academic support through home

visits from ages 5 through 8. CARE consisted of two treatment phases as well

that were very similar to ABC. The first phase of CARE from birth until age

19The “LearningGames” approach was implemented by infant and toddler caregivers
in 1:1 child-adult interactions. Each “LearningGames” activity states a developmentally-
appropriate objective, the necessary materials, directions for teacher behavior, and expected
child outcome.

20Ramey et al. (1977); Haskins (1985); Ramey and Haskins (1981); Ramey and Campbell
(1979); Ramey and Smith (1977); Ramey et al. (1982); Sparling and Lewis (1979, 1984).

21See Appendix A for details on the construction for the index used. The index weighs
the following variables (listed from the most to the least important according to the index):
maternal and paternal education, family income, father’s presence at home, lack of maternal
relatives in the area, siblings behind appropriate grade in school, family in welfare, father in
unstable job, maternal 1Q, siblings’ IQ, social agency indicates that the family is disadvan-
taged, one or more family members has sought a form of professional help in the last three
years, and any other special circumstance detected by program’s staff.



5, had an additional treatment arm of home visits designed to improve home
environments.?? Participation in the second phase was randomized in ABC,
but not in CARE.

Our analysis is based on the first phase and pools the CARE treat-
ment group with the ABC treatment group. The second-phase treatment
of ABC/CARE had little impact on participants (for evidence, see Campbell
et al., 2014 and Garcia et al., 2016). Campbell et al. (2014) establish the
validity of pooling the data on second phase treatments and controls with the
first phase controls in ABC.

We do not use the data on the CARE group that only received home visits
in the early years. Campbell et al. (2014) and Garcia et al. (2016) show that
there is no statistically significant effect of this component.

For the treatment phase that we analyze, the center received the treated
children from 7:45 a.m. to 5:30 p.m, five days a week and fifty weeks a year. As
we argue below, in practice the center had a very relevant childcare component
that caused gains in parental labor income.

For both programs, from birth until the age of 8, data were collected
annually on cognitive and socio-emotional skills, home environments, family
structure, and family economic characteristics. After age 8, data on cogni-
tive and socio-emotional skills, education, and family economic characteristics
were collected at ages 12, 15, 21, and 30.% In addition, we have access to
administrative criminal records and a physician-administered medical survey

at the mid 30’s. This allows us to study the long-term effects of the programs

2Wasik et al. (1990).
23 At age 30, measures of cognitive skills are unavailable for both ABC and CARE.
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Table 2: ABC and CARE, Program Comparison

experience in early childcare

experience in early childcare

ABC CARE ABC = CARE ?
Program Overview
Years Implemented ~ 1972-1982 1978-1985
First-phase Birth to 5 years old Birth to 5 years old v
Treatment
Second-phase 5 to 8 years old 5 to 8 years old v
Treatment
Initially Recruited 121* 67
Sample
# of Cohorts 4 2
Eligibility Socio-economic disadvantage according Socio-economic disadvantage according v
to a multi-factor index (see Appendix A)  to a multi-factor index (see Appendix A)
Control
N 54 23
. . Diapers from birth to age 3, unlimited Diapers from birth to age 3, unlimited
Treatment Given formula from birth to 15 months formula from birth to 15 months v
Control 5% 74%
Substitution
Treatment Center-based childcare Centerjbased childcare and family
education
Center-based
Childcare
N 53 (participated) 17
. 6.5-9.75 hours a day for 50 weeks per 6.5-9.75 hours a day for 50 weeks per
Intensity v
year year
Stimulation, medical care, nutrition, Stimulation, medical care, nutrition,
Components . . . . v
social services social services
Staff-to-child Ratio  1:3 during ages 0-1 1:3 during ages 0-1 v
1:4-5 during age 1-4 1:4-5 during age 1-4 v
1:5-6 during ages 4-5 1:5-6 during ages 4-5 v
Staff Qualifications Rang? of dc'grccs bcyo'nd high school; R,ang? of dc'grccs bcyo'nd high school; v
experience in early childcare experience in early childcare
Home Visitation
N (not part of the program) 27
Home visits lasting 1 hour. 2-3 per
Intensity month during ages 0-3. 1-2 per month
during ages 4-5
Curriculum Social and mental stimulation;
parent-child interaction
Staff-to-child Ratio 1:1
Staff Qualifications Home visitor training
School-age
Treatment
N 46 39
Intensity Every other week Every other week v
Components Parent-teacher meetings Parent-teacher meetings v
Curriculum Reading and math Reading and math v
Staff Qualifications Range of degrees beyond high school; Range of degrees beyond high school; v

Note: This table compares the main elements of ABC and CARE, summarized in this section. A v' indicates that ABC and CARE
had the same feature. A blank space indicates that the indicated component was not part of the program.

* As documented in Appendix A.2, there were losses in the initial samples due to death, parental moving, and diagnoses of mental
pathologies for the children.
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along multiple dimensions of human development.?*

1.2 Randomization Protocol and Compromises

Randomization for ABC/CARE was conducted on child pairs matched on
family background. Siblings and twins were jointly randomized into either
treatment or control groups.?” Randomization pairing was based on a risk
index, maternal education, maternal age, and gender of the subject.? ABC
collected an initial sample of 121 subjects. We characterize each missing obser-
vation in Appendix A. In Appendix G.3, we document that our estimates are
robust when we adjust for missing data using standard methods, described in
Appendix C.2. We conduct the same analysis for the CARE sample. 22 sub-
jects in ABC did not stay in the program through age 5. Dropouts are evenly
balanced and are primarily related to the health of the child and mobility of

families and not to dissatisfaction with the program.?”

24See Appendix A.6 for a more comprehensive description of the data. There, we doc-
ument the balance in observed baseline characteristics across the treatment and control
groups, once we drop the individuals for whom we have no crime or health information, for
which there is substantial attrition. Further, the methodology we propose addresses missing
data in either of these two outcome categories.

25For siblings, this occurred when two siblings were close enough in age such that both
of them were eligible for the program.

26We do not know the original pairs.

2"The 22 dropouts include four children who died, four children who left the study be-
cause their parents moved, and two children who were diagnosed as developmentally delayed.
Details are in Table A.2. Everyone offered the program was randomized to either treatment
or control. All eligible families agreed to participate. Dropping out occurs after random-
ization.
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1.3 Control Group Substitution

In ABC/CARE, many control group members (but no children from fami-
lies offered treatment) attended alternative (to home) childcare or preschool
centers.?® The figure is 75% for ABC and 74% for CARE.

Figure 2a shows the cumulative distribution of the proportion of time in
the first five years that control subjects were enrolled in alternatives. Fig-
ure 2b shows the dynamics of enrollment. Those who enroll generally stay
enrolled. As control children age, they are more likely to enter childcare (see
Appendix A.5).

Children in the control group who are enrolled in alternative early child-
care programs are less economically disadvantaged at baseline compared to
children who stay at home. Disadvantage is measured by maternal education,
maternal 1Q), Apgar scores, and the high-risk index defining ABC/CARE el-
igibility. Children who attend alternatives have fewer siblings. On average,
they are children of mothers who are more likely to be working at baseline.?”
Parents of girls are much more likely to use alternative childcare if assigned to
the control group.*’

Most of the alternative childcare centers received federal subsidies and
31

were subject to the federal regulations of the era.”® They had relatively low

28See Heckman et al. (2000) on the issue of substitution bias in social experiments.

29Gtatistically significant at 10%.

30Gee Table A.4 in Appendix A for tests of differences across these variables between
children in the control group who attended and who did not attend alternative preschools.

31 Appendix A.5.1 discusses the federal standards of that day. See Department of Health,
Education, and Welfare (1968); North Carolina General Assembly (1971); Ramey et al.
(1977); Ramey and Campbell (1979); Ramey et al. (1982); Burchinal et al. (1997).
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quality compared to ABC/CARE.??> The access of control-group children to
alternative programs affects the interpretation of estimated treatment effects,

as we discuss next.

2 Parameters Estimated in This Paper

Random assignment to treatment does not guarantee that conventional treat-
ment effects answer policy-relevant questions. In this paper, we define and
estimate three parameters that address different policy questions.

Life cycles consist of A discrete periods. Treatment occurs in the first a
periods of life [1,...,a]. We have data through age a* > a. We lack follow-up
data on the remainder of life (a*,..., A]. We define three indicator variables:
W =1 indicates that the parents referred to the program participate in the
randomization protocol, W = 0 indicates otherwise. R indicates randomiza-
tion into the treatment group (R = 1) or to the control group (R = 0). D
indicates compliance in the initial randomization protocol, i.e., D = R implies
compliance into the initial randomization protocol.

Individuals are eligible to participate in the program if baseline back-
ground variables B € By. By is the set of scores on the risk index that
determines program eligibility. As it turns out, in the ABC/CARE study,
all of the eligible persons given the option to participate choose to do so
(W =1, and D = R). There are very few dropouts. FEz ante, parents per-

ceived that ABC/CARE was superior to other childcare alternatives. Thus,

32When we compare ABC/CARE treatment to these alternatives, ABC/CARE has sub-
stantial treatment effects. Further, as we argue below, parents perceived that ABC/CARE
was superior to the alternatives.
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we can safely interpret the treatment effects generated by the experiment as
average treatment effects for the population for which B € By and not just
treatment effects for the treated (TOT).??

Let Y! be the outcome vector at age a for the treated. Y is the age-
a outcome vector for the controls. In principle, life-cycle outcomes for the
treatments and controls can depend on the exposures to various alternatives
at each age. It would be desirable to estimate treatment effects for each
possible exposure but our samples are too small to make credible estimates for
very detailed exposures.

All treatment group children have the same exposure. We simplify the
analysis of the controls by creating two categories. “H” indicates that the
control child is in home care throughout the entire length of the program.
“C” indicates that the control child is in alternative childcare for any amount
of time.** We test the sensitivity of our estimates to the choice of different
categorizations in our empirical analysis in Appendix H.

We thus compress a complex reality into two counterfactual outcome states

33 All providers of health care and social services (referral agencies) in the area of the
ABC/CARE study were informed of the programs. They referred mothers whom they
considered disadvantaged. Eligibility was corroborated before randomization. Our conver-
sations with the program staff indicate that the encouragement from the referral agencies
was such that most referred mothers attended and agreed to participate in the initial ran-
domization (Ramey et al., 2012).

34This assumption is consistent with Figure 2b. Once parents decide to enroll their
children in alternative childcare arrangements, the children stay enrolled up to age 5.

16



at age a for control group members:

YQ?H : Subject received home care exclusively

Y;OC :  Subject received some alternative childcare.

We define V' as a dummy variable indicating participation by control-
group children in an alternative preschool. V' = 0 denotes staying at home.
The outcome when a child is in control status is

Y= (1= V)Y + (V) ¥ 1)

a a,

One parameter of interest addresses the question: what is the effect of
the program as implemented? This is the effect of the program compared to
the next best alternative as perceived by the parents (or the relevant decision

maker) and is defined by
A, =E[Y -Y)W=1]=E[Y, -Y)|B € B, (2)

where the second equality follows because everyone eligible wants to participate
in the program. For the sample of eligible persons, this parameter addresses the
effectiveness of the program relative to the quality of all alternatives available
when the program was implemented, including staying at home.

It is fruitful to ask: what is the effectiveness of the program with respect
to a counterfactual world in which the child stays at home full time? The

associated causal parameter for those who would choose to keep the child at

17



home is:

A,(V=0)=E[Y-Y)V=0W=1]:=E[Y,-Y,|V=0BecbB.

(3)
It is also useful to assess the average effectiveness of a program relative to
attendance in an alternative preschool for those who would choose an alterna-

tive:

A, (V=1)=E[]Y -YIV=1LW=1]=E[Y - Y .[V=1BeB].
(4)

Random assignment to treatment does not directly identify (3) or (4).
Econometric methods are required to identify these parameters. We charac-

terize the determinants of choices and our strategy for controlling for selection

into “H” and “C” below.3?

3 Summarizing Multiple Treatment Effects

ABC/CARE has rich longitudinal data on multiple outcomes over multiple
periods of the life cycle. Summarizing these effects in an interpretable way
is challenging.®® Simpler, more digestible summary measures are useful for

understanding our main findings. This section discusses our approach to sum-

35 Appendix H displays results with alternative definitions of V' (i.e., different thresholds
define if a child attended alternative preschool). The results are robust to the various
definitions. What matters is whether any out-of-home child care is being used (V' > 0), and
not the specific value of V.

36 Appendix G presents step-down p-values for the blocks of outcomes that are used in
our benefit/cost analysis which we summarize in this section (Lehmann and Romano, 2005
and Romano and Shaikh, 2006). We follow the algorithm in Romano and Wolf (2016).
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marizing vectors of treatment effects using combining functions that count the
proportion of treatment effects by different categories of outcomes.

Consider a block of N; outcomes indexed by set @); = {1,...,N;}. Let
j € @Q; be a particular outcome within block /. Associated with it is a mean

treatment effect

A, =FE [Yj}a - Yj?a]B € Bo),j€qQu. (5)

j?a
We assume that outcomes can be ordered so that A;; > 0 is beneficial.®”
We summarize the estimated effects of the program on outcomes within the

block by the count of positive impacts within block (:

The proportion of beneficial outcomes in block [ is C;/N;.®

Let £ be the set of blocks. Under the null hypothesis of no treatment ef-
fects for all j € @;,1 € L, and assuming the validity of asymptotic approxima-
tions, Cj/N; should be centered around 1/2. We bootstrap to obtain p-values
for the null for each block and over all blocks.?* We also count the beneficial
treatment effects that are statistically significant in the sets of outcomes across
each of the groups indexed by the set ();. Using a 10% significance level, on

average 10% of all outcomes should be “significant” at the 10% level even if

37All but 5% of the outcomes we study can be ranked in this fashion. See Appendix G
for a discussion.

38Tn our empirical application we consider all the outcomes as a block, and then different
blocks grouped according to common categories—e.g., skills, health, crime.

39Bootstrapping allows us to account for dependence across outcomes in a general way.
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there is no treatment effect of the program. We provide evidence against both
null hypotheses.** Combining counts across all blocks enables us to avoid (i)
arbitrarily picking outcomes that have statistically significant effects— “cherry
picking”; or (ii) arbitrarily selecting blocks of outcomes to correct the p-values

when accounting for multiple hypothesis testing.!:42

4 Estimated Treatment Effects and Combin-
ing Functions

ABC/CARE has a multiplicity of treatment effects corresponding to all of the
measures collected in the multiple waves of the longitudinal surveys. Reporting
these treatment effects in the text would overwhelm the reader. Here we report
estimates of the main treatment effects that underlie our benefit/cost and rate
of return analyses.®> These treatment effects are monetized in Section 5 to
present an economically justified aggregate measure.

Evidence from ABC/CARE and many other early childhood programs is
often criticized because of their small sample sizes.** An extensive analysis

reported in Campbell et al. (2014) shows that asymptotic inference and small

40Tn this case, we perform a “double bootstrap” procedure to first determine significant
treatment effects at 10% level and then calculate the standard error of the count.

4IWe present p-values for these hypotheses and a number of combining functions by
outcome categories in Appendix G.

42In Appendix G we present yet another alternative. We calculate a “latent” outcome
out of the set of outcomes within a block and perform inference on this latent. The results
point to beneficial effects of the program in this case as well.

43 Appendix G reports treatment effects and step-down p-values for all the outcomes
analyzed. These account for multiple hypothesis testing as in Lehmann and Romano (2005)
and Romano and Shaikh (2006).

4Gee, e.g., Murray (2013).
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sample permutation-based inference closely agree when applied to ABC/CARE

data. For this reason, we use large sample inference throughout this paper.*’

4.1 Estimated Treatment Effects

Tables 3 and 4 present the following estimates, for males and females re-
spectively. Column (1) gives sample mean differences in outcomes between
treatment and control groups. Column (2) adjusts the differences for attrition
and controls for background variables. Both are estimates of the parameter
defined in equation (2). Column (3) shows the mean difference between the
full treatment-group and the control-group children who did not attend al-
ternatives. Column (4) gives standard matching estimates for the parameter
defined in equation (3).“® Column (5) gives mean differences between the full
treatment-group and control-group children who attended alternatives. Col-
umn (6) gives matching estimates for the parameter of equation (4).

The results for females show that ABC/CARE has substantial effects on
education when comparing treatment outcomes to those from the next best
alternative. High school graduation increases between 13 and 25 percent-
age points, depending on the estimate that we consider; college graduation
increases 13 percentage points; and the average years of schooling increase
between 2.1 and 1.8 years. Employment at age 30 increases between 13 and

8 percentage points. ABC/CARE has substantial impacts on human capi-

45For precise details on the construction of the inference procedures used throughout the
paper, see Appendix C.8.

46In Appendix G.1.1, we provide details on: (i) the kernel matching estimator that we
use; (ii) the matching variables that we use; and (iii) a sensitivity analysis to these matching
variables.
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tal accumulation and employment. The results strengthen when we compare
treatment with the alternative of staying at home.

The results for males are somewhat different from those for females. Treat-
ment has substantial effects when compared to next best alternative. The
effects are positive for a variety of health indicators, including drug use and
hypertension. The effects on employment and labor income are also substan-
tial. The increase in employment at age 30 ranges from 11 to 19 percentage
points. Labor income at age 30 increases between 19 and 24 thousand of 2014
USD after treatment. The effects strengthen when comparing treatment to
alternative preschool. Separation from the mother and being placed in rel-
atively low quality childcare centers have more deleterious consequences for
males than for females.*”

The results hold using alternative definitions of control substitution (see
Appendix H). They remain statistically significant or are borderline statisti-
cally insignificant when computing two-tailed p-values (see Appendix H).

The estimates contrasting the effects for females and males in (3) and (5)
are not based on matching; the estimates in (4) and (6) are. For the matching
estimates, we rely on observed, baseline characteristics. In Appendix G.1,
we explain our choice of these variables and we make a thorough analysis to

conclude that there is little sensitivity to the choice of these variables.*®

4TThis is consistent with the evidence in Baker et al. (2015) and Kottelenberg and Lehrer
(2014).

48We also present this sensitivity analysis changing the variables used to condition while
estimating treatment effects and changing the variables used to construct the weights to
account for attrition.
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4.2 Estimated Combining Functions

We next report estimates of the proportion of beneficial effects by block and
overall.?” The analysis is based on treatment effect (2). Figure 3 displays the
results from this analysis: ABC/CARE positively impacted a large percentage
of the outcomes. We show the counts for treatment compared to the next best
alternative chosen by parents in Figure 3a. Proportionately more outcomes
are beneficial for females, but the proportions are high for both groups and
well above the benchmark of 1/2. In Tables G.4 to G.12 of Appendix G,
we document a large and precisely determined fraction of beneficial treatment
effects well above one half for both genders for categories of outcomes spanning
the life cycle through the mid 30’s.

Using an a-level of significance, one would expect to find that a% of the
treatment effects are “statistically significant,” even if the null hypothesis of no
effect of the program is true simply by chance. At a 10% level of significance,
46% are statistically significant for females and 28% for males (see Figure 3b).

Figures 3¢ and Figure 3d adjust the count in Figure 3a to analyze more
clearly defined counterfactuals: treatment compared to staying at home and
treatment compared to alternative preschool. These comparisons indicate that
girls and boys benefit differently from alternatives to high quality treatment.
Compared across all categories, girls benefit more from treatment when com-
pared to staying at home (as opposed to attending alternative childcares),

while males benefit more from treatment when compared to attending an al-

49We consider a total of 95 outcomes that we classify in Appendix G. These are the
outcomes that most clearly relate to the treatment offered by the program.
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ternative childcare arrangement (as opposed to staying at home).

5 Predicting and Monetizing Life-cycle Costs

and Benefits

The major goal of this paper is to summarize the multiple benefits of ABC/CARE
using benefit/cost and rate of return analyses. We rely on auxiliary data to
predict the costs and benefits of the program over the life cycle after the mea-
surement phase of the study ends.

This section explains our strategy for constructing out-of-sample treat-
ment effects.”® Our approach starts from and extends the analysis of Heck-
man et al. (2013), who show, in a setting similar to ours, that the effect of
treatment on outcomes operates through its effects on inputs in a stable pro-
duction function rather than through shifts in the production function. Table 5
presents the outcomes for which we conduct these analyses, and summarizes
the methodology and auxiliary samples used. We initially focus on labor in-

come to illustrate our approach, but a similar methodology is used to predict

50 Appendix C.7 gives details of our step-by-step procedure and state its identification
and estimation strategy in the Generalized Method of Moments framework.
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the other outcomes.”»°2

5.1 Using Auxiliary Data Sources to Predict Out-of-

Sample Outcomes

We first present an informal summary of our approach. The next section gives
a formal justification and reports tests of key assumptions. The remaining
sections give applications to other outcomes besides labor income.

We have data on control- and treatment-group members through age a*.
We can identify treatment effects within the experimental sample. We lack
information on participant outcomes afterward. Post-a* treatment effects are
required to construct counterfactual life-cycle profiles.

Making valid predictions of out-of-sample treatment effects does not re-
quire making valid predictions of separate out-of-sample treatment and control
profiles. Only valid predictions of their difference is required.

Nonetheless, in this paper we focus on making valid predictions of sep-

51We do not monetize the loss of leisure and household production that individuals suffer
from working more (this applies both to the individuals in the program and to their parents).
The reasouns for this are two-fold: (i) we lack information on intensive-margin labor supply;
and (ii) different labor supply models have different implications with respect to leisure-time
allocations. In addition, our data are not well-suited for estimating a structural model. We
note, however, that the benefit-cost ratio and internal rate of return are both statistically and
substantially significant after removing labor income entirely (see Table 9). This exercise
corresponds to a one-to-one loss of leisure given the gain in labor income, i.e. for each
additional dollar an individual makes, she loses the same dollar of (monetized) leisure and
household production.

520Qur calculations are based on labor income gross of tax, because we want to quantify
the effects of the program on the gross output that an individual is able to produce. A rise in
gross labor income increases the taxable base and has an implied increase in deadweight loss.
We do not quantify that deadweight loss because: (i) we do not have enough information
to make full use of standard tax simulators; and (ii) we are not able to manipulate the
standard tax simulators to assess estimation uncertainty.
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arate treatment and control post-a* profiles. Doing so allows us to test the
validity of our methodology by comparing (within the support of the experi-
mental sample) outcomes by treatment status for the experimental control and
treatment groups with those from the synthetic control and treatment groups
we generate. Comparisons between the experimental control group and the
synthetic control group are particularly compelling. By design, neither group
receives treatment. In our data, all persons offered treatment accept it, so it
is straightforward to construct synthetic control groups in auxiliary samples
using only eligibility criteria.

There are two distinct stages in our analysis. In Stage I, we construct
samples of comparison group members in the auxiliary samples with the same
or similar characteristics as the experimental group members. The minimal
set of characteristics includes the background variables B € B,. We use a
coarse form of matching based on Algorithm 1 in Appendix C.3.3. In Stage II,
we build models in these samples to predict out-of-sample outcomes separately
for the outcomes of the treated and the controls.

Specifically, we adopt a three-step procedure. In Step 1, we use the exper-
imental sample to conduct mediation analyses relating the vector of outcomes
at age a for person i (Y;%) for a < a* to predictor variables (and interactions)
that are affected by treatment (X¢,), as well as background variables (B;).”
It turns out that we accurately predict within-sample treatment effects as well
as levels of treatment and control profiles using this approach. In Step 2, we

construct counterpart predictions of treatment and control outcomes using the

53To avoid notational clutter, we henceforth suppress individual 7 subscripts.
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auxiliary samples. We compare these constructed counterparts to the actual
samples for ages a < a*. In Step 3, we use the estimated dynamic relationships
fit on the constructed samples to predict the post-a* outcomes.

Under exogeneity of the predictor variables and structural invariance (de-
fined below), the two stages can be compressed into a single, one-stage, non-
parametric matching procedure.”® In Appendix C.3.4.1 we compare the es-
timates from matching with those from our main approach. We find close
agreement between the two approaches (see Appendix C.3.4.1) and for different
assumptions about the serial correlation processes of the outcome equations.

Figure 4 previews the outputs from our approach, displaying the life-cycle
labor income profiles for the treatment and control groups. It also compares
the realized labor income to the model-predicted labor income at a*. There
is close agreement of the constructed profiles within sample. The pattern of
life-cycle labor income we generate is typical for low-skilled workers (Blundell
et al., 2015; Gladden and Taber, 2000; Sanders and Taber, 2012; Lagakos et al.,
2016).5

We conduct a further check on the validity of our procedure. In the ex-
perimental sample all of the parents of children with characteristics B € B,
agree to participate in the program. Because the auxiliary samples have no
treatment group members, we can evaluate our procedure by comparing the
labor incomes of individuals in the auxiliary samples for whom B € B, to the
labor incomes of individuals in our constructed synthetic control group. Fig-

ure 5 makes this comparison. It plots the average labor incomes of individuals

54See Heckman et al. (1998) for an example.
55For details on the variables used to construct the predictions, see Appendix C.
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in our auxiliary sample for whom B € Bj alongside those of the constructed
synthetic control group from ages 20 to 45. It also displays the labor income of
the experimental control group at a* (age 30).° The agreement is reassuringly

close. We now formalize our approach.

5.2 Constructing Out-of-Sample Counterfactuals

We now present our analytical framework and its underlying assumptions.
Our analysis is based on a causal model for treatment (d = 1) and control
(d = 0) outcomes for measure j at age a in sample k € {e,n}, where e denotes
membership in the experimental sample and n denotes membership in the

auxiliary sample:

ka,j,a = (z)g,j,a(XIg,a? Bk) + gi,j,m j € ‘-7(1' (7)

‘15%,3‘,@ (+,+) is an invariant structural production relationship mapping inputs
X,f’a, By, into output chfj’a holding error term Ez,j,a fixed.”” We normalize Eg?j,a
to have mean zero. Among the X lia are variables caused by treatment, includ-
ing lagged dependent variables. In this general framework, the relationships

between the dependent and right-hand side variables in (7) do not necessarily

coincide across the samples, k € {e,n}.

56The graphs stop at age 45 because we do not observe all of the components of the risk
index determinants of eligibility after age 45 in the auxiliary samples. We use only a subset
of this index to make life-cycle projections. These variables are effective predictors over the
age range for which the full set of B is available.

5TFixing and conditioning are fundamentally different concepts. See Haavelmo (1943)
and Heckman and Pinto (2015) for discussions. Our analysis applies the methodology in
these papers.
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Let Y;¢ denote the vector of all outcomes at all ages for k € {e,n}, when
treatment status is fixed to d. Similarly, X is the vector of all causal pre-
dictors of Y,? at all ages. Both Y¢ and X{ include the full set of possible
outcomes over the life cycle, even though they are not sampled (observed)
after age a*. The background variables may have different distributions in the
two samples. We denote the joint distribution of these vectors conditional on
B, = b by Fka,X;j\Bk:b('v )

In the experimental sample, parents of eligible children (B, € By), always
agree to participate in the program (W, = 1) and accept treatment (R, =
D.). We assume that this condition holds in the auxiliary sample. Given this
condition, we can use D, and R, interchangeably and apply a standard Quandt
(1972) switching regression model to write the outputs and inputs generated

by treatment as

Vija=1—=Dg) Yy, 0 4 (Di) Vi) 0 (8)
je T,ae{l,..., A}, ke{en}
Xpa=(1—Dy) X, + (Di) X, ,.

(We keep the conditioning on B € B, implicit.)
The fact that D, = R, allows us to use experimental data (for a € {1,...,a*})

to identify the distribution of Y2, (i.e., Y. when fixing treatment status (d)).

67]7a e7j7a

5.2.1 Accounting for Age, Period, and Cohort Effects

The auxiliary data (n) come from older cohorts not exposed to the program,
for whom we observe more complete segments of their life cycles. We do

not observe what treatment status d would have been in the auxiliary data.

35



Even if we did, we do not know if cohort (c¢) or time (¢) effects make the
experiences of the auxiliary-sample individuals different from the experiences
of the individuals in the experimental sample.

To formalize this problem, let Y

ket De outcome j for sample k at age

a for birth cohort ¢ at time ¢ when treatment is fixed to d. We make the
following assumption. It amounts to avoiding the problem by saying cohort
and time effects operate identically across the e and n samples in the following
sense:

Assumption A-1 Alignment of Cohort and Time Effects

For experimental sample cohort c. and auziliary sample cohort c,,:

Yy =y¢! (9)

€,a,Ce,\te n,a,Cn,tn

for d € {0,1}, a > a*, where t.,t, are the years for which cohorts c.,c, are
observed, where t, = t, + c. — ¢, and t,, 1s the year that the age a outcome is
observed for cohortn (t, =a+c,). O

Notice that Y4

n,a,Cn,tn

is the synthetic outcome for treatment status d in the
auxiliary sample. This assumption does not rule out cohort or period effects.
However, it rules out any differences in cohort and time effects for the auxiliary
group counterparts and the experimental groups when they reach the age of
the auxiliary group.

We henceforth drop the “¢” and “t” sub-indices. The out-of-sample year
effect for the experimental sample is assumed to be the same as for the auxil-
iary sample counterpart measured at year t,,. We can weaken Assumption A—1

if there is prior knowledge about year and/or cohort effects or if we can param-
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eterize estimable functions of ¢ and ¢.°® In the sensitivity analyses reported
below, we examine plausible alternative assumptions about cohort and time

effects.

5.2.2 Support Conditions

We require that the support of the auxiliary sample contains the support of
the experimental sample. This assumption allows us to find counterpart values
of X ,ia, B, and Y}, in the control and experimental samples.

Assumption A—2 Support Conditions
Fora e {1,..., A}, the support of (Yd x¢ Be) in the experimental sample

e,a’ e,a’

1s contained in the support of (Yd x4 Bn) in the auxiliary sample:

n,a’ n,a’

supp(Yea, X¢y, Be) C supp(Yna, Xt o, Bn), de{0,1}. O  (10)

e,a’ n,a’

This assumption is straightforward to test for ages a < a*. It is satisfied in

our samples. See Appendix C.3.5.

5.2.3 Conditions for Valid Out-of-Sample Predictions

A strong sufficient condition for identifying the distribution of life-cycle profiles
of individuals in the experimental sample using individuals in the auxiliary
samples is Condition C—1:

Condition C—-1 FEquality of Distributions Across the Experimental

and Auxiliary Samples

FYed,Xg\BE:b ('a ) = FY,‘},X;‘HBTL:b ('a ) , de€ {07 1} (11)

58See Heckman and Robb (1985). For health, cohort effects could be very substantial (e.g.
medical costs growth) and we account for this as explained in Section 5.4 and Appendix F.
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for Y2 X9 B, =b and Y,¢, X¢|B,, = b contained in the support of the exper-
imental sample supp (Yed, X4, Be).

Since we are only interested in means for cost-benefit analysis, we can get
by with the following requirement for conditional means, which has testable

implications, as we show below:

Condition C—2 Fquality in Conditional Expectations Across the Ex-

perimental and Auxiliary Samples
]E[}/;d|Xg:337Be :bj| :E [Ynd|X7dL:m7Bn — b:| , dE {0,1} (12)

for d € {0,1} over supp (Y, X¢,, B.).

e,a’ e,a’

Since we are primarily interested in treatment effects, we can get by with

an even weaker condition:

Condition C-3 FEquality in Mean Treatment Effects Across the Ex-

perimental and Auxiliary Samples
E[Y! - Y'|B.=b| =E[Y, - Y|B, = b) (13)

over supp (Yd Be).

e,a’

We could simply invoke Condition C-2 or C-3 and be done. Our approach
is to examine and test (when possible) assumptions that justify them, and

Condition C-2 is useful for doing so.

5.2.4 Exogeneity

Conditions C-1 to C-3 do not require that we take a position on the exogeneity

of X¢, k € {e,n}. However, exogeneity facilitates the use of economic theory
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to generate and interpret treatment effects, to test the validity of our synthetic
control groups, and to find auxiliary sample counterparts to treatments and
controls.” For these purposes, we assume:

Assumption A-3 Ezxogeneity
For all a,a” € {1,..., A} and for d,d € {0,1},

ety 1L X B =b (14)

for all b in the support of By, k € {e,n}, for all outcomes j € J,, where
“M 1l N|Q7 denotes independence of M and N given Q. O

We test and do not reject this Assumption for a variety of outcomes in Ap-
pendix C.3.6. In Appendix C.6, we analyze standard panel data models for
the outcome equations as well as instrumental variable approaches to account
for lagged dependent variables and serial correlation, but our estimates are

robust even when we allow for different failures of Assumption A-3.

5.2.5 Structural Invariance

We assume that the variables X ,‘j’a fully summarize treatment in the sense that
any effect that treatment has on outcomes operates through the inputs Xg’a
and not through shifts in the production function relating inputs to outputs

(see Heckman et al., 2013). Assumption A-4 formalizes this statement.

Assumption A—4 Structural Invariance

59Tt also facilitates matching, one of the methods used in this paper. See Heckman and
Navarro (2004).
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For all x,b € supp(X?%,, B.),k € {e,n}

e,a’

¢2,j,a (w7 b) = (bllc,j,a(wa b) (1‘5)
= ¢j,a<w7 b)?
im(m) is the function generating the causal effect of setting X,‘ia = x holding

el ;.o fiwed for a € {1,..., A} for any outcome j € J,. O

This assumption has two distinct messages: (i) the structural functions
evaluated at the same arguments have identical values for treatment and con-
trol groups in the experimental sample. It also says (ii) that the structural
relationships are identical in the experimental and auxiliary samples. As pre-
viously noted, exogeneity is not needed to justify any of the Conditions C—
1 through C-3. But in the absence of exogeneity, the relationship between
the X, and the errors ef , likely differs across experimental (e) and non-
experimental (n) samples because randomization imparts a source of exoge-
nous variation to the X ia not present in non-experimental samples. Assump-
tion A—4 combined with Assumption A-3, Equation (8), and the assumption
of a zero mean for the errors (E(ef ;) = 0) for all a € {1,...,A},d € {0,1}

and k € {e,n} enable us to write:
EYXil,=2,B,=bD=d =E Y. X[, =2,B,=b], (16)

forae{1,...,A}, k € {e,n}, and d € {0,1}.
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5.2.6 Testable Implications

Equation (16) relates outcomes for Y%, , to treatment effects for X ,, together
with the background variables Bj. It is possible to test A—4 within the ex-
perimental sample (a < a*). The test consists of asking if Xia,B predict
the within-experimental sample treatment effects for Y. ;,. Under the null
hypothesis that A4 is correct, a separate indicator variable for treatment sta-
tus (d) is irrelevant when computing E [V, ;.| X{, =2, B, =b,D =d]. In
Appendix C.3.7, we test and do not reject the null hypotheses.®”

Exogeneity and invariance enable us to test additional assumptions. By

Equation (16), we can write:
E[Y.al X, =2, B.=b] =E Y, ;.| X2, =, B, =b] (17)

ford € {0,1} a€{l,..., A}

Relationship (17) is testable for a < a*, when Y} ;, is observed in both
the experimental and auxiliary samples. We do not reject the null hypotheses
of no differences in the conditional mean functions in the experimental and

auxiliary samples conditioning on X, and By, k € {e,n}.%!

5.2.7 Summarizing the Implications of Exogeneity and Structural

Invariance

Collecting results, we obtain the following theorem:

60This holds both when pooling males and females and when testing separately by gender
(see Appendix C.3.7).

61This holds when pooling males and females and when testing by gender (see Ap-
pendix C.3.7).
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Theorem 1 Valid Out-of-Sample Predictions
Under Assumptions A—1-A—/, Conditions C-2 through C-3 hold for any value
of (X¢,,Bx).

This is an immediate consequence of the cited assumptions. [

5.2.8 Testing for Endogeneity

In Appendix C.3.6, we report tests for endogeneity in the experimental and
auxiliary samples used in this paper. We follow Heckman et al. (2013) and
assume that the Sz,j,a obey a factor structure, k& € {e,n}. We develop that
framework and provide evidence supporting exogeneity in both samples for

the predictor variables used in our empirical analyses.

5.2.9 Using Matching to Construct Virtual Treatment and Com-

parison Groups

Under exogeneity assumption A-3 and invariance condition A-4 we can use
matching to construct counterparts to treatment and control groups in the
auxiliary sample.%> Doing so compresses the two stages of constructing a com-
parison group and creating predictions into one stage. Matching in this fash-
ion creates direct auxiliary counterparts for each member of the experimental
samples. It is an intuitively appealing estimator.

We discuss this approach in Appendix C.3.3. Matching is a non-parametric
estimator of the conditional mean functions. There is close agreement between
non-parametric estimates based on matching and more parametric model-

based approaches like the one we use throughout the main text (see Ap-

62Heckman et al. (1998) use this procedure.
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pendix C.3.4.1).

5.2.10 Summarizing Our Approach and What We Do in This Paper

Using the data sources listed in Table 5, we execute our analysis in two stages.
In Stage I, we construct comparison samples using background variables (B,,).
In Stage II, we use the samples so constructed to create post-a* prediction
models based on B and X?. We repeat that the structural invariance and
exogeneity assumptions discussed in this section are sufficient conditions for
justifying Conditions C-2 and C-3. We can clearly weaken these assumptions.
For example, creating mean difference counterfactuals only requires exogeneity
and structural invariance in mean differences, and not in individual level equa-
tions. However, the conditions stated for level equations by treatment status
have the advantage of being testable on certain subsamples of the data. They
also justify matching to make valid predictions. Appendix C.6 reports esti-
mates from a variety of alternative approaches accounting for serial correlation

in the errors and from non-parametric matching.

5.3 Predicting Parental Labor Income

ABC/CARE offers childcare to the parents of treated children for more than
nine hours a day for five years, 50 weeks a year. Only 27% of mothers of chil-
dren reported living with a partner at baseline and this status barely changed
during the course of the experiment (see Appendix A). The childcare compo-
nent generates the treatment effects in maternal labor force participation and

parental labor income reported in Tables 3 and 4 and Appendix G.
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We observe parental labor income at eight different times for the exper-
imental subjects up through age 21.9%:%4 As Tables 3 and 4 show, treatment
effects on parental labor income are sustained through the child’s age 21. This
presumably arises from wage growth due to parental attainment of further
education and/or more work experience. An ideal approach would be to esti-
mate the profile over the full life cycle of mothers. We propose two different
approaches for doing this in Appendix C.3.8: (i) an approach based on param-
eterizing parental labor income using standard Mincer equations; and (ii) an
approach based on the analysis of Section 5.2. In Section 6, we present esti-
mates using the labor income through age 21 and using these two alternatives
for projecting future labor income after age 21. The benefits of the program
increase when considering the full life cycles of mothers using either approach.

Any childcare inducements of the program likely benefit parents who, at
baseline, did not have any other children. If they did, then they might have had
to take care of other children anyway, weakening the childcare-driven effect,
especially if there are younger siblings present. In Appendix C.3.8, we show
that the treatment effect for discounted parental labor income is much higher
when there are no siblings of the participant children at baseline. The effect
also weakens when comparing children who have siblings younger than 5 years

old to children who have siblings 5 years old or younger.®

63The ages at which parental labor income is observed are 0, 1.5, 3.5, 4.5, 8, 12, 15, and
21. At age 21 the mothers in ABC/CARE were, on average, 41 years old.

64We linearly interpolate parental labor income for ages for which we do not have obser-
vations between 0 and 21.

65These patterns persist when splitting the ABC/CARE sample by gender, but the esti-
mates are not precise because the samples become too small. See Appendix C.3.8.
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5.4 Health

We predict and monetize health outcomes based on a version of Equation (7)
including a full vector of lagged dependent variables for different indicators
of health status. This requires adapting the models of Section 5.2. Three
additional issues arise: (i) health outcomes such as diabetes or heart disease
are absorbing states; (ii) health outcomes are highly interdependent within
and across time periods; and (iii) there is no obvious terminal time period for
benefits and costs except death, which is endogenous.

Our auxiliary model for health is an adaptation of the Future America
Model (FAM). This model predicts health outcomes from the subjects’ mid-
30s up to their projected age of death (Goldman et al., 2015).°” Appendix F
discusses the FAM methodology in detail.

In Appendix F, we present tests of its assumptions and its predictive
performance for population aggregate health and healthy behavior outcomes.
FAM passes a variety of specification tests and accurately predicts health out-
comes and healthy behaviors. We initialize the health prediction model using
the same variables that we use to predict labor and transfer income, along
with the initial health conditions as listed in Table 6.

Our methodology has five steps: (i) estimate age-by-age health state
transition probabilities using the Panel Study of Income Dynamics (PSID);
(ii) match these transition probabilities to the ABC/CARE subjects based

on observed characteristics; (iii) estimate quality-adjusted life year (QALY)

66For example, for income we extrapolate up to the retirement age of 67. However, for
health, we need to predict an age of death for each individual.
67The simulation starts at the age in which we observe the subject’s age-30 follow-up.
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models using the Medical Expenditure Panel Survey (MEPS) and the PSID;
(iv) estimate medical cost models using the MEPS and the Medicare Current
Beneficiary Survey (MCBS), allowing estimates to differ by health state and
observed characteristics; and (v) predict the medical expenditures and QALY's
that correspond to the simulated individual health trajectories.®®

Our microsimulation model starts with health predictions for age 30, along
with the information on observed characteristics available at this age. Restrict-
ing it to the individuals for whom we have information from the mid-30s health
survey allows us to account for components that are important for predicting
health outcomes. The models predict the probability of being in any of the
states in the horizontal axis of Table 6 at age a+ 1 based on the state at age a,
which is described by the vertical axis of the table.® Absorbing states are an
exception. For example, heart disease at age a does not enter in the estimation
of transitions for heart disease at age a + 1 because it is an absorbing state:
once a person has heart disease, she carries it through the rest of her life.

At each age, once we obtain the transition probability for each health out-
come, we make a Monte-Carlo draw for each subject. Thus, each simulation
depends on each individual’s health history and on their particular charac-
teristics. For every simulated trajectory of health outcomes, we predict the
lifetime medical expenditure using the models estimated from the MEPS and

the MCBS. We then obtain an estimate of the expected lifetime medical ex-

68 As an intermediate step between (i) and (ii), we impute some of the variables used to
initialize the FAM models (see Appendix F).

69Tn practice, the predictions are based on two-year lags, due to data limitations in the
auxiliary sources we use to simulate the FAM. For example, if the individual is 30 (31) years
old in the age-30 interview, we simulate the trajectory of her health status at ages 30 (31),
32 (33), 34 (35), and so on until her projected death.
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penditure by taking the mean of each individual’s simulated lifetime medical
expenditure.

The models estimated using MCBS represent medical costs in the years
2007-2010. The MEPS estimation captures costs during 2008-2010. To ac-
count for real medical cost growth after 2010, we adjust each model’s predic-

tion using the method described in Appendix F.

Figure 6: Quality Adjusted Life Years: Predictions and Comparison to PSID
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Note: This figure displays the life-cycle net-present value of predicted quality-adjusted life
years (QALYs) for ABC/CARE males and females, respectively, by treatment status. The
predictions are based on combining data from the Panel Study of Income Dynamics (PSID),
the Health Retirement Study, and the Medical Expenditure Panel Survey (MEPS). For each
gender, we display a comparison to disadvantaged males and females in the Panel Study
of Income Dynamics (PSID), where disadvantaged is defined as being Black and having 12
years of education or less. QALYs are the quality-adjusted life years gain due to better
health conditions. Standard errors are based on the empirical bootstrap distribution.

The same procedure is applied to calculate quality-adjusted life years

(QALYs).™ We compute a QALY model based on a widely-used health-related

A quality-adjusted life year (QALY) reweights a year of life according to its quality
given the burden of disease. Suppose we assign a value of $150,000 (2014 USD) to each
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Quality-of-Life (HRQoL) measure (EQ-5D), available in MEPS.™ We then es-
timate this model using the PSID.

We estimate three models of medical spending: (i) Medicare spending
(annual medical spending paid by parts A, B, and D of Medicare); (ii) out-of-
pocket spending (medical spending paid directly by the individual); and (iii) all
public spending other than Medicare. Each medical spending model includes
the variables we use to predict labor and transfer income, together with current
health, risk factors, and functional status as explanatory variables.

We also calculate medical expenditure before age 30. The ABC/CARE
interviews at ages 12, 15, 21 and 30 have information related to hospitaliza-
tions at different ages and number of births before age 30. We combine this
information along with individual and family demographic variables to use
MEPS to predict medical spending for each age.

QALYs are crucial for our benefit-cost analysis because they monetize the
health of an individual at each age. Figure 6 shows our estimation of QALY's
together with a PSID comparison, in an exercise analogous to that used to

produce Figure 4.7 Although there is not a clear age-by-age treatment effect

year of life. A QALY of $150,000 denotes a year of life in the absence of disease (perfect
health). The value of QALY for an individual in a given year is smaller than $150,000
when there is positive burden of disease, as worse health conditions imply lower QALYs.
When an individual dies, her QALY equals zero. There are extreme combinations of disease
and disability that may generate negative QALYs, although this is unusual. Because we
quantify labor income in addition to other components, this value corresponds solely to
monetizing the value of life net of what individuals produce in terms of economic output.
The benefit-cost ratio and internal rate of return remain significant after removing this
component entirely (see Table 9).

"'For a definition and explanation of this instrument, see Dolan (1997); Shaw et al.
(2005).

"In our baseline estimation, we assume that each year of life is worth $150,000 (2014
USD). Our estimates are robust to substantial variation in this assumption, as we show in
Appendix I.
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on QALYs, there is a statistically and substantively significant difference in
the accumulated present value of the QALYs between the treatment and the
control groups. The QALYs for individuals in the control group match the
QALYs of disadvantaged individuals in the PSID.™

5.5 Crime

To estimate the life-cycle benefits and costs of ABC/CARE related to crimi-
nal activity, we use rich data on crime outcomes obtained from public police
records.” See Appendix E for a more complete discussion. We consider the
following types of crime: arson, assault, burglary, fraud, larceny, miscella-
neous (which includes traffic and non-violent drug crimes which can lead to
incarceration), murder, vehicle theft, rape, robbery, and vandalism. We use
administrative data that document: (i) youth arrests, gathered at the age-21
follow-up; (ii) adult arrests, gathered at the mid-30’s follow-up; and (iii) sen-
tences, gathered at the mid-30’s follow-up. We also use self-reported data on
adult crimes, gathered in the age-21 and age-30 subject interviews. Because
none of these sources capture all criminal activity, it is necessary to combine
them to more completely approximate the crimes the subjects committed. We
also use several auxiliary datasets to complete the life-cycle profile of criminal

activity and compute the costs of the committed crimes.

"In Appendix F we further discuss and justify the parameterizations required to obtain
estimates of QALYs. Tysinger et al. (2015) examine the sensitivity to these parameteriza-
tions and discuss alternative micro-simulations monetizing health condition.

"Two previous studies consider the impacts of ABC on crime: Clarke and Campbell
(1998) use administrative crime records up to age 21, and find no statistically significant
differences between the treatment and the control groups. Barnett and Masse (2002, 2007)
account for self-reported crime at age 21. They find weak effects, but they lack access to
longer term, administrative data.
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We follow four steps to estimate the costs of crime.

1. Count arrests and sentences. We start by counting the total number of
sentences for each individual and type of crime (arson, assault, etc.) up
to the mid 30’s, matching crimes across data sources, to construct the
total number of arrests for each individual and type of crime up to the
mid 30’s.” For individuals missing arrest data,”® we impute the number
of arrests by multiplying the number of sentences for each type of crime

by a national arrest-sentence ratio for the respective crime.””

2. Construct predictions. Based on the sentences observed before age mid
30’s, we predict the sentences that the ABC/CARE subjects will have
after age mid 30’s. Data from the North Carolina Department of Pub-
lic Safety (NCDPS), which provide lifetime sentences of individuals in
North Carolina, are used to estimate sentences incurred after age mid
30’s from sentences incurred before age mid 30’s. Applying these models
to the ABC/CARE data, we predict the number of future sentences for
each subject up to age 50.”® We then add these estimates to the orig-

inal number of sentences, getting an estimate of the lifetime sentences.

"5In practice, we count all offenses (an arrest might include multiple offenses). This gives
the correct number of victims for our estimations. The youth data have coarser categories
than the rest of the data: violent, property, drug, and other. To match these data with the
adult data, we assume that all property crimes were larcenies and that all violent crimes
are assaults. In the ABC/CARE sample, assault is the most common type of violent crime,
and larceny/theft is the most common property crime.

"6 About 10% of the ABC/CARE sample has missing arrest data. We fail to reject the
null hypothesis of no differences in observed characteristics between the treatment- and
control-group participants for whom we observe arrests data (see Appendix A.6).

"TThis arrest-sentence ratio is constructed using the National Crime Victimization Survey
(NJRP) and the Uniform Crime Reporting Statistics (UCRS).

®We assume that individuals with no criminal records before age mid 30’s commit no
crimes after age mid 30’s.
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Adding these estimates increases the total count of crimes by 30%—50%.

3. Estimate number of victims from the crimes. We only observe crimes
that resulted in consequences in the justice system: crimes that resulted
in arrests and/or sentences. To include unobserved crimes, we use vic-
timization inflation (VI).”™ We start by constructing a VI ratio, which
is the national ratio of victims and arrests for each type of crime.®

Then, we estimate the number of victims from the crimes committed by

ABC/CARE subjects as their total arrests multiplied by the VT ratio.®!

4. Find total costs of crimes. We use the estimates of the cost of crimes
for victims from McCollister et al. (2010) to impute the total victimiza-
tion costs. For crimes resulting in arrests and/or sentences, we consider
justice system costs as well, such as police costs.®? Finally, we construct
the total costs of incarceration for each subject using the total prison

time and the cost of a day in prison.®?

Previous papers using this method include Belfield et al. (2006) and Heckman et al.
(2010D).

80We assume that each crime with victims is counted separately in the national reports
on arrests, even for arrests that might have been motivated by more than one crime. This
victim-arrest ratio is constructed using the NJRP and the National Crime Victimization
Survey (NCVS).

81 Additionally, we can calculate an analogous estimate of the number of crime victims
using sentences, based on the VI ratio and the national arrests-to-sentences ratio. These
estimates are very similar, as shown in Appendix E. To improve precision, the estimates in
the rest of our paper are based on the average of the two calculations.

82To be able to assign costs to each type of crime, we assume that the cost of the justice
system depends on the number of offenses of each type, rather than on the number of
arrests. While this could very slightly overestimate justice system costs, the costs only
represent about 5% of the total crime costs.

83 Appendix I examines the sensitivity of our crime costs quantification to different as-
sumptions. Section 6 and Appendix I we examine the sensitivity of our overall assessment
of ABC/CARE results to the quantification of crime that we explain in this section.
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5.6 Education

Follow-up data on educational attainment were collected through age 30. In
Appendix D, we show that using auxiliary data sources, education up to this
age is an accurate predictor of lifetime educational attainment. Therefore, we
do not predict educational attainment beyond age 30. To monetize the costs
of education, we consider the public costs of K-12 education and the public
and private costs of post-secondary education, including vocational programs
and community college. Other costs of education include grade retention and
special education. Previous analyses of ABC pay special attention to special
education, arguing that savings due to a reduction in this category are substan-
tial (Barnett and Masse, 2002, 2007).5* This category is much less important

in our calculation.®®

6 Benefit/Cost Analysis

This section reports benefit/cost and rate of return analyses underlying Fig-
ure 1. Appendix [ displays an extensive sensitivity analysis of each of the
components we consider. It includes scenarios in which all of our assump-
tions hold and scenarios in which they are violated, providing bounds for our

estimates.

84Their analyses do not include CARE.

85Pooling males and females the net gain due to a reduction in special education is
$9,724.4 (2014 USD) (s.e. $8,608.1). For males the gain is $14,694.9 (2014 USD) (s.e.
$11,065.4) and for females it is $4,077.5 (2014 USD) (s.e. $14,892.0). This quantity is
discounted to the child’s birth.
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6.1 Program Costs

The yearly cost of the program was $18,514 per participant in 2014 USD. We

improve on previous cost estimates using primary-source documents.®°

6.2 Benefit/Cost Estimates

Table 7 presents our baseline estimates of benefit/cost ratios, Table 8 presents
the analogous internal rates of return. Pooling males and females, the results
indicate that the program is socially efficient: the internal rate of return and
the benefit/cost ratio are 13.7% and 7.3. The program generates a benefit
of 7.3 dollars for every dollar spent on it. These estimates are statistically
significant, even after accounting for sampling variation, serial correlation,
and prediction error in the experimental and auxiliary samples and the tax
costs of financing the program.®” These benefits arise despite the fact that
ABC/CARE was much more expensive than other early childhood education
programs—the treatment involved more services over a longer time period

(Elango et al., 2016).

860Qur calculations are based on progress reports written by the principal investigators and
related documentation recovered in the archives of the research center where the program
was implemented. We display these sources in Appendix B. The main component is staff
costs. Other costs arise from nutrition and services that the subjects receive when they
were sick, diapers during the first 15 months of their lives, and transportation to the center.
The control-group children also receive diapers during approximately 15 months, and iron-
fortified formula. The costs are based on sources describing ABC treatment for 52 children.
We use the same costs estimates for CARE, for which there is less information available.
The costs exclude any expenses related to research or policy analysis. A separate calculation
by the implementers of the program indicates almost an identical amount (see Appendix B).

87We obtain the reported standard errors by bootstrapping all steps of our empirical
procedure, including variable selection, imputation, model selection steps, and prediction
error (see Appendix C.8).
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We accompany these estimates with a set of sensitivity checks of statisti-
cal and economic interest. Our estimates are not driven by our methods for
accounting for attrition and item non-response or by the conditioning variables
we use when computing the net-present values. Although the internal rate of
return remains relatively high when using participant outcome measures up to
ages 21 or 30, the benefit/cost ratios indicate that accounting for benefits that
go beyond age 30 is important. The return to each dollar is at most 3/1 when
considering benefits up to age 30 only (prediction span columns). Accounting
for the treatment substitutes available to controls also matters. Males benefit
the most from ABC/CARE relative to attending alternative childcare centers,
while females benefit the most from ABC/CARE relative to staying at home.
We explore this difference below.

Our baseline estimates account for the deadweight loss caused by the
government using distortionary taxes to fund programs, plus the direct costs

88 Qur baseline estimate assumes that the

associated with collecting taxes.
marginal tax rate is 50%.%° Our estimates are robust to dropping it to 0%
or doubling it to 100% (deadweight loss columns). Our baseline estimate of

benefit /cost ratios is based on a discount rate of 3%. Not discounting roughly

doubles our benefit /cost ratios, while they remain statistically significant using

88When the transaction between the government and an individual is a direct transfer,
we consider 0.5 as a cost per each transacted dollar as we do not weight the final recipient
of the transaction (e.g., transfer income). When the transaction is indirect, we classify it
as government spending as a whole and consider its cost as 1.5 per each dollar spent (e.g.,
public education).

89Feldstein (1999) reports that the deadweight loss caused by increasing existing tax rates
(marginal deadweight loss) may exceed two dollars per each dollar of revenue generated.
We use a more conservative value (0.5 dollars per each dollar of revenue generated). In
Tables 7, 8, and 9 and in Appendix I, we explore the robustness of this decision and find
little sensitivity.
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a higher discount rate of 7% (discount rate columns).

Parental labor income is an important component of the benefit /cost ratio.
We take a conservative approach in our baseline estimates and do not account
for potential shifts in profiles in parental labor income due to education and
work experience subsidized by childcare (see the discussion in Section 5.3).
Our baseline estimates rely solely on observed parental labor income when
participant children were ages 0 to 21.

Alternative approaches considering the gain for the parents through age 67
generate an increase in the gain due to parental labor income (parental labor
income columns). As noted in Section 5, our estimates ignore any cohort
effects. Individuals in ABC/CARE could experience positive cohort effects
that might (i) make them more productive and therefore experience wage
growth (Lagakos et al., 2016); (ii) experience a negative shock such as an
economic crisis and therefore experience a wage decline (Jarosch, 2016). Our
estimates are robust when we vary annual growth and decay rates between

—0.5% to 0.5%.%

99We account for cohort effects in health as explained in Section 5.4.
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Table 9: Cost/benefit Analysis of ABC/CARE, Summary

Females Males Pooled
Removed Component NPV IRR B/C NPV IRR B/C NPV IRR B/C
None 161,759 10.1% 2.61 919,049 14.7% 10.19 636,674 13.7% 7.33
(6%) (0.73) (4%) (2.93) (3%) (1.84)
Parental Income 148,854 4% 1.12 107,907 11% 9.10 116,953 9% 6.17
(2%) (0.65) (3%) (2.92) (3%) (1.87)
Subject Labor Income 41,908 9% 2.21 238,105 13% 7.75 133,032 13% 6.03
(6%) (0.66) (5%) (2.23) (4%) (1.77)
Subject Transfer Income 419 10% 2.61 -7,265 15% 10.26 -4,372 14% 7.38
(6%) (0.73) (4%) (2.93) (3%) (1.84)
Subject QALY 42,102 9% 2.20 106,218 14% 9.14 87,181 13% 6.48
(6%) (0.69) (6%) (2.73) (5%) (1.79)
Medical Expenditures -16,037 9% 2.77 -42,038 15% 10.61 -31,221 14% 7.65
(6%) (0.76) (3%) (2.89) (3%) (1.85)
Alternative Preschools 16,691 8% 2.45 13,434 14% 10.05 14,659 12% 7.19
(5%) (0.73) (4%) (2.92) (3%) (1.84)
Education Costs 1,457 10% 2.59 -7,852 15% 10.26 -4,518 14% 7.37
(6%) (0.72) (4%) (2.93) (3%) (1.86)
Crime Costs 31,668 10% 2.34 638,923 9% 4.08 450,368 8% 3.06
(6%) (0.62) (5%) (2.18) (4%) (1.01)
Deadweight Loss 18% 3.83 19% 15.38 18% 11.01
(12%) (1.04) (6%) (4.35) (5%) (2.79)
0% Discount Rate 5.06 25.45 17.40
(2.82) (10.42) (5.90)
7% Discount Rate 1.49 3.78 2.91
(0.32) (0.79) (0.59)

Note: This table presents the estimates of the net present value (NPV) for each compo-
nent, and the internal rate of return (IRR) and the benefit/cost ratio (B/C) of ABC/CARE
for different scenarios based on comparing the groups randomly assigned to receive center-
based childcare and the groups randomly assigned as control in ABC/CARE. The first row
represents the baseline estimates. The rest of the rows present estimates for scenarios in
which we remove the NPV estimates of the component listed in the first column. The cat-
egory “Alternative Preschools” refers to the money spent in alternatives to treatment from
the control-group children parents. QALYs refers to the quality-adjusted life years. Any
gain corresponds to better health conditions through the age of death. The quantity listed
in the NPV columns is the component we remove from NPV when computing the calcula-
tion in each row. All the money figures are in 2014 USD and are discounted to each child’s
birth, unless otherwise specified. For B/C we use a discount rate of 3%, unless otherwise
specified. We test the null hypotheses IRR = 3% and B/C = 1—we select 3% as the bench-
mark null because that is the discount rate we use. Inference is based on non-parametric,
one-sided p-values from the empirical bootstrap distribution. We highlight point estimates
significant at the 10% level.

Total cost of the program per child is 92, 570.

We also examine the sensitivity of our estimates to (i) dropping the most
costly crimes such as murders and rapes;”! and (ii) halving the costs of vic-

timization and judiciary costs related to crime. The first sensitivity check is

N1 Two individuals in the treatment group committed a rape and one individual in the
control group committed a murder.
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important because we do not want our estimates to be based on a few ex-
ceptional crimes. The second is important because victimization costs are
somewhat subjective (see Appendix E). Our benefit/cost analysis is robust to
these adjustments, even when crime is a major component. Lastly, we examine
the sensitivity with respect to our main health component: quality-adjusted
life years. This is an important component because relatively healthier individ-
uals survive longer and healthier, and treatment improves health conditions.
It is important to note that this component largely accumulates later in life
and therefore it is heavily discounted. Dropping the component or doubling
the value of life does not have a major impact on our calculations.

The estimates are robust when we conduct a drastic sensitivity analysis by
removing components of the benefit/cost analysis entirely (Table 9).* Even
when completely removing the gain associated with crime for males, the pro-
gram is socially efficient—both the internal rate of return and the benefit/cost
ratio are substantial. Parental labor income and crime are the components
for which the internal rate of return and the benefit/cost ratio are the most
sensitive. The reason for the sensitivity to parental labor income is that the
amount is substantial and it is not heavily discounted because it accumulates
during the first 21 years of a child’s life. Crime occurs later in life and its ben-
efits are discounted accordingly. The amount due to savings in crime is large,
so removing it diminishes both the internal rate of return and the benefit /cost
ratio (but they remain statistically significant).

In Appendix C.6, we also investigate how sensitive our prediction model

92Tn Appendix I, we present exercises that are not as drastic as removing the whole
component, but instead remove fractions of it.
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is to a variety of perturbations: different autocorrelation processes in the pre-
diction errors, predictions without lagged variables, etc. Our estimates are
robust to using different prediction models.

Overall, our sensitivity analyses indicate that no single category of out-
comes drives the social efficiency of the program. Rather, it is the life-cycle
benefits across multiple dimensions of human development.

In Appendix J we use our analysis to examine the empirical foundations of
recent cost-benefit studies of early childhood programs that use short term es-
timates of experimental test score gains coupled with auxiliary estimates of the
impact of test scores on earnings (see, e.g., work by Kline and Walters, 2016).
We show that this approach applied to the ABC data greatly understates the
true benefit-cost ratio because (a) earnings are only predicted through a young
age (27) and (b) benefits extend beyond earnings. The difference is sizable.
Applying the Kline and Walters method to the ABC/CARE experiment, we

would find a cost-benefit ratio of 1.4 compared to our estimate of 7.3.

6.3 Possible Explanations for Gender Differences

The benefit/cost ratio and internal rate of return calculations both indicate
that males and females benefit differently from the program compared to the
alternatives “H” and “C”. There are two complementary stories that help to
explain this difference. First, gender differences could exist as a consequence
of the outcomes monetized, and not because of the particular counterfactuals
that we estimate. Males have relatively high benefits from the outcomes that

we are able to monetize. Labor income and crime are prime examples of this.
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Females are less likely to work than males. While all males supply labor in our
sample at age 30, not all females do. We are not able to quantify household
production benefits for either males or females. This is an important omission
for females who decide to stay at home instead of work. For example, we lack
data on their children’s outcomes.

ABC/CARE has treatment effects on crime for females for a number of
categories (see Appendix G). However, males are much more likely to commit
crimes that are more costly to the victims, to the criminal justice system,
and to society (Cohen and Bowles, 2010; Barak et al., 2015). ABC/CARE
also has treatment effects on crime for females for a number of categories (see
Appendix G). However, males commit crimes that are much more expensive
to society. These two categories are examples of why the magnitudes of the
gains are much higher for males than they are for females.

For health, there are also substantial gender differences. Both males and
females have substantial gains: males benefit on more standard measures of
physical health, and females benefit on a set of mental health measures (see
Appendix G). We quantify both components (see Section 5.4 and Appendix F).

There is a second factor at work. There are substantial differences between
males and females in one counterfactual: treatment vs. alternative preschools.
The estimated treatment effects are very similar across genders for treatment
compared to those staying at home full time. Males benefit much more from
treatment relative to alternative preschools compared to their benefits from
treatment relative to staying at home. This result is consistent with find-

ings noted elsewhere: (i) stark gender differences resulting from attending low
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quality childcare (Kottelenberg and Lehrer, 2014; Baker et al., 2015); and (ii)
females are less sensitive to uncertain environments (see, e.g., Autor et al.,
2015).

Our evidence does not indicate that the program has no benefits for fe-
males. When compared to staying at home, there is a gain of 4.93 dollars
per each dollar invested. When we decompose the net-present value for each
of the components that we monetize, we find substantial benefits for females
across a variety of categories, including health and crime. For males, the mag-
nitudes are noticeably increased when comparing outcomes from treatment to

outcomes from attending alternative preschools (see Figure 7).

7 Summary

This paper studies two influential early childhood programs evaluated by the
method of randomized control trials with long term follow-up through the mid
30’s. These programs are emulated in a variety of active early childhood pro-
grams around the world. We document outcomes across multiple life domains.
We estimate a statistically significant aggregate benefit/cost ratio of 7.3 and
a rate of return of 13.7% per annum, even after adjusting for the welfare costs
of financing the program through taxation.

To reach these conclusions, we address a number of empirical challenges:
(i) control group substitution; (ii) extrapolating lifetime benefits beyond the
experimental period; and (iii) the multiplicity of hypotheses tested. Our ap-

proach serves as a template for evaluations of programs with partial follow up
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over the life cycle.

Benefits differ substantially by gender. Females have more beneficial treat-
ment effects than males, but the monetized value of the male treatment ef-
fects is greater. There are substantial effects on health and (health-related)
quality of life as well as crime for males. For females, the benefits are concen-
trated in education, employment, and minor crimes. The effects for females
are stronger compared to the alternative of staying at home. The effects for
males are stronger compared to the alternative of participation in alternative
childcare arrangements. The program subsidizes maternal employment and
has a strong causal effect on maternal labor income. We demonstrate the

long-term multiple benefits of these programs.
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