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1 Introduction

Optimal transport theory has attracted a lot of interest across a number of scientific dis-

ciplines, from pure mathematics (Villani, 2003) to various applications including machine

learning (Seguy and Cuturi, 2015) mathematical statistics (del Barrio et al., 1999) and

economics (Galichon, 2016). The basic problem of optimal transport is how to form pairs

of agents drawn from two populations in order to maximize the total utility, also called

matching affinity. The resulting joint distribution of pairs is called an optimal matching,

also called optimal transport plan.

Most of the theory of optimal transport has focused on the direct problem, namely

solving for the optimal matching, taking the matching affinities as given. In contrast,

we consider in this paper the inverse optimal transport problem: given the observation of

an optimal matching, what is the affinity function for which this matching is optimal1?

This problem arises naturally in the study of two-sided matching markets, which appears

in various fields of the social sciences. In sociology and economics, one instance of these

markets is the “marriage market,” following Becker (1973)’s seminal analysis, where one

observes the characteristics of both partners in married couples (such as education, height,

personality traits, etc.), and one wants to infer (i) which characteristics attract or repel

each other the most, and (ii) what combinations of characteristics are the most relevant

for matching.

In models of matching markets, vectors of characteristics x ∈ Rd for one side of the

market and y ∈ Rd′ for the the other side are available, and the joint distribution π̂ (x, y)

across matched pairs is observed, and we are interested in estimating the matching affinity

1In the theoretical computer science literature, this problem is known as an inverse assignment problem,

see Burkard et al. (2009), Section 6.7 and references therein.

2



function Φ (x, y). Broadly speaking, models of matching markets are divided into three

categories: scalar index models, discrete models, and multivariate models, which we will

now briefly survey.

Scalar index models. A number of papers use scalar index models: they assume that

agents match on a pair of scalar indices x̃ = u⊤x and ỹ = v⊤y, which are weighted sums

of partners’ characteristics. Following a suggestion by Becker (1973), a number of papers

have used canonical correlation or linear regression techniques in order to estimate the

weight vectors u and v; see for instance Suen and Lui (1999), Gautier et al. (2005), Lam

and Schoeni (1993, 1994), and Jepsen (2005), and a caution against the misuse of these

techniques in Dupuy and Galichon (2015). A more robust ways to estimate the weight

vectors has been suggested by Terviö (2003) using rank correlation. See also Chiappori et

al. (2012).

Discrete models. Following a seminal paper by Choo and Siow (2006), a number of re-

cent papers (Fox, 2010; Chiappori et al., 2016; Galichon and Salanié, 2015) have assumed

that agents match based on discrete characteristics, either categorical variables like ethnic-

ity, or binned, such as the income bracket. However, the binning of cardinal variables may

be problematic as the results may depend heavily on the arbitrary choice of the thresh-

olds. Therefore, these models suffer from limitations when dealing with non-categorical

variables.

Continuous models. More recently, a continuous model has been proposed by Dupuy

and Galichon (2014), where the matching affinity is bilinear with respect to the matched

pairs’ characteristics, i.e. is given by x⊤Ay, where A, called the affinity matrix is a d× d′

matrix is to be estimated. This model enables weighted interactions between any pair of

characteristics. Of course, when the rank of A is one, A = λuv⊤, and one recovers the scalar

index models discussed above. But as soon as the rank of A is greater than one, a pair of
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scalar indices on each side of the market would not be sufficient to describe the matching

affinity. Dupuy and Galichon (2014) propose a moment matching procedure to estimate

A, which can be computed via convex optimization. However, as soon as the number of

characteristics goes large, the number of parameters to be estimated grows quadratically,

potentially leading to an overfit.

In this paper, we propose a novel method for solving the inverse optimal transport

problem in a high-dimensional setting, where we estimate the affinity matrix A under a

rank constraint in order to capture the relevant dimensions of interaction on which matching

occurs. Two applications to the marriage market are proposed that each highlight different

features of the proposed method. The first application uses the same data as in Dupuy

and Galichon (2014) and illustrates how our method allows one to identify the impact of

narrowly defined personality traits without having to aggregate these into aggregate traits

prior to the estimation of the affinity matrix as in that paper. The second application

is performed on data compiled in Banerjee et al. (2013) about the role of castes in the

Indian marriage market and illustrates the usefulness of our method when one is dealing

with categorical or ordinal variables and one does not want to either ex ante aggregate

categories or assume some cardinal scale prior to estimating the affinity matrix.

The rest of the paper is organized as follows. Section 2 presents the matching equilib-

rium model and introduces the concept of affinity matrix. Section 3 describes the maximum

likelihood estimation of the affinity matrix, including a low-rank regularized version. Sec-

tion 4 present applications to two marriage markets datasets. Section 5 concludes the

paper.
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2 The model

We first briefly recall the optimal transport problem; see Villani (2003 and 2008) for more.

Given two probability distributions µ1 and µ2 over Rd×Rd′ , the optimal transport problem

is defined as

max
π∈Π(µ1,µ2)

Eπ [Φ (X,Y )] (1)

where Φ (x, y) is the measure of affinity between two agents x ∈ Rd and y ∈ Rd′ on each side

of the market, and Π (µ1, µ2) is the set of distributions π (x, y) with marginal distributions

µ1 and µ2. Problem (1) is the Monge-Kantorovich problem of optimal transport.

2.1 Optimal solution vs equilibrium

The optimization problem (1) yields a centralized solution where a central planner would

decide which pairs to form. However, most matching markets (including the marriage

market which we study in this paper) are decentralized markets, in which agents decide

based on their own interest, leading to an equilibrium. It follows from the work of Becker

(1973) and Shapley and Shubik (1971) that the centralized and the decentralized problems

are equivalent. We sketch the argument as follows.

In decentralized problems, an outcome is the specification of a matching π ∈ Π(µ1, µ2),

and of individual payoffs u (x) and v (y), which are attained by agents of respective types

x and y. The outcome is called stable when

u (x) + v (y) ≥ Φ (x, y) ∀x, y. (2)

Stability is a required condition for equilibrium. Indeed, if (2) were not to hold, then

ϵ = Φ(x, y) − u (x) − v (y) would be strictly positive, and thus by matching together, x

and y could attain u (x)+ ϵ/2 and v (y)+ ϵ/2, which is strictly more than their equilibrium
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payoffs u (x) and v (y). At the same time if x and y are matched at equilibrium under πeq,

then feasibility imposes that u (x) + v (y) = Φ (x, y). Thus, taking expectations of both

sides with respect to πeq will get

Eπeq [Φ (X,Y )] = Eπeq [u (X) + v (Y )] = Eµ1
[u (X)] + Eµ2

[v (Y )] . (3)

Hence, πeq ∈ Π(µ1, µ2) is defined as an equilibrium matching whenever there exists

functions u and vv such that both conditions (2) and (3) hold.

Let us now show that if πeq is an equilibrium, then it is a solution of (1). Consider πopt

a solution of problem (1). Taking expectations of both sides of (2) with respect to πopt gets

Eπopt [Φ (X,Y )] ≤ Eπopt [u (X) + v (Y )] = Eµ1
[u (X)] + Eµ2

[v (Y )]

where the latter equality comes from the fact that πopt ∈ Π(µ1, µ2). Hence, Eπopt [Φ (X,Y )] ≤

Eπeq [Φ (X,Y )], but by definition of πopt, these two quantities coincide and πeq is optimal

for the centralized problem (1). Hence, the decentralized solution (equilibrium matching)

coincides with the centralized solution (optimal matching).

However, the analysis above assumes that the existence of a matching between two

partners is purely deterministic given partners’ observed characteristics, which is not real-

istic. In order to allow for some randomness arising from agent’s unobserved heterogeneity

in the matching process, we shall make use of a regularized version of the optimization

formulation (1) in order to perform the estimation of Φ.

2.2 Modeling heterogeneity

It is a well-known result in optimal transport theory (see Villani, 2008, Chapter 9) that,

under suitable assumptions on Φ, the optimal matching will be pure, in the sense that
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any x is matched deterministically to a unique y = T (x) for some bijective map T ; in

other words, the conditional distribution π (y|x) of y given x, is reduced to a single point

mass. Clearly, in the presence of unobserved heterogeneity, this is no longer the case. Our

approach to modeling uncertainty consists in adding an entropic regularization term in (1),

leading to

max
π∈Π(µ1,µ2)

Eπ [Φ (X,Y )− σ lnπ (X,Y )] (4)

where σ > 0 is a temperature parameter, so that setting σ = 0 recovers program (1).

Recently a number of authors have studied such a regularized version of the Monge-

Kantorovich problem (see for instance Benamou et al., 2015; Galichon and Salanié, 2015

and references therein). One notable feature of (4) is that the optimal matching π (x, y)

has form

π (x, y) = a (x) b (y) exp (Φ (x, y) /σ) ,

where a (x) and b (y) are set by imposing the constraint π ∈ Π(µ1, µ2), that is
∫
a (x) b (y) exp (Φ (x, y) /σ) dy = µ1 (x)∫
a (x) b (y) exp (Φ (x, y) /σ) dx = µ2 (y)

.

As a result, a (x) and b (y) can be obtained by the iterated proportional fitting procedure

(IPFP), a.k.a. Sinkhorn’s algorithm, which is presented in algorithm 1.

2.3 Parameterization of the affinity function

We assume the simple parameterization of Φ as a bilinear form associated to some affinity

matrix A, namely

ΦA (x, y) = x⊤Ay. (5)
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Algorithm 1 IPFP

Input: b(y), µ1(x), µ2(y),Φ(x, y), σ

while not converged do

a (x)← µ1 (x) /
∫
b (y) exp (Φ (x, y) /σ) dy

b (y)← µ2 (y) /
∫
a (x) exp (Φ (x, y) /σ) dx

end while

Return: a(x), b(y)

This functional form will capture the interaction effects between the various dimensions of

the characteristics. The sign of Aij indicates that there is attractive (if positive Aij > 0)

or repulsive (if Aij < 0) energy between dimension i of x and dimension j of y. On the

contrary, Aij = 0 means that there is no interaction between xi and yj.

By positive homogeneity, we can normalize the temperature parameter σ in front of the

entropic term to σ = 1. Indeed, the solution of the problem with affinity function Φ and

temperature σ coincides with the solution of the problem with affinity function Φ/σ and

temperature one. Hence, we define

W (A) = max
π∈Π(µ1,µ2)

Eπ [ΦA (X,Y )− lnπ (X,Y )] , (6)

As before, the optimal matching πA retains the form

πA (x, y) = a (x) b (y) exp (ΦA (x, y)) , (7)

where a (x) and b (y) are computed by the IPFP algorithm 1. It follows directly from

expression (7) that
∂2 lnπA (x, y)

∂xi∂yj
= Aij
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which provides a nice interpretation of A as the matrix of cross-derivatives of the log-

likelihood of a matched (x, y) pair. In the sequel, we shall focus on the estimation of the

affinity matrix A.

3 Maximum likelihood estimation of the affinity matrix

We would like to estimate A based on an i.i.d. sample of matched pairs
(
x(k), y(k)

)
, k =

1, ..., N , where x(k) and y(k) are respectively d and d′-dimensional vectors of characteristics,

and the observed matching is defined as

π̂ (x, y) =
1

N

N∑
k=1

δ
(
x− x(k)

)
δ
(
y − y(k)

)
.

3.1 Unconstrained maximum likelihood

As implied by the next result, the likelihood function turns out to have a particularly

tractable form and is globally concave.

Proposition 1. (a) The log-likelihood l (A; π̂) of observation π̂ at parameter value A is

given by

l (A; π̂) = NEπ̂

[
log πA (X,Y )

]
= N {Eπ̂ [ΦA (X,Y )]−W (A)} . (8)

(b) It is a concave function of A, and its gradient is given by

∇l (A; π̂) = N {Eπ̂ [XiYj]− EπA [XiYj]} . (9)

Proof. (a) The log-likelihood of a pair
(
x(k), y(k)

)
is given by log πA

(
x(k), y(k)

)
. As the

pairs are independently sampled, the log-likelihood of the matching π̂ is given by l (A; π̂) =∑N
k=1 log π

A
(
x(k), y(k)

)
= NEπ̂

[
log πA (X,Y )

]
. It follows from (7) that Eπ̂

[
log πA (X,Y )

]
=
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Eπ̂ [ΦA (X,Y )] + Eπ̂ [log a (X) + log b (Y )], but as πA and π̂ both belong to Π (µ1, µ2), it

follows that

Eπ̂

[
log πA (X,Y )

]
= Eπ̂ [ΦA (X,Y )]− EπA [ΦA (X,Y )] + EπA [ΦA (X,Y )] + EπA [log a (X) + log b (Y )]

= Eπ̂ [ΦA (X,Y )]− EπA [ΦA (X,Y )] + EπA

[
log πA (X,Y )

]
= Eπ̂ [ΦA (X,Y )]−W (A)

hence l (A; π̂) = N{Eπ̂ [ΦA (X,Y )]−W (A)}.

(b) Eπ̂ [ΦA (X,Y )] is linear in A, and W (A) is convex in A, hence l (A; π̂) is concave.

By the envelope theorem, ∇l (A; π̂) = N {Eπ̂ [XiYj]− EπA [XiYj]}.

Thus, conditions (9) imply that the maximum likelihood estimator Â should solve

EπA [XiYj] = Eπ̂ [XiYj] (10)

for every pair i ∈ {1, · · · , d} and j ∈ {1, · · · , d′}, which thus turns out to be equivalent to

the moment matching procedure of Dupuy and Galichon (2014). Hence, assuming w.l.o.g.

that X and Y are centered at 0, this implies that Â is the value of the parameter such that

the predicted covariance matrix covπA (X,Y ) will match the observed one covπ̂ (X,Y ).

One important advantage of the concavity of the log-likelihood function l (A; π̂) is that

various additional regularizations can be incorporated into the estimation procedure. One

could constrain A to be entry-wise nonnegative so that only attractive interactions are

considered. One could also assume A is sparse, so that only a small number of pairs of

characteristics interact. In this paper, we are concerned with the case when only a small

number of dimensions, which are linear combinations of the characteristics, interact. One
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shall then need to impose a requirement that the rank of A is small. The next sections

propose an effective method for doing so which is implemented on two marriage market

datasets.

3.2 Low-rank regularization

In some situations, two scalar dimensions x̃ and ỹ, obtained linearly from x and y via

x̃ = u⊤x and ỹ = v⊤y, suffice to explain the solution π̂, where u and v are two unit vectors

of weights. In this case, A is simply a scalar multiple of rank one matrix uv⊤. More

generally, when the rank of A is equal to r, the singular value decomposition (SVD) of A

yields

A = USV ⊤, (11)

where S is a diagonal r × r matrix with strictly positive diagonal entries (called singular

values) in the decreasing order, and U and V are two semi-orthogonal d × r matrices.

In this case, the total interaction term is x⊤Ay = x̃⊤Sỹ, where x̃ = U⊤x and ỹ = V ⊤y

are the relevant dimensions of interaction. Note that x⊤Ay requires to sum over d × d′

interaction terms whereas x̃⊤Sỹ only requires to sum over r ≤ min {d, d′} interaction

terms. Moreover, each singular value can be interpreted as the weight of the interaction

between the corresponding relevant dimensions of x̃ and ỹ in the total interaction term.

One can incorporate the rank constraint into the maximization of the likelihood, whose

expression is given in proposition 1, yielding

max
A

l (A; π̂)

s.t. rk (A) ≤ r.

However, the general rank-constrained problem is non-convex and NP-hard, see Fazel

(2002). A natural convex relaxation of the problem is done by replacing the rank of A
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by its nuclear norm (see e.g. Fazel, 2002; Recht et al., 2010), ∥A∥∗, defined as the sum of

the singular values of A. This yields a modified formulation of the problem as

min
A
{W (A)− Eπ̂ [ΦA (X,Y )] + λ ∥A∥∗} (12)

where λ ≥ 0 is the Lagrange multiplier of the nuclear norm constraint. Measuring the

complexity of the model by the rank of the affinity matrix, equation (12) indicates that

for λ = 0, one accepts the full complexity of the model and perform exact likelihood

maximization whereas, for large values of λ, one simplifies the model and deviates from

exact likelihood maximization. Hence, the parameter λ can be thought of as a parameter

controlling the trade-off between exact likelihood maximization and the complexity of the

model.

The computation for problems involving the nuclear norm can be efficiently carried out

using the proximal gradient descent method with guaranteed convergence (see e.g. Toh and

Yun, 2010). As noted in the previous section, l (A; π̂) is continuously differentiable with

respect to A, and its gradient is given in expression (9). We now describe our complete

procedure in algorithm 2.

Additionally, we note that the nuclear norm regularization prevents overfitting the

covariance mismatch ∥EπA

[
XY ⊤] − Eπ̂

[
XY ⊤] ∥F , where ∥ · ∥F is the Frobenius norm of

a matrix and which one recalls from expression (10) will be exactly equal to 0 without the

nuclear norm regularization. Indeed, given U and V defined in expression (11), the first

order optimality conditions (Watson, 1992) are

EπA

[
XY ⊤]− Eπ̂

[
XY ⊤]+ λUV ⊤ +N = 0, (13)

where N satisfies U⊤N = 0, NV = 0, and ∥N∥2 ≤ λ, with ∥N∥2 being the spectral norm of

N . Equation (13) indicates that EπA

[
XY ⊤]−Eπ̂

[
XY ⊤] and A have simultaneous SVDs.
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Algorithm 2 Proximal gradient descent algorithm for problem (12)

Input: A, step size t, matched pairs
(
x(k), y(k)

)
, k = 1, ..., N

while not converged do

Using the IPFP algorithm 1 to compute the optimal matching πA

A← A− t
(∑N

i,j=1(π
A
ij − π̂ij)x

(i)(y(j))⊤
)

[U, diag(s1, · · · , sd), V ] = SVD(A)

A← Udiag((s1 − tλ)+, · · · , (sd − tλ)+)V
⊤

end while

Return: A

Moreover, the singular values of EπA

[
XY ⊤] − Eπ̂

[
XY ⊤] corresponding to the strictly

positive singular values of A will be exactly equal to λ, while the ones corresponding to the

zero singular values of A will be less than or equal to λ. Thus, by varying λ, the covariance

mismatch, which equals the l2-norm of the singular values of EπA

[
XY ⊤]−Eπ̂

[
XY ⊤], will

change as well.

We select the best λ by repeating a five-fold cross-validation (CV) twice, resulting in

ten different experiments. In each of the CV procedure, the whole dataset is randomly split

into five parts with equal size. For each λ, we estimate A via (12) using 4 parts and record

both W (A)−Eπ̂ [ΦA (X,Y )] and ∥EπA

[
XY ⊤]−Eπ̂

[
XY ⊤] ∥F evaluated on the remaining

part. From this we obtain an estimated prediction error curve as a function of λ, and we

select the λ value that minimizes both errors.

4 Application to marriage market data

We apply the low-rank optimal transport method to the case of bipartite matching in

the marriage market. We choose two applications, each corresponding to a data set with
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features allowing us to test different aspects of our method. The first application revisits

the data set used in Dupuy and Galichon (2014). This data confronts the analyst with the

problem of selecting from a large set of observed characteristics of spouses, those that are

important for matching affinities. The second application uses data compiled in Banerjee

et al. (2013) for which the analyst has access to categorical variables describing spouses’

observable characteristics. To take into account the effect of each categorical variable on

matching affinities, the analyst needs to create as many dummy variables as categories

distinguished, hence increasing rapidly the dimensionality of the affinity matrix.

In both these applications, the analyst faces the difficult task of estimating an affinity

matrix whose size is large, being the product of the number of observed characteristics

of spouses, relative to the number of observations. The high ratio of parameters to ob-

servations creates overfitting concerns. A solution would be to construct combinations of

the observed characteristics prior to the estimation, hence reducing the number of param-

eters of the associated affinity matrix. However, the construction of these combinations

of characteristics requires the analyst to define weights based on prior information about

matching affinity. In contrast, our low-rank optimal transport method allows the analyst

to simultaneously estimate the affinity matrix while selecting the relevant combinations of

characteristics using weights derived from the information contained in the affinity matrix

itself.

4.1 Personality traits

Our first application uses the Dutch Household Survey (DHS) ran by the Dutch National

Bank. In particular, a representative sample of 1,155 young couples observed in the period

1993-2002 in the Netherlands was constructed following the procedure outlined in Dupuy

and Galichon (2014). In this sample, the analyst has access to detailed information about

14



spouses’ characteristics such as education, height, Body Mass Index (BMI)2 and subjective

health, but also about personality traits and attitude towards risk. Personality traits

are herewith recovered by administrating the 16 Personality Factors test (16PF test) to

respondents (see e.g. Cattell et al., 1993). This test consists in a 16-item questionnaire

where each item corresponds to a primary factor describing a facet of one’s personality.

Attitude towards risk is recovered using a similar approach (see e.g. Donkers and Van Soest,

1999). A 6-item questionnaire about risk attitude is administrated to the respondents, each

item corresponding to a primary factor describing a facet of one’s attitude towards risks.

In this application, the objective is to estimate matching affinities from the sample

of 1,155 couples with characteristics (X,Y ), where X and Y contain each 26 variables:

education, height, BMI, subjective health and the 16 primary factors of personality traits

and 6 primary factors of risk attitude. The associated affinity matrix has 26 × 26 = 676

parameters to be estimated, hence a ratio of 0.58 parameters per observation. Dupuy and

Galichon (2014) substantially reduced the dimensionality of the model by constructing 5

global factors of personality traits and 1 global factor of attitude towards risk. They relied

on the psychology literature that shows that 5 global factors, often referred to as the “big

5,” providing an overview of one’s personality can be derived from the primary factors of

the 16PF using methods such as Factor Analysis. These 5 global factors are (orthogonal)

linear combinations of the 16 primary factors. Similarly, as is standard in the economic

literature (see e.g. Donkers and Van Soest, 1999), a single global factor providing an

overview of attitude towards risk can be derived as a linear combination of the underlying

6 primary factors. As a result, Dupuy and Galichon (2014) were able to estimate a reduced

affinity matrix of dimension 10×10 = 100, with a ratio of 0.09 parameters per observation.

However, this requires to assume that i) either all or none of the primary factors belonging

2Weight in Kg divided by the square of height in meters.
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to a global factor matter and ii) their relative importance is proportional to their relative

weight in the global factor. There are no reasons to expect this should hold universally since

the weights used to create the global factors are chosen so as to provide an overview of an

individual’s personality or attitude towards risk and not to capture matching affinities. In

contrast, our low-rank optimal transport approach, allows us to estimate the affinity matrix

of size 676 associated with the primary factors while creating the relevant combinations of

these factors that matter for matching affinities.

We use the low-rank optimal transport approach to estimate the affinity matrix A when

considering characteristics including the primary factors. Inspection of Figure 1 indicates

that λ = 0.15 gives slightly lower values of the CV errors of both W (A) − Eπ̂ [ΦA (X,Y )]

and ∥EπA

[
XY ⊤]−Eπ̂

[
XY ⊤] ∥F than λ = 0.1 does. Since λ = 0.15 achieves this result with

a lower rank of A, we use this value as the coefficient for the nuclear norm regularization.

The left panel of Figure 2 reveals the rank of the affinity matrix is 12 hence indicating that

only 12 relevant dimensions matter for matching affinities. Of those 12 relevant dimensions,

the first three alone explain about 50% of the total matching affinity as indicated in the

right panel of Figure 2.

The loadings of the first three dimensions, reported in Table 1, reveal several impor-

tant results. First, as in Dupuy and Galichon (2014), we do find that the first relevant

dimension loads principally on education, i.e. 0.85 for men and 0.83 for women respec-

tively, whereas the second and third dimensions load principally on personality traits and

attitude towards risk. However, using the primary factors rather than the global factors as

in Dupuy and Galichon (2014), we find that although conscientiousness matters for both

men and women, the underlying primary factors at play differ across gender. For women,

the primary factor “easily hurt, offended,” belonging to the global factor conscientiousness,

is the most important characteristic in the second dimension with a loading of 0.71. For
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men, the primary factor “easily hurt, offended” plays also an important role (loading of

magnitude 0.42), but the primary factor “disciplined,” also belonging to the global factor

conscientiousness, is the most important one with a loading of 0.52. These results clearly

illustrates that although conscientiousness matters, not all of its primary constituents do

and different aspects matter differently for men and women.

A similar type of results holds for the third dimension, which loads on some but not

all of the items measuring attitude towards risk. However, this dimension also loads on

other variables such as height, BMI and subjective health, making its interpretation more

difficult.

4.2 Castes in India

The second application of our method is on data compiled by Banerjee et al. (2013). These

data were collected based on interviews of Hindus families that placed a matrimonial ad

in the major Bengali newspaper in India, between October 2002 and March 20033. A

year after, 289 brides and grooms that had gotten married or engaged were interviewed a

second time, resulting in, as labeled in Banerjee et al. (2013), the “matches” data. We

use the sample of 284 couples for which information about the caste of both spouses is

available. Based on this information, we create 8 dummy variables, one for each of the 8

main Hindus castes in India. In addition, the data contains information about the height,

education, family origin (from west Bengal or not), the number of older (younger) brothers,

the number of older (younger) sisters, income and per capita consumption of each spouse.

To avoid deleting too many observations because of missing information on height and

per capita consumption we proceeded as follows. For each of these variables, we replaced

3In India, marriages are often a family affair, with parents or relatives of prospective brides or grooms

placing a matrimonial ad in a newspaper.
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missing values by the sample mean and created a dummy variable indicating missing. Both,

the imputed variable and the missing indicator were included into the set of characteristics

considered in the analysis. Our working data set contains a sample of 284 couples with 19

characteristics observed for each spouse.

In this application, the analyst is therefore confronted with the problem of estimating

an affinity matrix A of size 19× 19 = 361 using a sample of 284 couples. The ratio of 1.27

parameters per observation prevents the use of standard techniques unless one constructs

combinations of the characteristics of spouses to reduce the size of the affinity matrix. A

possibility to reduce the dimensionality of the model would be to group castes into larger

classes. Since castes are organized hierarchically, the analyst could for instance define

a threshold, grouping castes ranked below the threshold into one class and the others

into a second class. The associated affinity matrix would have size 12 × 12, resulting in

144 parameters to be estimated with 284 couples, that is a ratio of roughly 1 parameter

for 2 observations. However, this aggregation of castes into larger classes would impose

restrictions on the role of castes in matching affinity. The chosen aggregation implies

indeed that a man of say caste 1 has the same affinity for a woman of any caste within

the same class. Given the rarity of inter-caste marriages and the evidence of same-caste

preferences documented in Banerjee et al. (2013), this assumption does not seem to be

justified. As an alternative, the low-rank optimal transport method introduced in this

paper allows one to perform the estimation of the affinity matrix while selecting only the

relevant combinations of characteristics that matter for the matching affinities.

Figure 3 indicates that λ = 0.2 gives slightly lower values of the CV errors of both

W (A) − Eπ̂ [ΦA (X,Y )] and ∥EπA

[
XY ⊤] − Eπ̂

[
XY ⊤] ∥F than λ = 0.1 or λ = 0.3. We

therefore select λ = 0.2 for the analysis. The resulting affinity matrix has rank 10 as

indicated in Figure 4 such that out of 19 possible dimensions of interaction only 10 are
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relevant. The first three dimensions together account for about 50% of the total matching

affinity as shown in Figure 4.

Inspection of the loadings of the first three dimensions, reported in Table 2, clearly

reveals the importance of castes in matching affinities. The first 3 dimensions on both

sides have indeed large loadings on castes dummies. In the first dimension for instance,

the dummy variable for being of the “Brahmin” caste has by far the largest loading, i.e.

approximately 0.80, for both men and women. There is therefore a considerable loss in

matching affinity for someone of the “Brahmin” caste to marry outside of his/her caste.

Although less pronounced, we also find evidence for same-caste affinity for the “Kayastha,”

“Baisya,” and “Sagdope” castes4, as indicated by the relatively large loadings with same

sign for men and women on the second dimension (for all three castes) and on the third (for

the latter). These results tend to corroborate Banerjee et al. (2013)’s finding of same-caste

marriage preferences. However, our results also reveal two important new findings. First,

the “Baisya” and “Sagdope” castes both have positive loadings on the second dimension,

which suggests a significant inter-caste matching affinity between spouses of these two

castes. Second, in contrast, the “Kayastha” caste has a negative loading on the second

dimension for both men and women. This indicates a negative (repulsive) matching affinity

between men and women of the “Baisya” and “Sagdope” on the one hand and men and

women of the “Kayastha” on the other hand.

Interestingly, education does not seem to play as an important role as in the previous

application. However, as noted in Banerjee et al. (2013), this is probably due to the fact

that the sample is representative, not of the whole population but rather of the Bengali

middle-class that exhibits little variation in educational achievement: 85 percent of men

4The other four main castes only represent a very small fraction of the sample, less than 10% together,

which probably partly explains why we do not find significant results for these castes.

19



and women in the sample have indeed at least a bachelor’s degree.

5 Conclusion and Future Research

In this paper, we have demonstrated the effectiveness of rank-constrained estimation tech-

niques when solving inverse optimal transport problems. Inverse optimal transport prob-

lems are often faced with large dimensionality of the data sets; hence it is crucial to develop

dimensionality reduction techniques. We plan to investigate further applications of this

methodology, including explaining the intensity of mercantile exchanges between countries

by the similarities in their characteristics, predicting stable matches in online dating plat-

forms, or understanding the determinants of workers’ productivity on the labor market. We

also plan to consider an extension of the present methodology to nonbipartite networks,

which will allow to estimate the transport costs in minimum cost flow problems, with ap-

plications to analyzing urban transportation demand, as well as link formation in social

networks.
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tive Bregman projections for regularized transportation problems. SIAM Journal on

Scientific Computing, 37(2), A1111–A1138.

[5] Burkard, R. E., Dell’Amico, M., and Martello, S. (2009). Assignment Problems, Re-

vised Reprint. SIAM.

[6] Cattell, R. B., Cattell, A. K., and Cattell, H. E. P. (1993). 16PF fifth edition ques-

tionnaire. Champaign, IL: Institute for Personality and Ability Testing.

[7] Chiappori, P. A., Oreffice, S., and Quintana-Domeque, C. (2012). Fatter attraction:

anthropometric and socioeconomic matching on the marriage market. Journal of Po-

litical Economy, 120(4), 659–695.
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[25] Terviö, M. (2003). Studies of Talent Markets (Doctoral dissertation, MIT).

[26] Toh, K. C. and Yun, S. (2010). An accelerated proximal gradient algorithm for nuclear

norm regularized linear least squares problems. Pacific Journal of Optimization, 6(615–

640), 15.

[27] Villani, C. (2003). Topics in optimal transportation (No. 58). American Mathematical

Society.

[28] Villani, C. (2008). Optimal transport: old and new (Vol. 338). Springer Science &

Business Media.

[29] Watson, G. A. (1992). Characterization of the subdifferential of some matrix norms.

Linear algebra and its applications, 170, 33–45.

23



0.0 0.1 0.2 0.3 0.4 0.5

λ

10.45

10.50

10.55

10.60

10.65

10.70

10.75

10.80

E
rr

o
r

0.0 0.1 0.2 0.3 0.4 0.5

λ

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

E
rr

o
r

Figure 1: Cross-validation errors of (left) the negative log-likelihoodW (A)−Eπ̂ [ΦA (X,Y )]

(right) the covariance mismatch ∥EπA

[
XY ⊤]− Eπ̂

[
XY ⊤] ∥F .
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Figure 2: (Left) singular values (right) cumulative shares.
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Singular value

Singular vector

Oriented toward people

Quick thinker

Not easily worried

Stubborn, persistent

Vivid, vivacious

Meticulous

Dominant

Easily hurt, offended

Suspicious

Dreamer

Diplomatic, tactful

Doubts about myself

Open to changes

Independent, self-reliant

Disciplined

Irritable, quick tempered

Ready to take risk for high possible returns

Investments in shares are too risky

Ready to borrow money for risky investment

Want to be certain my investments are safe

Should take greater financial risks

Ready to risk losing money to gain money

Educational level

Height

BMI

Subjective health

s1 = 0.39

U1 V1

-0.07 -0.04

0.08 -0.01

-0.10 0.00

0.06 0.03

0.00 0.02

-0.12 -0.05

0.05 0.06

-0.06 -0.03

0.08 0.01

-0.04 0.02

-0.06 0.07

0.06 0.13

0.10 0.03

-0.10 -0.11

0.01 0.01

0.00 -0.16

0.17 0.24

-0.31 -0.29

0.12 0.13

0.01 0.05

-0.06 -0.07

0.10 0.09

0.85 0.83

0.06 0.08

-0.20 -0.24

-0.01 0.01

s2 = 0.32

U2 V2

-0.08 0.19

0.25 -0.12

0.29 0.11

0.11 0.14

0.04 0.19

-0.01 0.04

-0.09 -0.21

0.42 0.71

0.16 0.14

-0.08 0.23

0.07 -0.10

-0.31 -0.35

0.12 0.04

0.31 0.04

0.52 0.17

0.08 -0.17

-0.02 -0.07

0.05 -0.07

-0.16 -0.03

-0.12 0.02

-0.03 -0.05

0.06 -0.02

0.12 0.12

0.12 0.01

0.17 0.18

-0.15 -0.06

s3 = 0.24

U3 V3

0.04 -0.08

-0.04 0.05

0.08 -0.07

-0.11 0.02

-0.23 0.11

0.16 0.17

0.00 0.08

0.02 -0.02

0.11 0.04

0.00 0.04

0.00 -0.03

0.17 0.09

-0.22 0.05

0.01 -0.09

0.01 -0.11

-0.02 -0.03

0.27 0.29

0.48 0.53

-0.17 -0.08

0.42 0.24

-0.11 -0.18

-0.38 -0.48

0.27 0.21

-0.12 -0.25

0.16 0.29

-0.21 -0.17

Table 1: Loadings of the top three relevant dimensions of matching affinities, Dutch couples.
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Figure 3: Cross-validation errors of (left) the negative log-likelihoodW (A)−Eπ̂ [ΦA (X,Y )]
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Figure 4: (Left) singular values (right) cumulative shares.
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Singular value

Singular vector

Height

Height missing

Educational level

Family from west Bengal

Number of older brothers

Number of younger brothers

Number of older sisters

Number of younger sisters

Income

Per capita consumption

Per capita consumption missing

Castes: 1 Brahmin

2 Baidya

3 Kshatriya

4 Kayastha

5 Baisya

6 Sagdope

7 Others

8 Scheduled castes

s1 = 0.53

U1 V1

-0.22 -0.13

-0.02 0.27

0.09 0.01

0.12 0.13

0.08 -0.05

0.03 -0.03

-0.09 -0.08

-0.07 0.04

-0.11 0.06

0.02 -0.01

0.06 -0.04

0.80 0.79

-0.10 -0.03

-0.03 0.05

-0.30 -0.38

-0.34 -0.22

-0.06 -0.09

-0.13 -0.10

-0.10 -0.20

s2 = 0.43

U2 V2

-0.05 0.13

-0.01 0.12

0.26 0.30

0.16 0.32

-0.06 -0.17

-0.01 -0.16

-0.06 0.13

-0.19 -0.09

0.24 -0.02

0.06 0.13

-0.06 0.22

-0.07 -0.15

-0.13 0.01

-0.05 0.10

-0.50 -0.41

0.40 0.39

0.57 0.48

-0.19 -0.23

0.06 -0.06

s3 = 0.38

U3 V3

-0.21 -0.20

0.07 0.00

-0.27 -0.08

-0.37 -0.42

0.08 -0.08

0.03 0.18

0.05 0.10

0.17 -0.01

-0.21 -0.17

-0.25 -0.03

0.00 -0.10

0.12 0.09

-0.34 -0.37

-0.11 -0.05

-0.28 -0.34

0.51 0.57

-0.25 -0.20

0.15 0.11

0.21 0.22

Table 2: Loadings of the top three relevant dimensions of matching affinities, Indian couples.
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