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1 Introduction

Families in many large urban districts can apply for seats at any public school in their district.
The fact that some schools are more popular than others and the need to distinguish between
students who have different priorities at a given school generates a matching problem. Introduced
by Gale and Shapley (1962) and Shapley and Scarf (1974), matchmaking via market design
allocates scarce resources, such as seats in public schools, in markets where prices cannot be
called upon to perform this function. The market-design approach to school choice, pioneered by
Abdulkadiroğlu and Sönmez (2003), is used in a long and growing list of public school districts
in America, Europe, and Asia. Most of these cities match students to schools using a mechanism
known as deferred acceptance (DA).

Two benefits of centralized matching schemes like DA are efficiency and fairness: the resulting
match improves welfare and transparency relative to ad hoc alternatives, while lotteries ensure
that students with the same preferences and priorities have the same chance of obtaining highly-
sought-after seats. The latter is sometimes called the “equal treatment of equals” (ETE) property.
DA and related algorithms also have the virtue of narrowing the scope for strategic behavior
that would otherwise give sophisticated families the opportunity to manipulate an assignment
system at the expense of less-sophisticated participants (Abdulkadiroğlu et al., 2006; Pathak and
Sönmez, 2008). In addition to these economic considerations, centralized assignment generates
valuable data for empirical research on schools. In particular, when schools are oversubscribed,
lottery-based rationing generates quasi-experimental variation in school assignment that can be
used for credible evaluation of individual schools and of school reform models like charters.

Previous research using the lotteries embedded in centralized assignment schemes include
studies of schools in Charlotte-Mecklenburg (Hastings et al., 2009; Deming, 2011; Deming et al.,
2014) and New York (Bloom and Unterman, 2014; Abdulkadiroğlu et al., 2013). Causal effects
in these studies are convincingly identified by quasi-experimental variation, but the research
designs deployed in this work fail to exploit the full power of the random assignment embedded
in centralized assignment schemes. A major stumbling block is the elaborate multi-stage nature
of market-design matching. Market design weaves random assignment into an elaborate tapestry
of information on student preferences and school priorities. In principle, all features of student
preferences and school priorities can shape the probability of assignment to each school. Families
tend to prefer schools located in their neighborhoods, for example, while schools may grant
priority to children poor enough to qualify for a subsidized lunch. Conditional on preferences and
priorities, however, mechanism-generated assignments are independent of potential outcomes.

This paper explains how to recover the full range of quasi-experimental variation embedded in
centralized assignment. Specifically, we show how mechanisms that satisfy ETE map information
on preferences, priorities, and school capacities into a conditional probability of random assign-
ment, often referred to as the propensity score. As in other stratified randomized research designs,
conditioning on the propensity score eliminates selection bias arising from the association be-
tween conditioning variables and potential outcomes (Rosenbaum and Rubin, 1983). The payoff
to propensity-score conditioning turns out to be substantial in our application: full stratification
on preferences and priorities reduces degrees of freedom markedly, eliminating many schools and



students from consideration, while score-based stratification leaves our research sample largely
intact.

The propensity score does more for us than reduce the dimensionality of preference and
priority conditioning. Because all applicants with score values strictly between zero and one
contribute variation that can be used for evaluation, the propensity score identifies the maximal
set of applicants for whom we have a randomized school-assignment experiment. The nature
of this sample is not easily seen otherwise. We show, for example, that the quasi-experimental
sample covers many schools that are undersubscribed, that is, schools that have fewer applicants
than seats.

The propensity score for any mechanism that satisfies ETE is easily estimated by simulation,
that is, by repeatedly drawing lottery numbers and computing the resulting average assignment
rates across draws. This amounts to sampling from the relevant permutation distribution. Any
stochastic mechanism can be simulated, but simulation fails to illuminate the path producing
random assignment at each school. Seats at some schools are randomly assigned due to over-
subscription, but many are randomized due to a failure of their applicants to obtain seats at
schools they’ve ranked more highly. We therefore develop an analytic formula for the propensity
score for a broad class of DA-type mechanisms. This formula explains how and why random
assignment emerges. Our formula also provides a natural smoother for estimated scores. Because
the relevant covariates are discrete, unsmoothed simulated scores fail to provide the sort of
dimension reduction that gives the propensity score its practical appeal (Hirano et al. (2003)).

The propensity score generated by DA-type mechanisms does not typically have a general
closed form solution. As a result, our analytic framework uses an asymptotic “large market”
approximation to derive a simple formula for the score. The resulting DA propensity score
is a function of a few easily-computed sample statistics. Both the simulated and DA (analytic)
propensity scores work well as far as covariate balance goes, a result that emerges in our empirical
application. Importantly, however, the DA score highlights specific sources of randomness and
confounding in DA-based assignment schemes. In other words, the DA propensity score reveals
the nature of the stratified experimental design embedded in a particular match. The DA score
is also quickly and easily computed, and can be used without the rounding or functional form
restrictions required when using a simulated score.

Our test bed for the DA propensity score is an empirical analysis of charter school effects in
the Denver Public School (DPS) district, a new and interesting setting for charter school impact
evaluation.1 Because DPS assigns seats at traditional and charter schools in a unified match, the
population attending DPS charters is less positively selected than in large urban districts with
decentralized charter lotteries. As far as we know, ours is the first charter evaluation to exploit

1Charter schools operate with considerably more independence than traditional public schools. Among other
differences, many charters fit more instructional hours into a year by running longer school days and providing
instruction on weekends and during the summer. Because few charter schools are unionized, they hire and fire
teachers and administrative staff without regard to the collectively bargained seniority and tenure provisions that
constrain such decisions in many public schools. About half of Denver charters implement versions of the No
Excuses model of urban education. No Excuses charters run a long school day and year, emphasize discipline and
comportment and traditional reading and math skills, and rely heavily on data and teacher feedback to improve
instruction. See Abdulkadiroğlu et al. (2011) and Angrist et al. (2013) for related evidence on charter effects.
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an assignment scheme that simultaneously allocates seats in both the charter and traditional
public school sectors.

The next section details the general class of assignment mechanisms of interest to us and
describes the central role of the propensity score. Following this bit of context, Section 3 uses
the theory of market design to characterize the propensity score for DA offers in large markets.
Section 4 uses these results to estimate charter effects. Specifically our empirical evaluation
strategy uses an indicator for DA-generated charter offers as an instrument for charter school
attendance in a two-stage least squares (2SLS) setup. This 2SLS procedure eliminates bias from
non-random variation in preferences and priorities by controlling for the DA propensity score.
This section also shows how to estimate effects for multiple sectors, an important extension when
school effects are potentially heterogeneous. Finally, Section 5 summarizes our theoretical and
empirical findings and outlines an agenda for further work.

2 Centralized Assignment: In General and In Denver

2.1 Conditional Independence

A school choice problem is an economy defined by a set of applicants, schools, and school capaci-
ties. Applicants have strict preferences over schools while schools have priorities over applicants.
Let I denote a set of applicants, indexed by i, and let s = 0, 1, ..., S index schools, where s = 0

represents an outside option. Let n be the number of applicants. Seats at schools are constrained
by a capacity vector, q = (q0, q1, q2, ..., qS); we assume q0 > n.

Applicant i’s preferences over schools constitute a partial ordering of schools, �i, where a �i b

means that i prefers school a to school b. Each applicant is also granted a priority at every school.
Let ρis ∈ {1, ...,K,∞} denote applicants i’s priority at school s, where ρis < ρjs means school
s prioritizes i over j. For instance, ρis = 1 might encode the fact that applicant i has sibling
priority at school s, while ρis = 2 encodes neighborhood priority, and ρis = 3 for everyone else.
We use ρis = ∞ to indicate that i is ineligible for school s. Many applicants share priorities at
a given school, in which case ρis = ρjs for some i 6= j. Let ρi = (ρi1, ..., ρiS) be the vector of
applicant i’s priorities for each school.

Applicant type is defined as θi = (�i,ρi), that is, the combination of this applicant’s pref-
erence and priorities at all schools. We say that an applicant of type θ has preferences �θ and
priorities ρθ. Θ denotes the set of possible types.

An assignment is a vector µ = (µ1, µ2, . . . , µI) specifying each applicant’s assigned school or
assignment to the outside option. School s is assigned at most qs applicants. A mechanism is
a set of rules determining µ as a function of preferences, priorities, and a possible tie-breaking
variable that might be randomly assigned. The mechanism known as serial dictatorship, for
example, orders applicants by the tie-breaker, assigning the first in line his or her top choice, the
second in line his or her top choice among schools with seats remaining, and so on.

Many mechanisms use randomization to break ties, inducing a distribution of assignments.
Such mechanisms are said to be stochastic. When applicants in a serial dictatorship are ordered
randomly, for example, the mechanism is called random serial dictatorship (RSD). Randomizers
drawn independently from a uniform distribution for each applicant are called lottery numbers.
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The distribution of assignments associated with RSD is the permutation distribution generated
by all possible lottery draws.

Formally, any stochastic mechanism maps economies characterized by (I, S,q,Θ) into a dis-
tribution of possible assignments. This distribution is described by a matrix with generic element
pis satisfying (i) 0 ≤ pis ≤ 1 for all i and s, (ii) Σspis = 1 for all i, and (iii) Σipis ≤ qs for all s.
The value of pis is the probability that applicant i is assigned to school s. These are collected in
a vector pi = (pi0, pi1, ..., piS) recording the probability i finds a seat at all schools. This notation
covers deterministic mechanisms in which pis equals either 0 or 1 while for each i, pis = 1 for at
most one s.

We say mechanism ϕ satisfies the equal treatment of equals (ETE) property when applicants
with the same preferences and priorities at all schools have the same assignment probability at
each school.2 That is, for any school choice problem and any applicants i and j with θi = θj , we
have that pi = pj .

ETE allows us to use stochastic mechanisms to estimate causal effects. Specifically, we’d like
to estimate the causal effect of attendance at a particular school or group of schools relative
to one or more alternative school. This task is complicated by the fact that school assignment
reflects preferences and priorities and these variables in turn are related to outcomes like test
scores. ETE allows us to solve this problem: the distribution of offers generated by a stochastic
assignment mechanism is viewed here a stratified randomized trial, where the “strata” are defined
by type.

As the notion of a stratified randomized trial suggests, ETE makes offers conditionally in-
dependent of all possible confounding variables that might otherwise generate omitted variables
bias in econometric analyses of school attendance effects. To see this, let Di(s) be a dummy
variable indicating when applicant i is assigned to school s by stochastic mechanism ϕ. For any
random variable or vector of characteristics Wi, which can include covariates like race or outcome
variables like test scores, let W0i be the potential value of Wi that is revealed when Di(s) = 0

and let W1i be the potential value revealed when Di(s) = 1. These two potential values might
be the same, as for covariates (race is unchanged by school assignment) or for test scores when
assignment has no effect on achievement. In cases where they differ, as for outcomes affected
by treatment, only one is seen in a given assignment realization. Potentials are attributes and
therefore non-stochastic in a fixed applicant population, that is, they are unchanged by school
assignments (see, e.g., Rosenbaum (2002); Imbens and Rubin (2015)). We therefore say that the
observed characteristic Wi is fixed under re-randomization if W0i = W1i for all i.

Although applicant characteristics are almost certainly associated with differences in assign-
ment probabilities, ETE restricts this variation to be independent of characteristics conditional
on type:

Proposition 1. Consider the conditional assignment probability P [Di(s) = 1|Wi = w, θi = θ]

for all applicants i with Wi = w and θi = θ. The probability P is the assignment rate to school
s induced by stochastic mechanism ϕ and w is a particular value of Wi. If ϕ satisfies ETE and

2ETE is widely studied in allocation problems, see, e.g. Moulin (2003). Shapley (1953)’s axiomatization of
the Shapley value appears to be the first formal statement of this concept.
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Wi is fixed under re-randomization, we have that

P [Di(s) = 1|Wi = w, θi = θ] = P [Di(s) = 1|θi = θ]

for all values w.

Proof. Since Wi is fixed under re-randomization,

P [Di(s) = 1|Wi = w, θi = θ] = P [Di(s) = 1|W0i = w, θi = θ]

Since knowledge of an individual applicant’s identity implies knowledge of his type and Wi, the
law of iterated expectations implies

P [Di(s) = 1|W0i = w, θi = θ] = E[pis|W0i = w, θi = θ] = E[pis|θi = θ],

where the second equality follows from ETE: pis is the same for applicants of the same type.
We’ve therefore shown

P [Di(s) = 1|Wi = w, θi = θ] = P [Di(s) = 1|θi = θ].

Although elementary, Proposition 1 is the foundation of our analysis: it shows how centralized
assignment schemes induce a stratified randomized trial.

Conditional Independence for DA

Many U.S. school districts implement versions of DA with a single tie-breaking lottery number.
As we discuss below, most widely-used centralized assignment mechanisms can be cast as a
version of DA. Single tie-breaking DA for school assignment works like this:

Draw an independently and identically distributed lottery number for each applicant.

Each applicant applies to his most preferred school. Each school ranks these appli-
cants first by priority then by random number within priority groups and tentatively
admits the highest-ranked applicants in this order up to its capacity. Other applicants
are rejected.

Each rejected applicant applies to his next most preferred school. Each school ranks
these new applicants together with applicants that it admitted tentatively in the previ-
ous round, first by priority and then by random number. From this pool, the school
tentatively admits those it ranks highest up to capacity, rejecting the rest.

This algorithm terminates when there are no new applications (some applicants may remain
unassigned).3

3DA produces a stable allocation in the following sense: any applicant who prefers another school to the one he
has been assigned must be outranked at that school, either because everyone assigned there has higher priority, or
because those who share the applicant’s priority at that school have higher lottery numbers. DA is also strategy-
proof, meaning that families do as well as possible by submitting a truthful preference list (for example, there is
nothing to be gained by ranking under-subscribed schools highly just because they are likely to yield seats). See
Roth and Sotomayor (1990) for a review of these and related theoretical results.
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DA with single tie-breaking is easily seen to satisfy ETE. Assignments in this case are de-
termined by the type distribution, which is fixed, and the particular lottery draw. Assignment
differences from one realization to the next are therefore generated solely by differences in lottery
draws. In particular, if we swap the lottery numbers for two applicants with the same type, DA
swaps their assignments, leaving other assignments unchanged. Since all draws are equally likely
for all applicants, the probability of assignment must be equal for two applicants of the same
type, satisfying ETE. This argument is made formally in Appendix A.1, which also shows that
other mechanisms satisfying ETE include:

• DA with multiple tie-breakers (that is, different lottery numbers at different schools)

• The immediate acceptance (“Boston”) mechanism with single or multiple tie-breakers

• Random serial dictatorship

• Top trading cycles with single or multiple tie-breakers

Top trading cycles, rarely seen in school choice applications, is the only mechanism on this
list that cannot also be written as DA with suitably modified inputs.4 Most centralized school
assignment scheme currently in use can be expressed as modifications of DA.

Where does ETE fail? Some English towns use DA with distance-based tie-breaking (Burgess
et al., 2014). In this case, distance plays the role otherwise played by lottery numbers. DA with
distance-based tie-breaking fails to satisfy ETE because applicants of the same type need not
face the same assignment probability, while expanding the definition of type to include distance
makes the mechanism non-stochastic.

2.2 Propensity Score Pooling

Proposition 1 implies that for applicant i of type θ and Wi fixed under re-randomization,

P [Di(s) = 1|Wi = w, θi = θ] = P [Di(s) = 1|θi = θ].

That is, for any mechanism that treats equals equally, conditioning on θi eliminates any selection
bias arising from the association between type and potential outcomes. Since θi takes on many
values, however, full-type conditioning reduces the sample available for impact evaluation. We,
therefore, consider schemes that compare applicants while pooling types.

Rosenbaum and Rubin’s (1983) propensity score theorem tells us how this pooling can be
accomplished while still eliminating omitted variables bias. The propensity score for a market of
any size, denoted ps(θ), is the scalar function of type defined by

ps(θ) = Pr[Di(s) = 1|θi = θ].

Rosenbaum and Rubin (1983) show that propensity score conditioning is enough to ensure that
offers are independent of Wi. In other words,

P [Di(s) = 1|Wi = w, ps(θi) = p] = P [Di(s) = 1|ps(θi) = p] = p. (1)
4Appendix A.10 describes how to modify school priorities to compute the outcome of the immediate acceptance

mechanism using DA.
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Equation (1) implies that propensity score conditioning eliminates the possibility of omitted
variables bias due to the dependence of offers on type.5 The following simple example illustrates
propensity score pooling.

Example 1. Five applicants {1, 2, 3, 4, 5} apply to three schools {a, b, c}, each with one seat.
Applicant 5 has the highest priority at c and applicant 2 has the highest priority at b, otherwise
the applicants have the same priority at all schools. We’re interested in measuring the effect of
an offer at school a. Applicant preferences are

1 : a � b,

2 : a � b,

3 : a,

4 : c � a,

5 : c,

Applicants 3 and 5 rank only one school.
Note that no two applicants here have the same preferences and priorities. Consequently, full-

type conditioning puts each applicant into a different stratum. This rules out research strategies
that rely on full type conditioning to eliminate selection bias. But full-type conditioning is
unnecessary in this case because DA assigns each of applicants 1, 2, 3, and 4 to school a with
probability (propensity score) 0.25. This calculation reflects the fact that 5 beats 4 at c by
virtue of his priority there, leaving 1, 2, 3, and 4 all applying to a with no one advantaged there.
The impact of assignment to a can therefore be analyzed in a single stratum containing four
applicants with a common score value of 0.25.6

The simple structure of this example allows us to infer the propensity score. In real assignment
problems, the score is not easily computed, but can be simulated by repeatedly drawing lottery
numbers and running DA. By a conventional law of large numbers, this (estimated) simulated
score converges to the actual finite-market score as the number of draws increases. We illustrate
this by using data from the Denver Public School (DPS) district to compute the propensity score
for offers of a charter school seat.

2.3 DPS Data and Descriptive Statistics

Since the 2011 school year, DPS has used DA to assign applicants to most schools in the district,
a process known as SchoolChoice. Denver school assignment involves two rounds, but only the
first round uses DA. Our analysis therefore focuses on the initial round.

In the first round of SchoolChoice, parents rank up to five schools of any type, including
traditional public schools, magnet schools, innovation schools, and most charters. A neighbor-
hood school is also ranked automatically (the district adds a neighborhood school to applicant
rankings as the last choice). Schools ration seats using a mix of priorities and a single lottery

5Rosenbaum and Rubin (1983) also show that the propensity score is the coarsest balancing score, which in
this case means that no coarser function of type ensures conditional independence of Di(s) and Wi. Hahn (1998),
Hirano et al. (2003), and Angrist and Hahn (2004) discuss the efficiency consequences of conditioning on the score.

6Applicants not assigned to a are assigned to either b or c or are unassigned.

7



number. Priorities vary across schools and typically involve siblings and neighborhoods. Seats
may be reserved for a certain number of subsidized-lunch applicants and for children of school
staff. Reserved seats are allocated by splitting schools and assigning the highest priority status to
applicants in the reserved group at one of the sub-schools created by a split.7 Match participants
can only qualify for seats in a single grade.

The DPS match distinguishes between groups of seats at a given school, known as “buckets.”
Buckets in the same school have distinct priorities and capacities. DPS converts applicants’ pref-
erences over schools into preferences over buckets, splitting off separate sub-schools for each. The
upshot for our purposes is that DPS’s version of DA assigns seats at the sub-schools determined
by seat reservation policies and buckets rather than schools, while the relevant propensity score
captures the probability of offers at sub-schools. The discussion that follows refers to propensity
scores for schools, with the understanding that the fundamental unit of assignment is a bucket,
from which assignment rates to schools have been constructed.8

The data analyzed here come from files containing the information used for first-round as-
signment of students applying in the 2011-12 and 2012-13 school year for seats the following year
(this information includes preference lists, priorities, random numbers, assignment status, and
school capacities). We focus on applicants for grades 4-10, who are in grades 3-9 in the appli-
cation year. Most of our applicants are applying for a middle school grade 6 school or a high
school grade 9 seat. School-level scores were constructed by summing scores for all component
sub-schools used to implement seat reservation policies and to define buckets. Our empirical
work also uses files with information on October enrollment and standardized scores from the
Colorado School Assessment Program (CSAP) and the Transitional Colorado Assessment Pro-
gram (TCAP) tests, given annually in grades 3-10. A data appendix describes these files and the
extract we’ve created from them. For our purposes, “Charter schools” are schools identified as
“charter” in DPS 2012-2013 and 2013-2014 SchoolChoice Enrollment Guide brochures and not
identified as “intensive pathways” schools, which serve applicants who are much older than is
typical for their grade.

Our application involves data from two years of data from DPS. The DPS population enrolled
in grades 3-9 is roughly 60% Hispanic, a fact reported in Table 1, along with other descriptive
statistics. The outcome scores of applicants in grades 3-9 come from TCAP tests taken in grades
4-10 in the spring of the following year.9 The high Hispanic proportion makes DPS an especially
interesting and unusual urban district. Not surprisingly in view of this, almost 30 percent of
DPS students have limited English proficiency. Consistent with the high poverty rates seen in
many urban districts, three quarters of DPS students are poor enough to qualify for a subsidized
lunch. Roughly 20% of the DPS students in our data are identified as gifted, a designation that
qualifies them for differentiated instruction and other programs.

7For more details on reserve implementation via school-seat splitting, see Dur et al. (2014) and Dur et al.
(2016).

8DPS modifies the traditional DA mechanism by recoding the lottery numbers of all siblings applying to the
same school to be the best random number held by any of them. This modification (known as “family link”) changes
the allocation of only about 0.6% of applicants from that generated by standard DA. Our analysis incorporates
family link by defining distinct types for linked applicants.

9Grade 3 is omitted from our outcome sample because 3rd graders have no baseline test to gauge balance.
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In the two years covered in Table 1, roughly 22,000 students enrolled in grades 3-9 sought
to change their school for the following year by participating in SchoolChoice in the spring. We
drop applicants from 2013-14 who also participated in the previous year’s match. The sample
participating in the assignment, described in column 2 of Table 1, contains fewer charter school
students than appear in the total DPS population, but is otherwise similar. It’s also worth noting
that our impact analysis is limited to students enrolled in DPS in the baseline (pre-assignment)
years. The sample described in column 2 is therefore a subset of that described in column 1.

Column 3 of Table 1 shows that of the 22,000 DPS-at-baseline applicants participating in
SchoolChoice, about 10,000 ranked at least one charter school. We refer to these students as
charter applicants; the estimated charter attendance effects that follow are for subsets of this
applicant group. DPS charter applicants have baseline achievement levels and demographic
characteristics broadly similar to those seen district-wide. The most noteworthy feature of the
charter applicant sample is a reduced proportion white, from about 18% among SchoolChoice
applicants to a little over 12% among charter applicants. It’s also worth noting that charter
applicants have baseline test scores close to the DPS average. This contrasts with the modest
positive selection of charter applicants seen in Boston (reported in Abdulkadiroğlu et al. 2011).

We computed simulated scores by running DA for one million lottery draws for each year.
Simulated scores are the proportion of draws in which applicants of a given type were seated at
each school. The propensity score for charter offers is the sum of the scores for each individual
charter school (a consequence of the fact that SchoolChoice produces a single offer for each
applicant).10 Applicants subject to random charter assignment are those with charter propensity
scores (probabilities of assignment) between zero and one. Column 4 shows that nearly 3,500
charter applicants are subject to random assignment. This group looks like the full charter
applicant pool on most dimensions, though randomized applicants are more likely to have already
been enrolled at a charter at the time they entered the match. Column 5 reports statistics for
the subset of the randomized group that enrolls in a charter school; these show slightly higher
baseline scores among charter students.

2.4 DPS Schools Randomized

Table 2 lists charter schools in the sample, along with the number of applicants, capacities,
offers, and counts of those subject to random assignment for each school in 2013. Three char-
ter management organizations (CMOs), the Denver School of Science and Technology (DSST),
STRIVE Preparatory Schools and the Knowledge is Power Program (KIPP), contribute 16 of
the 31 charters listed.

The proportion of applicants subject to random assignment varies markedly from school to
school. This can be seen by comparing the count of applicants subject to random assignment in
column 5 with the total applicant count in column 2. Column 5 shows random assignment at
every charter in 2013, except for the Denver Language School, which offered no seats. With the
exception of Venture Prep, this was also true in 2014 (see Appendix Table B5 for details).

10Calsamiglia et al. (2014) and Agarwal and Somaini (2015) simulate variants of the Boston mechanism as part
of a study estimating preferences over schools.
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DA randomizes seats for applicants ranking charters first for a smaller set of schools. This can
be seen in the last column of Table 2, which reports the number of applicants with a simulated
charter score strictly between zero and one who also ranked each school first. The reduced
scope of first-choice randomization is important for our comparison of strategies using the DA
propensity score with previously-employed IV strategies using first-choice instruments. First-
choice instruments applied to the DPS charter sector necessarily ignore many schools (In 2013,
10 schools had no first-choice random assignment.)

A broad picture of DPS random assignment appears in Figure 1. Panel (a) captures the
information in columns 5 and 6 of Table 2 by plotting the number of first-choice applicants subject
to randomization as black dots, with the total number randomized at each school plotted as an
arrow pointing up from these dots (schools are indexed on the x-axis by their capacities). This
representation highlights the empirical payoff to our score-based approach to the DA research
design. These benefits are not limited to the charter sector, a fact documented in Panel (b) of
the figure, which plots the same comparisons for non-charter schools in the DPS match.

Table 2 reveals a few surprising features of the assignment distribution. We see, for example,
that only 112 applicants were offered seats at STRIVE Prep-GVR, a school with a capacity of
147. In spite of the fact that this school was under-subscribed, some of the seats there were
randomly assigned. The simulated score shows that this happens, without explaining why. This
motivates a large market approximation to ps(θ) that reveals the sources of random assignment
in a large class of mechanisms satisfying equal treatment of equals. The large market score also
provides a natural smoother of the unrestricted empirical score.

3 Score Theory

3.1 A Large Market Approximation

Our analysis of single tie-breaking DA provides a theoretical foundation for a wide class of
mechanisms. Extension to the most important of these other mechanisms is discussed in the
appendix, following proof and further illustration of our main theoretical results.

The probability of assignment to school a under DA is determined both by an applicant’s
failure to win a seat at schools he ranks more highly than a and by the odds he wins a seat at
a in competition with those who have also ranked a and similarly failed to find seats at schools
they’ve ranked more highly. This structure leads to a simple formula expressing these two sources
of risk.11 The following example shows this structure:

Example 2. Four applicants {1, 2, 3, 4} apply to three schools {a, b, c}, each with one seat.
11Other applications of large-market approximations include Abdulkadiroğlu et al. (2015); Azevedo and Leshno

(2016); Budish (2011); Che and Kojima (2010); Kesten and Ünver (2015).
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There are no school priorities and applicant preferences are

1 : c,

2 : c � b � a,

3 : b � a,

4 : a.

As in Example 1, each applicant is of a different type.
Let pia for i = 1, 2, 3, 4 denote the probability that type i is assigned to school a. With four

applicants, pia comes from 4! = 24 possible lottery draws, all equally likely. Given this modest
number of possibilities, pia is easily calculated by enumeration:

• Not having ranked a, type 1 is never assigned there, so p1a = 0.

• Type 2 is seated at a when schools he’s ranked ahead of a, schools b and c, are filled by
others, and when he also beats type 4 in competition for a seat at a. This occurs for the
two realizations of the form (s, t, 2, 4) for s, t = 1, 3. Therefore, p2a = 2/24 = 1/12.

• Type 3 is seated at a when the schools he’s ranked ahead of a–in this case, only b–are filled
by others, while he also beats type 4 in competition for a seat at a. b can be filled by type
2 only when 2 loses to 1 in the lottery at c. Consequently, type 3 is seated at a only in a
sequence of the form (1, 2, 3, 4), which occurs only once. Therefore, p3a = 1/24.

• Finally, since type 4 gets the seat at a if and only if the seat does not go to type 2 or type
3, p4a = 21/24.

In this example, the propensity score differs for each applicant. But in larger markets with the
same distribution of types, the score is smoother. To see this, consider a market that replicates
the structure of this example n times, so that n applicants of each type apply to up to 3 schools,
each with n seats.

The relationship between simulated probabilities of assignment and market size for Example
2, plotted in Figure 2, reveals that as the market grows, the distinction between types 2 and 3
disappears. In particular, Figure 2 shows that for large enough n,

p2a = p3a = 1/12; p1a = 0; p4a = 10/12 = 5/6,

with the probability of assignment at a for types 2 and 3 converging quickly. This convergence is
a consequence of a result established in the next subsection, which shows that the large-market
probabilities that types 2 and 3 are seated at a are both determined by failure to win a seat at
b. The fact that applicant 2 ranks c ahead of b is irrelevant.

Why is the difference in preferences between applicant 2 and 3 ultimately irrelevant? Among
schools that an applicant prefers to a, large market risk is determined solely by failure to qualify–
that is, by having a lottery number above the cutoff–at the school at which it is easiest to qualify.
In general, this most informative disqualification (MID) determines how distributions of lottery
numbers for applicants of differing types are effectively truncated before entering the competition
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for seats at a. As we show below, the fact that the large market score depends on type only
through a set of constructs like MID allows us to replace full type conditioning with something
much smoother.

As a formal matter, the large market model is built on the notion of a continuum of applicants
as in Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016). A continuum economy sets
I = [0, 1], with school capacities, qs, defined as the proportion of I that can be seated at school
s. Applicant i’s lottery number ri, is drawn from a standard uniform distribution, independently
for all applicants. In particular, lottery draws are independent of type. With single tie-breaking,
all schools look at the same lottery number. Extension to the less-common multiple tie-breaking
case, in which applicants have different lottery numbers at different schools, is discussed in the
theoretical appendix.

For any set of applicant types Θ0 ⊂ Θ and for any number r0 ∈ [0, 1], define the set of
applicants in Θ0 with lottery number less than r0 to be

I(Θ0, r0) = {i ∈ I | θi ∈ Θ0, ri ≤ r0}.

We use the shorthand notation I0 = I(Θ0, r0).
In a finite economy with n applicants, denote the fraction of applicants in I0 by

F (I0) =
|I0|
n

.

F (I0) for a finite economy depends on the realized lottery draw. In a continuum economy, F (I0)

is defined as
F (I0) = E[1{θi ∈ Θ0}]× r0,

where E[1{θi ∈ Θ0}] is the proportion of types in set Θ0. Either way, the applicant side of an
economy is fully characterized by the distribution of types and lottery numbers, for which we
sometimes use the shorthand notation, F .

Defining DA

We define DA using the notation above, nesting the finite-market and continuum cases. First,
combine priority status and lottery realization into a single number for each applicant and school,
called applicant rank :

πis = ρis + ri.

Since the difference between any two priorities is at least 1 and random numbers are between 0
and 1, rank is lexicographic in priority and lottery numbers.

DA proceeds in a series of rounds, indexed here by t. Denote the evolving vector of admissions
cutoffs in round t by ct = (ct1, ..., c

t
S). The demand for seats at school s conditional on ct is defined

as
Qs(c

t) = {i ∈ I | πis ≤ cts and s �i s̃ for all s̃ ∈ S such that πis̃ ≤ cts̃}.

In other words, school s is demanded by applicants with rank below the school-s cutoff, who
prefer school s to any other school for which they are also below the relevant cutoff.
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The largest possible value of an eligible applicant’s rank is K + 1, so we can start with
c1s = K + 1 for all s. Cutoffs then evolve as follows:

ct+1
s =

{
K + 1 if F (Qs(c

t)) < qs,

max
{
x ∈ [0,K + 1] | F ({i ∈ Qs(c

t) such that πis ≤ x}) ≤ qs
}

otherwise;

where, because the argument for F can be written in the form {i ∈ I | θi ∈ Θ0, ri ≤ r0}, the
expression is well-defined. This formalizes the idea that when the demand for seats at s falls
below capacity at s, the cutoff is K +1. Otherwise, the cutoff at s is the largest value such that
demand for seats at s is less than or equal to capacity at s.

The final admissions cutoffs determined by DA for each school s are given by

cs = lim
t→∞

cts.

The set of applicants that are assigned school s under DA is the demand for seats at the limiting
cutoffs: {i ∈ Qs(c)} where c = (c1, ..., cS).12 Since cs ≤ K + 1, an ineligible applicant is never
assigned to school s.

We write the final DA cutoffs as a limiting outcome to accommodate the continuum economy;
in real markets, DA converges in a finite number of rounds. Appendix A.2 shows that the
characterization of DA in this section is valid in the sense that: (a) the necessary limits exist for
every economy, finite or continuum; (b) for every finite economy, the allocation upon convergence
matches that produced by DA as usually described (for example, by Gale and Shapley (1962)
and the many studies building on their work).

3.2 Characterizing the DA Propensity Score

A key component in our characterization of ps(θ) is the notion of a marginal priority group at
school s. The marginal priority group consists of applicants for whom seats are allocated by
lottery when a school is over-subscribed. Formally, marginal priority, ρs, is the integer part of
the cutoff, cs. Conditional on being rejected by all more preferred schools and applying for school
s, an applicant is assigned s with certainty if ρis < ρs, that is, if he clears marginal priority.
Applicants with ρis > ρs have no chance of finding a seat at s. Applicants for whom ρis = ρs are
marginal: these applicants are seated at s when their lottery numbers fall below a school-specific
lottery cutoff. The lottery cutoff at school s, denoted τs, is the decimal part of the cutoff at s,
that is, τs = cs − ρs.

These observations motivate a partition determined by marginal priorities at s. Let Θs denote
the set of applicant types who rank s and partition Θs according to

i) Θn
s = {θ ∈ Θs | ρθs > ρs}, (never seated)

ii) Θa
s = {θ ∈ Θs | ρθs < ρs}, (always seated)

iii) Θc
s = {θ ∈ Θs | ρθs = ρs}. (conditionally seated)

12The characterization of DA via cutoffs has proven valuable in other studies of matching markets. See, e.g.,
Abdulkadiroğlu et al. (2015), Azevedo and Leshno (2016) and Agarwal and Somaini (2015).

13



The set Θn
s contains applicant types who have worse-than-marginal priority at s. No one in this

group is assigned to s. Θa
s contains applicant types that clear marginal priority at s. Some of

these applicants may end up seated at a school they prefer to s, but they’re assigned s for sure
if they fail to find a seat at any school they’ve ranked more highly. Finally, Θc

s is the subset of
Θs that is marginal at s, that is, the marginal priority group at s. These conditionally seated
applicants are assigned s when they’re not assigned a higher choice and have a lottery number
that clears the lottery cutoff at s.

A second key component of our score formulation reflects the fact that failure to qualify at
schools other than s may truncate the distribution of lottery numbers in the marginal priority
group for s. To characterize the distribution of lottery numbers among those at risk of assignment
at s, we introduce notation for the set of schools ranked above s. Specifically, applicants of type
θ view the following set of schools as better than s:

Bθs = {s′ ∈ S | s′ �θ s}.

Type θ’s most informative disqualification (MID) at s is defined as a function of the cutoffs at
schools in Bθs

MIDθs ≡


0 if ρθs̃ > ρs̃ for all s̃ ∈ Bθs,

1 if ρθs̃ < ρs̃ for some s̃ ∈ Bθs,

max{τs̃ | s̃ ∈ Bθs and ρθs̃ = ρs̃} if ρθs̃ = ρs̃ for some s̃ ∈ Bθs and ρθs̃ > ρs̃ otherwise.

MIDθs tells us how the lottery number distribution among applicants to s is truncated by
disqualification at schools these applicants prefer to s. MIDθs is zero when type θ applicants
have worse-than-marginal priority at all higher ranked schools: when no applicants for s can be
seated at a more preferred school, there’s no lottery number truncation among those at risk of
assignment to s. On the other hand, when at least one school in Bθs is under-subscribed, no one
of type θ competes for a seat at s. Truncation in this case is complete, and MIDθs = 1.

The definition of MIDθs also reflects the fact that, among applicants for whom ρθs̃ = ρs̃
for some s̃ ∈ Bθs, anyone who fails to clear τs̃ is surely disqualified at schools with lower (less
forgiving) cutoffs. For example, applicants who fail to qualify at a school with a cutoff of 0.5
fail to qualify at schools with cutoffs below 0.5. Consequently, to keep track of the truncation
induced by disqualification at all schools an applicant prefers to s, we need to record only the
most forgiving cutoff that an applicant fails to clear.

The following theorem uses the marginal priority and MID concepts to define an easily-
computed DA propensity score, which coincides with the true propensity score ps(θ) in any
continuum economy:

Theorem 1. Consider a continuum economy populated by applicants of type θ ∈ Θ to be assigned
to schools indexed by s ∈ S. For all s and θ in this economy, we have:

ps(θ) = ϕs(θ) ≡


0 if θ ∈ Θn

s ,

(1−MIDθs) if θ ∈ Θa
s ,

(1−MIDθs)×max

{
0,

τs −MIDθs

1−MIDθs

}
if θ ∈ Θc

s,

(2)

where we also set ϕs(θ) = 0 when MIDθs = 1 and θ ∈ Θc
s.
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The proof appears in Appendix A.3.
The case without priorities offers a revealing simplification of this result. Without priorities,

DA is the same as a random serial dictatorship (RSD), that is, a serial dictatorship with applicants
ordered by lottery number (see, e.g., Abdulkadiroğlu and Sönmez 1998, Svensson 1999, Pathak
and Sethuraman 2010).13 Theorem 1 therefore implies the following corollary, which gives the
RSD propensity score:

Corollary 1. Consider a continuum economy with no priorities populated by applicants of type
θ ∈ Θ, to be assigned to schools indexed by s ∈ S. For all s and θ in this economy, we have:

ps(θ) = ϕs(θ) ≡ (1−MIDθs)×max

{
0,

τs −MIDθs

1−MIDθs

}
= max {0, τs −MIDθs} .

Without priorities, Θn
s and Θa

s are empty. The probability of assignment at s is therefore de-
termined solely by draws from the truncated distribution of lottery numbers remaining after
eliminating applicants seated at schools they’ve ranked more highly. Applicants whose most
informative disqualification exceeds the cutoff at school s cannot be seated at s because disqual-
ification at a more preferred school implies disqualification at s.

In a match with priorities, the DA propensity score also accounts for the fact that random
assignment at s occurs partly as a consequence of not being seated a school preferred to s. Using
the language and notation introduced in this section, we can explain the DA propensity score as
follows:

i) Type Θn
s applicants have a DA score of zero because these applicants have worse-than-

marginal priority at s.

ii) The probability of assignment at s is 1−MIDθs for applicants in Θa
s because these appli-

cants clear marginal priority at s, but not at higher-ranked choices. Applicants who clear
marginal priority at s are guaranteed a seat there if they don’t do better. Not doing better
means failing to clear MIDθs, the most forgiving cutoff to which they’re exposed in the set
of schools preferred to s. Since lottery numbers are uniform, this occurs with probability
1−MIDθs.

iii) Applicants in Θc
s are marginal at s but fail to clear marginal priority at higher-ranked

choices. These applicants are seated at s when they fail to be seated at a higher-ranked
choice and win the competition for seats at s. As for applicants in Θa

s , the proportion in
Θc

s given consideration at s is 1 − MIDθs. Applicants in Θc
s are marginal at s, so their

status at s is also determined by the lottery cutoff at s. If the cutoff at s, τs, falls below the
truncation point, MIDθs, no one in this partition finds a seat at s. On the other hand, when
τs exceeds MIDθs, seats are awarded by drawing from a continuous uniform distribution on
[MIDθs, 1]. The resulting assignment probability is therefore (τs−MIDθs)/(1−MIDθs).

13Seats for selective exam schools are sometimes assigned by a serial dictatorship based on admission test scores
instead of random numbers (see, e.g., Abdulkadiroğlu et al. 2014, Dobbie and Fryer 2014). A generalization of
RSD, multi-category serial dictatorship, is used for Turkish college admissions (Balinski and Sönmez, 1999).
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The DA propensity score is a simple function of a small number of intermediate quantities,
specifically, MIDθs, τs, and marginal priority status at s and elsewhere. It’s common to find
that different types have the same marginal priority status and MIDθs, coarsening or smooth-
ing the score in a manner that facilitates empirical work. In stylized examples, we can easily
compute continuum values for these parameters.14 In real markets with elaborate preferences
and priorities, it’s natural to use sample analogs for score estimation. As we show below, this
generates a consistent estimator of the propensity score for finite markets.15

3.3 Estimating the DA Propensity Score

We’re interested in the asymptotic behavior of propensity score estimates based on Theorem
1. In particular, we show here that a sample analog of the DA score converges (almost surely)
uniformly in market size to the propensity score for the limiting economy. It’s noteworthy that
convergence emerges under an asymptotic sequence driven by overall market size rather than the
number of applicants per type. This explains in part why we expect the sample analog of the
DA score to produce ignorable offers in real markets with few applicants per type. Our empirical
application validates this conjectured good performance: applicant characteristics are balanced
conditional on sample analogs of the DA propensity score. Other factors contributing to the
empirical success of Theorem 1 are discussed briefly after documenting this balance.

The asymptotic sequence for the estimated score works as follows: randomly sample n ap-
plicants and their lottery numbers from a continuum economy, described by type distribution F

and school capacities, {qs}. Call the distribution of types and lottery numbers in this sample
Fn. Fix the proportion of seats at school s in the sampled economy to be qs and run DA with
these applicants and schools. Compute MIDθs, τs, and partition Θs by observing cutoffs ĉn and
assignments in this single realization, then plug these quantities into equation (2). This generates
an estimated propensity score, p̂ns(θ), constructed by treating a size-n sample economy like its
continuum analog. The actual propensity score for this finite economy, computed by repeatedly
drawing lottery numbers for the sample of applicants described by Fn and the set of schools with
proportional capacities {qs}, is denoted pns(θ). We consider the gap between p̂ns(θ) and pns(θ)

as n grows.
The analysis here makes use of a regularity condition:

Assumption 1. (Rich support) For any s ∈ S and priority ρ ∈ {1, ...,K} with F ({i ∈ I : ρis =

ρ}) > 0, we have F ({i ∈ I : ρis = ρ, i ranks s first}) > 0.

This says that in the continuum economy, every school is ranked first by at least some applicants
in every non-empty priority group defined for that school.

In this setup, the propensity score estimated by applying Theorem 1 to data drawn from a
single sample and lottery realization converges almost surely to the propensity score generated
by repeatedly drawing lottery numbers. This result is presented as a theorem:

14Appendix A.5 explains how Theorem 1 explains the convergence of type 2 and type 3 propensity scores seen
in Figure 1.

15Appendices A.9 and A.10 show how to extend Theorem 1 to DA using school-specific tie-breaking and the
Boston mechanism. Theorem 1 also applies to First Preference First mechanisms (Pathak and Sönmez, 2013),
Chinese Parallel mechanisms (Chen and Kesten, 2016), and Deduction point mechanisms (Pathak et al., 2016).
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Theorem 2. In the asymptotic sequence described by Fn with proportional school capacities fixed
at {qs} and maintaining Assumption 1, the DA propensity score p̂ns(θ) computed by applying
Theorem 1 to Fn is a strongly consistent estimator of pns(θ) in the following sense: For all
θ ∈ Θ and s ∈ S,

|p̂ns(θ)− pns(θ)|
a.s.−→ 0.

Moreover, since θ has finite support, this converge is uniform in θ.

Proof. The proof uses intermediate results given as lemmas in the theoretical appendix. The first
lemma establishes that the vector of cutoffs computed for the sampled economy, ĉn, converges
to the vector of cutoffs in the continuum economy. That is,

ĉn
a.s.−→ c,

where c denotes the continuum economy cutoffs. This result, together with the continuous
mapping theorem, implies

p̂ns(θ)
a.s.−→ ϕs(θ).

In other words, the propensity score estimated by applying Theorem 1 to a sampled finite econ-
omy converges to the DA propensity score for the corresponding continuum economy.

A second lemma establishes that for all θ ∈ Θ and s ∈ S,

pns(θ)
a.s.−→ ϕs(θ),

since ϕs is an almost-everywhere continuous function of cutoffs. That is, the actual (re-randomization-
based) propensity score in the sampled finite economy also converges to the propensity score in
the continuum economy.16

Combining these two results shows that for all θ ∈ Θ and s ∈ S,

|p̂ns(θ)− pns(θ)|
a.s.−→ |ϕs(θ)− ϕs(θ)| = 0,

completing the proof. Since both Θ and S are finite, this also implies uniform convergence, i.e.,
supθ∈Θ,s∈S |p̂ns(θ)− pns(θ)|

a.s.−→ 0.

Theorem 2 justifies our use of the formula in Theorem 1 to control for applicant type in
empirical work estimating school attendance effects. This theoretical result is used for propensity
score estimation in two ways. The first, which we label a “formula” calculation, applies equation
(2) directly to the DPS data (as described in the preamble to Theorem 2). Specifically, for
each applicant type, school, and entry grade, we identify marginal priorities, and applicants
were allocated by priority status to either Θn

s , Θa
s , or Θc

s. The DA score is then estimated by
16See also Azevedo and Leshno (2016), who provide convergence results for the cutoffs and conditional-on-type

probabilities of assignment generated by a sequence of stable matchings, showing that the empirical assignment
rates for types in a finite market converge to the continuum probability of assignment. The two lemmas in the
appendix differ from Azevedo and Leshno (2016)’s results in that they use Assumption 1 and are proved using
the extended continuous mapping theorem. The characterization of the DA propensity score in Theorem 1 does
not appear to have an analog in the Azevedo and Leshno (2016) framework.
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computing the sample analog of MIDθs and τs in the DPS assignment data and plugging these
into equation (2).

Much of our empirical work uses a second application of Theorem 1, which also starts with
marginal priorities, MIDs, and cutoffs in the DPS data. This score estimate takes cells defined
by constant values of MID, Θc, Θa and Θn estimated as in the formula calculation and tabulates
the empirical offer rate in these cells. This score estimate, which we refer to as a “frequency”
calculation, is closer to an estimated score of the sort discussed by Abadie and Imbens (2016)
than is the formula score, which looks only at cutoffs. The large-sample distribution theory in
Abadie and Imbens (2016) suggests that conditioning on an estimated score may increase the
efficiency of score-based estimates of average treatment effects.17

3.4 Explaining Random Assignment

Earlier, we noted that STRIVE Prep - GVR had 119 applicants randomized in 2013, in spite of the
fact that no applicant with non-degenerate offer risk ranked this school first. Random assignment
at GVR is a consequence of the many GVR applicants randomized by admissions offers at schools
they’d ranked more highly. This and related determinants of offer risk are detailed in Table 3,
which explores the anatomy of the DA propensity score for 6th grade applicants to six middle
schools in the STRIVE network in 2013. Columns 6 and 8 of the table count the number
of randomized applicants.18 We see, for example, that all randomized GVR applicants were
randomized by virtue of having MIDθs inside the unit interval (shown in column 8), with no
one randomized at GVR’s own cutoff (shown in column 6).

In contrast with STRIVE’s GVR school, few 2013 applicants were randomized at STRIVE’s
Highland, Lake, and Montbello campuses. This is a consequence of the fact that most Highland,
Lake, and Montbello applicants were likely to clear marginal priority at these schools (having
ρθs < ρs), while having values of MIDθs mostly equal to zero or 1, eliminating random assign-
ment at schools ranked more highly. Interestingly, the Federal and Westwood campuses are the
only STRIVE schools to see applicants randomized around the cutoff in the school’s own marginal
priority group. We might therefore learn more about the impact of attendance at Federal and
Westwood by changing the cutoff there (e.g., by changing capacity), whereas such a change is
likely to be of little consequence for evaluations of the other schools.

Table 3 also documents the surprisingly weak connection between applicant randomization
counts and a naive definition of over-subscription based on school capacity. In particular, columns
2 and 3 reveal that four out of six schools described in the table ultimately made fewer offers
than they had seats available (far fewer in the case of Montbello). Even so, assignment at these
schools was far from certain. They therefore contribute to our score-conditioned charter school
impact analysis.

17See also Section 2.3 of Rosenbaum (1987) for a similar argument.
18116 applicants have a non-degenerate DA formula score compared to 119 applicants with a non-degenerate

simulated score.
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3.5 DA Score Balancing Tests

Theorems 1 and 2 provide asymptotic approximations, the quality of which should be judged in
real markets. The goal of propensity score conditioning is to eliminate omitted variables bias
induced by covariates associated with treatments. Covariate balance is therefore an important
measure of the score-based empirical strategy’s success (a standard applied elsewhere; see, e.g.,
the applications summarized in Dehejia and Wahba (1999) and Chapter 14 of Imbens and Rubin
(2015)).

The balance measures reported in Table 4 compare uncontrolled differences in average appli-
cant characteristics by charter offer status with estimates that control for the score. The latter
put applicant characteristics on the left-hand side of regression models with charter offer status
and controls for the propensity score on the right. Balance in this case is measured by

E[Wi|Di = 1, p̂D(θi)]− E[Wi|Di = 0, p̂D(θi)],

where Wi is a vector of applicant characteristics, including some in θi, and p̂D(θi) is an estimate
of the propensity score computed using simulation or Theorems 1 and 2. These expectations are
estimated by averaging conditional expectations in 400 runs of DA. Specifically, for each of these
400 draws, we regress Wi on a saturated model for the estimated (or simulated) propensity score
along with a dummy for charter offers. Table 4 reports the average coefficient on offer in models
that dummy all score values inside the unit interval.

Uncontrolled comparisons by offer status, reported in column 2 of Table 4, show large dif-
ferences in average applicant characteristics, especially for variables related to preferences. On
average, those not offered a charter seat ranked an average of 1.4 charter schools, but this in-
creases by almost half a school for applicants who were offered a charter seat. Likewise, while
fewer than 30% of those not offered a charter seat had ranked a charter school first, the probabil-
ity applicants ranked a charter first increases to over 0.9 (that is, 0.28+0.64) for those offered a
charter seat. Column 2 also reveals important demographic differences by offer status; Hispanic
applicants, for example, are substantially over-represented among those offered a charter seat.

Not surprisingly, control for the simulated propensity score balances covariates almost per-
fectly. This can be seen in columns 3 and 4 of Table 4, which report balance conditional on the
simulated score using two rounding schemes. Rounding reflects the fact that, for example, the
simulated score starts with 1,229 unique values. Rounding to the nearest hundredth leaves us
with 77 points of support while rounding to the nearest thousandth leaves 153 points of support.

Conditioning on frequency and formula estimates of the DA propensity score also reduces
differences by offer status markedly, and almost as completely as does conditioning on the simu-
lated score. This can be seen in columns 5 and 6 of Table 4. The first set of conditional results,
which come from regression models with non-parametric control for the DA frequency score,
show only small differences by offer status. Column 6 shows that control for the formula score
reduces offer gaps for most covariates even further. This evidence of balance means that the
estimated DA score does succeeds in its mission of eliminating selection bias. This is in spite of
the fact that the DA propensity score is an asymptotic approximation that can be expected to
provide perfect treatment-control balance only in a large market limit.
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We also report traditional statistical balance tests such as would typically reported for a
randomized trial. Specifically, Table 5 documents balance for the realized SchoolChoice match
by reporting t and F-statistics for offer gaps in covariate means. Again, we look at balance
conditional on propensity scores for applicants with scores strictly between 0 and 1. Measured
by statistical tests, covariates are about equally well-balanced by both the simulated score and
the estimated DA scores. Not surprisingly, a few marginally significant imbalances pop up. But
the F-statistics (reported at the bottom of the table) that jointly test balance of all baseline
covariates fail to reject the null hypothesis of conditional balance for any specification reported.
In this case, conditioning on the frequency score produces a slight improvement in balance over
the formula score.

As can be seen in the last column of Table 5, full control for type reduces the sample available
for estimation considerably. Models with full type control are run on a sample of size 462.
Likewise, the fact that saturated control for the simulated score requires some smoothing can be
seen in the reduced sample available for estimation of models that control fully for a simulated
score rounded to the nearest thousandth (the sample size here falls from 2,678 to 2,263).

A few marginally significant baseline score gaps appear in some of the score-controlled com-
parisons at the bottom of the table. The F-test results and the fact that these gaps are not
mirrored in the comparisons in Table 4 suggests the differences in Table 5 are due to chance.
Still, we can mitigate the effect of chance differences on 2SLS estimates of charter effects by
adding baseline score controls (and other covariates) to empirical models. The inclusion of these
additional controls also has the salutary effect of making the 2SLS estimates of interest consid-
erably more precise (covariates include dummies for grade tested, gender, origin school charter
status, race, gifted status, bilingual status, subsidized lunch eligibility, special education, limited
English proficient status, and baseline test scores; baseline score controls are responsible for most
of the resulting precision gain).19

The DA score provides effective control for covariates in spite of the fact that the DPS School-
Choice market includes almost as many types as applicants. This is consistent with Theorem 2,
which establishes uniform almost sure convergence at a rate determined by overall market size.
The good performance of the estimated DA score is also in line with earlier evidence on the
accuracy of large market approximations in matching markets from Azevedo and Leshno (2016),
who use simulation to show the rapid convergence of DA cutoffs to large-market values. The
Azevedo-Leshno results are relevant because our DA score is determined entirely by cutoffs.

We conclude this section by noting that when lottery numbers are independent of cutoffs,
the DA score described by Theorems 1 and 2 is both unbiased and sufficient for type. This too
helps explain the success of an empirical strategy based on these theoretical results. Formally,
we have the following finite-sample result:

Proposition 2. Consider any finite economy and let p̃s(θ) be the estimated DA propensity score
19Appendix Table B2 reports score-controlled estimates of differential attrition by offer status. Applicants

who receive charter offers are 3-4 percent more likely to have follow-up scores, a modest difference that seems
unlikely to bias the 2SLS charter estimates reported below. This is confirmed by an analysis that omits the 5%
of applicants for whom conditional-on-score imbalance is greatest. Results in this trimmed sample are virtually
unchanged from those in the full sample.
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obtained by computing MIDθs, τs, and Θs for each lottery realization and then plugging these
quantities into equation (2).20 Suppose that individual lottery numbers are independent of the
DA cutoffs estimated in each realization, i.e., ri ⊥⊥ (c1, ..., cS) for every applicant i. Then the
estimated DA propensity score is unbiased for the true propensity score, i.e.,

E(p̃s(θ)) = P (Di(s) = 1|θi = θ)

for every applicant type θ, where P denotes the probability induced by DA with random lottery
numbers. Moreover, assignment is independent of type conditional on the estimated DA propen-
sity score:

P (Di(s) = 1|p̃s(θi), θi) = P (Di(s) = 1|p̃s(θi)).

These unbiasedness and conditional independence properties also hold for the frequency version
of p̃s(θ).

This result (proved in the appendix) applies to the continuum since continuum cutoffs are
constant. In finite economies, cutoffs are correlated with individual lottery numbers, so the
premise of the proposition is false. Even so, our simulations of DPS SchoolChoice show that
lottery numbers are close to uniformly distributed conditional on cutoffs, suggesting the premise
is a reasonable approximation for this market. Proposition 2 therefore provides a finite-sample
rationale for the use of the estimated DA propensity score in our application, and may apply more
generally. The near-unbiasedness of DPS charter score estimates constructed using Theorems 1
and 2 is documented in Figure 3. This figure plots the average frequency and formula scores
across 2,000 lottery draws against the corresponding values of the simulated score (computed
using one million draws and rounded to 0.01). The figure shows a close fit.

4 Using the Score

4.1 Empirical Strategies

We use DPS’s first-round charter offers to construct instrumental variables estimates of the effects
of charter enrollment on achievement. How should the resulting IV estimates be interpreted?
Our IV procedure identifies causal effects for applicants enrolling in a charter when DA produces
a charter offer but not otherwise; in the local average treatment effects (LATE) framework of
Imbens and Angrist (1994) and Angrist et al. (1996), these are charter-offer compliers. IV fails
to reveal average causal effects for applicants who decline a first round DA charter offer and are
assigned another type of school in round 2 (in the LATE framework, these are never-takers).
Likewise, IV methods are not directly informative about the effects of charter enrollment on
applicants not offered a charter seat in round 1, but who nevertheless find their way into a
charter school in the second round (LATE always-takers).

To flesh out this interpretation and the assumptions on which it rests, let Ci be a charter
enrollment indicator and let Di indicate the offer of a charter seat. These variables indicate

20Here, p̃s(θ) is the estimated DA score for a fixed finite economy. In contrast, p̂ns(θ) in Section 3.3 is the
estimated DA score for random finite economies sampled from a continuum economy.
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attendance and offers at any charter school, rather than at a specific school. Since DA produces
a single offer, offers of seats at particular schools are mutually exclusive. We can therefore
construct Di by summing individual charter offer dummies. Likewise, the propensity score for
this variable, pD(θ) ≡ E[Di|θi = θ], is obtained by summing the scores for type θ for all charter
schools.

The population of charter-offer compliers is defined by potential treatment status. Potential
treatment status (charter enrollment status) is indexed against the charter offer instrument,
denoted Di. In particular, we see potential treatment C1i when Di is switched on and potential
treatment C0i otherwise (both of these are also assumed to exist for all i). Observed treatment
is therefore

Ci = C0i + (C1i − C0i)Di.

Compliers have C1i − C0i = 1, an event that happens when C1i = 1 and C0i = 0.
Causal effects are determined by potential outcomes, indexed against Ci. These are written

as Y1i and Y0i. When Ci = c, we see Yci, so the observed outcome (a test score) is

Yi = Y0i + (Y1i − Y0i)Ci.

Proposition 1 makes it likely that, conditional on type, the offer variable, Di, is independent
of potential assignments. Given an exclusion restriction, the conditional random assignment of
Di also makes Di conditionally independent of potential outcomes. The exclusion restriction in
this case means that charter offers have no effect on outcomes other than by boosting charter
attendance. The conceptual distinction between random assignment and exclusion is discussed
in Angrist et al. (1996) and, for the case of charter offers, in our working paper (Abdulkadiroglu
et al., 2015). As a practical matter, the exclusion restriction fails when charter offers change
school quality within charter and non-charter sectors. This most likely occurs when charter offers
change the type of school attended on a margin other than charter attendance. We therefore
explore multi-sector models that identify the causal effects of attendance at different types of
charter and non-charter schools. Estimates of multi-sector models are reported following 2SLS
estimates of overall charter effect.

As with the conditional independence of single-school offers described by Proposition 1, the
conditional independence and exclusion assumptions motivating 2SLS can be written:

P [Di = 1|{Y1i, Y0i, C1i, C0i}, θi = θ] = P [Di = 1|θi = θ] = pD(θ) (3)

where the vector of potentials, {Y1i, Y0i, C1i, C0i}, plays the role of Wi. Likewise, as for single-
school offers in equation (1), the propensity score theorem implies

P [Di = 1|{Y1i, Y0i, C1i, C0i}, pD(θi)] = pD(θi) (4)

where pD(θi) is the charter-offer propensity score associated with applicant i’s type.
Equations (3) and (4) allow us to estimate causal effects of charter offers, that is, the effect

of Di. In practice, however, we’re interested in the effects of charter attendance, the treatment
indicated by Ci. To complete the causal chain from charter offers to charter enrollment and finally
to outcomes, we assume that charter offers cause charter enrollment for at least some applicants,
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and that charter offers can only make charter enrollment more likely, so that C1i ≥ C0i for all i.
With these first-stage and monotonicity assumptions supplementing (4), the conditional-on-score
IV estimand is a conditional average causal affect for compliers at that score value. That is, for
all θi with pD(θi) = x ∈ (0, 1),

E[Yi|Di = 1, pD(θi) = x]− E[Yi|Di = 0, pD(θi) = x]

E[Ci|Di = 1, pD(θi) = x]− E[Ci|Di = 0, pD(θi) = x]
= E[Y1i − Y0i|pD(θi) = x,C1i > C0i], (5)

where x indexes values in the support of pD(θ).
In view of the fact that (5) generates a distinct causal effect for each score value, it’s natural

to consider parsimonious models that use data from all propensity-score cells to estimate a single
average causal effect. We marginalize conditional effects by estimating a 2SLS specification with
first and second stage equations that can be written:

Ci =
∑
x

γ(x)di(x) + δDi +X ′
iλ+ νi (6)

Yi =
∑
x

α(x)di(x) + βCi +X ′
iµ+ εi, (7)

where the di(x)’s are dummies indicating values of the estimated score, p̂D(θi), indexed by x, and
γ(x) and α(x) are the associated “score effects” in the first and second stages. The coefficient δ

in (6) is the first-stage effect of charter offers on charter enrollment, while the coefficient β in (7)
is the causal effect of interest. These first and second stage equations include baseline covariates,
Xi, to increase precision and adjust for any chance imbalances in applicant characteristics.

As a check on the 2SLS specification, we also report semiparametric estimates of E[Y1i −
Y0i|C1i > C0i]. In contrast with the additive 2SLS setup, the semiparametric procedure requires
only correct specification of the propensity score to generate a single average causal effect for all
compliers. Our semiparametric strategy uses Abadie (2003)’s observation that the conditional
independence and exclusion restrictions imply:

E[Y0i|C1i > C0i] =
1

Pr(C1i > C0i)
E

[
CiYi(Di − pD(θi))

(1− pD(θi))pD(θi)

]
E[Y1i|C1i > C0i] =

1

Pr(C1i > C0i)
E

[
(1− Ci)Yi((1−Di)− (1− pD(θi)))

(1− pD(θi))pD(θi)

]
.

Subtracting and rearranging, we have:

E[Y1i − Y0i|C1i > C0i] =
1

Pr(C1i > C0i)
E

[
Yi(Di − pD(θ))

(1− pD(θi))pD(θi)

]
. (8)

The first stage in this case, P [C1i > C0i], is constructed using

P [C1i > C0i] = E

[
Ci(Di − pD(θi))

(1− pD(θi))pD(θi)

]
. (9)

The semi-parametric IV estimator used here is the sample analog of the right hand side of (8)
divided by the sample analog of (9).
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4.2 Effects of Charter Enrollment

As can be seen in Table 6, 2SLS estimates of charter attendance effects are similar to the cor-
responding semiparametric estimates. Compare, for instance, the semiparametric estimates of
effects on math and writing scores of 0.37 and 0.22 in column 1 with the 2SLS estimates of 0.35
and 0.18 in column 2. Both of these control for simulated scores. The standard errors for the
semiparametric estimates using the simulated score are higher than those for 2SLS (semipara-
metric precision is estimated using a Bayesian bootstrap that randomly reweights observations;
see, e.g. Shao and Tu (1995)). There are further substantial precision gains in 2SLS estimates
using models that control for covariates beyond the score, reported in column 3. The similarity
of 2SLS and semiparametric estimates and the relative simplicity of 2SLS estimation leads us
to focus on 2SLS estimates with covariates in what follows.21 It’s also worth noting that 2SLS
can be interpreted as a “doubly robust” variation on the semiparametric IV strategy; see, e.g.,
Robins (2000) and Okui et al. (2012).22

A DA-generated charter offer boosts charter school attendance rates by about 0.4. These
first stage estimates, shown in the first row of Table 6, are computed by estimating equation
(6). The first stage of 0.4 reflects the fact that many charter applicants who are not offered a
seat in the SchoolChoice first round ultimately find their way into a charter school by applying
to schools directly in the second round (specifically, 44% of the charter applicants analyzed in
Table 6 are always-takers who enroll in charters even without a first-round charter offer, while
fewer than 20% of the analysis sample are never-takers who decline charter offers). First-stage
estimates of around 0.56 computed without score controls, shown in column 6 of the table, are
clearly biased upwards.

2SLS estimates of charter attendance effects on test scores, reported below the first-stage
estimates in Table 6, show remarkably large gains in math, with smaller effects on reading. The
math gains reported here are similar to those found for charter students in Boston (see, for
example, Abdulkadiroğlu et al. 2011). Previous lottery-based studies of charter schools likewise
report substantially larger gains in math than in reading. Here, however, we also see large and
statistically significant gains in writing scores.

Importantly for our methodological agenda, the estimated charter attendance effects reported
in Table 6 are largely invariant to whether the propensity score is estimated by simulation
or by a frequency or formula calculation that uses Theorem 1. Compare, for example, math
impact estimates of 0.415, 0.417, and 0.415 using simulation-, frequency-, or formula–based
score controls, all estimated with similar precision (these appear in columns 3-5). This alignment
further validates the use of Theorem 1 to control for applicant type.

Estimates that omit propensity score controls highlight the risk of selection bias in a naive
2SLS empirical strategy. This is documented in column 6 of Table 6, which shows that 2SLS

21Controls include baseline test scores and the covariates described earlier. Estimates here are for scores in
grades 4-10. The sample used for IV estimation is limited to charter applicants with the relevant propensity score
in the unit interval, for which score cells have offer variation in the data at hand (these restrictions amount to
the same thing for the frequency score).

222SLS also obviates the need for judgements regarding bootstrap methods or implementation. We found, for
example, that a conventional nonparametric bootstrap for the semiparametric estimators requires trimming or
tuning to eliminate the influence of occasional small first stage estimates.
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estimates of math and writing effects constructed using DA offer instruments while omitting
propensity score controls are too small by about half. A corresponding set of OLS estimates
without propensity score controls, reported in column 7 of the table, also tends to underestimate
the gains from charter attendance attendance.23

4.3 Unbundling Hetereogeneity

Earlier empirical work emphasizes charter sector heterogeneity (see, e.g., Angrist et al. (2013)).
It’s therefore of interest to estimate separate character attendance effects for different sorts of
schools. Since just over half of the schools listed in Table 2 belong to one of three Denver Charter
Management Organizations (CMOs), it’s natural to split the charter sector by CMO affiliation.
Charters run by CMOs implement common practices across school sites, and CMOs similar to
those operating in Denver appear have produced especially large achievement gains (Teh et al.,
2010; Gleason et al., 2014; Angrist et al., 2012).

The 2SLS estimates in Table 6 also contrast charter outcomes with potential outcomes gen-
erated by attendance at a mix of traditional public schools and schools from other non-charter
sectors. We’d like to unbundle this mix so as to produce something closer to a pure sector-to-
sector comparison. Allowance for more than one treatment channel also addresses concerns about
changes in counterfactual outcomes that might cause violations of the exclusion restriction.

The first step in our effort to unpack school sectors is to describe the distribution of charter
and non-charter school choices for applicants who were and weren’t offered a charter seat in
the SchoolChoice match. We then identify the distribution of school sectors for the group of
charter-lottery compliers. Finally, we use the DA mechanism to jointly estimate causal effects of
attendance at schools in different sectors, thereby making the treatment and counterfactuals in
our 2SLS strategy more homogeneous.

Important DPS sectors besides charters are traditional public schools, innovation schools,
magnet schools, and alternative schools. Innovation and magnet schools are managed by DPS.
Innovation schools design and implement innovative practices meant to improve student out-
comes. Innovation schools operate under an innovation plan that waives some provisions of the
relevant collective bargaining agreements (for a descriptive evaluation of these schools, see Con-
nors et al. 2013).24 Magnet schools serve students with particular styles of learning. Alternative
schools serve older students who have struggled in a traditional school environment. Smaller
school sectors include a single charter middle school outside the centralized DPS assignment
process (now closed) and a private school contracted to serve DPS students.

The distribution of enrollment sectors for applicants who do and don’t receive a charter offer
is described in the first two columns of Table 7. These columns show a charter enrollment rate of
88% in the group offered a charter seat, with roughly 76% enrolling in a CMO charter. Perhaps
surprisingly, only around 38% of those not offered a charter seat enroll in a traditional public

23The OLS estimation sample includes charter applicants, ignoring score- and cell-variation restrictions.
24Innovation waivers are subject to approval by the Denver Classroom Teachers Association (which organizes

Denver public school teachers’ bargaining unit), and they allow, for example, increased instruction time. DPS in-
novation schools appear to have much in common with Boston’s pilot schools, a model examined in Abdulkadiroğlu
et al. (2011).
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schools, with the rest of the non-offered group distributed over a variety of sectors. Innovation
schools are the leading non-charter alternative to traditional public schools.

The sector distribution for non-offered applicants with non-trivial charter risk (meaning a
charter offer score strictly between zero and one) appears in column 3 of Table 7, alongside the
sum of the non-offered mean and a charter-offer treatment effect on enrollment in each sector
in column 4. These first-stage estimates, computed by putting indicators 1(Si = j) on the
left-hand side of equation (6), control for the DA propensity score and therefore have a causal
interpretation. The number of applicants not offered a seat who end up in a charter school is
higher for those with non-trivial charter offer risk than in the full applicant sample, as can be
seen by comparing columns 3 and 1. The charter enrollment first stage that is implicit in the
column 4-vs-3 comparison matches the first stage in column 4 of Table 6. The distinction between
CMO and non-CMO categories, however, shows that the charter offer instrument mostly moves
applicants into CMO charters. First stages for other sectors show that charter offers reduce
innovation and traditional public school enrollment.

The 2SLS estimates reported in Table 6 capture causal effect for charter lottery compliers.
We describe the distribution of school sectors for compliers by defining potential school sectors,
S1i and S0i, indexed against charter offers, Di. Potential and observed school sectors are related
by

Si = S0i + (S1i − S0i)Di.

In the population of charter-offer compliers, S1i = charter for all i: by definition, charter-offer
compliers attend a charter school when the DPS assignment offers them the opportunity to do
so. The top panel of Table 7 reports the breakdown of charter sector for charter-offer compliers,
showing (in the last column) that 96% of offered compliers attend CMO charters. We’re also
interested in E[1(S0i = k)|C1i > C0i] for sectors indexed by k, that is, the sector type distribution
for charter-offer compliers in the scenario where they aren’t offered a charter seat. We refer to
this distribution as describing counterfactual enrollment destinies for compliers.

Enrollment destinies are marginal potential outcome distributions for compliers. As shown by
Abadie (2002), these are identified by a simple 2SLS estimand. The details of our implementation
of this identification strategy follow those in Angrist et al. (2016b), with the modification that
instead of estimating marginal potential outcome densities for a continuous variable, the outcomes
of interest here are Bernoulli.25

Column 5 of Table 7 reveals that only about 41% charter lottery compliers are destined
to end up in a traditional public school if they aren’t offered a charter seat. Moreover, an
innovation school enrollment destiny is just as likely as a traditional public school. By contrast,
the likelihood of an enrollment destiny outside the charter, traditional, and innovation sectors is
much smaller.

25Briefly, our procedure puts (1−Ci)1(Si = k) on the left hand side of a version of equation (7) with endogenous
variable 1 − Ci. The coefficient on this endogenous variable is an estimate of E[1(S0i = k)|C1i > C0i, Xi]. The
covariates and sample used here are the same as used to construct the 2SLS impact estimates reported in column
4 of Table 6.
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4.4 Additional School Sector Effects

The importance of Denver’s CMO charters in our first stage and the outsize role of innovation
schools in counterfactual destinies motivates an empirical strategy that distinguishes the effects
of CMO and non-CMO charters and allows for separate innovation school treatment effects. By
pulling innovation schools out of the non-charter counterfactual, we capture charter treatment
effects driven mainly by the contrast between charter and traditional public schools. Models
with a more homogeneous non-charter counterfactual also mitigate bias that might arise from
violations of the exclusion restriction (discussed in Section 4.1). The innovation treatment effect
is also of interest in its own right.

To facilitate the causal analysis of multiple school sectors, we write the potential outcome
for sector k as Yki, representing the latent outcome when Si = k, for school sectors coded by
k ∈ {0, 1, ...K}. This leads to K − 1 heterogeneous causal effects: YKi − Y0i, ..., Y2i − Y0i, and
Y1i − Y0i. Identification of multiple LATEs with unrestricted heterogeneity is challenging and
raises issues that go beyond the scope of this paper.26 We therefore assume constant effects for
each sector:

Yki − Y0i = βk. (10)

With constant effects, a multi-sector identification strategy can be motivated by the simple
conditional independence assumption,

Y0i ⊥⊥ Zi|θi, (11)

where Zi = k ∈ {0, 1, ...K} is a categorical variable that records DA-generated offers in each
sector.

The instruments for the multi-sector model are indicators for offers in sector k: Dk
i = 1[Zi =

k], where 1[·] is the indicator function. These dummy instruments are used in a 2SLS procedure
with endogenous variables Ck

i = 1[Si = k] for sector k enrollment. Propensity score conditioning
is justified by the fact that conditional independence relation (11) implies

Y0i ⊥⊥ Zi | p1(θ), p2(θ), ..., pK(θ); (12)

where pk(θ) = E[Dk
i |θ].

The 2SLS setup in this case consists of the second and first stage equations,

Yi =
K∑
k=1

∑
x

αk(x)d
k
i (x) +

K∑
k=1

βkC
k
i + εi (13)

Ck
i =

K∑
`=1

∑
x

γ`k(x)d
`
i(x) +

K∑
`=1

δ`kD
`
i + νik, for k = 1, ...,K (14)

where the dummy control variables, d`i(x), saturate estimates of the propensity scores for each
treatment, {p̂`(θi); ` = 1, ...,K}, with corresponding score effects denoted by the γ’s and α’s in

26See Behaghel et al. (2013), Blackwell (2015), and Hull (2016) for recent progress on multi-treatment IV models
with heterogeneous effects.
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the first and second stage models. The sample used for this analysis contains the union of the
sets of charter and innovation school applicants.

The conditional independence relation (12) suggests we should control for conditional prob-
abilities of assignment for all treatment levels jointly. Joint score control replaces the additive
score controls in equations (13) and (14) with score controls of the form

dKi (x1, ..., xK) = 1[p̂1(θi) = x1, p̂2(θi) = x2, ..., p̂K(θi) = xK ],

where hats denote score estimates and the indices, (x1, x2, ..., xK) run independently over all
values in the support for each score. This model generates far more score fixed effects than
appear in equation (13). Fortunately, however, the algebra of 2SLS with constant effects obviates
the need for joint score control; additive control as in (13) is enough.

To see why additive control is sufficient to eliminate omitted variables bias in 2SLS models
built on (12), note first that 2SLS estimates of (13)-(14) can be obtained by regressing first
stage fitted values on the controls in these two equations (the full set of score dummies and any
other covariates included in these equations) and then using the residuals from this regression
as instruments for a model that omits the score dummies and additional covariates (see, e.g.,
Section 4.1 in Angrist and Pischke 2009). Equivalently, since first-stage fitted values are a linear
combination of offer dummies, we can regress each of the offer dummies on these same controls
and use the resulting residuals as instruments.

Now consider the regression that produces these residuals: this has Dk
i on the left hand

side, with a saturated model for pk(θi) and a vector of additional controls, q(θi), on the right.
Whether we estimate (13)-(14) or a variation on this setup that replaces additive controls with
the set of dKi (x1, ..., xK) parameterizing the jointly-controlled model, the additional controls are
determined by θi. By the law of iterated expectations, the conditional expectation function
(CEF) associated with this auxiliary regression is therefore

E[Dk
i |pk(θi), q(θi)] = E{E[Dk

i |θi]|pk(θi), q(θi)] = pk(θi).

In other words, having controlled for pk(θi) with a saturated model, other functions of θi drop
out of the CEF (this is just a restatement of the propensity score theorem).

The argument for additive control is completed by noting that because population regres-
sion functions equal the associated CEF when the latter is linear, and the CEF given by
E[Dk

i |pk(θi), q(θi)] is indeed linear in θi, any auxiliary regression that includes a saturated model
for pk(θi) is invariant to the inclusion of additional θ − determined controls. In particular, for
any q(θi), the auxiliary regression has residual Dk

i − pk(θi). From this, we conclude that the
2SLS estimand is the same in the additive and jointly-controlled models.27

Multi-Sector Estimates

As a benchmark, columns 1-3 of Table 8 report three sets of single-sector 2SLS estimates, compar-
ing CMO charter-only, non-CMO charter-only, and innovation-only estimates computed using

27This conclusion holds in the population, but need not hold exactly in our data (because scores are estimated
by something more elaborate than a sample mean conditional on type) or for models that include additional
covariates beyond dummies for score values.
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DA (frequency) score controls. Each sample is limited to applicants to the relevant sector.28

The CMO-charter first stage (the effect of a CMO-charter offer on CMO-charter enrollment) is
around 0.49. The non-CMO charter first stage is 0.33. It’s worth noting that these two column
use different instruments, one capturing CMO charter offers and one indicating non-CMO offers.
This fact makes it possible to separately identify a non-CMO charter effect, even though the any
charter instrument shifts most applicants to charter schools, as we saw in Table 7. The innova-
tion school first stage (the effect of an innovation school offer on innovation school enrollment)
is around 0.37. Not surprisingly in view of the substantially reduced number of applicants with
non-trivial non-CMO and innovation offer risk (401 and 942) and the corresponding smaller first
stages, both the non-CMO and Innovation attendance effects are less precise than the CMO
effects. Even so, it’s noteworthy that the effects of non-CMO and innovation school attendance
are negative or close to zero.

2SLS estimates of equation (13) appear in columns 4 and 5 of Table 8. The large CMO-charter
school effects reported in column 1 remain substantial in this specification, but (insignificant)
negative innovation estimates for math flip to positive when estimated using a model that also
isolates the two charter treatment effects. The negative innovation school effects on reading seen
in column 3 also become smaller in the three-endogenous-variables models. Most interestingly,
perhaps, the significant positive CMO-charter school effect on reading in column 1 is smaller and
marginally significant in both column 4 and 5. While charter applicants’ reading performance
exceeds what we can expect to see were these applicants to enroll in a mix of traditional and (low-
performing) innovation schools, the reading gap between CMO-charters and traditional public
schools appears to be a little smaller.

As the theoretical discussion above leads us to expect, the results of estimation with joint
score controls, reported in column 5 of Table 8, differ little from the estimates constructed using
additive score controls. Overall, it seems fair to say that the findings showing substantial charter
effectiveness in Table 6 are driven entirely by CMO charters, and that these findings hold up
when effects are estimated using a procedure that removes the innovation sector from the charter
enrollment counterfactual.

4.5 Alternative IV Strategies

Previous research eliminates the selection bias that arises from the dependence of assignments on
preferences and priorities by focusing either on offers of seats at applicants’ first choice schools,
or using instrumental variables (IVs) indicating whether an applicant’s lottery number falls be-
low the highest number offered a seat at all schools he’s ranked (we call this a qualification
instrument). The first choice strategy conditions on the identity of the school ranked first, while
qualification instruments condition on the set of schools ranked. These IV strategies are likely
to produce estimates of school attendance free of omitted variables bias. At the same time, both
first-choice and qualification instruments discard much of the variation induced by centralized
assignment.

28Appendix Table B3 lists innovation schools and describes the random assignment pattern at these schools
along the lines of Table 1 for charter schools. Covariate balance and differential attrition results for innovation
schools are reported in Appendix Table B4.
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We’re interested in comparing 2SLS estimates constructed using offer dummies as instruments
while controlling for the DA propensity score with suitably-controlled estimates constructed using
first-choice and qualification instruments. We expect DA-offer instruments to yield a precision
gain while also increasing the number of schools represented in the estimation sample relative to
these two previously-employed IV strategies.29

Let X(θi) be a variable that identifying the charter school that applicant i ranks first, along
with his priority status at this school, defined for applicants whose first choice is indeed a charter
school. X(θi) ignores other schools that might have been ranked.30 The first-choice strategy is
implemented by the following 2SLS setup:

Yi =
∑
x

α(x)di(x) + βCi + εi

Ci =
∑
x

γ(x)di(x) + δDf
i + νi,

where the di(x)’s are dummies indicating values of X(θi), indexed by x, and γ(x) and α(x) are
the associated “risk set effects” in the first and second stages. The first-choice instrument, Df

i ,
is a dummy variable indicating i’s qualification at his or her first-choice school. In other words,

Df
i = 1[πis ≤ cs for charter s that i has ranked first].

First choice qualification is the same as first choice offer since under DA, applicants who rank a

first are offered a seat there if and only if they qualify at a.
The qualification strategy expands the sample to include all charter applicants, with the risk

sets for qualification instruments identifying the set of all charter schools that i ranks, along with
his or her priority status at each of these schools (again, these risk sets are denoted X(θi)). In
this case, X(θi) ignores the order in which schools are ranked, coding only their identities, but
priorities are associated with schools.31 The qualification instrument, Dq

i , indicates qualification
at any charter he or she has ranked. In other words,

Dq
i = 1[πis ≤ cs for at least one charter s that i has ranked].

In large markets, the instruments Df
i and Dq

i are independent of type conditional on X(θi); see
Appendix A.8 for details.

A primary source of inefficiency in the first-choice and qualification strategies is apparent in
Panel A of Table 9. This panel reports two sorts of first stage estimates for each instrument:

29Studies using first-choice instruments to evaluate schools in districts with centralized assignment include
Abdulkadiroğlu et al. (2013), Deming (2011), Deming et al. (2014), and Hastings et al. (2009). First-choice
instruments have also been used with decentralized assignment mechanisms ( Abdulkadiroğlu et al. (2011), Cullen
et al. (2006), Dobbie and Fryer (2011), and Hoxby et al. (2009)). Dobbie and Fryer (2014), Lucas and Mbiti (2014),
and Pop-Eleches and Urquiola (2013) use qualification instruments.

30DPS divides each school into buckets, as explained in Section 2.3. Our first-choice risk set therefore identifies
applicants in all buckets at the first-choice school along with priority status for each of these buckets.

31For example, an applicant who ranks A and B with marginal priority only at A is distinguished from an
applicant who ranks A and B with marginal priority only at B. Also, precisely speaking, “schools” in the above
description of the qualification risk set are buckets.
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the first of these regresses a dummy indicating any charter offer–that is, our DA charter offer
instrument, Di–on each of the three instruments under consideration. A regression of Di on itself
necessarily produces a coefficient of one. By contrast, a first-choice offer boosts the probability
of any charter offer by only around 0.73 in the sample of those who have ranked a charter first.
This reflects the fact that, while anyone receiving a first choice charter offer has surely been
offered a charter seat, roughly 27% of the sample ranking a charter first is offered a charter seat
at schools other than their first choice. The relationship between Dq

i and charter offers is even
weaker, at around 0.46. This reflects the fact that for schools below the one ranked first, charter
qualification is insufficient for a charter offer.

The diminished impact of the two alternative instruments on charter offers translates into a
weakened first stage for charter enrollment. The best case scenario, using all DA-generated offers
(that is, Di) as a source of quasi-experimental variation, produces a first stage of around 0.44.
But first-choice offers boost charter enrollment by only 0.35, while qualification at any charter
yields a charter enrollment gain of only 0.23. As always, the size of the first stage is a primary
determinant of the precision of an IV estimate.

At 0.050, the standard error of the DA-offer estimate is lower than the standard error of
0.064 yielded by a first-choice strategy and well below the standard error of 0.092 generated by
qualification instruments. The precision loss here is similar to the decline in the intermediate
first stages recorded in the first row of the table (compare 0.73 with 0.050/0.064 = 0.78 and
0.46 with 0.050/0.092 = 0.54). The precision loss here is substantial: columns 4 and 5 show the
sample size increase needed to undo the damage done by a smaller first stage for each alternative
instrument.3233

The precision loss from alternative IV strategies is even starker for multi sector models. For
example, when estimating sector effects jointly, with additive score controls (as in column 4 of
Table 8) the innovation school math effect estimated using a first-choice offer instrument has a
standard error of 0.737, while the corresponding standard error using a qualification instrument
is 1.879. These can be compared with the standard error of 0.097 using DA offers and the
DA score. It seems fair to say that multi-sector estimators with these other IV strategies are
uninformative.

First-choice analyses lose schools because many lotteries fail to randomize first-choice ap-
plicants (as seen in Table 2). It’s therefore interesting to note that the first-choice estimate of
effects on math and reading scores are noticeably larger than the estimates generated using DA
offer and qualification instruments (compare the estimate of 0.42 using DA offers with estimates
of 0.52 and 0.38 using first-choice and qualification instruments). This finding may reflect an
advantage for those awarded a seat at their first choice school (Hastings et al. 2009; Deming
2011; Deming et al. 2014 find a general “first choice advantage” in analyses of school attendance
effects.) By contrast, the DA offer instrument yields an estimand that is more representative
of the full complement of charter schools in the match, as suggested by the listing of schools in

32The sample used to construct the estimates in columns 1-3 of Table 9 is limited to those who have variation
in the instrument at hand conditional on the relevant risk sets controls.

33This pattern is consistent with theoretical econometric results in Newey (1990) and Hong and Nekipelov
(2010), who show that the semiparametric efficiency bound for LATE-type estimates is proportional to the number
of compliers, i.e., to the size of the first stage.
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Table 2 with DA offer instrument variation vs. first-choice instrument variation.
Motivated by the possibility of a “first-choice” advantage, we conclude our empirical analysis

by using our multi-sector methodology to estimate models with separate effects for first-choice
charter and other-choice charters. As for the estimates in Table 8, the instruments for enrollment
in more narrowly defined sectors are dummies indicating offers of seats in these sectors, controlling
the corresponding narrow-sector propensity score. For first-choice charters, for example, the
instrument indicates offers at a charter ranked first and the propensity score is the probability
of receiving an offer at a charter ranked first.

Consistent with the hypothesis of “first-choice” advantage, the estimates in Table 10 sug-
gest first-choice charters generate achievement effects beyond those of charters ranked lower.
Compare, for example, the 0.40 math estimate for first-choice charters with the 0.25 estimate
for other-choice charters, both of which are reported in column 1. Likewise, for reading, the
estimates in column 3 show a gain around 0.15 at first-choice charters, with an estimated zero
reading effect elsewhere. As can be seen in column 5, estimates of effects on writing are similar
at both types of schools.

We’ve seen that CMO charters drive positive overall charter effects. It’s natural, therefore,
to ask whether the first choice advantage is visible within CMO and non-CMO sectors. The
estimates reported in even numbered columns in Table 10 are from a model with four endogenous
variables, distinguishing first-choice and other charters by their CMO status. The impression
of CMO charter quality remains in this parameterization. We see, for example (in column 2),
that among charters ranked first, CMO charters boost math scores by 0.43, while non-CMO
charters ranked first have essentially no effect. A similar contrast in favor of CMOs appears for
other subjects as well, though it should be noted that the non-CMO estimates here are not very
precise.

5 Summary and Directions for Further Work

We’ve shown here how to analyze the stratified randomized trial induced by any centralized
assignment mechanism satisfying the equal treatment of equals property. DA is the leading
mechanism in the ETE class. Our main theoretical result is an analytical formula for the DA
propensity score, derived using a large market approximation. This approximation works well in
our DPS application in the sense of producing the covariate balance promised by the propensity
score theorem.

The theoretical results developed here extend to other widely-using matching schemes, includ-
ing immediate acceptance and random serial dictatorship, as well as to matches using multiple
tie-breakers. The DA propensity score also reveals the nature of the experimental design embed-
ded in DA, as well as suggesting how match parameters might be modified so as to boost the
research value of school assignment or other matching schemes. Finally, as a theoretically mat-
ter, the DA score provides a natural data-dependent automatic smoother for the finite-market
propensity score.

A score-based analysis of data from Denver’s unified school match reveals substantial gains
from attendance at one of Denver’s many charter schools. The resulting charter effects are
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similar to those computed using single-school lottery strategies for Boston’s charters reported in
Abdulkadiroğlu et al. (2011). At the same time, as with previously reported results for Boston
Pilot schools, Denver’s Innovation school model does not appear to boost achievement. Our
analysis focuses on defining and estimating the DA propensity score, giving less attention to
the problem of how best to use the score for estimation. Still, simple 2SLS procedures seem to
work well, and the resulting estimates of DPS charter effects differ little from those generated
by semiparametric alternatives. Estimates using DA offer instruments also generate noteworthy
precision gains relative to qualification and first-choice instruments, mostly as a consequence of
an increased first stage though also (in the case of first choice) by exploiting randomization at a
larger set of schools.

Our analysis of DPS charters includes extensions to models with multiple sectors. The
DPS application illustrates empirical strategies that unbundle school heterogeneity by estimating
many sector effects and interactions. We see, for example, that CMO-affiliated charters are much
stronger than others in DPS, and, as conjectured in the matching literature, achievement gains
are larger when applicants are offered seats at charters they rank first. In principle, the empirical
strategy demonstrated here can be used to construct single-school value-added estimates, though
the VAM agenda raises unique challenges. In a related paper, Angrist et al. (2016a) show how
lottery estimates produced by centralized assignment can be embedded in an empirical Bayes
framework to estimate value added for all schools in a district including those that are under-
subscribed or for which there’s no randomization.

Finally, some matching schemes, such as those for the selective exam schools analyzed by
Jackson (2010); Dobbie and Fryer (2014); Abdulkadiroğlu et al. (2014); Lucas and Mbiti (2014);
Pop-Eleches and Urquiola (2013), use non-randomly-assigned tie-breakers rather than a lottery.
These schemes embed regression discontinuity designs inside a market design rather than embed-
ding a randomized trial. The question of how best to define and exploit the DA propensity score
for markets that combine regression-discontinuity tie-breaking with market design matchmaking,
such as in the US medical match or placement system for junior Canadian lawyers, is a important
next step on the market-design-meets-research-design agenda. It’s also of theoretical interest to
develop a large-market score for top trading cycles, a mechanism that allows applicants to trade
their priorities (Shapley and Scarf, 1974; Abdulkadiroğlu and Sönmez, 2003).
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Figure 1: Sample Size Gains from the Propensity Score Strategy
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Notes: These figures compare the sample size under our simulated score strategy to that under the first choice
strategy. Down arrows mean the two empirical strategies produce the same number of applicants subject to
randomization at the corresponding schools. We say an applicant is subject to randomization at a school if the
applicant has a simulated score of assignment to that school that is neither 0 nor 1.
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Figure 2: Propensity Scores and Market Size in Example 2

Notes: This figure plots finite-market propensity scores for expansions of Example 2. For each value of the x axis,
we consider an expansion of the example with x applicants of each type. The propensity scores plotted here were
computed by drawing lottery numbers 100,000 times and rerunning the DA algorithm for each draw.
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Figure 3: Comparison of Frequency and Formula Score to Simulated Score

(a)

(b)

Notes: This figure plots average frequency and formula score across 2000 simulations for 2013 against the average
simulated score computed from 1,000,000 lottery draws for each school bucket. Simulated scores are rounded
to 0.01 bins. The red line is the 45 degree line. The circles are proportional to the square root of the number
students in each 0.01 bin.
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Simulated score in (0,1)

Denver students
SchoolChoice 

applicants Charter applicants Charter applicants Charter students
(1) (2) (3) (4) (5)

Origin school is charter 0.151 0.088 0.144 0.192 0.273
Female 0.494 0.495 0.505 0.500 0.495
Race

Hispanic 0.594 0.600 0.640 0.645 0.698
Black 0.140 0.143 0.167 0.186 0.161
White 0.193 0.184 0.126 0.102 0.082
Asian 0.034 0.033 0.028 0.027 0.029

Applied in 2013 0.490 0.488 0.487 0.445 0.445

Gifted 0.180 0.214 0.203 0.180 0.175
Bilingual 0.040 0.030 0.038 0.037 0.038
Subsidized lunch 0.752 0.763 0.804 0.815 0.827
Limited English proficient 0.297 0.301 0.344 0.364 0.419
Special education 0.119 0.122 0.091 0.087 0.084

Baseline scores
Math 0.000 -0.003 0.008 -0.009 0.043
Reading 0.000 -0.003 -0.009 -0.032 -0.022
Writing 0.000 -0.008 -0.005 -0.012 0.019

N 51,325 22,311 10,203 3,466 1,769

Table 1: Baseline characteristics for DPS applicants

Notes: This table decribes the population of Denver 3rd-9th graders in 2011-2012 and 2012-2013, the baseline years. Statistics in column 1 are for 
charter and non-charter students. Column 2 describes the subset that submitted an application to the SchoolChoice system for a seat in grades 4-10 
at another DPS school in 2013 or 2014. Column 3 reports values for applicants ranking any charter school. A charter student is an applicant that 
enrolled in a charter school. Columns 4 and 5 show statistics for charter applicants and students with simulated score values strictly between zero 
and one. The simulated score is rounded to 0.001. Columns 5 and 6 show statistics for charter applicants with a frequency score strictly between 0 
and 1. Test scores are standardized to the population in column 1. 



Simulated score in (0,1)

CMO
Total 

applicants Capacity
Applicants 

offered seats
Total 

applicants
Applicants (first 

choice)
School (1) (2) (3) (4) (5) (6)

Elementary and middle schools
Cesar Chavez Academy Denver 62 72 9 8 3
Denver Language School 4 100 0 0 0
DSST: Cole Yes 281 150 129 45 0
DSST: College View Yes 299 310 130 69 0
DSST: Green Valley Ranch Yes 1014 146 146 358 291
DSST: Stapleton Yes 849 156 156 231 137
Girls Athletic Leadership School 221 143 86 51 0
Highline Academy Charter School 159 93 26 84 50
KIPP Montbello College Prep Yes 211 125 39 56 21
KIPP Sunshine Peak Academy Yes 389 120 83 46 36
Odyssey Charter Elementary 215 32 6 22 14
Omar D. Blair Charter School 385 193 114 182 99
Pioneer Charter School 25 152 5 2 0
SIMS Fayola International Academy Denver 86 120 37 21 0
SOAR at Green Valley Ranch 85 114 9 44 37
SOAR Oakland 40 117 4 7 2
STRIVE Prep - Federal Yes 621 138 138 193 131
STRIVE Prep - GVR Yes 324 147 112 119 0
STRIVE Prep - Highland Yes 263 147 112 19 0
STRIVE Prep - Lake Yes 320 147 126 26 0
STRIVE Prep - Montbello Yes 188 147 37 36 0
STRIVE Prep - Westwood Yes 535 141 141 239 141
Venture Prep 100 114 50 18 0
Wyatt Edison Charter Elementary 48 300 4 2 0

High schools
DSST: Green Valley Ranch Yes 806 186 173 332 263
DSST: Stapleton Yes 522 27 27 143 96
KIPP Denver Collegiate High School Yes 268 100 60 41 24
SIMS Fayola International Academy Denver 71 130 15 23 0
Southwest Early College 265 235 76 58 0
STRIVE Prep - SMART Yes 383 160 160 175 175
Venture Prep 140 246 39 49 0

Notes: This table describes DPS charter applications for the academic year 2012-2013. Column 1 lists all CMO schools. CMO stands for Charter 
Management Organization, and these schools are comprised of the DSST, STRIVE and KIPP networks. Column 2 reports the number of applicants ranking 
each school. Column 3 reports each school's capacity. Column 4 counts the number of applicants who received an offer from the school. Column 5 counts 
applicants with simulated score values strictly between zero and one. The simulated score is rounded to 0.001. Column 6 shows the subset of applicants 
from column 5 who rank each school as their first choice.

Table 2: DPS charter schools (2013 only)



Table 3: DA score anatomy at STRIVE Prep Schools (2013 only)

0≤MID≤1 MID ≥ τs MID < τs MID = 1 0<MID<1 MID = 0

Capacity Offers Score = 0 Score = 0 0 < Score < 1 Score = 0 0 < Score < 1 Score = 1
Campus (1) (2) (3) (4) (5) (6) (7) (8) (9)
GVR 324 147 112 0 0 0 159 116 49
Lake 274 147 126 0 0 0 132 26 116
Highland 244 147 112 0 0 0 121 21 102
Montbello 188 147 37 0 0 0 128 31 29
Federal 574 138 138 78 284 171 3 1 37
Westwood 494 141 141 53 181 238 4 0 18

Eligible 
applicants

Notes: This table shows how formula scores are determined for STRIVE school seats in grade 6 (all 6th grade seats at these schools are assigned in a single 
bucket; ineligible applicants are omitted) for academic year 2012-2013. Column 3 records offers made to these applicants. Columns 4, 5 and 7 show the number 
of applicants in partitions with a score of zero. Columns 6 and 8 show the number of applicants subject to random assignment. Column 9 shows the number of 
applicants with certain offers.

Θ𝑠𝑠𝑛𝑛 Θ𝑠𝑠𝑐𝑐 Θ𝑠𝑠𝑎𝑎



Table 4: Expected balance

Non-offered 
mean No controls

Rounded 
(hundredths)

Rounded 
(thousandths)

Frequency 
(saturated)

Formula
(saturated)

Covariate (1) (2) (3) (4) (5) (6)
A. Application covariates

Number of schools ranked 4.431 -0.533 0.013 0.005 0.049 0.008
Number of charter schools ranked 1.451 0.445 0.005 0.002 0.061 0.001
First school ranked is charter 0.276 0.641 0.000 -0.001 0.001 -0.001

B. Baseline covariates
Origin school is charter 0.085 0.124 -0.003 -0.003 0.002 -0.001
Female 0.513 -0.021 0.003 0.003 0.002 0.003
Hispanic 0.596 0.105 0.001 0.001 -0.002 0.004
Black 0.189 -0.053 0.000 0.001 0.001 0.000
Gifted 0.207 -0.009 0.003 0.002 -0.002 -0.001
Bilingual 0.033 0.016 0.000 0.000 0.001 0.001
Subsidized lunch 0.781 0.054 0.001 0.000 0.000 0.002
Limited English proficient 0.306 0.090 0.001 0.001 -0.002 0.002
Special education 0.094 -0.007 -0.001 0.000 -0.003 -0.001
Baseline scores

Math -0.028 0.078 -0.003 -0.002 -0.007 -0.005
Reading -0.001 -0.024 -0.002 -0.004 -0.007 -0.007
Writing -0.001 -0.011 -0.002 -0.003 -0.008 -0.005

Average risk set points of support 77 153 93 111
Notes: This table reports average covariate balance by charter offer status across 400 lottery draws, with DA rerun each time. The sample includes applicants for 
2012-13 and 2013-14 charter seats in grades 4-10 who were enrolled in Denver at baseline. Balance is estimated by regressing each covariate on an any-charter 
simulated offer dummy, controlling for the propensity score variables indicated in each column header. We also include dummy controls for the year in which 
the applicant applied. The table reports averages of these balance coefficients. The charter offer variable indicates an offer at any charter school for a given 
lottery draw (excluding alternative charters). Column 1 reports the baseline characteristics of charter applicants who did not receive a charter offer. Column 2 
reports the average coefficient when no propensity score controls are used. The estimates in columns 3, 4, 5 and 6 use score values as indicated in the column 
header. The average risk set points of support reported at the bottom of the table count the average number of unique values found in the support of the relevant 
propensity score. These exclude values of 0 and 1 for the propensity score. For applicants who applied in both years, we only consider their first time 
application.

DA score controlsSimulated score controls



Table 5: Statistical tests for balance in application and baseline covariates

Non-offered 
mean No controls

Rounded 
(hundredths)

Rounded 
(thousandths)

Frequency 
(saturated)

Formula 
(saturated)

Full applicant 
type controls

(1) (2) (3) (4) (5) (6) (7)
A. Application covariates

Number of schools ranked 4.438 -0.544*** -0.076 -0.084 -0.091 -0.115 -0.046
(0.031) (0.070) (0.073) (0.070) (0.070) (0.041)

Number of charter schools ranked 1.450 0.443*** -0.027 -0.029 0.030 -0.028 0.001
(0.018) (0.035) (0.037) (0.037) (0.035) (0.018)

First school ranked is charter 0.275 0.639*** -0.026 -0.022 -0.003 -0.006 0.000
(0.007) (0.017) (0.015) (0.015) (0.014) (0.000)

B. Baseline applicant characteristics
Origin school is charter 0.087 0.118*** -0.027* -0.029** -0.029** -0.039*** 0.024

(0.007) (0.014) (0.014) (0.012) (0.012) (0.015)
Female 0.512 -0.017* 0.030 0.023 0.021 0.024 0.027

(0.010) (0.025) (0.027) (0.026) (0.027) (0.055)
Hispanic 0.597 0.102*** -0.011 -0.013 -0.013 -0.006 0.025

(0.010) (0.021) (0.023) (0.021) (0.022) (0.034)
Black 0.188 -0.052*** 0.004 0.000 0.005 0.008 -0.020

(0.007) (0.019) (0.020) (0.019) (0.020) (0.028)
Subsidized lunch 0.782 0.052*** -0.007 -0.003 0.003 0.018 0.031

(0.008) (0.018) (0.019) (0.018) (0.018) (0.031)
Limited English proficient 0.305 0.089*** 0.006 0.017 0.001 0.021 0.007

(0.010) (0.023) (0.026) (0.024) (0.025) (0.051)
Special education 0.093 -0.005 0.014 0.009 0.006 0.010 0.036

(0.006) (0.014) (0.016) (0.014) (0.015) (0.023)
N 5,674 9,879 2,714 2,291 2,436 2,335 464

Baseline scores
Math -0.025 0.073*** -0.038 -0.035 -0.040 -0.047 -0.205**

(0.019) (0.044) (0.049) (0.045) (0.047) (0.093)
Reading 0.003 -0.032* -0.069 -0.079* -0.080* -0.082* -0.140

(0.019) (0.043) (0.048) (0.045) (0.046) (0.086)
Writing 0.002 -0.016 -0.055 -0.049 -0.058 -0.064 -0.122

(0.018) (0.043) (0.046) (0.044) (0.045) (0.089)
N 5,586 9,743 2,678 2,263 2,406 2,306 462

Risk set points of support 75 141 81 97 89

F-test for joint significance (mvreg) 483.3 0.78 0.82 1.07 1.35 0.92
p-value 0.000 0.702 0.660 0.375 0.163 0.538

Notes: This table reports coefficients from regressions of the application variables and baseline covariates in each row on a dummy for charter offers. The sample includes 
applicants for 2012-14 charter seats in grades 4-10 who were enrolled in Denver at baseline. Columns 2-5 are from regressions like those used to construct expected balance in 
Table 4, except that the tests reported here use the realized DA offers, with test statistics and standard errors computed in the usual way. Column 7 reports the balance test 
generated by a regression with saturated controls for applicant type (that is, unique combinations of applicant preferences over school programs and school priorities in those 
programs). In columns 3-7, N is the number of applicants in a non degenerate risk set subject to random assignment with a propensity score between 0 and 1. Robust standard 
errors are reported in parentheses. P-values for joint significance tests are estimated with stata's mvreg command. For applicants who applied in both years, we only consider their 
first time application.
*significant at 10%; **significant at 5%; ***significant at 1%

Simulated score controls DA score controls



Table 6: Charter effects using alternative score controls
No score controls (with covariates)

2SLS 2SLS Frequency Formula
Semiparametric (no covariates) (with covariates)  (saturated)  (saturated) 2SLS OLS

(1) (2) (3) (4) (5) (6) (7)
First stage 0.389*** 0.415*** 0.420*** 0.444*** 0.428*** 0.561***

{0.053} (0.024) (0.024) (0.024) (0.024) (0.016)
.

Math 0.372*** 0.351*** 0.415*** 0.417*** 0.415*** 0.231*** 0.230***
{0.133} (0.108) (0.052) (0.050) (0.052) (0.030) (0.010)

Reading 0.180 0.083 0.166*** 0.178*** 0.162*** 0.066** 0.094***
{0.162} (0.108) (0.053) (0.050) (0.053) (0.029) (0.010)

Writing 0.217 0.184* 0.274*** 0.302*** 0.309*** 0.141*** 0.171***
{0.136} (0.105) (0.058) (0.056) (0.059) (0.032) (0.011)

N 2,229 2,308 2,308 2,092 1,999 2,947 8,528

Simulated score controls (Rounded hundredths) DA score controls (with covariates)

Notes: This table compares semiparametric, 2SLS, and OLS estimates of charter attendance effects on the 2013 and 2014 TCAP scores of Denver 4th-10th graders. For 
columns 2, 3, 4, 5 and 6 the instrument is an any-charter offer dummy. Columns 2, 3, 4 and 5 include propensity score controls, while 6 and 7 do not. All 2SLS and OLS 
estimates include controls for grade tested, gender, origin school charter status, race, gifted status, bilingual status, subsidized school lunch eligibility, special education, 
limited English proficient status, baseline test scores and year of application. Columns 1, 2 and 3 use the simulated score rounded to 0.01. The semiparametric estimator is 
described in Section 4.2. The semiparametric model in column 1 only uses score controls for the weighting function. The semiparametric model excludes applicants with a 
rounded simulated score larger than 0.975 or smaller than 0.025.  Standard errors in braces are from a Bayesian bootstrap. Robust standard errors are reported in 
parentheses. For applicants who applied in both years, we only consider their first time application.
*significant at 10%; **significant at 5%; ***significant at 1%



Table 7: Enrollment destinies for charter applicants
Charter applicants with DA score (frequency) in (0,1)

All charter applicants All applicants Compliers

No charter offer Charter offer
Non-offered 

mean
First stage 

+ col 3 No charter offer Charter offer
(1) (2) (3) (4) (5) (6)

Study charter 0.129 0.884 0.310 0.754 -- 1.000
CMO Charter 0.095 0.764 0.248 0.673 -- 0.958
Non-CMO Charter 0.034 0.120 0.061 0.080 -- 0.042

Traditional public 0.380 0.066 0.244 0.065 0.405 --
Innovation school 0.283 0.023 0.289 0.109 0.405 --
Magnet school 0.191 0.018 0.126 0.056 0.157 --
Alternative school 0.009 0.005 0.021 0.014 0.015 --
Contract school 0.007 0.002 0.009 0.000 0.022 --
Non-study charter 0.000 0.000 0.001 0.000 0.002 --

N 4,917 3,805 962 2,098 -- --
Notes: This table describes school enrollment outcomes for charter applicants. Columns 1-2 show enrollment by sector for all applicants without and with a charter 
offer. The remaining columns look only at those with a DA (frequency) score strictly between zero and one. Column 4 adds the non-offered mean in column 3 to the 
first stage estimate of the effect of charter offers on charter enrollment. School sectors are classified by grade. CMO charters are listed in table 2. Innovation schools 
design and implement innovative practices to improve applicant outcomes. Magnet schools serve applicants with particular styles of learning. Alternative schools 
serve applicants struggling with academics, behavior, attendance, or other factors that may prevent them from succeeding in a traditional school environment; the 
latter offer faster pathways toward high school graduation, such as GED preparation and technical education. There is a single contract school, Escuela Tlatelolco, a 
private school contracted to serve DPS applicants, and a single non-study charter that closed in May 2013. Complier means in columns 5 and 6 were estimated 
using the 2SLS procedures described by Abadie (2002), with the same propensity score and controls as were used to construct the estimates in Table 6. For 
applicants who applied in both years, we only consider their first time application.

A. Decomposing Y1

B. Decomposing Y0



Table 8: School sector effects
DA score (frequency) controls, saturated

CMOs Non-CMO Innovation
Additive score 

controls
Joint score 

controls
(1) (2) (3) (4) (5)

First Stage 0.488*** 0.330*** 0.372*** -- --
(0.024) (0.057) (0.033) -- --

CMO Charters 0.443*** -- -- 0.462*** 0.440***
(0.047) -- -- (0.057) (0.063)

Non-CMO Charters -- -0.083 -- 0.008 -0.025
-- (0.166) -- (0.165) (0.157)

Innovation -- -- -0.131 0.085 0.122
-- -- (0.092) (0.097) (0.104)

N 1,967 401 937 2,679 2,365

CMO Charters 0.209*** -- -- 0.134** 0.129*
(0.047) -- -- (0.064) (0.070)

Non-CMO Charters -- -0.267 -- -0.272 -0.198
-- (0.188) -- (0.195) (0.193)

Innovation -- -- -0.160 -0.114 -0.088
-- -- (0.101) (0.113) (0.120)

N 1,971 402 937 2,685 2,370

CMO Charters 0.293*** -- -- 0.341*** 0.320***
(0.052) -- -- (0.068) (0.075)

Non-CMO Charters -- 0.008 -- 0.062 0.067
-- (0.168) -- (0.173) (0.179)

Innovation -- -- -0.080 0.101 0.059
-- -- (0.102) (0.115) (0.118)

N 1,979 401 942 2,693 2,377
Notes: This table reports 2SLS estimates of  CMO, non-CMO charter and innovation attendance effects for applicants to schools in these  
sectors. CMO charters are described in Table 2. Column 1 reports attendance effects of CMO charters, estimated in models using a CMO offer 
instrument. Column 2 reports attendance effects of non-CMO charters, estimated in models using a non-CMO offer instrument and non-CMO 
specific saturated score controls constructed like those used for charter applicants. Column 3 reports attendance effects of innovation schools, 
estimated in models using an innovation school offer instrument and innovation-specific saturated score controls constructed like those used 
for charter applicants. Column 4 report coefficients from a three-endogenous-variable/three-instrument 2SLS model for the attendance effects 
of CMOs, non-CMO charters and innovations, conditioning additively on CMO-specific, non-CMO charter-specific, and innovation-specific 
saturated score controls. Column 5 shows results from joint-effect models that add interactions between the three scores to the specification 
that generated column 4. We include the same controls used in Table 6. The first stage reported is for math scores. Robust standard errors are 
reported in parentheses. For applicants who applied in both years, we only consider their first time application. 
*significant at 10%; **significant at 5%; ***significant at 1%

Single Sector Models Multi-Sector Models

A. Math

B. Reading

C. Writing



Table 9: Other IV strategies 
Charter attendance effect

(1) (2) (3) (4) (5)
A. First stage estimates

1.000 0.731*** 0.457***
-- (0.017) (0.018)

0.444*** 0.347*** 0.227***
(0.024) (0.022) (0.021)

B. 2SLS estimates
Math 0.417*** 0.515*** 0.379***

(0.050) (0.064) (0.092) 1.64 3.45

Reading 0.178*** 0.258*** 0.198**
(0.050) (0.062) (0.086) 1.56 2.97

Writing 0.302*** 0.316*** 0.344***
(0.056) (0.071) (0.094) 1.60 2.81

N 2,092 2,222 3,502
Notes: This table compares alternative 2SLS estimates of charter attendance effects using the same sample and control variables used to construct the 
estimates in Table 6. Column 1 repeats the estimates from column 4 in Table 6. The row labeled "First stage for charter offers" reports the coefficient from a 
regression of any-charter offer dummy (the instrument used in column 1) on other instruments, conditioning on the same controls used in the corresponding 
first stage estimates for charter enrollment. Column 2 reports 2SLS estimates computed using a first-choice charter offer instrument. Column 3 reports charter 
attendance effects computed using an any-charter qualification instrument. These alternative IV models control for risk sets making the first-choice and 
qualification instruments conditionally random; see Section 4.5 for details. Columns 4 and 5 report the multiples of the first-choice offer sample size and 
qualification sample size needed to achieve a precision gain equivalent to the gain from using the any-charter offer instrument. The last row counts the 
number of schools for which we observe in-sample variation in offer rates conditional on the score controls included in the model. Robust standard errors are 
reported in parentheses. For applicants who applied in both years, we only consider their first time application. 
*significant at 10%; **significant at 5%; ***significant at 1%

Offer instrument with 
DA score (frequency) 

controls, saturated

First choice charter 
offer with risk set 

controls

Qualification 
instrument with risk 

set controls

Sample size increase 
for equivalent gain 

(col 2 vs col 1)

Sample size increase 
for equivalent gain 

(col 3 vs col 1)

First stage for charter 
offers

First stage for charter 
enrollment



Math Reading Writing
(1) (2) (3) (4) (5) (6)

First-choice charters 0.403*** 0.147*** 0.294***
(0.049) (0.049) (0.056)

First-choice charters * CMO 0.427*** 0.157*** 0.308***
(0.050) (0.051) (0.059)

First-choice charters * non-CMO 0.011 -0.268 0.070
(0.169) (0.234) (0.221)

Other-choice charters 0.249*** -0.018 0.282***
(0.075) (0.078) (0.085)

Other-choice charters * CMO 0.297*** 0.030 0.291***
(0.072) (0.072) (0.082)

Other-choice charters * non-CMO 0.023 -0.380 0.193
(0.287) (0.348) (0.341)

N 2,525 2,525 2,525 2,525 2,525 2,525
Notes: This table presents 2SLS estimates for a 2 endogenous/2 IV model using saturated frequency score controls. The 2 endogenous variables are first choice 
charters and other choice charters. Estimates are also presented for a 4 endogenous/ 4 IV model using saturated frequency score controls. Both models use the 
same controls as Table 6. The 4 endogenous variables are: first-choice CMO, first-choice non-CMO, other-choice CMO and other-choice non-CMO. See Table 2 
for notes on CMO and non-CMO charters. The first-choice charter instrument is constructed as a dummy variable for an offer from a first choice charter. The other-
choice charter instrument is a dummy variable for an offer from a charter which is ranked below the applicant's first choice. The first-choice CMO instrument is a 
dummy for an offer from a CMO charter which is the applicant's first choice. The other-choice CMO instrument is a dummy for an offer from a CMO which is 
ranked below the applicant's first choice. The first-choice non-CMO instrument is a dummy for an offer from a non-CMO charter which is the applicant's first 
choice. The other-choice non-CMO instrument is a dummy for an offer from a non-CMO charter which is ranked below the applicant's first choice. Robust 
standard errors are reported in parentheses. For applicants who applied in both years, we only consider their first time application. 
 *significant at 10%; **significant at 5%; ***significant at 1%

Table 10: DPS charter school attendance effects by choice and CMO status with DA score (frequency) controls, saturated



A Theoretical Appendix

A.1 Equal Treatment of Equals

The text claimed that a number of mechanisms satisfy the ETE property. In this section, we
formally demonstrate that other mechanisms using lottery numbers satisfy ETE. Fix the set
of applicants and suppose that each applicant is assigned L lottery numbers. For example, L
is equal to 1 if every applicant is assigned a single random number as in a DA with single tie
breakers, and L is equal to the number of schools if every applicant is assigned a potentially
different lottery number at every school. Let ri = (ri1, ..., riL) be the vector of applicant i’s
lottery numbers and r = (ri : i ∈ I). Assume that, for any ` ∈ {1, ..., L}, ri` = rj` if and only if
i = j.

Recall that a stochastic mechanism maps a school choice problem into a distribution of
possible assignments. Given lottery numbers r, we can be more explicit about how a stochastic
mechanism is constructed by defining a function φ which maps the set of applicants and their
random numbers to a deterministic assignment. φ is the allocation produced for a particular
lottery realization. We suppress the fixed set of applicants in the notation below for the sake
of expositional simplicity. Let φi(r) denote i’s assignment when lottery numbers are given by r

and φ(r) = (φi(r) : i ∈ I).
Given r and i, j ∈ I, let i and j swap their random number vectors and denote the resulting

set of random number vectors as (r(i,j), rj , ri). We say that φ is anonymous if for any i, j and r

such that i 6= j and θi = θj , we have

φi(r(i,j), rj , ri) = φj(r),

φj(r(i,j), rj , ri) = φi(r), and

φk(r(i,j), rj , ri) = φk(r) for all k ∈ I \ {i, j}

We construct a stochastic mechanism by taking a draw over lottery numbers. Let h be
a probability distribution over r with support Rh. Then given (φ, h), we can construct the
corresponding stochastic mechanism, which we denote φh. Let φh

i (s) is the probability that i is
assigned s, that is,

φh
i (s) =

∑
r∈Rh

h(r)1(φi(r) = s)

when the support of h is countable, and

φh
i (s) =

∫
Rh

h(r)1(φi(r) = s)dr

otherwise. We say that a random lottery h is symmetric if we have h(r) = h(r(i,j), rj , ri) for any
i, j and r such that i 6= j and θi = θj .

Lemma 1. If φ is anonymous and h is symmetric, then stochastic mechanism φh satisfies Equal
Treatment of Equals, that is,

φh
i (s) = φh

j (s)

for all s and i, j such that θi = θj.
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Proof. Assume that φ is anonymous and h is symmetric. Consider any i and j such that i 6= j,
θi = θj .

The set of possible assignments is finite. So, by grouping together the sets of random numbers
that yield the same assignment and redefining h, we can assume without of loss of generality
that Rh has finite cardinality. Formally, let M = {φ(r) : r ∈ Rh} be the set of all assignments
by (φ, h), which is a finite set. Construct a new lottery g as follows: Let Rg denote the support
of g. For each assignment m ∈ M , pick some r ∈ Rh such that φ(r) = m, include it in Rg and
set

g(r) =

∫
h(z)1(φ(z) = m)dz

Then, by construction,
φg
i (s) = φh

i (s)

for all s and i. So assume without loss of generality that Rh has finite cardinality.
Let {R,Rij} be a partition of Rh such that r ∈ R if and only if (r(i,j), rj , ri) ∈ Rij . Such

partition exists trivially by the symmetry of h and finite cardinality of Rh. Then

φh
i (s) =

∑
r∈R∪Rij

h(r)1(φi(r) = s)

=
∑
r∈R

h(r)1(φi(r) = s) + h(r(i,j), rj , ri)1(φi(r(i,j), rj , ri) = s)

=
∑
r∈R

h(r(i,j), rj , ri)1(φj(r(i,j), rj , ri) = s) + h(r)1(φj(r) = s)

=
∑

r∈R∪Rij

h(r)1(φj(r) = s)

= φh
j (s),

where the first equality is the definition of φh
i (s), the second definition follows from the way the

partition is constructed, the third follows from (i) h(r) = h(r(i,j), rj , ri) by symmetry of h, and
(ii) φi(r) = s ⇔ φj(r(i,j), rj , ri) = s by φ being anonymous. The fourth equality follows from the
way the partition is constructed. Finally the fifth equality is by definition. This completes the
proof.

This result implies that the following mechanisms with a symmetric lottery satisfy ETE: DA,
the immediate acceptance (“Boston”) mechanism, random serial dictatorship mechanism, and
TTC, since each is, by construction, anonymous. To see why, consider any i and j with θi = θj .
When i and j swap their lottery numbers, they swap their roles in the implementation of each
mechanism as well, consequently they swap their assignments. It’s worth noting that Lemma 1
allows us to conclude that versions of these mechanisms using school-specific tie-breaking satisfy
ETE. The only requirement on lotteries is symmetry. ETE is also satisfied with more elaborate
lotteries where certain types are favored in tie-breaking.
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A.2 Defining DA: Details

Our general formulation defines the DA match as determined by cutoffs found in the limit of a
sequence. Recall that these cutoffs evolve according to

ct+1
s =

{
K + 1 if F (Qs(c

t)) < qs,

max
{
x ∈ [0,K + 1] | F ({i ∈ Qs(c

t) such that πis ≤ x}) ≤ qs
}

otherwise,

where Qs(c
t) is the demand for seats at school s for a given vector of cutoffs ct and is defined as

Qs(c
t) = {i ∈ I | πis ≤ cts and s �i s̃ for all s̃ ∈ S such that πis̃ ≤ cts̃}. (15)

The following result confirms that these limiting cutoffs exist, i.e., that the sequence ct converges.

Lemma 2. Consider an economy described by a distribution of applicants F and school capacities
as defined in Section 2.1. Construct a sequence of cutoffs, cts, for this economy as described above.
Then, limt→∞ cts exists.

Proof. cts is well-defined for all t ≥ 1 and all s ∈ S since it is either K + 1 or the maximizer of
a continuous function over a compact set. We will show by induction that {cts} is a decreasing
sequence for all s.

For the base case, c2s ≤ c1s for all s since c1s = K +1 and c2s ≤ K +1 by construction. For the
inductive step, suppose that cts ≤ ct−1

s for all s and all t = 1, ..., T. For each s, if cTs = K + 1,
then cT+1

s ≤ cTs since cts ≤ K + 1 for all t by construction. Otherwise, suppose to the contrary
that cT+1

s > cTs . Since cTs < K + 1, F ({i ∈ Qs(c
T−1) such that πis ≤ cTs }) = qs. Then,

F ({i ∈ Qs(c
T ) such that πis ≤ cT+1

s })
= F ({i ∈ Qs(c

T ) such that πis ≤ cTs }) + F ({i ∈ Qs(c
T ) such that cTs < πis ≤ cT+1

s })
≥ F ({i ∈ Qs(c

T−1) such that πis ≤ cTs }) + F ({i ∈ Qs(c
T ) such that cTs < πis ≤ cT+1

s }) (16)

≥ qs + F ({i ∈ Qs(c
T ) such that cTs < πis ≤ cT+1

s }) (17)

> qs. (18)

Expression (16) follows because

{i ∈ Qs(c
T ) such that πis ≤ cTs }

= {i ∈ I | πis ≤ cTs and s �i s̃ for all s̃ ∈ S such that πis̃ ≤ cTs̃ }
⊇ {i ∈ I | πis ≤ cTs and s �i s̃ for all s̃ ∈ S such that πis̃ ≤ cT−1

s̃ } (by cTs̃ ≤ cT−1
s̃ )

= {i ∈ Qs(c
T−1) such that πis ≤ cTs }.

Expression (17) follows by the inductive assumption and since cTs < K + 1.
Expression (18) follows since if F ({i ∈ Qs(c

T ) such that cTs < πis ≤ cT+1
s }) = 0, then

F ({i ∈ Qs(c
T−1) such that πis ≤ cT+1

s }) = F ({i ∈ Qs(c
T−1) such that πis ≤ cTs }) ≤ qs,

while cT+1
s > cTs , contradicting the definition of cTs .
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Expression (18) contradicts the definition of cT+1 since the cutoff at step T + 1 results in
an allocation that exceeds the capacity of school s. This therefore establishes the inductive step
that cT+1

s ≤ cTs .
To complete the proof of the proposition, observe that since {cts} is a decreasing sequence in

the compact interval [0,K + 1], cts converges by the monotone convergence theorem.

Note that this result applies to the cutoffs for both finite and continuum economies. In finite
markets, at convergence, these cutoffs produce the allocation we get from the usual definition of
DA (e.g., as in Gale and Shapley (1962)). This can be seen by noting that

max{x ∈ [0,K + 1] | F ({i ∈ Qs(c
t) such that πis ≤ x}) ≤ qs}

= max{x ∈ [0,K + 1] | |{j ∈ Qs(c
t) : πjs ≤ x}| ≤ ks},

implying that the tentative cutoff at school s in step t in our DA formulation, which is determined
by the left hand side of this equality, is the same as that in Gale and Shapley (1962)’s DA
formulation, which is determined by the right hand side of the equality. Our DA formulation
and the Gale and Shapley (1962) formulation therefore produce the same cutoff at each step.
This also implies that, in finite markets, our DA cutoffs are found in a finite number of iterations,
since DA as described by Gale and Shapley (1962) converges in a finite number of steps.

A.3 Proof of Theorem 1

Note first that admissions cutoffs c in a continuum economy are invariant to lottery outcomes
(ri): DA in the continuum depends on (ri) only through F (I0) for sets I0 = {i ∈ I | θi ∈ Θ0}
with various choices of Θ0. In particular, F (I0) doesn’t depend on lottery realizations. Likewise,
marginal priority ρs̃ is uniquely determined for every school s̃.

Now, consider the propensity score for school s. Applicants who don’t rank s have ps(θ) = 0.
Among those who do rank s, those of type θ ∈ Θn

s have ρθs > ρs. Therefore ps(θ) = 0 for every
θ ∈ Θn

s ∪ (Θ\Θs).

Applicants of type θ ∈ Θa
s ∪ Θc

s may be assigned s̃ ∈ Bθs, where ρθs̃ = ρs̃. Since lottery
numbers are uniform, the proportion of type θ applicants assigned some s̃ ∈ Bθs where ρθs̃ = ρs̃
is MIDθs̃. In other words, the probability of not being assigned any s̃ ∈ Bθs where ρθs̃ = ρs̃ for
a type θ applicant is 1 −MIDθs. Every applicant of type θ ∈ Θa

s who is not assigned a higher
choice is assigned s because ρθs < ρs, and so

ps(θ) = (1−MIDθs) for all θ ∈ Θa
s .

Finally, consider applicants of type θ ∈ Θc
s who are not assigned a higher choice. The fraction

of applicants θ ∈ Θc
s who are not assigned a higher choice is 1 − MIDθs. Also, the random

numbers of these applicants is larger than MIDθs. If τs < MIDθs, then no such applicant is
assigned s. If τs ≥ MIDθs, then the ratio of applicants that are assigned s within this set is
given by τs−MIDθs

1−MIDθs
. Hence, conditional on θ ∈ Θc

s and not being assigned a choice higher than s,
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the probability of being assigned s is given by max{0, τs−MIDθs
1−MIDθs

}. Therefore,

ps(θ) = (1−MIDθs)×max

{
0,

τs −MIDθs

1−MIDθs

}
for all θ ∈ Θc

s.

A.4 Proof of Theorem 2

We complete the proof of Theorem 2 in Section 3.3 by proving the following two intermediate
results.

Lemma 3. (Cutoff almost sure convergence) ĉn
a.s.−→ c.

Lemma 4. (Propensity score almost sure convergence) For all θ ∈ Θ and s ∈ S, pns(θ)
a.s.−→ ϕs(θ).

A.4.1 Proof of Lemma 3

We use the Extended Continuous Mapping Theorem (Theorem 19.1 in van der Vaart (2000))
to prove the lemma. We first show deterministic convergence of cutoffs in order to verify the
assumptions of the theorem.

Modify the definition of F to describe the distribution of lottery numbers as well types: For
any set of applicant types Θ0 ⊂ Θ and for any numbers r0, r1 ∈ [0, 1] with r0 < r1, define the
set of applicants of types in Θ0 with random numbers worse than r0 and better than r1 as

I(Θ0, r0, r1) = {i ∈ I | θi ∈ Θ0, r0 < ri ≤ r1}.

In a continuum economy,

F (I(Θ0, r0, r1)) = E[1{θi ∈ Θ0}]× (r1 − r0),

where the expectation is assumed to exist. In a finite economy with n applicants,

F (I(Θ0, r0, r1)) =
|I(Θ0, r0, r1)|

n
.

Let F be the set of possible F ’s defined above. For any two distributions F and F ′, the supnorm
metric is defined by

d(F, F ′) = sup
Θ0⊂Θ,r0,r1∈[0,1]

|F (I(Θ0, r0, r1))− F ′(I(Θ0, r0, r1))|.

The notation is otherwise as in the text.

Proof. Consider a deterministic sequence of economies described by a sequence of distributions
{fn} over applicants, together with associated school capacities, so that for all n, fn ∈ F is a
potential realization produced by randomly drawing n applicants and their lottery numbers from
F . Assume that fn → F in metric space (F , d). Let cn denote the admissions cutoffs in fn. Note
the cn is constant because this is the cutoff for a particular realized economy fn.

The proof first shows deterministic convergence of cutoffs for any convergent subsequence
of fn. Let {f̃n} be a subsequence of realized economies {fn}. The corresponding cutoffs are
denoted {c̃n}. Let c̃ ≡ (c̃s) be the limit of c̃n. The following two claims establish that c̃n → c,
the cutoff associated with F .
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Claim 1. c̃s ≥ cs for every s ∈ S.

Proof of Claim 1. This is proved by contradiction in 3 steps. Suppose to the contrary that
c̃s < cs for some s. Let S′ ⊂ S be the set of schools the cutoffs of which are strictly lower
under c̃. For any s ∈ S′, define Isn = {i ∈ I|c̃ns < πis ≤ cs and i ranks s first} where I is the
set of applicants in F , which contains the set of applicants in fn for all n. In other words,
Isn are the set of applicants ranking school s first who have an applicant rank in between c̃ns
and cs.

Step (a): We first show that for our subsequence, when the market is large enough, there
must be some applicants who are in Isn. That is, there exists N such that for any n > N , we
have f̃n(I

s
n) > 0 for all s ∈ S′.

To see this, we begin by showing that for all s ∈ S′, there exists N such that for any n > N ,
we have F (Isn) > 0. Suppose, to the contrary, that there exists s ∈ S′ such that for all N ,
there exists n > N such that F (Isn) = 0. When we consider the subsequence of realized
economies {f̃n}, we find that

f̃n({i ∈ Qs(cn) such that πis ≤ cs})
= f̃n({i ∈ Qs(cn) such that πis ≤ c̃ns}) + f̃n({i ∈ Qs(cn) such that c̃ns < πis ≤ cs})
= f̃n({i ∈ Qs(cn) such that πis ≤ c̃ns}) (19)

≤ qs. (20)

Expression (19) follows from Assumption 1 by the following reason. (19) does not hold, i.e.,
f̃n({i ∈ Qs(cn) such that c̃ns < πis ≤ cs}) > 0 only if F ({i ∈ I|c̃ns < πis ≤ cs}) > 0.
This and Assumption 1 imply F ({i ∈ I|c̃ns < πis ≤ cs and i ranks s first}) ≡ F (Isn) > 0, a
contradiction to F (Isn) = 0. Since f̃n is realized as n iid samples from F , f̃n({i ∈ I|c̃ns <

πis ≤ cs}) = 0. Expression (20) follows by our definition of DA, which can never assign
more applicants to a school than its capacity for each of the n samples. We obtain our
contradiction since c̃ns is not maximal at s in f̃n since expression (20) means it is possible to
increase the cutoff c̃ns to cs without violating the capacity constraint.

Given that we’ve just shown that for each s ∈ S′, F (Isn) > 0 for some n, it is possible to
find an n such that F (Isn) > ε > 0. Since fn → F and so f̃n → F , there exists N such
that for all n > N , we have f̃n(I

s
n) > F (Isn) − ε > 0. Since the number of schools is fi-

nite, such N can be taken uniformly over all s ∈ S. This completes the argument for Step (a).

Step (a) allows us to find some N such that for any n > N , f̃n(Isn) > 0 for all s′ ∈ S′. Let
s̃n ∈ S and t be such that c̃t−1

ns ≥ cs for all s ∈ S and c̃tns̃n < cs̃n . That is, s̃n is one of the
first schools the cutoff of which falls strictly below cs̃n under the DA algorithm in f̃n, which
happens in round t of the DA algorithm. Such s̃n and t exist since the choice of n guarantees
f̃n(I

s
n) > 0 and so c̃ns < cs for all s ∈ S′.
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Step (b): We next show that there exist infinitely many values of n such that the associated
s̃n is in S′ and f̃n(I

s
n) > 0 for all s ∈ S′. It is because otherwise, by Step (a), there exists N

such that for all n > N , we have s̃n 6∈ S′. Since there are only finitely many schools, {s̃n}
has a subsequence {s̃m} such that s̃m is the same school outside S′ for all m. By definition
of s̃n, c̃ms̃m ≤ c̃tms̃m

< cs̃m for all m and so c̃s̃m < cs̃m , a contradiction to s̃m 6∈ S′. Therefore,
we have our desired conclusion of Step (b).

Fix some n such that the associated s̃n is in S′ and f̃n(l
s
n) > 0 for all s ∈ S′. Step (b)

guarantees that such n exists. Let Ãns̃n and As̃n be the sets of applicants assigned s̃n under
f̃n and F, respectively. All applicants in I s̃nn are assigned s̃n in F and rejected by s̃n in f̃n.

Since these applicants rank s̃n first, there must exist a positive measure (with respect to f̃n)
of applicants outside I s̃nn who are assigned s̃n in f̃n and some other school in F ; denote the set
of them by Ãns̃n\As̃n . f̃n(Ãns̃n\As̃n) > 0 since otherwise, for any n such that Step (b) applies,

f̃n(Ãns̃n) ≤ f̃n(As̃n \ I s̃nn ) = f̃n(As̃n)− f̃n(I
s̃n
n ),

which by Step (a) converges to something strictly smaller than F (As̃n) since
f̃n(As̃n) → F (As̃n) and f̃n(I

s̃n
n ) > 0 for all large enough n by Step (a). Note that

F (As̃n) is weakly smaller than qs̃n . This implies that for large enough n, f̃n(Ãns̃n) < qs̃n , a
contradiction to Ãns̃n ’s being the set of applicants assigned s̃n at a cutoff strictly smaller
than the largest possible value K + 1. For each i ∈ Ãns̃n \As̃n , let si be the school to which
i is assigned under F .

Step (c): To complete the argument for Claim 1, we show that some i ∈ Ãns̃n \ As̃n must
have been rejected by si in some step t̃ ≤ t − 1 of the DA algorithm in f̃n. That is, there
exists i ∈ Ãns̃n \As̃n and t̃ ≤ t− 1 such that πisi > c̃t̃nsi . Suppose to the contrary that for all
i ∈ Ãns̃n \As̃n and t̃ ≤ t− 1, we have πisi ≤ c̃t̃nsi . Each such applicant i must prefer si to s̃n
because i is assigned si 6= s̃n under F though πis̃n ≤ c̃ns̃n < cs̃n , where the first inequality
holds because i is assigned s̃n in F̃n while the second inequality does because s̃n ∈ S′. This
implies none of Ãns̃n \As̃n is rejected by si, applies for s̃, and contributes to decreasing c̃tns̃n
at least until step t and so c̃tns̃n < cs̃n cannot be the case, a contradiction. Therefore, we
have our desired conclusion of Step (c).

Claim 1 can now be established by showing that Step (c) implies there are i ∈ Ãns̃n \ As̃n

and t̃ ≤ t − 1 such that πisi > c̃t̃nsi ≥ c̃nsi , where the last inequality is implies by the fact
that in every economy, for all s ∈ S and t ≥ 0, we have ct+1

s ≤ cts. Also, they are assigned si
in F so that πisi ≤ csi . These imply csi > c̃t̃nsi ≥ c̃nsi . That is, the cutoff of si falls below csi
in step t̃ ≤ t− 1 < t of the DA algorithm in f̃n. This contradicts the definition of s̃n and t.

Therefore c̃s ≥ cs for all s ∈ S, as desired.

Claim 2. By a similar argument, c̃s ≤ cs for every s ∈ S.

Since c̃s ≥ cs and c̃s ≤ cs for all s, it must be the case that c̃n → c. The following claim uses
this to show that cn → c.

Claim 3. If c̃n → c for every convergent subsequence {c̃n} of {cn}, then cn → c.
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Proof of Claim 3. Since {cn} is bounded in [0,K + 1]|S|, it has a convergent subsequence
by the Bolzano-Weierstrass theorem. Suppose to the contrary that for every convergent
subsequence {c̃n}, we have c̃n → c, but cn 6→ c. Then there exists ε > 0 such that for all
k > 0, there exists nk > k such that ||cnk

− c|| ≥ ε. Then the subsequence {cnk
}k ⊂ {cn}

has a convergent subsequence that does not converge to c (since ||cnk
− c|| ≥ ε for all k),

which contradicts the supposition that every convergent subsequence of {cn} converges to
c.

The last step in the proof of Lemma 3 relates this fact to stochastic convergence.

Claim 4. cn → c implies ĉn
a.s.−→ c

Proof of Claim 4. This proof is based on two off-the-shelf asymptotic results from mathe-
matical statics. First, let Fn be the distribution over I(Θ0, r0, r1)’s generated by randomly
drawing n applicants from F . Note that Fn is random since it involves randomly drawing
n applicants. Fn

a.s.→ F by the Glivenko-Cantelli theorem (Theorem 19.1 in van der Vaart
(2000)). Next, since Fn

a.s.→ F and cn → c, the Extended Continuous Mapping Theorem
(Theorem 18.11 in van der Vaart (2000)) implies that ĉn

a.s.−→ c, completing the proof of
Lemma 3.

A.4.2 Proof of Lemma 4

Proof. Consider any deterministic sequence of economies {fn} such that fn ∈ F for all n and
fn → F in the (F , d) metric space. Let pns(θ) be the (finite-market, deterministic) propensity
score for a particular fn. Note that this subtly modifies the definition of pns(θ) from that in
the text. The change here is that the propensity score for fn is not a random quantity, because
economy fn is viewed as fixed.

For Lemma 4, it is enough to show deterministic convergence of this finite-market score, that
is, pns(θ) → ϕs(θ) as fn → F . To see this, let Fn be the distribution over I(Θ0, r0, r1)’s induced
by randomly drawing n applicants from F . Note that Fn is random and that Fn

a.s.→ F by the
Glivenko-Cantelli theorem (Theorem 19.1 in van der Vaart (2000)). Fn

a.s.→ F and pns(θ) → ϕs(θ)

allow us to apply the Extended Continuous Mapping Theorem (Theorem 18.11 in van der Vaart
(2000)) to obtain p̃ns(θ)

a.s.−→ ϕs(θ).
We prove convergence of pns(θ) → ϕs(θ) as follows. Let c̃ns and c̃ns′ be the random cutoffs

at s and s′, respectively, in fn, and

τθs ≡ cs − ρθs,
τθs− ≡ maxs′�θs{cs′ − ρθs′},
τ̃nθs ≡ c̃ns − ρθs, and
τ̃nθs− ≡ maxs′�θs{c̃ns′ − ρθs′}.

We can express ϕs(θ) and pns(θ) as follows.

ϕs(θ) = max{0, τθs − τθs−}
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pns(θ) = Pn(τ̃nθs ≥ R > τ̃nθs−)

where Pn is the probability induced by randomly drawing lottery numbers given fn, and R is
a random (not realized) lottery number for any type θ applicant, where we omit an applicant
subscript for simplicity. R’s marginal distribution is U [0, 1].

By Lemma 3, with probability 1, for all ε1 > 0, there exists N1 such that for all n > N1,

|c̃ns′ − cs′ | < ε1 for all s′,

which implies that with probability 1,

|τ̃nθs− − τθs− |
=|{c̃ns1 − ρθs1} − {cs2 − ρθs2}|

<

{
|{c̃ns1 − ρθs1} − ({c̃ns1 − ρθs2}+ ε1)| if cs2 − ρθs2 ≥ c̃ns1 − ρθs1

|{c̃ns1 − ρθs1} − ({c̃ns1 − ρθs2} − ε1)| if cs2 − ρθs2 < c̃ns1 − ρθs1
= ε1

where in the first equality, s1 ≡ argmaxs′�θs{c̃ns′ − ρθs′} and s2 ≡ argmax{cs′ − ρθs′}. The
inequality is by |c̃ns′ − cs′ | < ε1 for all s′. For all ε > 0, the above argument with setting ε1 < ε/2

implies that there exists N such that for all n > N ,

pns(θ)

= Pn(τ̃nθs ≥ R > τ̃nθs−})
∈ (max{0, τθs − τθs− − ε,max{0, τθs − τθs− + ε)

∈ (ϕs(θ)− ε, ϕs(θ) + ε),

where the second-to-last inclusion is because with probability 1, there exists N such that for all
n > N such that |τ̃nθs − τθs|, |τ̃nθs− − τθs− | < ε1 and R ∼ U [0, 1]. This means pns(θ) → ϕs(θ),
completing the proof of Lemma 4.

A.5 Example 2 in the Continuum

In the large-market analog of Example 2, we can think of realized lottery numbers as being
distributed according to a continuous uniform distribution over [0, 1]. Types 2 and 3 rank different
schools ahead of a, so

B3a = {b} and B2a = {b, c}.

Nevertheless, because τc = 0.5 < 0.75 = τb, we have that

MID2a = MID3a = τb = 0.75.

To see where these cutoffs come from, note first that among the 2n type 1 and type 2 applicants
who rank c first in this large market, those with lottery numbers lower (better) than 0.5 are
assigned to c since it has a capacity of n: τc = 0.5. The remaining type 2 applicants (half of
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the original mass of type 2), all of whom have lottery numbers higher (worse) than 0.5, must
compete with all type 3 applicants for seats at b. We therefore have 1.5n school-b hopefuls but
only n seats at b. All type 3 applicants with lottery numbers below 0.5 get seated at b (the
type 2 applicants all have lottery numbers above 0.5), but this doesn’t fill b. The remaining
seats are therefore split equally between type 2 and 3 applicants in the upper half of the lottery
distribution, implying that the highest lottery number seated at b is τb = 0.75.

Since there are no priorities, type 2 and type 3 are in Θc
s and type 2 and 3 applicants seated

at a must have lottery numbers above 0.75. It remains to compute the cutoff, τa. Types 2 and 3
compete only with type 4 at a, and are surely beaten out there by type 4s with lottery numbers
below 0.75. The remaining 0.25 seats are shared equally between types 2, 3, and 4, going to the
best lottery numbers in [0.75, 1], without regard to type. The lottery cutoff at a, τa, is therefore
0.75 + 0.25/3 = 5/6. Plugging these into equation (2) gives the DA score for types 2 and 3:

ϕa(θ) = (1−MIDθa)×max

{
0,

τa −MIDθa

1−MIDθa

}
= (1− 0.75)×max

{
0,

5/6− 0.75

1− 0.75

}
=

1

12
.

The score for type 4 is the remaining probability, 1− (2× 1

12
) =

5

6
.

A.6 Proof of Proposition 2

Proof. By the definition of MID, for any θ and s, there exists s̃ such that MIDθs = τs̃, which
is the decimal part of cs̃. Cutoff vector c also pins down Θa

s and Θc
s. Thus, the assumption

(ri ⊥⊥ c) implies that individual lottery numbers ri are uniformly distributed over [0, 1] (not only
unconditionally but also) conditional on any cutoff, MID, Θa

s , Θc
s, and type. This gives us both

unbiasedness and conditional independence. When p̃s(θ) is the formula version of the estimated
DA propensity score, the DA propensity score is unbiased for the true propensity score, i.e.,
E(p̃s(θ)) = ps(θ) for every applicant type θ since

E(p̃s(θ)) (a)

= E(1{θi ∈ Θa
s}(1−MIDθis)+1{θi ∈ Θc

s}(1−MIDθis)max{0, τs −MIDθis

1−MIDθis
}|θi = θ) (b)

= E(E(1{θi ∈ Θa
s}1{MIDθis < ri}+ 1{θi ∈ Θc

s}1{MIDθis < ri ≤ τs}
|θi = θ, τs,MIDθis,Θ

a
s ,Θ

c
s)|θi = θ)

= E(E(1{θi ∈ Θa
s and MIDθis < ri}+ 1{θi ∈ Θc

s and MIDθis < ri ≤ τs}
|θi = θ, τs,MIDθis,Θ

a
s ,Θ

c
s)|θi = θ)

= E(1{θi ∈ Θa
s and MIDθis < ri}+ 1{θi ∈ Θc

s and MIDθis < ri ≤ τs}|θi = θ)

= E(1{(θi ∈ Θa
s and MIDθis < ri) or (θi ∈ Θc

s and MIDθis < ri ≤ τs)}|θi = θ)

= P (Di(s) = 1|θi = θ)
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where the first and fourth equalities are by the law of iterated expectation, and the second equal-
ity is by ri ∼ U [0, 1] conditional on any cutoff, MID, Θa

s , Θc
s, and type. To obtain this result for

the frequency version of the estimated DA propensity score, insert the following lines between
equations (a) and (b).

(a)

=E(Σδ=a,c,n1{θi ∈ Θδ
s}

Σj∈IDj(s)1{1{θj ∈ Θδ
s} = 1{θi ∈ Θδ

s},MIDθjs = MIDθis}
Σj∈I1{1{θj ∈ Θδ

s} = 1{θi ∈ Θδ
s},MIDθjs = MIDθis}

|θi = θ)

= E(E(Σδ=a,c,n1{θi ∈ Θδ
s}

Σj∈IDj(s)1{1{θj ∈ Θδ
s} = 1{θi ∈ Θδ

s},MIDθjs = MIDθis}
Σj∈I1{1{θj ∈ Θδ

s} = 1{θi ∈ Θδ
s},MIDθjs = MIDθis}

|θi = θ, τs,MIDθis,Θ
a
s ,Θ

c
s)|θi = θ)

= E(E(1{θi ∈ Θa
s}(1−MIDθis) + 1{θi ∈ Θc

s}(1−MIDθis)max{0, τs −MIDθis

1−MIDθis
}

|θi = θ, τs,MIDθis,Θ
a
s ,Θ

c
s)|θi = θ)

=(b)

where the first equality is by the definition of the frequency DA score, the second equality is
by the law of iterated expectation, and the third equality is by ri ∼ U [0, 1] conditional on any
cutoff, MID, Θa

s , Θc
s, and type.

Assignment is independent conditional on the formula version of the estimated DA propen-
sity score, i.e., P (Di(s) = 1|p̃s(θi), θi) = P (Di(s) = 1|p̃s(θi)) by the following reason:

P (Di(s) = 1|p̃s(θi) = p, θi)

= E(1{(θi ∈ Θa
s and MIDθis < ri) or (θi ∈ Θc

s and MIDθis < ri ≤ τs)}|p̃s(θi) = p, θi)

= E(E(1{(θi ∈ Θa
s and MIDθis < ri) or (θi ∈ Θc

s and MIDθis < ri ≤ τs)}
|τs,MIDθis,Θ

a
s ,Θ

c
s, p̃s(θi) = p, θi)|p̃s(θi) = p, θi) (c)

= E(E(1{(θi ∈ Θa
s and MIDθis < ri) or (θi ∈ Θc

s and MIDθis < ri ≤ τs)}
|τs,MIDθis,Θ

a
s ,Θ

c
s, θi)|p̃s(θi) = p, θi)

= E(1{θi ∈ Θa
s}(1−MIDθis)+1{θi ∈ Θc

s}(1−MIDθis)max{0, τs −MIDθis

1−MIDθis
}|p̃s(θi) = p, θi)

= E(p̃s(θi)|p̃s(θi) = p, θi) (d)
= p,

which is independent from θi conditional on p̃s(θi) = p. In the above calculations, the first
equality is by the definition of Di(s), the second equality is by the law of iterated expectation,
the third equality is by the fact that τs,MIDθis,Θ

a
s , and Θc

s pin down p̃s(θi), the fourth equality
is by ri ∼ U [0, 1] conditional on any cutoff, MID, Θa

s , Θc
s, and type, and the fifth equality is by

the definition of p̃s(θi). Assignment is also independent conditional on the frequency version of
the estimated DA propensity score since for the frequency version, equation (c) directly implies
(d).
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A.7 Modes of Inference

Econometric inference typically tries to quantify the uncertainty due to random sampling. What
then, to make of the fact that the analysis reported here uses data on all DPS applicants from
2012? On one hand, we might imagine that the applicants we happen to be studying consti-
tute a random sample from some larger population of possible applicants. At the same time,
the statistical uncertainty in our empirical work can also be seen as a consequence of random
assignment : we see only a single lottery draw for each applicant, one of many possibilities even
when the sample of applicants is viewed as fixed.

In an effort to determine whether the distinction between sampling inference and random-
ization inference matters for our purposes, we computed randomization p-values by repeatedly
drawing lottery numbers and calculating offer gaps in covariates conditional on the simulated
propensity score. Regression conditioning on the simulated score produces near-perfect balance
in Table 4 so this distribution is what we should expect to see under the null hypothesis of no
difference by treatment assignment. Randomization p-values are therefore given by quantiles of
the t-statistics in the distribution resulting from these repeated draws.

The p-values associated with conventional robust t-statistics for covariate balance turn out
to be close to the corresponding randomization p-values. For the number of charter schools
an applicant has ranked, for example, the conventional p-value for balance is 0.885 while the
corresponding randomization p-value is 0.850. This is consistent with a classic result on the
asymptotic equivalence of randomization and sampling tests for differences in means (see, e.g.,
15.2 in Lehmann and Romano 2005).

Abadie et al. (2014) generalize results on the large-sample equivalence of randomization and
sampling inference to cover regression estimates of treatment effects and tests for covariate bal-
ance of the sort reported here. If the regression function is linear and the regression of treatment
on controls is linear, the usual robust covariance matrix associated with random sampling is
asymptotically valid for the sampling distribution induced by random assignment.34 The treat-
ment in our case is an offer dummy, while the controls are dummies or a linear model for the
propensity score. The second of these requirements holds here when the controls fully saturate
the propensity score (ignoring any additional covariates). The first requires constant offer ef-
fects given a saturated model for the score. The models estimated here don’t quite satisfy these
conditions (they’re not fully saturated) but do not seem to be so far off that this matters for
inference.

A related issue arises from the fact that the empirical strategy used here conditions on
estimates of the propensity score (the simulated score is also an estimate since it’s based on a finite
number of draws). As noted by Hirano et al. (2003) and Abadie and Imbens (2016), conditioning
on an estimated as opposed to a non-stochastic known score may affect sampling distributions of
the resulting estimated causal effects. We therefore checked conventional large-sample p-values

34This is Theorem 3, in Abadie et al. (2014), a result predicated on independent treatment assignments. In
practice, DA assignments are correlated. Here too, however, the large market approximation smooths things out.
In the continuum, cutoffs are fixed, and treatments are determined by individual independently drawn lottery
numbers. We can therefore think of the asymptotic equivalence of randomization and conventional inference as a
further consequence of our large market approximation.
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against randomization p-values for the reduced-form charter offer effects associated with the 2SLS
estimates discussed in the next section. Robust asymptotic sampling formulas again generate
p-values close to a randomization-inference benchmark, regardless of how the score behind these
estimates was constructed. In view of these findings, we rely on the usual robust standard errors
and test statistics for inference about 2SLS estimates of treatment effects.

A.8 First Choice and Qualification Instruments: Details

Let Df
i be the first choice instrument defined in section 4.5 and let s̃i be i’s first choice school.

The first choice risk set is Q(θi) ≡ (s̃i, ρis̃).

Proposition 3. In any continuum economy, Df
i is independent of θi conditional on X(θi).

Proof. In general,

Pr(Df
i = 1|θi = θ)

= Pr(πis̃i ≤ cs̃i |θi = θ)

= Pr(ρis̃i + ri ≤ cs̃i |θi = θ)

= Pr(ri ≤ cs̃i − ρis̃i |θi = θ)

= cs̃i − ρis̃i ,

which depends on θi only through X(θi) because cutoffs are fixed in the continuum..

Let Dq
i and X(θi) be the qualification instrument and the associated risk set defined in section

4.5. The latter is given by the list of schools i ranks and his priority status at each, that is,
X(θi) ≡ (Si, (ρis)s∈Si) where Si is the set of charter schools i ranks.

Proposition 4. In any continuum economy, Dq
i is independent of θi conditional on X(θi).

Proof. In general, we have

Pr(Dq
i = 1|θi = θ)

= Pr(πis ≤ cs for some s ∈ Si|θi = θ)

= Pr(ρis + ri ≤ cs for some s ∈ Si|θi = θ)

= Pr(ri ≤ cs − ρis for some s ∈ Si|θi = θ)

= Pr(ri ≤ maxs∈Si(cs − ρis)|θi = θ)

= maxs∈Si(cs − ρis),

which depends on θi only through X(θi) because cutoffs are fixed in the continuum.

A.9 Extension to a General Lottery Structure

Washington DC, New Orleans, and Amsterdam use DA with multiple lottery numbers, one for
each school (see, for example, de Haan et al. (2015)). Washington, DC uses a version of DA that
uses a mixture of shared and individual school lotteries. This section derives the DA propensity
score for a mechanism with any sort of multiple tie-breaking.
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Let a random variable Ris denote applicant i’s lottery number at school s. Assume that each
Ris is drawn from U [0, 1], independently with schools. We consider a general lottery structure
where Ris 6= Ris′ for some (not necessarily all) s, s′ ∈ S and i ∈ I.

Recall Bθs is defined as {s′ ∈ S | s′ �θ s}. Partition Bθs into m̄ disjoint sets B1
θs, ..., B

m̄
θs, so

that s′ and s′′ use the same lottery if and only if s′, s′′ ∈ Bm
θs for some m. Note that this partition

is specific to type θ. With single-school lotteries, m̄ simplifies to |Bθs|, the number of schools
type θ ranks ahead of s.

The most informative disqualification, MIDm
θs, is defined for each m as

MIDm
θs ≡


0 if ρθs̃ > ρs̃ for all s̃ ∈ Bm

θs,

1 if ρθs̃ < ρs̃ for some s̃ ∈ Bm
θs,

max{τs̃ | s̃ ∈ Bm
θs and ρθs̃ = ρs̃} if ρθs̃ = ρs̃ for s̃ ∈ Bm

θs and ρθs̃ > ρs̃ otherwise.

Let m∗ be the value of m for schools in the partition that use the same lottery as s. Denote the
associated MID by MID∗

θs. We define MID∗
θs = 0 when the lottery at s is unique and there

is no m∗. The following result extends Theorem 1 to a general lottery structure. The proof is
omitted.

Theorem 1 (Generalization). For all s and θ in any continuum economy, we have:

Pr[Di(s) = 1|θi = θ] = ϕs(θ) ≡


0 if θ ∈ Θn

s ,

Πm̄
m=1(1−MIDm

θs) if θ ∈ Θa
s ,

Πm̄
m=1(1−MIDm

θs)×max

{
0,

τs −MID∗
θs

1−MID∗
θs

}
if θ ∈ Θc

s.

where we set ϕs(θ) = 0 when MID∗
θs = 1 and θ ∈ Θc

s.

Note that in the single tie breaker case, the expression for ϕs(θ) reduces to that in Theorem 1
since m̄ = 1 in that case.

A.10 The Boston (Immediate Acceptance) Mechanism

Studies by Hastings-Kane-Staiger (2009), Hastings-Neilson-Zimmerman (2012), and Deming-
Hastings-Kane-Staiger (2013)), among others, use data generated from versions of the Boston
mechanism. Given strict preferences of applicants and schools, the Boston mechanism is defined
as follows:

• Step 1: Each applicant applies to her most preferred acceptable school (if any). Each school
accepts its most-preferred applicants up to its capacity and rejects every other applicant.

In general, for any step t ≥ 2,

• Step t : Each applicant who has not been accepted by any school applies to her most
preferred acceptable school that has not rejected her (if any). Each school accepts its
most-preferred applicants up to its remaining capacity and rejects every other applicant.
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This algorithm terminates at the first step in which no applicant applies to a school. Boston
assignments differ DA in that any offer at any step is fixed; applicants receiving offers cannot
be displaced later. This important difference notwithstanding, the Boston mechanism can be
represented as a special case of DA by redefining priorities as follows:

Proposition 5. (Ergin and Sönmez (2006)) The Boston mechanism applied to (�i)i and (�s)s
produces the same assignment as DA applied to (�i)i and (�∗

s)s where �∗
s is defined as follows:

1. For k = 1, 2..., {applicants who rank s k-th} �∗
s {applicants who rank s k + 1-th}

2. Within each category, �∗
s ranks the applicants in the same order as original �s.

This equivalence allows us to construct a Boston propensity score by redefining priorities so that
priority groups at a given school consists of applicants who (i) share the same original priority
status at the school and (ii) give the same rank to the school.

66



B Empirical Appendix

B.1 Data

The Denver Public Schools (DPS) analysis file is constructed using application, school assign-
ment, enrollment, demographic, and outcome data provided by DPS for school years 2011-2012
and 2012-2013. All files are de-identified, but applicants can be matched across years and files.
Applicant data are from the 2012-2013 SchoolChoice assignment file and test score data are from
the CSAP (Colorado Student Assessment Program) and the TCAP (Transitional Colorado As-
sessment Program) files. The CSAP was discontinued in 2011, and was replaced by the TCAP
beginning with the 2012-2013 school year. Enrollment, demographic, and outcome data are
available for applicants enrolled in DPS only; enrollment data are for October.

Applications and assignment: The SchoolChoice file

The 2012-2013 SchoolChoice assignment file contains information on applicants’ preferences over
schools (school rankings), school priorities over applicants, applicants’ school assignments (offers)
and lottery numbers, a flag for whether the applicant is subject to the family link policy described
in the main text and, if so, to which sibling the applicant is linked. Each observation in the
assignment file corresponds to an applicant applying for a seat in programs within schools known
as a bucket.35 Each applicant receives at most one offer across all buckets at a school. Information
on applicant preferences, school priorities, lottery numbers, and offers are used to compute the
DA propensity score and the simulated propensity score.

Appendix Table B1 describes the construction of the analysis sample starting from all appli-
cants in the 2012-2013 SchoolChoice assignment file. Out of a total of 25, 687 applicants seeking
a seat in DPS in the academic year 2012-2013, 5, 669 applied to any charter school seats in grades
4 through 10. We focus on applicants to grades 4 through 10 because baseline grade test scores
are available for these grades only. We further limit the sample to 4, 964 applicants who were
enrolled in DPS in the baseline grade (the grade prior to the application grade) in the baseline
year (2011-2012), for whom baseline enrollment demographic characteristics are available.

Enrollment and demographic characteristics

Each observation in the enrollment files describes a student enrolled in a school in a year, and
includes information on grade attended, student sex, race, gifted status, bilingual status, special
education status, limited English proficiency status, and subsidized lunch eligibility.36 Demo-
graphic and enrollment information are from the first calendar year a student spent in each
grade.

35Since applicants’ rankings are at the school-level but seats are assigned at the bucket level, the SchoolChoice
assignment mechanism translates school-level rankings into bucket-level rankings. For example, if an applicant
ranked school A first and school B second, and if all seats at both A and B are split into two categories, one
for faculty children (“Faculty”) and one for any type of applicant (“Any”), then the applicant’s ranking of the
programs at A and B would be listed as 10 for Faculty at A, 11 for Any at A, 20 for Faculty at B, 21 for Any at
B where numbers code preferences (smaller is more preferred).

36Race is coded as black, white, asian, hispanic, and other. In DPS these are mutually-exclusive categories.
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Applicant outcomes: CSAP/TCAP

Test scores and proficiency levels for the CSAP/TCAP math, reading, and writing exams are
available for grades 3 through 10. Each observation in the CSAP/TCAP data file corresponds
to a student’s test results in a particular subject, grade, and year. For each grade, we use scores
from the first attempt at a given subject test, and exclude the lowest obtainable scores as outliers.
As a result, 41 observed math scores, 19 observed reading scores, and 1 observed writing score
are excluded from the sample of charter applicants that are in DPS in baseline year. After outlier
exclusion, score variables are standardized to have mean zero and unit standard deviation in a
subject-grade-year in the DPS district.

School classification: Parent Guide

We classify schools as charters, traditional public schools, magnet schools, innovation schools,
contract schools, or alternative schools (i.e. intensive pathways and multiple pathways schools)
according to the 2012-2013 Denver SchoolChoice Parent Guides for Elementary and Middle
Schools and High Schools. School classification is by grade, since some schools run magnet
programs for a few grades only. Schools not included in the Parent Guide (i.e. SIMS Fayola
International Academy Denver) were classified according to information from the school’s website.
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Table B1: DPS SchoolChoice application records

Applicants Types Applicants Types
(1) (2) (3) (4)

All applicants 25,687 15,283 15,487 9,018
Applicants for grades 4 through 10 12,507 6,970 10,898 6,245
Applicants to any charters (for grades 4 through 10) 5,669 4,606 4,964 4,124

All applicants 27,364 17,169 16,558 10,102
Applicants for grades 4 through 10 12,997 7,243 11,413 6,535
Applicants to any charters (for grades 4 through 10) 5,920 4,842 5,239 4,342
Notes: Applications are for the 2012-13 and 2013-14 academic years. Columns 1 and 2 count all applicants in the SchoolChoice assignment 
file. Columns 3 and 4 exclude applicants not enrolled in DPS in the relevant baseline grade (the grade prior to application grade) in the 
baseline year (2011-12 and 2012-2013). Applicants to grade "EC" (early childhood, or pre-kindergarten) are excluded from columns 3 and 
4. Columns 2 and 4 count unique combinations of applicant preferences over school programs and school priorities in those programs. 

All applicants In DPS at baseline

A. 2013

B. 2014



Table B2: Attrition by offer status 

Non-offered 
mean No controls

Frequency 
(saturated)

Formula 
(saturated)

(1) (2) (3) (4) (5)
Enrolled in DPS in follow-up year 0.902 0.034*** 0.031** 0.032** 0.033**

(0.005) (0.014) (0.014) (0.015)
Has scores in follow-up year 0.878 0.035*** 0.033** 0.037** 0.035**

(0.006) (0.015) (0.015) (0.016)

N 5,674 9,879 2,714 2,436 2,335
Notes: This table reports coefficients from regressions of DPS enrollment and test-score availability indicators on charter offers, similar to the 
tests done in Table 5. Column 1 reports follow-up rates for charter applicants who did not receive a charter offer. The propensity score control 
schemes used to construct the estimates in columns 3, 4 and 5 parallel those used for Table 5. Robust standard errors are reported in parentheses. 
For applicants who applied in both years, we only consider their first time application. 
*significant at 10%; **significant at 5%; ***significant at 1%

DA score controlsSimulated score 
controls 

(hundredths)



Table B3: DPS innovation schools 
Simulated score in (0,1)

2013 2014 2013 2014 2013 2014 2013 2014
School (1) (2) (3) (4) (5) (6) (7) (8)

Elementary and middle schools
Centennial ECE-8 School 0 15 0 8 0 0 0 0
Cole Arts and Science Academy 31 46 15 23 10 5 6 3
DCIS at Fairmont 0 27 0 13 0 8 0 6
DCIS at Ford 16 36 0 15 1 8 0 2
DCIS at Montbello MS 412 463 125 157 170 298 68 125
Denver Green School 153 205 62 80 52 73 18 22
Denver Public Montessori 0 95 0 49 0 27 0 10
Godsman Elementary 10 26 8 10 0 0 0 0
Grant Beacon Middle School 0 483 0 203 0 126 0 24
Green Valley Elementary 53 55 15 23 36 24 2 3
Martin Luther King Jr. Early College 427 430 177 144 122 309 0 71
McAuliffe International School 406 584 165 233 113 180 54 104
McGlone 14 44 2 10 3 14 0 5
Montclair Elementary 15 22 11 5 1 1 0 0
Noel Community Arts School 288 385 108 106 106 291 2 54
Swigert International School 0 25 0 0 0 3 0 0
Trevista ECE-8 at Horace Mann 0 90 0 25 0 2 0 0
Valdez Elementary 6 9 3 2 1 1 0 0
West Generations Academy MS 0 192 0 78 0 65 0 10
West Leadership Academy 0 223 0 107 0 64 0 13
Whittier K-8 School 47 83 8 22 4 29 0 5

High schools
Collegiate Preparatory Academy 433 312 125 53 165 147 0 17
DCIS at  Montbello 506 508 125 131 190 233 76 109
High-Tech Early College 481 524 125 199 226 217 74 10
Manual High School 390 412 130 152 197 104 7 16
Martin Luther King Jr. Early College 515 550 144 183 171 270 29 188
Noel Community Arts School 334 406 78 120 110 197 1 57
West Generations Academy 0 111 0 26 0 40 0 0
West Leadership Academy 0 91 0 22 0 28 0 1

Notes:  This table describes DPS innovation applications in a format like that used for charters in Table 2.

Total applicants Applicants offered seats Total applicants
Applicants             

(first choice)



Non-offered 
mean No controls

Rounded 
(hundredths)

Rounded 
(thousandths)

Frequency 
(saturated)

Formula 
(saturated)

(1) (2) (3) (4) (5) (6)
A. Application covariates

Number of schools ranked 4.573 -0.396*** 0.129 0.115 0.036 -0.012
(0.039) (0.085) (0.092) (0.088) (0.085)

Number of charter schools ranked 1.251 0.628*** 0.117** 0.113* 0.046 0.014
(0.021) (0.052) (0.060) (0.049) (0.051)

First school ranked is charter 0.069 0.611*** -0.008 0.005 0.005 -0.012
(0.009) (0.019) (0.020) (0.016) (0.013)

B. Baseline applicant characteristics
Origin school is charter 0.126 0.138*** 0.019 0.037 0.034 0.029

(0.010) (0.025) (0.030) (0.029) (0.029)
Female 0.510 -0.007 0.035 0.028 -0.008 0.000

(0.013) (0.033) (0.039) (0.038) (0.038)
Hispanic 0.537 0.108*** 0.033 0.052 -0.026 -0.006

(0.013) (0.031) (0.035) (0.035) (0.034)
Black 0.230 -0.049*** -0.008 -0.016 0.014 0.001

(0.010) (0.027) (0.032) (0.031) (0.031)
Gifted 0.222 -0.071*** 0.026 0.018 -0.027 -0.006

(0.010) (0.025) (0.030) (0.028) (0.029)
Bilingual 0.028 0.009** -0.027** -0.022 -0.032** -0.029*

(0.005) (0.013) (0.015) (0.014) (0.015)
Subsidized lunch 0.763 0.064*** 0.007 0.020 0.012 0.013

(0.010) (0.024) (0.026) (0.027) (0.026)
Limited English proficient 0.288 0.029** 0.009 0.020 0.016 0.006

(0.012) (0.031) (0.035) (0.034) (0.034)
Special education 0.104 0.012 -0.001 -0.004 0.018 0.012

(0.008) (0.019) (0.022) (0.022) (0.021)
N 2,890 6,127 2,070 1,416 1,078 1,124

Baseline scores
Math -0.009 -0.221*** 0.052 0.051 -0.029 0.017

(0.026) (0.060) (0.071) (0.066) (0.067)
Reading 0.019 -0.211*** 0.038 0.022 -0.016 0.013

(0.025) (0.059) (0.069) (0.066) (0.067)
Writing 0.009 -0.192*** 0.064 0.057 -0.014 0.036

(0.025) (0.058) (0.068) (0.063) (0.064)
N 2,847 6,011 2,034 1,393 1,060 1,102

Enrolls in Denver in follow-up year 0.927 -0.026*** -0.025 -0.009 -0.023 -0.024
(0.007) (0.018) (0.023) (0.022) (0.021)

Has scores in follow-up year 0.902 -0.036*** -0.016 -0.004 -0.026 -0.026
(0.008) (0.020) (0.025) (0.023) (0.023)

N 2,890 6,127 2,070 1,416 1,078 1,124

Risk set points of support 75 114 66 78

Robust F-test for joint significance 331.8 1.02 0.90 0.77 0.49
p-value 0.000 0.428 0.559 0.710 0.946

Table B4: Statistical tests for balance and differential attrition for DPS innovation schools

Notes: Panels A and B report covariate balance tests for innovation offers in a manner analogous to that used for charter offer balance in Table 5.  Panel C tests for 
attrition in a manner analogous to table B2. Robust standard errors are reported in parentheses. For applicants who applied in both years, we only consider their first 
time application. P-values for joint significance tests are estimated with stata's mvreg command. 
*significant at 10%; **significant at 5%; ***significant at 1%

C. Differential attrition

Simulated score controls DA score controls



Simulated score in (0,1)

CMO
Total 

applicants Capacity
Applicants 

offered seats
Total 

applicants
Applicants 

(first choice)
School (1) (2) (3) (4) (5) (6)

Elementary and middle schools
Cesar Chavez Academy Denver 77 76 24 18 9
Denver Language School 12 100 0 0 0
DSST: Byers Yes 280 156 152 128 45
DSST: Cole Yes 508 215 205 188 74
DSST: College View Yes 311 168 163 151 19
DSST: Green Valley Ranch Yes 905 181 176 386 347
DSST: Stapleton Yes 827 187 183 224 128
Girls Athletic Leadership School 155 87 73 72 38
Highline Academy Charter School 191 74 12 65 43
KIPP Montbello College Prep Yes 253 72 64 161 14
KIPP Sunshine Peak Academy Yes 476 84 75 1 0
Odyssey Charter Elementary 198 30 4 18 8
Omar D. Blair Charter School 375 185 53 138 42
Pioneer Charter School 65 76 13 17 4
SIMS Fayola International Academy Denver 94 37 33 68 18
SOAR at Green Valley Ranch 121 88 5 74 62
SOAR Oakland 58 149 14 7 1
STRIVE Prep - Federal Yes 605 126 124 308 113
STRIVE Prep - GVR Yes 416 130 127 279 76
STRIVE Prep - Highland Yes 243 130 126 58 12
STRIVE Prep - Lake Yes 310 129 129 114 108
STRIVE Prep - Montbello Yes 222 70 63 167 39
STRIVE Prep - Westwood Yes 563 135 133 304 175
Venture Prep 27 8 7 0 0
Wyatt Edison Charter Elementary 60 57 12 18 3

High schools
DSST: Green Valley Ranch Yes 764 76 76 259 238
DSST: Stapleton Yes 480 23 23 130 76
KIPP Denver Collegiate High School Yes 291 126 110 112 23
SIMS Fayola International Academy Denver 80 27 21 39 12
Southwest Early College 217 48 42 86 14
STRIVE Prep - Excel Yes 203 140 133 54 1
STRIVE Prep - SMART Yes 318 153 148 157 145
Venture Prep 137 44 31 65 14

Table B5: DPS charter schools (2014 only)

Notes: This table describes DPS charter applications for the academic year 2013-2014. Column 1 lists all CMO schools. CMO stands for Charter 
Management Organization, and these schools are comprised of the DSST, STRIVE and KIPP networks. Column 2 reports the number of 
applicants ranking each school. Column 3 reports each school's capacity. Column 4 counts the number of applicants who received an offer from 
the school. Column 5 counts applicants with simulated score values strictly between zero and one. The simulated score is rounded to 0.001. 
Column 6 shows the subset of applicants from column 5 who rank each school as their first choice.



All Applicants Applicants with Simulated Score in (0,1)
Year # of Types Mean 25th Perc. Median 75th Perc. Max # of Types Mean 25th Perc. Median 75th Perc. Max
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

i. Types Defined by All Ranked Choices and their Priorities
2013 6,245 29.5 1 1 1 235 1,544 3.7 1 1 1 45
2014 6,535 26.6 1 1 1 226 1,919 2.9 1 1 1 29

ii. Types Defined by First Choice and its Priority 
2013 751 72.7 17 17 53 401 116 51.9 16 16 37 144
2014 867 63.5 14 14 46 300 163 45.2 13 13 32 121

iii. Types Defined by First and Second Choice and their Priorities
2013 2,963 18.5 2 2 6 147 532 18.6 2 2 6 108
2014 3,414 15.9 2 2 5 168 769 11.3 2 2 4 70

iv. Types Defined by First, Second and Third Choice and their Priorities
2013 5,023 11.7 1 1 2 132 972 10.3 1 1 1 100
2014 5,415 10.9 1 1 2 168 1,321 6.0 1 1 1 61

i. Types Defined by All Ranked Choices and their Priorities
2013 4,124 2.6 1 1 1 46 1,544 3.7 1 1 1 45
2014 4,342 2.4 1 1 1 32 1,919 2.9 1 1 1 29

ii. Types Defined by First Choice and its Priority 
2013 441 46.5 14 14 35 175 116 51.9 16 16 37 144
2014 537 46.1 11 11 32 173 163 45.2 13 13 32 121

iii. Types Defined by First and Second Choice and their Priorities
2013 2,029 10.9 1 1 4 116 532 18.6 2 2 6 108
2014 2,306 9.8 1 1 3 96 769 11.3 2 2 4 70

iv. Types Defined by First, Second and Third Choice and their Priorities
2013 3,400 5.1 1 1 1 102 972 10.3 1 1 1 100
2014 3,650 4.8 1 1 1 62 1,321 6.0 1 1 1 61

Table B6: Frequency Distribution of Types

A. Applicants for grades 4-10

B. Charter Applicants

Notes: This table presents summary statistics on the frequency distribution of types. Panel A is for all applicants for grades 4-10. Panel B is for charter applicants. Type in i. is defined by all 
choices and their corresponding priorities. Type in ii. is defined by the top choice and its corresponding priority. Type in iii. is defined by the first and second choice and their corresponding 
priorities. Type in iv. is defined by first, second and third choice and their corresponding priorities. 




