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Abstract 

The International Atomic Energy Agency (IAEA) is the official body to apply nuclear safeguards to 

verify compliance with existing legal bilateral or multilateral safeguards agreements [a]. Environmental 

sampling is a very effective measure to detect undeclared nuclear activities. Generally, samples are taken 

as swipe samples on cotton. These swipes contain minute quantities of particulates which have an 

inherent signature of their production and release scenario. These inspection samples are assessed for 

their morphology, elemental composition and their isotopic vectors. Mass spectrometry plays a crucial 

role in determining the isotopic ratios of uranium. Method validation and instrument calibration with 

well-characterized quality control (QC)-materials, reference materials (RMs) and certified reference 

materials (CRMs) ensures reliable data output. Currently, the availability of suitable well defined 

microparticles containing uranium and plutonium reference materials is very limited. Primarily, metals, 

oxides and various uranium and plutonium containing solutions are commercially available. Therefore, 

the IAEA’s Safeguards Analytical Services (SGAS) cooperates with the Institute of Nuclear Waste 

Management and Reactor Safety (IEK-6) at the Forschungszentrum Jülich GmbH in a joint task entitled 

“Production of Particle Reference Materials”. The work presented in this thesis has been partially funded 

by the IAEA, Forschungszentrum Jülich GmbH and the Federal Ministry of Economic Affairs and Energy 

(BMWi) through the “Joint Program on the Technical Development and Further Improvement of IAEA 

Safeguards between the Government of the Federal Republic of Germany and the IAEA” (in brief: German 

Support Program, GER SP). 

In order to strengthen the IAEA’s analytical capabilities, a broad range of tailor-made uranium and 

plutonium containing particles with consistent characteristics are needed: (1) monodisperse particles 

with a certified value on the number of atoms per particle (2) mixed particles sizes and (3) artificial QC 

samples by embedding various monodisperse particle populations with different particle sizes onto 

swipe samples (these swipes could additionally contain a “dirt” matrix to simulate real-life samples). In 

the long run, these particles are targeted to be used for quality assurance, method validation and 

interlaboratory performance evaluations and finally as reference materials or even certified reference 

materials. The first step towards monodisperse microparticles was the development of pure uranium 

oxide particles made from certified reference materials. 

This work in this thesis represents the efforts and results made during the last three years. A 

comprehensive outlook will be given later on. The focus of the dissertation is (1) the implementation of 

a working setup to produce monodisperse uranium oxide particles and (2) the characterization of these 

particles towards the application as QC-material. 

A successful working setup was implemented at IEK-6. Monodisperse uranium oxide particles were 

produced by spray pyrolysis. Spray pyrolysis is the production of aerosols and the subsequent thermal 

conversion to its corresponding oxides: A dilute hydro-alcoholic solution made from certified uranyl 

nitrate solutions was used to produce monodisperse aerosol droplets. Monodisperse aerosol droplets 

were generated using a vibrating orifice aerosol generator (VOAG). Particles were dried and thermally 

converted to uranium oxide within a preheating system and a four zone oven and after cooling they are 

removed from the system by inertial collection. All in all, the entire setup was designed to be a closed 

system that can even be operated inside a glove box. All components were designed to be easily 

replaceable. As cost-effective connections and tubes, Swagelok and KF connectors and flanges were 

used, which ensure a gas tight connection. 

 

[a] Treaty of Rarotonga, Treaty of Tlatelolco, Treaty on a Nuclear-Weapon-Free-Zone in Central Asia 
(CANWFZ), Bangkok Treaty, Comprehensive Nuclear-Test-Ban Treaty, etc. 
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It was demonstrated that the particle size can be controlled primarily by the aerosol precursor 

solution and the production parameters during the aerosol generation - in particular the liquid feed rate 

and the frequency of the orifice. The final particle morphology is controlled by the precipitation 

conditions during the conversion from aerosol droplets to solid entities. Small changes to these 

parameters have a significant influence on the final geometry, size and morphology. 

The second part of this thesis deals with the characterization of microparticles. A selection of 

particles was chosen to present the developments over a period of 12 months. Scanning Electron 

Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) was used for various 

applications, e.g. to verify the elemental content and to assess the size and geometry of the particles. 

Furthermore, automated particle assessments over large areas were performed. It was demonstrated 

that the particle batches show an almost monodisperse size distribution. Combined Focused Ion Beam 

(FIB-SEM) studies revealed the presence of a porous inner structure for all solid particles. Hence, the 

resulting overall density was less than expected. Time of Flight Secondary Ionization Mass Spectrometry 

(TOF-SIMS) studies evaluated the elemental content and demonstrated the need for cleanliness since 

minute quantities of contaminations could be found in single particles. Micro Raman investigations were 

used to determine the crystallinity, crystal orientation and uranium species. The measurements showed 

that particles primarily consist of U3O8. Parts consist of Meta-schoepite and U(IV)-hydroxide which 

indicates residual water inside the crystal lattice. Micro Raman investigations were performed at CEA 

(Ile de France) and at the TU-Vienna. SIMS measurements were performed at Safeguards Analytical 

Services – Environmental Sample Laboratory (SGAS-ESL) on the Large Geometry-SIMS (LG-SIMS) with 

the scope to assess their performance as a QC material. Particles produced at Jülich were also compared 

directly against existing QC- and reference materials. Investigations and characterization assays on 

monodisperse microparticles indicate reproducible results and LG-SIMS investigations indicate equal or 

even better performance than existing reference materials. It can be concluded that SIMS-experiments 

indicate a consistent uranium mass per particle. Furthermore, SIMS analysis implies consistent and 

predictable performance regarding the isotopic content, hydride formation rate, total evaporation 

profiles and a better performance than existing certified reference materials (CRMs). 
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Kurzzusammenfassung 

Die Internationale Atomenergie-Organisation (IAEO) ist die offizielle Institution zur Überwachung 
der Einhaltung des Atomwaffensperrvertrages und anderen internationalen Vereinbarungen auf Basis 
von bilateralen oder multilateralen Safeguards-Vereinbarungen, siehe [a]. Seit den frühen 1990ern wird 
„Environmental Sampling“ genutzt, um verdeckten nuklearen Aktivitäten auf die Spur zu kommen. 
Environmental Sampling beschreibt ein Teilgebiet der nuklearen Forensik, das sich auf das Detektieren 
und Charakterisieren von kleinsten Mengen an radioaktivem Material in der Umgebung von 
kerntechnischen Anlagen beschäftigt. Environmental Sampling hat sich seit seiner Einführung als 
wirkungsvollste Methode im Kampf gegen die Verbreitung von nuklearem Material entwickelt. Durch 
sogenannte Wischtests können selbst kleinste Partikel aufgenommen, detektiert und gemessen werden. 
Diese Partikel lassen durch geeignete Untersuchungen wichtige Rückschlüsse zu, z.B. über die Prozesse, 
die zu ihrer Herstellung oder Freisetzung beigetragen haben. Es ist daher wichtig, die Partikel auf ihre 
elementare Zusammensetzung, die Morphologie und die Isotopenzusammensetzung zu untersuchen. 
Um verlässliche Ergebnisse garantieren zu können, ist eine vorangehende Verifizierung und 
Kalibrierung der Geräte unerlässlich. Qualitätskontrolle (QC), Referenz- und zertifizierten Referenz-
Materialien kommt hier eine Schlüsselbedeutung zu. Da die Auswahl an geeigneten nuklearen Referenz-
Materialien begrenzt ist, gilt deren Verbesserung als zentrale Herausforderung. Hier kooperieren das 
Institut für Nukleare Entsorgung und Reaktorsicherheit (IEK-6) des Forschungszentrums Jülich GmbH 
und die Safeguards Analytical Services (SGAS) der IAEO in einem gemeinsamen Projekt namens 
"Production of Particle Reference Materials". Die vorliegende Arbeit wurde zu Teilen von der IAEO, dem 
Forschungszentrum Jülich GmbH und dem Bundesministerium für Wirtschaft und Energie (BMWi) im 
Rahmen des deutschen IAEO-Unterstützungsprogramms (dem sogenannten „Joint Programme on the 
Technical Development and Further Improvement of IAEA Safeguards between the Government of the 
Federal Republic of Germany and the IAEA“ - kurz GER SP) finanziert. Um die analytischen Fähigkeiten 
der IAEO zu verbessern, bedarf es der Entwicklung von maßgeschneiderten Mikropartikeln. Der Fokus 
lag dabei auf einer monodispersen Größenverteilung, was zu einem konstanten Wert für die Anzahl der 
Atome pro Partikel führt. Die hier präsentierte Arbeit beschreibt die Vorgänge und Ergebnisse der 
letzten drei Jahre, deren Fokus auf der Setupentwicklung im Forschungszentrum Jülich und der 
Charakterisierung von Partikeln lag. Dabei galt es zu ermitteln, ob die Qualität der produzierten Partikel 
ausreicht, um als QC-Material genutzt werden zu können. In den vergangenen 15 Monaten wurde am 
IEK-6 ein funktionierender Prototyp aufgebaut, der nach dem Funktionsprinzip der Spray-Pyrolyse 
monodisperse Uranpartikel produzieren kann. Dabei wird eine verdünnte hydro-alkoholische Lösung, 
hergestellt aus zertifiziertem Referenz-Material, durch einen Schwingblenden-Aerosolgenerator 
(VOAG) geleitet. Im Anschluss werden die verwendeten Partikel in einem Ofen, im Luftstrom, kalziniert 
und nach dem Abkühlen mittels Trägheitsimpaktoren eingesammelt. Bei der Entwicklung wurde darauf 
geachtet, dass alle Komponenten sich einfach austauschen lassen und die Apparatur gasdicht 
verschlossen ist. 

Es konnte nachgewiesen werden, dass die finale Partikelgröße primär von der Urankonzentration 
der Ausgangslösung und den Einstellungen während der Aerosolproduktion (wie der Liquid Feed Rate 
und der Frequenz der Schwingblende) abhängt. Damit lässt sich die Partikelgröße einfach kontrollieren. 
Die gewünschte Partikelmorphologie wird durch eine homogene Präzipitation während der Konversion 
von den Aerosolprekusoren zu festen, unkalzinierten Vorstufen von Partikeln befördert. Geringe 
Änderungen an den Umwandlungsbedingungen haben einen signifikanten Einfluss auf die Partikelgröße 
und Morphologie. 

Der zweite Teil der Arbeit widmet sich der Charakterisierung der entwickelten Partikel. Es wurde 
festgestellt, dass sich die Mikropartikel als QC-Material eignen und die bestehende IAEO-Analytik 
unterstützen können. Anhand einer Auswahl von Partikeln konnte der Fortschritt über einen Zeitraum 
von 12 Monaten protokolliert werden. Dabei wurde festgestellt, dass die Partikelgrößenverteilung 
annähernd monodispers ist und die Partikel primär aus U3O8 bestehen. Focused Ion Beam (FIB) oder 
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Ionenfeinstrahl-Untersuchungen konnten zeigen, dass die Partikel eine poröse Innenstruktur 
aufweisen. Mittels Rasterelektronenmikroskopie (REM) konnte die Größen- und Partikelverteilung auf 
dem Substrat nachgewiesen werden; mittels energiedispersiver Röntgenspektroskopie (REM-EDX) 
wurde die Elementarzusammensetzung verifiziert. Time-of-Flight-Sekundärionen-
Massenspektrometrie-Messungen (TOF-SIMS) konnten nachweisen, dass kleinste Verunreinigungen 
aus dem System sich in den Partikeln nachweisen lassen. Mikro-Raman-Messungen konnten die 
Kristallstruktur und Uranphasen nachweisen: Die Partikel bestehen hauptsächlich aus U3O8 mit Anteilen 
an Meta-Schöpit and U(IV)-Hydroxid. Um die Kristallstrukturen der Uranspezies zu bestimmen wurden 
Mikro-Raman-Untersuchungen an der CEA (Ile de France) und an der TU-Wien durchgeführt. Diese 
ließen darauf schließen, dass sich noch Wasser in der Kristallstruktur verbirgt. Im „Safeguards 
Analytical Service – Environmental Sample Laboratory“ (SGAS-ESL) in Seibersdorf wurden an der Large 
Geometry-SIMS (LG-SIMS) durchgeführt – diese hatten das Ziel festzustellen, in wie weit sich die Partikel 
als QC-Material eignen. Dazu wurden die Partikel in mehreren Messungen direkt gegen existierende QC- 
und Referenzmaterialien eingesetzt. Es konnte nachgewiesen werden, dass durch die monodispersen 
Eigenschaften reproduzierbare und konsistentere Ergebnisse abgeliefert werden konnten. Die neuen 
Mikropartikel schnitten im Vergleich zu existierenden Referenz-Materialien vergleichbar gut oder sogar 
deutlich besser ab. 
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1. Introduction 

The International Atomic Energy Agency’s (IAEA) dates back to US President Eisenhower’s speech 

“Atoms for Peace” to the General Assembly of the United Nations in 1953. After many modifications and 

negotiations, his proposal formed the basis for the Statute of the International Atomic Energy Agency 

(IAEA) that entered into force in 1957. Eisenhower’s speech put forward a proposal promoting peaceful 

use of nuclear energy and fostering scientific and technological exchange as means of contributions for 

peace, health and prosperity under the control of an international authority, as well as achieving and 

sustaining nuclear disarmament at the same time. The Statute requires that IAEA safeguards are to be 

applied to nuclear facilities and materials. Since the 1960s, legal safeguards arrangements between the 

IAEA and individual member states exist and they have been gradually adapted to the changing political 

reality. – They are documented in published agreements INFCIRC/26, INFCIRC/66, and INFCIRC/153 

[1]. The “Treaty on the Proliferation of Nuclear Weapons” (NPT); also known as INFCIRC/140 [2] was 

signed in 1968 and entered into force in 1970. The NPT is a multilateral treaty which is not just related 

to safeguards issues, but also to the peaceful use of nuclear energy and nuclear disarmament by nuclear 

weapon states (NWS). It has proven to be a pillar of the global nuclear non-proliferation regime. As of 

today, 191 states including the five nuclear-weapon states have signed the NPT, including the 

Democratic People’s Republic of Korea (DPRK), but neither India, Israel, Pakistan nor South Sudan. The 

NNWS party to the NPT are obliged to accept safeguards as set down in bilateral or multilateral 

agreements with the IAEA, in accordance with the IAEA Statute and safeguards system. 

The nuclear safeguards regime is predominantly based on the control of nuclear material flow and 

inventories which obliges member states to establish a nuclear material accountancy system. The IAEA 

conducts verification of operators’ declarations, e.g. by conducting measurements inter alia performed 

by the IAEA Safeguards Analytical Laboratory in Seibersdorf, Austria, or by the use of containment and 

surveillance. In 1991, after the first Gulf War, the international community learned about Iraq’s large 

scale clandestine nuclear program, which was neither declared nor detected by the IAEA. In 1990s, 

safeguards inspections in the DPRK revealed inconsistencies with the declared plutonium stock. The 

DPRK refused additional access and information to resolve the situation. This implied a deterioration of 

the situation which in 1994 led to the DPRK’s withdrawal from its IAEA membership. These experiences 

highlighted the need for the IAEA to review the effectiveness of its current safeguards system. Nuclear 

material accountancy, the main pillar of this program, provided the IAEA with the means of verifying the 

correctness of the declared activities the state provided on its nuclear program. The IAEA, however, was 

not well equipped to detect undeclared nuclear material and activities in signatory States, i.e. an 

assessment of the completeness of a State’s declarations. At the end of 1993, as a direct effect the IAEA 

launched a broad program (so-called Program “93+2”) to further strengthen safeguards implementation 

by enhancing its ability to consider a state as a whole. In 1997, the “93+2” program eventually led to the 

implementation of the Model Additional Protocol (AP) or INFCIRC/540 [3], which is aimed at improving 

the IAEA’s ability to detect undeclared activities in states with comprehensive safeguards agreements. 

One of these new measures aimed at strengthening the safeguards system was environmental sampling 

(ES), which was implemented as collection of swipe samples inside of nuclear facilities. ES provides 

indication, i.e. on the absence of undeclared nuclear materials and activities as the analysis of swipe 

samples probes for nuclear signatures and traits which are not part of the facility’s and state’s 

declarations. To this end, the Safeguards Analytical Laboratory’s capabilities were enhanced by adding 

a clean room facility (“Clean Laboratory”, today part of the Office of Safeguards Analytical Services’ 

Environmental Sample Laboratory) to provision clean sampling kits and the analysis of ultra-trace 

amounts of nuclear materials collected on the swipe samples. Environmental swipe samples returned 

from inspections to the Environmental Sample Laboratory (ESL) are screened using non-destructive 

analytical techniques, such as Gamma-Ray and X-Ray spectroscopy, followed by more detailed, 

destructive analyses. Destructive analyses are divided into (a) so-called “bulk” analytical techniques, 



2 

where the entire swipe sample is decomposed and analyzed for its elemental and isotopic composition 

of nuclear material traces. And (b) there are “particle” analytical methods with which individual uranium 

and plutonium bearing particles from a swipe sample are characterized. 

In particle analysis, the measurement of the major (235U/238U) and minor (in particular for 
236U/238U) isotopic ratios of uranium are of key interest because they are strong indicators for inherent 

process procedures, a technique which also finds application in nuclear forensics. Various references 

such as Betti et al. (1999) [4], Pajo et al. (2001) [5], Erdmann et al. (2003) [6], Baude et al. (2005) [7], 

Pointurier (2011) [8] describe different methodologies used in nuclear forensics to identify, relocate and 

measure single microparticles (normally in the size range of a few micrometer to a several hundred 

micrometers). Donohue et al. (2002) [9] (2008) [10] describe a series of micro analytical techniques 

used at IAEA to investigate the size, morphology and elemental- and isotopic content of single spherical 

particles in the size range of 9 - 12 µm which were recovered from a swipe sample taken from a nuclear 

facility under safeguards: Particles were identified by SEM/EDX, relocated and transferred under an 

optical microscope and SIMS was used to determine the isotopic content, focused ion beam (FIB) was 

used to investigate the inner structures. Pidduck et al. (2006) [11] describe techniques specifically 

targeted for the IAEA’s need to characterize micrometer-sized uranium particulates. Shinonaga et al. 

(2008) [12] describe the analysis of single uranium particles with SEM-EDX, ICP-MS and TIMS analysis. 

Particles were transferred from cotton swipes via inertial impaction and by micromanipulation onto 

suitable substrates. Artificial uranium bearing entities and micrometer-sized uranium particulates for 

method development, validation and quality assurance are of particular interest for particle analysis 

users in the evolving field of international safeguards and nuclear forensics. For example, such synthetic 

and well characterized test particles come into play when existing technologies are adapted to the 

current needs and which need to be validated; see Kappel et al. (2012) [13] and (2013) [14]. 

In recent years, a number of Ph.D. projects focused on the synthesis of microparticles for nuclear 

safeguards related issues have been published: Stetzer (2001) [15] presents the production of 

monodisperse uranium oxide particles for fission track detection techniques whereas Kips (2007) [16] 

describes the production of polydisperse uranium oxyfluoride particles by UF6 hydrolization in a 

controlled environment. While others depict specific methodologies for sampling such as Ihantola 

(2009) [17], others describe methodologies for determining the isotopic and morphological content of 

nuclear particulate; see Ranebo et al. (2009) [18] [19], Kappel (2012) [13], Warneke (2012) [20] and 

Macsik (2013) [21]. 

As for any analytical method, certified reference (CRM) and QC materials are required for 

instrument calibration, method validation, and internal/external QC programs and proficiency testing. 

For bulk analytical techniques, a wide range of CRMs are available from authorized laboratories, i.a. the 

Joint European Commission’s (JRC) Institute of Reference Materials and Measurements (IRMM), or the 

United States Department of Energy’s New Brunswick Laboratory (NBL), the United States National 

Institute of Standards and Technology (NIST) and the French Commission d’Etablissement des Methodes 

d’Analyse (CETAMA). However, for particle analysis techniques, only a very limited number of such 

materials are available: JRC-IRMM’s UO2F2 particles, in limited quantities and just distributed to a hand-

picked number of laboratories JRC-ITU’s monodisperse uranium oxide particles, VTT’s polydisperse 

particles and microparticles supported by the UK support program to the IAEA, see more detailed 

information in Chapter 3.1.1. 

Particles with a broad range of characteristics are needed to ensure and improve reliability of 

analytical results measured from single particles. For safeguards related analyses, uranium and 

plutonium containing particles of various isotopic compositions and sizes are needed. Some examples 

for the needs in safeguards and nuclear forensics are: (1) Monodisperse particles with a known number 

of atoms per particle are needed mainly for instrument calibrations, (2) mixed particle sizes are needed 

for QC materials to better reflect field samples, as are particles of mixed elemental and/or isotopic 
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composition, and (3) QC samples, i.e. swipes doped with particles of various sizes, compositions and 

relative proportions thereof. 

A working prototype setup has been developed at FZJ and is successfully producing monodisperse 

uranium oxides particles since May 2014. The approach described in this dissertation is based on the 

generation of monodisperse aerosol precursor, made from certified reference materials, who are 

thermally converted into solid species. The aim of this publication is to describe the generation process 

and the subsequent characterization efforts. This approach assumes that the certified isotope ratios of 

the bulk material are preserved in the final particles, which has indeed been confirmed in independent 

measurements of isotope ratios of the synthetically produced particles. However, characterization of the 

particles from these experiments showed that the density within a microparticle varies considerably 

and is much lower than theoretically anticipated for the pure oxides. In conclusion, based on the various 

requirements on particulate material for quality assurance purposes in particle analysis, the main focus 

was put on the consistency of the quantity of uranium per particle - density, morphology and geometry 

/ size were of secondary priority. 

The Institute of Nuclear Waste Management and Reactor Safety (IEK-6) at the Forschungszentrum 

Jülich GmbH (FZJ) and the Federal Ministry of Economic Affairs and Energy (BMWi) through the Joint 

Program on the Technical Development and Further Improvement of IAEA Safeguards between the 

Government of the Federal Republic of Germany and the IAEA (in brief: German Support Program, GER 

SP) cooperate with the IAEA’s Department of Safeguards on particle reference material production. The 

name of this project under the GER SP task A1961 is entitled “Production of Particle Reference 

Materials”. 

1.1 Needs and Goals 

At the beginning of this project, a catalogue of requirements was set up. Uranium oxide particles 

should to be used for various (non)-destructive analytical techniques for particle analysis for nuclear 

safeguards applications such as scanning electron microscopy and energy dispersive X-ray spectroscopy 

/ wavelength dispersive X-ray spectroscopy (SEM-EDX/WDX) for size distribution, morphology and 

elemental verification, µ-Raman spectroscopy to assess the morphology of single particles, mass 

spectrometry – in particular SIMS, ICP-MS and TIMS for the determination of the isotopic content and 

many more assays. Therefore, it was agreed that micrometer-sized, monodisperse particles are the 

favored species for this new kind of reference material. Monodisperse particles offer the advantage of 

consistent and homogeneous particle properties. The most important feature is the constant amount of 

uranium per particles. Other particle attributes are of secondary importance. These are: (i) tailored 

isotopic content, (ii) particle size, geometry, density and morphology. If the characterization efforts 

prove to be promising, a certification process would require additional authentication. Beyond the 

homogeneity assessment traceability to the international system of units (SI) is a prerequisite. It was 

decided that the approach using a VOAG showed the most promising potential of all reported particle 

production approaches, see Chapter 3.1.1. The system was designed in a way to (a) reduce the risk of 

cross contaminations, (b) easy access and maintenance ability to ensure safe handling and handling 

inside glove boxes and most importantly (c) improved particle collection. 
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2. Scope of the Thesis 

This work describes the efforts of a joint program between the Institute of Nuclear Waste 

Management and Reactor Safety (IEK-6) at the Forschungszentrum Jülich GmbH and the Department of 

Safeguards at the International Atomic Energy Agency (IAEA). The scope of this thesis covers two 

objectives: (1) the development and implementation of a working setup to produce monodisperse 

uranium microparticles and (2) the characterization towards application as a QC-material and (C)RM 

material. 

(1) Particle Production 

The needs and goals are a good starting point to describe the basic structure of the particle 

production theme in this dissertation: to have (1) well defined microparticles with a known number of 

atoms per particle, (2) consistent particle-size distribution, (3) homogenous particle morphology 

throughout the particle batch and (4) reproducibility of these properties. Monodisperse uranium oxide 

particles were produced by spray pyrolysis. The particle production is an integrated two-step process: 

(1) generation of monodisperse aerosol precursor-droplets using a vibrating-orifice aerosol generator 

(VOAG) and (2) subsequent drying and calcination of droplets to the corresponding oxides. Particles are 

generally collected via inertial impaction on glassy carbon disks. The entire setup consists of a closed 

system to prevent the spread of radioactive aerosol particles into the environment and to prevent 

contamination. It was agreed to develop a prototype out of commercially available components such as 

the VOAG, the furnace, the pumps, the KF-flanges and Swagelok systems, etc. with the focus on 

accessibility and ease of exchangeability. 

The introduction in Chapter 1 situates this dissertation project into the context of IAEA’s nuclear 

safeguards regiment: as part of their efforts to improve their analytical capabilities and to outsource 

R&D to an external research facility (the IEK-6 at the Forschungszentrum Jülich GmbH). Also the “Needs 

and Goals” for this project are indicated. This forms a bridge between the basics and theory of particle 

production (Chapter 3.1) and associated issues such as particle transport (Chapter 3.2) and micro-

analytical techniques (Chapter 3.3): The part of the thesis that comprises the particle production is 

divided into several parts: (1) other microparticle projects, (2) theory of precursor production, (3) 

theory of thermal conversion, (4) the collection of microparticles and their behavior in laminar and non-

laminar air streams and (5) the evolution of the particle production setup at IEK-6. Chapter 3.1.1 

describes the different approaches and aims of producing microparticles for nuclear safeguards 

application and it exemplifies why we chose to the VOAG approach. Chapter 3.1.2 describes the theory 

behind producing monodisperse aerosol droplets by using a vibrating orifice. Subsequently, after the 

precursor generation, the thermal conversion takes place, see Chapter 3.1.3. Due to the complexity of 

the particle formation a sound theoretical model calculation is difficult to be amenable because the final 

morphology and geometry are both determined by the temperature, dwell time and air flow which 

prevail during the conversion step from aerosol precursors to solid entities. Nevertheless, a 

phenomenological description of this specific formation dynamics helps to shed light into the particle 

generation mechanics inside the setup which is deployed at IEK-6. 

The last step in the evolution process of the particle generation is the collection from the system. In 

order to understand the particle collection, a prior brief introduction to the basics of particle adhesion 

and re-entrainment are described in Chapter 3.2.1. These basics are necessary to understand the issues 

related to particle collection in the beginning of this project as well as to understand how an inertial 

impaction works, see Chapter 3.2.2. And Chapter 3.3 briefly discusses the most important analytical 

techniques used in this dissertation: from scanning electron microscopy to secondary ionization mass 

spectrometry. 
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The Chapter 4 “Materials and Methods” contains two important pieces of information: (1) the 

evolution process during the first 1.5 years towards a successful implementation of the microparticle 

production setup at IEK-6 and (2) the materials and methods applied in this project. The first part is 

important because it covers the major part of the first half of my dissertation project. It also includes the 

Chapter “Particle Transfer Techniques” (Chapter 4.1.3) which describes a procedure of existing and 

newly developed methods (custom grid- and reference point engraving using a laser micro dissection 

system) to identify and relocate single particles on a large area. This technique was extensively used for 

combined SEM / LG-SIMS investigations during my time at SGAS-ESL. An important step between 

particle production and characterization are appropriate particle transfer techniques and the choice of 

a suitable substrate for sampling. The underlying idea was to have a particle production setup that offers 

flexibility in terms of particles size distribution and functionality: particles can be collected onto various 

substrates or into multiple suspensions via inertial impaction techniques. Triangulation helps to 

relocate single microparticles within a bigger matrix. 

(2) Characterization Efforts 

This chapter aims to describe how microparticles produced in Jülich perform in comparison to 

existing (C)RMs and why they are suitable candidates for application as QC-material and even as (C)RM. 

The second part deals with the characterization of a selected number of uranium oxide particles 
batches. These particles depict a cross section of the evolution process of uranium particles from May 
2014 until April 2015. 

The Chapter “Results and Discussion” starts off with a brief characterization of the existing one 
stage inertial impactors. These devices are extensively used at SGAS-ESL and also during this project. 
But, so far no real characterization had been made. For the µ-Raman spectroscopy investigation uranium 
reference materials were deposited onto graphite substrates using a modified inertial impactor, which 
was designed to mimic the size distribution of the microparticle generation setup developed at IEK-6. 
These reference materials were used as a calibration standard as well for comparison. And in Chapter 
5.1.3 a cyclone impactor designed at SGAS-ESL is introduced which allows efficient sampling at high air 
flows. This device was developed during the first half of my dissertation project when the collection yield 
was not sufficient. 

Chapter 5.2.3 takes a deeper look at the inner structure of the particles of interest. It could be 
demonstrated by using non-destructive computational means that the inflated species are hollow and 
their existence is in congruence with references, see Chapter 5.2.3.1. The solid particle species was 
investigated by using a Focused Ion Beam instrument coupled to a Time of Flight Secondary Ionization 
Mass Spectrometer (FIB-TOF-SIMS). It was shown that these particles have a porous inner structure, see 
Chapter 5.2.3.2. Quantitative SEM-EDX analysis on all particle species proved to be not meaningful due 
to the small size of the particles. Nevertheless uranium could be identified easily. 

The crystal structure and orientation and the composition were evaluated using µ-Raman 
spectroscopy, see Chapter 5.3. µ-Raman spectroscopy indicated the existence of a uranium compound 
that was expected: U3O8 but different uranium compounds were also identified which indicate an 
inconsistent uranium species distribution within a single micro particle. The characterization of the 
physico-chemical particle properties plays an important role, however thorough research into this 
domain is not within the scope of this dissertation. In this respect, combined X-ray diffraction and X-ray 
absorption near edge structure and extended X-ray absorption fine structure (XRD and XANES/EXAFS) 
performed on single micrometer-sized particles promises to provide detailed insight. 

Chapter 5.4 describes the characterization efforts performed a Cameca 1280, Large Geometry SIMS 
investigations (LG-SIMS). These experiments demonstrate the aptitude of the microparticles as a future 
reference material, especially in terms of particle homogeneity, m(U)/particle, density and mechanical 
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stability during ion beam bombardment. SIMS experiments on selected batches were used to (1) assess 
the isotopic content and compare it with the original data and (2) assess the performance of uranium 
particles against existing QC-materials and calibration standards. The latter point addresses LG-SIMS 
specific characteristics, such as the hydride correction, total evaporation and redisposition profiles plus 
the assessment of the useful yield and the beam profiles of the 238U intensities all of which are indicators 
for future usage as a reference material. 
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3. Scientific and Theoretical Background 

3.1 Particle Production 

3.1.1 Approaches for Particle Production 

Nuclear reference materials normally occur as solutions, metals, ceramics or oxides. Most 

(certified) reference materials can be purchased as oxides, ceramics or solutions; in particular nitrate 

solutions containing uranium or plutonium. Reference materials play an important role in the 

performance assessment of analytical laboratories which is evaluated within interlaboratory 

comparison exercises, e.g. the Nuclear Signatures Interlaboratory Measurement Evaluation Program 

(NUSIMEP) organized by the JRC-IRMM. NUSIMEP-6 and 7 [22], [23] were conducted in 2006 and 2011 

respectively. These round-robin exercises were used to assess the performance of each laboratory in 

determining the isotopic amount ratios of uranium particles. However, the availability of tailor-made 

reference materials for particle analysis with specific properties such as consistent morphology, isotopic 

and elemental background and amount of fissile material per unit is very limited. So far there are no 

microparticles commercially available as QC or (C)RM. Over the last decade, several programs have been 

initiated to produce uranium, plutonium containing microparticles with different properties. These 

programs will be discussed briefly in this chapter. 

Uranium-doped glasses were developed at JRC-IRMM by Raptis et al. (2002) [24]. Seven different 

uranium-doped glass powders with 5 mass-% uranium with various 235U abundances, from natural to 

highly enriched uranium, were produced for the IRMMs support program to the IAEA and for the 

external NUSIMEP-program. These particles should mimic real-life particles embedded in an inactive 

matrix of glass. Particles were produced by blending fine, high-purity borosilicate powders and U3O8 

(U3O8 was obtained by hydrolysis of certified UF6) together. The mixtures were melted together at 

1450 °C and then milled. The mean particle size was between 10 – 20 µm. Particles showed sharp-edged, 

irregular surface structures and homogenous morphology. The final yield of uranium was between 

30 – 40 g of uranium glass per 1 kg of matrix glass. All glasses have been certified as RMs for isotopic 

determinations of uranium, see Kappel et al. (2012) [25].The inactive glass matrix simulates for dust, 

soil or sediment which is collected in every swipe-sample. 

Another program was started at JRC-IRMM: Uranium particles with certified isotopic abundances 

made from UF6 were produced at IRMM by a controlled hydrolization reaction of UF6 gas inside an 

aerosol deposition chamber. This JRC-IRMM development produces uranium-oxyfluoride particles by 

hydrolyzing UF6 in a controlled environment. These particles were designed to mimic UF6 hydrolysis 

products found in conversion and enrichment plants. 

��� + ���� → ����� + 	�� (1) 

This project is based on the work of Lux (1982) [26], Carter and Hembree (1998) [27] and Kemp 

(2006) [28] who studied the emergence, production, release scenarios and effects of UF6 and UO2F2 to 

the environment. A working installation was build and developed at JRC-IRMM, see Kips et al. (2007) 

[29] and (2012) [30]. UF6 was released into a vessel by mechanically breaking a UF6 glass vial. By 

controlling the internal humidity levels within the vessel, a controlled reaction was achieved. Particles 

were sampled via gravitational deposition on glassy carbon planchets. The morphology of these particles 

ranged from chain-like agglomerates to single particles, all in the range micrometers. The formation of 

agglomerations is very much dependent on the interaction between the humidity level and the 

temperature inside the deposition chamber. Combined TEM-Electron Energy Loss Spectroscopy (EELS) 

measurements revealed that the surface of single particles was composed of uranium and oxygen. 

Fluorine was also detected underneath the surface layer. Electron diffraction patterns of single particles 
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indicated a cubic lattice structure. Morphology, chemical- and isotopic composition of these particles 

was investigated by SEM-EDX and SIMS, see Kips et al. (2007) [16] and [29] and Kips et al. (2009) [31]. 

Between 2006 and 2009, the Technical Research Center of Finland (VTT) contributed to the SG-

ESL. The work is documented in a series of internal reports, Kaerkela et al. (2006) [32] and (2007) [33], 

Ziliacus et al. (2008) [34] and Hokkinen et al. (2010) [35]. Polydisperse actinide oxide particles were 

produced by spray pyrolysis. Particles were produced using an aerosol generator called an Atomizer 

(TSI, Model 3076). Aerosol solutions consisting of nitrate solution of uranium, plutonium and cerium 

and water were used to produce polydisperse particles. Particles were sampled onto aluminum foil 

covered with an adhesive (Apiezon) via multiple-stage inertial impaction - a device called the “Berner 

low pressure impactor” (BLPI). Uranium, plutonium and cerium particles in the range ≤ 1.0 µm were 

produced. Unfortunately, these particles were not suitable for safeguards applications, as the particles 

were collected on aluminum foils using Apiezon-L. The high amount of adhesive made single particle 

transfer impossible also the removal of excess adhesive introduced massive hurdles for elemental and 

isotopic analysis and interfering with SEM studies. 

The UK Safeguards Support Programme to the IAEA chose a different approach of producing 

polydisperse uranium particles. Microparticles were produced by spray pyrolysis and aerosol precursor 

droplets were generated by means of a spinning-top aerosol generator. The system uses a compressed 

air to rotate the spinning disk. Aerosol droplets are generated by directing a liquid jet of a uranium 

containing solution on to the spinning disk causing the dispersion of the liquid into micro-droplets. The 

aerosol droplets are carried away by a steady air stream and an internal particle removal system 

removes the vast majority of unwanted aerosol – in order to generate a monodisperse size distribution. 

The precursor aerosol particles are converted into uranium oxide particles in a furnace at temperatures 

of up to 1200 °C. Subsequently, the particles were collected on PTFE filters and analyzed with SEM-EDX, 

TEM and SIMS, as reported in internal reports by Tushingham and Taylor (1998 - 2000) [36], [37], [38] 

[39]. Particles with three different enrichments were produced: natural uranium, low enriched uranium 

(3 – 5 % U-235) and high-enriched uranium (> 20 %, U-235). The mean diameter for all particle batches 

was 1 µm. Particles were designed to have consistent properties with regard to their density, size and 

mass, but with different isotopic content thus to be used as QC-materials. SEM/EDX and SIMS 

investigation indicated insufficient consistency regarding particle morphology and polydisperse size 

distribution; thus resulting in an inconsistent mass of U per particle. SEM investigations revealed the 

existence of hollow particles, particle shells, disintegrated particles and agglomerations of particle 

shells. Particles from these experiments were applied to the swipe matrix used in the IAEA’s sampling 

kits and used as QC swipes. Several sets of these QC materials were used to administer a QA/QC program 

to check on the reliability of the Network of Analytical Laboratories performance. The project was not 

further pursued. 

In 2000, Nicole Erdmann and her working group at the Joint Research Center - Institute for 

Transuranium Elements (JRC-ITU) started to develop a system to produce monodisperse uranium and 

plutonium particles, see Stetzer (2001) [15] and Erdmann et al. (2000) [40]. Particles were produced by 

spray pyrolysis. Precursor aerosol droplets were produced by using dilute hydro-alcoholic solutions 

made from uranyl nitrate hexahydrate (UNH). The aerosol was produced by using a vibrating-orifice 

aerosol generator (VOAG). The mean diameter of these particles was in the range of a few micrometers. 

Particle size is predominantly controlled by the UNH-concentration. The final particles were collected 

on Nuclepore filters and aliquot pieces were cut out for further analysis, see Erdmann et al. (2000) [40], 

and Stetzer et al. (2004) [41]. Multiple batches of uranium and plutonium containing particles where 

produced and analyzed in order to assess the characteristics, i.e. morphology, size distribution, 

m(U)/particle, isotopic composition and mass spectrometry specific behavior with SIMS , see Ranebo et 

al. (2007) [42], (2008) [43], (2009) [18], (2010) [44]. Kraiem et al. (2012) [45] quantified the uranium 

mass in single micron particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS). 

They investigated the two different particle batches with comparable size distributions. ID-MS 
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measurements revealed a significant variance of the uranium mass per particle and the uranium mass 

density between those two batches. An average uranium mass value per particle for batch (1) [U100] of 

2.80 ± 0.28 pg (k = 2) was determined and for batch (2) [U020-A] 1.83 ± 0.15 pg (k = 2). The variance of 

the corresponding uranium mass density is also significant between batch (1) 5.63 ± 1.04 g/cm3 and 

4.48 ± 0.92 g/cm3 for batch (2). Kraiem et al. (2012) [45] state that the lower mass density is caused by 

the presence of more voids on the outer structure which are detected by SEM and more voids on the 

inside, undetectable for SEM. In direct comparison to naturally grown, Kraiem et al. (2012) [45] also 

state that the molecular composition is not exactly known (UO2, U3O8, UO3, U-O mixture). The project 

was not pursued any further despite the promising results obtained. 

The existing particle production programs show that uniform particle characteristics with regard 

to the uranium mass content and morphology can only be achieved by monodisperse microparticles, i.e. 

consistent mass of uranium per particle, density and consistent particle morphology. Uranium-doped 

glasses were developed to simulate soil, sediment or dust matrixes, but lacked in consistency of uranium 

mass per particle since the size distribution was polydisperse. Hydrolyzed UF6 microparticles were 

produced to simulate particles found in enrichment and conversion plants. These microparticles were 

in the range of a few micrometers, but they were erratically shaped thus resulting in inconsistent 

uranium mass content. Particles produced at VTT showed a much more consistent size distribution, but 

these particles were deposited onto an adhesive layer which prevented any further investigation. By 

using a Berner Impactor, the size discrimination was sufficient but by NIST standards not monodisperse. 

Actinide oxide particles produced at VTT were investigated at SGAS-ESL by SEM-EDX. The investigations 

were hampered by the adhesive coating, but it could be shown that these microparticles showed some 

significant ageing effects. In 1998, the UK support program to the IAEA started a particle production 

program which was terminated after about two years because the particle morphology could not be 

controlled in a satisfactory manner and the particle size distribution was polydisperse. SEM 

investigations revealed the presence of particle shells and debris simultaneously side by side with intact 

microspheres. Erdmann et al. (2000) [40] and Stetzer (2001) [15] showed the potential of a working 

prototype to produce monodisperse microparticles by using a vibrating orifice-aerosol generator. 

Extensive studies by JRC-IRMM and JRC-ITU indicate that, if the particle production parameters are 

under control, acceptable quality can be produced. That is why the JRC-ITU approach was taken and 

further developed for IAEA’s particle production program. 

3.1.2 Aerosol Droplet Generation 

The first step in the production of monodisperse particles is the production aerosol droplets. This 

is achieved with an aerosol generator called the Vibrating Orifice Aerosol Generator (VOAG). The 

Vibrating-Orifice Aerosol Generator (VOAG) was developed by Berglund and Liu (1973) [46] at the 

University of Michigan. In 1974 [47] the VOAG was patented. They developed a system that was able to 

produce monodisperse aerosol particles by pressing a hydro-alcoholic solution through a small orifice. 

The core of the VOAG is the orifice which is mounted onto a piezoelectric crystal. Two fittings below the 

orifice provide the feed solution and a transportation/dispersion stream of filtered air. As a feed solution 

a 1 : 1 mixture of water and alcohol is used. 

The aqueous fraction of this mixture contains a certain amount of a non-volatile species which 

determines the particle’s composition. In order to obtain uranium bearing particles this is achieved e.g. 

by adding uranyl-nitrate solution. The functional principle of generating aerosol droplets with a 

precisely defined diameter is based on the instability of a liquid jet. Such a liquid jet is unstable by nature 

and has therefore a strong tendency to turn into droplets. Under normal conditions, this droplet 

evolution is random and erratic and leads to non-uniform droplets. In order to control the droplet 

formation process, a frequent disturbance is imposed on the system. This is accomplished by using a 

piezo electric element which oscillates with modulating frequency. With every turn of the disturbance-

cycle, one droplet is formed. 
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Figure 1: Schematics of the core unit of the vibrating orifice aerosol generator. 

Plateau (1873) [48] derived a minimum wavelength for a disturbance to be unstable. The minimum 
disturbance induced wavelength “λmin” is a proportional to the diameter of the ejected liquid jet “dj”: 


��
 = ��� (2) 

According to Rayleigh et al. (1878) [49] (1879) [50] the optimal wavelength “λopt” is an empirical 
value which is determined by a factor 4.508 of the ejected liquid jet. If these conditions are met the liquid 
is jet is expected to be most unstable. 


��� = 	. ����� (3) 

Studies by Schneider et al. (1964) [51] indicate a feasible wavelength range for the production of 

monodisperse droplets: 

3.5 dj < λ < 7.0 dj (4) 

The wavelength range derived by Schneider et al. (1964) [51] can be modified with the expression 
of the minimum flow rate “qj,min“. 

3.5 dj < 
���  < 7 dj (5) 

According Lindblad et al. (1965) [52] the minimum flow rate is the square root of the ratio between 
the surface tension “α” and the product of the density of the solution and the diameter of the ejected 
liquid jet: 

��,��
 = � ����� ! �⁄
 (6) 
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Figure 2: Diagram of liquid jet break up cycle induced by piezo electric disturbance. 

The mixture is then pressed in a very precise manner through the orifice fitting which provides the 

feed solution – this will be referred to as the Liquid-Feed-Rate, “Q”. 

The orifice is directly connected via Luer-Lock connectors to a disposable syringe which contains 
the aerosol solution. The syringe is compressed by a stepper motor which can be adjusted in order to 
control the amount of liquid being ejected. This ejected volume provides the feed solution and will be 
referred to as the Liquid-Feed-Rate “Q”. By imposing a frequent disturbance, the droplet formation 
process monodisperse droplets can be generated. The droplet diameter “dDroplet” size can be derived by 
the droplet volume “VDroplet” right after it exits the orifice and no evaporation has occurred. The volume 
of each droplet can be expressed as the quotient of the liquid flow rate “Q” which is the amount of liquid 
solution in volume per time unit and the frequency of the disturbance “ν”. #$%��&'� = (� (7) 

The droplet diameter “d” and the droplet volume are connected in the following manner: #$%��&'� = !� ∗ � ∗ $$%��&'�* (8) 

$$%��&'� = +#$%��&'�∗��* = +�∗(�∗�*
 (9) 

Under typical operation procedures the VOAG emits droplets with diameters of 40 µm. The decisive 
feature of the VOAG is that the amount of uranyl-nitrate in the liquid feed is the defining parameter for 
the amount of uranium in each particle and thus also the final diameter of the particles. The elemental 
content in the particle is dependent on the choice of the density of the feed solution “ρ”, the frequency of 
the orifice “v” and the Liquid-Feed-Rate “Q”, since  

,$%��&'� = ,-.%��/&' = #$%��&'� ∗ � ∗ ,0/ 3 = (� ∗ � ∗ ,0/ 3 (10) 

“NA” is the Avogadro constant, and “M” is the molar mass of the respective element. 

After leaving the orifice, the droplets immediately start to shrink due to the evaporation of the 
volatile part until the droplets are fully evaporated and converted to precursor particles. The air streams 
serve four functions: (a) disperse the aerosol droplets into a bigger volume, (b) dilute the aerosol 
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droplets to prevent coagulations, (c) drying of the precursor droplets and (d) transportation throughout 
the entire system until the final particles are collected from the air streams. The final precursor particle 
diameter “DPre” can be expressed as a function of the concentration and the droplet diameter. The volatile 
part of the solution evaporates and leaves behind the non-soluble part of the aerosol solution. With “cVol” 
the volume concentration of the non-volatile solute in the solution: 

$-%' = /#�&! *⁄ ∗ $$%��&'� (11) 

All non-volatile impurities represent an error in the subsequent particle diameter. “cVol” has to be 
modified by a correctional term “I” to account for the volumetric concentration of the non-volatile 
impurities, thus resulting in corrected term for the diameter of the precursor particles “Dcorr”: 

$/�%% = 4/#�& + 56! *⁄ $$%��&'� = 7/3.88� + 59! *⁄ $$%��&'� (12) 

The corrected particle diameter is dependent from the “ρ” density of the dried uranium speciation, 
“I” the correctional term for all the non-volatile impurities in the aerosol solution and from “cMass” the 
mass concentration of the aerosol solution. In order to generate particle of approximately 1 µm in 
diameter, non-volatile concentrations in the area of 10-4 g/ml are used. 

For small particles such as those a few micrometers in diameter, impurities may represent an issue. 
For instance, an impurity of 10 ppm (0.001 %) leads to bigger precursor particle diameter in the scale 
of 2.6%. Therefore, it is important to use high purity reagents for the production of the particles. 

3.1.3 Droplet to Particle Conversion Kinetics and Thermodynamics 

The mechanics and kinetics of droplet-to-particle conversion are very complex. It is advisable to 
bear in mind that the whole spray pyrolysis process takes place in less than 15s, including (1) aerosol 
production, (2) evaporation, (3) dehydration, (5) nucleation, (4) first thermal treatment, (5) second 
thermal treatment, (6) oxidation, (7) sintering, (8) cooling and (9) sampling. Depending on the 
conditions during generation and conversion, different final particle species can evolve. All references 
presented in this thesis investigating the dehydration and decomposition of uranyl nitrate hexahydrate 
do not discuss the conversion of micrometer particles on short time scales, but deal with bulk amounts, 
i.e. few grams, with treatment durations in the range of hours and days. 

The conditions during the early stages of evaporation and decomposition play a crucial role in the 

transformation process to the final product. The most important parameters are the dwell time, the 

temperature profile, the precursor / aerosol solution concentration, the ratio of volatile to non-volatile 

part, morphology and density of the microparticles. Sefiane et al (2003) [53] describe the evaporation 

of sessile water-ethanol droplets. They investigate the differences in evaporation kinetics of pure 

substances and mixtures. They state that the observed kinetics differ from the anticipated values which 

is due to the energy and mass transfer during evaporation. Tonini and Cossali (2013) [54] derived a 

mathematical model to describe the mass transport in small spherical droplets. According to Tonini and 

Cossali et al. the energy transfer for infinitely small particles/droplets is almost instant. The main 

concern with spray pyrolysis processes is the inability to control the particle morphology. According to 

Kodas et al. 1989 [55] and Pratsinis et al. (2011) [56], solid particle formation is an empirical matter in 

which certain conditions allow the formation of solid particles. If these criteria are not met less dense, 

inflated particles are formed, as described by Kingery et al. (1976) [57]. Therefore, the most important 

step is the control over the precursor conversion. Messing et al. (1993) [58] demonstrated that high 

solubility and low solution concentrations favor the formation of solid particles. They investigated the 

formation of ZrO2-particles which were produced by spray pyrolysis using a VOAG. Different precursor 

solutions were used such as ZrOCl2, ZrO(NO3)2 or ZrO(OH)CI. Messing et al. (1993) [58] also stated that 

the formation of solid particles depends not only on the precursor solution concentration, but also on 

the precursor species as well. 
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This observation concurs with the investigations of Kodas et al. (1993) [59] who states that, even 

though a large number of references exist that depict the conversion process during spray pyrolysis is 

too complex for, a consistent trend to have emerged so far. The first step is the droplet evaporation from 

the surface thus changing the air temperature and humidity. The droplet size decreases and the solvent 

concentration increases with further evaporation. Eventually, nucleation occurs due to super-saturation 

and crystal growth takes place. For every droplet diameter “dDroplet”, one can calculate the solution 

concentration at the droplet surface by solving five differential equations. The following paragraph 

depicts the derivation of these conclusions, see Xiong and Kodas et al. (1993) [60]. Figure 3 depicts the 

schematics of particles entrapped inside a laminar air flow during spray pyrolysis. The droplet-to-

particle evolution starts at time “t0=0” with an initial droplet diameter “dDroplet” and a solution molality 

“m0”. The conversion takes place at ambient pressure p = 101.325 kPa, with a relative humidity “R.H.°” 

and a flow rate “Q” [l/min]. The reactor vessel has a length “L” and a diameter “d” or radius “r”. For the 

following consideration, five assumptions have to be made: (1) a laminar flow, (2) the Kelvin effect [b] 

(see La Mer and Gruen (1952) [61]) can be neglected (particles are >> 0.1 µm), (3) free convection is not 

important and the heat conduction in the axial direction are negligible compared to the convection, (4) 

only mass transport due to evaporation and vapor diffusion to the reactor walls at steady state. Effects 

such as coagulations, diffusion are not important and (5) the temperature of the air stream and the 

droplet changes along the length of the reactor vessel. However, the temperature remains uniform 

within the droplets. The aerosol residence time “dt/dx” within in the reaction vessel and the change in 

droplet diameter “ddPrecursor/dx” can be given as: 

���: = �.���%�
( 7;�; 9 4!<=>6?!<=>� @ (13) 

��-%'/A%8�%�: = 7��-%'/A%8�%�� 9 7���:9 = 	$��!�$%��&'� 4
 − 
86 7���:9 (14) 

With “t” the residence time in [s], “x” the axial reactor axis, “T” is the air temperature, “yw” the water 
vapor mole fraction in the air. The last term “(1-yw)/(1-y0

w)” is a correctional factor to account for the 
change in the vapor content as a result of the droplet evaporation. 

 

Figure 3: Schematic of spray pyrolysis: evolution of droplet-to-particle conversion in a heated flow 

reactor. 

 

[b] Kelvin-Effect: The vapor pressure over a bent surface is bigger than over a plane surface. 
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“Dv” is the vapor diffusion coefficient in air at T, “m1” is the mass of a water molecule, “n” and “ns” 
are the vapor concentrations [#molecules/cm3] at the surface at T or Ts and “ρDroplet” as the droplet 
density. The equation for the water vapor concentration accounts for the introduction of water vapor 
into the air and is subtracted by the term which accounts for the vapor loss due to diffusion to the reactor 
walls. 

�
�: = 7�
��9 7���:9 = 7−���-%'/A%8�%$�,�4
 − 
86 − �C�4
<
>6% 9 7���:9 (15) 

“N0” is the droplet number concentration [#droplets cm-3], “nw” is the vapor concentration at the reactor 
wall and “Km” is the vapor mass transfer coefficient for a laminar flow. The change in droplet temperature 
“Ts” along the x-axis is induced by the heat transfer of the surrounding air and by the latent heat “HL” of 
the water evaporation. 

�;8�: = 7�;8�� 9 7���:9 = � !D��� E*�F ��-%'/A%8�%�� + �G8�� 4; − ;86H 7���:9 (16) 

“Cp” is the heat capacity of the droplet and “hs” is the heat transfer coefficient around the droplet. The air 
temperature is accounted for by the heat transfer. With “F” as the molar flow rate, “Cwet air” as the heat 
capacity of the wet air and “hw” as the heat transfer coefficient at the reactor wall. 

�;�: = !�D>'�.�% 7−��I��-%'/A%8�%� ,�G84; − ;86 + ��%G>4;> − ;69 (17) 

As discussed, before a concentration gradient during evaporation occurs, the highest concentrations can 
be found at the surface of the precursor droplets. Under the assumption that the change of the droplet 
diameter “dDroplet” is constant, a radial dependence “r” of the concentration “c” can be derived; before 
precipitation occurs. 

/ = /�':� J7 C	$F9 � %%$%��&'� �K (18) 

C = �$��!4
8<
6��  (19) 

“c0” is the concentration at the droplet center, “rDroplet” is the droplet radius and “DL” is the solute diffusion 
coefficient and the constant “K”. The concentration “cs” at the droplet surface is the following, while the 
mean droplet concentration “cmean” is given by the subsequent equation: 

/8 = /�':� L7 C	$F9M (20) 

With r = rDroplet and RDroplet = r/rDroplet 

/�'.
 = */� N I$%��&'��!� ':� L7 C	$F9 I$%��&'�� M �I$%��&'� (21) 

The solute concentration at the surface can be modified to: 

/8 = /�'.
 ':�O� C	$F P
* N I$%��&'��!� ':�O� C	$F I$%��&'�� P�I$%��&'� (22) 

For small “K/4DL” Equation (21) and (22) can be expressed as followed; with “ρs” the solute density and 
“dps” the equivalent sphere diameter of a dried precursor: 

/8 = /�'.
 E! + �. 	 7 C	$F9H (23) 

/�'.
 = � ��8�$%��&'� * �8 (24) 
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3.1.3.1  Particle Formation Mechanism 

As previously discussed, the conditions during evaporation and decomposition play a crucial role 

in the formation of the final product and determine its final properties, such as particle size, shape and 

external and internal morphology including crystal structure, density variation, phase variances, etc. 

Stebelkov (2005) [62] describes the characteristics such as size distribution, morphology and elemental 

and isotopic content of the single particles which are routinely found on swipe and environmental 

swipes collected by nuclear safeguards inspectors. These particles have an inherent signature due to 

their generation, release scenario and environmental conditions. However, particles that are 

synthesized under controlled laboratory conditions have different properties. Pratsinis and Vemury 

(1996) [63] gives a broad overview the formation processes during spray pyrolysis and how the 

dynamics of droplet-to-particle conversion affect the final morphology. Even though it does not describe 

the formation of actinide micro-particles, it provides the basics of droplet evaporation, nucleation and 

sintering. During the droplet-to-particle conversion, a mass and energy transfer occurs. Hopkins and 

Reid (2005) [64] investigated the evolution of the evaporation of ethanol-water droplets and their 

coagulation behavior. They concluded that rapid evaporation of volatile species leads to non-isothermal 

behavior. 

The precursor surface cools down faster and more than the core of the droplet until equilibrium 

between the energy transfer between particle and surrounding gas phase is reached. Hopkins and Reid 

(2005) [64] also stated that the particles which were produced with a VOAG showed unsteady 

evaporation after 1ms of droplet generation. According to Schluender (1964) [65], who studied the 

evaporation of quasi stationary systems, the temperature and mass change can be calculated, theoretical 

and experimental data showing a strong correlation. Messing et al. (1993) [58] describe in detail the 

conversion process and how evaporation and nucleation mechanics affect the final product. They also 

state that the production rates are limited for particles size smaller than 5 µm. Reuge et al. (2008) [66] 

[67] investigated the influence of evaporation kinetics, nucleation and sintering processes and came up 

with a scheme of the formation of micro- and nanometer sized particles and fragments, see Figure 5). 

Both Messing et al. (1993) [58] and Reuge et al. (2008) [67] state that the exact kinetics and mechanics 

are not fully understood. 

 

Figure 4: Precipitation schematics for homogenous and surface controlled precipitation. 
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In theory, five different particle species can be obtained: (1) solid µ-particles, (2) hollow, bloated 

particles, (3) a combination of very thin shells and sub- µ-particles, (4) thin shells and (5) an aggregation 

of sub-µ-particles – see Messing et al. (1993) [58] and Reuge et al. (2008) [66]. They also deliver a 

comprehensive model for the nucleation process occurring to explain the precipitation system. Basically 

two different nucleation mechanics can occur: (1) homogenous precipitation or (2) surface controlled 

precipitation, see Figure 4 and Figure 5. (1) If internal precipitation occurs homogenously, the overall 

salt-concentration (including uranyl nitrate plus salt-contamination content) is evenly distributed and 

precipitation takes place at random points. These randomly occurring “precipitation-islands” have a 

steady growing interface layer to the surrounding solution. Re-diffusion of uranyl nitrate into the 

solution takes place [c]. Gaseous pressure of a droplet depends on the surrounding temperature and its 

salt concentration. The density and porosity of the final particle is determined by the evaporation and 

denitration speed. According to Reuge et al. (2008) [66] [67] no experimental data exists on this 

dependence. Surface controlled precipitation is dictated by super-saturation in the outer layer of the 

droplets which is induced by the external heat field of the furnace. This results in the formation of an 

outer crust or shell. Depending on the conditions, a permeable, semi-permeable or low-permeable shell 

is formed. 

A permeable crust leads normally to an inflated particle due to the internal evaporation pressure 
and a semi-permeable to low permeable shell leads to a partial collapse of the particle structure. The 
formation of a non-permeable crust might even lead to the formation of sub-micron particle debris. It 
can be concluded that, during the first stage of the spray pyrolysis, two phenomena occur 
simultaneously: (1) droplet evaporation from the surface, (2) diffusion of the volatile part into the 
gaseous phase, (3) droplet volume reduction, (4) change in the droplet temperature and (5) diffusion of 
solute towards the droplet center. 

 

Figure 5: Schematics of droplet-to-particle morphology evolution during thermolysis, see Messing et al. 

(1993) [58] and Reuge et al. (2008) [66] [67]. 

 

[c]  Re-diffusion is a relatively slow process and can therefore be neglected for fast conversions such as in 
spray pyrolysis processes. 
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According to Xiong and Kodas et al. (1993) [68], the diffusion of the volatile part proceeds the 
fastest and reaches a steady state much earlier before volume reduction due to shrinkage occurs. The 
mean concentration of the dissolved salt “cm” increases simultaneously while the droplet volume 
shrinks. The following equation depicts the mathematical context of the initial concentration “c0” and 
droplet diameter “d0”. The concentration nevertheless is not totally homogenous throughout the 
evaporation process. 

/� = /� 7��� 9*
 (25) 

The loss due to solvent evaporation from the surface is bigger than solute diffusion thus creating a 
higher solute concentration at the droplet surface. The concentration dependency of the droplet radius 
can be expressed as a partial differential equation; with “c” as the solute concentration and “r” and “t” as 
the radial components. The following assumptions that at t = 0 the initial concentration “c0” is equal to 
c. And at r = 0 there is no change in concentration. The determination of the concentration as a function 
of the radius and accounting for droplet shrinkage is a very complex matter. Van der Lijn (1976) [69] 
gave a solution for the partial differential equation, but the equation is still not very effective because it 
does not consider diffusivity changes of the solute concentration. The evaporation rate and temperature 
change of liquid droplets can be expressed as a function droplet size change. The change in droplet size 
is a function of the temperature “T” and the relative humidity in the initial stage. The evaporation rate of 
a droplet which is moving with the same velocity as the carrier gas or atmosphere can be expressed as 
followed as a change of mass in dependence of the temperature: “dm/dT”. 

���� = ���$%��&'�$�3I ��Q;Q − �RA%�./';RA%�./' = ���$%��&'�$�3I 7S�S;9  (26) 

“p∞” and “T∞” are the surrounding vapor pressure and temperature of the reaction stage, while the 
subscript ”Surface” refers to the parameter at the droplet surface. “M” is the molecular weight of the gas, 
“R” is the gas constant and “dDroplet” is the initial droplet diameter. The initial stage of drying and surface 
evaporation is comparable to the pure liquids. But the vapor pressure of the liquid decreases as a result 
of the solute in the droplet. The product of the solute mole fraction “γ” at the droplet surface and the 
activity coefficient of the solute “χ” are equal to the ratio of the vapor pressure “pSol” and the saturated 
vapor pressure “pSat” of the solvent. Under the assumption that the gas phase is ideal and that the activity 
coefficient for the solute is also ideal γ = 1. 

�R�&�R.� = T (27) 

Messing (1993) [58] also states that the activity coefficient can vary significantly. During 
evaporation the droplet also loses heat. But if the temperature of the surrounding atmosphere is greater 
than the droplet temperature it gains heat. The temperature change can be expressed as such: 

	�ICS; + 
 ���� = �R �;RA%�./'��  (28) 

With “K” as the thermal conductivity, “λ” the latent heat of the evaporation of the solvent and “S” 
the specific heat of the liquid, this equation can be used to describe salt solutions if the specific and latent 
heat do not differ significantly from the pure solvent. During the evaporation conversion, the droplet 
temperature increases from ambient temperature to the saturated solution temperature “Tsat”. Xiong 
and Kodas et al. (1993) [68] state that low evaporation rates, small droplet sizes, low solution 
concentrations, long residence times favor the formation of solid particles. But they also state that the 
mechanisms are not still fully understood and that particle formation processes can differ from 
substance to substance massively. SEM studies performed at FZJ and SGAS-ESL on uranium oxide 
particles which were produced at FZJ during 2014 underpin the mechanics described by Kodas, Messing 
and Reuge. Due to operational conditions and technical issues (hardware failures), the final morphology 
of a single batch of uranium oxide particles significantly varied, which is a good indication of the 
sensitivity of the production process towards any influences. In conclusion, the final form and phase of 
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the end product depends on the production conditions. This result is due to the complex polymorphic 
nature of the U-O system. 

3.1.3.2 Thermal Decomposition of Uranyl Nitrate Hexahydrate and Calcination 

Thermally induced decomposition of UNH is a well-documented process, see Iwamoto (1964) [70], 

Lodding et al. (1965) [71], Smith (1968) [72] and Rajagopalan et al. (1995) [73]. UNH-decomposition is 

a crucial part of the droplet-to-particle conversion scheme. According to Rajagopalan et al. (1995) [73], 

the thermal decomposition leads to the release of nitrogen oxides up to a temperature of 500°C. Kozlova 

et al. (2007) [74] describes the formation of a polymorphic mixture of UO3 and U3O8 in the course of 

dynamic heating of UNH. Kozlova et al (2007) [74] also state that data on the mechanism and kinetics of 

dehydration and decomposition of UNH is vast, but also ambiguous. Melting and dehydration of UNH 

takes place between 40 - 250 °C. According to Kozlova et al. (2007) [74,] the next step is the formation 

of UO3 through dehydration of residual water and denitration which takes place in eight steps. The final 

conversion to polymorphic U3O8 occurs at temperatures between 580 - 645 °C. Ondrejcin and Garrett 

(1940) [75] describe the dehydration and decomposition mechanics of uranyl nitrate species at 

temperatures between 250 – 450 °C. They state that, at these temperatures, the decomposition of UNH 

over a period of approximately 40 min leads to the formation of γ-UO3. They calculated the activation 

enthalpy for the uranyl nitrate dehydrate and the denitration enthalpy: ΔH*Dehydration = 53.6 ± 8.0 kJ/mol, 

ΔH*’Denitration = 62.0 ± 9.3 kJ/mol. Their findings are in agreement what Dash et al. (1999) [76] found out 

about sixty years later. Dash et al. (1999) [76] describe the evaporation and calcination process as a 

nine-step process under vacuum conditions. According to Dash et al. (1999) [76] dehydration processes 

start at 27.0 °C and continuous until 126 °C. At temperatures above 145 °C, decomposition of the nitrate 

component starts. Beyond this temperature threshold, the evaporation of water and decomposition of 

nitrate compounds occur simultaneously. The release of NOx leads to a surface dominated control of the 

evaporation-decomposition mechanics. 

The result is a sequential decomposition with the formation of complex uranium-oxide-hydroxide 

species, with varying oxidation states. At temperatures of 1180 - 1360 K, U3O8 and UO3H1.17 are formed.  

 

Figure 6: UNH dehydration and decomposition by Dash et al. (1999) [76]. 
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Figure 7: Left: Phase diagram of the O-U system. Right: U-O phase diagram in O/U ratio range 2.0-.3.0 in 

dependence of the pressure, see Morss et al. (2011) [92]. 

According to Dash et al. (1999) [76], UO3H1.17 is a hydrogen insertion of UO3 which Lodding et al. 

(1965) [71] referred to as UO2(OH)x. Dash et al. (1999) [76] also state that the overlapping processes of 

the evaporation and the decomposition lead to a surface dominated kinetic control and thus to random 

nucleation. During thermal treatment, the uranyl nitrate precursors are converted gradually to the 

corresponding oxides. The calcination of uranium in oxygen containing atmospheres is very well 

documented. Calcination of uranium in oxygen containing atmospheres takes place at temperature 

between 450 - 1500°C, see Scott and Harrison (1963) [77]. Depending on the amount of oxygen present 

and the temperature, different uranium speciation develop. At temperatures above 500 °C, in ambient 

pressure it is expected to form U3O8. At these temperatures and these short dwell times, mixed oxides of 

uranium (III and IV) are expected, see Peakall et al (1960) [78], Wheeler et al. 1964 [79], Cordfunke 

(1969) [80], Loopstra (1970) [81] [82], Labroche (2003) [83] and Felker et al. (2008) [84]. According to 

Hoekstra et al. (1961) [85], the structures of α-UO3 and U3O8 are very similar and indicate a possible 

solid solution between these compounds. This has not been experimentally confirmed. Grønvold et al 

(1955) [86] investigated the UO2 - U3O8 region. They indicate that, due to the complexity the different 

uranium oxides and their phases are very similar and therefore difficult to distinguish. Kulyako et al. 

(2013) [87]converted UNH solution in the presence of hydrazine hydrate into UO3 at 440 °C and into 

U3O8 at temperatures of 570 – 800 °C. The phase transition of the uranium-oxygen system is a target of 

interest for many years: Rand et al. (1978) [88] assessed the thermodynamic data and compiled a phase 

diagram depicting the dependence of the different uranium phases depending on the O/U ratio. 

According to Chevalier et al. (2002) [89], Guéneau (2002) [90] and Labroche et al. (2003) [91], the data 

has to be re-assessed in order to account for the uncertainties of the previously published data. Figure 7 

depicts the updated phase diagram of the uranium U-O system which derived from the Katz, Seaborg 

and Morss et al. (2011) [92]. According to Sweet et al. (2013) [93], the formation routes of UO3 and UO3-

H2O are not fully characterized, even though they are considered part of the nuclear fuel cycle. Different 

production routes for the several polymorphic phases of UO3 have been investigated. This property does 

not only apply to UO3 but at least to U3O8 respectively, see Senanayake et al. (2005) [94]. 

3.2 Particle Transport 

This chapter describes the basic theory and phenomena associated with the transport, re-
entrainment and collection of particles inside idealized air flows. A brief introduction into the 
mechanism of particle adhesion and detachment/re-entrainments will be given. Adhesion and re-
entrainments effects are significantly important for the development of the setup: in particular during 
(i) particle collection with inertial impactors (see Chapter 5.1) and (ii) for particle transfer techniques 
(see Chapter 4.1.3). Particle collection via inertial impactors played a crucial role in the sampling regime 
during this entire project. Inertial impactors offer an easy, fast and cheap way to conveniently collect 
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sufficient numbers of particles for subsequent analysis. Particles were directly deposited onto Si-wafer 
substrates or glassy carbon substrates. The adhesion and re-entrainment forces associated with the 
collection of microparticles will be discussed in the following sub-chapter. Additionally, particle-transfer 
techniques play an important role in the subsequent particle-handling procedure. Micromanipulation 
techniques (inside the SEM or under an optical microscope) were extensively used for the preparation 
of the single microparticles to be assessed by SEM-EDX, SIMS and µ-Raman spectroscopy measurements. 
Micromanipulation with small entities is a challenge. This chapter will give a comprehensive 
introduction into the basics to better understand the phenomena discuss in this project. 

3.2.1 Phenomena of Particle Transport Mechanisms 

The aerodynamic diameter is a quantity of particles within a surrounding gas. When a particle is 

accelerated through drag- or gravitational force in the medium, at a certain point in time it reaches 

equilibrium velocity, i.e. the accelerating force and the friction force are in equilibrium. The equilibrium 

velocity depends on the shape, the size and the density of the particle. The aerodynamic diameter “dA” is 

referenced as an idealized rigid, spherical particle with a density of 1 g/cm3. An idealized particle and a 

real particulate which have the same aerodynamic diameter have the same settling velocity under 

standard conditions (298.15 K and 101 kPa), but not the same geometric diameters. 

�0 = �+�-.%��/&':D��&A�� (29) 

An important property in describing the behavior of gases is the mean free path “λ”. It is the mean 
path of a single particle without any interaction with another particle. The mean path is dependent on 
the particle density “n” which accounts for the number of particles per volume, the diameter of a 
molecule “d” (in air under standard conditions, d = 3.7 . 10-10 m; 298.15 K and 100 kPa) and the gross 
cross section “σ”. In equilibrium state derived from the Maxwell velocity distribution “λ” can be 
formulated as: 
 = !√��
�� (30) 

The Reynolds number “Re” is another parameter to describe the dynamic properties of the flow and 
is important in evaluating an inertial impactor system. It is a dimensionless number and describes the 
ratio of the inertial forces “VWX” to the viscous ones “η” in steady, laminar flow environments. I' = ���Y  (31) 

Here, “ρ” is the characteristic density of the Newtonian fluid, “v” is the characteristic flow rate and 
“d” is the characteristic length of the object. “d” is also called reference length. With Z = V ∗ [ equation 
(2) changes to: I' = �\�Y = \�]  (32) 

“ϑ” is the kinematic viscosity of the fluid. For smaller Reynolds numbers it can be assumed that the 
flows are laminar until they reach a certain threshold “ReThres”. This is the transition point from laminar 
to turbulent flow: Re > ReThres. For small Reynolds number in laminar flows, the viscosity forces are most 
dominant for turbulent flows. At higher Reynolds numbers, the inertial force dominates the flow 
behavior. 

�0 = +^�Y$*
	#:D  (33) 

According to Ihantola (2009) [17], the Reynolds number in a laminar flow, such in a pipe, 
describes an average flow behavior, whereas the Reynolds number calculated for a single particle 
characterizes the streamlines near the surface. Mc Donald and Fox (1985) [95] state that air flow is 
considered laminar when “Re < 2300” and turbulent if “Re > 4000”. The region in-between is called a 
transitional region where the flow characteristics depend upon the surface roughness and various other 
parameters. To calculate the Reynolds number for a single particle, one can use equation (4) as well. The 
flow velocity around the particle is important and d is the parameter for the particle diameter. According 
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to Ihantola (2009) [17] as well as Mc Donald and Fox” the flow is considered laminar if Re < 1. With 
increasing Re-number the flow becomes more turbulent due to the generation of flow vortices and 
stalling of the airflow. The settling velocity of an aerosol at low Reynolds numbers can be expressed by 
the rate at which particles settle in steady air conditions. The settling velocity “vSet” is equal to the 
terminal velocity when only gravitational forces are applied. That means that the drag force “fDrag” is 
equal to the gravity force “fgrav”. These forces are dependent on the mass of the settling particle: 
mParticle = VParticle * ρParticle. 

�$%._ = �-.%��/&' ∗ _ (34) 

“g” is the gravitational acceleration. The settling velocity can be derived by equation 34 and 
accounts for the particle diameter “d”, the density “ρ”, the viscosity component “η” and the Cunningham 
slip correction factor (to be described in the following chapter): 

�R'� = �-.%��/&'∗�-.%��/&'� ∗TD!�Y  (35) 

The particle drag force is described by the Stokes equation. Assuming that the particles are very 
small compared to the mean free path and that the surrounding gas does not interact with the particle 
movement, the resisting forces depend on the fluid characteristics. Also assuming that the viscous forces 
dominate and that no walls interact, with a velocity “v” and the fluid velocity at the surface is zero. The 
Stokes equation for the friction force “FFric” describes the dependence of “FFric” of spherical bodies with 
a defined velocity “v” to their radius “r” involving the dynamic viscosity “η” of the fluid: ��%�/ = � ∗ � ∗ % ∗ Y ∗ � (36) 

Cunningham slip correction factor “xC” is a correction term for the Stokes friction equation. It has 
to be applied when the particle diameter is in the range of the mean free path “λ”. “A1/2/3” are constants 
which are depending on the fluid and “d” is the particle diameter: 

:D = ! + �
� ∗ �0! + 0� + '`0*∗�
   (37) 

Inserting the slip correction factor in equation 37 gives: 

��%�/ = ��%Y� E! + 
% ∗ �0! + 0� + '`0*∗%
  H<!
 (38) 

For fluids such as air it can be simplified to: 

��%�/ ≈ ��%Y� 7! + !.�*∗
% 9<!
 (39) 

This is important to derive a formula for the stationary sedimentation velocity “vSed” - for spherical 
bodies in a fluid: �R'� = �%�_4�-.%��/&'<��&A��6^Y  (40) 

With: “g” gravitational force, ”r” radius of spherical object, “ρParticle” density of the particle, “ρFluid” density 
of the fluid and “η” the dynamic viscosity. 

In order to describe particles in laminar and turbulent flow, a dimensionless number, the so-called 
Stokes number “Stk” is used. This Stokes number can also be used to deduct the cut-off diameter of an 
inertial impactor: 

��� = + ^�Y$R�b	#�-.%��/&':D (41) 

The cut off diameter “d50” of a round one stage impactor can be calculated with equation 41: with 

“D” the nozzle diameter of the impactor, “η” represents the dynamic viscosity of air, “v” is the volume 

flow rate, “xC” is the Cunningham slip correction factor, “ρParticle” is the particle density and “Stk” is the 

Stokes number. 
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3.2.1.1  Adhesion Forces  

Adhesion forces are the most important forces that determine the efficiency of an inertial impactor 
and are necessary to understand its basic functionality. Adhesion forces are also important to describe 
particle transfer techniques e.g. micromanipulation. 

This chapter is designed to give a brief and comprehensive introduction into the basics of particle 
adhesion. Micrometer-sized particles which are deposited on a flat and even surface can show some 
interesting behavior and the whole theory is rather complex, for example, when particle deformation 
needs to be taken into account. To explain the particle adhesion, different mathematical models are used. 
Each model describes the adhesion process partially and cannot account for all factors involved. 

The JKR-model [96] by Johnson, Kendall and Roberts and the DMT-model [97] by Derjaguin, Muller 
and Toporov are widely used to describe the adhesion and deformation forces induced by van der Waals 
interaction, neglecting electrostatic forces. According to Mueller et al. (2000) [98], the van der Waals- 
and electrostatic forces are the dominant adhesion factors. Ideal particles do not deform when placed 
on a plane surface thus creating only one point of contact with their convex surface. In general the 
contact area becomes bigger, and short-range adhesion forces govern the finite contact area. Long-range 
adhesion forces rule the perimeter of the contact area. In these cases, only the elastic deformation of the 
particles is considered because it predicts the shape of the sphere in contact with the substrate, the 
pressure distribution within, the contact area and the force necessary to pick up the particle. In 1890, 
Hertz [99] derived an equation describing the maximal tension or contact pressure “pmax” between two 
elastic bodies, seen from the center of the contact area. If two ideal, rigid bodies with convex surfaces 
touch there is only one point of contact. Since they are not ideal and those particles have a certain 
elasticity, the contact area flattens and becomes much bigger. The contact area experiences a force the 
so called contact pressure. In case of a spherical object and a plane the contact area is elliptically shaped. 
“F” is the force between the two objects, “E” is the elasticity constant, “v1/2” Poisson number for object 
(1) and (2), “x1/2” is constant for the contact area of bend surfaces and “k” for the bending. 

��'%�c = !:!∗:� ∗ d*�∗e�4∑ b6�
��*?!<��@�*  4426 

The Van der Waals force is a non-covalent interaction between atoms or molecules. Compared to 
atomic- or ionic bonds they are weak forces. Electron fluctuations in non-polar molecules or atom cause 
an instant dipole-momentum pi with an electric field Ei ~ r-3. The first dipole-momentum induces a 
second dipole-momentum at the second molecule/atom: pj = αEi. Its interaction energy “W” decreases 
by the sixth degree with the distance of the two interaction objects: W = 1/r6. Also quadrupole-dipole 
interactions occur but they are mostly neglected. The term Van der Waals forces includes three forces: 
(1) the Keesom force which is the electrostatic force between two permanent dipoles (2) Debye force 
which is the force between a permanent dipole and an induced dipole and (3) the London dispersion 
force which describes the force between two interacting, induced dipoles. Bowling (1998) [100] 
describes that the Van der Waals force is the primary force for particle, smaller than 50 µm, adhesion on 
surfaces. These Van der Waals forces can differ depending on deformations either on particles or on the 
surface. According to Bowling (1998) [100] an increase of the Van der Waals forces leads to an increase 
in the contact area. Particles smaller than 1µm in diameter can be retained on the surface by forces 
attaining forces up to 100 gcm/s2. The adhesion force on the particle can therefore exceed the 
gravitational force up to a factor of 106. 

The electrostatic force can be described by Coulomb’s law. It is the interaction force “F” between 
two point charges “q1” and “q2”. “F” is proportional to the arithmetic product of “q1” and “q2” and 
reciprocal proportional to the square of its distance from the spherical center “r” and “ε0” the electric 
permittivity of free space. 

� = !	�i�∗�!∗��%�  (43) 
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Particles can either be attracted by electrostatic forces by external charging and/or by charge transfer 
between two layers (double-layer force). Bowling (1998) [100] described that particles with a diameter 
of less than 20 µm the double-layer force plays the most dominant part of electrostatic forces. 

The JKR-model derived by Johnson, Kendall and Roberts in 1971 [96] is an extension of the Hertz 
theory and includes the effects of elastic deformation. These adhesion effects and the broadening of the 
contact area are regarded as surface energy induced. Adhesive forces are restricted to the finite contact 
area. Adhesive stresses in the non-contact areas are neglected. According to Johnson et al. (1971) [96] 
the edges of the contact area tensile and the center of the particle is compressible. This compressibility 
is dependent upon particle properties such as hardness, crystal structure, density and particle diameter.  

The equation for the JKR model includes the component for the stored elastic energy, the 
mechanical potential energy and the surface energy. The following paragraph describes a 
comprehensive derivation of the JKR model. For this assumption, each particle is under a certain 
pressure “p” and therefore adheres with a force “FA” to the surface. The contact radius “a” is significantly 
smaller than the particle radius “r”. Based on this assumptions one can derive the equations for the 
contact radius “a”, the area of the contact “A” and the pressure “p” which bears on the particle - the so-
called “Hertz Pressure”. “K” is the elastic modulus or Young’s modulus it measures the force needed to 
deform a solid object. Equation 44 and 45 show the dependence of the contact radius ”a” and contact 
area “A” – with the variables “m1” for the particle and “m2” for the flat, solid substrate. 

. = L*�0I	C M!* (44) 

0 = �.� = � L*�0I	C M�* (45) 

The corresponding maximum pressure “pmax” and the mean pressure “pm” can be derived with an 
elastic infinite half-space analysis: 

� = *�0��.� = *� �� L��0$C�*I� M!* (46) 

-

 
Figure 8: JKR model depicting particle deformation in contact area. 
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Figure 9: DMT-model depicting adhesion forces with the affected zones and contact area (marked grey). 

With the Poisson ratio “ν”, the elastic modulus can be expressed as: 

C = O!<j�!�
C4�!6 + !<j���

C4��6 P<!
 (47) 

Based on the JKR-model, the area of contact can be easily derived from the contact radius. 

. = L*I	C 7�0 + *�Ik. + 4��Ik.�0 + 4*�Ik.6�6!�9M!*
 (48) 

“WA” is the thermodynamic work of adhesion per unit area. The JKR-model also gives an equation 

for the pull-off force “lmnopqr” which is proportional to the particle radius “r”. 

�-��sCI = *� �%k. (49) 

The DMT model uses a different approach which accounts for the Van der Waals interaction outside 
the elastic contact area. For the contact area itself, a Hertzian stress profile is assumed. In 1975, 
Derjaguin and Muller [97] demonstrated that the adhesion force between two convex surfaces depends 
on their curvature and their relative orientation towards each other. The total force of adhesion is the 
difference between the molecular attraction and elastic repulsion. According to the DMT-model, the 
contact pressure acts also in the vicinity of the contact area due to molecular attraction; this area is 
marked grey in Figure 9. This molecular attraction causes a flattening of the particle until it reaches 
equilibrium with the elastic repulsion force. The maximum adhesion force on the particle is described 
in equation 50. This force is determined by the particle diameter “d” and the surface energy of the 
adhesion “γ”. It is also the force needed to detach the particle. 

�0$3; = �\� (50) 

The pull-off force for the DMT-model is given by: 

�-��$3; = ��%k. (51) 
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Figure 10: Contact relations for the Hertz-, DMT- and JKR-models. 

The applicability of the Hertz-, DMT- and JKR model is restricted to specific types of interactions 
between surfaces. JKR- and DMT model lack a comprehensive description on how to deal with border 
areas. The JKR model applies to softer or compliant solids. These particles have a low elastic modulus, 
large radius of curvature and large adhesion energy or surface energy. The DMT model on the other hand 
is used to describe hard or stiffer solids. These particles generally have small curvature radius and a 
much weaker surface energy. 

3.2.1.2  Particle Detachment 

The following paragraph briefly describes the most common interaction forces that lead to particle 

detachment. Particle detachment processes can occur during particle collection inside an inertial 

impactor. These re-entrainment processes are the main reason for a significant loss of collection yield. 

The main reasons for this are excessive air flows which lead to a significant re-entrainment process. 

Detachment and re-entrainment processes are also needed to understand the basics of 

micromanipulation and of other particle transfer techniques. The most difficult part of 

micromanipulation is the deposition of the microparticle onto the new substrate. 

The preceding chapters explain the adhesion-forces that act on a sphere that is in a stationary 

equilibrium on the surface. “FA” is the surface force, “FT” which is directed tangentially to the surface and 

the external normal force to surface “FN”. The gravitational force “FG” is much lower for micrometer sized 

particles because the adhesion force surpasses it, sometimes even up to a factor of 106. According to 

Phares et al. (2000) [101], the particle size is a very important property when it comes to particle 

detachment or re-entrainment. Corn et al. (1965) [102] and Kousaka et al. (1980) [103] investigated the 

re-entrainment of small particles by air from flat surfaces. They found out that the predominant 

detachment mechanisms were rolling motions caused by shear stresses and due to particle-to-particle 

collisions. An insignificantly low number of particles was detached due to lift-offs. The correlation of air 

velocity and particle diameter is very important. The relation between “FG”, adhesion force “FA”, external 

tangential to surface “FT” and external force normal to surface “FN” and contact area radius “a” is given 

in equation 52. 

t�; + .�, > .�0 (52) 

The force required to detach a particle can be expressed by the following equation which is derived 
from equation 52 and auxiliary components which in turn are derived from the JKR-model (49) and the 
Stoke equation (36). 

�	 �t�* + !. !�.t�* > *	 .�Y� (53) 
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Figure 11: Particle with radius “r” adherent on surface with a contact area “a”. Several forces act on the 

particle including: gravitational force “FG”, adhesion force “FA”, external tangential to surface “FT” and 

external force normal to surface “FN”. 

With “η” the dynamic viscosity of the gas and „d“ the particle diameter. The shear stress “τ” to 

detach a particle is expressed: 

t > *	.�Y*	���v!.!�.�� (54) 

Smedley et al. (1999) [104] state the flow close to a stagnation point of an impinging jet can be 

described by laminar boundary layer theory. The maximum shear stress “τmax” is within a radial distance 

which is correlated to the jet height above the surface “H”. “τmax” can be expressed as a function of the 

Reynolds number “Re”, the nozzle-to-surface distance “S”, the nozzle diameter “W”, the gas density at the 

nozzle exit “ρg”, the average flow velocity at nozzle exit “v”[d] and a correctional term for the gas 

compressibility “f(M)” which is a function of the Mach number “M”; see equation 55 and 56. 

t�.: = 		.�?�_��@?!v�436@
w�7 Rk9�  (55) 

The empirical function for the Mach number for air jets was derived by and Phares et al. (2000) 
[105]: 

�436 = �. ��3 − *. �3� + *. ^3* (56) 

Phares et al. (2000) [101] state that the detachment mechanics just apply to the area around the 
impinging point up to “rmax”. The transition to turbulent boundary layer conditions at radial distances 
beyond “rmax” is the beginning of the wall region where the detachment model does not work. Particle 
entrainment can occur with the amplitude of the fluctuations of these shear stresses. Detachment of 
particles in the size range of a few micrometers is more difficult than detaching larger particles. The 
particle size is actually more important as the particle material for the detachment process. Also the 
particle substrate interaction plays an important role. All depicted detachment models share a common 
characteristic: they are based on the assumption that a force balance in a viscous sub-layer of the plane 
and all models predict a sudden release of particles when a certain threshold in the flow velocity is 

 

[d]  The product of the gas density and the average flow density is called the dynamic pressure: “pdyn=ρg . v” 
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exceeded. A derivation of the detachment due to shear stresses is the detachment by tangential drag 
forces, which can be considered as a special case of the previously mentioned case. Particles that are 
impacted on the surface are not exposed to the constant air flow field; therefore the Reynolds equation 
cannot be applied. The flow speed varies dramatically and is dependent on the distance to the surface 
and the location relative to the air-flow. Gaseous air flows close to the surface have to be considered 
viscous. The Reynolds number plays an important role in describing the particle behavior in a gaseous 
flow. For low Reynolds numbers the tangential force can equal the Stoke or Newton drag forces. 
According to Leighton et al. (1985) [106] the tangential drag forces can be calculated by the Stoke drag 
force; with “τ” as the shear stress. This equation can be applied under the assumption that the gaseous 
flow is uniform: 

� = *� �t�� (57) 

Leighton et al. (1985) [106] also investigated the forces necessary to lift a particle off a surface. 
Particles which are deposited on a surface are exposed to a certain amount of lift forces even when the 
fluid inertia can be considered negligible. 

� = �. �x�4t��6 7t��
�Y 9 (58) 

With “v” the flow speed at the center plane of the particle, “η” the dynamic viscosity of the gas and “d” is 
the particle diameter. Equation 58 can be simplified by assuming a linear velocity profile over the 
particle height: � = !. !�t�* (59) 

3.2.2 Particle Collection – Sampling, Cut-Off Diameter 

Inertial impaction proved to be the most efficient method to collect microparticles from the air 
stream. IAEA uses a self-developed one-stage design to collect microparticles for (non)-destructive 
particle analysis, see Figure 12. Particles were collected within a few minutes yielding in a sufficient 
number of microparticles. All particles were collected directly onto the substrate: in the beginning, when 
the installation was not fully adjusted due to conversion work, the collection yield was not sufficient 
enough to perform subsequent analysis. Therefore, some substrates were covered with an adhesive 
organic layer, either PIB-nonane or Apiezon-L grease. Later on, with a fully adjusted system, no adhesive 
layers on the substrate surface were needed obtain a sufficient collection yield. 

According to the studies of Marple and Willeke (1976) [107] and Juric and Wang (1993) [108], 
there a few key properties for round, one stage inertial impactors that ensure an efficient sampling. They 
recommend an “S/W” ratio of 1.0. “S” is the jet to substrate distance and “W” is the nozzle diameter; 
another feature is the “T/W” ratio. “T” is the nozzle throat length. Particles entering the nozzle adapt 
their speed according to the nozzle diameter and length. A critical component in the assessment of the 
impactor efficiency is the Reynolds number “Re” and the so called cut-off diameter. The collection 
efficiency curve is a very important characteristic feature of an impactor. 

 

Figure 12: Left: Jet trajectories for an inertial impactor (see Marple et al. (1976) [107]), Right: Schematics 

of inertial impactor used at SGAS-ESL. 
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It depicts the percentage of particles that are impacted onto the impaction stage, depending on their 
aerodynamic diameter / respectively by their inertia. An ideal efficiency curve has a very distinct turning 
point thus a “sharp” cut-off diameter; in theory, every particle with a diameter smaller than the cut-off 
diameter is not impacted, see Figure 13. 

In reality, undersized particles are collected to a certain degree and oversized particles are 
not - Figure 13 depicts the ideal and the actual collection efficiency curve. The cut-off diameter “d50” is 
defined as the threshold for the particle size where the collection efficiency is 50 % and it represents the 
mid-way point of the collection efficiency curve. Factors such as the nozzle diameter, the air flow rate, 
re-entrainment effects, interstage losses and the “S/W” and “T/W” ratios affect the actual impactor 
efficiency. One way to increase the collection efficiency is to use a so-called cascade impactor, which 
consists of multiple stages consecutively mounted. That means a small sub-micrometer cut-off diameter 
requires a small nozzle and high air flow velocities. According to Ensor (2011) [109], the limitations for 
inertial impactors cut-off diameters are in the range of 0.2 - 0.3 µm. With the usage of micro orifices 
these limitations can be extended down to 0.05 - 0.06 µm. 

 

Figure 13: Determination of the cut-off diameter by plotting the collection efficiency curve. 
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3.3 Micro-Analytical Techniques 

3.3.1 Scanning Electron Microscopy (SEM) 

SEM instruments were used extensively in this work. They were used to assess the geometry, the 

size distribution, the morphology and the elemental composition of bulk quantities and of single 

microparticles. All uranium microparticles were directly assessed inside the SEM. No further particle 

preparation was performed. Even at Acv >15 keV, no particle movements could be observed. Particles 

were routinely investigated with SEM instruments using Tungsten and LaB6 electron guns. Elemental 

composition was verified using energy dispersive X-Ray spectrometers (EDX) detectors made by Oxford 

Instruments and their native software. SE and BSE images were taken manually or in an automated 

sequence with or without elemental verification via EDX analysis. Large areal scans were derived from 

single SE/BSE images which were belatedly composed together with image acquisition software (FIJI 

and IMAGEJ). 

Scanning Electron Microscopy (SEM) is the preferred tool for imaging objects at in a wide range of 

magnifications (10 - 10.000 x). In SEM, the area of interest is irradiated with a focused electron beam. 

The area of interest can either be rastered or a single point can be investigated using a static signal. The 

interaction of the electron beam with the sample causes various interactions with the emission of 

secondary electrons, backscatter electrons, characteristic x-rays and other photons of various energies. 

The volume which interacts with the electron beam is called “interaction volume” and it can be used to 

determine characteristics like surface topography, crystallography, elemental composition, size, 

geometry, density, etc. Another important feature of SEM imaging is the large depth of field in 

comparison to a normal optical microscope, providing more information about the specimen. A SEM 

instrument uses a beam of high energy electrons focused at the specimen surface to generate an artificial 

effigy of specimen. This “image” is not an actual image. It is a visual representation of the sequential 

point by point (rastering) illumination of the specimen surface with the electron beam probe. The 

strength of the signal generated from each point varies due to topographical or compositional reasons. 

A standard scanning electron microscope (SEM) consists of six main components: (1) electron gun 

(2) a column through which the electron beam travels and which houses a series of lenses in order to 

shape and focus the electron beam – the so-called “electron column”, (4) a specimen chamber, (5) 

detectors and (6) a processing / operating unit. All of the equipment from (1) – (5) is kept under vacuum 

and a schematic layout is depicted in Figure 14. Electron guns generate a beam of electrons which is 

subsequently used to investigate the specimen. During this project, only thermoionic electron guns made 

from Tungsten and LaB6 were used. After leaving the gun, the electron beam passes into the so-called 

electron column which consists of a variety of lenses and coils. A basic setup for an electron column 

consists of a condenser lens, scanning coils and an objective lens. The condenser lens controls the 

electron beam intensity. The scanning coils can deflect the electron beam in both horizontal and vertical 

direction. This is applied when the sample surface is rastered with an electron beam hence the name 

“scanning electron microscope”. The objective lens focuses the electron beam on the specimen and can 

de-magnify it. When the electron beam interacts with matter, the electrons dissipate their kinetic energy 

into the target by elastic or inelastic scattering or absorption and a bulb like interaction volume is 

created. As a consequence of this interaction, electrons and electromagnetic radiation is emitted. This 

can be detected and be processed and pictorialized. Two types of X-rays are emitted: (1) Bremsstrahlung 

or continuum or background X-rays and (2) characteristic X-rays. Characteristic X-Rays, continuous X-

Rays and fluorescent X-Rays are emitted from deeper within the interaction volume. The size of this 

interaction volume is dependent on the accelerating voltage, on the atomic number of the target and its 

density. Depending on these parameters the interaction volume varies significantly. 
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Figure 14: Layout of a Scanning Electron Microscope. 

The primary electron beam generates secondary electrons such as Auger electrons close to the 

surface (about 10 Å from the surface). Low energy (< 50 ev) electrons are generated from a layer-depth 

of up to 10 nm. These electrons can be detected by an Everhart-Thornley detector which is basically a 

scintillator tube and a photomultiplier. These secondary electrons (SE) show the topographical contrast 

of the surface because the detected intensity is dependent on the angle of the incident beam and the 

sample surface. Electrons that originate from deeper within the sample are of higher energy and are 

called backscattered electrons (BSE). The intensity of those BSE is comparatively speaking poorer than 

those of SE. But BSE are common used in SEM studies. The brightness of a backscattered image increases 

with its atomic number. SEM analysis requires a conducting surface, which is why uranium particle are 

deposited directly onto SI-wafer chips or graphite disks, no additional conductive coating had to be 

applied to the particles. There are various ways to transfer multiple or bulk materials of microparticles 

onto an appropriate substrate. For instance, Donohue et al. (2008) [10] used a conductive tape attached 

to an SEM-stub or particles were directly collected onto Nuclepore filters, see Erdman et al. (2000) [40]. 

Most commonly at SGAS-ESL particles are transferred via inertial impaction, see Boulyga et al. (2015) 

[110]. Energy Dispersive X-ray Spectroscopy (EDX) is a qualitative and quantitative X-ray micro-

analytical technique that is coupled with a SEM hence SEM-EDX. SEM-EDX can provide information 

about the elemental composition and works for elements with an atomic number “Z” Z > 3. The X-rays 

are detected by an energy dispersive detector: thus a spectrum can be derived which is an intensity 

distribution over the energy scale. The characteristic X-rays allow the elements to be identified while 

the intensities of these characteristic X-rays may allow quantification. The spatial resolution of the EDX 

analysis is determined by the size of the interaction volume in other words by the accelerating voltage, 

the atomic number of the sample and the density of the sample. For EDX the depth resolution is just a 

few microns. For instance, a Monte Carlo simulation performed with DTSA-II on 1.0 µm U3O8 particle 

(with a homogenous density of 8.3 g/cm3, AcV = 25keV) revealed a depth resolution of about 0.4 µm. 

The detection limit of EDX analysis is substantially dependent on the sample composition and density, 

but it generally in the order of 0.1 0.5 wt%. It therefore lacks the sensitivity used in ultra-trace analysis, 

see Chapter 5.2.3.3. SEM-EDX was used extensively to verify the existence of uranium in microparticles. 

A combination of SEM-EDX is routinely used for the elemental verification of micro entities in nuclear 

safeguards related research, see Donohue et al. (2008) [10], Kips et al. (2007-2011) [29] [30] [31], 

Pointurier et al. (2010) [135] and many more. 
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3.3.2 Secondary Ionization Mass Spectrometry (SIMS) 

Secondary Ionization Mass Spectrometry (SIMS) is a very effective technique to determine isotopic 

abundances of bulk material and single micrometer sized particulates. In particular, high resolution 

SIMS machines with large sector fields are able to distinguish minor and major isotopic abundance more 

precisely than ever before. All elements and compounds that are solid and stable under high vacuum 

conditions can be measured. SIMS is used for various applications, e.g. geochemistry, material and life 

sciences, microelectronics and nuclear forensics to name but a few. 

In principle, a SIMS uses a focused ion beam to bombard the sample. This primary ion beam 

dissipated its energy on impact. Two things occur: (1) a thin surface layer of about 0.1 - 2.0 nm is ionized 

and (2) sputtering occurs. The primary beam interaction leads to the formation of secondary ions. The 

secondary ions are positively or negatively charged, depending on polarity of the primary ion beam. Just 

a small fraction of the secondary ions is extracted and further accelerated and transferred to a magnetic 

analyzer. The complete mechanism of secondary ionization is not yet fully understood giving rise to a 

variety of phenomena when the elemental and isotopic composition or properties of the sample is 

studied. 

SIMS methodologies offer a large variety of measurement procedures such as elemental and 

isotopic analysis. Bulk material or single particulates can be measured as well. SIMS is able to perform 

depth profiling, ion imaging and even ion tomography of three dimensional objects (the lateral 

resolution generally is between 5.0 - 50.0 µm. The basic schematics of the LG-SIMS are depicted in Figure 

15: including the duoplasmatron, the primary column and the analyzer and detection system - taken 

from the Cameca users guide, courtesy of Cameca. 

 

Figure 15: Schematics of Cameca’s IMF1280 LG-SIMS, courtesy of CAMECA. 
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The IAEA operates a CAMECA 1280 LG-SIMS strictly for Nuclear Safeguards applications. It is used 

specifically for (1) the identification and detection of single micrometer sized particles embedded into 

different matrixes (“Needle in the haystack”) and (2) the measurement of selected individual particles 

to assess their uranium isotopic ratios. Those particles originate predominantly from the vicinity of 

nuclear facilities (“environment “) and they are normally collected with a piece of cotton cloth – called 

swipes – by nuclear safeguards inspectors. They have an inherent signature which is correlated to the 

processes performed at the nuclear installation. For identification, large area mappings can be 

performed up to 500 x 500 µm2. IAEA nuclear safeguards inspectors routinely collect around 900 

environmental samples from the nuclear facilities world-wide and around one third are analyzed using 

SIMS. Cameca’s IMS 1280 (HR) is the successor of the IMS 1270 and an upgraded, up-scaled version of 

the IMS 4 – IMS 7f. The introduction of the CAMECA IMS 1280 was an important step forward in SIMS 

technology to the Nuclear Safeguards Community, see Ranebo (2009) [18] [19]. Its increased mass 

resolution power leads to an increase in sensitivity by up to a factor of ten. Multicollector usage enables 

the user to save time in comparison to peak-jump mode. The IMS 1280 (HR) is equipped with an array 

of five moveable detectors (either Faraday Cups or Electron multipliers). Most IMS 1280 (HR) devices 

which are dedicated for nuclear safeguards applications feature a multicollector system including five 

electron multipliers. The IMS 1280 (HR) offers the ability to measure all uranium isotopes 

simultaneously. SIMS is the established technique of choice at SGAS-ESL for uranium isotopic detection, 

identification and measurements due to its high sensitivity, large field mapping capabilities and 

performing in-situ microanalysis. The IMS 1280 (HR) offers several features such as two ion sources (Cs 

and O) and the duoplasmatron ion source can provide positive and negative primary ions. Depending on 

the primary beam polarity, the accelerating voltage can charge the sample positively or negatively. The 

primary beam can be shaped like Gaussian distribution through demagnification of the ion source or the 

beam can be shaped with an aperture. The secondary ions are extracted via an immersion lens. The 

double focusing spectrometer is stigmatic. The name large geometry SIMS is derived by the large magnet 

radius: 585 mm. This increased radius results in a higher mass resolution thus an increased mass 

dispersion. 

Two important correction factors are to be considered when performing SIMS analysis: (1) the 

fractionation mass bias and (2) the hydride correction: (1) the fractionation mass bias effect or mass 

bias is derived from the differential ion transmission during the ionization process until the detection. 

According to Habfast (1998) [111], the measured isotopic ratio changes slightly over the time. A CRM 

has a certified value on the isotopic ratios. The discrepancy between the real value and the measured 

value is considered the mass bias effect. The real value can be derived using the fractionation law that 

accounts for the degree of depletion as a function of time and sample evaporation. (2) The hydride 

correction accounts for the conflicting emergence of interfering hydride-ion-species. For ions with a 

mass/charge ration “m/Q” of m/Q(236) the 235UH+ ion can significantly interfere with the 236U+ ions. In 

order to overcome this issue CRM’s are used as a calibration to evaluate a correctional factor – the so-

called hydride correction – to account for this interference. 

3.3.2.1  Fundamentals of SIMS 

The following section gives an introduction to secondary ionization mass spectrometry, which was 

derived from the sub-chapter “Secondary Ion Mass Spectrometry” by Sangely et al. (2014) [112] taken 

from the book “Sector Field Mass Spectrometry for Elemental and Isotopic Analysis – New Developments 

in Mass Spectrometry” edited by Prohaska et al. (2014): A primary ion beam transfers parts of its energy 

onto the surface of the sample resulting in a change of impulse both for the projectile and the target, 

whereas the target atom is recoiled into the sample lattice and the projectile is recoiled. These recoiled 

particles become themselves second generation projectiles. This subsequently leads to a cascade of 

recoiled particles and fragments until the transferred energy falls below a certain threshold value. The 

accepted basic principle for the sputtering process is based to a series of subsequent collisions, referred 

to as “collision cascade”. Sputtering occurs when the transferred energy is higher than the surface 
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binding energy of the target. In general, the origin of the sputtered fragments is from the first very first 

nm of the surface. The sputter yield “S” is defined as the number of particles removed from the sample 

per impacting primary ion. Depending on the sample property such as the atomic number “Z”, binding 

energy, crystal orientation and the properties of the primary ion beam such as mass, energy, incident 

angle the sputter yield ranges between 5 ≤ S ≤ 25. The total sputter yield in multicomponent materials 

equals to the sum of the partial sputter yields of the constituent atoms. Different phenomena can occur, 

for example, the ratio of two different species does not equal the concentration ratio found on the active 

surface. In fact, the near surface region tends to be depleted in elements which have a higher sputter 

yield and is enriched with elements that have a lower sputter yield, and this phenomenon is called 

preferential sputtering phenomena. The interaction of sputtered particles originating from the upper 

surface layer with underneath lying particle can be traced down a few nm into the sample; this 

interaction volume is called “damage volume”. Inside this damage volume the structure and composition 

of the sample is strongly altered due to the implantation of primary ions and the transport of atoms from 

one layer to another. The depth of the damage volume depends on the sample properties (Z, density, 

crystal orientation) and the primary beam properties (mass, energy, incident angle). The majority of the 

sputtered material consists of neutral atoms. In order to describe the formation of secondary ions 

“WSec.Ions” equation 60 is used: 

kR'/.5�
8 = ,A�y'% �� ��
8 ��%�'�;��.& 
A�y'% �� .���8 �� �G' 8.�' 8�'/�'8 (60) 

The ionization probability is defined as the ratio between the number of ions being formed and the 

total number of atoms (molecules) of the same species initially present. The ionization probability is 

generally between a few tenths of % to a few %. The ionization rate is a critical SIMS parameter because 

it is correlates directly to its sensitivity. A positive ion formation rate tends to increase with the 

ionization potential and the negative ion formation rate tends to increase with the electron affinity. The 

use of oxygen as a primary ion source enhances the positive ion formation and cesium sources tend to 

favor formation of negative ions. Ionization efficiency depends on the chemical environment of the 

sputtered species. Oxygen bombardment leads to the implantation of oxygen ions into the surface layer 

and to the formation of metal-oxygen bonds. These metal-oxide bounds break during the sputtering and 

the oxygen reduces, captures one electron due to its high electron affinity while the sample constituent 

is positively charged. 

When the bombardment of the sample starts, the concentration of implanted ions increases 

dramatically: from zero to a saturation level. The saturation level is defined as the number of newly 

implanted primary ions equal to the number of primary ions leaving the damage volume due to recoil- 

and sputtering effects. Due to preferential sputtering, the ratio between sample elemental and isotopic 

composition changes over the time to a point of maximum alteration. This point is reached once the 

active surface reaches a depth that is exceeded by the damage volume. This time span is called transition 

or pre-equilibrium state. It is characterized by a short run sputter yield, ionization rate and sample 

surface composition that compromises the use of common calibration methods. There are two different 

methodologies to compensate for this limitation: (1) static SIMS and (2) dynamic SIMS:  

(1) Static SIMS refers to a methodology where the primary ion fluence “Φ” (number of particle per area) 

is kept below a certain threshold to ensure that the emitted ions do not originate from a former 

sputter area and are therefore not affected by this event. The active surface is therefore very thin 

and is just composed out of the first outer surface layers. Static SIMS is a technique strictly limited 

for surface analysis and is often used in time of flight (ToF) analyzers. 

(2) In dynamic SIMS, the ion fluence is adjusted to the bombarded area and high enough to etch layer 

by layer of the surface. Analysis is restricted to layers where the equilibrium state prevails (few nm 

– few hundred µm from the surface). During the equilibrium state, the sputter yield and the 

ionization rates are constant and the chemical, elemental and isotopic composition of the sputtered 
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material is expected to resemble the composition of a fresh sample. On a microscopic level, the 

dynamic SIMS leads to the formation of craters that deepens at a constant sputter rate (sputter rate: 

0.5 – 5 nm/s2). The sputter rate is dependent on the primary ion beam density and the sputter yield. 

Since the sputter yield varies as a function of the crystal orientation the craters in polycrystalline 

materials tend to be grinded at the bottom. 

Rare-earth elements and uranium and thorium form already ions with the primary ion or the 

matrix; under oxygen bombardment positive oxides and dioxide ions are formed. Secondary ions are 

sputtered in all directions their translational kinetic energy ranges from a few eV to a several hundreds 

of eV. Since the ionization rates vary from element to element and isotope to isotope, the measurement 

of trace elements and their isotopic composition is highly dependent on the availability of suitable 

reference materials; to match the sample matrix, elemental-, isotopic composition, chemical 

environment, etc. Solid samples can be analyzed by SIMS under the assumption that they are deposited 

on a flat and conductive surface and that they can withstand ultra-high vacuum conditions – high 

precision isotopic analysis requires a mirror-polished surface. Non-conductive specimens have to be 

coated with gold or carbon (comparable to SEM) and a charged combination for the primary and 

secondary polarities. Cameca 1280(HR) has the option of performing “ion microscopy”: on the IMS 1280 

the optics were constructed in such a way that the extracted secondary ions converge into the transfer 

optics by forming a stigmatic optical system. Which means an image of the sample surface which is in 

the focal plane is generated in which the ions of the selected mass converge into a single image point. If 

the ion beam is defocused or a rastered primary beam is used, such a mass filtered ion image can be 

projected onto an appropriate detector at the end of the mass spectrometer such as a micro-channel 

plate (MCP). This method is generally used for elemental and isotopic mapping. For ion microscopy, a 

maximal lateral resolution of ~ 2.0 µm for analyte concentrations down to 100 µg/g can be achieved. 

Microprobe is an additional imaging capability of all SIMS instruments and is an in situ micro analysis 

tool for the detection of trace elements with detection limits in the ppm – ppb range: a focused ion beam 

is used to raster the sample surface. A two dimensional intensity distribution is generated out of the 

time-dependent intensity profile of the electron multipliers generated by the secondary ions. In 

microprobe mode, the lateral resolution depends on the primary beam cross-section in the focal plane. 

Normally, a static beam with low intensities is used, nevertheless small volumes of a few µm3 can be 

sputtered in a few minutes. 

3.3.3 Raman Spectroscopy 

Raman Spectroscopy was used to identify the uranium-oxide composition, the crystallinity and 
crystal orientation of selected single uranium particles. In order to measure single, micrometer sized 
uranium particles, confocal Raman Spectroscopy instruments by Renishaw and Vitec were used. 

3.3.3.1 Fundamentals of Raman Spectroscopy 

According to Dietzek et al. (2011) [113], an induced molecular dipole moment is generated as a 
reaction of the molecules to an incident electromagnetic wave. That interaction generates an oscillating 
dipole moment which emits radiation – it scatters light. The basis of that dipole moment is the 
polarizability which depends on the nuclear coordinates and therefore on the vibrations of the molecule. 
The molecular polarizability is the ease with which the electron density distribution of the molecule can 
be distorted by an electric field. The electric dipole moment of a molecule is induced by electromagnetic 
interaction. The induced dipole moment is a vector and can be written as followed: 

-zz{ = �|ezz{ (61) 

The induced dipole moment „P“ is a vector, such as the induced electric field „E“ while the 
polarizability tensor „α“ is a 2nd rank 3 x 3 tensor. 
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The polarizability of the molecule can be described mathematically as a Taylor expansion that 
includes the static polarizability and a factor to take account for small vibrational displacements: 

� = �� + ���( ( + ⋯  (63) 

With „α0“ the static/equilibrium polarizability, „Q“ is a vibrational coordinate and the expression 
„∂α/∂Q“ as a vibrational modulation or molecular polarizability. The polarizability is expressed as a 
function of the vibrational coordinates of the investigated molecule. 

( = (�/�84��j��y�6 (64) 

“Q” can be expressed as a cos-function of the vibrational state and it is a normal vibrational 
coordinate with “Q0” as the maximum value of “Q”. The Taylor Expansion describing polarizability tensor 
can be modified to the following equation - This equation is limited to the static, linear polarizability in 
the vibrational modulation. 

� = �� + ���( (�/�84��j��y�6 (65) 

When monochromatic, highly polarized laser light – with an oscillating electric field “E” - interacts 
with the molecules of the target, it induces an oscillating molecular dipole moment at the frequency of 
the incident radiation “ν“. 

e = e�/�8 4��j�6 (66) 

The induced oscillating dipole moment emits radiation with a lower frequency/energy than the 
incident radiation: E=hν > E‘=hν‘; scattering in different directions occurs. The expanded expressions for 
the static and vibrational components of the polarizability tensor “α” can be integrated into the initial 
expression for the induced dipole moment: 

-4�6 = ��e�/�84��j�6 + ���( (�e� 7?/�84��j�6@?/�84��j��y�6@9 (67) 

“�������42���6” is the term to express the induced dipole moment at the frequency of the incident 
radiation. The second term combines the incident radiation frequency with the vibrational frequency of 
the molecule and the vibrational modulation of the polarizability. Applying a trigonometric identity 
equation 62 can be converted to the following expression to describe light scattering from oscillating 
molecular dipole moments: 

-4�6 = ��e�/�84��j�6 + ���( (�e�� �/�84��4j − j��y6�6 + /�84��4j + j��y6�6�  (68) 

The different components of this equation are easily identified: the static value for the Rayleigh 
Scattering can be expressed as the following term “�������42���6”, and the combined Stokes Raman 
Scattering component – which is the subtractive component - “���42�4� − ����6�6” and Anti-Stokes 
Raman Scattering component “���42�4� + ����6�6” – which is the additive component - to account for 

the vibrational modulation induced by the incident radiation “
���� ����� ����42�4� − ����6�6 + ���42�4� +����6�6�”. 

The number of Raman scattering components depends on the number of Raman active nuclei. A 
change in the polarizability has the effect that atomic bonds start to vibrate: vibrational states can be 
symmetric stretches, asymmetric stretches, scissoring (in and out of plane vibrational modes). Whether 
a molecule is Raman active or non-active is determined by the change of the polarizability. Inelastic 



36 

scattered light derives from non-zero derivative of the polarization at the equilibrium. This means that, 
if the polarizability of a vibrational mode around the equilibrium position is not equal to zero (δα/δQ≠0), 
then this vibrational mode is Raman active. 

5 ∝ ��| ∙ eRzzzz� ∙ e�zzzz���
 (69) 

This expression can be considered an intuitive “selection rule” for Raman scattering. When a 
molecule is Raman active the emitted Raman signature is dependent on the magnitude of the Raman 
polarizability tensor. The allowance of a Raman mode is strictly dictated by “α�”: if “α�  ≠ 0” if these 
criterion is met a molecule is considered Raman active. The intensity is proportional to the scalar 

product of the vector of the incident polarization “��´ ” times the collection polarization (the orientation 
at which the incident radiation is collected) and time the polarizability tensor. Raman scattering is 
basically the difference between a ground state “E0” and an excited state “E1” and is basically an inelastic 
scattering of a photon off a molecular bond. The scattered Raman intensities are dependent from the 
incident radiation energy and frequency. For simplicity reason the energy and frequency dependence of 
the scattered Raman intensities is exemplified by Stokes radiation. Starting from equation 69 which 
describes the induced, oscillating dipole moment: 

-4�6 ∝ 7���(9� /�8¡?4j − j��y6@�¢e� (70) 

Each oscillating dipole serves also as a Hertzian dipole - generating secondary oscillation. The total 
scattered Raman intensity “IStokes” is proportional to the emitted power by the induced dipole moment. 

5R��b'8 ∝ 7���(9� 4∝ −j��y6	e�� (71) 

Equation 79 shows the proportionality of Raman scattering with excitation wavelength: IRaman ∝ ν4. 
Another feature of the laser wavelength “λ” is the fact that the shorter the wavelength the higher the 
lateral resolution “Δx”: 

∆: = �. �! 
,0 (72) 

 The lateral resolution depends on the excitation wavelength and on the numerical aperture “NA” of 
the objective. For shorter wavelengths (< 350 nm), the number of appropriate objectives with suitable 
NA is limited, but Raman excitation is high. At shorter wavelengths, the energy per quantum is high and 
can start damaging the sample. At longer wavelengths, lateral resolution decreases, but the Raman 
efficiency drops and fluorescence effects are less likely to occur. Picking a suitable laser is therefore 
crucial. In general, a laser should have a Gaussian beam profile with a very line shape to ensure 
broadening of the emitted Raman bands, have a stable frequency, be linearly polarized and be stable in 
intensity output. 

3.3.3.2 µ-Raman Spectroscopy 

µ-Raman investigations of micrometer-sized uranium entities offer additional, valuable 
information for nuclear safeguards applications, especially with regards to micrometer sized uranium 
particles. However, the analytical techniques have to be extremely sensitive as those particles contain 
pg-level of uranium. Uranium compounds have been investigated routinely with Raman analysis in 
geological and forensics studies for over 40 years in order to assess the morphology and crystal structure 
of microcrystalline entities, see Manara et al. (2003) [114], Mellini et al. (2005) [115] and Maya and 
Begun (1981) [116], Allen et al. (1987) [117] and Butler et al. (1988) [118] – The following references 
are notable mentioning: Rao et al. (1990) [119], Roeper et al. (2006) [120], Blumenroeder et al. (1988) 
[121], Amme et al. (2002) [122], Graves (1990) [123] and Morris et al. (1996) [124]. There is a significant 
number of references citing the use of (Micro) Raman spectroscopy on the uranium oxygen system with 
(sub-) stoichiometric oxides ratios; see Winer et al. (1986) [125], Palacios et al. (2000) [126], Hoekstra 
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et al. (1961) [85] and [127], Guéneau et al. (2002) [90], Labroche et al. (2003) [128] and [91], Peakall et 
al. (1960) [78], Grønvold (1955) [129], McEachern and Taylor (1998) [130], Thein and Bereolos (2000) 
[131] and more recently Nipruk et al. (2011) [132]. In particular, uranyl compounds are of special 
interest for nuclear waste and disposal research since they can exist in natural mineral formations. Micro 
Raman Spectroscopy is a well-established technique to investigate the complexity of the uranium oxygen 
system, see Biwer et al. (1990) [133]. MRS is elaborately used in nuclear forensics related research, e.g. 
see Pidduck et al. (2006) [11] and (2008) [134] and Kips et al. (2009) [31]. Since the late 1980’s micro-
Raman spectroscopy is used to detect and distinguish uranium compounds. Generally bulk materials of 
polydisperse uranium species are measured. Very rarely single micrometer-sized particles are 
investigated. Pointurier and Marie et al. (2010) [135] and (2013) [136] or Stefaniak et al. (2006) [137], 
(2008) [138] and (2013) [139] demonstrated the benefits of MRS for nuclear safeguards applications. 
They used standalone and coupled SEM-Raman devices to detect certified uranium compounds and 
artificial micrometer-sized uranium particles. According to Pointurier and Marie (2010) [135,] MRS 
offers a spatial resolution of < 1 – 10 µm which is superior to micro-infrared (spatial resolution: 
20 - 400 µm) and micro-XRF (spatial resolution: 50 - 3000 µm). However the analysis of micrometer 
sized uranium entities by MRS is difficult due to fluorescence and intense coloration. Also laser induced 
sample heating can actually lead to a degradation / oxidation of existing U-species as reported by 
Pointurier et al. (2010) [135] and Jégou et al. (2010) [140]. 

In the course of this work, several uranium compounds will be discussed, e.g. 1) UO2F2, (2) U3O8, 

(3) UO2, (4) Uranyl nitrate Hexahydrate (UNH) and (5) Ammonium Diuranate (ADU). UO3 was not 

measured because it was not available; therefore a small introduction into the behavior and spectra 

analysis will be given: UO3 exists in different crystalline phases: α-, β-, γ-, δ-, ε- and an amorphous  UO3, 

see Hoekstra et al. (1961) [85] and [127]. All six UO3-modifications have different hydration states - e.g.: 

UO3 . 0.5 H2O, UO3 . 0.7 H2O, UO3 . 0.8 H2O, UO3 . 2 H2O, UO3 . 2.9 H2O and many more. According to 

Dawson et al. (1956) [141] and Sobry et al. (1973) [142], the U-O system is rather complex and leads to 

the formation of various stoichiometric and non-stoichiometric uranium-oxide species. According to 

Wheeler et al. (1964) [79] and Weller et al. (1999) [143], the two most common hydrolysis products of 

UO3 are α-UO3(OH)2 and meta-schoepite (UO2)4O(OH)6 . 5 H2O. Sweet et al. (2013) [93] describe the UO3 

hydrate state as a “complex situation”. 

According to Wheeler et al. (1964) [79], α-UO3 is formed by thermal treatment of amorphous UO3 

at temperatures around 450 °C. Not only α-UO3 can be formed but also sub-stoichiometric U2.9. The 

crystal structure of α-UO3 has, according to Cordfunke et al. (1969) [144], an orthorhombic structure 

whereas Wheeler et al. (1964) [79] claim to have found indications for a hexagonal structure. The 

formation to β- and γ-UO3 is formed at 500 – 550 °C in air while a fast heating rate of ≥ 35 °C/min leads 

to β-UO3 while slower heating rates ~ 3 – 5 °C/min-1 result in the formation of γ-UO3. According to 

Hoekstra et al. (1961) [85] (α-, β-, γ-) UO3 decomposes directly to U3O8 at temperatures 550 – 680 °C. 

UO3 was not measured due to the lack of appropriate reference material. Nevertheless, reference data 

on UO3 obtained by the very same machine by Pointurier and Marie exists and is used for comparison. 

According to Pointurier et al. (2010) [135], the 785 nm laser provides better results because the 

fluorescence is minimized in comparison to the 514 nm laser. Pointurier measured an intense band at 

845 cm-1 and a weaker one at 1052 cm-1 (with a 785 nm laser) which corresponds with Pidduck et al. 

(2006) [145] with a band at 830 cm-1 and 840 cm-1 with a 514 nm laser. Additional reference from 

Canizarès et al. (2012) [146] indicates a band at 840 cm-1. Palacios et al. (2000) [126] report two peaks 

at 768 cm-1 and 846 cm-1 with a 514nm laser. Investigation on γ-UO3 and hydrated UO3 (Meta-Schoepite: 

α-UO2(OH)2) with a 785 nm laser by Sweet et al. (2013) [93] show peaks at 220 cm-1 (weak), 339 cm-1 

(strong), ~ 380 cm-1 (weak), 484 cm-1 (middle) and a strong one at 767 cm-1 for γ-UO3 and ~ 280 cm-1 

(weak), ~ 370 cm-1(strong), ~ 430 cm-1 (weak) and a strong peak at 840 cm-1. According to Sweet (2013) 

et al. [93], meta Schoepite shows a strong peak at 841 cm-1, α-UO2(OH)2 has one peak at 840 cm-1 (strong) 

and γ-UO3 has three peaks: 339 cm-1 (strong), 484 cm-1 (middle) and 767 cm-1 (strong). All results are 
listed in Table 1. 
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Table 1: Raman bands identification for UO3 based on references. 

Wavelength, [cm-1] Reference 

1 830-845 s 

UO3: Pidduck et al. (2006) (830cm-1 & 840cm-1) (514nm Laser), Pointurier 

et al. (2010) (845cm-1) (785nm Laser), Canizarès et al. (2012) (840 cm-1), 

Palacios et al. (2000) (846cm-1) 

2 1052 w UO3: Pointurier et al. (2010) 

3 768 m UO3: Palacios et al. (2006) 

4 220 w Meta Schoepite, Sweet et al. (2013) 

5 484 m Meta Schoepite, Sweet et al. (2013) 

6 767 s Meta Schoepite, Sweet et al. (2013) 

7 339 s γ-UO3: Sweet et al. (2013) 

8 484 m γ-UO3: Sweet et al. (2013) 

9 767 s γ-UO3: Sweet et al. (2013) 
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4. Materials and Methods 

4.1 Aerosol Solutions and Particle Production 

4.1.1 Aerosol Solution 

4.1.1.1 Precursor preparation and Dilution Steps 

Certified uranyl nitrate solution from IRMM-183 was used as the source material for preparing the 

uranium input solution for production of particles. IRMM-183 has a nominal uranium concentration of 

148.9 mg/g. ICP-MS measurements determined a concentration of 124 mg/g. Starting from IRMM-183, 

several dilutions have been prepared with ultrapure water (18.2 mΩ). Dilutions have been prepared by 

gravimetrical and volumetrically means. All uncertainties are given with a coverage factor of k = 1. After 

adjusting the uranium concentration to about 200 µg/g an equivalent volume of ultrapure ethanol 

(analytical grade, Merck Germany) is added. 

Table 2: Uranium concentrations of a relevant dilutions and solution – determined by ICP-MS or 

gravimetrical and volumetrically calculations. 

  ICP-MS (k=1) 

  c(U), [µg g-1] Δc(U), [µg g-1] 

IRMM-183 123900 1616.0 

Dilution 1 2238 222.0 

Dilution 2 1876 47.0 

Dilution 3 293 11.0 

Dilution 4 

(mixture, no ICP-MS) 
215 10.0 

Solution 1a [e] 216.6 18.1 

Solution1b 263.5 6.6 

Solution 1c 224.4 6.3 

Solution1d 264.2 4.8 

Solution 1g 326.2 27.2 
 

Table 2 depicts the main dilution-steps and the solutions. The solution concentration refers to the 

diluted solution without ethanol being added. ICP-MS measurements were performed at IEK-6 on a 

quadrupole ICP-MS (Perkin Elmer, SCIEX Elan 6100 DRC). For the production of uranium particles, the 

following solution were used: Solution 1d, 1g, and Dilution 4. Dilution 4 was made of the residues of the 

aerosol solutions of Solution 1c, 1d and 3a and no ICP-MS measurement was performed for Dilution 4, 

see Table 2. The precursor solution was prepared from a certified reference material IRMM-183 which 

was purchased from the Joint Research Centre Institute of Reference Materials and Measurements (JRC-

IRMM). IRMM-183 is a CRM for depleted uranium (DU) with a relatively high mass fraction of 236U. The 

mass and amount fractions of IRMM-183 are depicted in Table 3. 

Table 3: Weight-, Amount- and Amount of Substance Fractions of IRMM 183. 

Mass Fraction (·100) Amount Fraction (·100) Isotope Amount Ratio(s) 

m(233U)/m(U) < 0.000 000 2 n(233U)/n(U) < 0.000 000 2 n(233U)/n(238U) < 0.000 000 002 

m(234U)/m(U) 0.001 935 8(22) n(234U)/n(U) 0.001 968 8(22) n(234U)/n(238U) = 0.000 019 55(22) 

m(235U)/m(U) 0.316 45(16) n(235U)/n(U) 0.320 49(16) n(235U)/n(238U) = 0.003 215 7(16) 

m(236U)/m(U) 0.014 661 8(54) n(236U)/n(U) 0.014 785 8(54) n(236U)/n(238U) = 0.000 148 58(54) 

m(238U)/m(U) 99.666 95(16) n(238U)/n(U) 99.662 76(17)  

 

[e]  No ICP-MS measurement available, value was evaluated by gravimetrical attenuation. 
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IRMM-183 is delivered as a nitrate solution in a sealed glass ampule. The mass of sealed vial was 
weighted beforehand as a redundant measure: m(CRM) = 6.7155 ± 0.0001 g. The volume was 
approximately 5.0 ml. IRMM-183 was delivered with a certified value for the uranium isotopic 
abundances for the 233U, 234U, 235U, 236U, and 238U isotopes and the molar mass MCRM of 238.0407716 
g/mol but not for the concentration. IRMM-183 has a calculated uranium concentration of 148.9 mg/g 
but the true value was determined by ICP-MS and found to be 1.239 . 105 ± 1.616 . 103 [µg/g]. 

Table 4: Specifications of IRMM-183. 

MCRM 238.0407716 [g/mol] 

m(CRM) 6.7155 ± 0.0001 [g] 

VCRM 5.0 [ml] 

c(U)CRM 123.890 [mg/g] 

ρ(CRM) 1.343 [g/ml] 
 

Weighing was performed with a Mettler Toledo XP-205DR scale, and all liquid transfer was 
performed using Eppendorf Research Plus pipettes with 10 - 5000 µL volume. The aerosol precursor 
solution was prepared by mixing a 1:1 mixture of Suprapure water, and analytical grade Ethanol (EtOH 
was purchased by Merck, Germany, << 1 ‰). An aliquot of the CRM-solution was added to the water-
ethanol mixture. Since the orifice vibrates in an ultra-sonic frequency range of about 70 kHz, it can lead 
to minute quantities of air leaching from the precursor solution. If the precursor solution is not degassed 
air trapped within the solution can coagulate at the orifice which will hinder or even disturb the aerosol 
formation process. In order to minimize this risk, all solutions are degassed in an ultrasonic bath for 
about 10 – 15 min. After degassing, the freshly prepared aerosol solutions are carefully transferred into 
disposable plastic syringes with Luer-Lock connectors for the particles production. 

4.1.2 Particle Production 

A vibrating orifice aerosol generator (VOAG, model 2450 TSI Inc.) was employed to produce aerosol 

droplets made from the precursor solutions. For the production of small micrometer sized particles, a 

standard operating feed rate Q = 1.392 . 10-1 cm3/min1 is applied when using the 20 µm diameter orifice 

and a frequency of ν = ~70 kHz was used to generate monodisperse droplets of an approximate volume 

of 3.3 . 104 µm3. 

4.1.2.1 Aerosol Production and Precursor Particles 

Starting procedures include the following steps: In order to prevent heat stasis inside the system, a 
small constant air flow is applied. After the system is heated up to temperature and the vibrational 
frequency of the orifice has stabilized, a disposable 60 ml plastic syringe with the aerosol solution is 
attached to the system. The syringe is attached to the system with a Luer-Lock connection. Before 
starting the aerosol production, it is important to flush the system carefully in order to remove all access 
air inside the VOAG. 

The compression rate for the syringe is slightly increased to build a sufficient pressure of 
~ 200 kPa. After a liquid jet is established, the liquid feed rate “Q” has to be adjusted back to operating 
conditions in order not over pressurize the system and to maintain a steady and constant aerosol jet. 
During the jet adjustment, filtered pressurized air is circulating through the system. Both of the air 
streams, (1) dispersion- and (2) dilution air stream have to be adjusted carefully. During the entire 
microparticle production process, air streams play an integral part. Basically, two different air streams 
are applied to the particle formation process: (1) to ensure the dispersion of the droplets an air stream 
(the so-called dispersion air stream) is introduced to the aerosol generation process. Particles are 
directly dispersed through the dispersion cup into the drying column. The drying column is a cylindrical 
volume of ca. 12 cm in diameter and 40 cm in length which is used for droplet evaporation and aerosol 
droplet dilution to minimize coagulation effects. (2) The dilution of the particles is ensured through the 
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introduction of a second and more powerful airstream, the so called “dilution air stream”. These air 
streams also function as a transport agent for the particles. The air flows have to be carefully adjusted 
so the inertial impactors can operate with a maximum yield (see Chapter 4.1.2.4 and 4.1.2.5) and to 
minimize turbulences inside the system which reduce the particle yield as well. 

4.1.2.2 Particle Conversion – Heat Treatment 

Up to this point, the precursor droplets have already partially evaporated. The combined air 

streams generate an air-flow which is too high to be heated to sufficiently high temperatures within the 

furnace to ensure a proper thermal treatment that guarantees thorough calcination of the particles. The 

reduction of air-flow is achieved with a component called a virtual impactor. It divides the air–stream 

exiting the drying column into two different streams. Two different heaters were used to heat the air 

stream to achieve calcination of the precursor particles. This first was a tubular air heater commercially 

available for aerosol treatment (Dekati® Pressurized air heater) with a heated region in the range of 

300 mm and a final temperature of ca. 590 °C. The second comprised a four zone furnace with a length 

of in total 1200 mm and a final temperature of 1100 °C. Both heating systems were installed in series 

and tested individually and in combination for the second major step of particle production, which is the 

online calcination of the precursor particles. This thermal treatment converts the dried metal nitrates 

into its oxides. According to the literature on thermal decomposition of bulk amounts of uranyl nitrate, 

we expect to get mixed oxides of uranium, especially in the oxidation form of +4 and +6. Calcinated 

particles offer more advantages to the use as RMs as dried particles. Firstly, the actinide oxides are 

chemically far more stable than in its nitrate form. Secondly, the mechanical properties are better; this 

means that the integrity of those spheres is much more stable. This fact is quite important because those 

spheres may have to be manually transferred to another substrate in order to perform particle analysis. 

First the particles are diverted through a small pre-heating system and sequentially attached is a 
four zone furnace. Each zone can be controlled individually. The overall dwell time inside the pre-heating 
system and the oven is less << 10 s in total. The pre-heating system was installed to gradually increase 
the temperature and minimize mechanical stress imposed on the integrity of the aerosol particles 
through sudden heat exposure. To ensure a thorough oxidation process within our setup one has to 
compensate for the short dwell time in which the particles are exposed to the high temperature fields of 
the furnaces. Temperatures were set between 500 - 900°C for the preheating system and the furnace. 

4.1.2.3 Post Processing 

After thermal treatment, the particles are directed into an air-cooled cooling tube before being 

collected from the air flow by inertial impaction. Both air streams are separately controlled by airflow 

meters and two separate membrane pumps. In the end those two air streams are filtered separately, 

each by an ultra-high purity ceramic filter (UHP filter). 

These filtered exhaust airstreams are then discharged into a fume-hood. As a consequence of 

working with radioactive elements such as uranium, it is essential to guarantee a safe handling of the 

whole apparatus. Therefore, the entire setup was designed to be tightly sealed off to minimize cross 

contaminations and enhance cleanliness and accessibility during standard operations and for 

maintenance. Therefore, all components such as the VOAG, the virtual impactor, the pre-heater, the 

furnace, the cooling unit and the sampling unit are connected via DIN sized, industrial tubing, fittings 

and flanges. These crucial components of the setup are installed inside a fume hood. The tubing is mainly 

made of 6mm stainless steel tubes, vacuum flanges and connectors with standard fittings (e.g. 

Swagelok®). A vibrating-orifice aerosol generator (VOAG, model 2450 TSI Inc.) was employed together 

with a furnace system for the production of monodisperse uranium particles. Crucial components of the 

setup are installed inside a fume hood at the IEK-6 in Jülich Germany, see Figure 16. After cooling down 

the final particles are collected from the air stream by inertial impaction. In general sampling takes about 

5 – 10 min per batch. 
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Figure 16: Image of the particle production setup at IEK-6 at Forschungszentrum Jülich GmbH, as of 

December 2014. 

Particles are primarily collected by a one-stage inertial impactor which is a proprietary design of 

the IAEA. The sampling unit is directly attached to the particle production setup. Particles are impacted 

onto a 1” diameter glassy carbon disk (Ted Pella Inc.), see Chapter 5.1. 

4.1.2.4 Setup Evolution and Particular Features 

The following chapters will discuss the setup evolution until about December 2014. The setup is 
installed inside a fume hood at the IEK-6 in Jülich Germany. In the last three years, a prototype setup 
was developed and implemented at the Institute of Nuclear Waste Management and Reactor Safety (IEK-
6) at the Forschungszentrum Jülich GmbH. This chapter depicts briefly the evolution of the setup up to 
the stage of producing uranium oxide particles. Since early 2013, when the first operational prototype 
was implemented for neodymium particle production many components have been changed, rebuild, 
modified or even removed. Here are the most important changes in chronological order: Before 
operating the system with active uranium solutions, it was decided to test the equipment by using a 
surrogate: neodymium nitrate to produce neodymium oxide particles. The idea was to test the system 
rather than mimicking the uranium chemistry. The first running prototype was built in early 2013 and 
was without the heat treatment stage and was used for testing operations of the aerosol generator. 

By May 2013, shortly before the installation of the furnace, it became obvious that the particle size 
can be controlled primarily by the precursor solution concentration. Figure 17 shows at No (1) a 
neodymium precursor-particle on a glass substrate - see left hand side. The concentration was calculated 
to yield in 1µm neodymium oxide (Nd2O3) particles. SEM investigations revealed that the de-hydration 
was not thorough and a lot of residual water was left. Particles were initially collected directly on glass 
or high grade steel targets. Initially, Nuclepore Filters were used to collect particles. They turned out to 
have multiple disadvantages: (1) tedious handling caused by curling up of the filter, (2) low particle 
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retention, (3) intricate handling especially the removal from the sample holder after collection, (4), 
limited imaging capabilities inside the SEM and (5) particles “jumped-off” the filter material due to 
electrostatic charging. A more elegant and easier method was needed, thus introducing inertial 
impaction. Standard inertial impactors developed and used by IAEA (see Chapter 3.2.2) were applied. 

Since then particles have been predominantly collected via inertial impaction on glassy carbon 

disks – so-called “GC-planchets”. Six months later, in November 2013, the first dry neodymium spheres 

were produced with a nominal diameter of around 3.0 µm. At this stage, the furnace was installed and 

the setup proved to be operational, see Figure 17 No (2). This setup consisted of an aerosol generator, 

the virtual impactor, the air heater, a furnace and an inertial impactor sampling system. At this time it 

was decided to start to produce uranium oxide particles. Since then, the drying column has been 

shortened to increase the sampling yield. 

 

Figure 17: No (1): First setup with neodymium precursor particles (wet); No(2): First fully operational 

setup to produce dry neodymium oxide particles; No(3) Uranium oxide particles from SG140521_02; 

No(4) latest evolution step of the setup as from December 2014. 
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Figure 18: SE-image of a corroded high grade steel orifice used to produce uranium particles. 

The first uranium test runs were performed in May 2014 and showed some promising results. SEM 
studies indicated almost monodisperse size distribution. In the time between May and August 2014, 
technical difficulties occurred. This made it difficult to reproduce the promising results from early 2014. 
During that difficult time, batch SG140521_01 was produced, in May 2014, see Figure 17, No (3). 

Technical difficulties occurred until August 2014. SEM investigations revealed the existence of 
various particle sizes and morphologies within single batches. To a large extent, particles size 
distribution was not uniform due to particles that showed signs of voids or particles that had fragmented 
and also inflated particles. At this point, it became obvious that the complexity of the mechanics and 
kinetics of droplet-to-particle conversion needed to be considered and studied. The major cause for 
malfunction was primarily the degradation of the orifice, which is made of high grade steel. It normally 
withstands corrosive media and lasts for months of operation – these components are considered 
routine replacement parts, seeFigure 18 Figure 18. Since May 2014, several components have been 
changed: the orifice was mounted up-side down such that the droplet transport is in direction of the 
gravitational force hereby increasing the transport efficiency in the drying column. Also an optical 
particle counter was added to give an online indication about the particle size and particle output. 
Finally, the heat treatment was limited to a temperature of 500 °C and the large furnace was 
disassembled. Heat treatment is now accomplished by the compact air-heater. And since April 2015 
digital mass flow controllers have been installed to ensure a consistent volume flow to ensure a steady 
aerosol production. This optimized setup consists of the aerosol generator, the air-heater, a cooling 
system and the sampling unit, see Figure 17, No (4). This schema depicts the evolution step of January 
2015. 

Note: In the beginning, the sampling yield of the inertial impaction did not meet our criteria, it was 

far too low.  The excessive loss of particles could be associated to two basic reasons: (1) the great loss of 

particles due to the complex geometry of the system and (2) an excessive calcination temperature of 

900 - 1100 °C. After changing the system by placing the orifice up-side down, shortening the tubing, 

attenuating sharp angles which acted like impactor sites and adjusting the air flows, the sampling yield 

could be restored to acceptable levels. Another measure to increase the sampling yield was the 

introduction of a suitable adhesive. Various organic materials from Si grease, Apiezon-L to 

Polyisobutylen (PIB) have been investigated. Most of the mentioned adhesive highly interfere with the 
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analysis or even hinder to perform such: so far PIB proved to be the best solution. It can easily be burnt 

away by heat treatment of around 300 °C about 30 min. 

Nowadays, a sampling process endures about 5 min and about 21 . 106 particles are generated 

during that time and about 10 . 103 - 20 . 103 particles are collected on a glassy carbon substrate during 

that time – depending on the specific working conditions and setup status as of October 2014. This range 

is more than sufficient for distributing and performing subsequent assays.  

4.1.2.5 Particle Collection via Inertial Impaction 

Sampling played a crucial in the development of the setup. Initially, the sampling yield was too low 
to guarantee further analysis. During the first 1.5 years different methods were applied to collect 
particles from the air stream: starting with filtering, electrostatic precipitation and inertial impaction. 
As discussed earlier, the application of Nuclepore Filters (Whatman, Track Etched Nuclepore Filters) 
introduced a number of difficulties. Electrostatic precipitators are well-established methodologies for 
sampling, but are not as effective as inertial impactors. They offer the most promising sampling yield, 
most user friendly, easy to maintain and very cost effective. IAEA uses a one stage inertial impactor to 
prepare samples for SEM imaging and LG-SIMS analysis. Particles can be directly deposited onto a 
suitable substrate; further particle preparation would be reduced to a minimum. In general, particles 
are sampled with a one stage inertial impactor. This one stage impactor was developed at IAEA. A 
gaseous jet of particles is passed through a thin nozzle to adjust the impaction speed evenly. Directly 
below the nozzle is an impaction plate that bends the air stream by 90°. The air flow hits the sampling 
plate and gets diverted towards the exit. The particles which are present in the air stream try to follow 
the air-flow, but due to their inherent inertia they are forced to impact on the so-called impaction plate; 
smaller particles with a smaller inertia stay airborne. 

Before particle collection, the impactor was loaded with a clean glassy carbon disk (purchased from 
TedPella, diameter: 1”). To collect particle from the setup the one-stage inertial impactor used by the 
IAEA was inserted into the collection air stream by switching a valve which diverts the air stream 
through the impactor. With appropriate air flow, a sufficient number of particle (>> 1000 particle per 
disk) could be collected. Sampling occurred for about 5 – 10 min in average. Afterwards the carbon disk 
was carefully removed from the impactor and stored inside a plastic casing. 

During the development of the setup, it became apparent that the sampling yield was not sufficient 

for higher air flows and that the sampling yield could yet be raised. Therefore, a two stage inertial 

impactor and a cyclone inertial impactor were developed at SGAS-ESL. The two stage inertial impactor 

was used to collect particles for the µ-Raman spectroscopy: basically two one-stage inertial impactors 

were connected together to form a two stage impactor. By modifying the nozzle diameters, the cut-off 

diameter of each stage could be adjusted accordingly: the first stage was designed to hold-off particle 

with aerodynamic diameter well above 5 µm and the second stage was designed to retain particles in 

the range of a few hundred nanometers up to 5 µm. 

4.1.2.6 Final Aerosol Solutions & Production Parameters 
 

Solution 1d, 1g, and Dilution 4 were used to produce uranium oxide particles. Table 5 shows the 

production parameters. All particles were produced using a 20 µm orifice. All particles were collected 

using an inertial impactor either on glassy carbon substrate or on Si-Wafers. Since SG141027_12A the 

large high temperature furnace was no longer used because of the low particle yield and the low quality 

of particles that were treated at temperatures above 500 °C. Instead the air heater with temperature 

control of the output air temperature up to maximum temperature of ~ 570 °C was used for the 

calcination process. Also the inertial impactor system was mounted up-side down during sampling. In 

total six different batches containing uranium particles were produced within the time frame of May 

2014 to March 2015. Table 6 below depicts the batches of interest which will be discussed within this 

thesis. These particle batches represent the evolution of particle production at FZJ.  
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Table 5: Frame conditions during particle production of all six batches of interest. 

# Sample-ID Details 

1 SG140521_02 
c(U) = 132.0 ppm, v = 69.00 kHz, Q = 2.32 10-9 m3s-1, TPH  = 580 °C, T1-4 ≈ 716 - 750, 

t = 30 min, GC-disk, Inertial Impactor, coated PIB-Nonane, Impactor normal 

2 SG141027_12A 
c(U) = 147.0 ppm, v = 69.16 kHz, Q = 2.32 10-9 m3s-1, TPH = 560 °C, T1-4 ≈ removed, 

t = 5 min, Inertial Impactor, GC-disk, Uncoated, Impactor upside down 

3 SG150312_05A 
c(U) = 107 ppm, v = 70.28 kHz, Q = 2.32 10-9 m3s-1, TPH = 394 °C, T1-4 ≈ 580 – 900 °C, 

t = 5 min, Inertial Impactor, 10 x 10 mm Si wafer, uncoated, Impactor upside down 

4 SG150401_14A 
c(U) = 104.6 ppm, v = 70.36 kHz, Q = 2.32 10-9 m3s-1, TPH  = 500 °C, T1-4 ≈ removed, 

t = 5 min, Vacuum Impactor, Glassy GC-disk, Uncoated, Impactor upside down 

5 SG150413_03A  
c(U) = 59.9 ppm, v = 70.32 kHz, Q = 2.32 10-9 m3s-1, TPH  = 500 °C, T1-4 ≈ removed, 

t = 5 min, Inertial Impactor, 7 x 5 mm Si wafer, Uncoated, Impactor upside down 

6 SG150429_02A 

c(U) = 120.0 ppm, v = 40.25 kHz, Q = 2.32 10-9 m3s-1, TPH  = 500 °C, T1-4 ≈ removed, 

t = 5 min, Inertial Impactor, 10 x 10 mm Si wafer, Uncoated, Impactor upside down 
 

Each sample has a unique, identification code: SG(yy)(mm)(dd)_(aa)(b):  with “(yy)” two digits for 
the year (i.e. 2014 → “14”), “(mm)” two digits for the month (i.e. January → “01”), “(dd)” two digits for 
the day, “(aa)” two digits for batch number and “(b)”one digit for the sampling position (position A is 
before position B) – no digit means just one collection position. 

Table 6: Sample-ID, corresponding uranium concentrations, sampling methodology and temperature 

profile for the batches of interest. 

# Sample-ID 
c(U), 

[µg/g] 

Δc(U), 

[µg/g] 
Substrate 

Preheating, 

[°C] 

Furnace, 

[°C] 

1 SG140521_02 132.1 4.8 GC-Disk 480 737-747 

2 SG141027_12A 146.5 11.0 GC-Disk 560 - 

3 SG150312_05A 107.5 11.0 
Si Wafer 

(10x10mm2) 
394 580-900 

4 SG150401_14A 104.6 10.0 GC-Disk 500 - 

5 SG150413_03A 59.9 6.3 
Si Wafer 

(5x7mm2) 
500 - 

6 SG150429_02A 120.0 12.0 
Si Wafer 

(10x10mm2) 
500 - 

 

4.1.3 Particle Transfer Techniques 

Marking techniques using a laser micro dissection system (LMD) was used to engrave references 

points on graphite planchets. These could be new planchets or existing ones with an entire batch 

deposited on top. All particle substrates were retrospectively engraved to re-identify single particles of 

interest. Initially, this procedure was designed to be applied for combined SEM / LG-SIMS analysis. 

Particles were first identified inside the SEM and could then be located inside the LG-SIMS and 

afterwards relocated inside the SEM. The SE-images taken from the totally evaporated particles were 

recorded with this method; see Figure 86 in Chapter 5.4.4.3. 

This principle of particle identification and relocation is applicable not only for idealized, 

monodisperse microparticles, but also for real-life samples. These samples contain a matrix of other 

elements in all sizes and shapes. The most important task for nuclear forensics is the identification of 

particles of interest. So what is actually a single particle? - Answering this question is not as straight 

forward as one might think. Admon et al. (2009) [147] provide a suitable explanation of what can be 

defined as a particle: a single particle is an entity which does not disintegrate while being observed. The 

notion of a single particle however is an arbitrary definition because a particle may be homogenous for 

a specific property but heterogeneous by another. 
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Figure 19: Particle analysis and re-location scheme, see Admon et al. (2009). 

Admon et al. (2009) [147] conclude that the definition is equivocal and depends on arbitrary 

connotations. In our case, homogeneity is the main criterion thus making particles easy to identify. 

Admon et al. (2009) [147] provide an efficient procedure of five of consecutive steps to build up a 

procedure to first identify particles of interest via a three-point algorithm and then relocate these 

particles of interest in any given instrument with a high degree of accuracy. (1) if necessary particles 

have to be transferred to an appropriate substrate, i.e. from cotton swipes to a vitreous graphite 

substrate (this will be referred to a “glassy carbon planchets or disks”), (2) identification and localization 

of particles of interest, (3) if necessary a morphology assessment, (4) particle relocation and transfer to 

a new substrate and (5) re-localization of particle of interest on the new substrate for destructive 

characterization. 

Particle manipulation was performed on either an optical microscope system or within the Jeol JSM 

6610 SEM. Two micromanipulation arms (by Klocke Nanotechnik GmbH) are installed inside the SEM 

chamber of the Jeol JSM 6610 SEM. The arms are driven by piezo motors and are controlled by a 

proprietary Klocke software package. The optical micromanipulator (M205) is from Suruga-Seiki 

Company Ltd. and has two arm manipulators by Mitsutoyo Company. This system consists of a 

micromanipulator system from with two arm-manipulators an optical microscope and a PC to control 

the manipulation process. The transfer process is monitored with an optical microscope (Zeiss Axioplan) 

with a max. magnification (x 2.000) attached to the Zeiss microscope is CCD Color Camera (KP-D 20AP, 

Hitachi Co. with IMAQ 1405 National Instruments). Tungsten fine tip needles were used (tip diameter 

<<20nm). Reference marks were laser-cut with a laser micro dissection system by MMI. Attached to the 

laser was an optical microscope by Olympus. Proprietary MMI software controlled the laser cutting 

process. All reference marks developed by using Microsoft Excel and Notepad++. 

4.1.3.1 Three Point Algorithm 

The triangulation method offers an easy, fast and reliable method for particle relocation. The 

substrate has to be prepared with reference marks, preferably beforehand. There are many ways of 

applying reference marks: either by gluing a mesh, such as transmission electron microscopy (TEM) 

mesh, carving by hand or by laser micro dissection (LMD). The following passage shows the derivation 

for an algorithm to relocate single particles with three reference marks which are not collinear. “P” 

represents the particle of interest, “A, B, C” are three non-collinear reference marks on the substrate, O 

and O` are the stage coordinates system (Cartesian). Any point “P” coplanar with A, B, and C can be 
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expressed as the vector-sum. The components {mi} are independent of the coordinates system, which 

means “P” is defined by {mi} in respect to A, B, C in any coordinates system: m1 + m2 + m3 = 1. 

�zz� = ∑ ��%�zzz{*�¤!  (73) 

�zz� = ∑ ��8�zzz{*�¤!  (74) 

The precise determination of a particle of interest on a substrate is vital to re-locate it for further 
analysis. If {xi, yi} and {ui, vi} are the measured stage coordinates of the reference marks A, B, C in the 
source and target instrument respectively. It can be assumed that there is no movement in z-direction, 
therefore z=const. “R” is the reference marks matrix. 

¥:�=�! ¦ = E:! :� :*=! =� =*! ! ! H ¥�!���*¦ = I ¥�!���*¦    (75) 

The target coordinates of any given point can be calculated if the source coordinates are known. 

The precision of the relocation algorithm is < 10.0 µm. 

�A��� = 7A! A� A*�! �� �*9 ¥�!���*¦ = 7A! A� A*�! �� �*9 E:! :� :*=! =� =*! ! ! H<! ¥:�=�! ¦ (76) 

At SGAS-ESL two different system were at our disposal: (1) an optical microscope (Zeiss Axioplan) 
which was connected to two separate, remotely controlled, micromanipulator arms (M205 
Micromanipulator from Suruga Seiki Company Ltd.) and (2) JEOL JSM 6610 SEM equipped with two 
piezo-driven micromanipulators by Klocke Nanotechnik and controlled by Klocke “NanoControl” 
software. 

 
Figure 20: Top: SURUGA-Particle manipulation system at SAL and bottom: SE-images depicting the 

transfer of single micrometer sized particles, recorded with Jeol JSM 6610. 
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Figure 21: Left: Vector diagram representing the triangulation method. A, B, C are reference marks, P is 

the particle of interest, O the source instrument and O` the target instrument. (See Admon, et al. 2005 [9]); 

Right: Reference marks: (left hand side) either by scratching with a tungsten needle or (right hand side) 

by LMD. 

Picking up particles can be achieved by carefully approaching a thin tungsten needle above a 
particle. If the distance is low enough between needle tip and particle, the particle “jumps up” to the 
needle. Substrates which are coated with an adhesive layer prevent the detachment of particles thus 
making it impossible as a substrate for micromanipulation. Once the particle adheres to the needle, it 
can be transferred to the new substrate. The most delicate phase is the deposition of the particle. Particle 
can be destroyed or maybe displaced on the needle tip thus aggravating the deposition process. 

4.2 Analytical Methods 

4.2.1 Microscopy: Scanning Electron Microscopy and Optical Microscopy 

Scanning electron microscopy investigations were performed at FZJ and at IAEA respectively. At 
IEK-6, a FEI Quanta 200 F SEM was used which is equipped with three separate detectors: (1) an 
Everhart Thornley SE-detector (for high vacuum use) and (2) a gaseous large field SE-detector (for low 
vacuum mode) and (3) with a backscatter electron detector (BSE) (GAD detector). For EDX an Apollo X 
Si drift detector (SDD) from EDAX was used. The vast majority of the SEM investigation was performed 
at SGAS-ESL on a Jeol JSM 6610 SEM. The SEM is also equipped with an EDX, a SE and a BSE detector 
Uranium particle manipulation was performed inside the Jeol SEM with tungsten needles. Particles were 
also analyzed using a SEM Tima SEM equipped with SE, EDX and WDX detectors. Combined FIB analysis 
and SEM investigations were performed on a Tescan Lyra SEM with ToF detector, SE, BSE, EBSD and 
EDX. 

All SEM were used to investigate the particle morphology and characteristics such as size 
distribution and shape. SEM investigation were performed on bulk material (a few hundred particles-+) 
and on single micrometer sized particles. All particles were deposited on glassy carbon disk (Ted Pella 
Inc., 2” diameter) or on Si wafer chips (7x5 or 10x10mm, Ted Pella Inc.). All investigated particles were 
deposited onto the substrate by inertial impaction and no adhesive was used. For SEM analysis no 
coating was necessary. SEM analysis was performed at accelerating voltages (AcV) between 1 - 30kV, in 
average an AcV between 25 – 30 kV was applied. For EDX analysis a minimal AcV of 25kV was applied 
respectively. 

Amongst other things, microscopy was used to determine the particle size, the morphology and to 
do an elemental analysis using SEM-EDX/-WDX. The particle size distribution of each batch was derived 
by image processing of selected SEM-images. The SEM investigations were complemented by optical 
microscopy (Zeiss Z2m with Axio Vision SE64 software) which can cover larger areas of the substrate 
and is used for particle mapping. Optical microscopy is not well suited for a precise determination of the 
microparticle size distribution due to the limitation in resolution even for a high performing optical 
microscope such as the Zeiss Z2m. Therefore, the optical microscopy was just used for the 
characterization of the particle distribution over the substrate surface. All image processing was done 
using FIJI software (Version 1.48c – ImageJ distribution). 
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4.2.2 SE-Computation 

For the computational simulations of secondary electron images CASINO software was used 
(version 3.3.0.2, 64-bit). CASINO is an easy to use Monte Carlo computation program to simulate electron 
interaction with matter such as SE- and BSE image simulations, electron (SE and BSE) scatter trajectories 
and energy dissipation. CASINO was developed by Drouin et al. (2007) [148] at the University of 
Sherbrooke and is an acronym for “Monte CArlo Simulation of electroN trajectory in sOlid”. CASINO 
offers the user to create a three-dimensional sample with defined boundary layers which have specific 
elemental- and stoichiometric compositions, density, shape and geometry. Secondary electron 
generation is calculated by the Moeller equation and by plasmon theory, see Reimer et al. (1986) [149] 
and Kotera et al. (1990) [150]. Moeller’s equation is used for the generation of fast secondary electrons 
while the plasmon theory is used for the generation of slow secondary electrons. Particles investigated 
in this study originate from one single batch and were initially investigated with SEM and identified as 
uranium containing particles with energy dispersive X-Ray spectroscopy (SEM-EDX). These uranium 
particles were produced at FZJ in May 2014 and deposited on a glassy carbon substrate (TedPella, Inc.). 

The production of monodisperse micrometer-sized uranium oxide particles with spray pyrolysis is 
a complex matter. The conditions during evaporation and decomposition play a determining role in the 
formation of the final product for attributes such as particle size, shape, external and internal 
morphology including crystal structure, density variation, and phase variances. SEM studies performed 
at FZJ and IAEA revealed the presence of two distinct particle populations: (i) solid particles with an 
expected diameter of around 1.3 µm and (ii) an unexpected particle species with mean diameter of 
> 5.5 µm. The existence of particle population (ii) can be attributed to a corroded orifice and / or to 
inconsistencies in the liquid feed rate. In order to understand the formation process including 
mechanism and kinetics of the droplet-to-particle conversion the morphology, elemental composition, 
solidity and density of the non-typical species were investigated. The conversion from aerosol droplet 
precursors to solid entities leads to formation of three basic particle populations: (1) solid submicron 
particles, (2) hollow, expanded particles (these particles can exist in several forms as (a) intact hollow 
spheres, (b) shell debris due to impermeable outer shell and (c) combination of shell debris and 
submicron entities), and (3) agglomerations of submicron particles. The same authors also state that the 
exact kinetics and mechanisms of particle formation are still not fully understood. Solid particles are 
formed if internal precipitation sets in and the salt concentration inside the droplet precursors is 
homogenous; in this case, precipitation occurs randomly throughout the precursor. Due to the fast 
conversion, the (re-) diffusion effects can be neglected. These precipitation areas have a steady growing 
interface layer to the surrounding solution which leads to aggregation of dense submicron particles 
which are sintered together to one entity at higher temperatures. Surface-controlled precipitation is 
caused by non-steady state conditions of the concentration in the precursor. The formation of a crust or 
outer shell hinders the ongoing evaporation, which leads to a volume expansion due to evaporation 
pressure build-up inside the shell. Depending on the permeability of the outer crust, these entities can 
break apart during thermal treatment - which can result in the above mentioned variations (a)-(c). An 
intermediate of (1) and (2) is the mechanics in (3) which subsequently end in a large number of 
agglomerations of polydisperse submicron particles with no specific morphology characteristics. 
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4.2.2.1 Process Description and Operating Conditions 

 
Figure 22: Left: Model (1) simple U3O8 sphere with variable shell thickness. Right: Model (2) modified 

U3O8 sphere with variable outer shell thickness and constant inner cavity. 

For this investigation, CASINO (Version 3.3.0.2, 64-bit) was used to simulate the SE-images at a 
constant accelerating voltage (AcV). SEM image sequence of particle (1) (Chapter 4.2.3.1.1) was used as 
a reference; the reference was recorded at a constant AcV = 25 keV. The objective of this investigation 
was the non-destructive assessment of the inner structure of the inflated intact spheres. 

Single, three dimensional spheres containing uranium oxide (U3O8) were placed on a virtual 
substrate made of carbon with a density δCarbon = 2.6 g/cm3. A grid of ≥ 25.000 points was used to 
simulate the objects with a max number of 1000 simulated electrons. The beam diameter was 100nm 
with a spacing of 50 nm. The overall simulation time per object was between 35 - 45 min. Electron 
trajectory simulations and BSE generation were not of interest for this study just the simulation of SE-
images. Image processing was performed with ImageJ and FIJI. Particle morphology was modeled by 
combining basic three-dimensional objects and planes. Each object is characterized by: (1) position, (2) 
dimensions and (3) orientation. There are seven basic shapes available in CASINO providing the ability 
to model complex geometries by combining the shapes. Each object has two defined sides: (a) outside- 
and (b) inside region. 

Table 7: Parameters for MC-Simulation including shell thickness, particle DIA, AcV, material properties, 

filling material. 

# Outer Shell [nm] Material Filling # Outer Shell [nm] Material Filling 

1 5 U3O8 H2O 17 200 U3O8 H2O 

2 5 U3O8 Vacuum 18 200 U3O8 Vacuum 

3 5 U3O8 H2O 19 200 U3O8 H2O 

4 5 U3O8 Vacuum 20 200 U3O8 Vacuum 

5 20 U3O8 H2O 21 300 U3O8 H2O 

6 20 U3O8 Vacuum 22 300 U3O8 Vacuum 

7 20 U3O8 H2O 23 300 U3O8 H2O 

8 20 U3O8 Vacuum 24 300 U3O8 Vacuum 

9 50 U3O8 H2O 25 500 U3O8 H2O 

10 50 U3O8 Vacuum 26 500 U3O8 Vacuum 

11 50 U3O8 H2O 27 500 U3O8 H2O 

12 50 U3O8 Vacuum 28 500 U3O8 Vacuum 

13 100 U3O8 H2O 29 1000 U3O8 H2O 

14 100 U3O8 Vacuum 30 1000 U3O8 Vacuum 

15 100 U3O8 H2O 31 1000 U3O8 H2O 

16 100 U3O8 Vacuum 32 1000 U3O8 Vacuum 
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For each region, the elemental composition has to be set – comprising of single elements or multiple 
elements with the corresponding weight fractions. The mass density can be set automatically or 
manually. To assess whether these particles are solid or hollow, two different 3-D models were 
developed: Model (1) and Model (2). Both models share some common attributes for instance each 
particle object was directly deposited on a Carbon surface and had a distinct boundary layer. It was 
decided to make the outer shell of each object out of U3O8 with a constant density of 8.4 g/cm3. The shell 
thickness “d” for the outer shell was made variable from 5nm to subsequently 1000 nm in total eight 
iterations. The inside of each object was either filled with water (δH2O = 0.5 g/cm3) or with nothing 
(Vacuum). For each model, two different “fillings” were selected: either no filling = vacuum or water 
filling to enhance the signal contrast. Model (1) consists just of spherical particle with an outer diameter 
of 6.0 µm and a variable shell (5 nm ≤ d ≤ 1000 nm) made of U3O8. Model (2) is a modified version of the 
latter: it has an additional structure which consists of second shell. This shell forms a spherical cavity 
around the center of the object and has a total diameter of 2.0 µm. The inner shell is also made of U3O8, 
but its density is lower and set to 6.6 g/cm3. The reason for the lower density of U3O8 is based on SEM 
studies on solid uranium particles performed at FZJ and IAEA. SEM images show the existence of a thin, 
denser layer and a density gradient to the center - this is also in accordance to the particle formation 
mechanics described by Reuge et al. (2008) [66] [67]. Table 7 lists all important features and settings 
for all 32 simulations. 

4.2.3 Focused Ion Beam and Time of Flight SIMS 

A Lyra3 GM was chosen for the combined FIB-TOF-SIMS investigations. It is a combined 
SEM / FIB /TOF-SIMS system (TOFWERK, Model C-TOF). A positively charged Gallium beam with a 
primary current of 577 pA and an AcV = 25 keV was used. The dwell time was 14 µs and a field of view 
of 12 µm was chosen. Data was analyzed and processed with Mmass (Version 3) and TOF-Sims Explorer 
(Version 1.0.1.11). 

4.2.4 Micro-Raman Spectroscopy 

Micro Raman Spectroscopy (MRS) measurements were performed at two different institutions: 

(1) At CEA-DAM Ile de France an InVia Renishaw spectrometer (Renishaw, Watton-Under-Edge, 
UK) was used. The apparatus is a confocal MRS-system which is equipped with two lasers: (1) 
a green laser with a wavelength of 514 nm and (2) near infrared (NIR) laser with a wavelength 
of 785 nm. The laser power can be adjusted between 50 – 300 mW as well as the irradiation 
time. The spectral resolution of the system is 2 cm-1. The laser pulses are guided through a 
sequence of optical filters and condensers, passing through the ocular of the Leica Microscope. 
The laser is focused on the specimen through an optical fiber. The excited Raman radiation is 
directed in the opposite direction and is collected by a Peltier cooled CCD detector. The 
machine was calibrated beforehand with a pure Si sample (520 ± 1 cm-1). Particles were 
identified with an in-build Leica optical microscope at 100 x magnification. Per spectrum, six 
acquisitions with an acquisition time of 10 s were used. Spectra of the uranium compounds 
were collected at different laser intensities. Data acquisition was carried out using Renishaw 
WIRE 3.4 software and data was processed using the Fityk (version 0.9.8) software package. 

(2) At the Technical University of Vienna (TUW) MRS measurements were performed using a Vitec 
Alpha 300 RSA+ system. Data acquisition and processing was performed on Vitec native 
software. The system is equipped with 785 nm laser. The stage is controlled by the Vitec 
Software and allows the stitching of large area scans. The instrument was also calibrated with 
the silicon band at 520.5 cm-1. A mesh size of 300 g/mm was used. Irradiation time and laser 
power can be adjusted accordingly. 

All comparison particles used for MRS were prepared from certified reference materials which 
were on stock at IAEA. Minute quantities were grinded and transferred via inertial impaction on glassy 
carbon disks (Ted Pella, 1” diameter). All operations were performed inside a Class 100 laminar bench 
and inside a Glove Bag. 
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For the µ-Raman Spectroscopy investigations at CEA and TUW, five different references were 

prepared and measured: (1) UO2F2, (2) U3O8, (3) UO2, (4) Uranyl nitrate Hexahydrate (UNH) and (5) 

Ammonium Diuranate (ADU). The following chapter will discuss briefly the results obtained from these 

references. All samples presented were prepared by using the modified inertial impactor which will be 

discussed in Chapter 5.1. The uranium reference compounds were prepared by carefully grinding the 

material and dispersion them on cotton swipes. These particles were transferred to C-substrates via 

inertial impaction using the modified inertial impactor. Stage 1 was heavily greased to intercept the 

particles of a larger size; Stage 2 was designed to mimic a size distribution much closer and more 

comparable to particles produced in Jülich which were also deposited onto C-substrate. These Stage 2 

targets were predominantly used to assess all five reference materials; some exceptions were made, e.g. 

uranyl nitrate hexahydrate was also measured from Stage 1. 

All samples were measured with a laser wavelength of 785 nm. Acquisition time for all spectra 

recorded at CEA and TUW was six iterations à 10 s. For the Vitec device at TUW a mesh of 300 g/mm 

was used. All samples were recorded using a confocal micro Raman setup and all particulates were 

recorded using a 100 x magnification. All spectra acquired at TUW have a wider wavelength range from 

100 - 3200 cm-1. 

4.2.4.1 Confocal Raman Spectroscopy 

Raman scattering is a weak effect. The excitation of molecular bonds with electromagnetic waves 

leads to a variety of scatter effects and non-resonant interactions. This problem is even enhanced in 

confocal Raman microscopy because the detection volume is limited to a minimum. This problem is even 

enhanced in confocal Raman microscopy because the detection volume is limited to a minimum, 

therefore, a large number of spectra have to be acquired and processed. All spectra were collected 

through a small pinhole detector. The word confocal is defined as having the same focus. In confocal 

microscopy it describes the fact that the sample is illuminated through a point-like source and just a 

point-like area of the sample is illuminated. Both the illumination source and the pinhole aperture are 

positioned in the same focal plane. An image of the sample is gathered by scanning laser focus points. 

Since the pinhole aperture prevents most of the scattered light from passing through to the detector, 

only light originating from the focal plane reaches the detector. Some samples can generate strong 

fluorescence bands. These bands interfere with Raman measurements. Fluorescence intensity can 

outnumber the Raman intensities by six orders of magnitude and can overlay the Raman bands; reducing 

the fluorescence background is therefore important. This can either be accomplished by using an 

excitation wavelength that generates less fluorescence or by reducing the detection volume. Confocal 

Raman microscopy offers the advantage of detecting Raman signals where normal optical microscopes 

would just pick up fluorescence signals due the small detection volume. In wide angle microscopy, the 

whole sample is illuminated and scatters light in every direction. Common microscopy is therefore 

limited in terms of spatial resolution and due to the large amount of light scattering. Confocal 

microscopy, however, overcomes these limitations by introducing a point-like light source and second 

aperture. The spatial resolution of the focal spot in the focal plane is dependent by the wavelength of the 

light source and the quality of the image formation. With an appropriate pinhole diameter, the lateral 

resolution can be increased up to a factor of √2. The basic difference to a standard wide angle microscope 

is the idea of illuminating just a small spot. The reflected light is retrieved through a pinhole aperture, 

see Figure 23. Light which does not come from the focal plane does not enter the pinhole thus 

intensifying the signal or image contrast. With confocal microscopy, three dimensional images of the 

sample can be obtained. 
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Figure 23: Basic scheme of a confocal microscope and Layout of a confocal Raman Spectrometer. 

According to Dieing and Hollricher et al. [151], the choice of the pinhole diameter “d0” is very 

important as well as the lateral position while the focal position is not as critical. The pinhole diameter 

should not exceed 2.5 x the detector size to avoid loss in resolution in the z-axis. In practice, the pinhole 

diameter can up to 4 x the detector size without significant loss of depth resolution and up to 2 x the 

detector size without significant loss of lateral resolution. 

3,0 ≥ ���j-30¨
 (77) 

The optimal pinhole diameter can be calculated by the following relation where the ratio between 
the magnification “M” and the numerical aperture of the objective “NA” is bigger than the pinhole 
diameter multiplied with the reciprocal product of the maximal detector size “νPMax” with the wavelength 
of the light source “λ”. 

4.2.5 SIMS Analysis 

The LG-SIMS measurements were performed using a Cameca IMS 1280 instrument at the Office of 
Safeguards Analytical Services Environmental Sample Laboratory (SGAS-ESL). The instrument is 
calibrated with polydisperse CRM’s obtained from the Joint Research Centre Institute of Reference 
Materials and Measurements (JRC-IRMM) and the National Institute of Standards and Technology 
(NIST): these materials are predominantly powdered uranium oxides in “bulk” quantities. These CRM’s 
were also used in direct comparison to microparticles produced at IEK-6. Additionally, a small section 
will address microparticles produced at JRC Institute of Transuranium Elements (JRC-ITU) by Erdman, 
Stetzer et al. [6] [15]. These particles were also used in a small, comprehensive comparison, see Chapter 
5.3.4. All particles were deposited on 1” diameter glassy carbon disks, no adhesive was applied. 

Cameca IMS 1280 is able to perform large area scans in rastering mode (APM: automated particle 
measurement) when the primary ion beam raster covers a larger area, APM mode was used to 
investigate area between 150 x 150 µm2 up to 500 x 500 µm2. This mode is predominantly used to 
determine the major isotopic ratios in particular 235U and 238U. APM was used to identify single uranium 
bearing microparticles of interest over a large area. For the investigation of single particles, the MP-
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mode (microprobe-mode) was used. All MP values were acquired using a 10 x 10 µm2 raster. The mass 
species for “m/Q” - m/Q(234), m/Q(235), m/Q(236) and m/Q(238) - were recorded simultaneously with 
the Multicollector system. A correctional factor for the formation of 235U-hydride “235UH+” had to be 
applied in order to distinguish it from the m/Q(236U+) signal. The fractionation mass bias or mass bias 
was determined by the measurement of calibration standards from NIST and IRMM. The corrections 
account to approximately 0.40 % per atomic mass unit (amu). In order to prevent cross-contamination 
and to maintain cleanliness, all sample preparation at SGAS-ES was performed in clean environments 
which correspond to ISO 5/Class 100. 
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5. Results and Discussion 

A selected number of particles will be discussed in this chapter which depicts the evolution of the 

uranium particles in the time range October 2014 – April 2015. First of all, the assessment of inertial 

impactor designs will be addressed. Subsequently, results on characterization of particles using SEM-

EDX in order to investigate the elemental composition, size, geometry and shape will be presented. This 

part will be complemented by computational means in order to quickly assess the inner composition 

and density of certain particles and by time of flight SIMS to assess the isotopic and elemental 

composition as well as the inner morphology of single particles of interest. Finally, this chapter presents 

results from SIMS analysis, which serves for the evaluation whether these particles are fit to be used as 

QC or even as RM. Some of the investigations are highly specific to LG-SIMS. The crystal structure will be 

investigated using µ-Raman Spectroscopy. 

5.1 Particle Collection 

Initially, the collection yield of the inertial impactors was not sufficient. This issue exemplifies the 
importance of a well-adjusted collection system: (a) air flows and (b) impactor design have to be 
coordinated. Interestingly, the impactors used in this project, IAEA design, were never fully 
characterized. Since all samples which are discussed in this chapter were prepared using inertial 
impactors, it is necessary to take a closer look at them. The following sub-chapters evaluate the efficiency 
and performance of the standard (one stage) and modified (two stage + changed nozzle diameters) 
designs – the two stage design will be referred to as modified inertial impactor (MII). 

5.1.1 Assessment on the Efficiency of the “One Stage Inertial Impactor” 

The one stage inertial impactor was designed at SGAS as a disposable component to collect debris 
from cotton swipes. Its design was derived from empirical studies and experience gained from decades 
of experience. It is comprised of three basic components: (1) an upper body-part which contains the 
nozzle and (2) a center body which houses the 1” glassy carbon planchet and redirects the air current to 
(3) the bottom part of the impactor; the schematics were already depicted in Figure 12. The inertial 
impactor was initially developed to be used to vacuum swipe samples with average air flow of 
6 - 10 l/min. As discussed earlier, the cut-off diameter “d50” is a measure for threshold of the 
aerodynamic diameter that can be collected efficiently. 

The inertial impactor was initially developed at SGAS to transfer matrix material from cotton 
swipes onto glassy carbon substrates at air flows around 4 l/min. The same impactor design was also 
used as a disposable sampling unit for the production of monodisperse uranium particles at 
Forschungszentrum Jülich GmbH. Particles were collected at air flows around 6 l/min. Therefore, the 
impactor efficiency was assessed at various air flows ranging from 4°l/min to 35 l/min. The aim of this 
assessment is to evaluate the size distribution, the radial distribution and the collection efficiency. For 
these experiments certified soil matrix was used (Sigma Aldrich, Channel sediment, BCR-320R). 

About 0.5 g soil matrix was carefully ground and then transferred onto a cotton swipe. All particles 
are erratically shaped and of polydisperse distribution. Matrix material was then transferred from the 
cotton swipe onto a pre-cleaned silicon wafer (purchased from Ted Pella Inc., 3” diameter) using the one 
stage inertial impactor. The Si-wafer disk had a rectangular shape with an overall area of 25 x 25mm2 – 
reference marks were applied carefully carving by hand before the experiments. A composed areal 
image was recorded and stitched together from a large number of single images recorded at 5x 
magnification on an optical Zeiss microscope (Stitching with FIJI and optical microscope: Zeiss Axio-
Vision). The covered area of the stitched image accounts for approximately 20.0 x 20.0 mm2. 
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Figure 24: Target surface after vacuum impaction, with visible score marks. 

For each air flow, a predetermined pattern of five steps was used to vacuum the particle off the 
target substrate. In total, over 17211 particles were counted with a size distribution range “R” 
1.26 ≤ R ≤ 21.00 µm. Therefore, the feret diameter was used as the particle size. For each air flow, the 
theoretical cut-off diameter was calculated accounting for equation 41, the values are depicted in Table 
8. Particles were collected on pre-cleaned glassy carbon disks (purchased from Ted Pella Inc., 1” 
diameter). After the collection the disks were transferred to an optical microscope (Zeiss Axio Vision) to 
acquire multiple images (in total over 500) to compose a stitched image – this was performed using FIJI 
[f] [152]. The number of particles collected and their size distribution was counted using the particle 
analysis plugin of FIJI. A spherical area of approximately 7.07 mm2 was investigated, which accounts for 
a radial length of ~ 15 mm from the center of each glassy carbon disk. Due to the large amount of data 
acquired for each stitching, no larger area could be processed. Six different air flows were used for the 
evaluation of the one stage inertial impactor: 4 l/min, 10 l/min, 15 l/min, 20 l/min, 25 l/min and 
35 l/min. The total area which was analyzed on Si wafer surface was about 400 mm2, the Si wafer disk 
is labelled as “Target”. In total 17211 particles were counted using image evaluation software. The 
matrix material is composed of finely grinded polydisperse entities which have an irregular shape and 
geometry. Therefore, the feret diameter was used as particle size assessment. Image processing also 
showed a homogenous particle distribution throughout the whole investigated area. The particle sizes 
ranged between 1.26 - 21.00 µm. 

Table 8: Test sequence for one-stage inertial impactor design at various air flows ranging from 

4 – 35 l/min, investigated area, number of particles found and the resulting yield [%]. 

  Substrate Area, [µm2] Particle, [#] Yield, [%] 

Target (before) Si-Wafer 4.00.105 17211 - 

4 l/min Glassy Carbon 7.07.103 1354 8.27 

10 l/min Glassy Carbon 7.07.103 1174 6.98 

15 l/min Glassy Carbon 7.07.103 889 5.22 

20 l/min Glassy Carbon 7.07.103 759 4.41 

25 l/min Glassy Carbon 7.07.103 657 3.85 

35 l/min Glassy Carbon 7.07.103 519 3.01 

 

[f] FIJI is a software distribution of ImageJ: http://fiji.sc/Fiji 
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Figure 25: Histogram depicting the number of particles per size-iteration for each batch from 4 – 35 l/min. 

For each air flow iteration; a theoretical cut-off diameter “d50(theor)” was calculated and compared 
with the measured values – with increasing air flow the value for the cut-off diameter decreases, see 
Chapter 2.1.4. The air flow increases almost by a factor of 8.8 while the cut-off diameter decreases by 
over 36 %. Investigation of the images acquired after the vacuum impaction show that the retention of 
particles is significant. Particles were detached only in areas were the nozzle had contact or was in close 
proximity. Figure 24 shows a visible score marks caused by the nozzle tip, just particles in close 
proximity were detached. In Figure 25 the size distribution of each iteration was plotted as a function of 
the number of particles collected. The size distribution above “d50” is randomly distributed. But a trend 
appears: The number of particles collected decreases with increasing air flows. 

This phenomenon can be accounted for by two effects which act against one another. A higher air 
flow increases the number of particles impinging on the surface, on the other and hand higher air flows 
also increase the probability of particles being detachment due to shear-, lift and drag forces. According 
to Misra et al. (2002) [153], this phenomenon is caused by turbulence and pressure changes over the 
substrate surface. Misra et al. describe a pressure drop on the surface which is located directly under the 
nozzle exit. The radial distribution of the particles over an angle of 360° was investigated by image-
processing. Stitched, composed images of each glassy carbon disk were investigated using FIJI. 

 

Figure 26: Radial profile distribution over 360° for all six air flows: 6-35 l/min. 
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Figure 27: Normalized collection efficiency curves for each air flow: 4-35 l/min. 

The collection pattern is a unique characteristic for each inertial impactor. The radial distribution 
depends strongly on the air flow. Increased air flow causes the circular patterns to expand; Figure 26 
illustrates this trend. Additionally, the number of particles collected is proportional to the calculated 
intensities, thus generating an air flow dependent gradient. The data depicts the integrated and 
normalized intensities which were acquired using the “Radial Profile Angle”-Plug-In in FIJI. This graph 
also shows the characteristic deposition pattern of this impactor design. It becomes obvious that the 
radial distribution of the accumulation of particles is dependent on the air flow. The data profile for 
4 l/min was chosen as an example to highlight a typical accumulation profile, see the red dotted line in 
Figure 26. It shows a typically distribution over 15.000 µm: Generally, the accumulation profile shows 
two distinct maxima: the first one is close to the center and has a rather sharp form. This investigation 
showed a radial length 130 - 140 µm, for all batches. The fuzziness and tailings can be accounted for by 
the polydisperse particle distribution and the low number of particles with small sizes. The second 
maximum is more distinct for each air flow and shows a wider but equally strong signal. The radial 
distribution of this peak is correlated to the air flow. The radial distance increases with increasing air 
flow respectively: for 4 l/min it is about 5800 µm, for 10 l/min it is 6150 µm, for 15 l/min it is 7200 µm, 
for 20 l/min it is 7750 µm, for 25 l/min it is 7900 µm and for 35 l/min it is 9950 µm away from the 
center. 

Table 9: Theoretical and measured cut-off diameters for the one-stage inertial impactor. 

 d50(theor), [µm] d50(meas), [µm] Δ, [%] 

4 l/min 1.17 1.49 27.5% 

10 l/min 0.71 0.78 9.86% 

15 l/min 0.57 0.60 6.01% 

20 l/min 0.48 0.45 6.05% 

25 l/min 0.42 0.51 21.14% 

35 l/min 0.34 0.39 13.70% 
 

The collection efficiency was derived from the size dependent distribution and the data acquired 
from the radial profile distribution using FIJI. Figure 27 shows the normalized collection efficiency 
plotted against the particle size. Values for the measured cut-off diameters “d50(meas)” were derived from 
this plot. 

This investigation endorsed the prediction that the cut-off diameter decreases with increasing air 
flow. Table 9 depicts the discrepancy between the theoretical cut-off diameters “d50” and the measured 
one “d50(meas)”. Interestingly the deviation from both values increases low and high air flows significantly 
> 13 % up to > 27 % - For air flows at 6 l/min, the deviations accounts for > 27 % of the theoretical value 
and for 25 l/min > 21 %. The higher sigma values at an air flow of 4 l/min can be mainly accounted for 
by a systematic error in the particle size determination process. At higher air flows, ≥ 25 l/min blow-off- 
and re-entrainment effects also come into play, see Chapter 3.2.1. 
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Figure 28: Comparison of theoretical and measured cut-off diameters for the one-stage inertial impactors 

used at IAEA and FZJ. 

These values indicate the limitations of this investigation the accounted systematic and intrinsic 
errors are significant. At larger particle sizes, the efficiency curves reach a saturation plateau which is 
differs about 8 % between 4 l/min and 35 l/min. Figure 28 depicts the theoretical cut-off diameters in 
direct comparison with the measured cut-off diameters and the corresponding deviation. Figure 28 also 
confirms the forecast that the cut-off diameter actually decreases with in increasing air-flows. 

5.1.2 Modified Inertial Impactor 

The modified inertial impactor (MII) is a derivative of the one stage inertial impactor. The 
development of the MII was caused by the need to prepare suitable reference substrates with 
comparable size distributions which were used for µ-Raman analysis which were performed at CEA and 
TUW. The MII is a two stage inertial impactor which is designed to be operated at a set air flow rate of 
4 l/min. Stage 1 is designed to retain particles bigger than 2µm (nozzle diameter is 2.2 mm, 
d50(theor) = 2.14 µm). Additionally, Stage 1 was coated with a layer of a PIB-Nonane.  

The existing nozzle of Stage 2 was re-adjusted to a diameter of 1.6 mm – which results in a 
theoretical cut-off diameter “d50(theor)” of d50(theor) = 1.73 µm. Stage 2 was used for the collection of 
particles << 2 µm. Both modified stages were assembled and glued together, see Figure 29. For this 
investigation polydisperse glass bed particles were used (Retsch Technology, Typ S 10 – 100 µm). 

 

Figure 29: Left: Photo of modified inertial impactor designed at SGAS-ESL; Right: Scheme of MII. 
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Figure 30: Normalized collection efficiency curves of Stage 1 and 2. 

The particles were ground and carefully placed onto a cotton swipe. The feret diameter was used 
as a measure for the particle size due to the erratic shape of the polydisperse particles. Pre-cleaned 
glassy carbon disks (1” diameter, Ted Pella Inc.) were used to collect the particles. The first stage was 
covered with a thick adhesive layer consisting of high viscosity silicone grease (Merck, Germany) and 
Stage 2 was left uncoated. Particle size distribution was measured by performing the particle analysis 
plug-in in FIJI from stitched images. The same parameters as in Chapter 5.1.1 were used: the investigated 
area accounted for approximately 7.07 . 103 µm2. Particle retention was similar to Chapter 5.1.1. The cut-
off diameters were measured by plotting the normalized and integrated signal of the collection efficiency 
against the measured particle size. The measure cut-off diameters “d50(meas)” ranged from 7.13 % for 
Stage 1 to 25.06 % for Stage 2, see Table 10. 

The normalized functions are depicted in Figure 30 do not depict the relation of measured signal. 
For Stage 1 the signal was much higher due to the heavy loading of the substrate. Therefore, the function 
for Stage 2 is blurred and less distinct. On Stage 2, the number of particles collected was much lower, 
about a factor of 10. Stage 1 was heavily covered with particles caused by the adhesive layer. Multiple 
layers of microparticles stacked on top of one another, thus not all particle sizes could be evaluated. 
Stage 2 was less loaded and showed an expected particle size distribution. A small but noticeable 
increase of the particle collection efficiency could be observed for particle sizes > 6 μm. The 
phenomenon may be caused by a systemic property of this particular impactor stage. The radial 
distribution was evaluated by investigating stitched images over a mean area with a radial distribution 
of 15 mm from the disk center, see Figure 31. 

 

Figure 31: Radial profile distribution over 360° for Stage 1 and 2 – Intensities are normalized and not 

equivalent. 
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Table 10: MII-stage properties and corresponding theoretical and measured cut-off diameters. 

 
Nozzle Dia. 

[mm] 
d50(theor), [µm] d50(meas), [µm] Δ, [%] 

Stage 1 2.20 2.14 2.30 7.13% 

Stage 2 1.60 1.30 1.73 25.06% 
 

The estimated total collection yield for Stage 1 was about 23.06 % and for Stage 2 about 2.11 %. 
These values are heavily biased due to the high uncertainty caused by the heavy loading of Stage 1 and 
the insufficient area relocation of the target substrate. 

5.1.2.1 Sample Preparation for µ-Raman Spectroscopy 

The MII was used for the sample preparation of the µ-Raman investigations which were conducted 
at CEA, Ile-de-France and TU Vienna. All samples were prepared in the same manner: A modified two 
stage impactor was used to mimic the particle size distribution found on the uranium particles produced 
at Forschungszentrum Jülich. Two different batches produced at Jülich were evaluated: SG141027_12A 
and SG140521_02. Five different reference samples - including (1) UO2F2, (2) U3O8, (3) UO2, (4) uranyl 
nitrate hexahydrate (UNH) and (5) ammonium diuranate (ADU) - were selected and carefully prepared. 
All reference samples were grinded on distributed on to cotton swipes. Particles were collected via 
inertial impaction with the modified inertial impactor (MII) at standard conditions: 4 - 4.5 l/min. The 
grinding of the reference material lead to polydisperse size distribution between 1 – 25 µm. The MII 
offers the opportunity to narrow this distribution down to an acceptable level: The two stage impactor 
contains two stages: stage I is covered with Si-grease to catch most of the heavier particles with higher 
mass and higher aerodynamic diameter. The second stage is uncoated and contains a comparable size 
distribution – see Chapter 5.1.2. 

 

Figure 32: Sequence of sample preparation for µ-Raman measurements. 
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5.1.3 Cyclone Impactor 

 

Figure 33: Left: Schematics of Cyclone Sampler with Venturi Nozzle Inlet and right: Image of the Cyclone 

Sampler with Venturi Nozzle. 

In a cyclone impactor a jet of particles impinges tangentially on the surface of inner conically shaped 

structure. The air flow is diverted in downward directed spiral to the bottom where the exit aspiration 

port is located. Cyclones are generally used for high air flow measurements. The cyclone sampler was 

modified by attaching a Venturi nozzle as an inlet to the cyclone body. The Venturi nozzle was connected 

via PTFE tubing to the bottom PTFE vessel, see Figure 33. This inlet produces a fine aerosol water spray 

at air flows. This inlet produces a fine aerosol water spray at air flows ranging from 20 - 135 l/min. At 

higher air flows above 130 l/min, the turbulences and pressure increase and liquid is uncontrollably 

released through the exit aspiration port. Pretests showed a recommended operating range of 

13 - 120 l/min. The collection vessels are commercially available PTFE vessel with a thread and variable 

volume. For this assessment, PTFE vials purchased from VWR, Germany (V = 20ml) where used. The 

vessel contained 5 ml MilliQ water. The cyclone Sampler was developed very early on out of the necessity 

to improve the collection yield. At the time, the number of collected particles was << 1000 per 

10 x 10 mm2. Another advantage is the collection of micrometer sized particles as suspensions. Some 

precursor sampling devices had been developed using 3D printed prototypes. Finely ground certified 

soil matrix (Sigma Aldrich) was used to assess the collection efficiency by gravimetrical means at 

different air flows between 0 - 130 l/min. The collection yield was assessed by gravimetrical means. 

 

Figure 34: Collection efficiency of the cyclone sampler at various air flows. 
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Figure 34 indicates that the Venturi orifice does not work sufficiently at air flows << 20 l/min. The 
yield for lower air flows ranging between 20 - 45 l/min increases slowly and respectively the yield from 
64 % to 76 %. This is due to the fact that the establishment of the aerosol spray takes a few seconds to 
fully establish itself. Small quantities of soil are ejected out of the aspiration port. The collection 
efficiency is much higher for the cyclone sampler than for the inertial impactors. But it can just be 
operated at high air flows. It can be concluded that this cyclone impactor collects all investigated particle 
sizes with the same efficiency. This is an important advantage to against conventional inertial impactors. 

Note: With the current setup, the cyclone impactor is not feasible because the air flow through the 
system is < 8 l/min. At the time the cyclone impactor was developed it offered an effective alternative. 
Nevertheless, after re-adjustment of the entrance nozzle this system offers the opportunity to sample 
directly into aqueous / organic solution, which simplifies particle transfer to various substrates. 

5.1.4 Conclusion 

One stage inertial impactors were routinely used for particle collection during this project. They 
are easy to handle and particle can be re-distributed and transferred onto different substrates quite 
easily. Also graphite planchets offer the advantage that they can be used in SEM- and SIMS analysis as 
well. The comprehensive assessment shows that the particle retention on the target graphite substrate 
at air flows of 4 l/min is the highest. And that the theoretical and the measured mean cut-off diameters 
are in good accordance. Only at lower air flows does the deviation become more pronounced. 

The modified, two–stage, inertial impactor was used for the preparation of the µ-Raman 
spectroscopy investigations. Existing CRMs were used as a control material for these investigations. 
These uranium compounds consisted of oxides, nitrates, fluorites and were of polydisperse nature and 
significantly bigger than SG140521_02, SG141027_12 and SG150401_14A. So these compounds were 
ground and these particulates were deposited onto two different stages. Stage 1 acted as a catcher for 
bigger particles while Stage 2 was designed to mimic size distribution in the low micrometer range. The 
calculated and measured cut off diameters differ from 7.13 to 25.06 %. 

All inertial impactors show a distinct collection pattern which can also be observed in Figure 31 in 
Chapter 5.2.1: underneath the nozzle is a strong deposition as well as a radial accumulation a few 
millimetres away. The radial distance is dependent on the air flow. The higher the air flow the further 
the radial distribution. 

The cyclone sampler was initially developed to overcome the collection yield issues related to the 
one stage inertial impactor and it offers the advantage of collecting particles directly into a liquid which 
make the re-distribution much easier. It could be demonstrated that the cyclone design, which was 
developed at SGAS-ESL, can collect microparticles efficiently at air flows > 20 l/min - 130 l/min. 

5.2 Characterization of Particle Size and Morphology 

5.2.1 Overview 

This dissertation presents particle production runs conducted between May 2014 and April 2015. 
Most notable progress was made in the evolution of the particle morphology which is an important 
indicator of the performance of the production setup. Table 11 lists all six batches that were studied and 
the type of analyses that were performed. All particles were produced at IEK-6 in Germany and sent to 
the IAEA for further analysis. SG140521_02 and SG141027_12A were investigated intensively with a 
variety of techniques: from SEM-EDX to LG-SIMS. SG150401_14A, SG150413_03A and SG150429_02A 
were produced in April 2015 and were examined with the SEM. Scanning electron microscopy 
investigations was performed on all six batches: SG140521_02, SG141027_12A, SG150312_05A, 
SG150401_14A, SG150413_03A and SG150429_02A. The aim was to investigate the particle size-
distribution, shape descriptors, morphology. The presence of uranium was verified by energy dispersive 
X-Ray spectroscopy. 
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Table 11: Overview of all batches of interest and analytical methodologies applied. 

    Technique 

# Sample-ID SEM/EDX TOF-SIMS SIMS µ-Raman TOFSIMS/FIB 

1 SG140521_02 X X X X  

2 SG141027_12A X X X X X 

3 SG150312_05A X     

4 SG150401_14A X   X X 

5 SG150413_03A X     

6 SG150429_02A X         
 

5.2.2 Particle Size Distribution 

This chapter describes the particle size distribution of all six batches, particle size was determined 

by a combination of SEM images and image analysis tools. A quality criterion for particles produced as 

reference material is the monodispersity. The National Institute of Standards and Technology (NIST) 

defines the concept of monodispersity, see Hackley and Ferraris (2001) [154], as when particle size 

distribution is considered to be a monodisperse if 90 % of the particle population is within ± 5 % from 

the mean value. Hackley and Ferraris (2001) [154] provide an alternative simple equation to evaluate 

monodispersity where “σ” is the standard deviation of the size distribution and “X” is the mean diameter: 

Monodisperse: 1.645σ/� ≤ 0.05 (78) 

Polydisperse: 1.645σ/� ≥ 0.05 (79) 

Particle size, geometry and morphology are significantly dependent on the precursor solutions and 

the conditions during droplet-to-particle conversion. That is why the batches are discussed in 

chronological order. Depending on the uranium concentration of the precursor solution, we expect to 

see different mean particle sizes for each batch. Additionally, we expect to see a decrease of size spread 

due to better adjustments of the aerosol production, to a real mono disperse size distribution. 

The particle size distribution of each batch was derived from large areal SE-Images (see Chapter 

5.2.2). These images were created by stitching multiple single, high resolution SEM images together. This 

procedure was necessary to obtain a statistical significant number of representative particles or 

respectively to investigate the entire specimen surface. These stitched images were used as a basis for 

an automatic particle analysis using image acquisition software such as ImageJ and FIJI to assess the size 

distribution and the corresponding uncertainty of each batch. The following sub-chapters will depict the 

process for each batch individually. 

5.2.2.1 The First Evolution Step: SG140521_02 

SG140521_02 was developed to produce monodisperse spherical particles. An automated particle 
analysis was done using SEM images and FIJI: a mean diameter of about 1.25 ± 0.60 µm was derived. 
SEM investigations further revealed the existence three distinct particle species: (A) a small number of 
“solid” uranium particles with a mean size of 1.35 ± 0.53 µm, (B) a larger number of intact, inflated 
particles with a seize range of 6.5 ± 0.5 µm and (C) particle debris and agglomerations ranging from 
~ 4.5 – 9.2 µm. The shape descriptors were also analyzed by investigation the aspect ratio of particles of 
interest: predominantly of population (A) and (B). The following paragraphs will depict the findings in 
detail. 

Particle analysis was performed on a stitched image which covers almost the whole surface area of 
the planchet: a = 4.91.108 µm2. Single images were recorded with a Zeiss Z2 optical microscope at an 
effective magnification of x 20 and stitched together using the Axio Vision software. In Figure 35 the 
stitched image is named “Original”. 
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Figure 35: Particle analysis on SG140521_02, depicting the particle distribution on a 1” glassy carbon disk. 

This image was further processed by using the FIJI to remove unwanted artefacts and dust matrix. 
In total 7076 particles of interest were identified which were labelled red and named “U-Particles”. The 
size of the red markings corresponds to the actual particle size. For a better graphical presentation, a 
mean inter particle distance profile was calculated using the Delaunay Voronoi plugin in. The “Distance 
Map” shows a typical distribution pattern of an inertial impactor. Since the sampling time was 30 min, 
blow-off effects at the bottom and top of the planchet can be observed. For a better representation, the 
distance map was colored and is named “Particle Distribution”, see Figure 36. 

 

Figure 36: Particle size distribution for SG140521_02. 
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Figure 37: Aspect Ratio deviations due to particle deformations, agglomerations, artefacts and 

measurement errors. 

Five different particle species could be identified by using SEM-EDX (Jeol JSM 6610). All particle 
depicted in the following paragraph were identified as uranium containing particles. Several interesting 
sizes were observed: (1) a small number of debris with a mean size distribution of 0.67 ± 0.5 µm. Image 
processing with FIJI revealed that this species has an aspect ratio of 0.95 ± 0.05. According to image 
processing, these sub-micron particles are spherically shaped. Their signal is about 1/3 of species (2) 
which has a mean diameter of 1.35 ± 0.5 µm. Species (2) is in correspondence with the calculated 
particle diameter of 1.25 ± 0.60 µm. These particles seem to be solid and have a nearly spherical shape. 
The outer crust shows a lot of scores and dents. This fact is also represented in the mean aspect ratio of 
species (2) of 0.77 ± 0.19, see Figure 37. The signal intensity of species (2) is about 2.5 x smaller than 
the signal of species (3) which has a mean diameter of 4.61 ± 0.27 µm. This species could be identified 
as hollow, inflated particles; most of which are intact. The evaluation about the hollowness will be 
discussed in detail in Chapter 5.2.3.1. An additional intact hollow and inflated species (4) could be 
observed at a size 6.50 ± 0.53 µm. Both species (3) and (4) are spherical and show a similar mean aspect 
ratio of 0.98 ± 0.02, see Figure 37. Above 6.7 µm, an additional species (5) could be identified. These 
particles are predominantly agglomerations of collapsed particle shell and debris of various particle 
species. Due to the large amount of debris of inflated particles, the mean diameter could not be 
determined satisfactory. SEM studies also showed a homogenous distribution of these all particle 
species throughout the entire area. Figure 35 depicts a distribution pattern which is typical for the IAEA 
inertial impactors, the radial distribution pattern acquired in Chapter 5.1.1 (Figure 26) and 5.1.2 (Figure 
31) support this observation. No sharp distinction and radial separation between all species was seen: 
even a smooth transition of intact spheres and debris at a size range “d” of 6.0 ≤ d ≤ 9.0 µm could be 
observed. Shape descriptors: Species (4) and (5) showed the highest number of particles. The ratio of 
species (2) to species (4) and (5): 1.0 : 1.5 : 2.1. According to NIST (see equation 78 and 79), this batch 
shows a clear polydisperse distribution. The aspect ratio is a simple measure for the circularity of a 
particle. The following figure (Figure 37) depicts a wide range of particles originating from 
SG140521_02 with aspect ratios ranging from 1.04 - 8.87 - the corresponding EDX spectra are included. 
The aspect ratio is a simple measure for the circularity of a particle. But for particles with an irregular 
shape, the aspect ratio is not the optimal solution to describe geometric shape factors. Therefore, the 
term circularity is introduced. The circularity “C” is defined as: 

D = 	� 0%'.4-'%��'�'%6�  (80) 

Meaning if a particle is spherically shaped its circularity “C” is 1 or very close to 1. The more the 
circularity deviates from the value 1 the less it can be considered spherically shaped. 
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5.2.2.2 Towards Consistent Quality: SG141027_12A 

 

Figure 38: Particle size distribution for SG141027_12A. 

SG140521_02 and SG141027_12A were the first uranium oxide batches which were delivered to 

IAEA SGAS. All particles were designed to have a mean calculated particle size of around 1.3 ± 0.4 µm. 

The first assessments indicated good agreement with the theoretical values. In terms of particle 

production, the biggest change to its successor SG140521_02 was the disposal of the furnace and the 

collection time was reduced to 5 min: the whole setup was less bulky due to dispensation of the furnace 

thus increasing the sampling yield. Particles were collected on an uncoated glassy carbon disk with the 

inertial impactor mounted up-side down. In total three different areas with a total net-area of 4.6 mm2 

was investigated: each area totaling in 1430 x 1072 µm2. 2689 particles identified using FIJI image 

processing. The derived mean particle size was 1.37 ± 0.19 µm. Four additional peaks could be identified 

which accounted for agglomerations: During the drying process or in the heat field of the furnace single 

particles can coagulate and form bigger entities. If two particles merge they are called a doublet, 

respectively three particles a triplet and so on. With each coagulation, the mean diameter of the newly 

formed doublet/triplet entity grows. For a doublet, this accounts to “d2”: d2 = d1 √2©  and for a triplet “d3” 

respectively: d3 = d1 √3© . The doublet peak at around 1.73 µm is about 1/6 smaller than for the dominant 

1.37 µm peak and the triplet peak at around 1.97 µm is smaller by a factor of approximately 1/8. A bigger 

inflated particle species at around 4.25 ± 0.22 µm appears. According to SEM investigations, these 

particles mostly appear at in the center area of the disk. Their intensity is about 1/10 smaller than for 

the dominant peak. One last weak peak could be observed at about 6.80 ± 0.31 µm. 

 

Figure 39: Three SE-images of particles originating from SG141027_12A, courtesy of O. Marie from 

CEA/DAM. 
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Figure 40: Circularity calculation of SG141027_12A 

This signal is about 1/24 of the signal of 1.37 ± 0.19 µm. These particles belong to an even more 

extreme inflated species. It can be assumed that it might originate from doublet or triplet volumes. Its 

intensity is about 1/24 of the dominant peak. The majority of the particles investigate was found around 

the mean value. Nevertheless, according to equation 78 and 79 the calculated value accounts to 

0.23 > 0.05 which means that SG141027_12A does not full fill the monodispersity criterion. SEM studies 

showed grooves and notches on the surface of the particles, similar to particle species (2) for 

SG140521_02. Figure 39 shows that the particles are not perfectly spherically shaped. These SE- images 

were recorded at CEA - courtesy to Olivier Marie (CEA). The shape descriptors of all 2689 particles were 

also investigated. The circularity of all 2689 particles was investigated. Two distinct shapes were found, 

see Figure 40: one at 0.92 ± 0.02 and a second one between 0.99 ± 0.01. About 71 % of all particles are 

within 0.99 ± 0.01. In total 93.22 % of all particles are within 0.9 - 1.0. 

5.2.2.3 Consistency: SG150312_05, SG150401_14A, SG150413_03A and SG150429_02A 

Particle sizes are in good accordance with the calculated values of 1µm. Particle shape is similar to 
the ones observed in SG141027_12A. The size distribution of each mean particle species is depicted in 
Figure 41. SG150312_05, SG150401_14A, SG150413_3A and SG1504229_02A are similar in regard to 
their shape and outer structure the only characteristic that differed was the mean particle size. 

 

Figure 41: Size distribution of SG150312_05 (blue), SG150401_14A (red) and SG150413_03A (green). 
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Figure 42: Circularity of SG150312_05 (blue), SG150401_14A (red) and SG150413_03A (green). 

Therefore, these four batches will be discussed in together in one chapter. For each of the three 
batches an area of about 4700 x 3500 µm2 was selected. Particle analysis was performed using FIJI. For 
these three batches particles looked almost spherical. In order to assess the geometric factor, the 
circularity was evaluated using FIJI. 

For SG150312_05 4497 particles were counted. The mean particle size was 0.99 ± 0.15 µm. A small 
doublet tailing was measured at 1.25 ± 0.13 µm with about 1/5 of the intensity of the main peak. The 
particle size distribution is not monodisperse according to Hackley and Ferraris (2001) [154]. But the 
distribution is much narrower: about 96% of all particles within 0.9 - 1.0 and 73% of all particles are 
within 0.98 - 1.0. A small tailing at 0.84 - these tailings can be associated to minor deformations which 
accounts to 1.22 % of the total particle population. 

SG150401_14A was investigated. In total 5043 particles were counted. The mean particle size was 
0.85 ± 0.15 µm. A small doublet tailing at 1.07 ± 0.11 µm with a signal ratio of about 1/6 was recorded. 
The shape factor was evaluated by investigating the circularity: about 82% are within 0.9 - 1.0. In 
comparison, the number of particles which are nearly spherically shaped is lower than SG150312_05. 
This may be caused by small changes to the system in particular to the orifice, see Figure 42. 

For SG150413_03A, 7142 particles were counted. The mean particle size was 1.05 ± 0.11 µm. No 

doublet tailing at d2 = d1 √2©  could be observed. Interestingly, the first peak appears at 0.60 ± 0.10 µm 
with a signal ratio of about 1/13 which accounts for ~ 0.9 % of the total population. The majority is to 
be found around the mean, 11.5 %. A smaller at around 3.75 µm with an intensity of about 1/13 of the 
dominant mean peak was observed. This is assumed to be due to an inflated coagulation of doublet or 
triplet particles; it accounts to 0.9 % of the total population. The shape factors show that 85.41 % are 
within 0.9 - 1.0 and are partially spherically shaped. 

For SG150429 _02A 7505 particles were counted. The mean particle diameter was calculated to be 
1.02 ± 0.10 µm. No doublet peaks could be identified. A small plateau between 2.6 - 3.6 µm with max. 
9 % intensity of the dominant species. These particles were attributed to inflated species from various 
precursor droplets. 
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5.2.3 Characterization of Internal Particle Morphology 

Two distinct particle populations were investigated: (1) hollow, inflated particles and (2) solid 
particles. The presence of an inflated, hollow species was predominantly found in SG140521_02. The 
solid particle species can be found on all six batches. Particle morphology was assessed either by non-
destructive and by destructive assay: SEM-EDX was used in combination with micromanipulation, as 
well as FIB in combination with TOF-SIMS. 

5.2.3.1 Hollow Species: SG140521_02 
The objective of this chapter is the morphology study of the inflated species found in SG140521_02 

and to show by non-destructive and destructive means the inner structure of these entities. A 
combination of SEM, Micromanipulation and SE-Image simulation revealed the presence of a hollow 
species. Investigations show that these particles have a thin, permeable outer structure with a mean 
thickness of about 20 - 50 nm and a second inner structure which are both made from U3O8 but with 
different densities, a detailed study is presented in Chapter (5.2.3.1.1). In addition, the inflated hollow 
species exemplifies the complexity associated with the adjustment of the final morphology as described 
by Dash et al. (1999) [76] and Messing et al. (1993) [58] in Chapter (3.1.3). 

The first species to be found has a mean diameter of 1.35 ± 0.5 µm. These particles seem to be solid 
and are outnumbered by the hollow, inflated species. The second species is far more interesting: inflated 
and hollow particles with a size range of 4.61 – 6.50 µm could be observed. The formation of this species 
is controlled by surface kinetics due to the build-up of a semi permeable outer shell. During thermal 
conversion the trapped liquid and gases evaporate and expand the particle. The exact mechanics are still 
not fully understood. The expansion can lead to the deformation or total destruction of the particle. The 
existence of much debris and collapsed shells is a strong indication for this hypothesis. The following 
Figure 43 depicts the two main particle species which can be observed in SG140521_02. Each entity was 
evaluated by SEM at different accelerating voltages (AcV) to see differences in the morphology. 

The hollow species shows at very low AcV of 0.5 keV a smooth slightly structured surface with some 
dark artefacts on the surface which are suspected to be pores and give the outer structure permeable 
properties. At accelerating voltages above 2.0 keV, the inner cavity become more apparent. The best 
imaging results were obtained at accelerating voltages of 25 – 30 keV, see Figure 43. The inflated 
particles were investigated to assess their structure and morphology. According to intensive SEM 
studies, the particles are almost perfectly spherical and have a smooth surface. The surface shows 
several unique features: dark artefacts are all over the surface. These artefacts appear to be pores or 
small venting holes. Each of the inflated particles has a darker discoloration in the center. This area is 
located directly in the particle center is also spherically shaped and its diameter ranges between 
2.00 – 2.80 µm. Computational investigations will indicate the presence of a cavity thus resulting in an 
intensity loss, see Figure 44 upper left image. 

 

Figure 43: Above: Inflated, hollow uranium particle at 0.5 ≤ AcV ≤ 5 keV (Dia. > 4 µm) and Bottom: solid 

particle at 5.0 ≤ AcV ≤ 25 keV (Dia. > 1.35µm); both originate from SG140521_02. 
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Figure 44: Left: Inflated particle >6.0 µm diameter and Right: typical fragments and hollow particles on 

SG140521_02 (Dia. > 4.8 µm). 

 Four different particles were selected as representative samples for further analysis, by SEM/EDX. 
All particles were identified as uranium containing entities with EDX - the EDX data can be observed in 
the Appendix. For this investigation, single particles were transferred via micromanipulation and then 
destroyed with the same system to investigate their internal structure. In total, four different particles 
and fragments were evaluated by SEM/EDX. The EDX data can be observed in the Appendix. The 
following Figure 44 depicts four representative particles which are hollow or collapsed shells. 
Destructive assay was used to investigate the hollowness of these particles by destroying them inside a 
SEM with a tungsten needle. This tungsten needle was part of a micromanipulator system. SE images 
were taken before during and after the destruction. SEM investigations indicate that the intact spheres 
are actual spheres which are not damaged by the impaction. Before destruction, multiple SE-images 
were taken at inclination angles of 0°, +5° and +7°. For each inclination angle, a 360° view was processed. 
These image sequences indicate that the intact spheres are not damaged by the impact and that they are 
spherically shaped, see Figure 45. 

An example of the destruction sequence is depicted in Figure 44, both images on the right side. They 
show two recorded sequences of the destruction of the particles. It can be observed how brittle this 
particle is, it breaks like a glass bulb. This observation can be extended to all four particles. Also after the 
destruction of all four particles multiple SE-images were recorded at inclination angles of -7°, 0° and +7°. 
Again a 360° view was generated for each inclination angle. The observations of these sequences indicate 
the presence of a hollow species with an outer shell in the range of a few tenths of nanometers. The inner 
structure cannot be derived with certainty, see Figure 45. The existence of a hollow core could not be 
sufficiently proven with SEM. In order to assess the morphology more thoroughly computational 
simulations were performed, see the following Chapter 5.2.3.1.1. For this investigation particle (1) from 
Figure 45 was used as a reference. 
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Figure 45: Particles of Interest, (1) – (4), before and after destruction. Images recorded at different 

rotational- and inclination angles. 

5.2.3.1.1 Particle Morphology Evaluation: SE-Image Computation 

The emergence of an unexpected particle species offered the opportunity to investigate the 

formation kinetics and subsequent morphological attributes of these particles by non-destructive means 

through Monte-Carlo computations. This sub-chapter reviews the idea of re-engineering three 

dimensional objects for Monte-Carlo-SE-image simulations that can be compared with the existing SE-

images acquired at FZJ and IAEA in order to gain additional information regarding their morphology, 

solidity, shell thickness and elemental composition. 

SE-Image computation was used as an additional tool to support SEM investigation of particles that 

did not meet the expected characteristics. These computational simulations offer a cost effective and 

easy alternative to destructive assays in order to investigate the outer and inner structure of 

microparticles. During this project, a limited number of particles was available to be investigated by 

destructive and non-destructive assays simultaneously. By setting up different inner compositions and 

densities, one can calculate the corresponding secondary electron (SE) signal and output it as a 

simulated SE-image. Figure 46 shows an overview of all simulated SE-images plus the actual SE-image 

in the bottom as a reference. The simulated SE-images are a two dimensional representation in XZ-plane 

of an actual three dimensional object. 
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Figure 46: Simulated SE-Images of 3D spheres, depicted in XZ-plane. 

In total, four different particles sets are displayed: two different models (1) and (2) and two 
variations of each model (with water filling and with no filling at all). With increasing shell thickness 
from 5 nm – 1000 nm, the intensity signal increases and at a shell thickness of around 300 nm no valid 
information regarding the inner structure can be drawn. 

Model (1) and Model (2) particle-variations which were filled with water showed a slightly higher 
average intensity over a radial distribution of 360°. The deviation of the intensity signal between Model 
(1) and Model (2) is less than 4 %. The deviation at shell thicknesses > 300 nm decreases to about 2 %. 
According Figure 46 and Figure 47, Model (1) does not show any resemblance with the reference image. 
Particles which were calculated using Model (2) and which have a shell thickness of ≥ 300 nm can be 
excluded as well. The corresponding SE-Images and 3D surface plots show no distinct distribution due 
to interfering shielding effects originating from the outer structure. Thus putting the focus on particles 
which were simulated after Model (2) and which consist of a shell-thickness range of 5 nm ≤ d ≤ 100 nm. 

 

Figure 47: Processed 3D-surface plots of the simulated images depicted in the previous Figure. 
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For a more detailed analysis, the simulated SE-Images were further processed with ImageJ to 
generate a 3D surface plot: which is a signal intensity distribution as a function of three axes. Figure 47 
shows the 3D surface plots of all particles in comparison with the reference image. Evaluation of Figure 
47 narrows the shell thickness down to a range of 5 nm < d ≤ 50 nm. Evaluation of the 3D surface plots 
depicts a unique inherent attribute of all simulated SE-Images: these calculated particles are perfectly 
spherical and have no artefacts and defects on the surface or in the inner structure, therefore generating 
a very homogenous intensity profile depending on the radius. Modified particles with a thin shell of 5 nm 
show an intense peak in the middle. The contrast of the areas of the center cavity to the rest is very 
strong. The thicker the shell becomes, the more the signal blurs and decreases in the plots. This trend is 
in accordance with the radial intensity distribution depicted in Figure 48: the stronger the shell 
thickness, the less distinct the intensity profiles. Figure 48 depicts the stacked normalized and integrated 
signals as a function of the radius [µm]. The radial intensity profiles (over an overall angle of 360°) of a 
selected number of particles of interest were acquired with FIJI, using the “Radial Profile Angle” plugin. 

The reference signal is plotted on top in a red dotted line. A relatively small but distinct increase in 
intensity at ~ 2.3 µm can be observed. As the distance to the center increases, the signal also slightly 
increases. This is due to electrostatic charging at the edges of the uranium oxide particle. Particles with 
5 nm shell thickness (blue) show a very distinct increase at 2 µm and a weaker intensity increase 
between 5.6 - 6.0 µm. The intensity profile of 20 nm (grey) shell thickness shows a rather smoother 
profile. The same trend can be observed for higher shell thicknesses, see 50 nm (orange) and 100 nm 
(green). Particles with a shell thickness of 100 nm (green lines) show a very blurred profile. It is difficult 
to identify a sharp increase in intensity at a specific distance. After evaluating SE-images and their 
corresponding radial intensity profiles it can be concluded that the outer shell thickness of these Model 
(2) particles is very likely to be in the range of 20 < d < 50 nm. The outer shell is made of U3O8 with a 
density δOS = 8.4 g/cm3. The inner structure is also composed of U3O8 but with a lower density 
δOS = 6.6 g/cm3. Figure 49 shows a three dimensional reconstruction of particle (1), derived from the 
findings in this Chapter. 

 

Figure 48: Normalized integrated radial intensity distribution [arbitrary units]. 
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Figure 49: 3-D reconstruction of particle (A). 

5.2.3.2  Solid Species: SG141027_12A, SG150312_05A, SG150401_14A, SG150413_03A, 

SG150429_02A 

Solid micro-particles are the preferred species. This chapter will discuss the morphology of these 

solid entities. SEM investigation already showed a strong resemblance in morphology and shape of all 

solid particles ranging from SG141027_12A, SG150312_05A, SG150401_14A, SG150413_03A to 

SG150429_02A. The objective of this chapter is the assessment of the inner structure and morphology 

by focused ion beam in combination with time of flight SIMS. TOF-SIMS was also used to identify the 

elemental content of single uranium oxide micro-particles in order to look for possible contaminations. 

5.2.3.2.1 Internal Particle Morphology: TOF – SIMS / FIB Investigation 

In total 31 particles (from SG141027_12A) were investigated using FIB and Time of Flight SIMS 
(TOF-SIMS). SEM investigations revealed that all particles have a porous inner structure. The 
investigation was performed on a Lyra3 GM combined SEM/FIB / TOF-SIMS system; the TOF-SIMS 
detector is from TOFWERK, Switzerland. For mass identification, a representative particle was chosen 
to be discussed in detail. The particle was cut with a focused Gallium beam with positive polarity and a 
primary beam current of 577 pA and an AcV = 25 keV. The dwell time was set at 14 µs with a field of 
view of 12 µm. Data was analyzed and processed with Mmass (Version 3) and TOF-Sims Explorer 
(Version 1.0.1.11). For the mass identification, the intensity as counts per second was plotted against 
the mass to charge ratio “m/Q”. In the following chapter describes the mass identification process for 
one exemplary uranium microparticle. 

5.2.3.2.2 Mass Identification 

For this thesis, one exemplary particle out of 31 uranium particles was chosen to be presented 
exemplarily for all consumed particles. For this investigation, a mass to charge ratio “m/Q” in the range 
0 ≤ m/Q ≤ 350 was recorded. The mean size for this particle was 1.3 ±0.1 µm. In total, 25 ion species 
were identified plus two unidentified species. Figure 50 depicts the spectrum which was acquired and 
Table 12 shows the list of identified ion species – a more detailed version is depicted in the Appendix, 
see Figure 96 in Chapter 7.3. 
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Figure 50: Mass spectra of SG141027_12A – Particle 1. 

The first signal to be identified belongs to the ion species at m/Q(12) and can be attributed to the 
carbon substrate. Since no adhesive layer was applied on the surface, we would expect a signal for the 
Ga-Ion source and the uranium-oxygen species. A few ion species appear which are not expected and 
they originate from cross contaminations. There are many possible sources for the introduction of these 
elements: (1) contaminated precursor aerosol solution through contaminated vessels or solutions and 
(2) cross contaminations due to insufficient cleanliness in the laboratory. Cross contaminations can be 
caused by airborne particles during the particle production procedure, either before or after introducing 
the substrate to the setup or shortly after the collection when the substrate is transferred into a sealed 
containment. The following elements and their m/Q ion species could be identified: m/Q(23) and 
m/Q(24) are caused by sodium and its hydride species; aluminum and silicon are identified at m/Q(28) 
and m/Q(29); potassium could be identified at m/Q(39), m/Q(40) and m/Q(41); and a pure organic 
species was found at m/Q(50) and m/Q(50) for CNO+ and CNOH+. Two unidentified m/Q species could 
not be identified: (1) m/Q(52) and m/Q(53). The strong peaks at m/Q(69), m/Q(70), m/Q(71) and 
m/Q(72) are associated with the Ga-ion source, as well as the complex ion species found at m/Q(138), 
m/Q(139) and m/Q(142). 

The uranium and uranium-oxide species occur at m/Q > 235. It has to be noted that the measured 
intensity for m/Q(235) was very low about m/Q(235) = 3.4.10-6 [cts]. Which is due to the low amount 
fraction of n(235U)/n(U) = 0.320 %. The presence of the 238U species is significantly about 82 x higher - 
with m/Q(238) = 2.8.10-4 [cts]. The ratio of the hydride species shows higher ratio of about 1 : 116 for 
m/Q(235+236) = 6.0.10-4 [cts] than for m/Q(238+239) = 6.94.10-2 [cts]. These ratios of 235U to 238U do 
not represent the initial ratio of IRMM-183. The discrepancy only be explained by the geometric 
constraints of the detector, the subsequent ion extraction efficiency and the detector sensitivity. The 
identification of the ion species showed the existence of two distinct uranium oxides species: 
238UO+/238UOH+, 238UO2+/238UO2H+ at m/Q(254/255) and m/Q(270/271) respectively. Figure 51 shows 
the ablation process of Particle 1 and the signal of m/Q(16) = 16O+, m/Q(28) = 28Si+, m/Q(238) = 238U+ 
and m/Q(239) = 238UH+. It shows a clear correlation of the m/Q(238) and m/Q(239) signals over the 
entire depth of the particle. In contrast, the signals for m/Q(16) = 16O+ just shows a significant signal at 
the beginning. It decreases for all particles and no further information can be extracted. 
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Figure 51: Intensity evolution over 100 frames of m/Q(16), m/Q(28), m/Q(238) and m/Q(239) – Particle 

1. 

The m/Q(28) = 28Si+ show a strong signal at the beginning and decreases much slower, thus 
indicating that 28Si+ is present in the entire particle. This ambiguity regarding the detector sensitivity 
towards each element, in particular for oxygen and silicon. It is possible that oxygen is harder to detect 
with the current settings. A possible explanation for the presence of Si can be derived that the precursor 
solutions were stored in glass vials and that precursor dilutions (Dilutions 1 and 2) were prepared in 
glass vessels as well. It is suggested to monitor the aerosol solutions for cross contaminations to contain 
the source of Si. Mass spectrometry of a single particle found indications of possible cross 
contaminations of Na, K, organic matrix as well as Si. There a multiple sources of origin for these 
contaminations. Almost throughout every step of the production- and evaluation process, cross 
contaminations may occur. These findings demonstrate the importance of clean production- and 
working environments. 

Table 12: Identification of ion species and their corresponding mass-to-charge ratio – Particle 1. 

# m/Q Ion Species # m/Q Ion Species 

1 12 12C+ 14 71 71Ga+ 

2 23 23Na+ 15 72 71GaH+ 

3 24 23NaH+ 16 138 2 x 69Ga+ 

4 27 27Al+ 17 139 69Ga+ + 71Ga+ 

5 28 27AlH+, 28Si+ 18 142 2x 71Ga+ 

6 29 28SiH+ 19 238 238U+ 

7 39 39K+ 20 239 238UH+ 

8 40 39KH+ 21 250 238UC+ 

9 41 41K+ 22 254 238UO+ 

10 50 CNO+ 23 255 238UOH+ 

11 51 CNOH+ 24 270 238UO2
+ 

12 69 69Ga+ 25 271 238UO2H+ 

13 70 69GaH+    
 

5.2.3.2.3 Particle Morphology Investigations Using Combined FIB TOF-SIMS data 

The morphology was assessed using all data acquired from all 31 measurements. Particle 1 will be 
used as an example to discuss our findings. Figure 52 shows the intensity depth distribution of m/Q(238) 
and m/Q(239) over the entire depth of the particle. The top projection shows the presence of a few hot-
spots indicating that the surface is not smooth. This observation is in correlation with SEM studies 
performed on comparable particles from the same batch. The front projections indicate the presence of 
a thin shell-like structure due to an increase of the intensity. The inside of the particle shows the 
presence of void, due to the lack of signal and much lower, inhomogeneous intensity distribution. This 
indicates the presence of a porous inner structure. 
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Figure 52: Mass spectrum of m/Q(238) and m/Q(239) and the corresponding TOF signals in top- and front 

projection – Particle 1. 

Therefore, a depth profiling analysis was performed by plotting the normalized m/Q intensities in 
regard to the particle depth. Figure 53 depicts the depth profile of Particle 1 with the masses 
m/Q(16) = 16O+, m/Q(28) = 28Si+, m/Q(238) = 238U+ and m/Q(239) = 238UH+. The signal for m/Q(16) is 
constant within 1.15.10-4 ± 2.5.10-5 and is an indication that oxygen is distributed throughout the entire 
particle. For silicon, the m/Q (28) signal drops within 12.5 nm and steadily decreases indicating that this 
signal might be associated to an external particle which contains Si. If Si was present in the outer 
structure of the particle we would expect to see a rise in the signal after ~0.9 nm again. The deviation of 
the mean intensities of m/Q(16) to m/Q(28) is about 32.58 %. The signal evolution of m/Q(238) and 
m/Q(239) are directly correlated and it deviates by a factor of 7.4. The maximum of the measured peak 
intensity for m/Q(238) and m/Q(239) was about 180 nm in depth. The peak intensity indicates the 
presence of a denser shell with a mean thickness of < 200nm. This profile is typical for all particles 
measured. Subsequently, the mean intensity drops to about 45.76 % from the peak intensity. All single 
particles which were measured show a similar profile: the intensity rises between 100 – 200 nm to a 
maximum and then drops. Depending on the particle, the intensity rises again to similar intensity level 
or slightly lower. The intensity signals of m/Q(238) and m/Q(239) between 300 – 700 nm show a 
fluctuating intensity profile indicating a porous structure. SE images taken during the ablation process 
support the assumption that the inner structure is actually porous, to a certain degree small cavities can 
be observed. These SE-images were acquired during FIB ablation at different depths and are presented 
in the Appendix in Chapter 7.3.1 in Figure 99 - Figure 101, courtesy to Ronald Middendorp and Martina 
Klinkenberg at IEK-6. 

 

Figure 53: Depth profiling of m/Q(16), m/Q(28), m/Q(238) and m/Q(239) of Particle 1. 
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Investigations on 31 particles indicate comparable results, but the increase of the m/Q(238) signal 

appears between 180 – 260 nm, indicating that the denser outer shell is not homogenous. This can also 

be accounted for by the fact that each particle was aligned slightly different to the ion beam and the 

resulting sputter signal was slightly altered. 

For Particle 1, the whole sequence is depicted in Figure 98 in the Appendix - Chapter 7.3 Figure 98. 

In order to highlight the ablation process, the ablation sequence was subsequently colored: red markings 

for the particle. Note: the change of background color due to the sputtering. Figure 54 clearly shows that 

the morphology changes over the length of the particle. Each frame corresponds to approximately 

13.0 nm in depth. The structured surface with its grooves and notches can be seen as an intensity 

variation. After about 65 nm the first sign of a cavity becomes obvious. This sequence indicates the 

formation of a non-solid particle with a robust porous outer surface layer. According to our 

investigations, the outer layer does not have a homogenous thickness. SEM investigation of 105 slices 

during the ablation process revealed a porous inner structure. The outer shell (about 200 nm into the 

particle) shows no indication for pores. These morphological findings are in agreement with observation 

by Pratsinis and Vemury (1996) [63], Messing et al. (1993) [58] and Reuge et al. (2008) [66] [67]. After 

about frame 50 (row 5, column 50) the particle is almost ablated and a tailing pattern can be observed, 

see Figure 98. 

 

Figure 54: SE-image sequences at different ablation-depths of 4 selected particles (Particle 2, 3, 12 and 18) 

originating from SG141027_12A. 
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This does not really give any substantial information regarding the morphology. Thus, the residue 

pattern may be attributed to the ablation specific behavior of the micro particle. But it can be derived 

that the particle density changes throughout the particle and cannot be considered homogenous. All 

investigated particles show a thin outer crust with a higher specific density than the inner structure. 

This inner structure has a porous morphology thus resulting in a considerably lower density. The 

overall averaged density of a uranium microparticle is therefore much lower than of a naturally grown 

“uranium bulk material entity”. U3O8 has a mean density of 8.3 g/cm3 and UO3 depending on the 

modification 5.5 - 8.7 g/cm3. Auxiliary FIB investigations on multiple particles were performed at IEK-

6. These particles originate from SG150401_14A and were produced in April 2015 in a comparable 

manner. The investigation revealed no significant changes: all particles show a corrugated, fissured 

outer structure and a porous inner structure for all particles. Three representative particles were 

selected to be displayed, see Appendix Figure 99 – Figure 101. All data show a consistent picture of the 

inner and outer structure of these particles. 

FIB investigations proved the existence of a much less denser species. Further studies on the crystal 

structure using µ-Raman investigations will give more information on the composition of these 

microparticles. But a thorough density assumption will be given in Chapter 5.4.3.1 which will be derived 

from the mean integrated 238U-intensity of a single uranium particle. 

5.2.3.3 Elemental Analysis with Energy Dispersive X-Ray Spectroscopy (EDX) 

EDX analysis was routinely applied during particle assessments to identify uranium in 

microparticles. This chapter presents the results obtained from EDX analysis performed on all six 

batches. Particles were either deposited on Si or on C substrates. The focus during EDX analysis was on 

the quantification of the C, Si and U amount and identification of their ratios and to demonstrate that 

microparticles can be easily identified and that solid particles show a much clearer signal than the 

hollow species. 

SG140521_02 is different to the other particle batches presented in this thesis. Morphological 

studies revealed the presence of a polydisperse distribution. Therefore, SG140521_02 will be discussed 

in a separate sub-chapter, while the other particle batches SG141027_12A, SG150312_05A, 

SG150401_14A and SG150429_02A will be discussed in one chapter. 

Elemental analysis was performed on several SEMs: Jeol JSM, Tescan TIMA and FEI Quanta 200 F 

SEM. All spectra presented in this work were acquired at AcV = 25 keV. 

5.2.3.3.1 EDX on Polydisperse Species: SG140521_02 

Previous studies on the morphology revealed the existence of multiple species: (a) hollow, inflated 

particles, (b) debris and (c) solid particles. This chapter depicts the investigation of batch SG140521_02. 

Two different studies were performed: (1) automated particle analysis including the analysis of over 

170 particles and (2) the assessment of four representative particles. All particles were deposited on C-

substrate. 

This EDX analysis demonstrates that a quantitative EDX analysis at ACV = 25keV is significantly 

biased because at these accelerating voltages a lot of the signal originates from the substrate, this can be 

observed in Figure 55. Nevertheless a comprehensive attempt in quantitative characterization will be 

described in this chapter. An automated EDX-particle analysis was performed at AcV = 25keV on a Jeol 

SEM with INCA EDX software. A representative area of 200 x 200 µm2 was investigated containing 176 

uranium bearing particles. The ternary diagram shown in Figure 55 depicts a strong spread of the U(M) 

and C(K) signal. This is due to the polydisperse nature of the particles and their position in relation to 

the BSE detector. This observation is in concurrence with the morphological studies performed in 

Chapter 5.2.3.1. Table 13 shows the mean C(K), O(K) and U(M) signals for all 176 particles. A mean C(K) 

values is 65.02 ± 23.97 wt-% was derived. 
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Figure 55: Left: Ternary diagram depicting the significant variation of the C(K), O(K) and U(M)-ratio of 176 

polydisperse particles from SG140521_02 particle distribution. Right: Histogram depicting the mean wt% 

measured for 176 polydisperse particles originating from SG140521_02. 

For oxygen, the mean O(K) value was derived to be 10.43 ± 10.43 wt-% and U(M) 14.17 ± 7.47 wt-

%. The “w(O)/w(U)” ratio ranges between 0.23 ≤ O/U ≤ 1.44, see Table 13. EDX spectra were all collected 

in a low vacuum condition, therefore the presence of oxygen and carbon is expected, which is a possible 

explanation for the mean ratio of U/O = 0.72 ± 0.24. 

Table 13: Mean values for C(K), O(K) and U(M) for 176 particles for SG140521_02. 

SG150521_02A 

Element wt% Δwt% 

C(K) 65.02 23.97 

O(K) 10.43 4.88 

U(M) 14.17 7.43 
 

Out of these 176 particles, four representative particles were selected for individual assessment. 

Figure 56 shows the wt-% distribution for each of the four particles. The dominant signal comes from 

the C-substrate. For the hollow species, intact and particle debris, over 98 % comes from C(K). The 

interaction of the electron beam with the porous and thin material is relatively low thus resulting in a 

high background signal. For the hollow species, no measureable proportion of oxygen could be detected. 

The U(M) signal varies between 0.97 – 1.70 w-%. For the solid species the U(M) signal can be 4.3 - 7.6 

times higher than for the hollow species and reach up to 7.37 w-%. 

Table 14: Results EDX analysis of four selected particles from SG140521_02. 

Hollow particle Hollow particle - destroyed Deformed Particle 

Element Weight% Atomic% Element Weight% Atomic% Element Weight% Atomic% 

C(K) 98.44 99.92 C(K) 98.30 99.91 C(K) 98.98 99.97 

O(K)   O(K)   O(K)   

U(M) 1.56 0.08 U(M) 1.70 0.09 U(M) 1.02 0.03 

Particle Debris Solid particle    

Element Weight% Atomic% Element Weight% Atomic%    

C(K) 99.03 99.99 C(K) 75.38 84.98    

O(K)   O(K) 17.25 14.60    

U(M) 0.97 0.01 U(M) 7.37 0.42    
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Figure 56: w-% of C(K), O(K) and U(M) on four selected particles from SG140521_02 on C-substrate. 

5.2.3.3.2 Uniform Particle Species: SG141027_12A, SG150312_05A, SG150401_14A and 

SG150429_02A 

The second part describes the investigation of uniform, homogenous particles. EDX spectra were 

acquired at AcV = 25keV on the Jeol JSM 6610 and Tescan TIMA machine – particles were deposited 

either on C- or Si-substrates. First particle which were deposited on carbon substrate will be discussed: 

SG141027_12A and SG150401_14A. Both batches were produced during different stages of the setup 

evolution process. This chapter demonstrates that even with solid microparticles a quantitative 

elemental evaluation is significantly biased, at AcV = 25 keV. At lower accelerating voltages the signal 

originating from the micro sample insignificantly less biased due to the small size of the particle. The 

interaction volume of the electron beam is always much bigger than the measured microparticle itself. 

SG141027_12A was produced in October 2014 when the setup resembled more the schematics 

found in Figure (16) - No (2). An automated particle analysis with the Jeol JSM 6610 was performed and 

a total area of 4.90E+05 µm2 was scanned and 639 uranium containing particles were identified. EDX 

analysis showed a mean values for C(K) = 76.24 ± 3.84 wt-%, for O(K) = 14.11 ± 3.46 wt-% and for 

U(M) = 9.65 ± 0.64 wt-%. This corresponds to a “w(O)/w(U)” ratio of w(O)/w(U) = 1.46 ± 1.60. 

Batch SG150401_14A was produced in April 2015 and the setup was significantly changed, see 

Figure (4), No (4). The biggest change was the increase in collection yield. For SG150401_14A 150 

particles were selected for EDX analysis. A mean value for C(K) = 81.86 ± 4.57 wt-%, O(K) = 13.52 ± 2.64 

wt-% and U(M) = 10.16 ± 2.04 wt-% was derived. A w(O)/w(U) = 1.33 ± 0.30 was derived. Table 15 

depicts that there is no significant change in the wt-% between SG141027_12A and SG150401_14A. 

 

Figure 57: Comparison of EDX values of C(K), O(K) and U(M) in wt% from SG141027_12A and 

SG150401_14A – on C-substrates. 
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The calculated mean values for both batches show no significant deviation: C(K) = 79.05 ± 2.81 wt-

%, O(K) = 13.82 ± 0.30 wt-% and U(M) = 9.91 ± 0.26 wt-%. The deviation between both batches for C(K) 

is about 6.9 %, for O(K) 4.2 % and for U(M) 5.0 %. Figure 57 depicts the measured data from 

SG141027_12A and SG150401_14A. Category two particles were deposited on a Si-wafer. For all three 

batches, just a limited number of 12 - 15 particles could be investigated. The following table (Table 15) 

depicts the mean values for C(K), O(K), Si(K) and U(M) lines. 

Table 15: Mean values for the C(K), O(K) and U(M) lines of solid particles deposited on glassy carbon 

substrates: SG141027_12A and SG150401_14A. 

SG141027_12A SG150401_14A 

Element wt% Δwt% Element wt% Δwt% 

C(K) 76.24 3.84 C(K) 81.86 4.57 

O(K) 14.11 3.46 O(K) 13.52 2.64 

U(M) 9.65 0.64 U(M) 10.16 2.04 

Mean K,M-Values    

 wt% Δwt%    

Mean C(K) 79.05 2.81    

Mean O(K) 13.82 0.30    

Mean U(M) 9.91 0.26    
 

Both Table 15 and Figure 57 indicate that the deviation of each planchet for the corresponding 

elemental peak-signal is not significantly high. The derived mean value for U(M) matches about 98.4 % 

of the value for SG150413_03A, for SG150312_05A it is about 93.9 % and for SG140429_02A it matches 

to about 95.7 %. The resulting “w(O)/w(U)” ratios are 0.34 for SG150312_05A, 0.44 for SG150413_03A 

and 0.25 for SG150429_02A. EDX was used to investigate the uranium oxide species by comparing the 

measured weight ratios of oxygen and uranium with the values published by Morss et al. (2011) [92]. 

All spectra were measured in high vacuum mode. The resulting signals can be correlated to the uranium-

oxide species. But it has to be noted that all particles were stored under ambient conditions: inside 

plastic boxes which were double bagged inside plastic backs. The w(O)/w(U)” ratios were derived from 

these measurements: for particles deposited on carbon substrates a ratio of w(O)/w(U) = 0.19 and 

w(O)/w(U) = 0.17 was measured which is close to the values for UO3 published by Morss et al. (2011) 

[92]. 

For particles which were deposited on Si substrates, the ratios of w(O)/w(U) differed significantly 
w(O)/w(U) = 0.34 for SG150312_05A, w(O)/w(U) = 0.44 for SG150413_03A and w(O)/w(U) = 0.25 for 
SG150429_02A, see Table 16. 

Table 16: Mean values for the C(K), O(K) and U(M) lines at solid particles deposited on Si wafer substrates: 

SG150413_03A, SG150312_05A and SG150429_02A. 

SG150312_05A SG150413_03A 

Element wt% Δwt% Element wt% Δwt% 

C(K) 2.38 0.76 C(K) 2.20 0.85 

O(K) 4.25 0.87 O(K) 5.98 1.05 

Si(K) 80.88 1.68 Si(K) 78.31 1.97 

U(M) 12.49 0.89 U(M) 13.51 1.01 

SG150429_02A  Mean K,M-Values  

Element wt% Δwt%   wt% Δwt% 

C(K) 2.86 0.91 Mean C(K) 2.48 0.16 

O(K) 3.43 0.68 Mean O(K) 4.55 0.85 

Si(K) 79.82 1.24 Mean Si(K) 79.67 0.79 

U(M) 13.89 1.02 Mean U(M) 13.30 0.30 
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Figure 58: Comparison of EDX values of C(K), O(K) and U(M) in wt% from SG150312_05A, SG150413_03A 

and SG150429A– all particles are deposited on Si wafer substrates. 

The presence of carbon inside the particles which are deposited on Si wafer substrates is interesting 
and was completely unexpected. There are two possible reasons for the emergence of carbon in the EDX 
spectra. (1) the presence of carbon can be an indication of an incomplete thermal conversion: the 
presence of carbon and uranium may also be an indication for a multiphase uranium species. Luan et al. 
(2015) [155] tested the long-term reduction of U(IV) species through the addition of ethanol and 
demonstrated its effects. Morss et al. (2010) [92] had already demonstrated the reduction of uranium 
species in the presence of carbon. Or (2) it can be attributed to an EDX specific artefact, because 
combined FIB/TOF-SIMS investigations, in Chapter 5.2.3.2.1, on the similar particles (SG141027_12A) 
indicate the absence of carbon inside these particles. Further investigations on the chemical 
environment and oxidation state with extended X-ray absorption fine structure and X-ray absorption 
near edge structure (EXAFS and XANES) measurements have to be performed in order to investigate 
these effects. Further studies with µ-Raman spectroscopy may give additional indication about the 
presence of carbon in single microparticles, see Chapter 5.3. 

5.2.4 Conclusion SEM Characterization 

5.2.4.1 Conclusion Particle Size Distribution 

It can be shown that the particles size distribution became narrower and precise over the period of 
12 months. The amount of tailings which can be associated to doublet or triplet droplet agglomerations 
decreases over the time. For all solid particles a similar shape and morphology could be observed, see 
Figure 59 which shows the particle size distribution for all six batches. So far no batch can be considered 
monodisperse yet, the variance became much smaller. 

 

Figure 59: Overview of the particle evolution since May 2014 to April 2015. 
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This is a good indication that the control of the temperature and air flows is of utmost importance. 
We could demonstrate that the mean particle size can be adjusted precisely by the concentration of the 
precursor solution. Table 17 depicts the mean particle size and the corresponding temperature profile. 
It can be shown that the presence of the furnace is not needed. And that it rather introduces more 
disturbances and a decrease of the particle collection yield. The particle size is dependent on the 
characteristics such as the precursor aerosol solution concentration, the liquid feed rate and the 
frequency of the orifice. Particle morphology and density are controlled by the precipitation mechanics 
during solidification and can either be homogenous or surface controlled. The number of uranium atoms 
(see equation 10) is stable, but the density can vary significantly. 

Table 17: Overview of calculated diameters and heat parameters of the pre-heater and the furnace. 

Sample-ID Mean Diameter Δ(Mean DIA) Preheating Furnace 

  [µm] [µm] [°C] [°C] 

SG140521_02 1.35 - 480 750 

SG141027_12A 1.37 0.19 560 - 

SG150312_05 0.99 0.15 400 480-900 [g] 

SG150401_14A 0.85 0.15 500 - 

SG150413_03A 1.05 0.11 500 - 

SG150429_02A 1.02 0.10 500 - 
 

5.2.4.2 Conclusions on the Particle Morphology Section 

Scanning electron microscopy was used to assess the particle morphology of all six batches. 

Polydisperse particle originating from SG140521_02 were useful to understand the formation processes 

from precursor droplets to particles. The final morphology is determined by the production 

environment and predominantly by the temperature. In the case of SG140521, a surface-controlled 

precipitation led to the generation of hollow particles. These particles were assessed by deliberate 

destruction with a micromanipulation needle inside a SEM. SEM investigations revealed that these 

microparticles are hollow and do not necessarily break on impact. To obtain further information and to 

prove that non-destructive computational means can deliver additional information, Monte Carlo 

simulations were performed to recreate the SE-images obtained in a SEM. Information regarding the 

density and shell thickness could be derived successfully from them. It can be concluded that the outer 

shell structure has a thickness in the range 20 < d < 50 nm and is made of U3O8 with a density of 

δOS = 8.4 g/cm3. The inner structure is also composed of U3O8 but it has a lower density of δIS = 6.6 g/cm3. 

According to our simulations the presence of a filling material did not play a significant role. 

Furthermore, SEM investigation on the solid particle batches (SG141027_12A, SG150312_05, 

SG15040_14A, SG150413_03A and SG15429_02A) provide confidence that the particle size can be 

adjusted precisely. Particle formation is controlled by an erratic internal solvent evaporation which 

leads to the formation of a high permeable solid entity, which is in accordance to the prediction of Reuge 

et al. (1961) [66] [67] and Messing et al. (1993) [58]. All solid particle batches show similar geometric 

features: particles are not perfectly spherical, instead the surface shows a lot of dents and grooves. 

Combined FIB-TOF-SIMS, investigations on a selected number of particles demonstrated consistent 

quality within these batches. All microparticles which were investigated do not show a homogenous 

density distribution throughout the entire volume. According to FIB investigations, all single 

microparticles consist of two different parts which have significantly different densities: (1) a thin 

denser outer layer of about 0.2 µm in thickness and (2) a porous inner structure which is far less dense. 

TOF-SIMS investigation proved the existence of Si cross-contaminations which might originate from the 

 

[g]  Temperature range of preheating system: 480 °C and furnace 900 °C. 
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application of glass vials in which the precursor solutions were stored. TOF-SIMS analysis also revealed 

that the inner structure was less dense and showed an erratic morphology. FIB analysis showed the 

existence of a porous inner structure. According to the recorded m/Q(238) signals a consistent amount 

of uranium can be assumed. 

Elemental investigations using SEM-EDX verified the presence of uranium. SEM-EDX was already 

routinely used in automated particle analysis for the size determination: only uranium containing 

microparticles were selected for this analysis. Quantitative analysis using SEM-EDX on hollow and solid 

particles proved ineffective due to the small size of the particles. The main source of the signal originated 

from the background. This effect became more pronounced for the hollow entities of SG14521_02. 
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5.3 Particle Characterization with Micro-Raman Spectroscopy 

The aim of these measurements was to investigate the crystallinity, coordination- and chemical 

environment. One expects to see strong peaks associated to U3O8 due to the production process used. 

SEM investigations on comparable micrometer sized particles which were also produced by spray 

pyrolysis were analyzed. These were: monodisperse Particles from ITU (20079), VTT and AWE. All 

particles were produced in a comparable manner, i.e. by spray pyrolysis – see Chapter 4.1. These 

particles were stored under ambient conditions or in aqueous solutions for several years and all batches 

showed significant ageing effects in form of crystal growth on the surface, formation of agglomeration, 

etc. This and reference research raised the question whether the particles produced at FZJ are 

thoroughly converted to the corresponding uranium oxide: preferably U3O8 or UO3. We expected to see 

no bands associated to uranium oxide-hydroxide compounds because we assumed that the calcination 

process is thorough. 

For comparison reasons just the spectral range of 100 - 1400 cm-1 is discussed in detail. Memorable 

bands will be dealt with at a later stage. All full spectra can be observed in the Appendix, Chapter 6.7 

(except UO2F2 which was solely measured at CEA thus having a spectral range of 100 - 1400cm-1. Three 

different notations are used for the peak identification to indicate the peak strength: “w” for weak, “m” 

for medium and “s” for strong. All five reference materials (1) UO2F2, (2) U3O8, (3) UO2, (4) uranyl nitrate 

hexahydrate (UNH) and (5) ammonium diuranate (ADU) will be discussed one by one in detail before 

addressing SG140521_02 and SG141027_12A and SG150401_12A. 

5.3.1 Reference Raman Spectra on Particulate Material 

5.3.1.1 U3O8 

Multiple samples containing U3O8 particulates were measured by MRS at CEA and TUW. At CEA 

spectra were obtained in the energy range of 300 µW – 15 mW. For an optimal result, a laser energy of 

15 mW was selected with the Renishaw MRS. At CEA, particles were in the energy range of 300 µW – 

5 mW. A representative number of two spectra acquired with both instruments were selected for 

graphical comparison and discussion - in the spectral range of 100 - 1400 cm-1, see Figure 60. Nine 

different peaks were identified and could be matched with existing references, see Table 18. 

Table 18: Main Raman bands detected for U3O8 in accordance with the following references. 

 Wavelength, [cm-1] Reference 

1 166 w Stefaniak et al. (2008) (but with 514.5nm laser) 

2 178 w Pointurier et al. (2010) (185cm-1) 

3 244 - 260 w Allen et al. (1987) (236cm-1) and  Stefaniak et al. (2008) 

4 342 w Allen et al. (1987), Jégou et al. (2010), Palacios et al. (2000) - α-U3O8 

5 420 m Pointurier et al. (2010) (412cm-1), Palacios et al. (2000) - α-U3O8 

6 453 - 493 m Allen et al. (1987) for U4O9, Palacios et al. (2000) - α-U3O8 

7 485 - 514 s Stefaniak et al. (2008) (480cm-1) 

8 809 m Palacios et al. (2000), Jégou et al. (2010) 

9 1313 s Carbon substrate 
 

The spectra were in good accordance to what Stefaniak et al. (2008) [138] and Allen et al. (1987) 

[117] measured. A weak and diffuse band at 166 - 178 cm-1 could be identified: the Stefaniak et al. (2008) 

[138] measured a peak at 164 cm-1 for U3O8 but with a 514.5 nm – with the 785 nm no peak at 164 cm-1 

could be measured. Pointurier et al. (2010) [135] measured with the same MRS and a 785nm laser a 

small peak at 185 cm-1. 
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Figure 60: Micro Raman spectra of U3O8 acquired at CEA and TUW. 

Pointurier measured a weak peak at 178 cm-1 – on the same MRS and with micrometer sized 

particulates. The shift may be accounted for difference in the U3O8 material. According to Butler et al. 

(1988) [118], the band at 224 cm-1 can be associated with a2u U-O bending vibrations, while the peak at 

342cm-1 is caused by a1g U-O stretching vibration. The strong quadruple peak band between 

342 - 453 cm-1 is largely confirmed by Palacios et al. (2000) [126] and Jégou et al (2010) [140]. 

It can be concluded that the U3O8 spectra measured can be associated with the α-U3O8 modification. 

Senanayake et al. (2005) [94] and Jégou et al. (2010) [140] reported the following peaks for α-U3O8: 340, 

405 and 480 cm-1 due to A1g, A1g and Eg U-O stretching. Peaks at higher wavenumbers: 640, 795 cm-1 

could be identified as overtones of the A1g and Eg stretches. The measured peaks at higher wavelength 

of this quadruple band show a shift for the 453 cm-1 peak to 493 cm-1 for the spectra recorded at TUW. 

Stefaniak et al. (2008) [138] reports similar findings. The shift can be explained by the different 

measuring conditions and laser energies. The peak at 809 cm-1 is in accordance to the findings of Palacios 

et al. (2000) [126] and Jégou et al. (2010) [140] and is an overtone or harmonic vibrational mode of the 

U-O stretch vibration band between 340 - 550 cm-1. 

5.3.1.2 UO2 

Two bands were detected for UO2: 445 cm-1 and 1147 cm-1. These results are in accordance with 

various references from Pointurier et al. (2010) [135], Stefaniak et al. (2008) [138], Palacios et al. (2000) 

[126], Lue et al. (2014) [156] to Allen et al. (1987) [117]. 
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Figure 61: Micro Raman spectra of UO2 acquired at CEA and TUW. 

 

Figure 62: Peak transition due to laser induced UO2 oxidation; to U3O8. 

The same applies to the band around 1150 cm-1: Jégou et al. (2010) [140], Pointurier et al. (2010) 

[135], Stefaniak et al. (2008) [138], Senanayake et al. (2005) [94], Lue et al. (2014) [156] to Allen et al. 

(1987) [117], see Table 19. 

If the laser energy is increased too much, UO2 can oxidize to α-U3O8. The oxidation of UO2 by the 

incident energy of the laser to U3O8 is a well-documented process which is generated through an 

intermediate U3O7 / U4O9 step, see Pointurier et al. (2010) [135], Winer et al. (1986) [125], Armstrong 

et al. (1989) [157] and Hoekstra et al. (1961) [85], [127]. This oxidation phenomenon was observed 

during our measurements as well: the particle was exposed for 5s to a laser power of 150 mW, the 

spectra were acquired at 300 µW; see Figure 62. 

Table 19: Raman bands detected for UO2 in accordance with the following references. 

 Wavelength, [cm-1] Reference 

1 445 m Stefaniak et al. (2008), Pointurier et al. (2010), Palacios et al. (2000) 

2 1147 w Jégou et al. (2000), Lue et al. (2014), Pointurier et al. (2010), etc. 
 

5.3.1.3 Uranyl Nitrate Hexahydrate 

Uranyl nitrate hexahydrate (UNH) was measured both at CEA and TUW. Data collected at CEA was 

measured from Stage (1) and Stage (2). Stage (1) contains bulk materials of UNH while Stage (2) contains 

micrometer sized particulates. The spectra differ significantly from those two substrates: bulk materials 

of UNH deliver a much more distinct peak resolution: 5 different bands for Stage (1) could be identified. 

A medium band at 205 - 230 cm-1 a small band at 748cm-1 and a strong signal at 872 cm-1. A distinct 

double peak at 1030 and 1040 cm-1 was measured. In comparison, the peaks associated with Stage (2) 

which were obtained at CEA and TUW show a different band profile: the first band at   748 cm-1 is rather 

weak and broadened and it merges into a medium band at 821 cm-1. The only strong band comes from 

the carbon substrate at 1310 cm-1. Khulbe et al. (1989) [158] present Raman spectra of uranyl nitrate 

hexahydrate at various temperatures. According to Khulbe et al. (1989) [158], the crystal structure was 

determined by neutron diffraction. UNH has orthorhombic space group C2v12 (Cmc21). The following 

peaks for Stage 1 (bulk quantities) could be verified. Khulbe et al. (1989) [158] identified a strong band 

at 1622 cm-1. MRS measurements performed at TUW revealed a distinct peak at 1618 cm-1, see Figure 

(120) in the Appendix. The double band at 1030 and 1040 cm-1 is in accordance to Khulbe et al. (1989) 

[158] findings (1039 – 1050 cm-1) as well as for 748 cm-1 and 205 – 230 cm-1; the latter one not being so 

diffuse but distinct. 
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Figure 63: Micro Raman spectra of UNH of Stage (1) and (2) acquired at CEA and TUW. 

For Stage 2, only minute quantities were measured on single micrometer sized particulates. Only 

one small-medium peak could be identified at 821 cm-1. This peak is in accordance with a peak identified 

from Khulbe et al. (1989) [158] at 830 cm-1. 

Table 20: Raman bands detected for UNH in accordance with the following references. 

 Wavelength, [cm-1] Reference 

 Stage 1   

1 205 - 230 w Khulbe et al. (1989) 

2 748 W Khulbe et al. (1989)) 

3 872 S Khulbe et al. (1989)) 

4 1030 & 1040 S Khulbe et al. (1989) 

5 1610 m Khulbe et al. (1989) 

 Stage 2   

 821 w Khulbe et al. (1989) 

5.3.1.4 Ammonium Diuranate 

Ammonium diuranate (ADU) was only measured at the TUW. ADU is part of the mixture that is 

commonly known as “Yellow Cake” (YC). YC is a precursor product for the nuclear fuel cycle. Uranium is 

leached from the ore and then purified and concentrated. The concentrated uranium solution is 

precipitated with reagents that can be ammonia or ammonium hydroxide, hydrogen peroxide, sodium 

peroxide thus forming the corresponding compounds. Drying and calcination processes lead 

subsequently to the corresponding oxides: UO3 and U3O8. The number of references concerning Raman 

spectra on ADU is very scarce. Ho et al. (2015) [159] investigated ADU compounds from different mines 

and geographical locations. Pointurier et al. (2010) [135] investigated ADU particulate with MRS. They 

found three distinct bands at 465, 810 and 1389 cm-1. 

Table 21: Main Raman bands detected for ADU. 

 Wavelength, [cm-1] Reference 

1 716 - 755 w No reference 

2 814 m Pointurier et al. (2010) (810 cm-1) 

3 837 w Ho et al. (2015) 

4 1604 m No reference 
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Figure 64: Micro Raman spectra of ADU acquired at TUW. 

MRS revealed three distinct bands at 716, 814 and 1604 cm-1. The band at 716 – 755 cm-1 is a broad 

and weak band. No reference to ADU could be found, but ammonium uranyl carbonate shows a 

deformation stretch of the uranyl ion in the region 727 – 816 cm-1. For the band at around 1600 cm-1 no 

reference band could be identified, but it could be an overtone of the O-U stretch vibrational mode at 

814 – 837 cm-1. Ho et al. (2015) [159] published a similar spectrum for ADU originating from Milliken 

Lake, Ontario Canada. Degradation effects on the ADU are possible reason for the discrepancy in the ADU 

spectra observed from Ho et al. (2015) [159] and Pointurier et al. (2010) [135]. 

5.3.1.5 UO2F2 

UO2F2 was measured at CEA only. The UO2F2 material was stored in a plastic vial for several years. 

Degradation and oxidation may occur. One distinct band could be identified at 867 cm-1. This accordance 

with Stefaniak et al. (2013) [160] and (2014) [139] and Pointurier et al. (2010) [135], Kips et al. (2009) 

[31] and Pidduck et al. (2008) [145]. The band between 800 and 900 cm-1 can be associated with 

symmetric U-O vibrational modes. According to Stefaniak et al. (2013) [160] the exact wavenumber 

depends on the neighboring ions. They also presented spectra acquired from UO2F2 particles which were 

stored under ambient conditions for months, in the same way as our particles: by gradual water 

absorption a Raman shift occurs and lead to a broadening of the signal which, see Figure 65 and Table 

22. 

 

Figure 65: Micro Raman spectra of UO2F2 acquired at CEA. 
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Table 22: Main Raman bands detected for UO2F2. 

 Wavelength, [cm-1] Reference 

1 867 w Stefaniak et al. (2013), Pointurier et al. (2010) 
 

The peak itself consists of a doublet band caused by water uptake. The measured peak at 867 cm-1 

also shows tailing at the front. The well-established UO22+ stretching band had very probably shifted to 

a double band through the uptake of water (caused by humidity); this is the case when UO2F2 reaches 

the water saturation equilibrium, see Figure 118 in the Appendix Chapter 7.5.3. This result is in direct 

accordance to Stefaniak et al. (2013) [160]. 

5.3.1.6 SG140521_02 

The polydisperse particles of SG140521_02 were produced in May 2014. The precursor aerosol 

droplets were heat treated by the preheating system at 480°C and then calcinated at 737 – 747 °C in the 

four-zone oven, see setup depicted in Figure 17. Under these production environment U3O8 is expected. 

In this discussion a representative number of three spectra will be displayed, see Figure 66. All spectra 

acquired are depicted in the Appendix – Chapter 7.5.4: Figure 119. 

Seven different bands could be identified using MRS at CEA: 242 cm-1 (w), 377 cm-1 (w), 416 cm-1 

(m), 481 cm-1 (m) and 607 cm-1 (w). The first band was measured at 242 cm-1 can be associated with α-

U3O8: Allen et al. (1987) [117] measured on powdered solids a strong band at 236 cm-1. Senanayake et 

al. (2005) [94] measured a band at 235 cm-1 for α-U3O8. The band range between ~ 370 and 490 cm-1 is 

a relatively strong, but very diffuse band area. The first identified peak of this allegedly triple peak can 

be found at 377 cm-1. This band cannot be associated with a U-O stretching vibrational mode of U3O8. 

This band shows the biggest resemblance to a diffuse band from meta schoepite [(UO2)4O (OH)6 . 5(H2O)] 

and uranium (IV) hydroxide [α-UO2(OH)2] measured by Sweet et al. (2013) [93] at around 370 cm-1. The 

second peak at ~ 416 cm-1 shows no distinct identification: Stefaniak et al. (2008) [138] measured a peak 

at 405 cm-1 for U3O8. Further references by Allen et al. (1987) [117], Palacios et al. (2000) [126] and 

Pointurier et al. (2010) [135] indicate the presence of α-U3O8. The third peak was measured at around 

481 cm-1. This peak corresponds to a U-O vibrational mode of UO3 and was measured by Armstrong et 

al. (1989) [157], Sweet et al. (2013) [93] and Palacios et al. (2000) [126] on γ-UO3. The peak at 607cm-1 

is very weak and phase identification is difficult. The biggest resemblance was to be found with a 

measurement acquired from measuring UO2 standard by Stefaniak et al. (2008) [138]. The peak at 

806 cm-1 can be associated to an overtone mode of U-O by U3O8, see Jégou et al. (2010) [140], Palacios et 

al. (2000) [126], Stefaniak et al. (2008) [138] and Pointurier et al. (2010) [135], see Table 23. 

 

Figure 66: Raman spectrum of polydisperse SG140521_02. 
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The last peak at around 864 cm-1 shows the biggest resemblance to bands measured by Bastians et 

al. (2004) [161] and Pointurier et al.(2010) [135] on studite [UO4 . 4H2O] and meta-studite [UO4 . 2H2O]. 

Table 23: Main Raman bands detected for SG140521_02. 

 Wavelength, [cm-1] Reference 

1 242 w α-U3O8 Pointurier et al. (236 cm-1) 

2 377 w Meta Schoepite, α-UO2(OH)2, Sweet et al. (2013) 

3 416 m (α)-U3O8, Pointurier et al. (2010), Stefaniak et al. (2008) 

4 481 m γ-UO3, Armstrong et al. (1989), Sweet et al. (2013) 

5 607 w UO2, Stefaniak et al. (2008) 

6 806 m U3O8, Pointurier et al. (2010), Stefaniak et al. (2008) 

7 864 W UO4 . 4H2O, UO4 . 2H2O, Bastians et al. (2004), Pointurier et al. (2010) 

5.3.1.7 SG141027_12A 

All 15 spectra obtained on SG141027_12A are shown in the Appendix in Chapter 7.5.5, Figure 120, 

all with the same comparable spectral range of 100 – 1400 cm-1. Spectra obtained at TUW have a wider 

spectral range. SG141027_12A was produced without the furnace only with the pre-heating attached, at 

temperatures around 560°C. SG141027_12A shows comparable Raman bands as SG140521_02. It is 

obvious that the spectra for SG141027_12A are less noisy and better resolved. The band at 242 cm-1 can 

be identified as a U-O stretch vibration of (α-)U3O8, see Allen et al. (1987) [117], Pointurier et al. (2010) 

[135] and Senanayake et al. (2005) [94]. A similar diffuse broad band between 330 – 490 cm-1 was 

measured: The first band at 339 cm-1 can be associated with multiple U-O species: Sweet et al. (2013) 

[93] measured band at 339 cm-1 for γ-UO3 and for meta-schoepite  and uranium (IV) hydroxide at 

around 370 cm-1. According to Allen et al. (2013) [117], this band can also be associated with α-U3O8 or 

according to Stefaniak et al. (2008) [138] to U3O8. The peak at 386 cm 1 can be associated with meta 

schoepite and uranium (IV) hydroxide, see Sweet et al. (2013) [93]. Since this band is so diffuse it is 

difficult to identify it to a uranium species: Butler et al. (1988) [118] identified U3O8. The band at 419 cm-

1 is very likely to be associated with (α)-U3O8, see Stefaniak et al. (2013) [138], Allen et al. (1987) [117], 

Palacios et al. (2000) [126] and Pointurier et al. (2010) [135]. The last peak of the strong diffuse band is 

481 cm-1. As mentioned before this band was measured occurred at 481 cm-1. This peak corresponds to 

a U-O vibrational mode of γ -UO3 which was measured by Armstrong et al. (1989) [157], Sweet et al. 

(2013) [93] and Palacios et al. (2000) [126]. 

 

Figure 67: Raman spectrum of selected particles from SG141027_12A, measured at CEA. 
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The peak at 607 cm-1 is also very weak and it is difficult to make a meaningful statement: it is most 

likely that it is caused by UO2 modification which was also measured by Stefaniak et al. (2008) [160]. A 

band region between 770 and 860 cm-1 was measured. Area fitting revealed the presence of three bands: 

770 cm-1, 806 cm-1 and 857 cm-1. According to Sweet et al. (2013) [93] and Armstrong et al. (1989) [157], 

the band measured at 770 cm-1 can be associated with γ-UO3. The band at 806 cm-1 is similar to 

SG140521_02 and can be associated to an overtone mode of U-O vibrational modes of U3O8; see Jégou et 

al. (2010) [140], Palacios et al. (2000) [126], Stefaniak et al. (2008) [138] and Pointurier et al. (2010) 

[135]. The peak measured at 857 cm-1 is similar to SG140521_02 as well; see by Bastians et al. (2004) 

[161] and Pointurier et al.(2010) [135] measurements on studite [UO4 . 4H2O] and meta-studite 

[UO4 . 2H2O]. Figure 120 depicts the variations between the measurements performed at CEA and TUW. 

It shows that the band discrimination is better with the spectra acquired at CEA and the overall intensity 

of those normalized bands is better resolved. On the other hand, the peak associated to the Si background 

is significantly more pronounced at the CEA acquired spectrum. 

Table 24: Main Raman bands detected for SG141027_12A. 

 Wavelength, [cm-1] Reference 

1 242 m α-U3O8 Pointurier et al. (2010) 

2 

 

339 

 

m 

 

Possible matches to (α-)U3O8, Meta-schoepite and U(IV)hydroxide 

See Sweet et al. (2013), Allen et al. (2013), Stefaniak et al. (2008) 

3 

 

386 

 

m 

 

Meta Schoepite, α-UO2(OH)2, Sweet et al. (2013) or U3O8 Butler et al. 

(1988) 

4 419 m (α)-U3O8, Pointurier et al. (2010), Stefaniak et al. (2008) 

5 481 m γ -UO3, Sweet et al. (2013), Palacios et al. (2000) 

6 606 W UO2, Stefaniak et al. (2008) 

7 770 m γ-UO3, Sweet et al. (21013) and Armstrong et al. (1989) 

8 806 m U3O8, Pointurier et al. (2010), Stefaniak et al. (2008) 

9 857 w UO4 . 4H2O, UO4 . 2H2O, Bastians et al. (2004), Pointurier et al. (2010) 

5.3.1.8 SG150401_14A 

SG150401_14A was solely measured at TUW. All spectra measured are depicted in the Appendix in 

Chapter 7.5.7 Figure 122. 

 

Figure 68: Raman spectrum of selected particles from SG150401_14A, measured at TUW. 
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SG150401_14A was produced in April 2015 under similar conditions to SG141027_12A: no furnace 

and only pre-heating: at around 500°C. The spectra obtained are noisier than the spectra obtained at 

CEA thus making the identification of diffuser bands more challenging. This is due to a higher systematic 

signal to noise ratio. Four different bands were identified: 246 cm-1, 376 cm-1, 479 cm-1 and 812 cm-1. 

The first band at 246 cm-1 is comparable to “polydisperse” SG140521_02 and “quasi-monodisperse” 

SG141027_12A and can be associated to (α-)U3O8; see Allen et al. (1987) [117], Pointurier et al. (2010) 

[135] and Senanayake et al. (2005) [94]. The band between 370 and 480 cm-1 is very diffuse and noisy. 

The band measures at 376 cm-1 is quite likely to be caused by meta schoepite [(UO2)4O (OH)6 . 5(H2O)] 

and uranium (IV) hydroxide [α-UO2(OH)2]; see Sweet et al. (2013) [93]. The second peak at 479 cm-1 is 

also comparable to SG140521_02 and SG141027_12A and according to Armstrong et al. (1989) [157], 

Sweet et al. (2013) [93] and Palacios et al. (2000) [126] it can be associated with γ-UO3. The last peak 

was measured at 812 cm-1 and is according to Bastians et al. (2004) [161] and Pointurier et al. (2010) 

[135] caused by studite [UO4 . 4H2O] and meta-studite [UO4 . 2H2O]. 

Table 25: Main Raman bands detected for SG150401_14A. 

 Wavelength, [cm-1] Reference 

1 246 w α-U3O8 Pointurier et al. (236 cm-1) 

2 376 m Meta Schoepite, α-UO2(OH)2, Sweet et al. (2013) 

3 479 m γ-UO3, Armstrong et al. (1989), Sweet et al. (2013) 

4 812 w 

α-U3O8, Palacios et al. (2000), Pointurier et al. (2010) 

UO4 . 4H2O (Studite), Bastians et al. (2004) 

5.3.1.9 Conclusion 

Spectra acquired at CEA were recorded in a wavelength region of 100 – 1400 cm-1 whereas spectra 

recorded at TUW had a much wider spectral bandwidth of 0 – 3200 cm-1. The strong peak at around 
1310 cm-1 is associated to the carbon substrate in all spectra. Figure 69 depicts the evolution of the 

particles from May 2014 to May 2015. It is apparent that the signal to noise ratio for spectra recorded at 

TUW is in general higher than for spectra acquired at CEA. This is an inherent systematic characteristic 

of the Vitec machine. Particle produced at FZJ show no significant changes in their spectra, see Figure 

69. SG140521_02 is due to its polydisperse characteristic the least well resolved spectrum. Furthermore, 

it is the only batch that was produced under significantly different conditions. Raman investigation 

revealed the presence of a non-distinct uranium-oxide species. 

 

Figure 69: Particle Evolution: Direct comparison of SG140521_02 vs. SG141027_12A and SG150401_14A. 
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The largest share is associated with U3O8. Small bands at around 339 cm-1, 377 – 386 cm-1 can be 

attributed to meta-schoepite and uranium (IV) hydroxide (α-UO3(OH)2 and meta-schoepite 

(UO2)4O(OH)6.5H2O) and 812 cm-1 and 857 cm-1 for (meta-) studite (studite [UO4 . 4H2O] and meta-

studite [UO4 . 2H2O]). This many matches deliver a strong indication that a multiphase uranium 

compound is present with varying amounts of uranium oxide and hydroxide - simultaneously present in 

a single microparticle. Additionally, small shares of γ-UO3 were identified as well, a week and diffuse 

band at 479 – 481 cm-1 was seen. Particles originating from SG140521_02 were treated at higher 

temperature for a much longer time: for the preheating a dwell time of about 0.15 s was calculated and 

for the furnace a mean dwell time of 3.3 s at temperatures > 750 °C were expected. SG141027_12A and 

SG150401_14A were only converted through the pre-heating system at temperature between 

500 – 560 °C, see Table 5 and Table 6. Interestingly, no significant change of the recorded spectra could 

be observed. Therefore, all batches the quality is consistent. This observation can also be seen in Figure 

119 - Figure 123 in the appendix chapter 7.5.4 - 7.5.8. It can be concluded that the furnace is not 

necessary to ensure proper thermal treatment but no indication about the presence of carbon was found 

during the µ-Raman investigation. This leads to the assumption that the presence of carbon in the 

quantitative EDX analysis in Chapter 5.2.3.3. is associated with a detector specific artefact. 
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5.4 Particle Characterization with Secondary Ionization Mass 
Spectrometry 

 

Figure 70: CAMECA 1280 LG-SIMS at SGAS-ESL. 

All data presented in this chapter was recorded at an ion probe current (IP) of IP = 50pA and with 
a 10 µm beam raster size. All measurements were performed on a CAMECA 1280 large geometry SIMS 
(LG-SIMS) at IAEA SGAS-ESL. This chapter describes the results obtained on SG140521_02 and 
SG141027_12A with the LG-SIMS at SGAS-ESL. The aim of these measurements was to demonstrate the 
suitability of monodisperse microparticles over existing polydisperse bulk materials. Therefore, a series 
of measurements was performed, some of which are very specific for LG-SIMS. These investigations 
included the assessment of the isotopic content and the performance of monodisperse microparticles by 
evaluating the hydride formation, the useful yield, total evaporation and redisposition profiles and the 
effects of the ion beam on the 238U intensity profiles. Data presented in this chapter are obtained from 
analysis of single micrometer sized uranium oxide particles. 

LG-SIMS reports raw data files. Appropriate particles of interest were identified with proprietary 
Cameca software called “APM” (Automated Particle Measurement). After data reduction, appropriate 
uranium microparticles [h] were selected and investigated with the micro-probe mode (10 µm Beam 
Raster and an ion probe current IP of 50 pA). The output data was collected as isotope abundances which 
were converted into isotope amount ratios, a quantity usually used in connection with metrological 
standards. 

5.4.1 Isotopic Analysis 

All particles discussed in this thesis were made from solutions with the uranium prepared from the 
CRM IRMM-183. According to Richter et al. (2005) [162], IRMM-183 was produced in 1987 along with a 
series of other uranium CRMs (IRMM183-187) ranging from 0.3 - 4.5 % enrichment levels. Richter et al. 
(2005) [162] re-certified the isotopic content of all these CRMs using more accurate measurement 
techniques than were available during the initial certification in 1987. Due to the progress in the 
development of mass spectrometers and measurement methods, the certified values had to be updated 
and the corresponding uncertainties of isotope mass fractions of 234U/238U and 236U/238U could be 
reduced significantly. For instance, the re-certified value for the minor abundance of n(234U)/ n(238U) 
was revalued and a discrepancy of ~ 1.5 % to the old certified value was determined. The new value was 
derived to be n(234U)/n(238U) = 1.975 5(22) . 10-5, see Table 26. The data was acquired using thermal 
ionization mass spectrometry (TIMS) (Thermo Fischer, Triton) on bulk materials of the CRM. 

The aim of this investigation was to measure the isotopic content in order to see if anomalies from 
the certified values of the CRM occurred. Table 26 depicts the re-certified values by Richter et al. (2005) 

 

[h] Appropriate particles: single uranium microparticles with a minimum distance of 50 µm to each other. 
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which were used as a direct comparison for the re-evaluation of the isotopic content by deriving the 
isotope amount ratios. The following paragraphs present results from measurements of the isotopic 
amount ratios of n(234U)/n(238U), n(235U)/n(238U) and n(236U)/n(238U). The measured intensities, i.e. 
counts/particle can be directly correlated to the mass of uranium per particle, which will later on be 
discussed as well. In this chapter two different batches were analyzed: SG140521_02A and 
SG141027_12A. All particles were directly measured from the C-substrate. Since SG140521_02A can be 
considered “worst-case scenario” for monodisperse particles it was useful to assess its performance in 
comparison to SG141027_12A. The data sheet with all relevant data on n(234U)/n(238U), n(235U)/n(238U) 
and n(236U)/n(238U) is provided in the Appendix in Chapter (7.6.1) - Table 43 and Table 44. 

Table 26: Re-Certified Amount Ratios of IRMM-183, according to Richter et al. (2005). 

n(234U)/n(238U) 1.9755(22) . 10-5 

n(235U)/n(238U) 3.2157(16) . 10-3 

n(236U)/U(238U) 1.48358(54) . 10-4 

5.4.1.1 Determination of Isotope Ratios 

The isotope amount ratios of n(234U)/n(238U) from SG141027_12A and SG140521_02 will be 
discussed first. The following charts depict the abundance of 234U per particle as an isotope amount ratio 
of n(234U)/n(238U) against the number of particle being measured: for SG141027_12A 21 particles were 
measured and for SG140521_02 eight particles were measured. All relevant data is depicted in Table 27. 

For SG141027_12A, a mean isotope ratio of n(234U)/n(238U) = 1.999.10-5 ± 1.333.10-6 was measured. 
This corresponds to a relative standard deviation (RSD) of 6.67 %. As a comparison, Richter et al. (2005) 
measured an isotope ratio of n(234U)/n(238U) = 1.976.10-5 ± 2.2.10-7. The deviation of SG141027_12A to 
Richter’s value is about 1.22%. It has to be noted that Richter measured bulk materials of IRMM-183 
with thermal ionization mass spectrometry (TIMS). As expected, the corresponding uncertainties for 
n(234U)/n(238U) on SG141027_12A are higher, the deviation is about 16.5 %, see Table 27. A standard 
deviation of the mean of 2.909.10-7 was calculated. 

SG140521_02 shows a comparable mean isotope ratio intensity with 
n(234U)/n(238U) = 2.1392.10-5 ± 4.4612.10-6. Due to the polydisperse nature of these particles, the 
scatter of the mean value is > 3.3 x and the deviation to Richter’s certified value accounts to 7.66 %. This 
trend is observable in higher standard deviation of the mean with 1.577.10-6 and higher RSD with 
20.85 %. A direct comparison of SG141027_12A and SG140521_02 shows a deviation of the average 
values of n(234U)/n(238U) of 6.52% and a deviation of 70.12 % for the STD of the mean values. 

 

Figure 71: n(234U)/n(238U) intensities of SG141027_12A. 
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Figure 72: n(234U)/n(238U) intensities of SG140521_02. 

 

The isotope amount ratios for 235U of SG141027_12A and SG140521_02 were also measured. 
SG141027_12 has an average intensity ratio of n(235U)/n(238U) = 3.2189.10-3 ± 1.2991.10-5 with a RSD of 
0.40 %. The low RSD is accounted for the consistent quality of the monodisperse particle species and its 
resulting counting statistic. This trend is also reflected in a significantly low standard deviation of the 
mean of 2.8350.10-6. The deviation to Richter`s value is only 0.10 %. 

Table 27: n(234U)/n(238U) ratios for SG141027_12A and SG140521_02. 

n(234U)/n(238U) (SG141027_12A)  

Certified Value for 234U/238U (1.9755.10-5 ± 2.2.10-7), k = 2 

Average 234U/238U (1.9999.10-5 ± 1.3332.10-6), k = 2 (STD, n = 21) 

Rel. Std. Dev.: 6.67 %, Rel. Bias: 1.22 % 

n(234U)/n(238U) (SG140521_02)  

Certified Value for 234U/238U (1.9755.10-5 ± 2.2.10-7), k = 2 

Average 234U/238U (2.1393.10-5 ± 4.4612.10-6), k = 2 (STD, n = 8) 

Rel. Std. Dev.: 20.85 %, Rel. Bias: 8.29 % 

 

 

Figure 73: n(235U)/n(238U) intensities of SG141027_12A. 
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Figure 74: n(235U)/n(238U) intensities of SG140521_02. 

Again, SG140521_02 shows a comparable mean value for the n(235U)/n(238U) intensity, but a 

significantly higher scatter: n(235U)/n(238U) = 3.2132.10-3 ± 3.3806.10-5 with a RSD of 1.05 % and a 

standard deviation of the mean of. Compared to Richter`s value, the deviation account to -0.08 %, see 

Table 28. 

Table 28: n(235U)/n(238U) ratios for SG141027_12A and SG140521_02. 

n(235U)/n(238U) (SG141027_12A)     

Certified Value for 234U/238U (3.2157.10-3 ± 1.6.10-5), k = 2 

Average 234U/238U (3.2189 ± 1.2991E-5), k = 2 (STD, n = 21) 

Rel. Std. Dev.: 0.40 %, Rel. Bias: 0.10 %   

n(235U)/n(238U) (SG140521_02)     

Certified Value for 234U/238U (3.2157.10-3 ± 1.6.10-5), k = 2 

Average 234U/238U (3.2132.10-3 ± 3.3806.10-6), k = 2 (STD, n = 8) 

Rel. Std. Dev.: 1.05 %, Rel. Bias: -0.08 %   

 

 

Figure 75: n(236U)/n(238U) intensities of SG141027_12A. 
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Figure 76: n(236U)/n(238U) intensities of SG140521_02. 

The isotope ratios of 236U were measured for SG141027_12A and SG140521_02. A mean intensity 

of n(236U)/n(238U) = 1.49521.10-4 ± 3.65118.10-6 with a RSD of 2.44% and a standard deviation of the 

mean of 7.96754.10-7 was measured for SG141027_12A. The deviation to Richter’s value corresponds to 

0.78%. The scatter and counting statistics for SG140521_02 are poorer and account for 

n(236U)/n(238U) = 1.46256.10-4 ± 5.64577.10-6 with a RSD of 3.86 % and a standard deviation of the mean 

of1.99608.10-6. Compared to Richter`s value, the deviation account to -1.42 %, see Table 29. 

Table 29: n(236U)/n(238U) isotope ratios for SG141027_12A and SG140521_02. 

n(236U)/n(238U) (SG141027_12A) 

Certified Value for 234U/238U (1.48358.10-4 ± 5.4.10-7), k = 2 

Average 234U/238U (1.4852.10-4 ± 3.6512.10-6), k = 2 (STD, n = 21) 

Rel. Std. Dev.: 2.44 %, Rel. Bias: 0.78 % 

n(236U)/n(238U) (SG140521_02) 

Certified Value for 234U/238U (1.48358.10-4 ± 5.4.10-7), k = 2 

Average 234U/238U (1.4626.10-4 ± 5.6458.10-6), k = 2 (STD, n = 8) 

Rel. Std. Dev.: 3.86 %, Rel. Bias:  -1.42 % 

 

5.4.1.1 Conclusions 

The measured values of the of the isotope amount ratio signals are a strong indication of the 
reproducibility or confidence of these data points. One can derive a qualitative assessment of these 
particles in terms of uranium amount per particle and density: smaller scatters and smaller uncertainties 
are favored. 

For both batches, the original isotopic composition of IRMM-183 could be measured satisfactory. 
But inflated, hollow particles from SG140521_02 show a significantly higher spread and uncertainty. 
This is due to their inhomogeneous properties and behavior during ion beam bombardment. The above-
mentioned results prove that the measured mean values for n(234U)/n(238U), n(235U)/n(238U) and 
n(236U)/n(238U) of SG141027_12A are in good accordance with the re-certified values determined by 
Richter et al. (2005) [162]. Since Richter’s data was acquired using a TIMS on bulk material, we expect 
to see a significantly lower uncertainty for the isotope amount ratio signals in comparison to LG-SIMS 
results. The above mentioned results relate to the particle properties, e.g. amount of uranium per 
particle and density. But no quantitative statement can be made about these attributes. Results obtained 
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from SG141027_12 indicate a consistent quality and the suitability as reference standard can be 
established with respect to isotope amount ratios. 

SG140521_02 shows a different picture. The variation in mean intensity values for the isotopic 
ratios vary is much greater. Table 30 depicts the deviation of the mean isotope ratio signals from 
SG141027_12A and SG140521_02. The deviation for the major isotopic ratio of n(235U)/n(238U) from 
SG140521_02 is relatively low with 0.18 %. The difference of the minor abundances of n(234U)/n(238U) 
and n(236U)/n(238U) is significantly higher. The greater scatter and the resulting higher uncertainties 
caused by the poorer counting statistic due to the availability of only eight particles and thus their 
polydisperse attributes having an inconsistent amount of uranium/particle and density. This trend is 
also apparent in the Table 27 – Table 29, the mean values show a much stronger scatter and thus a 
greater uncertainty. 

Table 30: Comparison of SG141027_12A and SG140521_02. 

Comparison SG141027_12A Vs SG140521_02 

n(234U)/n(238U) 6.52 % 

Comparison SG141027_12A Vs SG140521_02 

n(235U)/n(238U) 0.18 % 

Comparison SG141027_12A Vs SG140521_02 

n(236U)/n(238U) 2.18 % 
 

Due to the pronounced polydisperse character of SG140521_02, it can be concluded that the 
performance of the scatter signals of 234U, 235U and 236U does not meet the standards for a QC-material. 
The deviation is noticeably stronger than for SG141027_12A. The spread or uncertainty of each 
measurement is a good indication for its inability to become a QC-material. SG141027_12 on the other 
hand showed promising signal behavior the variance seems to be within tolerable limits and all 21 
measurements performed within expected limitations. The consistency of its performance indicates a 
possible use as a QC-material in terms of isotope amount ratios signal intensity distribution. Finally, it 
can be concluded that the measured isotopic composition is independent of particle size and 
morphology. The initial isotopic composition of IRMM-183 could be verified in all batches.  

5.4.2 Direct Comparison to existing QC-Materials and CRMs 

The performance of the monodisperse particles relative to the well-established CRM's was 
evaluated by measuring the 238U intensity profiles of each material over a defined period of time or so-
called cycles. These 238U-intensity profiles were compared because it provides the highest signal output 
and the lowest corresponding uncertainties. IRMM-9073 and NBS-U010 were routinely used as an 
internal QC/calibration standard to calibrate the LG-SIMS m/Q(238)-signal for the analysis of the 
particles on the SG140521_02 and SG141027_12A samples. Sampling conditions for all four samples 
were kept constant (10 µm beam raster, ion probe current 50 pA). All particles being analyzed were 
made in microprobe (MP) mode with 42 – 52 Cycles per particle. 

Table 31: Atom- and Weight Percent of NBS U010A. 

Atom-% Weight-% 

234U: 0.00541 ± 0.00005 234U: 0.00532 

235U: 1.0037 ± 0.0010 235U: 0.9911 

236U: 0.00681 ± 0.00007 236U: 0.00675 

238U: 98.984 ± 0.001 238U: 98.997 
 

So far, the existing CRMs were made from bulk materials of certified material which results in a 
very inhomogeneous and inconsistent 238U-profile. NBS U010 is a CRM containing U3O8 and IRMM 9073 
is a CRM made from Yellow Cake (YC). Both CRMs are finely grinded powders – chunky bulk materials 
with a polydisperse size distribution. A more predictable and consistent profile with a much lower 
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scatter is favored. Table 31 and Table 32 depict the certified values for NBS U010A and IRMM 9073. NBS 
U010A is a CRM from NIST with a chemical composition of U3O8 and a certified molar mass of 
238.02 g/mol. Copies of the certificates are deposited in the Appendix – Chapter 7.6.3 and 7.6.4, Figure 
125 and Figure 126. IRMM 9073 is a CRM made of yellow cake (YC) with a certified molar mass of 
238.028901 ± 0.0000012 g/mol. 

Table 32: Weight-, Amount- & Amount of Substance Fractions of IRMM 9073. 

Mass Fraction (·100) Amount Fraction (·100) Isotope Amount Ratio(s) 

m(234U)/m(U) 0.005 325(42) n(234U)/n(U) 0.005 415(76) n(234U)/n(238U) 0.000 054 55 (76) 

m(235U)/m(U) 0.0711 51(36) n(235U)/n(U) 0.720 54(36) n(235U)/n(238U) 0.007 258 1(36) 

m(236U)/m(U) < 0.000 002 n(236U)/n(U) < 0.000 002 n(236U)/n(238U) 0.000 000 02 

m(238U)/m(U) 99.283 17(36) n(238U)/n(U) 99.271 04(36)  

 

Figure 77 shows the combined 238U intensities of NBS U010A and IRMM 9073: NBS U010A data 
series 683278 - 683289 is depicted in green lines and IRMM 9073 data series 555615 – 555626 is 
depicted in grey lines. For each CRM, twelve particles were measured. Each 238U signal was composed of 
42 cycles with 8 s integration time accounting for a total measurement time of 336 s. Generally the shape 
of the intensity is in a slight upward slope. The intensity of 238U of NBS U010A “INBS” ranges between 
2.30.104 < INBS < 1.03.105 with the exception of one outlier which was recorded 12 March, (Sample 
ID: 683287). This indicates the polydisperse nature of this CRM. The progression of each 238U intensity 
profile is consistent, see Figure 77 green lines for NBS U010A but the deviation of each profile is 
deviating significantly (> 2 σ) from the mean 238U intensity value. For NBS U010A, a mean disintegrated 
238U signal intensity of 4.86.104 ± 5.62.103 was measured with a RSD 11.57 %. IRMM-9073 shows a 
different behavior. 

Table 33: Disintegrated and averaged 238U intensities for NBS-U010A and IRMM-9073. 

238U Intensity for NBS-U010 (n=12)   

Average 238U (4.8585.104 ± 5.6222.103), k = 2, RSD 11.57 % 
238U Intensity for IRMM-9073 (n=12)   

Average 238U (7.3045.104 ± 8.1695.103), k = 2, RSD 11.18 % 
 

 

Figure 77: Combined 238U intensities of NBS U010 series (green) and IRMM 9073 series (grey). 
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Figure 78: 238U intensity plot of SG140521_02. 

The mean disintegrated 238U-signal of IRMM-9073 is 7.3045.104 ± 8.1695.103 with a RSD of 11.57 % 
and about 1.5 x higher than the mean disintegrated signal of NBS U010A, see Figure 77. The uncertainty 
of the disintegrated signal is comparable to NBS U010A. The scatter of IRMM-9073 is comparable to 
NBS-U010, see Table 33. For IRMM-9073, a mean scatter intensity of 7.30.104 ± 8.17.103 with a RSD 
11.18 % was measured and calculated. For SG140521_02 12 different particles were analyzed. As 
expected the scatter for the polydisperse batch is significantly higher: for SG140521_02 a mean 238U 
signal intensity of 8.04.104 ± 7.89.104 was measured with a RSD 98.06 %, see Table 34 and Figure 78. 
This value accounts for the “poly-disperse” properties as well as for poorer counting statistics. The 
measured intensities vary almost by two orders of magnitude. But SG140521_02 performed better than 
anticipated in direct comparison to IRMM-9073 and NBS-U030. The variations in 238U intensity make 
SG140521_02 not applicable for use as a QC material and the mean values do not reflect the overall 
performance. 

Figure 79 depicts the 238U scatter of SG141027. In total 28 particles were analyzed. SG141027_12A 

has a mean disintegrated 238U intensity of 5.5804.104 ± 2.1481.104 with a RSD of 38.49 %. The scatter 

profile shows a much homogenous, consistent and predictable profile and scatter. The intensity signal 

distribution is well within those of IRMM-9073 and NBS-U010. Interestingly, the uncertainties measured 

for SG141027_12A look very promising in comparison to existing CRMs. SG141027_12A performs better 

than the existing CRMs. This can be proved by comparing the scatter of the mean intensity: 

SG141027_12A scatter was 2.6 % better than for NBS-U010 and 3.8 % better than for IRMM-9073. 

In the Appendix in Chapter 7.6.2, all data collected was summarized into one Figure 124 and 
depicted more clearly. The intensities of SG140521_02 are marked in red, for SG141027_12A they are 
marked blue, for NBS-U010 in solid grey lines and for IRMM-9073 intensities are marked in grey dotted 
lines. 

Table 34: Mean disintegrated 238U intensities of polydisperse SG140521_02 and monodisperse 

SG1041027_12A. 

238U Intensity for SG140521_02 (n=12) 

Average 238U (8.0412.104 ± 7.8856.104), k = 2, RSD 98.06 % 
238U Intensity for SG141027_12A (n=28) 

Average 238U (5.5804.104 ± 2.1481.104), k = 2, RSD 38.49 % 
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Figure 79: 238U intensity plot of SG141027_12A. 

5.4.2.1 Conclusions 

SG141027_12A was evaluated directly against existing CRMs, (1) IRMM-9073 and (2) NBS-U010, 
which were used on routine bases for instrument calibrations and method validation. Due to the 
polydisperse nature of these CRMs, a wider spread in the measured mean disintegrated 238U could be 
observed in comparison to SG141027_12A. Polydisperse particles from SG140521_02 show a 
completely different behavior and indicate inconsistent and inhomogeneous uranium distribution, 
which is in accordance to the SEM investigations performed in Chapter 5.2.3.1. SG141027_12A proved 
to be a consistent and reliable material a RSD of 38.48 % is an indication of this result.  

5.4.3 Assessment of Hydride Correction 

The assessment of the hydride correction is another step forward in evaluating the capabilities of 
the monodisperse uranium particles towards the application as QC material. It gives also a qualitative 
feedback about the particle morphology. A consistent hydride formation with acceptable uncertainties 
is favored. The hydride correction plays an important role in the efficiency of collecting various ion-
species and reducing its background: when sputtering a sample with the primary beam, a large variety 
of secondary ions is generated. These secondary ions range from mono-atomic to poly-atomic species 
and can manifest a variety of combinations between the atomic constituents. The atomic composition is 
independent of the valences, but it carries a specimen-inherent signature: from volatile gas molecules to 
primary ion beam species. These combinations present a potential risk of interference. Reducing the 
interference is always at the expense of transmission. Generally, there are two different ways to resolve 
interferences either (a) by mass resolution power or (b) by energy filtering. According to Sangely et al. 
(2014) [112], the interference can be considered resolved if the fraction of the interfering species is less 
than 1 % - i.e. m/Δm is similar to the mass resolution power which is defined at half maximum m/Δm50%. 
For hydride formation, the mass resolution power and energy filtering can be inefficient. In the high 
mass range, the mass resolution for the hydride formation is out of range even for large radius sector 
field instruments. m/Q(236) can be significantly biased due to the existence of 235UH+ instead of 236U. 
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Figure 80: Hydride formation rate for SG140521_02. 

If the interference cannot be resolved, its share is subtracted from the peak of interest by measuring 
a QC-material with very similar properties; e.g. the fraction to the contribution for m/Q = 236 from 235UH 
is usually evaluated by measuring the 238UH share. For uranium isotopic analysis, the fraction of the 
major isotope 238U to the measured minor isotope 236U is typically in the range of ppb-levels. Typically, 
for uranium isotopic analysis a UH/U value of less than 0.003 is considered acceptable, this value is 
empirically proven. All spectra were recorded with a 10 µm raster and an IP = 50 pA. Figure 80 shows 
the hydride formation rate UH/U of each particle of interest from SG140521_02 in direct comparison to 
IRMM-9073 and NBS-U010. SG140521_02 shows acceptable scatter, especially for a polydisperse 
material. Both standards are also polydisperse materials, but are measured on bulk quantities and 
therefore have better counting statistics. But NBS U010 and IRMM 9073 show similar performance: the 
hydride formation rate for SG140521_02 is 1.92.10-3 ± 1.02.10-3 with a RSD of 52.89 %, NBS, NBS-U010 
has a mean formation rate of 2.59.10-3 ± 8.85.10-3 with a RSD of 34.18 %, and IRMM-9073 has a mean 
formation rate of 2.72.10-3 ± 1.21.10-3 with a RSD of 44.63 %. 

 

Figure 81: Hydride formation rate for SG141027_12A. 
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Table 35: Hydride formation rate UH/H on SG140521_02 in comparison to NBS-U010 and IRMM-9073. 

Hydride Formation NB-U010, IRMM-9073, SG140521_02 

UH/U – NBS-U010 (2.5906E-3 ± 8.85464E-4), k = 2, RSD 34.18 % 

UH/U – IRMM-9073 (2.7154E-3 ± 1.2119E-3), k = 2, RSD 44.63 % 

UH/U - SG140521_02 (1.9219E-3 ± 1.0165E-3), k = 2, RSD 52.89 % 
 

Due to the “quasi-monodisperse” properties of SG141027_12A, the scatter of the hydride formation 
rate is significantly lower than for SG140521_02. A mean formation rate of 2.96.10-3 with a 
corresponding level of uncertainty of 2.75.10-4 with a RSD of 9.32 % marks an outstanding performance. 
The performance is better than the ones measured for NBS U010 and IRMM 9073. The measured data 
points of SG141027_12A indicate an erratic scatter around the limit of 0.003. Some of the data points 
exceeding 0.003. Still these particles performed very well and can be used as a QC-material to evaluate 
the hydrate formation, see Figure 81. 

Table 36: Hydride formation rate UH/H on SG141027_12A in comparison to NBS-U010 and IRMM-9073. 

Hydride Formation SG141027_12A 

UH/U - NBSU010 (2.5906E-3 ± 8.85464E-4), k = 2, RSD 34.18 % 

UH/U - IRMM9073 (2.7154E-3 ± 1.2119E-3), k = 2, RSD 44.63 % 

UH/U - SG141027_12A (2.9554E-3 ± 2.7535E-4), k = 2, RSD 9.32 % 

5.4.3.1 Effects on Hydride Formation 

The acquisition parameters play an important role in the evolution and formation of the hydride 
formation rate. This effect will be discussed briefly in this sub-chapter. A bigger raster of 20µm and 
higher load current IP = 20 pA leads to an increase of the UH/U signal. To highlight this effect the 
polydisperse batch of SG140521_02 was selected for this investigation. Figure 82 depicts the hydride 
formation rate at standard conditions (blue) and at altered conditions with a larger raster (red). The 
smaller uncertainty is due to better counting statistic – 14 particles in total. The mean intensity of the 
formation rate is about 1.92.10-3 ± 1.05.10-3 with an RSD of 54.75 % which is significantly higher than 
the mean intensity for UH/H, by about a factor of > 2.6, see Table 37. 

 

Figure 82: Hydride Formation Rate UH/H of SG140521_02 at IP = 50pA and 50 µm Raster in comparison to 

at IP = 20pA and 20 µm Raster. 
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Table 37: Averaged values for the UH/H formation rate of SG140521_02 at different acquisition 

conditions. 

Hydride Correction SG140521_02 

Average Hydride Correction [IP = 50 pA, 10 µm] (1.9219E-3 ± 1.0522E-3), k = 2, RSD 54.75 %, n = 14 

Average Hydride Correction [IP = 20 pA, 20 µm] (5.0576E-3 ± 3.6778E-3), k = 2, RSD 7.27 %, n = 27 
 

5.4.3.2. Conclusions 

The formation of hydride species which can interfere with the measurement are an important 
aspect of all SIMS measurements and it serves as a measure for the collection efficiency of certain ion 
species. For this specific LG-SIMS instrument, an empirical threshold of UH/U = 0.003 was defined. The 
hydride formation rates of IRMM-9073, NBS-U010, SG140521_02 and SG141027_12A were compared 
at standard operating procedures (10 µm raster and an IP = 50p). The hydride formation rates for the 
polydisperse CRMs is considerably different to monodisperse SG141027_12A, see Table 36. The overall 
UH/H is bigger for SG141027_12A but it has a significantly smaller uncertainty and an associated RSD 
of 9.32 % which indicates consistent performance and homogenous particle attributes during ion 
bombardment. But SG141027_12A showed an overall higher mean UH/H intensity of about 
UH/U(SG141027_12A) = 2.95 . 10-3 ± 2.75 . 10-4 with a RSD of 34.18 %. But the UH/H-formation rate is 
still within acceptable limits. 

Additionally, it could be demonstrated that variations in the acquisition parameters such as IP and 
raster size significantly determined the hydride formation rate. At lower IP = 20 pA and broader raster 
sizes of 20 µm, an increase of the hydride formation rate of about 38.0 % could be observed to about: 
UH/U(IP = 20 pA, 20 µm) = 5.06 . 10-3 ± 3.68 . 10-3 with an RSD of 54.75 %. 

5.4.4 Total Evaporation Experiments 

This chapter investigates a LG-SIMS specific behavior during MP-mode while a particle is partially 
or totally consumed. The aim was the direct comparison of the 238U intensity profiles of monodisperse 
particles against a small number of “monodisperse particles” produced with the same technique using 
spray pyrolysis of an aerosol at the Joint Research Center Institute of Transuranium Elements (JRC-ITU) 
and against polydisperse particles originating from IRMM-9073 and to demonstrate the advantages of 
monodisperse particles over existing CRMs and older “monodisperse” uranium microparticles. 

Particle originating from JRC-ITU were produced in 2003 by a working group lead by Nicole 
Erdmann. She was the first person at ITU to use a spray pyrolysis system with a VOAG to produce 
uranium-oxide particles, see Erdmann et al. (2000) (2003) [6] [40], Stetzer (2001) [15], Ranebo et al. 
(2008) [43], (2009) [18] and (2010) [44] and Kraiem et al. (2012) [45]. The basic idea of the particle 
production setup in Jülich is based on JRC-ITU’s approach. ITU particles have been stored under ambient 
conditions in double-bagged plastic bags, since 2003 at SGAS-ESL. The particles were collected on track 
etched polycarbonate filters: Nuclepore Filters. For further analysis, particles were transferred onto a 
glassy carbon substrate via inertial impaction. A selected number of six particles originating from 
SG141027_12A was used for this investigation and compared against six particles from ITU (Series 
20079-03-01) and 11 particles from IRMM-9073. Each particle was bombarded for 10.000 cycles 
(acquisition time for each cycle was 1.04 s) with an IP = 50 pA and a 10 µm raster. The primary ion beam 
was “defocused” meaning it had a beam size >> 1.0 µm. The mean particle size for ITU’s particles is about 
0.6 µm - no real assessment on the size distribution was performed. For optimal measurement results 
the mean inter-particle distance should be around 50 µm to minimize interferences. 

This chapter is dedicated to the assessment of the performance of particle produced in Jülich in 
direct comparison to particles produced at ITU and to commonly used QC-/calibration material and 
helps to evaluate which material shows the most promising characteristics. 

Figure 83 shows all 238U data sets in one graph: a common trend for all particles can be observed. 
There is a steep increase of intensity due to the consumption of the particle. Depending on the particle 
size and density, the intensity drops back gradually to a minimum. Fluctuation can be caused by particles 
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which are close by or due to particle movement caused by the ion beam bombardment, which rarely 
happens. Generally, particles reach the maximum after 1000 - 2000 s. The graph also shows that IRMM-
9073 has one big outlier (Particle 5) the increase can be explained by the inadequate spatial distribution 
of particles; i.e. particles in the proximity were measured concurrently. Table 38 highlights the fact that 
the mean 238U intensity “I238U” depends on the specific uranium inventory of each particle respectively 
the m(U)/particle. ITU particles which are the smallest in this assessment show a mean intensity of 
1.69.107 ± 6.29.108 which corresponds to a relative standard deviation of about 32.5 %. 

ITU particles showed a relative consistent profile behavior but the counting statistics are much 
poorer than for the other samples. IRMM-9073 shows a more inconsistent profile behavior due to the 
polydisperse nature of the samples. One outlier can be explained due to the presence of another particle 
– see Particle 5 depicted in Figure 83. IRMM-9073 had the highest mean 238U intensity with 
1.54.108 ± 2.25.108. The polydisperse nature is reflected in the significantly higher relative standard 
deviation of about >115 %. The most promising performance was evaluated from SG141027_12A with 
a mean 238U intensity of 2.42.108 ± 1.8.107. Particle 7 showed some anomalies at the back tailing end at 
about 4500 - 5500 s which can be explained by particle movements or the collapse of the particle thus 
exposing the debris to the ion beam. 

 

Figure 83: TE of IRMM-9073, ITU monodisperse (0.6 µm) and SG141027_12A. 

The intensity profiles are consistent, but small differences are observable. As SEM investigations 
revealed, the outer surface seems to form a denser thin crust which is erratically shaped with many 
curves and dents. This is a reasonable explanation for the differences in the profile shape and why 
certain particles reach the maximum intensity with a much lower slope. The monodisperse nature of 
SG141027_12A is reflected in the lowest mean relative standard deviation of all measured samples with 
6.14 %. The main message of this chapter is that it can be concluded that the homogeneity of the total 
evaporation experiments on SG141027_12A indicate a consistent uranium mass distribution within this 
batch. Note: All individual TE intensity profiles of SG141027_12A, ITU monodisperse and IRMM-9073 
and their corresponding data set are displayed in the Appendix in Chapter 7.6.5; Figure 127 - Figure 129. 

Table 38: Mean Intensities of SG141027_12A, ITU monodisperse (0.6 µm) and IRMM-9073. 

 SG141027_12A ITU IRMM-9073 

I238U, [cts] 2.425 . 108 1.685 . 107 1.540 . 108 

Δ(I238U), [cts] 1.811 . 107 6.291 . 106 2.246 . 108 

Mean Rel. Bias, [%] 6.14 32.50 115.35 

Δ (Mean Rel. Bias), [%] 4.25 18.35 89.25 
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5.4.4.1 Useful Yield and Density Assumption 

The useful yield “X” is a very important parameter to assess the performance of the LG-SIMS. By 
assessing the useful yield, one can get an idea of the uranium mass per particle. We would expect 
monodisperse particles to be consistent in terms of elemental content. Also the determination of the 
useful yield is of particular importance for small particles. The useful yield is defined as the ratio of the 
integrated measured signal to the amount or number of sputtered / evaporated atoms originating from 
the sample, see Ranebo (2008) [43]. 

¨ = N 54�*��6,$%��&'�   (81) 

The useful yield can be obtained by dividing the integrated 238U-signal “N «4238­6”with the amount 

of uranium atoms per particle. In order to assess a meaningful useful yield value multiple parameters 
have to be steered, e.g. the transmission of the system, the primary particle flux, detector calibration, etc. 

Useful yield measurements were performed on monodisperse particles originating from ITU, 
SG141027_12A. The 238U signal was measured in MP-mode and the integrated signal for the total 
evaporation or consumption was measured. Reuge et al. (2008) [66] [67] state that the measured 
density of particles which are produced by spray pyrolysis differs significantly from anticipated values. 
The measured values were compared against data acquired by Ranebo et al. (2009) [18] and therefore 
the acquisition parameters are set in the same way: for O2+ a primary accelerating voltage of 13 kV and 
a secondary accelerating voltage of 8 kV was used. The total incident energy accounts to 5 keV. All 
measurements were performed with IP = 50 pA, 10 µm raster and a spot size of 1 µm. Monodisperse 
uranium particles from ITU (Series 20079-03-01) were compared against particles from SG141027_12A. 
Ranebo et al. (2009) [18] measured the mean m(U) per particle by isotope dilution mass spectrometry 
(IDMS): three planchets A, B and C were analyzed with an m(U) per particle for m(U) = 2.41 pg, 
m(U)B = 2.75 pg and m(U) = 2.59 pg. The m(U) for SG141027_12A was evaluated not by mass 
spectrometry but by careful assumptions and calculations. Since the particle is considered to be totally 
consumed, it can be deduced that all uranium atoms are consumed during the total evaporation 
experiments. With equation 10 in Chapter 3.1.2, the overall number of atoms per particle “N” was 
calculated: N = 2.067 . 109. This value was derived from the VOAG-settings used for particle production 
and it was concluded from the assumption that the overall density is lower than the theoretical density 
value for uranium oxide, see Chapters 5.2.3.2.3 and from the assumption that the molar concentration 
“M” is constant. For c(U) the ICP-MS verified concentration of with c(U) = 146.5 ± 11 µg/g was used, see 
Table 5 and Table 6 in Chapter 4.1.2.6. The mass per particle can be derived from the “ρ” density of the 
precursor solution taken from equation 10 and the volume of a 1 µm microparticle. A uranium mass of 
2.89 ± 0.9 pg was derived. 

�4�6 = � ∗ #!®� = �. �^�_ (82) 

The m(U)/particle and the theoretical number of uranium atoms per particle can be calculated 
using equation 82. We assumed that we had U3O8 with M(U3O8) = 842.08 g/mol. Kraiem et al. (2012) 
[45] calculated a mean mass density for U3O8 containing particles of ρ(U3O8) = 5.52 ± 1.04 g/cm3 and for 
particles which are made from UO3: ρ(UO3) = 5.63 ± 1.06 g/cm3. The mass density was calculated from 
the measured uranium mass concentration which was determined by ID-ITMS. Ranebo et al. (2010) [44] 
derived a mean mass density of ρ = 2.6 ± 0.2 g/cm3. Their derivation is also based on the uranium mass 
concentration based on IDMS-TIMS measurements rather than on the particle size. Ranebo et al. (2010) 
[44] state that the calcination process is not fully determined and that the droplet-to-particle conversion 
is dependent on many variables which affect the final particle morphology; thus leading to inconsistent 
mass density within a single microparticle and throughout an entire batch of particles. This is in 
accordance with Ranebo et al (2010) [44] and Kraiem et al. (2012) [45] as well as internal SEM and FIB 
investigations. The density varies significantly with the uranium stoichiometry and the conversion of 
droplet-to-particles has a considerable effect on the inner structure. 
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Figure 84: Linear combination of the integrated 238U intensity [ct] on axis one and its correlated, 

normalized Useful Yield [%] with mean values and uncertainties with k=2. 

IRMM-9073 and NBS-U010 were used for mass calibration and mass bias determination. Particles 
SG141027_12A were measured directly from the glassy carbon substrate not further preparations were 
necessary. Particles from ITU were received on Nuclepore filters. Particles were transferred to a glassy 
carbon substrate by inertial impaction: the surface was covered with an adhesive – PIB-nonane. After 
impaction the planchet was heated carefully to remove the organic matrix. Ranebo et al. (2008) [43] 
measured a useful yield for of X = 1.18 ± 0.15 % for O2- and for an O2+ ion source X = 0.96 ± 0.07 %. 
Another study by Hedberg et al. in 2005 [163] determined a useful yield of 0.27 % for ITU particles. 
Hedberg et al (2005) [163] used a different raster size and assumed that all particles were made from 
UO2 which was homogeneously distributed. It has to be noted that the comparison values derived by 
Hedberg et al (2005) [163] and Ranebo et al. (2008) [43] are not very specific hence not really suitable 
as an example. 

The useful yield depends significantly on the correct assumption of the particle density. The useful 
yield was calculated as the ratio of the integrated count rate of 238U to total number of particles. Table 
39 depicts the integrated 238U intensities measured for all seven particles from SG141027_12A and the 
corresponding useful yield “X”. A mean useful yield of 5.14 ± 0.38 % was derived. This value is 
significantly higher than the values derived from Hedberg et al. (2005) [163] with 0.27 % and from 
Ranebo et al. (2009) [18] 0.96 %. The variances can largely be accounted for by the inaccurate density 
assumption. To overcome this issue, a thorough investigation should be carried out using SEM, mass 
determination (either by IDMS. ID-TIMS plus useful yield investigations using SIMS analysis). 

Figure 84 shows clearly the direct correlation between the integrated 238U intensities [ct] of each 
particle and its associated normalized useful yield [%]. The mean values for the 238U intensity and the 
useful yield are shown in blue and red dashed lines; all uncertainties are depicted with k=2. The scale 
for the primary and secondary axis in Figure 84 chosen to depict the small variances. The useful yield is 
directly coupled to the integrated 238U intensity. On a larger scale, an almost linear dependency can be 
observed and a relative standard deviation of 3.22 %, which indicates that our assumptions are not 
significantly different from the measured and derived useful yield value. All values depicted in Figure 84 
were taken from Table 39. 

The density can be derived from the previously calculated uranium mass per particle and the 
overall mean particle size of SG141027_12A which was 1.3 ± 0.4 µm. From this a mean density of 
2.51 ± 1.0 g/cm3 can be derived the associated uncertainty is significantly about 41.06 %. This result is 
highly biased and exemplifies the necessity to perform a thorough mass investigation using ICP-MS or 
ID-MS to derive a solid value for the uranium mass per particle. This value is not a good representation, 
since it shows only an average value. The density gradient throughout a single particle varies 
significantly from the outer structure to the porous inner structure. Therefore, it is advisable to correlate 
these findings with the FIB data acquired in Chapter 5.2.3.2.3 on solid particles originating from 
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SG141027_12A. The measured m/Q(238) signal gives a strong indication about the uranium distribution 
inside a microparticle. Figure 53 shows a strong peak at about 180 – 200 nm which indicates a denser 
structure with an overall thickness of < 0.2 µm. For the inner, porous structure, a decrease of about 
45.8 % from the peak intensity was measured. Hence it can be concluded that the outer structure which 
only constitutes 39.42 % of the entire volume contributes a significant portion of the integrated 238U 
intensity while the porous inner structure, which accounts for 60.58 % of the entire particle volume 
contributes proportionally less to the integrated 238U intensity. 

Table 39: Useful Yield determination through TE of seven particles originating from SG141027_12A. 

 Particle 1 Particle 2 Particle 3 Particle 4 Particle 5 
238U counts, [cts] 2.794 . 108 2.576 . 108 2.279 . 108 2.364 . 108 2.383 . 108 

Useful Yield) 5.92 % 5.46 % 4.83 % 5.01 % 5.05 % 

σ(Useful Yield) 0.87 % 0.77 % 0.68 % 0.71 % 0.71 % 

 Particle 6 Particle 7 Mean STD(Mean)  RSD 
238U counts, [cts] 2.343 . 108 2.234 . 108 2.425 . 108 7.814 . 108 3.22 % 

Useful Yield) 4.97 % 4.73 % 5.14 % 0.38 %  

σ (Useful Yield) 0.70 % 0.67 %       
 

5.4.4.2 Primary Ion Beam Effects on the 238U Intensity Profiles 

The aim of this chapter is to document the changes in the 238U intensity on monodisperse 
microparticle due to changes to the ion beam. This demonstrates the importance of consistent 
measurement conditions – here the ion beam was focused which means that the primary beam diameter 
was about 1 µm. A decrease in the smaller primary ion beam diameter was expected. But with the 
focused ion beam, a mean integrated intensity “I(238U)” of I(238U) = 3.038.108 ± 9.278.107, with a RSD of 
30.54 % was measured which is about 1.25 x bigger than the mean integrated intensity of the defocused 
total evaporation. The relative bias to the defocused species is 25.31%. All data is depicted in the 
following Figure 85 and Table 40. 

 

Figure 85: Comparison of focused and de-focused ion beam on the 238U intensity profile. 

 

 

 

 



114 

Table 40: Comparison of integrated 238U-intensities with focused and defocused primary ion beam on 

SG141027_12A. 

  Focused 

 Particle 5 Particle 6 Particle 7 Particle 8 Particle 9 

I(238U), [ct] 2.219 . 108 2.493 . 108 2.788 . 108 4.838 . 108 2.853 . 108 

  Mean  STD RSD Rel. Bias   

I(238U), [ct] 3.038 . 108 9.278 . 107 30.54 % 25.31 %  

  Defocused 

  Particle 1 Particle 2 Particle 3 Particle 4 Particle 5 

I(238U), [ct] 2.794 . 108 2.576 . 108 2.279 . 108 2.364 . 108 2.383 . 108 

  Particle 6 Particle 7 Mean  STD RSD 

I(238U), [ct] 2.343 . 108 2.234 . 108 2.425 . 108 1.811 . 108 7.47 % 
 

5.4.4.3 Redisposition 

The aim of this investigation was the measurement of the residual microparticle debris after total 
evaporation measurements and an SEM investigation on the residues. Once a particle is just partly or 
totally consumed, a deposition pattern around the artefact develops, such as Figure 86. A cone like shape 
becomes visible. The shape depends on the inclination angle of the primary ion beam to the sample. The 
size and shape of the redisposition depends upon the particle size, its morphology and the primary ion 
beam characteristics such as IP, inclination angle, etc. 

After total evaporation, particles were rescanned with a 50 µm raster, a primary ion beam current 
of 1.5n A and a total area of 2500 µm2 was covered. Particles originating from SG141027_12A were 
compared against IT4U (20079-series) particles. Figure 86 shows the redisposition pattern of the 238U 
intensity of five particles from SG141027_12A in comparison to one particle originating from ITU 
(20079). Particle 6 from SG141027_12A (blue) is an outlier. Its untypical intensity profile can be 
explained by the presence of an un-sputtered particle which was measured simultaneously. Apart from 
Particle 6, all redisposition measurements were acquired within < 800 cycles (acquisition time for each 
cycle was 1.04 s). 

 

Figure 86: Redisposition pattern of partially consumed particle (left) and total consumed particles, Image 

on the left were taken at CEA-DAM Ile-de-France, courtesy of O. Marie (CEA). 
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It has to be noted that no sufficient data on ITU particles was available, not enough ITU particles 

could be identified on the substrate. After the redisposition measurements, a full SEM investigation was 

started. The typical redisposition shape significantly decreases within 150 - 200 cycles. The actual mass 

of the particle played an important role. Since the quantities are very small, they are consumed in less 

than 10 min. This time is dependent on the amount or the particle quantity. The larger a particle, the 

more debris is produced and the longer and distinct the redisposition profile becomes. ITU’s particles 

which are about a factor of 2.28 x smaller produce a significantly smaller 238U intensity distribution, but 

measurements revealed a comparable slope and shape. The mean integrated 238U intensity of the five 

redisposition is 2.425.108 ± 1.811.107 which is about 11.7 % higher than the intensity measured for ITU. 

The deviation in the redisposition intensities of the mean 238U-intensities between SG141027_12A and 

ITU (20079) accounts for 2.55 %. This is also a strong indication, that the diameter of this particle batch 

from JRC-ITU are significant smaller than SG141027_12A. Since the particles produced at FZJ are about 

1.3 µm in diameter, it can be assumed that the mean diameter of ITU`s particles is << 1.0 µm, see Table 

41. 

Table 41: Redisposition of SG141027_12A and ITU (20079). 

 SG141027_12A_P2 SG141027_12A_P3 SG141027_12A_P4 

Total Counts 238U 2.576 . 108 2.279 . 108 2.364 . 108 

Redisposition 1.526 . 107 1.461 . 107 1.500 . 107 

 5.92 % 6.41 % 6.35 % 

 SG141027_12A_P6 SG141027_12A_P7 ITU (20079)_P1 

Total Counts 238U 2.343 . 108 2.234 . 108 2.825 . 107 

Redisposition 1.261 . 108 1.714 . 107 9.611 . 105 

 53.82 % 7.67 % 3.40 % 
 

 

Figure 87: Redisposition profile of SG141027_12A in comparison to ITU (20079). 

5.4.4.4 Conclusion 

These results depict signatures which are specific to the instrument. SG140521_02 and 
SG141027_12A were compared against IRMM-9073 and ITU (20079) particles. These “total 
evaporation” experiments are a good indication for the homogeneity each microparticle and the entire 
batch. Again SG141027_12A proved to be a much more reliable, predictable and consistent material than 
the polydisperse SG1400521_02 and IRMM-9073. ITU particles showed a significantly lower signal due 
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to the size discrepancy – according to SEM investigations the mean size of these particles was about 
0.6 µm. measured 238U intensity was about 144 x higher than for ITU (20079). IRMM-9073 had the 
strongest 238U intensity of 1.54 . 108 ± 2.25 . 108 and an RSD of 89.25 %. ITU particles are monodisperse, 
but their RSD is significantly higher. This can be accounted for by poorer counting statistics, see Table 
38. SG141027_12A had a mean 238U intensity of 2.42 . 108 ± 1.8 . 107 and a RSD of 4.25 %. This result is a 
strong indication for a consistent uranium mass distribution per particle and per batch. 

The useful yield and a density assumption were derived from the measured mean 238U intensity. A 
uranium mass per particle of m(U)/particle 2.89 ± 0.9 pg was derived and a mean density of 
2.51 ± 1.0 g/cm3. This value depicts an averaged value which is not representative. FIB investigations 
indicate that the thin outer layer is far denser than the porous inner structure which contributes most 
to the particle volume. But an overall RSD of 3.2 % for the useful yield measurements indicates 
accordance with the expected values. This result underlines the need to perform a thorough mass 
investigation using ICP-MS or IDMS. 

Redisposition experiments on particles which were previously “totally evaporated” showed a 
distinct ablation pattern under with SEM. These experiments also indicate consistent behavior and 
microparticle attributes for SG141027_12A, see Figure 86 and Figure 87. As previously stated, changes 
to the acquisition parameters affect the outcome of the measurements: a smaller beam diameter of about 
1 µm was used and a stronger 238U intensity was measured than with a defocused beam: 
I(238U1µm) = 3.038 . 108 ± 9.278 . 107, with a RSD of 30.54 %.
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6. Conclusions and Outlook 

This dissertation project had two major objectives: (1) to develop a setup for production of 
monodisperse uranium microparticles and (2) to characterize the particles with respect to their physic-
chemical properties and assessing their usability as quality control and reference materials. Particle 
properties were evaluated: including geometry, morphology, composition, crystal structure, elemental- 
and isotopic content, properties such as homogeneity and consistency of the m(U)/particle, and size 
distribution to gain a sound indication whether these particles are fit for use as future QC materials. They 
were tested using various instruments and special focus was put on SIMS analysis using a Cameca IMS 
1280 LG-SIMS. The particle performance was investigated by measuring their isotopic composition and 
performance in direct comparison to existing “bulk” reference materials. The following paragraphs will 
summarize these successful work carried out. 

The development of the particle-production setup comprised an assessment of the vital 
components. Particle collection turned out to be a complex issue. Initially, both the particle size and yield 
were low and insufficient. After adjusting the air currents inside the setup, the yield improved 
significantly. The one-stage inertial impactor was routinely used for particle sampling. Because this 
device was never characterized a brief and comprehensive assessment was made, see Chapter 5.1.1. The 
calculated, theoretical values for the mean cut-off diameter “d50” were in good agreement with the 
measured values; however, at lower air flows the degree of uncertainty and deviation was almost 
27.5 %, see Table 9 and Figure 27. Cut-off diameters, retention ability and deposition pattern were as 
predicted, see Figure 26. 

The modified inertial impactor (MII) in Chapter 5.1.2 was used to collect particles for t µ-Raman 
spectroscopic investigation. The MII is a two-stage inertial impactor with performance similar to the 
one-stage inertial impactor. Modification of the acceleration nozzle resulted in altering the 
corresponding cut-off diameters to a theoretical cut-off diameter of 2.20 µm for Stage 1 and 1.30 µm for 
Stage 2, see Table 10. The deviation of the measured cut-off diameters from the theoretical values (for 
Stage 1 and 2) is between 7.13 - 25.06 %, see Figure 30, Figure 31 and Table 10. Both stages showed 
performance in terms of yield and cut-off diameters as expected. Also, a similar deposition pattern to the 
one stage impactor such as in Chapter 5.1.1 was observed, see Figure 31. Two distinct accumulation 
areas were detected: (1) in the center and a circular accumulation towards the edge of the collection 
substrate. The radial distance from the center is dependent upon the air flow: the higher the air-flow the 
further away the second accumulation. 

The cyclone sampler in Chapter 5.1.3 was initially developed to overcome the collection yield issues 
related to the on- stage inertial impactor. Due to the high air flow, the collection efficiency was > 0.1 %. 
It could be demonstrated that the cyclone impactor can sample efficiently at high air flows; ranging from 
> 20 l/min up to 130 l/min, see Figure 34. 

We demonstrated the efficiency of laser micro dissection for the preparation of substrates for 
particle relocation. A three-point algorithm from Admon et al. (2009) [147] was used to relocate single 
particles with a high degree of accuracy (< 5 µm) in different instruments. 

A microparticle production setup was successfully implemented at Forschungszentrum Jülich 
GmbH. A significant amount of time and effort were spent on evolving the first particle production 
attempts into a working setup. The entire history is described in 4.1.2.4. A representative selection of six 
particle batches was chosen to be discussed in further detail. These batches were produced between 
May 2014 and April 2015. 

The most important conclusion is that the final particle size can be precisely controlled by means 
of the initial uranium concentration of the precursor aerosol solution and the settings of the aerosol 
generator (such as frequency and liquid feed rate), see equation 12, leading to production of particles 
with a consistent uranium content per particle “m(U)/particle”, see equation 10. The final geometry and 
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morphology is controlled by the precipitation mechanics during the conversion from aerosol droplets to 
solid particles. However, the density of these microparticles can vary significantly. 

Scanning electron microscopy was used extensively to assess the particle size distribution, 
morphology and elemental composition of individual batches. All six particle batches were analyzed 
using SEM-EDX. This technique was also routinely used in automated particle assays to determine the 
presence of uranium containing microparticles and to assess their mean size. Table 42 lists all six particle 
batches, their derived mean size as well as the corresponding uranium concentration for the precursor 
solution (before dilution with water to 1 : 1 mixture). 

Table 42: Analyzed samples with the c(U) of the aerosol solution and the corresponding mean particle 

size. 

Sample-ID Mean DIA Δ(Mean DIA) C(U) Δc(U), 

 [µm] [µm] [µ/g] [µ/g] 

SG140521_02 1.35 - 123.0 2.2 

SG141027_12A 1.37 0.19 157.0 4.7 

SG150312_05 0.99 0.15 107.0 1.1 

SG150401_14A 1.07 0.11 104.6 1.0 

SG150413_03A 1.05 0.11 59.9 1.8 

SG150429_02A 1.02 0.10 120.0 4.3 
 

SEM investigations revealed a number of interesting characteristics of the size distributions and 
morphology of individual batches, see Chapter 5.2.2 and 5.2.3. The first batch SG140521_02 which was 
produced in May 2014 showed some significant deviations from the expected size and morphology. This 
particle batch was found to be polydisperse. Three distinct particle species could be identified: (1) a 
proportion of “solid” uranium particles with a mean size of 1.35 ± 0.53 µm, (2) significantly more 
inflated, hollow particles with a seize range of 6.5 ± 0.5 µm and (3) particle debris and agglomerations 
ranging from ~ 4.5 – 9.2 µm. Even though SG140521_02 did not meet our criteria in terms of size, 
geometry, morphology, consistency and homogeneity, it proved to be very helpful in order to understand 
the mechanics associated with the formation process from precursor droplets to final particles. Final 
particle morphology is strongly dependent upon the conversion conditions. Parameters such as dwell 
time, solution concentration, temperature profile play an important role in the formation process. 
SG140521_02 is a good example on how the formation conditions lead to a surface controlled 
precipitation resulting in inflated, hollow particles. SEM investigations revealed that the particles are 
actually hollow and are destroyed by the impact energy. In order to assess the inner structure, selected 
particles were broken with a tungsten needle on the SEM stage. In Chapter 5.2.3.1 computational 
simulations of these hollow particles provided the missing information regarding the shell-thickness 
and confirming the presence of a hollow species, also giving indication about a density gradient within 
the particulates itself. A series of two different three-dimensional models were developed to simulate 
SE-images that were similar to the SE-images taken from non-typical uranium oxide particles. Further 
conclusions can be drawn with regard to the shell thickness, elemental composition and density. By 
direct comparison of the simulated SE-images with a reference SE-image, it can be concluded that the 
outer shell structure has very likely a thickness in the range 20 < d < 50 nm and is made of U3O8 with a 
density of δOS = 8.4 g/cm3. The inner structure is also composed of U3O8 and has a lower density of 
δIS = 6.6 g/cm3. According to our simulations, the simulated spheres were hollow and no filling material 
(such as water) was present and can be therefore neglected, see Figure 48. 

The other five particle batches showed a much more coherent picture. The homogeneity of the size 
distribution within a batch was sufficient, but did not meet the criteria for a monodisperse particle 
distribution as defined by Hackley and Ferraris (2001) [154]. 

For solid microparticles, a thorough investigation was also performed, see Chapter 5.2.3.2. SEM 
investigations revealed that the particle size can be adjusted precisely by the precursor solution 
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concentration, see Figure 59. SEM investigations of the size and geometry revealed that these solid 
particles are not spherical. The outer surface shows many dents and cavities. Combined SEM-FIB/TOF-
SIMS investigations revealed the inner structure of single microparticles. All measurements performed 
at SGAS-ESL and IEK-6 showed a coherent picture for these solid uranium microparticles of a thin outer 
layer and a porous inner structure. Based on TOF-SIMS measurements, the outer structure had a 
significantly higher density than the inner structure and overall thickness of a of few nanometers (about 
20 nm), see Figure 53. However, the same measurements revealed that the inner structure of these solid 
particles have a porous morphology with an overall inhomogeneous density distribution; Figure 53 
shows the depth profiling of selected m/Q values (m/Q(16), m/Q(238) and m/Q(239)). SE-images 
recorded during the ablation process showed a significant number of cavities and venting holes, see 
Figure 54 and Figure 98 - Figure 101. These cavities vary in size and shape.  It can be concluded that the 
porous inner structure is rather heterogeneous and no distinct density gradient could be observed. This 
observation is in accordance with Messing et al. (1993) [58] and Reuge et al. (1961) [66] [67] – the final 
morphology is controlled by a homogenous precipitation mechanism. 

TOF-SIMS confirmed the presence of certain unexpected atomic species: 23Na, 27Al, 28Si, 39/41K. 
These chemical species were probably introduced as cross-contamination during the preparation of the 
feed solutions by leaching of glass storage vessels. 

SEM-EDX investigations were performed to measure elemental contents of the particles. 
Measurements of solid particles were much more precise than for the hollow, polydisperse species. This 
can be attributed to their higher density and resulting stronger signal.  A quantitative investigation 
proved to be difficult because most of the “reflected” signal originated from the substrate – these findings 
apply both for the hollow and the solid species. For SG140521_02 the effect is more pronounced; see 
Table 14 versus Table 15 and Table 16, as the interaction volume of electrons with a kinetic energy of 
25 keV is larger than the actual specimen size. It is recommended that a quantitative investigation be 
carried out of SEM combined with wavelength dispersive X-Ray spectroscopy (SEM-WDX). SEM-EDX 
investigations revealed the presence of carbon, even in particles which were deposited onto Si 
substrates. This phenomenon indicates a detector specific artefact. This issue was addressed by carrying 
out µ-Raman spectroscopy experiments on the same particles. 

SEM investigations raised the question as to whether the oxidation of these particles was complete 
and the uranium converted completely to U3O8. Density variations within the microparticles are also an 
indication for an inhomogeneity in the uranium composition. Therefore, µ-Raman spectroscopy 
measurements were carried out at two different institutions: (1) CEA DAM Ile de France and (2) at 
Vienna University of Technology (TUW). µ-Raman spectroscopy investigations helped to identify the 
crystal structure of single microparticles produced at IEK-6. It can be concluded that all investigated 
particle batches (from SG140521_12 to SG150401_14A) show significant similarities with regard to 
their identified Raman bands. Different proportions of uranium compounds could be attributed to a 
number of single microparticles. The largest number of identifiable bands can be associated with U3O8. 
240 cm-1, 340 cm-1, 380 cm-1, 420 cm-1, 805 cm-1, see Table 23 - Table 25. Meta-schoepite and U(IV)-
hydroxide indicate residual water left in the crystal structure and suggest an insufficient oxidation or 
the uptake of water through ambient humidity; the following bands were identified: ~ 340 cm-1, 
~ 380 cm-1. Bands at ~ 860 cm-1 and indicate the presence of a studite/meta-studite species, see 
Bastians et al. [161]. Further indication of UO3 was found with bands at ~ 480 cm-1 and 770 cm-1. The 
smallest fraction could be associated with UO2, with a single band at ~ 606 cm-1. 

These results underlay the assumption that a multiphase uranium oxide was created that has 
different areas within a particle associated with different oxidation states. The outer surface is much 
denser, which is the case for both the solid and the hollow species, see Figure 48 (for SG140521_02) and 
Figure 53 (for SG141027_12A). This part is more likely to be made of U3O8 because it was exposed 
directly to the heat field of the furnace. The inner porous structure on the other hand is more likely to 
consist of uranium-hydroxide species. 
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Furthermore, µ-Raman analysis could not detect any indication of the presence of carbon inside 

single particles. This leads us to conclude that the emergence of carbon in the EDX spectra is an 

indication of a detector specific artefact impacting a quantitative EDX analysis of microparticles. 

The main aim of the characterization work was the isotopic composition and homogeneity as well 
as a consistent uranium content per particle. This was accomplished by using the LG-SIMS at SGAS. The 
primary designated instrument is the LG-SIMS. In Chapter 5.4 LG-SIMS experiments were used to 
investigate the particle performance under operational conditions. A series of tests were performed: (1) 
identification of the original isotopic composition, (2) direct comparison to existing CRMs (IRMM-9073 
and NBS-U010), (3) an assessment of the hydride formation and (4) an assessment of the total 
evaporation behavior. Apart from point (1), these results depict instrument specific value, but they are 
a good indication of the microparticles’ homogeneity and a conclusion about the uranium content and 
particle density. 

Firstly, the original isotopic content from IRMM-183 was identified. Two different particle batches 
from Jülich were investigated: (1) polydisperse SG140521_02 and (2) “quasi” monodisperse 
SG141027_12A. The variability in the isotope ratios of (234U/238U), (235U/238U) and (236U/238U) were 
investigated and compared to -certified values by Richter et al. (2005) [162]. Richter’s data was derived 
from TIMS measurements on bulk material. Hence, we expect to see a higher degree of accuracy and 
smaller associated uncertainties. All results obtained from SG140521_02 and SG141027_12A are 
presented in direct comparison to Richter’s data. As expected, polydisperse SG140521_02 show a 
significantly higher deviation to Richter’s data of 0.08 - 8.29 % which can be correlated to the 
morphology and density differences. SG141027_12A shows a much more consistent signal for all 
isotopes and its associated uncertainties are significantly lower than of SG140521_02. The overall 
deviation of 0.10 - 1.22 % from the reference values reflects this trend, see Table 27 - Table 29. It can be 
concluded that the measured isotopic composition is independent of the particle size and morphology. 

The second step was the evaluation of the SG140521_02 and SG141027_12A against existing 
reference materials (IRMM-9073 and NBS-U010) during which the averaged disintegrated 238U 
intensities were compared against each other. They are a measure for the homogeneity and consistency 
in size distribution of the measured particles. Since IRMM-9073 and NBS-U010 are bulk materials 
consisting of polydisperse particles, we expect to see a higher degree of variance in the disintegrated 
averaged 238U signal. NBS-U010 showed a disintegrated averaged 238U intensity of 4.86 . 105 ± 5.62   103 
with a relative standard deviation of 11.57 % and for IRMM-9073 a disintegrated 238U intensity of 
7.30 . 104 ± 8.17 . 103 with a relative standard deviation of 11.18 %; see Table 33. Polydisperse 
SG140521_02 showed a more consistent and homogenous 238U signal of of 8.04.104 ± 7.89.104 was 
measured with a RSD 98.06 %. In comparison to SG141027_12A which has a mean disintegrated 238U 
intensity of 5.5804.104 ± 2.1481.104 and a RSD of 38.49 %. The variability in the isotope ratios is 
considerably smaller and can be related to the monodisperse properties such as morphology and 
uranium mass. The signal intensity is well within those of IRMM-9073 and NBS-U010. It can be 
concluded that SG141027_12A performed better than the existing CRMs, see Figure 77 - Figure 79. 

The next step in the assessment process leading to the application as a QC-material for isotopic 
measurements is the evaluation of the hydride formation rate “UH/U”. Interfering hydride species can 
substantially distort the actual measurement. The hydride formation rate is a measure for the collection 
efficiency. For the LG-SIMS, an empirical value of UH/U = 0.003 is considered acceptable. All spectra 
were recorded in microprobe mode (10 µm raster and an IP = 50pA). The hydride formation rate for two 
existing reference materials – IRMM-9073 and NBS-U010 was measured: UH/U(IRMM-9073) = 2.59 . 10-

3 ± 8.85 . 10-3 and UH/U(NBS-U010) = 2.71 . 10-3 ± 1.21 . 10-3. For polydisperse SG140521_02 the 
hydride formation rate was low: UH/U(SG140521_02) = 1.93 . 10-3 ± 1.02 . 10-3 with a RSD of 52.89 %, 
SG141027_12A showed a different performance, the overall mean UH/U intensity was higher as 
expected: UH/U(SG141027_12A) = 2.95 . 10-3 ± 2.75 . 10-4 with a RSD of 34.18 %, see Table 38. A 
threshold level for UH/H of 0.003 was assigned. A non-significant number of measurement values 
exceeded this threshold level indicating that the overall formation rate was relatively high but still 
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acceptable. This effect of an increased UH/H of SG141027_12A can be associated to a LG-SIMS specific 
reaction to the monodisperse properties. It can be concluded that the UH/H formation rate was higher 
than expected but within acceptable margins. The spread or variance of the UH/H values was 
significantly smaller and more consistent for SG141027_12A than for NBS-U010 and IRMM-9073, see 
Table 35 and Table 36. 

Chapter 5.4.3.1 describes briefly the influence of different acquisition parameters such as ion probe 
current (IP) and raster size on the hydride formation rate. It can be concluded that both acquisition 
parameters play an important role in the assessment process. Unexpectedly, a decrease of the IP 
(IP = 20 pA) in combination with a broader raster size (20 µm) lead to an increase of the UH/U formation 
rate of 38.0 %:  UH/U(IP = 20 pA, 20 µm) = 5.06 . 10-3 ± 3.68 . 10-3 with an RSD of 54.75 % - see Table 37. 

The evaluation of the total evaporation experiments in combination with the assessment of the 
useful yield is the most important parameter in the LG-SIMS based assessment because it allows to 
derive an approximation of the uranium mass per particle and of the overall mean particle density. Only 
SG141027_12A was compared against IRMM-9073 and monodisperse particles from ITU (20079). ITU 
(20079) are monodisperse particles made from JRC-ITU, see Erdmann et al. (2000) [40]. In total 10.000 
cycles (acquisition time per cycle was 1.04 s) were measured at IP = 50pA and a 10 µm raster. 

IRMM-9073 had the highest mean 238U intensity of 1.54 . 108 ± 2.25 . 108 with an associated mean 
relative bias of 115.35 %, ITU particles showed a mean intensity of 1.69 . 107 ± 6.29 . 108 with a 
corresponding mean relative bias of 32.5 %. The significantly smaller mean relative bias of ITU (20079) 
in comparison to polydisperse IRMM-9073 is already a strong indication of the homogenous nature of 
the ITU (20079) particles. But the mean 238U intensity indicated a smaller amount of uranium thus a 
smaller particle size. Belated SEM studies revealed a considerably smaller average particle size for ITU 
(20079) of << 1.0 µm. SG141027_12A on the other hand showed a consistent 238U intensity profiles over 
1000 cycles, see Figure 127. Just in one case an adjacent particle was simultaneously measured, which 
explains the rugged profile at around 4200 s. Since the 238U intensity signal correlates to the mass of 
uranium per particle, a significantly higher 238U intensity for SG141027_12A in comparison to ITU 
(20079) was measured; by a factor of 144. The most promising performance was evaluated from 
SG141027_12A with a mean 238U intensity of 2.42 . 108 ± 1.8 . 107 and just a RSD of 4.25 %. This result 
indicates a high degree of homogeneity and is an indication of consistent quality and reproducible, 
predictable outcome; hence desired performance. 

The useful yield “X” is an important performance characteristic. The useful yield is the ratio of the 

integrated signal which was measured against the number of atoms in the particle. Ranebo et al. (2009) 

[18] measured a useful yield X = 1.18± 0.15% for O2- and for an O2+ ion source X = 0.96 ± 0.07%. In total, 

seven different particles were used to assess the useful yield. Measurements showed a mean useful yield 

of 5.14 ± 0.38 % which is significantly higher value than what Ranebo et al. (2009) [18], 0.96 %, and 

Hedberg et al. (2005) [163], 0.27 % derived. Their results were derived from the fact that all 

microparticles were made from the same uranium compounds and that their density was consistent 

throughout all particles of all measured specimen and also based upon a density assumption derived 

from mass spectrometric measurements. Figure 84 shows a linear dependency of the useful yield for all 

particles. The assessment of the useful yield builds on an estimated value: the particle density. A linear 

dependency can be observed and a relative standard deviation of 3.2 % was calculated, see Table 39. 

This indicates that the theoretical number of atoms per particle and the measured value only deviate by 

3.2 %; which can be calculated using equation 10: 2.067 . 109 uranium atoms per particle. A mean 

uranium mass per particle of 2.89 ± 0.9 pg with an average density of 2.51 ± 1.0 g/cm3 was derived. This 

result is also a strong indication for the homogeneity and the consistent quality of SG141027_12A and 

opens up the possibility of using these particles as a uranium mass standard. 

In Chapter 5.3.4.1, the changes of the mean integrated 238U intensity “I(238U)” in dependence of the 
primary ion beam diameter were investigated. The primary ion-beam diameter was focused to about 
1 µm. It was expected to see a decrease for smaller primary ion-beam diameters. But the opposite was 
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observed; with the focused ion beam a mean integrated intensity “I(238U)” of I(238U) = 
3.038 . 108 ± 9.278 . 107, with a RSD of 30.54 % was measured which is about 1.25 x bigger than the mean 
integrated intensity of the defocused total evaporation. This effect demonstrates the need for consistent 
instrumental measurement conditions. 

After total evaporation experiments, a distinct sputter-residue pattern is left behind, due to the 
ablation process a cone shaped residue was formed, see Figure 86. After the total evaporation 
experiments, the residue was re-scanned with a 50 µm raster, a primary ion beam current of 1.5 nA and 
a total area of 2500 µm2 was investigated. All residues showed a consistent and predictable behavior 
which is an indication for the homogeneity of the particles. One particle showed a deviant behavior 
which can be explained by the proximity of another particle measured simultaneously. 

The evolution of the particle production setup is also of importance for this thesis. The current 
setup (as of May 2015) is sophisticated enough to produce a sufficient number of microparticles of 
consistent quality. Preliminary experiments and data evaluation on SG140521_02 indicate that the 
presence of the furnace with temperature > 600 °C might facilitate the generation of unfavorable particle 
species. The final particle morphology is controlled by the precipitation mechanics, see Messing et al. 
(1993) [58] and Reuge et al. (1961) [66]. With the dismantling of the furnace, (a) the particle 
morphology could be controlled more easily and (b) the collection yield could be increased by two to 
three orders of magnitude. Monodisperse, homogenous microparticles show consistent quality and 
quantity of key features, important for nuclear forensics related work; e.g. enough particles for either 
non-destructive and destructive assays, consistent m(U)/particle, homogenous morphology, consistent 
behavior during (non)-destructive assays (e.g. SEM, FIB, (TOF)-SIMS and Raman Spectroscopy). 

Ultimately it can be concluded that microparticles produced in Jülich show great potential for use 
as a QC-material or even as a (C)RM: our investigations showed that the intended “solid” particles can 
be produced by rather mild production parameters and not fast and hot environments (>850 °C), see 
Chapter 4.1.2. By carefully selecting the optimal production parameters solid, consistent microparticles 
with an intended size distribution can be produced. SEM-EDX investigations demonstrated the 
inefficiency of a qualitative uranium determination. Due to the small particle size, the vast majority of 
the signal originated from the background. Nevertheless, SEM-EDX proved to be extremely efficient to 
easily verify the presence of uranium for automated, large scale particle counting procedures used to 
assess the size distribution, but were not suitable for a sound elemental quantification. µ-Raman 
spectroscopy experiments indicated the presence of a multiphase uranium compound. This result is 
relevant for future studies on the chemical stability of these microparticles. 

LG-SIMS experiments showed strong evidence for the applicability of the produced particles as a 
reference material. In particular SG141027_12A proved to have consistent, homogeneous and 
reproducible behavior and result. The most important message from this work is that these total 
evaporation experiments, in Chapter 5.4.4, can be directly correlated to a consistent uranium mass per 
particle per batch. This also includes a consistent particle morphology which is determined by the 
precipitation mechanics during the conversion of aerosol droplets to solid entities. This implies that the 
density may vary significantly within a microparticle. This inhomogeneity in the particles’ morphology 
can be observed for all investigated batches. It can be concluded that the most important thing is the 
uranium mass per particle, particle size and density are of subsidiary importance. Furthermore, all 
experiments indicate reasonable or outstanding performance. 

Outlook 

The particle production setup can be further improved using an electronic pump to control the 
liquid feed rate more accurately. For future projects, it would be advisable to investigate the influence 
of different precursor solutions - instead of nitrate solutions, acetate and carbonate or chloride solutions. 

One urgent issue is the question of the particle density and thorough uranium mass determination 
– especially in regard towards the implementation as a (certified) reference material. Several possible 
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approaches to determine the uranium content could be used: (a) similar to what Kraiem et al. (2012) 
[45] did using IDMS or ICP-MS measurements, (b) auxiliary Laser Ablation – ICP-MS (LA-ICP-MS) 
measurements would deliver comparable results with much less efforts in sample preparation or (c) if 
necessary fission-track TIMS (FT-TIMS) could deliver a more precise measurements result. 

Further SIMS measurements have to be made on each particle batch. So far only SG141027_12A 
was thoroughly investigated. And as of now only one isotopic composition has been used to produce 
microparticle. It would be interesting to see if the introduction of one or multiple uranium CRMs shows 
any memory effects and cross contamination in subsequent runs. 

The identification of the physico chemical environment plays an important role but will be 
addressed more thoroughly in a different publication. In late 2015 combined EXAFS/XANES and XRD 
measurements were performed at Paul-Scherrer Institute (Micro XAS beamline), Switzerland, on bulk 
quantities [i] of microparticles as well as on single particles. One outcome can be derived from these 
experiments: it confirms the existence of a polymorphous uranium oxide/hydroxide species with 
oxidations states between U(V) and U(IV). This finding is in accordance with the measurement results 
that could be derived from the µ-Raman spectroscopy investigation. 

This work represents a first step towards the development of QC and RM microparticles 
application. Further studies have to be carried out in order to assess the thermodynamic stability of the 
created particles. If particles are thoroughly assessed it would be advisable to embed these artificial 
particles inside a well-defined matrix which resembles real-life samples. Particles could be measured in 
a more realistic manner and interferences could be ruled out much readily. 

 

 

[i] “Bulk quantities” means in this context a few hundred microparticles on small area of a few mm2. 
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7. Appendix 

7.1 Size Distribution Histograms 

7.1.1 SG150312_05A, SG150401_14A, SG150413_03A and SG150429_02A 

 

Figure 88: Size distribution of SG150312_05A. 

 

Figure 89: Size distribution of SG150401_14A. 
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Figure 90: Size distribution of SG150413_03A. 

 

Figure 91: Size distribution of SG150429_02A. 
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7.2 Shape Descriptors: Circularity 

7.2.1 SG150312_05A, SG150401_14A, SG150413_03A and SG150429_02A 

 

Figure 92: Circularity of SG150312_05A. 

 

Figure 93: Circularity of SG150401_14A 

 

Figure 94: Circularity of SG150413_03A 
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Figure 95: Circularity of SG150429_02A. 
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7.4 EDX-Spectra 

7.4.1 Polydisperse Batch: SG140521_02 

 

Figure 102: BSE-image and corresponding EDX spectrum of exemplary hollow particle on SG140521_02. 

 

Figure 103: BSE-image and corresponding EDX spectrum of hollow particle after destruction. 

 

Figure 104: BSE-image and corresponding EDX spectrum of exemplary deformed particle on 

SG140521_02. 

 

Figure 105: BSE-image and corresponding EDX spectrum of exemplary debris on SG140521_02. 



xii 

 

Figure 106: BSE-image and corresponding EDX spectrum of exemplary solid particle on SG140521_02. 

7.4.2 Uniform Batches: SG141027_12A, SG150312_05A, SG150401_14A, SG150413_03A 

and SG150429_02A 

SG141027_12A 

 

Figure 107: BSE image and corresponding EDX spectrum of exemplary solid particle SG141027_12A. 

SG150312_05A 

 

Figure 108: BSE image and corresponding EDX spectrum of exemplary solid particle SG150312_05A. 
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SG150401_14A 

 

Figure 109: BSE image and corresponding EDX spectrum of exemplary solid particle SG150401_14A. 

SG150413_03A 

 

Figure 110: BSE image and corresponding EDX spectrum of exemplary solid particle SG150413_03A. 

SG150429_02A 

 

Figure 111: BSE image and corresponding EDX spectrum of exemplary solid particle SG150429_02A. 
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7.5.2 Raman Spectra of selected number of particles originating from CEA and TUW with 

a total spectral range of 100-3200cm-1 

U3O8 

 

Figure 114: Micro Raman Spectra of selected U3O8 samples originating from CEA and TUW. Spectra 

acquired at TUW have a wider acquisition range – 100-3200cm-1. 

UO2 

 

Figure 115: Micro Raman Spectra of selected UO2 samples originating from CEA and TUW. Spectra acquired at 

TUW have a wider acquisition range – 100-3200cm-1. 
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UNH 

 

Figure 116: Micro Raman Spectra of selected UNH samples originating from CEA and TUW. Spectra 

acquired at TUW have a wider acquisition range – 100-3200cm-1. 

ADU 

 

Figure 117: Micro Raman Spectra of selected ADU samples originating from CEA and TUW. Spectra 

acquired at TUW have a wider acquisition range – 100-3200cm-1. 
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7.5.3 Raman Spectra of UO2F2 – Double band at 867cm-1 

 

Figure 118: Observed double and at 867cm-1 for UO2F2, in accordance with Stefaniak et al. (2013). 

7.5.4 Raman Spectra of SG140521_02 

 

Figure 119: Raman Spectra of SG140521_02 acquired at CEA. 
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7.5.5 Raman Spectra of SG141027_12A 

 

Figure 120: Raman spectra of 15 particles originating from SG141027_12A. 

7.5.6 Raman Spectra of SG141027_12A from CEA vs TUW 

 

Figure 121: Raman Spectra acquired at CEA and TUW in direct comparison. 
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7.5.7 Raman Spectra of SG150401_14A 

 

Figure 122: Collected Raman spectra of SG150401_14A. 
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7.6.3 Certificate: NBS U010 

 

Figure 125: Certificate for NBS-U010. 
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7.6.4 Certificate: IRMM 9073 

 

Figure 126: Certificate for IRMM-9073.
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7.6.5 TE-Spectra of SG141027_12A, ITU and IRMM-9073 

 

Figure 127: TE-profile of SG141027_12A. 

 

Figure 128: TE-profile of ITU monodisperse – Mean DIA: 0.6µm. 
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Figure 129: TE-profile of IRMM-9073, polydisperse distribution.
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