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Preface

Quantum materials exhibit a spectacular variety of unusual emergent behavior that is practically
impossible to predict from first-principles. Experiment is crucial for discovering phenomena
such as the metal-insulator-transition, the Kondo effect, or superconductivity. Theory provides
the paradigm for understanding these states of matter. Developing such understanding relies
on the close interplay between theory and experiment, with experiments constantly putting
theoretical ideas to a test. This year’s school covers experimental techniques such as optics,
photoemission, NMR, and tunneling spectroscopy. Understanding these experiments requires
the realistic modeling of materials as well as approaches to solving them. Lectures ranging
from the model building schemes to advanced many-body techniques provide the foundation to
unraveling the mystery of these materials. Introductions to theoretical approaches for calculat-
ing spin, charge, and orbital structure as well as response functions provide direct contact to the
experimental probes. The aim of the school is to introduce advanced graduate students and up
to the essence of emergence and modern approaches for modeling strongly correlated matter.

A school of this size and scope requires support and help from many sources. We are very
grateful for all the financial and practical support we have received. The Institute for Advanced
Simulation and the German Research School for Simulation Sciences at the Forschungszentrum
Jiilich provided the major part of the funding and were vital for the organization of the school
and the production of this book. The DFG Research Unit FOR 1346 generously supported many
of the speakers. The Institute for Complex Adaptive Matter (ICAM) offered travel grants for
selected international participants.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jiilich and to Mrs.
D. Mans of the Graphische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with proof-
reading the manuscripts, often on quite short notice: Michael Baumgértel, Khaldoon Ghanem,
Julian MuBhoff, Esmaeel Sarvestani, Amin Kiani Sheikhabadi, Guoren Zhang, and Qian Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hélzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini, Erik Koch, Jeroen van den Brink, and George Sawatzky

August 2016
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1.2 George Sawatzky and Robert Green

1 Introduction

Correlated metal-oxide compounds exhibit a wide range of interesting properties, including for
example high-temperature superconductivity, metal-insulator transitions, and various forms of
orbital and magnetic ordering. Many of these metal-oxide compounds with especially interest-
ing properties contain cations which have exceptionally high oxidation states, when one assigns
those oxidation states using the usual formal valence-counting methodologies. transition-metal
elements from the 3d, 4d, and 5d series can usually attain several different oxidation states in
compounds, ranging for example from 2+ to 5+ for vanadium in oxides. Given this flexibility
of the cations, one usually assumes a closed valence shell structure for the anions, meaning
that the chalcogens (O, S, Se, Te) would have a 2- valence and the halides (F, CI, Br, I) would
have 1-. Similarly, fixed cation valences according to closed shells are usually assumed for
certain columns of the periodic table, including 1+ for the alkali elements under Li, 2+ for the
alkaline earth elements under Be, and 3+ for those under Sc and B.

In these standard valence-counting formalisms where anion and the above cation valences are
fixed, the remaining cations then adopt the compensating valence to end up with a charge neutral
unit cell or formula unit. Following this approach, Fe in FeS; would be 4+, Ni in the rare-earth
(R) nickelates RNiO3 would be 3+, and there would be Cu®* present in the hole-doped cuprate
Lay,_,Sr,CuQ4. However, there are many examples where this classification is not valid—Fe in
FeS, for example is actually 2+ and there are accordingly missing sulfur 3p electrons. This leads
to the formation of sulfur pairs having a net pair valence of 2- rather than 4-. In this case the
antibonding S 3p states in the pairs are empty and therefore form rather narrow bands just above
the chemical potential which form the conduction band (depending on where the transition-
metal electron addition d states are, as we will discuss below). Similarly, in superoxides such as
KO, the O atoms form pairs, but now with each pair having a 1- charge and spin of 1/2, leading
to an O 2p hole-based ferromagnetic ground state. In the hole-doped cuprates, convention
would predict the introduction of Cu®" into the mainly Cu?" lattice, leading to a mixed valent
state. However, it is known that the holes actually reside mainly in O 2p orbitals, leaving the
Cu with a 2+ valence and a spin of 1/2. In some pictures (like that of the Zhang-Rice singlets)
these O holes tend to form molecules of 4 oxygen atoms in a square around a particular Cu,
forming a singlet spin state due to the very strong Cu-O exchange interaction which is of order
0.5 eV. Similarly, we will argue that also Ni does not really like to be 3+ and so in the perovskite
structure rare-earth nickelates the Ni behaves like Ni>* in a normal high-spin state of S = 1 and
there is one hole per 3 oxygens in the O 2p band of states. Realizing that each Ni is at the center
of an octahedron of O ions we would have on average 2 holes per O octahedron and again these
are found to condense into octahedral molecules of O around every second Ni*™ ion.

In this lecture we will look at the consequences for the electronic structure and the correspond-
ing physical properties of oxides involving unconventionally high cation oxidation states which
accordingly may better be viewed as having unfilled anion valence bands. In solid state physics
we are mostly interested in the low-energy scale possible excitations from the ground state
which determine the physical properties in a temperature range of perhaps 0 to 500 K, thus we
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will focus our considerations on those states which are at most several eV above and/or below
the chemical potential. Further, in the study of transition-metal oxides or rare-earth compounds
we mostly start from a viewpoint of what the valences of the elements are in the limit of zero
interatomic hybridization (i.e., in the ionic limit). The hybridization, which of course plays a
crucial role, is then introduced and band structures and interatomic interactions result. As we
know, in transition-metal based ionic solids the valence state of an ion determines the number
of d electrons involved and this in turn determines the spin, orbital, and total angular momen-
tum via Hund’s rules in the lowest energy states. The excited states, or multiplets, important in
describing various forms of spectroscopy are also determined to first order in this ionic starting
point. Thus, this starting knowledge is the first guess as to what the spin and the d occupation
numbers really are in the material. However, if indeed the anion valence states are not fully
occupied and the cations accordingly have unexpected valences in the ionic limit, the lowest
energy states could be very different from this formal oxidation state based picture, and the
model Hamiltonians which should be used could differ strongly from the typical ionic ansatz.
This is especially important for the analysis of materials using x-ray based spectroscopies such
as resonant x-ray reflectometry and resonant elastic and inelastic x-ray scattering.

In the following we will start with a brief motivation of the importance of anion states by looking
at divalent late 3d transition-metal (i.e. Ni or Cu) oxides. We will discuss how studies of the
first ionization states found that doped holes were more likely to occupy the ligand (oxygen)
states. From this introduction we will then look at higher valence oxides where holes can be
self-doped into the ligand band. We will show how this affects the usual crystal field and Hund’s
rule based starting points of a typical theoretical model. In Section 3, we will then progress to
the very basic classification scheme referred to as the ZSA scheme, which did not focus on the
case of very high oxidation states for which the so called charge-transfer gap could be negative.
We will discuss the various classes possible in an extended ZSA scheme, showing the transition
from Mott-Hubbard to charge-transfer to mixed-valence and then to the strong negative charge-
transfer gap systems. In each case we look at the ground state and the electron removal and
addition states (i.e., the one-electron Green functions). In Section 4, we will look at examples
of very interesting negative charge transfer compounds, including the perovskite nickelates and
also the related non-correlated bismuthates. Here we will also show how a significant amount of
information concerning the ground state local electronic structure can be obtained from resonant
x-ray absorption and scattering experiments, and will introduce the model Hamiltonians which
can be used in this regard. Lastly, in Section 5 we will look at materials in the fascinating
mixed-valence class, focusing primarily on the highly studied samarium hexaboride.

2 The importance of anion states

In this section, we will provide some generally accepted examples which exemplify the impor-
tance of anion states in high-valence oxides. First we will give a brief review of the studies
of hole-doped states in divalent copper and nickel oxides which led to the concept of Zhang-
Rice singlets in the high-7;. cuprates. Following that we will show that similar effects can be
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present in undoped compounds with high formal oxidation states, such as Ni** in the perovskite
rare-earth nickelates.

2.1 Hole doped states in divalent Cu and Ni oxides

The common feature among all high-7,. cuprate compounds are the CuO, planes (containing
Cu?T" in the parent compounds) which are doped with holes or electrons to induce supercon-
ductivity. Of critical importance then, when trying to understand the nature of high-7¢, is to
understand the nature of the doped carriers. Early spectroscopic studies, particularly x-ray ab-
sorption spectroscopy (XAS) at the oxygen K edge, found strong evidence that the holes doped
into CuO,, planes primarily resided in the oxygen 2p band [1-3]. This showed that the doping
did not yield Cu" in the lattice, and accordingly that the Cu was still 2+ with S = 1/2.
Theoretical studies were undertaken to understand the character of the doped holes. In partic-
ular, an Anderson impurity model was employed by Eskes et al. to examine the one-electron
removal spectrum of a Cu?* impurity which hybridized with an oxygen 2p band, as this spec-
trum relates directly to the states achievable through hole doping [4]. It was found that since the
Cu d® states were below the top of the O 2p band (i.e., the parent compound is a charge-transfer
insulator) the first ionization state is a singlet 'A, state which is pushed out of the O 2p con-
tinuum. Around the same time, the similar Zhang-Rice (ZR) singlet picture was developed [5],
which is also based on the fact that the doped holes occupy linear combinations of oxygen 2p
orbitals in a square coordinated around the Cu site.

These early studies of the cuprate superconductors showed the importance of the anion states,
especially upon doping. However, even with this importance established, there are very differ-
ent ways in which the anion states can be treated. On one hand, the ZR singlet picture was rather
quickly adopted by many working on the theory of high-7;. cuprates, in part because it simpli-
fies the problem to that of an effective single-band Hubbard model where the charge-transfer
energy plays the role of U. Due to the extended nature of the “atomic” wave function, which
includes the linear combination of O 2p orbitals of 22 — y? symmetry, longer-range hoppings
beyond nearest neighbors have to be included. A large number of theoretical studies have been
carried out and still use this single-band approach. On the other hand, also at the very beginning
of the field in 1988, Emery and Reiter [6] introduced a somewhat different model also based on
doped holes being mainly on O but placing the importance of the holes on the very large antifer-
romagnetic exchange interaction of the O 2p hole with its two neighboring Cu spins. This leads
to the description of the quasiparticle as being a three-spin polaron. Recently, this model has
gained considerable support from a very large scale exact diagonalization study by Lau et al.,
who found that the ground state and £ dependence of the single hole in the full 3-band model
is in close agreement with the 3-spin polaron model in which a strong Cu-Cu ferromagnetic
correlation is found for the Cu atoms sandwiching the O 2p hole [7-9]. Another interesting part
of this calculation is also that, without introducing longer-range hoppings, it yields basically
the same dispersion relation for the quasiparticle as the extended single-band Hubbard model,
although the spectral weights differ considerably. The ferromagnetic correlation of the neigh-
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boring Cu spins to the O hole is something that seems difficult to reconcile within a single band
Hubbard model based on ZR singlets. It is also interesting to note that in recent work it has
been shown that different models giving basically the same single particle dispersion can yield
very different two particle spectral functions as are relevant for superconductivity [10]. Thus,
debate remains regarding the importance of the explicit inclusion of the anion states in models
describing the cuprates.

In addition to the identification of doped holes in cuprates occupying O 2p orbitals, similar
studies showed that when NiO is hole-doped with Li, the holes also occupy the oxygen 2p or-
bitals [11]. For Li-doped CoO, the holes have a strongly mixed Co 3d and O 2p character [12].
Given that all of these parent compounds are divalent, one should expect the anion states to
become even more important in higher valence oxides, where charge-transfer energies are gen-
erally smaller due to increased electron affinities of the metal ions.

2.2 Similar effects in undoped negative charge transfer compounds

The previous section detailed the importance of oxygen 2p holes in hole-doped divalent late 3d
transition-metal oxides. In this section we will introduce how such oxygen holes may be present
in undoped high-valence oxides due to the presence of a so-called negative charge transfer
energy. To accomplish this, we first provide a brief example in Figure 1(a) of how crystal field
and Hund’s rule energetics determine the ground state configuration of a correlated transition-
metal ion in a compound. For this example of a Ni3* ion, first one accounts for multiplet
interactions. According to Hund’s first rule, we assume our lowest energy configuration is the
one with maximum spin. The next highest state we consider has one spin flipped, which in
this case costs energy 2.J, where J = & (F? 4+ F'*), and F'? and F** are the multipole Coulomb
(Slater) integrals [13,14]. Next, we account for an octahedral crystal field potential, which splits
the 3d orbitals into an e, group and a t5, group. Evident from this picture is that depending on
the relative sizes of JJ and 10Dq (where 10Dq is a measure of the point charge crystal field [15]),
one can have either a high-spin or low-spin ground state.

In Fig. 1(b), we now extend our example to a configuration interaction (CI) model. Now we
explicitly account for hybridization with nearest neighbors. Assuming the neighbors are fully
occupied ligands, with CI one constructs a wavefunction out of a linear combination of configu-
rations of the form d"*'L’, where i = {0,1,2,...} and L is a hole in the ligand shell left behind
when an electron hops to the 3d shell. Note that the ligand hole orbital must have the same
symmetry as the central d ion. The energy cost of a ligand electron transferring to the d shell is
the charge-transfer energy 4, and one must also account for additional Coulomb energies when
extra electrons hop to the d shell. If we set the energy of the d”L° (i.e. i = 0) configuration to
0, then the energies of the ¢ = 1,2, 3, ... configurations are given by A, 2A 4+ U, 3A 4 3U, and
SO on.

Returning to Fig. 1(b), here we analyze possible positive and negative charge-transfer cases
for formally trivalent Ni** oxides using a simplified configuration interaction model. Starting
with 3d” and 3d®L configurations (where L denotes a ligand hole), we show the configuration
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Fig. 1: (a) The Hund’s rule and crystal field energetics are introduced for a Ni** (d") system.
(b) A configuration interaction model demonstration why low-spin Ni** compounds must be
negative charge transfer systems. For A > 0 (left), typical hopping integrals are not strong
enough to push the low-spin bonding state below the high-spin bonding state. For A < 0
(right), however, the low-spin state is easily stabilized as the ground state.

interaction bonding and antibonding states for positive (left) and negative (right) charge transfer
situations. The 3d” configuration has two states in this simplified picture which are the high-
spin (S = 3/2, t3,¢7) and low-spin (S = 1/2, t5,e;) states. The energy separation between
the states before hybridization is considered is given by 2J — 10Dq where J is approximately
1.25 eV (according to atomic Hartree-Fock calculations [14], rescaled by 80% to account for
intra-atomic configuration interaction as usual) and the point-charge crystal-field contribution
10Dq is roughly 0.75 eV (slightly larger than the ~0.5 eV usually used for divalent compounds,
to account for the shorter bond lengths in formally trivalent compounds). Each of these states
%4

arrangement. The ligand hole consists of a linear combination of O 2p orbitals of 7 or o bonding

hybridizes with the 3d® L configuration, where the d electrons have a high-spin (S = 1, ¢

symmetry with the transition-metal 3d orbitals. Thus, the hole can be of e, or t,, symmetry,
yielding two states separated by 27}, = (ppo — ppm) ~ 1.5 eV [16].

When hybridization is gradually introduced for this positive charge transfer case, a bonding
S = 3/2 ground state is attained, illustrated by the lower blue line in the figure. Given that
the e, hopping integral is generally about twice as large as the t5, for octahedrally coordinated
transition-metal compounds, one would expect that for increased hybridization strength the low-
spin (red, S = 1/2) bonding state would eventually become the ground state. However, such a
situation would require significantly larger hopping integrals than are present in the 3d oxides.

If instead we consider the negative charge transfer arrangement of our configurations as shown
on the right of Fig. 1(a), a low-spin state arises much more naturally. Now the d®L states are
below the d’, and when hybridization is introduced the bonding state having the symmetry of
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the 5 e, configuration and thus with (S = 1/2)—but with mainly d°L character—is stabilized
as the ground state. Thus by having a negative charge-transfer energy and accordingly a strong
ligand-hole contribution to the ground state, a low-spin Ni compound is realized with typical
hopping integrals. One can consider this as a competition between the Hund’s rule J, which
wants to maximize the spin, and the O 2p — TM 3d exchange interaction which is antiferromag-
netic. If the hole is mainly on the oxygen rather than in a ¢, orbital of the (d") Ni, then it would
rather be in an e, symmetry state and would have a strong antiferromagnetic coupling with the
d® spin-1 state, leading to a S = 1/2 state. Note that with a negative charge transfer energy, the
stronger e, hybridization leads to a unique inverted contribution to ligand-field splitting from
covalence [17].

In Fig. 2(a), we test this simplified picture using a full configuration interaction calculation for a
NiOg cluster having Coulomb interactions, crystal-field, spin-orbit, and ligand-ligand hopping
energies characteristic of the perovskite rare-earth nickelates, RNiO3. The black solid line
shows the low-spin/high-spin transition as a function of the effective charge-transfer energy
Aeg and the hybridization strength Ve, (with Vi, fixed at 0.58 V¢ ). Here, A accounts for
the various energy shifts of the multiplet Coulomb interactions, ionic crystal-field contribution,
spin-orbit interaction, and T, such that with no hybridization the lowest-energy d®L state
crosses below the lowest-energy d” state when A.¢ becomes negative. The color of the plot
indicates the contributions of the d” and d®L configurations to the ground state (note the basis
also contains d°L* and d'°L* configurations, so we plot the relative weights of the d” and d®L
for clarity).

A key observation from Figure 2(a) is that the low-spin regime is always characterized by a
dominant d®L contribution to the ground state. This includes a sharp jump in d®L weight at the
spin-state transition, originating from the fact that the hybridization is stronger for the low-spin
states which have more ¢, holes. The phase diagram confirms the discussion of Figure 1(b)—
that a low-spin state can be achieved with realistic hybridization parameters if the ground state
is mainly d® L—and actually shows that even for very large hopping integrals the low-spin state
is still mainly d®L. Note that the ground state can have more d®L than d” character even for
Agg > 0 as the d?L? and d'°L® configurations push the d®L lower in energy than the bare
charge-transfer value A.g. We also indicate with the star in Fig. 2(a) the location of the rare-
earth nickelates in this phase diagram. For these parameters [18], the nickelates are indeed
best described as negative charge transfer compounds. We will discuss the nickelates further in
Section 4.

For clarity, in Fig. 2(b) we demonstrate the relationship between the typically used A, and A.g
which is more relevant for small and negative charge transfer energy systems. Within our con-
figuration interaction scheme, A defines the central energies of the various configurations. As
displayed in the figure and explained in the caption, configurations with n ligand holes have
energy n/\, with an additional energy-offset due to the Coulomb repulsion U. However, within
each configuration are multiplet, crystal-field, spin-orbit, and ligand-ligand hopping (7,,,) ener-
gies, which mean that the lowest state within each configuration will be shifted from the central
energy by different amounts. One should then define the energy A.¢, which is the energy be-
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Fig. 2: Results of a full configuration interaction calculation. (a) The low-spin phase space is
always characterized by a dominant d® L component in the ground state wavefunction. (b) Solid
lines show the shell average energies, given by 0, A, 2A + U, and 3A + 3U for the d” to d*°L?
configurations, respectively. The dashed lines are the lowest multiplet for each configuration,
which account for higher multipole Coulomb interactions, crystal fields, spin-orbit interactions,
and T,,,. The arrows show the difference between the configuration averaged A (used for the
x axis), and the effective charge-transfer energy Aeg, which becomes negative when the lowest
energy d®L multiplet is lower than the lowest d” multiplet.

tween the lowest energy d’ state and the lowest energy d° L state. For the case of Fig. 2(b), the
difference between A and Ay is relatively small, but for other elements and d shell fillings, the
difference can be significantly larger.

3 Classification of correlated compounds

3.1 Mott-Hubbard and charge-transfer insulators

It has been known for many years that often correlated transition-metal compounds such as NiO
or CoO have substantial electronic band gaps of a few eV, whereas band theory predicts much
smaller gaps or no gaps at all [19]. The explanation for this discrepancy came from the ideas
of Mott and Peierls [20, 21], and relies on the fact that the 3d electrons forming states near
the Fermi level are relatively localized, and therefore have large Coulomb repulsion energies,
denoted by U. This U then suppresses charge fluctuations of the form d"d™ — d"~'d"*! which
would describe the conduction in such a material. Formalizing these ideas into a suitable model
led to the development of the Hubbard model [22,23] and such materials are accordingly often
termed Mott-Hubbard insulators. A simplified illustration of the effect of the Coulomb repulsion
U on an otherwise metallic 3d density of states is shown in Fig. 3(a), where a broad metallic
band splits into a full lower band and empty upper band with an insulating gap determined by
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Fig. 3: Distinction between Mott-Hubbard and charge-transfer insulators introduced by the
ZSA work. (a) A broad, metallic band is split into full and empty electron removal and addition
bands by Coulomb repulsion, and leads to an insulating gap of size U. (b) The low-energy
charge fluctuations of energies U and A are illustrated. The red orbitals correspond to cor-
related transition-metal sites while the blue are those of the ligands. (c) The concept of a
charge-transfer insulator, where the gap now involves the ligand states and is determined by A,
which can be much smaller than U.

the size of U. Figure 3(b) demonstrates the type of charge fluctuation in a correlated compound
which costs energy U'.

While this Mott-Hubbard understanding of correlated insulators was enormously successful,
some new issues arose when applying it to various materials. It was found, for example, that
the size of U in materials like NiO (~7 eV) is actually quite a bit larger than the electronic
band gap (~4 eV), and thus it was evident that something else must be at play to determine the
gap. Additionally, among series of such materials, the size of the gap often correlates more
directly to the anion electronegativity than to the cation U. In fact, many sulfides which should
have comparable U values to oxides are actually conductors. Further, new experiments and
configuration interaction based interpretations in the mid 1980s found that the first ionization
state of NiO had largely oxygen 2p character, and not the expected lower Hubbard band (d® —
d") character [24,25].

As a solution to these discrepancies, the Zaanen-Sawatzky-Allen (ZSA) theory of correlated
compounds was developed [26]. By using an Anderson impurity model applicable to such
insulating compounds, the ZSA study found that in many compounds U is not the important
energy scale for the band gap, but rather the charge-transfer energy A. The charge-transfer
energy is defined as the energy cost of removing a ligand (i.e. oxygen, sulfur, etc.) 2p electron
and placing it in a transition-metal 3d orbital. A schematic density of states (in the limit of
no metal-ligand hybridization) is shown for a charge-transfer compound in Fig. 3(c). Again
the upper part of the Figure shows the DOS without Coulomb interactions considered, this
time now with the 3d band in red and a fully occupied ligand 2p band in blue. In the lower
part, the Coulomb repulsion is included, leading to the formation of upper and lower Hubbard
bands. Now one can see that if A is smaller than U, the lower-energy charge fluctuations which
determine the energy gap of the compound will be of the form p°d® — p°d™*!, where p refers
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to the ligand 2p orbitals as shown in Fig. 3(b). The ZSA scheme led to a very comprehensive
understanding of the conductivity behavior of many classes of transition-metal compounds [26].
In particular it is the early transition-metal oxides, such as V503, TiyO3, CryOs, etc., which can
be described as Mott-Hubbard insulators, while the later 3d oxides like CoO, NiO, and CuO are
charge-transfer insulators.

3.2 Mixed valence and negative charge transfer insulators

While the original ZSA theory provided a sound qualitative understanding of many transition-
metal compounds, it did not focus much on compounds with high oxidation state cations. Gen-
erally, for increased cation oxidation states while keeping the anions fixed, one expects a de-
crease in the charge-transfer energy as the electron affinities of the higher valence states are
larger. In Fig. 4, we show schematic electron addition and removal spectra, in the limit of van-
ishing metal-ligand hybridization, as the charge-transfer energy is gradually reduced from the
Mott-Hubbard regime to the charge-transfer regime and further. We have a broad band (shown
in blue) due to the light electrons (ligand 2p) and narrow Hubbard bands (red) for the correlated
electrons (metal 3d). The Hubbard bands are again separated by the Coulomb repulsion energy
U, and the energy separation between the center of the upper Hubbard band and the center of
the light-electron band is again defined as the charge-transfer energy, A. This definition of A is
the most common [26], but we also define an effective charge-transfer energy A.s between the
top of the broad band and the bottom of the upper Hubbard band. This effective charge-transfer
energy is more relevant when describing high oxidation state compounds. When higher mul-
tipole Coulomb interactions (multiplets) are included, A,z would also account for these, and
would be the energy difference between the lowest (i.e. Hund’s rule) d" state and the lowest
d" 'L state. In our simple schematic, which neglects multiplet effects, we can relate A and
Aeg as

Wy + Wy

Ag = A — 5

)

where w, and w,, are the widths of the metal and ligand (3d and 2p) bands. If multiplets are
included, one should use the strict definition of A.g as the energy difference between the lowest
d" and d"*! L multiplets.

As the charge-transfer energy is reduced moving downward in Fig. 4, four distinct regimes are
encountered. The first two are the Mott-Hubbard and charge-transfer regimes, as discussed
above in relation to the ZSA work. However, if one continues to reduce the charge-transfer
energy, the mixed-valence phase is reached. Here the d""! original upper Hubbard band has
now crossed into the top of the valence band. As indicated, the ground state becomes more
difficult to represent, with some atoms in a d” and some in a " configuration, leading to lower
and upper Hubbard bands of d"~! and d"*?2, respectively, which are separated by a total energy
of 2U. The now very complicated ground state wavefunction depends on details of longer-range
interatomic interactions, which may lead to a kind of ordering of the transition-metal valence
states. An example is the case of magnetite (Fe3O,), where in the spinel structure the tetrahedral
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Fig. 4: The energetics of correlated compounds depicted with schematic electron removal and
addition spectra. A broad band, nominally full, is shown in blue and narrow, correlated (d)
bands are shown in red. A very small hybridization is assumed between the broad and narrow
bands. A constant Coulomb repulsion U separates lower and upper Hubbard bands throughout
the figure, whereas the charge-transfer energy A is varied. The Fermi level is shown with a
dashed vertical line and electron removal spectra are shaded in, while electron addition spectra
are only outlined. Moving from the top to bottom, the energy of the correlated bands is shifted
lower, leading to a reduction of the charge-transfer energy and the four distinct regimes. The
nature of the ground state wavefunction |1y) is given for each case.

sites contain Fe?" but the octahedral sites are mixed valent (though not due to a negative charge-
transfer gap), and below the so-called Verwey transition some kind of charge ordering occurs
which is not yet clearly resolved [27,28]. Such charge density wave like situations can indeed
involve multiple g vectors and form complicated structures. Additional examples are doped
LaMnOj3 and other doped transition-metal compounds. In Section 5 we will consider a case
of very small hybridization in SmBg where a unique, new form of ordering of the valence in
momentum space rather than real space is suggested.

Moving beyond the mixed valence regime in Fig. 4, by decreasing the charge-transfer energy
further we enter the negative charge transfer phase. Here the ground state is described as
|d"*1 L) meaning that the upper and lower Hubbard bands are now d"2 and d" states, respec-
tively, where again n is the filling which corresponds to the formal valence. The ligand band has
now been accordingly self-doped [29,30] with holes. In other words, this regime corresponds
to the case where a transition-metal cation does not adopt its formal oxidation state, instead
keeping one extra electron which leaves the anion with one fewer. Generally electron affinities
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Fig. 5: Lowest energy charge fluctuations in the different classes of correlated compounds.

increase moving toward the end of the 3d series and, as mentioned above, with increasing cation
valence. Thus it is expected that formally trivalent Ni** and Cu®* oxides, as well as formally
tetravalent oxides of Co** and Fe**, will be in the negative charge-transfer regime, or at least
mixed valent. One can also move toward the negative charge-transfer regime via ligands with
weaker electronegativities. Thus going from oxides to sulfides or selenides (or from fluorides
down to iodides) will generally move one closer to, or into, the negative charge-transfer regime.
In Fig. 5, we extend the schematic charge fluctuations of Fig. 3(b) to now include the mixed
valent and negative charge-transfer classes. As before, the Mott-Hubbard and positive charge-
transfer classes are characterized by lowest energy charge fluctuations determined by U and
A, respectively. Mixed valent compounds are typically metals or have very small gaps, with
charge fluctuations that can involve both the cation and anion states. In the limit of very small
hybridization, however, very interesting charge fluctuation behavior can occur, as we will dis-
cuss in the context of SmBg in Section 5. Negative charge-transfer compounds have a metallic
ligand 2p DOS before the inclusion of hybridization, and so may be (bad) metals, or may have
many different behaviors, including metal-insulator transitions as in the rare-earth nickelates.

4 Negative charge transfer compounds

As alluded to in the previous section, in general the conditions favorable for negative charge-
transfer energies are large electron affinities on the cations, achievable through high formal
valences and cations near the end of the 3d series, and low ligand electronegativities, achievable
by going from halides to chalcogenides to pnictides, or moving down the respective columns of
anions in the periodic table. In this section, we will look at some example materials in detail.

4.1 Perovskite rare-earth nickelates

The perovskite rare-earth () nickelate compounds, RNiOj3, exhibit many fascinating properties
including a metal-insulator transition, with temperatures tunable via the size of the rare-earth
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ion [31]. In the insulating phase, the nickelates undergo a structural distortion where alternating
NiOg octahedra expand and compress in a rocksalt pattern breathing distortion. Additionally,
within this insulating phase the nickelates also order antiferromagnetically with an unusual g =
(1/4,1/4,1/4) propagation vector. First synthesized in the 1970s [32], the nickelates rose in
popularity through the early 1990s [33-35], and are extremely popular today as they are a prime
example of how emergent properties can be tuned through heterostructured growth [36—40].
The nickelates have a formal Ni** oxidation state, suggesting a 3d” occupation of the nickel.
Various studies have indicated that the nickelates possess a low-spin state, so early interpreta-
tions were that the ground state had a tgge; occupation, with S = 1/2. However, such a state
should have a strong Jahn-Teller effect similar in strength to that observed in Mn®* perovskite
oxides like LaMnOg, but one is not observed experimentally. Additionally, one has the argu-
ments laid out in Section 2, which showed that low-spin Ni** oxides should be very rare if not
impossible. With these key observations established, it has become clear in recent years that the
nickelates are actually negative charge-transfer compounds with a ground state better described
as 3d® L (though with a certain d’ contribution to the wavefunction due to strong hybridization)
and with a S = 1/2 spin that emerges from antiferromagnetic coupling between a t§ geg S=1
configuration and a self-doped (S = 1/2) ligand hole.

When viewed as negative charge transfer materials, the metal-insulator transition and unique
magnetic ordering of the nickelates can be understood on a theoretical basis. As shown by Mi-
zokawa et al. [41], and later by others [42,43], when the negative charge-transfer d®L (S = 1 /2)
ground state undergoes the breathing distortion, a traditional 3d-based charge disproportiona-
tion does not occur. Instead, a bond disproportionation occurs, and the distinct expanded and
compressed NiOg octahedra take on respective configurations tending toward d®L° (S = 1) and
d®L? (S = 0). The situation then appears to instead resemble Peierls type of physics, involving
strong electron-phonon interactions.

Recently we have adapted these negative charge-transfer theories to models which can be ap-
plied to the analysis of resonant x-ray spectroscopy experiments. Conventional approaches to
the analysis of various core-level absorption, photoemission, and scattering data include mul-
tiplet ligand-field theory and the multiplet Anderson impurity model. In the former, a MOg
cluster is analyzed using configuration interaction theory, including all Coulomb interactions
of the 3d and relevant core shells, and hybridization with the nearest neighbor ligands is in-
cluded. In the impurity approximation, hybridization with a bath of ligands is included, instead
of just the nearest neighbors, to account for the ligand bandwidth. These two techniques have
had great success in the analysis of core level spectra for the 3d oxides (see, e.g. [44—46]).
However, these approaches were never successful in modelling the various spectra measured on
rare-earth nickelates.

Key x-ray spectroscopy experiments on the nickelates include x-ray absorption spectroscopy
(XAS), resonant magnetic diffraction (RMD), and resonant inelastic x-ray scattering (RIXS).
First, the oxygen K -edge XAS spectra show a strong pre-edge feature [47], indicative of a large
hole character in the oxygen 2p orbitals, which can be viewed as evidence for negative charge-
transfer energetics. The XAS spectra at the Ni L, 3 edge are characterized by a strong, sharp first
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peak, followed by a broader continuum-like feature [48,49]. Earlier studies using a multiplet
ligand-field theory (MLFT) approach to interpret these XAS lineshapes showed some success
with interpreting the primary features as different multiplet peaks arising from a highly mixed
final state spectrum [50]. However, such an interpretation has now been found to be inconsistent
with the lineshapes of RMD spectra, where the magnetic response is heavily concentrated at the
energy of the first sharp XAS peak. In fact, most models to date could obtain a certain degree
of agreement with the lineshapes of either XAS or RMD, but not both.

The conventional ligand-field theory (or cluster model) used for L, 3 edge spectroscopy, and
employed for most previous studies on the nickelates, has the Hamiltonian:

Hpp = Hi + HY' + H{', + H) + H? + H! + H- + H{% )

with,

H@4  the Coulomb repulsion between two 3d electrons including all multiplet effects,
H {fl the Coulomb repulsion between a 2p core and 3d valence electron including all
multiplet effects,

H{,  the 3d spin-orbit interaction,
H}, the 2p core level spin-orbit interaction,

H?  the onsite energy of the 2p core orbitals,

H?  the orbital dependent onsite energy of the 3d valence orbitals,
HL  the orbital dependent onsite energy of the Ligand orbitals, and
Hill, the hybridization strength between the 3d and Ligand orbitals.

The onsite energies account for the specific charge-transfer energetics of the system. Detailed
expressions for each term can be found elsewhere [18]. This model can be adapted to the
breathing-distorted nickelates by moving to a double cluster model, where two Ni-O octahedra
represent the expanded and compressed octahedral sites of the nickelate lattice. One then has
the Hamiltonian

H=Hpp, + Hypy + Hig 3)

where Hyr, and Hyp, are complete ligand field theory Hamiltonians of the compressed and
expanded sites, and H,,,;, adds hybridization between them. Realizing that the rocksalt distor-
tion means the two octahedra types are arranged in an O}, symmetric manner, H,,;, consists of
hybridization operators having e, and ¢,, symmetry [18].

With this model for the local electronic structure, a two site arrangement is created which does
not break the O, point group symmetry, and both the negative charge transfer self doping and
the bond disproportionation physics can be captured. Importantly, with such a model all of the
3d orbitals are in the basis (as opposed to the earlier restricted orbital studies [41-43]) and the
core orbitals are also in the basis, so accurate spectroscopy simulations can be performed. The
effects of negative charge transfer and bond disproportionation can then be compared against
experiment.
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Fig. 6: Ground state characteristics and spectral responses of perovskite nickelates from a
double cluster model. (a-c) The Ni (a) and ligand (b) occupations show that the breathing
distortion involves primarily the oxygen 2p holes rather than the Ni 3d electrons. (c) The spins
on the long and short bond Ni tend toward S = 1 and S = 0, respectively. (d) The single cluster
limit (V; = 0) cannot reproduce the two-peaked structure at each edge with MCD focused on the
first peak, but with V; > 0.3 these features are captured by the double cluster. (e) A breathing
distortion splits the XAS peaks further, and the magnetic diffraction signal is focused at the
energy of the first XAS peak, both in agreement with experiment.

In Fig. 6(a-c), we detail the ground state properties of the double cluster model, as a function
of the size of the breathing distortion. The results confirm those of the previous restricted
orbital studies—under the breathing distortion, very little charge disproportionation occurs via
the 3d electrons, whereas the ligand holes are rather active. With no breathing distortion each
octahedron has a 3d® L configuration, but as shown in Fig. 6(b) in the presence of the breathing
distortion the holes bond more strongly with the short bond Ni than the long bond. This leads to
a reduction of the spin moment on the compressed octahedron, such that it tends toward S = 0
while the expanded octahedron tends toward S = 1 (Fig. 6(c)).

In Fig. 6(d), we show calculated Ni L, 3 XAS spectra for different values of intercluster hopping
Vi [18], starting from the conventional single cluster limit (V; = 0). In the single cluster
limit, the spectrum looks very different from experiment [48,49], as the characteristic two peak
structure for the L3 resonance near 853 eV is completely missing. However, for increasing
V7 to 0.3 and higher, a pronounced first peak is pushed out of the resonance, and the spectra
strongly resemble experiment. Thus it is evident for such a highly covalent, negative charge-
transfer energy compound that intersite interactions not captured in single cluster models are
very important in the spectral response. Additionally, one can see that the fundamental magnetic
circular dichroism (MCD) response is strongly concentrated at the first sharp peak, which is a
crucial requirement for agreement with magnetic scattering experiments.
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In Fig. 6(e) we show the XAS, MCD, and resonant magnetic diffraction (RMD) responses
for three different sizes of lattice breathing distortions, dd. First, we see that for increasing
breathing distortion, the total XAS spectral shape (summed over the two sites) only changes a
minor amount, with the two L3 peaks moving apart with increased breathing distortion. This
trend is in good agreement with the rare-earth series, where smaller rare earths lead to larger
breathing distortion and slightly more separated XAS peaks [48,49]. Next, we note that the
MCD spectra of the two sites become inequivalent when the breathing distortion is introduced.
In accordance with the different spin moments for the two Ni, the long bond MCD spectrum
becomes stronger and the short bond becomes weaker. However, the strongest response is
always at the energy of the first XAS peak. This leads to the distinct RMD spectral shapes as
shown, which again are strongly peaked at the first XAS resonance. This characteristic agrees
very well with all experiments on various nickelate bulk and heterostructure materials.

The double cluster model thus bridges the gap between the recent theories of bond dispropor-
tionation in the nickelates [41—43], and experimental observations made through spectroscopy.
The key aspect of the model is the inclusion of the full 3d orbital degeneracy, as well as the 2p
core shell, which allows the simulation of core level spectroscopy. The excellent agreement be-
tween the calculated and experimental XAS and RMD provides validation for both the negative
charge-transfer energy and bond disproportionation theory of the nickelates.

4.2 Perovskite bismuthates

Up until this point, our focus has been on correlated transition-metal compounds. However,
it has recently been shown that the non-correlated perovskite bismuthates SrBiO3 and BaBiOs
exhibit characteristics very similar to the negative charge transfer picture discussed above [51].
These compounds, when doped, are high-7, superconductors and have accordingly attracted
significant attention. Interestingly, at low temperatures they exhibit the same breathing type
of lattice distortion that was introduced above for the nickelates. Every other octahedron ex-
pands or compresses in a rocksalt-pattern distortion. Earlier studies suggested that the breathing
distortion was concomitant with a charge disproportionation, where the formally tetravalent Bi
cations disproportionate into Bi** and Bi°* for the expanded and compressed octahedra, respec-
tively [52-56]. However, Foyevtsova et al. recently showed, using density-functional theory
calculations, that the oxygen 2p states are very important for the bismuthates in a very similar
manner to negative charge-transfer transition-metal compounds [51]. In particular, strong hy-
bridization between O 2p and Bi 65 states pushes antibonding states of mainly O 2p character
with A, symmetry above the Fermi level. Under the breathing distortion, pairs of these oxygen
holes then condense into A;, molecular orbitals around the short bond Bi sites, in a similar
nature to the £/, symmetry oxygen hole action of the nickelates.

We first show this analogy between the bismuthates and nickelates schematically in Fig. 7. For
the nickelates, the £, symmetry d® — d’ electron removal states are below the top of the
oxygen band, and mix strongly with the £/, symmetry oxygen states near the top of the oxygen
band. This leads to the distinct, antibonding £, symmetry oxygen hole states present in the
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Fig. 7: Schematic showing the similarities of the perovskite nickelate and bismuthate electronic
structure. In the nickelates, the Ni 3d states which have E, symmetry mix with the oxygen 2p
states of the same symmetry, which are located near the top of the valence band. Consequently,
the oxygen hole states pushed out of the top of the valence band have E, symmetry. In the
bismuthates, the situation is similar, but now the relevant cation states are the Bi 6s, which are
very deep. They mix strongly with the oxygen 2p states having A,, symmetry which are located
at the bottom of the oxygen DOS. The hybridization is very strong, leading to states of primarily
oxygen 2p character and Ay, symmetry being pushed out of the top of the valence band. Note
the cation bands are drawn with narrow widths before and after hybridization for simplicity.

nickelates, which then form molecular orbitals around short-bond Ni sites in the presence of the
breathing distortion. For bismuthates the situation is very similar to the nickelates, except now
the Bi 65 states are the important cation states and therefore it is states of A;, rather than £
symmetry which are important. The very deep 6s states mix very strongly with the A;, oxygen
2p states, which are actually near the bottom of the oxygen band. The hybridization is strong
enough, however, to push antibonding states of primarily oxygen character above the Fermi
level. Again, these oxygen hole states then disproportionate under the breathing distortion,
leading to the formation of A;, oxygen hole molecular orbitals around the short bond Bi sites.
Thus, even though the magnetic and correlation physics of the nickelates and bismuthates are
drastically different, strong similarities exist regarding the importance of the oxygen 2p states
in the electronic structure.

In Fig. 8, we show the actual density-functional results of Foyevtsova et al. [51], where the up-
per and lower panels contain the projected densities of states for the compressed and expanded
octahedra, respectively, in the low-temperature, breathing-distorted phase of SrBiO3. Of partic-
ular significance is the strong, narrow conduction band of the compressed octahedron. Here the
DOS projection shows that these states are of primarily O 2p character, having A, symmetry.
These states are accordingly suppressed for the expanded octahedron, demonstrating the bond
disproportionation that involves action of the oxygen 2p holes, rather than the typically assumed
Bi charge disproportionation. It is important to note that this is a pure DFT calculation for a
non-correlated material, and thus demonstrates clearly the extremely important role of the O
2p based molecular orbitals in forming the low-energy scale states, which in the end are also
responsible for the superconductivity in the potassium doped materials.
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Fig. 8: Projected densities of states for the compressed (upper) and expanded (lower) octahedra
in the low temperature, breathing distorted phase of SrBiOs.

4.3 Other negative or small charge transfer compounds

The nickelates are arguably one of the most highly studied negative charge transfer compounds
at present. However, there are many other compounds which are known to be or might be
negative charge transfer systems that have been studied in recent years. In fact, one of the
first studies to use the term “negative charge transfer energy” was carried out by Mizokawa et
al., and investigated the compound NaCuO, [57]. As this is a sort of reference compound for
the high-T, cuprates, several groups studied the electronic structure of this material around the
same time [58,59]. Indeed, through an analysis of x-ray photoelectron spectroscopy (XPS),
Mizokawa et al. showed that the ground state does not contain Cu®* (3d®) as the formal valence
counting would suggest, but rather it is better described as 3d” L, where again oxygen holes are
present due to a negative charge transfer energy.

Other negative charge transfer compounds include the disulfide pyrites FeS,, CoSs, and NiS,.
Here one expects that the S, would have a 4- valence and the cations accordingly 4+, but in fact
it is found that the cations are divalent and there are accordingly missing sulfur 3p electrons.
This leads to the formation of sulfur pairs with a net pair valence of 2- rather than 4-. In this
case the antibonding S 3p states in the pairs are empty and therefore form rather narrow bands
just above the chemical potential [60]. Accordingly, the pyrites exhibit very interesting and
diverse properties: FeSs is a diamagnetic semiconductor, CoS, is a ferromagnetic metal, and
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Fig. 9: The energetics of correlated compounds depicted with schematic electron removal and
addition spectra in a similar nature to Fig. 4. A broad band, nominally full, is shown in blue and
narrow, correlated (d) bands are shown in red. A very small hybridization is assumed between
the broad and narrow bands. A constant Coulomb repulsion U separates lower and upper
Hubbard bands throughout the figure. From the top to bottom, the ligand electronegativity
is decreased, which can lead to different classes of compounds for the same transition-metal
cations, even having the same formal valence.

NiS; is a Mott insulator which orders antiferromagnetically [61,62]. The electronic structures of
these pyrites have been studied by various x-ray spectroscopies [60,63—66]. Further interesting
properties emerge when some or all of the sulfur is substituted by Se. In particular, Ni(S;_,Se; )2
is highly studied, as it exhibits a metal-insulator transition for x = 0.23 at 7" = 0, which changes
to x = 0.4 at room temperature [60,67-69].

An additional highly studied negative charge transfer compound is NiS [70-72] and the related
NiS;_.Se, [73,74]. Here the 2+ formal valence of the Ni is not abnormally high. However,
the anions S and Se have increasingly low electronegativities compared to oxygen, which also
can lead to a mixed valence or a negative charge transfer energy. We show this effect schemat-
ically in Fig. 9, which is similar in nature to Fig. 4, but now we span the four classes of cor-
related compounds by shifting the ligand band, rather than the transition-metal bands. In this
sense, moving from the positive to negative charge transfer regime in Fig. 9 would represent
moving from NiO to NiS;_,Se,, where the formal Ni valence does not change but the ligand
electronegativity does. Recent studies classify NiS as a self-doped, nearly compensated, anti-
ferromagnetic metal [70]. It is interesting to note that researchers have been searching for Ni'™
oxides (although in 2D structures) in order to simulate the high-7, cuprate electronic structure.
For example, recently La,;Ni3Og has been studied in this regard [75]. In fact, in a negative charge
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transfer scenario, the Ni in NiS would be 1+ with holes in the sulfur band. In this sense it would
indeed share similarities with very heavily hole-doped cuprates, having a d° transition-metal
configuration and also a presence of ligand holes.

Moving toward the center of the 3d elements, the formally tetravalent Fe perovskites AFeO;
with A = Ca, Sr, or Ba are known to have negative charge transfer energies [76—-81]. This class
of materials possesses a wide range of interesting properties. CaFeOs was found to exhibit a
charge-ordered state [81], which might actually be similar to the bond-disproportionation states
in the nickelates and bismuthates. SrFe;_,Co,O3 is ferromagnetic and exhibits a large negative
magnetoresistance [78]. La; _,Sr,FeO3 with = &~ 2/3 also exhibits a charge disproportionation,
accompanied by an order of magnitude resistivity jump and antiferromagnetic ordering [77,82].
Lastly, an example of an early 3d transition-metal compound with a negative charge transfer
energy is CrO, [29]. This material has attracted significant interest as a half-metallic ferro-
magnet [83], and was industrially very relevant in the past as the main active component in
many (now all but obsolete) magnetic recording tapes [84]. A combination of LSDA+U cal-
culations [29] and spectroscopy [83] have verified that, even though the 3d electrons of the Cr
have large Coulomb interactions, the material is metallic due to the negative charge transfer
energy, with charge carriers at the Fermi energy having a large O 2p component.

5 Mixed valent rare-earth compounds

In this section, we will look at existing mixed valent compounds in detail. As mentioned earlier,
the combination of correlated and band like states crossing the Fermi level in a mixed valent
compound leads to a very complicated electronic structure. However, the mixed valent rare-
earth compounds, such as SmBg and SmS have a slightly simplified description due to the
very weak hybridization between the correlated 4 f states and the broad band states. The full
electronic structure is no doubt very complicated, but the weak hybridization leads to some very
clear and interesting phenomena in these materials.

Samarium hexaboride was first heavily studied from the late 1960s to early 1980s. Early ex-
perimental studies of x-ray absorption [85] and susceptibility [86] measurements showed ev-
idence that the Sm was present in both divalent and trivalent states, corresponding to f¢ and
f? orbital occupations, respectively. Later experiments showed several interesting features, in-
cluding a resistivity saturation at low temperatures and a lack of magnetic ordering down to
0.35 K [87,88]. A similar lack of magnetism was found for SmS, which was also known to
be a mixed valent compound [89]. The unique characteristics of such mixed valent compounds
were analyzed with various theories, the most popular being the Anderson impurity and lattice
models [90-102].

SmBg is now under intense study again, as recent theory work has predicted that it could be a so-
called topological Kondo insulator [103, 104]. The low-temperature resistivity saturation could
then be an indication of topologically protected surface states. Many experimental studies have
been undertaken to test the topological insulator hypothesis (see, e.g. [105—-108]), but a clear
answer has yet to emerge.
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Fig. 10: Calculated f electron addition and removal spectra of mixed-valent SmBg. All f
orbital degeneracies are included, as well as the local multiplet Coulomb interactions, which
lead to the large number of excitations spread over ~20 eV.

The tightly contracted and highly correlated 4 f shells of the Sm ions in SmBg lead to very
strong multiplet effects in the electron addition and removal spectra. Further, since the compli-
cated mixed valent ground state has components of both the f™ and f*™! atomic fillings (with
the lowest energy states being the Hund’s rule ground states in each case), the one-electron
excitation spectrum will contain four sets of features corresponding to electron addition and re-
moval from each of the fillings (this effect was also shown schematically for the mixed-valence
class in Fig. 4). In Fig. 10, we show a calculation of the multiplet rich, one-electron excitation
spectrum in the atomic limit of a mixed valent Sm system. The four regions of the spectrum are
indicated, and the term symbols denote the dominant contribution of each main peak (the usual
2541, ; notation is used, but .J is omitted in cases where different .J peaks are too close to dis-
cern at this scale). There are a set of low energy excitations present near the Fermi level—since
the lowest-energy f° and f° multiplets are nearly degenerate in such a mixed valent material,
the one-electron removal from f° reaches the very low energy f° states, and the one-electron
addition to f° reaches the very low energy f° states. However, we cannot add an electron to f°
or remove one from f° at the low energy scale.

Further away from the Fermi level are the high-energy lower and upper Hubbard bands com-
posed of f5 — f4and f% — f7 excitations, respectively. Each set of excitations is separated
from the Fermi level by the Coulomb energy U, leading to a total energy separation of 2U, as
was also shown schematically in Fig. 4. An important observation from this plot are the very
different intensities of the various multiplet peaks. This is of course not surprising, but the in-
tensities of these peaks are related to the coefficients of fractional parentage (CFPs) for adding
and removing electrons to/from the Hund’s rule lowest energy states of the f° and f° configu-
rations. These CFPs also play an important role in the intersite hopping of the compound, so
we will investigate them in some detail in the following.
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It was shown in the early work of Racah [109] that one could construct antisymmetrized eigen-
functions for a general many-electron atomic configuration [ by using a suitable linear com-
bination of the states obtained by angular-momentum coupling one additional electron to the
eigenfunctions for the /"~! configuration. The CFPs are then the coefficients of these linear
combinations. One can quickly realize, then, that the required transition amplitudes between
f™and f*~! configurations for calculating one-electron Green functions or hopping matrix ele-
ments will also be defined by these CFPs. An extensive tabulation of these coefficients is given
by Nielson and Koster [110].

For a given f"~! configuration of the correlated 4f shell, if we assume for now the validity
of Russell-Saunders L.S-coupling, we have a many-body wavefunction |!I/’£§}> The electron
addition amplitude to reach a final state |¥}, ;,), which as stated above relates to the CFP for
particular configurations, is then given by

Czmy A Zon) 4)

where fl]; ; creates an f electron with the given quantum numbers. As shown for example by
Hirst [111], this quantity can be written in terms of 3-5 and 9-7 symbols as

-1 [L L1
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where

Crpj=+Q2J+1)2J +1)(25 +1). (6)

For one-electron addition and removal spectra of a mixed valent compound, the transition rates
are computed starting from the Hund’s rule ground states of the f™ and f"~! configurations,
into all possible states that can be reached by removing or adding an electron. For the specific
example of SmBg, as shown in Fig. 10, the starting configurations are f° and f°, and thus one
can reach electron removal states of f* and £, and electron addition states of f% and f7.
Closely related to the one-electron addition and removal spectra in a mixed valent compound
are the intersite hopping integrals which couple the f* and f"~! configurations. If we define
our f™ Hund’s rule ground state as [¥}), then it can transition to the f"~! states [¥]*"'), with a
total intensity of

Ir =Z\<W*!f|%’}>\2 —n, 7

where sum rules and the degeneracy of the f shell dictate that /,, = n. In other words, the
total intensity is given by the number of electrons which can be removed from the f" configu-
ration (for the actual hopping processes this is then scaled by the one-electron overlap integral).
Similarly, the total one-electron addition intensity for the |¥}; ') Hund’s rule ground state is

1= [l =15 -0, ®)

where now the sum rule depends on the number of holes available in the shell (14 — [n — 1]).
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Fig. 11: Reduction factors when transition rates are restricted to Hund’s rule ground states for
final state. (a) Electron removal from a ™ Hund’s rule ground state into a f" ' Hund’s rule
ground state. (b) Electron addition from a f"~ ! into a ™ state. The asymmetry between (a) and
(b) arises from the degeneracy of the states.

For the mixed valent rare-earth compounds, the one-electron overlap integrals are generally very
weak due to the contracted 4 f radial wavefunctions. This weak hopping means that often the
only important interactions to consider for the ground state are between the Hund’s rule ground
states of each configuration (all other higher-energy states can be neglected for the low-energy
scale physics). For the case of SmBg these important lowest energy states are the °Hs» and
R, states of the f5 and f° configurations, respectively. Thus the intensity integrals of Eqns. (7)
and (8) can be restricted to final states corresponding to the Hund’s rule ground states. We
then have diminished angular matrix elements for this Hund-Hund hopping, now with a total
intensity given by

2
= 3 | W) ©)
and
2
1= 3 | | £ 1050 (10)

where |!P}}m]> denotes a particular m; Hund’s rule ground state of the n electron configura-
tion. We demonstrate the strong reduction in hopping strength that can take place in such a
situation by plotting I;/1; and I};/I;} in Figs. 11(a) and 11(b), respectively. This effect was
demonstrated by Hirst [111] using Eqn. (5) within the L.S-coupling approximation. In Fig. 11,
we show comparable results to Hirst, but now via slightly more precise exact diagonalization
calculations in intermediate coupling using the code Quanty [45,112—-114]. From Fig. 11(a),
we see there is no reduction factor for the electron removal from a f! configuration. This of
course makes sense, since the fO final state is non-degenerate, so no transition intensity is lost
by restricting the final state to be a Hund’s rule ground state. However, one finds a very strong
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reduction for both electron removal and electron addition which ends in a f® configuration,
for example. The reason for the very strong reduction in this case is that the f® Hund’s rule
ground state is a “F singlet. This will be important for our further discussion of SmBg below.
Finally, note that the asymmetry between the plots arises from the degeneracies of the states: a
singlet ’F, f° state can hop to any of the 6 degenerate states of the “Hj > f° configuration, but a
particular one of those 6 only hops to the one singlet “F, state. This observation is similar in na-
ture to the “1/N” scaling arguments used to avoid infrared divergences and solve the Anderson
impurity model in earlier studies of rare-earth compounds [98—101].

As evident from Fig. 11, the hopping for such a mixed valent compound (e.g. SmBg) can be very
weak, even on top of the effect of contracted 4 f radial wavefunctions. The importance of these
angular matrix element effects is also evident from the overestimated dispersion widths in DFT
calculations, which capture the contracted radial wavefunction effect, but not the CFP effect.
Dispersional widths of the f bands for SmBg are more than an order of magnitude larger in DFT
calculations compared to those found in ARPES experiments (~200 vs. 7 meV) [115-117].
Within the above approximations, the only f-f hopping allowed at low energy scales occurs via
removing an electron from an f° atom and adding it to an f° atom, both in their Hund’s rule
ground states. More specifically, the f® atom will transition from a F, state to a °Hj /2 state,
and the {5 atom will transition from a °Hj 2 toa "F, state. From the coefficients of fractional
parentage, the transition amplitude between the “F singlet and a single m; state of the 6-fold
degenerate °Hj /2 term is 0.200 times the total 6 — f5 amplitude (where we account for the
degeneracy by dividing by \/1/_6). Similarly, the amplitude from one of the ®Hs 5 states to the
F, state is 0.164 times the total f° — f¢ amplitude. Multiplying these two amplitudes for the
total f-f hopping process gives a reduction factor of 0.033 for the f bandwidth compared to
the one-electron bandwidth that one would obtain from DFT or LDA+U. This is in very good
agreement with the discrepancy between DFT and experimental bandwidths pointed out above
(200 meV vs. 7 meV, respectively).

This very strong reduction factor coming from the coefficients of fractional parentage suggests
that in a first approximation we can neglect the direct f-f hopping. The d-f hopping is also
reduced by the CFP effect, but only by the amplitude and not the square, so the hybridization
is still important, relatively speaking. It is interesting to note that a full DMFT calculation
taking into account all the multiplet structure [117] gives a bandwidth reduction of the f bands,
and a reduction of the d-f hopping, consistent with the above discussion of the coefficients of
fractional parentage. Note also that the phases of the coefficients of fractional parentage (which
we neglected above for simplicity) could be very important. For example in manganites, similar
hopping considerations which included phases found that a Berry phase is accumulated when
electrons hop in loops [118].

For systems with a large U, or ones in which the splitting between the ground state and higher
energy f" configurations is large (compared to the energy scale we are considering as impor-
tant), we can neglect all of the hoppings involving higher energy states when considering the
lowest energy scale physics. So even the spin-orbit splitting of the f® manifold with J = 0
as the lowest energy state is large enough to neglect in zeroth order when dealing with the
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Fig. 12: The 5 to f electron addition spectrum of Fig. 10, now zoomed in to low energy scales.

low-temperature properties below 100 K. The splitting of these J states for f% is shown in
Fig. 12, and is about 45 meV (or 520 K) for the lowest J = 1 excitation relative to the J = 0.
In what follows we also neglect the crystal-field splitting within the multiplets, although this
may be a bit of a stretch and a rigorous treatment should include them. Considering only the
lowest-energy crystal-field states (which would likely be one of the doublets) would reduce the
degeneracy to that of a Kramers doublet.

Having established the very weak hybridization present in compounds such as SmBg (due to
both contracted radial wavefunctions and fractional-parentage matrix element effects), and that
subsequently only the lowest energy f° and f° states need to be considered in a first approx-
imation, we can now consider the band structure of the broad d band with which the f shells
hybridize. Again, due to the very weak hybridization, there will only be appreciable mixing at k
points near where the band crosses the f levels. We show this effect in Fig. 13, where a general
light-electron band (blue) crosses the localized f level and a small hybridization is present. A
small gap opens near the crossing points, and at these points the wavefunction has a true mixed
character as indicated by the color of the plot. Far away from these crossing points, there is
very little mixing between the f and d bands.

The schematic band structure of Fig. 13 reveals a very interesting characteristic of such materi-
als: they are best described as mixed valent in momentum space. For regions of Fig. 13(a) where
|k| > 0.57/a, there are f electron removal states very close to the Fermi level. If our mixed
valent compound has the valences f"~! and f™, then in these regions of momentum space the
ground state is almost purely f”. In this way, it costs very little energy to remove an electron
and reach the f"~! state, which is nearly degenerate with the f" state, but we cannot add an
electron within the low energy scale. As was shown in Figs. 4 and 10, to add an electron to the
f™ state would cost energy U, and accordingly no such f electron addition states are present for
|k| > 0.57/a in Fig. 13(a) (they are too high in energy to be seen).
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Fig. 13: Paradigmatic bandstructure of a mixed-valent rare-earth compound. A very narrow f
band crosses the broad conduction band at the Fermi level. Weak hybridization opens a small
gap at the band crossing points. Panel (b) shows an enlargement of the band crossing region.
The color scale indicates the f and d weight in the band.

Just as the regions of momentum space where |k| > 0.57/a have an almost pure f™ ground
state, the regions where |k| < 0.57/a have an almost pure f"~! ground state. In this region
there is an f electron addition state just above the Fermi level, as it costs essentially no energy
to reach the f™ from the ! state, but there are no f electron removal states shown as they
would cost energy U and are thus far away in energy. In this sense it becomes clear that the
mixed valent compound has well defined regions in momentum space with integral valences,
but in fact each valence state is delocalized in real space. The many-body wave function in this
situation becomes very complicated. This simple picture also indicates that a DMFT calculation
which does very well in many aspects must include a strong k-dependent self energy, and in fact
if a gap occurs as indicated in Figure 13, the self energy would be discontinuous or at least very
strongly varying as one moves through the % region of the crossing.

In the case of SmBg the broad band is actually an almost equal mixture of B 2p states and Sm
d states, as clearly shown from DFT calculations [119]. The minimum in the dispersion is at
the X point in the Brillouin zone. In order to conserve charge, this band would be empty if the
Sm was purely 2+ (%) and would contain on average one electron per formula unit if the Sm
is 3+ (f°). In a mixed valent situation there will be an exact compensation of f and d electrons
depending on the Sm?*/37 ratio. If the d- f hybridization were zero then the crossing surface of
the d band and the f states in momentum space would describe a Fermi surface consistent with
Luttinger’s theorem, as also argued by Richard Martin some time ago [120,121]. So the surface
describing the crossing point at which a gap has its largest value has the same topology as the
Fermi surface one would obtain in a band theory calculation. It is an interesting question as to
whether this “pseudo” Fermi surface is something that can be seen via the de Haas—van Alphen
effect in high-field quantum oscillation experiments [122-125].
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The above discussion provides a unique picture of the electronic structure of the low energy
states of SmBg. This is quite different from a description in which the basic physics involves an
impurity-like Kondo singlet low-energy scale state and these Kondo impurities forming a lattice
which then could develop a gap and become insulating. Whether or not our above description
could also be termed a “Kondo insulator” is perhaps debatable. It is also interesting to go back
and have another look if perhaps other so-called heavy Fermion systems may actually fall into
this category in which we rather should study things in momentum space to start with, in place
of considering a lattice of Kondo impurities.

This example of the rare earths is an extreme case and can be treated in this way because of
the weak hybridization. In other mixed valent systems like the actinides or the transition-metal
compounds, things become very complicated because the effect of the strong hybridization be-
tween the local strongly correlated states and the broad bands crossing the Fermi energy can be
very large and comparable to the band width of the broad bands. In the extreme limit of that case
we would somehow be back to a DFT-based band description in which the local correlations are
suppressed because of the strong hybridization with the broad bands, forming rather extended
Wannier functions and diluting the effective on-site Coulomb interactions. The most interest-
ing cases, however, are the intermediate cases which very likely involve the 3d transition-metal
compounds such as the rare earth TM perovskite structure oxides, the ion battery materials such
as LiNiO,, as well as the sulfides, selenides, tellurides, bromides, and iodides of the late 3d
transition metals.

6 Summary

The central theme of this lecture is that often anion states can be much more important in cor-
related compounds than one would initially expect. In transition-metal compounds which have
large formal oxidation states, it is often the case that the formal rules are broken. The transition
metals are then better described as having more typical valences, and the anion bands are self-
doped to compensate this different charge on the cations. We presented these effects through an
extension of the Zaanen-Sawatzky-Allen classification scheme for transition-metal compounds.
In addition to the two original classes of Mott-Hubbard and (positive) charge transfer insula-
tors, we showed how mixed valent and negative charge transfer insulators can naturally arise.
The perovskite rare-earth nickelates are a paradigmatic example of negative charge transfer
compounds, where the self-doped oxygen holes make very important contributions to the con-
ductivity and magnetism in the compounds. We also showed how similar effects can be found
in non-correlated compounds such as perovskite bismuthates. Finally, we explored the interest-
ing mixed-valence regime through the example of rare-earth compounds such as SmBg. Weak
hybridization and mixed-valent energetics lead to the unique phenomenon of ordered valences
in momentum space. A key lesson to take away from these discussions is that one might need to
choose a non-conventional starting point when constructing a model to describe the electronic
structure of high-valence compounds.
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2.2 Erik Koch

1 Many-electron states

One of the deepest mysteries of physics is that all the different objects that surround us are built
from a small set of indistinguishable particles. The very existence of such elementary particles
that have all their properties in common is a direct consequence of quantum physics. Classical
objects can always be distinguished by their location in space. This lead Leibniz to formulate
his Principle of the Identity of Indiscernibles [1]. For quantum objects, however, the uncertainty
principle makes the distinction of particles by their position impossible. Indistinguishability of
quantum objects then means that there is no measurement that would let us tell them apart,
i.e., all expectation values (¥|M|¥) must remain the same when we change the labeling of the
distinct but indistinguishable the particles.

The consequences for observables are straightforward: An observable M () acting on a single-
particle degree of freedom = must operate on all indistinguishable particles in the same way,
ie., > . M(x;). A two-body observable M (z,z') must operate on all pairs in the same way,
> i M(xi, ;) with M (z,2") = M(2', x). We can thus write any observable in the form

M(X):M(O)—FZM(I)(% 2,ZM(2) T, Xj) +— Z M®( (i, xj, xx) + - - (1)
( 1#] Z#J#k
i i<j i<j<k

where the summations can be restricted since the operators must be symmetric in their argu-
ments, e.g. M (z;,2;) = M®(z;, x;), while for two or more identical coordinates the opera-
tor is really one of lower order: M) (x;, 2;), e.g., only acts on a single coordinate and should
be included in M),

For the many-body wave functions ¥ (x4, xo, - - - ) the situation is slightly more complex. Since
the probability density |¥(z1, o, - - - )|? is an observable, they should transform as one-dimen-
sional (irreducible) representations, i.e., either be symmetric or antisymmetric under particle
permutations. Which of the two options applies to a given elementary particle is determined
by the spin-statistics theorem [2, 3]: The wave functions of particles with integer spin are sym-
metric, those of particles with half-integer spin change sign wen arguments are exchanged.
From an arbitrary N-particle wave function we thus obtain a many-electron wavefunction by
antisymmetrizing

1
S-W(r1,... 1N) = —= DX (2p), - - Tp() 3)

VN 5

where (—1)7 is the parity of the permutation P that maps n — p(n). Since there are N! different
permutations, this can easily become an extremely costly operation. Remarkably, a product of
N single-electron states ¢, can be antisymmetrized much more efficiently (in O(N?3) steps) by
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writing it in the form of a determinant

oy (T1)  Par(T1) -+ Pay(T1)
By o (T1s - ) ::\/% %ﬂm) Pasl2) o ey () )
Por (TN)  Par(TN) -+ Pay(TN)

For N = 1 the Slater determinant is simply the one-electron orbital @, (x) = ¢, () and for
N = 2 we get the familiar two-electron Slater determinant @, o (z,2') = (Pu(2)pw (2') —
par () palr)) V2.

Slater determinants are important because they can be used to build a basis of the many-electron
Hilbert space. To see how, we consider a complete set of orthonormal single-electron states

/dx ©n(x) om(x) = 8, (orthonormal) Z on(2) on(z") = 6(x — 2') (complete) .  (5)

To expand an arbitrary N-particle function a(x1, ...,z y), we start by considering it as a func-
tion of z; with xo, ...,z kept fixed. We can then expand it in the complete set {¢,, } as

a(zy,...,oN) = Zam(xg, ce IN) Py (21)
ni
with expansion coefficients

an, (T, ..., xN) = /dm Oy (1) a(xy, o, ..., TN) .
These, in turn, can be expanded as a functions of x,

Ay, (.’L’Q, e ,ZL'N) = Z Anq no (x37 s 7$N) Pna (ZL‘Q) .
n2

Repeating this, we obtain the expansion of a in product states
a(zry,...,TrN) = Z Any,...onn Oy (1) - Ony (TN) -
N1, N

When the N-particle function ¥ is antisymmetric, the expansion coefficients will be antisym-
metric under permutation of the indices ay, ) .n,x) = (=1)*ay,,. - Fixing an order of the
indices, e.g., n; < ny < ... < ny, we thus get an expansion in Slater determinants

U(xy,...,oN) = Z VN, oy Pryonn (T15 -, TN)

ni<..<nny

Since we can write any antisymmetric function as such a configuration-interaction expansion,
the set of Slater determinants

{@nh_’,w(xl, Ce TN ’ ng<ng<---< nN} (6)



2.4 Erik Koch

forms a basis of the /NV-electron Hilbert space. Since the overlap of two Slater determinants

/d(B ¢0617~-7 ( )@/517 ,ﬁN N' Z P+P/H/dw” Payn) x" Pa ’(n)( )

PP’
(Parlep) o+ (Parlpsn)

= (Pay,..an|Ppy...on) = : : (7)
(Panl®p) -+ (PanlPsn)

is the determinant of the overlap of the constituent orbitals, the Slater determinants (6) form
a complete orthonormal basis of the N-electron Hilbert space when the orbitals ¢, (x) are a
complete orthonormal basis of the one-electron Hilbert space.

While we use a set of N one-electron orbitals ¢, () to define an N-electron Slater determinant
Do, ...an(x) (4), this representation is not unique: Any unitary transformation among the N
occupied orbitals will not change the determinant. Thus, strictly, a Slater determinant is not
determined by the set of indices we usually give, but, up to a phase, by the /N-dimensional
subspace spanned by the orbitals ¢, ..., ¢y in the single-electron Hilbert space. The projector
to this space is the one-body density matrix

'Yz, 2') = N/d:cg---de D(x,x9,...,xN) P2, 29,...,xN) . (8)

To see this, we expand the Slater determinant along its first row

Qpal...al\,(ﬂfl,..., Z 1+n Soan xl)gpa#n(aj%--'ax]\f)a (9)

where &, n (x9,...,xy) is the determinant with the first row and the n-th column removed,
which can be written as N — 1-electron Slater determinants with orbital «,, removed. Inserting
this into (8) we find

1 (x, ') Zwan ) Pan ('), (10)

which is the expansion of the one-body dens1ty matrix in eigenfunctions (natural orbitals) show-
ing that its eigenvalues (natural occupation numbers) are one. Any many-electron wave function
W (x) with the same one-body density matrix Fqg,l) equals @(x) up to a phase, i.e., |(¥|P)| = 1.
We can generalize this procedure and calculate higher order density matrices by introducing the
generalized Laplace expansion

1 ,
Z (—1)L X Doy ctny (T3 p)Pay o (Tprs o TN,

(N) AAAAA
p ny<--<np

Dy g (X) =

which is obtained by writing the permutation of all NV indices as a permutation of N — p indices
and the remaining p indices separately summing over all distinct sets of p indices. This allows
us to evaluate arbitrary matrix elements and higher order density matrices [4]. But as can be
seen from the above expansion, the expressions very quickly get quite cumbersome. Fortunately
there is a representation that is much better suited to handling antisymmetric wave functions. It
is called second quantization.
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2 Second quantization

While originally introduced for quantizing the electromagnetic field, we can use the formalism
of second quantization just as a convenient way of handling antisymmetric wave functions [5,6].
The idea behind this approach is remarkably simple: When writing Slater determinants in the
form (4) we are working in a real-space basis. It is, however, often better not to work in a
specific basis but to consider abstract states: Instead of a wave function ¢, (), we write a Dirac
state |a). Second quantization allows us to do the same for Slater determinants.

Let us consider a Slater determinant for two electrons, one in state ¢, (z), the other in state
@p(x). It is simply the antisymmetrized product of the two states

Pop(1,72) = % (a(e1)@s(22) — @(z1)pa(r2)) (11

This expression is quite cumbersome because we explicitly specify the coordinates. We can get
rid of the coordinates by defining a two-particle Dirac state

1

V2

While the expression is already simpler, we still have to keep track of the order of the particles

o, B) : (l)18) = 8)1ar)) -

by specifying the position of the kets. The idea of second quantization is to specify the states
using operators

chel]0) = |a, B) . (12)

Now the order of the particles is specified by the order of the operators. To ensure the antisym-
metry of the wave function the operators have to change sign when they are reordered

|ov, B) = clych|0) = —clc}0) = —[8, ). (13)

Naturally, this also implies the Pauli principle for the special case 8 = a.

2.1 Creation and annihilation operators

To arrive at the formalism of second quantization we postulate a set of operators that have
certain reasonable properties. We then verify that we can use these operators to represent Slater
determinants. But first we consider a few simple states to motivate what properties the new
operators should have.

To be able to construct many-electron states we start from the simplest such state: |0) the
vacuum state with no electron, which we assume to be normalized (0|0) = 1. Next we introduce
for each single-electron state |«) an operator ¢! such that c[|0) = |a). These operators are
called creation operators since they add an electron (in state «) to the state that they act on:
in ¢l |0) the creation operator adds an electron to the vacuum state (N = 0), resulting in a
single-electron state. Applying another creation operator produces a two-electron state cg cl|0).
As we have seen above, to ensure the antisymmetry of the two electron state, the product of
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creation operators has to change sign when they are reordered: chL = —CTBCL. This is more
conveniently written as {c! , cg} = 0 by introducing the anti-commutator

{A,B} =AB+BA. (14)

As we have seen, the simplest state we can produce with the creation operators is the single-
electron state |a) = cl|0). When we want to calculate its norm, we have to consider the
adjoint of ¢, |0), formally obtaining (a|a) = (0]c,cl|0), or, more generally, (a|3) = <O|cacg |0).
This must mean that c,, the adjoint of a creation operator, must remove an electron from the
state, otherwise the overlap of cacg|0> with the vacuum state (0| would vanish. We therefore
call the adjoint of the creation operator an annihilation operator. We certainly cannot take an
electron out of the vacuum state, so ¢,|0) = 0. To obtain the correct overlap of one-electron
states as (a|f3) = (O|cac:g|0> we postulate the anticommutation relation {c,, CL} = (alf). For
completeness, taking the adjoint of the anticommutation relation for the creation operators, we
obtain the corresponding anticommutator of the annihilators: {c,, c5} = 0.

Thus, we define the vacuum state |0) and the set of operators ¢, related to single-electron states
|a) with the properties

ca|0) =0 {Cm Cﬁ} =0= {Clﬂ Cg}
(0j0y =1 {ca, c%} = (a|B)

We note that the creators and annihilators are not ordinary operators in a Hilbert space, but

(15)

transfer states from an /N-electron to a /N + 1-electron Hilbert space, i.e., they are operators
defined on Fock space. It is also remarkable that the mixed anti-commutator is the only place
where the orbitals that distinguish different operators enter. Moreover, despite being operators,
the creators transform in the same way as the single-electron states they represent while the
vacuum state is invariant:

&)=Yl U~ 0 =3d, 0T, (ZTUW) 0. (6
“w

I

A set of operators that allows us to make contact with the notation of first quantization are the
field operators W'(z), with x = (r,¢), that create an electron of spin ¢ at position r, i.e., in
state |x) = |r, o). Given a complete, orthonormal set of orbitals {¢, }, we can expand |x)

Ui(2)|0) = |2) = Y lpad{pale) = D (pulz) ], 10) (17)

from which we obtain

Ui(z) = (zlpa) an (18)

n

The anticommutators then follow from (15) for an orthonormal and complete set, e.g.,

{o( )} = Zﬂ% {%n ch ) (omlz’) = Y (2lon)(pala’) = (xla’) = 8(z — '),

n
7671/ m
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resulting in the anticommutation relations for the field operators

A

(U(2), ¥(2')} = 0= {Fl(x), ¥1(2')} and {¥(x), ¥F(2)} = (z[2)). (19)

We can, of course, expand the field operators also in a non-orthogonal set of orbitals {|x;)}, as
long as it is complete, ), - [x:)(S™")i(x;| = 1, where S;; = (xi|x;) is the overlap matrix

Uiy = e (57 (yla). (20)

Conversely, given any single-electron wave functions in real space ¢(x), we can express the
corresponding creation operator in terms of the field operators

cL = /dx o(z) Ul (). (21)

Its anticommutator with the field operators just gives back the single-electron wave function

{¥(), L} = /dm’gp(m’) (U (2), ¥H(2))} = pla). (22)

2.2 Representation of Slater determinants

We have now all the tools in place to write the Slater determinant (4) in second quantization,
using the creation operators to specify the occupied orbitals and the field operators to define the
coordinates for the real-space representation

1 A R R
Dorag..ay (T1,T2, ..., TN) = W <0 ‘ V()W (xs) ... ¥(xyN) CLN . cimci”

0> RO%)

Not surprisingly, the proof is by induction. As a warm-up we consider the case of a single-
electron wave function (N = 1). Using the anticommutation relation (22), we see that

<O ) U (21) CLI

0) = (0] g (@1) = b, ¥(@1) [ 0) = pa, (1), (24)
For the two-electron state N = 2, we anticommute Lf/(:cg) in two steps to the right

<0 0> = <0 U(xy) <90a2($2) —cL2¢(x2)> ol 0>
= <O ‘ @(xl)cjll O> Do (T2) — <O ‘ @(xl)cLQWA(xg)cLI O>

= Pu (zl)@QQ(xQ) — Pay (xl)(pal (zQ) : (25)

U (1) (x2) ¢t o

g ~an

We see how anticommuting automatically produces the appropriate signs for the antisymmetric
wave function. Dividing by V/2, we obtain the desired two-electron Slater determinant.
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The general case of an N-electron state works just the same. Anti-commuting ¥ () all the

>:

way to the right produces N — 1 terms with alternating sign

~

(xn_1)¥(zn)cl cf

anyanN—1 "

=
B
<

+ <o @(m D(zy)cl, . > o
— <O @(ml)...kﬁ(xN_l) niN 1 an > Pan_1(TN)
(—i)N <o‘¢(x1)...@(xN,l)cgN d, > Oay (TN) .

Using (23) for the N — 1-electron states, this is nothing but the Laplace expansion of

Por (T1)  Pas(T1) -+ Pay(T1)
D Pay F$2) SOaQFI2) : SOaN.(@)
Par (TN)  Pay(TN) ~ Pay(TN)

along the N'th row. Dividing by v/N! we see that we have shown (23) for N-electron states,
completing the proof by induction.

Thus, as we can write the representation of a single-electron state |) in real-space as the matrix
element (z|¢) = ¢(x), we can obtain the representation of the N-electron []cf, |0) as the
matrix element with the field operators (0| [ | @(xn) Thus, we can rewrite the basis (6) for the
N-electron states in a form independent of the real-space representation

{CLN---CIH]O}|n1<---<nN}, (26)
which allows us to write any N-electron state as

) = D Gnyoy Chy oy [0). (27)

From this we see that, for an orthonormal basis, the expectation value of the occupation number
operator n; = c;rci is the probability that state ,,, is occupied

@) = D an (28)

ni€{nl<-<ny}

since only determinants that contain ¢,,, contribute. The sum of all these operators N = >
is the number operator, since now each determinant contributes /V times

@Dl wy =" 3 ananP=N. (29)

i nie{nl<-<ny}

For the special case of the field operators we obtain the density operator 7i(x) = ¥'(z)¥ () and
N = [dz ¥l (z)¥ ().
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2.3 Representation of n-body operators

Having established the relation between product states and Slater determinants, it is straightfor-
ward to express the matrix elements of a general n-body operator (2)

M(x) =MD+ MO (@) + Y M (@ 2) + Y M (g, 25,2) +- (30)

i<j i<j<k

with N-electron Slater determinants:

/d:vl ceden Dpypy (X1, aN) M (21,0, 2N) Poyay (1, -+, ZN)
:/dxl- cdry (O]cﬁi . ~05N@T(xN)- . -@T(xl)\O)M(xl, . ,q:N)(0|@(a:1)- . -@(xN)cLN . cLIIO>
0)

with the representation of the n-body operator in terms of field operators

«aq

= VR
= <O’cﬁ1 cgy Mch, ¢

=L
N

/dxl..-xN@(a:N)-..@T(xl)M(xl,.-- ) F(z) - Bay). G
Note that this particular form of the operator is only valid when applied to N-electron states,
since we have used that the /V annihilation operators bring us to the zero-electron space, where
|0)(0| = 1. Keeping this in mind, we can work entirely in terms of our algebra (15).

To see what (31) means we look at its parts (30). We start with the simplest case, the zero-body
operator, which, up to a trivial prefactor, is M) (z,,--- ,zy) = 1. Operating on an N-electron
wave function, it gives

~ 1 A A o A
MO = NI / drydry - an W (zy) - - U (2) 0T (20) U (2 (22) - - - ¥ (2 )

1 7 T A A
:ﬁ/ d$2~--$NEpT(SCN)«..LpT(SC2) N W(xz)...gp(xN)

:%/ duy-- oy Wi(ay) - Flws) 1 F(w)- - F(ay)

1
=5l2 o N=1, (32)

where we have used that

A

/ Ao i () (2) = N

is the number operator and that applying n annihilation operators lﬁ(xj) to an N-electron state
gives a state with N — n electrons. We note that we obtain a form of M(?) = 1 that, contrary to
(31), no longer depend on the number of electrons in the wave function that it is applied to.
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2.3.1 One-body operators

Next we consider one-body operators M (1, ..., xn) = >, MM (z;)

MO = % /dx1 ey D) 0 () 37 MO ) ) )
= %Z/d% Ui () MWD () (N = 1)! & (x;)
=5 Z/dx] WT () M (x])ﬁ(xj)

_ / dr U(x) MO (z) ¥(z)

Here we have first anticommuted ¥ (z;) all the way to the left and ¥(z;) to the right. Since
these take the same numbers of anticommutations, there is no sign involved. The operation
leaves the integrals over the variables except x;, a zero-body operator for N — 1 electron states,
operating on lf/(xj) | N-electron state). Again we notice that we obtain an operator that no longer
depends on the number of electrons, i.e., that is valid in the entire Fock space.

Expanding the field-operators in a complete orthonormal set !@(m) = > on(z)c, gives

M(l) :Z/dx (pn(x) M(:E) @m(x) CILCm = Z(gp |M(1)|('O Z "M ”m Cm- (33)

n,m

The matrix elements My, = {(on|MM]ep,,) transforms like a single-electron matrix M M):

From (16) and writing the annihilation operators as a column vector ¢ we see that
MY =t MVe =UTUMOU Ue=é MWe. (34)

Once we have arrived at the representation in terms of orbitals, we can restrict the orbital basis
to a non-complete set. This simply gives the operator in the variational (Fock) subspace spanned
by the orbitals.

2.3.2 Two-body operators

For the two-body operators M (z1,...,2x) = >, ;M ) (z;,x;) we proceed in the familiar
way, anti-commuting first the operators with the coordinates involved in M () all the way to the
left and right, respectively. This time we are left with a zero-body operator for N — 2 electrons:

! /d:vl cdoy Ul (ay) - (1) Y MO (g, 25) U(2y) - U ()

(2 _
M® =
1<J

N Z/dx da; Wz )& () MP (25, 25) (N = 2)! I (2,)@ ()

z<j

— 1 Z/dm dx] xj IPT(xZ)M( )(x,,xj)@(xl)@(x])

1<)

_ % / da da’ W () ¥ () MO (2, a") (z) ()
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Expanding in an orthonormal basis, we get

~ 1
2 — 5 Z /dxdx Spn Qpn< )M( )( ,113/) me(x)@m/(xl) CL/CLCmCm,
1
3 Z (Pnpw | M P m) cyelency (39

where the exchange of the indices in the second line is a consequence of the way the Dirac
state for two electrons is usually written: first index for the first coordinate, second index
for the second, while taking the adjoint of the operators changes their order. M,y =
(OnPnt | M@0y transforms like a fourth-order tensor: Transforming to a different basis
(16) gives

M =Y ULUL Mt i Un Uy (36)

vn~v'n/

nn mm

Form the symmetry of the two-body operator M2 (z, 2') = M® (', x) follows My s =
My mim. Moreover, My, mny will not contribute to M since cfcf = {¢l, ¢i}/2 = 0, and
likewise for M,/ ym.-

Note that the representation (35) is not quite as efficient as it could be: The terms with n and n’
and/or m and m’ exchanged connect the same basis states. Collecting these terms by introducing
an ordering of the operators and using the symmetry of the matrix elements we obtain

M(2) == Z Cjz’ciz (Méfz)’,mm’ - Mr&?t,mm’) Cmcm’ : (37)

nn/ , mm/

Since the states {c!,cf|0) |n’ > n} form a basis of the two-electron Hilbert space, considering
nn' as the index of a basis state, the Mnn _mmy fOrm a two-electron matrix M®.

The procedure of rewriting operators in second quantization obviously generalizes to operators
acting on more than two electrons in the natural way. We note that, while we started from a form
of the operators (30) that was explicitly formulated in an N-electron Hilbert space, the results
(32), (33), and (35) are of the same form no matter what value /N takes. Thus these operators
are valid not just on some N-electron Hilbert space, but on the entire Fock space. This is a
particular strength of the second-quantized formulation.

2.4 Reduced density matrices and Wick’s theorem

Introducing reduced density matrices it is straightforward to evaluate expectation values for
general many-electron states. From the representation of single-electron operators (33) we find

(| M) = ZM” (W|cl e, |¥) = e UMD, (38)

=i
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where the trace is over the one-electron basis and we use that observables are hermitian. For
two-electron operators (37) we find

WMy = N~ M2 (Pl ) = Te TOM®), (39)

nn mm/ mm

/
n’'>n,m’'>m V(Q)
=1 ’
nn ,mm

where now the trace in over the two-electron basis. In general, if we know the p-body density
matrix I'®) for a given many-electron state |¥), we can calculate the expectation value of any
operator of order up to p. We can obtain lower-order density matrices by taking partial traces
over higher-order matrices, e.g.,

SR =S Wlchelee, ) = (Wl N, [v) = (N —1) 1L (40)
k k

Note the similarity to (32). In terms of the two-electron matrix I'® we trace (keeping track of
the Fermion sign) over all two-electron states with orbital n or m occupied.

For Slater determinants |#) = ¢/, ---cl, |0) the density matrices have a particularly simple
form. To see this we introduce the projection onto the space of occupied orbitals assuming, for
simplicity, that the orbitals |a,) are orthonormal

P=>"lag){om|. (41)

We can then split any orbital into its components in the occupied and the virtual space: |p) =
Plp) + (1 — P)|p). Applying an annihilation operator to the Slater determinant we then find
that only the component in the virtual space gives a zero contribution, similarly for a creation
operator:

Cipy|P) = Cpiy |P) and c D) D). (42)

—Cn P|@|

The one-body density matrix of a Slater determinant is thus given by

L5 = (lchc,|®) = (Blchy, cpp, |B) = (Pom| Pon)(B|0) — (Dlep,, by |)
= (©m|P|en)- (43)

As an operator in the one-electron Hilbert space "), the one-body density matrix of a Slater
determinant is thus the projector onto the occupied subspace. Up to a phase factor it defines the
Slater determinant uniquely. All higher-order density matrices of a Slater determinant can thus
be written in terms of the one-body density matrix. For the two-body density matrix we find,
simply commuting chl) to the right (note the similarity to the derivation in Sec. 2.2)

<@|cn2 ni m1 m2 |§P> <¢|C}3n2 CJIgnl CPm1 Cng |¢>
= <Pm1 |P’I’L1> <@|CTP7’L2 CPmy ’¢> - <@|CTPn2 CPml cTPnl CPmy ’@>

= L\, Dy = (Pma| Pra)(@lch,, o, 1) + (I Chy,Cpm, Cprmy Cn, |2)

Dty T,
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Using the same procedure together with the Laplace expansion we find the higher-order density
matrices
Ly o+ i,
(@cf, - ch e e |P) = det : : : (45)
., - .
Matrix elements between different Slater determinants are not quite as simple, as the terms with
the creation operator anticommuted to the right need no longer vanish. Still, we can express
expectation values as determinants using (7)

(alfr) -+ {aalBw)
(Pa|Pp) = det S : : (46)
(an|B1) -+ (an|Bn)
The overlap is non-zero if each vector in the occupied space of |®,) has a component in the
occupied space of |®3), i.e., Pg|a,) # 0, or, more symmetrically, diim(PsP,H") = N. Note
that the combination of the two projectors P, Pg is, in general, no longer a projection.

To evaluate the matrix element for a one-electron operator we simply change the order of the
operators to obtain an expression that is given by a determinant

<¢a|c;rtcm|¢,3> = <¢Q‘C}’ancpﬁm‘djﬁ>
= (0m|PaPalpn) (PalPs) — <@a|0pﬁm0}an@ﬁ>
(o1]n) (|Br) - {ulBw)

= (Pm| PsPal ) (| P) — de : ' |
WnlFplalon)(Palbo) =det] oy (anld) - (awldy)

(em|PaPalon) (PmlB1) -+ (omlBN)
= <90m|PBPa|SOn><¢a@B> - <¢Q1Pﬁ%’m‘¢ﬁupa¢’n>' 47)

For |®,) = |®g) we recover (43). Higher-order expectation values are calculated in a similar
way, moving the creation operators successively to the right, giving, e.g.,

<¢Oé |CILQ Cju le Cmg |¢ﬁ> = <¢Oé |CTPan2 CTPanl CPgml CPgmg |¢ﬁ>

<¢a|CILlCm1|¢B> <¢a|CILlCm2|¢B> Amml An1m2
<¢a|c;rzgcm1|¢ﬁ> <dja|cjlgcm2|¢ﬁ> An2m1 Anzmz

+ (1 - <¢a|(pﬂ>) < a7PB<P'm17PIBS@m2 |¢,37Pa80n1 7Pa80n2>7

<90m1|P,3P0¢|90n1> <90m2|P5Pa|90n1>
<90m1|PﬁPa|90n2> <90m2|PﬁPa|§0n2>

where A, ., = (Dol cm|Ps) — (Pm|PsPalpn). For |B4) = |®g) this reduces to (44). While
these expressions can be efficiently evaluated expanding the /N + p-order determinant, the ex-
pressions quickly get quite involved.

The situation simplifies dramatically when we only consider operators ¢, and ¢!, corresponding
to an orthonormal basis {|,,)| n} of HY). The Slater determinants are then orthonormal and of
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the form |@,,) = |Py,, ny) =l -+l |0). Diagonal matrix elements are then

<¢n|CLCLlcmlcm|§pn> = (5n,m5m’,m’ - 5n,m’6n’,m) 5n,n’,m,m’€{n1 ,,,,, ny}
<¢n|c;[€p Tt C‘i]-gl le e Cmp|¢n> = det(ék“mJ) 6k1 ..... kp,ml ..... mpe{nl ..... TLN}'

Off-diagonal matrix elements vanish unless the determinants differ in exactly the operators
inside the matrix element:

(Bl ol Prm) = £y =omsim S =y, S m\ fmssm }= (g}

Thus, when we transform an operator M®) to the basis in which the Slater determinants are
written, all matrix elements between determinants that differ by more than p operators vanish.
These are the Slater-Condon rules.

3 Variational methods

The variational principle and the Schrodinger equation are equivalent. Consider the energy
expectation value as a wave-function functional

(U|H|W)
EV| = ->+—F~ 48
7] (U|w) (48)
Its variation is
(OU|H|W) + (U|H|oW) (OU|F) + (U|oW) 9

EW + V]| = Ev| + —(V|HY + O”. 49

The first-order term vanishes for
H|W) = EW] W), (50)

which is the Schrodinger equation. The general approach to solving it for many-electron sys-
tems is configuration interaction (CI): We choose an orthonormal set of orbitals {¢,, | n} from

which we construct an orthonormal basis {®,,, ., |n1 < -+ < ny} of N-electron Slater

.....

determinants. Expanding ) in this basis

|L[/> = Z Qny,...onyn ‘¢n1 ..... nN> = Zani

ny<---<ny n;

Pn,) (1)

the Schrodinger equation (50) becomes a matrix eigenvalue problem

<¢n1 ‘H‘@TM) <¢n1 |H’¢n2> T A,y Qm,y
<¢n2|H‘¢n1> <@n2|H’@n2> T Un, | = E | On, | . (52)
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Note that the indices n; of the determinants are ordered sets of single-electron indices.

For a complete basis set the matrix dimension is, of course, infinite, but even for finite basis sets
of K single-electron functions the dimension for an N-electron problem increase extremely
rapidly. There are K- (K —1)- (K —2)--- (K — (/N — 1)) ways of picking NN indices out of K.
Since we only use one specific ordering of these indices, we still have to divide by N! to obtain
the number of such determinants:

o KU (K

For N = 25 electrons and K = 100 orbitals the dimension already exceeds 10%3. And still,
being a non-complete basis set, diagonalizing (52) still would only give a variational energy,
meaning that, for example, the ground state of (52) is the state that minimizes the energy wave-
function functional (48) on the ( ) -dimensional subspace of the /V-electron Hilbert space.

3.1 Non-interacting electrons

Even when considering a system of /N non-interacting electrons we have to solve the large
matrix eigenvalue problem (52). Writing the non-interacting Hamiltonian in the basis used for
the CI expansion (51) we obtain

H = ZHnmc Crn

which, in general, has non-vanishing matrix elements between Slater determinants that differ
in at most one operator. But we can simplify things drastically by realizing that we can choose
any basis for the CI expansion. If we choose the eigenstates of the single-electron matrix H,,,,
as basis, second-quantized Hamiltonian is

H= Eennmcnm Egnnn.

In this basis all off-diagonal matrix elements vanish and the CI Hamiltonian (52) is diagonal.
Thus all (%) eigenstates are Slater determinants

D) =l -+ ¢ |0) with eigenenergy E,, = Z En, - (54)
This shows that choosing an appropriate basis for a CI expansion is crucial. A good general
strategy should thus be to solve the matrix problem (52) and at the same time look for the
basis set (of given size) that minimizes the variational energy. This is the idea of the multi-
configurational self-consistent field method (MCSCF) [7]. In the following we will restrict

ourselves to the simplest case where the many-body basis consists of a single Slater determinant.
This is the Hartree-Fock method.
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3.2 Hartree-Fock theory

The idea of the Hartree-Fock approach is to find an approximation to the ground-state of the
N-electron problem by minimizing the total-energy wave-function functional (48) allowing
only NN-electron Slater determinants as variational functions. Since expectation values of Slater
determinants are determined by their one-body density matrix, remember (45), this means that
we want to find the occupied subspace for which (48) is minimized.

To perform these variations we introduce unitary transformations in Fock-space (related to the
Thouless representation of Slater determinants [8])

~

U =e*  with M= Musche, hermitian. (55)
a7/3

To see that U is a transformation among Slater determinants, we apply it to a product state

ML GE e 10) = @M e mIAM AT oA AN, —iANT M) (56)

€ COLN QN a1

Since the annihilators produce zero when applied to the vacuum state, we have

e™10) = [0). (57)

IAM —iAM , we use that the commutator of the product of a creator and an anni-

To evaluate e cTy e

hilator with a creation operator is again a creation operator (see App. B)

[ches, 1] = cl{cs, I} —{cl, I }ey =l o5, (58)

to calculate the coefficients of its power-series expansion in \:

= AT CL oA _ MG, ) e—zAM‘ _ ZZ ¢t M,
A=0 e
22 . our
W 67)\M Ci/ e M 5 MM Z Ca Ma Ty M 22 Z CL Z Maa’Ma"y
A=0 A=0 a o
—_——
(M?)ay
ﬁ IAM t —iAM __ " M
Y ecle = i Z el (M"™)ory
A=0

«

from which we find that

ei)\M C,Ty efi)\]V[ _ Z Z Z CL (ei,\M)m (59)

a n=0 a

(IAM)?

the creation operators are transformed by the unitary matrix single-electron unitary ™| i.e.,
U corresponds to a basis transformation in all operators, cf. (16). Thus, the right-hand-side of



Hartree-Fock and BCS 2.17

(56) is again a Slater determinant formed from creation operators in the transformed basis. The
annihilation operators transform accordingly as

ei)\M c, efi)\]\?[ _ Z (ez',\M)m c.. (60)

Using this transformation, the variation of the energy expectation value can be written as

E(X) = (@]e*V [ =M |g)

~ : P iX)? Aa s
— (ole) + ixel[d, 31)ie) + (ol N o)+ 61
where each successive derivative in the power series expansion produces a commutator | - M ]

around those that were already present. The energy functional is stationary for #''% when
(@ |[H, M][@") =0 (62)

for every hermitian single-electron operator M. This condition is most easily understood when
we work with orthonormal orbitals {|¢)|n} from which the Slater determinant can be con-
structed: [PF) = ¢l .- ¢!]0). Then (62) is equivalent to

(@F|[H, che, + e, )|OY =0 Vn,m
(actually n > m suffices). Since

Onm|PUF) ifn,m e {1,...,N}

T @HF:
enCml ) { 0 ifm ¢{l,... N}’

i.e., (62) is automatically fulfilled if both n and m are either occupied or unoccupied (virtual).
This is not unexpected since transformations among the occupied or virtual orbitals, respec-
tively, do not change the Slater determinant. The condition thus reduces to

(@)t e, HIPMY =0 Yme{l,...,N},n¢{1,...,N}. (63)

In other words, for the Hamiltonian there are no matrix elements between the stationary Slater
determinant and determinants that differ from it in one orbital. The condition that for the
Hartree-Fock determinant the Hamiltonian does not produce single excitations is called the
Brillouin theorem.

Let us consider a Hamiltonian with one- and two-body terms

[:I = Z CJL’L Tnm Cm + Z CLCL’ (Unn’,mm/ - Unn/,m’m) Cn'Cm
n,m

n>n/ m>m/

Then for each n > N > m the singly-excited term

(Tnm + Z (Unm’,mm’ - Unm’,m’m)) CLCm‘@HF> =0

m/'<N
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must vanish. This is the same condition as for a non-interacting Hamiltonian with matrix ele-
ments

Fum = Tom + > st = Vs i) - (64)

m' <N

F' is called the Fock matrix. It depends, via the summation over occupied states, i.e., the
density matrix, on the Slater determinant it is acting on. So we cannot simply diagonalize the
single-electron matrix F' since this will, in general, give a different determinant. Instead we
need to find a Slater determinant for which F' is diagonal (in fact, it is sufficient if it is block-
diagonal in the occupied and virtual spaces). This is typically done by constructing a new Slater
determinant from the NV lowest eigenstates of F' and iterating. Alternatively, we can use, e.g.,
steepest descent methods to minimize the expectation value directly or optimizing the one-body
density matrix [9, 10]. At self-consistency the Fock matrix is diagonal with eigenvalues

ggF = Tmm + Z mm’ mm/ Umm’,m’m) = (Tmm + Z Amm’) (65)

’<N m/'<N

I
bJ

and the Hartree-Fock energy is given by

(@) = (Tmm +) Amm/) =y (Tmm + % > Amm,> .

m<N m/<m m<N m/<N

Removing an electron from the occupied orbital ¢, changes the energy expectation value by

R 1 1
(@8, | H|BEE, ) — (@F| ) = — (m 32 Aam’> —5 2 Aua= =" (66)

m/<N m#a<N

When we assume that removing an electron does not change the orbitals much, which should
be a good approximation in the limit of many electrons /N > 1, this gives the ionization energy
(Koopmans’ theorem). Likewise, the energy expectation value of an excited Slater determinant
@MY, with an electron moved from orbital @ < N to orbital b > N is
HF HF | 77| HHF HF _ _HF
Casb = < a—>b|H|¢a—>b> <Q5 |H|Q5 > =& —& — Aw (67)

It can be interpreted as the energy of a state with an electron-hole excitation, again neglecting
relaxation effects. For the Coulomb interaction

1 1 1
Aab = §(Aab + Aba) = 2 (<S0a90b PaPb — 90b90a> + <<,0b§0a r_ 7 PvPa — Qpaspb>>
1 1
= 5 PaPb — PoPa || PaPb — PoPa ) >0

so that the third term in (67) describes the attraction between the excited electron and the hole.
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3.2.1 Homogeneous electron gas

Since the homogeneous electron gas is translation invariant it is natural to write the Hamilto-

nian (for states with homogeneous charge density) in the basis of plane waves (r,o|k,o) =

1 ik-T
(27r)3/2 e

: LA
H= ZU:/dk Tc;fwcka oy Z/dk/dk/dq Ol a0k a0 Chr o Che » (68)

where the prime on the q integral means that g = 0 is excluded since the homogeneous contri-

bution to the Coulomb repulsion of the electrons is cancelled by its attraction with the homo-
geneous neutralizing background charge density. It seems reasonable to consider as an ansatz
a Slater determinant |®;,.) of all plane wave states with momentum some Fermi momentum
|k| < kp. The charge density for such a determinant follows, using the anticommutator of the
field operator

. efzk: r

4(r) 0} = [ar' ST 0L, 0,00} =

from the diagonal of the density matrix

ikr |2 3
k.

" o2

() = (@F |7 (1), () [ G1F) = / dk (69)

‘ e
|k|<kp

(2772

It is independent of position, so |®,) looks like an appropriate ansatz for a homogeneous
system. Moreover, it fulfills the stationarity condition (63): To create just a single excitation
one of the creation operators in the Coulomb term of (68) must fill one of the annihilated states,
i,e., ¢ = 0 or ¢q = k — k'. But this implies that the term is diagonal with ¢ = 0 giving the
direct and ¢ = k — k' the exchange contribution. Since the ¢ = 0 term is not present in
the Hamiltonian, the eigenenergies of the Fock matrix are just the sum of the kinetic and the
exchange terms

ar K 1 1 k* kp (1 . k% — k?

Lkl dk/ —— —
2krpk

- v 1
81@,0’ 2 472 |k |<kp |k — k’|2 2 v t

krp+k
7
k‘p—kD (70)

It depends only on k = |k|. Interestingly the slope of ng becomes infinite for k& — kg. Thus,
the density of states D(ey)de = 4wk? dk, given by
kp+ k[ an
krp—k

defr\ k Ky + k2
HF _ 2 k.o _ 2 _ N _MF
D" (e) = 4rk ( I ) =47k (k: - (1 ST In

vanishes at the Fermi level (see Fig. 1). This is not quite what we expect from a respectable

electron gas... It is clearly a defect of the Hartree-Fock approximation.
Instead of calculating the energy expectation value also directly in k-space, it is instructive to
look at the exchange term in real space. To evaluate the electron-electron repulsion we need the
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"HF ——
nonint -

HF ——
nonint

€k ™ Bkp
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1.5 0 5 10 15 20 25 30
k/kg density of states

Fig. 1: Hartree-Fock eigenvalues and density of states for the homogeneous solution |¥y,.) of
the homogeneous electron gas compared to non-interacting values.

diagonal of the 2-body density matrix, which is given by (44) in terms of the one-body density
matrix

= - - A (1) (1) ,
(D, [T, (P VWL () (), ()|, ) = dlet (Foa (r,7) L) (r,r) )

ry (r',r) ch,lg,(r’, r’)

o'

where the one-body density matrix vanishes unless ¢’ = ¢ where it is evaluated as in (69)

FUU<T7T) <@kF|WT( ) ( )lgka>

e—zk kp
:/ dk —— / dka/ d cos ) giklr—r"lcos?
|k|<kp (

kf’p sinx—a:cosx sinx — xcosx
=532 3~ Mo 3 (72)
2w T T
2201/3

with z = kg|r — 7'|. Dividing the 2-body density matrix by n?

and subtracting the direct
term (which is canceled by the contribution of the background charge) we obtain the exchange

hole [10]

sin kpr — kpr cos kpr>2 (73)

gz(r,0) —1=-9 ( Torr)?

It is shown in Fig. 2. The exchange energy per spin is then the Coulomb interaction of the
charge density with its exchange hole

z —1
/drng/drngg Tir/’ /drng/drng — .
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o I ——
r (gx( ) 1)/r ...........
2 2.5 3

rir

Fig. 2: Exchange hole for a paramagnetic homogeneous electron gas in units of the spin Wigner-
Seitz radius kpr, = (97/2)'/3. In addition, the dotted line shows the contribution of the
exchange hole to the Coulomb repulsion energy of Eq. (74).

The exchange energy per electron of spin o is thus

00 _ . 00 : _ 2
o 41, / o g(r,0) —1 __9-4mn, / i (sinz — x cos ) _ 3k )
0 r 2k% Jo o

Together with the kinetic energy per electron of spin o

o 2 v 2 3k2
e = 47r ik an ik (75)

we obtain the total energy per electron

EHF = = — -

nT(gﬁin—i—gl) +n¢(5tin+5i) B 3(67?2)2/3 5/3 +n5/3 3 § 1/3 4/3 +n4/3
ny +ny 10 n 4 =

™ n

While the kinetic energy is lowest when ny = n|, exchange favors spin polarization. For reason-
able electron densities the kinetic energy dominates, only at extremely low densities exchange
dominates and the solution would be ferromagnetic.

A ferromagnetic Slater determinant would, of course, have two different Fermi momenta, k} +
kﬁ It also would break the symmetry of the Hamiltonian under spin rotations. This is an
example of how we can lower the energy expectation value by allowing Slater determinants
that break a symmetry of the system. When we do not restrict the symmetry of the Slater
determinant, the approach is called unrestricted Hartree-Fock. For the electron gas this approach
actually gives Hartree-Fock states that even break translational symmetry, see, e.g., [11]
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3.2.2 Hubbard model

As a simple example to illustrate the difference between restricted and unrestricted Hartree-
Fock we consider the Hubbard model with two sites, ¢ = 1, 2, between which the electrons can
hop with matrix element —¢ and with an on-site Coulomb repulsion U

H= —tz (cggch7 + CL,CZU> +U Z NNy - (76)
o 1€{1,2}

The number of electrons /V and the total spin projection S, are conserved, so the Fock space
Hamiltonian is block-diagonal in the Hilbert spaces with fixed number of up- and down-spin
electrons /Ny and V|, with dimensions

N o] 1 2 3 |4
Ny [0o[1 0]l2 1 0[2 1]2
N, |00 1]0 1 2|1 2|2
dim|1]2 21 4 1|2 2|1]16

Exact solutions: The Hamiltonian for N = N, = 1 is easily constructed. By introducing the
basis states cJ{T|O> and C;HO), we obtain the Hamiltonian matrix

e\ g (4 i _ 0 —t{0lcy, CITC% C$T|O> _ 0 —t
0 H (¢ ey ) |0 .
€21 —t(0]cy, chclT ch|0) 0 Y

This is easily diagonalized giving the familiar bonding and antibonding solution

1
os) = — (c}T + C;T) 0) = cl,]0) . (77)

For Ny =1 = N, we obtain a non-trivial interacting system

C11Coy 0 0 —t —t
T I O N SN I S A S I
<O) e, H (cuc1T €1 Cor €1 C1p Co Cop 0)= v U ol (78)
CopCo| —t —t 0 U
To diagonalize the matrix, we transform the basis into linear combinations of covalent and ionic
states
1
lcovy) = E ( ;ich + CLC£T> |0) (79)
) 1
iony) = 7 (CLCJ{T =+ C£¢C;T> 0) (80)
It is then easy to verify that [cov_) is an eigenstate with eigenvalue .., = 0 and that |ion_)
has eigenenergy €., = U. The remaining two states mix

(covy|\ =~ , 1 U 4
<<ion+|) i (\cov+> |1on+>> =2 {U— <4t _U>} . 81)
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Fig. 3: Spectrum of the two-site Hubbard model as a function of U//t.

Rewriting the matrix

(U 4t> :\/m<(3058 Sln@) ’ (82)

a U sin@ —cos@
we find the ground state of the half-filled two-site Hubbard model

lgs) = cos©@/2]|covy) +sin©/2 |ion,) (83)
= L (COSQ el +cos@el el +sin€el ¢l +sin€cl el > |0> (84)
o) 2 C21C11 2 (11621 2 (111 2 C21Ct

with an energy of e, = (U — VU2 + 16£2) /2. Without correlations (U = 0 ~ O = 7/2), all
basis states have the same prefactor, so we can factorize the ground state, writing it as a product
ci icﬁrHO) of the operators defined in (77). For finite U this is no longer possible. In the strongly
correlated limit U > ¢ (© \, 0) the ground state becomes the maximally entangled state |cov )

and can not even approximately be expressed as a two-electron Slater determinant.

Hartree-Fock: We now want to see what Hartree-Fock can do in such a situation. Since the
Hamiltonian is so simple, we can directly minimize the energy expectation value. The most
general ansatz is a Slater determinant of an orbital ¢(6;) = sin(6;) g1 + cos(6+) o for the
spin-up, and ¢ (#,) = sin(#,) ¢1 + cos(#,) ¢, for the spin-down electron:

|9(0+,0,)) = (sin(&) ch + cos(f)) c&) (sin(QT) CJ{T + cos(64) C£T> 0) . (85)
The energy expectation value as a function of the parameters 6, is then
(D(64,0,) | H|P(0;,0,)) = —2t(sinb; sin b, + cos by cos b)) (cos by sin B + sin b cos )
+U (sin® 6 sin® 0 + cos® 6y cos®6) . (86)

If the Slater determinant respects the symmetry of the molecule under the exchange of sites
(mirror symmetry of the H, molecule), it follows that the Hartree-Fock orbitals for both spins
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0
Fig. 4: Energy expectation value for a Slater determinant (0, w/2—0) for U=0, t, 2t, ..., 6t.

When U < 2t the minimum is at 0 = 7 /4. This is the Hartree-Fock solution with the bonding
orbitals ¢, occupied. For U > 2t, 0 = 7 /4 is still an extremal point (restricted Hartree-Fock
solution), but an energy minimum is only attained when the symmetry is broken (unrestricted
Hartree-Fock solution).

are the bonding state ¢, (0 = 7/4). This is the restricted Hartree-Fock solution. The corre-
sponding energy is £ (m/4,7/4) = —2t+U/2. The unrelaxed excited determinants are obtained
by replacing occupied orbitals ¢, with ¢_. Altogether we obtain the restricted Hartree-Fock

spectrum
E( w/4, ©/4)= —2t4+U/2
E( n/4,—7/4) = U/2
E(—7/4, ©/4) = U/2 @7
E(—n/4,—7/4) = 2t+U/2

Comparing to the energy for a state with both electrons of the same spin (£ = 0), we see that
there is no spin-triplet, i.e., Hartree-Fock breaks the spin symmetry [12]. The states (87) are
spin-contaminated [13]. Even worse, the Hartree-Fock ground state, and consequently all the
states, are independent of U. The weight of the ionic states is always 1/2, leading to an increase
of the energy with U/2.

To avoid this, we can allow the Hartree-Fock solution to break the symmetry of the molecule
(unrestricted Hartree-Fock), putting, e.g., more of the up-spin electron in the orbital on site 1
and more of the down-spin electron in orbital 2. In an extended system this corresponds to an
antiferromagnetic spin-density wave. For U < 2t this does not lead to a state of lower energy.
For larger U, however, there is a symmetry-broken ground state

1 2t
Bop = B0, 7/2 — 0) with O(U) = % +  arccos (ﬁ> . (88)
Its energy is Eygr = —2t?/U. Still there is no triplet state (spin contamination) and, for

U — oo, the overlap with the true singlet ground state goes to |(Pypr|¥_)[* = 1/2.
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From Fig. 4 it might appear that there are just two degenerate unrestricted Hartree-Fock deter-
minants. But, remembering that we can chose the spin quantization axis at will, we see that by
rotating the spins by an angle o about the axis 7 (see App. C)

Ri(a) = e ™72 = cos(a/2) — isin(a/2)n - &

we can produce a continuum of degenerate solutions Ry, (c)|$ygr). As an example we consider
the state we obtain when we rotate the spin quantization axis from the 2 into the z direction

Ry(=n/2) = — (_1 1)

which transforms the creation operators according to (16) as

(CZT, CL) Ry(—m/2) = (% (CZTT - cZZ) : % (CZTT + ch)) :

The determinant (85) thus transforms to

Ryl=/2)10(05,0,)) = 5 (sulely +cly) + eulely + ) (salely — ) +exlely — ) 0
(89)
where we introduced the abbreviations s, = sin 6, and ¢, = cos .. Since the Hamiltonian (76)
is invariant under spin rotations, R;(—7/2) H Rj;(—ﬁ /2) = H, the energy expectation value of
the rotated state is still given by (86).

Attractive Hubbard model For negative U allowing the spin orbitals to differ, (¢, 7/2—0),
does lower the energy expectation value. The minimum is always obtained for the restricted
Hartree-Fock determinant @(x /4, w/4). In fact, for the attractive Hubbard model rather than
breaking spin symmetry, we should try to break the charge symmetry: For U < —2t the ansatz
&(6,0) minimizes the energy for the two states (U) = /4 £ arccos(—2t/U) with energy
E(U) = 2t?/U + U. Thus, the unrestricted Hartree-Fock ground state breaks the charge sym-
metry, 1.e., is a charge-density wave state. On the other hand, looking back to (89) we see
that @(6,0) is invariant under the spin rotation. This is actually true for any Rﬁ(@) so that
the unrestricted Hartree-Fock ground state of the attractive Hubbard model does not break spin
symmetry.

It seems strange that for the attractive model we only find two unrestricted Hartree-Fock states,
while for the repulsive model we have a continuum of states. To find the 'missing’ states we
consider a new kind of transformation that mixes creation and annihilation operators: When we
exchange the role of the creation and annihilation operators for the up spins only, i.e.,

o= (-1)c; and &l —cl, (90)
the Hamiltonian (76) transforms into a two-site Hubbard model with the sign of U changed

H=—tY (&;,éh, + éL,é%> U ST sy + Uiy + o). 1)

ie{1,2}



2.26 Erik Koch

Let us see what happens to the Slater determinant (85) when we apply the same transformation.
In doing this, we have to remember that the vacuum state must vanish when acted on with an
annihilator. For |0) this is no longer true for the transformed operators, but we can easily write
down a state

10) =}l |0) (92)

that behaves as a suitable vacuum state: ¢, [0) = 0 and (0|0). We can then rewrite the trans-
formed Slater determinant (85) as

(01, 0,)) = (sin(6,) e, + cos(9,) &, ) (sin(01) &, + cos(0r) &, ) 10)
= (sin(@) ch + cos(f)) c&) (— sin(6r) cy4 + cos(604) C2T> c2TclT\O)
= (sin(@i) ch + cos(6,) 02¢> (—i— sin(6;) C2T + cos(6;) CIT) 0) .

Thus, the transformation takes the unrestricted state |®(6, /2 — 6)) for the repulsive Hubbard
model into the unrestricted state |@(6, 0)) for the attractive Hubbard model. Transforming the
rotated state (89) in the same way, we find something remarkable:

1 . . . . . . .
5 (@ + ) +ad +d)) (si(@ =) +erld, — &) 10)

=35 <3¢<_C1¢ + C&) + ey + C;ﬂ) (ST(_CIT - Ch) + cp(eyy — Cgﬂ) C£¢CHO>

[\3|>—~w —

((s¢c¢ + ¢yt (Cucm + Cucw) 10) + 2(5¢3T01¢02T + CicTCuCQT) 10)
+ (8400 — ¢ysy) (cgichc%cn 1)10) )

The energy expectation value of this state is by construction the same as for the charge-density
state. For §; = 7/2— 6, the new state has a uniform density, but the wave function no longer has
a well-defined particle number, i.e., it breaks particle number conservation. It is still a product
state in the transformed operators and vacuum, but it is a state in Fock space. States of this type
are crucial for describing superconductivity.

3.3 BCS theory

Next we consider the BCS Hamiltonian

]:IBCS Z €k ckgcka Z Grr cchJr ke C_ k| Crort 93)
Kk’
with an attractive interaction between pairs of electrons of opposite spin and momentum (Cooper
pairs). We now want to see if we can use the idea of product states in Fock space that we encoun-
tered for the attractive Hubbard model. To start, let us consider the determinant of plane wave
states that we used for the homogeneous electron gas |®@y,.). Since all states with momentum
below kp are occupied, we have

cl |Pr,.) =0 for |k| < kpand ¢ |P,) =0 otherwise.
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Thus |®y,.) behaves like a vacuum state for the transformed operators

.I.
) ., for|k| < kp
by = Okp — |k|)c;rw + O(k| — kr) ¢4, = { Ck for :k: > kp
ko

Allowing the operators to mix, we can generalize this transformation to
bm = UkCy + vch_kT

The corresponding creation operators are obtained, of course, by taking the adjoint. Notice
how states with k and —k are mixed. These Bogoliubov-Valatin operators fulfill the canonical
anticommutation relations

{bko7 bk:’o"} =0= {bL(ﬂ bL’o"} and {bko7 bk’a’} = 6<k - k/) 50'70'/
when (the non-trivial anticommutators are {b,, b_,, } and {b,, b}
up +vp=1. 94)

A vacuum state for the new operators can be constructed from the generalized product state
[ 1k, bk, 10). Expanding the operators

and calculating the norm
(O] (g + vx Cfmcm)(uk + Uk C;rqcim)(uk + Uk CJLMCL)(UIC + Uk CLTCL@Q 0) = ui + 2“2”1% + Uli
we see from (94) that the BCS wavefunction

IBCS) = [ [ (ur + ve chycl ) 10) (95)
k

is the (normalized) vacuum for the Bogoliubov-Valatin operators.
To calculate physical expectation values we express the electron operators as

CkT = Ukka + Ukbikw
The expectation value for the occupation of a plane wave state, e.g., is
(BCS|ngt|BCS) = <BCS|(ukbLT +vkbfki)(ukbm—I—vkbik¢)|BCS> = v} = (BCS|n_g,|BCS).

Unlike the electron gas Slater determinant |®y,,.), where ny, is 1 below kr and vanishes above,
varying the parameter vy in the BCS wave function allows us to get arbitrary momentum dis-
tributions (ng,). Since the BCS wave function has contributions in all particle sectors with an
even number of electrons, there are also less-conventional expectation values, e.g.,

(BCS|cfcl , BCS) = (BCS|(urby + vkb_g,, ) (urb! joy — iy 1) BCS) = gt = (c_p Cpp)-
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When minimizing the energy expectation value, we have to introduce a chemical potential p
that is chosen to give the desired number of particles N = >, v?. We get

(BCS|H — uN|BCS) = > (& — p) vp — Y _ G Ottt - (96)

ko K.k’

Minimizing with respect to vj, (and remembering that v, = /1 — v?) we find the variational
equations

Ug

v
4(er — p)vp =2 Z Grr <Uk - _kvk) Upr Vg - o7
k/

For simplicity we assume that G is constant over a small range of k values around the Fermi
surface and vanishes outside. We define

A= Z Gkkf UV = G Z UL VL (98)
k/

k:close to FS

and obtain, squaring the variational equation and remembering that 1 — (u? + v})? = 0,
e — 1) ugvy = (e — )" (1 = (ug — v)*) = A%(ui — vp)

from which we get the momentum distribution

o 1 €k — W
=—(1- ) 99
" 2( \/(5k—M)Q+A2> o

For A = 0 this is just the step function of a Fermi gas, for finite A the transition is more smooth.

We still have to determine the parameters p and A. The chemical potential is fixed by

NS 92— 1— ‘e H 100
i3 (1- 2t o

while for A we obtain from (98), solving (97) for u; v, and summing over k, and using u% —v,% =
1— 207

k— M

1
A:sz:ukvk Z - = —ZV&C_ — (101)

the self-consistent gap equation for A.
To see that A is indeed a gap, consider the (unrelaxed) quasi-electron states

k1) = —CM\BCS> = bj,|BCS). (102)

Adding an electron of momentum k destroys its Cooper pair, changing (ng + ng, ) from 2v? to
1 and removing the interaction of the pair with all others:

(k1 |H — uNk 1) = (BCS|H — uN|BCS) = (g, — 1) (1 — 207) + 24w,

= (= 1) (1= 208) + =2 — o) = sem(er — ) /(2w — 07 22
k= M

For A = we recover Koopmans’ Hartree-Fock result, while for A > 0 a gap opens around the

Fermi level. Fig. 5 compares the quasi-electron dispersion and the corresponding density of
states for the two cases.
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Fig. 5: Quasi-electron energy and density of states for the BCS state with and without gap.

4 Conclusion

We have seen that second quantization is an remarkable useful formalism. With just a few sim-
ple rules for the creation and annihilation operators and the corresponding vacuum, it converts
dealing with many-electron states to straightforward algebraic manipulations. Moreover it is
naturally suited for performing calculations in variational spaces spanned by a finite basis of or-
bitals. But its advantages go beyond a mere simplification. By abstracting from the coordinate
representation, it allows us to express many-body operators in a way that is independent of the
number of electrons. Because of this it becomes possible to consider Fock-space wave func-
tions which do not have a definite number of electrons. This allows us to consider unrestricted
mean-field states that not only break spatial or spin symmetries but also particle conservation.
This additional freedom allows us to extend the concept of a Slater determinant to product states
in Fock space, an example of which is the BCS wave function.
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A Basis orthonormalization
A general one-electron basis spanned by functions |y,,) will have an overlap matrix

Snm = <Xn|Xm>

that is positive definite (and hence invertible) and hermitian. The completeness relation is

L= ) (S il

While we can work directly with such a basis, it is often more convenient to have an orthonormal
basis, so that we do not have to deal with the overlap matrices in the definition of the second
quantized operators and in the generalized eigenvalue problem.

To orthonormalize the basis {|x,)}, we need to find a basis transformation T such that

This implies that TTST = 1, or equivalently S~! = T'T'. This condition does not uniquely
determine 7'. In fact there are many orthonormalization techniques, e.g., Gram-Schmidt or-
thonormalization or Cholesky decomposition.
Usually we will have chosen the basis functions |y,,) for a physical reason, e.g., atomic orbitals,
so that we would like the orthonormal basis functions to be as close to the original basis as
possible, i.e, we ask for the basis transformation 7' that minimizes
S Henh = b I = 32| 32 end T = 8 |
=Tr(T" - 1)S(T - 1)
= Tr (T'ST -T'S — ST + S).
——

=1

Given an orthonormalization 7", we can obtain any other orthonormalization T by performing
a unitary transformation, i.e., T = TU. Writing U = exp(iAM ), we obtain the variational
condition

0=Tr(+iMT'S — iSTM) =i Tr (T'S — ST)M,

which is fulfilled for ST = TS, i.e., ST? = T'ST = 1. The second variation at T' = S~ 1/2

1
5T (M?S'? + 82 M?*) >0

is positive, since S and the square of the hermitian matrix M are both positive definite. Hence
the Lowdin symmetric orthogonalization [14]

TLO'wdin - 5_1/2

minimizes the modification of the basis vectors.
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B Some useful commutation relations

Expression of commutators of products of operators can be derived by adding and subtracting
terms that differ only in the position of one operator, e.g.,

[A1Ay--- Ay, Bl = AjAy-- AyB — BAjAy--- Ay
— AyAy---AyB — AjAy--- BAy
+ AyAy---BAy — Ay --- BAy 1 Ay
"
+ A\BAy--- Ay — BAjAy--- Ay
_ZAl Ay [Ai, Bl Ay -+ Ay

The following special cases are particularly useful
[AB,C]=A[B,C] + [A, C] B
=A{B,C}—-{A, C}B
[A, BC]=B[A, C] + [A, B|C
=[A, B]C + BIA, (]
={A, B}C — B{A, C}
[AB, CD] = A [B,C]D+ AC |B, D] + [A,C] DB+ C [A, D|B
= A{B, C}D — AC{B, D} +{A,C}DB — C{A, D}B

Important examples are

[cjcj, cﬂ = c;réj,V

T — —¢.05;
[clc],cﬁ/ = —¢;0;n

For the commutator of products of creation and annihilation operators appearing in one- and
two-body operators we find

cley, chey| = [eley, ] eyt el [eley. 5] = Gla) cley = (810 e,

and

cleleyers chea] = (tla) elele,e + (kla) clelege, — (8l)) clehee, = (81i) chelee,
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C Pauli matrices and spin rotations

The Pauli or spin matrices are defined as

01 0 —2 1 0
0‘1‘2 O'y: i O-Z:
10 t 0 0 -1

T

They are hermitian, i.e. o] = o0,, and 0?7 = 1. Therefore their eigenvalues are 1. The

eigenvectors of o, are |m,), m, = +1:
1 0
oy (0) nd 1) (1)

oglm.) =] —m.) 0y|m2> =1im.| —m.) o0.lm.) =m.[m.).

For these vectors we find

The products of the Pauli matrices are o, 0, = i0,, where the indices can be permuted cycli-
cally. From this follows for the commutator

04, 0y] = 2i0,

while the anticommutator vanishes:
{04,0,} =0

Finally a rotation by an angle o about the axis n changes the spin matrices

Ri() = e7 ™72 — cos(ar/2) — isin(a/2) n- & .
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3.2 W.M.C. Foulkes

1 Introduction

The tight-binding method is the simplest fully quantum mechanical approach to the electronic
structure of molecules and solids. Although less accurate than density functional calculations
done with a good basis set, tight-binding calculations provide an appealingly direct and trans-
parent picture of chemical bonding [1-10]. Easily interpreted quantities such as local densities
of states and bond orders can be obtained from density-functional codes too, but emerge much
more naturally in a tight-binding picture. Another advantage of tight-binding calculations is that
they require much less computer time than more sophisticated electronic structure calculations,
whilst still producing qualitatively and often quantitatively correct results. Chemists also value
the efficiency and intuitive simplicity of the tight-binding method, although they usually refer
to it as Hiickel theory.

In non-interacting systems, tight-binding calculations are so simple that analytic results are of-
ten attainable — a rare occurrence in the study of electrons in molecules and solids. Interacting
systems are much more difficult to deal with and the scope for analytic work is correspondingly
smaller, but the multi-band Hubbard model, which may be viewed as an interacting generaliza-
tion of a tight-binding model, forms the starting point of much of the work in the field.

Section 2 provides a simple introduction to tight-binding methods for non-interacting systems,
showing how to obtain the Hamiltonian matrix by choosing a basis of localized atomic-like
basis functions and using the variational principle. The distinction between the semi-empirical
and ab-initio tight-binding methods is clarified and a few example semi-empirical tight-binding
calculations are discussed.

Section 3 addresses the relationship between non-selfconsistent tight-binding models and density-
functional theory, which was not fully understood until the late eighties [11,12].

Section 4 introduces the multi-band Hubbard generalization of the tight-binding approximation
and explains how it may be used to describe systems of interacting electrons. The rotational
symmetry of the Coulomb interaction places strong restrictions on the form of the electron-
electron interaction part of the multi-band Hubbard Hamiltonian: for an s shell the interaction
Hamiltonian has only one free parameter; for a p shell there are two free parameters; and for a
d shell there are three free parameters. It turns out that some of the most widely used Hubbard-
and Stoner-like models of interacting electrons are missing terms that must be present by sym-
metry and are not necessarily small [13].

2 Tight-binding models

All electronic structure methods require the calculation of sets of one-electron orbitals ;(7).
In most cases, these are solutions of a non-interacting or mean-field Schrodinger equation of
the form!

IThis chapter uses dimensionless equations involving only the numerical values of physical quantities. The
numerical values are as measured in Hartree atomic units, where the Dirac constant i = h/2w, the mass
of an electron m., and the elementary charge e are all equal to unity, and the permittivity of free space
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(-39 + Veal) wslr) = calr). (1)

The effective potential V. is a simple multiplicative function of position in density-functional
theory (DFT), but in Hartree-Fock theory it becomes a non-local integral operator, and in quasi-
particle theory it is both non-local and energy dependent.

Differential equations such as Eq. (1) are often solved by introducing a spatial grid and discretiz-
ing, but this approach is not much used in electronic structure theory. Instead, most electronic
structure methods represent the orbitals as linear combinations of basis functions and recast the
Schrodinger equation in matrix form. The finite-element approach so prevalent in engineering
also uses a basis set, although the basis functions in that case are polynomials defined within
polyhedral volume elements, patched together at the interfaces between elements. The clearest
way to explain the basis-set approach is via the variational principle.

2.1 Variational formulation of the Schrodinger equation

The problem of finding the eigenfunctions of a Hamiltonian H is equivalent to the problem of
finding the stationary points (by which, of course, I mean the stationary wave functions) of the
functional

B[] = (| H[p) )

subject to the normalization constraint

N[Y] = ($l) = 1. 3)

The constrained minimum value of E[¢)] is the ground-state eigenvalue; the values of E[¢] at
other stationary points are excited-state eigenvalues.
Suppose we make a guess, 1;, at the 7’th energy eigenfunction v/;. We can then write

3 = Vi + At
Y (i + Al + A2

where A); is small if the guess is good. Since E[v)] is stationary with respect to normalization-

conserving variations about 1);, the energy estimate
B[] = & + O[(A¢,)?]

has a second-order error. If Av; is small, the error in ¢; is even smaller.

The practical importance of this simple observation is hard to exaggerate. It explains why
variational approaches often yield reliable energies even when the approximate eigenfunctions
are quite poor.

o is equal to 1/(4m). Distances are made dimensionless by dividing by the Hartree atomic unit of length,
apg = 47r5052/(m662) ~ 0.529 x 10~'%m, also known as the Bohr radius. Energies are made dimensionless
by dividing by the Hartree atomic unit of energy, h?/(ma?) = €*/(4megag) ~ 27.2eV.
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A convenient way to guess a wave function is to choose a finite set of M basis functions,

{o1(7), da(r), ..., dar(r)}, and express ¢(r) as a linear combination:
M
Ule,m) =) cadalr). €
a=1

Basis sets commonly used to approximate the energy eigenfunctions of atoms, molecules and
solids include atom-centered Gaussians, plane waves, and atomic orbitals. The values of the
expansion coefficients can be chosen by seeking the stationary points of

E[Y] = E(c) = / (Z cagzﬁa) H (Z cﬂ@g) d*r =Y ¢ Hyycy, (5)

a=1 B=1 o,B

subject to the normalization constraint

~ M * M M
N[w] = N(C) = / <Z ca¢o¢> (Z CB¢B> d37“ = Zc’; Sa,B Cg = 1 , (6)
a=1 B=1 o,
where

H, ;= / oL H ¢z = Hamiltonian matrix, (7)

Sop = / ¢n¢s = overlap matrix. (8)

Given a basis set, the Hamiltonian and overlap matrix elements must be obtained by integration.
The integrals can be evaluated analytically in some cases, but usually have to be estimated
numerically, perhaps using a grid-based quadrature method. Some basis sets (such as plane
waves) are orthonormal, in which case S,3 = 0,4 is the identity matrix. The Hamiltonian and
overlap matrices are always Hermitian.

By choosing a finite basis set, we have replaced the problem of finding the stationary points
of a functional E[@/;] by the problem of finding the stationary points of a function of many
variables E(cy, ca, ..., cpr). This is a great simplification. If the basis set is poor, the functions
() = M ¢o do(r) that make E(cy,c,...,cp) stationary subject to the normalization
constraint ), ¢, S,5¢s = 1 may not be very similar to the exact eigenfunctions, but at least

we will have the variational principle in our favor when evaluating energies.
It is straightforward to show that F(c) is stationary subject to N(c) = 1 when

M M
ZH(X565:€ZSQ505, (9)
B=1 B=1

where € is a Lagrange multiplier for the normalization constraint. This generalized Hermitian
matrix eigenproblem (“‘generalized” because of the presence of a positive-definite Hermitian
overlap matrix S) yields M real eigenvalues ¢; and M eigenvectors ¢; with components ¢;,,

a=1,2,..., M. The corresponding approximate eigenfunctions are
. M
hi(r) =Y Ciadal(r). (10)

a=1
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Standard computational libraries such as LAPACK contain robust and well-tested subroutines
for solving generalized eigenvalue problems.

Another way to think about the linear variational method is in terms of projection operators. The
generalized matrix eigenproblem of Eq. (9) may be derived by seeking the stationary points of
()| PHP|1)) subject to the normalization constraint ()| P|y)) = 1, where P is the projector
onto the space spanned by the basis functions. The linear variational method produces exact
eigenfunctions of the projected Hamiltonian HP = PHP.

The Rayleigh-Ritz variational principle tells us that M approximate eigenvalues, €, €, ...,
€)1, obtained by solving a linear variational problem with a basis set of M functions are upper
bounds for the corresponding exact eigenvalues:

€1 > €1, € >€, ..., €y =€y
Improving or extending the basis set can only lower these bounds. This convenient systematic
convergence underlies the success of the linear variational approach and explains why it is so
frequently used to solve the Schrodinger equation.

2.2 The tight-binding Hamiltonian matrix

If the basis functions used in the linear variational method are atomic or atomic-like orbitals,
the generalized matrix eigenvalue problem is called a tight-binding model. The phrase “atomic-
like” refers to orbitals that resemble atomic orbitals in form but have been modified in some
way. Atomic orbitals centered on different atoms are not automatically orthogonal, so one com-
mon modification is to replace them by orthogonalized linear combinations. More generally,
since there is no guarantee that atomic orbitals are a good basis for the strongly delocalized
energy eigenfunctions found in many molecules and solids, one can often gain accuracy by
changing the atomic orbitals in simple ways, using the variational principle as a guide. A more
extreme approach is to replace the atomic orbitals by localized linear combinations of exact
energy eigenfunctions for the solid, guaranteeing that the basis set is able to represent those
eigenfunctions exactly.

2.2.1 Ab initio tight binding

The most straightforward way to construct a tight-binding model is to choose an atomic-like
basis set and evaluate the Hamiltonian and overlap matrix elements defined in Eqgs. (7) and (8).
If the basis functions and (pseudo-)potential are represented as linear combinations of Gaus-
sians, the necessary integrals can be evaluated analytically, but in most other cases they must
be found using numerical quadrature methods. If one is willing to evaluate the matrix elements
repeatedly as the charge density iterates to self-consistency and the effective potential changes
(see Sec. 3 for a fuller discussion), this ab initio tight-binding approach [14—16, 7] can be used
to solve the full DFT or Hartree-Fock equations.

When used in this manner, the tight-binding method differs little from the atom-centered Gaus-
sian methods used by quantum chemists. There is, however, a difference of emphasis: scientists
who label their approach as tight binding use minimal basis sets, often consisting of just a few
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basis functions on each atom. They view the loss of accuracy caused by the limitations of
the basis as a price worth paying for the sake of simplicity. Most quantum chemists prefer to
increase the number of Gaussians until the results of their calculations converge.

Using a minimal basis set of atomic-like functions is most successful when the distances be-
tween atoms are reasonably large compared with the ranges of the basis functions. This is
known as the tight-binding limit. In nearly-free-electron sp-bonded metals such as aluminium,
where the valence wave functions look more like plane waves than atomic orbitals, minimal
tight-binding basis sets are not very effective. This does not prevent the use of ab initio tight
binding, but means that more basis functions are required to obtain accurate results. In d- and
f-electron metals, the tight-binding description works better for the d and f bands than for the
more delocalized s and p bands.

It is tempting to avoid the complication of dealing with an overlap matrix by orthogonalizing the
basis functions. This is easily accomplished using the modified Gram-Schmidt algorithm or by
multiplication with the inverse square root of the overlap matrix (which always exists because
S is Hermitian and positive definite). In most cases, however, orthonormalizing the atomic-like
basis functions is a bad idea. Generalized eigenvalue problems are not much harder to solve than
ordinary eigenvalue problems, so little computer time is saved, but the complexity of the method
is increased because the orthonormalized basis functions include contributions from atomic-like
orbitals centered on several different atoms and lack the simple rotational symmetries of atomic-
like orbitals. The complicated dependence of the orthonormalized orbitals on the local crystal
structure also makes it harder to find simple parametrizations of the Hamiltonian matrix.

2.2.2 Wannier tight binding

A more sophisticated approach to ab initio tight binding is to use a basis of localized linear
combinations of exact eigenfunctions; these are called Wannier functions by physicists and
Foster-Boys orbitals by chemists [17,18]. Since there is one Wannier function for every energy
eigenfunction, the Wannier functions span the band(s) from which they were created. Solving
the tight-binding matrix eigenvalue problem in the Wannier function basis therefore reproduces
those energy bands and eigenfunctions exactly. This means that using the Wannier basis for, say,
electronic transport calculations, ought to give accurate results. The “maximally localized” [18]
Wannier bonding orbitals for Si and GaAs are illustrated in Fig. 1.

Wannier-based tight-binding methods preserve many of the advantages of simpler tight-binding
approaches without the inaccuracy, but Wannier functions are complicated in form and hard
to calculate without solving the Schrodinger equation. Furthermore, although carefully con-
structed Wannier functions decay exponentially with distance away from the atom or bond on
which they are centered [18], they may not decay rapidly. The Hamiltonian and overlap matrices
can be quite long-ranged and may have non-zero matrix elements between Wannier functions
on distant atoms, making them inconvenient to use. Finally, if an atom moves, the Wannier
functions and all matrix elements involving them have to be recalculated from scratch, which is
inefficient.
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Fig. 1: Maximally-localized Wannier functions constructed from the four valence bands of Si
(left) and GaAs (right; Ga at upper right, As at lower left). The Wannier functions are real and
have opposite sign on the blue and red isosurfaces. Not surprisingly, the functions look like o-
bonded combinations of sp> hybrid orbitals. (Reprinted figure with permission from Ref. [18],
Copyright 2012 by the American Physical Society.)

2.2.3 Semi-empirical tight binding

A much simpler approach is semi-empirical tight-binding [2, 3], in which the Hamiltonian and
overlap matrix elements are treated as adjustable parameters and fitted to the results of exper-
iments or more sophisticated calculations. The basis functions never appear explicitly and are
used only to help justify the chosen forms of the Hamiltonian and overlap matrices. To limit
the number of fitting parameters, it is normally assumed that the inter-atomic matrix elements
extend to first or second neighbors only. Many semi-empirical tight-binding models also set
the overlap matrix to the identity, assuming implicitly that the underlying basis set has been
orthonormalized.

The drawbacks of this approach are obvious: it is approximate and may or may not give accurate
results; but it does incorporate the essential wave-like physics described by the Schrodinger
equation. To the best of my knowledge, it is the least computationally intensive fully quantum
mechanical method available. To show what can be done using relatively modest computational
resources, Fig. 2 is a snapshot from a 95 fs semi-empirical tight-binding molecular-dynamics
simulation of a radiation damage cascade in a box of 13,440 Cu atoms subject to periodic
boundary conditions.

2.2.4 One-, two- and three-center integrals

In an attempt to simplify the construction of semi-empirical tight-binding models, various ap-
proximations are made. The tight-binding description of the electronic structure of a given
crystal structure then requires only a handful of fitting parameters. If the tight-binding model is
to be used in a molecular-dynamics simulation, where the atoms are moving and the structure
is changing, these parameters become functions of the local structure of the solid. For example,
a Hamiltonian or overlap matrix element involving atomic-like basis functions on two different
atoms is a function of the separation between those atoms and perhaps also of the positions of
other neighboring atoms.
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Fig. 2: The final configuration of a 95 fs tight-binding molecular dynamics simulation of a
radiation damage cascade in Cu. The cascade was initiated by giving 1 keV of kinetic energy
to a single atom in the middle of a simulation cell of 13,440 atoms. Only atoms that have
moved significantly are shown. One of the advantages of the tight-binding method relative to
classical force-field methods is that it has access to electronic properties. Here we show the
instantaneous atomic charges.

The most useful approximation concerns the form of the potential V(7), which is often as-
sumed to be a superposition of short-ranged spherical contributions, one centered on each atom:

Ver(r) = > Verrs(Ir — di) (11)
I

where d; is the position of the nucleus of atom [ (or the ionic core of atom [ if, as is usual,
the tight-binding model describes the valence electrons only). DFT calculations for many
molecules and solids have shown that Eq. (11) is often quite a good approximation.

A general Hamiltonian matrix element between basis function o on atom / and basis function
£ on atom .J then takes the form:

Hiosp = (G1a|H|b35) = (d14] (— %V2 + Z Ve (| — dK|)) |65) - (12)
K

If I and J happen to be the same, / = .J, the matrix element includes one- and two-center
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contributions:

(b1alH|615) = (610l (—%v%vem) 160+ > (GralVerlors) . (13)

Vv TV
one-center two-center crystal field

The one-center term can be calculated considering a single spherical atom in isolation. The
two-center crystal-field terms, which are often ignored, depend on the relative positions of two
different atoms and describe how the Hamiltonian matrix elements between orbitals centered
on atom [ are affected by the potential of atom K.

If I and J differ, the Hamiltonian matrix elements include two- and three-center contributions:

(OraE1055) = (0 (=57 + Vews + Ves )l 4 3 (onalVenlons). (19

N _ K (£1,J)

Vv Vv
two-center electron hopping three-center

The two-center electron hopping contributions are the same as in a dimer involving atoms / and
J only and can be calculated without considering the rest of the solid. The three-center contri-
butions are typically small and, like the crystal-field terms, are often ignored. (Both crystal-field
and three-center terms are normally retained in ab initio tight-binding calculations.) The overlap
matrix elements can be decomposed in an analogous manner, but include one- and two-center
contributions only.

If we make the two-center approximation (ignore all three-center integrals) and neglect crystal-
field terms, the Hamiltonian matrix for a solid or molecule becomes very simple. It contains
one-center terms, which can be calculated by considering an isolated “atom” with a spherical
Hamiltonian, and two-center electron hopping terms, which can be calculated by considering
an isolated “dimer” with a cylindrical Hamiltonian. The words “atom” and “dimer” are in quo-
tation marks because the potential Vi ; associated with atom / may not resemble the potential
of an isolated atom and may depend on the environment in which atom [ is located.

2.2.5 Slater-Koster parameters

Most tight-binding models use atomic-like basis functions of the form Rnl(r)f/}m(Q, ¢), where
R,;(r) is a radial function, Y;"(6, ¢) is a real spherical harmonic defined by

1

Y= — [(=1D)"Y™ - Y], m <0, 15
l G [(=1)™Y, ] (15)

Y=y, m =0, (16)
- 1

V"= —[(-1)"Y"+ Y], m > 0, (17)

V2

and Y;™ is a conventional complex spherical harmonic. The real spherical harmonics are the
Cartesian s, p and d orbitals familiar from high-school chemistry lessons and are illustrated in
Figs. 3 and 4.
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Fig. 3: The real spherical harmonics 3711 = Du» 171’1 = py and Y0 = p.. The distance from the
origin to the surface in direction (0,¢) is proportional to |Y" (0, ¢)|?

Fig. 4: The | = 2 real spherical harmonics 372_2 = dyy, 372_1 = dy., }721 = d,,, 5722 = dy2_p2,
and Yy = ds.2>_,2. The distance from the origin to the surface in direction (0,¢) is proportional

to [Y™(0, )|

Because the effective potential Vi of an atom is assumed to be spherically symmetric, there
is only one non-zero one-center matrix element for every distinct choice of the compound in-
dex nl. Two-center matrix elements may be calculated by considering an isolated dimer with
effective potential Vg ; + Vg, 7. If this dimer is aligned with the z axis, the z-component of
angular momentum is a good quantum number and matrix elements between basis functions
with different values of the azimuthal quantum number m are zero. This reduces the number of
non-zero two-center matrix elements substantially.

As an example, consider a dimer oriented along the z axis. One of the two atoms has a valence
shell of p orbitals and the other a valence shell of d orbitals. For simplicity, we assume that the
basis set is orthonormal, implying that the orbitals on the two atoms have been orthogonalized
in some way. The non-zero one-center matrix elements involving orbitals on the first atom all
have the same value, which we call V},; the one-center matrix elements involving orbitals on the
second atom are all equal to V;;. The non-zero hopping matrix elements linking the two atoms
have only two possible values, /4, and 4., corresponding to pairs of orbitals with m = 0
or m = 1. Since no p orbital has m = +2, there are no non-zero hopping matrix elements
with m = +£2, even though there are d orbitals with m = +2 on the second atom. Thus, the
electronic structure of the dimer is defined by just four numbers. Quantities such as V,,, Vg,
hpdo, and hy,g, are called Slater-Koster parameters [1].



Tight-Binding Models and Coulomb Interactions 3.11

Fig. 5: A two-center matrix element between p. orbitals on atoms I and J separated by the
vector d;; = djy — d;. Each p, orbital may be expressed as a linear combination of p,, p, and
p. orbitals quantized relative to the d;; axis, so the matrix element is a linear combination of
the Slater-Koster parameters hyy, and hyp,.

We have not yet worked out how to evaluate two-center Hamiltonian matrix elements for dimers
not aligned with the global z axis. An example of this problem is shown in Fig. 5. The two p,
orbitals are neither parallel nor perpendicular to the dimer axis d;;, so the two-center hopping
matrix element between them is neither h,,, (the value for two p orbitals pointing along d; )
nor hy,,. (the value for two p orbitals pointing perpendicular to d;;). Fortunately, rotating a
real spherical harmonic )7[” always produces a linear combination of real spherical harmonics
with the same value of [ but different values of m. More precisely, if the operator R¥ rotates
the function to which it is applied by w radians about an axis parallel to the unit vector w, the
rotated real spherical harmonic f{“’fﬁm can be expressed as a linear combination of the 2/ + 1
unrotated real spherical harmonics with the same value of {:

RY™ =Y Dl (w)Y" (18)

This allows us to express the orbitals pictured in Fig. 5 as linear combinations of orbitals aligned
with the dimer axis, and hence to express the two-center Hamiltonian and overlap matrix ele-
ments for the tilted dimer in terms of the Slater-Koster parameters. Slater and Koster [1] provide
a convenient table expressing the two-center matrix elements of the rotated dimer in terms of
the Slater-Koster parameters and the direction cosines of the dimer axis. Given the one-center
Slater-Koster parameters for all atom types and the two-center Slater-Koster parameters for all
pairs of atom types at all inter-atomic separations, one can use this table to write down the
two-center tight-binding Hamiltonian for any molecule or solid built of those atoms.

2.2.6 Fitting and transferability

Semi-empirical tight-binding Hamiltonian and overlap matrix elements (if the model is non-
orthogonal) are often fitted to bandstructures. This makes sense if individual electronic eigen-
values and eigenfunctions are the quantities of interest, as is the case, for example, in electronic
transport calculations, but is not appropriate if the tight-binding model is to be used to calculate
total energies or inter-atomic forces. In that case it is better to fit to total energies and/or forces
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calculated for a variety of structures using a more accurate method such as DFT with a good
basis set. The wider the range of local atomic environments included in the data set, the better
the results. Large tabulations of fitted tight-binding parameters are available [19].

It would be impractical to refit the parameters of a tight-binding model for every different ar-
rangement of the ions in a molecular dynamics simulation, so assumptions have to be made
about how the matrix elements between nearby orbitals depend on ionic positions. The short
range of the atomic-like basis functions, and the observation that the form of the potential in
one region of a solid or molecule does not normally depend strongly on the positions of distant
atoms, suggest that only the local ionic arrangement is important. It does not, however, imply
that the mapping from ionic positions to matrix elements is simple. If the assumptions made
in parametrizing a tight-binding model are wrong or inaccurate, it is likely to produce poor re-
sults whenever the local ionic arrangement is far from any of the arrangements included in the
training set. In such cases we say that the tight-binding model is not “transferable”.

In general, despite all the work that has been done, parametrizing and fitting semi-empirical
tight-binding models remains a dark art. Some of the most successful attempts [20] are among
the simplest and were constructed using very little data, while highly-fitted models often prove
brittle and show poor transferability. The problem of constructing a transferable semi-empirical
tight-binding model is similar in nature to the problem of constructing a transferable classical
force field and leads to similar frustrations. Tight-binding models are better than force fields
because they are properly quantum mechanical — but they are only an approximation. As we
illustrate with a few examples below, semi-empirical tight-binding is at its best when used to
build a qualitative understanding of chemical bonding.

2.3 Example semi-empirical tight-binding calculations

2.3.1 The hydrogen molecule

Two hydrogen atoms are held a distance d apart and approximated using a tight-binding model
with a single atomic-like s orbital on each atom. The Hamiltonian and overlap matrices are

V h 1 s
H = d S= : 19
The eigenvectors are

1 1 1 1
N P 2
e 2(1+ s) <1> and e 2(1— s) (—1> ’ 0

normalized such that

as is appropriate for a generalized eigenvalue problem. The corresponding eigenvalues are
V+h
= ) 22
€+ 1+ s (22)

It is reassuring to see the bonding and anti-bonding linear combinations of basis functions
emerge naturally from the analysis.
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Fig. 6: A schematic representation of the tight-binding Hamiltonian matrix of a ring of hydrogen
atoms subject to periodic boundary conditions.

2.3.2 Bandstructure of a ring of hydrogen atoms

Consider a chain of N hydrogen atoms subject to periodic boundary conditions (i.e., with the
ends joined together to form a ring). A schematic representation of the Hamiltonian matrix is
shown in the Fig. 6. As in the case of the H, molecule, there are on-site (diagonal) Hamiltonian
matrix elements V' and nearest-neighbor hopping matrix elements /. This time, however, we
assume for simplicity that the basis set is orthonormal. We shall also assume, as usually turns
out to be the case, that A is negative. The Hamiltonian is an N x N matrix with N large, so it
looks as if it will be difficult to find the eigenvalues and eigenvectors. If we remember to use
Bloch’s theorem, however, the problem becomes simple.

A normalized Bloch-like linear combination of basis functions takes the form

| N
Vk,) = —= D |¢n) €77, (23)
\/N n=0
where
27p .
kp:m with p=0,1,2,..., N — 1, 24)

and a is the bond length. The values of &, are chosen such that |1, ) satisfies the periodic bound-
ary conditions: (¢o|vy,) = (dn|tr,). Since exp (ik,yyna) = exp (ik,na) for any integer n,
we lose nothing by restricting p to the range 0 < p < N.

Applying the projected Hamiltonian H? = > mm [&m) Hinn(¢n| to the Bloch function [¢)y,)
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1 2 1 2 1 2

Lattice parameter 2a

Fig. 7: A schematic representation of the tight-binding Hamiltonian matrix of part of a large
ring of diatomic molecules subject to periodic boundary conditions.

gives

HP|yy,) =

1 N-1 1 N-1
-V N eikpna + heikpa . eikp(nfl)a

Noting that [¢_1) = |¢,—1) and |¢n) = |¢o) because of the periodic boundary conditions, this
simplifies to
H ) = [V 4 h(e™" 4 e7)] [4h,), (26)

showing that |4, ) is an eigenfunction of HT with eigenvalue
e(kp) =V + 2hcos(kya) . (27)

As the size NV of the ring increases, the allowed values of £, get closer and closer together
and the cosinusoidal bandstructure of the infinite tight-binding ring is sampled more and more
densely.

2.3.3 Bandstructure of a ring of diatomic molecules

The tight-binding model pictured in Fig. 7 has two orbitals per unit cell and produces two energy
bands. There are N unit cells (2N atoms) altogether and N inequivalent values of k consistent
with the periodic boundary conditions. For simplicity we set the diagonal Hamiltonian matrix
elements V; and Vj; to zero; the nearest-neighbor off-diagonal Hamiltonian matrix elements h
and g (both of which are < 0) alternate along the chain.

Since we have two basis functions per unit cell, we can construct two Bloch functions at each
allowed value of k:

1 , 1 A
p0) = TN > et g,,), [p?) = i > etng, o),
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e(k)/2lhg

ka/mt

Fig. 8: The bandstructure of the tight-binding ring of dimers in the limit as the number N of
two-atom unit cells tends to infinity. There are two bands because there are two basis functions
per unit cell.

where |¢,,1) and |¢,, o) are the two basis functions in unit cell n. The unit cell now has length
2a, so the Brillouin zone is —7/(2a) < k < 7/(2a). The corresponding vectors of orbital
coefficients, ¢() and ¢®, with components

1 .
CS% - ,/Ne”ma’ Cn% =0,
and
c 2) _ 0 c 2) _ Leiana
n,l = n,2 \/N y
satisfy

Hc(l) — hc(2) 4 ge+ik2ac(2),
Hc® = helV + gem*2ecM),

where H is the 2N x 2N Hamiltonian matrix. It follows that the linear combination v =
a1 + ay,e®@ is an eigenvector of H if

0 h + ge—ikQa aq —\ aq
h + geik2a 0 (6%) N Q9 .

The two energy eigenvalues e, (k) at wavevector k are the eigenvalues of this 2 x 2 matrix.
Writing h = (1 + A)hg and g = (1 — A)hy, some algebra shows that

s (k) = £2[ho|\/1 — (1 — A2) sin®(ka)

Fig. 8 shows the bandstructure in the case when A = 0.1.
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Fig. 9: The N, x Ny x N3 parallelepiped supercell to which periodic boundary conditions are
applied.

2.3.4 Bandstructure of a face-centered-cubic solid

Consider a large but finite face-centered-cubic crystal consisting of a block of N; x Ny x Nj
parallelepiped unit cells, as illustrated in Fig. 9. Apply periodic (not Bloch) boundary condi-
tions, so that an electron leaving one face of the block immediately reappears at the equivalent
point on the opposite face. The primitive Bravais lattice vectors are

a a

A = %(071,1), Ay = 2(170;1)7 Az = 2<17170)7 (28)
and the corresponding reciprocal vectors are
2 2 2
B, = _ﬂ-(_LLl)a 32:1(17_171)7 B3:_7T(1717_1)‘ (29)
a a a

The N1 N, N3 distinct k vectors consistent with the periodic boundary conditions are

E=""B+"2B, + "B, with 0<m <N, 0<my<Ny, 0<mg<Ns (30)
Ny Ny N
As in the previous examples, we approximate the system as an orthogonal tight-binding model
with one atomic-like s orbital per atom. The diagonal matrix elements V are set to zero (defin-
ing the zero of energy) and the nearest-neighbor hopping matrix elements are equal to h. Matrix
elements linking orbitals on more distant neighbors are assumed to be zero. The Bloch linear
combinations of basis functions are

Uk (31)

_; ik-d
>_ m§’¢d>e )

where the sum is over the positions d of all N; Ny N3 atoms in the block and |¢4) is the basis
function on the atom at d. Eq. (31) is a three-dimensional analogue of the one-dimensional
Bloch linear combination used in Sec. 2.3.2.
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Applying the projected Hamiltonian H7 = 3° a.a |9d) Haa (¢a| to the Bloch linear combina-
tion gives

~ 1 ~ )
HP — HP ik-d
V1) N Ed |pa)e

1 .
- —E § : , | HP
NN N; & & [Gar) (G| H |0

>eik-d

= \/M;TQN?) de [Gar)e™ Xd:wd/ [ |gq)e™ (@), (32)
The only non-zero contributions to the inner summation are those for which d is a nearest neigh-
bor of d’, in which case the matrix element is equal to 4. The summation over all lattice vectors
d may therefore be replaced by a summation over the positions of the 12 nearest neighbors of
the atom at d’. Denoting the vectors from the atom at d’ (or any other lattice site) to its 12
nearest neighbors by n, we obtain

- 1 o . .
DL S (O W IMT
d’ n n

Just as for a ring of hydrogen atoms, the Bloch functions are automatically eigenvalues of the
tight-binding Hamiltonian. This is generally the case when there is only one basis function per
unit cell, since the translational symmetry is then sufficient to determine the energy eigenfunc-
tions completely. The sum over the 12 nearest neighbors is easily evaluated to obtain

kya k.a k.a kya kya kya
_4 feya@ fza nza Nz Rz Fy@\ |
(k) h{cos( 5 )cos( 5 >+cos( 5 )cos( 5 >+COS( 5 )cos( 5 )}

This simple expression provides an accurate description of the bandstructure of any face-cen-
tered-cubic crystal of weakly-interacting atoms with outermost s shells. All of the Noble gases
except helium crystallize into face-centered cubic structures under sufficient pressure, and all
have bandstructures of this form.

3 Tight-binding models and density-functional theory

3.1 Introduction

Section 2 showed how the tight-binding approximation can be used to find approximate solu-
tions of one-particle Schrédinger equations of the form

{-%v? T veff(r)} Gr(r) = estn(r). (34)

This is useful but by no means the end of the story, since tight-binding models are also used
to describe how the total energy of a solid or molecule varies as the atoms move around [2,
3,7,9,11,12,14,15]. Any tight-binding model capable of providing a reliable account of the
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structure-dependent total energy can be used as an engine for the calculation of the inter-atomic
forces (gradients of the total energy with respect to atomic positions) required for quantum
molecular dynamics simulations. Tight-binding quantum molecular dynamics simulations are
less accurate than their DFT equivalents but require much less computer power.

If one wishes to describe total energies, calculating the electronic eigenvalues ¢; of the occupied
valence states is not sufficient [21]. The total energy also includes another term that represents,
roughly, the repulsive interaction between the ionic cores:

Epey(d) =Y €i(d) + Eionion(dD), (35)

7 occ

where d = {d,d,,...,dy,} is shorthand for the set of all ionic positions. (The dependence
of the electronic eigenvalues ¢; on d arises via the position dependence of the Hamiltonian and
overlap matrix elements.) The ion-ion interaction energy Ejy, ion(d) must also be parametrized
and/or fitted and is often but not always assumed to be pairwise in form:

10n 10n Z V;gil:on d - dJ)a (36)
I>J

where the sum is over all pairs / and J of ions and d; and d; are the corresponding ionic
positions.

The form of Eq. (35) is reminiscent of the expression for the total energy in Hohenberg-Kohn-
Sham DFT,

E=) ¢ /VKS )d3r+/VnuC( r)d’r+ / / — d3r’d3r+Exc[] +En,

% occ (37)
where n(r) is the electron number density and the eigenvalues are solutions of the Kohn-Sham
equation, which looks like Eq. (34) with a density-dependent effective potential of the form:

Visl(n, ) = V() + [ L+ Vil ) (8)
The first term on the right-hand side of Eq. (38) is the potential exerted on the electrons by the
classical, point-like nuclei; the second, known as the Hartree term, is the Coulomb potential
of the electron charge cloud; and the third is the exchange-correlation potential, which is dis-
cussed below. The second term on the right-hand side of Eq. (37) cancels the potential energy
contribution to the sum of energy eigenvalues, leaving only the kinetic energy contribution;
the third, fourth and fifth terms add the energy of interaction between the electrons and nuclei,
the Coulomb interaction energy of the electronic charge cloud, and the exchange-correlation
energy. The final term is the classical Coulomb interaction energy of the nuclei with each other.
A recap of the basics of DFT is given in Sec. 3.2 below. For the time being, we note only
that the DFT total-energy expression, which experience has shown is usually very accurate,
consists of a sum of eigenvalues and additional “ion-ion repulsion” terms. This looks quite
like the tight-binding total energy expression, except that: (i) the DFT ion-ion repulsion terms
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are density dependent and not obviously simple or pairwise; and (ii) the Kohn-Sham effective
potential depends on the electron density (7 ), which in turn depends on the eigenfunctions via
() = 3 e [13()|

The dependence of the Kohn-Sham potential on the wavefunctions obtained by solving the
Kohn-Sham equation means that an iterative method of solution is required. The first step is
to guess an input electron density n"(r), which might perhaps be a superposition of atomic
densities. The corresponding Kohn-Sham potential Vis([n"],7) can then be calculated and
the Kohn-Sham equation solved to find the output wavefunctions and hence the output den-
sity (1) = > o [0 ()%, The input and output densities differ in general, so the next
step is to adjust the input density to try to reduce the difference between the input and output
densities. After an iterative series of adjustments, a “self-consistent” electron density 7(r)
is obtained, for which the wavefunctions 1y;() obtained by solving the Kohn-Sham equation
with input potential Vis([no], ) regenerate nq(7) exactly. In tight-binding total energy calcula-
tions, by contrast, the Schrodinger equation only has to be solved once and no self-consistency
is required.

The aim of the rest of this section is to explain the link between DFT and tight-binding theory.
Can we derive a non-selfconsistent tight-binding model with a simple ion-ion repulsion term
from the much more complicated self-consistent formalism of DFT?

3.2 Review of density-functional theory

Density-functional theory [22,23] looks like a mean-field theory, but is remarkable because it
provides an exact mapping from a system of interacting electrons to a system of non-interacting
electrons moving in an effective potential that depends on the electron density. Solving the
self-consistent non-interacting problem gives, in principle, the exact interacting ground-state
energy Fjy and electron density ng(7) for any given arrangement of the nuclei. The success of
DFT, which appears to be a theory of non-interacting electrons but in fact describes a system
of interacting electrons, in part explains the success of the “standard model” of a solid as an
assembly of non-interacting electrons moving in a fixed external potential.

3.2.1 Preliminaries

The N-electron eigenfunctions ¥ (ry,7,, ..., ry) of any finite collection of atoms satisfy the
many-electron Schrodinger equation:

AR,
<__ZV2 Zln—ry Zzw—dl Z\dl—dJ\)Lp:Ew’ %)

where r; is the position of electron ¢ and Z; is the atomic number of atom [ at position d;. For
simplicity, we shorten this to

(T Ve Vg E> v = EW. (40)
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We are working within the Born-Oppenheimer approximation and treating the nuclei as station-
ary and classical, so the nuclear positions d; and nuclear-nuclear Coulomb interaction energy
E,, are regarded as constants when solving the electronic problem.

The central quantity in DFT is the electron (number) density n(r), the operator for which is

a(r) = Z(s(r — ). (41)

Since
. N N
Voo = > Valr) = [ Vo) 320 = m) P, “2)

the electron-nucleus interaction operator (or any other one-electron potential energy term) can
be written in terms of the electron density operator:

Vo = / Viwe (1) 2U(T) dPr. (43)

Note that 7 in this equation is a simple vector, not an operator; the electron position operators
71, T2, . .., Ty are buried in the definition of 72(7). Taking an expectation value of Eq. (43) gives
the obvious result:

(W|Ven| ) = / Ve (1) (@ |0 (r)|W) d*r = / Vaue (r)n(r) d°r. (44)

3.2.2 The energy functional

The first step in any derivation of DFT is to show that there exists a functional, F[n|, of the
electron number density n(7), which takes its minimum value, equal to the ground-state energy
Ey, when the density is the ground-state density no(r). Levy [24] manages this by giving an
explicit construction of such a functional:

En] = min (?|H|¥) = min (F|T + Ve + Via + Em|). (45)
—n —n

In words: given an electron density n(r), the functional E[n| is evaluated by checking all
possible normalized antisymmetric /N-electron wavefunctions which give that density to find
the one that minimizes (¥|H|¥). This minimum value is the value assigned to the functional at
the density n(r). It can be shown that it is possible to find at least one N-electron wavefunction
corresponding to any reasonable density n(r), so the constrained search always produces a
value.
The variational principle guarantees that the minimum value of E[n| occurs when n(r) is equal
to the ground-state density nq(7). The optimal wavefunction ¥ is then the ground state ¥, and
the value of the functional is the ground-state energy:

Elno] = min (| H|W) = (¥|H W) = Eo . (46)

&P—)no



Tight-Binding Models and Coulomb Interactions 3.21

Since E,, is a constant, and since the expectation value of Ven gives the same result,
(0 |Vi ) = / Via(r)n(r) dr, @7)

for all wavefunctions ¥ yielding the density n(r), the total-energy functional may be written in
the form

Eln] = ggn (U|T + Vie|¥) +/Ven(’l°)n(r) d*r + Eny = Fn] —I—/Ven('r)n('r) dr + Ey,
(48)

where the second equality defines F'[n].

The definition of F'[n] makes no reference to the positions of the nuclei, so its value depends
on the electron density n(r) only. It is thus a universal functional: given an input density
n(r), the value of F[n] is fixed regardless of the nuclear charges or positions. (Remember
that functionals such as E[n] and F'[n] are defined for all reasonable input densities n(r); the
density that minimizes E[n| depends on the arrangement of the ions, but that is a separate issue.)
Since the functional F'[n] is the same in all solids, atoms and molecules, it could in principle be
calculated once and for all.

3.2.3 Contributions to the energy functional

If, given a density n(r), we could easily evaluate FE[n], the many-electron problem would be
solved: all that we would have to do to find the ground-state density and energy would be to vary
n(r) until the functional reached a minimum. Unfortunately, but not unexpectedly, evaluating
the functional is equivalent to solving the full N-body problem and is out of the question. We
therefore have to approximate.

To make approximating the energy functional easier, it helps to identify some of the contribu-
tions to F'[n]. Since the definition of F'[n] involves an expectation value of the electron-electron
interaction, one obvious contribution is the Hartree energy:

Euln] = % / / —”|(:)_”§f| ) ratr (49)

Another large and easily recognizable contribution is the kinetic energy of the interacting elec-
trons. Although this is hard to evaluate, we can work out the kinetic energy 7s[n| of a system
of non-interacting electrons with ground-state density n(r). There is no reason to think that
Ti[n] is the same as the kinetic energy of the interacting electrons, but it is of the same order of
magnitude and relatively easy to calculate.

One way to work out 7[n| is to choose a non-interacting Hamiltonian, —%VZ + Vege(7), solve
the Schrodinger equation

57 Vaalr)| i) = ) (50)
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and occupy first /V eigenfunctions to obtain the corresponding electron density

= i) (51)

i occ

T[n] is then given by:

Z/w (——VQ) R Z € — / we(r)n(r) dr . (52)
The drawback of this technique is that it produces the value of T[n] at the density n(r) ob-
tained by solving the Schrodinger equation. If you require 7[n] at a given density n(r), it is
necessary to vary the input potential Vg (r) until the output density >, .. |:(7)|? is equal to
n(r). This may not even be possible — not every density n(r) is the ground-state density of a
non-interacting system — although it rarely if ever poses a problem in practice.
So far, then, we have identified two contributions that we believe should make up a large part

of F'[n]. The next step is to write
F[n] = Ty[n] + Euln] + Ey[n], (53)

or, equivalently,
Blnl = Tl + [ Viurynlr) v + Bulo + Bl + B, (54)

The terms we have identified have been written explicitly, and F.[n], known as the exchange
and correlation energy, is a “rubbish” term to take care of the rest of F'[n]. Like F[n], the
Hartree energy Fy[n| and the non-interacting kinetic energy 7[n| are universal functionals of
the electron density and could, in principle, be calculated once and for all. Since

Exc[n] = F[n] - Ts[n] - EH[TL]? (55)

it follows that the exchange-correlation functional Fy.[n] is also universal.

Given an electron density n(r), the non-interacting kinetic energy, the Hartree energy, the
electron-nuclear interaction energy, and the nuclear-nuclear interaction energy are all easily
obtained. The only difficult term is the unknown universal functional Ey.[n]. This includes all
of the complicated parts of the many-body problem and has to be approximated. The surprising
accuracy of simple approximations to F,.[n] is the reason DFT is so useful. The question of
how to construct good approximate exchange-correlation functionals is fascinating but too com-
plicated to discuss here. For our purposes, it is sufficient to assume that good approximations
exist and can be evaluated easily.

3.2.4 Minimization of the energy functional

We now know how to evaluate all the terms in the energy functional

E[n] = Ti[n] + Ee[n] + Eu(n] + Ew + Exc[n]. (56)
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To calculate the exact interacting ground-state density ny(r) (and hence the exact ground-state
energy Ej), we have to find the density that minimizes E/[n| subject to the normalization con-
straint [n(r)d°r = N. Mathematically, the ground-state density is determined by the station-

arity condltlon,
dE[n]
on(r)

which must hold for all density variations dn(r) that integrate to zero.

0E =

dn(r) d*r =0, (57)

The variations of the electron-nuclear and Hartree terms are easy to find:
S = 6 ( / Ve (r)n(r) d%) _ / Vie(r) 6n(r) dir. (58)

5EH_/(/ - d3 ’) n(r) d3r=/VH([n],r) on(r) d°r, (59)

where Vi([n],r) is the Hartree potential mentioned earlier. The variation of the exchange-
correlation energy,

SE.. — 5‘;%) Sn(r) d*r — / Vie([n], ) on(r) d®r 60)

defines the exchange-correlation potential Vi.([n], 7), which is easy enough to work out given
a simple approximate exchange-correlation functional.

The variation of the kinetic energy functional can be found by returning to Egs. (50), (51),
and (52). Suppose that the input potential changes from Vg to Vg + 6 Vig, causing the output
density — the density at which 75 is calculated — to change from n to n+ dn. Using first-order
perturbation theory, the sum of the occupied one-electron eigenvalues changes by

D de=> / V(1) OViege(r) 1, () dPr / n(r) §Vegr(r) d°r. (61)

i occ i occ

Hence

0T, = 0 [Z € — /Veff(r)n(r) d3r]

i occ

_ / n (1) OVoge(r) dPr — / n(r) Vs (r) + Var(r) Sn ()] &P
= - / Ve () on(r) d°r . (62)

By combining the variations of each term, we can now write down the Euler-Lagrange equation
that determines the minimum of the total energy functional:

OE = 0T + 0 Een + 0By + 0 By

— /< — Verr(7) + Vawe(7) + Vi ([n], 7) + Vie([n], r))én(T) Pr—0 63)
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Because of the constraint of normalization conservation,

/(5n(r) d*r =0, (64)

the &k = 0 Fourier component of — V¢ + Viue + Vi + Vi 1s not fixed by Eq. (63). All other
Fourier components must be zero, however, and hence

Vett(1) = Vaue(7) + Va([n], 7) + Vie([n], 7) + const. = Vis([n], 7) + const. (65)

The value of the constant has no effect on the calculation of T;[n] (which is the only purpose of
Vieir), SO we set it to zero.

Let us think about the meaning of Eq. (65). The total energy functional is minimized when
the potential V. (7) appearing in the non-interacting Schrodinger equation with ground-state
density n(r) is exactly equal to Vks([n], 7) = Vaue(r) + Vu([n], r) + Vie(]n], 7). Since V4 and
Vie depend on the electron density, this is the self-consistency condition discussed in Sec. 3.1:
the potential occurring in the non-interacting Schrédinger equation is determined by the ground-
state electron density obtained by solving that equation.

3.2.5 Expressions for the DFT total energy

Once the ground-state density no(r) and the corresponding effective potential Viks([no], ) and
one-electron wavefunctions y;(7) have been found, the total ground-state energy is given by

E[no] = Ts[no] + Een[no] + Er[no] + Exc[no] + Enn. (66)

Since
Ts[no] Z €0i — / Vis([no], 7)no(r) dPr, (67)
the ground-state energy may also be written as
B=Y - / Vies([1], #)no(r) d*r + Ewnlng] + Extlno) + Exelno] + Enn. (68

The total ground-state energy is not just the sum of the one-electron eigenvalues, as might be
expected, but includes additional density-dependent terms. These we referred to earlier as the
ion-ion interaction terms, but they are more often called the double-counting-correction terms.
This name is appropriate because Vis([no], ) includes the Hartree potential,

Var([nol, 7) = |:”£ ,,,),|d3 ’ (69)

so the sum of self-consistent eigenvalues includes the Hartree energy twice:

/VH([”O] // n0|r — r’| = 2By [no). (70)

The double-counting corrections remedy this problem.



Tight-Binding Models and Coulomb Interactions 3.25

3.3 Density-functional theory without self-consistency

Although DFT calculations require iteration to self-consistency, most tight-binding total en-
ergy calculations do not. To help relate the tight-binding approximation to DFT, we now ask
whether DFT calculations can also be made non-selfconsistent. The idea is to guess the ground-
state density ng(r) and perhaps also the ground-state Kohn-Sham potential Vis([no], ), and
evaluate the total energy functional using these guesses. Since the guesses are inputs to the
non-selfconsistent calculation, we call then n"(r) and V() from now on. To improve the
accuracy of the approximate energies obtained, we insist that the expression evaluated to ob-
tain the approximate total energy must be exact when the input density and potential are exact
and stationary with respect to small variations of the input density and/or potential about the
exact ground state. The errors in energies evaluated are then of second or higher order in
n"(r) — no(r) and VI2(r) — Vis([no], ), which we hope are small.

DFT is already a variational theory, in that the total energy functional F[n] is minimized at the
ground-state density: if the guessed density is n'(r) = ny(r) + An(r), the error in the total
energy is positive and of order (An)?. The standard DFT functional is difficult to work with,
however, because the evaluation of T,[n™"] requires the potential Vig(r) for which n' is the
non-interacting ground-state density. Finding this potential requires a self-consistency cycle no
easier than that appearing in an ordinary self-consistent DFT calculation.

Another option is to guess the input potential V1(r), solve the Kohn-Sham equation once non-
selfconsistently to obtain the corresponding one-electron eigenfunctions and output density, and
call the output density n°"(r). At that point we have all of the information required to evaluate

E[nout] — Ts[nout] + Een[nout] + EH[nout] + Exc [nout] + Enn (71)

without self-consistent cycling. The drawback of this approach is that, even though V2(r) may
have a simple form — it could, for example, be a superposition of spherical atomic-like poten-
tials as assumed in many tight-binding models — the output density n°"(7) will not normally
be simple and the double-counting correction terms will be far from pairwise. The link between
DFT and tight binding remains elusive.

3.3.1 General variational formulation of density-functional theory

The derivation of density functionals better adapted for use in non-selfconsistent calculations
is made easier by starting from a very general variational formulation of DFT first described in
the form used here by Haydock in 1998 [21].

Consider the following functional of n(r), Veg(r), and ¥ (rq, 7o, . .., 7y ), regarded as indepen-
dent functions:

Mmummzqm(T+/Wgwmwm%>Wy—/mﬂﬂmﬂd%+GML (72)

where
GM=/mMWﬂ%+%M+%M+&n (73)
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is shorthand for the sum of all Coulomb and exchange-correlation contributions to the total
energy functional. The Kohn-Sham potential Vis([n], ) corresponding to density n(r) is the
functional derivative of G'[n]:

Vks([n],r) = %(Cjn) (74)

We seek the stationary points of E[n, V g, 7] subject to the normalization constraints (¥|¥) =
1 and [n(r)d®r = N. Since ¥(ry,72,...,ry) and n(r) are independent functions in this
approach, the two constraints are also independent.

The problem of finding the stationary points of (¥|H|¥) subject to (¥|¥) = 1 is equivalent
to solving the Schrodinger equation HU = EU, where F is a Lagrange multiplier for the
constraint. The variations of E[n, Vi, W] with respect to n(r) and Vig(r) are easy to work out
[note that varying the function n(r) has no effect on the operator n(r)], leading to the three
Euler-Lagrange equations:

— eff(’f') + VKs([TL], 7’) = W, (75)
(@la(r)|@) —n(r) =0, (76)

<T+ /Véff(T)ﬁ(T)) V) = Enonine|¥), (77)

where p is a Lagrange multiplier for the density normalization constraint. The Lagrange mul-
tiplier for the wavefunction normalization constraint has been called E, i to avoid confusion
with the energy functional itself. All three Euler-Lagrange equations must be satisfied at any
stationary point of E[n, Vg, ¥].

The remarkable feature of these three equations is that they are fully equivalent to the equations
of self-consistent DFT. The first says that the effective one-electron potential must equal the
Kohn-Sham potential to within an arbitrary constant x; this is the DFT self-consistency condi-
tion. The second says that ¥ (rq, 7o, ..., ry) must generate the one-electron density n(r), just
as in the Levy definition of the total energy functional. The third and final Euler-Lagrange equa-
tion says that the wavefunction ¥ must be an eigenfunction of the non-interacting Schrédinger

equation
N

1
Z (—§V? + Veff(ri)) V= Enonin'?, 78

i=1

which separates into /N one-electron equations:

(—%W N veff<r>) bilr) = e Vi) (). (79)

If follows that the wavefunction ¥ appearing in the definition of the general density func-
tional is single Slater determinant of the one-electron eigenfunctions used to calculate the non-
interacting kinetic energys; it is not the physical many-electron wavefunction. If E[n, Vg, ¥] is
stationary with respect to variations of n and V¢ and minimized with respect to ¥, the equations
of DFT are fully satisfied and E[n, Vg, ¥] is the ground-state energy of the interacting system.
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Since E[n, Vg, V] is stationary about the self-consistent DFT solution, we can replace n, Vi,
and ¥ by three independent guesses, n', Vit and ¥™", safe in the knowledge that AE =

E[n™ Vin gin] — Elng, Vks[no), %) is a quadratic form in the quantities n'™™ — ng, Vit — Vis[no,
and ¥'" — @, If these are all small, the error in the calculated energy should be even smaller.

3.3.2 The Harris functional

The general variational formulation of DFT is a little too general to be useful in practice, but
serves as a good starting point for deriving simpler density functionals. If we start by carrying
out the constrained minimization with respect to ¥ to find the one-electron eigenvalues and
eigenfunctions corresponding to the input potential Vg, we obtain a functional of n and Vg
only:

Foneln, Vi) = 3 x[Vaa] — / Vi(r)n(r) d*r + Gln). (80)

i occ

This functional was first discussed by Foulkes and Haydock [12] and is sometimes called the
generalized Harris or generalized Harris-Foulkes functional [8]. The one-electron eigenvalues
€;[Vegr] are obtained by solving

(—%VQ + Veff(T‘)) Vi(r) = €[ Vesr] i (7). (81)

Note that the evaluation of Fgug[n, Vig| for given inputs n(r) and Vig(7) requires the one-
electron Schrodinger equation to be solved once only; no self-consistent looping is required.

A further simplification is to set Vegr () equal to Vks([n], 7). Since Ve () and Vis([n], r) are the
same in the ground state, this does not affect the location of the stationary point. The resulting
functional of n(7) only is called the Harris or Harris-Foulkes functional [25, 12, 8]:

Eurln] = 3 eiln] - / Vis([n], P)n(r) dr + Gln]. (82)

7 occ

The energy eigenvalues ¢;[n] are now obtained by solving

(=57 + Vis(lrl 1)) slr) = el (), (53)
As in the case of Egyur[n, Veg], no-selfconsistent looping is required to evaluate Eyg[n] for a
given n(r).

Both Egur[n, Veg] and Eyg[n] are stationary about the ground state, a property that could in
principle be used to guide an iterative, self-consistent algorithm towards the exact ground-state
energy and density. In most cases, however, this has no advantages over the standard approach
using the Hohenberg-Kohn-Sham functional. The main uses of Egug[n, Veg] and Eyg[n] are in
non-selfconsistent DFT calculations.
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3.4 The tight-binding total energy method as a stationary approximation
to density-functional theory

Let us return to the generalized Harris functional, Eq. (80), and the corresponding one-electron
problem, Eq. (81). The functional is stationary about the exact ground state, so evaluating it
for input densities and potentials close to the ground state produces total energies with second-
order errors. With this in mind, we choose an input density in the form of a superposition of
spherical densities,

n'(r) = an(|"“ —dpl), (84)
I
and an input potential in the form of a superposition of spherical atomic-like potentials,

) =Y Vers(Jr — di). (85)
I

For most solids, it is possible to construct superpositions of spherical atomic-like densities
and potentials that match the exact ground-state density and Kohn-Sham potential rather well.
The spherical densities required to describe a highly ionic solid might, of course, be ionic,
integrating to produce a net atomic charge. Once the approximate potential and density have
been constructed, we solve Eq. (81) non-selfconsistently to find the one-electron eigenvalues
€;[VI8]. The energy functional Egug[n™, V1] is then evaluated using Eq. (80).

Because V() is a superposition of spherical atomic-like potentials, the one-electron Hamil-
tonian has exactly the form assumed in Sec. 2.2.4. We can therefore find the one-electron
eigenvalues by choosing a basis set of atomic-like orbitals, constructing the one-, two- and
three-center contributions to the tight-binding Hamiltonian and overlap matrices, and solving
the generalized tight-binding eigenvalue problem. Furthermore, since both VI and n' are su-
perpositions of spherical functions, almost all of the double-counting corrections appearing in
Eq. (80) are strictly pairwise. The only exceptions are the exchange-correlation terms, which
retain some weak non-pairwise character because FEy.[n| is not a simple quadratic functional
of n. In the exchange-only version of the local density approximation, for example, Ey.[n] is
proportional to the integral of n*/3(r) over the system.

If we ignore the small three- and higher-center contributions to the exchange-correlation double-
counting terms, we have succeeded in deriving something very close to a tight-binding total en-
ergy model [11, 12]. The potential of the solid is approximated as a superposition of spherical
atomic-like contributions, and the corresponding one-electron Schrodinger equation is solved
once, non-selfconsistently, using a basis set of localized atomic-like functions. The total en-
ergy is the sum of the occupied eigenvalues and an (almost) pairwise ion-ion repulsion. The
variational principle ensures that the calculated total energy decreases systematically towards
E[n™ V1] as the basis set is improved; and the stationarity of the GHF functional ensures that
E[n™ Vit — By is quadratic in n'(r) — ng(r) and Vi2(r) — Vis([no], 7).

The first derivation of the tight-binding total energy method [11, 12] from DFT was based on
the Harris functional of the density only, with an input density in the form of a superposition of
spherical atomic-like densities. The exchange-correlation contributions to the effective potential
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Vks([n™"], 7) appearing in Eq. (83) cannot then be written as a sum of spherical atomic-like
contributions, which complicates the argument somewhat, but the conclusions are similar.

The accuracy of the Harris functional used with a superposition of spherical atomic-like den-
sities has been tested for a wide range of solids [26—28] with surprising success. It is often
capable of producing quantitatively accurate results, especially if the spherical atomic-like den-
sities are optimized in some way [?,28]. It does not work so well in transition metals, where
the electronic configuration of an atom in the solid may be very different from that of an iso-
lated atom, and often fails in ionic solids with significant charge transfer. In cases like these
self-consistent tight-binding calculations are required [30-33].

4 Coulomb interactions for s, p, and d electrons

Although DFT is exact in principle, real DFT calculations require approximate exchange-
correlation functionals. These are hard to improve systematically and do not always work as
well as one might hope. Furthermore, the version of DFT described here yields ground-state
properties only (time-dependent DFT [34] gives some excited-state properties). What can we
do if the exchange-correlation functional proves inaccurate or we wish to calculate quantities
DFT cannot provide? The most natural option is to return to the many-electron Schrédinger
equation, Eq. (39), and attempt to solve that directly. Are there tight-binding-like models for
many-particle problems?

4.1 The tight-binding full-configuration-interaction method

The main feature of the tight-binding approach is the choice of a basis of atomic-like orbitals,
¢a(r), with @ = 1,2,..., M. The many-electron wavefunction ¥ (ry, 7, ..., 7y), which is a
totally antisymmetric function of NV different electron positions, can be approximated as a linear
combination of Slater determinants of these orbitals:

$ai(T1)  Pay(r1) oo oo Pay(r1)
¢a1 (TQ) ¢042 (TQ) cee e ¢01N <T2)
1
Da(’l"l,’l"g,...,’r]\/) = ﬁ s (86)
$ai(TN) Gar(rn) oo o day(ry)
where o« = (g, s, ..., ay) lists the indices of the orbitals appearing in D,. A Slater deter-

minant containing the same orbital twice vanishes because it has two identical columns, so we
can assume that all of the indices are different. The order in which the indices appear affects
the sign of the determinant only, so it is often convenient to insist that a; < as < ... < an.
Given a determinant for which this is not the case, one can always permute the indices into
ascending order. Every pair interchange swaps two columns and changes the sign of the deter-
minant, but nothing else is affected. We assume from now on that the one-electron basis set is
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orthonormal, (¢,|¢s) = dap, in Which case the N-electron basis set of Slater determinants is
also orthonormal:

(Do|Dg) = /D;(rl,rg,...,TN)Dﬁ('rl,'rg,...,TN) Bridiry . dPry = dag, (87)

where 0a8 = 08,0008, - - - Oaypy and the lists (o, ag,...,ay) and (B, Bs, ..., By) are in
ascending order.

Because the one-electron basis set is finite, the /N-electron basis of Slater determinants is far
from complete. It is, however, huge. Consider, for example, a system of N = 10 electrons
described using a basis set of M/ = 20 one-electron orbitals. The number of possible Slater
determinants is the number of ways of picking N orbitals from a set of M possibilities. This is
MOy =200, = 184, 756.

The next step is to approximate the eigenstates of the many-electron Hamiltonian as linear
combinations of Slater determinants,

7= caDa, (88)

and determine the optimal expansion coefficients using the linear variational method described
in Sec. 2.1. The resulting matrix eigenvalue problem takes the form

> Hapeg = Eca, (89)
B

where Hos = (Do|H|Dg). Note that H is the full N-electron Hamiltonian operator and
Hopg = (Da|fl |Dg) is a 3N-dimensional integral. Fortunately, because H only contains one-
and two-electron operators, all non-zero Hamiltonian matrix elements can be expressed in terms
of three- and six-dimensional integrals. Solving the eigenvalue problem in Eq. (89) yields
My approximate eigenvalues and eigenfunctions of the exact many-electron Hamiltonian.
These may also be viewed as exact eigenvalues and eigenfunctions of the projected Hamiltonian
PHP, where P is the projector onto the space spanned by the #C'y Slater determinants in the
basis.
This approach is very difficult to use because of the enormous size of the many-electron Hilbert
space, but is useful for small atoms and molecules. Chemists call it the full configuration
interaction method. Seen from the point of view of this article, it is the many-electron equivalent
of the tight-binding method.

4.1.1 Second-quantized notation

The projected Hamiltonian PHP corresponding to the real-space Hamiltonian

F[:Z(__vuvllucn)juzlr_r‘ (90)
i i i T
may be written in second-quantized notation as

T _ S A ATA P
H= Zhaﬁ acﬁ Z aBxy acﬁ ~Cxo oD
a75

ab’, XY
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where ¢! and ¢, are creation and annihilation operators for electrons in the one-electron orbital

¢o(r) and
hgz/ﬁﬂﬂ<}%vﬁ+%mw0¢Aﬂd%, (92)
1
Vb = / / Ga(T)P5(1") ] o, (r)g (v) drdr, (93)

are the one- and two-particle Hamiltonian matrix elements. The creation and annihilation oper-
ators satisfy the anticommutation relations:

O X T (94)

Second-quantized notation is explained in the first chapter of almost every book on many-body
theory; the dense but precise explanation given by Negele and Orland [35] is a good one. It
is important to understand that “second quantization” is a misnomer: the second-quantized
notation brings nothing new except algebraic convenience; the second-quantized Hamiltonian is
exactly the same as the original /V-electron Hamiltonian; and the basis set of Slater determinants
has not changed.

The systems for which DFT fails and many-body tight-binding methods are most useful are
often magnetic, so we can no longer ignore the electron spin. The spin-dependent tight-binding
basis functions take the form

¢a,§(’r> S) = ¢OL<T)XC(8)7 95)

where s =1, | and x. is either x or x|, with x+(s) = 05+ and x| (s) = J, ;. Note that the spatial
parts of the basis functions are independent of spin; this is by choice. The spin-dependent
Hamiltonian is

H = ZZ% Caclact 3 Z Y Vs Gl ol (96)

¢.¢" aBixyy

where éL ¢ and ¢, . are the creation and annihilation operators for the basis function @, ¢(r, s)
and satisfy the commutation relations

{éa,cv 62,0} = Oag0¢c- O

Because the spatial parts of the basis functions were chosen to be independent of spin, the matrix
elements .5 and Vg, are still as given in Egs. (92) and (93). Relativistic spin-dependent
interactions such as the spin-orbit term have not been included but can easily be added.

The Hamiltonian as expressed in Eq. (96) is closely related to the tight-binding Hamiltonian
considered earlier. The one-electron matrix elements /g are analogous to the tight-binding
matrix elements Hos = (¢u|(—2V? + Vigr(r)|dg), except that the nuclear potential appears
in place of the effective potential. These matrix elements can be parametrized in terms of a
small number of Slater-Koster parameters, just as in tight-binding theory. The two-particle
Coulomb interaction matrix elements V3 ,~ are more complicated. In DFT-based tight-binding
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methods they are replaced by the density-dependent Hartree and exchange-correlation potentials
incorporated into Vig.

Switching to a second-quantized formalism has improved the notation but has not made the
many-electron problem any easier to solve. The complicated form of Eq. (91) is also an im-
pediment to pencil-and-paper work. Even if we consider only the three p orbitals on a single
atom, the interaction matrix V. has 3* = 81 elements. For the five d orbitals this rises to
5 = 625 elements. Such large collections of numbers are not easy to deal with analytically, so
simplifications are required.

The first simplification, often made in the many-body community, is to neglect all Coulomb
integrals involving orbitals on more than one atom. Given the long range of the Coulomb
interaction this seems unintuitive at first, and quantum chemists, who like to get things right,
normally prefer to evaluate all of the matrix elements for all of the orbitals. Most of the many-
body problems studied by condensed matter physicists, however, concern atoms in solids, often
metals, where the interactions between atoms are strongly screened by mobile valence electrons.
In many cases this screening is so efficient that electrons occupying localized d of f orbitals on
one atom interact only weakly with electrons in d or f orbitals on other atoms and the screened
inter-atomic Coulomb matrix elements really can be ignored. The mobile valence electrons are
not included in the tight-binding model explicitly, but their effect is to renormalize the matrix
elements between the localized orbitals that are included.

4.1.2 Coulomb interactions on a single atom

The rest of this article discusses what we know about the symmetries of the matrix V.5, that
describes the (screened) Coulomb interactions on a single atom. Can we carry out an equivalent
of the Slater-Koster analysis, allowing us to express the elements of V,,5 - in terms of a minimal
set of basic parameters? How many parameters do we need?

These are questions with a long history, but they still cause a great deal of confusion. The
forms of V,,3,,~ for shells of s and p electrons are well established, but many different d-shell
Hamiltonians have been proposed and most of them are wrong in one way or another. Some
are missing essential symmetries, failing to remain invariant under rotations in real and/or spin
space; others are missing terms no smaller than the terms kept; and even the best are missing
terms thought to be small. Many otherwise sophisticated papers on many-body physics start
with an incorrect model Hamiltonian and may reach false conclusions as a result. The history
of the subject and the failings of some of the most widely used Hamiltonians are summarized in
Ref. [13], which also clears up the confusion for shells of s, p and d electrons. Here we explain
the results derived in that paper.

Before going on, we remark that the correct form of the on-site Coulomb operator has been
known for more than 50 years and that quantum chemists use it as a matter of course. If we
assume that the 2/ 4 1 basis functions in a shell of angular momentum / have the same angular
dependence as the spherical harmonics Y,”, with m = —[, —{ 4 1, ..., the theory of angular
momentum [36] may be used to derive formulae for V3 ,,. See Ref. [37] for a clear explanation.
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The drawback of this approach is that the formulae are complicated and expressed in terms of
quantities such as Gaunt or Racah coefficients, which are inconvenient for analytic work. The
formulae derived here are less general, in that they apply to s, p and d shells only, but simpler.
The most important symmetry of Vg, is rotational invariance. If the basis functions used
to describe a shell of angular momentum [ have the same angular dependence as spherical
harmonics Y;™, the orbital label o may be identified with the m index. Such basis functions
transform into linear combinations of each other under rotations:

l
B¢, = > Diyo(w)dy (98)
a'=-1

The operator R rotates the function to which it is applied by w radians about an axis parallel
to the unit vector &, and D!(w) is the (21 + 1) x (2[ 4+ 1) matrix corresponding to R* in
the irreducible representation of the rotation group of angular momentum [. The Coulomb
interaction 1/|r — 7’| is unchanged if r and »’ are rotated simultaneously, so V,,5 .~ does not
change if every orbital is replaced by a rotated version:

Vs = // o5 ()5 |¢<>¢7< ) dird®’

- // R¥ ¢ (r (Rw¢6(rl)>* . _1 = (]%‘%ﬁx(r)) <Rw¢v<7'l)) Brddr
= ) (Dho(w ))* (Dl 5(w))" Vi gryry Do o (w) DL (w). 99)

’6’x 0

This shows that V., is a rotationally invariant fourth-rank tensor. If the basis functions are
defined using the real spherical harmonics Y} introduced in Sec. 2.2.5, the D' matrices, which
are complex and unitary, are replaced by the D' matrices from Eq. (18), which are real and
orthogonal. Since most Hubbard-like models use real spherical harmonics, we are primarily
interested in this case.

4.2 Hubbard-like Hamiltonians for atoms

4.2.1 The one-band Hubbard model: s-orbital symmetry

If the outermost shell is an s shell and all other shells are ignored, the model Hamiltonian for an
atom has only one spatial orbital ¢, and one non-zero Coulomb matrix element V., o, Which
is called the Hubbard parameter and denoted Uj. The interaction Hamiltonian takes the form

A 1 1
— U, S i ey i = st oAt a s soat s a2 Yoa p
V=350 CaCoglartas =500 <Comca,¢ca,¢ca¢ T Ca,ﬁmca,ﬁ%@) = Uo g 4705
¢¢
(100)

where I have noted that ¢, .¢, - = 0, reordered the creation and annihilation operators using the
anticommutation relations, and introduced the number operator n,, . = éL,céa,q’ which counts
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how many electrons are in basis state ¢, . Equation (100) is the famous Hubbard interaction
and is the starting point for much of the analytic work on strongly interacting systems.

It is often convenient to rewrite the atomic interaction Hamiltonian in terms of the operators for
the total number of electrons on the atom,

= fiac, (101)
a7<

and the electronic spin moment of the atom,

m = Z élc"c,céa,c” (102)
a7C7CI

where o o = (08 1,0 1, 0¢ 1) is the vector of Paul spin matrices

Ug”:()l, Uy:q_z,andazzl().
10 i 0 0 —1

In the case of an s shell there is only one spatial orbital and the sums over « in Egs. (101) and
(102) have only one term each.

The square of the number operator for an s shell is

1? = (o + flay) (Rag + Na) = 2agfta) + g + oy = 2Magiia + 7, (103)
where we have noted that 7 704, = Na,,. The Hubbard interaction for an s shell may therefore
be rewritten in terms of the operator for the total number of electrons as

V=_Uy(?*—n). (104)

The one-electron —7 term on the right-hand side of Eq. (103) arises because the creation op-
erators in 72 are not all to the left of the annihilation operators; if we attempt to reorder the
creation and annihilation operators to ensure that this is the case, the anticommutators produce
additional one-electron terms. This mixing of one- and two-electron terms is awkward, so we
define : 72: , the “normal ordered” version of 72, by permuting the creation and annihilation
operators until all of the creation operators are on the left, without adding the anticommutator
terms that would be required to leave the product of operators unaltered. If the rearrangement
requires an odd number of flips, the normal ordering also introduces a sign change. It is easy to
show quite generally (not just for an s shell) that

~2

cn2 =n?

—n, (105)
so we can write the s-shell Hubbard interaction as

-1
V:EUozﬁZ:. (106)
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The s-band Hubbard interaction can also be written in terms of : 72?: = : 7 - m: . Using the
identity GCC' . 0'55/ = 25(/5(545/ — (5«/555/, one finds that

aol R T T O W
it == 0 (ZCa,ccﬁ,sca,f%,c + Ca,<cﬁ,£cﬁ,5ca,c> =" —3n. (107)
o G

For an s shell this is equivalent to
t? = =6 R,y = —3 1 A7 (108)

and we obtain ]
V= —5Uo: m: . (109)

4.2.2 The three-band Hubbard model: p-orbital symmetry

Suppose that the orbitals «, 3, x, and v are real spherical harmonic p orbitals with angular
dependence z/r, y/r and z/r. The rotation matrix D, (w) is then a familiar Cartesian 3 x 3
rotation matrix R,,, and V,g . is a rotationally invariant fourth-rank Cartesian tensor. The
general form of such a tensor is well known [38]:

Va,&xv = U5ax55“/ + J(sav(sﬁx + J/(Saﬁfsxw (110)

where U = V3,08, J = Vg ga. and J' = V,, 3, all with o # .
Bearing in mind that the Cartesian p orbitals are real, a brief inspection of the form of the matrix
element, Eq. (93), shows that V5, = V) 3.0y = Vay,ys, implying that J = J'. Hence we find

Vagy = Udaxdpy + J(davéﬁx + 5a,35x7)- (111)

This shows that the most general p-shell on-site Coulomb interaction Hamiltonian is defined by
just two independent parameters; the interaction matrix V3, still has 81 elements, but only
two are independent. Setting & = § = y = 7 recovers the well-known equation Uy = U + 2.J,
where Uy = Viya aa-

Starting from Eq. (111) and wading through lots of algebra, it is straightforward but tedious to
show that the Coulomb interaction Hamiltonian may be written:

~ 1 ~
V:§[(U—J):ﬁ2: ~Jim? —J: 12, (112)
where
L=1i) (€150 €250, 350) Eh (Cy (113)

afq
is the vector angular momentum operator, €,3, is the three-dimensional Levi-Civita symbol,
and L? = L - L. An equivalent expression is

o1
V==
2

1 ) 1. R
(U—§J> n2 -5 m?: +J%:: (naﬁ)%] , (114)
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where the operator fas = > éL ¢Cg,¢ transfers an electron of either spin from orbital 3 to
orbital a. The normal-ordered square of this operator,

g =D laclhotoet =2 (Casta i)T (515 (115)
¢.¢
describes the hopping of singlet pairs of electrons from spatial orbital /3 to spatial orbital a.
Equation (112) exemplifies Hund’s first and second rules for the atom. Noting that m = 28,
where S is the electron spin operator, we see that the energy is minimized by first maximizing
the spin (prefactor —2.J) and then maximizing the orbital angular momentum (prefactor —%J ).

4.2.3 The five-band Hubbard model: d-orbital symmetry

If we consider Eq. (99) for a shell of d orbitals, the matrices D' belong to the five-dimensional
[ = 2 irreducible representation of the rotation group; they are no longer the familiar 3 x
3 Cartesian rotation matrices. One way to determine the number of independent parameters
required to specify V.3~ completely is to use the theory of angular momentum [36], but we
find it easier to use the theory of irreducible Cartesian tensors [39]. This allows us to re-express
the behavior of V,,5 ., under rotations using 3 x 3 rotation matrices only.

A Cartesian tensor of rank n transforms under rotation in the standard way:

(RT)yy = Y RaRSy - RiuTuy . (116)
ilgl k!

with R“ the 3 x 3 matrix for a rotation of w radians about an axis parallel to w. This map-
ping transforms the 3" elements of 7" into linear combinations of each other, so the elements
form a basis for a 3"-dimensional representation of the rotation group. In general, however, this
representation is reducible. An irreducible Cartesian tensor of rank n and angular momentum
[ transforms in the same way as a general Cartesian tensor, but only has 2/ 4+ 1 independent
components. The rule for rotating the tensor, Eq. (116), transforms these 2/ + 1 independent
components into linear combinations of each other, so they form a basis for a 2/ + 1 dimen-
sional representation of the rotation group. The Cartesian tensor is said to be irreducible if this
representation is irreducible.
We can illustrate these ideas by considering the tensor product of two vectors:

aiby aiby aibs
T=a®b=|azb; aby abs|. (117)

asby asby asbs

The nine elements of this tensor transform into linear combinations of each other under rota-
tions, so they are a basis for a nine-dimensional representation of the rotation group. If we
wanted to, we could construct the 9 x 9 matrix corresponding to the action of any given rotation
directly from the tensorial transformation rule. We would find, however, that the 9 x 9 represen-
tation is not irreducible. In fact, as we already know from the theory of the addition of angular
momentum,

1®1=00162. (118)
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This implies that it must be possible to create from the set of nine independent elements a single
rotationally invariant s function, a set of three p functions, and a set of five d functions.

We can accomplish this explicitly by writing a ® b as the sum of three tensors:
1 1
Tij=(a®b); = g(akbk)dij + Ty + | Thj) — g(akbk)(sij (119)

where T{;;) = %(TU + Tyi), Tujy = %(Tm — Tj};), and the summation convention is in force
for repeated suffices. The first term is a multiple of the unit tensor and hence transforms like
an s function; the three non-zero independent elements of the antisymmetric tensor 77;;; are
the components of the vector product a x b and transform under rotations like the three p
functions; and the five independent elements of the traceless symmetric tensor 7{; ;) — %(ak b)0i;
transform under rotations like the five Cartesian d orbitals. Note that antisymmetric matrices
remain antisymmetric and traceless symmetric matrices remain traceless symmetric matrices
when rotated.

If we choose a = b = r = (x,y, z), the d-like nature of the traceless symmetric part of @ ® b
becomes obvious:

1
(r @7)u) — 57’2% = Ty y? — Lp2 Yz ) (120)

The off-diagonal elements xy, yz and zx are the three 5, functions; and the two independent
diagonal elements, which we can take to be 322 — r? and 2 — 3?2, are the two e, functions. We
call this traceless symmetric tensor 5 from now on:

1
—1r%6;;. (121)

Bij = (’l“ ® T)(ij) — 3

The link between the traceless symmetric tensor B and the d orbitals is a special case of a

I™ rank

general result, which states that the 2/ + 1 independent elements of a totally symmetric
Cartesian tensor with all traces removed are a basis for the angular momentum [ representation
of the rotation group.

If we view every d orbital as an element (or linear combination of elements) of 53, each d orbital
may be labelled using two Cartesian indices ¢ and j. The isotropic fourth-rank five-dimensional
tensor V5.~ from Eq. (93) then becomes an isotropic eighth-rank three-dimensional tensor
Viij ki mn,op> Which transforms like B;; By By, Bop.

It is a theorem due to Weyl [40] that any isotropic Cartesian tensor of even rank can be expressed
as a linear combination of products of Kronecker deltas, so the remaining task is to determine
the number of independent products of four Kronecker deltas consistent with the symmetries of
the eighth-rank tensor, bearing in mind that the second-rank tensors B of which it is composed
are traceless and symmetric. The details of this calculation are explained in Ref. [13].

The result, translated back into the notation where each of the five d orbitals is labelled by a
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single index with five possible values, is

1 )
Vagoy = 9 (U(Saxéﬁ'y + [J + §AJ] (5a755x + 60465%() - 48AJZ gaijgﬁ%@klﬁv“) )
ijkl
(122)
where & is a five-component vector of the traceless symmetric 3 x 3 transformation matrices
used to convert from the two-index notation to the one-index notation:

1
—55 00 00 3 00 0 0 5 0 3 00
&= 0-5% 0, &=[000),&=(00 j]&=|3 0 0f,&=|0-3 0
0 0 5 00 03 0 000 0 0 0

The indices (1,2, 3,4,5) correspond to the d orbitals (322 — r?, zx, yz, 2y, 22 — y?). The three
independent parameters U, J and A.J are defined as follows:

U = Viea)(y2),(z2) (y2) s (123)
1

J=3 (View) o), (o) () + Vg2 122 —42), (22 —42) (322 —12)) (124)

AJ = Vi3e2-12)(@2—12) (22 -32) (322—1?) — V(zw)(w2).(y2) (z2) (125)

U is the Hartree term between pairs of ¢, orbitals, J is the average of the e, and t5, exchange
integrals, and AJ is the difference between the e, and ¢5, exchange integrals. These definitions
are the same as those used by Ole$ and Stollhoff [41], but our Hamiltonian, unlike theirs, is
rotationally invariant in orbital space.

Rewriting Eq. (122) in terms of rotationally invariant operators gives

- 1 1 1 2 R
V=-|(U==J+5AJ):0% — =(J — 6AJ):m* + (J — 6AJ) E H(Rag)® + AT Q%1
2 2 2 oy 3
(126)

where Q2 = > » Q MVQV# is the square of the on-site quadrupole operator defined and discussed
in Ref. [13]. The mean-field versions of the s, p, and d Hamiltonians may also be found in that

paper.

4.2.4 Comparison with the Stoner Hamiltonian

The interaction part of the Stoner Hamiltonian for shells of p and d orbitals is usually defined
o 1 1 1
‘/Stoner:§(U_§J>:ﬁ2: —iji . (127)

The m? term breaks rotational symmetry in spin space, so this is a collinear Stoner Hamiltonian,
appropriate only in cases when the ground state breaks the rotational spin symmetry and chooses
a z axis. We can, however, restore the spin-rotation invariance by replacing m? by m?. This
produces the vector Stoner Hamiltonian,

. 1 1 1
Vis2Stoner = §(U ——J): A% — ZJ: m2: (128)
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Fig. 10: The magnetic correlation between two p-shell atoms, each with two electrons, as a
function of the Hubbard parameters U/ |t| and J/|t|, where t is the ppo Slater-Koster parameter
that describes the rate of electron hopping between atoms, the ppm hopping parameter is —t /2.
The regions of the graph are labelled by the symmetry of the ground state. The left-hand graph
is generated using the full p-electron Hamiltonian from Sec. 4.2.2; the right-hand graph is
generated using the vector Stoner Hamiltonian of Eq. (128). The Stoner phase diagram has a
region with symmetry 33 , extending a long way up the J axis, which is not present when the
full Hamiltonian is used. It also has a region with two degenerate ground states with symmetries
YA, and IZ;; this degeneracy is broken when the full p-electron Hamiltonian is used. From

Ref. [13].

which turns out to be identical to the Hamiltonian proposed by Dworin and Narath [42]. Work-
ing backwards from this Hamiltonian to the general form of the matrix element V3 ., gives

mESoner _ 175, 85y + J OOy, (129)

aB,xy

which looks like the general p-shell result, Eq. (111), except that it is missing the Jd,g0,~
term. Consequently, the vector Stoner Hamiltonian does not respect the invariance of the matrix
element on interchange of o with y or § with v apparent from the form of Eq. (93) when
the orbitals are real. As can be seen from Fig. 10, this omission affects the computed results
significantly.

4.2.5 Conclusion

We have shown how to derive multi-band Hubbard-like Hamiltonians to describe shells of s, p,
and d orbitals. There are important differences [13] between results obtained using the Hamil-
tonians derived here, which respect the symmetries of the problem, and the Stoner Hamilto-
nian, which does not. The vector version of the Stoner Hamiltonian misses the pair-hopping
term present in our p- and d-shell Hamiltonians and the quadrupole term present in our d-shell
Hamiltonian. The collinear version of the Stoner Hamiltonian breaks rotational symmetry in
spin space, which makes it inappropriate for describing spin dynamics.
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4.2 Richard T. Scalettar

1 Introduction

The Hubbard Hamiltonian (HH) offers one of the most simple ways to get insight into how the
interactions between electrons give rise to insulating, magnetic, and even novel superconduct-
ing effects in a solid. It was written down [1-4] in the early 1960’s and initially applied to
the behavior of the transition-metal monoxides (FeO, NiO, CoO), compounds which are anti-
ferromagnetic insulators, yet had been predicted to be metallic by methods which treat strong
interactions less carefully.

Over the intervening years, the HH has been applied to many systems, from ‘heavy fermions’
and the Cerium volume collapse transition in the 1980’s, to high temperature superconductors
in the 1990’s. Indeed, it is an amazing feature of the HH that, despite its simplicity, its exhibits
behavior relevant to many of the most subtle and beautiful properties of solid state systems. We
focus here for the most part on the single-band HH. Multi-band variants like the Periodic Ander-
son Model (PAM) allow one to introduce other fundamental concepts in many-body physics,
such as the competition between magnetic order and singlet formation. Randomness can be
simply introduced into the HH, so it can be used as a starting point for investigations of the
interplay of interactions and disorder in metal-insulator transitions and, recently, many-body
localization. ‘Textbook’ discussions of the HH can be found in Refs. [5-8] and a recent cele-
bration of its 50th anniversary [9] emphasizes the resurgence of interest due to optical lattice
emulation experiments.

The HH has been studied by the full range of analytic techniques developed by the condensed-
matter community, from static mean-field approaches (which we will outline here) and the
much richer dynamical mean-field theory, to diagrammatic approaches of various degrees of
sophistication (the random phase approximation and parquet approach), as well as expansions
in the degeneracy of the number of ‘flavors’ (spin, orbital angular momentum). It has also
been extensively attacked with numerical methods like exact diagonalization (ED) and quantum
Monte Carlo (QMC).

The objective of these notes is to provide an introduction to the HH and to a few of the most
simple ways in which it is solved. Along the way we will discover that these basic calculations
lend initial insight to concepts like the Mott gap, moment formation, the mapping of the HH
to the Heisenberg model, and magnetism. We begin with a discussion of the second quantized
operators with which the HH is written.

2 Creation and destruction operators

Creation and destruction operators a', a are familiar from the treatment of the harmonic oscil-
lator. We briefly review their properties, which parallel those of the operators in the HH.

The harmonic oscillator creation and destruction operators are defined in terms of the position
and momentum operators,

mw . . 1 A . mw
N \ 2h T V 2mwhp and \/ 271 wh M
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From [p, | = —ih, one shows that these operators obey the commutation relations,
[a,a'] =1 (2)

and that the Hamiltonian is,
Az o1
T =hw!|ad'a+ 5] 3)

The ‘number operator’ is defined to be 7 = a' a, so that H = hw (7 + 5).
The ground state of the quantum oscillator is written as | 0 ) and has the properties that,

. h
a/0)=0 and H|o>=7°"\o

)- “4)
The excited states are built up by applying the creation operator repeatedly to the ground state.
allny=vn+1|n+1) 5)

and obey the formula,

I:]\n):hw(nJr%) In). (6)
The finite temperature expectation value of any quantum mechanical operator A is determined
by the Hamiltonian, ( A) = Z~ ! Tr[ Ae=## ). It is simple to verify that (7 ) = 1/(e®™ — 1),
the Bose-Einstein distribution function. For this reason, one often refers to a' and a as ‘boson’
creation and destruction operators. Note that henceforth I will be setting & = 1. I will also
choose Boltzmann’s constant kg = 1.

The HH is written in terms of ‘fermion’ creation and destruction operators. These operators
differ in several respects from the operators a', @ for a single harmonic oscillator. Perhaps most
confusing is a conceptual difference: the fermion operators in the HH are not introduced in
terms of familiar position and momentum operators. Rather they stand on their own. Feyn-
man, in his Nobel Prize acceptance speech [10] alludes to this abstractness, “I didn’t have the
knowledge to understand the way these were defined in the conventional papers because they
were expressed at that time in terms of creation and annihilation operators, and so on, which,
I had not successfully learned. I remember that when someone had started to teach me about
creation and annihilation operators, that this operator creates an electron, I said, ‘how do you
create an electron? It disagrees with the conservation of charge’, and in that way, I blocked my
mind from learning a very practical scheme of calculation” As in many cases, the passage of
time has led to contemptuous familiarity, so that we forget these were once mysterious objects.
In addition to the fact they are not written in terms of 2 and p, another new feature is that in the
HH there is a set of creation and destruction operators, which are distinguished by attaching a
site index j and a spin index o. Thus éJTU (éja ) create (destroy) fermions of spin ¢ on site j.

As a consequence, the occupation number states are no longer characterized by a single number
n, as for a single harmonic oscillator, but instead by a collection of occupation numbers n;,.
One writes such states as | nq4 gy Ngr N1y N2y Ngy - - - - ).
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Because these operators are meant to describe fermions, in contrast to Eq. (2), they are defined
to have certain anticommutation relations. (the anticommutator of two operators {fl, B} =
AB + BA)

{c_]a7 clo } 5J 1 600 { _107 Clo } =0 {éjo’ élcr’} =0. (7)
Like its bosonic counterpart, c ,]/0) = |1) creates a fermion when acting on the vacuum.
However, as a consequence of the anticommutation relations, ¢! | 1) = AJTU AJTU\ 0) = 0. This is

of course the Pauli principle. The maximum occupation of a partlcular site with a given spin is
1. Besides the Pauli principle, the anticommutation relations also ensure that the particles are
fermions, that is, their wave function changes sign when two fermions with different labels are
exchanged, é}a éL = —CL AJTU :

These anticommutation relation require we specify a convention for the relation between a
state like | 10100 . . . ) and the vacuum state |[vac) = |00000 . . . ). The two possibilities,
110100...)=¢l cg lvac) and [ 10100 . . .) = & &l |vac) differ by a sign. Either definition
is fine, but in all subsequent manipulations whatever convention was chosen must be followed

consistently. We’ll see some examples of the importance of this later.

3 The Hubbard Hamiltonian

Having introduced creation and annihilation operators, we can now write down the HH. Its
form arises quite naturally from considering how we might simply describe the motion and
interactions of electrons in a solid.

First, we need to account for the fact that there is a regular array of nuclear positions, which
for simplicity we consider to be fixed. This suggests that we begin with a lattice of atoms
(sites) on which the fermions move. Of course, a single real atom is already a very complex
structure, with many different energy levels (orbitals). The HH simplifies the atoms in a solid
to a collection of sites each with a single level (orbital). This is a good picture for a solid with
just one energy band at the Fermi surface, so that, indeed, only one orbital is relevant.

With this (big!) simplification, the sites of the HH are constrained by the Pauli principle to four
configurations: empty, a single up fermion, a single down fermion, or double occupation by a
pair of up and down fermions. (Note that in the relatively new field of optical lattice emulation,
the two fermionic types are not electrons of spin up and down, but rather fermionic atoms like
6Li with two possible hyperfine states. I will, however, continue to use "up’ and ’down’ to refer
to the two fermionic types.)

In a solid where electrons can move around, the electrons interact via a screened Coulomb
interaction. The biggest interaction will be for two electrons on the same site. The HH stops
just there: interactions are modeled by a term which is zero if the site is empty of fermions or
has only a single fermion, but has the value U if the site is doubly occupied (necessarily, by the
Pauli principle, by fermions of opposite spin). The expression Unj; nyy captures this property.
In the simplest HH, there is no interaction V'ny, n;,» between fermions on different sites 1 and
Jj» although such terms are included in the ‘extended” HH.
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Fig. 1: Pictorial representation of the terms in the Hubbard Hamiltonian. Left: The kinetic
energy t. Right: The on-site repulsion U.

A reasonable thought for the kinetic energy is an expression which destroys a fermion on one
site and creates it on a neighbor. The energy scale ¢ which governs this ‘hopping’ will be
determined by the overlap of two wavefunctions on the pair of atoms. Since wavefunctions die
off exponentially, it is reasonable to begin by allowing hopping only between the closest atoms
in our lattice.

Formalizing this reasoning, the HH is then, dropping all the ‘hats’ which had been used to
emphasize c , ¢! are operators,

H=-t} (C;oclo + CLCJU) +U D nggny =y (ng +my). ®)
(o i i

The first term is the kinetic energy: It describes the destruction of an fermion of spin o on
site 1 and its creation on site j (or vice-versa). The symbol (j,1) emphasizes that hopping is
allowed only between two sites which are adjacent. The second term is the interaction energy.
It goes through all the sites and adds an energy U if it finds the site is doubly occupied. The
final term is a chemical potential which controls the filling. We refer to the situation where
there is one fermion per site as ‘half-filling’ since the lattice contains half as many fermions
as the maximum number (two per site). Studies of the HH often focus on the half-filled case
because, as we shall see, it exhibits a lot of interesting phenomena (Mott insulating behavior,
anti-ferromagnetic order, etc.) The HH is illustrated in Fig. 1.

Before starting to solve the HH in various limits, it is useful to discuss the idea of particle-hole
symmetry.

4 Particle-hole symmetry

The Hubbard Hamiltonian has a fascinating ‘particle-hole’ symmetry (PHS) which allows us to
relate its properties for different values of the parameters. PHS is also important because it is
the basis of very useful mappings between the attractive and repulsive HH (see Sec. 10), and
because it plays a crucial role in QMC simulations.
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Fig. 2: Left: The square lattice is bipartite lattice. The near-neighbors of red sites are all green
and vice-versa. Right: A bipartite lattice naturally supports antiferromagnetic order in which
fermions of one spin are adjacent only to those of opposite spin.

We first introduce the notion of a bipartite lattice. This is a geometry in which the set of sites
can be divided into two sublattices A and B such that a site in .4 has neighbors which are only
members of B and vice-versa. See Fig. 2. The square and honeycomb lattices are bipartite, but
the triangular lattice is not. Physically, bipartite lattices are highly conducive to antiferromag-
netic order, since up and down spin fermions can occupy the two separate sublattices and each
spin is always surrounded by neighbors of the opposite spin. Antiferromagnetic order on the
triangular lattice is, in contrast, frustrated. If each site has a fermion, all conceivable ways to
occupy the lattice must possess some bonds connecting sites with spins in the same direction.
Bipartite lattices in which the cardinalities of the A and B sublattices are different are possi-
ble, and, indeed, Lieb has proven some profound theorems concerning ferromagnetism on such
lattices. We will encounter these later.

Consider, now, the introduction into the HH of new operators which exchange the role of cre-
ation and destruction:

dj, = (-1)e, . 9)

The (—1)! factor takes the value —1 on one sublattice and +1 on the other. This is aptly named
_'.

lo

a particle-hole transformation (PHT) because d}adla =1 - ¢, The occupations (eigenstates
of the number operators) n = 0, 1 are interchanged.

The key observation is that the kinetic energy in the HH, on a bipartite lattice, is unchanged
under a PHT. That is, it takes exactly the same form in terms of the d operators as it did in terms

of the c operators:

1
C1,C

jo

= (=1)d,dl = dl.d

10@;o - (10)
In obtaining the last equality we used the fact that one minus sign arises from the anticommu-
tation of the two operators, and that a second minus sign arises from the bipartite nature of the
lattice, which guarantees that (—1)* = —1,

It is useful to rewrite the HH in a way in which this PHS of the kinetic energy term is present in
the interaction term. The expression U (nj; — 1)(n;, — 3) is also unchanged under the particle-

hole transformation. Since U(njy — 1)(ny, — 3) = Ungng, — Y (ng, + nyr) + 5, this new form
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of the interaction differs from the original only by a trivial shift in the chemical potential and
an overall additive constant to the energy.
The upshot is that the PHS form of the HH,

1 1
H=-tY" (c}(,ck, + chjo) +UY (njT - 5) (nﬂ - 5) — Y (ng+mng) (11
SRV j ]

is completely equivalent to the original HH.

The utility of this rewriting is fully appreciated by considering how observables transform.
Under a PHT, the density p transforms to 1 — p, and the HH transforms to the HH with the sign
of 1 reversed. (The chemical potential term is the only piece of the re-written HH which is not
PHS.) As a consequence, p(p) = 2 — p(—pu) and, in particular, at 4 = 0 we have half-filling
p = 1. These statements are true for any value of ¢, 7", or U'!

In fact, PHS implies that the whole phase diagram of the HH on a bipartite lattice is symmetric
about half-filling. When the square lattice HH is used to model cuprate superconductors, one
often includes a next near neighbor hopping ¢’ which connects sites across the diagonal of a
square, i.e., sites on the same sublattice. This breaks PHS and the properties of the HH are not
the same above and below half-filling (1+ > 0 and p < 0), correctly capturing the fact that the
hole- and electron-doped cuprates have rather different properties.

S The single-site limit

Having dealt with this important symmetry, we can get a first insight into the physics of the HH
by considering just a single site. Alternately phrased, we can set ¢t = 0 in the HH. In this case,
[f[ ,njo] = 0 for each j, so that the eigenstates of H are also eigenstates of all the individual
number operators. The number operators also commute with each other, so basic principles of
quantum and statistical mechanics tell us we can consider each term in H on its own. We thus
arrive at a single site model which is very easily solved. (Since all sites are independent, we
drop the site index in this limit.)

We have four possibilities corresponding to the site being empty |0 ) having a up fermion or
down spin fermion | 1), | | ), or being doubly occupied. | 1| ). Each of these is an eigenstate of
H with eigenvalues U /4, —U /4 — pi, —U /4 — i, U/4 — 24, respectively. The partition function,

Z=Tr[ePH] = e PUM 42 BCUMM 4 ~BUMA—20) (12)
and the occupation is given by,
p=(nr+n)=2Z"Tr[(ng+ny)ePT] = 271 (2 PV L9 =BUMA2)  (13)

Clearly, p = 1 at x = 0 in this expression. But, as emphasized earlier, this is true even at ¢ # 0.
It is instructive to make a plot of p vs. u. Figure 3 shows the result for U = 4 and decreasing
temperatures 7' = 2.0, 0.5, and 0.25. For T" = 0.25, thermal fluctuations are small and one
observes a step-like structure in the density. p is small until the chemical potential exceeds
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Fig. 3: Density p as a function of chemical potential p for the single site (t = 0) HH. As the
temperature decreases, a ‘Mott Plateau’ develops: Increasing p initially adds a fermion to the
site, but p gets frozen at p = 1. The chemical potential must jump by Ap = U to add a second
fermion. The compressibility k = Op/Ju = 0 in the Mott gap.

—U/2. At this point it rises to p = 1. However we do not fill the site with a second particle,
p = 2 until p jumps by U. This is our first encounter with one of the fundamental features
of the HH, the ‘Mott insulating gap’. This will be discussed in more detail later, but for now
we just notice that the presence of one fermion on a site blocks the addition of a second (until
a sufficiently large chemical potential overcomes the repulsion). The flat region of p = 1
extending from p = —U/2 to p = U/2 is sometimes referred to as the ‘Mott plateau’. The
compressibility £ = dp/dp = 0 in the Mott gap.

As seen in Fig. 3, finite temperature 7" washes out the sharp jumps in p. One of the key questions
encountered in the HH is to determine the conditions under which guantum fluctuations induced
by the hopping ¢ destroy the Mott plateau.

A fundamental physical quantity in the HH is the ‘local moment’.
(m?) = ((ny —ny)?) = (mp +ny) = 2(nyny) = p — 2D (14)

where D is the ‘double occupancy’. The local moment is zero if the site is either empty (|0) )
or has two oppositely pointed spins (| 1J ) ), but takes the value one if the site has a single
fermion (| 1) or| ] )).

Figure 4 shows (m?) as a function of U for fixed T' = 2 (left), and as a function of T for fixed
U = 4 (right). The plot shows half-filling p = 1 (x = 0). At large U or small 7" the local
moment (m?) — 1 can become perfectly formed. There is no double occupancy, and hence no
empty sites either, if p = 1. As with the Mott plateau, turning on quantum fluctuations ¢ # 0
changes the behavior of (m?). Perfect moments no longer form at 7' = 0 for finite U.
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Fig. 4: Left: The local moment (m?) as a function of U at fixed temperature T = 2. Right: The
local moment (m?) as a function of T at fixed U = 4. Local moments develop as either T is
reduced or U is increased. Chemical potential ;. = 0 in both panels, so the site is half-filled.

6 The non-interacting Hubbard Hamiltonian

There are two alternate, but equivalent, ways of looking at the U = 0 HH. One involves working
in real space. The other in momentum space. Let’s start with the real space analysis.

We first note that the HH commutes with the operators Ny = >, njt and N| = >, n;| which
count the fotal number of up and down fermions on the lattice. (There is no commutation with
the individual number operators as we had for ¢ = 0.) You can show this by considering the
commutator of the kinetic energy on a single ‘link’ of the lattice connecting sites i and j with
the total number of fermions on those two sites, and proving [ciTacja + chacia, N, + n5,] = 0.
A handy identity in working through the algebra relates commutators and anticommutators,
[AB,C] = A{B,C} — {A,C}B. Actually, one can almost guess that this hopping term must
conserve particle number, since it contains one creation and one annihilation operator for the

relevant sites.

The implication of this commutation is that in finding the eigenstates of the HH, we can consider
different sectors of total N4 and N| separately. (This is true even if U is nonzero.) So let’s think
about the sector where Ny = 1 and Ny = 0. A basis consists of occupation number states
|100000---), [010000---), [001000---), ... There are N of these basis vectors, where
N equals the number of sites in the lattice. Obviously, we only need to track the up-spin fermion

location. Let’s imagine for simplicity that we are in one dimension. Applying H to these states
moves the occupied site to the left or right. As an explicit example for how H acts,

H|010000-+) =—x|010000---) —£[100000---) —£[001000---).  (15)
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Consequentially, the matrix for H in this basis is just

- —t 0 0 0 —t
—t —pu —t 0 0 0
" 0 —t —pu —t 0 0 16
N 0 0 —t —u 0 0 (16)
-t 0 0 0 -+ —t —pu

If we impose periodic boundary conditions (pbc) then the first row of the matrix has a —¢ in its
final column, and the last row of the matrix has a —¢ in its first column, representing a hopping
between the first and last sites in the chain.

The eigenvalues of an N x N tridiagonal matrix with ‘a’ along the diagonal and ‘0’ above and
below the diagonal, with pbc, are \,, = a+ 2b cos k,, where k,, = 2rn/N andn =1,2,3,... N.
To see this, insert the ansatz v; = ¢* in the eigenvalue equation av; + bv_1 + b = Ay
The discretization of k arises from the requirement vy = vy and vyy; = vy, which must be
used for the equations with [ = 1 and [ = N to have the above form.

This property of tridiagonal matrices solves the noninteracting HH in the one particle sector for
a one dimensional chain. The eigenvalues are ¢(k) = —u — 2t cos k and the eigenvector 7y, has
components (7 ); = €™*!. It is interesting to note that, mathematically, this problem is identical
to the calculation of the modes of a one dimensional mass-spring system, where the analogous
calculation yields the normal modes and (squares of) the normal mode frequencies.

What about the two particle sector? The basis vectors now are the N(N — 1)/2 occupation
110000---), [101000---), |{100100---), ---. One can take these states
and follow the same construction as with Ny = 1: Act with H on each one and get the matrix for

number states,

the HH in this basis. Diagonalizing yields N (N — 1) /2 eigenvalues and eigenvectors. If you do
this, you will find the eigenvalues are just composed of sums of pairs of the eigenvalues of the
N+ = 1 matrix, with the ‘Pauli Principle’ restriction that you choose distinct eigenvalues! This
is pretty amazing since, at first glance, the matrices appear completely unrelated to each other.
For example, the rows of the matrix for Ny = 2 associated with states in which the occupied
sites are not adjacent have four columns with —¢, while those for states with adjacent occupation
have only two columns with —¢. The matrix looks far less symmetric than for Ny = 1.
Important Note: When you do the calculation you must keep very careful track of the signs
in returning sequences of creation operators into the order you selected for your convention!
Otherwise the eigenvalues for Ny = 2 will not be related to those of NV, = 1. See Sec. 2.

The message here is that, in the absence of the interaction term U, all the information about
the eigenstates of the HH are contained by solving the single particle sector. However, when
U # 0, the eigenvalues absolutely cannot be obtained in this way. (In fact, you will have to
consider the up and down spin fermion occupations together.) Interactions turn the HH into a
many-body problem.

A second, and much better, way to analyze the U = 0 HH is to do a canonical transformation
on the creation and destruction operators. Just as in classical mechanics where a canonical
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transformation preserves the Poisson brackets, here we seek to preserve the fermion operator
anticommutation relations. (The PHT of Sec. 4 has this property.) We define

1 .
T ikl T
C. = — E e . 17
ko /_N 1 lo ( )

As already noted above, the momentum k has discretized values so that there is the same number
of momentum creation operators as creation operators in real space.
The following ‘orthogonality’ identities are very useful

1 i(kn—km)l 1 ikn(l—j
~ El el W =6, and ~ En =0 = 5, . (18)
They allow you to invert Eq. (17) and prove
1 )
+ —ik-1 T
Cly = —F— g e Chor- (19)
1 \/N - k
and also to verify that the anticommutation relations

{cko7 CI)U’} = 6k7p5070/ {C;r(cr? CI)U’} =0 {cko7 Cpo’} =0 (20)

are indeed preserved by this canonical transformation. The total number operator takes the same
form in either basis N = >oi(ngr +mnyp) = > (g + naey ).
We can also write down the U = 0 HH in terms of these momentum space operators.

H= Z(ek — ) e, = Z(ek — )Nk, with e = Zeikﬁl : (21)
ko ko !
Here @, are the real space vectors pointing to the nearest neighbors of a given site. (We are
assuming ¢ connects only those nearest neighbors.) In one dimension, d; = £ so that ¢, =
—2t cos k, as we have previously observed working in real space. (I have set the lattice constant
equal to one.)

This Hamiltonian looks like the one arising in the quantum oscillator in Sec. 2 in the sense that
it is expressed in terms of a sum of independent number operators which are all mutually com-
muting. It is now even more evident that the list of single-particle levels € tells us everything
about all the particle sectors: At U = 0, even if one has many particles, they just occupy the
one particle states in accordance with the Pauli principle.

It is important to realize that the result that an analysis of the one-particle sector gives us full
information about the model for any particle number rests only on the fact that the interactions
are turned off. It is not necessary that the hopping ¢ between different sites be the same for all
pairs of sites, or that it be limited to near neighbors, or that the chemical potential be the same
on all sites. All that matters is that H be a quadratic form in the fermion creation and destruction
operators. To emphasize: To solve any Hamiltonian H which takes the form H = D1 cI hij ¢
with h a (symmetric) matrix of real numbers, simply diagonalize / and allow the resulting
energy levels to be filled in a way which satisfies the exclusion principle.
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t=1.0 V=0.2

Fig. 5: Top: The geometry of the PAM in one dimension. Bottom: The dispersion relation.

We will consider two further examples of computing dispersion relations which illustrate how
to handle lattices with a basis (‘multiband HH’) and also show often encountered geometries.

The first adds a ‘staggered potential’ A}, (—1)! n; to the HH on a bipartite lattice. Considering,
again, a one dimensional chain for simplicity, we write (—1)! = €™, Going to momentum space
one encounters,

A Z Ve, = A% S et S e S et = A dey,, 22)
l k P k

Going to momentum space has not fully diagonalized the Hamiltonian: the wavevectors k& and
k 4+ 7 mix. Using the forms already written down for the hopping terms in the HH,

B Py —2tcos k A L
"= Zk: ( G Ot ) < A —2t cos(k + ) 23)

Ck+7r

where the k& sum is over the reduced Brillouin zone —7/2 < k < 7/2.

One must still do a final diagonalization of the 2 x 2 matrices in Eq. (23), which yields the two
bands Ej = i\/ —2t cos k)2 + A2. The staggered potential has opened up a band gap at the
reduced Brillouin zone boundaries ¥ = 4+ /2. Understanding the energy bands in a staggered

potential is important to doing mean-field theory for the HH. See Sec. 9.

A second example is that of the Periodic Anderson Model (PAM). The PAM is a multi-orbital
variant of the HH in which there is a ‘conduction’ band with creation operators cI and a ‘local-
ized’ band with creation operators dI. There is no Hubbard U for the conduction band, while
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the fermions in the localized band hop only to the conduction band. The Hamiltonian is

H==t3 (C}ocla + CLCjo) VD (C.Jiradla + dL%)
(e

G:ho
1 1
+ U Z (ndjT — 5) (ndﬂ — 5) — U Z(nm + ncﬂ + ndjT + ndji) . (24)
J J

This geometry is illustrated in one dimension in Fig. 5(top).
Going to momentum space for the non-interacting PAM at ;1 = 0 yields 2 x 2 matrices similar
in structure to the staggered potential example. We again simplify to one dimension,

~2tcosk V
H:;<c£ dL)( ;OS 0)(2) (25)

A final diagonalization is required to yield the band structure £}, = % (ek + \/e,%—i—TW ) These
two bands exhibit a ‘hybridization gap’. Where the dispersionless d-band crosses the c-band at
k = 4 /2 the hybridization V' repels the two curves.

Having computed the dispersion relation €y, it is valuable to obtain the density of states (DOS)

N(E) = % D (B -a). (26)

As its formula makes apparent, the DOS counts the number of energy levels having a particular
value E. In the continuum limit (large number of sites), the sum over discrete momenta is
replaced by an integral according to the rule >, — (2m)™% [dk , where d is the spatial
dimension. For the one-dimensional HH with ¢, = —2tcosk, N(E) = 1/(m/4t2 — E2). We
will use this result in Sec. 9. This DOS diverges at &/ = -2t where the bands are flat, as we are
told should be the case by Ashcroft and Mermin.

A particularly important example of the dispersion relation of the U = 0 HH is that of the
square lattice, where e, = —2t (cos k, + cos k) according to Eq. (21). One of the reasons this
is an interesting geometry is that it forms the simplest picture of the cuprate superconductors:
the copper atoms of the CuO, sheets reside on a square lattice. Early theories of supercon-
ductivity in the cuprates relied on the special van-Hove singularity of the DOS of the square
lattice. See Fig. 6(left). One can see the basic idea of the possible role of this divergence from
the BCS formula for the superconducting transition temperature 7, ~ we™"VN(Er) Here V
is some coupling constant and w is an energy scale (a phonon frequency in conventional super-
conductivity). A large value of the DOS, N (EF), reduces the size of the negative number in the
exponential, boosting 7.. When we discuss Stoner theory we will see another example of how
an understanding of the DOS is useful.

Amazingly, the full picture of pairing in the cuprates remains a mystery. The HH is unsolved
on the 2D square lattice, and, in particular, whether the ground state away from half-filling has
long range d-wave pairing correlations is still open.

As in an electronic structure calculation, the Fermi Surface (FS) of the HH is constructed from
the dispersion relation € as the locus of momentum space points that separates filled and empty
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Fig. 6: Left: The density of states of the square lattice HH. It has a singularity at 1 = 0 (half-
filling). Right: The Fermi Surface of the square lattice HH for different values of the filling. It
evolves from circles about the 1" point at low filling to a rotated square at half-filling p = 1.

states at 7' = 0 in the absence of interactions. The FS of the square lattice HH is shown for
various values of y in Fig. 6(right). Like the DOS, the FS of the square lattice has a unique
feature at half-filling: perfect nesting. What this means is that the same wave vector k = (7, 7)
maps large segments of the FS onto itself. Since the properties of a fermionic system are
dominated by the FS, this suggests that this momentum vector might play a crucial role in the
physics of the square lattice. Sure enough, antiferromagnetic order, a large magnetic structure
factor at k = (m, 7), is a feature of the HH at p = 1 all the way down to U = 0.

With ¢ in hand, one can compute all the standard statistical mechanics properties: The partition
function, density, internal energy, free energy, and entropy of the U = 0 HH are

7 —Tr [e—ﬁﬁ} =TI > et =TT (1 +e P
k

k nk=0,1
p=Z7" T | Yo mee | = 3T (1 ) TN
k k k

E=Z'Tr [He | =3 e (14 Pon)™ =3 g i
k k

S=B(E—F)=BE—-InZ. 27)

Here we introduced the usual definition of the Fermi function fi.

There are several other lattice structures on which the HH is commonly studied and hence whose
dispersion relations and DOS are worth knowing. The DOS of the triangular and honeycomb
lattices are shown in Fig. 7. The honeycomb lattice is notable for its linearly vanishing DOS
at half-filling. Comparison of the DOS of the triangular lattice with that of the square and
honeycomb lattices emphasizes the fact that N(FE) = N(—FE) for bipartite lattices, but not for
non-bipartite ones.
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Fig. 7: Left: The DOS of the U = 0 triangular lattice HH. This non-bipartite lattice does not
have the property N(E) = N(—FE) of the square and honeycomb lattices. Right: The DOS
of the U = 0 honeycomb lattice HH. Vertical lines demark the chemical potentials of fillings
p=20.1,02,0.3,---. Filling p = 0.5 is at & = 0. Inset emphasizes the honeycomb lattice can
be viewed as a depleted triangular lattice.

Our final example is the ‘Lieb lattice’. This geometry consists of a square array of sites to
which are added additional sites at the midpoint of each bond. See Fig. 8. This structure is of
fundamental importance to the cuprate superconductors since it provides a more refined picture
of the CuO, planes which includes the bridging oxygen sites in addition to the square lattice
copper ones. In that application, the parent compounds like La,CuQO4 have one fermion per
CuOs unit cell, and there is an additional site energy on the oxygens such that the fermion
resides mostly on the coppers.

In the absence of such a site energy, however, something amazing happens. Despite the fact
that all the sites are connected and so, seemingly, a fermion placed locally on the lattice would
inevitable spread out to occupy the whole structure, instead there are perfectly localized states
in real space! Consider Fig. 8 and the state |¢) = (¢l — ¢l + ¢} —¢l)|0000---0). When
the U = p = 0 HH for the Lieb lattice acts on | ) one obtains H|1) = 0! That is, | 1))
is an eigenstate of H of eigenvalue zero. A fermion created onto this cluster of four sites will

remain localized there forever. This is quite a surprise since H is translationally invariant and
we expect the eigenstates to be spread out.

One can reconcile this expectation by noting that this same construction can be done on any
equivalent set of four sites on the lattice, so there is a huge set of states all with the same energy
E = 0. One can form linear combinations of such states which are extended as in Eq. (17). The
resulting momentum space states have an energy bands which is completely dispersionless:
ex = 0 independent of k.

This same result can of course be obtained from the procedure we have outlined earlier. Going
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Fig. 8: The geometry of the ‘Lieb lattice’. Creation of a fermion with the appropriate phases
on the four labeled sites results in a localized mode. See text.

to momentum space results in a 3 X 3 matrix

0 —t (L4 e™) —t(1+eh)
—t (1 + e =) 0 0 (28)
—t (14 e ) 0 0

one of whose energy bands is £y = 0.

Lieb has shown [11] that the presence of such flat bands is a generic feature of bipartite lattices
for which the numbers of A and B sites are unequal. More importantly, ferrimagnetic order can
be rigorously proven to occur in the ground state. This is one of the few things known exactly
about the HH. We briefly discuss some further interesting interaction-driven physics of the Lieb
lattice in Sec. 11.

7 Introduction to exact diagonalization: the two-site HH

The single site HH gave us some insight into the role of U in such phenomena as moment forma-
tion and the development of the Mott plateau, but the absence of ¢ precluded any consideration
of the interplay between kinetic and potential energy, and the formation of intersite magnetic
correlations. These can, however, be captured by examining the HH on two spatial sites. This
is the simplest non-trivial example of a powerful method to solve model Hamiltonians: exact
diagonalization (ED).

We begin by using the occupation number basis | 11+ 11 noy ng; ) to enumerate the states in
the Hilbert space. The commutation relations [H, nir + ngy) = [H,ny | + ngy] = 0 reflect the
conservation of the number of up and down fermions, and divide the 2* = 16 states into nine
sectors, (ny+ + nap, 1 + o) = (0,0),(1,0),(2,0),(0,1),(1,1),(2,1),(0,2),(1,2),(2,2) of
dimensions 1,2,1,2,4,2,1,2, 1, respectively. The sectors of dimension 1 immediately identify
four eigenstates of the HH on two sites: The completely empty lattice, the lattice completely
packed with four fermions, and the states with two like-spin fermions. All these have zero
kinetic energy because there are either no fermions present to hop, or else there are two of the
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same species and the Pauli principle blocks hopping. The (2,0) and (0, 2) energies are —U /2
and the (0,0) and (2, 2) energies are +U/2.

The four sectors of dimension two are almost equally simple. They each have eigenenergies +t¢.
In the case when there is a single fermion, it can hop between sites. With three fermions, the
two which are of like spin are frozen by the Pauli principle and again one has a single fermion
which can hop. The fact that the one and three particle sectors have the same spectrum is a
reflection of our use of the PHS version of the HH.

The (1, 1) sector has dimension four and is the only slightly complicated one. We are rewarded
for enduring its diagonalization by some interesting physics. If we denote by # a site which
is doubly occupied, and by 0 a site that is empty, then the action of H on the four states

|1 L) 4 1), [# 0),]0 #),is given by the 4 x 4 matrix

-U/2 0o -t —t
0o -U/2 -t —t
—t -t U/2 0
—t —t 0 UJ/2

(29)

The eigenvalues of this matrix are —U/2, U/2, ++/412 + U2 /4.

We have now discovered the complete spectrum of the two-site Hubbard Hamiltonian. We
emphasize again that, in contrast to the noninteracting case U = (, we cannot infer all the
eigenenergies from consideration of the single particle sector.

The low temperature properties of the two-site HH are determined by the lowest energy eigen-
states. These are four of the six states in the half-filled sectors (2,0),(0,2) and (1, 1) with
energies —U/2 (threefold degenerate), U/2, and ++/4¢%2 + U?/4. If we think about U > t
we can rewrite /412 + U2/4 = £(U/2) /1 + 1612/U% =~ £U/2 (1 + 8t*/U?) = ~U/2 —
42 /U, +U/2 +4t2/U.

We have four states with energies roughly —U /2 and two with energy roughly +U/2. In the
thermodynamic limit, these two groupings of states, separated by energy U, are referred to as
the ‘upper and lower Hubbard bands’ (UHB, LHB).

Besides illustrating the UHB and LHB, a particularly nice outcome of this two-site ED analysis
is that it also provides a clear illustration of the mapping of the HH to the spin-1/2 Heisenberg
model in the large-U limit. It is natural to imagine some such relation between the models
because at large U the HH favors single occupation of each site with either an up or a down spin
fermion, paralleling the situation of the spin-1/2 Heisenberg model on which each site can have
S, ==+1/2.

Our solution of the two-site HH allows us to make this mapping more quantitative. Consider
two spin-1/2 objects with a Hamiltonian H=1J 51 . 52. The spectrum is obtained by a trick:
JSy - Sy = J/2 ((S) + Sy)% — S} — 53). We know S? = S3 = 3/4 and that, by the rules of
adding angular momentum two spin-1/2 combine to spin-0 (non-degenerate ‘singlet’) or spin-

1 (three-fold degenerate ‘triplet’). The square of the total spin therefore takes the two values
(S +5,)2=0,2.
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This observation allows us to solve the two-site Heisenberg model: .J S-Sy =J (0—3/4—
3/4) = —3J/4or JS, - S, = J(2 —3/4 —3/4) = +.J/4: The spectrum of the two-site
Heisenberg model consists of one state of energy —3.//4 and three states of energy +.J/4.

In the large-U limit, the LHB of the two-site HH has precisely the same structure: a single
state of energy —U/2 — 4t% /U beneath a triplet of states of energy —U/2. This makes more
precise the qualitative picture discussed above: the eigenspectra are rigorously identical. It also
identifies the exchange energy scale J = 4t?/U.

It should be clear that, with the aid of a computer, the ED method can be easily extended
to larger numbers of sites [12, 13]. Three functions are at the core of an ED code: The first
assigns a basis state number « to each collection of occupation numbers. The second inverts
this process, yielding the occupations associated with any basis state number. Finally, a function
computes the action of H on each basis state |a), using the first function to get the occupations,
rearranging the occupations based on the kinetic energy operator, and using the second function
to get from these rearranged occupations the states |5). For each of these 5 one sets H,3 = +t,
where the sign is determined by considering how many interchanges are required to get the
operators into their conventional order (as discussed in Sec. 2). The action of the potential
energy is easily computed since it does not alter the occupations. Its value is assigned to H ..
More detailed descriptions of the ED method are available in [12,13]. The basic principle really
is no more complex than that described above, but as with most simple methods, many clever
ideas are involved in pushing them to their limits, such as the use of symmetries to partition H
into the smallest possible blocks, and, especially, to extract experimentally useful quantities. ED
really comes into its own in the computation of dynamical properties, which are very difficult
to obtain with competing methods like QMC. For this reason it has been extremely valuable in
recent work on thermalization and many-body localization.

8 Green functions: Mott gap and spectral function

As mentioned in the introduction, much of the initial work on the HH involved the use of
perturbative, diagrammatic techniques whose central quantities are Green functions G. These
approaches, and the important role of G, closely connect with more recently developed QMC
methods. For that reason, we will now examine the one-particle Green function in the nonin-
teracting (U = 0) and single site (¢ = 0) limits. The discussion will also reinforce some of
our earlier observations. Much of our discussion will work in real space, since several QMC
techniques are formulated there, and our results provide useful context for those methods [14].

8.1 Green functionsat U = 0

We begin with the definition

Gjn(T):<c.(T)cL(0)> with ¢ (r) = ¢, (0)e 17 (30)
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In the limit of no interactions, Gj,(7) can be computed analytically. We first note that the
imaginary time evolution in momentum space is

(1) = e (0)e T = e e (0) (31
This can be verified either by showing that both expressions give the same result on the two
states | 0) and | 1), or by using the general theorem that A(7) /01 = [H, A(7)].
Transforming the operators in G to momentum space, and using (ckcL) =1— fx we see

1

Gin(T) = D et (1 - e (32)

k
Notice that G is just a function of the difference n — j, as you would expect for a translationally
invariant Hamiltonian.
We have been a little bit careless in defining G. Usually in many-body theory one defines the
so-called ‘time ordered’ Green’s function, Gy (7) = — (T ¢, (7)ck(0)) where the time ordering
operator T is given by

Te(T)eh(0) = ¢ (1)el(0) forT >0
Ten(T)el(0) = =l (0)e (1) forT <0, (33)

This more precise definition of G leads to the property that G(7+3) = —G(7) for —5 < 7 < 0.
Hence the Fourier transform of GG

B
G(r) =) _ Gliwy)e ™" Gliw,) = : %G(T)eiw (34)

involves the ‘Matsubara frequencies’ w,, = 7(2n + 1)/f. In momentum space and imaginary
time the Green function is given by

Gy(r) = —e % (1—fi) for 0<7<p
Gk(r) = e ¥ fg for —f<7<0 (35)

and in momentum space and frequency

1
Gk(i wn) - - (36)
Wy — €k
Another way to get this last result is to take 0/07 of the definition of the time-ordered Green
function written in the form

Gie(T) = (ew(T)exc(0)) O(7) — (ex(0)exc(7)) O(=7) - (37)

and then Fourier transform both sides to solve for G (i w, ). This approach is the basis of the
‘equation of motion’ method for computing G. One starts with the definition of G, takes a
time derivative, evaluates the resulting commutators of H with the creation operators, and then
Fourier transforms. If the Hamiltonian is quadratic in the fermion operators, then the set of
equations so obtained closes, even if the different fermion operators mix. Of course, we already
knew quadratic Hamiltonians are soluble!
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8.2 Green functions att = 0

It is instructive to look at the Green function for a single site, that is, the ¢ = 0 HH. We have
previously written down the Hilbert space for this problem and obtained the partition function
and various equal time quantities. Now consider the calculation of

Gi(T) = (cp(7)cl(0)). (38)

Only the states |00 ) and |0 1) contribute to the expectation value since the creation operator
for up fermions needs to see an empty up state. We compute the action of the sequence of
operators on | 00 ):

cT(T)cHO) |00) = eHTcT(O)e_HTcHO) |00) = eHTcT(O)e_HT |10)
— €HTCT(O>€+UT/4 ‘ 10> — €HT€+UT/4 ‘00> _ €+UT/2 |00> (39)

and similarly for |01 ).

Completing the calculation yields

e+BU/Ao—TU/2 | —BU/4oTU/2

Gilr) = 2ePU/ 4 2 e—PU/MA “40)
The Green’s function is related to the ‘spectral density’ A(w) by
+00 T
G(r) = /_OO A(w) mdw. 41)
One can show that when
Alw) = % (8(w—U/2) +8(w+ U/2)) 42)

is inserted into Eq. (41), the result of Eq. (40) follows. The spectral function of the one-site HH
consists of two delta-function peaks separated by U, a result closely connected to our earlier
discussion of the Mott gap. Just as the Mott gap is softened (and perhaps even eliminated) by
the introduction of ¢, the computation of A(w) for the full HH is one of the central pursuits of
the field.

9 A peek at magnetism

In this section we will discuss three common pictures of magnetism in the HH in order of in-
creasing level of mathematical detail: a perturbation picture of the relative favorability of neigh-
boring fermions being of the same or opposite spin; the Stoner criterion for ferromagnetism; and
static mean-field theory (MFT). In the latter case we will only outline the calculation to be done,
pointing to the connections with our discussion of the U = 0 HH.
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Fig. 9: The Pauli principle prevents fermions of like spin on adjacent sites from hopping (left),
a process which is allowed if the fermions have opposite spin (right).

9.1 Perturbation theory

We already encountered the ‘exchange energy’ J = 4t2/U as the separation between the ground
state and the three excited states in the lowest energies of the half-filled sector of the two-site
HH. This scale can also be arrived at by doing perturbation theory in t. At¢ = 0, the half-filled
HH will have exactly one fermion on every site. Because the sites are independent, the relative
orientations are irrelevant to the energy.

Now consider perturbation theory in the hopping. There is no first order shift because the
kinetic energy does not connect a state of fixed occupation number with itself. However, there
is a second order contribution if the adjacent spins are antiparallel. The kinetic energy K can
transport a fermion to its neighboring site, resulting in an intermediate state whose doubly
occupied site has higher energy +U. Then a second action of K returns to the original state.
The standard perturbation theory formula yields £ ~ —¢2 /U, and a careful counting gives the
correct factor of four and J = —4¢?/U. This process is forbidden if the two spins are parallel.
These two situations are illustrated in Fig. 9.

It is interesting that antiferromagnetism arises both from this strong coupling (perturbation the-
ory in t) argument and also from weak coupling (small U) where we saw the nesting of the
Fermi Surface select out the antiferromagnetic wavevector k= (7, 7). Indeed, more sophisti-
cated weak coupling approaches like the ‘Random Phase Approximation’ reinforce the notion
that the magnetic susceptibility is largest at (7, 7).

9.2 The Stoner criterion

Stoner developed a picture of ferromagnetism based on the competition between the increase
in kinetic energy when making the up- and down-spin fermion numbers different and the as-
sociated decrease in potential energy. The basic idea is the following: Because of the Pauli
principle, the way to occupy a given set of energy levels with the lowest energy is to start filling
from the bottom and put two fermions, one of each spin, in each level. Otherwise, if you make
the numbers of up and down fermions unequal, and don’t fill each level with two fermions, you
will have to occupy higher energies.

However, if you make the number of up and down fermions unequal, you can reduce the poten-
tial energy: Consider the limit of complete spin polarization where there are no fermions of one
spin species. Then, obviously, the potential energy is zero. Very generally, polarization of the
spin decreases the likelihood of double occupation and hence lowers the potential energy.
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Fig. 10: Polarizing the fermions increases the kinetic energy, since the levels which must be
occupied by the majority species, according to the Pauli principle, are higher than those which
could be filled by the minority species.

Let’s now make this argument more precise: Consider a system with density of states N(FE)
and both up- and down-spin fermions filling the energy levels up to the same maximum Fermi
level E'r. The density of up and down fermions is equal. We’ll call it n.

We now compute the change in energy which results from a reduction in the density of up-spin
fermions by dn and at the same time an increase the number of down-spin fermions by on. The
potential energy is lowered by

P =U(n+dn)(n —dn) — Un* = —U(n)*. (43)

If we shift an extra on fermions into the down group, we will occupy energy levels above the
original F'r. Recalling the definition of the density of states as the number of levels at an energy
E (see Eq. (26)), we have that N(E) = 0N/JFE, whence én = N(Er)dE. This tells us how
big the range of energies is above Fr we are filling in terms of dn. Likewise, we are emptying
levels below Er that used to be occupied by up spin fermions. See Fig. 10. The net result of
this process is to shift on fermions up in energy by an amount 0 ©. The change in the kinetic
energy is then

_ _ 1 2
0K = +6ndkE = +N(EF) (0n)*. (44)

Putting these two expressions together

(on)?
N(Ep) "

§E = 6P + 0K = (—U + ) (6n)? = (~UN(EF) + 1) (45)

N(EF)
We see that if UN(FEr) > 1 the total energy change E < 0, so it is favorable to have the
up and down fermion densities different and hence favorable to have ferromagnetism. This is
called the Stoner criterion. It tells us that magnetism is favored by large fermion interactions
and also by large DOS.
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9.3 Mean-field theory: the idea and procedure

We have considered the HH in the limits of no hopping (¢ = 0), no interactions (U = 0), and
small system sizes (one and two sites). We now describe how to use mean-field theory (MFT)
to study magnetism.

What is MFT? We commented in an earlier section that a Hamiltonian which is quadratic in the
fermion creation and destruction operators, H = Zl,j cI hy j ¢;, can be solved by diagonalizing
the matrix h. MFT is a method which produces such a quadratic Hamiltonian from a model
like the HH which has quartic terms U cﬁcTcIc | involving four fermion creation and destruction
operators. The approach begins by expressing the number operators as an average value plus a
deviation from the average:

nit = (nar) + (nar — (nir))
niy = (niy) + (nay — (nay)) - (46)

Substituting these expressions into the Hubbard interaction term, and dropping the ‘small’ term
(it’s not really small!!) which is the product of the two deviations from the average yields

nipniy = [ (i) + (nar — (rag)) 1 [ (nay) + (s — (nay)) |
~ (nig) (nay) + (nag) (nir — (nap)) + (i) (nay, — (nay))
= nip(niy) + nag (nar) — (nin) (nay) - (47)

The interpretation of this expression is clear. The up-spin fermions interact with the average
density of the down-spin fermions, and similarly the down-spin fermions interact with the aver-
age density of the up-spin fermions. These two terms overcount the original single interaction
term, so the product of the average densities is subtracted off.

Within this mean-field replacement, the Hubbard Hamiltonian is now quadratic, and takes the
form (in one dimension)

H=—t Z <CzTaCz+1a + CL—IUCZU) +U (”n(”zﬁ + ”u(”n)) - <”n><”z¢> ) . (48)
lo

Since H is quadratic, its solution is a matter of diagonalizing an appropriate matrix. Specifically,
for the case of ferromagnetism, one imagines that the average occupation is independent of
spatial site 1 but allowed to be different for the two spin species. That is, (n;1) = n + m and
(1) = n — m. Our goal is to calculate the energy £ for fixed n as a function of m and
see whether the minimum is at m = 0 (paramagnetic state, no ferromagnetism) or m # 0
(ferromagnetism). Because the expectation values (ny) and (n;;) have a site independent form,
the energy levels can easily be written down. (By now we are experts at this!) They are,

e = U(n —m) —2tcosk and € =U(n+m)—2tcosk. (49)

Again, | have assumed we are in one dimension.
One merely has to take the various possible fillings of the lattice with up and down fermions
and add these levels up. That is, we proceed as follows (if doing MFT computationally):
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Fig. 11:  Energy versus magnetization of the d = 1 HH at U/t = 2 and p = % (quarter
filling, 128 fermions on an N = 256 site lattice). Left to Right: U/t = 2.0,4.0,4.2. The
minimum energy is always in the paramagnetic phase, m = 0. But there is a hint at approaching
possibility of ferromagnetism for U/t = 4.2 where local minima have begun to develop at
m = +£1.

(1) Fix the lattice size, N, to some fairly large value, for example N = 128 or greater.
(2) Choose a total particle number N, and on-site repulsion U.

(3) Loop over Ny = 0,1,2,..., Ny, For each choice, set N| = Ny, — Ny. (Actually,
your answers should be symmetric on interchange of N} and IV, so you really only need
do half the values Ny = 0,1,2,..., Ni/2.) Define the densities, ny = N;/N and
n; = N /N.

(4) Loop over the N allowed momentum values k = 27 /N{—N/2+1,—N/2+2,... N/2}.
Fill up the lowest N; and N, of the energy levels. Recall that the levels are given by
er(k) = —2tcosk +U(n;) and € (k) = =2t cosk + U(ny).

(5) Finally, normalize the energy to the number of sites and add in the term —U(n¢)(n,).
This gives the energy for the given Ny and N| = N, — N4+. Make a list of them and see
which is lowest.

(6) Repeat the calculation for different U and N to get the phase diagram.

9.4 MFT: some results

Figures 11 and 12 give representative results for one quarter filling, that is, a density p =
prt+pp = % fermions per site. (This is one quarter of the maximal density of two fermions per
site.) The magnetization m is defined such that m = (pr — p;)/(p+ + py)-

At U/t = 2 the optimal energy is paramagnetic: the energy £ is minimized at m = 0. This is
still the case at U/t = 4, but the energy of the spin polarized solutions (/m nonzero) are getting
much closer to m = 0. (Note the energy scale.) When U/t = 4.2 the energies for large |m)|
have started to turn down and are lower than intermediate m, though E(m = 0) is still lowest.
U/t = 4.4 has just gone ferromagnetic.
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Fig. 12: Same as Fig. 11 except U/t = 4.4,6.0. The energy minima are now at m = +1. The
HH has undergone a ferromagnetic phase transition.

Earlier in this section we derived the Stoner criterion for ferromagnetism, UN (Er) > 1. In
addition, in Sec. 6, we computed the DOS for the d = 1 HH, N(E) = 1/(7\/4t> — E?). (This
is the density of states for a single spin species, which is what was used in the Stoner criterion.)
To compare with MFT, we need the relation between density p and Fermi energy Ep

. 2 ., (—Fr
p(Er) = 2/ dEN(E) ~  pi=1(Er) = = cos : (50)
—2t T 2t

We include a factor of two for spin here, so that when we get p we use the total density (including
both spin species). One can check this latter relation obeys the expected limits: p = 0 when
Er = —2t, p=1when Er = 0, and p = 2 when Fp = +2t.

Putting these equations together, we can get the density of states at Fr for a given filling:

1 1

T ort sin(mp/2) D

N(p)
For half-filling, p = 1 we see that N(p = 1) = 1/2xt and hence U,,;; = 27t. For quarter-filling,
p = 5 we see that N(p = 1) = 1/+/2nt and hence Uy, = /27wt = 4.44t. This is in pretty
good agreement with Figs. 11 and 12 which showed us that U,;; was around 4.4¢. The slight
disagreement (Fig. 12 suggests U,,;; a bit less than 4.4t while Stoner gives U.,;; a bit larger than
4.4t) is a finite size effect. (The calculations were done on an N = 256 site lattice.)
One can also do MFT in the grand-canonical ensemble (GCE). That is, rather than computing
the energy for fixed occupations, one uses a chemical potential ;2 and then computes N| and N4
by filling those levels which are below p. The density then comes out of the choice of p, and,
indeed, one needs to tune u to get the desired density.
One advantage of working in the GCE is that one can frame the calculation in a self-consistent
manner, so that starting at some densities nq, n|, the energies are computed and the new values
for the densities are inferred, which are fed back into the calculation. The process is iterated
until convergence is reached. (There is a danger of getting stuck in metastable configurations,
however.)
MFT is an incredibly useful method, and should probably be used as a starting point for un-
derstanding almost any new model Hamiltonian. It is, in fact, the technique which was used to
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solve the BCS theory of superconductivity: quadratic Hamiltonians can be solved even if they
contain ‘anomalous’ terms consisting of pairs of creation and destruction operators. MFT can
also be applied to inhomogeneous problems, for example in a HH with disorder or in situations
where inhomogeneities arise spontaneously. It is merely a matter of replacing the analytic forms
for the energy bands with a matrix diagonalization. In the former case, some beautiful work has
been done on disordered superconductivity. In the latter case, striped phases of the HH were
discovered early on via MFT, and seem to play a role in cuprate superconductivity.

9.5 MFT: antiferromagnetism

It should be clear that the basic idea to look for antiferromagnetism in the HH within MFT is
the same as for ferromagnetism. Indeed, our earlier solution for the energy bands of the non-
interacting HH serves us well here. We simply replace the ferromagnetic ansatz (ny) = n+m,
(n1,) = n —m. by an antiferromagnetic one, (ny1) = n+ (—1)'m, (ny) = n — (=1)'m, giving
rise to a staggered potential. A bipartite lattice is assumed here.

The process for computing the energy of an antiferromagnetic configuration is the same as the
steps (1-5) above, with the replacement of the ferromagnetic eigenvalues by the antiferromag-
netic ones. Since we are assuming the total up and down densities over the whole lattice are
identical, one no longer loops over different Ny. However, one does have to loop over different
m. More precisely, one fixes n = Ny, /2 and then tries m = 1/N,2/N ..., One also needs to
be careful to work in the reduced Brillouin zone.

In concluding this discussion of MFT, it should be emphasized that, while very useful in yield-
ing insight into the possible phases of the system, is a completely uncontrolled approximation.
MFT overestimates the tendency for ordered phases, and can (and does) predict magnetic order
where none occurs. Even if a particular phase transition is correctly predicted by MFT, the
details of the transition (critical temperature, critical exponents, etc) are usually incorrect.

10 The attractive Hubbard Hamiltonian

In Sec. 4 we considered PHTs, which we performed on both spin species. A PHT on only
one spin species yields a connection between the HH with U > 0 and U < 0. In this case,
n, — 1 —ny, but ny — ny is unchanged. The kinetic energy term is invariant, but the sign of
the interaction term is reversed, U(ny — 3)(n, — 3) — —U(ny — 3)(n, — 3), and the chemical
potential ;2 maps into a Zeeman field term —p(ny+ — ny). Conversely, a Zeeman term in the
original U > 0 model maps into a chemical potential term in the U < 0 model.

The HH with —U is called the attractive HH because a negative value of U represents an
attraction between spin up and spin down fermions on the same site. By considering how this
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Fig. 13: The magnetic vanadium atoms of CaV,Oqg occupy a 1/5 depleted square lattice.

partial PHT affects various operators, like the components of magnetization,

Sf:niT—nani:niTjLnu
+ _ 7T
A UR N

1

S = CLCiT < Ci|Cip (52)

1

one can show that magnetic order in the +U HH is related to superconducting and charge
order in the —U HH, so that an understanding of the phases of one model immediately implies
considerable information about the other.

For example, imagine starting with the 2D square lattice repulsive HH at half-filling. Its contin-
uous zyz spin rotational invariance precludes long range magnetic order at finite temperature
owing to the Mermin-Wagner theorem. (One of the key achievements of QMC was showing
that the ground state does have order [15].) However, if a Zeeman field is added, this symmetry
is reduced to zy, allowing for a Kosterlitz-Thouless transition at 7' 0. Performing the partial
PHT we infer that the doped attractive 2D HH (recall the Zeeman field for U > 0 maps onto a
chemical potential for U < 0) has a finite temperature superconducting phase transition. This
is a highly non-trivial assertion, made ‘obvious’ by the PHT. These sorts of considerations can
be extended to various exotic sorts of pairing [16].

11 A peek at research: CaV,0qg

Some of the current research on the HH takes a look at the properties of the HH on ‘depleted
lattices’. We already encountered one such geometry: the Lieb lattice has a regular array of
1/4 missing sites. As we noted, its band structure possesses a perfectly flat band, and it is
interesting to try to understand how this affects magnetism (for U > 0) and superconductivity
(for U < 0) [17]. Lieb [11] has given us some theorems about the former case, although
quantitative calculations are still of interest. In the latter case, an intriguing question is the
following: Consider the large (attractive) U limit of the HH. Tightly bound fermion pairs can
be thought of as bosons, and superconductivity as Bose Einstein Condensation. However, if the
band in which the bosons reside is perfectly flat, into which momentum state will they choose
to condense?
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A second depleted lattice that has been investigated [18] is a model of CaV4Og. See Fig. 13.
The appropriate HH, or Heisenberg model in the large U limit, has distinct hoppings ¢ and ¢/
within four site plaquettes and between them. It turns out there is a window of ¢/t ~ 1 (or
J'/J = 1) where long range antiferromagnetic order forms at low temperature. Outside of that
window, the ground state is a spin liquid.

12 Conclusions

In these notes we have tried to provide an introduction to the Hubbard Hamiltonian and some of
its elementary physics. We have seen how to write the model down and understand its behavior
in the limit of no interactions, no kinetic energy, small clusters (ED), and, finally, mean-field
theory. We have not discussed the many sophisticated analytic and numerical methods that have
been thrown at this simple, but remarkably stubborn, model.

One key piece of physics not addressed here, which arises prominently in the HH, and in its
multiband variants like the PAM, is the idea of a ‘Kondo resonance’. It turns out that as one
progresses from weak to strong coupling, the spectral function does not smoothly evolve from
a single blob to two (upper and lower) Hubbard bands. Instead, somewhere in the course of
changing the interaction strength a three peak structure is in evidence: The beginning of the
formation of upper and lower Hubbard bands, but also a sharp peak at the Fermi energy. This
very important idea is at the heart of much of the research into the HH and its experimental
realizations, and its successful capture was one of the key achievements of dynamical mean-
field theory.
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5.2 Robert Eder

1 Introduction

Compounds containing 3d transition-metal ions have been intriguing solid state physicists ever
since the appearance of solid state physics as a field of research. In fact, already in the 1930’s
NiO became the first known example of a correlated insulator in that it was cited by deBoer
and Verwey as a counterexample to the then newly invented Bloch theory of electron bands
in solids [1]. During the last 25 years 3d transition-metal compounds have become one of the
central fields of solid state physics following the discovery of the cuprate superconductors, the
colossal magnetoresistance phenomenon in the manganites and, most recently, the iron-pnictide
superconductors.

It was conjectured early on that the reason for the special behavior of these compounds is the
strong Coulomb interaction between electrons in their partially filled 3d-shells. The 3d wave
functions are orthogonal to those of the inner-shells — such as 1s, 2s, 2p, 3s and 3p — solely
due to their angular part Y5 ,,, (¥, ¢). Their radial part R () therefore is not pushed out to re-
gions far from the nucleus by the requirement to be orthogonal to the inner shell wave functions
and therefore is concentrated close to the nucleus (the situation is exactly the same for the 4 f
wave functions). Any two electrons in the 3d-shell thus are forced to be close to each other on
average so that their mutual Coulomb repulsion is strong (the Coulomb repulsion between two
3d electrons is small, however, when compared to the Coulomb force due to the nucleus and the
inner shells so that the electrons have to stay close to one another!). For clarity we also mention
that the Coulomb repulsion between two electrons in the inner shells of most heavier elements
is of course much stronger than between 3d electrons. This, however, is irrelevant because
these inner shells are several 100—1000 eV below the Fermi energy so that they are simply com-
pletely filled and inert. On the other hand, the 3d-orbitals in transition-metal compounds or the
4 f-orbitals in materials containing the Rare Earth elements participate in the bands at the Fermi
level so that the strong Coulomb interaction in these orbitals directly influences the conduction
electrons. The conduction bands in such compounds therefore form dense many-body-systems
of strongly interacting electrons and the energy from the Coulomb repulsion is large compared
to the average kinetic energy. This dominance of the interaction energy in turn implies a propen-
sity to show ordering phenomena and the ensuing phase transitions. It is therefore ultimately
the Coulomb repulsion in the partially filled 3d-shells of the transition-metals and the 4 f-shells
of the rare earths which gives rise to the wide variety of spectacular phenomena observed in
these compounds. Let us therefore discuss this Coulomb interaction in more detail.

2 Multiplets of a free ion

2.1 General considerations

As an example let us consider an Ni*" ion in vacuum which has the electron configuration
[Ar] 3d®. It is a standard exercise in textbooks of atomic physics to show that the d® configura-
tion, which is equivalent to d?, has the following multiplets or terms: 3F, 3P, *G, 1D and S,
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Term | J | E (eV)
SE | 4] 0.000
3| 0.169

2 | 0.281

D | 2] 1.740
3P| 2] 2.066
1] 2.105

0] 2.137

G | 4] 2.865
1 10| 6514

Table 1: Energies of the multiplets of Ni** (taken from Ref. [2]. J is the total angular momen-
tum quantum number and the J = 4 member of >F has been taken as the zero of energy.

whereby according to the first two Hund’s rules 3 is the ground state. ‘Multiplets’ thereby is
simply another word for ‘eigenstates of the system of 26 electrons in the electric field of the Ni
nucleus’ (the nuclear charge of Ni is 28). Actually, the electrons in the shells below the 3d-shell
may be considered as inert due to the large binding energies of these shells so that to very good
accuracy one can consider only the 8 electrons in the 3d-shell. The energies of the multiplets
can be deduced experimentally by analyzing the optical spectrum of Ni vapor and are listed in
Table 1. They span a range of several eV whereby multiplets with nonzero spin are in addition
split by spin-orbit coupling which results in intervals of order 0.1 eV. All of these eigenstates
correspond to the same electron configuration, namely [Ar] 3d®, so that the fact that, say, 3p
has a higher energy than ?F is not due to an electron having been promoted from a state with
low energy to one with high energy as in an optical transition. Rather, the excited multiplets —
3P, G, 'D and 'S — should be viewed as collective excitations of the 8-electron system, sim-
ilar in nature to a plasmon in an electron gas. And just as a plasmon can exist only due to the
Coulomb interaction between electrons, the multiplet splitting in atomic shells also originates
from the Coulomb interaction between electrons. To understand it we therefore need to discuss

the Coulomb interaction between electrons in a partially filled atomic shell.
1

n,l,m,o

As a first step we introduce Fermionic creation and annihilation operators c which create
an electron with z-component of spin ¢ in the orbital with principal quantum number 7, orbital
angular momentum [, and z-component of orbital angular momentum m. In the case of a partly
filled 3d-shell all n;, = 3 and all /; = 2 identically, so that these two indices could be omitted,

but we will keep them for the sake of later generalizations. In the following we will often con-
T

tract (n,1,m, o) to the compound index v for brevity, so that, e.g., ¢/, = ¢, , . .
The procedure we will follow is degenerate first-order perturbation theory as discussed in prac-
tically any textbook of quantum mechanics. The unperturbed Hamiltonian H thereby corre-

sponds to the energies of the different atomic shells

_ E E T
HO - €n,l Cn,l,m,acn,l,m,a
n,l m,o
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W
{y

m=-2 m=-1 m=0 m=1 m= 2

Fig. 1: Coulomb scattering of two electrons in the d-shell. In the initial state |v) (top) the elec-
trons are distributed over the five d-orbitals which are labeled by their m-values. Due to their
Coulomb interaction two electrons scatter from each other and are simultaneously transferred
to different orbitals, resulting in the state |u) (bottom).

whereas the Coulomb interaction is considered as the perturbation /. The d" configuration

comprises all states which are obtained by distributing the n electrons over the 2 - 5 = 10
spin-orbitals:
V) = |vi,v0. . ) :CLCIT,Q...C:L”]@ : (1)

and the number of these states obviously is . = 10!/(n! (10—n)!). In writing the basis states as
in (1) we need to specify an ordering convention for the creation operators on the right hand side.
For example, only states are taken into account where m; < my < mg--- < m,. Moreover,
if two m; are equal the cjni ,-operator is assumed to be to the left of the c;rnn—operator. If we
adopt this convention, every possible state obtained by distributing the n electrons over the 10
spin-orbitals is included exactly once in the basis. If the n; and [; were to take different values
we could generalize this by demanding that the (n;, [;, m;)-triples be ordered lexicographically.
As will be seen below, strict application of an ordering convention for the Fermi operators is
necessary to determine the correct Fermi signs for the matrix elements.

If only H, were present all the states (1) would be degenerate. The Coulomb interaction H;
between the electrons then (partially) lifts this degeneracy and this is the physical reason for
the multiplet splitting. The standard procedure in this a situation is to set up the matrix A, , =
(u|Hy|v) and diagonalize it to obtain the first order energies and wave functions [3]. Thereby
Hj has both diagonal matrix elements such as (v|H;|v) but also off-diagonal matrix elements
(u|H,|v). The diagonal matrix elements describe the fact that the Coulomb repulsion between
two electrons in different orbitals depends on the spatial character of these orbitals whereas the
off-diagonal matrix elements describe the scattering of two electrons from each other as shown
in Figure 1.
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In second quantization the Coulomb Hamiltonian H; takes the form

H = = ZV (vi, vj, v, 1) €l c :ﬂjcykcw,
1,7,k
V(v vo,vs,va) = /d:c/d:r by, (2) ¥y, (2") Velz, &) ,,(2)) ¥, (2)
Vi(z,2') = 2
Here z = (r,0) is the combined position and spin coordinate with [dz--- = > [dr...

and V, is the Coulomb interaction between electrons. Note the factor of 1/2 in front of H; and
the correspondence of indices and integration variables v5 <+ x’ and v4 <> z in the Coulomb
matrix element, see textbooks of many-particle physics such as Fetter-Walecka [4].

2.2 The Coulomb matrix elements

Our single-particle basis consists of atomic spin-orbitals so if we switch to polar coordinates
(r,9, p) for r the wave functions in (2) are

The radial wave functions R, ;, are assumed to be real, as is the case for the true radial wave
function of bound states in a central potential. Apart from that we do not really specify them.
In fact, it would be rather difficult to give a rigorous prescription for their determination. It will
turn out, however, that these radial wave functions enter the Coulomb matrix elements only via
a discrete and rather limited set of real numbers which are often obtained by a fit to experiment.
In addition to (3), we use the familiar multipole expansion of the Coulomb interaction

4m rﬁ
Y, .. (0, 0). 4
|'I°—'l“’| ZZ 2]€+1 I;-H k,m( 7@) ()
k=0 m=—k
We now insert (3) and (4) into (2). We recall that [dx--- = > [dr... and first carry out

the sum over spin variables which gives a factor of d,, 5, 9s,,0,. Next we pick one term with
given k and m from the multipole expansion (4) and proceed to the integration over the spatial
variables (7,9, @) and (', ¢'). Let us first consider the angular variables (¢, ¢). Obviously
these always come as arguments of spherical harmonics and there is one from v (), one from
the multipole expansion (4), and one from 1), (x). We thus obtain a factor of

2T 1
| e [ acos(0) i3, (0.0) Yin 0, 0) Vi, (0.9). )
0 -1

Such a dimensionless integral over three spherical harmonics is called a Gaunt coefficient and
can be shown to be proportional to a Clebsch-Gordan coefficient [5, 6]. This property is an
immediate consequence of the Wigner-Eckart theorem.
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Another interesting property can be seen if we recall the ¢-dependence of the spherical har-
monics: Y}, (9, p) = P(9) ™. Tt follows that the Gaunt coefficient (5) is different from
zero only if m; = my4 + m. Moreover, since the 9J-dependent factors P, ,,,(1)) are real [5, 6] all
nonvanishing Gaunt coefficients are real as well. In the same way the integration over (¢, ¢’)
gives

/ dy / deos() Yo (9, 0) Y (9'.0) Vi (0, &), ©)

which by analogous reasoning is different from zero only if ms + m = ms. Since both (5) and
(6) must be different from zero for the same m in order to obtain a nonvanishing contribution,
we must have my + mo = mg + my. This is simply the condition that L* be conserved in the
Coulomb scattering of the two electrons.

It remains to do the integral over the two radial variables r and /. These two integrations cannot
be disentangled so we find a factor of

T‘k

R (nly, naly, nsls, naly) /drr/dr' ? R, ( )R"212(T/)7,k_i1R"313(T/> Ry, (r). (7)
>

These integrals, which have the dimension of energy, are labeled by the multipole index £,
and the number of relevant multipole orders is severely limited by the properties of the Gaunt
coefficients: First, since the latter are proportional to Clebsch-Gordan coefficients the three
[-values appearing in them have to obey the so-called triangular condition [3] whence k£ <
min(|l; + l4], |lz + I3]). For a d-shell where [; = 2 it follows that £ < 4. Second, the parity
of the spherical harmonic Y, is (—1)’, i.e. even for the case [; = 2. For integrals such as
(5) or (6) to be different from zero the spherical harmonic Y}, ,,, from the multipole expansion
must have even parity, too, so that for Coulomb scattering within a d-shell only R°, R? and
R* are relevant. This shows that the sloppy definition of the wave function R,, ;. (r) is not a
real problem because details of this wave function are irrelevant anyway. In a way, these three
parameters may be viewed as a generalization of the Hubbard-U in that R* is something like
the ‘the Hubbard-U for k-pole interaction’.

We introduce the following notation for the nonvanishing Gaunt coefficients

F(Im; I'm \/2]{;_‘_1 / d(p/dcos Y (0,0) Yim—m (0, 0) Yo (0, 0) . (8)

These coefficients are tabulated in Appendix 20a of the textbook by Slater [5] or Table 4.4 of
the textbook by Griffith [6], and also in the Appendix of this chapter. Using this notation and
the fact that the Gaunt coefficients are real we can finally write the Coulomb matrix element as

V(V17 V27 y37 V4) — 50’1 o4 50’2 o3 6m1+m2,m3+m4 (9)

X Z l1m1, l4m4) k(lsm:a; l2m2) Rk(n1517n2l27n3l3,n4l4)-
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Fig. 2: The coding of basis states by integers and a scattering process.

2.3 Solution of the Coulomb problem by exact diagonalization

We now describe how the problem of the partly filled 3d-shell can be solved numerically, using
the method of exact diagonalization. The basis states (1) correspond to all possible ways of
distributing n electrons over the 10 spin-orbitals of the 3d-shell (two spin directions for each
m € {—2,—1...2}). As illustrated in Figure 2 we can code each of these basis states by an
integer 0 < i < 20, If we really use all of these integers we are actually treating all states with
0 < n < 10 simultaneously but this will be convenient for later generalizations. Next, for a
given initial state |1y, vy, ...1,) we can let the computer search for all possible transitions of
the type shown in Figure 1 and compute the corresponding matrix elements from (9) using, say,
the c*(Im;'m’) copied from Slater’s textbook and some given R°, R? and R*. Let us consider
the following matrix element

V(AL A2, Az Ag) c]:\lcf\Qc)\Sc)\4 cf cT2 . an|0> .

(Olc,, - .c .Ch

o

For this to be nonzero, the operators 033 and 034 must be amongst the clT, otherwise the an-

nihilation operators in the Hamiltonian could be commuted to the right where they annihilate
0). In order for these pairs of operators to cancel each other, c,, must first be commuted to
the position right in front of CL. If this takes n, interchanges of Fermion operators we get a
Fermi sign of (—1)™. Bringing next c,, right in front of ci\a by ns interchanges of Fermion
operators gives a sign of (—1)™. Analogously, the creation operators cil and CL have to be
commuted to the left to stand to the immediate right of their ‘partner annihilation operators’
so as to cancel them. If this requires an additional number of Fermion interchanges n, for cL
and n,; for cgl there is an additional Fermi sign of (—1)™%"2. The total matrix element then
is (—1)mtmetnstnal/(X; Xo, A3, Ag). The correct Fermi sign is crucial for obtaining correct re-
sults and must be evaluated by keeping track of all necessary interchanges of Fermion operators.
This is perhaps the trickiest part in implementing the generation of the Hamilton matrix or any

other operator in a computer program.



5.8 Robert Eder

E S L n Term E S L n Term
0.0000 1 3 21 3F [0.0000 32 3 28 “F
18420 0 2 5 'D [1.8000 32 1 12 4P
19200 1 1 9 3P |21540 12 4 18 2@
27380 0 4 9 G |27540 12 5 22 °2H

132440 0 0 1 'S [27540 112 1 8 2P
3.0545 12 2 10 2D
45540 12 3 14 °2F
99774 1/2 2 10 2D

Table 2: Energies of the d® multiplets calculated with R?> = 10.479 eV, R* = 7.5726 eV (Left),
and energies of the d” multiplets calculated with R*> = 9.7860 eV, R* = 7.0308 eV (Right).

Once the matrix has been set up it can be diagonalized numerically. Table 2 gives the resulting
multiplet energies for d® and d”, the values of L and S for each multiplet and the degeneracy
n. The values of the R* parameters have been calculated by using Hartree-Fock wave functions
R35 for Ni** and Co?* in (7). The energy of the lowest multiplet is taken as the zero of en-
ergy and it turns out that all energy differences depend only on R? and R*. Note the increasing
complexity of the level schemes with increasing number of holes in the d-shell. Comparing
the energies of the multiplets for d® with the experimental values in Table 1 one can see good
agreement with deviations of order 0.1 eV. The only exception is 1S. This is hardly a surprise
because here the theoretical energy is 13 eV which is comparable to the difference in energy
between the 3d and the 4s-shell in Ni (which is =~ 10 eV). It follows that the basic assumption
of the calculation, namely that the separation between atomic shells is large compared to the
multiplet energies, is not fulfilled for this particular multiplet. To treat }.S more quantitatively it
would likely be necessary to include basis states with configurations like 3d” 4s', or, put another
way, to consider the screening of the Coulomb interaction by particle-hole excitations from the
3d- into the 4s-shell. Finally, the Table shows that the ground states indeed comply with the
first two of Hund’s rules: They have maximum spin and maximum orbital angular momentum
for this spin. It can be shown that this is indeed always the case as long as one uses Coulomb
and exchange integrals with the correct, i.e. positive, sign [5, 6].

2.4 Diagonal matrix elements

The expression (9) is exact but looks somewhat complicated so let us try to elucidate its physical
content and thereby also make contact with various approximate ways to describe the Coulomb
interaction which can be found in the literature. We first consider those matrix elements where
either v, = 11 and v3 = 1, (case 1) or 3 = v; and vy = 5 (case 2). In both cases the four
Fermion operators in the corresponding terms of H; can be permuted to give the product of
number operators n,,n,, (with n,, = cfc,) whereby in case 2 an odd number of interchanges of
Fermion operators is necessary so that an additional factor of (—1) appears. Whereas for case
1 the product 04, o, 05,0, 10 (9) always is 1, it vanishes for case 2 unless 0; = o0,. The Pauli
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principle requires that v; # v, (otherwise one has the product clT,1 c,tl = 0) so that for case 1 the
two orbitals may have the same orbital quantum numbers n, [, m but then must differ in their
spin, whereas in case 2 the spins have to be equal so that the orbital quantum numbers definitely
must be different. Using (9) the respective matrix elements are

Vv, ve,v0,1n) = F(limas by, my) F(lamg; by, ma) RF(naly, naly, naly, naly),

M 102

V(v ve,v1,1) = Opyoy F(limy; ly, ma) (limy; by, ma) RF(naly, nala, naly, naly).

i

0
(10)

It is customary to introduce the following abbreviations

a*(Im;I'm') = F(Im;lm) F(Um';I'm/)
V(im;I'm') = F(Iim;I'm/) F(Im;I'm/)
FF(nl;n'l'y = RF(nl,n/U',n'l',nl)
GF(nl;n'l') = RFml,n'l',nl,n'l')

The F* and G* are called Slater-Condon parameters. The a* and b* are listed in Appendix 20a
of Slater’s textbook [5] and also the Appendix of the this chapter.

We now want to bring these diagonal matrix elements to a more familiar form and thereby
specialize to a partly filled 3d-shell. In this case all n; = 3 and [; = 2 so that for each & there
is only one ¥ and one G* and, in fact, G¥ = F*. For brevity we omit the n and [ quantum
numbers in the rest of the paragraph so that, e.g., the electron operators become ci,w with m
the z-component of L. The sum of all diagonal matrix elements then becomes

Hl,diag Z Umm N AT, | + = Z ( m,m’ Z N, oM/ 0! — Jmnn’Z nmp”m’,a)a
o

m;ém

Ut = Z a®(m,m’) F* Tnmr = Z v (m,m') F*

k €{0,2,4} k €{0,2,4}

The first term on the right-hand side originates from case 1 with m; = ms and the factor of 1/2
in front of this term is cancelled because there are two identical terms of this type with either
vy = (m,T)and v, = (m,]) or vy = (m,|) and v, = (m, T). Defining n,,, = N+ + 1,y and
SZ = (Nm4 — N,y ) /2 We have

N, Moy
z 4 mttm
E Nm,o M/ o = Mo Ty E Nm,o Nm/ e = 2 ( m Pm! + 4 ) )
(oa

o,0’!

so that

Hl,diag ZUmmannmJ, + 3 Z < m,m’ — mm’)nmnm’ - 2Jm,m’ anS;’) :

m;ﬁm
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This is the sum of a Hubbard-like density interaction o< U,, ,,,y and an Ising-like spin interaction
o< Jm,m/. The interaction parameters thereby depend on the orbitals and can be expressed in
terms of the Slater Condon parameters F'* and the products of Gaunt coefficients a* and b*. It
is obvious that .J,,, ,,» > 0 so that the Ising-like interaction describes ferromagnetic coupling —
as one would expect on the basis of the first Hund’s rule. A truncated Coulomb Hamiltonian
like H1 g4iqg s used in some LDA+U schemes [7] and also in many Dynamical Mean-Field cal-
culations for 3d transition-metal compounds [8].

To complete the Hund’s rule term we consider in addition those terms in H; where vy, = (m, o),
vy = (m/,5), v3 = (m,d) and vy = (m/, o). In these terms the product 65, », 0y, o, iS NONVaN-
ishing as well and for both values of ¢ the matrix element (2) is

Z Fm,m') F(m,m') F¥ = Z v (m,m') F¥ = Jp
k €{0,2,4} k €{0,2,4}
The Fermion operators are clmcjn, 1Cm Conr 1 cjn, ¢Cin’ 1ot Cor = — (S S + 55, S), ie

the transverse part of the Heisenberg exchange. Combining these terms with the Ising-like spin
exchange term we obtain

1
HlH_ZUmmannmJ,_‘_ Z ( - Jmm)nmnm’_2t]m7m/sm'sm/)-

m;ém’

This is now the sum of a density interaction and a spin-rotation invariant ferromagnetic spin
exchange. It has to be kept in mind that this Hamiltonian has been obtained by retaining only
a relatively small subset of matrix elements in the original Coulomb Hamiltonian. A further
simplification which is often used is to replace U,,,, and J,, s by their averages over all
corresponding pairs (m, m’). Using the a* and b* in the Appendix one readily obtains

1

U j : U , 0

- 25 m,m F ’
U —J == —1 E (1/ /—J /) - FO——l (F2+F4)
20 m,m m,m 14 )

m#m/

so that J = (F? 4+ F*)/14.

To conclude the discussion, we consider the diagonal matrix elements (v|H;|v) in the basis of
n-electron states |v/) defined in (1). Since v; and v in (10) can be any two out of the n occupied
orbitals in |v) the total diagonal matrix element of H; is obtained by summing over all M

pairs (7, j) formed from the occupied orbitals

|H1 ZZ lml,lj,mj)Fk(nili,njlj) - (Sgigj bk(limi,lj,mj) Gk(nzlz,njlj)) .

1<j
(1D
As will be seen in the next paragraph, this formula is sufficient for the analytical calculation of
the multiplet energies.
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2.5 Analytical calculation of multiplet energies by the diagonal sum-rule

The exact diagonalization procedure outlined in Sec. 2.3. can be used to obtain all eigenenergies
and the corresponding eigenstates of the Coulomb problem. It is a flexible numerical method of
solution into which crystalline electric field, hybridization with ligand orbitals, spin-orbit cou-
pling, and Coulomb interaction with holes in core shells, which is important for the discussion
of X-ray absorption spectra, can be incorporated easily. On the other hand, multiplet theory
was invented during the 1920’s to explain the spectra of free atoms or ions, and at that time
computers were not available. It turns out, however, that despite the apparent complexity of the
problem the energies of the multiplets can be obtained analytically and this will be described in
the following.

The first ingredient is the so-called diagonal sum-rule. This is simply the well-known theorem
that the sum of the eigenvalues of a Hermitian matrix H is equal to its trace Tr(H) = >, H;;. It
follows immediately by noting that the trace of a matrix is invariant under basis transformations,
ie., Tr(H) = Tr(UHU™') for any unitary matrix U. By choosing U to be the matrix which
transforms to the basis of eigenvectors of H the diagonal sum-rule follows immediately.

Next, one uses the fact that the Hamilton matrix is block-diagonal, with blocks defined by their
values of L* and S*. The diagonal sum-rule then can be applied separately for each of these
blocks. In addition, the dimension of the blocks decreases as L* and S* approach their maxi-
mum possible values so that the number of multiplets contained in a given block increases.

As an example for the procedure let us consider a p? configuration (by particle-hole symmetry
this is equivalent to a p* configuration). We write the Fermion operators in the form ¢;,, ,
1.e., we suppress the principal quantum number n. Since we have 6 possible states for a sin-
gle p-electron (three m-values and two spin directions per m-value) we have 15 states for two
electrons. The triangular condition implicit in the Gaunt coefficients now restricts the multipole
order k to be < 2. Again, only even k contribute, so that we have two Slater-Condon parame-
ters, F and F? (and F* = G*). The following Table which is taken from Slater’s textbook [5]
gives the values of the coefficients a*(1,m;1,m’) and b*(1,m;1,m’): We first consider the
sector with S* = 1. The highest possible L* is L* = 1 which is realized only for a single state,
1) = CJ{,O,TC];,l,T‘())' We can conclude that one of the multiplets is 3P and its energy is equal to

Table 3: The coefficients a* and b* for two p-electrons.

m m | a® 25a®> B° 25b°
+1 +£1] 1 1 1 1
+1 0] 1 -2 0 3

0 0 1 4 1 4
+1 F1 | 1 1 0 6
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the diagonal matrix element of |1) which by (11) is

E(P)= > (a*(1,1;1,0) = 1¥(1,1;1,0)) F* = F* — O g2

ke{0,2} 25

We proceed to the sector S = 0. Here the highest possible L* is L* = 2 again obtained for
only single state namely ch’ iCJ{,LT’O>' We conclude that we also have ' D with energy

1
<FD:§ F1,1:1. 1) FF = FO + — 2,
( ) a ( b ) ) ) + 25
ke{0,2}

The two multiplets that we found so far, 'D and 3P, comprise 5 + 9 = 14 states — we thus
have just one state missing, which can only be *S. To find its energy, we need to consider the
sector S* = 0 and L* = 0. There are three states in this sector: CI,O,¢CJ{,0,T|0>’ CI,fI,TCLulm and
cJ{ﬁL icJ{71’T|0>. Two out of the three eigenvalues of the 3 x 3 Hamiltonian in the basis spanned
by these states must be F(3P) and F(*D), because these multiplets also have members with
S? = 0and L* = 0. To obtain £(1S) we accordingly compute the sum of the diagonal elements
of the 3 X 3 matrix and set

ECP)+E('D)+E('S) = Y (a*(1,0;1,0)+2d"(1,-1;1,1)) F*
ke{0,2}
1 0 10 2
- B('S) = F'+ - F"

This example shows the way of approach for multiplet calculations using the diagonal sum-
rule: one starts out with a state with maximum L?* or S* for which there is usually only a
single basis state. This basis state belongs to some multiplet whose energy simply equals the
‘diagonal element’ of the 1 x 1 Hamiltonian. Then one proceeds to lower S* and/or L* and
obtains energies of additional multiplets by calculating the trace of the respective block of the
Hamilton matrix and using the known energies of multiplets with higher L* or S*. It turns out
that in this way the energies of all multiplets involving s, p, d or f electrons can be expressed
in terms of the Slater-Condon parameters by analytical formulas. A rather complete list can be
found for example in the Appendices 21a and 21b of the textbook by Slater [5].

One point which may be helpful when reading the literature is the following: for the special
case of a partly filled d-shell many authors use the so-called Racah parameters A, B, and C'
instead of the 3 Slater-Condon parameters F’ 0. F2 and F*. The rule for conversion is simple:
49 I 1, S 4

35
E—— B F?P— —F = —F*.
441 ¢

A= F° - =2
49 441 441

The Racah-parameters have been introduced because the analytical formulas for the energies
of the multiplets of d" as derived by the diagonal sum-rule look nicer when they are expressed
in terms of them. For example Griffith [6] gives multiplet energies in terms of the Racah-
parameters in his Table 4.6.

As stated above, multiplet theory was originally developed to discuss the spectra of atoms or
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p’| ¢ Nt O* | si Pt s
1.124 1.134 1.130 | 1.444 1.430 1.399
p*| O F* s
1.130 1.152 1.401 1.392

Table 4: The ratio (12) for various Atoms and Ions with p* and p* configurations outside a
closed shell.

ions in the gas phase. The question then arises, as to what are the values of the Slater-Condon
parameters. Of course one might attempt to compute these parameters using, e.g., Hartree-Fock
wave functions in the expression (7). It turns out, however, that very frequently the number of
multiplets considerably exceeds the number of relevant Slater-Condon parameters. In the case
of the p? configuration we had three multiplets, 3P, 1 D, and 15, but only two Slater-Condon
parameters F° and F?. This would suggest to obtain the values of the Slater-Condon param-
eters by fit to the spectroscopic data and the textbook by Slater [5] contains a vast amount of
experimental data which are analyzed in this way. For the p? configuration we restrict ourselves
to a simple cross check. Using the above formulae and eliminating the F”’s we find:

(12)

This relation should be obeyed by all ions with two p-electrons outside filled shells, e.g., the
series C, N'* and O** or two holes in a filled p-shell such as the series O and F*. The energies
of these multiplets have been measured with high precision and are available in databases [2]
and Table 4 shows the resulting values of . For the first-row elements the deviation is about
25%, for the second row only about 5%. We recall that multiplet theory corresponds to first or-
der degenerate perturbation theory, where H, contains the orbital energies and H; the Coulomb
interaction between electrons in one shell. It therefore will work the better the larger the sepa-
ration between different atomic shells and this is indeed larger in the second row elements.

2.6 Spin-orbit coupling

As the last problem in this section on free atoms or ions we briefly discuss spin-orbit coupling.
The corresponding Hamiltonian is

Hso = Aso »_ 1+ Si= /\SOZ (zzsz ~(IFS7 + 17 S+)>
i=1

where 1; (S;) are the operator of orbital (spin) angular momentum of the i* electron. The
spin-orbit coupling constant Ago can be written as [3]

n? AV

2m2ccry  dr

Aso =

T=Torb
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where m, is the electron mass, c the speed of light, V,; is the atomic potential acting on the
electron, and r,,;, the spatial extent of the radial wave function.
The first term on the right hand side can be translated into second quantized form easily:

H's'*o = Aso Z (CZmT Clomt CzT,m,¢Cl,m,¢) : (13)

m=—1

As regards the transverse part, we note [3] that the only nonvanishing matrix elements of the or-

bital angular momentum raising/lowering operator are (I, m+1[I=|l,m) = /(I F m)(l £ m + 1)
whence

Aso
iy = 5 Z V=) m 1) (g + ngimns) - (14

m=—1
Spin-orbit coupling can be implemented rather easily into the numerical procedure, the main
difficulty again is keeping track of the Fermi sign. Due to the fact that neither L* nor S*
are conserved anymore the corresponding reduction of the Hilbert space is no longer possible.
In transition-metal compounds the spin-orbit coupling constant Ago for the 3d-shell is rather
small, of order Agp ~ 0.05 eV. Still, if the ground state of a given ion has a non-vanishing
spin, spin-orbit coupling will determine how this spin orients itself in an ordered phase giving
rise to a magnetic anisotropy. In the rare-earth elements spin-orbit coupling in the 4 f-shell
is of comparable magnitude as the Coulomb repulsion. There, taking spin-orbit coupling into
account is mandatory.

3 Effects of the environment in the crystal

So far we have considered a single ion in vacuum. Clearly, one might ask if the results obtained
in this limit retain any relevance once the ion is embedded into a solid and this will be discussed
in the following. One may expect, however, that the small spatial extent of the 3d radial wave
function Rj () suppresses any effect of the environment in a solid, so that in many cases the
main effect of embedding the ion into a solid is the partial splitting of the multiplets of the free
ion.

In many transition-metal compounds the 3d ions are surrounded by an approximately octahe-
dral or tetrahedral ‘cage’ of nonmetal ions such as Oxygen, Sulphur, Arsenic. These nearest
neighbor ions, which will be called ‘ligands’ in the following, have a two-fold effect: first, they
produce a static electric field, the so-called crystalline electric field or CEF, and second there
may be charge transfer, that means electrons from a filled ligand orbital may tunnel into a 3d-
orbital of the transition-metal ion and back due to the overlap of the respective wave functions.

3.1 Crystalline electric field

The electric field that acts on a given ion in a solid may to simplest approximation be obtained
by representing the other ions in the solid as point charges. The electrostatic potential Vg (7)
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produced by these point charges around the nucleus in question then in principle can be obtained
by using the multipole expansion (4). This results in an expression of the type

o

l
VCEF(T) = Z Cl,m rt Yz,m(ﬁ, 90)

=0 m=—1

where the coefficients Cj ,,, depend on the geometry of the crystal. Matrix elements of Vogp(7)
between atomic eigenfunctions of the type (3) can be calculated by applying similar procedures
as in the computation of the Coulomb matrix elements (and in particular again involve Gaunt
coefficients).

However, such calculations often do not give very accurate numbers. For example, there will
always be some charge transfer between the ions in the solid so that it is difficult to decide which
charge should be assigned to a given ion. Moreover, the calculation of matrix elements involves
a radial integral over the wave function R, ;(r) which is not really well known. Therefore, we
give a qualitative discussion based on symmetry.

Let o be some symmetry operation, i.e. a coordinate transformation represented by a unitary
3 X 3 matrix m,, that leaves the environment of the ion in question invariant. In other words,
the transition-metal ion itself must be transformed into itself whereas every other ion must be
transformed into an ion of the same species. Then we define for any function of the coordinates
f(r) the operator T, f(r) = f(m_'r). Thus, if we want to know the value of T}, f(r) at some
given point 7, we can look it up by evaluating the original function f(r) at the point 7’ = m_'r
which is transformed into r by the operation a.. In other words, if we imagine functions of r
to be represented by color maps in real space, the map of T, f(r) is that of f(r) but subject
to the transformation «. Since the charge density of the environment is invariant under the
allowed symmetry operations, the same holds true for its electrostatic potential Vogpr(r) so
that T,, Vopp(r) = Vopp(r). It follows that the Hamiltonian H = H,, + Vepr(r) (where
H,,, is the sum of the nuclear potential of the transition-metal ion, the kinetic energy of the
electrons and their Coulomb interaction) commutes with 7,,. It is then straightforward to show
that if /(7 is an eigenstate of H with energy E, H () = E (r) , the transformed function
T, ¥(r) is an eigenstate to the same energy:

[H, T Jo(r)=0 = H (Tu(r) =ToE¥(r) = E (Toy(r)).

We can thus investigate to what degree the degeneracy of the five 3d-orbitals is lifted in a given
environment by systematically studying which (combinations of) 3d-orbitals are transformed
into each other by the symmetry operations which leave the environment invariant. For the
general case this can be done by invoking the very elegant mathematical formalism of group
theory [6,9]. On the other hand, for an environment with cubic symmetry a simple shortcut is
possible. Namely all 48 cubic symmetry operations can be expressed as the product of one of
the 6 permutations of the 3 coordinate axis and one of the 2° = 8 transformations which change
the signs of an arbitrary subset of the 3 coordinates. Moreover the d-like spherical harmonics
Y5 ., can be expressed as linear combinations of products of two of the three components of the
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unit vector 7 /|r|, such as zy/r? or 22 /r?. For example

1 15 : 1 /15 (2% —y? Ty
Yo o (09 = = sin?¥e®™ = — /= ([—L 19,22,

It is then obvious that under cubic operations mixed products such as zy/r? will be transformed
into mixed products, whereas squares such as z?/r? will be transformed into squares. Thus,
if we form linear combinations of the spherical harmonics which consist exclusively of either
mixed products or squares, we know that these two groups of linear combinations will remain
degenerate in the cubic environment. In fact, the mixed products are precisely the three t5,-

orbitals
dyy = % (Yoo — Yao) = @f—g
dy, = % (Yo _14+Ys1) = \/g i{—j,
1. = % (Yo1 — Yo) = \/g z, (1)

whereas from the squares the two e -orbitals can be formed:

1 [ 15 2% —q?
Ao = — (Yo _o+Y59)=1/— ,
2_y2 NG (Yo o+ Yss) T

5 322 —1r?
d32_2 = Y0 =1/ Tor 2 (16)

There are only two e -orbitals because one special combination of the squares, namely 72,

is transformed into itself under all symmetry operations. In a cubic environment, the 5-fold
degenerate d-level therefore always splits into the 3-fold degenerate t54-level and the 2-fold
degenerate ey-level. The energy difference between the two e - and the three ¢, -orbitals is
called 10Dq for historical reasons. The above discussion can be summarized in the operator for
the electrostatic potential of an environment with cubic symmetry:

HC’EF = C - 4D(] Z cL,aca,a + 6Dq Z CL,UCQ,U .

actag,o aeceg,0

The constant C', which gives the center of gravity of the energies of the five orbitals, is largely
irrelevant. By expressing the e, and t5, harmonics d,, in terms of the original Y;—, ,,, via (15) and
(16) we can thus represent Hpr as a quadratic form in the original ¢/ -operators. This quadratic
form involves the splitting 10 Dq as a parameter, so that this way of dealing with the crystalline
electric field is very similar in spirit to our treatment of the Coulomb interaction in that details
of the radial wave functions R, ;(r) are absorbed into a parameter which may be adjusted to
experiment. Alternatively, the numerical value of 10Dq for a given solid may also be obtained
from a fit to an LDA band structure. By adding H-pgp to the Hamiltonian for the intra-atomic
Coulomb interaction we can now discuss the splitting of the original multiplets of the free ion
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Fig. 3: Examples for Tanabe-Sugano diagrams: the splitting of multiplets of d® (left) and d’
(right) for increasing 10Dq. The Slater-Condon parameters have the values given in Table 3.

under the influence of the electrostatic potential of the environment. The following should be
noted: the above discussion refers to the wave function of a single electron. The multiplets,
however, are collective eigenstates of all n electrons in an atomic shell which are created by the
Coulomb interaction between electrons. The question of how these collective states split in a
cubic environment is not at all easy to answer. One way would be exact diagonalization includ-
ing the term Hepr. Plots of the energies of the resulting crystal-field multiplets versus 10Dg
are called Tanabe-Sugano diagrams [10]. An example is shown in Figure 3.1 which shows the
eigenenergies of the d® and d” configuration with Coulomb interaction and cubic CEF as 10Dgq
is increasing. One realizes that the highly degenerate multiplets of the free ion are split into
several levels of lower degeneracy by the CEF, which is to be expected for a perturbation that
lowers the symmetry. Note that the components into which a given multiplet splits up all have
the same spin as the multiplet itself. This is because the spin of an electron does not feel an
electrostatic potential — or, more precisely, because the operator of total spin commutes with
any operator which acts only on the real-space coordinates r; of the electrons.

An interesting example for the application of the Tanabe-Sugano diagrams are transition-metal
ions in aqueous solution. In fact, the preference of transition-metal ions for an environment with
cubic symmetry is so strong that such immersed ions often surround themselves with an octa-
hedron of water molecules. Thereby the dipole moments of these six molecules all point away
from the ion and thus create an electric field which cubic symmetry which again gives rise to the
eq-tog splitting. Optical transitions between the CEF-split multiplets, which are possible only
due to slight distortions of the octahedron or the generation/annihilation of vibrational quanta
during the transition, correspond to frequencies in the visible range and result in the charac-
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teristic colors of such solutions. The Tanabe-Sugano diagrams have proved to be a powerful
tool to understand the absorption spectra of such solutions [6]. By matching the energies of
the observed transitions to energy differences in the Tanabe-Sugano diagrams one can extract
estimates for the Slater-Condon parameters and for 10Dq. The values of the Slater-Condon
parameters are somewhat smaller than those for ions in vacuum due to dielectric screening in
the solution. An independent estimate for 10Dq can also be extracted from measured heats
of hydration (this is because both 10Dg and the electrostatic energy of the system ‘ion plus
octahedron’ depend on the distance between the transition-metal ion and the water molecules)
and compared to the estimate from the absorption spectrum whereby reasonable agreement is
usually obtained [9].

3.2 Charge transfer

We proceed to a discussion of charge transfer. This means that electrons can tunnel from lig-
and orbitals into 3d-orbitals, so that the number of electrons in the d-shell fluctuates. To deal
with this we need to enlarge our set of Fermion operators ¢/ /c, by operators ZL /1, which cre-
ate/annihilate electrons in orbitals centered on ligands. The compound index p for the ligand
operators also must include the index i of the ligand: ¢ = (i,n,l,m,oc). The Hamiltonian
describing the charge transfer then would read

Hyip = Z (tui’“j cf,i Ly, + H.c.) + Z €uj le Ly, + Z €y, csz_ C,, - 17

2y J
The hybridization integrals t,, ., ,, may be expressed in terms of relatively few parameters by
using the famous Slater-Koster tables, see the lecture by M. Foulkes [11] at this school. For
example, if only the p-orbitals of the ligands are taken into account there are just two relevant
parameters, V,q, and V,4.. Estimates for these may be obtained from fits to LDA band struc-
tures. If electrons are allowed to tunnel between d-shell and ligand orbitals the orbital energies
€,; become relevant as well. Estimating the d-shell orbital energies from LDA calculations is
tricky due to the double counting problem: the energies of the d-orbitals extracted from band
structure calculations include the Hartree-potential, which is also included in the diagonal ma-
trix elements of the Coulomb interaction and thus must be subtracted in some way.
We now specialize to the case where the ligands are oxygen ions which form an ideal octahedron
with the transition-metal ion in the center of gravity of the octahedron. Retaining only the three
oxygen 2p-orbitals per ligand the total number of orbitals in this cluster would be 5 +6 - 3 = 23
per spin direction which is far too big to be treated by exact diagonalization. However, the
number of ligand orbitals can be reduced drastically if we note that for each of the real-valued
transition-metal 3d-orbitals Y,, (1, ¢) there is precisely one linear combination of O 2p-orbitals
on the ligands, L., which hybridizes with it. The first term on the right-hand side of (17) then
simplifies to

Hyyyy = 2 Viir Z Z (CIW loo + H.C.) + \/§Vpd0 Z Z (ciw loo + H.c.) .

a€tag o aceg o
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By inserting the unitary transformation (15) and (16) to transform to the original complex spher-
ical harmonics this is easily included into the formalism. In the exact diagonalization program
this means that the number of orbitals has to be doubled, because we have the five linear com-
binations L, each of which can accommodate an electron of either spin direction. This leads
to a quite drastic increase in the dimension of the Hilbert space but using, e.g., the Lanczos
algorithm, see e.g. Ref. [12], the problem still is tractable.

In constructing model-Hamiltonian-like descriptions of transition-metal compounds for which
clusters containing several unit cells can be studied by exact diagonalization or quantum Monte
Carlo, one can often find (approximate) analytical solutions by taking the limit of large 10Dgq.
Then, one may restrict the basis to states where the numbers of electrons in the ¢y, and e4-
orbitals are fixed. For example, for Ni** (i.e. d®) in cubic symmetry one may assume that the
six to4-orbitals always are completely filled. Then, one need to consider only the two electrons
in the partially filled e, level, resulting in a significant reduction of the number of possible basis
states. Similarly, for early transition-metal compounds one often assumes that the e -orbitals are
so high in energy that only the ¢, -orbitals need to be taken into account. Since it is the Coulomb
interaction which reshuffles electrons between the five d-orbitals, the errors in these simplified
models obviously are of order F?/10Dq or F*/10Dq. In making such approximations it is
advantageous to transform the Coulomb matrix elements (9) to real spherical harmonics. This
is trivial, although tedious, because they are related by the unitary transformation (15), (16).

4 Cluster calculation of photoemission and
X-ray absorption spectra

In the preceding section we have discussed the general formalism for exact diagonalization of
a cluster consisting of a transition-metal ion and its nearest neighbor ions (ligands). Thereby
the following terms were included into the Hamiltonian: the Coulomb repulsion between the
electrons in the 3d-shell, the electrostatic field produced by the other ions in the crystal, charge
transfer between the ligands and the transition metal 3d-orbitals and (possibly) the spin-orbit
coupling in the 3d-shell. By diagonalizing the resulting Hamilton matrix we can obtain the
eigenfunctions |, ) and their energies £, and these can be used to simulate various experiments
on transition-metal compounds such as electron spectroscopy, optical spectroscopy, electron
spin resonance or inelastic neutron scattering. It has turned out that these simulations are in fact
spectacularly successful. In many cases calculated spectra can be overlaid with experimental
ones and agree peak by peak. Nowadays complete packages for such cluster simulations are
available, and these are used routinely for the interpretation of, e.g., electron spectroscopy [13].
This shows in particular that the multiplets of the free ion, suitably modified by the effects
of crystalline electric field and charge transfer, persist in the solid and thus are essential for a
correct description of transition-metal compounds. In the following we want to explain this in
more detail and consider photoelectron spectroscopy and X-ray absorption. In this lecture only
a very cursory introduction can be given, there are however several excellent reviews on the
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application of multiplet theory to the simulation of such experiments [14—16].

In a valence-band photoemission experiment electromagnetic radiation impinges on the sample
which then emits electrons. This is nothing but the well-known photoeffect. Valence band
photoemission means that the photoelectrons are ejected from states near the Fermi level so that
to simplest approximation an ion in the solid undergoes the transition d* — d"~! (note that
this ignores charge transfer, which in fact is quite essential!). What is measured is the current
I of photoelectrons as a function of their kinetic energy E};, and possibly the polar angles
(9, o) relative to the crystallographic axes of the sample. Frequently one measures the angle-
integrated spectrum, obtained by averaging over (v, ¢) or rather by measuring a polycrystalline
sample. A further parameter, which strongly influences the shape of the spectrum I(Ey;,), is
the energy hv of the incident photons. At sufficiently high hv the photoionization cross-section
for the transition-metal 3d-orbitals is significantly larger than for the other orbitals in the solid
so that the photoelectrons in fact are emitted almost exclusively from the 3d-orbitals. This is
often called XPS for X-ray photoemission spectroscopy.

The theory of the photoemission process is complicated [17, 18] but with a number of simpli-
fying assumptions one can show that the photocurrent I(FEy;,) measured in angle-integrated
photoemission at high photon energy is proportional to the so-called single-particle spectral

function

1 2 1

_ —BE, t

Alw) = 7 ) mzz2;e <Wu C32m,0 Wt (H— Eu) 0t C32m,0 lpu>
2

1 _ 2

= 5 2 [ Wlegp ol 6w+ (B - EL). (8)

m=—2 pu,v

Here H is the Hamiltonian describing the solid, |¥,) and E,, denote the eigenstates and eigen-
energies of H with a fixed electron number N,. Moreover, 8 = (kgT')~! with kp the Boltzmann
constant and 7" the temperature, and Z = }_ exp(—SE,). The operator c;, ,, , removes an
electron from a 3d-orbital. In the thermodynamical limit the results will not depend on the
position of the ion in the sample and accordingly we have suppressed the site index on ¢35 , -
After removal of the electron the sample then remains in an eigenstate |,,) with N, —1 electrons

and energy E,. The relation between FE};, and w follows from energy conservation:
hv+ E, = Epn +9+ E,

The left- and right-hand sides of this equation are the energies of the system before (solid +
photon) and after (solid + photoelectron) the photoemission process. Thereby @ is the so-
called work function, i.e., the energy needed to transverse the potential barrier at the surface of
the solid (this needs to be introduced because the measured kinetic energy E};, is the one in
vacuo). It follows from the -function in the second line of (18) that we have to put I(Ej;,)
A(Ekin + @ — hv).

We now make an approximation, introduced by Fujimori and Minami [19], and evaluate A(w)
by replacing the energies and wave functions of the solid by those of the octahedral cluster. If
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Fig. 4: Comparison of experimental valence band photoemission spectra and results from clus-
ter calculations: NiO (left), CoO(center), MnO(right). Reprinted with permission from [19],
Copyright 1984 by the American Physical society, from [20], Copyright 1991 by the American
Physical society, and from [21], Copyright 1990 by the American Physical society.

we moreover let 7' — 0 the sum over x becomes a sum over the m degenerate ground states
of the cluster and e #F«/Z — 1/m. The underlying assumption is that the coupling of the
clusters to its environment in the solid will predominantly broaden the ionization states of the
cluster into bands of not too large bandwidth. This broadening is usually simulated by replacing
the J-functions by Lorentzians. To compare to a measured spectrum, the calculated spectrum
often is convoluted with a Gaussian to simulate the finite energy resolution of the photoelectron
detector.

Figure 4 shows various examples from the literature where measured XPS-spectra are compared
to spectra calculated by the procedure outlined above. The sticks in some of the theoretical
spectra mark the final state energies F, and are labeled by the symbols of the irreducible rep-
resentation of the octahedral group to which the corresponding final state wave function |¥,,)
belongs. The figure shows that the agreement between the theoretical spectra and experiment is
usually rather good. It is interesting to note that the three oxides shown in the figure all have the
same crystal structure, namely the rocksalt structure. Since moreover Ni, Co and Mn are close
neighbors in the periodic table, LDA predicts almost identical band structures with the main
difference being an upward shift of the chemical potential with increasing nuclear charge of the
transition metal. Despite this, the XPS spectra differ considerably and this change is reproduced
very well by the theoretical spectra. This is clear evidence that the shape of the spectra is de-
termined not so much by the single particle band structure, but by the multiplet structure of the
transition-metal ion, which in turn depends on its valence and spin state.

How then does the multiplet structure determine the photoelectron spectrum? As mentioned
above, if we neglect charge transfer, photoemission corresponds to the transition from the
ground state of d”, i.e. the lowest state in the Tanabe-Sugano diagram for the respective n,
to some eigenstate of d"~*. This final state, however, is nothing but some state in the Tanabe-
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Sugano diagram for d"~!. Moreover, if the ground state of d" has spin S, the final state must
have spin S + % so that the number of possible final states is significantly restricted. In this
way, the photoemission spectrum will contain relatively few sharp lines whose positions are
determined by the energies of the multiplets.

Next, we discuss X-ray absorption. In an X-ray absorption experiment an electron from either
the 2p- or the 3p-shell absorbs an incoming X-ray photon and is promoted to the 3d-shell via a
dipole transition. In terms of electron configurations, the transition thus is 2p°3d"™ — 2p°3d"™*!
(for definiteness we will always talk about the 2p-shell from now on). Of particular interest
here is the range of photon energies just above the threshold were the energy of the photon
is sufficient to lift the core electron to an unoccupied state. Above this threshold the X-ray
absorption coefficient «(w) rises sharply, which is called an absorption edge. The energy of
the edge thereby is characteristic for a given element so that one can determine unambiguously
which atom in a complex solid or molecule is probed. The w-dependence of x(w) in an energy
range of a few eV above the absorption edge, called NEXAFS for Near Edge X-ray Absorption
Fine Structure, contains information about the initial state of the 3d-shell, i.e., its valence and
spin state, and this information can be extracted by using cluster calculations. The measured
quantity in this case is

1 - 1
Klw) = —— %mz;z/;e—ﬁ z <WM ‘D(n) ST H=E)T z'O*D(n) WM>
- 3 Z > P DI 8 (B~ Ey) (19)

This is very similar to the single-particle spectral function (18), the only difference is that now
the dipole operator D(m) appears in place of the electron annihilation operator c;,,, ,. This
also implies that the number of electrons in the final states |%, ) now is equal to that in the initial
states |¥,).

We again make the approximation to use the octahedral cluster to simulate this experiment. The
initial state for this experiment, 2p°3d", is simply the ground state of the cluster. More difficult
is the final state, 2p°3d™*!. This has a hole in the 2p-shell so that the single-particle basis has
to be enlarged once more to comprise also the 6 spin-orbitals available for 2p electrons. We
may restrict the basis, however, to include only states with 5 electrons (or 1 hole) in these 6
spin-orbitals, so that the dimension of the Hilbert space increases only by a moderate factor of
6. The spin-orbit coupling constant Jso o, in the 2p-shell of 3d transition-metals is of order
10 eV so we definitely need to include spin-orbit coupling in the 2p-shell. Here the forms (13)
and (14) with [ = 1 can be used. The orbital angular momentum [ = 1 and the spin of % can be
coupled to a total angular momentum of either J = % or J = % Using the identity

(L-8) = %(J(J+1)—L(L+ 1) — S(S + ))

we expect a splitting of £/ s —F 1= )‘SO (% — %) = 3)‘%. This means that we actually have two

edges, separated by 3ASO ~ 10 —15 eV for 2p core levels. The one for lower photon energy,
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Fig. 5: An electron in the 3d-shell and an electron in the 2p-shell scatter from one another.

called the L3 edge, is due to electrons coming from 2P; /2, the one for higher photon energy
(Ly-edge) due to electrons from 2 P, /2. Since there are 4 2Py /2 states but only 2 ’p, /2 states the
L5 edge has roughly twice the intensity of the L, edge.

Next, there is the Coulomb interaction between the core-hole and the electrons in the d-shell.
For example, there may now be Coulomb scattering between a 2p and a 3d electron as shown
in Figure 5.

This, however, is again described by the corresponding Coulomb matrix element (9). Here now
one of the indices v, and 1, and one of the indices 3 and v, must refer to the 2p-orbital and
there are two possible combinations. If v, and v5 refer to the 2p-orbital we have

ch(Q,ml; 2,my) c*(1,ms;1,my) F¥(3,2;2,1).
k
The triangular condition for c¢*(1,m3; 1, ms) requires k < 2. Since only Y}, with equal [ and
hence with equal parity are combined in one c* only even k give nonvanishing contributions
and we have two relevant Coulomb integrals, F°(2,3;2,1) and F%(2,3;2,1).
If v, and v, refer to the 2p-orbital we have

Z Ck(zv mi; 17 m4> Ck(2> ms; 17 mQ)Gk(?)’ 27 27 1)
k

The triangular condition for both ck requires k < 3. Since now Y7, and Y5,, are combined in
one Gaunt coefficient only odd k contribute, so that we have two relevant exchange integrals,
G1(3,2;2,1) and G3(3,2;2,1). Apart from these minor changes, the implementation of the d-p
Coulomb interaction is exactly the same as for the d-d interaction.

The Coulomb interaction between electrons in the 2p-shell is definitely very strong, but it is
irrelevant because we are considering only states with a single hole in this shell. Since this hole
has no second hole to scatter from, the only effect of the Coulomb repulsion between electrons
in the 2p-shell is via the diagonal matrix elements which give a shift of the orbitals energy
€2p- On the other hand €3, merely enters the position of the absorption edge, which would be
R €39 — €2p, but not its spectral shape. Since we are not really interested in computing the onset
of the edge, the precise value of €5, and hence the Coulomb interaction between 2p electrons is
not important. The CEF effect on the inner shell electrons is usually neglected.
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Fig. 6: Comparison of experimental 2p XAS-spectra and results from cluster calculations: NiO
(left) and CoO (right). Reprinted with permission from [22], Copyright 1999 by the American
Physical society, and with permission from [23].

Lastly, we discuss the dipole operator D(n). This involves the matrix element of n - r, where
n is the vector which gives the polarization of the X-rays. This can be rewritten as

1
[4m .
n-r =r ? mglnm Yl,m(ﬁ,(P),
where n; = (—n, + my)/\/i, ng=n,andn_; = (n, + my)/\/§ It follows that

_ § E T
O(n) - dm:m/ C3,2,m,a 027177”':0'

(M) = d Aoy ' (2,m51,m)

d = / d?” 7"3 R3’2 (’I“) RQJ (7’) .

0

The factor of d merely scales the overall intensity of the spectrum and is largely irrelevant.
Combining all of the above one can compute X-ray absorption spectra. Figure 6 shows examples
from the literature where experimental 2p-XAS spectra for NiO and CoO are compared to
spectra obtained from the cluster model described above. In both cases one can see the splitting
of approximately 15 eV between the L3 and L, edges. The edges have an appreciable fine
structure, however, which is reproduced well by theory. The spectrum for CoO is shown at
different temperatures and indeed has a significant temperature dependence. The origin of the
temperature dependence is as follows: Cobalt is Co?* or d” in CoO and the ground state of
d" in cubic symmetry is a spin quartet and is orbitally three-fold degenerate so that the total
degeneracy is n = 12. In this situation, the weak spin-orbit interaction in the 3d-shell can lift the
12-fold degeneracy and produce several closely spaced eigenstates. The splitting between these
12 eigenstates is of the order of the spin-orbit coupling constant in the 3d-shell, Asp ~ 50 meV,
and the higher lying states therefore may be thermally populated with increasing temperature
(see the Boltzmann factors in (19)). This leads to the temperature dependence of the spectra
which obviously is reproduced at least qualitatively by the cluster calculation.
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XPS and XAS experiments are often performed because for example the valence or the spin
state of the transition-metal ion in a given solid or molecule is unknown. Let us assume that
we have two possible states of the ion, |%) and |¥(), with energies E, and Ej, (for simplicity
we assume that these are nondegenerate). Then we may ask: how will the spectrum change if
we go from one ground state to the another? We note first that the final states |¥,) and their
energies I, in (18) and (19) are unchanged. What differs is first the energy differences F, — Ej.
However, since we do not know E, and E},, otherwise we would know which one of them is
lower in energy and hence the ground state, the absolute position of the peaks in the spectrum is
of no significance. What is really relevant is the infensity of the peaks which involves the matrix
elements | (¥, |c|¥)|? or |(¥,|D(n)|¥)|*. These matrix elements may change drastically when
the ground state wave function |¥,) changes and by comparing with cluster simulations the
shape of the spectrum can give information about the valence and spin state of the transition-
metal ion.

To summarize this section: multiplet theory is of considerable importance in the interpretation
of photoelectron spectroscopy and X-ray absorption. The simulated spectra usually show very
good agreement with experimental ones. All of this shows that the multiplets of the free ion
persist in the solid and that the proper description of the Coulomb interaction is crucial for the
description of these compounds.

5 Conclusion

We have seen that the Coulomb repulsion between electrons in partially filled atomic shells
leads to multiplet splitting. The multiplets may be viewed as collective excitations of the ‘not-
so-many-body-system’ formed by the electrons in a partially filled atomic shell. We have seen
that a relatively simple theory, essentially degenerate first order perturbation theory, describes
the energies of the multiplets quite well and gives a good description of the line spectra of free
atoms. When transition-metal atoms are embedded into a solid, the collective excitations of
the electrons in their partly filled 3d-shells are modified by the crystalline electric field of their
environment and by hybridization with orbitals on neighboring atoms. If these effects are taken
into account, which is relatively easy if one uses exact diagonalization, the resulting ‘extended
multiplet theory’ turns out to be spectacularly successful in reproducing a wide variety of ex-
perimental results for transition-metal compounds. Photoemission spectra, X-ray absorption
spectra, optical absorption spectra, electron spin resonance, and inelastic neutron scattering can
be interpreted in terms of multiplet theory. The often excellent agreement between theory and
experiment which can be thereby obtained is clear evidence that the multiplets of the free ion
are a reality also in solids, with the only modification being some additional splitting due to the
lowering of the symmetry and the modification of spectral intensities due to charge transfer. It
has to be kept in mind, however, that in order to obtain agreement with experiment it is crucial
to use the full Coulomb Hamiltonian, with its matrix elements expressed in terms of Slater-
Condon parameters and Gaunt coefficients. Put another way, we may summarize the present
lecture in three words: Multiplets do matter!
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A  Gaunt coefficients

m m | T 21t a® 49a? 441 a* b0 4902 441 b*
+2 +2 1 =2 1 1 4 1 1 4 1
+2 4110 V6 —/5 1 =2 -4 0 6 5
+2 0] 0 =2 V15 1 —4 6 0 4 15
+1 411 1 1 -4 1 1 16 1 1 16
+1 0 1 V30 1 2 —24 0 1 30
0 0] 1 2 6 1 4 26 1 4 36
+2 F2| 0 0 V70 1 4 1 0 0 70
+2 F1| 0 0 —v35 1 =2 -4 0 0 35
+1 F1| 0 —v6 —v40 1 1 16 0 6 40

Table 5: The Gaunt coefficients c(2,m;2,m') and the products a*(2,m;2,m’) and
b (2, m;2,m’)
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1 Introduction

Electrons in solids behave in most cases like independent particles, and that in spite of the strong
interactions between them. The explanation of this apparent paradox relies on the concept
of the Landau quasi-particle: the multiple forces acting on one electron dress it up with an
interaction cloud and these new dressed particles (quasi-particles) are effectively independent
one from the other. The time evolution of the system with one electron removed is what is
measured in experiments and when this state evolves as a coherent superposition of oscillations
of approximately the same frequency it corresponds to the propagation of a quasi-particle with a
reasonably well defined energy and a sufficiently long life-time. In this situation the low-energy
excitations of the interacting electrons can be put into a one-to-one correspondence with those
of non-interacting electrons with renormalized properties (energy and mass) and the measured
spectra can be reduced to a quasi-particle band structure.

From a theoretical point of view, the simplest way to account for the electron-electron inter-
action is to include it as a mean field, where each electron moves independently under the
influence of the average charge distribution of all the others. Materials for which this rudimen-
tary mean-field description is sufficient have broad energy bands associated with large values
of the electron kinetic energy. This implies that the electrons are highly itinerant and there-
fore it is reasonable to describe them using a picture in which interactions become smooth and
can be averaged over. On the contrary when bands are narrower and the associated kinetic en-
ergy smaller, namely when electrons tend to localize around lattice ions, they see each other
as individual point charges and the correlation between their motion becomes important. For
these systems the single-particle picture is inadequate and their electronic properties have to be
described including the multiple pair-wise e-e interaction as a true many-body term.

Strongly correlated electron systems have been one of the most important topics in theoretical
solid state research for more than half a century. The major challenge is that the interesting
physics occurs in the regime of intermediate coupling strength, where perturbation theory does
not apply. The search for non perturbative approaches has been intense in the last decades, lead-
ing to some widely accepted results, the most prominent one being the choice of the Hubbard
model as the general framework to describe strong e-e correlation.

A variety of non-perturbative techniques have been proposed during the years to tackle this
problem, ranging from Dynamical Mean Field Theory (DMFT) [1] to 3-Body Scattering (3BS)
theory [2,3]. However the agreement between experiments and many-body calculations is still
far from being fully quantitative [4—6] and different theoretical methods are constantly explored.
Recently schemes based on cluster formalisms have been developed. These so-called Quantum
Cluster (QC) theories [7] share the basic idea to solve the problem of many interacting electrons
in an extended lattice by a divide-and-conquer strategy, namely solving first the many-body
problem in a subsystem of finite size and then embedding it within the infinite medium. The
embedding procedure can be variationally optimized as in the Dynamical Cluster Approach
(DCA) [8] and Cellular Dynamical Mean Field Theory (CDMFT) [9]. Even neglecting op-
timization in the embedding procedure the method, that in this case has been called Cluster
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Perturbation Theory (CPT) [10], gives access to non trivial many-body effects, reproducing ex-
actly both the non-interacting band limit and the atomic limit when on-site repulsion exceeds
intersite hopping; for intermediate values of on-site e-e repulsion CPT opens a gap in metallic
systems at half occupation. QC approaches account for the momentum dependence of many-
body corrections more appropriately than other schemes, and for this reason they should provide
a more accurate description of the quasi-particle dispersion. However QC approaches have been
mostly applied to model systems and only few quasi-particle calculations for realistic systems
have been reported up to now [11, 12]. The application of CPT to multi-orbital solids and to
transition-metal oxides in particular will be our focus.

2 CPT for multiorbital systems

In CPT the lattice is seen as a periodic repetition of identical clusters and the Hubbard Hamil-
tonian can be partitioned in two terms, an intra-cluster (/.) and an inter-cluster one (V")

H=H,+V, (1)

where

H. = Z Eito Miter + Z Z tila,ji18 é;rlaéjlﬂ + Z Uoié,g ﬁilaTﬁil,3¢

ila aB gl ilaf
Vo= Z Z Lila,ji'8 éjlocéjl/ﬁ . (2)
af ijlAl

Here «, (3 are orbital indices, €;;, are intra-atomic orbital parameters and ¢;;, ;-3 hopping terms
connecting orbitals centered on different sites. Each atom is identified by the cluster it belongs
to (index /) and by its position inside the cluster (index ¢). The lattice is a collection of L — oo
clusters each of them containing M atoms whose position is identified by the vector R;+r;.
Each atom in the cluster is characterized by a set of orbitals n¢™ per site and K = Zf\il no® is
the total number of orbitals per cluster.

Since in the Hubbard model the e-e Coulomb interaction is on-site, the inter-cluster Hamiltonian
V contains only single-particle terms and the many-body part is present in the intra-cluster
Hamiltonian H, only. Of course the complexity of the problem resides in the coexistence of
the two contributions, while in the two limits ¢ > U or U > t the Hamiltonian can be easily
solved: in the first case the many-body term is negligible and H is reduced to a trivial one-
body Hamiltonian; the second case, the atomic limit, corresponds to H ~ ]:IC , namely to a
Hamiltonian that does not mix the coordinates of electrons belonging to different clusters. In
this case the eigenstates |¥) of the full Hamiltonian for N electrons (N =— oo) becomes

L—oo

Ny = o)) = [] 165 1) 3)

where |¢X (1)) are the few-body eigenstates of the I-th isolated cluster that can be calculated
numerically by exact diagonalization.
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The partition of the Hamiltonian into intra-cluster and inter-cluster terms gives rise to some
exact expressions and suggests some relevant approximations. Let us consider the resolvent
operator G

A

G (2) Ez—ﬁc—V:G’C_l ~V with G =:—H, 4)

and the Dyson-like equation that is deduced from it G = G° + G¢V G, where the lattice Green
function and the cluster one are connected by the inter-cluster interaction. The expectation value
of the resolvent operator over the interacting ground state with one removed/added particle,
xn| W) 1 6L W), gives the one-particle propagator for the extended lattice

G(knw) = G (knw) + G~ (knw) 3)
with G*(knw), the particle and hole propagators, given by

G (knw) = (e, G(—w+ EY +in) éxn 7)) (6)
Gt knw) = (B G( w+ EY +in) e, ).

Since we are looking for a relationship between the lattice and cluster Green function, it is
useful to introduce a transformation from the localized to the Bloch basis

éq., and & = g " (k) e Rt of

1
o = e 3 CI (K —— ,
Ck K < L o 'La( kn K % L ila

where 7 is a band index and C7?, (k) are the eigenstate coefficients obtained by a band calculation

eik-(Rl +I‘i)

for a superlattice of L identical clusters. By straightforward substitutions we get
G (knw) Z ok (ri=r;s) Cr(K)*Cl5(K) Giairp(kw) | 7
it'af

where G, 3(kw) is the superlattice Green function, namely the Fourier transform of the Green
function in the local basis

gzoﬂ’,@ kw Ze_lk Ri= Rll zaz’ﬁ( ) (8)
174
and
Garslw) = (B |el, (G°() + GV (w)) om0 ©)
w
n <wgv Gt (Gc(w) + GC(w)m(w)) el 0 >

All the equations written up to now are exact and approximations are needed in order to make
them of practical use. CPT introduces two approximations:

D) &) ~ &)

2) Zm|@%_1><@%_l| ~ Zila éila ’@N> <@N| Cila =
Zm ‘¢%+1><¢%+1‘ ~ Zzla zla ’¢N><¢N| Czla - 1
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The first one substitutes the unknown ground state |¥}¥) of the full interacting Hamiltonian
with |®)'), the ground state of H. defined in Eq. (3). As mentioned above, this choice is fairly
accurate in the regime of U/t > 1 and less correct in the opposite limit. The second assumption
corresponds to an approximate expression of the decomposition of unity in terms of a reduced
basis for the Fock space of N + 1 particles.

Altogether we obtain for the total (causal) Green function

gz‘c;lil/ﬁ(w) = (Ot 1ha G Corpldl) Sw + (08 1650 Gl sl b0 ) S (10)
2.0, [@évféjza G Cymprs| B0 ) St + (DY [Citec G ey | DY) S
l//l/// ,L//z/// ,\/,y/

X <¢év|éj”l”’y v éi/”l/”’y/ |@év> <¢(1)V‘62‘///l///,y/ G éi/l/ﬁ |¢év>
= gzaz’ﬁ( ) 5”/
+> ) Z G (W) Our (DG b, V' oy | G WD ey G | D)

l//l/// ,L//,LIH

where G¢,,5(w) = (BY[el, G es|PY) + (BN |éa G Eysl®y’) is the Green function of a
disconnected cluster. It is calculated in the Lehmann representation in terms of the few-body

Cila

states of interacting clusters containing K and K =+ 1 electrons

(D81l K1) (K1 ey 5|PE) (00 |Cialn T (D5 e 5106
2 w— (EF — EK1) 2. w—(EKT—EF)

Ginirp(w) = (11)

n n

Eq. (10) contains the matrix elements of the inter-cluster potential that are simply calculated

I",i—1",~ —~'that give a non-zero contribution.

identifying the indices [ —
After summation over the cluster positions in Eq. (8), one eventually reaches an explicit equa-

tion for the lattice Green function, namely

Giairg (k) = Girrs (@) + Y Biainry (kw) Gorryrivg (k) , (12)

1

i’y

where the K x K matrix B;q . /(kw) is the Fourier transform of GV matrix elements involving
neighboring sites that belong to different clusters. Eq. (12) is solved by a K X K matrix inversion
at each k and w.
The k- and w-dependent lattice Green function G (knw) is obtained by a final summation over
the intra-cluster site positions modulated by the single-particle band coefficients as in Eq. (7).
The quasi-particle excitation energies correspond to peaks of the £ and band-index dependent
spectral function

A(k,n,w) = ImG(knw). (13)

Examples of quasi-particle band structure obtained by CPT for model systems are reported in
the next section where we start analyzing CPT results for a simplified model system. This
analysis will allow us to identify the main features of CPT and to recognize its pro et contra
with respect to the other many-body approaches. This analysis will constitute a benchmark for
CPT and for its application to realistic systems.
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3 CPT for model systems

3.1 The role of symmetry

We consider a square 2D lattice with one orbital per site and the standard orbital-independent
Hubbard Hamiltonian

He = ) eniq+ Y tugchey+> Ulhariay
il ijl il
Vo= > tugeéhén (14)
QAL

For this lattice we easily identify various possible “tilings”: 4-atom 2 x2 square, 4-atom chain,
6-atom rectangle etc. They differ by the number of atoms and also by their symmetry, the
4-atom square being the only one that preserves the full point symmetry of the entire lattice.
The simplest way to check the quality of the main approximation of CPT, the expression of
the lattice Green function in terms of Green functions of decoupled clusters, is to look for a
convergence in the cluster size, comparing results obtained with larger and larger cluster sizes.
This procedure has two serious restrictions that arise 1) by the dimensions of Hilbert space
used in the exact diagonalization, dimensions that grow exponentially with the number of sites
and ii) by symmetry requirements. The second restriction, even if clearly stated in the early
developments of Quantum Cluster theories [7], is often overlooked in the implementations.
Independently on the various QC flavors such as plain CPT [10], variational CPT [13], cellular
dynamical mean-field theory [9], the cluster symmetry should be as close as possible to the one
of the lattice.

As we know from elementary solid state theory there is a large arbitrariness in the choice of
the elementary units that describe a crystalline solid: either the primitive cell that contains the
minimum number of atoms, or any larger unit that, via translation invariance, reproduces the
crystalline lattice. So the band structure of non-interacting electrons in a 2D square lattice can
be calculated using unit cells containing a variable number of atoms, 1, 2, 4, 6, etc., providing
exactly the same result, except for a trivial “band folding” that can be easily eliminated by an
“unfolding procedure”, see Fig. 1.!

The situation is quite different for interacting electrons as described by QC theories. In this
case the smallest unit must obviously contain more than one atom but its choice is now far less
arbitrary since the extended system is described as a periodic repetition of units of correlated
electrons and the translation periodicity is preserved only at the superlattice level. In other
words, the e-e interaction affects the electronic states inside the cluster, resulting in a sort of
hopping renormalization, while the inter-cluster hopping is unaffected. For this reason the
cluster symmetry should be as close as possible to the one of the lattice: any significant deviation

!'The unfolding procedure corresponds to identifying within the bands obtained with a large unit cell those that
correspond to the primitive cell. The unfolding procedure is used in CPT in order to implement correctly Eq. (7)
where the band index n runs over the number of unfolded bands (n = 1 instead of n = 4 or n = 6 in the present
case) but the eigenstates are to be taken in the larger unit cell basis (: = 1,4 or i = 1, 6)
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E-Ef

(k)

Fig. 1: Single-particle band structure obtained assuming different unit cells for the 2D square
lattice: the 4-site square (a) and the 6-site rectangle (b) (open circles). The red line is the “un-
folded” band structure obtained assuming the usual I-site unit cell. Panel (c) shows different
tilings for the 2D square lattice (see text).

from this requirement would induce a wrong behavior of the quasi-particle band dispersion:
quasi-particle energies at k and Rk, R being a point group rotation, would be different, violating
a very basic rule of solid state theory.

The influence of cluster symmetry on the quasi-particle band structure is illustrated in Fig. 2
for the square lattice at half occupation. It appears that clusters that are not invariant under
lattice point-group rotations give rise to quasi-particle bands that violate the above mentioned
rule. Quasi-particle energies should be identical at k-points K; and K since K; and K are
connected by a point-group rotation but for the 4-site chain and the 6-site rectangle they are not,
major differences occurring in the first case due to the largest symmetry discrepancies.

Fig. 3 shows a similar comparison for another 2D model system, the honeycomb lattice. In this
case two tilings have been considered: the 6-site hexagon and the elongated 8-site cluster. The
differences are striking and this is due to the fact that the 8-site tiling has a preferred direc-
tion. Hence the dispersions along K—K' and K'—K" appear different. This result is particularly
relevant since it explains some significant discrepancies that are present in the literature on cor-
related electrons in graphene [14, 15]. In fact, in the honeycomb lattice where the Dirac cones
are the consequence of perfect long-range order, theories based on quantum cluster schemes,
regardless of them being variational or not and independent on the details of the specific im-
plementations, give rise to a spurious excitation gap for U — 0. A strategy has been proposed
that seems to overcome this shortcoming, providing for the undistorted honeycomb lattice a
semimetal behavior up to some finite U [16]. The strategy consists in choosing clusters that
break the lattice point Cz symmetry (8- and 10-site clusters). The quasi-particle band disper-
sion that is obtained in this way presents, however, the above mentioned unphysical behavior
which, by the way, is just the origin of the semimetallic behavior at finite U since the gap closes
at one /K but not at its rotated counterpart. For this reason breaking the rotational symmetry is
not an allowed strategy to correct the erroneous insulating phase.



6.8 Franca Manghi

(a) (b)
2
| e |
I ~ ~ = | e
2 K1 K2 K3 K4 K1 :2 K3 K4
(©)
2} K3 M
1_\_ -/\\V)\—F/\\ / (d)
o 0 : : : K4 K2
w . — \r ~ ‘r r
2 K1 K3 “

Fig. 2: Spectral functions obtained for the square lattice at half occupation (t = 0.25, U = 2)
reproduced by different tilings, 4-site square (a), 4-site chain (b) and 6-site rectangle (c). In (d)
the 2D square Brillouin Zone is shown.

(a) (b)
2
: J.h\ e /d h\
: D Y,
K’ K’
M
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Fig. 3: Spectral functions obtained for the honeycomb lattice (t = 1, U = 2) at half occupation
using different tilings shown in (c): a 6-site hexagon(a) and an §-site cluster (b). In (d) the
honeycomb Brillouin Zone is shown.
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3.2 CPT vs. other many-body schemes

The agreement between theory and experiments is the ultimate validation of any theoretical
scheme. Many-body quasi-particle band structure calculations rely, however, on drastic approx-
imations that may work as ad-hoc ingredients that affect the final result: different single-particle
band structures are used as a starting point, different strategies are implemented to take into ac-
count the double-counting of the e-e interaction, etc. It is then interesting to make a comparison
within theory, applying different many-body schemes to the same simplified model. This pro-
vides a sort of benchmark for the various theoretical schemes. We choose again the 2D square
lattice at half occupation as a paradigmatic case.

Among the non-perturbative techniques that have been proposed to augment band theory by
e-e correlations we consider 3-Body Scattering (3BS) theory, a method that shares with other
approaches, DMFT above all, the calculation of Green functions in terms of self-energy X' (knw)

1
W — exp — 2 (knw)’

G(knw) =

(15)

where ey, are the single-particle band eigenvalues.

In the 3BS approach the interacting many-body state is expanded in the configurations ob-
tained by adding electron-hole pairs to the ground state of the single-particle Hamiltonian. The
response of the interacting system to the creation of one hole is then described in terms of in-
teractions between configurations with one hole plus one e-h pair, giving rise to multiple h-h
and h-e scattering. The advantage of 3BS with respect to other approaches is to provide a rather
intuitive interpretation of the effect of electron correlation on one electron removal energies in
terms of Auger-like relaxations. Interestingly, the results of DMFT and 3BS are in many cases
quantitatively very similar [4, 17].

The results obtained by 3BS and CPT for the 2D square lattice with¢ = 0.25and U = 2, 3,4 are
shown in Figs. 4 and 5. Both methods provide, for sufficiently large values of U, an insulating
behavior but in 3BS the gap opens up only at very large U (U > 2W) while in CPT the
gap is present already at much lower U-values. Indeed, in CPT, at half occupation, the gap
is always present. It has recently been shown [18] that the existence of a gap down to U —
0 is characteristic of all quantum cluster schemes with the only exception of the dynamical
cluster approximation (DCA) [8]. This is due to the aforementioned violation of translational
symmetry in quantum cluster methods. DCA preserves translation symmetry and has been
shown to describe better the small-U regime; it becomes, however, less accurate at large U
values where it overemphasizes the metallic behavior [18]. Aware of this shortcomings we are
comparing here results obtained for relatively large U values where CPT limitations are not
effective: For U > t cluster perturbation theory is expected to provide reliable results.

Other remarkable differences exist between 3BS and CPT results, mainly related to the quasi-
particle k-dispersion. This is essentially due to a limitation of the methods based on self-energy
calculation, since the self-energy is in most cases assumed k-independent. On the contrary, CPT
provides a clear k-dependent energy renormalization and single-particle eigenstates at different
k-points are differently affected by e-e correlation. This is shown more clearly by extracting
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Fig. 4: Quasi-particle band structure obtained by 3BS (upper panel) and CPT (lower panel)
for the 2D square lattice with t = 0.25. Increasing values of Hubbard U (U = 2,3,4) are
considered. The k-points are shown in Fig. 2(d).

T | T T | T T | T T T
3BS — U=0
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< — U=3
> — U=4
g
E
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Fig. 5: Quasi-particle density of states obtained by 3BS (left panel) and CPT (right panel) for
the 2D square lattice. Parameter values are the same in Fig. 4.

from CPT a self-energy

Y(knw) = w — ey, — G(knw) ™. (16)

CPT self-energies are shown in Fig. 6 at the high symmetry points of the 2D square lattice
showing a well defined k-dependence.
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Fig. 6: k-dependent CPT self-energy for the 2D square lattice. Parameters as in Fig. 4.

4 Transition-metal oxides

4.1 Preliminaries

We move now to Transition Metal (TM) oxides as an example of the application of CPT to real
materials.

The non interacting contribution to the Hubbard Hamiltonian is a standard Tight-Binding (TB)
Hamiltonian that can be written in terms of Koster-Slater parameters obtained by fitting ab-
initio band structure. Tables 1 and 2 report the Koster-Slater tight-binding parameters of the 3d
transition-metal oxides obtained by least squares fitting of ab-initio band structures calculated
in the DFT-LMTO scheme.

When using TB parameters in the Hubbard Hamiltonian we must take care of the double-
counting issue: the ab-initio band structures, and the TB parameters deduced from it, contain
the e-e Coulomb repulsion as a mean-field that must be removed before including U as a true
many-body term. “Bare” on-site parameters are calculated by subtracting the mean filed value
of the Hubbard term, namely

Bl = Fa— > Ul (tiat) (i) a7

This definition involves the d occupation inside the cluster that is actually used in exact diago-
nalization and cancels out the energy shift due to double counting within each sub-cluster. Other
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Table 1: On-site Koster-Slater parameters (in eV).
By(TM) E,(TM) Bigy(TM) E.(TM) E,(0) E,(O)
MnO 7.313 11.546 -0.763 -0.010 -18.553 -4.806
FeO 8.208 12.232 -0.857 -0.132 -18.489 -4.723
CoO 8.221 12.040 -1.383 -0.734 -18.673 -4.891
NiO 8.6332 12.176 -1.767 -1.165 -18.608 -4.806
Table 2: Inter-site Koster-Slater parameters (in eV).
atom atom $So PPo PP dd, dd dds SPo sdy pds pd,
Mn Mn -0.514 1.435 -0.137 -0.353 0.028 0.047 0486 -0.285 -0.081 0.209
0] Mn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.074 -1.243 0.632
0] (0] -0.124 0.519 -0.102 0.0 0.0 0.0 -0.016 0.0 0.0 0.0
Fe Fe -0.529 1470 -0.128 -0.341 0.023 0.046 0.487 -0.275 -0.083 0.195
0] Fe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.083 -1.027 0.640
0] (0] -0.140 0.578 -0.109 0.0 0.0 0.0 -0.015 0.0 0.0 0.0
Co Co -0.537 1.497 -0.109 -0.306 0.015 0.045 0483 -0.283 -0.123 0.193
0] Co 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.023  -1.235 0.616
0] (0] -0.145 0.609 -0.112 0.0 0.0 0.0 -0.043 0.0 0.0 0.0
Ni Ni -0.549 1.527 -0.090 -0.280 0.006 0.043 0488 -0.294 -0.113 0.189
0] Ni 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.969 -1.209 0.608
0] (0] -0.154 0.656 -0.116 0.0 0.0 0.0 -0.101 0.0 0.0 0.0
Table 3: d-orbital occupations.
MnO FeO CoO NiO
nyg 4941 5770 5.961 5.966
neg  0.599 0.672 1.614 2.556
ng 5.540 6.441 7.575 8.522

definitions of double-counting correction have been proposed in the spirit of LDA+U [12] that
involve the average d-occupation in the solid calculated by single-particle theory. Our choice
should be preferred when using multiple partitions of sites/orbitals: this double-counting cor-
rection in fact amounts to readjusting the “center of mass” of the calculated few-particle states
by realigning the calculated %(Eév 1 — g1 toits U = 0 value and to keep the distinction
between filled and empty states.

Fig. 7 reports the local density of states obtained in the non-interacting scheme. We focus in
particular on the TM d-orbital contribution. Crystal field symmetry induces a split of d-orbitals
into ty4/e4-states and according to ab-initio band theory these states have different occupations
(see Table 3). This is a crucial point that will be exploited later in applying CPT to TM oxides.
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Fig. 7: Single-particle Density of States (DOS) for TM oxides of the 3d series. The total DOS is
reported (lower panel) together with the contributions of TM d-orbital (in red and blue 15, and
eq, respectively) and of oxygen sp-orbitals in the upper panels.

4.2 Lattice tiling: a multiple partition strategy

As outlined in the previous sections, the first step of the CPT procedure is the partitioning of
the lattice into clusters. Obviously the choice in not unique but must satisfy some requirements:
the clusters should be connected by inter-site hopping as schematically indicated in Fig. 8(c),
namely they should not overlap; moreover they should contain enough atoms to include the
relevant physics of the interacting system and finally the number of sites/orbitals per cluster
should be tractable in an exact diagonalization procedure. Another relevant criterion is that, as
discussed in Section 3, the cluster symmetry should be as close as possible to the lattice one.
TM oxides of the 3d series (MnO, NiO, CoO, FeO) crystallize in the rocksalt structure. An
octahedral cluster containing one TM atom and 6 nearest-neighbor oxygens has been originally
proposed as the elementary unit containing all the relevant physics of the system; atomic multi-
plet theory applied to this isolated cluster [19] has been used to reproduce some features of the
solid state system, losing, however, the translational symmetry and all k-related quantities. The
same cluster has been used as the basic unit to be embedded in an infinite medium in the spirit
of variational CPT [12]. These clusters, however, do overlap in the rocksalt structure and can-
not be used as elementary unit in CPT calculations. Moreover this cluster contains just one TM
atom and even in variational CPT the resulting self-energy turns out to be k-independent [12].
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(@) (b)

e

Fig. 8: Building blocks of the 3D Rocksalt structure for a transition-metal mono-oxide: (a) a
dimer of 2 TM atoms (filled black circles); (b) a 2 x 2 plaquette containing the two atomic
species (oxygens as open circles); (c) stacking of plaquette layers reproducing the 3D lattice.
Dotted lines indicate the inter-cluster hopping.

The smallest cluster containing more than one TM atom and reproducing, without overlaps, the
3D rocksalt lattice is the 2 x 2 plaquette of Fig. 8(b) with two TM atoms and two oxygens.
Since the bands of TM oxides around the Fermi energy are described by 9 spd-orbitals for each
TM atom and 4 sp-orbitals for each oxygen, the dimension of the Hilbert space spanned by the
Slater determinants that are obtained by populating in all possible ways the KX = 26 orbitals
with P electrons of a given spin (P = 13...16 from MnO to NiO) is far too big (number of
ﬁ)% for exact diagonalization.

A reduction of the number of sites/orbitals per cluster is mandatory. To this end we may iden-

configurations = (

tify, within a single cluster, two classes of orbitals (centered on different sites and of different
symmetry) that we call A and B; we may then write the cluster Hamiltonian as the sum of
on-site and inter-site terms connecting all kinds of orbitals: A-A, B-B (diagonal terms), and
A-B (oft-diagonal terms):

H, = HY {V,p (18)

with
HY = B2+ HPP and Vap = Y titaujips Cra,Civpy, - (19)

aafBp

Here

HM = Z Eilos Milay T Z Z Lilaa,jlBa é;rlaAéjlﬂA + Z Udspa Nitantiiiga,  (20)
ilag apfBa ijl ilaafa
and a similar expression for H55.
) oA ~ Adi ~ . .

Correspondingly we have again G¢ = = 2z — H, = (G%38)~1 — V/,  which results, as before, in

a Dyson-like equation
Ge = Gliag  Glae 7, L Ge 1)
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In the local basis G9#2 is block-diagonal and the non-zero elements G % and G428 are obtained

by performing separate exact diagonalizations that include either A or B orbitals. In this basis
Eq. (21) can be solved by matrix inversion.

Ge = (I — GUae v, 5)~L Gline (22)

with I the unit matrix and indices running over the K = 26 sites/orbitals of the plaquette (9
spd-orbitals on 2 TM atoms and 4 sp-orbitals on 2 oxygens). More explicitly

-1

Gaa 1 0 —GYE Vg 0 G

Gap | 0 1 0 —GVE Vap 0 23)
Gpa| | -GU2VE, 0 1 0 0

G BB 0 - G%I%g VBA 0 1 G%I%g

Of course this multiple partition — within the lattice and within the cluster — makes the problem
numerically tractable. In this case the CPT prescriptions may be rephrased as follows: chose
a partitioning of the lattice Hamiltonian into a set of non-overlapping clusters connected by
inter-cluster hopping; make a further partition inside each cluster defining a suitable collection
of sites/orbitals; perform separate exact diagonalizations plus matrix inversion to calculate the
cluster Green function in the local basis by Eq. (23) and finally obtain the full lattice Green
function in the Bloch basis by Eq. (12).

This technique can be extended to more than two subsets of sites/orbitals, and, in fact, we have
applied it to a triple partition (subsets A, B and (') as we will show in more detail below. It has
the advantage to replace an unmanageable exact diagonalization with two (or more) separate
ones followed by a matrix inversion. It shares with CPT the assumption about the states of
the cluster interacting electrons ¢™ (11, ro..,7x) ~ Ga(ri,r9..,74)d5(r1,72..,75)... Thisis a
drastic approximation whose validity must be verified performing calculations with different
partitions and/or finding explicit and justified rules for the adopted choice. These rules must be
based on clear and sound conjectures and will be inevitably system-dependent.

4.3 Multiple partition for TM oxides

We come now to the practical implementation appropriate for transition-metal oxides. TM ox-
ides of the 3d series differ drastically in d-band occupation; according to single-particle band
theory reported in Tab. 3 and Fig. 7, NiO and CoO have t,4-states fully occupied (149, ~ 6 in
both cases) while the e,-states are responsible for the metallic behavior; on the contrary, in MnO
and FeO both ¢5,- and e -states cross the Fermi level. Since only partially occupied shells are
affected by the e-e interaction this suggests different partitions for the two classes of TM oxides,
NiO, CoO on one side (with only e -orbitals centered on the two TM atoms in the plaquette)
and FeO, MnO on the other site (with both ¢,-e,-orbitals).

Once we have made this assumption we are also able to predict straightaway which TM oxide
will develop in CPT a Mott-Hubbard gap: in exact diagonalization, in fact, only systems at
half occupation exhibit a finite energy separation between hole and particle excitations and
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Fig. 9: CPT results for NiO assuming the multiple partition indicated in (a) (see text). (b):
orbital resolved density of quasi-particle states compared with experimental results (open cir-
cles). Blue (red) line is for TM d (Oxygen sp) orbital contribution. (c): Quasi-particle band
dispersion (blue line) compared with the single-particle result (black asterisks).

we expect NiO and MnO (having 2 e, and 5 t54-¢, electrons respectively) to be well-defined
Mott insulators, while in FeO and CoO, where both t,, and e, are not half occupied, local e-
e repulsion is expected to induce a readjustment of spectral weight but not necessarily a well
defined gap. In the following we will describe how CPT can be implemented to capture gap
opening in MnO and NiO.

The multiple-partition—multiple-embedding procedure for NiO starts from a separation of Ni-d
orbitals into 75, and e, contributions. As already mentioned, in NiO only e,-states are partially
occupied and it is reasonable to expect them to be most affected by e-e interaction. We identify
the set of finite systems shown in Fig. 9(a), namely: 1) a Ni dimer containing e, orbitals, ii) a
Ni dimer containing sp-orbitals, 1i1) a 4-atom plaquette with Ni ¢5,- and O sp-orbitals. Three
distinct exact diagonalizations are performed assuming for simplicity non-zero on-site repulsion
between Ni d-orbitals only. Three cluster Green functions are calculated within the Lehmann
representation: G44, Gpp, and Goe with A = Ni ey, B = Ni sp, and C' = O p Ni ty,. The total
Green function for the plaquette is obtained by putting them together. This is the first embedding
procedure and amounts to solving the matrix equation (23) extended to a triple-partition.

The second embedding procedure corresponds to going from the 2 x 2 plaquette to the extended
lattice and requires the kind of “periodization” described in Sec. 2, where we go from the cluster
Green function to the lattice Green function by solving again the Dyson-like equation involving
now inter-cluster interactions. In order to implement Eq. (12) one needs first of all to define
for each site r; in the plaquette the position of the nearest neighbors r;» and the corresponding
lattice vectors R;» connecting the cluster with the neighboring ones. Then the matrix B, (kw)

1s obtained as follows

Bigj (kw) = Z tioaimry € SR G i (W) B . (24)

Z‘/i//l//
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Fig. 10: CPT results for MnO. (a): multiple partition of orbitals in dimer and 2 X 2 plaquette
(see text). (b): orbital resolved density of quasi-particle states compared with the experimental
data (circles). Blue (red) line is for TM d (Oxygen sp) orbital contribution. (c): quasi-particle
band dispersion (blue line) compared with the single-particle result (black asterisks).

Here ;10417 are the inter-site hopping terms previously defined (Eq. (2)) obtained in terms of
Koster-Slater parameters in the usual way.

The on-site e-e interaction involving Ni d-orbitals has the effect of opening a gap between t5,-
states as expected and to turn the NiO into a wide-gap insulator. The Hubbard U is used here as
a tunable parameter to reproduce the experimental gap but its value (U = 11 eV) is within the
current estimates. We notice that, in spite of the drastic approximations, the agreement between
theory and experiment is quite good, not only for the correct gap that is somewhat fixed by the
value of the e-e repulsion, but also for the orbital character of the valence-band edge, largely
involving O 2p-states as known from experiments.

Let us consider now MnO where, according to the previous discussion, we include in the small-
est elementary unit (the dimer) all d electrons (Fig. 10(a)). Then also in this case we will be

dealing with an exact diagonalization at half occupation. The dimension of the Hilbert space
K\

<P!(K7P)!)

the band-Lanczos algorithm to obtain ~ 1000 eigenvalues and eigenvectors EX*!, ¢N=! for

spanned by the Slater determinants is here ncons = )2 = 63504, so large to require
the system with NV & 1 electrons as well as the ground state £, ) for the N electron system.
Also in this case the dimer problem accounts for both hopping and e-e repulsion on the d-orbitals
of the TM atoms and therefore includes a large part of the relevant physics of the interacting
system. In particular, since also in this case the system is half occupied, we expect the ground
state Eév *1 to be larger than Eév ~! with an energy distance growing with U. This is essential in
view of a gap opening in the extended system.

We then proceed as before to embed first the dimer into the plaquette and finally the plaquette
into the extended lattice. Results are shown in Fig. 10. In this case the e-e repulsion is respon-
sible for a complete removal of all Mn d-states around the Fermi level as required for the gap
opening.
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Figure 10(b) shows a comparison between the quasi-particle density of states and the experi-
mental results of Ref. [20]. We observe that the gap value is well reproduced as well as most
of the spectroscopic structures. We do not find evidence of structures below the valence-band
bottom that are observed in photoemission experiments; this might be due to the reduced num-
ber of excited states that are obtained by the Lanczos procedure. We mention however that the
origin of satellite features in MnO has been somewhat controversial in the literature attributing
them either to intrinsic [20] or extrinsic effects [21]. Apart from the satellite structure our results
are comparable with what has been obtained by variational cluster approximation [12] in spite
of a different choice of the cluster, and by a recent DMFT calculations [22]. Since these two
approaches are either variationally optimized or self-consistent, we may identify in the present
CPT scheme the advantage of giving comparable results by a single-shot calculation thanks, we
believe, to our cluster choice.

5 Concluding remarks

In this lecture we have reviewed a possible strategy, based on a multi-orbital extension of the
CPT approach, to include on-site e-e interactions in real materials and we have discussed its
application to the paradigmatic case of transition-metal oxides. The CPT strategy is applied
twice, first to identify a partition of the lattice into non overlapping clusters and secondly to
calculate the cluster Green function in terms of two or more local ones. This procedure has the
advantage of replacing an unmanageable exact diagonalization by two or more separate ones
followed by a matrix inversion. This strategy may be adopted whenever dealing with exceed-
ingly large dimensions of the configuration space, for instance in treating correlated electrons
in low-dimensional systems such as surfaces and interfaces, where the translation invariance
is reduced and the unit cell contains many atoms. Of course there are drastic approximations
involved: in the same way as in the standard single-orbital CPT, writing the lattice Green func-
tion in terms of Green functions of decoupled subunits amounts to identifying the many-electron
states of the extended lattice as the product of cluster few-electron states. In the present case
in particular, choosing the TM dimer as the basic unit we have excluded from the few-electron
eigenstates obtained by exact diagonalization the contribution of oxygen sp-orbitals, treating
the O sp — TM d hybridization by the embedding procedure. The non-interacting part of the
lattice Hamiltonian is described in terms tight-binding parameters deduced by a least-squares
fitting of an ab-initio single-particle band structure, including all the relevant orbitals. To our
purposes, since we do not need any real-space expression of the single-particle wavefunctions,
this tight-binding parametrization is fully equivalent to a representation in terms of maximally
localized Wannier functions. We have applied this method to NiO and MnO as test cases and,
using a single value of the Hubbard U, we have found a reasonable agreement with experimental
data and with theoretical results obtained by different methods.
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7.2 Eva Pavarini

1 Introduction

The term orbital ordering (OO) indicates the emergence of a broken symmetry state in which
localized occupied orbitals form a regular pattern, in a similar way as spins do in magnetically
ordered structures. Orbital ordering phenomena typically occur in Mott insulators with orbital
degrees of freedom; for transition-metal compounds, the main focus of this lecture, the latter
stem from the partially filled d shells of the transition metal. The perhaps most representative
case is the perovskites KCuF3, shown in Fig. 1. In first approximation KCuF; is cubic (O,
point group) with Cu?* at the center of a regular octahedron of F~ ions (anions), enclosed in
a cage of K™ (cations). Due to O;, symmetry at the Cu site, the d manifold, 5-fold degenerate
for free Cu®", splits into a ¢y, triplet (zz,yz, zy), lower in energy, and a e, doublet (z? — y?
and 32> — 7%); the electronic configuration of the Cu®* ion is thus t5 ] (one hole). The to,
states are completely filled and do not play any active role in OO; instead, electrons in the 62
configuration have orbital degeneracy d = 2. Making an analogy with spin degrees of freedom,
they behave as an effective 7 = 1/2 pseudospin; in this view, one of the two e, states, say
|z? — y?), plays the role of the pseudospin up, | ), and the other one, |3z% — r?), of the
pseudospin down, | ). The two pseudospin states are degenerate and, by symmetry, one
could expect them to be equally occupied. In reality the symmetry is broken and KCuFj is
orbitally ordered with the orbital structure shown in Fig. 1; depicted are the empty (hole) e,
states at each Cu site. Furthermore, the system exhibits a co-operative Jahn-Teller distortion,
also shown in Fig. 1, with long and short Cu-F bonds alternating in the ab plane. Indeed, the two
phenomena — electronic orbital ordering and structural Jahn-Teller distortion — are concurrent;
it is therefore difficult to say which one is the cause and which one is, instead, the effect. The
second paradigmatic system showing OO is LaMnOs (ion Mn?®*, configuration 3d*), the mother
compound of colossal magnetoresistance manganites, also a perovskite. Due to the Hund’s rule
coupling J, the actual electronic configuration of Mn** is 3 e;. The half-filled ¢3, state has
no orbital degeneracy; the only orbital degrees of freedom are, as for KCuF3, those associated
with e, electrons. Again, the system is orbitally ordered and orbital ordering goes hand in hand
with the co-operative Jahn-Teller distortion. Among t,, systems, i.e., materials with partially
filled t5, shells, classical examples of orbitally-ordered crystals are the perovskites LaTiO3 and
YTiO3 (configuration ¢3,), LaVO3 and YVOs (#3,), and Ca;RuOy (t5,); in these cases the to,
electrons behave as a orbital pseudospin 7 = 1. Although this is not a prerequisite for orbital
ordering, as we have seen, many orbitally-ordered materials are perovskites; for this reason in
the present lecture we will use the perovskite structure as representative.

The origin of orbital ordering has been investigated for decades. One of the problems in clari-
fying its nature is that, while magnetic order can be directly probed, e.g., via neutron scattering
experiments, orbital ordering is typically only indirectly observed. Indeed, its principal hall-
mark is the presence of the co-operative Jahn-Teller distortion itself. Identifying the origin of
orbital ordering is thus intimately related to finding the cause of the co-operative Jahn-Teller
distortion. In this lecture I will illustrate the two main mechanisms [1,2] which have been pro-
posed as possible explanation for OO phenomena, the classical Jahn-Teller effect [1], perhaps



Orbital Ordering 7.3

Fig. 1: Crystal structure, distortions, and orbital order in KCuF3. Cu is at the center of F
octahedra enclosed in a K cage. The conventional cell is tetragonal with axes a, b, c. The
pseudocubic axes X, y, z pointing towards neighboring Cu are shown in the corner. Short (s)
and long (1) CuF bonds alternate between x and y along all pseudocubic axes (co-operative
Jahn-Teller distortion). The distortions are measured by § = (I —s)/(1+s)/2 and v = ¢/aV/2.
R is the experimental structure (v = 0.95, 6 = 4.4%), Rs (v = 0.95) and I5 (v = 1) two
ideal structures with reduced distortions. In the I, structure the cubic crystal-field at the Cu
site splits the 3d manifold into a to4 triplet and a e, doublet. In the R structure, site symmetry is
lowered further by the tetragonal compression (v < 1) and the Jahn-Teller distortion (6 # 0).
The figure shows the highest-energy d orbital. From Ref. [3].

enhanced by Coulomb repulsion [4], and Kugel-Khomskii superexchange [2]. Kanamori well
illustrated the first mechanism in an influential work [1] in 1960; the main idea is that electron-
phonon coupling yields a static Jahn-Teller distortion, which lowers the symmetry of the system
and produces a crystal-field splitting. As a consequence, electrons preferably occupy the lower
energy states, giving rise to a periodic pattern of occupied orbitals. This is self-evident in the
limit in which the crystal-field splitting is very large, let us say, larger than the bandwidth;
the lower-energy states at each site will be clearly the first ones to be occupied. If, however,
the bandwidth is large in comparison with the crystal-field splitting, the hopping integrals can
strongly reduce such a tendency to orbital ordering. A natural question thus arises at this point.
How large should the crystal-field splitting be to give rise to a orbitally-ordered state? To answer
this question we have to remind ourselves that transition-metal systems with partially filled d
shells are also typical examples of strongly-correlated materials. Their low-energy properties
are believed to be well described by a generalized multi-band Hubbard model

H = Hy + Hy,
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the sum over a one-electron term H, describing the transition-metal d bands and a Coulomb
electron-electron repulsion term Hy;. The one-electron term is

= =222 b Clone i

it/ o mm'

.I.

where ¢,

creates an electron at site ¢ with spin ¢ and orbital quantum number m, and the
parameter tn’L;n, are the hopping integrals (i # ') or the crystal-field splittings (: = ¢’). The

Coulomb repulsion can be written as

2 : T i
E E E m mﬁm mﬁ Cim, Uczmﬁa’czmﬁcr sz o

oammmm

The elements the Coulomb interaction tensor, U,,_ ., gmtyml;» Can be expressed in terms of the
Slater integrals' labeled as Fy,, F, and F. Here we will restrict the discussion to the eq O tog
manifolds only. In this case, in the basis of real harmonics, the Hubbard model takes the form

Zzzt ’sza zma+UZananzm¢

o mm/
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i oo’ m#Em’
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where m, m’ are here either ¢y, or e, states, Upimm = Upmy = U — 2J(1 = 6,,,) and, for
m # m', Upmim'm = Jmm = J. The last two terms describe the pair-hopping and spin-flip
processes (Upmm/m’ = Jm ny if We use a basis of real harmonics, while for spherical harmonics
Unmm'm = 0). Finally, U = Uj and J = J; (ty4 electrons) or J = J, (e, electrons), with

8
UO :FO + gjavg

51
Jave = 714(F2+F)
3 20 1
=+ F
=gt g

JQ = - 2javg + 3Jl .

In strongly correlated systems described by a Hamiltonian of type (1) it turns out that a small
crystal-field splitting, a fraction of the bandwidth, is sufficient to produce orbital order even at
high temperature. This happens because the Coulomb repulsion effectively enhances it, while
suppressing orbital fluctuations [4]. Hence, the mechanism illustrated by Kanamori becomes
very efficient in the presence of strong correlations (small ¢/U limit, the typical limit for Mott
insulators; here ¢ is an average hopping integral). This is, however, not the end of the story:

'For a pedagogical introduction see, e.g, Ref. [5], or the lecture of Robert Eder in the present book.
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Fig. 2: The unit cell of a cubic perovskite ABCs and its symmetry axes; the lattice con-
stant is a. The transition metal B (red) is at (0,0,0); the ligands C (green) are located
at (£a/2,0,0), (0,£a/2,0),(0,0,+a/2) and form an octahedron; the cations A are located
at (£a/2,+a/2,%a/2), (£a/2,Fa/2,+a/2), (Fa/2,+a/2,+a/2), (a/2,+a/2,Fa/2) and
form a cube. The bottom figures illustrate the rotational symmetries of the cell.

Coulomb electron-electron interaction provides, in addition, an alternative explanation of the
origin of orbital ordering. In a seminal work, Kugel and Khomskii [2] have shown in 1973 that,
in the presence of orbital degeneracy, many-body effects can produce orbital ordering even in
the absence of a static distortion, i.e., of a crystal-field splitting. This happens via electronic
spin-orbital superexchange, the effective low-energy interaction which emerges, in the small
t/U limit, from the orbitally-degenerate Hubbard model. In this picture, the co-operative Jahn-
Teller distortion is rather the consequence than the cause of orbital order. The predictions of the
two theories for what concerns, e.g., the final broken-symmetry structure, are basically identi-
cal; thus it is very hard to determine which of the two mechanisms, Jahn-Teller effect or Kugel-
Khomskii superexchange, dominates in real systems. In the last part of the lecture we will see
how the problem was recently solved [3, 6] by using a new theoretical approach based on the
local-density-approximation + dynamical mean-field theory (LDA+DMFT) [7, 8] method. For
the representative materials KCuF3; and LaMnOs, it was shown that Kugel-Khomskii superex-
change alone, although strong, cannot explain the presence of the Jahn-Teller distortion above
350 K (KCuFj3) [3] and 650 K (LaMnOs) [6]; experimentally, however, the distortion persists
in both systems basically up to the melting temperature. This leads to the conclusion that a
mechanism directly generating a static crystal-field splitting, such as the standard Jahn-Teller
effect, is necessary to explain the experimental findings.
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2 Cubic crystal-field splitting

Let us consider a system with the ideal cubic perovskite structure ABCs, shown in Fig. 2, where
B is the transition metal with partially filled d shell. The site symmetry at a B site is cubic; as we
mentioned before, d states split into e, and ?,, at a site with cubic symmetry. Let us understand
how exactly this happens. For a free ion, the potential vg (7) which determines the one-electron
energies is rotationally invariant, i.e., it has symmetry O(3). This means that all one-electron
states within a given [ shell are degenerate, as it happens in the case of hydrogen-like atoms.
When the same ion is inside a molecule or a solid, vg(r) has in general lower symmetry, the
symmetry corresponding to a finite point group.? Thus one-electron states within a given shell /,
degenerate for the free atom, can split. The symmetry reduction arises from the crystal field; the
latter has two components, the Coulomb potential generated by the surrounding charged ions,
dominant in ionic crystals, and the ligand field due to the bonding neighbors. In this section
we will analyze the first contribution; the covalent contribution to the crystal-field splitting is
discussed in the next section. Both effects give rise to a similar splitting of levels, and which
contribution dominates depends on the system.

Let us thus assume that the crystal is perfectly ionic and that the ions can be treated as point
charges ¢, (point-charge model). Then, the one-electron potential can be written as

Qo
T):Za:mzvo +Z|R _r|_U0(T)+UC(r)7 2)

where R, are the positions of the ions and g, their charges. The term vy(r) is the ionic central
potential at site Ry, and has spherical symmetry. The term v.(r) is the electric field generated
at a given site IR by all the surrounding ions in the crystal and it is called crystal-field potential.
For the perovskite structure ABC3; we are interested in the crystal-field potential at the site
of the transition metal, B. Let us first assume that only the contribution of nearest neighbors
(the negative C ions, typically oxygens or fluorines) is relevant. The six C ions are located
at positions (+d¢, 0,0), (0, +=d¢, 0), (0,0, £dc) and have all the same charge g¢, while the B
ion is at (0,0,0); in terms of a, the cubic lattice constant, dc = a/2. Then we can write the
potential around ion B as

aB qc T r Yy r z r
UR(T) T +dc |: U(dcjdc> + U(dc7dc) * ’U(dcjdc):|

where

1+p 14p2

Via the Taylor expansion

1 1 3, 5
S St =’

N
Ve 2778 716

%For a concise introduction to group theory see, e.g., Ref. [9], chapter 6.
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we can find the approximate expression of Av(&; p) for small &, i.e., close to ion B; the first
contribution with less than spherical symmetry is

Vot (T) = Zz—i (904 +yt 42t - 57‘4) =D <x4 +yt+ 2t — 57“4) )

We can rewrite this potential as

Voer (1) = %Zl—ir“ [Yo“(@, ¢) + @ (Yi'(0,0) + Y2, (0, ¢>)] : 3)
where
Yi0,0) = 1%% (35 cos' f — 30 cos? 0 + 3) - %%3524 — 3(1,127«2 _ 3r4,
Vi 00,0) = 1% ; sin® e = 1% g—(x ir4iy)4'

To obtain the crystal field due to the cubic cage of cations A (with charge ¢4), shown in Fig. 2
we repeat the same calculation; the main difference is that there are eight A ions, located at po-
sitions of type (:l:dA, +d 4, :EdA),(:FdA, +d g, :EdA), (:l:dA, Fdy, :EdA), (:l:dA, +dy, :FdA> with
d4 = a/2. By following the same procedure that we used for B octahedron, one can show that

~ 8qa (da >
Ucube(r> - _6(]_0 (%) Uoct('r')a

i.e., Ueupe(7) has the same form as v, (7); this happens because a cube and an octahedron are
dual polyhedra® and have therefore the same symmetry properties. If ga/qc > 0, Veupe(T) has
opposite sign than v, (7); in the case of a perovskite, however, A positions are occupied by
cations, 1.e., positive ions; thus the crystal field due to the A cage has the same sign of the crystal
field generated by the B octahedron.

The crystal-field potential v () lowers the site symmetry and can therefore split the (2/+1)-fold
degeneracy of the atomic levels. To calculate how the [ manifold splits, we use two approaches.
The first is exact and based on group theory. We assume for simplicity that the symmetry is only
O (group of the proper rotations which leave a cube invariant); using the full symmetry group
of the cube, O, = O ® C; (where C; is the group made by the identity and the inversion) does
not change the result, because the spherical harmonics are all either even or odd. The character
table of group O is given by

partner functions O |E 8C3 3C, 6C5 6C4
(2% +y? + 2?) A | 1 1 1 1 1
Al1 1 1 -1 -1 @
(22 —y*322—7r?) E|[2 -1 2 0 0
(Rs, Ry, R.) (x,y,2) |3 0 -1 -1 1
(xy,xz,yz) |13 0 -1 1 -1

3Every polyhedron has a dual which can be obtained by exchanging the location of faces and vertices.
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Let us explain this table. The first line yields the group, here O, and the symmetry operations
of the group, collected in classes Cy, here { E'}, {C3}, {Cs}, {C4}, {C4}. For each class only a
representative element is given and the number Nj, in front of this element yields the number
of operations in the class; for example 8C} indicates 8 symmetry operations in class {C3}. The
symmetry operation C,, is an anticlockwise rotation of an angle & = 27 /n. For a finite group
with h elements, the h group operations {O(g)} can be expressed as h matrices {I'(g)} acting
on an invariant linear space; the basis of this space, {|m)}, can be, for example, a finite set of
linearly independent functions, such as the spherical harmonics with angular quantum number
[. The collection of matrices {I'(g)} is a representation of the group; the dimension of the
invariant linear space yields also the dimension of the matrices, i.e., the dimensionality of the
representation. Each group has infinitely many possible representations, but some sets are spe-
cial and play the role of an orthonormal basis in a space of vectors; they are called irreducible.
If G is the group of operations which leave the Hamiltonian invariant, the irreducible represen-
tations of G can be used to classify all eigenstates of the Hamiltonian; eigenstates which build a
basis for different irreducible representations are mutually orthogonal and have typically (leav-
ing the cases of accidental degeneracy and hidden symmetry aside) different energies. The
irreducible representations [ of group O are listed in the first column of Table 4, below the
group name; they are A; (trivial representation, made of 1-dimensional identity matrices), Ao,
also 1-dimensional, F, two-dimensional, and 7} and 75, both three-dimensional. The numbers
appearing in Table 4 are the characters y;(g), defined as

Xilg) = Tr Li(g) = Y _(miTi(g)lm) = > I (g).

m

For a given representation (corresponding to a line of Table 4) the character for a specific ele-
ment can be found below the corresponding class label (columns of Table 4); all elements in the
same class have the same character. Thus the second column of the character table, showing the
character of the identity, yields also the dimensionality d; of the representation itself. Next we
calculate the characters of the matrix representation 1" constructed using spherical harmonics
with angular quantum number [ as a basis. An easy way to do this is to assume that the rotation
axis is also the axis of quantization, i.e., Z; the characters do not depend on the actual direction
of the quantization axis but only on the angle « of rotation. Thus for O(g) = C,, we have

Ca Yiu(0,0) =Y, (0,6 — a) = e Y,,(0,9)

F?ilm/ (Ca> :(5mm/eiima.

This yields the following expression for the character

l

. 1
. Cime SID(l 5)04
CO( et =
X ( ) m§:l € sm%
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The characters for representations I are therefore

o) E 8C5 3C, 6C, 6C4
I=rs|1 1 1 1 1
mn=rr{3 0 -1 -1 1
I?=rt\s5 -1 1 1 -1
m=rr 1 -1 -1 -1

In spherical symmetry (group O(3)) representations I are irreducible. In cubic symmetry
(group O), instead, the I’ ! can be reducible, i.e., they can be written as the tensorial sum &
of irreducible representations of the group O. The various components can be found by using
the orthogonality properties of irreducible representations, which lead to the decomposition
formula
. 1 N
M=@@al;  with o= (G| =23 hi@)])'(9), (5)
i g

where h, the number of elements in the group, is 24 for group O. Hereafter the symmetry
representations of electronic states are written in lower case to distinguish them from capital
letters which we will use later for labeling vibrational modes. We find

I° = ap
Fp - tl
Fd = e@tg

Ff = &Q@tl@tg.

Thus, in cubic symmetry, the s- and the p-functions do not split, because the a; irreducible rep-
resentation is one-dimensional and the ¢; irreducible representation is 3-dimensional. Instead,
d-functions split into a doublet and a triplet, and f-functions into a singlet and two triplets.
To determine which functions {|m);} form a basis (a so-called set of partner functions) for a
specific irreducible representation /; we can, e.g., use the projector for that representation

P = > o)l 00), ©

In our case, we can read directly the partner functions {|m);} for a given irreducible represen-
tation of the group O in the first column of Table 4, on the left. In short, for representation e
partner functions are (22 — 2, 322 —r?) and for representation ¢, they are (zy, xz, yz). A small
step is still missing: As we already mentioned, the full symmetry of the B site is Op,, and the
group Oy, can be obtained as direct product, O, = O®C}; with respect to O, group Oy, has twice
the number of elements and classes, and thus twice the number of irreducible representations.
The latter split into even (a14, ag, €4, t14, t2g) and odd (a1y, G2y, €y, t1y, t2,). All d-functions are
even, and therefore 2% — y* and 322 — r? are partners functions for the e, irreducible representa-
tion, while zy, xz, yz are partner functions for the ¢,, irreducible representation. Summarizing,
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to, states (zy, zz, and yz) and e, states (z? — y? and 32% — r?) have in general (again excluding
the cases of accidental degeneracy and hidden symmetry) different energy.

Group theory tells us if the degenerate 2/ + 1 levels split at a given site in a lattice, but not of
how much they do split, and which orbitals are higher in energy. We can, however, calculate
the crystal-field splitting approximately using the potential (3) as a perturbation. This is the
second approach previously mentioned; differently from group theory, it is not exact, but it
gives us an estimate of the size of the effect and the sign of the splitting. For d states we
can calculate the elements of the octahedral potential v,.(7) in the basis of atomic functions
UVnm (p,0,0) = Ru(p)Y,™(0,¢), where R,;(p) is the radial part, p = Zr, Z is the atomic
number, Y;"(6, ¢) a spherical harmonic, and n the principal quantum number (Appendix B).
We obtain

(n20 |Doct|¥n20 ) = +6Dg (Una1]Doct|Pn2s1) = —4Dq
<¢n2i2|@0%|¢”2i2> =+ Dq <¢n2:|:2|@oct|¢n23|32> = +5Dq
where Dg = qc(r*) /6d% and (r*) = [ r?dr r* R%,(Zr). The crystal-field splitting between e,
and t,,-states can be then obtalned by diagonalizing the crystal-field matrix
Dqg O 0 0 5Dq
0 —4Dq 0 0 0
Hep=1 0 0 6Dq 0 0
0 0 0 —4Dq 0
5Dg 0 0 0 Dq

We find two degenerate e, eigenvectors with energy 6 Dgq

[¥n20) = 322 —1%),
5 W) + [a-2)) = 12 = 47,
and three degenerate 5, eigenvectors with energy —4Dq
me) thna—2)] = |zy),
[an) |thna—1)] = |z2),

[|1/1n21> + [thn2-1)] = ly2).

SRS

The total splitting is
Acr = E,, — Et,, = 10Dq.

Thus the e,-states are actually higher in energy than the ¢,,-states. This happens because e,
electrons point towards the negative C ions (see Fig. 3), and will therefore feel a larger Coulomb
repulsion than ¢, electrons, which have the lobes directed between the negative C ions.
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Fig. 3: The Cu e, and tyy Wannier orbitals for the cubic perovskite KCuFs, obtained from first
principles calculations, using a Wannier basis that spans all bands.

How general is, however, this result? We obtained it via a truncated Taylor expansion of the
potential close to the nucleus. Does this mean that we have perhaps neglected important higher-
order terms? For a generic lattice, we can expand the crystal-field potential (2) in spherical
harmonics using the exact formula

k
|r1__r2| jz: k+1 Qk—Fl 2{: Y’ 027¢2 (Q17¢1%

where r— ( 75) is the smaller (larger) of r; and r5. The crystal-field potential takes the form

0 k
=2 2. BY; ™
k=0 q=—k

where Bg = (—1)1B* o Although the series in (7) is in principle infinite, one can terminate it
by specifying the wavefunctions, since

(YLIYFYLy =0 if k> 2l

For example, for p electrons k& < 2, for d-electrons, k& < 4, and f electrons k < 6. Thus, for
d-electrons and Oj symmetry, the terms that appear in the potential (3) are actually also the only
ones to be taken into account, because all other terms yield an expectation value equal to zero.
Finally, the derivation of both equations (3) and (7) presented here might let us think that the
first-nearest neighbors are those that determine the crystal field. This is, however, not always
the case, because Coulomb repulsion is a long-range interaction; for example, in some systems
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Fig. 4: Independent Slater-Koster two-center integrals for s, p, and d atomic orbitals (Appendix
B). The label o indicates that the bonding state is symmetrical with respect to rotations about
the bond axis, the label 7 that the bond axis lies in a nodal plane; the label § that the bond axis
lies in two nodal planes.

the first-nearest neighbors yield cubic symmetry at a given site but further neighbors lower the
symmetry.* Furthermore, the point-charge model discussed in this section is useful to explain
the relation between crystal field and site symmetry, however yields unsatisfactory results for
the crystal-field splitting in real materials. Corrections beyond the point-charge approximation
turn out to be important. In addition, as we will see in the next section, in many systems
the crystal field has a large, sometimes dominant, covalent contribution, the ligand field. The
modern approach to calculate crystal-field splittings including the ligand-field contribution is
based on material-specific potentials obtained ab-initio via density-functional-theory (DFT) and
the associated DFT localized Wannier functions. Nevertheless, it is worth to point out the
remarkable success of the point-charge model in giving qualitatively correct d crystal-field states
in cubic perovskites; such a success relies on the fact that this approach, even if approximate,
yields the exact symmetry of final states, i.e., the same obtained via group theory, and does not
neglect any relevant (e.g., high-order) term.

“This means that, of course, Oy, is not the actual symmetry of the site.
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Fig. 5: Illustration of the decomposition of a general s-p two-center integral in terms of Vp,.

3 Tight-binding e, and 5, bands of cubic perovskites

In this section we will construct the bands of KCuFj3 in the cubic limit using tight-binding
theory. Let us first remind ourselves of the crucial steps of this approach. The one-electron
Hamiltonian can be written as

) 1 1
he(r) = =5 V24 D Jv(r = T = Ra) = =5V + vs(r),

where R, are the positions of the basis {«} atoms in the unit cell and T} the lattice vectors. We
take as a basis atomic orbitals with quantum numbers /m (we drop here the principal quantum
number for convenience). For each atomic orbital we construct a Bloch state

7#lm(k; T \/— Z ik 77me T‘z - Ra)y (8)

where N is the number of lattice sites. In the Bloch basis (8), the Hamiltonian and the overlap
matrix are given by

Hyoe (k) = (e, (k) el (k).
O (k) = (U5, (R) U, (k).

These matrices define a generalized eigenvalue problem, the solution of which yields the band
structure. The Hamiltonian matrix is given by

Ha’am/<k):€l/ Oaa /( )+A€lml/ / —_Z . lai?nl.

Im,l’ Im,l'm Im,l’
za;éz ol

Here ¢, are the atomic levels, and Aefy, ., the crystal-field matrix elements

Aep i :/dr Ui (1 — Ry) [vR(r) —v(r — Ra)} Uy (r — Ry) 9)
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Fig. 6: Unit cell of idealized cubic KCuF3 with cubic axes in the left corner.

which are two-center integrals. Finally,

teh, = — / dr Yun(r — Ry — T)) {m(r) —0(r = Roy — Ty) [ty (r — Ry — Ty). (10)

The hopping integrals (10) contain two- and three-center terms; if the basis is sufficiently local-
ioyi'a! ia,i' o’
) ~ _V ’

ized we can, however, neglect the three-center contributions and assume ¢/, Im.l'm?

where
l$,7li/,7?;,, Z/dr Yim(r — Ry — Ty)v(r — Ry — T;) by (r — Roy — Tyr)

is a Slater-Koster two-center integral (Appendix B). A generic Slater-Koster two-center integral
can be expressed as a function of a few independent two-center integrals, shown in Fig. 4 for
s, p, and d-functions. Apart from the o bond, which is the strongest, other bonds are possible;
the  bonds are made of orbitals which share a nodal plane to which the bond axis belongs,
and the ¢ bond, for which two nodal planes intersect in the bond axis connecting the two ions.
Fig. 5 shows how to obtain a generic two-center integral involving p and s orbitals.> Let us
now consider the case of the e, and ¢5, bands of KCuF3; here we assume for simplicity that the
system is an ideal cubic perovskite, shown in Fig. 6. The primitive cell contains one formula
unit (a single K cube in Fig. 1). The cubic axes are x, y, z, and the lattice constant is a. A Cu
atom at site R; is surrounded by two apical F atoms, F3 at R; + %z and Fg at R; — %z, and four
planar F atoms, F; and F, at R; + %:c and F; and F5 at R, + %y In Fig. 7 one can see the effects
of the cubic approximation on the e, bands: the crystal-field splitting of the e, states is zero, the
band width slightly reduced, gaps disappear, and the dispersion relations is sizably modified.
The cubic band structure in Fig. 7 was obtained with a unit cell containing two formula units, in
order to compare it with the band structure of the experimental (Jahn-Teller distorted) structure
of KCuF3; hence we see four (instead of two) e, bands. The band-structure of cubic KCuF; for

>More details on the tight-binding approach can be found either in Ref. [9] or in the lecture of Matthew Foulkes.
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Fig.7: LDA e, (blue) and ty4(red) band structure of KCuF'; for the experimental structure (R)
and ideal structures with progressively reduced distortions (see Fig. 1). Iy: simple cubic. The
unit cell used in this calculation contains two formula units. The figure is from Ref. [3].

a cell with one formula unit is shown in Fig. 8; in the following we will refer for comparison to
that figure only. Let us take as tight-binding basis the atomic 3d e, orbitals for Cu and the 2p
orbitals for F; we neglect for convenience the overlap integrals (i.e., we assume that our atomic
functions are, approximately, localized Wannier functions). For such a tight-binding basis the
only relevant Slater-Koster parameter is V,q,. The |32 — r?); and |2* — y?); states of the Cu at
R, can couple via V4, to |2°);, the p, orbitals of F5 and Fg, to |2%);, the p, orbitals of F; and F,
and to |y°);, the p, orbitals of F, and F5. From the basis |«); of localized atomic functions we

construct the Bloch states |ka) = LN >, e®Bijq),;, and obtain the tight-binding Hamiltonian
HeTgB |k z¢) |k x%) |k 1) k322 —r?) |k a? —y?)
|k =€) Ep 0 0 —2Vodo Sz 0
|k z%) 0 Ep 0 VodorSe  —V3VpieSe  (11)
Ik y") 0 0 p Vpdo 5y \/gvpdasy
|k3 322 — T2> _Q%dagz ‘/;)dggx V;)dggy Ed 0
|k $2 - y2> 0 _\/g‘/;odagz \/g‘/;?dagy 0 €d

where s, = ie” %2 sink,a/2, o = 3,y,2, 6, < €4 = £p + Apa, and Vpao < 0. If |Vpao | /Apa
is small, the occupied bands are F p-like, while the partially filled bands Cu e4-like. We now
calculate the bands along high-symmetry lines.® Along I'-Z, the eigenvalues ¢; (; < €;11) of

®Special points: I = (0,0,0), Z= (0,0, 7/a), X= (7/a,0,0), M= (7/a,7/a,0), R= (7/a,7/a,7/a).
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Fig. 8: LDA band structure of cubic KCuF's. The tyy bands are in red and the e, bands in blue.

HQ;B are
€9 = &
£3 = &p
[y = &4

€15 = &+ %Apd + %\/Aid + 16Vp%lo|sz\2

where ¢; (sign —) is bonding and F z-like, while 5 (sign +) anti-bonding and Cu 322 — r2-like.
Along I'-X, we have instead the dispersion relations

€9 = &
€3 = &p
[y = &4

€15 = &p + %Apd + %\/A?)d + 16‘/;;2dg|3x‘2

where ¢, is bonding and F z-like, while &5 anti-bonding and Cu z? — y2-like. To obtain the
egq-like bands, instead of diagonalizing H, 61; B as we have done above, we can also use the down-
folding procedure, which, for non-interacting electrons, can be carried out exactly. This method
works as follows. We divide the orbitals in passive (F p) and active (Cu d), and write the
eigenvalues equation as

Hy, Hp |k p) o Iy 0 |k p)
Hy Hu | |kd)| = 0 Lu||lkd)]|

where H,,, (I,,) is the Hamiltonian (identity matrix) in the p-electron space (3 x 3), and Hyq
(144) the Hamiltonian (identity matrix) in the d-electron space (2 x 2). By downfolding to the d
sector we obtain the energy-dependent operator H;,;, which acts in the d space only

Hiy = Hag — Hap(Hpp — 5Izop)ill[[pda
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and a correspondingly transformed and energy-dependent basis set for the active space, |k d)..
The operator Hj; has the same eigenvalues and eigenvectors as the original Hamiltonian. In the
case of the e, bands (Hg; = H¢ ) of KCuF;

H, ‘ |k 322 —r?), |k 22 —y?).

|k 32%—r?), |e,—2t2[3(cos kya+cos kya)+cos k.al th[‘/Tg (cos kya—cos kya)] (12)
|k 22 —y?). 2t7[¥3 (cos k,a—cos kya)] el,—2t2[3(cos kya+cos kya))
where the effective parameters are

2

o __ V;)da

t. = ,
€—¢&p

5:1 =4+ 3t7.

The downfolding procedure has renormalized the parameters ¢, of the original model (11),
but also introduced a new interaction: inter-orbital coupling. Furthermore, H7; and the Bloch
basis are now energy dependent. Along I'Z, the eigenvalues of (12) are given implicitly by
the equations ¢ = g4 + 2t7 — 2t. cosk,a (band ¢5) and ¢ = ¢, (band ¢4); in second-order
perturbation theory we find

2
o o __ pdo
lg ~t,, = ——

Apa’
€5 ~ €q + 2t — 2t7 cosk.a.

From Hamiltonian (12) it is relatively easy to see that the e, bands are 2-fold degenerate along
direction I'-R, to find the dispersion along I'-M and R-M, and to obtain the e,-like bands in
Fig. 8. By Fourier transforming the Bloch states |k 322 — r?). and |k z* — y*). we can build
a set of Wannier functions. They have 32% — r? or 2 — y* symmetry as the atomic orbitals,
and, additionally, they span, to arbitrary accuracy, the ¢, bands. These Wannier functions are
by construction longer range than atomic orbitals, since they have p tails on the downfolded
neighboring F sites.

We can now repeat the same calculation for the ¢5, bands. The minimal tight-binding basis is
of course different with respect to the case of e, bands. The states |zy); of the Cu ion located at
R; are coupled via V4, to the |y*);, the p, orbitals of F; and F, and to |z%);, the p, orbitals of
F, and F;; in a similar way, |xz); is coupled via V,4, to the |2%);, the p, orbitals of F; and Fy,
and to the |x¢);, the p, orbitals of F5 and Fg; finally |yz); is coupled via V,4, to the |2°);, the p,
orbitals of F5 and F;, and to the |y°);, the p, orbitals of F5 and Fs. After constructing for each
|a); the corresponding Bloch state, we obtain the tight-binding Hamiltonian. The latter splits
into three decoupled blocks,

HIP | ky?)  [ka”) |k ay)
ky") | & 0 2VoirSe
|k z°) 0 Ep 2V i Sy
|k3 SL’y> 2‘/pd7r§m 2‘/1)d71'§y Ed
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and cyclic permutations of x, y, and z (and, correspondingly, of a, b, and c). In the I'-X direction
we thus find

Eg/(k) =&q

) \/Ad+16 2 |sa]?
es(k) =ep + p

~Eg + 2257r - 215’T cos kza

where ¢7 = pdﬂ /A,q. By downfolding the oxygen states we obtain
1y, Ik yz)e |k 22)e |k zy)e
|k yz)e | €] — 2tT (cos kya + cos kya) 0 0
|k x2). 0 ell — 2tT (cos kya + cos k.a) 0
|k yz)e 0 0 ell — 2tT (cos kya + cos k.a)

where the parameters in the matrix are
=&q + 4t?,

|Vyar|?

T =
£E—¢&p

€
As in the case of the e, bands, we find renormalized energy levels and effective band disper-
sions; since different Cu ¢y, states couple to different F p states, and we neglected hopping
integral between oxygens, the zy, xz, and yz bands are totally decoupled in our model. We are
now in the position of calculating the (approximate) expression of the covalent contribution to
the e,-to, crystal-field splitting, i.e., the energy difference

Voo [Vpar|”
AC "\-’5/—5”:3‘pa —4 p
: d d Apd Apd

> 0. (13)

As we can see, the sign of the covalent crystal-field splitting is the same as that of the ionic
contribution. This happens for two reasons. First, the so-called d bands are the anti-bonding
states of the p-d Hamiltonian, hence both the energy of the e, and ¢,, states moves upwards due
to the interaction with the p orbitals. Second, o bonds are stronger than 7 bonds, hence ¢, states
shift to sizably higher energy than ¢,, states.

The tight-binding model we have used so far is oversimplified, but it already qualitatively well
describes the e, and 7, bands in Fig. 8. A more accurate description can be obtained including
other Slater-Koster integrals, such as the hopping to apical F s states, or between neighboring
F p states. With increasing number of parameters, it becomes progressively harder to estimate
them, e.g., from comparison with experiments; furthermore a large number of fitting parameters
makes it impossible to put a theory to a test. Modern techniques allow us, however, to calculate
hopping integrals and crystal-field splittings ab-initio, using localized Wannier functions as
basis instead of atomic orbitals, and the DFT potential v () as one-electron potential; because
Wannier functions are orthogonal, the corresponding overlap matrix is by construction diagonal.
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4 Jahn-Teller effect

In order to introduce the Jahn-Teller effect we have to take a step backwards and start from
the central equation of solid-state physics, the eigenvalue problem HW = EW, defined (in the
non-relativistic limit) by the many-body Hamiltonian

- __ZV2 Z |'rz—n/ Z lr; — R | ZWV2 Z |R R

z;é’

a”

-~

Te vee ven T vm

Here {r;} are the coordinates of the NV, electrons, { R, } those of the N,, nuclei, Z, the atomic
numbers, and M, the nuclear masses. The Born-Oppenheimer Ansatz

({ri} {Ra}) = v({ri}; {Ra}) P({Ra}), (14)

splits the Schrodinger equation HW = EV into the system

IA{JM{W}; {Ra}) = 5({Ra})@/}({rl}, {Ra}>7

(15)
H,9({R.}) = EP({R.}),
where the Hamilton operator for the electrons (f[e) and that for the lattice (f[n) are
He =T, 4 Vee + Ven + Vim, (16)
H,=T,+c({Ry}) =T, + U,, (17)

and where in (17) we neglect non-adiabatic corrections.” In the electronic Hamiltonian (16)
the atomic positions { R, } are simple parameters. The electronic eigenvalue ¢({R,,}) acts as
potential for the nuclei and defines a Born-Oppenheimer (BO) energy surface. While (16) de-
scribes the electronic structure, (17) yields the equilibrium crystal structure and the vibrational
modes. These equations are impossible to solve in the general case. The first difficulty is
that Hamiltonian (16) describes the electronic quantum many-body problem. The latter can
be solved only approximately, for example the energy of the ground state can be obtained
via density-functional theory using one of the known approximations to the universal func-
tional. For strongly-correlated systems, advanced methods combine density-functional theory
with many-body approaches such as the dynamical mean-field theory [7,8]. The second issue
is the very high number of atoms, and therefore of { R, } parameters to explore; finally, even
if we solve the electronic many-body problem exactly, we still have to deal with the nuclear
many-body problem, Hamiltonian (17). Despite all these obstacles, let us assume for a moment
that, for a given system, we did solve the electronic problem for general values of { R, }. Let us
also assume that the set of positions { R, } = {R"} defines a specific crystal structure, whose

7We neglect the operator A,,, with elements (m|A,|m’) = =3 +} 1 3 WmIVatm) + (Um|Vathm:) - Vo
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electronic ground state (i.e., the lower energy BO surface) has degeneracy d > 1. We can at this
point ask ourself the question: Is structure { R} actually stable?

The Jahn-Teller theorem states that any electronically degenerate system can lower its energy
by undergoing some structural distortions, and therefore is unstable.® This is due to the cou-
pling between electrons and lattice. In order to better understand the microscopic origin of this
phenomenon, let us consider a system in a high-symmetry structure, { R® }, for which the elec-
tronic ground state has energy ({ R }) with degeneracy d > 1. This means that there are d
Born-Oppenheimer surfaces degenerate for { R, } = { R},

em({Ro}) = c({Ry}).

In the rest of the chapter we will take £({ R }) as the energy zero. The corresponding degenerate
electronic wavefunctions are ¢, ({r; }; {R%}). Let us expand the nuclear potential U,, for one
of these surfaces around the symmetric structure { R? }. This leads to the Taylor series

1
oy +5 DD

{RO} au alp!

Uay Ualy! + - - -
{RY}

o°U,
aau(?a’u’
where u, = R, — R are displacement vectors with respect to the equilibrium position, and
p=xz,y,z If {R} is an equilibrium structure, the gradient is zero and

A~

Ul + - =T, + UPR{ROY) + ..., (18)

aauaalﬂl {RO}

The standard procedure to diagonalize (18) consists of two steps. First we change coordinates
Uay = UapV M.
Second we introduce the dynamical matrix

1 1

and diagonalize it. Its IV, eigenvectors are the normal modes @,

DQn = W%Qm

Nn
Qnu = § § Any,apUap,

a=1 p=zy,z

02U,

D
Dos Oty

)

{Rr3}

withn = 1,...N,,, and v = x,y, z. The normal coordinates {(Q),,, }, together with the associ-
ated canonically-conjugated momenta { P, }, bring (18) in the form

2 1 2 2.2

Hy o~ >R +wiQ]. (19)

nv

8 The only exceptions are linear molecules and Kramers degeneracy.
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In a crystal, this Hamiltonian yields the phonon energy levels. Let us now determine the pos-
sible /V,,, normal modes for a cubic perovskite. For simplicity we consider here only a single
octahedron and the modes associated with the vibrations of its atoms. Given that each atom can
move in three directions, and there are 6 atoms of type C and 1 atom of type B, in principle
such a system has 21 degrees of freedom; eliminating global translations (3 degrees of free-
dom) and global rotations (3 degrees of freedom), i.e., displacements which are not vibrations,
15 degrees of freedom are left, hence the system has 15 possible normal modes. In group the-
ory language, assuming again for simplicity that the group is O instead of O}, one can show
that these modes can be labeled as belonging to irreducible representations Ay, F, T} or Ts.
To obtain this result we first build a matrix representation of the group in the linear space of
all possible displacements; this space is 21-dimensional, and so is the associated matrix repre-
sentation /... The latter can be expressed as the direct product [iot = [ns @ ectors Where
I, 5. 1s the so-called atomic-site representation. [, s has as a basis the original atomic positions
(without displacements); in our case it is has therefore dimensionality 7. The character of I, .
for a given operation is simply the number of sites left invariant by that operation. Finally, in
group O the irreducible representation for a vector is [yt = 17; this can be seen from the
partner functions (x, y, 2) in Table 4. Summarizing all this in a character table, we have

O \E 8Cs 3C, 6C, 60,
[as. 7 1 3 1 3
et —rasgr.. 121 0 -3 —1 3

Once we know the characters for representation /., we can split the latter into irreducible
representations of group O via the decomposition formula Eq. (5). After subtracting (ten-
sor subtraction ©) the representations for mere translations (77) and mere rotations (77) of
the octahedron,” we arrive at the final decomposition of the vibrational-modes representation
Librations = Lot © Lvector © L votation = A1 B E @217 @ 2T,. Normal modes which are a basis for
different irreducible representations have in general different energies. Let us focus on modes
A and E. We can obtain mode A; by using the projector, Eq. (6), for irreducible representation
A;. As a matter of fact, if we assume that atom F; (Fig. 9) is displaced by w4, by applying the
projector P41 to u; we generate automatically the linear combination of atomic displacements
(all having the same length) forming the mode of symmetry A;. This leads to

Qo = u1(qo) + ua(qo) + us(qo) + walqo) + us(qo) + ue(qo).

9The representation for an improper vector (rotation) is I'oration = 11, as can be seen from the corresponding
partner functions (R, R,, I?;) in Table 4.
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Fig. 9: Unit cell (top) and vibrational modes @, ()1, and Q5 of cubic KCuFs.

Here wu; are the (normalized) displacements for the C; atom (see Fig. 9) which we rewrite as

ui(q) = za0(1,0,0)
ux(@) = 75%(0,1,0)
us(g) = 75%(0,0,1)
us(q) = —0(1,0,0)
us(qo) = —75(0,1,0)
ug(g0) = —5%(0,0,1)

The potential energy of such a breathing mode is
PH 1 2
U’VL - §CA1 qO .

The QQy mode expands or compresses the unit cell, but does not change its symmetry which
remains cubic. Hence, this mode has no influence on the stability of the structure, at most it can
affect the actual value of the lattice constant. More interesting are the two degenerate modes
of type E. These modes can be obtained in a similar way as we have done for @, this time
using the projector for irreducible representation £'; within the resulting 2-dimensional space,
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we choose as basis the mutually orthogonal modes that transform as the [ = 2 partner functions
of E, 22 — y? and 322 — r2. These are Q; and Q,, shown in Fig. 9. They are defined as

Q1 = ui(q1) +u2(qr) + ws(qr) + us(qr),

Q2 = ui(q2) + u2(q2) + us(q2) + wa(q2) + us(q2) + ue(q2),

where the displacements are

ui(q1) = \/%ICH(L 0,0) ui(q) = —\/%(h(l, 0,0)

uz(q1) —5701(0,1,0)  ua(g2) = —542(0,1,0)

uz(q1) = (0,0,0) uz(qa) = V%Qz(& 0,1)
_ 1 _ 1

uy(q1) = —71%(1, 0,0) uy(q) = \/—1—2(]2(17 0,0)

’U,5(q1) = \/qul (Oa ]-7 0) U5(Q2) = \/%(h(oa 17 0)

ug(q) = (0,0,0) ug(qa) = _\/%%(07 0,1)

The corresponding quadratic potential has the form

n

1
Ut — 5%(61? +43).

The normal modes 7} and 75 can be obtained in a similar way; since they are not relevant for
structure stability in the example considered here we do not provide their form explicitly.

Up to now we have assumed that the hypothetical high-symmetry structure { R } is a stationary
point. In general, however, this might or might not be true. The behavior of the BO energy
surfaces close to the point in which they are degenerate allows us to separate them into two
classes, the first one in which { R?} is a stationary point for all degenerate electronic states m
(Renner-Teller intersection), and the second in which the surface is not a stationary point at
least for some of the surfaces (Jahn-Teller intersection). The classical Jahn-Teller systems are
those for which VU, ({R%}) # 0 at least in some direction (see, e.g., Fig. 10). Let us now
calculate the first-order correction to the m degenerate eigenvalues due to a small distortion
around { R }. The electronic Hamiltonian (16) has matrix elements

. oM, .
<wm|He({Ra})‘wm/> = Z("bml [W] Iwm/)uau 4= U#Em/ 4+ ....
o 1 {RY)

[

o
The perturbation U7, the Jahn-Teller potential, couples the degenerate BO energy surfaces; it
also couples electrons and lattice vibrations, as we can see from the coordinates u,,, appear-
ing in the expression above. Thus, if there are modes for which T # C I where I is the
identity matrix and C a constant, the system gains energy at linear order via a distortion which
lowers the symmetry; the Jahn-Teller theorem states that such modes always exist for electron-
ically degenerate systems (with the exceptions of Kramers degeneracy and linear molecules).
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Fig. 10: Born-Oppenheimer potential-energy surface exhibiting the form of a mexican hat. The
slope of the curve at small distortions q,, q- yields the Jahn-Teller coupling constant \.

In order to better understand the effect of the electron-lattice coupling, we generalize the Born-
Oppenheimer Ansatz as follows

U({r} {R}) = D vm{ri}i {Ra}) em({Ra}).

To find the equations for the functions {®,,}, we write the Schrodinger equation HY = EV,
multiply on the left by 1),,,, and integrate over the coordinates of the electrons. We obtain

Pn({Ra}) = T+ 07| €, ({R.D) 2 Ut ({Ra}) = BO0({Re)). QO

The dynamics of the system close to the degeneracy point is determined by all degenerate
sheets. The minimization of the new potential energy yields a new structure { R%} in which the
electronic states are not any more degenerate. The modes that can produce such an instability
should satisfy the condition

[Fm X Fm] N Fvibrations D) Ab

where [, is the irreducible representation to which the electronic degenerate states belong, and
[}, ® I,] is the symmetric direct product. The trivial representation A; has to be excluded
because, as already discussed, it does not lower the symmetry. In the case cubic KCuF; the
relevant normal modes coupling to the degenerate e, electronic states are the £/ modes; as for
the electronic states, if the group O — Oy, then & — FE,. Thus we can say that KCuFs is
an example of a ¢, ® E, Jahn-Teller system, a system in which an electronic doublet (e ) is
coupled to a doublet of normal modes (£,). The form of the Jahn-Teller potential U’T can be
obtained from the effect of perturbations of type Q1 and Q- on the crystal-field matrix. As for
the crystal field, there are both a ionic and a covalent contribution. For the ionic contribution,



Orbital Ordering 7.25

we can use once more perturbation theory. In this case, we have to take into account that the
Cu-F distance d depends on the direction, i.e,

de — de + 6d,,

where = z,y, z; the specific dd}, values for each atom are given by the specific vibrational
mode. After summing up all contribution, the first non-cubic correction due to £, modes is

gc 25 4 @2 @
Avyp = 2222 _1p4) .
dg 143 G~

It is, at this point, useful to introduce pseudo-spin operators acting on the e, states, i.e., operators
7, with pp = z,y, 2 and

) =+, T ) =+, Tyl /) = Fil N\

where | ) = |z% — y?) and | \) = [32% — r?). In matrix form these operators can be written
as pseudo-Pauli matrices

(10N . (o) . (o -
Tz_(o —1) Tz_<1o> Ty_(z’ 0)‘ D

We can then rewrite the Jahn-Teller potential as
Avyp = A [Cth + q27—2’:| )

where A = (qo/d%) (25/144/3) > 0. This potential expresses both the essence of the Jahn-
Teller theorem and its relation with orbital order; the systems gains energy at linear order by
making a distortion; the latter produces a crystal-field splitting, which leads to preferential oc-
cupation of the lower energy level. For example, if ¢; = 0 and ¢ < 0 (tetragonal compression)
the 322 — r? state is higher in energy. Let us now calculate the covalent contribution to the
Jahn-Teller potential. In this case the linear-order correction is

Aglm,l/m’(ou Ra + U) - Aglm,l’m’<07 Ra) ~ VA“:’:lm,l’m/(oa Ra) U

For e,-states we use for simplicity the following approximations'®

1 -
A€322_T273Z2_T2 ~ |:n2 - —(l2 + mQ)} Vddg,

V3

1 ~
AE3Z2_T27x2_y2 ~ 7(12 — m2) {Tﬂ - §(l2 + mQ):| Vddg,

3 ~
A{:‘xz,yz,zz,yz ~ 1(12 — mQ)QVddU.

[\]

10The crystal-field integrals are also two-center integrals; the table of Slater-Koster integrals in Appendix B is
thus still valid, provided that V};/, are replaced by the corresponding crystal-field terms, which we indicate as V.
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Fig. 11: Linear combinations of eg-states, |0) = —sin2|z? — y?) + cos §[32% — r%). The
0 = 0° orbital is the excited state in the presence of a tetragonal compression along the z axis,
while 6 = +2m /3 are excited states for a tetragonal compression along x or y. This three-fold
degeneracy (rotation by +21/3) is due to cubic symmetry.

By summing up the contributions from all C ions for each mode, we obtain

@ q . X
Acyr(qr, 2) = A ( ? ! > =\ {qm + qﬂz],
qg1 —q2

V3
2

contribution. Again, if ¢; = 0 and ¢, < 0 (tetragonal compression) the 322 — 72 is higher in

where A ~ —¥2V > (. This is the same form of potential that we have obtained for the ionic
energy. In conclusion, if we neglect the kinetic energy of the nuclei (limit M, /m. — 00), the
ground state of the system can be calculated by minimizing a potential energy of the form

A N N 1 ~

Ulqrg) =0T+ 0P = 2 B ) 4 —op @+ @) ], (22)
q —9q2 2

where [ is the 2 x 2 identity matrix. To find the minimum of (22), it is convenient to introduce

polar coordinates, which we define as g = —qcos,q; = —gsin6, so that for 0 < 6 < /2 we

have ¢; < 0 (compression of z axis) and ¢; < 0 (compression of Z axis); this corresponds to
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the distortion of the octahedron labeled with number 1 in Fig. 1. In these coordinates

~ 0 sin 0
[Ty cos ‘
1 ( sinff —cos#
The diagonalization of matrix (22) yields two eigenvalues; the lower energy branch
Ce
E_(q) =—XA¢+ 7(]2
takes the form of a mexican hat, shown in Fig. 10. The minimum of £_(q) is obtained for
q¢ = qo = \/C and has value
EJT = —)\2/2OE;
the quantity Ejyr is defined as the Jahn-Teller energy of the system. The electronic ground state
can be written as
0 —
2
The excited state (hole orbital), with energy

0—m

D122 — 42) + cos 1322 — r?).

"9)@ = —sin

C
Ei(q) = A+ TEQZ’

is then given by
b s 0o 2
|0) g = sm2|x y>+0082|3z ).
The states |0) g with different 6 are shown in Fig. 11. In the simple model discussed so far,
all states |0) have the same Jahn-Teller energy. Cubic symmetry, however, only requires that
states
10), |0+ 27/3), |0 —27/3)
are degenerate. The additional (accidental) degeneracy is removed when we take into account
anharmonic terms, the lowest order of which has the form

U™ (q1,q2) = Alg3 — 3q2q7) = Aq?(cos® § — 3 cos Osin® §) = — Ag® cos 30

and yields the tetragonal distortion as a ground state, with § = 0, 27 /3 for positive A and with
0 = 7, m + 27 /3 for negative A. Higher-order terms can make the @, Jahn-Teller distortion
(0 = 7/2,7/2 & 2w /3) more stable [1]. For a periodic lattice, mode Q) leads to a co-operative
distortion where long and short bonds alternate in the = and y direction; in such a case, the hole
orbital rotates by /2 if we move from a Cu site to its Cu first-nearest neighbors in the ab plane.

Let us now analyze the different electronic configurations that can occur in perovskites. For

1

the electronic configuration 3d' = 3ty,, the procedure is as the one illustrated above, except

that 5, states are 3-fold degenerate and form 7 bonds, which are weaker, therefore the splitting
introduced by the Jahn-Teller effect is smaller than for e, states. In the case of electronic
configurations 3d" with n > 1, to determine if the ion is Jahn-Teller active one has to consider
the degeneracies of the many-body state, including Coulomb repulsion. Weak Jahn-Teller states

are 3d" (Ti*" in LaTiOg) and 3d* (V** in LaVOs), as also 3t3,, 3t3,, 3t5,e2, 3t3 e2; strong

Jahn-Teller configurations are, e.g., 3d” (Cu®* in KCuFs) and 3t3,¢} (Mn** in LaMnOs); the

3 e2 are not degenerate and therefore not Jahn-Teller active.

configurations 3t3, and 3t3 ¢”
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S5 Kugel-Khomskii superexchange

Let us now start from a totally different perspective, from the Hubbard model for a cubic per-
ovskite with partially filled e, shells. The Hamiltonian takes the form H = Hy+ Hy + Hy
where

I:—,O =Eey ZZ Zﬁima
Zzzt /szcr im'o

£ o mm/

HU =U Z Z nzanzmi + Z Z Z —2J — J§a,o"> ﬁimaﬁim’a’

i oo’ m#Em/
T
Iy [Cz‘mﬁcimicim%cimw + Cimﬁcmcimwcim%] )
i m#m/

and where m, m’ = 22

— y2,32% — r%. Kugel and Khomskii have shown that, in the large ¢ /U
limit, this Hamiltonian can be mapped onto an effective generalized superexchange Hamiltonian
with an orbitally-ordered ground state. To understand this, let us simplify the problem and
consider first a system with only two atoms (¢ = A, B) for which the hopping matrix is diagonal

in the orbitals
FIT =—1 Z Z |:er4chm + CTBmCAmi| .
(e m

Furthermore, let us simplify the Coulomb interaction and neglect the spin-flip and pair-hopping
terms

Hy =U > "> vty + % SN (U =27 = Jber) RimaTima.

i=AB m i=AB oo’ m#m/

Finally, we assume that the systems has one electron per atom (quarter filling, e; configuration).
In the ¢ = 0 or atomic limit there are two types of possible states for this system, those in
which each atom is occupied by one electron, |1,1),, and those in which one atom has two

electrons and the other zero, |2,0),,. The 16 states of type |1, 1),, all degenerate with energy
1 T

E,(1,1) = 2e,,, can be written as ¢}y, , Cp,. .

|0) with « = (ma0a, mpop); here m;o; are
the quantum numbers for the electron at site i = A, B. There are 12 states |2, 0),, with one atom

occupied by two electrons; they are listed below together with their energies

12,0y Eq(2,0)
12,00im = chycl, 10 25, +U
12,0)izm = c;rmTclm,JO) 2, +U—2J m'#m
12,0)i30 = cboocl 10 2, +U—-3J m #m

The Coulomb repulsion U is positive and J is small with respect to U; therefore the |1, 1),
states define the ground-state manifold. If ¢ is finite but small ({/U < 1), we can treat FIT as
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Fig. 12: Superexchange energy gain for possible quarter-filling ground states of a two-site
2-fold degenerate Hubbard model with orbital- and spin-diagonal hopping matrices.

a perturbation, and calculate the second-order correction to the energy of states |1,1),. This
correction is always negative (energy gain) and it is given by the matrix

1

o (2,01 Hp|1,1),
Eo(2,0) — Eo(1,1) (2,017 (1, 1)

ABq, 0,(1,1) = = o (1L, 1|Hz|2,0)o

Ol/

There are four interesting cases, depicted in Fig. 12. The first is the ferro-magnetic (same spin)
and antiferro-orbital (different orbitals) state, first line of the figure. The corresponding second
order energy gain (o; = ae = mo, m'o) is
2t?
U-3J

For the ferro-magnetic (same spin) and ferro-orbital (same orbital) state (second line in the

AE,, 0, (1,1) =

figure, a; = ay = mo, mo) the energy gain is, instead, zero
AE,, +,(1,1) = 0.

The reason is that no hopping is possible due to the Pauli principle. For the antiferro-magnetic
antiferro-orbital state (third line, o; = ay = mo, m' — o), we have

2t?
AF,, o (1,1) = — ,
1, 1( ) U _ 2J
and finally for the antiferro-magnetic ferro-orbital state (a; = as = mo, m — o) we find
2t?

ABayan(1,1) = =
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Among these four states, the ferro-magnetic antiferro-orbital state is thus the lowest in energy.
The main message is that the system gains superexchange energy by occupying preferentially
different orbitals with the same spin, although the orbitals are by themselves degenerate. The
16 x 16 matrix of the second-order energy corrections AE,, ,,(1,1) can be rewritten as the
effective superexchange Hamiltonian

it a1 1 AaB||pa B 1
4HOZOZ+4]+2F+_L+SZSZ o*.0" -

+or KSA 8B g4 Sf) (oA .08 — 04 05) - (s;‘ SB i) (og‘ 0B — i)}

where O; = 7;/2 are operators acting only on orbital degrees of freedom and 7 are the pseudo-

Hep =2I"_ [SA -8B —

spin operators introduced in the previous section, Eq. (21), and

4t? 4t2 4t2
- r,_ = I _=— .
T U T U —3J U—2J

When the second-order Hamiltonian is written in this form it is immediately clear that, among
the four states we considered, the ferro-magnetic antiferro-orbital state is lower in energy. This
happens because the superexchange coupling /7, _ is the largest. If the orbital degeneracy is
one, we can replace the terms O* - OF and O# OF with the ferro-orbital value 1/4; then, the
terms proportional to /', and /" _ drop out and we recover the Heisenberg superexchange
Hamiltonian, as expected for the one-band Hubbard model.

What about KCuF3; and LaMnO3? If we consider only hopping integrals between neighboring
B sites in the cubic perovskite structure, the hopping integral matrices take the simple form

0 0 3 :
t;ﬁf:te(“) ti;;ifzts(g ) t;:fi%’ze< & ) )

4 4

The structure of these matrices can be obtained by using Slater-Koster two-center integrals. The
only non-zero hopping integral in the 2 direction is the one between [32% — r?) states. As we
have previously seen by using the downfolding approach, it is given by ¢. = VPQdU /(e —&p).

As in the case of the two-site molecule, for integer filling (n electrons per atom) and in the
large ¢./U limit the lattice Hubbard model can be mapped onto an effective superexchange
Hamiltonian by downfolding high-energy states in which some of the atoms have an electron
number larger than n. Only two electronic configurations are relevant for orbital ordering, 651]
(LaMnQOs) and eg (KCuFj3). The remaining partially filled state, eg, is magnetic with S = 1 but,
due to Hund’s rule coupling ./, it exhibits no orbital degeneracy (L = 0). After excluding eg we
can, for simplicity, set / = 0. Let us now construct all atomic states | N, ), with IV, electrons.
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For a single atom they are

|Ne>a Ea’(Ne) d(Ne>
|0) E0)=0 d0) =1
1) = cl,,]0) E(1) = e, d(0) =4
2) = clwcmlgf|o> E(2) =25, +U  d(0)=6
13) = ci,wcm,Tch , i|o> E(3) =3e,,+3U  d(0) =4
|4) = CmTCmC ’TC 20y E(4) =4e., +6U  d(0) =1

The total (spin and orbital) degeneracy of the n-electron sector, d(N,), is given in the third
column. Let us consider two neighboring sites 7 and i’ and their states | N,)?, and |N!)?,, where
a and o' run over all degenerate states in the N.-electron sector. We define the collective
state of such a two-site system as |N, ) |N/)?,. Let us start from an e, configuration. In the
large-U limit, at quarter filling (n = 1) the ground state will be within the N, = N = 1
manifold, |G) = {|1){|1)%,}. The latter has a degeneracy 4", where N is the number of
sites, here NV = 2; this degeneracy can be partially lifted via virtual excitations to the doubly
occupied states |E) = {|2)%|0)"}, {|0)?|2)?,}, which in turn generate an effective low-energy
Hamiltonian Hgp. We can again calculate Hep by treating Hrasa perturbation.

Let us consider at first only pairs of sites along the Z axis. In second-order perturbation theory
in Hr, we obtain for the lattice the following effective Hamiltonian

Ay~ — 7 | ) B}
E
— ___ZZZ{ ZTO' ZZ O|CZTJ [Cz TO'|2> <2|Cz TO':| + (Z — i,)}éﬂ\

2t21 o'—o pi i 1 ) i i 4
:_7522{( 1) PTO' U’PTJ —0 2|:PTJJP—TJU/+PTUJPTUG]}577\7

where we already replaced in the denominator AE = FE(2) + E(0) — 2E(1) with its value,

) = [32% — r?), ) = |22 — »?). In Hamiltonian HZ, we
introduced the operators ij,, which are given by
P;O’O’ - 7J,[70'|0> <0|C’iTUI = 6?’7’ [éio’ + §:a" + §;a"} :

In this expression on the right-hand side we rewrote P’ _, as product of an orbital and a spin
term, defined as follows:

0t = |5 1+ (=170 brr S, = |5 1+ (178 b
ot , =0" (1 —6,) 85, =5"(1—0yo)

0., =0"(1—8.) 5., =5"(1—050),
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where (—1)? = +1 for spin (pseudospin) up and —1 otherwise; the operator I is the identity
matrix. Hence, we can express the effective Hamiltonian as

A 4 r . S NN oon, g Ny 1 L MM
b= S -5 o= 5] ot - 5] § oot - 4]
e QZS S il e R A 0

where I = 4¢*/U > 0. If we drop all processes involving orbital | ) we recover the usual
superexchange Heisenberg Hamiltonian for the one-band Hubbard model

rs F i il n;ny
o f S [ s-"].

Let us now consider two neighboring sites and the energy of some possible states |G) =
{]1)?|1)%,}. A ferro-magnetic spin configuration has energy

r
AETT,T’T - _Z(]- - 67,7")7

hence, there is an energy gain if the electrons occupy different orbitals, i.e., if the systems has
antiferro-orbital arrangement. Let us consider now a antiferro-magnetic spin arrangement. The
corresponding energy is
ABry =~ 5be b — (1= 6,.)

The expression above shows that in the antiferro-magnetic case the system gains more energy if
the occupied state is | ) at both sites. Up to now we considered magnetically ordered states.
In LaMnO3; and KCuF3, however, orbital order takes place well above the magnetic transition.
Let us then assume that the system is orbitally ordered but paramagnetic, with occupied state
0—7

2
at site ¢ and |0);+: = |0); at the neighboring site i = i + Z. This choice corresponds to

0—m

0); = — sin 2% — ) + cos 327 — 1?)

ferro-orbital order along Zz, the type of stacking realized in LaMnOj (see Fig. 13). What is the
value of # than minimizes the energy? We can calculate it using the variational method. The
superexchange energy gain with respect to a paramagnetic paraorbital state is given by

AE(0) cos*(0 — m) +2cos(d — ).

T 16
This function is minimized for # = 0, an angle corresponding to a tetragonal compression. To
determine the optimal angle for the three-dimensional system we have in addition to take into
account the effective Hamiltonian stemming from virtual hoppings in the remaining directions.
Due to cubic symmetry, if we rotate the quantization axis, the superexchange Hamiltonian has
the same form in all directions; to sum up all terms we have merely to rotate back the quantiza-
tion axis to Z. Hence, we have to make the replacements

‘ 1 3
0 & _toi V3o
N 2

Z—X

. 1 . V3
T % _ T v T
0l o~ 500+ 520;

27
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Fig. 13: Orbital order (LDA+DMFT calculations) in the rare-earth perovskite TbMnO3 with
the GdFeOs-type structure. From Ref. [6]. This system has the same structure of LaMnQOs.

Let us assume antiferro-orbital order in the plane, again as in the case of LaMnQOg, shown in
Fig. 13. This means that, for ¢/ = ¢ = Z or ¢ = i £ ¢, the occupied state is

0 —m

0—m

|6)ir =+ sin |2* — ) + cos 1322 — r?).

We can easily verify that |#); = | — 6 + 2m);. This is state |@); rotated by 7/2 (x — v,
y — —x). The total superexchange energy gain with respect to a paramagnetic paraorbital state
is then given by

r 9 3
AE(0) = 1 3cos®(0 —m) — 5|

This expression has a minimum for § = 7/2 (Jahn-Teller-like Q) distortion). For the eg config-
uration (KCuFj), due to particle-hole symmetry, we obtain the same result. This can be verified
by observing, first of all, that the e, bands obtained from the hopping-integrals matrices (23) —
bands which we have discussed in detail in Sec. 3 — are symmetric with respect to the Fermi
level for half filling. In addition, the energy difference entering in the denominator of the su-
perexchange Hamiltonian for an ¢} ground state, AE = E(4) + E(2) — 2E(3), has the same
value (AFE = U) as in the case of an e; ground state. The main difference between LaMnOg (e;)
and KCuF; (eg), for what concerns the results presented in this section, is that the stacking along
z, ferro-orbital for LaMnOg, can be either antiferro- or ferro-orbital for KCuFj3; Fig. 1 shows
the case of antiferro-orbital arrangement. Remarkably, the variational energy gain AE() is the
same for both types of stacking along Z, i.e., for |0);1: = |6); and for |0);+: = | — 0 + 2m),.
The conclusions of this section are thus identical for LaMnO3 and KCuF;.



7.34 Eva Pavarini

Fig. 14: Orbital order transition in KCuF'5. Orbital polarization p as a function of temperature
calculated in LDA+DMFT. R: experimental structure. Circles: idealized structures Rs and I
with decreasing crystal-field and U = 7 eV. Green/Triangles: U = 9 eV, Iy only. Red/Squares:
two-sites CDMFT. From Ref. [3].

6 The origin of orbital order

As we discussed in the introduction, the hallmark of orbital order is the co-operative Jahn-
Teller distortion. This static distortion gives rise to a crystal field, which splits the otherwise
degenerate e, doublet. Due to Coulomb repulsion, it turns out that even a crystal-field splitting
much smaller than the band width can lead to orbital order. The importance of this effect for real
materials has been realized first for LaTiO3 and YTiOs3 [4]. This reduction of orbital fluctuation
is dynamical, but it can be already understood from the static Hartree-Fock contribution to the
self-energy; the latter yields an effective enhancement of the crystal-field proportional to orbital
polarization p. For an e, system p is defined as the difference in occupation between the most
and the least occupied orbital, |1) and |2), the so-called natural orbitals. Thus p = n; — ng, and
the Hartree-Fock self-energy correction to the crystal-field splitting is

1
Aecp = Yo(w,, = 00) — X (w, = 00) ~ §(U —5J)p.

If p > 0, as it happens in the presence of a crystal-field ecp = €9 — &1 > 0, this term ef-
fectively increases the crystal-field splitting. This effect is at work not only in LaTiO3 and
YTiO3, but also in several other systems with different electronic structure and even smaller
crystal-field splittings. The case of 3d° KCuF; and 3d* LaMnOj is extreme: the e, crystal-field
splitting is ~ 0.5 — 1 eV; with such a large splitting, orbital fluctuations are suppressed up to the
melting temperature. Thus, Coulomb repulsion makes the Jahn-Teller mechanism proposed by
Kanamori very efficient. This result, however, does not clarify which of the two mechanisms,
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Fig. 15: Orbital order transition in LaMnQOs. Orbital polarization p (left) and (right) occupied
state |0) = cos £32% — %) + sin &|22 — y?) as a function of temperature. Solid lines: 300 K
experimental structure (Ry1) and 800 K experimental structure. Dots: orthorhombic structures
with half (Rg) or no (Ry) Jahn-Teller distortion. Pentagons: 2 (full) and 4 (empty) site CDMFT.
Dashes: ideal cubic structure (Iy). Circles: U = 5 eV. Diamonds: U = 5.5 eV. Triangles:
U = 6 eV. Squares: U = 7 eV. Crystal field splittings (meV): 840 (Ry1), 495 (Rg), 168 (R5%Y X),
and 0 (1y). From Ref. [6].

Kugel-Khomskii superexchange or Kanamori electron-phonon coupling, plays the major role
in causing orbital order and stabilizing the distortion. Remarkably, Coulomb repulsion has also
an important effect on structure stabilization. LDA+U total energy calculations have early on
shown that the co-operative Jahn-Teller distortion is stabilized by U [10,11], a result confirmed
recently by LDA+DMFT [12]. This could be — and initially was — taken as an indication that su-
perexchange is the driving mechanism. If this is the case, it is, however, hard to explain why the
magnetic transition temperature (7T ~ 40 K for KCuF3 and 7Ty ~ 140 K for LaMnO3), also
determined by superexchange, is relatively low while the co-operative Jahn-Teller distortion
persists up to the melting temperature. On the other hand, if Kugel-Khomskii superexchange is
not the driving mechanism, the associated energy gain should be small with respect to the total
energy gain due to the Jahn-Teller distortion.

To clarify the nature of the dominant mechanism, we disentangled electron-phonon and su-
perexchange effects. To this end we performed LDA+DMFT (single-site and cluster) calcula-
tions for a series of hypothetical structures, in which the distortions (and thus the crystal-field
splitting) are progressively reduced. In the case of KCuFs, these hypothetical structures are
shown in Fig. 1, and the corresponding e, bands are shown in Fig. 7. For each structure we
calculate the order parameter, the orbital polarization p. In Fig. 14 we show p as a function of
temperature. For the experimental structure (R in the figure), we find that p(7") ~ 1 up to the
melting temperature. The empty orbitals on different sites make the pattern shown in Fig. 1. For
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Fig. 16: Superexchange energy gain for LaMnOs, AE ~ —Txk /2. From Ref. [6].

the ideal cubic structure [, we find that p(7") = 0 at high temperature, but a transition occurs at
Tkx ~ 350 K. This Tk 1s the critical temperature in the absence of electron-phonon coupling,
1.e., the superexchange critical temperature. Our results show that around 350 K superexchange
alone could indeed drive the co-operative Jahn-Teller distortion; it cannot, however, explain the
presence of a co-operative Jahn-Teller distortion above 350 K. We performed a similar study
fo LaMnOg. For this tggeg system we have to take into account the Hund’s rule coupling be-
tween e, electrons and t,, spins, Sth. Thus the minimal model to understand orbital order is

the modified Hubbard model [13]

H=- Zzzt ’sza i'm! o’ hznzmT nzm¢

i oo’ mm'

+U Z nmﬁnmw + Z Z Z —2J — J(so,a’) ﬁimaﬁim’a’ .

i oo’ m(#£m')

Here the local magnetic field b = JS;, describes the Hund’s rule coupling to 5, electrons,
and ;y o = 2/3(1 — d;,7) accounts for the disorder in orientation of the ta4 spins. By per-
forming the same type of analysis as for KCuFj3, we find the impressively large Txx ~ 700 K
(Fig. 15). There is a small point neglected so far; besides the co-operative Jahn-Teller distor-
tion and tetragonal compression, LaMnOs exhibits a GdFeOs-type distortion (Fig. 13), which
tends to reduce the e, band width [4]. To account for this we studied the orbital-order tran-
sition for the ideal structure R, which retains all distortions except for the Jahn-Teller one.
For structure Ry we cannot obtain Tk from p(7"), because, due to the ~ 200 meV crystal-
field splitting, Coulomb repulsion strongly suppress orbital fluctuations even at 1500 K. We
can, however, study the evolution with temperature of the occupied orbital, here defined as
|0) = cos 81322 — r%) + sin §|2? — y?). For the experimental structure (R;;) we find 6 ~ 108°,
in agreement with experiments, while for the [, structure we obtain § = 90°. For the R, struc-
ture we find two regimes: At high temperature the occupied orbital is the lower-energy crystal-
field orbital (6 = 180°). At Tkk ~ 550 K superexchange rotates this 6 towards 90°, reaching
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130 in the zero-temperature limit; this is the actual superexchange transition temperature for
LaMnOs;. Such Tk is still remarkably large, however not sufficiently to explain the persistence
of the Jahn-Teller distortion in nanoclusters up to basically melting temperature [14]. Further-
more, the superexchange energy gain associated with orbital order (Fig.16) is small compared
to the total energy gain due to the Jahn-Teller distortion, calculated via LDA+U [10, 11] or
LDA+DMFT [12]. Thus, as in the case of KCuFj3, the conclusion is that a static crystal-field
splitting, as the one generated by the electron-lattice coupling, is essential to explain orbital
ordering at high temperature.

7 Conclusion

In this lecture we have studied two mechanisms that can lead to orbital ordering phenomena in
Mott insulators. The first one is well illustrated in the influential paper of Kanamori, Ref. [1].
In this picture, a co-operative Jahn-Teller distortion generates a static crystal-field, which in
turn splits orbitals otherwise degenerate. This mechanism is made more efficient by Coulomb
repulsion; the latter enhances the orbital polarization, leading to a orbitally-ordered state even
if the crystal-field splitting is a mere fraction of the bandwidth [4]. The second mechanism,
proposed by Kugel and Khomskii [2] in 1973, predicts orbital ordering even in the absence of
a static crystal field; in this picture, orbital ordering is due to the superexchange interaction,
the effective interaction emerging from the orbitally-degenerate Hubbard model in the large U
limit. Since both mechanism predict a similar type of order, identifying which one dominates
for real materials is very difficult. Indeed, the origin of orbital order has been a matter of debate
for decades. In the last section we saw how this problem was recently solved by disentangling
the superexchange Kugel-Khomskii interaction from the rest. It was shown for the two most
representative orbitally-ordered materials, KCuF3 and LaMnOs, that although Kugel-Khomskii
superexchange is very efficient, it cannot alone explain the presence of a co-operative Jahn-
Teller distortion up to the melting temperature. An interaction giving directly rise to a crystal-
field splitting, e.g., electron-phonon coupling, is necessary to explain experimental findings.
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Appendices

A Constants and units

In this lecture, formulas are given in atomic units. The unit of mass m is the electron mass
(mo = m.), the unit of charge ¢ is the electron charge (ey = e), the unit of length ay is the
Bohr radius (ap = ap ~ 0.52918 A), and the unit of time is ¢, = 4eghag/e?. In these units,
Me, ag, € and 1/4mwe, have the numerical value 1, the speed of light is ¢ = 1/« ~ 137, and the
unit of energy is 1Ha = e?/4meqag ~ 27.211 eV.

B Atomic orbitals

B.1 Radial functions
The nlm hydrogen-like atomic orbital is given by
wnlm<pa 07 ¢) = Rnl(ﬁ)}/}mw, Cb),

where R,;(p) is the radial function and Y., (6, ¢) a spherical harmonic, p = Zr and Z the atomic
number. In atomic units, the radial functions are

where Lffj{l are generalized Laguerre polynomials of degree n — [ — 1.

The radial function for n = 1, 2, 3 are

Ris(p)= 2 2372 e’
Ros(p) = 505 2°7 (2—p)e??
Ry(p) = 55 Z°° pe
Ras(p) = 325 Z°7* (1—2p/3+2p%/27) e/
Ry(p) = 22 732 p(1—p/6) e #/3
Rsa(p) = ng;, 3/2 p? e r3

where we used the standard notation s for [ = 0, p for{ = 1 and d for [ = 2.

B.2 Real harmonics

To study solids, it is usually convenient to work in the basis of real harmonics. The latter are
defined in terms of the spherical harmonics as follows:

1 1
=Y, oy = —=(YL 4+ (=1)"YL), ym = —(YL — (=1)"YL), m > 0.
Yo 0 Ui \/5( m ( ) m) Ui \/5( m ( ) m)
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Fig. 17: The s (first row), py, p., p. (second row), and d, d,., ds.2_,2, dy., dy2_,2 (last row)

real harmonics.

Using the definitions x = rsinflcos¢, y = rsinfsin¢, z

[ = 0,1, 2 real harmonics (Fig. 17) as
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B.3 Slater-Koster integrals

The interatomic Slater-Koster two-center integrals are defined as

Elm,l’m’ :/d’f' W_m("“ - d)V(T’ -

d) wl’m

(7).

They can be expressed as a function of radial integrals V., which scale with the distance d

roughly as d~(+¥+1 [15], and direction cosines, defined as

l=d- 2/d,

n=d-z/d.

The Slater-Koster integrals for s-, p-, and d-orbitals [15] are listed below.
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8.2 A .M. Liuchli, M. Schuler, and A. Wietek

1 Introduction

Spontaneous symmetry breaking is amongst the most important concepts in condensed matter
physics. The fact that a ground or thermal state of a system does not obey its full symmetry
explains most of the well-known phase transitions in solid state physics like crystallization
of a fluid, superfluidity, magnetism, superconductivity, and many more. A standard concept
for investigating spontaneous symmetry breaking is the notion of an order parameter. In the
thermodynamic limit it is non-zero in the symmetry-broken phase and zero in the disordered
phase.

Another concept to detect spontaneous symmetry breaking less widely known but equally pow-
erful is the tower of states analysis (TOS) [1,2]. The energy spectrum, i.e., the eigenvalues of
the Hamiltonian of a finite system in a symmetry-broken phase, has a characteristic and system-
atic structure: several eigenstates are quasi-degenerate on finite systems and become degenerate
in the thermodynamic limit and possess certain quantum numbers. The TOS analysis deals with
understanding the spectral structure and predicting quantum numbers of the groundstate man-
ifold. Also on finite systems spontaneous symmetry breaking manifests itself in the structure
of the energy spectra which are accessible via numerical simulations. Most prominently the
Exact Diagonalization method [3,4] can exactly calculate these spectra and quantum numbers
on moderate system sizes. The predictions of TOS analyses are highly nontrivial statements
which can be used to unambiguously identify symmetry-broken phases. Thus TOS analysis is a
powerful technique to investigate many condensed matter systems using numerical simulations.
The goal of these lecture notes is to explain the specific structure of energy spectra and their
quantum numbers in symmetry-broken phases. The anticipated structure is then compared to
several actual numerical simulations using Exact Diagonalization.

These lecture notes have been written at the kind request of the organizers of the Jiilich 2016
Autumn School on Correlated Electrons. The notes build on and complement previously avail-
able lecture notes by Claire Lhuillier [2], by Grégoire Misguich and Philippe Sindzingre [5] and
by Karlo Penc and one of the authors [3].

The outline of these notes is as follows: in Section 2 we introduce the tower of states of con-
tinuous symmetry breaking and derive its scaling behavior. We investigate a toy model which
shows most of the relevant features. Section 3 explains in detail how the multiplicities and
quantum numbers in the TOS can be predicted by simple group theoretical methods. To apply
these methods we discuss several examples in Section 4 and compare them to actual numerical
data from Exact Diagonalization.

2 Tower of states

We start our discussion of spontaneous symmetry breaking of continuous symmetries by inves-
tigating the Heisenberg model on the square lattice. Its Hamiltonian is given by

H=J) 88, (D
(i.7)
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and is invariant under global SU(2) spin rotations, i.e., a rotation of every spin on each site with
the same rotational SU(2) matrix. Therefore the total spin

2
St = <Z Sz‘) = Stot(Stor + 1) 2)

is a conserved quantity of this model and every state in the spectrum of this Hamiltonian can
be labeled via its total spin quantum number. The Heisenberg Hamiltonian on the square lattice
has the property of being bipartite: The lattice can be divided into two sublattices A and B such
that every term in Eq. (1) connects one site from sublattice A to sublattice B. It was found out
early [1] that the groundstate of this model bears resemblance with the classical Néel state

INéel class.) = [T - - ) 3)

where the spin-ups live on the A sublattice and the spin-downs live on the B sublattice. This
state does not have the total spin as a good quantum number. From elementary spin algebra we
know that it is rather a superposition of several states with different total spin quantum numbers.
For example the 2-site state

1) = T ; RPRRIEY -2F )

is the superposition of a singlet (S;,; = 0) and a triplet (S;,; = 1). Therefore if such a state

= ’Stot:O>m:0> + ’Stot: 17m20> 4)

were to be a groundstate of Eq. (1) several states with different total spin would have to be
degenerate. It turns out that on finite bipartite lattices this is not the case: The total groundstate
of the Heisenberg model on bipartite lattices can be proven to be a singlet state with Sy, = 0.
This result is known as Marshall’s Theorem [6—8]. So how can a Néel state resemble the singlet
groundstate? To understand this we drastically simplify the Heisenberg model and investigate a
toy model whose spectrum we can fully understand analytically.

2.1 Toy model: the Lieb-Mattis model

By introducing the Fourier-transformed spin operators

N
1 .
Sk =—— Y *%8,, 5)
k \/N j;o J
we can rewrite the original Heisenberg Hamiltonian in terms of these operators as
HZJZwkSk'S_k, (6)
keB.Z.

where wy = cos(k,) + cos(k,) and the sum over k runs over the momenta within the first
Brillouin zone. Let kg = (7, 7) be the ordering wavevector which is the dual to the translations
that leave the square Néel state invariant. We now want to look at the truncated Hamiltonian

Him = 2J (S{.0) — Sko - S-ko) (7)



8.4 A .M. Liuchli, M. Schuler, and A. Wietek

where we omit all Fourier components in Eq. (6) except k = (0,0) and ky. This model is
called the Lieb-Mattis model [7] and has a simple analytical solution. To see this, we notice
that Eq. (7) is given by

Ho=50 3 808, ®)

i€A, jEB

in real space where A and B denote the two bipartite sublattices within the square lattice and
each spin is only coupled with spins in the other sublattice. The interaction strength is equal
regardless of the distance between the two spins. Thus this model is not likely to be experi-
mentally relevant. Yet it will serve as an illustrative example how breaking the spin-rotational
symmetry manifests itself in the spectrum of a finite size system. We can write Eq. (8) as

47
HLM:N<Z Si-sj—ZSi-sj—Zsi-Sj> 9)
i,jEAUB ijEA ijeB
4]

= ~ (St =S4 — S%) (10)
From this it is obvious that the Lieb-Mattis model can be considered as the coupling of two
large spins S4 and Sp to a total spin Siy.
We find that the operators S2,, SZ,, S% and S% commute with this Hamiltonian and therefore
the sublattice spins S4 and Sp as well as the total spin Sy and its z-component my are good
quantum numbers for this model. For a lattice with N sites (/V even) the sublattice spins can be

chosen in the range S4 5 € {0, 1,..., N/4} and by coupling them

StotE{’SA—SB‘,|SA—SB‘+1,...,SA+SB} (11)
Miot € {—Stoty = Stot + 1, -+ -, Siot} (12)
can be chosen.! A state | Sy, m, 5S4, Sp) is thus an eigenstate of the systems with energy
4]
E(Stot,m, Sa,58) = 57 [Stot(Stort +1) = Sa(Sa+1) — Sp(Sp +1)] (13)

independent of m, so each state is at least (25, + 1)-fold degenerate.

Tower of states We first want to consider only the lowest energy states for each S, sector.
These states build the famous tower of states and collapse in the thermodynamic limit to a
highly degenerate groundstate manifold, as we will see now.

For a given total spin S\, the lowest energy states are built by maximizing the last two terms in
Eq. (13) with Sy = Sp = N/4 and

4] N
EO(Stot) = E(St0t7m7 N/47 N/4) = Wst0t<st0t + 1) —-J (Z + 1) . (14)

The groundstate of a finite system will thus be the singlet state with Sy, = 0.2 On a finite system
the groundstate is, therefore, totally symmetric under global spin rotations and does not break

I'This set of states spans the full Hilbert space of the model.
2The groundstate of the Heisenberg model Eq. (1) on a bipartite sublattice with equal sized sublattices is also
proven to be a singlet state S;,; = 0 by Marshall’s Theorem [8, 6, 7].



Studying Continuous Symmetry Breaking with ED 8.5

the SU(2)-symmetry. In the thermodynamic limit N — oo, however, the energy of all states
scales to zero and all these states constitute the groundstate manifold.

The classical Néel state with fully polarized spins on each sublattice can be built out of these
states by a linear combination of all the S levels with m;,; = 0 [2]. All other Néel states
pointing in a different direction in spin-space can be equivalently built out of this groundstate
manifold by considering linear combinations with other m;,; quantum numbers. In the thermo-
dynamic limit, any infinitesimal small field will force the Néel state to choose a direction and
the groundstate spontaneously breaks the SU(2)-symmetry.

The states which constitute the groundstate manifold in the thermodynamic limit can be readily
identified on finite-size systems as well, where their energy is given by Eq. (14). These states are
called the tower of states (TOS) or also Anderson tower, thin spectrum, and quasi-degenerate
joint states [1,9-11].

Excitations The lowest excitations above the tower of states can be built by lowering the spin
of one sublattice S4 or Sp by one, see Eq. (13). Letus set Sy = N/4 and Sp = N/4 — 1 which
implies that S, € {1,2,..., N/2 — 1}. We can directly compute the energy E;(S,) of these
excited states for each allowed S, and the energy gap to the tower of states is constant?

Eexc(Stot) = E1<Stot) - EO(Stot) =J. (15)

As the energy gap is constant, the lowest excitations of the Lieb-Mattis model are static spin-
flips. The next lowest excitations are spin-flips on both sublattices, Sy = S = N/4 — 1 with
excitation energy Fe, = 2J and S, € {0,1,..., N/2 — 2}. We see that the energy gap of
no levels except for the TOS vanishes in the thermodynamic limit, so the TOS indeed solely
contributes to the groundstate manifold.

Quantum Fluctuations When we introduced the Lieb-Mattis model Eq. (7) from the Heisen-
berg model Eq. (6) we neglected all Fourier components except of k = (0,0) and k = k¢. This
was a quite crude approximation and it is not guaranteed that all results for the Lieb-Mattis
model will survive for the short-range Heisenberg model. To get some first results regarding
this question, we can introduce small quantum fluctuations on top of the Néel groundstate of
the Lieb-Mattis model and perform a perturbative spin-wave analysis in first order.* This ap-
proach does not affect the scaling of the tower of states levels, but it has an important effect
on the excitations. They are not static particles anymore, but are spinwaves (magnons) with
a dispersion, which is linear around the ordering-wave vector k = ky and k = (0,0). On a
finite-size lattice the momentum space is discrete with a distance proportional to 1/L between
them, where L is the linear size of the system. The energy of the lowest excitation above the

3This is an artifact of the infinite-range interaction in the Lieb-Mattis model. In the original Heisenberg model
these modes become gapless magnon excitations.
4 A more detailed discussion can be found in [2].
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Fig. 1: Left: Schematic finite-size energy spectrum of an antiferromagnet breaking SU(2) spin-
rotational symmetry. The TOS levels are the lowest energy levels for each total spin S and scale
with 1/N to the groundstate energy. The low-energy magnon excitations are separated from
the TOS and a continuum of higher energy states and scale with 1/ L. Right: Energy spectrum
for the Heisenberg model on a square lattice. The TOS levels are connected by a dashed line.
The single-magnon dispersion (green boxes) with S, € {1,2,...} are well separated from
the TOS and the higher multi-particle continuum. The different symbols represent quantum
numbers related to space-group symmetries and agree with the expectations for a Néel state
(See section 3).

TOS, the single magnon gap, therefore scales as Fex. < J/L to zero.” As the scaling is, how-
ever, slower for d > 1-dimensional systems than the TOS scaling, these levels do not influence
the groundstate manifold in the thermodynamic limit. Finally, the excitation of two magnons
results in a two-particle continuum above the magnon mode.

The properties of the TOS and its excitations are summarized in Fig. 1. The left figure shows the
general properties of the finite-size energy spectrum which can be expected when a continuous
symmetry group is spontaneously broken in the thermodynamic limit. The right figure depicts
the TOS spectrum for the Heisenberg model on a square lattice with N = 32 sites, obtained
with Exact Diagonalization. One can clearly identify the TOS, the magnon dispersion and the
many-particle continuum. The existence of a Néel TOS was not only confirmed numerically
for the Heisenberg model on the square lattice, but also with analytical techniques beyond the
simplification to the Lieb-Mattis model [1, 10, 11]. The different symbols in Fig. 1 represent
different quantum numbers related to the space-group symmetries on the lattice. In the next
section we will see that the structure of these quantum numbers depends on the exact shape of
the symmetry-broken state and we will learn how to compute them.

>In the thermodynamic limit the single magnon mode is gapless and has linear dispersion around k = kg and
k = (0,0). It corresponds to the well-known Goldstone mode which is generated when a continuous symmetry is
spontaneously broken.
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3 Symmetry analysis

In the analysis of excitation spectra from Exact Diagonalization on finite-size simulation clus-
ters the tower of states analysis (TOS) is a powerful tool to detect spontaneous symmetry
breaking. Symmetry breaking implies degenerate groundstates in the thermodynamic limit.
On finite-size simulation clusters this degeneracy is in general not exact. We rather expect a
certain scaling of the energy differences in the thermodynamic limit. We distinguish two cases:

e Discrete symmetry breaking: In this case we have a degeneracy of finitely many states
in the thermodynamic limit. The groundstate splitting A on finite size clusters scales as
A ~ exp(N/E), where N is the number of sites in the system

e Continuous symmetry breaking: Here the groundstate in the thermodynamic limit is
infinitely degenerate. The states belonging to this degenerate manifold collapse as A ~
1/N on finite size clusters as we have seen in section 2. It is important to understand
that these states are not the Goldstone modes of continuous symmetry breaking. Both the
degenerate groundstate and the Goldstone modes appear as low-energy levels on finite
size clusters but have different scaling behaviors.

The scaling of these low-energy states can now be investigated on finite size clusters. More im-
portantly, also the quantum numbers of these low-energy states such as momentum, pointgroup
representation, or total spin can be predicted [2,5,12]. The detection of correct scaling behavior
together with correctly predicted quantum numbers yields very strong evidence that the system
spontaneously breaks symmetry in the way that has been anticipated. This is the TOS method.
In the following we will discuss how to predict the quantum numbers for discrete as well as
continuous symmetry breaking. The main mathematical tool we use is the character-formula
from basic group representation theory.

Lattice Hamiltonians like a Heisenberg model often have a discrete symmetry group arising
from translational invariance, pointgroup invariance, or some discrete local symmetry, like a
spin-flip symmetry. In this chapter we will first discuss the representation theory and the char-
acters of the representations of space groups on finite lattices. We will then see how this helps
us to predict the representations of the degenerate ground states in discrete as well as continuous
symmetry breaking.

3.1 Representation theory for space groups

For finite discrete groups such as the space group of a finite lattice the full set of irreducible
representations (irreps) can be worked out. Let us first discuss some basic groups. Let’s con-
sider an n x n square lattice with periodic boundary conditions and a translationally invariant
Hamiltonian like the Heisenberg model on it. In the following we will set the lattice spacing to
a = 1. The discrete symmetry group we consider is 7 = Z,, X Z, corresponding to the group
of translations on this lattice. This is an Abelian group of order n?. Its representations can be

labeled by the momentum vectors k = (=2*, =°2), 4, j € {0,--- ,n — 1} which just correspond
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to the reciprocal Bloch vectors defined on this lattice. Put differently, the vectors k are the re-
ciprocal lattice points of the lattice spanned by the simulation torus of our n X n square lattice.
The character yy of the k-representation is given by

Yi(t) = e™* (16)

where t € T is the vector of translation. This is just the usual Bloch factor for translationally
invariant systems.

Let us now consider a (symmorphic) space group of the form D = T x PG as the discrete
symmetry group of the lattice where PG is the pointgroup of the lattice. For a model on an
n X n square lattice this could for example be the dihedral group of order 8, D, consisting of
four-fold rotations together with reflections. The representation theory and the character tables
of these point groups are well-known. Since D is now a product of the translation and the
point group we could think that the irreducible representations of D are simply given by the
product representations (k ® p) where k labels a momentum representation and p an irrep of
PG. But here is a small caveat. We have to be careful since D is only a semidirect product of
groups since translations and pointgroup symmetries do not necessarily commute. This alters
the representation theory for this product of groups and the irreps of D are not just simply the
products of irreps of 7 and PG. Instead the full set of irreps for this group is given by (k ® py)
where py is an irrep of the so called little group Ly of k defined as

L = {g € PG; g(k) =k} (17)

which is just the stabilizer of k in PG. For example all pointgroup elements leave k = (0, 0)
invariant, thus the little group of k = (0, 0) is the full pointgroup. In general this does not hold
for other momenta and only a subgroup of PG will be the little group of k. In Fig. 4 we show
the k-points of a 6 x 6 triangular lattice together with its little groups as an example. The K
point in the Brillouin zone has a Dj little group, the M point a Dy, little group. Having discussed
the representation theory for (symmorphic) space groups we state that the characters of these
representations are just given by

X0 (£ 9) = X (D) (18)

where t € 7, p € PG and x,, is the character of the representation py of the little group L.

3.2 Predicting irreducible representations in spontaneous
symmetry breaking

Spontaneous symmetry breaking at 77 = 0 occurs when the groundstate |¢)gs) of H in the
thermodynamic limit is not invariant under the full symmetry group G of H. We will call a
specific groundstate |1)gs) a prototypical state and the groundstate manifold is defined by

Vas = span { [¢gs) } (19)
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where |1)5s) is the set of degenerate groundstates in the thermodynamic limit. This groundstate
manifold space can be finite or infinite dimensional depending on the situation. For breaking a
discrete finite symmetry, such as in the example given in section 4.1.2, this state will be finite
dimensional, for breaking continuous SO(3) spin rotational symmetry® as in section 4.2 this
groundstate manifold is infinite dimensional in the thermodynamic limit. For every symmetry
g € G we denote by O, the symmetry operator acting on the Hilbert space. The groundstate
manifold becomes degenerate in the thermodynamic limit and we want to calculate the quantum
numbers of the eigenstates in this manifold. Another way of saying this is that we want to
compute the irreducible representations of G to which the eigenstates belong. For this we look
at the action " of the symmetry group G on Vg defined by

I': G — Aut(Vgs) (20)

This is a representation of G on Vg, so every group element g € G is mapped to an invertible
matrix on Vgs. In general this representation is reducible and can be decomposed into a direct
sum of irreducible representations

I=np. (22)
o

These irreducible representations p are now the quantum numbers of the eigenstates in the
groundstate manifold and n, are their respective multiplicities (or degeneracies). Therefore
these irreps constitute the TOS for spontaneous symmetry breaking [2]. To compute the multi-
plicities we can use a central result from representation theory, the character formula

o= 7 22l THIG)). 3)
geg

where x,(g) is the character of the representation p and Tr(I'(g)) denotes the trace over the
representation matrix /"(g) as defined in Eq. (20). Often we have the case that

1 ifO, |YPL) =
(eslOylus) = 4 - 1T OolVes) = Itas) o4

0 otherwise

With this we can simplify Eq. (23) to what we call the character-stabilizer formula

1
" = TSwb([vas)] > x9) (25)

gEStab(W;Gs >)
where

Stab(|vcs)) = {9 € G: Oy |Ygs) = |Ycs)} (26)

is the stabilizer of a prototypical state |{)gs). We see that for applying the character-stabilizer
formula in Eq. (25) only two ingredients are needed:

The actual symmetry group of Heisenberg antiferromagnets is usually SU(2). For simplicity we only consider
the subgroup SO(3) in these notes which yields the same predictions for the case of sublattices with even number
of sites (corresponding to integer total sublattice spin).
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e the stabilizer Stab(|¢gs)) of a prototypical state |)gs) in the groundstate manifold
o the characters of the irreducible representations of the symmetry group ¢

We want to remark that in the case of G = D x C where D is a discrete symmetry group, such
as the spacegroup of a lattice, and C is a continuous symmetry group, such as SO(3) rotations
for Heisenberg spins, Eqgs. (23) and (25) include integrals over Lie groups additionally to the
sum over the elements of the discrete symmetry group D. Furthermore, also the characters for
Lie groups like SO(3) are known. For an element R € SO(3) the irreducible representations
are labeled by the spin S and its characters are given by

sin [(S + 3)¢]
sin(p/2)

where ¢ € [0, 27| is the angle of rotation of the spin rotation R. We work out several exam-

Xs(R) = (27)

ples for this case in section 4.2 and compare the results to actual numerical data from Exact
Diagonalization.

4 Examples

4.1 Discrete symmetry breaking

In this section we want to apply the formalism of section 3 to systems, where only a discrete
symmetry group is spontaneously broken and not a continuous one. In this case, the ground-
state of the system in the thermodynamic limit is described by a superposition of a finite number
of degenerate eigenstates with different quantum numbers. On finite-size systems, however, the
symmetry cannot be broken spontaneously and a unique groundstate will be found. The other
states constituting the degenerate eigenspace in the thermodynamic limit exhibit a finite-size
energy gap which is exponentially small in the system size N, A « e ¢ The quantum
numbers of these quasi-degenerate sets of eigenstates are defined by the symmetry-broken state
in the thermodynamic limit.

4.1.1 Introduction to valence-bond solids

In section 2 we have seen that the classically ordered Néel state is a candidate to describe the
groundstate of the antiferromagnetic Heisenberg model Eq. (1) with J > 0 in the thermody-
namic limit on a bipartite lattice. The energy expectation value of this state on each bond is
encel = —J /4.

The state which minimizes the energy of a single bond is, however, a singlet state |S = 0)
formed by the two spins on the bond with energy eyg = —3.J/4, called a valence bond (VB) or
dimer. A valence bond covering of an N-site lattice can then be described by a tensor product
of N/2 VBs, where each site belongs to exactly one VB.” Another possible candidate for the

"The set of all possible valence bond coverings with arbitrary length spans the full Si,; = 0 sector of the models
Hilbert space and is overcomplete [13, 14].
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Fig. 2: The four columnar VBS coverings of a square lattice. Valence bonds (spin singlets) are
indicated by blue ellipses.

thermodynamic groundstate of Eq. (1) is then a superposition of all possible VB coverings with
nearest neighbor VBs. Such states do not break the SU(2) spin-rotational symmetry as Si,; = 0
and are in general not eigenstates of the Hamiltonian: Acting with the operator S; - S, between
sites ¢ and j belonging to two different VBs changes the VB configuration.

This classical groundstate manifold is highly degenerate. As the VB coverings are in general
not eigenstates of the Hamiltonian, they encounter quantum fluctuations. The energy correc-
tions due to these fluctuations are usually not equivalent for different coverings, although the
bare energies are identical. The VB coverings with the largest energy gain are selected by the
fluctuations as the true groundstate configurations. If this order-by-disorder mechanism [15,16]
selects regular patterns of VB coverings, the discrete lattice symmetries are spontaneously bro-
ken in the thermodynamic limit, and a valence bond solid (VBS) is formed. Fig. 2 and Fig. 3
show two different VBS states on the square lattice. VBSs show no long-range spin order, but
long-range dimer-correlations ((S, - S./)(Sy - Sy)) where a, a’ and b, ¥/ label sites on individual
dimers. In section 4.1.2 we will see how different VBS states can be identified and distinguished
by the quantum numbers of the quasi-degenerate groundstate manifold on finite-size systems.

The groundstate of the Heisenberg model Eq. (1) on the square lattice is not a VBS but a Néel
state, which has already on the classical level a lower variational energy. Nevertheless, several
models in 1- and 2-D are known which feature VBS groundstates [17-21]. Interestingly, in [22]
a model was proposed, which shows a direct continuous quantum phase transition between a
Néel state and a VBS. This transition exhibits very exotic, non-classical behavior and is called

deconfined quantum critical point [23].

4.1.2 Identification of VBSs from finite-size spectra

Columnar valence-bond solid A columnar VBS (cVBS) on a square lattice is shown in
Fig. 2. Four equivalent states can be found, indicating that there will be a four-fold quasi-
degenerate groundstate manifold. A cVBS obviously breaks the translational and point-group
symmetries of an isotropic SU(2)-invariant Hamiltonian on the lattice spontaneously but not the
continuous spin symmetry group.

In the following we use Eq. (25) to compute the symmetry sectors of the groundstate manifold.
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C4 1 04 02 (04)3
A | +1[+1]|+1 | +1
B |+1]|—-1|+1] —1
E,|+1| 41| —-1] —i
Ey | +1]| —i|—1| +i

Table 1: Character table for pointgroup C,.

The discrete symmetry group is
G=D=T xPG (28)

where T = Zy X Zy = {1,t,,1t,,t,t,} are the non-trivial lattice translations with translation
vectors
t; = (0,0), t,=(1,0), t,=(0,1), tg=(1,1) (29)

and PG = C, denotes the point-group of lattice rotations.® To compute the groundstate sym-
metry sectors we do not need to consider the full symmetry group G but only the stabilizer
Stab(|¥.y ps)), leaving one of the states in Fig. 2 unchanged. Without loss of generality we
choose the first covering as prototype |¥.y ps). The stabilizer is given by

Stab(| @y 5s)) = {1 x 1} U {1 x Co} U {t, x 1} U {t, x Cs} (30)

where Cy denotes the rotation about an angle 7 around the center of a plaquette.
The irreducible representations (irreps) of the group of lattice translations 7 can be labelled by
the allowed momenta k

k € Trreps(T) = {(0,0), (m,0), (0, 7), (m, )}, €3]
and the corresponding characters for an element ¢t € 7 are

Xk(t) = o'kt (32)

The irreps (usually called A, B and E) and characters for the point-group C, are given in Tab. 1.
Using Eq. (25) we can now reduce the representation induced by the state |, gs) to irreducible
representations to get the quantum numbers of the quasi-degenerate groundstate manifold. Let
us explicitly consider 7 )45 as an example:

1
N(r,004 = XA(d) Xk=(x,0 (d) (33)
o \Stab(]WcVBS)ﬂ desmb%was)) ™

— i [1 ™00 1 00 41 O 4 kO] = (34)

1
N(x,00B = XB(d) Xk=(x,0 (d) (35)
08 = IStab([Wey s) )| (Z>) (™0

— Z |:1 e7,k-(0,0) 4 (_1) elk-(0,0) 4 1 ezk-(O,l) + (_1) ezk-(O,l)i| — 0 (36)

8The dihedral group D, is also a symmetry group of the model. For the sake of simplicity we decided to only
consider the subgroup Cy in this section.
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Fig. 3: One of the four identical staggered VBS coverings on the square lattice.

Eventually, the cVBS covering will be described by a four-fold quasi-degenerate groundstate
manifold with the following quantum numbers

X([¥vps)) = (0,0)A & (0,0)B & (m,0)A & (0,7)A. (37)

VBS states are a superposition of spin singlets on the lattice, therefore the spin quantum number
for all levels in the groundstate manifold must be trivial, Sy, = 0.

Staggered valence-bond solid The columnar VBS is not the only regular dimer covering of
the square lattice. Another possible regular covering is the staggered VBS (sVBS), where again
four equivalent configurations span the groundstate manifold. One of these configurations is
shown in Fig. 3.

Obviously, also the sVBS spontaneously breaks the translational and point-group symmetries
of an isotropic Hamiltonian, but not the spin-rotational symmetry. Following the same steps
as before we can compute the quantum numbers of the four quasi-degenerate groundstates for
the sVBS. The stabilizer turns out to be different to the case of the cVBS and thus also the
decomposition into irreps yields a different result:

X(|¥svBs)) = (0,0)A & (0,0)B & (7, m)E, & (7, 7)Ey. (38)

Tab. 2 shows a comparison of the irreducible representations in the groundstate manifold of the
cVBS and sVBS states.

By a careful analysis of the quasi-degenerate states and their quantum numbers on finite systems
it is thus possible to identify and distinguish different VBS phases which spontaneously break
the translational and point-group symmetries in the thermodynamic limit.

Irreps cVBS sVBS
0,04 | 1 1
(0,0)B 1 1
(7, 0)A 1 0
(0,m)A 1 0
(m,m)E,| O 1
(m,m)Ep | O 1

Table 2: Multiplicities of the irreducible representations in the four-fold degenerate groundstate
manifolds of the columnar and staggered VBS on a square lattice.
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4.2 Continuous symmetry breaking

In this section we give several examples of systems breaking continuous SO(3) symmetry. We
discuss the introductory example of the Heisenberg antiferromagnet, calculate the irreps in the
TOS and compare this to actual energy spectra from Exact Diagonalization on a finite lattice in
section 4.2.1. Next we discuss three magnetic orders on the triangular lattice and a model where
all of these are stabilized. We show again results from Exact Diagonalizations and compare the
representations in these spectra to the predictions from TOS analysis in section 4.2.2. Finally we
introduce quadrupolar order and show that also this kind of symmetry breaking can be analyzed
using the TOS technique in section 4.2.3.

4.2.1 Heisenberg antiferromagnet on square lattice

We now give a first example how the TOS method can be applied to predict the structure of the
tower of states for magnetically ordered phases. We look at the Néel state of the antiferromagnet
on the bipartite square lattice with sublattices A and B. A prototypical state in the groundstate
manifold is given by

) = [T (39)

where all spins point up on sublattice A and down on sublattice B. The symmetry group G =
D x C of the model we consider is a product between discrete translational symmetry D =
Lo % Lo = {1,t,,1,, s, } and spin rotational symmetry C = SO(3). We remark that we restrict
our translational symmetry group to D = Zy X Z, instead of D' = Z x 7 because the Néel
state transforms trivially under two-site translations ()2, (t,)?. Thus, only the representations
of D’ trivial under two-site translations are relevant; these are exactly the representations of D.
Put differently we only have to consider the translations in the unitcell of the magnetic structure
which in the present case can be chosen as a 2-by-2 cell. Furthermore, we will for now neglect
pointgroup symmetries like rotations and reflections of the lattice to simplify our calculations.
At the end of this section we give results where also these symmetry elements are incorporated.
The groundstate manifold Vs we consider are the states related to |¢)) by an element of the
symmetry group G, i.e.,

Vas ={0g|¥); g€ G} . (40)

The symmetry elements in G that leave our prototypical state |¢)) invariant are given by two sets
of elements:

e No translation in real space or a diagonal t,, translation together with a spin rotation
R.(«) around the z-axis with an arbitrary angle «.

e Translation by one site, t, or t,, followed by a rotation R,(7) of 180° around an axis
a 1 z perpendicular to the z-axis.

So the stabilizer of our prototype state |¢) is given by

Stab([1)) = {1 x R.(a)} U {tsy x Ro(a)} U {ts x Ru(m)} U {t, x Ra(m)}. (A1)
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The representations of the discrete symmetry group can be simply labeled by four momenta
k € {(0,0), (0,7), (m,0), (m,7)} with corresponding characters

Xk(t) =€

The continuous symmetry group is the Lie group SO(3). Its representations are labeled by the
total spin S and the character of the spin-S representation is given by

_sin [(S+5)¢]
R

where ¢ € [0, 27 is the angle of rotation of the element R € SO(3). We see that spin rotations
with different axes but same rotational angle give rise to the same character. The representations
of the total symmetry group G = D x C are now just the product representations of D and C,
therefore also the characters of representations of G are the product of characters of D and C.
We label these representations by (k, .S) where k denotes the lattice momentum and S the total
spin. We now apply the character-stabilizer formula, Eq. (25), to derive the multiplicities of the
representations (k,.S) in the groundstate manifold. In the case of the square antiferromagnet
this yields

27 27
k-0 ]‘ / ik-(e +e ) 1 /

— k0~ atey) 42
Nk,s) = € ] daxs(R.(a)) + e TR.(0)] da xs(R.(a)) (42)
0 0
27 27
b1 / da xs(Ra(T)) pekes L / da xs(Ra(T)) (43)

4|R,(m)] ) TS 4| Ry(m)] ] ST
0 0

We compute

2w 2w 2
1 1 sin[(S+1)a] 1 e
%/dOéXS(Rz(a» - %/ «Q SiH(Oé/Z) %/‘dgol_zse v 17 (44)
; _
and
1 7 1 7 sin [(S + 3)7]
_ 2 _(_1\S
5= [ dexsiu(m) = 5= [ap TS - 1t @s)
0 0

Putting this together gives the final result for the multiplicities of the representations in the tower
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S| I"A1 M.Al
0 1 0
1 0 1
2 1 0
31 0 1

Table 3: Multiplicities of irreducible representations in the TOS for the Néel antiferromagnet
on a square lattice.

of states

1 1if S even

(0.5 = ] (1T-141-141-(-1)°+1-(-1)%) = { 0if S odd (46)
1 0 if S even

s =—-(1-141-1—-1-(=1)°=1-(=1)%) = 47

N = 7 (114 (=1) (=1)°%) {1ifSodd (47)
1

(O, = 3 (1-1-1-141-(-1)°=1-(-1)°) =0 (48)
1

s =7 (1 1=1-1 =1 (=1)7+1-(=1)%) =0 (49)

Tab. 3 lists the computed multiplicities of the irreducible representations where additionally
the D, point group was considered in the symmetry analysis. Comparing this to Fig. 1 we
observe that these are exactly the irreducible representations (momenta and point group irreps)
and multiplicities observed in the tower of states for the Heisenberg model on the square lattice.

4.2.2 Magnetic order on the triangular lattice

On the triangular lattice several magnetic orders can be stabilized. The Heisenberg nearest
neighbor model has been shown to have a 120° Néel ordered groundstate where spins on neigh-
boring sites align in an angle of 120° [24,25]. Upon adding further second nearest neighbor
interactions .J5 to the Heisenberg nearest-neighbor model with interaction strength J; it was
2> (0.18 [26]. Here spins are aligned

~

shown that the groundstate exhibits stripy order for Jo/.Jy
ferromagnetically along one direction of the triangular lattice and antiferromagnetically along
the other two. Interestingly, it was shown that there is a phase between these two magnetic
orders whose exact nature is unclear until today. Several articles propose that in this region
an exotic quantum spin liquid is stabilized [27-30]. In a recent proposal two of the authors
established an approximate phase diagram of an extended Heisenberg model with further scalar
chirality interactions J,S; - (S; x Sj) [31] on elementary triangles. Thus, the Hamiltonian of
the system is given by

Ho=7I)> S-S+ Y Si-S;+J Y Si(S;x8Sy). (50)
(i.9) ({i.3))

iJ,kEA

Amongst the already known 120° Néel and stripy phases an exotic Chiral Spin Liquid and a
magnetic fetrahedrally ordered phase were found. Here we will only discuss the magnetic



Studying Continuous Symmetry Breaking with ED 8.17

Jo=0,J,=0
40— = " =
aslr T = =
3.5 e : = =
® ol * = = =
o o o 1o @® D1 ¥ * ;\ 303 = s a
* = = -7
e e 6 @ 0 0 - ¢ * * 1 2 51= . 5 T
) 0.5 A D3 % @ 2.5 E = s
e e e @ ee® ® Ds : -7
o @ ‘\,, - 20 g e
=0l @ @ © o o = 00 & ~ - ‘,
o i * * —~ E = = -
e e e @ @ @ o~ + o <]1)_==.— Tk
e 6 0 0 © o 0 * * 4 = = : -7
2 * * */ 1.0 : = q,'.
-3 bt Sl -0 * * E PR - :
0.5 L . » O TIDpeaAl ||
-3 -2 -1 0 1 2 3 -15 —10 —05 0. 0 L0 15 ,q’ : 4—'\,,‘\ O TIDé6BI [
x ko) 0.0 G’ . . - < xkpsar |
—0.5 I I I I
0 2 6 12 20

Stot(Stot + 1)

Fig. 4: (Left): Simulation cluster for the Exact Diagonalization calculations. (Center): Bril-
louin zone of the triangular lattice with the momenta which can be resolved with this choice of
the simulation cluster. Different symbols denote the little groups of the corresponding momen-
tum. (Right): TOS for the 120° Néel order on the triangular lattice. The symmetry sectors and
multiplicities fulfill the predictions from the symmetry analysis (See Tab. 5). One should note,
that the multiplicities grow with S,,, for non-collinear states.

orders appearing in this model. The non-coplanar tetrahedral order has a four-site unitcell where
four spins align such that they span a regular tetrahedron. In this chapter we show the tower of
states for the three magnetic orders in this model.

First of all, Fig. 4 shows the simulation cluster used for the Exact Diagonalization calculations
in [31]. We chose a N = 36 = 6 x 6 sample with periodic boundary conditions. This sample
allows to resolve the momenta /', K and M, amongst several others in the Brillouin zone.
The K and M momenta are the ordering vectors for the 120°, stripy and tetrahedral order.
Furthermore this sample features full six-fold rotational as well as reflection symmetries (the
latter only in the absence of the chiral term). Its pointgroup is therefore given by the dihedral
group of order 12, Dg. The little groups of the individual k vectors are also shown in Fig. 4. For
our tower of states analysis we now want to consider the discrete symmetry group

D =T x Dg (5D

where 7 is the translational group of the magnetic unitcell. The full set of irreducible represen-
tations of this symmetry group is given by the set (k ® py ) where k denotes the momentum and
px 1s an irrep of the little group associated to k. The points ', K and M give rise to the little
groups Dg, D3 and D, (the dihedral groups of order 12, 8, and 4), respectively. For the stripy
and tetrahedral order we can choose a 2 x 2 magnetic unitcell, and a 3 x 3 unitcell for the 120°
Néel order. The spin rotational symmetry lets us again consider the continuous symmetry group

C = SO(3). (52)

We can therefore label the full set of irreps as (k, px,.S) where S denotes the total spin S
representation of SO(3). Similarly to the previous chapter we now want to apply the character-
stabilizer formula, Eq. (25), to determine the multiplicities of the representations forming the
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D6 1 206 203 Cg 30'd 3O'U
Al 1 10 1 1 1
Ay |1 1 10 1] -1} -1
B l1| =1 1|=1| 1| =1
By|1| —1] 1|-1| -1| 1
Ey |2 1] —=1|-2 0 0
Ey |2 =1 1| 2 0 0

Table 4: Character table for pointgroup Dg.

120° Néel stripy order tetrahedral order
S| I''Al1 TI'Bl KAl I'Al I'E2 MA I'A [T''E2a T'E2b M.A
0 1 0 0 1 1 0 1 0 0 0
1 0 1 1 0 0 1 0 0 0 1
2 1 0 2 1 1 0 0 1 1 1
3 1 2 2 0 0 1 1 0 0 2

Table 5: Multiplicities of irreducible representations in the Anderson tower of states for the
three magnetic orders on the triangular lattice defined in the main text.

tower of states. The characters of the irreps (k, px, .S) are given by

sin [(S + 3)¢]
P (p sin(g/2) )

where again ¢ € [0,2n] is the angle of rotation of the spin rotation R. The characters of

X(k,pk,S) (tvpa R) = eik'tX

(53)

the pointgroup Dg are given in Tab. 4. We skip the exact calculations which follow closely
the calculations performed in the previous chapter, although now also pointgroup symmetries
are additionally taken into account. The results are summarized in Tab. 5. We remark that
the tetrahedral order is stabilized only for J, # 0 where the model in Eq. (50) does not have
reflection symmetry any more since the term S; - (S; x Sj;) does not preserve this symmetry.
Therefore we used only the pointgroup Cg of six-fold rotation in the calculations of the tower
of states for this order.

If we compare these results to Figs. 4 and 5 we see that these are exactly the representations
appearing in the TOS from Exact Diagonalization for certain parameter values .J; and .J,.. This
is a strong evidence that indeed SO(3) symmetry is broken in these models in a way described
by the 120° Néel, stripy, and tetrahedral magnetic prototype states.

4.2.3 Quadrupolar order

All examples of continuous symmetry breaking we have discussed so far spontaneously broke
SO(3) symmetry but exhibited a magnetic moment. In the following we will show examples
of phases that do not exhibit any magnetic moment but break spin-rotational symmetry anyway
and discuss the influences on the tower of states. We will only discuss quadrupolar phases
in S = 1 models here, a broader introduction to nematic and multipolar phases can be found
in [32].
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Fig. 5: (Left): TOS for the stripy phase on the triangular lattice. The multiplicities for each
even/odd S,,, are constant for collinear phases. (Right): TOS for the tetrahedral order on the
triangular lattice.

Quadrupolar states We denote the basis states for a single spin S = 1 with S* = 1,—1,0
as |1),|1),]0). In contrast to the usual S = 1/2 case not each basis state can be obtained by
a SU(2) rotation of any other basis state. The state |0), for example cannot be obtained by a
rotation of |1) or |1) as it has no orientation in spin-space at all, (0[S*|0) = 0 [32]. The state
|0) can, however, be described as a spin fluctuating in the z-y plane in spin space as

(01(57)?10) = {0I(S*)*|0) = 1, {0[(S%)*|0) = 0. (54)

We can thus assign a director along the z-axis to this state. SU(2) rotations will change the
director of such a state, but not its property of being non-magnetic. These states can be detected
by utilizing the quadrupolar operator [32]

QP = 8*5° 4 5P 5> — §S(S + 1)00s (55)

therefore they are identified as quadrupolar states.

To study the possible formation of an ordered quadrupolar phase on a lattice, where the direc-
tors of the quadrupoles on each lattice site follow a regular pattern, we consider the bilinear-
biquadratic model with Hamiltonian

H=Y"JS;-S;+Q(S:-S;)’ (56)
(6,3)
and S = 1. The second term in Eq. (56) can be rewritten in terms of the elements of Q*’ which
can be rearranged into a 5S-component vector Q such that
4
Qi'QjZQ(Si'Sj)2+Si‘Sj—§~ (57)
The expectation value of Eq. (57) for quadrupolar states on sites ¢ and j can be given in terms

of their directors d; ; [32]
2
Q- Q) =2(d; - d;)* - 3 (58)
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Therefore, the second term in Eq. (56) favors regular patterns of the directors of quadrupoles.
When such states are formed, they spontaneously break the SU(2) symmetry without exhibiting
any kind of magnetic moment. The first term in Eq. (56), on the other hand, favors spin ordering
as we have already discussed in previous sections.

The phase diagram of Eq. (56) on the triangular lattice shows extended ferromagnetic, antifer-
romagnetic (120°), ferroquadrupolar (FQ), and antiferroquadrupolar (AFQ) ordered phases. In
the FQ phase quadrupoles on each lattice site are formed with all directors pointing in a single
direction, whereas the directors form a 120° structure in the AFQ phase. In the following, we
will see that the FQ and AFQ phases can be identified and distinguished from the spin ordered
phases using a tower-of-states analysis on finite clusters.

TOS for quadrupolar phases The TOS for the FQ and AFQ phases can be expected to show
similar behavior as the TOS for magnetically ordered states as both spontaneously break the
spin-rotational symmetry. If we identify the symmetry-broken quadrupolar phases with their
directors pointing in any direction in spin-space we can perform the symmetry analysis of the
TOS levels in a very similar manner as for the spin-ordered systems in the previous sections.
There is, however, one important thing to consider: The directors should not be considered to
be described with vectors, but with axes; a quadrupole is recovered (up to a phase) by rotations
about an angle 7 around any axis a in the x-y-plane:

e™"10) = —|0). (59)

Thus, the stabilizer in Eq. (25) is different for quadrupolar phases and the TOS shows a different
structure. This property makes it possible to distinguish, e.g., a magnetic 120° phase from its
quadrupolar counterpart, the AFQ phase, with a TOS analysis.

A prototype for the FQ phase is a product states of quadrupoles with directors in z-direction,
|¥) =10,0,0,...). This state does not break any space-group symmetries, so only the trivial
irreps of the space group, k = I' = (0,0).A1, will be present in the TOS. The remaining
stabilizer of the spin-rotation group is a rotation about the z-axis by an arbitrary angle and a
rotation about an arbitrary axis lying in the z-y-plane,

Stab(|¥)) = {R.(a), Ra(m)}. (60)

The multiplicities in the TOS can then be computed as

1 1 o v_ 1 i
ns =5 (m/o doxs(R.(ar)) + (—1) |Ra(7r)|/0 daXS(Ra(W))) (6D
1
— N(_

(—D)N(=1)%), (62)

where the integrals have already been computed in Eqgs. (44) and (45). The system size de-
pendent factor (—1)" is imposed from Eq. (59). To sum up, the TOS for the FQ phase has
single levels for even (odd) S with trivial space-group irreps and no levels for odd (even) S
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Fig. 6: Tower of states for the ferroquadrupolar (left) and antiferroquadrupolar (right) states
on a triangular lattice with N = 12 sites from Exact Diagonalization. The single-magnon
branch for the FQ phase is highlighted with green boxes.

sectors when N is even (odd).® The absence of odd (even) S levels is caused by the invariance
of quadrupoles under 7-rotation and distinguishes the TOS for a FQ phase from a usual ferro-
magnetic phase. In Fig. 6 the TOS for the model, Eq. (56), in the FQ phase is shown on the
left. It shows the expected quantum numbers and multiplicities in the TOS and also an easily
identifiable magnon branch below the continuum.

The symmetry analysis for the AFQ phase can be performed in a similar manner and shows a
similar structure to the 120°-Néel phase, but again, levels are deleted for the AFQ. In this case,
however, not all odd levels are deleted but some levels in both, odd and even, S sectors. Tab. 6
shows the multiplicities of irreps in the TOS of the AFQ model in comparison to the magnetic
120°-Néel state for even V. Fig. 6 shows the simulated TOS for the AFQ phase for the bilinear-
biquadratic model Eq. (56). The symmetry sectors and multiplicities agree with the expected
ones.

AFQ 120° Néel
S[IAl I'Bl K.Al|I.Al I'.Bl K.Al
0| 1 0 0 1 0 0
1] 0 0 0 0 1 1
21 0 0 1 1 0 2
31 0 1 0 1 2 2

Table 6: [rreducible representations and multiplicities for the AFQ phase compared to the
magnetic 120°-Néel phase.

9For the simple case of the FQ phase one can also easily calculate the decomposition of a state |S = 1,m = 0)®
|S=1,m=0)®... into states |S;ot, m = 0) with the use of Clebsch-Gordan coefficients.
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5 Outlook

In the previous sections we have discussed the features of the energy spectrum for states which
spontaneously break the spin-rotational symmetry, SU(2), in the thermodynamic limit. We have
seen that on finite-size systems the energy spectra of such states exhibit a tower of states (TOS)
structure. The tower of states scales as Sy (Sir + 1)/ and generates the groundstate manifold
in the thermodynamic limit N — oo, which is indispensable to spontaneously break a sym-
metry. The quantum numbers of the levels in the TOS depend on the particular state which is
formed after the symmetry breaking and can be predicted using representation theory.

As a generalization to the SU(2)-symmetric Heisenberg model, Eq. (1), one can introduce
SU (n) Heisenberg models with n > 2. Such models can experimentally be realized by ultra-
cold multicomponent fermions in a optical lattices. When the on-site repulsion is strong enough,
the Hamiltonian can be effectively described by an SU (n)-symmetric permutation model on the
lattice [33]. When the exchange couplings are antiferromagnetic, SU(n) generalized versions
of the Néel state might be realized as groundstates, which then spontaneously break the SU(n)
symmetry of the Hamiltonian. On finite systems this becomes again manifest in the emergence
of a tower of states, where the scaling is found to be proportional to Cy(n)/N [34-37, 33].
Cs(n) denotes the quadratic Casimir operator of SU(n).!° The symmetry analysis of the lev-
els in the TOS can, in principle, be performed similar to the case of SO(3) discussed in these
notes, but the symmetry group and its characters have to be replaced with the more complicated
group SU(n).

On the other side, it can be also interesting to study models where the continuous symmetry
group is smaller. In real magnetic materials, the isotropic Heisenberg interaction is often accom-
panied by other interactions which, when they are strong enough, might reduce the symmetry
group of spin rotations from SO(3) to O(2); only spin rotations around an axis are a symmetry
of the system and can be spontaneously broken in the thermodynamic limit. This symmetry
group is also interesting in the field of ultracold gases, as BECs spontaneously break an O(2)
symmetry by choosing a phase. Tower of states can also be found in this case and the quantum
numbers and multiplicities of the TOS levels can be computed similar to the SU(2) case [12].

We have seen, that the energy spectrum of Hamiltonians on finite lattices may contain a lot of
information about the system. One can identify groundstates which will spontaneously break
discrete as well as continuous symmetries in the thermodynamic limit and by imposing a classi-
cal state as symmetry-broken state one can even predict the quantum numbers and multiplicities
of the levels in the tower of states or in the quasi-degenerate groundstate manifold. When we
impose an additional interaction to a system with spontaneously broken groundstate, e.g., a
magnetic field, it is possible that a continuous quantum phase transition (cCQPT) from the or-
dered state to a disordered state appears for some critical ratio of the couplings. Such cQPTs are
interesting as they can be described by universal features which do not depend on the details of

10For n = 2 the quadratic Casimir operator Cy = Sio(Sioc + 1).
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Fig. 7: Universal torus spectrum for a continuous quantum phase transition in the 3D Ising uni-
versality class. Full symbols denote numerical results while empty symbols denote e-expansion
results. The dashed line shows a dispersion with the speed of light.

the model. Interestingly, the energy spectrum on finite systems can even be used to identify and
characterize cQPTs. It is given by universal numbers times 1/L, where L = VN is the linear
size of the lattice. The quantum numbers of the energy levels show universal features and are
related to the operator content of the underlying critical field theory, although the relation be-
tween them is not yet fully understand for non-flat geometries, like a torus [38,39]. The critical
spectrum for the transverse-field Ising model on a torus is shown in Fig. 7. It is a fingerprint for
the 3D Ising cQPT.
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9.2 Ali Alavi

1 Introduction

The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) technique is a stochastic
method to compute the ground-state energy (and expectation values over two-particle operators
of the ground state) of extremely large many-body Hamiltonians, usually in the context of ‘Full
CI’ methods: that is to say electronic wavefunctions expanded in Slater determinant spaces
comprising of all possible determinants constructable from a given spatial orbital basis. Intro-
duced in 2009 [1], it has been developed in a number of ways which greatly extends the scope
of the methodology: the initiator method [2], introduced in 2010, enables much larger Hilbert
spaces to be accessed with a relatively small number of walkers, albeit at the cost of a system-
atically improveable bias, followed in 2012 the development of the semi-stochastic FCIQMC
method (S-FCIQMC) [3,4], which greatly reduces the stochastic error bars for a given amount
of computer effort, resulting in ~1000-fold increase in efficiency. In 2014, the replica method
to compute reduced-density matrices (1- and 2-body) was introduced [5], which has enabled
other developments, including property calculations [6], stochastic CASSCF [6, 7], and F12
corrections [8], and finally the method was extended to excited states [9—-13]. FCIQMC has
also led to stochastic techniques for solving other types of quantum chemical equations: the
Coupled-Cluster Monte Carlo technique [14], and the density matrix QMC method [15], re-
spectively.

The scope of this short tutorial lecture cannot possibly cover all of the above aspects. We will
limit ourselves to the description of the algorithm, together with its semi-stochas