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Preface
Quantum materials exhibit a spectacular variety of unusual emergent behavior that is practically
impossible to predict from first-principles. Experiment is crucial for discovering phenomena
such as the metal-insulator-transition, the Kondo effect, or superconductivity. Theory provides
the paradigm for understanding these states of matter. Developing such understanding relies
on the close interplay between theory and experiment, with experiments constantly putting
theoretical ideas to a test. This year’s school covers experimental techniques such as optics,
photoemission, NMR, and tunneling spectroscopy. Understanding these experiments requires
the realistic modeling of materials as well as approaches to solving them. Lectures ranging
from the model building schemes to advanced many-body techniques provide the foundation to
unraveling the mystery of these materials. Introductions to theoretical approaches for calculat-
ing spin, charge, and orbital structure as well as response functions provide direct contact to the
experimental probes. The aim of the school is to introduce advanced graduate students and up
to the essence of emergence and modern approaches for modeling strongly correlated matter.

A school of this size and scope requires support and help from many sources. We are very
grateful for all the financial and practical support we have received. The Institute for Advanced
Simulation and the German Research School for Simulation Sciences at the Forschungszentrum
Jülich provided the major part of the funding and were vital for the organization of the school
and the production of this book. The DFG Research Unit FOR 1346 generously supported many
of the speakers. The Institute for Complex Adaptive Matter (ICAM) offered travel grants for
selected international participants.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jülich and to Mrs.
D. Mans of the Graphische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with proof-
reading the manuscripts, often on quite short notice: Michael Baumgärtel, Khaldoon Ghanem,
Julian Mußhoff, Esmaeel Sarvestani, Amin Kiani Sheikhabadi, Guoren Zhang, and Qian Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini, Erik Koch, Jeroen van den Brink, and George Sawatzky

August 2016
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1.2 George Sawatzky and Robert Green

1 Introduction

Correlated metal-oxide compounds exhibit a wide range of interesting properties, including for
example high-temperature superconductivity, metal-insulator transitions, and various forms of
orbital and magnetic ordering. Many of these metal-oxide compounds with especially interest-
ing properties contain cations which have exceptionally high oxidation states, when one assigns
those oxidation states using the usual formal valence-counting methodologies. transition-metal
elements from the 3d, 4d, and 5d series can usually attain several different oxidation states in
compounds, ranging for example from 2+ to 5+ for vanadium in oxides. Given this flexibility
of the cations, one usually assumes a closed valence shell structure for the anions, meaning
that the chalcogens (O, S, Se, Te) would have a 2- valence and the halides (F, Cl, Br, I) would
have 1-. Similarly, fixed cation valences according to closed shells are usually assumed for
certain columns of the periodic table, including 1+ for the alkali elements under Li, 2+ for the
alkaline earth elements under Be, and 3+ for those under Sc and B.

In these standard valence-counting formalisms where anion and the above cation valences are
fixed, the remaining cations then adopt the compensating valence to end up with a charge neutral
unit cell or formula unit. Following this approach, Fe in FeS2 would be 4+, Ni in the rare-earth
(R) nickelates RNiO3 would be 3+, and there would be Cu3+ present in the hole-doped cuprate
La2−xSrxCuO4. However, there are many examples where this classification is not valid—Fe in
FeS2 for example is actually 2+ and there are accordingly missing sulfur 3p electrons. This leads
to the formation of sulfur pairs having a net pair valence of 2- rather than 4-. In this case the
antibonding S 3p states in the pairs are empty and therefore form rather narrow bands just above
the chemical potential which form the conduction band (depending on where the transition-
metal electron addition d states are, as we will discuss below). Similarly, in superoxides such as
KO2 the O atoms form pairs, but now with each pair having a 1- charge and spin of 1/2, leading
to an O 2p hole-based ferromagnetic ground state. In the hole-doped cuprates, convention
would predict the introduction of Cu3+ into the mainly Cu2+ lattice, leading to a mixed valent
state. However, it is known that the holes actually reside mainly in O 2p orbitals, leaving the
Cu with a 2+ valence and a spin of 1/2. In some pictures (like that of the Zhang-Rice singlets)
these O holes tend to form molecules of 4 oxygen atoms in a square around a particular Cu,
forming a singlet spin state due to the very strong Cu-O exchange interaction which is of order
0.5 eV. Similarly, we will argue that also Ni does not really like to be 3+ and so in the perovskite
structure rare-earth nickelates the Ni behaves like Ni2+ in a normal high-spin state of S = 1 and
there is one hole per 3 oxygens in the O 2p band of states. Realizing that each Ni is at the center
of an octahedron of O ions we would have on average 2 holes per O octahedron and again these
are found to condense into octahedral molecules of O around every second Ni2+ ion.

In this lecture we will look at the consequences for the electronic structure and the correspond-
ing physical properties of oxides involving unconventionally high cation oxidation states which
accordingly may better be viewed as having unfilled anion valence bands. In solid state physics
we are mostly interested in the low-energy scale possible excitations from the ground state
which determine the physical properties in a temperature range of perhaps 0 to 500 K, thus we
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will focus our considerations on those states which are at most several eV above and/or below
the chemical potential. Further, in the study of transition-metal oxides or rare-earth compounds
we mostly start from a viewpoint of what the valences of the elements are in the limit of zero
interatomic hybridization (i.e., in the ionic limit). The hybridization, which of course plays a
crucial role, is then introduced and band structures and interatomic interactions result. As we
know, in transition-metal based ionic solids the valence state of an ion determines the number
of d electrons involved and this in turn determines the spin, orbital, and total angular momen-
tum via Hund’s rules in the lowest energy states. The excited states, or multiplets, important in
describing various forms of spectroscopy are also determined to first order in this ionic starting
point. Thus, this starting knowledge is the first guess as to what the spin and the d occupation
numbers really are in the material. However, if indeed the anion valence states are not fully
occupied and the cations accordingly have unexpected valences in the ionic limit, the lowest
energy states could be very different from this formal oxidation state based picture, and the
model Hamiltonians which should be used could differ strongly from the typical ionic ansatz.
This is especially important for the analysis of materials using x-ray based spectroscopies such
as resonant x-ray reflectometry and resonant elastic and inelastic x-ray scattering.
In the following we will start with a brief motivation of the importance of anion states by looking
at divalent late 3d transition-metal (i.e. Ni or Cu) oxides. We will discuss how studies of the
first ionization states found that doped holes were more likely to occupy the ligand (oxygen)
states. From this introduction we will then look at higher valence oxides where holes can be
self-doped into the ligand band. We will show how this affects the usual crystal field and Hund’s
rule based starting points of a typical theoretical model. In Section 3, we will then progress to
the very basic classification scheme referred to as the ZSA scheme, which did not focus on the
case of very high oxidation states for which the so called charge-transfer gap could be negative.
We will discuss the various classes possible in an extended ZSA scheme, showing the transition
from Mott-Hubbard to charge-transfer to mixed-valence and then to the strong negative charge-
transfer gap systems. In each case we look at the ground state and the electron removal and
addition states (i.e., the one-electron Green functions). In Section 4, we will look at examples
of very interesting negative charge transfer compounds, including the perovskite nickelates and
also the related non-correlated bismuthates. Here we will also show how a significant amount of
information concerning the ground state local electronic structure can be obtained from resonant
x-ray absorption and scattering experiments, and will introduce the model Hamiltonians which
can be used in this regard. Lastly, in Section 5 we will look at materials in the fascinating
mixed-valence class, focusing primarily on the highly studied samarium hexaboride.

2 The importance of anion states

In this section, we will provide some generally accepted examples which exemplify the impor-
tance of anion states in high-valence oxides. First we will give a brief review of the studies
of hole-doped states in divalent copper and nickel oxides which led to the concept of Zhang-
Rice singlets in the high-Tc cuprates. Following that we will show that similar effects can be
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present in undoped compounds with high formal oxidation states, such as Ni3+ in the perovskite
rare-earth nickelates.

2.1 Hole doped states in divalent Cu and Ni oxides

The common feature among all high-Tc cuprate compounds are the CuO2 planes (containing
Cu2+ in the parent compounds) which are doped with holes or electrons to induce supercon-
ductivity. Of critical importance then, when trying to understand the nature of high-Tc, is to
understand the nature of the doped carriers. Early spectroscopic studies, particularly x-ray ab-
sorption spectroscopy (XAS) at the oxygen K edge, found strong evidence that the holes doped
into CuO2 planes primarily resided in the oxygen 2p band [1–3]. This showed that the doping
did not yield Cu3+ in the lattice, and accordingly that the Cu was still 2+ with S = 1/2.
Theoretical studies were undertaken to understand the character of the doped holes. In partic-
ular, an Anderson impurity model was employed by Eskes et al. to examine the one-electron
removal spectrum of a Cu2+ impurity which hybridized with an oxygen 2p band, as this spec-
trum relates directly to the states achievable through hole doping [4]. It was found that since the
Cu d8 states were below the top of the O 2p band (i.e., the parent compound is a charge-transfer
insulator) the first ionization state is a singlet 1A1g state which is pushed out of the O 2p con-
tinuum. Around the same time, the similar Zhang-Rice (ZR) singlet picture was developed [5],
which is also based on the fact that the doped holes occupy linear combinations of oxygen 2p

orbitals in a square coordinated around the Cu site.
These early studies of the cuprate superconductors showed the importance of the anion states,
especially upon doping. However, even with this importance established, there are very differ-
ent ways in which the anion states can be treated. On one hand, the ZR singlet picture was rather
quickly adopted by many working on the theory of high-Tc cuprates, in part because it simpli-
fies the problem to that of an effective single-band Hubbard model where the charge-transfer
energy plays the role of U . Due to the extended nature of the “atomic” wave function, which
includes the linear combination of O 2p orbitals of x2 − y2 symmetry, longer-range hoppings
beyond nearest neighbors have to be included. A large number of theoretical studies have been
carried out and still use this single-band approach. On the other hand, also at the very beginning
of the field in 1988, Emery and Reiter [6] introduced a somewhat different model also based on
doped holes being mainly on O but placing the importance of the holes on the very large antifer-
romagnetic exchange interaction of the O 2p hole with its two neighboring Cu spins. This leads
to the description of the quasiparticle as being a three-spin polaron. Recently, this model has
gained considerable support from a very large scale exact diagonalization study by Lau et al.,
who found that the ground state and k dependence of the single hole in the full 3-band model
is in close agreement with the 3-spin polaron model in which a strong Cu-Cu ferromagnetic
correlation is found for the Cu atoms sandwiching the O 2p hole [7–9]. Another interesting part
of this calculation is also that, without introducing longer-range hoppings, it yields basically
the same dispersion relation for the quasiparticle as the extended single-band Hubbard model,
although the spectral weights differ considerably. The ferromagnetic correlation of the neigh-
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boring Cu spins to the O hole is something that seems difficult to reconcile within a single band
Hubbard model based on ZR singlets. It is also interesting to note that in recent work it has
been shown that different models giving basically the same single particle dispersion can yield
very different two particle spectral functions as are relevant for superconductivity [10]. Thus,
debate remains regarding the importance of the explicit inclusion of the anion states in models
describing the cuprates.
In addition to the identification of doped holes in cuprates occupying O 2p orbitals, similar
studies showed that when NiO is hole-doped with Li, the holes also occupy the oxygen 2p or-
bitals [11]. For Li-doped CoO, the holes have a strongly mixed Co 3d and O 2p character [12].
Given that all of these parent compounds are divalent, one should expect the anion states to
become even more important in higher valence oxides, where charge-transfer energies are gen-
erally smaller due to increased electron affinities of the metal ions.

2.2 Similar effects in undoped negative charge transfer compounds

The previous section detailed the importance of oxygen 2p holes in hole-doped divalent late 3d

transition-metal oxides. In this section we will introduce how such oxygen holes may be present
in undoped high-valence oxides due to the presence of a so-called negative charge transfer
energy. To accomplish this, we first provide a brief example in Figure 1(a) of how crystal field
and Hund’s rule energetics determine the ground state configuration of a correlated transition-
metal ion in a compound. For this example of a Ni3+ ion, first one accounts for multiplet
interactions. According to Hund’s first rule, we assume our lowest energy configuration is the
one with maximum spin. The next highest state we consider has one spin flipped, which in
this case costs energy 2J , where J = 1

14
(F 2 + F 4), and F 2 and F 4 are the multipole Coulomb

(Slater) integrals [13,14]. Next, we account for an octahedral crystal field potential, which splits
the 3d orbitals into an eg group and a t2g group. Evident from this picture is that depending on
the relative sizes of J and 10Dq (where 10Dq is a measure of the point charge crystal field [15]),
one can have either a high-spin or low-spin ground state.
In Fig. 1(b), we now extend our example to a configuration interaction (CI) model. Now we
explicitly account for hybridization with nearest neighbors. Assuming the neighbors are fully
occupied ligands, with CI one constructs a wavefunction out of a linear combination of configu-
rations of the form dn+iLi, where i = {0, 1, 2, ...} and L is a hole in the ligand shell left behind
when an electron hops to the 3d shell. Note that the ligand hole orbital must have the same
symmetry as the central d ion. The energy cost of a ligand electron transferring to the d shell is
the charge-transfer energy ∆, and one must also account for additional Coulomb energies when
extra electrons hop to the d shell. If we set the energy of the dnL0 (i.e. i = 0) configuration to
0, then the energies of the i = 1, 2, 3, ... configurations are given by ∆, 2∆+ U , 3∆+ 3U , and
so on.
Returning to Fig. 1(b), here we analyze possible positive and negative charge-transfer cases
for formally trivalent Ni3+ oxides using a simplified configuration interaction model. Starting
with 3d7 and 3d8L configurations (where L denotes a ligand hole), we show the configuration
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(a) (b)

Fig. 1: (a) The Hund’s rule and crystal field energetics are introduced for a Ni3+ (d7) system.
(b) A configuration interaction model demonstration why low-spin Ni3+ compounds must be
negative charge transfer systems. For ∆ > 0 (left), typical hopping integrals are not strong
enough to push the low-spin bonding state below the high-spin bonding state. For ∆ < 0
(right), however, the low-spin state is easily stabilized as the ground state.

interaction bonding and antibonding states for positive (left) and negative (right) charge transfer
situations. The 3d7 configuration has two states in this simplified picture which are the high-
spin (S = 3/2, t52ge

2
g) and low-spin (S = 1/2, t62ge

1
g) states. The energy separation between

the states before hybridization is considered is given by 2J − 10Dq where J is approximately
1.25 eV (according to atomic Hartree-Fock calculations [14], rescaled by 80% to account for
intra-atomic configuration interaction as usual) and the point-charge crystal-field contribution
10Dq is roughly 0.75 eV (slightly larger than the ∼0.5 eV usually used for divalent compounds,
to account for the shorter bond lengths in formally trivalent compounds). Each of these states
hybridizes with the 3d8L configuration, where the d electrons have a high-spin (S = 1, t62ge

2
g)

arrangement. The ligand hole consists of a linear combination of O 2p orbitals of π or σ bonding
symmetry with the transition-metal 3d orbitals. Thus, the hole can be of eg or t2g symmetry,
yielding two states separated by 2Tpp = (ppσ − ppπ) ≈ 1.5 eV [16].

When hybridization is gradually introduced for this positive charge transfer case, a bonding
S = 3/2 ground state is attained, illustrated by the lower blue line in the figure. Given that
the eg hopping integral is generally about twice as large as the t2g for octahedrally coordinated
transition-metal compounds, one would expect that for increased hybridization strength the low-
spin (red, S = 1/2) bonding state would eventually become the ground state. However, such a
situation would require significantly larger hopping integrals than are present in the 3d oxides.

If instead we consider the negative charge transfer arrangement of our configurations as shown
on the right of Fig. 1(a), a low-spin state arises much more naturally. Now the d8L states are
below the d7, and when hybridization is introduced the bonding state having the symmetry of
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the t62ge
1
g configuration and thus with (S = 1/2)—but with mainly d8L character—is stabilized

as the ground state. Thus by having a negative charge-transfer energy and accordingly a strong
ligand-hole contribution to the ground state, a low-spin Ni compound is realized with typical
hopping integrals. One can consider this as a competition between the Hund’s rule J , which
wants to maximize the spin, and the O 2p – TM 3d exchange interaction which is antiferromag-
netic. If the hole is mainly on the oxygen rather than in a t2g orbital of the (d7) Ni, then it would
rather be in an eg symmetry state and would have a strong antiferromagnetic coupling with the
d8 spin-1 state, leading to a S = 1/2 state. Note that with a negative charge transfer energy, the
stronger eg hybridization leads to a unique inverted contribution to ligand-field splitting from
covalence [17].
In Fig. 2(a), we test this simplified picture using a full configuration interaction calculation for a
NiO6 cluster having Coulomb interactions, crystal-field, spin-orbit, and ligand-ligand hopping
energies characteristic of the perovskite rare-earth nickelates, RNiO3. The black solid line
shows the low-spin/high-spin transition as a function of the effective charge-transfer energy
∆eff and the hybridization strength Veg (with Vt2g fixed at 0.58Veg ). Here, ∆eff accounts for
the various energy shifts of the multiplet Coulomb interactions, ionic crystal-field contribution,
spin-orbit interaction, and Tpp, such that with no hybridization the lowest-energy d8L state
crosses below the lowest-energy d7 state when ∆eff becomes negative. The color of the plot
indicates the contributions of the d7 and d8L configurations to the ground state (note the basis
also contains d9L2 and d10L3 configurations, so we plot the relative weights of the d7 and d8L

for clarity).
A key observation from Figure 2(a) is that the low-spin regime is always characterized by a
dominant d8L contribution to the ground state. This includes a sharp jump in d8L weight at the
spin-state transition, originating from the fact that the hybridization is stronger for the low-spin
states which have more eg holes. The phase diagram confirms the discussion of Figure 1(b)—
that a low-spin state can be achieved with realistic hybridization parameters if the ground state
is mainly d8L—and actually shows that even for very large hopping integrals the low-spin state
is still mainly d8L. Note that the ground state can have more d8L than d7 character even for
∆eff > 0 as the d9L2 and d10L3 configurations push the d8L lower in energy than the bare
charge-transfer value ∆eff . We also indicate with the star in Fig. 2(a) the location of the rare-
earth nickelates in this phase diagram. For these parameters [18], the nickelates are indeed
best described as negative charge transfer compounds. We will discuss the nickelates further in
Section 4.
For clarity, in Fig. 2(b) we demonstrate the relationship between the typically used ∆, and ∆eff

which is more relevant for small and negative charge transfer energy systems. Within our con-
figuration interaction scheme, ∆ defines the central energies of the various configurations. As
displayed in the figure and explained in the caption, configurations with n ligand holes have
energy n∆, with an additional energy-offset due to the Coulomb repulsion U . However, within
each configuration are multiplet, crystal-field, spin-orbit, and ligand-ligand hopping (Tpp) ener-
gies, which mean that the lowest state within each configuration will be shifted from the central
energy by different amounts. One should then define the energy ∆eff , which is the energy be-
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(a) (b)
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Fig. 2: Results of a full configuration interaction calculation. (a) The low-spin phase space is
always characterized by a dominant d8L component in the ground state wavefunction. (b) Solid
lines show the shell average energies, given by 0, ∆, 2∆+U , and 3∆+ 3U for the d7 to d10L3

configurations, respectively. The dashed lines are the lowest multiplet for each configuration,
which account for higher multipole Coulomb interactions, crystal fields, spin-orbit interactions,
and Tpp. The arrows show the difference between the configuration averaged ∆ (used for the
x axis), and the effective charge-transfer energy ∆eff , which becomes negative when the lowest
energy d8L multiplet is lower than the lowest d7 multiplet.

tween the lowest energy d7 state and the lowest energy d8L state. For the case of Fig. 2(b), the
difference between ∆ and ∆eff is relatively small, but for other elements and d shell fillings, the
difference can be significantly larger.

3 Classification of correlated compounds

3.1 Mott-Hubbard and charge-transfer insulators

It has been known for many years that often correlated transition-metal compounds such as NiO
or CoO have substantial electronic band gaps of a few eV, whereas band theory predicts much
smaller gaps or no gaps at all [19]. The explanation for this discrepancy came from the ideas
of Mott and Peierls [20, 21], and relies on the fact that the 3d electrons forming states near
the Fermi level are relatively localized, and therefore have large Coulomb repulsion energies,
denoted by U . This U then suppresses charge fluctuations of the form dndn → dn−1dn+1 which
would describe the conduction in such a material. Formalizing these ideas into a suitable model
led to the development of the Hubbard model [22, 23] and such materials are accordingly often
termed Mott-Hubbard insulators. A simplified illustration of the effect of the Coulomb repulsion
U on an otherwise metallic 3d density of states is shown in Fig. 3(a), where a broad metallic
band splits into a full lower band and empty upper band with an insulating gap determined by
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(a) (b) (c)Mott-Hubbard Charge Transfer

Fig. 3: Distinction between Mott-Hubbard and charge-transfer insulators introduced by the
ZSA work. (a) A broad, metallic band is split into full and empty electron removal and addition
bands by Coulomb repulsion, and leads to an insulating gap of size U . (b) The low-energy
charge fluctuations of energies U and ∆ are illustrated. The red orbitals correspond to cor-
related transition-metal sites while the blue are those of the ligands. (c) The concept of a
charge-transfer insulator, where the gap now involves the ligand states and is determined by ∆,
which can be much smaller than U .

the size of U . Figure 3(b) demonstrates the type of charge fluctuation in a correlated compound
which costs energy U .

While this Mott-Hubbard understanding of correlated insulators was enormously successful,
some new issues arose when applying it to various materials. It was found, for example, that
the size of U in materials like NiO (∼7 eV) is actually quite a bit larger than the electronic
band gap (∼4 eV), and thus it was evident that something else must be at play to determine the
gap. Additionally, among series of such materials, the size of the gap often correlates more
directly to the anion electronegativity than to the cation U . In fact, many sulfides which should
have comparable U values to oxides are actually conductors. Further, new experiments and
configuration interaction based interpretations in the mid 1980s found that the first ionization
state of NiO had largely oxygen 2p character, and not the expected lower Hubbard band (d8 →
d7) character [24, 25].

As a solution to these discrepancies, the Zaanen-Sawatzky-Allen (ZSA) theory of correlated
compounds was developed [26]. By using an Anderson impurity model applicable to such
insulating compounds, the ZSA study found that in many compounds U is not the important
energy scale for the band gap, but rather the charge-transfer energy ∆. The charge-transfer
energy is defined as the energy cost of removing a ligand (i.e. oxygen, sulfur, etc.) 2p electron
and placing it in a transition-metal 3d orbital. A schematic density of states (in the limit of
no metal-ligand hybridization) is shown for a charge-transfer compound in Fig. 3(c). Again
the upper part of the Figure shows the DOS without Coulomb interactions considered, this
time now with the 3d band in red and a fully occupied ligand 2p band in blue. In the lower
part, the Coulomb repulsion is included, leading to the formation of upper and lower Hubbard
bands. Now one can see that if ∆ is smaller than U , the lower-energy charge fluctuations which
determine the energy gap of the compound will be of the form p6dn → p5dn+1, where p refers
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to the ligand 2p orbitals as shown in Fig. 3(b). The ZSA scheme led to a very comprehensive
understanding of the conductivity behavior of many classes of transition-metal compounds [26].
In particular it is the early transition-metal oxides, such as V2O3, Ti2O3, Cr2O3, etc., which can
be described as Mott-Hubbard insulators, while the later 3d oxides like CoO, NiO, and CuO are
charge-transfer insulators.

3.2 Mixed valence and negative charge transfer insulators

While the original ZSA theory provided a sound qualitative understanding of many transition-
metal compounds, it did not focus much on compounds with high oxidation state cations. Gen-
erally, for increased cation oxidation states while keeping the anions fixed, one expects a de-
crease in the charge-transfer energy as the electron affinities of the higher valence states are
larger. In Fig. 4, we show schematic electron addition and removal spectra, in the limit of van-
ishing metal-ligand hybridization, as the charge-transfer energy is gradually reduced from the
Mott-Hubbard regime to the charge-transfer regime and further. We have a broad band (shown
in blue) due to the light electrons (ligand 2p) and narrow Hubbard bands (red) for the correlated
electrons (metal 3d). The Hubbard bands are again separated by the Coulomb repulsion energy
U , and the energy separation between the center of the upper Hubbard band and the center of
the light-electron band is again defined as the charge-transfer energy, ∆. This definition of ∆ is
the most common [26], but we also define an effective charge-transfer energy ∆eff between the
top of the broad band and the bottom of the upper Hubbard band. This effective charge-transfer
energy is more relevant when describing high oxidation state compounds. When higher mul-
tipole Coulomb interactions (multiplets) are included, ∆eff would also account for these, and
would be the energy difference between the lowest (i.e. Hund’s rule) dn state and the lowest
dn+1L state. In our simple schematic, which neglects multiplet effects, we can relate ∆ and
∆eff as

∆eff = ∆− wd + wp

2
(1)

where wd and wp are the widths of the metal and ligand (3d and 2p) bands. If multiplets are
included, one should use the strict definition of ∆eff as the energy difference between the lowest
dn and dn+1L multiplets.
As the charge-transfer energy is reduced moving downward in Fig. 4, four distinct regimes are
encountered. The first two are the Mott-Hubbard and charge-transfer regimes, as discussed
above in relation to the ZSA work. However, if one continues to reduce the charge-transfer
energy, the mixed-valence phase is reached. Here the dn+1 original upper Hubbard band has
now crossed into the top of the valence band. As indicated, the ground state becomes more
difficult to represent, with some atoms in a dn and some in a dn+1 configuration, leading to lower
and upper Hubbard bands of dn−1 and dn+2, respectively, which are separated by a total energy
of 2U . The now very complicated ground state wavefunction depends on details of longer-range
interatomic interactions, which may lead to a kind of ordering of the transition-metal valence
states. An example is the case of magnetite (Fe3O4), where in the spinel structure the tetrahedral
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Fig. 4: The energetics of correlated compounds depicted with schematic electron removal and
addition spectra. A broad band, nominally full, is shown in blue and narrow, correlated (d)
bands are shown in red. A very small hybridization is assumed between the broad and narrow
bands. A constant Coulomb repulsion U separates lower and upper Hubbard bands throughout
the figure, whereas the charge-transfer energy ∆ is varied. The Fermi level is shown with a
dashed vertical line and electron removal spectra are shaded in, while electron addition spectra
are only outlined. Moving from the top to bottom, the energy of the correlated bands is shifted
lower, leading to a reduction of the charge-transfer energy and the four distinct regimes. The
nature of the ground state wavefunction |ψ0〉 is given for each case.

sites contain Fe3+ but the octahedral sites are mixed valent (though not due to a negative charge-
transfer gap), and below the so-called Verwey transition some kind of charge ordering occurs
which is not yet clearly resolved [27, 28]. Such charge density wave like situations can indeed
involve multiple q vectors and form complicated structures. Additional examples are doped
LaMnO3 and other doped transition-metal compounds. In Section 5 we will consider a case
of very small hybridization in SmB6 where a unique, new form of ordering of the valence in
momentum space rather than real space is suggested.
Moving beyond the mixed valence regime in Fig. 4, by decreasing the charge-transfer energy
further we enter the negative charge transfer phase. Here the ground state is described as
|dn+1L〉 meaning that the upper and lower Hubbard bands are now dn+2 and dn states, respec-
tively, where again n is the filling which corresponds to the formal valence. The ligand band has
now been accordingly self-doped [29, 30] with holes. In other words, this regime corresponds
to the case where a transition-metal cation does not adopt its formal oxidation state, instead
keeping one extra electron which leaves the anion with one fewer. Generally electron affinities
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Fig. 5: Lowest energy charge fluctuations in the different classes of correlated compounds.

increase moving toward the end of the 3d series and, as mentioned above, with increasing cation
valence. Thus it is expected that formally trivalent Ni3+ and Cu3+ oxides, as well as formally
tetravalent oxides of Co4+ and Fe4+, will be in the negative charge-transfer regime, or at least
mixed valent. One can also move toward the negative charge-transfer regime via ligands with
weaker electronegativities. Thus going from oxides to sulfides or selenides (or from fluorides
down to iodides) will generally move one closer to, or into, the negative charge-transfer regime.
In Fig. 5, we extend the schematic charge fluctuations of Fig. 3(b) to now include the mixed
valent and negative charge-transfer classes. As before, the Mott-Hubbard and positive charge-
transfer classes are characterized by lowest energy charge fluctuations determined by U and
∆, respectively. Mixed valent compounds are typically metals or have very small gaps, with
charge fluctuations that can involve both the cation and anion states. In the limit of very small
hybridization, however, very interesting charge fluctuation behavior can occur, as we will dis-
cuss in the context of SmB6 in Section 5. Negative charge-transfer compounds have a metallic
ligand 2p DOS before the inclusion of hybridization, and so may be (bad) metals, or may have
many different behaviors, including metal-insulator transitions as in the rare-earth nickelates.

4 Negative charge transfer compounds

As alluded to in the previous section, in general the conditions favorable for negative charge-
transfer energies are large electron affinities on the cations, achievable through high formal
valences and cations near the end of the 3d series, and low ligand electronegativities, achievable
by going from halides to chalcogenides to pnictides, or moving down the respective columns of
anions in the periodic table. In this section, we will look at some example materials in detail.

4.1 Perovskite rare-earth nickelates

The perovskite rare-earth (R) nickelate compounds,RNiO3, exhibit many fascinating properties
including a metal-insulator transition, with temperatures tunable via the size of the rare-earth
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ion [31]. In the insulating phase, the nickelates undergo a structural distortion where alternating
NiO6 octahedra expand and compress in a rocksalt pattern breathing distortion. Additionally,
within this insulating phase the nickelates also order antiferromagnetically with an unusual q =

(1/4, 1/4, 1/4) propagation vector. First synthesized in the 1970s [32], the nickelates rose in
popularity through the early 1990s [33–35], and are extremely popular today as they are a prime
example of how emergent properties can be tuned through heterostructured growth [36–40].
The nickelates have a formal Ni3+ oxidation state, suggesting a 3d7 occupation of the nickel.
Various studies have indicated that the nickelates possess a low-spin state, so early interpreta-
tions were that the ground state had a t62ge

1
g occupation, with S = 1/2. However, such a state

should have a strong Jahn-Teller effect similar in strength to that observed in Mn3+ perovskite
oxides like LaMnO3, but one is not observed experimentally. Additionally, one has the argu-
ments laid out in Section 2, which showed that low-spin Ni3+ oxides should be very rare if not
impossible. With these key observations established, it has become clear in recent years that the
nickelates are actually negative charge-transfer compounds with a ground state better described
as 3d8L (though with a certain d7 contribution to the wavefunction due to strong hybridization)
and with a S = 1/2 spin that emerges from antiferromagnetic coupling between a t62ge

2
g (S = 1)

configuration and a self-doped (S = 1/2) ligand hole.
When viewed as negative charge transfer materials, the metal-insulator transition and unique
magnetic ordering of the nickelates can be understood on a theoretical basis. As shown by Mi-
zokawa et al. [41], and later by others [42,43], when the negative charge-transfer d8L (S = 1/2)
ground state undergoes the breathing distortion, a traditional 3d-based charge disproportiona-
tion does not occur. Instead, a bond disproportionation occurs, and the distinct expanded and
compressed NiO6 octahedra take on respective configurations tending toward d8L0 (S = 1) and
d8L2 (S = 0). The situation then appears to instead resemble Peierls type of physics, involving
strong electron-phonon interactions.
Recently we have adapted these negative charge-transfer theories to models which can be ap-
plied to the analysis of resonant x-ray spectroscopy experiments. Conventional approaches to
the analysis of various core-level absorption, photoemission, and scattering data include mul-
tiplet ligand-field theory and the multiplet Anderson impurity model. In the former, a MO6

cluster is analyzed using configuration interaction theory, including all Coulomb interactions
of the 3d and relevant core shells, and hybridization with the nearest neighbor ligands is in-
cluded. In the impurity approximation, hybridization with a bath of ligands is included, instead
of just the nearest neighbors, to account for the ligand bandwidth. These two techniques have
had great success in the analysis of core level spectra for the 3d oxides (see, e.g. [44–46]).
However, these approaches were never successful in modelling the various spectra measured on
rare-earth nickelates.
Key x-ray spectroscopy experiments on the nickelates include x-ray absorption spectroscopy
(XAS), resonant magnetic diffraction (RMD), and resonant inelastic x-ray scattering (RIXS).
First, the oxygen K-edge XAS spectra show a strong pre-edge feature [47], indicative of a large
hole character in the oxygen 2p orbitals, which can be viewed as evidence for negative charge-
transfer energetics. The XAS spectra at the Ni L2,3 edge are characterized by a strong, sharp first
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peak, followed by a broader continuum-like feature [48, 49]. Earlier studies using a multiplet
ligand-field theory (MLFT) approach to interpret these XAS lineshapes showed some success
with interpreting the primary features as different multiplet peaks arising from a highly mixed
final state spectrum [50]. However, such an interpretation has now been found to be inconsistent
with the lineshapes of RMD spectra, where the magnetic response is heavily concentrated at the
energy of the first sharp XAS peak. In fact, most models to date could obtain a certain degree
of agreement with the lineshapes of either XAS or RMD, but not both.
The conventional ligand-field theory (or cluster model) used for L2,3 edge spectroscopy, and
employed for most previous studies on the nickelates, has the Hamiltonian:

HLF = Hdd
U +Hpd

U +Hd
l·s +Hp

l·s +Hp
o +Hd

o +HL
o +HdL

hyb, (2)

with,

Hdd
U the Coulomb repulsion between two 3d electrons including all multiplet effects,

Hpd
U the Coulomb repulsion between a 2p core and 3d valence electron including all

multiplet effects,
Hd

l·s the 3d spin-orbit interaction,
Hp

l·s the 2p core level spin-orbit interaction,
Hp

o the onsite energy of the 2p core orbitals,
Hd

o the orbital dependent onsite energy of the 3d valence orbitals,
HL

o the orbital dependent onsite energy of the Ligand orbitals, and
HdL

hyb the hybridization strength between the 3d and Ligand orbitals.

The onsite energies account for the specific charge-transfer energetics of the system. Detailed
expressions for each term can be found elsewhere [18]. This model can be adapted to the
breathing-distorted nickelates by moving to a double cluster model, where two Ni-O octahedra
represent the expanded and compressed octahedral sites of the nickelate lattice. One then has
the Hamiltonian

H = HLFA
+HLFB

+Hmix (3)

where HLFA
and HLFB

are complete ligand field theory Hamiltonians of the compressed and
expanded sites, and Hmix adds hybridization between them. Realizing that the rocksalt distor-
tion means the two octahedra types are arranged in an Oh symmetric manner, Hmix consists of
hybridization operators having eg and t2g symmetry [18].
With this model for the local electronic structure, a two site arrangement is created which does
not break the Oh point group symmetry, and both the negative charge transfer self doping and
the bond disproportionation physics can be captured. Importantly, with such a model all of the
3d orbitals are in the basis (as opposed to the earlier restricted orbital studies [41–43]) and the
core orbitals are also in the basis, so accurate spectroscopy simulations can be performed. The
effects of negative charge transfer and bond disproportionation can then be compared against
experiment.
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Fig. 6: Ground state characteristics and spectral responses of perovskite nickelates from a
double cluster model. (a-c) The Ni (a) and ligand (b) occupations show that the breathing
distortion involves primarily the oxygen 2p holes rather than the Ni 3d electrons. (c) The spins
on the long and short bond Ni tend toward S = 1 and S = 0, respectively. (d) The single cluster
limit (VI = 0) cannot reproduce the two-peaked structure at each edge with MCD focused on the
first peak, but with VI > 0.3 these features are captured by the double cluster. (e) A breathing
distortion splits the XAS peaks further, and the magnetic diffraction signal is focused at the
energy of the first XAS peak, both in agreement with experiment.

In Fig. 6(a-c), we detail the ground state properties of the double cluster model, as a function
of the size of the breathing distortion. The results confirm those of the previous restricted
orbital studies—under the breathing distortion, very little charge disproportionation occurs via
the 3d electrons, whereas the ligand holes are rather active. With no breathing distortion each
octahedron has a 3d8L configuration, but as shown in Fig. 6(b) in the presence of the breathing
distortion the holes bond more strongly with the short bond Ni than the long bond. This leads to
a reduction of the spin moment on the compressed octahedron, such that it tends toward S = 0

while the expanded octahedron tends toward S = 1 (Fig. 6(c)).

In Fig. 6(d), we show calculated Ni L2,3 XAS spectra for different values of intercluster hopping
VI [18], starting from the conventional single cluster limit (VI = 0). In the single cluster
limit, the spectrum looks very different from experiment [48,49], as the characteristic two peak
structure for the L3 resonance near 853 eV is completely missing. However, for increasing
VI to 0.3 and higher, a pronounced first peak is pushed out of the resonance, and the spectra
strongly resemble experiment. Thus it is evident for such a highly covalent, negative charge-
transfer energy compound that intersite interactions not captured in single cluster models are
very important in the spectral response. Additionally, one can see that the fundamental magnetic
circular dichroism (MCD) response is strongly concentrated at the first sharp peak, which is a
crucial requirement for agreement with magnetic scattering experiments.
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In Fig. 6(e) we show the XAS, MCD, and resonant magnetic diffraction (RMD) responses
for three different sizes of lattice breathing distortions, δd. First, we see that for increasing
breathing distortion, the total XAS spectral shape (summed over the two sites) only changes a
minor amount, with the two L3 peaks moving apart with increased breathing distortion. This
trend is in good agreement with the rare-earth series, where smaller rare earths lead to larger
breathing distortion and slightly more separated XAS peaks [48, 49]. Next, we note that the
MCD spectra of the two sites become inequivalent when the breathing distortion is introduced.
In accordance with the different spin moments for the two Ni, the long bond MCD spectrum
becomes stronger and the short bond becomes weaker. However, the strongest response is
always at the energy of the first XAS peak. This leads to the distinct RMD spectral shapes as
shown, which again are strongly peaked at the first XAS resonance. This characteristic agrees
very well with all experiments on various nickelate bulk and heterostructure materials.
The double cluster model thus bridges the gap between the recent theories of bond dispropor-
tionation in the nickelates [41–43], and experimental observations made through spectroscopy.
The key aspect of the model is the inclusion of the full 3d orbital degeneracy, as well as the 2p

core shell, which allows the simulation of core level spectroscopy. The excellent agreement be-
tween the calculated and experimental XAS and RMD provides validation for both the negative
charge-transfer energy and bond disproportionation theory of the nickelates.

4.2 Perovskite bismuthates

Up until this point, our focus has been on correlated transition-metal compounds. However,
it has recently been shown that the non-correlated perovskite bismuthates SrBiO3 and BaBiO3

exhibit characteristics very similar to the negative charge transfer picture discussed above [51].
These compounds, when doped, are high-Tc superconductors and have accordingly attracted
significant attention. Interestingly, at low temperatures they exhibit the same breathing type
of lattice distortion that was introduced above for the nickelates. Every other octahedron ex-
pands or compresses in a rocksalt-pattern distortion. Earlier studies suggested that the breathing
distortion was concomitant with a charge disproportionation, where the formally tetravalent Bi
cations disproportionate into Bi3+ and Bi5+ for the expanded and compressed octahedra, respec-
tively [52–56]. However, Foyevtsova et al. recently showed, using density-functional theory
calculations, that the oxygen 2p states are very important for the bismuthates in a very similar
manner to negative charge-transfer transition-metal compounds [51]. In particular, strong hy-
bridization between O 2p and Bi 6s states pushes antibonding states of mainly O 2p character
with A1g symmetry above the Fermi level. Under the breathing distortion, pairs of these oxygen
holes then condense into A1g molecular orbitals around the short bond Bi sites, in a similar
nature to the Eg symmetry oxygen hole action of the nickelates.
We first show this analogy between the bismuthates and nickelates schematically in Fig. 7. For
the nickelates, the Eg symmetry d8 → d7 electron removal states are below the top of the
oxygen band, and mix strongly with the Eg symmetry oxygen states near the top of the oxygen
band. This leads to the distinct, antibonding Eg symmetry oxygen hole states present in the
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Nickelates Bismuthates

Fig. 7: Schematic showing the similarities of the perovskite nickelate and bismuthate electronic
structure. In the nickelates, the Ni 3d states which have Eg symmetry mix with the oxygen 2p
states of the same symmetry, which are located near the top of the valence band. Consequently,
the oxygen hole states pushed out of the top of the valence band have Eg symmetry. In the
bismuthates, the situation is similar, but now the relevant cation states are the Bi 6s, which are
very deep. They mix strongly with the oxygen 2p states having A1g symmetry which are located
at the bottom of the oxygen DOS. The hybridization is very strong, leading to states of primarily
oxygen 2p character and A1g symmetry being pushed out of the top of the valence band. Note
the cation bands are drawn with narrow widths before and after hybridization for simplicity.

nickelates, which then form molecular orbitals around short-bond Ni sites in the presence of the
breathing distortion. For bismuthates the situation is very similar to the nickelates, except now
the Bi 6s states are the important cation states and therefore it is states of A1g rather than Eg

symmetry which are important. The very deep 6s states mix very strongly with the A1g oxygen
2p states, which are actually near the bottom of the oxygen band. The hybridization is strong
enough, however, to push antibonding states of primarily oxygen character above the Fermi
level. Again, these oxygen hole states then disproportionate under the breathing distortion,
leading to the formation of A1g oxygen hole molecular orbitals around the short bond Bi sites.
Thus, even though the magnetic and correlation physics of the nickelates and bismuthates are
drastically different, strong similarities exist regarding the importance of the oxygen 2p states
in the electronic structure.

In Fig. 8, we show the actual density-functional results of Foyevtsova et al. [51], where the up-
per and lower panels contain the projected densities of states for the compressed and expanded
octahedra, respectively, in the low-temperature, breathing-distorted phase of SrBiO3. Of partic-
ular significance is the strong, narrow conduction band of the compressed octahedron. Here the
DOS projection shows that these states are of primarily O 2p character, having A1g symmetry.
These states are accordingly suppressed for the expanded octahedron, demonstrating the bond
disproportionation that involves action of the oxygen 2p holes, rather than the typically assumed
Bi charge disproportionation. It is important to note that this is a pure DFT calculation for a
non-correlated material, and thus demonstrates clearly the extremely important role of the O
2p based molecular orbitals in forming the low-energy scale states, which in the end are also
responsible for the superconductivity in the potassium doped materials.
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Fig. 8: Projected densities of states for the compressed (upper) and expanded (lower) octahedra
in the low temperature, breathing distorted phase of SrBiO3.

4.3 Other negative or small charge transfer compounds

The nickelates are arguably one of the most highly studied negative charge transfer compounds
at present. However, there are many other compounds which are known to be or might be
negative charge transfer systems that have been studied in recent years. In fact, one of the
first studies to use the term “negative charge transfer energy” was carried out by Mizokawa et
al., and investigated the compound NaCuO2 [57]. As this is a sort of reference compound for
the high-Tc cuprates, several groups studied the electronic structure of this material around the
same time [58, 59]. Indeed, through an analysis of x-ray photoelectron spectroscopy (XPS),
Mizokawa et al. showed that the ground state does not contain Cu3+ (3d8) as the formal valence
counting would suggest, but rather it is better described as 3d9L, where again oxygen holes are
present due to a negative charge transfer energy.

Other negative charge transfer compounds include the disulfide pyrites FeS2, CoS2, and NiS2.
Here one expects that the S2 would have a 4- valence and the cations accordingly 4+, but in fact
it is found that the cations are divalent and there are accordingly missing sulfur 3p electrons.
This leads to the formation of sulfur pairs with a net pair valence of 2- rather than 4-. In this
case the antibonding S 3p states in the pairs are empty and therefore form rather narrow bands
just above the chemical potential [60]. Accordingly, the pyrites exhibit very interesting and
diverse properties: FeS2 is a diamagnetic semiconductor, CoS2 is a ferromagnetic metal, and
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Fig. 9: The energetics of correlated compounds depicted with schematic electron removal and
addition spectra in a similar nature to Fig. 4. A broad band, nominally full, is shown in blue and
narrow, correlated (d) bands are shown in red. A very small hybridization is assumed between
the broad and narrow bands. A constant Coulomb repulsion U separates lower and upper
Hubbard bands throughout the figure. From the top to bottom, the ligand electronegativity
is decreased, which can lead to different classes of compounds for the same transition-metal
cations, even having the same formal valence.

NiS2 is a Mott insulator which orders antiferromagnetically [61,62]. The electronic structures of
these pyrites have been studied by various x-ray spectroscopies [60,63–66]. Further interesting
properties emerge when some or all of the sulfur is substituted by Se. In particular, Ni(S1−xSex)2

is highly studied, as it exhibits a metal-insulator transition for x = 0.23 at T = 0, which changes
to x = 0.4 at room temperature [60, 67–69].
An additional highly studied negative charge transfer compound is NiS [70–72] and the related
NiS1−xSex [73, 74]. Here the 2+ formal valence of the Ni is not abnormally high. However,
the anions S and Se have increasingly low electronegativities compared to oxygen, which also
can lead to a mixed valence or a negative charge transfer energy. We show this effect schemat-
ically in Fig. 9, which is similar in nature to Fig. 4, but now we span the four classes of cor-
related compounds by shifting the ligand band, rather than the transition-metal bands. In this
sense, moving from the positive to negative charge transfer regime in Fig. 9 would represent
moving from NiO to NiS1−xSex, where the formal Ni valence does not change but the ligand
electronegativity does. Recent studies classify NiS as a self-doped, nearly compensated, anti-
ferromagnetic metal [70]. It is interesting to note that researchers have been searching for Ni1+

oxides (although in 2D structures) in order to simulate the high-Tc cuprate electronic structure.
For example, recently La4Ni3O8 has been studied in this regard [75]. In fact, in a negative charge
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transfer scenario, the Ni in NiS would be 1+ with holes in the sulfur band. In this sense it would
indeed share similarities with very heavily hole-doped cuprates, having a d9 transition-metal
configuration and also a presence of ligand holes.
Moving toward the center of the 3d elements, the formally tetravalent Fe perovskites AFeO3

with A = Ca, Sr, or Ba are known to have negative charge transfer energies [76–81]. This class
of materials possesses a wide range of interesting properties. CaFeO3 was found to exhibit a
charge-ordered state [81], which might actually be similar to the bond-disproportionation states
in the nickelates and bismuthates. SrFe1−xCoxO3 is ferromagnetic and exhibits a large negative
magnetoresistance [78]. La1−xSrxFeO3 with x ≈ 2/3 also exhibits a charge disproportionation,
accompanied by an order of magnitude resistivity jump and antiferromagnetic ordering [77,82].
Lastly, an example of an early 3d transition-metal compound with a negative charge transfer
energy is CrO2 [29]. This material has attracted significant interest as a half-metallic ferro-
magnet [83], and was industrially very relevant in the past as the main active component in
many (now all but obsolete) magnetic recording tapes [84]. A combination of LSDA+U cal-
culations [29] and spectroscopy [83] have verified that, even though the 3d electrons of the Cr
have large Coulomb interactions, the material is metallic due to the negative charge transfer
energy, with charge carriers at the Fermi energy having a large O 2p component.

5 Mixed valent rare-earth compounds

In this section, we will look at existing mixed valent compounds in detail. As mentioned earlier,
the combination of correlated and band like states crossing the Fermi level in a mixed valent
compound leads to a very complicated electronic structure. However, the mixed valent rare-
earth compounds, such as SmB6 and SmS have a slightly simplified description due to the
very weak hybridization between the correlated 4f states and the broad band states. The full
electronic structure is no doubt very complicated, but the weak hybridization leads to some very
clear and interesting phenomena in these materials.
Samarium hexaboride was first heavily studied from the late 1960s to early 1980s. Early ex-
perimental studies of x-ray absorption [85] and susceptibility [86] measurements showed ev-
idence that the Sm was present in both divalent and trivalent states, corresponding to f 6 and
f 5 orbital occupations, respectively. Later experiments showed several interesting features, in-
cluding a resistivity saturation at low temperatures and a lack of magnetic ordering down to
0.35 K [87, 88]. A similar lack of magnetism was found for SmS, which was also known to
be a mixed valent compound [89]. The unique characteristics of such mixed valent compounds
were analyzed with various theories, the most popular being the Anderson impurity and lattice
models [90–102].
SmB6 is now under intense study again, as recent theory work has predicted that it could be a so-
called topological Kondo insulator [103, 104]. The low-temperature resistivity saturation could
then be an indication of topologically protected surface states. Many experimental studies have
been undertaken to test the topological insulator hypothesis (see, e.g. [105–108]), but a clear
answer has yet to emerge.
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lead to the large number of excitations spread over ∼20 eV.

The tightly contracted and highly correlated 4f shells of the Sm ions in SmB6 lead to very
strong multiplet effects in the electron addition and removal spectra. Further, since the compli-
cated mixed valent ground state has components of both the fn and fn+1 atomic fillings (with
the lowest energy states being the Hund’s rule ground states in each case), the one-electron
excitation spectrum will contain four sets of features corresponding to electron addition and re-
moval from each of the fillings (this effect was also shown schematically for the mixed-valence
class in Fig. 4). In Fig. 10, we show a calculation of the multiplet rich, one-electron excitation
spectrum in the atomic limit of a mixed valent Sm system. The four regions of the spectrum are
indicated, and the term symbols denote the dominant contribution of each main peak (the usual
2S+1LJ notation is used, but J is omitted in cases where different J peaks are too close to dis-
cern at this scale). There are a set of low energy excitations present near the Fermi level—since
the lowest-energy f 5 and f 6 multiplets are nearly degenerate in such a mixed valent material,
the one-electron removal from f 6 reaches the very low energy f 5 states, and the one-electron
addition to f 5 reaches the very low energy f 6 states. However, we cannot add an electron to f 6

or remove one from f 5 at the low energy scale.

Further away from the Fermi level are the high-energy lower and upper Hubbard bands com-
posed of f 5 → f 4 and f 6 → f 7 excitations, respectively. Each set of excitations is separated
from the Fermi level by the Coulomb energy U , leading to a total energy separation of 2U , as
was also shown schematically in Fig. 4. An important observation from this plot are the very
different intensities of the various multiplet peaks. This is of course not surprising, but the in-
tensities of these peaks are related to the coefficients of fractional parentage (CFPs) for adding
and removing electrons to/from the Hund’s rule lowest energy states of the f 5 and f 6 configu-
rations. These CFPs also play an important role in the intersite hopping of the compound, so
we will investigate them in some detail in the following.
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It was shown in the early work of Racah [109] that one could construct antisymmetrized eigen-
functions for a general many-electron atomic configuration ln by using a suitable linear com-
bination of the states obtained by angular-momentum coupling one additional electron to the
eigenfunctions for the ln−1 configuration. The CFPs are then the coefficients of these linear
combinations. One can quickly realize, then, that the required transition amplitudes between
fn and fn−1 configurations for calculating one-electron Green functions or hopping matrix ele-
ments will also be defined by these CFPs. An extensive tabulation of these coefficients is given
by Nielson and Koster [110].
For a given fn−1 configuration of the correlated 4f shell, if we assume for now the validity
of Russell-Saunders LS-coupling, we have a many-body wavefunction |Ψn−1

LSJ 〉. The electron
addition amplitude to reach a final state |Ψn

L′S′J ′〉, which as stated above relates to the CFP for
particular configurations, is then given by

〈Ψn
L′S′J ′ |f †lsj|Ψ

n−1
LSJ 〉 (4)

where f †lsj creates an f electron with the given quantum numbers. As shown for example by
Hirst [111], this quantity can be written in terms of 3-j and 9-j symbols as

〈Ψn
L′S′J ′ |f †lsj|Ψ

n−1
LSJ 〉 =

[(
L l L′

−L L− L′ L′

)(
S s S ′

−S S − S ′ S ′

)]−1


L L′ l

S S ′ s

J J ′ j

CJ,J ′,j

(5)
where

CJ,J ′,j =
√

(2J + 1) (2J ′ + 1) (2j + 1) . (6)

For one-electron addition and removal spectra of a mixed valent compound, the transition rates
are computed starting from the Hund’s rule ground states of the fn and fn−1 configurations,
into all possible states that can be reached by removing or adding an electron. For the specific
example of SmB6, as shown in Fig. 10, the starting configurations are f 5 and f 6, and thus one
can reach electron removal states of f 4 and f 5, and electron addition states of f 6 and f 7.
Closely related to the one-electron addition and removal spectra in a mixed valent compound
are the intersite hopping integrals which couple the fn and fn−1 configurations. If we define
our fn Hund’s rule ground state as |Ψn

H〉, then it can transition to the fn−1 states |Ψn−1
i 〉, with a

total intensity of
I−T =

∑
i

∣∣〈Ψn−1
i |f |Ψn

H〉
∣∣2 = n , (7)

where sum rules and the degeneracy of the f shell dictate that I−T = n. In other words, the
total intensity is given by the number of electrons which can be removed from the fn configu-
ration (for the actual hopping processes this is then scaled by the one-electron overlap integral).
Similarly, the total one-electron addition intensity for the |Ψn−1

H 〉 Hund’s rule ground state is

I+
T =

∑
i

∣∣〈Ψn
i |f †|Ψn−1

H 〉
∣∣2 = 15− n , (8)

where now the sum rule depends on the number of holes available in the shell (14− [n− 1]).
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Fig. 11: Reduction factors when transition rates are restricted to Hund’s rule ground states for
final state. (a) Electron removal from a fn Hund’s rule ground state into a fn−1 Hund’s rule
ground state. (b) Electron addition from a fn−1 into a fn state. The asymmetry between (a) and
(b) arises from the degeneracy of the states.

For the mixed valent rare-earth compounds, the one-electron overlap integrals are generally very
weak due to the contracted 4f radial wavefunctions. This weak hopping means that often the
only important interactions to consider for the ground state are between the Hund’s rule ground
states of each configuration (all other higher-energy states can be neglected for the low-energy
scale physics). For the case of SmB6 these important lowest energy states are the 6H5/2 and
7F0 states of the f 5 and f 6 configurations, respectively. Thus the intensity integrals of Eqns. (7)
and (8) can be restricted to final states corresponding to the Hund’s rule ground states. We
then have diminished angular matrix elements for this Hund-Hund hopping, now with a total
intensity given by

I−H =
∑
m′

j

∣∣∣〈Ψn−1
H,m′

j
|f |Ψn

H,mj
〉
∣∣∣2 (9)

and

I+
H =

∑
m′

j

∣∣∣〈Ψn
H,m′

j
|f †|Ψn−1

H,mj
〉
∣∣∣2 (10)

where |Ψn
H,mj
〉 denotes a particular mj Hund’s rule ground state of the n electron configura-

tion. We demonstrate the strong reduction in hopping strength that can take place in such a
situation by plotting I−H/I

−
T and I+

H/I
+
T in Figs. 11(a) and 11(b), respectively. This effect was

demonstrated by Hirst [111] using Eqn. (5) within the LS-coupling approximation. In Fig. 11,
we show comparable results to Hirst, but now via slightly more precise exact diagonalization
calculations in intermediate coupling using the code Quanty [45, 112–114]. From Fig. 11(a),
we see there is no reduction factor for the electron removal from a f 1 configuration. This of
course makes sense, since the f 0 final state is non-degenerate, so no transition intensity is lost
by restricting the final state to be a Hund’s rule ground state. However, one finds a very strong



1.24 George Sawatzky and Robert Green

reduction for both electron removal and electron addition which ends in a f 6 configuration,
for example. The reason for the very strong reduction in this case is that the f 6 Hund’s rule
ground state is a 7F0 singlet. This will be important for our further discussion of SmB6 below.
Finally, note that the asymmetry between the plots arises from the degeneracies of the states: a
singlet 7F0 f

6 state can hop to any of the 6 degenerate states of the 6H5/2 f
5 configuration, but a

particular one of those 6 only hops to the one singlet 7F0 state. This observation is similar in na-
ture to the “1/N” scaling arguments used to avoid infrared divergences and solve the Anderson
impurity model in earlier studies of rare-earth compounds [98–101].
As evident from Fig. 11, the hopping for such a mixed valent compound (e.g. SmB6) can be very
weak, even on top of the effect of contracted 4f radial wavefunctions. The importance of these
angular matrix element effects is also evident from the overestimated dispersion widths in DFT
calculations, which capture the contracted radial wavefunction effect, but not the CFP effect.
Dispersional widths of the f bands for SmB6 are more than an order of magnitude larger in DFT
calculations compared to those found in ARPES experiments (∼200 vs. 7 meV) [115–117].
Within the above approximations, the only f -f hopping allowed at low energy scales occurs via
removing an electron from an f 6 atom and adding it to an f 5 atom, both in their Hund’s rule
ground states. More specifically, the f 6 atom will transition from a 7F0 state to a 6H5/2 state,
and the f 5 atom will transition from a 6H5/2 to a 7F0 state. From the coefficients of fractional
parentage, the transition amplitude between the 7F0 singlet and a single mj state of the 6-fold
degenerate 6H5/2 term is 0.200 times the total f 6 → f 5 amplitude (where we account for the
degeneracy by dividing by

√
1/6). Similarly, the amplitude from one of the 6H5/2 states to the

7F0 state is 0.164 times the total f 5 → f 6 amplitude. Multiplying these two amplitudes for the
total f -f hopping process gives a reduction factor of 0.033 for the f bandwidth compared to
the one-electron bandwidth that one would obtain from DFT or LDA+U. This is in very good
agreement with the discrepancy between DFT and experimental bandwidths pointed out above
(200 meV vs. 7 meV, respectively).
This very strong reduction factor coming from the coefficients of fractional parentage suggests
that in a first approximation we can neglect the direct f -f hopping. The d-f hopping is also
reduced by the CFP effect, but only by the amplitude and not the square, so the hybridization
is still important, relatively speaking. It is interesting to note that a full DMFT calculation
taking into account all the multiplet structure [117] gives a bandwidth reduction of the f bands,
and a reduction of the d-f hopping, consistent with the above discussion of the coefficients of
fractional parentage. Note also that the phases of the coefficients of fractional parentage (which
we neglected above for simplicity) could be very important. For example in manganites, similar
hopping considerations which included phases found that a Berry phase is accumulated when
electrons hop in loops [118].
For systems with a large U , or ones in which the splitting between the ground state and higher
energy fn configurations is large (compared to the energy scale we are considering as impor-
tant), we can neglect all of the hoppings involving higher energy states when considering the
lowest energy scale physics. So even the spin-orbit splitting of the f 6 manifold with J = 0

as the lowest energy state is large enough to neglect in zeroth order when dealing with the
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Fig. 12: The f 5 to f 6 electron addition spectrum of Fig. 10, now zoomed in to low energy scales.

low-temperature properties below 100 K. The splitting of these J states for f 6 is shown in
Fig. 12, and is about 45 meV (or 520 K) for the lowest J = 1 excitation relative to the J = 0.
In what follows we also neglect the crystal-field splitting within the multiplets, although this
may be a bit of a stretch and a rigorous treatment should include them. Considering only the
lowest-energy crystal-field states (which would likely be one of the doublets) would reduce the
degeneracy to that of a Kramers doublet.

Having established the very weak hybridization present in compounds such as SmB6 (due to
both contracted radial wavefunctions and fractional-parentage matrix element effects), and that
subsequently only the lowest energy f 5 and f 6 states need to be considered in a first approx-
imation, we can now consider the band structure of the broad d band with which the f shells
hybridize. Again, due to the very weak hybridization, there will only be appreciable mixing at k
points near where the band crosses the f levels. We show this effect in Fig. 13, where a general
light-electron band (blue) crosses the localized f level and a small hybridization is present. A
small gap opens near the crossing points, and at these points the wavefunction has a true mixed
character as indicated by the color of the plot. Far away from these crossing points, there is
very little mixing between the f and d bands.

The schematic band structure of Fig. 13 reveals a very interesting characteristic of such materi-
als: they are best described as mixed valent in momentum space. For regions of Fig. 13(a) where
|k| > 0.5π/a, there are f electron removal states very close to the Fermi level. If our mixed
valent compound has the valences fn−1 and fn, then in these regions of momentum space the
ground state is almost purely fn. In this way, it costs very little energy to remove an electron
and reach the fn−1 state, which is nearly degenerate with the fn state, but we cannot add an
electron within the low energy scale. As was shown in Figs. 4 and 10, to add an electron to the
fn state would cost energy U , and accordingly no such f electron addition states are present for
|k| > 0.5π/a in Fig. 13(a) (they are too high in energy to be seen).
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Just as the regions of momentum space where |k| > 0.5π/a have an almost pure fn ground
state, the regions where |k| < 0.5π/a have an almost pure fn−1 ground state. In this region
there is an f electron addition state just above the Fermi level, as it costs essentially no energy
to reach the fn from the fn−1 state, but there are no f electron removal states shown as they
would cost energy U and are thus far away in energy. In this sense it becomes clear that the
mixed valent compound has well defined regions in momentum space with integral valences,
but in fact each valence state is delocalized in real space. The many-body wave function in this
situation becomes very complicated. This simple picture also indicates that a DMFT calculation
which does very well in many aspects must include a strong k-dependent self energy, and in fact
if a gap occurs as indicated in Figure 13, the self energy would be discontinuous or at least very
strongly varying as one moves through the k region of the crossing.

In the case of SmB6 the broad band is actually an almost equal mixture of B 2p states and Sm
d states, as clearly shown from DFT calculations [119]. The minimum in the dispersion is at
the X point in the Brillouin zone. In order to conserve charge, this band would be empty if the
Sm was purely 2+ (f 6) and would contain on average one electron per formula unit if the Sm
is 3+ (f 5). In a mixed valent situation there will be an exact compensation of f and d electrons
depending on the Sm2+/3+ ratio. If the d-f hybridization were zero then the crossing surface of
the d band and the f states in momentum space would describe a Fermi surface consistent with
Luttinger’s theorem, as also argued by Richard Martin some time ago [120,121]. So the surface
describing the crossing point at which a gap has its largest value has the same topology as the
Fermi surface one would obtain in a band theory calculation. It is an interesting question as to
whether this “pseudo” Fermi surface is something that can be seen via the de Haas–van Alphen
effect in high-field quantum oscillation experiments [122–125].
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The above discussion provides a unique picture of the electronic structure of the low energy
states of SmB6. This is quite different from a description in which the basic physics involves an
impurity-like Kondo singlet low-energy scale state and these Kondo impurities forming a lattice
which then could develop a gap and become insulating. Whether or not our above description
could also be termed a “Kondo insulator” is perhaps debatable. It is also interesting to go back
and have another look if perhaps other so-called heavy Fermion systems may actually fall into
this category in which we rather should study things in momentum space to start with, in place
of considering a lattice of Kondo impurities.

This example of the rare earths is an extreme case and can be treated in this way because of
the weak hybridization. In other mixed valent systems like the actinides or the transition-metal
compounds, things become very complicated because the effect of the strong hybridization be-
tween the local strongly correlated states and the broad bands crossing the Fermi energy can be
very large and comparable to the band width of the broad bands. In the extreme limit of that case
we would somehow be back to a DFT-based band description in which the local correlations are
suppressed because of the strong hybridization with the broad bands, forming rather extended
Wannier functions and diluting the effective on-site Coulomb interactions. The most interest-
ing cases, however, are the intermediate cases which very likely involve the 3d transition-metal
compounds such as the rare earth TM perovskite structure oxides, the ion battery materials such
as LiNiO2, as well as the sulfides, selenides, tellurides, bromides, and iodides of the late 3d

transition metals.

6 Summary

The central theme of this lecture is that often anion states can be much more important in cor-
related compounds than one would initially expect. In transition-metal compounds which have
large formal oxidation states, it is often the case that the formal rules are broken. The transition
metals are then better described as having more typical valences, and the anion bands are self-
doped to compensate this different charge on the cations. We presented these effects through an
extension of the Zaanen-Sawatzky-Allen classification scheme for transition-metal compounds.
In addition to the two original classes of Mott-Hubbard and (positive) charge transfer insula-
tors, we showed how mixed valent and negative charge transfer insulators can naturally arise.
The perovskite rare-earth nickelates are a paradigmatic example of negative charge transfer
compounds, where the self-doped oxygen holes make very important contributions to the con-
ductivity and magnetism in the compounds. We also showed how similar effects can be found
in non-correlated compounds such as perovskite bismuthates. Finally, we explored the interest-
ing mixed-valence regime through the example of rare-earth compounds such as SmB6. Weak
hybridization and mixed-valent energetics lead to the unique phenomenon of ordered valences
in momentum space. A key lesson to take away from these discussions is that one might need to
choose a non-conventional starting point when constructing a model to describe the electronic
structure of high-valence compounds.
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2.2 Erik Koch

1 Many-electron states

One of the deepest mysteries of physics is that all the different objects that surround us are built
from a small set of indistinguishable particles. The very existence of such elementary particles
that have all their properties in common is a direct consequence of quantum physics. Classical
objects can always be distinguished by their location in space. This lead Leibniz to formulate
his Principle of the Identity of Indiscernibles [1]. For quantum objects, however, the uncertainty
principle makes the distinction of particles by their position impossible. Indistinguishability of
quantum objects then means that there is no measurement that would let us tell them apart,
i.e., all expectation values 〈Ψ |M |Ψ〉 must remain the same when we change the labeling of the
distinct but indistinguishable the particles.

The consequences for observables are straightforward: An observable M(x) acting on a single-
particle degree of freedom x must operate on all indistinguishable particles in the same way,
i.e.,

∑
iM(xi). A two-body observable M(x, x′) must operate on all pairs in the same way,∑

i,jM(xi, xj) with M(x, x′) = M(x′, x). We can thus write any observable in the form

M(x) = M (0) +
∑
i

M (1)(xi) +
1

2!

∑
i6=j

M (2)(xi, xj) +
1

3!

∑
i6=j 6=k

M (3)(xi, xj, xk) + · · · (1)

= M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · , (2)

where the summations can be restricted since the operators must be symmetric in their argu-
ments, e.g. M (2)(xi, xj) = M (2)(xj, xi), while for two or more identical coordinates the opera-
tor is really one of lower order: M (2)(xi, xi), e.g., only acts on a single coordinate and should
be included in M (1).

For the many-body wave functions Ψ(x1, x2, · · · ) the situation is slightly more complex. Since
the probability density |Ψ(x1, x2, · · · )|2 is an observable, they should transform as one-dimen-
sional (irreducible) representations, i.e., either be symmetric or antisymmetric under particle
permutations. Which of the two options applies to a given elementary particle is determined
by the spin-statistics theorem [2, 3]: The wave functions of particles with integer spin are sym-
metric, those of particles with half-integer spin change sign wen arguments are exchanged.
From an arbitrary N -particle wave function we thus obtain a many-electron wavefunction by
antisymmetrizing

S− Ψ(x1, . . . , xN) :=
1√
N !

∑
P

(−1)PΨ
(
xp(1), . . . , xp(N)

)
, (3)

where (−1)P is the parity of the permutation P that maps n→ p(n). Since there areN ! different
permutations, this can easily become an extremely costly operation. Remarkably, a product of
N single-electron states ϕα can be antisymmetrized much more efficiently (in O(N3) steps) by
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writing it in the form of a determinant

Φα1,...,αN (x1, . . . , xN) :=
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
. (4)

For N = 1 the Slater determinant is simply the one-electron orbital Φα(x) = ϕα(x) and for
N = 2 we get the familiar two-electron Slater determinant Φα,α′(x, x′) = (ϕα(x)ϕα′(x

′) −
ϕα′(x)ϕα(x′))/

√
2.

Slater determinants are important because they can be used to build a basis of the many-electron
Hilbert space. To see how, we consider a complete set of orthonormal single-electron states∫

dxϕn(x)ϕm(x) = δn,m (orthonormal)
∑
n

ϕn(x)ϕn(x′) = δ(x− x′) (complete) . (5)

To expand an arbitrary N -particle function a(x1, . . . , xN), we start by considering it as a func-
tion of x1 with x2, . . . , xN kept fixed. We can then expand it in the complete set {ϕn} as

a(x1, . . . , xN) =
∑
n1

an1(x2, . . . , xN)ϕn1(x1)

with expansion coefficients

an1(x2, . . . , xN) =

∫
dx ϕn1(x1) a(x1, x2, . . . , xN) .

These, in turn, can be expanded as a functions of x2

an1(x2, . . . , xN) =
∑
n2

an1,n2(x3, . . . , xN)ϕn2(x2) .

Repeating this, we obtain the expansion of a in product states

a(x1, . . . , xN) =
∑

n1,...,nN

an1,...,nN ϕn1(x1) · · ·ϕnN (xN) .

When the N -particle function Ψ is antisymmetric, the expansion coefficients will be antisym-
metric under permutation of the indices anp(1),...,np(N)

= (−1)Pan1,...,nN . Fixing an order of the
indices, e.g., n1 < n2 < . . . < nN , we thus get an expansion in Slater determinants

Ψ(x1, . . . , xN) =
∑

n1<...<nN

√
N ! an1,...,nN Φn1,...,nN (x1, . . . , xN) .

Since we can write any antisymmetric function as such a configuration-interaction expansion,
the set of Slater determinants{

Φn1,...,nN (x1, . . . , xN)
∣∣∣ n1 < n2 < · · · < nN

}
(6)
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forms a basis of the N -electron Hilbert space. Since the overlap of two Slater determinants∫
dx Φα1,...,αN (x)Φβ1,...,βN (x) =

1

N !

∑
P,P ′

(−1)P+P ′
∏
n

∫
dxn ϕαp(n)(xn)ϕαp′(n)(xn)

= 〈Φα1,...,αN |Φβ1,...,βN 〉 =

∣∣∣∣∣∣∣
〈ϕα1|ϕβ1〉 · · · 〈ϕα1|ϕβN 〉

... . . . ...
〈ϕαN |ϕβ1〉 · · · 〈ϕαN |ϕβN 〉

∣∣∣∣∣∣∣ (7)

is the determinant of the overlap of the constituent orbitals, the Slater determinants (6) form
a complete orthonormal basis of the N -electron Hilbert space when the orbitals ϕn(x) are a
complete orthonormal basis of the one-electron Hilbert space.
While we use a set of N one-electron orbitals ϕn(x) to define an N -electron Slater determinant
Φα1,...,αN (x) (4), this representation is not unique: Any unitary transformation among the N
occupied orbitals will not change the determinant. Thus, strictly, a Slater determinant is not
determined by the set of indices we usually give, but, up to a phase, by the N -dimensional
subspace spanned by the orbitals ϕ1, . . . , ϕN in the single-electron Hilbert space. The projector
to this space is the one-body density matrix

Γ (1)(x, x′) = N

∫
dx2 · · · dxN Φ(x, x2, . . . , xN)Φ(x′, x2, . . . , xN) . (8)

To see this, we expand the Slater determinant along its first row

Φα1···αN (x1, . . . , xN) =
1√
N

N∑
n=1

(−1)1+n ϕαn(x1)Φαi6=n(x2, . . . , xN) , (9)

where Φαi6=n(x2, . . . , xN) is the determinant with the first row and the n-th column removed,
which can be written as N−1-electron Slater determinants with orbital αn removed. Inserting
this into (8) we find

Γ
(1)
Φ (x, x′) =

N∑
n=1

ϕαn(x)ϕαn(x′) , (10)

which is the expansion of the one-body density matrix in eigenfunctions (natural orbitals) show-
ing that its eigenvalues (natural occupation numbers) are one. Any many-electron wave function
Ψ(x) with the same one-body density matrix Γ (1)

Φ equals Φ(x) up to a phase, i.e., |〈Ψ |Φ〉| = 1.
We can generalize this procedure and calculate higher order density matrices by introducing the
generalized Laplace expansion

Φα1···αN (x) =
1√(
N
p

) ∑
n1<···<np

(−1)1+
∑
i ni Φαn1 ···αnp (x1, . . . , xp)Φαi6∈{n1,...,np}(xp+1, . . . , xN),

which is obtained by writing the permutation of all N indices as a permutation of N −p indices
and the remaining p indices separately summing over all distinct sets of p indices. This allows
us to evaluate arbitrary matrix elements and higher order density matrices [4]. But as can be
seen from the above expansion, the expressions very quickly get quite cumbersome. Fortunately
there is a representation that is much better suited to handling antisymmetric wave functions. It
is called second quantization.
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2 Second quantization

While originally introduced for quantizing the electromagnetic field, we can use the formalism
of second quantization just as a convenient way of handling antisymmetric wave functions [5,6].
The idea behind this approach is remarkably simple: When writing Slater determinants in the
form (4) we are working in a real-space basis. It is, however, often better not to work in a
specific basis but to consider abstract states: Instead of a wave function ϕα(x), we write a Dirac
state |α〉. Second quantization allows us to do the same for Slater determinants.
Let us consider a Slater determinant for two electrons, one in state ϕα(x), the other in state
ϕβ(x). It is simply the antisymmetrized product of the two states

Φαβ(x1, x2) =
1√
2

(
ϕα(x1)ϕβ(x2)− ϕβ(x1)ϕα(x2)

)
. (11)

This expression is quite cumbersome because we explicitly specify the coordinates. We can get
rid of the coordinates by defining a two-particle Dirac state

|α, β〉 :=
1√
2

(
|α〉|β〉 − |β〉|α〉

)
.

While the expression is already simpler, we still have to keep track of the order of the particles
by specifying the position of the kets. The idea of second quantization is to specify the states
using operators

c†βc
†
α|0〉 = |α, β〉 . (12)

Now the order of the particles is specified by the order of the operators. To ensure the antisym-
metry of the wave function the operators have to change sign when they are reordered

|α, β〉 = c†βc
†
α|0〉 = −c†αc

†
β|0〉 = −|β, α〉 . (13)

Naturally, this also implies the Pauli principle for the special case β = α.

2.1 Creation and annihilation operators

To arrive at the formalism of second quantization we postulate a set of operators that have
certain reasonable properties. We then verify that we can use these operators to represent Slater
determinants. But first we consider a few simple states to motivate what properties the new
operators should have.
To be able to construct many-electron states we start from the simplest such state: |0〉 the
vacuum state with no electron, which we assume to be normalized 〈0|0〉 = 1. Next we introduce
for each single-electron state |α〉 an operator c†α such that c†α|0〉 = |α〉. These operators are
called creation operators since they add an electron (in state α) to the state that they act on:
in c†α|0〉 the creation operator adds an electron to the vacuum state (N = 0), resulting in a
single-electron state. Applying another creation operator produces a two-electron state c†βc

†
α|0〉.

As we have seen above, to ensure the antisymmetry of the two electron state, the product of
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creation operators has to change sign when they are reordered: c†αc
†
β = −c†βc†α. This is more

conveniently written as {c†α, c
†
β} = 0 by introducing the anti-commutator

{A, B} := AB +BA . (14)

As we have seen, the simplest state we can produce with the creation operators is the single-
electron state |α〉 = c†α|0〉. When we want to calculate its norm, we have to consider the
adjoint of c†α|0〉, formally obtaining 〈α|α〉 = 〈0|cαc†α|0〉, or, more generally, 〈α|β〉 = 〈0|cαc

†
β|0〉.

This must mean that cα, the adjoint of a creation operator, must remove an electron from the
state, otherwise the overlap of cαc

†
β|0〉 with the vacuum state 〈0| would vanish. We therefore

call the adjoint of the creation operator an annihilation operator. We certainly cannot take an
electron out of the vacuum state, so cα|0〉 = 0. To obtain the correct overlap of one-electron
states as 〈α|β〉 = 〈0|cαc

†
β|0〉 we postulate the anticommutation relation {cα, c

†
β} = 〈α|β〉. For

completeness, taking the adjoint of the anticommutation relation for the creation operators, we
obtain the corresponding anticommutator of the annihilators: {cα, cβ} = 0.
Thus, we define the vacuum state |0〉 and the set of operators cα related to single-electron states
|α〉 with the properties

cα|0〉 = 0
{
cα, cβ

}
= 0 =

{
c†α, c

†
β

}
〈0|0〉 = 1

{
cα, c

†
β

}
= 〈α|β〉

(15)

We note that the creators and annihilators are not ordinary operators in a Hilbert space, but
transfer states from an N -electron to a N ± 1-electron Hilbert space, i.e., they are operators
defined on Fock space. It is also remarkable that the mixed anti-commutator is the only place
where the orbitals that distinguish different operators enter. Moreover, despite being operators,
the creators transform in the same way as the single-electron states they represent while the
vacuum state is invariant:

|α̃i〉 =
∑
µ

|αµ〉Uµi ; c̃†α̃i|0〉 =
∑
µ

c†αµ |0〉Uµi =

(∑
µ

c†αµUµi

)
|0〉. (16)

A set of operators that allows us to make contact with the notation of first quantization are the
field operators Ψ̂ †(x), with x = (r, σ), that create an electron of spin σ at position r, i.e., in
state |x〉 = |r, σ〉. Given a complete, orthonormal set of orbitals {ϕn}, we can expand |x〉

Ψ̂ †(x)|0〉 = |x〉 =
∑
n

|ϕn〉〈ϕn|x〉 =
∑
n

〈ϕn|x〉 c†ϕn|0〉 (17)

from which we obtain

Ψ̂ †(x) =
∑
n

〈x|ϕn〉 c†ϕn =
∑
n

ϕn(x) c†ϕn . (18)

The anticommutators then follow from (15) for an orthonormal and complete set, e.g.,{
Ψ̂(x), Ψ̂ †(x′)

}
=
∑
n,m

〈x|ϕn〉
{
cϕn , c

†
ϕm

}︸ ︷︷ ︸
=δn,m

〈ϕm|x′〉 =
∑
n

〈x|ϕn〉〈ϕn|x′〉 = 〈x|x′〉 = δ(x− x′),
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resulting in the anticommutation relations for the field operators{
Ψ̂(x), Ψ̂(x′)

}
= 0 =

{
Ψ̂ †(x), Ψ̂ †(x′)

}
and

{
Ψ̂(x), Ψ̂ †(x′)

}
= 〈x|x′〉. (19)

We can, of course, expand the field operators also in a non-orthogonal set of orbitals {|χi〉}, as
long as it is complete,

∑
i,j |χi〉(S−1)ij〈χj| = 1, where Sij = 〈χi|χj〉 is the overlap matrix

Ψ̂ †(x) =
∑
i,j

c†i (S−1)ij 〈χj|x〉. (20)

Conversely, given any single-electron wave functions in real space ϕ(x), we can express the
corresponding creation operator in terms of the field operators

c†ϕ =

∫
dxϕ(x) Ψ̂ †(x). (21)

Its anticommutator with the field operators just gives back the single-electron wave function

{
Ψ̂(x), c†ϕ

}
=

∫
dx′ ϕ(x′)

{
Ψ̂(x), Ψ̂ †(x′)

}
= ϕ(x) . (22)

2.2 Representation of Slater determinants

We have now all the tools in place to write the Slater determinant (4) in second quantization,
using the creation operators to specify the occupied orbitals and the field operators to define the
coordinates for the real-space representation

Φα1α2...αN (x1, x2, . . . , xN) =
1√
N !

〈
0
∣∣∣ Ψ̂(x1)Ψ̂(x2) . . . Ψ̂(xN) c†αN . . . c

†
α2
c†α1

∣∣∣ 0〉 . (23)

Not surprisingly, the proof is by induction. As a warm-up we consider the case of a single-
electron wave function (N = 1). Using the anticommutation relation (22), we see that〈

0
∣∣∣ Ψ̂(x1) c†α1

∣∣∣ 0〉 =
〈

0
∣∣∣ϕα1(x1)− c†α1

Ψ̂(x1)
∣∣∣ 0〉 = ϕα1(x1) . (24)

For the two-electron state N = 2, we anticommute Ψ̂(x2) in two steps to the right〈
0
∣∣∣ Ψ̂(x1)Ψ̂(x2) c†α2

c†α1

∣∣∣ 0〉 =
〈

0
∣∣∣ Ψ̂(x1)

(
ϕα2(x2)− c†α2

Ψ̂(x2)
)
c†α1

∣∣∣ 0〉
=

〈
0
∣∣∣ Ψ̂(x1)c†α1

∣∣∣ 0〉 ϕα2(x2)−
〈

0
∣∣∣ Ψ̂(x1)c†α2

Ψ̂(x2)c†α1

∣∣∣ 0〉
= ϕα1(x1)ϕα2(x2)− ϕα2(x1)ϕα1(x2) . (25)

We see how anticommuting automatically produces the appropriate signs for the antisymmetric
wave function. Dividing by

√
2, we obtain the desired two-electron Slater determinant.
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The general case of an N -electron state works just the same. Anti-commuting Ψ̂(xN) all the
way to the right produces N − 1 terms with alternating sign〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1)Ψ̂(xN) c†αN c

†
αN−1

. . . c†α1

∣∣∣ 0〉 =

+
〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1) c†αN−1

. . . c†α1

∣∣∣ 0〉 ϕαN (xN)

−
〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1)

∏
n6=N−1 c

†
αn

∣∣∣ 0〉 ϕαN−1
(xN)

...

(−1)N
〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1) c†αN . . . c†α2

∣∣∣ 0〉 ϕα1 (xN) .

Using (23) for the N − 1-electron states, this is nothing but the Laplace expansion of

D =

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
along the N th row. Dividing by

√
N ! we see that we have shown (23) for N -electron states,

completing the proof by induction.
Thus, as we can write the representation of a single-electron state |ϕ〉 in real-space as the matrix
element 〈x|ϕ〉 = ϕ(x), we can obtain the representation of the N -electron

∏
c†αn |0〉 as the

matrix element with the field operators 〈0|
∏
Ψ̂(xn). Thus, we can rewrite the basis (6) for the

N -electron states in a form independent of the real-space representation{
c†nN · · · c

†
n1
|0〉
∣∣ n1 < · · · < nN

}
, (26)

which allows us to write any N -electron state as

|Ψ〉 =
∑

n1<···<nN

an1,...,nN c
†
nN
· · · c†n1

|0〉. (27)

From this we see that, for an orthonormal basis, the expectation value of the occupation number
operator n̂i = c†ici is the probability that state ϕni is occupied

〈Ψ |n̂i|Ψ〉 =
∑

ni∈{n1<···<nN}

|an1,...,nN |2, (28)

since only determinants that contain ϕni contribute. The sum of all these operators N̂ =
∑

i n̂i
is the number operator, since now each determinant contributes N times

〈Ψ |
∑
i

n̂i|Ψ〉 =
∑
i

∑
ni∈{n1<···<nN}

|an1,...,nN |2 = N . (29)

For the special case of the field operators we obtain the density operator n̂(x) = Ψ̂ †(x)Ψ̂(x) and
N̂ =

∫
dx Ψ̂ †(x)Ψ̂(x).
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2.3 Representation of n-body operators

Having established the relation between product states and Slater determinants, it is straightfor-
ward to express the matrix elements of a general n-body operator (2)

M(x) = M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · (30)

with N -electron Slater determinants:∫
dx1 · · · dxN Φβ1···βN (x1, · · · , xN)M(x1, . . . , xN)Φα1···αN (x1, · · · , xN)

=

∫
dx1· · · dxN 〈0|cβ1· · · cβN Ψ̂

†(xN)· · · Ψ̂ †(x1)|0〉M(x1, . . . , xN)〈0|Ψ̂(x1)· · · Ψ̂(xN)c†αN· · · c
†
α1
|0〉

=
〈

0
∣∣∣ cβ1 · · · cβN M̂ c†αN · · · c

†
α1

∣∣∣ 0〉
with the representation of the n-body operator in terms of field operators

M̂ =
1

N !

∫
dx1 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x1)M(x1, · · · , xN) Ψ̂(x1) · · · Ψ̂(xN) . (31)

Note that this particular form of the operator is only valid when applied to N -electron states,
since we have used that the N annihilation operators bring us to the zero-electron space, where
|0〉〈0| = 1. Keeping this in mind, we can work entirely in terms of our algebra (15).
To see what (31) means we look at its parts (30). We start with the simplest case, the zero-body
operator, which, up to a trivial prefactor, is M (0)(x1, · · · , xN) = 1. Operating on an N -electron
wave function, it gives

M̂ (0) =
1

N !

∫
dx1dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2)Ψ̂ †(x1) Ψ̂(x1)Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2) N̂ Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2) 1 Ψ̂(x2) · · · Ψ̂(xN)

...

=
1

N !
1 · 2 · · · N = 1 , (32)

where we have used that ∫
dx Ψ̂ †(x)Ψ̂(x) = N̂

is the number operator and that applying n annihilation operators Ψ̂(xj) to an N -electron state
gives a state with N − n electrons. We note that we obtain a form of M̂ (0) = 1 that, contrary to
(31), no longer depend on the number of electrons in the wave function that it is applied to.
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2.3.1 One-body operators

Next we consider one-body operators M(x1, . . . , xN) =
∑

jM
(1)(xj)

M̂ (1) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
j

M (1)(xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) (N − 1)! Ψ̂(xj)

=
1

N

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) Ψ̂(xj)

=

∫
dx Ψ̂ †(x) M (1)(x) Ψ̂(x)

Here we have first anticommuted Ψ̂ †(xj) all the way to the left and Ψ̂(xj) to the right. Since
these take the same numbers of anticommutations, there is no sign involved. The operation
leaves the integrals over the variables except xi, a zero-body operator for N − 1 electron states,
operating on Ψ̂(xj)|N -electron state〉. Again we notice that we obtain an operator that no longer
depends on the number of electrons, i.e., that is valid in the entire Fock space.
Expanding the field-operators in a complete orthonormal set Ψ̂(x) =

∑
n ϕn(x) cn gives

M̂ (1) =
∑
n,m

∫
dxϕn(x)M(x)ϕm(x) c†ncm =

∑
n,m

〈ϕn|M (1)|ϕm〉 c†ncm =
∑
n,m

c†nM
(1)
nm cm. (33)

The matrix elements M (1)
nm = 〈ϕn|M (1)|ϕm〉 transforms like a single-electron matrix M (1):

From (16) and writing the annihilation operators as a column vector c we see that

M̂ (1) = c†M (1) c = c†U † UM (1)U † Uc = c̃† M̃ (1) c̃ . (34)

Once we have arrived at the representation in terms of orbitals, we can restrict the orbital basis
to a non-complete set. This simply gives the operator in the variational (Fock) subspace spanned
by the orbitals.

2.3.2 Two-body operators

For the two-body operators M(x1, . . . , xN) =
∑

i<jM
(2)(xi, xj) we proceed in the familiar

way, anti-commuting first the operators with the coordinates involved in M (2) all the way to the
left and right, respectively. This time we are left with a zero-body operator for N − 2 electrons:

M̂ (2) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
i<j

M (2)(xi, xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) (N − 2)! Ψ̂(xi)Ψ̂(xj)

=
1

N(N − 1)

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) Ψ̂(xi)Ψ̂(xj)

=
1

2

∫
dx dx′ Ψ̂ †(x′) Ψ̂ †(x) M (2)(x, x′) Ψ̂(x) Ψ̂(x′)
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Expanding in an orthonormal basis, we get

M̂ (2) =
1

2

∑
n,n′,m,m′

∫
dxdx′ ϕn′(x′)ϕn(x)M (2)(x, x′)ϕm(x)ϕm′(x

′) c†n′c
†
ncmcm′

=
1

2

∑
n,n′,m,m′

〈ϕnϕn′ |M (2)|ϕmϕm′〉 c†n′c
†
ncmcm′ (35)

where the exchange of the indices in the second line is a consequence of the way the Dirac
state for two electrons is usually written: first index for the first coordinate, second index
for the second, while taking the adjoint of the operators changes their order. Mnn′,mm′ =

〈ϕnϕn′ |M (2)|ϕmϕm′〉 transforms like a fourth-order tensor: Transforming to a different basis
(16) gives

M̃
(2)
νν′,µµ′ =

∑
n,n′,m,m′

U †νnU
†
ν′n′Mnn′,mm′UmµUm′µ′ . (36)

Form the symmetry of the two-body operator M (2)(x, x′) = M (2)(x′, x) follows Mnn′,mm′ =

Mn′n,m′m. Moreover, Mnn,mm′ will not contribute to M̂ (2) since c†nc
†
n = {c†n, c†n}/2 = 0, and

likewise for Mnn′,mm.
Note that the representation (35) is not quite as efficient as it could be: The terms with n and n′

and/orm andm′ exchanged connect the same basis states. Collecting these terms by introducing
an ordering of the operators and using the symmetry of the matrix elements we obtain

M̂ (2) =
∑

n′>n,m′>m

c†n′c
†
n

(
M

(2)
nn′,mm′ −M

(2)
n′n,mm′

)
︸ ︷︷ ︸

=:M̆
(2)

nn′,mm′

cmcm′ . (37)

Since the states {c†n′c†n|0〉 |n′ > n} form a basis of the two-electron Hilbert space, considering
nn′ as the index of a basis state, the M̆ (2)

nn′,mm′ form a two-electron matrix M̆ (2).

The procedure of rewriting operators in second quantization obviously generalizes to operators
acting on more than two electrons in the natural way. We note that, while we started from a form
of the operators (30) that was explicitly formulated in an N -electron Hilbert space, the results
(32), (33), and (35) are of the same form no matter what value N takes. Thus these operators
are valid not just on some N -electron Hilbert space, but on the entire Fock space. This is a
particular strength of the second-quantized formulation.

2.4 Reduced density matrices and Wick’s theorem

Introducing reduced density matrices it is straightforward to evaluate expectation values for
general many-electron states. From the representation of single-electron operators (33) we find

〈Ψ |M (1)|Ψ〉 =
∑
n,m

M (1)
nm 〈Ψ |c†ncm|Ψ〉︸ ︷︷ ︸

=:Γ
(1)
nm

= TrΓ (1)M (1), (38)
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where the trace is over the one-electron basis and we use that observables are hermitian. For
two-electron operators (37) we find

〈Ψ |M (2)|Ψ〉 =
∑

n′>n,m′>m

M̆
(2)
nn′,mm′ 〈Ψ |c

†
n′c
†
ncmcm′ |Ψ〉︸ ︷︷ ︸

=:Γ̆
(2)

nn′,mm′

= Tr Γ̆ (2)M̆ (2), (39)

where now the trace in over the two-electron basis. In general, if we know the p-body density
matrix Γ̆ (p) for a given many-electron state |Ψ〉, we can calculate the expectation value of any
operator of order up to p. We can obtain lower-order density matrices by taking partial traces
over higher-order matrices, e.g.,∑

k

Γ
(2)
nk,mk =

∑
k

〈Ψ |c†nc
†
kckcm|Ψ〉 = 〈Ψ |c†n N̂ cm|Ψ〉 = (N − 1)Γ (1)

nm . (40)

Note the similarity to (32). In terms of the two-electron matrix Γ̆ (2) we trace (keeping track of
the Fermion sign) over all two-electron states with orbital n or m occupied.
For Slater determinants |Φ〉 = c†αN · · · c

†
α1
|0〉 the density matrices have a particularly simple

form. To see this we introduce the projection onto the space of occupied orbitals assuming, for
simplicity, that the orbitals |αn〉 are orthonormal

P =
∑
n

|αn〉〈αn| . (41)

We can then split any orbital into its components in the occupied and the virtual space: |ϕ〉 =

P |ϕ〉 + (1 − P )|ϕ〉. Applying an annihilation operator to the Slater determinant we then find
that only the component in the virtual space gives a zero contribution, similarly for a creation
operator:

c|ϕ〉|Φ〉 = cP |ϕ〉|Φ〉 and c†|ϕ〉|Φ〉 = c†(1−P )|ϕ〉|Φ〉. (42)

The one-body density matrix of a Slater determinant is thus given by

Γ (1)
nm = 〈Φ|c†ncm|Φ〉 = 〈Φ|c†P |ϕn〉cP |ϕm〉|Φ〉 = 〈Pϕm|Pϕn〉〈Φ|Φ〉 − 〈Φ|cP |ϕm〉c

†
P |ϕn〉|Φ〉

= 〈ϕm|P |ϕn〉. (43)

As an operator in the one-electron Hilbert space H(1), the one-body density matrix of a Slater
determinant is thus the projector onto the occupied subspace. Up to a phase factor it defines the
Slater determinant uniquely. All higher-order density matrices of a Slater determinant can thus
be written in terms of the one-body density matrix. For the two-body density matrix we find,
simply commuting c†P |n1〉 to the right (note the similarity to the derivation in Sec. 2.2)

〈Φ|c†n2
c†n1
cm1

cm2
|Φ〉 = 〈Φ|c†Pn2

c†Pn1
cPm1

cPm2
|Φ〉

= 〈Pm1|Pn1〉〈Φ|c†Pn2
cPm2
|Φ〉 − 〈Φ|c†Pn2

cPm1
c†Pn1

cPm2
|Φ〉

= Γ (1)
n1m1

Γ (1)
n2m2

− 〈Pm2|Pn1〉〈Φ|c†Pn2
cPm1
|Φ〉+ 〈Φ|c†Pn2

cPm1
cPm2

c†Pn1
|Φ〉

= det

(
Γ

(1)
n1m1 Γ

(1)
n1m2

Γ
(1)
n2m1 Γ

(1)
n2m2

)
. (44)
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Using the same procedure together with the Laplace expansion we find the higher-order density
matrices

〈Φ|c†np · · · c
†
n1
cm1
· · · cmp|Φ〉 = det

 Γ
(1)
n1m1 · · · Γ

(1)
n1mp

... . . . ...
Γ

(1)
npm1 · · · Γ

(1)
npmp

 . (45)

Matrix elements between different Slater determinants are not quite as simple, as the terms with
the creation operator anticommuted to the right need no longer vanish. Still, we can express
expectation values as determinants using (7)

〈Φα|Φβ〉 = det

 〈α1|β1〉 · · · 〈α1|βN〉
... . . . ...

〈αN |β1〉 · · · 〈αN |βN〉

 . (46)

The overlap is non-zero if each vector in the occupied space of |Φα〉 has a component in the
occupied space of |Φβ〉, i.e., Pβ|αn〉 6= 0, or, more symmetrically, dim(PβPαH(1)) = N . Note
that the combination of the two projectors PαPβ is, in general, no longer a projection.
To evaluate the matrix element for a one-electron operator we simply change the order of the
operators to obtain an expression that is given by a determinant

〈Φα|c†ncm|Φβ〉 = 〈Φα|c†Pαn
cPβm
|Φβ〉

= 〈ϕm|PβPα|ϕn〉〈Φα|Φβ〉 − 〈Φα|cPβm
c†Pαn
|Φβ〉

= 〈ϕm|PβPα|ϕn〉〈Φα|Φβ〉 − det


〈α1|ϕn〉 〈α1|β1〉 · · · 〈α1|βN〉

...
...

...
〈αN |ϕn〉 〈αN |β1〉 · · · 〈αN |βN〉

〈ϕm|PβPα|ϕn〉 〈ϕm|β1〉 · · · 〈ϕm|βN〉


= 〈ϕm|PβPα|ϕn〉〈Φα|Φβ〉 − 〈Φα,Pβϕm |Φβ,Pαϕn〉. (47)

For |Φα〉 = |Φβ〉 we recover (43). Higher-order expectation values are calculated in a similar
way, moving the creation operators successively to the right, giving, e.g.,

〈Φα|c†n2
c†n1
cm1

cm2
|Φβ〉 = 〈Φα|c†Pαn2

c†Pαn1
cPβm1

cPβm2
|Φβ〉

=

∣∣∣∣∣〈Φα|c†n1
cm1|Φβ〉 〈Φα|c†n1

cm2|Φβ〉
〈Φα|c†n2

cm1|Φβ〉 〈Φα|c†n2
cm2|Φβ〉

∣∣∣∣∣−
∣∣∣∣∣∆n1m1 ∆n1m2

∆n2m1 ∆n2m2

∣∣∣∣∣
+ (1− 〈Φα|Φβ〉)

∣∣∣∣∣〈ϕm1|PβPα|ϕn1〉 〈ϕm2|PβPα|ϕn1〉
〈ϕm1|PβPα|ϕn2〉 〈ϕm2|PβPα|ϕn2〉

∣∣∣∣∣+ 〈Φα,Pβϕm1 ,Pβϕm2
|Φβ,Pαϕn1 ,Pαϕn2

〉,

where ∆n,m = 〈Φα|c†ncm|Φβ〉 − 〈ϕm|PβPα|ϕn〉. For |Φα〉 = |Φβ〉 this reduces to (44). While
these expressions can be efficiently evaluated expanding the N + p-order determinant, the ex-
pressions quickly get quite involved.
The situation simplifies dramatically when we only consider operators cn and c†n corresponding
to an orthonormal basis {|ϕn〉|n} ofH(1). The Slater determinants are then orthonormal and of
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the form |Φn〉 = |Φn1,...,nN 〉 = c†nN · · · c
†
n1
|0〉. Diagonal matrix elements are then

〈Φn|c†ncm|Φn〉 = δn,mδn∈{n1,...,nN}

〈Φn|c†nc
†
n′cm′cm|Φn〉 = (δn,mδm′,m′ − δn,m′δn′,m) δn,n′,m,m′∈{n1,...,nN}

〈Φn|c†kp · · · c
†
k1
cm1
· · · cmp|Φn〉 = det(δki,mj) δk1,...,kp,m1,...,mp∈{n1,...,nN}.

Off-diagonal matrix elements vanish unless the determinants differ in exactly the operators
inside the matrix element:

〈Φn|c†ncm|Φm〉 = ±δm=miδn=nj δ{m1,...,mN}\{mi}={n1,...,nN}\{nj}

〈Φn|c†nc
†
n′cm′cm|Φm〉 = ±δ{m,m′}={mi,mi′}δ{n,n′}={nj ,nj′}δ{m}\{mi,mi′}={n}\{nj ,nj′}.

Thus, when we transform an operator M̂ (p) to the basis in which the Slater determinants are
written, all matrix elements between determinants that differ by more than p operators vanish.
These are the Slater-Condon rules.

3 Variational methods

The variational principle and the Schrödinger equation are equivalent. Consider the energy
expectation value as a wave-function functional

E[Ψ ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

. (48)

Its variation is

E[Ψ + δΨ ] = E[Ψ ] +
〈δΨ |H|Ψ〉+ 〈Ψ |H|δΨ〉

〈Ψ |Ψ〉
− 〈Ψ |H|Ψ〉 〈δΨ |Ψ〉+ 〈Ψ |δΨ〉

〈Ψ |Ψ〉2
+O2. (49)

The first-order term vanishes for
H|Ψ〉 = E[Ψ ] |Ψ〉 , (50)

which is the Schrödinger equation. The general approach to solving it for many-electron sys-
tems is configuration interaction (CI): We choose an orthonormal set of orbitals {ϕn |n} from
which we construct an orthonormal basis {Φn1,...,nN |n1 < · · · < nN} of N -electron Slater
determinants. Expanding |Ψ〉 in this basis

|Ψ〉 =
∑

n1<···<nN

an1,...,nN |Φn1,...,nN 〉 =
∑
ni

ani |Φni〉 , (51)

the Schrödinger equation (50) becomes a matrix eigenvalue problem〈Φn1|H|Φn1〉 〈Φn1|H|Φn2〉 · · ·
〈Φn2|H|Φn1〉 〈Φn2|H|Φn2〉 · · ·

...
... . . .


an1

an2

...

 = E

an1

an2

...

 . (52)
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Note that the indices ni of the determinants are ordered sets of single-electron indices.
For a complete basis set the matrix dimension is, of course, infinite, but even for finite basis sets
of K single-electron functions the dimension for an N -electron problem increase extremely
rapidly. There are K · (K−1) · (K−2) · · · (K− (N −1)) ways of picking N indices out of K.
Since we only use one specific ordering of these indices, we still have to divide by N ! to obtain
the number of such determinants:

dimH(N)
K =

K!

N !(K −N)!
=

(
K

N

)
. (53)

For N = 25 electrons and K = 100 orbitals the dimension already exceeds 1023. And still,
being a non-complete basis set, diagonalizing (52) still would only give a variational energy,
meaning that, for example, the ground state of (52) is the state that minimizes the energy wave-
function functional (48) on the

(
K
N

)
-dimensional subspace of the N -electron Hilbert space.

3.1 Non-interacting electrons

Even when considering a system of N non-interacting electrons we have to solve the large
matrix eigenvalue problem (52). Writing the non-interacting Hamiltonian in the basis used for
the CI expansion (51) we obtain

Ĥ =
∑
n,m

Hnm c
†
ncm ,

which, in general, has non-vanishing matrix elements between Slater determinants that differ
in at most one operator. But we can simplify things drastically by realizing that we can choose
any basis for the CI expansion. If we choose the eigenstates of the single-electron matrix Hnm

as basis, second-quantized Hamiltonian is

Ĥ =
∑
n,m

εnδn,m c
†
ncm =

∑
n

εn c
†
ncn .

In this basis all off-diagonal matrix elements vanish and the CI Hamiltonian (52) is diagonal.
Thus all

(
K
N

)
eigenstates are Slater determinants

|Φn〉 = c†nN · · · c
†
n1
|0〉 with eigenenergy En =

∑
i

εni . (54)

This shows that choosing an appropriate basis for a CI expansion is crucial. A good general
strategy should thus be to solve the matrix problem (52) and at the same time look for the
basis set (of given size) that minimizes the variational energy. This is the idea of the multi-
configurational self-consistent field method (MCSCF) [7]. In the following we will restrict
ourselves to the simplest case where the many-body basis consists of a single Slater determinant.
This is the Hartree-Fock method.
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3.2 Hartree-Fock theory

The idea of the Hartree-Fock approach is to find an approximation to the ground-state of the
N -electron problem by minimizing the total-energy wave-function functional (48) allowing
only N -electron Slater determinants as variational functions. Since expectation values of Slater
determinants are determined by their one-body density matrix, remember (45), this means that
we want to find the occupied subspace for which (48) is minimized.
To perform these variations we introduce unitary transformations in Fock-space (related to the
Thouless representation of Slater determinants [8])

Û(λ) = eiλM̂ with M̂ =
∑
α,β

Mαβ c
†
αcβ hermitian . (55)

To see that Û is a transformation among Slater determinants, we apply it to a product state

eiλM̂ c†αN · · · cα1|0〉 = eiλM̂c†αN e
−iλM̂ eiλM̂ · · · e−iλM̂eiλM̂c†α1

e−iλM̂ eiλM̂ |0〉 . (56)

Since the annihilators produce zero when applied to the vacuum state, we have

eiλM̂ |0〉 = |0〉 . (57)

To evaluate eiλM̂ c†γ e
−iλM̂ , we use that the commutator of the product of a creator and an anni-

hilator with a creation operator is again a creation operator (see App. B)

[c†αcβ, c
†
γ] = c†α{cβ, c†γ} − {c†α, c†γ}cβ = c†α δβ,γ (58)

to calculate the coefficients of its power-series expansion in λ:

d

dλ

∣∣∣∣
λ=0

eiλM̂ c†γ e
−iλM̂ = eiλM̂ i [M̂, c†α] e−iλM̂

∣∣∣
λ=0

= i
∑
α

c†αMαγ

d2

dλ2

∣∣∣∣
λ=0

eiλM̂ c†γ e
−iλM̂ =

d

dλ

∣∣∣∣
λ=0

eiλM̂

(
i
∑
α′

c†α′Mα′γ

)
e−iλM̂ = i2

∑
α

c†α
∑
α′

Mαα′Mα′γ︸ ︷︷ ︸
(M2)αγ

...

dn

dλn

∣∣∣∣
λ=0

eiλM̂ c†γ e
−iλM̂ = in

∑
α

c†α (Mn)αγ

from which we find that

eiλM̂ c†γ e
−iλM̂ =

∑
α

∞∑
n=0

(iλM )nαγ
n!

=
∑
α

c†α
(
eiλM

)
αγ

(59)

the creation operators are transformed by the unitary matrix single-electron unitary eiλM , i.e.,
Û corresponds to a basis transformation in all operators, cf. (16). Thus, the right-hand-side of
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(56) is again a Slater determinant formed from creation operators in the transformed basis. The
annihilation operators transform accordingly as

eiλM̂ cγ e
−iλM̂ =

∑
α

(
eiλM

)
γα
cα . (60)

Using this transformation, the variation of the energy expectation value can be written as

E(λ) = 〈Φ|eiλM̂ Ĥ e−iλM̂ |Φ〉

= 〈Φ|Ĥ|Φ〉+ iλ〈Φ|[Ĥ, M̂ ]|Φ〉+
(iλ)2

2
〈Φ|
[
[Ĥ, M̂ ], M̂

]
|Φ〉+ · · · (61)

where each successive derivative in the power series expansion produces a commutator [ · , M̂ ]

around those that were already present. The energy functional is stationary for ΦHF when

〈ΦHF|[Ĥ, M̂ ]|ΦHF〉 = 0 (62)

for every hermitian single-electron operator M̂ . This condition is most easily understood when
we work with orthonormal orbitals {|ϕ〉|n} from which the Slater determinant can be con-
structed: |ΦHF〉 = c†N · · · c

†
1|0〉. Then (62) is equivalent to

〈ΦHF|[Ĥ, c†ncm + c†mcn]|ΦHF〉 = 0 ∀ n, m

(actually n ≥ m suffices). Since

c†ncm|ΦHF〉 =

{
δn,m|ΦHF〉 if n, m ∈ {1, . . . , N}

0 if m /∈ {1, . . . , N}
,

i.e., (62) is automatically fulfilled if both n and m are either occupied or unoccupied (virtual).
This is not unexpected since transformations among the occupied or virtual orbitals, respec-
tively, do not change the Slater determinant. The condition thus reduces to

〈ΦHF|c†mcnĤ|ΦHF〉 = 0 ∀ m ∈ {1, . . . , N}, n /∈ {1, . . . , N} . (63)

In other words, for the Hamiltonian there are no matrix elements between the stationary Slater
determinant and determinants that differ from it in one orbital. The condition that for the
Hartree-Fock determinant the Hamiltonian does not produce single excitations is called the
Brillouin theorem.
Let us consider a Hamiltonian with one- and two-body terms

Ĥ =
∑
n,m

c†n Tnm cm +
∑

n>n′,m>m′

c†nc
†
n′

(
Unn′,mm′ − Unn′,m′m

)
cm′cm

Then for each n > N ≥ m the singly-excited term(
Tnm +

∑
m′≤N

(
Unm′,mm′ − Unm′,m′m

))
c†ncm|ΦHF〉 = 0
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must vanish. This is the same condition as for a non-interacting Hamiltonian with matrix ele-
ments

Fnm = Tnm +
∑
m′≤N

(Unm′,mm′ − Unm′,m′m) . (64)

F is called the Fock matrix. It depends, via the summation over occupied states, i.e., the
density matrix, on the Slater determinant it is acting on. So we cannot simply diagonalize the
single-electron matrix F since this will, in general, give a different determinant. Instead we
need to find a Slater determinant for which F is diagonal (in fact, it is sufficient if it is block-
diagonal in the occupied and virtual spaces). This is typically done by constructing a new Slater
determinant from the N lowest eigenstates of F and iterating. Alternatively, we can use, e.g.,
steepest descent methods to minimize the expectation value directly or optimizing the one-body
density matrix [9, 10]. At self-consistency the Fock matrix is diagonal with eigenvalues

εHF
m =

Tmm +
∑
m′≤N

(
Umm′,mm′ − Umm′,m′m

)︸ ︷︷ ︸
=:∆mm′

 =

(
Tmm +

∑
m′≤N

∆mm′

)
(65)

and the Hartree-Fock energy is given by

〈ΦHF|Ĥ|ΦHF〉 =
∑
m≤N

(
Tmm +

∑
m′<m

∆mm′

)
=
∑
m≤N

(
Tmm +

1

2

∑
m′≤N

∆mm′

)
.

Removing an electron from the occupied orbital ϕa changes the energy expectation value by

〈ΦHF
a rem|Ĥ|ΦHF

a rem〉 − 〈ΦHF|Ĥ|ΦHF〉 = −

(
Taa +

1

2

∑
m′≤N

∆am′

)
− 1

2

∑
m6=a≤N

∆ma = −εHF
a . (66)

When we assume that removing an electron does not change the orbitals much, which should
be a good approximation in the limit of many electrons N � 1, this gives the ionization energy
(Koopmans’ theorem). Likewise, the energy expectation value of an excited Slater determinant
ΦHF
a→b with an electron moved from orbital a ≤ N to orbital b > N is

εHF
a→b = 〈ΦHF

a→b|Ĥ|ΦHF
a→b〉 − 〈ΦHF|Ĥ|ΦHF〉 = εHF

b − εHF
a −∆ab (67)

It can be interpreted as the energy of a state with an electron-hole excitation, again neglecting
relaxation effects. For the Coulomb interaction

∆ab =
1

2
(∆ab +∆ba) =

1

2

(〈
ϕaϕb

∣∣∣∣ 1

r − r′

∣∣∣∣ϕaϕb − ϕbϕa〉+

〈
ϕbϕa

∣∣∣∣ 1

r − r′

∣∣∣∣ϕbϕa − ϕaϕb〉)
=

1

2

〈
ϕaϕb − ϕbϕa

∣∣∣∣ 1

r − r′

∣∣∣∣ϕaϕb − ϕbϕa〉 > 0

so that the third term in (67) describes the attraction between the excited electron and the hole.
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3.2.1 Homogeneous electron gas

Since the homogeneous electron gas is translation invariant it is natural to write the Hamilto-
nian (for states with homogeneous charge density) in the basis of plane waves 〈r, σ|k, σ〉 =

1
(2π)3/2

eik·r

Ĥ =
∑
σ

∫
dk
|k2|
2
c†k,σck,σ +

1

2(2π)3

∑
σ,σ′

∫
dk

∫
dk′
∫ ′
dq

4π

|q|2
c†k−q,σc

†
k′+q,σ′ck′,σ′ck,σ , (68)

where the prime on the q integral means that q = 0 is excluded since the homogeneous contri-
bution to the Coulomb repulsion of the electrons is cancelled by its attraction with the homo-
geneous neutralizing background charge density. It seems reasonable to consider as an ansatz
a Slater determinant |ΦkF 〉 of all plane wave states with momentum some Fermi momentum
|k| < kF . The charge density for such a determinant follows, using the anticommutator of the
field operator

{Ψ̂ †σ(r), ck,σ} =

∫
dr′

e−ik·r

(2π)3/2
{Ψ̂ †σ(r), Ψ̂σ(r′)} =

e−ik·r

(2π)3/2
,

from the diagonal of the density matrix

nσ(r) = 〈ΦHF|Ψ̂ †σ(r)Ψ̂σ(r)|ΦHF〉 =

∫
|k|<kF

dk

∣∣∣∣ eik·r

(2π)3/2

∣∣∣∣2 =
k3
F

6π2
. (69)

It is independent of position, so |ΦkF 〉 looks like an appropriate ansatz for a homogeneous
system. Moreover, it fulfills the stationarity condition (63): To create just a single excitation
one of the creation operators in the Coulomb term of (68) must fill one of the annihilated states,
i.e., q = 0 or q = k − k′. But this implies that the term is diagonal with q = 0 giving the
direct and q = k − k′ the exchange contribution. Since the q = 0 term is not present in
the Hamiltonian, the eigenenergies of the Fock matrix are just the sum of the kinetic and the
exchange terms

εHF
k,σ =

|k|2

2
− 1

4π2

∫
|k′|<kF

dk′
1

|k − k′|2
=
k2

2
− kF

π

(
1 +

k2
F − k2

2kFk
ln

∣∣∣∣kF + k

kF − k

∣∣∣∣) (70)

It depends only on k = |k|. Interestingly the slope of εHF
k,σ becomes infinite for k → kF . Thus,

the density of states D(εk)dε = 4πk2 dk, given by

DHF
σ (ε) = 4πk2

(
dεHF

k,σ

dk

)−1

= 4πk2

(
k − kF

πk

(
1− k2

F + k2

2kFk
ln

∣∣∣∣kF + k

kF − k

∣∣∣∣))−1

(71)

vanishes at the Fermi level (see Fig. 1). This is not quite what we expect from a respectable
electron gas... It is clearly a defect of the Hartree-Fock approximation.
Instead of calculating the energy expectation value also directly in k-space, it is instructive to
look at the exchange term in real space. To evaluate the electron-electron repulsion we need the
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Fig. 1: Hartree-Fock eigenvalues and density of states for the homogeneous solution |ΨkF 〉 of
the homogeneous electron gas compared to non-interacting values.

diagonal of the 2-body density matrix, which is given by (44) in terms of the one-body density
matrix

〈ΦkF |Ψ̂
†
σ′(r

′)Ψ̂ †σ(r)Ψ̂σ(r)Ψ̂σ′(r
′)|ΦkF 〉 = det

(
Γ

(1)
σσ (r, r) Γ

(1)
σσ′(r, r

′)

Γ
(1)
σ′σ(r′, r) Γ

(1)
σ′σ′(r

′, r′)

)
,

where the one-body density matrix vanishes unless σ′ = σ where it is evaluated as in (69)

Γσσ(r, r′) = 〈ΦkF |Ψ̂ †σ(r)Ψ̂σ(r′)|ΦkF 〉

=

∫
|k|<kF

dk
e−ik·(r−r

′)

(2π)3
=

1

4π2

∫ kF

0

dk k2

∫ 1

−1

d cos θ eik|r−r
′| cos θ

=
k3
F

2π2

sinx− x cosx

x3︸ ︷︷ ︸
x→0−→ 1/3

= 3nσ
sinx− x cosx

x3
(72)

with x = kF |r − r′|. Dividing the 2-body density matrix by n2
σ and subtracting the direct

term (which is canceled by the contribution of the background charge) we obtain the exchange
hole [10]

gx(r, 0)− 1 = −9

(
sin kF r − kF r cos kF r

(kF r)3

)2

. (73)

It is shown in Fig. 2. The exchange energy per spin is then the Coulomb interaction of the
charge density with its exchange hole

Ex =
1

2

∫
dr nσ

∫
dr′nσ

gx(r, r
′)− 1

|r − r′|
=

1

2

∫
dr nσ︸ ︷︷ ︸
=N

∫
dr̃ nσ

gx(r̃, 0)− 1

r̃
.
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Fig. 2: Exchange hole for a paramagnetic homogeneous electron gas in units of the spin Wigner-
Seitz radius kF rσ = (9π/2)1/3. In addition, the dotted line shows the contribution of the
exchange hole to the Coulomb repulsion energy of Eq. (74).

The exchange energy per electron of spin σ is thus

εσx =
4πnσ

2

∫ ∞
0

dr r2 g(r, 0)− 1

r
= −9 · 4πnσ

2k2
F

∫ ∞
0

dx
(sinx− x cosx)2

x5︸ ︷︷ ︸
=1/4

= −3kF
4π

. (74)

Together with the kinetic energy per electron of spin σ

εσkin = 4π

∫ kF

0

dk k2 k
2

2

/
4π

∫ kF

0

dk k2 =
3k2

F

10
(75)

we obtain the total energy per electron

εHF =
n↑(ε

↑
kin + ε↑x) + n↓(ε

↓
kin + ε↓x)

n↑ + n↓
=

3(6π2)2/3

10

n
5/3
↑ + n

5/3
↓

n
− 3

4

(
6

π

)1/3 n
4/3
↑ + n

4/3
↓

n
.

While the kinetic energy is lowest when n↑ = n↓, exchange favors spin polarization. For reason-
able electron densities the kinetic energy dominates, only at extremely low densities exchange
dominates and the solution would be ferromagnetic.
A ferromagnetic Slater determinant would, of course, have two different Fermi momenta, k↑F 6=
k↓F . It also would break the symmetry of the Hamiltonian under spin rotations. This is an
example of how we can lower the energy expectation value by allowing Slater determinants
that break a symmetry of the system. When we do not restrict the symmetry of the Slater
determinant, the approach is called unrestricted Hartree-Fock. For the electron gas this approach
actually gives Hartree-Fock states that even break translational symmetry, see, e.g., [11]
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3.2.2 Hubbard model

As a simple example to illustrate the difference between restricted and unrestricted Hartree-
Fock we consider the Hubbard model with two sites, i = 1, 2, between which the electrons can
hop with matrix element −t and with an on-site Coulomb repulsion U

Ĥ = −t
∑
σ

(
c†2σc1σ + c†1σc2σ

)
+ U

∑
i∈{1,2}

ni↑ni↓ . (76)

The number of electrons N and the total spin projection Sz are conserved, so the Fock space
Hamiltonian is block-diagonal in the Hilbert spaces with fixed number of up- and down-spin
electrons N↑ and N↓ with dimensions

N 0 1 2 3 4

N↑ 0 1 0 2 1 0 2 1 2

N↓ 0 0 1 0 1 2 1 2 2

dim 1 2 2 1 4 1 2 2 1 16

Exact solutions: The Hamiltonian for N = N↑ = 1 is easily constructed. By introducing the
basis states c†1↑|0〉 and c†2↑|0〉, we obtain the Hamiltonian matrix

〈
0
∣∣∣ (c1↑

c2↑

)
Ĥ
(
c†1↑ c†2↑

) ∣∣∣0〉 =

(
0 −t 〈0|c1↑ c

†
1↑c2↑ c

†
2↑|0〉

−t 〈0|c2↑ c
†
2↑c1↑ c

†
1↑|0〉 0

)
=

(
0 −t
−t 0

)
.

This is easily diagonalized giving the familiar bonding and antibonding solution

|ϕ±〉 =
1√
2

(
c†1↑ ± c

†
2↑

)
|0〉 = c†±↑|0〉 . (77)

For N↑ = 1 = N↓, we obtain a non-trivial interacting system

〈
0
∣∣∣

c1↑c2↓

c2↑c1↓

c1↑c1↓

c2↑c2↓

 Ĥ
(
c†2↓c

†
1↑ c†1↓c

†
2↑ c†1↓c

†
1↑ c†2↓c

†
2↑

) ∣∣∣0〉 =


0 0 −t −t
0 0 −t −t
−t −t U 0

−t −t 0 U

 . (78)

To diagonalize the matrix, we transform the basis into linear combinations of covalent and ionic
states

|cov±〉 =
1√
2

(
c†2↓c

†
1↑ ± c

†
1↓c
†
2↑

)
|0〉 (79)

|ion±〉 =
1√
2

(
c†1↓c

†
1↑ ± c

†
2↓c
†
2↑

)
|0〉 (80)

It is then easy to verify that |cov−〉 is an eigenstate with eigenvalue εcov− = 0 and that |ion−〉
has eigenenergy εion− = U . The remaining two states mix(

〈cov+|
〈ion+|

)
Ĥ
(
|cov+〉 |ion+〉

)
=

1

2

{
U −

(
U 4t

4t −U

)}
. (81)
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Fig. 3: Spectrum of the two-site Hubbard model as a function of U/t.

Rewriting the matrix (
U 4t

4t −U

)
=
√
U2 + 16t2

(
cosΘ sinΘ

sinΘ − cosΘ

)
, (82)

we find the ground state of the half-filled two-site Hubbard model

|gs〉 = cosΘ/2 |cov+〉+ sinΘ/2 |ion+〉 (83)

=
1√
2

(
cos Θ

2
c†2↓c

†
1↑ + cos Θ

2
c†1↓c

†
2↑ + sin Θ

2
c†1↓c

†
1↑ + sin Θ

2
c†2↓c

†
2↑

) ∣∣0〉 (84)

with an energy of εgs = (U −
√
U2 + 16t2)/2. Without correlations (U = 0 ; Θ = π/2), all

basis states have the same prefactor, so we can factorize the ground state, writing it as a product
c†+↓c

†
+↑|0〉 of the operators defined in (77). For finite U this is no longer possible. In the strongly

correlated limit U � t (Θ ↘ 0) the ground state becomes the maximally entangled state |cov+〉
and can not even approximately be expressed as a two-electron Slater determinant.

Hartree-Fock: We now want to see what Hartree-Fock can do in such a situation. Since the
Hamiltonian is so simple, we can directly minimize the energy expectation value. The most
general ansatz is a Slater determinant of an orbital ϕ(θ↑) = sin(θ↑)ϕ1 + cos(θ↑)ϕ2 for the
spin-up, and ϕ(θ↓) = sin(θ↓)ϕ1 + cos(θ↓)φ2 for the spin-down electron:

|Φ(θ↑, θ↓)〉 =
(

sin(θ↓) c
†
1↓ + cos(θ↓) c

†
2↓

) (
sin(θ↑) c

†
1↑ + cos(θ↑) c

†
2↑

)
|0〉 . (85)

The energy expectation value as a function of the parameters θσ is then

〈Φ(θ↑, θ↓)|Ĥ|Φ(θ↑, θ↓)〉 = −2t (sin θ↑ sin θ↓ + cos θ↑ cos θ↓) (cos θ↑ sin θ↓ + sin θ↑ cos θ↓)

+U
(
sin2 θ↑ sin2 θ↓ + cos2 θ↑ cos2 θ↓

)
. (86)

If the Slater determinant respects the symmetry of the molecule under the exchange of sites
(mirror symmetry of the H2 molecule), it follows that the Hartree-Fock orbitals for both spins
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Fig. 4: Energy expectation value for a Slater determinant Φ(θ, π/2−θ) for U=0, t, 2t, . . . , 6t.
When U ≤ 2t the minimum is at θ = π/4. This is the Hartree-Fock solution with the bonding
orbitals ϕ+ occupied. For U ≥ 2t, θ = π/4 is still an extremal point (restricted Hartree-Fock
solution), but an energy minimum is only attained when the symmetry is broken (unrestricted
Hartree-Fock solution).

are the bonding state ϕ+ (θ = π/4). This is the restricted Hartree-Fock solution. The corre-
sponding energy isE(π/4, π/4) = −2t+U/2. The unrelaxed excited determinants are obtained
by replacing occupied orbitals ϕ+ with ϕ−. Altogether we obtain the restricted Hartree-Fock
spectrum

E( π/4, π/4) = −2t+ U/2

E( π/4,−π/4) = U/2

E(−π/4, π/4) = U/2

E(−π/4,−π/4) = 2t+ U/2

(87)

Comparing to the energy for a state with both electrons of the same spin (E = 0), we see that
there is no spin-triplet, i.e., Hartree-Fock breaks the spin symmetry [12]. The states (87) are
spin-contaminated [13]. Even worse, the Hartree-Fock ground state, and consequently all the
states, are independent of U . The weight of the ionic states is always 1/2, leading to an increase
of the energy with U/2.
To avoid this, we can allow the Hartree-Fock solution to break the symmetry of the molecule
(unrestricted Hartree-Fock), putting, e.g., more of the up-spin electron in the orbital on site 1
and more of the down-spin electron in orbital 2. In an extended system this corresponds to an
antiferromagnetic spin-density wave. For U < 2t this does not lead to a state of lower energy.
For larger U , however, there is a symmetry-broken ground state

ΦUHF = Φ(θ, π/2− θ) with θ(U) =
π

4
± 1

2
arccos

(
2t

U

)
. (88)

Its energy is EUHF = −2t2/U . Still there is no triplet state (spin contamination) and, for
U →∞, the overlap with the true singlet ground state goes to |〈ΦUHF|Ψ−〉|2 = 1/2.
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From Fig. 4 it might appear that there are just two degenerate unrestricted Hartree-Fock deter-
minants. But, remembering that we can chose the spin quantization axis at will, we see that by
rotating the spins by an angle α about the axis n̂ (see App. C)

Rn̂(α) = e−in̂·~σ α/2 = cos(α/2)− i sin(α/2) n̂ · ~σ

we can produce a continuum of degenerate solutions R̂n̂(α)|ΦUHF〉. As an example we consider
the state we obtain when we rotate the spin quantization axis from the ẑ into the x̂ direction

Rŷ(−π/2) =
1√
2

(
1 1

−1 1

)
which transforms the creation operators according to (16) as(

c†i↑, c
†
i↓

)
Rŷ(−π/2) =

(
1√
2

(
c†i↑ − c

†
i↓

)
,

1√
2

(
c†i↑ + c†i↓

))
.

The determinant (85) thus transforms to

R̂ŷ(−π/2)|Φ(θ↑, θ↓)〉 =
1

2

(
s↓(c

†
1↑ + c†1↓) + c↓(c

†
2↑ + c†2↓)

)(
s↑(c

†
1↑ − c

†
1↓) + c↑(c

†
2↑ − c

†
2↓)
)
|0〉
(89)

where we introduced the abbreviations sσ = sin θσ and cσ = cos θσ. Since the Hamiltonian (76)
is invariant under spin rotations, R̂ŷ(−π/2) Ĥ R̂†ŷ(−π/2) = Ĥ , the energy expectation value of
the rotated state is still given by (86).

Attractive Hubbard model For negative U allowing the spin orbitals to differ, Φ(θ, π/2−θ),
does lower the energy expectation value. The minimum is always obtained for the restricted
Hartree-Fock determinant Φ(π/4, π/4). In fact, for the attractive Hubbard model rather than
breaking spin symmetry, we should try to break the charge symmetry: For U < −2t the ansatz
Φ(θ, θ) minimizes the energy for the two states θ(U) = π/4 ± arccos(−2t/U) with energy
E(U) = 2t2/U + U . Thus, the unrestricted Hartree-Fock ground state breaks the charge sym-
metry, i.e., is a charge-density wave state. On the other hand, looking back to (89) we see
that Φ(θ, θ) is invariant under the spin rotation. This is actually true for any R̂n̂(α) so that
the unrestricted Hartree-Fock ground state of the attractive Hubbard model does not break spin
symmetry.
It seems strange that for the attractive model we only find two unrestricted Hartree-Fock states,
while for the repulsive model we have a continuum of states. To find the ’missing’ states we
consider a new kind of transformation that mixes creation and annihilation operators: When we
exchange the role of the creation and annihilation operators for the up spins only, i.e.,

c̃†i↑ = (−1)ici↑ and c̃†i↓ → c†i↓, (90)

the Hamiltonian (76) transforms into a two-site Hubbard model with the sign of U changed

Ĥ = −t
∑
σ

(
c̃†2σ c̃1σ + c̃†1σ c̃2σ

)
− U

∑
i∈{1,2}

ñi↑ñi↓ + U(ñ1↓ + ñ2↓) . (91)
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Let us see what happens to the Slater determinant (85) when we apply the same transformation.
In doing this, we have to remember that the vacuum state must vanish when acted on with an
annihilator. For |0〉 this is no longer true for the transformed operators, but we can easily write
down a state

|0̃〉 = c†2↑c
†
1↑|0〉 (92)

that behaves as a suitable vacuum state: c̃iσ|0̃〉 = 0 and 〈0̃|0̃〉. We can then rewrite the trans-
formed Slater determinant (85) as

|Φ̃(θ↑, θ↓)〉 =
(

sin(θ↓) c̃
†
1↓ + cos(θ↓) c̃

†
2↓

)(
sin(θ↑) c̃

†
1↑ + cos(θ↑) c̃

†
2↑

)
|0̃〉

=
(

sin(θ↓) c
†
1↓ + cos(θ↓) c

†
2↓

)(
− sin(θ↑) c1↑ + cos(θ↑) c2↑

)
c†2↑c

†
1↑|0〉

=
(

sin(θ↓) c
†
1↓ + cos(θ↓) c

†
2↓

)(
+ sin(θ↑) c

†
2↑ + cos(θ↑) c

†
1↑

)
|0〉 .

Thus, the transformation takes the unrestricted state |Φ(θ, π/2 − θ)〉 for the repulsive Hubbard
model into the unrestricted state |Φ(θ, θ)〉 for the attractive Hubbard model. Transforming the
rotated state (89) in the same way, we find something remarkable:

1

2

(
s↓(c̃

†
1↑ + c̃†1↓) + c↓(c̃

†
2↑ + c̃†2↓)

)(
s↑(c̃

†
1↑ − c̃

†
1↓) + c↑(c̃

†
2↑ − c̃

†
2↓)
)
|0̃〉

=
1

2

(
s↓(−c1↑ + c†1↓) + c↓(c2↑ + c†2↓)

)(
s↑(−c1↑ − c

†
1↓) + c↑(c2↑ − c

†
2↓)
)
c†2↑c

†
1↑|0〉

=
1

2

(
(s↓c↑ + c↓s↑)

(
c†1↓c

†
1↑ + c†2↓c

†
2↑
)
|0〉+ 2

(
s↓s↑c

†
1↓c
†
2↑ + c↓c↑c

†
2↓c
†
2↑
)
|0〉

+ (s↓c↑ − c↓s↑)
(
c†2↓c

†
1↓c
†
2↑c
†
1↑ − 1

)
|0〉

)
.

The energy expectation value of this state is by construction the same as for the charge-density
state. For θ↓ = π/2−θ↑ the new state has a uniform density, but the wave function no longer has
a well-defined particle number, i.e., it breaks particle number conservation. It is still a product
state in the transformed operators and vacuum, but it is a state in Fock space. States of this type
are crucial for describing superconductivity.

3.3 BCS theory

Next we consider the BCS Hamiltonian

ĤBCS =
∑
kσ

εk c
†
kσckσ −

∑
kk′

Gkk′ c
†
k↑c
†
−k↓c−k′↓ck′↑ (93)

with an attractive interaction between pairs of electrons of opposite spin and momentum (Cooper
pairs). We now want to see if we can use the idea of product states in Fock space that we encoun-
tered for the attractive Hubbard model. To start, let us consider the determinant of plane wave
states that we used for the homogeneous electron gas |ΦkF 〉. Since all states with momentum
below kF are occupied, we have

c†kσ|ΦkF 〉 = 0 for |k| < kF and ckσ|ΦkF 〉 = 0 otherwise.
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Thus |ΦkF 〉 behaves like a vacuum state for the transformed operators

c̃kσ = Θ(kF − |k|) c†kσ +Θ(|k| − kF ) ckσ =

{
c†kσ for |k| < kF
ckσ for |k| > kF

Allowing the operators to mix, we can generalize this transformation to

bk↑ = ukck↑ − vkc
†
−k↓

bk↓ = ukck↓ + vkc
†
−k↑

The corresponding creation operators are obtained, of course, by taking the adjoint. Notice
how states with k and −k are mixed. These Bogoliubov-Valatin operators fulfill the canonical
anticommutation relations

{bkσ, bk′σ′} = 0 = {b†kσ, b
†
k′σ′} and {bkσ, bk′σ′} = δ(k − k′) δσ,σ′

when (the non-trivial anticommutators are {bk↑, b−k↓} and {bkσ, b
†
kσ})

u2
k + v2

k = 1 . (94)

A vacuum state for the new operators can be constructed from the generalized product state∏
kσ bkσ|0〉. Expanding the operators

b−k↑bk↓bk↑b−k↓|0〉 = vk(uk + vk c
†
−k↑c

†
k↓) vk(uk + vk c

†
k↑c
†
−k↓) |0〉

and calculating the norm

〈0|(uk + vk c−k↓ck↑)(uk + vk c
†
k↓c
†
−k↑)(uk + vk c

†
−k↑c

†
k↓)(uk + vk c

†
k↑c
†
−k↓)|0〉 = u4

k + 2u2
kv

2
k + v4

k

we see from (94) that the BCS wavefunction

|BCS〉 =
∏
k

(uk + vk c
†
k↑c
†
−k↓) |0〉 (95)

is the (normalized) vacuum for the Bogoliubov-Valatin operators.
To calculate physical expectation values we express the electron operators as

ck↑ = ukbk↑ + vkb
†
−k↓

ck↓ = ukbk↓ − vkb
†
−k↑

The expectation value for the occupation of a plane wave state, e.g., is

〈BCS|n̂k↑|BCS〉 = 〈BCS|(ukb†k↑+ vkb−k↓)(ukbk↑+ vkb
†
−k↓)|BCS〉 = v2

k = 〈BCS|n̂−k↓|BCS〉 .

Unlike the electron gas Slater determinant |ΦkF 〉, where nkσ is 1 below kF and vanishes above,
varying the parameter vk in the BCS wave function allows us to get arbitrary momentum dis-
tributions 〈nkσ〉. Since the BCS wave function has contributions in all particle sectors with an
even number of electrons, there are also less-conventional expectation values, e.g.,

〈BCS|c†k↑c
†
−k↓|BCS〉 = 〈BCS|(ukb†k↑ + vkb−k↓)(ukb

†
−k↓ − vkbk,↑)|BCS〉 = ukvk = 〈c−k↓ck↑〉.
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When minimizing the energy expectation value, we have to introduce a chemical potential µ
that is chosen to give the desired number of particles N =

∑
kσ v

2
k. We get

〈BCS|Ĥ − µN̂ |BCS〉 =
∑
kσ

(εk − µ) v2
k −

∑
k,k′

Gkk′ ukvkuk′vk′ . (96)

Minimizing with respect to vk (and remembering that uk =
√

1− v2
k) we find the variational

equations

4(εk − µ) vk = 2
∑
k′

Gkk′

(
uk −

vk
uk
vk

)
uk′vk′ . (97)

For simplicity we assume that Gkk′ is constant over a small range of k values around the Fermi
surface and vanishes outside. We define

∆ :=
∑
k′

Gkk′ uk′vk′ = G
∑

k:close to FS

ukvk (98)

and obtain, squaring the variational equation and remembering that 1− (u2
k + v2

k)
2 = 0,

4(εk − µ)2u2
kv

2
k = (εk − µ)2

(
1− (u2

k − v2
k)

2
)

= ∆2(u2
k − v2

k)

from which we get the momentum distribution

v2
k =

1

2

(
1− εk − µ√

(εk − µ)2 +∆2

)
. (99)

For∆ = 0 this is just the step function of a Fermi gas, for finite∆ the transition is more smooth.
We still have to determine the parameters µ and ∆. The chemical potential is fixed by

N =
∑
k

2v2
k =

∑
k

(
1− εk − µ√

(εk − µ)2 +∆2

)
(100)

while for∆we obtain from (98), solving (97) for ukvk and summing over k, and using u2
k−v2

k =

1− 2v2
k

∆ = G
∑
k

ukvk =
G

2

∑
k

∆(u2
k − v2

k)

εk − µ
= ∆

G

2

∑
k

1√
(εk − µ)2 +∆2

(101)

the self-consistent gap equation for ∆.
To see that ∆ is indeed a gap, consider the (unrelaxed) quasi-electron states

|k ↑〉 =
1

uk
c†k↑|BCS〉 = b†k↑|BCS〉. (102)

Adding an electron of momentum k destroys its Cooper pair, changing 〈nk↑+nk↓〉 from 2v2
k to

1 and removing the interaction of the pair with all others:

〈k ↑ |Ĥ − µN̂ |k ↑〉 − 〈BCS|Ĥ − µN̂ |BCS〉 = (εk − µ) (1− 2v2
k) + 2∆ukvk

= (εk − µ) (1− 2v2
k) +

∆2

εk − µ
(u2

k − v2
k) = sgn(εk − µ)

√
(εk − µ)2 +∆2.

For ∆ = we recover Koopmans’ Hartree-Fock result, while for ∆ > 0 a gap opens around the
Fermi level. Fig. 5 compares the quasi-electron dispersion and the corresponding density of
states for the two cases.
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Fig. 5: Quasi-electron energy and density of states for the BCS state with and without gap.

4 Conclusion

We have seen that second quantization is an remarkable useful formalism. With just a few sim-
ple rules for the creation and annihilation operators and the corresponding vacuum, it converts
dealing with many-electron states to straightforward algebraic manipulations. Moreover it is
naturally suited for performing calculations in variational spaces spanned by a finite basis of or-
bitals. But its advantages go beyond a mere simplification. By abstracting from the coordinate
representation, it allows us to express many-body operators in a way that is independent of the
number of electrons. Because of this it becomes possible to consider Fock-space wave func-
tions which do not have a definite number of electrons. This allows us to consider unrestricted
mean-field states that not only break spatial or spin symmetries but also particle conservation.
This additional freedom allows us to extend the concept of a Slater determinant to product states
in Fock space, an example of which is the BCS wave function.
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A Basis orthonormalization

A general one-electron basis spanned by functions |χn〉 will have an overlap matrix

Snm = 〈χn|χm〉

that is positive definite (and hence invertible) and hermitian. The completeness relation is

1 =
∑
k,l

|χk〉(S−1)kl〈χl| .

While we can work directly with such a basis, it is often more convenient to have an orthonormal
basis, so that we do not have to deal with the overlap matrices in the definition of the second
quantized operators and in the generalized eigenvalue problem.
To orthonormalize the basis {|χn〉}, we need to find a basis transformation T such that

|ϕn〉 :=
∑
m

|χm〉Tmn with 〈ϕn|ϕm〉 = δmn .

This implies that T †ST = 1, or equivalently S−1 = TT †. This condition does not uniquely
determine T . In fact there are many orthonormalization techniques, e.g., Gram-Schmidt or-
thonormalization or Cholesky decomposition.
Usually we will have chosen the basis functions |χn〉 for a physical reason, e.g., atomic orbitals,
so that we would like the orthonormal basis functions to be as close to the original basis as
possible, i.e, we ask for the basis transformation T that minimizes∑

n

∣∣∣∣ |ϕn〉 − |χn〉 ∣∣∣∣2 =
∑
n

∣∣∣∣∣∣∑
m

|χm〉(Tmn − δmn)
∣∣∣∣∣∣2

= Tr (T † − 1)S (T − 1)

= Tr (T †ST︸ ︷︷ ︸
=1

−T †S − ST + S) .

Given an orthonormalization T , we can obtain any other orthonormalization T̃ by performing
a unitary transformation, i.e., T̃ = TU . Writing U = exp(iλM), we obtain the variational
condition

0
!

= Tr (+iMT †S − iSTM) = iTr (T †S − ST )M ,

which is fulfilled for ST = T †S, i.e., ST 2 = T †ST = 1. The second variation at T = S−1/2

1

2
Tr (M 2S1/2 + S1/2M 2) > 0

is positive, since S and the square of the hermitian matrix M are both positive definite. Hence
the Löwdin symmetric orthogonalization [14]

TLöwdin = S−1/2

minimizes the modification of the basis vectors.
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B Some useful commutation relations

Expression of commutators of products of operators can be derived by adding and subtracting
terms that differ only in the position of one operator, e.g.,

[A1A2 · · ·AN , B] = A1A2 · · ·ANB −BA1A2 · · ·AN
= A1A2 · · ·ANB − A1A2 · · ·BAN

+ A1A2 · · ·BAN − A1 · · ·BAN−1AN

+ · · ·
+ A1BA2 · · ·AN −BA1A2 · · ·AN

=
∑
i

A1 · · ·Ai−1 [Ai, B] Ai+1 · · ·AN

The following special cases are particularly useful

[AB, C] = A [B, C] + [A, C]B

= A{B, C} − {A, C}B

[A, BC] = B [A, C] + [A, B]C

= [A, B]C + B [A, C]

= {A, B}C −B{A, C}

[AB, CD] = A [B, C]D + AC [B, D] + [A,C] DB + C [A, D]B

= A{B, C}D − AC{B, D}+ {A,C}DB − C{A, D}B

Important examples are [
c†icj, c

†
γ

]
= c†iδj,γ[

c†icj, cγ

]
= −cjδi,γ

For the commutator of products of creation and annihilation operators appearing in one- and
two-body operators we find[

c†icj, c
†
αcβ

]
=
[
c†icj, c

†
α

]
cβ + c†α

[
c†icj, cβ

]
= 〈j|α〉 c†icβ − 〈β|i〉 c

†
αcj

and [
c†ic
†
jckcl , c

†
αcβ

]
= 〈l|α〉 c†ic

†
jckcβ + 〈k|α〉 c†ic

†
jcβcl − 〈β|j〉 c

†
ic
†
αckcl − 〈β|i〉 c

†
αc
†
jckcl
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C Pauli matrices and spin rotations

The Pauli or spin matrices are defined as

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)

They are hermitian, i.e. σ†i = σi , and σ2
i = 1. Therefore their eigenvalues are ±1. The

eigenvectors of σz are |mz〉, mz = ±1:

|+ 1〉 =

(
1

0

)
and | − 1〉 =

(
0

1

)
.

For these vectors we find

σx|mz〉 = | −mz〉 σy|mz〉 = imz| −mz〉 σz|mz〉 = mz|mz〉.

The products of the Pauli matrices are σx σy = iσz, where the indices can be permuted cycli-
cally. From this follows for the commutator

[σx, σy] = 2iσz

while the anticommutator vanishes:
{σx, σy} = 0

Finally a rotation by an angle α about the axis n̂ changes the spin matrices

Rn̂(α) = e−in̂·~σ α/2 = cos(α/2)− i sin(α/2) n̂ · ~σ .
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1 Introduction

The tight-binding method is the simplest fully quantum mechanical approach to the electronic
structure of molecules and solids. Although less accurate than density functional calculations
done with a good basis set, tight-binding calculations provide an appealingly direct and trans-
parent picture of chemical bonding [1–10]. Easily interpreted quantities such as local densities
of states and bond orders can be obtained from density-functional codes too, but emerge much
more naturally in a tight-binding picture. Another advantage of tight-binding calculations is that
they require much less computer time than more sophisticated electronic structure calculations,
whilst still producing qualitatively and often quantitatively correct results. Chemists also value
the efficiency and intuitive simplicity of the tight-binding method, although they usually refer
to it as Hückel theory.
In non-interacting systems, tight-binding calculations are so simple that analytic results are of-
ten attainable — a rare occurrence in the study of electrons in molecules and solids. Interacting
systems are much more difficult to deal with and the scope for analytic work is correspondingly
smaller, but the multi-band Hubbard model, which may be viewed as an interacting generaliza-
tion of a tight-binding model, forms the starting point of much of the work in the field.
Section 2 provides a simple introduction to tight-binding methods for non-interacting systems,
showing how to obtain the Hamiltonian matrix by choosing a basis of localized atomic-like
basis functions and using the variational principle. The distinction between the semi-empirical
and ab-initio tight-binding methods is clarified and a few example semi-empirical tight-binding
calculations are discussed.
Section 3 addresses the relationship between non-selfconsistent tight-binding models and density-
functional theory, which was not fully understood until the late eighties [11, 12].
Section 4 introduces the multi-band Hubbard generalization of the tight-binding approximation
and explains how it may be used to describe systems of interacting electrons. The rotational
symmetry of the Coulomb interaction places strong restrictions on the form of the electron-
electron interaction part of the multi-band Hubbard Hamiltonian: for an s shell the interaction
Hamiltonian has only one free parameter; for a p shell there are two free parameters; and for a
d shell there are three free parameters. It turns out that some of the most widely used Hubbard-
and Stoner-like models of interacting electrons are missing terms that must be present by sym-
metry and are not necessarily small [13].

2 Tight-binding models

All electronic structure methods require the calculation of sets of one-electron orbitals ψi(r).
In most cases, these are solutions of a non-interacting or mean-field Schrödinger equation of
the form1

1This chapter uses dimensionless equations involving only the numerical values of physical quantities. The
numerical values are as measured in Hartree atomic units, where the Dirac constant ~ = h/2π, the mass
of an electron me, and the elementary charge e are all equal to unity, and the permittivity of free space
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(
−1

2
∇2 + Veff(r)

)
ψi(r) = εiψi(r) . (1)

The effective potential Veff is a simple multiplicative function of position in density-functional
theory (DFT), but in Hartree-Fock theory it becomes a non-local integral operator, and in quasi-
particle theory it is both non-local and energy dependent.
Differential equations such as Eq. (1) are often solved by introducing a spatial grid and discretiz-
ing, but this approach is not much used in electronic structure theory. Instead, most electronic
structure methods represent the orbitals as linear combinations of basis functions and recast the
Schrödinger equation in matrix form. The finite-element approach so prevalent in engineering
also uses a basis set, although the basis functions in that case are polynomials defined within
polyhedral volume elements, patched together at the interfaces between elements. The clearest
way to explain the basis-set approach is via the variational principle.

2.1 Variational formulation of the Schrödinger equation

The problem of finding the eigenfunctions of a Hamiltonian Ĥ is equivalent to the problem of
finding the stationary points (by which, of course, I mean the stationary wave functions) of the
functional

E[ψ] = 〈ψ|Ĥ|ψ〉 (2)

subject to the normalization constraint

N [ψ] = 〈ψ|ψ〉 = 1 . (3)

The constrained minimum value of E[ψ] is the ground-state eigenvalue; the values of E[ψ] at
other stationary points are excited-state eigenvalues.
Suppose we make a guess, ψ̃i, at the i’th energy eigenfunction ψi. We can then write

ψ̃i =
ψi +∆ψi

〈ψi +∆ψi|ψi +∆ψi〉1/2
,

where ∆ψi is small if the guess is good. Since E[ψ] is stationary with respect to normalization-
conserving variations about ψi, the energy estimate

E[ψ̃i] = εi +O[(∆ψi)2]

has a second-order error. If ∆ψi is small, the error in εi is even smaller.
The practical importance of this simple observation is hard to exaggerate. It explains why
variational approaches often yield reliable energies even when the approximate eigenfunctions
are quite poor.

ε0 is equal to 1/(4π). Distances are made dimensionless by dividing by the Hartree atomic unit of length,
a0 = 4πε0~2/(mee

2) ≈ 0.529 × 10−10 m, also known as the Bohr radius. Energies are made dimensionless
by dividing by the Hartree atomic unit of energy, ~2/(ma20) = e2/(4πε0a0) ≈ 27.2 eV.
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A convenient way to guess a wave function is to choose a finite set of M basis functions,
{φ1(r), φ2(r), . . . , φM(r)}, and express ψ̃(r) as a linear combination:

ψ̃(c, r) =
M∑
α=1

cα φα(r) . (4)

Basis sets commonly used to approximate the energy eigenfunctions of atoms, molecules and
solids include atom-centered Gaussians, plane waves, and atomic orbitals. The values of the
expansion coefficients can be chosen by seeking the stationary points of

E[ψ̃] = E(c) =

∫ ( M∑
α=1

cαφα

)∗
Ĥ

(
M∑
β=1

cβφβ

)
d3r =

M∑
α,β

c∗αHαβ cβ , (5)

subject to the normalization constraint

N [ψ̃] = N(c) =

∫ ( M∑
α=1

cαφα

)∗( M∑
β=1

cβφβ

)
d3r =

M∑
α,β

c∗α Sαβ cβ = 1 , (6)

where

Hαβ ≡
∫
φ∗αĤφβ = Hamiltonian matrix, (7)

Sαβ ≡
∫
φ∗αφβ = overlap matrix. (8)

Given a basis set, the Hamiltonian and overlap matrix elements must be obtained by integration.
The integrals can be evaluated analytically in some cases, but usually have to be estimated
numerically, perhaps using a grid-based quadrature method. Some basis sets (such as plane
waves) are orthonormal, in which case Sαβ = δαβ is the identity matrix. The Hamiltonian and
overlap matrices are always Hermitian.
By choosing a finite basis set, we have replaced the problem of finding the stationary points
of a functional E[ψ̃] by the problem of finding the stationary points of a function of many
variables E(c1, c2, . . . , cM). This is a great simplification. If the basis set is poor, the functions
ψ̃(r) =

∑M
α=1 cα φα(r) that make E(c1, c2, . . . , cM) stationary subject to the normalization

constraint
∑

α,β c
∗
α Sαβ cβ = 1 may not be very similar to the exact eigenfunctions, but at least

we will have the variational principle in our favor when evaluating energies.
It is straightforward to show that E(c) is stationary subject to N(c) = 1 when

M∑
β=1

Hαβ cβ = ε̃

M∑
β=1

Sαβ cβ , (9)

where ε̃ is a Lagrange multiplier for the normalization constraint. This generalized Hermitian
matrix eigenproblem (“generalized” because of the presence of a positive-definite Hermitian
overlap matrix S) yields M real eigenvalues ε̃i and M eigenvectors ci with components ciα,
α = 1, 2, . . . ,M . The corresponding approximate eigenfunctions are

ψ̃i(r) =
M∑
α=1

ciαφα(r) . (10)
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Standard computational libraries such as LAPACK contain robust and well-tested subroutines
for solving generalized eigenvalue problems.
Another way to think about the linear variational method is in terms of projection operators. The
generalized matrix eigenproblem of Eq. (9) may be derived by seeking the stationary points of
〈ψ|P̂ ĤP̂ |ψ〉 subject to the normalization constraint 〈ψ|P̂ |ψ〉 = 1, where P̂ is the projector
onto the space spanned by the basis functions. The linear variational method produces exact
eigenfunctions of the projected Hamiltonian ĤP ≡ P̂ ĤP̂ .
The Rayleigh-Ritz variational principle tells us that M approximate eigenvalues, ε̃1, ε̃2, . . .,
ε̃M , obtained by solving a linear variational problem with a basis set of M functions are upper
bounds for the corresponding exact eigenvalues:

ε̃1 ≥ ε1, ε̃2 ≥ ε2, . . . , ε̃M ≥ εM .

Improving or extending the basis set can only lower these bounds. This convenient systematic
convergence underlies the success of the linear variational approach and explains why it is so
frequently used to solve the Schrödinger equation.

2.2 The tight-binding Hamiltonian matrix

If the basis functions used in the linear variational method are atomic or atomic-like orbitals,
the generalized matrix eigenvalue problem is called a tight-binding model. The phrase “atomic-
like” refers to orbitals that resemble atomic orbitals in form but have been modified in some
way. Atomic orbitals centered on different atoms are not automatically orthogonal, so one com-
mon modification is to replace them by orthogonalized linear combinations. More generally,
since there is no guarantee that atomic orbitals are a good basis for the strongly delocalized
energy eigenfunctions found in many molecules and solids, one can often gain accuracy by
changing the atomic orbitals in simple ways, using the variational principle as a guide. A more
extreme approach is to replace the atomic orbitals by localized linear combinations of exact
energy eigenfunctions for the solid, guaranteeing that the basis set is able to represent those
eigenfunctions exactly.

2.2.1 Ab initio tight binding

The most straightforward way to construct a tight-binding model is to choose an atomic-like
basis set and evaluate the Hamiltonian and overlap matrix elements defined in Eqs. (7) and (8).
If the basis functions and (pseudo-)potential are represented as linear combinations of Gaus-
sians, the necessary integrals can be evaluated analytically, but in most other cases they must
be found using numerical quadrature methods. If one is willing to evaluate the matrix elements
repeatedly as the charge density iterates to self-consistency and the effective potential changes
(see Sec. 3 for a fuller discussion), this ab initio tight-binding approach [14–16, 7] can be used
to solve the full DFT or Hartree-Fock equations.
When used in this manner, the tight-binding method differs little from the atom-centered Gaus-
sian methods used by quantum chemists. There is, however, a difference of emphasis: scientists
who label their approach as tight binding use minimal basis sets, often consisting of just a few
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basis functions on each atom. They view the loss of accuracy caused by the limitations of
the basis as a price worth paying for the sake of simplicity. Most quantum chemists prefer to
increase the number of Gaussians until the results of their calculations converge.
Using a minimal basis set of atomic-like functions is most successful when the distances be-
tween atoms are reasonably large compared with the ranges of the basis functions. This is
known as the tight-binding limit. In nearly-free-electron sp-bonded metals such as aluminium,
where the valence wave functions look more like plane waves than atomic orbitals, minimal
tight-binding basis sets are not very effective. This does not prevent the use of ab initio tight
binding, but means that more basis functions are required to obtain accurate results. In d- and
f -electron metals, the tight-binding description works better for the d and f bands than for the
more delocalized s and p bands.
It is tempting to avoid the complication of dealing with an overlap matrix by orthogonalizing the
basis functions. This is easily accomplished using the modified Gram-Schmidt algorithm or by
multiplication with the inverse square root of the overlap matrix (which always exists because
S is Hermitian and positive definite). In most cases, however, orthonormalizing the atomic-like
basis functions is a bad idea. Generalized eigenvalue problems are not much harder to solve than
ordinary eigenvalue problems, so little computer time is saved, but the complexity of the method
is increased because the orthonormalized basis functions include contributions from atomic-like
orbitals centered on several different atoms and lack the simple rotational symmetries of atomic-
like orbitals. The complicated dependence of the orthonormalized orbitals on the local crystal
structure also makes it harder to find simple parametrizations of the Hamiltonian matrix.

2.2.2 Wannier tight binding

A more sophisticated approach to ab initio tight binding is to use a basis of localized linear
combinations of exact eigenfunctions; these are called Wannier functions by physicists and
Foster-Boys orbitals by chemists [17,18]. Since there is one Wannier function for every energy
eigenfunction, the Wannier functions span the band(s) from which they were created. Solving
the tight-binding matrix eigenvalue problem in the Wannier function basis therefore reproduces
those energy bands and eigenfunctions exactly. This means that using the Wannier basis for, say,
electronic transport calculations, ought to give accurate results. The “maximally localized” [18]
Wannier bonding orbitals for Si and GaAs are illustrated in Fig. 1.
Wannier-based tight-binding methods preserve many of the advantages of simpler tight-binding
approaches without the inaccuracy, but Wannier functions are complicated in form and hard
to calculate without solving the Schrödinger equation. Furthermore, although carefully con-
structed Wannier functions decay exponentially with distance away from the atom or bond on
which they are centered [18], they may not decay rapidly. The Hamiltonian and overlap matrices
can be quite long-ranged and may have non-zero matrix elements between Wannier functions
on distant atoms, making them inconvenient to use. Finally, if an atom moves, the Wannier
functions and all matrix elements involving them have to be recalculated from scratch, which is
inefficient.



Tight-Binding Models and Coulomb Interactions 3.7

Fig. 1: Maximally-localized Wannier functions constructed from the four valence bands of Si
(left) and GaAs (right; Ga at upper right, As at lower left). The Wannier functions are real and
have opposite sign on the blue and red isosurfaces. Not surprisingly, the functions look like σ-
bonded combinations of sp3 hybrid orbitals. (Reprinted figure with permission from Ref. [18],
Copyright 2012 by the American Physical Society.)

2.2.3 Semi-empirical tight binding

A much simpler approach is semi-empirical tight-binding [2, 3], in which the Hamiltonian and
overlap matrix elements are treated as adjustable parameters and fitted to the results of exper-
iments or more sophisticated calculations. The basis functions never appear explicitly and are
used only to help justify the chosen forms of the Hamiltonian and overlap matrices. To limit
the number of fitting parameters, it is normally assumed that the inter-atomic matrix elements
extend to first or second neighbors only. Many semi-empirical tight-binding models also set
the overlap matrix to the identity, assuming implicitly that the underlying basis set has been
orthonormalized.
The drawbacks of this approach are obvious: it is approximate and may or may not give accurate
results; but it does incorporate the essential wave-like physics described by the Schrödinger
equation. To the best of my knowledge, it is the least computationally intensive fully quantum
mechanical method available. To show what can be done using relatively modest computational
resources, Fig. 2 is a snapshot from a 95 fs semi-empirical tight-binding molecular-dynamics
simulation of a radiation damage cascade in a box of 13,440 Cu atoms subject to periodic
boundary conditions.

2.2.4 One-, two- and three-center integrals

In an attempt to simplify the construction of semi-empirical tight-binding models, various ap-
proximations are made. The tight-binding description of the electronic structure of a given
crystal structure then requires only a handful of fitting parameters. If the tight-binding model is
to be used in a molecular-dynamics simulation, where the atoms are moving and the structure
is changing, these parameters become functions of the local structure of the solid. For example,
a Hamiltonian or overlap matrix element involving atomic-like basis functions on two different
atoms is a function of the separation between those atoms and perhaps also of the positions of
other neighboring atoms.
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Fig. 2: The final configuration of a 95 fs tight-binding molecular dynamics simulation of a
radiation damage cascade in Cu. The cascade was initiated by giving 1 keV of kinetic energy
to a single atom in the middle of a simulation cell of 13,440 atoms. Only atoms that have
moved significantly are shown. One of the advantages of the tight-binding method relative to
classical force-field methods is that it has access to electronic properties. Here we show the
instantaneous atomic charges.

The most useful approximation concerns the form of the potential Veff(r), which is often as-
sumed to be a superposition of short-ranged spherical contributions, one centered on each atom:

Veff(r) ≈
∑
I

Veff,I(|r − dI |) , (11)

where dI is the position of the nucleus of atom I (or the ionic core of atom I if, as is usual,
the tight-binding model describes the valence electrons only). DFT calculations for many
molecules and solids have shown that Eq. (11) is often quite a good approximation.
A general Hamiltonian matrix element between basis function α on atom I and basis function
β on atom J then takes the form:

HIα,Jβ = 〈φIα|Ĥ|φJβ〉 = 〈φIα|
(
− 1

2
∇2 +

∑
K

Veff,K(|r − dK |)
)
|φJβ〉 . (12)

If I and J happen to be the same, I = J , the matrix element includes one- and two-center
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contributions:

〈φIα|Ĥ|φIβ〉 = 〈φIα|
(
−1

2
∇2 + Veff,I

)
|φIβ〉︸ ︷︷ ︸

one-center

+
∑
K (6=I)

〈φIα|Veff,K |φIβ〉︸ ︷︷ ︸
two-center crystal field

. (13)

The one-center term can be calculated considering a single spherical atom in isolation. The
two-center crystal-field terms, which are often ignored, depend on the relative positions of two
different atoms and describe how the Hamiltonian matrix elements between orbitals centered
on atom I are affected by the potential of atom K.
If I and J differ, the Hamiltonian matrix elements include two- and three-center contributions:

〈φIα|Ĥ|φJβ〉 = 〈φIα|
(
−1

2
∇2 + Veff,I + Veff,J

)
|φJβ〉︸ ︷︷ ︸

two-center electron hopping

+
∑

K (6=I,J)

〈φIα|Veff,K |φJβ〉︸ ︷︷ ︸
three-center

. (14)

The two-center electron hopping contributions are the same as in a dimer involving atoms I and
J only and can be calculated without considering the rest of the solid. The three-center contri-
butions are typically small and, like the crystal-field terms, are often ignored. (Both crystal-field
and three-center terms are normally retained in ab initio tight-binding calculations.) The overlap
matrix elements can be decomposed in an analogous manner, but include one- and two-center
contributions only.
If we make the two-center approximation (ignore all three-center integrals) and neglect crystal-
field terms, the Hamiltonian matrix for a solid or molecule becomes very simple. It contains
one-center terms, which can be calculated by considering an isolated “atom” with a spherical
Hamiltonian, and two-center electron hopping terms, which can be calculated by considering
an isolated “dimer” with a cylindrical Hamiltonian. The words “atom” and “dimer” are in quo-
tation marks because the potential Veff,I associated with atom I may not resemble the potential
of an isolated atom and may depend on the environment in which atom I is located.

2.2.5 Slater-Koster parameters

Most tight-binding models use atomic-like basis functions of the form Rnl(r)Ỹ
m
l (θ, φ), where

Rnl(r) is a radial function, Ỹ m
l (θ, φ) is a real spherical harmonic defined by

Ỹ m
l =

1

i
√
2

[
(−1)mY −ml − Y m

l

]
, m < 0, (15)

Ỹ m
l = Y m

l , m = 0, (16)

Ỹ m
l =

1√
2

[
(−1)mY m

l + Y −ml

]
, m > 0, (17)

and Y m
l is a conventional complex spherical harmonic. The real spherical harmonics are the

Cartesian s, p and d orbitals familiar from high-school chemistry lessons and are illustrated in
Figs. 3 and 4.
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Fig. 3: The real spherical harmonics Ỹ 1
1 = px, Ỹ −11 = py and Ỹ 0

0 = pz. The distance from the
origin to the surface in direction (θ,φ) is proportional to |Ỹ m

l (θ, φ)|2

Fig. 4: The l = 2 real spherical harmonics Ỹ −22 = dxy, Ỹ −12 = dyz, Ỹ 1
2 = dzx, Ỹ 2

2 = dx2−y2 ,
and Ỹ 0

2 = d3z2−r2 . The distance from the origin to the surface in direction (θ,φ) is proportional
to |Ỹ m

l (θ, φ)|2

Because the effective potential Veff,I of an atom is assumed to be spherically symmetric, there
is only one non-zero one-center matrix element for every distinct choice of the compound in-
dex nl. Two-center matrix elements may be calculated by considering an isolated dimer with
effective potential Veff,I + Veff,J . If this dimer is aligned with the z axis, the z-component of
angular momentum is a good quantum number and matrix elements between basis functions
with different values of the azimuthal quantum number m are zero. This reduces the number of
non-zero two-center matrix elements substantially.

As an example, consider a dimer oriented along the z axis. One of the two atoms has a valence
shell of p orbitals and the other a valence shell of d orbitals. For simplicity, we assume that the
basis set is orthonormal, implying that the orbitals on the two atoms have been orthogonalized
in some way. The non-zero one-center matrix elements involving orbitals on the first atom all
have the same value, which we call Vp; the one-center matrix elements involving orbitals on the
second atom are all equal to Vd. The non-zero hopping matrix elements linking the two atoms
have only two possible values, hpdσ and hpdπ, corresponding to pairs of orbitals with m = 0

or m = 1. Since no p orbital has m = ±2, there are no non-zero hopping matrix elements
with m = ±2, even though there are d orbitals with m = ±2 on the second atom. Thus, the
electronic structure of the dimer is defined by just four numbers. Quantities such as Vp, Vd,
hpdσ, and hpdπ are called Slater-Koster parameters [1].
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Fig. 5: A two-center matrix element between pz orbitals on atoms I and J separated by the
vector dIJ = dJ − dI . Each pz orbital may be expressed as a linear combination of px, py and
pz orbitals quantized relative to the dIJ axis, so the matrix element is a linear combination of
the Slater-Koster parameters hppπ and hppσ.

We have not yet worked out how to evaluate two-center Hamiltonian matrix elements for dimers
not aligned with the global z axis. An example of this problem is shown in Fig. 5. The two pz
orbitals are neither parallel nor perpendicular to the dimer axis dIJ , so the two-center hopping
matrix element between them is neither hppσ (the value for two p orbitals pointing along dIJ )
nor hppπ (the value for two p orbitals pointing perpendicular to dIJ ). Fortunately, rotating a
real spherical harmonic Ỹ m

l always produces a linear combination of real spherical harmonics
with the same value of l but different values of m. More precisely, if the operator R̂ω rotates
the function to which it is applied by ω radians about an axis parallel to the unit vector ω̂, the
rotated real spherical harmonic R̂ωỸ m

l can be expressed as a linear combination of the 2l + 1

unrotated real spherical harmonics with the same value of l:

R̂ωỸ m
l =

l∑
m′=−l

D̃l
m′,m(ω) Ỹ

m′

l . (18)

This allows us to express the orbitals pictured in Fig. 5 as linear combinations of orbitals aligned
with the dimer axis, and hence to express the two-center Hamiltonian and overlap matrix ele-
ments for the tilted dimer in terms of the Slater-Koster parameters. Slater and Koster [1] provide
a convenient table expressing the two-center matrix elements of the rotated dimer in terms of
the Slater-Koster parameters and the direction cosines of the dimer axis. Given the one-center
Slater-Koster parameters for all atom types and the two-center Slater-Koster parameters for all
pairs of atom types at all inter-atomic separations, one can use this table to write down the
two-center tight-binding Hamiltonian for any molecule or solid built of those atoms.

2.2.6 Fitting and transferability

Semi-empirical tight-binding Hamiltonian and overlap matrix elements (if the model is non-
orthogonal) are often fitted to bandstructures. This makes sense if individual electronic eigen-
values and eigenfunctions are the quantities of interest, as is the case, for example, in electronic
transport calculations, but is not appropriate if the tight-binding model is to be used to calculate
total energies or inter-atomic forces. In that case it is better to fit to total energies and/or forces
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calculated for a variety of structures using a more accurate method such as DFT with a good
basis set. The wider the range of local atomic environments included in the data set, the better
the results. Large tabulations of fitted tight-binding parameters are available [19].
It would be impractical to refit the parameters of a tight-binding model for every different ar-
rangement of the ions in a molecular dynamics simulation, so assumptions have to be made
about how the matrix elements between nearby orbitals depend on ionic positions. The short
range of the atomic-like basis functions, and the observation that the form of the potential in
one region of a solid or molecule does not normally depend strongly on the positions of distant
atoms, suggest that only the local ionic arrangement is important. It does not, however, imply
that the mapping from ionic positions to matrix elements is simple. If the assumptions made
in parametrizing a tight-binding model are wrong or inaccurate, it is likely to produce poor re-
sults whenever the local ionic arrangement is far from any of the arrangements included in the
training set. In such cases we say that the tight-binding model is not “transferable”.
In general, despite all the work that has been done, parametrizing and fitting semi-empirical
tight-binding models remains a dark art. Some of the most successful attempts [20] are among
the simplest and were constructed using very little data, while highly-fitted models often prove
brittle and show poor transferability. The problem of constructing a transferable semi-empirical
tight-binding model is similar in nature to the problem of constructing a transferable classical
force field and leads to similar frustrations. Tight-binding models are better than force fields
because they are properly quantum mechanical — but they are only an approximation. As we
illustrate with a few examples below, semi-empirical tight-binding is at its best when used to
build a qualitative understanding of chemical bonding.

2.3 Example semi-empirical tight-binding calculations
2.3.1 The hydrogen molecule

Two hydrogen atoms are held a distance d apart and approximated using a tight-binding model
with a single atomic-like s orbital on each atom. The Hamiltonian and overlap matrices are

H =

(
V h

h V

)
and S =

(
1 s

s 1

)
. (19)

The eigenvectors are

e+ =
1√

2(1 + s)

(
1

1

)
and e− =

1√
2(1− s)

(
1

−1

)
, (20)

normalized such that
e†i S ej = δij, (21)

as is appropriate for a generalized eigenvalue problem. The corresponding eigenvalues are

ε± =
V ± h
1± s

. (22)

It is reassuring to see the bonding and anti-bonding linear combinations of basis functions
emerge naturally from the analysis.
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Fig. 6: A schematic representation of the tight-binding Hamiltonian matrix of a ring of hydrogen
atoms subject to periodic boundary conditions.

2.3.2 Bandstructure of a ring of hydrogen atoms

Consider a chain of N hydrogen atoms subject to periodic boundary conditions (i.e., with the
ends joined together to form a ring). A schematic representation of the Hamiltonian matrix is
shown in the Fig. 6. As in the case of the H2 molecule, there are on-site (diagonal) Hamiltonian
matrix elements V and nearest-neighbor hopping matrix elements h. This time, however, we
assume for simplicity that the basis set is orthonormal. We shall also assume, as usually turns
out to be the case, that h is negative. The Hamiltonian is an N × N matrix with N large, so it
looks as if it will be difficult to find the eigenvalues and eigenvectors. If we remember to use
Bloch’s theorem, however, the problem becomes simple.

A normalized Bloch-like linear combination of basis functions takes the form

|ψkp〉 =
1√
N

N−1∑
n=0

|φn〉 eikpna , (23)

where

kp =
2πp

Na
with p = 0, 1, 2, . . . , N − 1, (24)

and a is the bond length. The values of kp are chosen such that |ψkp〉 satisfies the periodic bound-
ary conditions: 〈φ0|ψkp〉 = 〈φN |ψkp〉. Since exp (ikp+Nna) = exp (ikpna) for any integer n,
we lose nothing by restricting p to the range 0 ≤ p < N .

Applying the projected Hamiltonian ĤP =
∑

m,n |φm〉Hmn〈φn| to the Bloch function |ψkp〉
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Fig. 7: A schematic representation of the tight-binding Hamiltonian matrix of part of a large
ring of diatomic molecules subject to periodic boundary conditions.

gives

ĤP |ψkp〉 =
1√
N

N−1∑
n=0

ĤP |φn〉

=
1√
N

N−1∑
n=0

(
V |φn〉+ h|φn−1〉+ h|φn+1〉

)
eikpna

= V

(
1√
N

N−1∑
n=0

|φn〉eikpna
)

+ heikpa

(
1√
N

N−1∑
n=0

|φn−1〉eikp(n−1)a
)

+ he−ikpa

(
1√
N

N−1∑
n=0

|φn+1〉eikp(n+1)a

)
. (25)

Noting that |φ−1〉 ≡ |φn−1〉 and |φN〉 ≡ |φ0〉 because of the periodic boundary conditions, this
simplifies to

ĤP |ψkp〉 =
[
V + h(eikpa + e−ikpa)

]
|ψkp〉, (26)

showing that |ψkp〉 is an eigenfunction of ĤP with eigenvalue

ε(kp) = V + 2h cos(kpa) . (27)

As the size N of the ring increases, the allowed values of kp get closer and closer together
and the cosinusoidal bandstructure of the infinite tight-binding ring is sampled more and more
densely.

2.3.3 Bandstructure of a ring of diatomic molecules

The tight-binding model pictured in Fig. 7 has two orbitals per unit cell and produces two energy
bands. There are N unit cells (2N atoms) altogether and N inequivalent values of k consistent
with the periodic boundary conditions. For simplicity we set the diagonal Hamiltonian matrix
elements V1 and V2 to zero; the nearest-neighbor off-diagonal Hamiltonian matrix elements h
and g (both of which are < 0) alternate along the chain.
Since we have two basis functions per unit cell, we can construct two Bloch functions at each
allowed value of k:

|ψ(1)〉 = 1√
N

∑
n

eikn2a|φn,1〉, |ψ(2)〉 = 1√
N

∑
n

eikn2a|φn,2〉,
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Fig. 8: The bandstructure of the tight-binding ring of dimers in the limit as the number N of
two-atom unit cells tends to infinity. There are two bands because there are two basis functions
per unit cell.

where |φn,1〉 and |φn,2〉 are the two basis functions in unit cell n. The unit cell now has length
2a, so the Brillouin zone is −π/(2a) ≤ k < π/(2a). The corresponding vectors of orbital
coefficients, c(1) and c(2), with components

c
(1)
n,1 =

1√
N
eikn2a, c

(1)
n,2 = 0,

and

c
(2)
n,1 = 0, c

(2)
n,2 =

1√
N
eikn2a,

satisfy

Hc(1) = hc(2) + ge+ik2ac(2),

Hc(2) = hc(1) + ge−ik2ac(1),

where H is the 2N × 2N Hamiltonian matrix. It follows that the linear combination v =

α1c
(1) + α2c

(2) is an eigenvector ofH if(
0 h+ ge−ik2a

h+ geik2a 0

)(
α1

α2

)
= λ

(
α1

α2

)
.

The two energy eigenvalues ε±(k) at wavevector k are the eigenvalues of this 2 × 2 matrix.
Writing h = (1 +∆)h0 and g = (1−∆)h0, some algebra shows that

ε±(k) = ±2|h0|
√
1− (1−∆2) sin2(ka) .

Fig. 8 shows the bandstructure in the case when ∆ = 0.1.
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Fig. 9: The N1×N2×N3 parallelepiped supercell to which periodic boundary conditions are
applied.

2.3.4 Bandstructure of a face-centered-cubic solid

Consider a large but finite face-centered-cubic crystal consisting of a block of N1 × N2 × N3

parallelepiped unit cells, as illustrated in Fig. 9. Apply periodic (not Bloch) boundary condi-
tions, so that an electron leaving one face of the block immediately reappears at the equivalent
point on the opposite face. The primitive Bravais lattice vectors are

A1 =
a

2
(0, 1, 1) , A2 =

a

2
(1, 0, 1) , A3 =

a

2
(1, 1, 0) , (28)

and the corresponding reciprocal vectors are

B1 =
2π

a
(−1, 1, 1) , B2 =

2π

a
(1,−1, 1) , B3 =

2π

a
(1, 1,−1) . (29)

The N1N2N3 distinct k vectors consistent with the periodic boundary conditions are

k =
m1

N1

B1 +
m2

N2

B2 +
m3

N3

B3 with 0 ≤ m1<N1, 0 ≤ m2<N2, 0 ≤ m3<N3. (30)

As in the previous examples, we approximate the system as an orthogonal tight-binding model
with one atomic-like s orbital per atom. The diagonal matrix elements Vs are set to zero (defin-
ing the zero of energy) and the nearest-neighbor hopping matrix elements are equal to h. Matrix
elements linking orbitals on more distant neighbors are assumed to be zero. The Bloch linear
combinations of basis functions are

|ψk〉 =
1√

N1N2N3

∑
d

|φd〉 eik·d , (31)

where the sum is over the positions d of all N1N2N3 atoms in the block and |φd〉 is the basis
function on the atom at d. Eq. (31) is a three-dimensional analogue of the one-dimensional
Bloch linear combination used in Sec. 2.3.2.
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Applying the projected Hamiltonian ĤP =
∑
d,d′ |φd〉Hd,d′ 〈φd′| to the Bloch linear combina-

tion gives

ĤP |ψk〉 =
1√

N1N2N3

∑
d

ĤP |φd〉eik·d

=
1√

N1N2N3

∑
d′

∑
d

|φd′〉〈φd′|ĤP |φd〉eik·d

=
1√

N1N2N3

∑
d′

|φd′〉eik·d
′∑
d

〈φd′|ĤP |φd〉eik·(d−d
′). (32)

The only non-zero contributions to the inner summation are those for which d is a nearest neigh-
bor of d′, in which case the matrix element is equal to h. The summation over all lattice vectors
d may therefore be replaced by a summation over the positions of the 12 nearest neighbors of
the atom at d′. Denoting the vectors from the atom at d′ (or any other lattice site) to its 12
nearest neighbors by n, we obtain

ĤP |ψk〉 =
1√

N1N2N3

∑
d′

|φd′〉eik·d
′∑
n

heik·n =

(
h
∑
n

eik·n

)
|ψk〉 (33)

Just as for a ring of hydrogen atoms, the Bloch functions are automatically eigenvalues of the
tight-binding Hamiltonian. This is generally the case when there is only one basis function per
unit cell, since the translational symmetry is then sufficient to determine the energy eigenfunc-
tions completely. The sum over the 12 nearest neighbors is easily evaluated to obtain

ε(k) = 4h

[
cos

(
kya

2

)
cos

(
kza

2

)
+ cos

(
kza

2

)
cos

(
kxa

2

)
+ cos

(
kxa

2

)
cos

(
kya

2

)]
.

This simple expression provides an accurate description of the bandstructure of any face-cen-
tered-cubic crystal of weakly-interacting atoms with outermost s shells. All of the Noble gases
except helium crystallize into face-centered cubic structures under sufficient pressure, and all
have bandstructures of this form.

3 Tight-binding models and density-functional theory

3.1 Introduction

Section 2 showed how the tight-binding approximation can be used to find approximate solu-
tions of one-particle Schrödinger equations of the form[

−1

2
∇2 + Veff(r)

]
ψi(r) = εiψi(r). (34)

This is useful but by no means the end of the story, since tight-binding models are also used
to describe how the total energy of a solid or molecule varies as the atoms move around [2,
3, 7, 9, 11, 12, 14, 15]. Any tight-binding model capable of providing a reliable account of the
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structure-dependent total energy can be used as an engine for the calculation of the inter-atomic
forces (gradients of the total energy with respect to atomic positions) required for quantum
molecular dynamics simulations. Tight-binding quantum molecular dynamics simulations are
less accurate than their DFT equivalents but require much less computer power.
If one wishes to describe total energies, calculating the electronic eigenvalues εi of the occupied
valence states is not sufficient [21]. The total energy also includes another term that represents,
roughly, the repulsive interaction between the ionic cores:

ETB
total(d) =

∑
i occ

εi(d) + Eion-ion(d), (35)

where d ≡ {d1,d2, . . . ,dNI
} is shorthand for the set of all ionic positions. (The dependence

of the electronic eigenvalues εi on d arises via the position dependence of the Hamiltonian and
overlap matrix elements.) The ion-ion interaction energy Eion-ion(d) must also be parametrized
and/or fitted and is often but not always assumed to be pairwise in form:

Eion-ion(d) =
∑
I>J

V pair
ion-ion(dI − dJ), (36)

where the sum is over all pairs I and J of ions and dI and dJ are the corresponding ionic
positions.
The form of Eq. (35) is reminiscent of the expression for the total energy in Hohenberg-Kohn-
Sham DFT,

E =
∑
i occ

εi−
∫
VKS([n], r)n(r) d

3r+

∫
Vnuc(r)n(r) d

3r+
1

2

∫∫
n(r)n(r′)

|r − r′|
d3r′d3r+Exc[n]+Enn,

(37)
where n(r) is the electron number density and the eigenvalues are solutions of the Kohn-Sham
equation, which looks like Eq. (34) with a density-dependent effective potential of the form:

VKS([n], r) = Vnuc(r) +

∫
n(r′)

|r − r′|
d3r′ + Vxc([n], r). (38)

The first term on the right-hand side of Eq. (38) is the potential exerted on the electrons by the
classical, point-like nuclei; the second, known as the Hartree term, is the Coulomb potential
of the electron charge cloud; and the third is the exchange-correlation potential, which is dis-
cussed below. The second term on the right-hand side of Eq. (37) cancels the potential energy
contribution to the sum of energy eigenvalues, leaving only the kinetic energy contribution;
the third, fourth and fifth terms add the energy of interaction between the electrons and nuclei,
the Coulomb interaction energy of the electronic charge cloud, and the exchange-correlation
energy. The final term is the classical Coulomb interaction energy of the nuclei with each other.
A recap of the basics of DFT is given in Sec. 3.2 below. For the time being, we note only
that the DFT total-energy expression, which experience has shown is usually very accurate,
consists of a sum of eigenvalues and additional “ion-ion repulsion” terms. This looks quite
like the tight-binding total energy expression, except that: (i) the DFT ion-ion repulsion terms
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are density dependent and not obviously simple or pairwise; and (ii) the Kohn-Sham effective
potential depends on the electron density n(r), which in turn depends on the eigenfunctions via
n(r) =

∑
i occ |ψi(r)|2.

The dependence of the Kohn-Sham potential on the wavefunctions obtained by solving the
Kohn-Sham equation means that an iterative method of solution is required. The first step is
to guess an input electron density nin(r), which might perhaps be a superposition of atomic
densities. The corresponding Kohn-Sham potential VKS([n

in], r) can then be calculated and
the Kohn-Sham equation solved to find the output wavefunctions and hence the output den-
sity nout(r) =

∑
i occ |ψout

i (r)|2. The input and output densities differ in general, so the next
step is to adjust the input density to try to reduce the difference between the input and output
densities. After an iterative series of adjustments, a “self-consistent” electron density n0(r)

is obtained, for which the wavefunctions ψ0i(r) obtained by solving the Kohn-Sham equation
with input potential VKS([n0], r) regenerate n0(r) exactly. In tight-binding total energy calcula-
tions, by contrast, the Schrödinger equation only has to be solved once and no self-consistency
is required.
The aim of the rest of this section is to explain the link between DFT and tight-binding theory.
Can we derive a non-selfconsistent tight-binding model with a simple ion-ion repulsion term
from the much more complicated self-consistent formalism of DFT?

3.2 Review of density-functional theory

Density-functional theory [22, 23] looks like a mean-field theory, but is remarkable because it
provides an exact mapping from a system of interacting electrons to a system of non-interacting
electrons moving in an effective potential that depends on the electron density. Solving the
self-consistent non-interacting problem gives, in principle, the exact interacting ground-state
energy E0 and electron density n0(r) for any given arrangement of the nuclei. The success of
DFT, which appears to be a theory of non-interacting electrons but in fact describes a system
of interacting electrons, in part explains the success of the “standard model” of a solid as an
assembly of non-interacting electrons moving in a fixed external potential.

3.2.1 Preliminaries

The N -electron eigenfunctions Ψ(r1, r2, . . . , rN) of any finite collection of atoms satisfy the
many-electron Schrödinger equation:(

−1

2

∑
i

∇2
i +

∑
i>j

1

|ri − rj|
−
∑
i

∑
I

ZI
|ri − dI |

+
∑
I>J

ZIZJ
|dI − dJ |

)
Ψ = EΨ, (39)

where ri is the position of electron i and ZI is the atomic number of atom I at position dI . For
simplicity, we shorten this to (

T̂ + V̂ee + V̂en + Enn

)
Ψ = EΨ. (40)
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We are working within the Born-Oppenheimer approximation and treating the nuclei as station-
ary and classical, so the nuclear positions dI and nuclear-nuclear Coulomb interaction energy
Enn are regarded as constants when solving the electronic problem.
The central quantity in DFT is the electron (number) density n(r), the operator for which is

n̂(r) =
N∑
i

δ(r − ri). (41)

Since

V̂en =
N∑
i

Vnuc(ri) =

∫
Vnuc(r)

N∑
i

δ(r − ri) d3r, (42)

the electron-nucleus interaction operator (or any other one-electron potential energy term) can
be written in terms of the electron density operator:

V̂en =

∫
Vnuc(r) n̂(r) d

3r. (43)

Note that r in this equation is a simple vector, not an operator; the electron position operators
r1, r2, . . ., rN are buried in the definition of n̂(r). Taking an expectation value of Eq. (43) gives
the obvious result:

〈Ψ |V̂en|Ψ〉 =
∫
Vnuc(r) 〈Ψ |n̂(r)|Ψ〉 d3r =

∫
Vnuc(r)n(r) d

3r. (44)

3.2.2 The energy functional

The first step in any derivation of DFT is to show that there exists a functional, E[n], of the
electron number density n(r), which takes its minimum value, equal to the ground-state energy
E0, when the density is the ground-state density n0(r). Levy [24] manages this by giving an
explicit construction of such a functional:

E[n] = min
Ψ→n
〈Ψ |Ĥ|Ψ〉 = min

Ψ→n
〈Ψ |T̂ + V̂ee + V̂en + Enn|Ψ〉. (45)

In words: given an electron density n(r), the functional E[n] is evaluated by checking all
possible normalized antisymmetric N -electron wavefunctions which give that density to find
the one that minimizes 〈Ψ |Ĥ|Ψ〉. This minimum value is the value assigned to the functional at
the density n(r). It can be shown that it is possible to find at least one N -electron wavefunction
corresponding to any reasonable density n(r), so the constrained search always produces a
value.
The variational principle guarantees that the minimum value of E[n] occurs when n(r) is equal
to the ground-state density n0(r). The optimal wavefunction Ψ is then the ground state Ψ0, and
the value of the functional is the ground-state energy:

E[n0] = min
Ψ→n0

〈Ψ |Ĥ|Ψ〉 = 〈Ψ0|Ĥ|Ψ0〉 = E0 . (46)
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Since Enn is a constant, and since the expectation value of V̂en gives the same result,

〈Ψ |V̂en|Ψ〉 =
∫
Ven(r)n(r) d

3r, (47)

for all wavefunctions Ψ yielding the density n(r), the total-energy functional may be written in
the form

E[n] = min
Ψ→n
〈Ψ |T̂ + V̂ee|Ψ〉+

∫
Ven(r)n(r) d

3r + Enn = F [n] +

∫
Ven(r)n(r) d

3r + Enn,

(48)

where the second equality defines F [n].
The definition of F [n] makes no reference to the positions of the nuclei, so its value depends
on the electron density n(r) only. It is thus a universal functional: given an input density
n(r), the value of F [n] is fixed regardless of the nuclear charges or positions. (Remember
that functionals such as E[n] and F [n] are defined for all reasonable input densities n(r); the
density that minimizesE[n] depends on the arrangement of the ions, but that is a separate issue.)
Since the functional F [n] is the same in all solids, atoms and molecules, it could in principle be
calculated once and for all.

3.2.3 Contributions to the energy functional

If, given a density n(r), we could easily evaluate E[n], the many-electron problem would be
solved: all that we would have to do to find the ground-state density and energy would be to vary
n(r) until the functional reached a minimum. Unfortunately, but not unexpectedly, evaluating
the functional is equivalent to solving the full N -body problem and is out of the question. We
therefore have to approximate.
To make approximating the energy functional easier, it helps to identify some of the contribu-
tions to F [n]. Since the definition of F [n] involves an expectation value of the electron-electron
interaction, one obvious contribution is the Hartree energy:

EH[n] =
1

2

∫∫
n(r)n(r′)

|r − r′|
d3rd3r′. (49)

Another large and easily recognizable contribution is the kinetic energy of the interacting elec-
trons. Although this is hard to evaluate, we can work out the kinetic energy Ts[n] of a system
of non-interacting electrons with ground-state density n(r). There is no reason to think that
Ts[n] is the same as the kinetic energy of the interacting electrons, but it is of the same order of
magnitude and relatively easy to calculate.
One way to work out Ts[n] is to choose a non-interacting Hamiltonian, −1

2
∇2 + Veff(r), solve

the Schrödinger equation [
−1

2
∇2 + Veff(r)

]
ψi(r) = εiψi(r), (50)
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and occupy first N eigenfunctions to obtain the corresponding electron density

n(r) =
∑
i occ

|ψi(r)|2. (51)

Ts[n] is then given by:

Ts[n] =
∑
i occ

∫
ψ∗i (r)

(
−1

2
∇2

)
ψi(r) d

3r =
∑
i occ

εi −
∫
Veff(r)n(r) d

3r . (52)

The drawback of this technique is that it produces the value of Ts[n] at the density n(r) ob-
tained by solving the Schrödinger equation. If you require Ts[n] at a given density n(r), it is
necessary to vary the input potential Veff(r) until the output density

∑
i occ |ψi(r)|2 is equal to

n(r). This may not even be possible — not every density n(r) is the ground-state density of a
non-interacting system — although it rarely if ever poses a problem in practice.
So far, then, we have identified two contributions that we believe should make up a large part
of F [n]. The next step is to write

F [n] = Ts[n] + EH[n] + Exc[n], (53)

or, equivalently,

E[n] = Ts[n] +

∫
Vnuc(r)n(r) d

3r + EH[n] + Exc[n] + Enn. (54)

The terms we have identified have been written explicitly, and Exc[n], known as the exchange
and correlation energy, is a “rubbish” term to take care of the rest of F [n]. Like F [n], the
Hartree energy EH[n] and the non-interacting kinetic energy Ts[n] are universal functionals of
the electron density and could, in principle, be calculated once and for all. Since

Exc[n] = F [n]− Ts[n]− EH[n], (55)

it follows that the exchange-correlation functional Exc[n] is also universal.
Given an electron density n(r), the non-interacting kinetic energy, the Hartree energy, the
electron-nuclear interaction energy, and the nuclear-nuclear interaction energy are all easily
obtained. The only difficult term is the unknown universal functional Exc[n]. This includes all
of the complicated parts of the many-body problem and has to be approximated. The surprising
accuracy of simple approximations to Exc[n] is the reason DFT is so useful. The question of
how to construct good approximate exchange-correlation functionals is fascinating but too com-
plicated to discuss here. For our purposes, it is sufficient to assume that good approximations
exist and can be evaluated easily.

3.2.4 Minimization of the energy functional

We now know how to evaluate all the terms in the energy functional

E[n] = Ts[n] + Een[n] + EH[n] + Enn + Exc[n]. (56)
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To calculate the exact interacting ground-state density n0(r) (and hence the exact ground-state
energy E0), we have to find the density that minimizes E[n] subject to the normalization con-
straint

∫
n(r) d3r = N . Mathematically, the ground-state density is determined by the station-

arity condition,

δE =

∫
δE[n]

δn(r)
δn(r) d3r = 0, (57)

which must hold for all density variations δn(r) that integrate to zero.
The variations of the electron-nuclear and Hartree terms are easy to find:

δEen = δ

(∫
Vnuc(r)n(r) d

3r

)
=

∫
Vnuc(r) δn(r) d

3r, (58)

δEH =

∫ (∫
n(r′)

|r − r′|
d3r′

)
δn(r) d3r =

∫
VH([n], r) δn(r) d

3r, (59)

where VH([n], r) is the Hartree potential mentioned earlier. The variation of the exchange-
correlation energy,

δExc =

∫
δExc

δn(r)
δn(r) d3r =

∫
Vxc([n], r) δn(r) d

3r (60)

defines the exchange-correlation potential Vxc([n], r), which is easy enough to work out given
a simple approximate exchange-correlation functional.
The variation of the kinetic energy functional can be found by returning to Eqs. (50), (51),
and (52). Suppose that the input potential changes from Veff to Veff + δVeff, causing the output
density — the density at which Ts is calculated — to change from n to n+δn. Using first-order
perturbation theory, the sum of the occupied one-electron eigenvalues changes by∑

i occ

δεi =
∑
i occ

∫
ψ∗i (r) δVeff(r)ψi(r) d

3r =

∫
n(r) δVeff(r) d

3r. (61)

Hence

δTs = δ

[∑
i occ

εi −
∫
Veff(r)n(r) d

3r

]

=

∫
n(r) δVeff(r) d

3r −
∫

[n(r) δVeff(r) + Veff(r) δn(r)] d
3r

= −
∫
Veff(r) δn(r) d

3r . (62)

By combining the variations of each term, we can now write down the Euler-Lagrange equation
that determines the minimum of the total energy functional:

δE = δTs + δEen + δEH + δExc

=

∫ (
− Veff(r) + Vnuc(r) + VH([n], r) + Vxc([n], r)

)
δn(r) d3r = 0. (63)
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Because of the constraint of normalization conservation,∫
δn(r) d3r = 0, (64)

the k = 0 Fourier component of −Veff + Vnuc + VH + Vxc is not fixed by Eq. (63). All other
Fourier components must be zero, however, and hence

Veff(r) = Vnuc(r) + VH([n], r) + Vxc([n], r) + const. = VKS([n], r) + const. (65)

The value of the constant has no effect on the calculation of Ts[n] (which is the only purpose of
Veff), so we set it to zero.
Let us think about the meaning of Eq. (65). The total energy functional is minimized when
the potential Veff(r) appearing in the non-interacting Schrödinger equation with ground-state
density n(r) is exactly equal to VKS([n], r) = Vnuc(r) + VH([n], r) + Vxc(]n], r). Since VH and
Vxc depend on the electron density, this is the self-consistency condition discussed in Sec. 3.1:
the potential occurring in the non-interacting Schrödinger equation is determined by the ground-
state electron density obtained by solving that equation.

3.2.5 Expressions for the DFT total energy

Once the ground-state density n0(r) and the corresponding effective potential VKS([n0], r) and
one-electron wavefunctions ψ0i(r) have been found, the total ground-state energy is given by

E[n0] = Ts[n0] + Een[n0] + EH [n0] + Exc[n0] + Enn. (66)

Since

Ts[n0] =
∑
i occ

ε0i −
∫
VKS([n0], r)n0(r) d

3r, (67)

the ground-state energy may also be written as

E =
∑
i occ

ε0i −
∫
VKS([n0], r)n0(r) d

3r + Een[n0] + EH [n0] + Exc[n0] + Enn. (68)

The total ground-state energy is not just the sum of the one-electron eigenvalues, as might be
expected, but includes additional density-dependent terms. These we referred to earlier as the
ion-ion interaction terms, but they are more often called the double-counting-correction terms.
This name is appropriate because VKS([n0], r) includes the Hartree potential,

VH([n0], r) =

∫
n0(r

′)

|r − r′|
d3r′, (69)

so the sum of self-consistent eigenvalues includes the Hartree energy twice:∫
VH([n0], r)n0(r)d

3r =

∫∫
n0(r)n0(r

′)

|r − r′|
= 2EH [n0]. (70)

The double-counting corrections remedy this problem.
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3.3 Density-functional theory without self-consistency

Although DFT calculations require iteration to self-consistency, most tight-binding total en-
ergy calculations do not. To help relate the tight-binding approximation to DFT, we now ask
whether DFT calculations can also be made non-selfconsistent. The idea is to guess the ground-
state density n0(r) and perhaps also the ground-state Kohn-Sham potential VKS([n0], r), and
evaluate the total energy functional using these guesses. Since the guesses are inputs to the
non-selfconsistent calculation, we call then nin(r) and V in

eff(r) from now on. To improve the
accuracy of the approximate energies obtained, we insist that the expression evaluated to ob-
tain the approximate total energy must be exact when the input density and potential are exact
and stationary with respect to small variations of the input density and/or potential about the
exact ground state. The errors in energies evaluated are then of second or higher order in
nin(r)− n0(r) and V in

eff(r)− VKS([n0], r), which we hope are small.
DFT is already a variational theory, in that the total energy functional E[n] is minimized at the
ground-state density: if the guessed density is nin(r) = n0(r) + ∆n(r), the error in the total
energy is positive and of order (∆n)2. The standard DFT functional is difficult to work with,
however, because the evaluation of Ts[nin] requires the potential Veff(r) for which nin is the
non-interacting ground-state density. Finding this potential requires a self-consistency cycle no
easier than that appearing in an ordinary self-consistent DFT calculation.
Another option is to guess the input potential V in

eff(r), solve the Kohn-Sham equation once non-
selfconsistently to obtain the corresponding one-electron eigenfunctions and output density, and
call the output density nout(r). At that point we have all of the information required to evaluate

E[nout] = Ts[n
out] + Een[n

out] + EH [n
out] + Exc[n

out] + Enn (71)

without self-consistent cycling. The drawback of this approach is that, even though V in
eff(r) may

have a simple form — it could, for example, be a superposition of spherical atomic-like poten-
tials as assumed in many tight-binding models — the output density nout(r) will not normally
be simple and the double-counting correction terms will be far from pairwise. The link between
DFT and tight binding remains elusive.

3.3.1 General variational formulation of density-functional theory

The derivation of density functionals better adapted for use in non-selfconsistent calculations
is made easier by starting from a very general variational formulation of DFT first described in
the form used here by Haydock in 1998 [21].
Consider the following functional of n(r), Veff(r), and Ψ(r1, r2, . . . , rN), regarded as indepen-
dent functions:

E[n, Veff, Ψ ] = 〈Ψ |
(
T̂ +

∫
Veff(r)n̂(r) d

3r

)
|Ψ〉 −

∫
Veff(r)n(r) d

3r +G[n], (72)

where
G[n] =

∫
Vnuc(r)n(r) d

3r + EH[n] + Exc[n] + Enn (73)
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is shorthand for the sum of all Coulomb and exchange-correlation contributions to the total
energy functional. The Kohn-Sham potential VKS([n], r) corresponding to density n(r) is the
functional derivative of G[n]:

VKS([n], r) =
δG

δn(r)
. (74)

We seek the stationary points of E[n, Veff, Ψ ] subject to the normalization constraints 〈Ψ |Ψ〉 =
1 and

∫
n(r)d3r = N . Since Ψ(r1, r2, . . . , rN) and n(r) are independent functions in this

approach, the two constraints are also independent.
The problem of finding the stationary points of 〈Ψ |Ĥ|Ψ〉 subject to 〈Ψ |Ψ〉 = 1 is equivalent
to solving the Schrödinger equation ĤΨ = EΨ , where E is a Lagrange multiplier for the
constraint. The variations of E[n, Veff, Ψ ] with respect to n(r) and Veff(r) are easy to work out
[note that varying the function n(r) has no effect on the operator n̂(r)], leading to the three
Euler-Lagrange equations:

−Veff(r) + VKS([n], r) = µ, (75)

〈Ψ |n̂(r)|Ψ〉 − n(r) = 0, (76)(
T̂ +

∫
Veff(r)n̂(r)

)
|Ψ〉 = Enon-int|Ψ〉, (77)

where µ is a Lagrange multiplier for the density normalization constraint. The Lagrange mul-
tiplier for the wavefunction normalization constraint has been called Enon-int to avoid confusion
with the energy functional itself. All three Euler-Lagrange equations must be satisfied at any
stationary point of E[n, Veff, Ψ ].
The remarkable feature of these three equations is that they are fully equivalent to the equations
of self-consistent DFT. The first says that the effective one-electron potential must equal the
Kohn-Sham potential to within an arbitrary constant µ; this is the DFT self-consistency condi-
tion. The second says that Ψ(r1, r2, . . . , rN) must generate the one-electron density n(r), just
as in the Levy definition of the total energy functional. The third and final Euler-Lagrange equa-
tion says that the wavefunction Ψ must be an eigenfunction of the non-interacting Schrödinger
equation

N∑
i=1

(
−1

2
∇2
i + Veff(ri)

)
Ψ = Enon-intΨ, (78)

which separates into N one-electron equations:(
−1

2
∇2 + Veff(r)

)
ψi(r) = εi[Veff]ψi(r). (79)

If follows that the wavefunction Ψ appearing in the definition of the general density func-
tional is single Slater determinant of the one-electron eigenfunctions used to calculate the non-
interacting kinetic energy; it is not the physical many-electron wavefunction. If E[n, Veff, Ψ ] is
stationary with respect to variations of n and Veff and minimized with respect to Ψ , the equations
of DFT are fully satisfied and E[n, Veff, Ψ ] is the ground-state energy of the interacting system.
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Since E[n, Veff, Ψ ] is stationary about the self-consistent DFT solution, we can replace n, Veff,
and Ψ by three independent guesses, nin, V in

eff and Ψ in, safe in the knowledge that ∆E =

E[nin, V in
eff, Ψ

in]−E[n0, VKS[n0], Ψ0) is a quadratic form in the quantities nin−n0, V in
eff−VKS[n0],

and Ψ in − Ψ0. If these are all small, the error in the calculated energy should be even smaller.

3.3.2 The Harris functional

The general variational formulation of DFT is a little too general to be useful in practice, but
serves as a good starting point for deriving simpler density functionals. If we start by carrying
out the constrained minimization with respect to Ψ to find the one-electron eigenvalues and
eigenfunctions corresponding to the input potential Veff, we obtain a functional of n and Veff

only:

EGHF[n, Veff] =
∑
i occ

εi[Veff]−
∫
Veff(r)n(r) d

3r +G[n]. (80)

This functional was first discussed by Foulkes and Haydock [12] and is sometimes called the
generalized Harris or generalized Harris-Foulkes functional [8]. The one-electron eigenvalues
εi[Veff] are obtained by solving(

−1

2
∇2 + Veff(r)

)
ψi(r) = εi[Veff]ψi(r). (81)

Note that the evaluation of EGHF[n, Veff] for given inputs n(r) and Veff(r) requires the one-
electron Schrödinger equation to be solved once only; no self-consistent looping is required.
A further simplification is to set Veff(r) equal to VKS([n], r). Since Veff(r) and VKS([n], r) are the
same in the ground state, this does not affect the location of the stationary point. The resulting
functional of n(r) only is called the Harris or Harris-Foulkes functional [25, 12, 8]:

EHF[n] =
∑
i occ

εi[n]−
∫
VKS([n], r)n(r) d

3r +G[n]. (82)

The energy eigenvalues εi[n] are now obtained by solving(
−1

2
∇2 + VKS([n], r)

)
ψi(r) = εi[n]ψi(r). (83)

As in the case of EGHF[n, Veff], no-selfconsistent looping is required to evaluate EHF[n] for a
given n(r).
Both EGHF[n, Veff] and EHF[n] are stationary about the ground state, a property that could in
principle be used to guide an iterative, self-consistent algorithm towards the exact ground-state
energy and density. In most cases, however, this has no advantages over the standard approach
using the Hohenberg-Kohn-Sham functional. The main uses of EGHF[n, Veff] and EHF[n] are in
non-selfconsistent DFT calculations.
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3.4 The tight-binding total energy method as a stationary approximation
to density-functional theory

Let us return to the generalized Harris functional, Eq. (80), and the corresponding one-electron
problem, Eq. (81). The functional is stationary about the exact ground state, so evaluating it
for input densities and potentials close to the ground state produces total energies with second-
order errors. With this in mind, we choose an input density in the form of a superposition of
spherical densities,

nin(r) =
∑
I

nI(|r − dI |), (84)

and an input potential in the form of a superposition of spherical atomic-like potentials,

V in
eff(r) =

∑
I

Veff,I(|r − dI |). (85)

For most solids, it is possible to construct superpositions of spherical atomic-like densities
and potentials that match the exact ground-state density and Kohn-Sham potential rather well.
The spherical densities required to describe a highly ionic solid might, of course, be ionic,
integrating to produce a net atomic charge. Once the approximate potential and density have
been constructed, we solve Eq. (81) non-selfconsistently to find the one-electron eigenvalues
εi[V

in
eff]. The energy functional EGHF[n

in, V in
eff] is then evaluated using Eq. (80).

Because V in
eff(r) is a superposition of spherical atomic-like potentials, the one-electron Hamil-

tonian has exactly the form assumed in Sec. 2.2.4. We can therefore find the one-electron
eigenvalues by choosing a basis set of atomic-like orbitals, constructing the one-, two- and
three-center contributions to the tight-binding Hamiltonian and overlap matrices, and solving
the generalized tight-binding eigenvalue problem. Furthermore, since both V in

eff and nin are su-
perpositions of spherical functions, almost all of the double-counting corrections appearing in
Eq. (80) are strictly pairwise. The only exceptions are the exchange-correlation terms, which
retain some weak non-pairwise character because Exc[n] is not a simple quadratic functional
of n. In the exchange-only version of the local density approximation, for example, Exc[n] is
proportional to the integral of n4/3(r) over the system.
If we ignore the small three- and higher-center contributions to the exchange-correlation double-
counting terms, we have succeeded in deriving something very close to a tight-binding total en-
ergy model [11, 12]. The potential of the solid is approximated as a superposition of spherical
atomic-like contributions, and the corresponding one-electron Schrödinger equation is solved
once, non-selfconsistently, using a basis set of localized atomic-like functions. The total en-
ergy is the sum of the occupied eigenvalues and an (almost) pairwise ion-ion repulsion. The
variational principle ensures that the calculated total energy decreases systematically towards
E[nin, V in

eff] as the basis set is improved; and the stationarity of the GHF functional ensures that
E[nin, V in

eff]− E0 is quadratic in nin(r)− n0(r) and V in
eff(r)− VKS([n0], r).

The first derivation of the tight-binding total energy method [11, 12] from DFT was based on
the Harris functional of the density only, with an input density in the form of a superposition of
spherical atomic-like densities. The exchange-correlation contributions to the effective potential
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VKS([n
in], r) appearing in Eq. (83) cannot then be written as a sum of spherical atomic-like

contributions, which complicates the argument somewhat, but the conclusions are similar.
The accuracy of the Harris functional used with a superposition of spherical atomic-like den-
sities has been tested for a wide range of solids [26–28] with surprising success. It is often
capable of producing quantitatively accurate results, especially if the spherical atomic-like den-
sities are optimized in some way [?, 28]. It does not work so well in transition metals, where
the electronic configuration of an atom in the solid may be very different from that of an iso-
lated atom, and often fails in ionic solids with significant charge transfer. In cases like these
self-consistent tight-binding calculations are required [30–33].

4 Coulomb interactions for s, p, and d electrons

Although DFT is exact in principle, real DFT calculations require approximate exchange-
correlation functionals. These are hard to improve systematically and do not always work as
well as one might hope. Furthermore, the version of DFT described here yields ground-state
properties only (time-dependent DFT [34] gives some excited-state properties). What can we
do if the exchange-correlation functional proves inaccurate or we wish to calculate quantities
DFT cannot provide? The most natural option is to return to the many-electron Schrödinger
equation, Eq. (39), and attempt to solve that directly. Are there tight-binding-like models for
many-particle problems?

4.1 The tight-binding full-configuration-interaction method

The main feature of the tight-binding approach is the choice of a basis of atomic-like orbitals,
φα(r), with α = 1, 2, . . . ,M . The many-electron wavefunction Ψ(r1, r2, . . . , rN), which is a
totally antisymmetric function ofN different electron positions, can be approximated as a linear
combination of Slater determinants of these orbitals:

Dα(r1, r2, . . . , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φα1(r1) φα2(r1) . . . . . . φαN
(r1)

φα1(r2) φα2(r2) . . . . . . φαN
(r2)

φα1(rN) φα2(rN) . . . . . . φαN
(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (86)

where α = (α1, α2, . . . , αN) lists the indices of the orbitals appearing in Dα. A Slater deter-
minant containing the same orbital twice vanishes because it has two identical columns, so we
can assume that all of the indices are different. The order in which the indices appear affects
the sign of the determinant only, so it is often convenient to insist that α1 < α2 < . . . < αN .
Given a determinant for which this is not the case, one can always permute the indices into
ascending order. Every pair interchange swaps two columns and changes the sign of the deter-
minant, but nothing else is affected. We assume from now on that the one-electron basis set is
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orthonormal, 〈φα|φβ〉 = δαβ , in which case the N -electron basis set of Slater determinants is
also orthonormal:

〈Dα|Dβ〉 =
∫
D∗α(r1, r2, . . . , rN)Dβ(r1, r2, . . . , rN) d

3r1d
3r2 . . . d

3rN = δαβ, (87)

where δαβ = δα1β1δα2β2 . . . δαNβN and the lists (α1, α2, . . . , αN) and (β1, β2, . . . , βN) are in
ascending order.
Because the one-electron basis set is finite, the N -electron basis of Slater determinants is far
from complete. It is, however, huge. Consider, for example, a system of N = 10 electrons
described using a basis set of M = 20 one-electron orbitals. The number of possible Slater
determinants is the number of ways of picking N orbitals from a set of M possibilities. This is
MCN = 20C10 = 184, 756.
The next step is to approximate the eigenstates of the many-electron Hamiltonian as linear
combinations of Slater determinants,

Ψ =
∑
α

cαDα, (88)

and determine the optimal expansion coefficients using the linear variational method described
in Sec. 2.1. The resulting matrix eigenvalue problem takes the form∑

β

Hαβcβ = Ecα, (89)

where Hαβ = 〈Dα|Ĥ|Dβ〉. Note that Ĥ is the full N -electron Hamiltonian operator and
Hαβ = 〈Dα|Ĥ|Dβ〉 is a 3N -dimensional integral. Fortunately, because Ĥ only contains one-
and two-electron operators, all non-zero Hamiltonian matrix elements can be expressed in terms
of three- and six-dimensional integrals. Solving the eigenvalue problem in Eq. (89) yields
MCN approximate eigenvalues and eigenfunctions of the exact many-electron Hamiltonian.
These may also be viewed as exact eigenvalues and eigenfunctions of the projected Hamiltonian
P̂ ĤP̂ , where P̂ is the projector onto the space spanned by the MCN Slater determinants in the
basis.
This approach is very difficult to use because of the enormous size of the many-electron Hilbert
space, but is useful for small atoms and molecules. Chemists call it the full configuration
interaction method. Seen from the point of view of this article, it is the many-electron equivalent
of the tight-binding method.

4.1.1 Second-quantized notation

The projected Hamiltonian P̂ ĤP̂ corresponding to the real-space Hamiltonian

Ĥ =
∑
i

(
−1

2
∇2
i + Vnuc(ri)

)
+
∑
i>j

1

|ri − rj|
(90)

may be written in second-quantized notation as

Ĥ =
∑
α,β

hαβ ĉ
†
αĉβ +

1

2

∑
α,β,χ,γ

Vαβ,χγ ĉ
†
αĉ
†
β ĉγ ĉχ, (91)
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where ĉ†α and ĉα are creation and annihilation operators for electrons in the one-electron orbital
φα(r) and

hαβ =

∫
φ∗α(r)

(
−1

2
∇2
i + Vnuc(r)

)
φβ(r) d

3r, (92)

Vαβ,χγ =

∫∫
φ∗α(r)φ

∗
β(r
′)

1

|r − r′|
φχ(r)φγ(r

′) d3rd3r′, (93)

are the one- and two-particle Hamiltonian matrix elements. The creation and annihilation oper-
ators satisfy the anticommutation relations:{

ĉα, ĉ
†
β

}
= ĉαĉ

†
β + ĉ†β ĉα = δαβ. (94)

Second-quantized notation is explained in the first chapter of almost every book on many-body
theory; the dense but precise explanation given by Negele and Orland [35] is a good one. It
is important to understand that “second quantization” is a misnomer: the second-quantized
notation brings nothing new except algebraic convenience; the second-quantized Hamiltonian is
exactly the same as the originalN -electron Hamiltonian; and the basis set of Slater determinants
has not changed.
The systems for which DFT fails and many-body tight-binding methods are most useful are
often magnetic, so we can no longer ignore the electron spin. The spin-dependent tight-binding
basis functions take the form

φα,ζ(r, s) = φα(r)χζ(s), (95)

where s =↑, ↓ and χζ is either χ↑ or χ↓, with χ↑(s) = δs,↑ and χ↓(s) = δs,↓. Note that the spatial
parts of the basis functions are independent of spin; this is by choice. The spin-dependent
Hamiltonian is

Ĥ =
∑
ζ

∑
α,β

hαβ ĉ
†
α,ζ ĉβ,ζ +

1

2

∑
ζ,ζ′

∑
α,β,χ,γ

Vαβ,χγ ĉ
†
α,ζ ĉ

†
β,ζ′ ĉγ,ζ′ ĉχ,ζ , (96)

where ĉ†α,ζ and ĉα,ζ are the creation and annihilation operators for the basis function φα,ζ(r, s)
and satisfy the commutation relations{

ĉα,ζ , ĉ
†
β,ζ′

}
= δαβδζζ′ . (97)

Because the spatial parts of the basis functions were chosen to be independent of spin, the matrix
elements hαβ and Vαβ,χγ are still as given in Eqs. (92) and (93). Relativistic spin-dependent
interactions such as the spin-orbit term have not been included but can easily be added.
The Hamiltonian as expressed in Eq. (96) is closely related to the tight-binding Hamiltonian
considered earlier. The one-electron matrix elements hαβ are analogous to the tight-binding
matrix elements Hαβ = 〈φα|(−1

2
∇2 + Veff(r)|φβ〉, except that the nuclear potential appears

in place of the effective potential. These matrix elements can be parametrized in terms of a
small number of Slater-Koster parameters, just as in tight-binding theory. The two-particle
Coulomb interaction matrix elements Vαβ,χγ are more complicated. In DFT-based tight-binding
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methods they are replaced by the density-dependent Hartree and exchange-correlation potentials
incorporated into Veff.
Switching to a second-quantized formalism has improved the notation but has not made the
many-electron problem any easier to solve. The complicated form of Eq. (91) is also an im-
pediment to pencil-and-paper work. Even if we consider only the three p orbitals on a single
atom, the interaction matrix Vαβ,χγ has 34 = 81 elements. For the five d orbitals this rises to
54 = 625 elements. Such large collections of numbers are not easy to deal with analytically, so
simplifications are required.
The first simplification, often made in the many-body community, is to neglect all Coulomb
integrals involving orbitals on more than one atom. Given the long range of the Coulomb
interaction this seems unintuitive at first, and quantum chemists, who like to get things right,
normally prefer to evaluate all of the matrix elements for all of the orbitals. Most of the many-
body problems studied by condensed matter physicists, however, concern atoms in solids, often
metals, where the interactions between atoms are strongly screened by mobile valence electrons.
In many cases this screening is so efficient that electrons occupying localized d of f orbitals on
one atom interact only weakly with electrons in d or f orbitals on other atoms and the screened
inter-atomic Coulomb matrix elements really can be ignored. The mobile valence electrons are
not included in the tight-binding model explicitly, but their effect is to renormalize the matrix
elements between the localized orbitals that are included.

4.1.2 Coulomb interactions on a single atom

The rest of this article discusses what we know about the symmetries of the matrix Vαβ,χγ that
describes the (screened) Coulomb interactions on a single atom. Can we carry out an equivalent
of the Slater-Koster analysis, allowing us to express the elements of Vαβ,χγ in terms of a minimal
set of basic parameters? How many parameters do we need?
These are questions with a long history, but they still cause a great deal of confusion. The
forms of Vαβ,χγ for shells of s and p electrons are well established, but many different d-shell
Hamiltonians have been proposed and most of them are wrong in one way or another. Some
are missing essential symmetries, failing to remain invariant under rotations in real and/or spin
space; others are missing terms no smaller than the terms kept; and even the best are missing
terms thought to be small. Many otherwise sophisticated papers on many-body physics start
with an incorrect model Hamiltonian and may reach false conclusions as a result. The history
of the subject and the failings of some of the most widely used Hamiltonians are summarized in
Ref. [13], which also clears up the confusion for shells of s, p and d electrons. Here we explain
the results derived in that paper.
Before going on, we remark that the correct form of the on-site Coulomb operator has been
known for more than 50 years and that quantum chemists use it as a matter of course. If we
assume that the 2l + 1 basis functions in a shell of angular momentum l have the same angular
dependence as the spherical harmonics Y m

l , with m = −l,−l + 1, . . . , l, the theory of angular
momentum [36] may be used to derive formulae for Vαβ,χγ . See Ref. [37] for a clear explanation.
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The drawback of this approach is that the formulae are complicated and expressed in terms of
quantities such as Gaunt or Racah coefficients, which are inconvenient for analytic work. The
formulae derived here are less general, in that they apply to s, p and d shells only, but simpler.
The most important symmetry of Vαβ,χγ is rotational invariance. If the basis functions used
to describe a shell of angular momentum l have the same angular dependence as spherical
harmonics Y m

l , the orbital label α may be identified with the m index. Such basis functions
transform into linear combinations of each other under rotations:

R̂ωφα =
l∑

α′=−l

Dl
α′,α(ω)φα′ . (98)

The operator R̂ω rotates the function to which it is applied by ω radians about an axis parallel
to the unit vector ω̂, and Dl(ω) is the (2l + 1) × (2l + 1) matrix corresponding to R̂ω in
the irreducible representation of the rotation group of angular momentum l. The Coulomb
interaction 1/|r − r′| is unchanged if r and r′ are rotated simultaneously, so Vαβ,χγ does not
change if every orbital is replaced by a rotated version:

Vαβ,χγ =

∫∫
φ∗α(r)φ

∗
β(r
′)

1

|r − r′|
φχ(r)φγ(r

′) d3rd3r′

=

∫∫ (
R̂ωφα(r)

)∗ (
R̂ωφβ(r

′)
)∗ 1

|r − r′|

(
R̂ωφχ(r)

)(
R̂ωφγ(r

′)
)
d3rd3r′

=
∑

α′β′χ′γ′

(
Dl
α′,α(ω)

)∗ (
Dl
β′,β(ω)

)∗
Vα′β′,χ′γ′D

l
χ′,χ(ω)D

l
γ′,γ(ω). (99)

This shows that Vαβ,χγ is a rotationally invariant fourth-rank tensor. If the basis functions are
defined using the real spherical harmonics Ỹ l

m introduced in Sec. 2.2.5, the Dl matrices, which
are complex and unitary, are replaced by the D̃l matrices from Eq. (18), which are real and
orthogonal. Since most Hubbard-like models use real spherical harmonics, we are primarily
interested in this case.

4.2 Hubbard-like Hamiltonians for atoms
4.2.1 The one-band Hubbard model: s-orbital symmetry

If the outermost shell is an s shell and all other shells are ignored, the model Hamiltonian for an
atom has only one spatial orbital φα and one non-zero Coulomb matrix element Vαα,αα, which
is called the Hubbard parameter and denoted U0. The interaction Hamiltonian takes the form

V̂ =
1

2
U0

∑
ζ,ζ′

ĉ†α,ζ ĉ
†
α,ζ′ ĉα,ζ′ ĉα,ζ =

1

2
U0

(
ĉ†α,↑ĉ

†
α,↓ĉα,↓ĉα,↑ + ĉ†α,↓ĉ

†
α,↑ĉα,↑ĉα,↓

)
= U0 n̂α,↑n̂α,↓,

(100)

where I have noted that ĉα,ζ ĉα,ζ = 0, reordered the creation and annihilation operators using the
anticommutation relations, and introduced the number operator n̂α,ζ = ĉ†α,ζ ĉα,ζ , which counts
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how many electrons are in basis state φα,ζ . Equation (100) is the famous Hubbard interaction
and is the starting point for much of the analytic work on strongly interacting systems.
It is often convenient to rewrite the atomic interaction Hamiltonian in terms of the operators for
the total number of electrons on the atom,

n̂ =
∑
α,ζ

n̂α,ζ , (101)

and the electronic spin moment of the atom,

m̂ =
∑
α,ζ,ζ′

ĉ†α,ζσζ,ζ′ ĉα,ζ′ , (102)

where σζ,ζ′ = (σxζ,ζ′ , σ
y
ζ,ζ′ , σ

z
ζ,ζ′) is the vector of Paul spin matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0

0 −1

)
.

In the case of an s shell there is only one spatial orbital and the sums over α in Eqs. (101) and
(102) have only one term each.
The square of the number operator for an s shell is

n̂2 = (n̂α,↑ + n̂α,↓) (n̂α,↑ + n̂α,↓) = 2n̂α,↑n̂α,↓ + n̂α,↑ + n̂α,↓ = 2n̂α,↑n̂α,↓ + n̂, (103)

where we have noted that n̂α,σn̂α,σ = n̂α,σ. The Hubbard interaction for an s shell may therefore
be rewritten in terms of the operator for the total number of electrons as

V̂ =
1

2
U0

(
n̂2 − n̂

)
. (104)

The one-electron −n̂ term on the right-hand side of Eq. (103) arises because the creation op-
erators in n̂2 are not all to the left of the annihilation operators; if we attempt to reorder the
creation and annihilation operators to ensure that this is the case, the anticommutators produce
additional one-electron terms. This mixing of one- and two-electron terms is awkward, so we
define : n̂2 : , the “normal ordered” version of n̂2, by permuting the creation and annihilation
operators until all of the creation operators are on the left, without adding the anticommutator
terms that would be required to leave the product of operators unaltered. If the rearrangement
requires an odd number of flips, the normal ordering also introduces a sign change. It is easy to
show quite generally (not just for an s shell) that

: n̂2 : = n̂2 − n̂, (105)

so we can write the s-shell Hubbard interaction as

V̂ =
1

2
U0 : n̂

2 : . (106)
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The s-band Hubbard interaction can also be written in terms of : m̂2 : = : m̂ · m̂ : . Using the
identity σζζ′ · σξξ′ = 2δζ′ξδζξ′ − δζζ′δξξ′ , one finds that

: m̂2 : = −
∑
αβ

∑
ζξ

(
2ĉ†α,ζ ĉ

†
β,ξ ĉα,ξ ĉβ,ζ + ĉ†α,ζ ĉ

†
β,ξ ĉβ,ξ ĉα,ζ

)
= m̂2 − 3n̂. (107)

For an s shell this is equivalent to

: m̂2 : = −6n̂α,↑n̂α,↓ = −3 : n̂2 : (108)

and we obtain
V̂ = −1

6
U0 : m̂

2 : . (109)

4.2.2 The three-band Hubbard model: p-orbital symmetry

Suppose that the orbitals α, β, χ, and γ are real spherical harmonic p orbitals with angular
dependence x/r, y/r and z/r. The rotation matrix Dl

α′α(ω) is then a familiar Cartesian 3 × 3

rotation matrix Rω, and Vαβ,χγ is a rotationally invariant fourth-rank Cartesian tensor. The
general form of such a tensor is well known [38]:

Vαβ,χγ = Uδαχδβγ + Jδαγδβχ + J ′δαβδχγ, (110)

where U = Vαβ,αβ , J = Vαβ,βα, and J ′ = Vαα,ββ , all with α 6= β.
Bearing in mind that the Cartesian p orbitals are real, a brief inspection of the form of the matrix
element, Eq. (93), shows that Vαβ,χγ = Vχβ,αγ = Vαγ,χβ , implying that J = J ′. Hence we find

Vαβ,χγ = Uδαχδβγ + J(δαγδβχ + δαβδχγ). (111)

This shows that the most general p-shell on-site Coulomb interaction Hamiltonian is defined by
just two independent parameters; the interaction matrix Vαβ,χγ still has 81 elements, but only
two are independent. Setting α = β = χ = γ recovers the well-known equation U0 = U + 2J ,
where U0 = Vαα,αα.
Starting from Eq. (111) and wading through lots of algebra, it is straightforward but tedious to
show that the Coulomb interaction Hamiltonian may be written:

V̂ =
1

2

[
(U − J) : n̂2 : − J : m̂2 : − J : L̂2 :

]
, (112)

where
L̂ = i

∑
αβζ

(ε1βα, ε2βα, ε3βα) ĉ
†
α,ζ ĉβ,ζ (113)

is the vector angular momentum operator, εαβγ is the three-dimensional Levi-Civita symbol,
and L̂2 = L̂ · L̂. An equivalent expression is

V̂ =
1

2

[(
U − 1

2
J

)
: n̂2 : − 1

2
J : m̂2 : + J

∑
αβ

: (n̂αβ)
2 :

]
, (114)
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where the operator n̂αβ =
∑

ζ ĉ
†
α,ζ ĉβ,ζ transfers an electron of either spin from orbital β to

orbital α. The normal-ordered square of this operator,

: (n̂αβ)
2 : =

∑
ζ,ζ′

: ĉ†α,ζ ĉβ,ζ ĉ
†
α,ζ′ ĉβ,ζ′ : = 2

(
ĉα,↑ĉα,↓

)† (
ĉβ,↑ĉβ,↓

)
, (115)

describes the hopping of singlet pairs of electrons from spatial orbital β to spatial orbital α.
Equation (112) exemplifies Hund’s first and second rules for the atom. Noting that m̂ = 2Ŝ,
where Ŝ is the electron spin operator, we see that the energy is minimized by first maximizing
the spin (prefactor−2J) and then maximizing the orbital angular momentum (prefactor−1

2
J).

4.2.3 The five-band Hubbard model: d-orbital symmetry

If we consider Eq. (99) for a shell of d orbitals, the matrices Dl belong to the five-dimensional
l = 2 irreducible representation of the rotation group; they are no longer the familiar 3 ×
3 Cartesian rotation matrices. One way to determine the number of independent parameters
required to specify Vαβ,χγ completely is to use the theory of angular momentum [36], but we
find it easier to use the theory of irreducible Cartesian tensors [39]. This allows us to re-express
the behavior of Vαβ,χγ under rotations using 3× 3 rotation matrices only.
A Cartesian tensor of rank n transforms under rotation in the standard way:

(R̂ωT )ij...k =
∑
i′j′...k′

Rωii′R
ω
jj′ . . . R

ω
kk′Ti′j′...k′ , (116)

with Rω the 3 × 3 matrix for a rotation of ω radians about an axis parallel to ω̂. This map-
ping transforms the 3n elements of T into linear combinations of each other, so the elements
form a basis for a 3n-dimensional representation of the rotation group. In general, however, this
representation is reducible. An irreducible Cartesian tensor of rank n and angular momentum
l transforms in the same way as a general Cartesian tensor, but only has 2l + 1 independent
components. The rule for rotating the tensor, Eq. (116), transforms these 2l + 1 independent
components into linear combinations of each other, so they form a basis for a 2l + 1 dimen-
sional representation of the rotation group. The Cartesian tensor is said to be irreducible if this
representation is irreducible.
We can illustrate these ideas by considering the tensor product of two vectors:

T = a⊗ b =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 . (117)

The nine elements of this tensor transform into linear combinations of each other under rota-
tions, so they are a basis for a nine-dimensional representation of the rotation group. If we
wanted to, we could construct the 9×9 matrix corresponding to the action of any given rotation
directly from the tensorial transformation rule. We would find, however, that the 9×9 represen-
tation is not irreducible. In fact, as we already know from the theory of the addition of angular
momentum,

1⊗ 1 = 0⊕ 1⊕ 2. (118)
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This implies that it must be possible to create from the set of nine independent elements a single
rotationally invariant s function, a set of three p functions, and a set of five d functions.
We can accomplish this explicitly by writing a⊗ b as the sum of three tensors:

Tij = (a⊗ b)ij =
1

3
(akbk)δij + T{ij} +

[
T(ij) −

1

3
(akbk)δij

]
(119)

where T(ij) ≡ 1
2
(Tij + Tji), T{ij} ≡ 1

2
(Tij − Tji), and the summation convention is in force

for repeated suffices. The first term is a multiple of the unit tensor and hence transforms like
an s function; the three non-zero independent elements of the antisymmetric tensor T{ij} are
the components of the vector product a × b and transform under rotations like the three p
functions; and the five independent elements of the traceless symmetric tensor T(ij)− 1

2
(akbk)δij

transform under rotations like the five Cartesian d orbitals. Note that antisymmetric matrices
remain antisymmetric and traceless symmetric matrices remain traceless symmetric matrices
when rotated.
If we choose a = b = r = (x, y, z), the d-like nature of the traceless symmetric part of a ⊗ b
becomes obvious:

(r ⊗ r)(ij) −
1

3
r2δij =

x2 − 1
3
r2 xy xz

xy y2 − 1
3
r2 yz

xz yz z2 − 1
3
r2

 . (120)

The off-diagonal elements xy, yz and zx are the three t2g functions; and the two independent
diagonal elements, which we can take to be 3z2 − r2 and x2 − y2, are the two eg functions. We
call this traceless symmetric tensor B from now on:

Bij = (r ⊗ r)(ij) −
1

3
r2δij. (121)

The link between the traceless symmetric tensor B and the d orbitals is a special case of a
general result, which states that the 2l + 1 independent elements of a totally symmetric lth rank
Cartesian tensor with all traces removed are a basis for the angular momentum l representation
of the rotation group.
If we view every d orbital as an element (or linear combination of elements) ofB, each d orbital
may be labelled using two Cartesian indices i and j. The isotropic fourth-rank five-dimensional
tensor Vαβ,χγ from Eq. (93) then becomes an isotropic eighth-rank three-dimensional tensor
Vij,kl,mn,op, which transforms like BijBklBmnBop.
It is a theorem due to Weyl [40] that any isotropic Cartesian tensor of even rank can be expressed
as a linear combination of products of Kronecker deltas, so the remaining task is to determine
the number of independent products of four Kronecker deltas consistent with the symmetries of
the eighth-rank tensor, bearing in mind that the second-rank tensors B of which it is composed
are traceless and symmetric. The details of this calculation are explained in Ref. [13].
The result, translated back into the notation where each of the five d orbitals is labelled by a
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single index with five possible values, is

Vαβ,χγ =
1

2

(
Uδαχδβγ +

[
J +

5

2
∆J

]
(δαγδβχ + δαβδγχ)− 48∆J

∑
ijkl

ξαijξβjkξχklξγli

)
,

(122)

where ξ is a five-component vector of the traceless symmetric 3 × 3 transformation matrices
used to convert from the two-index notation to the one-index notation:

ξ1=

−
1

2
√
3

0 0

0 − 1
2
√
3

0

0 0 1√
3

, ξ2=
0 0 1

2

0 0 0
1
2

0 0

, ξ3=
0 0 0

0 0 1
2

0 1
2

0

, ξ4=
0 1

2
0

1
2

0 0

0 0 0

, ξ5=
1

2
0 0

0 −1
2

0

0 0 0

.
The indices (1, 2, 3, 4, 5) correspond to the d orbitals (3z2 − r2, zx, yz, xy, x2 − y2). The three
independent parameters U , J and ∆J are defined as follows:

U = V(zx)(yz),(zx)(yz), (123)

J =
1

2

(
V(zx)(yz),(yz)(zx) + V(3z2−r2)(x2−y2),(x2−y2)(3z2−r2)

)
, (124)

∆J = V(3z2−r2)(x2−y2),(x2−y2)(3z2−r2) − V(zx)(yz),(yz)(zx). (125)

U is the Hartree term between pairs of t2g orbitals, J is the average of the eg and t2g exchange
integrals, and ∆J is the difference between the eg and t2g exchange integrals. These definitions
are the same as those used by Oleś and Stollhoff [41], but our Hamiltonian, unlike theirs, is
rotationally invariant in orbital space.
Rewriting Eq. (122) in terms of rotationally invariant operators gives

V̂ =
1

2

[(
U − 1

2
J + 5∆J

)
: n̂2:− 1

2
(J − 6∆J) : m̂2: + (J − 6∆J)

∑
αβ

: (n̂αβ)
2: +

2

3
∆J: Q̂2 :

]
.

(126)

where Q̂2 =
∑

µν Q̂µνQ̂νµ is the square of the on-site quadrupole operator defined and discussed
in Ref. [13]. The mean-field versions of the s, p, and d Hamiltonians may also be found in that
paper.

4.2.4 Comparison with the Stoner Hamiltonian

The interaction part of the Stoner Hamiltonian for shells of p and d orbitals is usually defined
as

V̂Stoner =
1

2
(U − 1

2
J) : n̂2 : − 1

4
J : m̂2

z : . (127)

The m̂2
z term breaks rotational symmetry in spin space, so this is a collinear Stoner Hamiltonian,

appropriate only in cases when the ground state breaks the rotational spin symmetry and chooses
a z axis. We can, however, restore the spin-rotation invariance by replacing m̂2

z by m̂2. This
produces the vector Stoner Hamiltonian,

V̂m̂2Stoner =
1

2
(U − 1

2
J) : n̂2 : − 1

4
J : m̂2 : , (128)



Tight-Binding Models and Coulomb Interactions 3.39

Fig. 10: The magnetic correlation between two p-shell atoms, each with two electrons, as a
function of the Hubbard parameters U/|t| and J/|t|, where t is the ppσ Slater-Koster parameter
that describes the rate of electron hopping between atoms; the ppπ hopping parameter is−t/2.
The regions of the graph are labelled by the symmetry of the ground state. The left-hand graph
is generated using the full p-electron Hamiltonian from Sec. 4.2.2; the right-hand graph is
generated using the vector Stoner Hamiltonian of Eq. (128). The Stoner phase diagram has a
region with symmetry 3Σ−g extending a long way up the J axis, which is not present when the
full Hamiltonian is used. It also has a region with two degenerate ground states with symmetries
1∆g and 1Σ+

g ; this degeneracy is broken when the full p-electron Hamiltonian is used. From
Ref. [13].

which turns out to be identical to the Hamiltonian proposed by Dworin and Narath [42]. Work-
ing backwards from this Hamiltonian to the general form of the matrix element Vαβ,χγ gives

V m̂2Stoner
αβ,χγ = Uδαχδβγ + Jδαγδβχ, (129)

which looks like the general p-shell result, Eq. (111), except that it is missing the Jδαβδχγ
term. Consequently, the vector Stoner Hamiltonian does not respect the invariance of the matrix
element on interchange of α with χ or β with γ apparent from the form of Eq. (93) when
the orbitals are real. As can be seen from Fig. 10, this omission affects the computed results
significantly.

4.2.5 Conclusion

We have shown how to derive multi-band Hubbard-like Hamiltonians to describe shells of s, p,
and d orbitals. There are important differences [13] between results obtained using the Hamil-
tonians derived here, which respect the symmetries of the problem, and the Stoner Hamilto-
nian, which does not. The vector version of the Stoner Hamiltonian misses the pair-hopping
term present in our p- and d-shell Hamiltonians and the quadrupole term present in our d-shell
Hamiltonian. The collinear version of the Stoner Hamiltonian breaks rotational symmetry in
spin space, which makes it inappropriate for describing spin dynamics.
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Simulation, Forschungszentrum Jülich, 2009), Vol. 42, pp. 145–176

[10] L.A. Agapito, S. Ismail-Beigi, S. Curtarolo, M. Fornari, and M.B. Nardelli,
Phys. Rev. B 93, 035104 (2016)

[11] A.P. Sutton, M.W. Finnis, D.G. Pettifor, and Y. Ohta, J. Phys. C: Solid State Phys. 21, 35
(1988)

[12] W.M.C. Foulkes and R. Haydock, Phys. Rev. B 39, 12520 (1989)

[13] M.E.A. Coury, S.L. Dudarev, W.M.C. Foulkes, A.P. Horsfield, P.-W. Ma, and J.S. Spencer,
Phys. Rev. B 93, 075101 (2016)

[14] O.F. Sankey and D.J. Niklewski, Phys. Rev. B 40, 3979 (1989)

[15] D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner,
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4.2 Richard T. Scalettar

1 Introduction

The Hubbard Hamiltonian (HH) offers one of the most simple ways to get insight into how the

interactions between electrons give rise to insulating, magnetic, and even novel superconduct-

ing effects in a solid. It was written down [1–4] in the early 1960’s and initially applied to

the behavior of the transition-metal monoxides (FeO, NiO, CoO), compounds which are anti-

ferromagnetic insulators, yet had been predicted to be metallic by methods which treat strong

interactions less carefully.

Over the intervening years, the HH has been applied to many systems, from ‘heavy fermions’

and the Cerium volume collapse transition in the 1980’s, to high temperature superconductors

in the 1990’s. Indeed, it is an amazing feature of the HH that, despite its simplicity, its exhibits

behavior relevant to many of the most subtle and beautiful properties of solid state systems. We

focus here for the most part on the single-band HH. Multi-band variants like the Periodic Ander-

son Model (PAM) allow one to introduce other fundamental concepts in many-body physics,

such as the competition between magnetic order and singlet formation. Randomness can be

simply introduced into the HH, so it can be used as a starting point for investigations of the

interplay of interactions and disorder in metal-insulator transitions and, recently, many-body

localization. ‘Textbook’ discussions of the HH can be found in Refs. [5–8] and a recent cele-

bration of its 50th anniversary [9] emphasizes the resurgence of interest due to optical lattice

emulation experiments.

The HH has been studied by the full range of analytic techniques developed by the condensed-

matter community, from static mean-field approaches (which we will outline here) and the

much richer dynamical mean-field theory, to diagrammatic approaches of various degrees of

sophistication (the random phase approximation and parquet approach), as well as expansions

in the degeneracy of the number of ‘flavors’ (spin, orbital angular momentum). It has also

been extensively attacked with numerical methods like exact diagonalization (ED) and quantum

Monte Carlo (QMC).

The objective of these notes is to provide an introduction to the HH and to a few of the most

simple ways in which it is solved. Along the way we will discover that these basic calculations

lend initial insight to concepts like the Mott gap, moment formation, the mapping of the HH

to the Heisenberg model, and magnetism. We begin with a discussion of the second quantized

operators with which the HH is written.

2 Creation and destruction operators

Creation and destruction operators a†, a are familiar from the treatment of the harmonic oscil-

lator. We briefly review their properties, which parallel those of the operators in the HH.

The harmonic oscillator creation and destruction operators are defined in terms of the position

and momentum operators,

â =

√

mω

2~
x̂+ i

√

1

2mω~
p̂ and â† =

√

mω

2~
x̂− i

√

1

2mω~
p̂ . (1)
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From [p̂, x̂] = −i~, one shows that these operators obey the commutation relations,

[â, â†] = 1 (2)

and that the Hamiltonian is,

Ĥ =
1

2m
p̂2 +

1

2
mω2 x̂2 = ~ω

(

â†â +
1

2

)

. (3)

The ‘number operator’ is defined to be n̂ = â† â, so that Ĥ = ~ω ( n̂+ 1
2
).

The ground state of the quantum oscillator is written as | 0 〉 and has the properties that,

â| 0 〉 = 0 and Ĥ| 0 〉 = ~ω

2
| 0 〉. (4)

The excited states are built up by applying the creation operator repeatedly to the ground state.

â†|n 〉 =
√
n+ 1 |n+ 1 〉 (5)

and obey the formula,

Ĥ|n 〉 = ~ω

(

n +
1

2

)

|n 〉. (6)

The finite temperature expectation value of any quantum mechanical operator Â is determined

by the Hamiltonian, 〈 Â 〉 = Z−1Tr[ Â e−βĤ ]. It is simple to verify that 〈 n̂ 〉 = 1/(eβ~ω − 1),

the Bose-Einstein distribution function. For this reason, one often refers to â† and â as ‘boson’

creation and destruction operators. Note that henceforth I will be setting ~ = 1. I will also

choose Boltzmann’s constant kB = 1.

The HH is written in terms of ‘fermion’ creation and destruction operators. These operators

differ in several respects from the operators â†, â for a single harmonic oscillator. Perhaps most

confusing is a conceptual difference: the fermion operators in the HH are not introduced in

terms of familiar position and momentum operators. Rather they stand on their own. Feyn-

man, in his Nobel Prize acceptance speech [10] alludes to this abstractness, “I didn’t have the

knowledge to understand the way these were defined in the conventional papers because they

were expressed at that time in terms of creation and annihilation operators, and so on, which,

I had not successfully learned. I remember that when someone had started to teach me about

creation and annihilation operators, that this operator creates an electron, I said, ‘how do you

create an electron? It disagrees with the conservation of charge’, and in that way, I blocked my

mind from learning a very practical scheme of calculation” As in many cases, the passage of

time has led to contemptuous familiarity, so that we forget these were once mysterious objects.

In addition to the fact they are not written in terms of x̂ and p̂, another new feature is that in the

HH there is a set of creation and destruction operators, which are distinguished by attaching a

site index j and a spin index σ. Thus ĉ†jσ ( ĉjσ ) create (destroy) fermions of spin σ on site j.

As a consequence, the occupation number states are no longer characterized by a single number

n, as for a single harmonic oscillator, but instead by a collection of occupation numbers njσ.

One writes such states as |n1↑ n2↑ n3↑ n1↓ n2↓ n3↓ . . . . 〉.
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Because these operators are meant to describe fermions, in contrast to Eq. (2), they are defined

to have certain anticommutation relations. (the anticommutator of two operators {Â, B̂} =

ÂB̂ + B̂Â)

{ĉjσ, ĉ
†
lσ′} = δj,l δσ,σ′ {ĉ†jσ, ĉ

†
lσ′} = 0 {ĉjσ, ĉlσ′} = 0 . (7)

Like its bosonic counterpart, c†jσ| 0 〉 = | 1 〉 creates a fermion when acting on the vacuum.

However, as a consequence of the anticommutation relations, ĉ†jσ| 1 〉 = ĉ†jσ ĉ
†
jσ| 0〉 = 0. This is

of course the Pauli principle. The maximum occupation of a particular site with a given spin is

1. Besides the Pauli principle, the anticommutation relations also ensure that the particles are

fermions, that is, their wave function changes sign when two fermions with different labels are

exchanged, ĉ†jσ ĉ
†
lσ = −ĉ†lσ ĉ

†
jσ .

These anticommutation relation require we specify a convention for the relation between a

state like | 1 0 1 0 0 . . . 〉 and the vacuum state |vac〉 = | 0 0 0 0 0 . . . 〉. The two possibilities,

| 1 0 1 0 0 . . . 〉 = ĉ†1 ĉ
†
3 |vac〉 and | 1 0 1 0 0 . . . 〉 = ĉ†3 ĉ

†
1 |vac〉 differ by a sign. Either definition

is fine, but in all subsequent manipulations whatever convention was chosen must be followed

consistently. We’ll see some examples of the importance of this later.

3 The Hubbard Hamiltonian

Having introduced creation and annihilation operators, we can now write down the HH. Its

form arises quite naturally from considering how we might simply describe the motion and

interactions of electrons in a solid.

First, we need to account for the fact that there is a regular array of nuclear positions, which

for simplicity we consider to be fixed. This suggests that we begin with a lattice of atoms

(sites) on which the fermions move. Of course, a single real atom is already a very complex

structure, with many different energy levels (orbitals). The HH simplifies the atoms in a solid

to a collection of sites each with a single level (orbital). This is a good picture for a solid with

just one energy band at the Fermi surface, so that, indeed, only one orbital is relevant.

With this (big!) simplification, the sites of the HH are constrained by the Pauli principle to four

configurations: empty, a single up fermion, a single down fermion, or double occupation by a

pair of up and down fermions. (Note that in the relatively new field of optical lattice emulation,

the two fermionic types are not electrons of spin up and down, but rather fermionic atoms like
6Li with two possible hyperfine states. I will, however, continue to use ’up’ and ’down’ to refer

to the two fermionic types.)

In a solid where electrons can move around, the electrons interact via a screened Coulomb

interaction. The biggest interaction will be for two electrons on the same site. The HH stops

just there: interactions are modeled by a term which is zero if the site is empty of fermions or

has only a single fermion, but has the value U if the site is doubly occupied (necessarily, by the

Pauli principle, by fermions of opposite spin). The expression Unj↑ nj↓ captures this property.

In the simplest HH, there is no interaction V nlσ njσ′ between fermions on different sites l and

j, although such terms are included in the ‘extended’ HH.
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t

t

t

t t

U

Fig. 1: Pictorial representation of the terms in the Hubbard Hamiltonian. Left: The kinetic

energy t. Right: The on-site repulsion U .

A reasonable thought for the kinetic energy is an expression which destroys a fermion on one

site and creates it on a neighbor. The energy scale t which governs this ‘hopping’ will be

determined by the overlap of two wavefunctions on the pair of atoms. Since wavefunctions die

off exponentially, it is reasonable to begin by allowing hopping only between the closest atoms

in our lattice.

Formalizing this reasoning, the HH is then, dropping all the ‘hats’ which had been used to

emphasize c , c† are operators,

Ĥ = −t
∑

〈j,l〉σ

(

c†jσclσ + c†lσcjσ

)

+ U
∑

j

nj↑nj↓ − µ
∑

j

(nj↑ + nj↓) . (8)

The first term is the kinetic energy: It describes the destruction of an fermion of spin σ on

site l and its creation on site j (or vice-versa). The symbol 〈j, l〉 emphasizes that hopping is

allowed only between two sites which are adjacent. The second term is the interaction energy.

It goes through all the sites and adds an energy U if it finds the site is doubly occupied. The

final term is a chemical potential which controls the filling. We refer to the situation where

there is one fermion per site as ‘half-filling’ since the lattice contains half as many fermions

as the maximum number (two per site). Studies of the HH often focus on the half-filled case

because, as we shall see, it exhibits a lot of interesting phenomena (Mott insulating behavior,

anti-ferromagnetic order, etc.) The HH is illustrated in Fig. 1.

Before starting to solve the HH in various limits, it is useful to discuss the idea of particle-hole

symmetry.

4 Particle-hole symmetry

The Hubbard Hamiltonian has a fascinating ‘particle-hole’ symmetry (PHS) which allows us to

relate its properties for different values of the parameters. PHS is also important because it is

the basis of very useful mappings between the attractive and repulsive HH (see Sec. 10), and

because it plays a crucial role in QMC simulations.
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Fig. 2: Left: The square lattice is bipartite lattice. The near-neighbors of red sites are all green

and vice-versa. Right: A bipartite lattice naturally supports antiferromagnetic order in which

fermions of one spin are adjacent only to those of opposite spin.

We first introduce the notion of a bipartite lattice. This is a geometry in which the set of sites

can be divided into two sublattices A and B such that a site in A has neighbors which are only

members of B and vice-versa. See Fig. 2. The square and honeycomb lattices are bipartite, but

the triangular lattice is not. Physically, bipartite lattices are highly conducive to antiferromag-

netic order, since up and down spin fermions can occupy the two separate sublattices and each

spin is always surrounded by neighbors of the opposite spin. Antiferromagnetic order on the

triangular lattice is, in contrast, frustrated. If each site has a fermion, all conceivable ways to

occupy the lattice must possess some bonds connecting sites with spins in the same direction.

Bipartite lattices in which the cardinalities of the A and B sublattices are different are possi-

ble, and, indeed, Lieb has proven some profound theorems concerning ferromagnetism on such

lattices. We will encounter these later.

Consider, now, the introduction into the HH of new operators which exchange the role of cre-

ation and destruction:

d†lσ = (−1)lclσ . (9)

The (−1)l factor takes the value −1 on one sublattice and +1 on the other. This is aptly named

a particle-hole transformation (PHT) because d†lσdlσ = 1− c†lσclσ. The occupations (eigenstates

of the number operators) n = 0, 1 are interchanged.

The key observation is that the kinetic energy in the HH, on a bipartite lattice, is unchanged

under a PHT. That is, it takes exactly the same form in terms of the d operators as it did in terms

of the c operators:

c†lσcjσ → (−1)j+ldlσd
†
jσ = d†lσdjσ . (10)

In obtaining the last equality we used the fact that one minus sign arises from the anticommu-

tation of the two operators, and that a second minus sign arises from the bipartite nature of the

lattice, which guarantees that (−1)l+j = −1.

It is useful to rewrite the HH in a way in which this PHS of the kinetic energy term is present in

the interaction term. The expression U(nj↑ − 1
2
)(nj↓ − 1

2
) is also unchanged under the particle-

hole transformation. Since U(nj↑ − 1
2
)(nj↓ − 1

2
) = Unj↑nj↓ − U

2
(nj↓ + nj↑) +

U
4

, this new form
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of the interaction differs from the original only by a trivial shift in the chemical potential and

an overall additive constant to the energy.

The upshot is that the PHS form of the HH,

H = −t
∑

〈j,l〉σ

(

c†jσclσ + c†lσcjσ

)

+ U
∑

j

(

nj↑ −
1

2

)(

nj↓ −
1

2

)

− µ
∑

j

(nj↑ + nj↓) (11)

is completely equivalent to the original HH.

The utility of this rewriting is fully appreciated by considering how observables transform.

Under a PHT, the density ρ transforms to 1− ρ, and the HH transforms to the HH with the sign

of µ reversed. (The chemical potential term is the only piece of the re-written HH which is not

PHS.) As a consequence, ρ(µ) = 2 − ρ(−µ) and, in particular, at µ = 0 we have half-filling

ρ = 1. These statements are true for any value of t, T, or U!

In fact, PHS implies that the whole phase diagram of the HH on a bipartite lattice is symmetric

about half-filling. When the square lattice HH is used to model cuprate superconductors, one

often includes a next near neighbor hopping t′ which connects sites across the diagonal of a

square, i.e., sites on the same sublattice. This breaks PHS and the properties of the HH are not

the same above and below half-filling (µ > 0 and µ < 0), correctly capturing the fact that the

hole- and electron-doped cuprates have rather different properties.

5 The single-site limit

Having dealt with this important symmetry, we can get a first insight into the physics of the HH

by considering just a single site. Alternately phrased, we can set t = 0 in the HH. In this case,

[Ĥ, njσ] = 0 for each j, so that the eigenstates of Ĥ are also eigenstates of all the individual

number operators. The number operators also commute with each other, so basic principles of

quantum and statistical mechanics tell us we can consider each term in Ĥ on its own. We thus

arrive at a single site model which is very easily solved. (Since all sites are independent, we

drop the site index in this limit.)

We have four possibilities corresponding to the site being empty | 0 〉 having a up fermion or

down spin fermion | ↑ 〉, | ↓ 〉, or being doubly occupied. | ↑↓ 〉. Each of these is an eigenstate of

Ĥ with eigenvalues U/4,−U/4−µ,−U/4−µ, U/4−2µ, respectively. The partition function,

Z = Tr
[

e−βĤ
]

= e−β U/4 + 2 e−β (−U/4−µ) + e−β (U/4−2µ), (12)

and the occupation is given by,

ρ = 〈n↑ + n↓〉 = Z−1Tr
[

(n↑ + n↓) e
−βĤ

]

= Z−1
(

2 e−β(−U/4−µ) + 2 e−β(U/4−2µ)
)

(13)

Clearly, ρ = 1 at µ = 0 in this expression. But, as emphasized earlier, this is true even at t 6= 0.

It is instructive to make a plot of ρ vs. µ. Figure 3 shows the result for U = 4 and decreasing

temperatures T = 2.0, 0.5, and 0.25. For T = 0.25, thermal fluctuations are small and one

observes a step-like structure in the density. ρ is small until the chemical potential exceeds
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Fig. 3: Density ρ as a function of chemical potential µ for the single site (t = 0) HH. As the

temperature decreases, a ‘Mott Plateau’ develops: Increasing µ initially adds a fermion to the

site, but ρ gets frozen at ρ = 1. The chemical potential must jump by ∆µ = U to add a second

fermion. The compressibility κ = ∂ρ/∂µ = 0 in the Mott gap.

−U/2. At this point it rises to ρ = 1. However we do not fill the site with a second particle,

ρ = 2 until µ jumps by U . This is our first encounter with one of the fundamental features

of the HH, the ‘Mott insulating gap’. This will be discussed in more detail later, but for now

we just notice that the presence of one fermion on a site blocks the addition of a second (until

a sufficiently large chemical potential overcomes the repulsion). The flat region of ρ = 1

extending from µ = −U/2 to µ = U/2 is sometimes referred to as the ‘Mott plateau’. The

compressibility κ = ∂ρ/∂µ = 0 in the Mott gap.

As seen in Fig. 3, finite temperature T washes out the sharp jumps in ρ. One of the key questions

encountered in the HH is to determine the conditions under which quantum fluctuations induced

by the hopping t destroy the Mott plateau.

A fundamental physical quantity in the HH is the ‘local moment’.

〈m2〉 = 〈(n↑ − n↓)
2〉 = 〈n↑ + n↓〉 − 2〈n↑n↓〉 = ρ− 2D (14)

where D is the ‘double occupancy’. The local moment is zero if the site is either empty ( | 0 〉 )
or has two oppositely pointed spins ( | ↑↓ 〉 ), but takes the value one if the site has a single

fermion ( | ↑ 〉 or | ↓ 〉 ).
Figure 4 shows 〈m2〉 as a function of U for fixed T = 2 (left), and as a function of T for fixed

U = 4 (right). The plot shows half-filling ρ = 1 (µ = 0). At large U or small T the local

moment 〈m2〉 → 1 can become perfectly formed. There is no double occupancy, and hence no

empty sites either, if ρ = 1. As with the Mott plateau, turning on quantum fluctuations t 6= 0

changes the behavior of 〈m2〉. Perfect moments no longer form at T = 0 for finite U .
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Fig. 4: Left: The local moment 〈m2〉 as a function of U at fixed temperature T = 2. Right: The

local moment 〈m2〉 as a function of T at fixed U = 4. Local moments develop as either T is

reduced or U is increased. Chemical potential µ = 0 in both panels, so the site is half-filled.

6 The non-interacting Hubbard Hamiltonian

There are two alternate, but equivalent, ways of looking at theU = 0 HH. One involves working

in real space. The other in momentum space. Let’s start with the real space analysis.

We first note that the HH commutes with the operators N↑ =
∑

j nj↑ and N↓ =
∑

j nj↓ which

count the total number of up and down fermions on the lattice. (There is no commutation with

the individual number operators as we had for t = 0.) You can show this by considering the

commutator of the kinetic energy on a single ‘link’ of the lattice connecting sites i and j with

the total number of fermions on those two sites, and proving [c†iσcjσ + c†jσciσ, niσ + njσ] = 0.

A handy identity in working through the algebra relates commutators and anticommutators,

[AB,C] = A{B,C} − {A,C}B. Actually, one can almost guess that this hopping term must

conserve particle number, since it contains one creation and one annihilation operator for the

relevant sites.

The implication of this commutation is that in finding the eigenstates of the HH, we can consider

different sectors of total N↑ and N↓ separately. (This is true even if U is nonzero.) So let’s think

about the sector where N↑ = 1 and N↓ = 0. A basis consists of occupation number states

|1 0 0 0 0 0 · · · 〉, |0 1 0 0 0 0 · · · 〉, |0 0 1 0 0 0 · · · 〉, . . . There are N of these basis vectors, where

N equals the number of sites in the lattice. Obviously, we only need to track the up-spin fermion

location. Let’s imagine for simplicity that we are in one dimension. Applying Ĥ to these states

moves the occupied site to the left or right. As an explicit example for how Ĥ acts,

Ĥ |0 1 0 0 0 0 · · · 〉 = −µ |0 1 0 0 0 0 · · · 〉 − t |1 0 0 0 0 0 · · · 〉 − t |0 0 1 0 0 0 · · · 〉 . (15)
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Consequentially, the matrix for Ĥ in this basis is just

H =





















−µ −t 0 0 · · · 0 −t
−t −µ −t 0 · · · 0 0

0 −t −µ −t · · · 0 0

0 0 −t −µ · · · 0 0
...

...
...

...
...

...

−t 0 0 0 · · · −t −µ





















. (16)

If we impose periodic boundary conditions (pbc) then the first row of the matrix has a −t in its

final column, and the last row of the matrix has a −t in its first column, representing a hopping

between the first and last sites in the chain.

The eigenvalues of an N ×N tridiagonal matrix with ‘a’ along the diagonal and ‘b’ above and

below the diagonal, with pbc, are λn = a+2b cos kn where kn = 2πn/N and n = 1, 2, 3, . . . N .

To see this, insert the ansatz vl = eikl in the eigenvalue equation a vl + b vl−1 + b vl+1 = λ vl.

The discretization of k arises from the requirement v0 = vN and vN+1 = v1, which must be

used for the equations with l = 1 and l = N to have the above form.

This property of tridiagonal matrices solves the noninteracting HH in the one particle sector for

a one dimensional chain. The eigenvalues are ǫ(k) = −µ − 2t cos k and the eigenvector ~vk has

components (~vk)l = eikl. It is interesting to note that, mathematically, this problem is identical

to the calculation of the modes of a one dimensional mass-spring system, where the analogous

calculation yields the normal modes and (squares of) the normal mode frequencies.

What about the two particle sector? The basis vectors now are the N(N − 1)/2 occupation

number states, |1 1 0 0 0 0 · · · 〉, |1 0 1 0 0 0 · · · 〉, |1 0 0 1 0 0 · · · 〉, · · · . One can take these states

and follow the same construction as withN↑ = 1: Act with Ĥ on each one and get the matrix for

the HH in this basis. Diagonalizing yieldsN(N −1)/2 eigenvalues and eigenvectors. If you do

this, you will find the eigenvalues are just composed of sums of pairs of the eigenvalues of the

N↑ = 1 matrix, with the ‘Pauli Principle’ restriction that you choose distinct eigenvalues! This

is pretty amazing since, at first glance, the matrices appear completely unrelated to each other.

For example, the rows of the matrix for N↑ = 2 associated with states in which the occupied

sites are not adjacent have four columns with −t, while those for states with adjacent occupation

have only two columns with −t. The matrix looks far less symmetric than for N↑ = 1.

Important Note: When you do the calculation you must keep very careful track of the signs

in returning sequences of creation operators into the order you selected for your convention!

Otherwise the eigenvalues for N↑ = 2 will not be related to those of N↑ = 1. See Sec. 2.

The message here is that, in the absence of the interaction term U , all the information about

the eigenstates of the HH are contained by solving the single particle sector. However, when

U 6= 0, the eigenvalues absolutely cannot be obtained in this way. (In fact, you will have to

consider the up and down spin fermion occupations together.) Interactions turn the HH into a

many-body problem.

A second, and much better, way to analyze the U = 0 HH is to do a canonical transformation

on the creation and destruction operators. Just as in classical mechanics where a canonical
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transformation preserves the Poisson brackets, here we seek to preserve the fermion operator

anticommutation relations. (The PHT of Sec. 4 has this property.) We define

c†kσ =
1√
N

∑

l

eik·l c†lσ . (17)

As already noted above, the momentumk has discretized values so that there is the same number

of momentum creation operators as creation operators in real space.

The following ‘orthogonality’ identities are very useful

1

N

∑

l

ei(kn−km)l = δn,m and
1

N

∑

n

eikn(l−j) = δl,j . (18)

They allow you to invert Eq. (17) and prove

c†lσ =
1√
N

∑

k

e−ik·l c†kσ. (19)

and also to verify that the anticommutation relations

{ckσ, c
†
pσ′} = δk,pδσ,σ′ {c†kσ, c

†
pσ′} = 0 {ckσ, cpσ′} = 0 (20)

are indeed preserved by this canonical transformation. The total number operator takes the same

form in either basis N̂ =
∑

j(nj↑ + nj↓) =
∑

k(nk↑ + nk↓).

We can also write down the U = 0 HH in terms of these momentum space operators.

H =
∑

kσ

(ǫk − µ) c†kσckσ =
∑

kσ

(ǫk − µ)nkσ with ǫk =
∑

l

ei
~k·~al . (21)

Here ~al are the real space vectors pointing to the nearest neighbors of a given site. (We are

assuming t connects only those nearest neighbors.) In one dimension, ~al = ±x̂ so that ǫk =

−2t cos k, as we have previously observed working in real space. (I have set the lattice constant

equal to one.)

This Hamiltonian looks like the one arising in the quantum oscillator in Sec. 2 in the sense that

it is expressed in terms of a sum of independent number operators which are all mutually com-

muting. It is now even more evident that the list of single-particle levels ǫk tells us everything

about all the particle sectors: At U = 0, even if one has many particles, they just occupy the

one particle states in accordance with the Pauli principle.

It is important to realize that the result that an analysis of the one-particle sector gives us full

information about the model for any particle number rests only on the fact that the interactions

are turned off. It is not necessary that the hopping t between different sites be the same for all

pairs of sites, or that it be limited to near neighbors, or that the chemical potential be the same

on all sites. All that matters is that Ĥ be a quadratic form in the fermion creation and destruction

operators. To emphasize: To solve any Hamiltonian Ĥ which takes the form H =
∑

l,j c
†
l hl,j cj

with h a (symmetric) matrix of real numbers, simply diagonalize h and allow the resulting

energy levels to be filled in a way which satisfies the exclusion principle.
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t

V

Fig. 5: Top: The geometry of the PAM in one dimension. Bottom: The dispersion relation.

We will consider two further examples of computing dispersion relations which illustrate how

to handle lattices with a basis (‘multiband HH’) and also show often encountered geometries.

The first adds a ‘staggered potential’∆
∑

l(−1)l nl to the HH on a bipartite lattice. Considering,

again, a one dimensional chain for simplicity, we write (−1)l = eilπ. Going to momentum space

one encounters,

∆
∑

l

(−1)l c†l cl = ∆
1

N

∑

l

eiπl
∑

k

e−ikl c†k
∑

p

e+ipl cp = ∆
∑

k

c†kck+π (22)

Going to momentum space has not fully diagonalized the Hamiltonian: the wavevectors k and

k + π mix. Using the forms already written down for the hopping terms in the HH,

H =
∑

k

(

c†k c†k+π

)

(

−2t cos k ∆

∆ −2t cos(k + π)

)(

ck
ck+π

)

(23)

where the k sum is over the reduced Brillouin zone −π/2 < k < π/2.

One must still do a final diagonalization of the 2× 2 matrices in Eq. (23), which yields the two

bands Ek = ±
√

(−2t cos k)2 +∆2. The staggered potential has opened up a band gap at the

reduced Brillouin zone boundaries k = ±π/2. Understanding the energy bands in a staggered

potential is important to doing mean-field theory for the HH. See Sec. 9.

A second example is that of the Periodic Anderson Model (PAM). The PAM is a multi-orbital

variant of the HH in which there is a ‘conduction’ band with creation operators c†l and a ‘local-

ized’ band with creation operators d†l . There is no Hubbard U for the conduction band, while
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the fermions in the localized band hop only to the conduction band. The Hamiltonian is

H =− t
∑

〈j,l〉σ

(

c†jσclσ + c†lσcjσ

)

+ V
∑

〈j,l〉σ

(

c†jσdlσ + d†lσcjσ

)

+ U
∑

j

(

ndj↑ −
1

2

)(

ndj↓ −
1

2

)

− µ
∑

j

(ncj↑ + ncj↓ + ndj↑ + ndj↓) . (24)

This geometry is illustrated in one dimension in Fig. 5(top).

Going to momentum space for the non-interacting PAM at µ = 0 yields 2× 2 matrices similar

in structure to the staggered potential example. We again simplify to one dimension,

H =
∑

k

(

c†k d†k

)

(

−2t cos k V

V 0

)(

ck
dk

)

. (25)

A final diagonalization is required to yield the band structureEk = 1
2

(

ǫk ±
√

ǫ2k + 4V 2
)

. These

two bands exhibit a ‘hybridization gap’. Where the dispersionless d-band crosses the c-band at

k = ±π/2 the hybridization V repels the two curves.

Having computed the dispersion relation ǫk, it is valuable to obtain the density of states (DOS)

N(E) =
1

N

∑

k

δ(E − ǫk) . (26)

As its formula makes apparent, the DOS counts the number of energy levels having a particular

value E. In the continuum limit (large number of sites), the sum over discrete momenta is

replaced by an integral according to the rule 1
N

∑

k → (2π)−d
∫

dk , where d is the spatial

dimension. For the one-dimensional HH with ǫk = −2t cos k, N(E) = 1/(π
√
4t2 − E2). We

will use this result in Sec. 9. This DOS diverges at E = ±2t where the bands are flat, as we are

told should be the case by Ashcroft and Mermin.

A particularly important example of the dispersion relation of the U = 0 HH is that of the

square lattice, where ǫk = −2t (cos kx + cos ky) according to Eq. (21). One of the reasons this

is an interesting geometry is that it forms the simplest picture of the cuprate superconductors:

the copper atoms of the CuO2 sheets reside on a square lattice. Early theories of supercon-

ductivity in the cuprates relied on the special van-Hove singularity of the DOS of the square

lattice. See Fig. 6(left). One can see the basic idea of the possible role of this divergence from

the BCS formula for the superconducting transition temperature Tc ∼ ω e−1/V N(EF ). Here V

is some coupling constant and ω is an energy scale (a phonon frequency in conventional super-

conductivity). A large value of the DOS, N(EF ), reduces the size of the negative number in the

exponential, boosting Tc. When we discuss Stoner theory we will see another example of how

an understanding of the DOS is useful.

Amazingly, the full picture of pairing in the cuprates remains a mystery. The HH is unsolved

on the 2D square lattice, and, in particular, whether the ground state away from half-filling has

long range d-wave pairing correlations is still open.

As in an electronic structure calculation, the Fermi Surface (FS) of the HH is constructed from

the dispersion relation ǫk as the locus of momentum space points that separates filled and empty
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Fig. 6: Left: The density of states of the square lattice HH. It has a singularity at µ = 0 (half-

filling). Right: The Fermi Surface of the square lattice HH for different values of the filling. It

evolves from circles about the Γ point at low filling to a rotated square at half-filling ρ = 1.

states at T = 0 in the absence of interactions. The FS of the square lattice HH is shown for

various values of µ in Fig. 6(right). Like the DOS, the FS of the square lattice has a unique

feature at half-filling: perfect nesting. What this means is that the same wave vector k = (π, π)

maps large segments of the FS onto itself. Since the properties of a fermionic system are

dominated by the FS, this suggests that this momentum vector might play a crucial role in the

physics of the square lattice. Sure enough, antiferromagnetic order, a large magnetic structure

factor at k = (π, π), is a feature of the HH at ρ = 1 all the way down to U = 0.

With ǫk in hand, one can compute all the standard statistical mechanics properties: The partition

function, density, internal energy, free energy, and entropy of the U = 0 HH are

Z = Tr
[

e−βĤ
]

=
∏

k

∑

nk=0,1

e−β(nk−µ) =
∏

k

(

1 + e−β(ǫk−µ)
)

ρ = Z−1Tr
[

∑

k

nke
−βĤ

]

=
∑

k

(

1 + e+β(ǫk−µ)
)−1

=
∑

k

fk

E = Z−1Tr
[

Ĥ e−βĤ
]

=
∑

k

ǫk
(

1 + e+β(ǫk−µ)
)−1

=
∑

k

ǫkfk

S = β (E − F ) = β E − lnZ . (27)

Here we introduced the usual definition of the Fermi function fk.

There are several other lattice structures on which the HH is commonly studied and hence whose

dispersion relations and DOS are worth knowing. The DOS of the triangular and honeycomb

lattices are shown in Fig. 7. The honeycomb lattice is notable for its linearly vanishing DOS

at half-filling. Comparison of the DOS of the triangular lattice with that of the square and

honeycomb lattices emphasizes the fact that N(E) = N(−E) for bipartite lattices, but not for

non-bipartite ones.
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Fig. 7: Left: The DOS of the U = 0 triangular lattice HH. This non-bipartite lattice does not

have the property N(E) = N(−E) of the square and honeycomb lattices. Right: The DOS

of the U = 0 honeycomb lattice HH. Vertical lines demark the chemical potentials of fillings

ρ = 0.1, 0.2, 0.3, · · · . Filling ρ = 0.5 is at E = 0. Inset emphasizes the honeycomb lattice can

be viewed as a depleted triangular lattice.

Our final example is the ‘Lieb lattice’. This geometry consists of a square array of sites to

which are added additional sites at the midpoint of each bond. See Fig. 8. This structure is of

fundamental importance to the cuprate superconductors since it provides a more refined picture

of the CuO2 planes which includes the bridging oxygen sites in addition to the square lattice

copper ones. In that application, the parent compounds like La2CuO4 have one fermion per

CuO2 unit cell, and there is an additional site energy on the oxygens such that the fermion

resides mostly on the coppers.

In the absence of such a site energy, however, something amazing happens. Despite the fact

that all the sites are connected and so, seemingly, a fermion placed locally on the lattice would

inevitable spread out to occupy the whole structure, instead there are perfectly localized states

in real space! Consider Fig. 8 and the state |ψ 〉 = ( c†1 − c†2 + c†3 − c†4 ) | 0 0 0 0 · · · 0 〉. When

the U = µ = 0 HH for the Lieb lattice acts on |ψ 〉 one obtains Ĥ|ψ 〉 = 0! That is, |ψ 〉
is an eigenstate of Ĥ of eigenvalue zero. A fermion created onto this cluster of four sites will

remain localized there forever. This is quite a surprise since Ĥ is translationally invariant and

we expect the eigenstates to be spread out.

One can reconcile this expectation by noting that this same construction can be done on any

equivalent set of four sites on the lattice, so there is a huge set of states all with the same energy

E = 0. One can form linear combinations of such states which are extended as in Eq. (17). The

resulting momentum space states have an energy bands which is completely dispersionless:

ǫk = 0 independent of k.

This same result can of course be obtained from the procedure we have outlined earlier. Going
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4

2

13

Fig. 8: The geometry of the ‘Lieb lattice’. Creation of a fermion with the appropriate phases

on the four labeled sites results in a localized mode. See text.

to momentum space results in a 3× 3 matrix






0 −t (1 + eikx) −t (1 + eiky)

−t (1 + e−ikx) 0 0

−t (1 + e−iky) 0 0






(28)

one of whose energy bands is Ek = 0.

Lieb has shown [11] that the presence of such flat bands is a generic feature of bipartite lattices

for which the numbers of A and B sites are unequal. More importantly, ferrimagnetic order can

be rigorously proven to occur in the ground state. This is one of the few things known exactly

about the HH. We briefly discuss some further interesting interaction-driven physics of the Lieb

lattice in Sec. 11.

7 Introduction to exact diagonalization: the two-site HH

The single site HH gave us some insight into the role ofU in such phenomena as moment forma-

tion and the development of the Mott plateau, but the absence of t precluded any consideration

of the interplay between kinetic and potential energy, and the formation of intersite magnetic

correlations. These can, however, be captured by examining the HH on two spatial sites. This

is the simplest non-trivial example of a powerful method to solve model Hamiltonians: exact

diagonalization (ED).

We begin by using the occupation number basis |n1↑ n1↓ n2↑ n2↓ 〉 to enumerate the states in

the Hilbert space. The commutation relations [Ĥ, n1↑ + n2↑] = [Ĥ, n1↓ + n2↓] = 0 reflect the

conservation of the number of up and down fermions, and divide the 24 = 16 states into nine

sectors, (n1↑ + n2↑, n1↓ + n2↓) = (0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2) of

dimensions 1, 2, 1, 2, 4, 2, 1, 2, 1, respectively. The sectors of dimension 1 immediately identify

four eigenstates of the HH on two sites: The completely empty lattice, the lattice completely

packed with four fermions, and the states with two like-spin fermions. All these have zero

kinetic energy because there are either no fermions present to hop, or else there are two of the
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same species and the Pauli principle blocks hopping. The (2, 0) and (0, 2) energies are −U/2
and the (0, 0) and (2, 2) energies are +U/2.

The four sectors of dimension two are almost equally simple. They each have eigenenergies ±t.
In the case when there is a single fermion, it can hop between sites. With three fermions, the

two which are of like spin are frozen by the Pauli principle and again one has a single fermion

which can hop. The fact that the one and three particle sectors have the same spectrum is a

reflection of our use of the PHS version of the HH.

The (1, 1) sector has dimension four and is the only slightly complicated one. We are rewarded

for enduring its diagonalization by some interesting physics. If we denote by # a site which

is doubly occupied, and by 0 a site that is empty, then the action of Ĥ on the four states

| ↑ ↓ 〉, | ↓ ↑ 〉, |# 0 〉, | 0 # 〉, is given by the 4× 4 matrix











−U/2 0 −t −t
0 −U/2 −t −t

−t −t U/2 0

−t −t 0 U/2











. (29)

The eigenvalues of this matrix are −U/2, U/2, ±
√

4t2 + U2/4.

We have now discovered the complete spectrum of the two-site Hubbard Hamiltonian. We

emphasize again that, in contrast to the noninteracting case U = 0, we cannot infer all the

eigenenergies from consideration of the single particle sector.

The low temperature properties of the two-site HH are determined by the lowest energy eigen-

states. These are four of the six states in the half-filled sectors (2, 0), (0, 2) and (1, 1) with

energies −U/2 (threefold degenerate), U/2, and ±
√

4t2 + U2/4. If we think about U ≫ t

we can rewrite ±
√

4t2 + U2/4 = ±(U/2)
√

1 + 16t2/U2 ≈ ±U/2 (1 + 8t2/U2) = −U/2 −
4t2/U, +U/2 + 4t2/U .

We have four states with energies roughly −U/2 and two with energy roughly +U/2. In the

thermodynamic limit, these two groupings of states, separated by energy U , are referred to as

the ‘upper and lower Hubbard bands’ (UHB, LHB).

Besides illustrating the UHB and LHB, a particularly nice outcome of this two-site ED analysis

is that it also provides a clear illustration of the mapping of the HH to the spin-1/2 Heisenberg

model in the large-U limit. It is natural to imagine some such relation between the models

because at large U the HH favors single occupation of each site with either an up or a down spin

fermion, paralleling the situation of the spin-1/2 Heisenberg model on which each site can have

Sz = ±1/2.

Our solution of the two-site HH allows us to make this mapping more quantitative. Consider

two spin-1/2 objects with a Hamiltonian Ĥ = J ~S1 · ~S2. The spectrum is obtained by a trick:

J ~S1 · ~S2 = J/2
(

(~S1 + ~S2)
2 − ~S2

1 − ~S2
2

)

. We know ~S2
1 = ~S2

2 = 3/4 and that, by the rules of

adding angular momentum two spin-1/2 combine to spin-0 (non-degenerate ‘singlet’) or spin-

1 (three-fold degenerate ‘triplet’). The square of the total spin therefore takes the two values

(~S1 + ~S2)
2 = 0, 2.
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This observation allows us to solve the two-site Heisenberg model: J ~S1 · ~S2 = J (0 − 3/4 −
3/4) = −3J/4 or J ~S1 · ~S2 = J (2 − 3/4 − 3/4) = +J/4: The spectrum of the two-site

Heisenberg model consists of one state of energy −3J/4 and three states of energy +J/4.

In the large-U limit, the LHB of the two-site HH has precisely the same structure: a single

state of energy −U/2 − 4t2/U beneath a triplet of states of energy −U/2. This makes more

precise the qualitative picture discussed above: the eigenspectra are rigorously identical. It also

identifies the exchange energy scale J = 4t2/U .

It should be clear that, with the aid of a computer, the ED method can be easily extended

to larger numbers of sites [12, 13]. Three functions are at the core of an ED code: The first

assigns a basis state number α to each collection of occupation numbers. The second inverts

this process, yielding the occupations associated with any basis state number. Finally, a function

computes the action of Ĥ on each basis state |α〉, using the first function to get the occupations,

rearranging the occupations based on the kinetic energy operator, and using the second function

to get from these rearranged occupations the states |β〉. For each of these β one sets Hαβ = ±t,
where the sign is determined by considering how many interchanges are required to get the

operators into their conventional order (as discussed in Sec. 2). The action of the potential

energy is easily computed since it does not alter the occupations. Its value is assigned to Hαα.

More detailed descriptions of the ED method are available in [12,13]. The basic principle really

is no more complex than that described above, but as with most simple methods, many clever

ideas are involved in pushing them to their limits, such as the use of symmetries to partition Ĥ

into the smallest possible blocks, and, especially, to extract experimentally useful quantities. ED

really comes into its own in the computation of dynamical properties, which are very difficult

to obtain with competing methods like QMC. For this reason it has been extremely valuable in

recent work on thermalization and many-body localization.

8 Green functions: Mott gap and spectral function

As mentioned in the introduction, much of the initial work on the HH involved the use of

perturbative, diagrammatic techniques whose central quantities are Green functions G. These

approaches, and the important role of G, closely connect with more recently developed QMC

methods. For that reason, we will now examine the one-particle Green function in the nonin-

teracting (U = 0) and single site (t = 0) limits. The discussion will also reinforce some of

our earlier observations. Much of our discussion will work in real space, since several QMC

techniques are formulated there, and our results provide useful context for those methods [14].

8.1 Green functions at U = 0

We begin with the definition

Gjn(τ) =
〈

cj(τ)c
†
n(0)

〉

with cj(τ) = eĤτcj(0)e
−Ĥτ . (30)
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In the limit of no interactions, Gjn(τ) can be computed analytically. We first note that the

imaginary time evolution in momentum space is

ck(τ) = eĤτck(0)e
−Ĥτ = e−ǫkτck(0) (31)

This can be verified either by showing that both expressions give the same result on the two

states | 0 〉 and | 1 〉, or by using the general theorem that ∂Â(τ)/∂τ = [Ĥ, Â(τ)].

Transforming the operators in G to momentum space, and using 〈ckc
†
k〉 = 1− fk we see

Gjn(τ) =
1

N

∑

k

eik·(n−j)(1− fk)e
−ǫkτ . (32)

Notice that G is just a function of the difference n− j, as you would expect for a translationally

invariant Hamiltonian.

We have been a little bit careless in defining G. Usually in many-body theory one defines the

so-called ‘time ordered’ Green’s function, Gk(τ) = −〈T ck(τ)c
†
k(0)〉 where the time ordering

operator T is given by

T ck(τ)c
†
k(0) = ck(τ)c

†
k(0) for τ > 0

T ck(τ)c
†
k(0) = −c†k(0)ck(τ) for τ < 0 . (33)

This more precise definition ofG leads to the property thatG(τ+β) = −G(τ) for −β < τ < 0.

Hence the Fourier transform of G

G(τ) =
∑

n

G(i ωn)e
−iωnτ G(i ωn) =

∫ β

0

dτ

β
G(τ)ei ωnτ (34)

involves the ‘Matsubara frequencies’ ωn = π(2n + 1)/β. In momentum space and imaginary

time the Green function is given by

Gk(τ) = −e−ǫkτ (1− fk) for 0 < τ < β

Gk(τ) = e−ǫkτfk for − β < τ < 0 (35)

and in momentum space and frequency

Gk(i ωn) =
1

i ωn − ǫk
. (36)

Another way to get this last result is to take ∂/∂τ of the definition of the time-ordered Green

function written in the form

Gk(τ) = 〈ck(τ)ck(0)〉 θ(τ)− 〈ck(0)ck(τ)〉 θ(−τ) . (37)

and then Fourier transform both sides to solve for Gk(i ωn). This approach is the basis of the

‘equation of motion’ method for computing G. One starts with the definition of G, takes a

time derivative, evaluates the resulting commutators of Ĥ with the creation operators, and then

Fourier transforms. If the Hamiltonian is quadratic in the fermion operators, then the set of

equations so obtained closes, even if the different fermion operators mix. Of course, we already

knew quadratic Hamiltonians are soluble!
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8.2 Green functions at t = 0

It is instructive to look at the Green function for a single site, that is, the t = 0 HH. We have

previously written down the Hilbert space for this problem and obtained the partition function

and various equal time quantities. Now consider the calculation of

G↑(τ) = 〈c↑(τ)c
†
↑(0)〉. (38)

Only the states | 0 0 〉 and | 0 1 〉 contribute to the expectation value since the creation operator

for up fermions needs to see an empty up state. We compute the action of the sequence of

operators on | 0 0 〉:

c↑(τ)c
†
↑(0) | 0 0 〉 = eHτc↑(0)e

−Hτc†↑(0) | 0 0 〉 = eHτc↑(0)e
−Hτ | 1 0 〉

= eHτc↑(0)e
+Uτ/4 | 1 0 〉 = eHτe+Uτ/4 | 0 0 〉 = e+Uτ/2 | 0 0 〉 (39)

and similarly for | 0 1 〉.
Completing the calculation yields

G↑(τ) =
e+βU/4e−τU/2 + e−βU/4eτU/2

2 eβU/4 + 2 e−βU/4
. (40)

The Green’s function is related to the ‘spectral density’ A(ω) by

G(τ) =

∫ +∞

−∞

A(ω)
e−ωτ

e−βω + 1
dω . (41)

One can show that when

A(ω) =
1

2

(

δ(ω − U/2) + δ(ω + U/2)
)

(42)

is inserted into Eq. (41), the result of Eq. (40) follows. The spectral function of the one-site HH

consists of two delta-function peaks separated by U , a result closely connected to our earlier

discussion of the Mott gap. Just as the Mott gap is softened (and perhaps even eliminated) by

the introduction of t, the computation of A(ω) for the full HH is one of the central pursuits of

the field.

9 A peek at magnetism

In this section we will discuss three common pictures of magnetism in the HH in order of in-

creasing level of mathematical detail: a perturbation picture of the relative favorability of neigh-

boring fermions being of the same or opposite spin; the Stoner criterion for ferromagnetism; and

static mean-field theory (MFT). In the latter case we will only outline the calculation to be done,

pointing to the connections with our discussion of the U = 0 HH.
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Fig. 9: The Pauli principle prevents fermions of like spin on adjacent sites from hopping (left),

a process which is allowed if the fermions have opposite spin (right).

9.1 Perturbation theory

We already encountered the ‘exchange energy’ J = 4t2/U as the separation between the ground

state and the three excited states in the lowest energies of the half-filled sector of the two-site

HH. This scale can also be arrived at by doing perturbation theory in t. At t = 0, the half-filled

HH will have exactly one fermion on every site. Because the sites are independent, the relative

orientations are irrelevant to the energy.

Now consider perturbation theory in the hopping. There is no first order shift because the

kinetic energy does not connect a state of fixed occupation number with itself. However, there

is a second order contribution if the adjacent spins are antiparallel. The kinetic energy K̂ can

transport a fermion to its neighboring site, resulting in an intermediate state whose doubly

occupied site has higher energy +U . Then a second action of K̂ returns to the original state.

The standard perturbation theory formula yieldsE(2) ∼ −t2/U , and a careful counting gives the

correct factor of four and J = −4t2/U . This process is forbidden if the two spins are parallel.

These two situations are illustrated in Fig. 9.

It is interesting that antiferromagnetism arises both from this strong coupling (perturbation the-

ory in t) argument and also from weak coupling (small U) where we saw the nesting of the

Fermi Surface select out the antiferromagnetic wavevector ~k = (π, π). Indeed, more sophisti-

cated weak coupling approaches like the ‘Random Phase Approximation’ reinforce the notion

that the magnetic susceptibility is largest at (π, π).

9.2 The Stoner criterion

Stoner developed a picture of ferromagnetism based on the competition between the increase

in kinetic energy when making the up- and down-spin fermion numbers different and the as-

sociated decrease in potential energy. The basic idea is the following: Because of the Pauli

principle, the way to occupy a given set of energy levels with the lowest energy is to start filling

from the bottom and put two fermions, one of each spin, in each level. Otherwise, if you make

the numbers of up and down fermions unequal, and don’t fill each level with two fermions, you

will have to occupy higher energies.

However, if you make the number of up and down fermions unequal, you can reduce the poten-

tial energy: Consider the limit of complete spin polarization where there are no fermions of one

spin species. Then, obviously, the potential energy is zero. Very generally, polarization of the

spin decreases the likelihood of double occupation and hence lowers the potential energy.
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Fig. 10: Polarizing the fermions increases the kinetic energy, since the levels which must be

occupied by the majority species, according to the Pauli principle, are higher than those which

could be filled by the minority species.

Let’s now make this argument more precise: Consider a system with density of states N(E)

and both up- and down-spin fermions filling the energy levels up to the same maximum Fermi

level EF . The density of up and down fermions is equal. We’ll call it n.

We now compute the change in energy which results from a reduction in the density of up-spin

fermions by δn and at the same time an increase the number of down-spin fermions by δn. The

potential energy is lowered by

δP = U(n + δn)(n− δn)− Un2 = −U(δn)2. (43)

If we shift an extra δn fermions into the down group, we will occupy energy levels above the

originalEF . Recalling the definition of the density of states as the number of levels at an energy

E (see Eq. (26)), we have that N(E) = δN/δE, whence δn = N(EF ) δE. This tells us how

big the range of energies is above EF we are filling in terms of δn. Likewise, we are emptying

levels below EF that used to be occupied by up spin fermions. See Fig. 10. The net result of

this process is to shift δn fermions up in energy by an amount δE. The change in the kinetic

energy is then

δK = +δnδE = +
1

N(EF )
(δn)2. (44)

Putting these two expressions together

δE = δP + δK =

(

−U +
1

N(EF )

)

(δn)2 = (−UN(EF ) + 1)
(δn)2

N(EF )
. (45)

We see that if UN(EF ) > 1 the total energy change δE < 0, so it is favorable to have the

up and down fermion densities different and hence favorable to have ferromagnetism. This is

called the Stoner criterion. It tells us that magnetism is favored by large fermion interactions

and also by large DOS.
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9.3 Mean-field theory: the idea and procedure

We have considered the HH in the limits of no hopping (t = 0), no interactions (U = 0), and

small system sizes (one and two sites). We now describe how to use mean-field theory (MFT)

to study magnetism.

What is MFT? We commented in an earlier section that a Hamiltonian which is quadratic in the

fermion creation and destruction operators, H =
∑

l,j c
†
l hl,j cj , can be solved by diagonalizing

the matrix h. MFT is a method which produces such a quadratic Hamiltonian from a model

like the HH which has quartic terms Uc†↑c↑c
†
↓c↓ involving four fermion creation and destruction

operators. The approach begins by expressing the number operators as an average value plus a

deviation from the average:

ni↑ = 〈ni↑〉+ (ni↑ − 〈ni↑〉)
ni↓ = 〈ni↓〉+ (ni↓ − 〈ni↓〉) . (46)

Substituting these expressions into the Hubbard interaction term, and dropping the ‘small’ term

(it’s not really small!!) which is the product of the two deviations from the average yields

ni↑ni↓ = [ 〈ni↑〉+ (ni↑ − 〈ni↑〉) ] [ 〈ni↓〉+ (ni↓ − 〈ni↓〉) ]
≈ 〈ni↑〉〈ni↓〉+ 〈ni↓〉(ni↑ − 〈ni↑〉) + 〈ni↑〉(ni↓ − 〈ni↓〉)
= ni↑〈ni↓〉+ ni↓〈ni↑〉 − 〈ni↑〉〈ni↓〉 . (47)

The interpretation of this expression is clear. The up-spin fermions interact with the average

density of the down-spin fermions, and similarly the down-spin fermions interact with the aver-

age density of the up-spin fermions. These two terms overcount the original single interaction

term, so the product of the average densities is subtracted off.

Within this mean-field replacement, the Hubbard Hamiltonian is now quadratic, and takes the

form (in one dimension)

H = −t
∑

lσ

(

c†lσcl+1σ + c†l+1σclσ

)

+ U
(

nl↑〈nl↓〉+ nl↓〈nl↑〉)− 〈nl↑〉〈nl↓〉
)

. (48)

SinceH is quadratic, its solution is a matter of diagonalizing an appropriate matrix. Specifically,

for the case of ferromagnetism, one imagines that the average occupation is independent of

spatial site l but allowed to be different for the two spin species. That is, 〈nl↑〉 = n + m and

〈nl↓〉 = n − m. Our goal is to calculate the energy E for fixed n as a function of m and

see whether the minimum is at m = 0 (paramagnetic state, no ferromagnetism) or m 6= 0

(ferromagnetism). Because the expectation values 〈nl↑〉 and 〈nl↓〉 have a site independent form,

the energy levels can easily be written down. (By now we are experts at this!) They are,

ǫ↑k = U(n−m)− 2t cos k and ǫ↓k = U(n +m)− 2t cos k . (49)

Again, I have assumed we are in one dimension.

One merely has to take the various possible fillings of the lattice with up and down fermions

and add these levels up. That is, we proceed as follows (if doing MFT computationally):
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Fig. 11: Energy versus magnetization of the d = 1 HH at U/t = 2 and ρ = 1
2

(quarter

filling, 128 fermions on an N = 256 site lattice). Left to Right: U/t = 2.0, 4.0, 4.2. The

minimum energy is always in the paramagnetic phase,m = 0. But there is a hint at approaching

possibility of ferromagnetism for U/t = 4.2 where local minima have begun to develop at

m = ±1.

(1) Fix the lattice size, N , to some fairly large value, for example N = 128 or greater.

(2) Choose a total particle number Ntot and on-site repulsion U .

(3) Loop over N↑ = 0, 1, 2, . . . , Ntot. For each choice, set N↓ = Ntot − N↑. (Actually,

your answers should be symmetric on interchange of N↑ and N↓, so you really only need

do half the values N↑ = 0, 1, 2, . . . , Ntot/2.) Define the densities, n↑ = N↑/N and

n↓ = N↓/N .

(4) Loop over theN allowed momentum values k = 2π/N{−N/2+1,−N/2+2, . . . , N/2}.

Fill up the lowest N↑ and N↓ of the energy levels. Recall that the levels are given by

ǫ↑(k) = −2 t cos k + U〈n↓〉 and ǫ↓(k) = −2 t cos k + U〈n↑〉.

(5) Finally, normalize the energy to the number of sites and add in the term −U〈n↑〉〈n↓〉.
This gives the energy for the given N↑ and N↓ = Ntot −N↑. Make a list of them and see

which is lowest.

(6) Repeat the calculation for different U and Ntot to get the phase diagram.

9.4 MFT: some results

Figures 11 and 12 give representative results for one quarter filling, that is, a density ρ =

ρ↑ + ρ↓ =
1
2

fermions per site. (This is one quarter of the maximal density of two fermions per

site.) The magnetization m is defined such that m = (ρ↑ − ρ↓)/(ρ↑ + ρ↓).

At U/t = 2 the optimal energy is paramagnetic: the energy E is minimized at m = 0. This is

still the case at U/t = 4, but the energy of the spin polarized solutions (m nonzero) are getting

much closer to m = 0. (Note the energy scale.) When U/t = 4.2 the energies for large |m|
have started to turn down and are lower than intermediate m, though E(m = 0) is still lowest.

U/t = 4.4 has just gone ferromagnetic.
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Fig. 12: Same as Fig. 11 except U/t = 4.4, 6.0. The energy minima are now at m = ±1. The

HH has undergone a ferromagnetic phase transition.

Earlier in this section we derived the Stoner criterion for ferromagnetism, UN(EF) > 1. In

addition, in Sec. 6, we computed the DOS for the d = 1 HH, N(E) = 1/(π
√
4t2 −E2). (This

is the density of states for a single spin species, which is what was used in the Stoner criterion.)

To compare with MFT, we need the relation between density ρ and Fermi energy EF

ρ(EF) = 2

∫ EF

−2t

dE N(E) ❀ ρd=1(EF) =
2

π
cos−1

(−EF

2t

)

. (50)

We include a factor of two for spin here, so that when we get ρwe use the total density (including

both spin species). One can check this latter relation obeys the expected limits: ρ = 0 when

EF = −2t, ρ = 1 when EF = 0, and ρ = 2 when EF = +2t.

Putting these equations together, we can get the density of states at EF for a given filling:

N(ρ) =
1

2πt

1

sin(πρ/2)
. (51)

For half-filling, ρ = 1 we see thatN(ρ = 1) = 1/2πt and hence Ucrit = 2πt. For quarter-filling,

ρ = 1
2

we see that N(ρ = 1) = 1/
√
2πt and hence Ucrit =

√
2πt = 4.44t. This is in pretty

good agreement with Figs. 11 and 12 which showed us that Ucrit was around 4.4t. The slight

disagreement (Fig. 12 suggests Ucrit a bit less than 4.4t while Stoner gives Ucrit a bit larger than

4.4t) is a finite size effect. (The calculations were done on an N = 256 site lattice.)

One can also do MFT in the grand-canonical ensemble (GCE). That is, rather than computing

the energy for fixed occupations, one uses a chemical potential µ and then computes N↓ and N↑

by filling those levels which are below µ. The density then comes out of the choice of µ, and,

indeed, one needs to tune µ to get the desired density.

One advantage of working in the GCE is that one can frame the calculation in a self-consistent

manner, so that starting at some densities n↑, n↓, the energies are computed and the new values

for the densities are inferred, which are fed back into the calculation. The process is iterated

until convergence is reached. (There is a danger of getting stuck in metastable configurations,

however.)

MFT is an incredibly useful method, and should probably be used as a starting point for un-

derstanding almost any new model Hamiltonian. It is, in fact, the technique which was used to
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solve the BCS theory of superconductivity: quadratic Hamiltonians can be solved even if they

contain ‘anomalous’ terms consisting of pairs of creation and destruction operators. MFT can

also be applied to inhomogeneous problems, for example in a HH with disorder or in situations

where inhomogeneities arise spontaneously. It is merely a matter of replacing the analytic forms

for the energy bands with a matrix diagonalization. In the former case, some beautiful work has

been done on disordered superconductivity. In the latter case, striped phases of the HH were

discovered early on via MFT, and seem to play a role in cuprate superconductivity.

9.5 MFT: antiferromagnetism

It should be clear that the basic idea to look for antiferromagnetism in the HH within MFT is

the same as for ferromagnetism. Indeed, our earlier solution for the energy bands of the non-

interacting HH serves us well here. We simply replace the ferromagnetic ansatz 〈nl↑〉 = n+m,

〈nl↓〉 = n−m. by an antiferromagnetic one, 〈nl↑〉 = n+ (−1)lm, 〈nl↓〉 = n− (−1)lm, giving

rise to a staggered potential. A bipartite lattice is assumed here.

The process for computing the energy of an antiferromagnetic configuration is the same as the

steps (1–5) above, with the replacement of the ferromagnetic eigenvalues by the antiferromag-

netic ones. Since we are assuming the total up and down densities over the whole lattice are

identical, one no longer loops over different N↑. However, one does have to loop over different

m. More precisely, one fixes n = Ntot/2 and then tries m = 1/N, 2/N . . ., One also needs to

be careful to work in the reduced Brillouin zone.

In concluding this discussion of MFT, it should be emphasized that, while very useful in yield-

ing insight into the possible phases of the system, is a completely uncontrolled approximation.

MFT overestimates the tendency for ordered phases, and can (and does) predict magnetic order

where none occurs. Even if a particular phase transition is correctly predicted by MFT, the

details of the transition (critical temperature, critical exponents, etc) are usually incorrect.

10 The attractive Hubbard Hamiltonian

In Sec. 4 we considered PHTs, which we performed on both spin species. A PHT on only

one spin species yields a connection between the HH with U > 0 and U < 0. In this case,

n↓ → 1 − n↓, but n↑ → n↑ is unchanged. The kinetic energy term is invariant, but the sign of

the interaction term is reversed, U(n↑ − 1
2
)(n↓ − 1

2
) → −U(n↑ − 1

2
)(n↓ − 1

2
), and the chemical

potential µ maps into a Zeeman field term −µ(n↑ − n↓). Conversely, a Zeeman term in the

original U > 0 model maps into a chemical potential term in the U < 0 model.

The HH with −U is called the attractive HH because a negative value of U represents an

attraction between spin up and spin down fermions on the same site. By considering how this
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Fig. 13: The magnetic vanadium atoms of CaV4O9 occupy a 1/5 depleted square lattice.

partial PHT affects various operators, like the components of magnetization,

Sz
i = ni↑ − ni↓ ↔ ni = ni↑ + ni↓

S+
i = c†i↑ci↓ ↔ c†i↑c

†
i↓

S−
i = c†i↓ci↑ ↔ ci↓ci↑ (52)

one can show that magnetic order in the +U HH is related to superconducting and charge

order in the −U HH, so that an understanding of the phases of one model immediately implies

considerable information about the other.

For example, imagine starting with the 2D square lattice repulsive HH at half-filling. Its contin-

uous xyz spin rotational invariance precludes long range magnetic order at finite temperature

owing to the Mermin-Wagner theorem. (One of the key achievements of QMC was showing

that the ground state does have order [15].) However, if a Zeeman field is added, this symmetry

is reduced to xy, allowing for a Kosterlitz-Thouless transition at T 6= 0. Performing the partial

PHT we infer that the doped attractive 2D HH (recall the Zeeman field for U > 0 maps onto a

chemical potential for U < 0) has a finite temperature superconducting phase transition. This

is a highly non-trivial assertion, made ‘obvious’ by the PHT. These sorts of considerations can

be extended to various exotic sorts of pairing [16].

11 A peek at research: CaV4O9

Some of the current research on the HH takes a look at the properties of the HH on ‘depleted

lattices’. We already encountered one such geometry: the Lieb lattice has a regular array of

1/4 missing sites. As we noted, its band structure possesses a perfectly flat band, and it is

interesting to try to understand how this affects magnetism (for U > 0) and superconductivity

(for U < 0) [17]. Lieb [11] has given us some theorems about the former case, although

quantitative calculations are still of interest. In the latter case, an intriguing question is the

following: Consider the large (attractive) U limit of the HH. Tightly bound fermion pairs can

be thought of as bosons, and superconductivity as Bose Einstein Condensation. However, if the

band in which the bosons reside is perfectly flat, into which momentum state will they choose

to condense?
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A second depleted lattice that has been investigated [18] is a model of CaV4O9. See Fig. 13.

The appropriate HH, or Heisenberg model in the large U limit, has distinct hoppings t and t′

within four site plaquettes and between them. It turns out there is a window of t′/t ≈ 1 (or

J ′/J ≈ 1) where long range antiferromagnetic order forms at low temperature. Outside of that

window, the ground state is a spin liquid.

12 Conclusions

In these notes we have tried to provide an introduction to the Hubbard Hamiltonian and some of

its elementary physics. We have seen how to write the model down and understand its behavior

in the limit of no interactions, no kinetic energy, small clusters (ED), and, finally, mean-field

theory. We have not discussed the many sophisticated analytic and numerical methods that have

been thrown at this simple, but remarkably stubborn, model.

One key piece of physics not addressed here, which arises prominently in the HH, and in its

multiband variants like the PAM, is the idea of a ‘Kondo resonance’. It turns out that as one

progresses from weak to strong coupling, the spectral function does not smoothly evolve from

a single blob to two (upper and lower) Hubbard bands. Instead, somewhere in the course of

changing the interaction strength a three peak structure is in evidence: The beginning of the

formation of upper and lower Hubbard bands, but also a sharp peak at the Fermi energy. This

very important idea is at the heart of much of the research into the HH and its experimental

realizations, and its successful capture was one of the key achievements of dynamical mean-

field theory.
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5.2 Robert Eder

1 Introduction

Compounds containing 3d transition-metal ions have been intriguing solid state physicists ever
since the appearance of solid state physics as a field of research. In fact, already in the 1930’s
NiO became the first known example of a correlated insulator in that it was cited by deBoer
and Verwey as a counterexample to the then newly invented Bloch theory of electron bands
in solids [1]. During the last 25 years 3d transition-metal compounds have become one of the
central fields of solid state physics following the discovery of the cuprate superconductors, the
colossal magnetoresistance phenomenon in the manganites and, most recently, the iron-pnictide
superconductors.
It was conjectured early on that the reason for the special behavior of these compounds is the
strong Coulomb interaction between electrons in their partially filled 3d-shells. The 3d wave
functions are orthogonal to those of the inner-shells — such as 1s, 2s, 2p, 3s and 3p — solely
due to their angular part Y2,m(ϑ, ϕ). Their radial part R3,2(r) therefore is not pushed out to re-
gions far from the nucleus by the requirement to be orthogonal to the inner shell wave functions
and therefore is concentrated close to the nucleus (the situation is exactly the same for the 4f

wave functions). Any two electrons in the 3d-shell thus are forced to be close to each other on
average so that their mutual Coulomb repulsion is strong (the Coulomb repulsion between two
3d electrons is small, however, when compared to the Coulomb force due to the nucleus and the
inner shells so that the electrons have to stay close to one another!). For clarity we also mention
that the Coulomb repulsion between two electrons in the inner shells of most heavier elements
is of course much stronger than between 3d electrons. This, however, is irrelevant because
these inner shells are several 100–1000 eV below the Fermi energy so that they are simply com-
pletely filled and inert. On the other hand, the 3d-orbitals in transition-metal compounds or the
4f -orbitals in materials containing the Rare Earth elements participate in the bands at the Fermi
level so that the strong Coulomb interaction in these orbitals directly influences the conduction
electrons. The conduction bands in such compounds therefore form dense many-body-systems
of strongly interacting electrons and the energy from the Coulomb repulsion is large compared
to the average kinetic energy. This dominance of the interaction energy in turn implies a propen-
sity to show ordering phenomena and the ensuing phase transitions. It is therefore ultimately
the Coulomb repulsion in the partially filled 3d-shells of the transition-metals and the 4f -shells
of the rare earths which gives rise to the wide variety of spectacular phenomena observed in
these compounds. Let us therefore discuss this Coulomb interaction in more detail.

2 Multiplets of a free ion

2.1 General considerations

As an example let us consider an Ni2+ ion in vacuum which has the electron configuration
[Ar] 3d8. It is a standard exercise in textbooks of atomic physics to show that the d8 configura-
tion, which is equivalent to d2, has the following multiplets or terms: 3F , 3P , 1G, 1D and 1S,
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Term J E (eV)
3F 4 0.000

3 0.169
2 0.281

1D 2 1.740
3P 2 2.066

1 2.105
0 2.137

1G 4 2.865
1S 0 6.514

Table 1: Energies of the multiplets of Ni2+ (taken from Ref. [2]. J is the total angular momen-
tum quantum number and the J = 4 member of 3F has been taken as the zero of energy.

whereby according to the first two Hund’s rules 3F is the ground state. ‘Multiplets’ thereby is
simply another word for ‘eigenstates of the system of 26 electrons in the electric field of the Ni
nucleus’ (the nuclear charge of Ni is 28). Actually, the electrons in the shells below the 3d-shell
may be considered as inert due to the large binding energies of these shells so that to very good
accuracy one can consider only the 8 electrons in the 3d-shell. The energies of the multiplets
can be deduced experimentally by analyzing the optical spectrum of Ni vapor and are listed in
Table 1. They span a range of several eV whereby multiplets with nonzero spin are in addition
split by spin-orbit coupling which results in intervals of order 0.1 eV. All of these eigenstates
correspond to the same electron configuration, namely [Ar] 3d8, so that the fact that, say, 3P

has a higher energy than 3F is not due to an electron having been promoted from a state with
low energy to one with high energy as in an optical transition. Rather, the excited multiplets –
3P , 1G, 1D and 1S – should be viewed as collective excitations of the 8-electron system, sim-
ilar in nature to a plasmon in an electron gas. And just as a plasmon can exist only due to the
Coulomb interaction between electrons, the multiplet splitting in atomic shells also originates
from the Coulomb interaction between electrons. To understand it we therefore need to discuss
the Coulomb interaction between electrons in a partially filled atomic shell.
As a first step we introduce Fermionic creation and annihilation operators c†n,l,m,σ which create
an electron with z-component of spin σ in the orbital with principal quantum number n, orbital
angular momentum l, and z-component of orbital angular momentum m. In the case of a partly
filled 3d-shell all ni = 3 and all li = 2 identically, so that these two indices could be omitted,
but we will keep them for the sake of later generalizations. In the following we will often con-
tract (n, l,m, σ) to the compound index ν for brevity, so that, e.g., c†νi = c†ni,li,mi,σi .
The procedure we will follow is degenerate first-order perturbation theory as discussed in prac-
tically any textbook of quantum mechanics. The unperturbed Hamiltonian H0 thereby corre-
sponds to the energies of the different atomic shells

H0 =
∑
n,l

εn,l
∑
m,σ

c†n,l,m,σcn,l,m,σ
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m= −2 m= −1 m= 0 m= 1 m= 2

Fig. 1: Coulomb scattering of two electrons in the d-shell. In the initial state |ν〉 (top) the elec-
trons are distributed over the five d-orbitals which are labeled by their m-values. Due to their
Coulomb interaction two electrons scatter from each other and are simultaneously transferred
to different orbitals, resulting in the state |µ〉 (bottom).

whereas the Coulomb interaction is considered as the perturbation H1. The dn configuration
comprises all states which are obtained by distributing the n electrons over the 2 · 5 = 10

spin-orbitals:
|ν〉 = |ν1, ν2 . . . νn〉 = c†ν1c

†
ν2
. . . c†νn|0〉 . (1)

and the number of these states obviously is nc = 10!/(n! (10−n)!). In writing the basis states as
in (1) we need to specify an ordering convention for the creation operators on the right hand side.
For example, only states are taken into account where m1 ≤ m2 ≤ m3 · · · ≤ mn. Moreover,
if two mi are equal the c†mi↓-operator is assumed to be to the left of the c†mi↑-operator. If we
adopt this convention, every possible state obtained by distributing the n electrons over the 10

spin-orbitals is included exactly once in the basis. If the ni and li were to take different values
we could generalize this by demanding that the (ni, li,mi)-triples be ordered lexicographically.
As will be seen below, strict application of an ordering convention for the Fermi operators is
necessary to determine the correct Fermi signs for the matrix elements.
If only H0 were present all the states (1) would be degenerate. The Coulomb interaction H1

between the electrons then (partially) lifts this degeneracy and this is the physical reason for
the multiplet splitting. The standard procedure in this a situation is to set up the matrix hµ,ν =

〈µ|H1|ν〉 and diagonalize it to obtain the first order energies and wave functions [3]. Thereby
H1 has both diagonal matrix elements such as 〈ν|H1|ν〉 but also off-diagonal matrix elements
〈µ|H1|ν〉. The diagonal matrix elements describe the fact that the Coulomb repulsion between
two electrons in different orbitals depends on the spatial character of these orbitals whereas the
off-diagonal matrix elements describe the scattering of two electrons from each other as shown
in Figure 1.
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In second quantization the Coulomb Hamiltonian H1 takes the form

H1 =
1

2

∑
i,j,k,l

V (νi, νj, νk, νl) c
†
νi
c†νjcνkcνl ,

V (ν1, ν2, ν3, ν4) =

∫
dx

∫
dx′ ψ∗ν1(x) ψ∗ν2(x

′) Vc(x, x
′) ψν3(x

′) ψν4(x) ,

Vc(x, x
′) =

1

|r − r′|
. (2)

Here x = (r, σ) is the combined position and spin coordinate with
∫
dx · · · =

∑
σ

∫
dr . . .

and Vc is the Coulomb interaction between electrons. Note the factor of 1/2 in front of H1 and
the correspondence of indices and integration variables ν3 ↔ x′ and ν4 ↔ x in the Coulomb
matrix element, see textbooks of many-particle physics such as Fetter-Walecka [4].

2.2 The Coulomb matrix elements

Our single-particle basis consists of atomic spin-orbitals so if we switch to polar coordinates
(r, ϑ, ϕ) for r the wave functions in (2) are

ψνi(x) = Rni,li(r) Yli,mi(ϑ, ϕ) δσ,σi . (3)

The radial wave functions Rni,li are assumed to be real, as is the case for the true radial wave
function of bound states in a central potential. Apart from that we do not really specify them.
In fact, it would be rather difficult to give a rigorous prescription for their determination. It will
turn out, however, that these radial wave functions enter the Coulomb matrix elements only via
a discrete and rather limited set of real numbers which are often obtained by a fit to experiment.
In addition to (3), we use the familiar multipole expansion of the Coulomb interaction

1

|r − r′|
=

∞∑
k=0

k∑
m=−k

Y ∗k,m(ϑ′, ϕ′)
4π

2k + 1

rk<
rk+1
>

Yk,m(ϑ, ϕ) . (4)

We now insert (3) and (4) into (2). We recall that
∫
dx · · · =

∑
σ

∫
dr . . . and first carry out

the sum over spin variables which gives a factor of δσ1,σ4 δσ2,σ3 . Next we pick one term with
given k and m from the multipole expansion (4) and proceed to the integration over the spatial
variables (r, ϑ, ϕ) and (r′, ϑ′, ϕ′). Let us first consider the angular variables (ϑ, ϕ). Obviously
these always come as arguments of spherical harmonics and there is one from ψ∗ν1(x), one from
the multipole expansion (4), and one from ψν4(x). We thus obtain a factor of∫ 2π

0

dϕ

∫ 1

−1
d cos(ϑ) Y ∗l1,m1

(ϑ, ϕ) Yk,m(ϑ, ϕ) Yl4,m4(ϑ, ϕ) . (5)

Such a dimensionless integral over three spherical harmonics is called a Gaunt coefficient and
can be shown to be proportional to a Clebsch-Gordan coefficient [5, 6]. This property is an
immediate consequence of the Wigner-Eckart theorem.
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Another interesting property can be seen if we recall the ϕ-dependence of the spherical har-
monics: Yl,m(ϑ, ϕ) = Pl,m(ϑ) eimϕ. It follows that the Gaunt coefficient (5) is different from
zero only if m1 = m4 + m. Moreover, since the ϑ-dependent factors Pl,m(ϑ) are real [5, 6] all
nonvanishing Gaunt coefficients are real as well. In the same way the integration over (ϑ′, ϕ′)

gives ∫ 2π

0

dϕ′
∫ 1

−1
dcos(ϑ′) Y ∗l2,m2

(ϑ′, ϕ′) Y ∗k,m(ϑ′, ϕ′) Yl3,m3(ϑ
′, ϕ′), (6)

which by analogous reasoning is different from zero only if m2 +m = m3. Since both (5) and
(6) must be different from zero for the same m in order to obtain a nonvanishing contribution,
we must have m1 + m2 = m3 + m4. This is simply the condition that Lz be conserved in the
Coulomb scattering of the two electrons.
It remains to do the integral over the two radial variables r and r′. These two integrations cannot
be disentangled so we find a factor of

Rk(n1l1, n2l2, n3l3, n4l4) =

∫ ∞
0

dr r2
∫ ∞
0

dr′ r′2Rn1l1(r)Rn2l2(r
′)
rk<
rk+1
>

Rn3l3(r
′)Rn4l4(r) . (7)

These integrals, which have the dimension of energy, are labeled by the multipole index k,
and the number of relevant multipole orders is severely limited by the properties of the Gaunt
coefficients: First, since the latter are proportional to Clebsch-Gordan coefficients the three
l-values appearing in them have to obey the so-called triangular condition [3] whence k ≤
min(|l1 + l4|, |l2 + l3|). For a d-shell where li = 2 it follows that k ≤ 4. Second, the parity
of the spherical harmonic Ylm is (−1)l, i.e. even for the case li = 2. For integrals such as
(5) or (6) to be different from zero the spherical harmonic Yk,m from the multipole expansion
must have even parity, too, so that for Coulomb scattering within a d-shell only R0, R2 and
R4 are relevant. This shows that the sloppy definition of the wave function Rni,li(r) is not a
real problem because details of this wave function are irrelevant anyway. In a way, these three
parameters may be viewed as a generalization of the Hubbard-U in that Rk is something like
the ‘the Hubbard-U for k-pole interaction’.
We introduce the following notation for the nonvanishing Gaunt coefficients

ck(lm; l′m′) =

√
4π

2k + 1

∫ 2π

0

dϕ

∫ 1

−1
d cos(ϑ)Y ∗lm(ϑ, ϕ)Yk,m−m′(ϑ, ϕ)Yl′,m′(ϑ, ϕ) . (8)

These coefficients are tabulated in Appendix 20a of the textbook by Slater [5] or Table 4.4 of
the textbook by Griffith [6], and also in the Appendix of this chapter. Using this notation and
the fact that the Gaunt coefficients are real we can finally write the Coulomb matrix element as

V (ν1, ν2, ν3, ν4) = δσ1,σ4 δσ2,σ3 δm1+m2,m3+m4 (9)

×
∞∑
k=0

ck(l1m1; l4m4) c
k(l3m3; l2m2) R

k(n1l1, n2l2, n3l3, n4l4) .
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−2 −1 0 1 2m=

459 = 0 1 1 1 0 0 1 0 1 1
0 1 1 1 0 0 1 0 1 1

−2 −1 0 1 2m=

0 0 1 1 1 1 1 0 1 0 = 250

Fig. 2: The coding of basis states by integers and a scattering process.

2.3 Solution of the Coulomb problem by exact diagonalization

We now describe how the problem of the partly filled 3d-shell can be solved numerically, using
the method of exact diagonalization. The basis states (1) correspond to all possible ways of
distributing n electrons over the 10 spin-orbitals of the 3d-shell (two spin directions for each
m ∈ {−2,−1 . . . 2}). As illustrated in Figure 2 we can code each of these basis states by an
integer 0 ≤ i ≤ 210. If we really use all of these integers we are actually treating all states with
0 ≤ n ≤ 10 simultaneously but this will be convenient for later generalizations. Next, for a
given initial state |ν1, ν2, . . . νn〉 we can let the computer search for all possible transitions of
the type shown in Figure 1 and compute the corresponding matrix elements from (9) using, say,
the ck(lm; l′m′) copied from Slater’s textbook and some given R0, R2 and R4. Let us consider
the following matrix element

〈0|cµn . . . cµ1 V (λ1, λ2, λ3, λ4) c
†
λ1
c†λ2cλ3cλ4 c

†
ν1
c†ν2 . . . c

†
µn|0〉 .

For this to be nonzero, the operators c†λ3 and c†λ4 must be amongst the c†νi , otherwise the an-
nihilation operators in the Hamiltonian could be commuted to the right where they annihilate
|0〉. In order for these pairs of operators to cancel each other, cλ4 must first be commuted to
the position right in front of c†λ4 . If this takes n4 interchanges of Fermion operators we get a
Fermi sign of (−1)n4 . Bringing next cλ3 right in front of c†λ3 by n3 interchanges of Fermion
operators gives a sign of (−1)n3 . Analogously, the creation operators c†λ1 and c†λ2 have to be
commuted to the left to stand to the immediate right of their ‘partner annihilation operators’
so as to cancel them. If this requires an additional number of Fermion interchanges n2 for c†λ2
and n1 for c†λ1 there is an additional Fermi sign of (−1)n1+n2 . The total matrix element then
is (−1)n1+n2+n3+n4V (λ1, λ2, λ3, λ4). The correct Fermi sign is crucial for obtaining correct re-
sults and must be evaluated by keeping track of all necessary interchanges of Fermion operators.
This is perhaps the trickiest part in implementing the generation of the Hamilton matrix or any
other operator in a computer program.
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E S L n Term E S L n Term
0.0000 1 3 21 3F 0.0000 3/2 3 28 4F
1.8420 0 2 5 1D 1.8000 3/2 1 12 4P
1.9200 1 1 9 3P 2.1540 1/2 4 18 2G
2.7380 0 4 9 1G 2.7540 1/2 5 22 2H

13.2440 0 0 1 1S 2.7540 1/2 1 8 2P
3.0545 1/2 2 10 2D
4.5540 1/2 3 14 2F
9.9774 1/2 2 10 2D

Table 2: Energies of the d8 multiplets calculated with R2 = 10.479 eV, R4 = 7.5726 eV (Left),
and energies of the d7 multiplets calculated with R2 = 9.7860 eV, R4 = 7.0308 eV (Right).

Once the matrix has been set up it can be diagonalized numerically. Table 2 gives the resulting
multiplet energies for d8 and d7, the values of L and S for each multiplet and the degeneracy
n. The values of the Rk parameters have been calculated by using Hartree-Fock wave functions
R3,2 for Ni2+ and Co2+ in (7). The energy of the lowest multiplet is taken as the zero of en-
ergy and it turns out that all energy differences depend only on R2 and R4. Note the increasing
complexity of the level schemes with increasing number of holes in the d-shell. Comparing
the energies of the multiplets for d8 with the experimental values in Table 1 one can see good
agreement with deviations of order 0.1 eV. The only exception is 1S. This is hardly a surprise
because here the theoretical energy is 13 eV which is comparable to the difference in energy
between the 3d and the 4s-shell in Ni (which is ≈ 10 eV). It follows that the basic assumption
of the calculation, namely that the separation between atomic shells is large compared to the
multiplet energies, is not fulfilled for this particular multiplet. To treat 1S more quantitatively it
would likely be necessary to include basis states with configurations like 3d7 4s1, or, put another
way, to consider the screening of the Coulomb interaction by particle-hole excitations from the
3d- into the 4s-shell. Finally, the Table shows that the ground states indeed comply with the
first two of Hund’s rules: They have maximum spin and maximum orbital angular momentum
for this spin. It can be shown that this is indeed always the case as long as one uses Coulomb
and exchange integrals with the correct, i.e. positive, sign [5, 6].

2.4 Diagonal matrix elements

The expression (9) is exact but looks somewhat complicated so let us try to elucidate its physical
content and thereby also make contact with various approximate ways to describe the Coulomb
interaction which can be found in the literature. We first consider those matrix elements where
either ν4 = ν1 and ν3 = ν2 (case 1) or ν3 = ν1 and ν4 = ν2 (case 2). In both cases the four
Fermion operators in the corresponding terms of H1 can be permuted to give the product of
number operators nν1nν2 (with nν = c†νcν) whereby in case 2 an odd number of interchanges of
Fermion operators is necessary so that an additional factor of (−1) appears. Whereas for case
1 the product δσ1,σ4 δσ2,σ3 in (9) always is 1, it vanishes for case 2 unless σ1 = σ2. The Pauli
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principle requires that ν1 6= ν2 (otherwise one has the product c†ν1c
†
ν1

= 0) so that for case 1 the
two orbitals may have the same orbital quantum numbers n, l,m but then must differ in their
spin, whereas in case 2 the spins have to be equal so that the orbital quantum numbers definitely
must be different. Using (9) the respective matrix elements are

V (ν1, ν2, ν2, ν1) =
∞∑
k=0

ck(l1m1; l1,m1) c
k(l2m2; l2,m2)R

k(n1l1, n2l2, n2l2, n1l1),

V (ν1, ν2, ν1, ν2) = δσ1σ2

∞∑
k=0

ck(l1m1; l2,m2) c
k(l1m1; l2,m2)R

k(n1l1, n2l2, n1l1, n2l2).

(10)

It is customary to introduce the following abbreviations

ak(lm; l′m′) = ck(lm; lm) ck(l′m′; l′m′)

bk(lm; l′m′) = ck(lm; l′m′) ck(lm; l′m′)

F k(nl;n′l′) = Rk(nl, n′l′, n′l′, nl)

Gk(nl;n′l′) = Rk(nl, n′l′, nl, n′l′)

The F k and Gk are called Slater-Condon parameters. The ak and bk are listed in Appendix 20a
of Slater’s textbook [5] and also the Appendix of the this chapter.
We now want to bring these diagonal matrix elements to a more familiar form and thereby
specialize to a partly filled 3d-shell. In this case all ni = 3 and li = 2 so that for each k there
is only one F k and one Gk and, in fact, Gk = F k. For brevity we omit the n and l quantum
numbers in the rest of the paragraph so that, e.g., the electron operators become c†m,σ with m
the z-component of L. The sum of all diagonal matrix elements then becomes

H1,diag =
∑
m

Um,m nm,↑nm,↓ +
1

2

∑
m6=m′

(
Um,m′

∑
σ,σ′

nm,σnm′,σ′ − Jm,m′

∑
σ

nm,σnm′,σ

)
,

Um,m′ =
∑

k ∈{0,2,4}

ak(m,m′) F k , Jm,m′ =
∑

k ∈{0,2,4}

bk(m,m′) F k.

The first term on the right-hand side originates from case 1 with m1 = m2 and the factor of 1/2

in front of this term is cancelled because there are two identical terms of this type with either
ν1 = (m, ↑) and ν2 = (m, ↓) or ν1 = (m, ↓) and ν2 = (m, ↑). Defining nm = nm,↑ + nm,↓ and
Szm = (nm,↑ − nm,↓)/2 we have∑

σ,σ′

nm,σ nm′,σ′ = nm nm′

∑
σ

nm,σ nm′,σ = 2
(
Szm S

z
m′ +

nmnm′

4

)
,

so that

H1,diag =
∑
m

Um,m nm,↑ nm,↓ +
1

2

∑
m6=m′

(
(Um,m′ − 1

2
Jm,m′)nmnm′ − 2Jm,m′ SzmS

z
m′

)
.



5.10 Robert Eder

This is the sum of a Hubbard-like density interaction∝ Um,m′ and an Ising-like spin interaction
∝ Jm,m′ . The interaction parameters thereby depend on the orbitals and can be expressed in
terms of the Slater Condon parameters F k and the products of Gaunt coefficients ak and bk. It
is obvious that Jm,m′ > 0 so that the Ising-like interaction describes ferromagnetic coupling —
as one would expect on the basis of the first Hund’s rule. A truncated Coulomb Hamiltonian
like H1,diag is used in some LDA+U schemes [7] and also in many Dynamical Mean-Field cal-
culations for 3d transition-metal compounds [8].
To complete the Hund’s rule term we consider in addition those terms inH1 where ν1 = (m,σ),
ν2 = (m′, σ̄), ν3 = (m, σ̄) and ν4 = (m′, σ). In these terms the product δσ1,σ4 δσ2,σ3 is nonvan-
ishing as well and for both values of σ the matrix element (2) is∑

k ∈{0,2,4}

ck(m,m′) ck(m,m′)F k =
∑

k ∈{0,2,4}

bk(m,m′)F k = Jm,m′

The Fermion operators are c†m,↑c
†
m′,↓cm,↓cm′,↑ + c†m,↓c

†
m′,↑cm,↑cm′,↓ = −(S+

m S
−
m′ + S−m S

+
m′), i.e.,

the transverse part of the Heisenberg exchange. Combining these terms with the Ising-like spin
exchange term we obtain

H1,H =
∑
m

Um,m nm,↑ nm,↓ +
1

2

∑
m6=m′

(
(Um,m′ − 1

2
Jm,m′)nmnm′ − 2Jm,m′ Sm · Sm′

)
.

This is now the sum of a density interaction and a spin-rotation invariant ferromagnetic spin
exchange. It has to be kept in mind that this Hamiltonian has been obtained by retaining only
a relatively small subset of matrix elements in the original Coulomb Hamiltonian. A further
simplification which is often used is to replace Um,m′ and Jm,m′ by their averages over all
corresponding pairs (m,m′). Using the ak and bk in the Appendix one readily obtains

U =
1

25

∑
m,m′

Um,m′ = F 0,

U − J =
1

20

∑
m6=m′

(Um,m′ − Jm,m′) = F 0 − 1

14
(F 2 + F 4),

so that J = (F 2 + F 4)/14.
To conclude the discussion, we consider the diagonal matrix elements 〈ν|H1|ν〉 in the basis of
n-electron states |ν〉 defined in (1). Since ν1 and ν2 in (10) can be any two out of the n occupied
orbitals in |ν〉 the total diagonal matrix element of H1 is obtained by summing over all n(n−1)

2

pairs (i, j) formed from the occupied orbitals

〈ν|H1|ν〉 =
∑
i<j

∑
k

(
ak(limi, lj,mj)F

k(nili, njlj)− δσiσj bk(limi, lj,mj)G
k(nili, njlj)

)
.

(11)
As will be seen in the next paragraph, this formula is sufficient for the analytical calculation of
the multiplet energies.



Multiplets in Transition-Metal Ions 5.11

2.5 Analytical calculation of multiplet energies by the diagonal sum-rule

The exact diagonalization procedure outlined in Sec. 2.3. can be used to obtain all eigenenergies
and the corresponding eigenstates of the Coulomb problem. It is a flexible numerical method of
solution into which crystalline electric field, hybridization with ligand orbitals, spin-orbit cou-
pling, and Coulomb interaction with holes in core shells, which is important for the discussion
of X-ray absorption spectra, can be incorporated easily. On the other hand, multiplet theory
was invented during the 1920’s to explain the spectra of free atoms or ions, and at that time
computers were not available. It turns out, however, that despite the apparent complexity of the
problem the energies of the multiplets can be obtained analytically and this will be described in
the following.
The first ingredient is the so-called diagonal sum-rule. This is simply the well-known theorem
that the sum of the eigenvalues of a Hermitian matrixH is equal to its trace Tr(H) =

∑
iHii. It

follows immediately by noting that the trace of a matrix is invariant under basis transformations,
i.e., Tr(H) = Tr(UHU−1) for any unitary matrix U . By choosing U to be the matrix which
transforms to the basis of eigenvectors of H the diagonal sum-rule follows immediately.
Next, one uses the fact that the Hamilton matrix is block-diagonal, with blocks defined by their
values of Lz and Sz. The diagonal sum-rule then can be applied separately for each of these
blocks. In addition, the dimension of the blocks decreases as Lz and Sz approach their maxi-
mum possible values so that the number of multiplets contained in a given block increases.
As an example for the procedure let us consider a p2 configuration (by particle-hole symmetry
this is equivalent to a p4 configuration). We write the Fermion operators in the form cl,m,σ,
i.e., we suppress the principal quantum number n. Since we have 6 possible states for a sin-
gle p-electron (three m-values and two spin directions per m-value) we have 15 states for two
electrons. The triangular condition implicit in the Gaunt coefficients now restricts the multipole
order k to be ≤ 2. Again, only even k contribute, so that we have two Slater-Condon parame-
ters, F 0 and F 2 (and F k = Gk). The following Table which is taken from Slater’s textbook [5]
gives the values of the coefficients ak(1,m; 1,m′) and bk(1,m; 1,m′): We first consider the
sector with Sz = 1. The highest possible Lz is Lz = 1 which is realized only for a single state,
|1〉 = c†1,0,↑c

†
1,1,↑|0〉. We can conclude that one of the multiplets is 3P and its energy is equal to

Table 3: The coefficients ak and bk for two p-electrons.

m m′ a0 25a2 b0 25b2

±1 ±1 1 1 1 1
±1 0 1 −2 0 3

0 0 1 4 1 4
±1 ∓1 1 1 0 6
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the diagonal matrix element of |1〉 which by (11) is

E(3P ) =
∑

k∈{0,2}

(ak(1, 1; 1, 0)− bk(1, 1; 1, 0))F k = F 0 − 5

25
F 2.

We proceed to the sector Sz = 0. Here the highest possible Lz is Lz = 2 again obtained for
only single state namely c†1,1,↓c

†
1,1,↑|0〉. We conclude that we also have 1D with energy

E(1D) =
∑

k∈{0,2}

ak(1, 1; 1, 1)F k = F 0 +
1

25
F 2.

The two multiplets that we found so far, 1D and 3P , comprise 5 + 9 = 14 states – we thus
have just one state missing, which can only be 1S. To find its energy, we need to consider the
sector Sz = 0 and Lz = 0. There are three states in this sector: c†1,0,↓c

†
1,0,↑|0〉, c

†
1,−1,↑c

†
1,1,↓|0〉 and

c†1,−1,↓c
†
1,1,↑|0〉. Two out of the three eigenvalues of the 3 × 3 Hamiltonian in the basis spanned

by these states must be E(3P ) and E(1D), because these multiplets also have members with
Sz = 0 and Lz = 0. To obtainE(1S) we accordingly compute the sum of the diagonal elements
of the 3× 3 matrix and set

E(3P ) + E(1D) + E(1S) =
∑

k∈{0,2}

(ak(1, 0; 1, 0) + 2 ak(1,−1; 1, 1))F k

→ E(1S) = F 0 +
10

25
F 2.

This example shows the way of approach for multiplet calculations using the diagonal sum-
rule: one starts out with a state with maximum Lz or Sz for which there is usually only a
single basis state. This basis state belongs to some multiplet whose energy simply equals the
‘diagonal element’ of the 1 × 1 Hamiltonian. Then one proceeds to lower Sz and/or Lz and
obtains energies of additional multiplets by calculating the trace of the respective block of the
Hamilton matrix and using the known energies of multiplets with higher Lz or Sz. It turns out
that in this way the energies of all multiplets involving s, p, d or f electrons can be expressed
in terms of the Slater-Condon parameters by analytical formulas. A rather complete list can be
found for example in the Appendices 21a and 21b of the textbook by Slater [5].
One point which may be helpful when reading the literature is the following: for the special
case of a partly filled d-shell many authors use the so-called Racah parameters A, B, and C
instead of the 3 Slater-Condon parameters F 0, F 2, and F4. The rule for conversion is simple:

A = F 0 − 49

441
F 4 B =

1

49
F 2 − 5

441
F 4 C =

35

441
F 4 .

The Racah-parameters have been introduced because the analytical formulas for the energies
of the multiplets of dn as derived by the diagonal sum-rule look nicer when they are expressed
in terms of them. For example Griffith [6] gives multiplet energies in terms of the Racah-
parameters in his Table 4.6.
As stated above, multiplet theory was originally developed to discuss the spectra of atoms or
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p2 C N+ O2+ Si P+ S2+

1.124 1.134 1.130 1.444 1.430 1.399

p4 O F+ S Cl+

1.130 1.152 1.401 1.392

Table 4: The ratio (12) for various Atoms and Ions with p2 and p4 configurations outside a
closed shell.

ions in the gas phase. The question then arises, as to what are the values of the Slater-Condon
parameters. Of course one might attempt to compute these parameters using, e.g., Hartree-Fock
wave functions in the expression (7). It turns out, however, that very frequently the number of
multiplets considerably exceeds the number of relevant Slater-Condon parameters. In the case
of the p2 configuration we had three multiplets, 3P , 1D, and 1S, but only two Slater-Condon
parameters F 0 and F 2. This would suggest to obtain the values of the Slater-Condon param-
eters by fit to the spectroscopic data and the textbook by Slater [5] contains a vast amount of
experimental data which are analyzed in this way. For the p2 configuration we restrict ourselves
to a simple cross check. Using the above formulae and eliminating the F ’s we find:

r =
E(1S)− E(1D)

E(1D)− E(3P )
=

3

2
. (12)

This relation should be obeyed by all ions with two p-electrons outside filled shells, e.g., the
series C, N1+ and O2+ or two holes in a filled p-shell such as the series O and F+. The energies
of these multiplets have been measured with high precision and are available in databases [2]
and Table 4 shows the resulting values of r. For the first-row elements the deviation is about
25%, for the second row only about 5%. We recall that multiplet theory corresponds to first or-
der degenerate perturbation theory, where H0 contains the orbital energies and H1 the Coulomb
interaction between electrons in one shell. It therefore will work the better the larger the sepa-
ration between different atomic shells and this is indeed larger in the second row elements.

2.6 Spin-orbit coupling

As the last problem in this section on free atoms or ions we briefly discuss spin-orbit coupling.
The corresponding Hamiltonian is

HSO = λSO

n∑
i=1

li · Si = λSO

n∑
i=1

(
lziS

z
i +

1

2
(l+i S

−
i + l−i S

+
i )

)
.

where li (Si) are the operator of orbital (spin) angular momentum of the ith electron. The
spin-orbit coupling constant λSO can be written as [3]

λSO =
~2

2m2
ec

2rorb

dVat
dr

∣∣∣∣
r=rorb
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where me is the electron mass, c the speed of light, Vat is the atomic potential acting on the
electron, and rorb the spatial extent of the radial wave function.
The first term on the right hand side can be translated into second quantized form easily:

H
‖
SO = λSO

l∑
m=−l

m

2

(
c†l,m,↑cl,m,↑ − c

†
l,m,↓cl,m,↓

)
. (13)

As regards the transverse part, we note [3] that the only nonvanishing matrix elements of the or-
bital angular momentum raising/lowering operator are 〈l,m±1|l±|l,m〉=

√
(l ∓m)(l ±m+ 1)

whence

H⊥SO =
λSO

2

l−1∑
m=−l

√
(l −m)(l +m+ 1)

(
c†l,m+1,↓cl,m,↑ + c†l,m,↑cl,m+1,↓

)
. (14)

Spin-orbit coupling can be implemented rather easily into the numerical procedure, the main
difficulty again is keeping track of the Fermi sign. Due to the fact that neither Lz nor Sz

are conserved anymore the corresponding reduction of the Hilbert space is no longer possible.
In transition-metal compounds the spin-orbit coupling constant λSO for the 3d-shell is rather
small, of order λSO ≈ 0.05 eV. Still, if the ground state of a given ion has a non-vanishing
spin, spin-orbit coupling will determine how this spin orients itself in an ordered phase giving
rise to a magnetic anisotropy. In the rare-earth elements spin-orbit coupling in the 4f -shell
is of comparable magnitude as the Coulomb repulsion. There, taking spin-orbit coupling into
account is mandatory.

3 Effects of the environment in the crystal

So far we have considered a single ion in vacuum. Clearly, one might ask if the results obtained
in this limit retain any relevance once the ion is embedded into a solid and this will be discussed
in the following. One may expect, however, that the small spatial extent of the 3d radial wave
function R3,2(r) suppresses any effect of the environment in a solid, so that in many cases the
main effect of embedding the ion into a solid is the partial splitting of the multiplets of the free
ion.
In many transition-metal compounds the 3d ions are surrounded by an approximately octahe-
dral or tetrahedral ‘cage’ of nonmetal ions such as Oxygen, Sulphur, Arsenic. These nearest
neighbor ions, which will be called ‘ligands’ in the following, have a two-fold effect: first, they
produce a static electric field, the so-called crystalline electric field or CEF, and second there
may be charge transfer, that means electrons from a filled ligand orbital may tunnel into a 3d-
orbital of the transition-metal ion and back due to the overlap of the respective wave functions.

3.1 Crystalline electric field

The electric field that acts on a given ion in a solid may to simplest approximation be obtained
by representing the other ions in the solid as point charges. The electrostatic potential VCEF (r)
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produced by these point charges around the nucleus in question then in principle can be obtained
by using the multipole expansion (4). This results in an expression of the type

VCEF (r) =
∞∑
l=0

l∑
m=−l

Cl,m rl Yl,m(ϑ, ϕ)

where the coefficients Cl,m depend on the geometry of the crystal. Matrix elements of VCEF (r)

between atomic eigenfunctions of the type (3) can be calculated by applying similar procedures
as in the computation of the Coulomb matrix elements (and in particular again involve Gaunt
coefficients).
However, such calculations often do not give very accurate numbers. For example, there will
always be some charge transfer between the ions in the solid so that it is difficult to decide which
charge should be assigned to a given ion. Moreover, the calculation of matrix elements involves
a radial integral over the wave function Rn,l(r) which is not really well known. Therefore, we
give a qualitative discussion based on symmetry.
Let α be some symmetry operation, i.e. a coordinate transformation represented by a unitary
3 × 3 matrix mα, that leaves the environment of the ion in question invariant. In other words,
the transition-metal ion itself must be transformed into itself whereas every other ion must be
transformed into an ion of the same species. Then we define for any function of the coordinates
f(r) the operator Tαf(r) = f(m−1α r). Thus, if we want to know the value of Tαf(r) at some
given point r, we can look it up by evaluating the original function f(r) at the point r′ = m−1α r

which is transformed into r by the operation α. In other words, if we imagine functions of r
to be represented by color maps in real space, the map of Tαf(r) is that of f(r) but subject
to the transformation α. Since the charge density of the environment is invariant under the
allowed symmetry operations, the same holds true for its electrostatic potential VCEF (r) so
that Tα VCEF (r) = VCEF (r). It follows that the Hamiltonian H̃ = Hion + VCEF (r) (where
Hion is the sum of the nuclear potential of the transition-metal ion, the kinetic energy of the
electrons and their Coulomb interaction) commutes with Tα. It is then straightforward to show
that if ψ(r) is an eigenstate of H̃ with energy E, H̃ ψ(r) = E ψ(r) , the transformed function
Tα ψ(r) is an eigenstate to the same energy:

[H̃, Tα]ψ(r) = 0 ⇒ H̃ (Tαψ(r)) = TαE ψ(r) = E (Tαψ(r)).

We can thus investigate to what degree the degeneracy of the five 3d-orbitals is lifted in a given
environment by systematically studying which (combinations of) 3d-orbitals are transformed
into each other by the symmetry operations which leave the environment invariant. For the
general case this can be done by invoking the very elegant mathematical formalism of group
theory [6, 9]. On the other hand, for an environment with cubic symmetry a simple shortcut is
possible. Namely all 48 cubic symmetry operations can be expressed as the product of one of
the 6 permutations of the 3 coordinate axis and one of the 23 = 8 transformations which change
the signs of an arbitrary subset of the 3 coordinates. Moreover the d-like spherical harmonics
Y2,m can be expressed as linear combinations of products of two of the three components of the
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unit vector r/|r|, such as xy/r2 or z2/r2. For example

Y2,2(ϑ, ϕ) =
1√
4π

√
15

8
sin2 ϑ e 2iϕ =

1√
4π

√
15

8

(
x2 − y2

r2
+ 2i

xy

r2

)
.

It is then obvious that under cubic operations mixed products such as xy/r2 will be transformed
into mixed products, whereas squares such as z2/r2 will be transformed into squares. Thus,
if we form linear combinations of the spherical harmonics which consist exclusively of either
mixed products or squares, we know that these two groups of linear combinations will remain
degenerate in the cubic environment. In fact, the mixed products are precisely the three t2g-
orbitals

dxy =
i√
2

(Y2,−2 − Y2,2) =

√
15

4π

xy

r2
,

dyz =
i√
2

(Y2,−1 + Y2,1) =

√
15

4π

yz

r2
,

dxz =
1√
2

(Y2,−1 − Y2,1) =

√
15

4π

xz

r2
, (15)

whereas from the squares the two eg-orbitals can be formed:

dx2−y2 =
1√
2

(Y2,−2 + Y2,2) =

√
15

16π

x2 − y2

r2
,

d3z2−r2 = Y2,0 =

√
5

16π

3z2 − r2

r2
. (16)

There are only two eg-orbitals because one special combination of the squares, namely r2,
is transformed into itself under all symmetry operations. In a cubic environment, the 5-fold
degenerate d-level therefore always splits into the 3-fold degenerate t2g-level and the 2-fold
degenerate eg-level. The energy difference between the two eg- and the three t2g-orbitals is
called 10Dq for historical reasons. The above discussion can be summarized in the operator for
the electrostatic potential of an environment with cubic symmetry:

HCEF = C − 4Dq
∑

α∈t2g ,σ

c†α,σcα,σ + 6Dq
∑
α∈eg ,σ

c†α,σcα,σ .

The constant C, which gives the center of gravity of the energies of the five orbitals, is largely
irrelevant. By expressing the eg and t2g harmonics dα in terms of the original Yl=2,m via (15) and
(16) we can thus representHCEF as a quadratic form in the original c†ν-operators. This quadratic
form involves the splitting 10Dq as a parameter, so that this way of dealing with the crystalline
electric field is very similar in spirit to our treatment of the Coulomb interaction in that details
of the radial wave functions Rn,l(r) are absorbed into a parameter which may be adjusted to
experiment. Alternatively, the numerical value of 10Dq for a given solid may also be obtained
from a fit to an LDA band structure. By adding HCEF to the Hamiltonian for the intra-atomic
Coulomb interaction we can now discuss the splitting of the original multiplets of the free ion
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Fig. 3: Examples for Tanabe-Sugano diagrams: the splitting of multiplets of d8 (left) and d7

(right) for increasing 10Dq. The Slater-Condon parameters have the values given in Table 3.

under the influence of the electrostatic potential of the environment. The following should be
noted: the above discussion refers to the wave function of a single electron. The multiplets,
however, are collective eigenstates of all n electrons in an atomic shell which are created by the
Coulomb interaction between electrons. The question of how these collective states split in a
cubic environment is not at all easy to answer. One way would be exact diagonalization includ-
ing the term HCEF . Plots of the energies of the resulting crystal-field multiplets versus 10Dq

are called Tanabe-Sugano diagrams [10]. An example is shown in Figure 3.1 which shows the
eigenenergies of the d8 and d7 configuration with Coulomb interaction and cubic CEF as 10Dq

is increasing. One realizes that the highly degenerate multiplets of the free ion are split into
several levels of lower degeneracy by the CEF, which is to be expected for a perturbation that
lowers the symmetry. Note that the components into which a given multiplet splits up all have
the same spin as the multiplet itself. This is because the spin of an electron does not feel an
electrostatic potential — or, more precisely, because the operator of total spin commutes with
any operator which acts only on the real-space coordinates ri of the electrons.
An interesting example for the application of the Tanabe-Sugano diagrams are transition-metal
ions in aqueous solution. In fact, the preference of transition-metal ions for an environment with
cubic symmetry is so strong that such immersed ions often surround themselves with an octa-
hedron of water molecules. Thereby the dipole moments of these six molecules all point away
from the ion and thus create an electric field which cubic symmetry which again gives rise to the
eg-t2g splitting. Optical transitions between the CEF-split multiplets, which are possible only
due to slight distortions of the octahedron or the generation/annihilation of vibrational quanta
during the transition, correspond to frequencies in the visible range and result in the charac-
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teristic colors of such solutions. The Tanabe-Sugano diagrams have proved to be a powerful
tool to understand the absorption spectra of such solutions [6]. By matching the energies of
the observed transitions to energy differences in the Tanabe-Sugano diagrams one can extract
estimates for the Slater-Condon parameters and for 10Dq. The values of the Slater-Condon
parameters are somewhat smaller than those for ions in vacuum due to dielectric screening in
the solution. An independent estimate for 10Dq can also be extracted from measured heats
of hydration (this is because both 10Dq and the electrostatic energy of the system ‘ion plus
octahedron’ depend on the distance between the transition-metal ion and the water molecules)
and compared to the estimate from the absorption spectrum whereby reasonable agreement is
usually obtained [9].

3.2 Charge transfer

We proceed to a discussion of charge transfer. This means that electrons can tunnel from lig-
and orbitals into 3d-orbitals, so that the number of electrons in the d-shell fluctuates. To deal
with this we need to enlarge our set of Fermion operators c†ν/cν by operators l†µ/lµ which cre-
ate/annihilate electrons in orbitals centered on ligands. The compound index µ for the ligand
operators also must include the index i of the ligand: µ = (i, n, l,m, σ). The Hamiltonian
describing the charge transfer then would read

Hkin =
∑
i,j

(
tνi,µj c

†
νi
lµj +H.c.

)
+
∑
j

εµj l
†
µj
lµj +

∑
i

ενi c
†
νi
cνi . (17)

The hybridization integrals tνi,µj ,νj may be expressed in terms of relatively few parameters by
using the famous Slater-Koster tables, see the lecture by M. Foulkes [11] at this school. For
example, if only the p-orbitals of the ligands are taken into account there are just two relevant
parameters, Vpdσ and Vpdπ. Estimates for these may be obtained from fits to LDA band struc-
tures. If electrons are allowed to tunnel between d-shell and ligand orbitals the orbital energies
εµj become relevant as well. Estimating the d-shell orbital energies from LDA calculations is
tricky due to the double counting problem: the energies of the d-orbitals extracted from band
structure calculations include the Hartree-potential, which is also included in the diagonal ma-
trix elements of the Coulomb interaction and thus must be subtracted in some way.
We now specialize to the case where the ligands are oxygen ions which form an ideal octahedron
with the transition-metal ion in the center of gravity of the octahedron. Retaining only the three
oxygen 2p-orbitals per ligand the total number of orbitals in this cluster would be 5 + 6 · 3 = 23

per spin direction which is far too big to be treated by exact diagonalization. However, the
number of ligand orbitals can be reduced drastically if we note that for each of the real-valued
transition-metal 3d-orbitals Yα(ϑ, ϕ) there is precisely one linear combination of O 2p-orbitals
on the ligands, Lα, which hybridizes with it. The first term on the right-hand side of (17) then
simplifies to

Hhyb = 2Vpdπ
∑
α∈t2g

∑
σ

(
c†α,σ lασ +H.c.

)
+
√

3Vpdσ
∑
α∈eg

∑
σ

(
c†α,σ lασ +H.c.

)
.
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By inserting the unitary transformation (15) and (16) to transform to the original complex spher-
ical harmonics this is easily included into the formalism. In the exact diagonalization program
this means that the number of orbitals has to be doubled, because we have the five linear com-
binations Lα, each of which can accommodate an electron of either spin direction. This leads
to a quite drastic increase in the dimension of the Hilbert space but using, e.g., the Lanczos
algorithm, see e.g. Ref. [12], the problem still is tractable.
In constructing model-Hamiltonian-like descriptions of transition-metal compounds for which
clusters containing several unit cells can be studied by exact diagonalization or quantum Monte
Carlo, one can often find (approximate) analytical solutions by taking the limit of large 10Dq.
Then, one may restrict the basis to states where the numbers of electrons in the t2g and eg-
orbitals are fixed. For example, for Ni2+ (i.e. d8) in cubic symmetry one may assume that the
six t2g-orbitals always are completely filled. Then, one need to consider only the two electrons
in the partially filled eg level, resulting in a significant reduction of the number of possible basis
states. Similarly, for early transition-metal compounds one often assumes that the eg-orbitals are
so high in energy that only the t2g-orbitals need to be taken into account. Since it is the Coulomb
interaction which reshuffles electrons between the five d-orbitals, the errors in these simplified
models obviously are of order F 2/10Dq or F 4/10Dq. In making such approximations it is
advantageous to transform the Coulomb matrix elements (9) to real spherical harmonics. This
is trivial, although tedious, because they are related by the unitary transformation (15), (16).

4 Cluster calculation of photoemission and
X-ray absorption spectra

In the preceding section we have discussed the general formalism for exact diagonalization of
a cluster consisting of a transition-metal ion and its nearest neighbor ions (ligands). Thereby
the following terms were included into the Hamiltonian: the Coulomb repulsion between the
electrons in the 3d-shell, the electrostatic field produced by the other ions in the crystal, charge
transfer between the ligands and the transition metal 3d-orbitals and (possibly) the spin-orbit
coupling in the 3d-shell. By diagonalizing the resulting Hamilton matrix we can obtain the
eigenfunctions |Ψν〉 and their energiesEν and these can be used to simulate various experiments
on transition-metal compounds such as electron spectroscopy, optical spectroscopy, electron
spin resonance or inelastic neutron scattering. It has turned out that these simulations are in fact
spectacularly successful. In many cases calculated spectra can be overlaid with experimental
ones and agree peak by peak. Nowadays complete packages for such cluster simulations are
available, and these are used routinely for the interpretation of, e.g., electron spectroscopy [13].
This shows in particular that the multiplets of the free ion, suitably modified by the effects
of crystalline electric field and charge transfer, persist in the solid and thus are essential for a
correct description of transition-metal compounds. In the following we want to explain this in
more detail and consider photoelectron spectroscopy and X-ray absorption. In this lecture only
a very cursory introduction can be given, there are however several excellent reviews on the
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application of multiplet theory to the simulation of such experiments [14–16].
In a valence-band photoemission experiment electromagnetic radiation impinges on the sample
which then emits electrons. This is nothing but the well-known photoeffect. Valence band
photoemission means that the photoelectrons are ejected from states near the Fermi level so that
to simplest approximation an ion in the solid undergoes the transition dn → dn−1 (note that
this ignores charge transfer, which in fact is quite essential!). What is measured is the current
I of photoelectrons as a function of their kinetic energy Ekin and possibly the polar angles
(ϑ, ϕ) relative to the crystallographic axes of the sample. Frequently one measures the angle-
integrated spectrum, obtained by averaging over (ϑ, ϕ) or rather by measuring a polycrystalline
sample. A further parameter, which strongly influences the shape of the spectrum I(Ekin), is
the energy hν of the incident photons. At sufficiently high hν the photoionization cross-section
for the transition-metal 3d-orbitals is significantly larger than for the other orbitals in the solid
so that the photoelectrons in fact are emitted almost exclusively from the 3d-orbitals. This is
often called XPS for X-ray photoemission spectroscopy.
The theory of the photoemission process is complicated [17, 18] but with a number of simpli-
fying assumptions one can show that the photocurrent I(Ekin) measured in angle-integrated
photoemission at high photon energy is proportional to the so-called single-particle spectral
function

A(ω) = − 1

πZ
=

2∑
m=−2

∑
µ

e−βEµ
〈
Ψµ

∣∣∣∣c†3,2,m,σ 1

ω + (H − Eµ) + i0+
c3,2,m,σ

∣∣∣∣Ψµ〉

=
1

Z

2∑
m=−2

∑
µ,ν

e−βEµ
∣∣〈Ψν |c3,2,m,σ|Ψµ〉∣∣2 δ(ω + (Eν − Eµ)). (18)

Here H is the Hamiltonian describing the solid, |Ψµ〉 and Eµ denote the eigenstates and eigen-
energies ofH with a fixed electron numberNe. Moreover, β = (kBT )−1 with kB the Boltzmann
constant and T the temperature, and Z =

∑
µ exp(−βEµ). The operator c3,2,m,σ removes an

electron from a 3d-orbital. In the thermodynamical limit the results will not depend on the
position of the ion in the sample and accordingly we have suppressed the site index on c3,2,m,σ.
After removal of the electron the sample then remains in an eigenstate |Ψν〉withNe−1 electrons
and energy Eν . The relation between Ekin and ω follows from energy conservation:

hν + Eµ = Ekin + Φ+ Eν

The left- and right-hand sides of this equation are the energies of the system before (solid +
photon) and after (solid + photoelectron) the photoemission process. Thereby Φ is the so-
called work function, i.e., the energy needed to transverse the potential barrier at the surface of
the solid (this needs to be introduced because the measured kinetic energy Ekin is the one in
vacuo). It follows from the δ-function in the second line of (18) that we have to put I(Ekin) ∝
A(Ekin + Φ− hν).
We now make an approximation, introduced by Fujimori and Minami [19], and evaluate A(ω)

by replacing the energies and wave functions of the solid by those of the octahedral cluster. If



Multiplets in Transition-Metal Ions 5.21

Fig. 4: Comparison of experimental valence band photoemission spectra and results from clus-
ter calculations: NiO (left), CoO(center), MnO(right). Reprinted with permission from [19],
Copyright 1984 by the American Physical society, from [20], Copyright 1991 by the American
Physical society, and from [21], Copyright 1990 by the American Physical society.

we moreover let T → 0 the sum over µ becomes a sum over the m degenerate ground states
of the cluster and e−βEµ/Z → 1/m. The underlying assumption is that the coupling of the
clusters to its environment in the solid will predominantly broaden the ionization states of the
cluster into bands of not too large bandwidth. This broadening is usually simulated by replacing
the δ-functions by Lorentzians. To compare to a measured spectrum, the calculated spectrum
often is convoluted with a Gaussian to simulate the finite energy resolution of the photoelectron
detector.

Figure 4 shows various examples from the literature where measured XPS-spectra are compared
to spectra calculated by the procedure outlined above. The sticks in some of the theoretical
spectra mark the final state energies Eν and are labeled by the symbols of the irreducible rep-
resentation of the octahedral group to which the corresponding final state wave function |Ψν〉
belongs. The figure shows that the agreement between the theoretical spectra and experiment is
usually rather good. It is interesting to note that the three oxides shown in the figure all have the
same crystal structure, namely the rocksalt structure. Since moreover Ni, Co and Mn are close
neighbors in the periodic table, LDA predicts almost identical band structures with the main
difference being an upward shift of the chemical potential with increasing nuclear charge of the
transition metal. Despite this, the XPS spectra differ considerably and this change is reproduced
very well by the theoretical spectra. This is clear evidence that the shape of the spectra is de-
termined not so much by the single particle band structure, but by the multiplet structure of the
transition-metal ion, which in turn depends on its valence and spin state.

How then does the multiplet structure determine the photoelectron spectrum? As mentioned
above, if we neglect charge transfer, photoemission corresponds to the transition from the
ground state of dn, i.e. the lowest state in the Tanabe-Sugano diagram for the respective n,
to some eigenstate of dn−1. This final state, however, is nothing but some state in the Tanabe-



5.22 Robert Eder

Sugano diagram for dn−1. Moreover, if the ground state of dn has spin S, the final state must
have spin S ± 1

2
so that the number of possible final states is significantly restricted. In this

way, the photoemission spectrum will contain relatively few sharp lines whose positions are
determined by the energies of the multiplets.
Next, we discuss X-ray absorption. In an X-ray absorption experiment an electron from either
the 2p- or the 3p-shell absorbs an incoming X-ray photon and is promoted to the 3d-shell via a
dipole transition. In terms of electron configurations, the transition thus is 2p63dn → 2p53dn+1

(for definiteness we will always talk about the 2p-shell from now on). Of particular interest
here is the range of photon energies just above the threshold were the energy of the photon
is sufficient to lift the core electron to an unoccupied state. Above this threshold the X-ray
absorption coefficient κ(ω) rises sharply, which is called an absorption edge. The energy of
the edge thereby is characteristic for a given element so that one can determine unambiguously
which atom in a complex solid or molecule is probed. The ω-dependence of κ(ω) in an energy
range of a few eV above the absorption edge, called NEXAFS for Near Edge X-ray Absorption
Fine Structure, contains information about the initial state of the 3d-shell, i.e., its valence and
spin state, and this information can be extracted by using cluster calculations. The measured
quantity in this case is

κ(ω) = − 1

πZ
=

2∑
m=−2

∑
µ

e−βEµ
〈
Ψµ

∣∣∣∣D(n)
1

ω − (H − Eµ) + i0+
D(n)

∣∣∣∣Ψµ〉

=
1

Z

2∑
m=−2

∑
µ,ν

e−βEµ |〈Ψν |D(n)|Ψµ〉|2 δ(ω − (Eν − Eµ)). (19)

This is very similar to the single-particle spectral function (18), the only difference is that now
the dipole operator D(n) appears in place of the electron annihilation operator c3,2,m,σ. This
also implies that the number of electrons in the final states |Ψν〉 now is equal to that in the initial
states |Ψµ〉.
We again make the approximation to use the octahedral cluster to simulate this experiment. The
initial state for this experiment, 2p63dn, is simply the ground state of the cluster. More difficult
is the final state, 2p53dn+1. This has a hole in the 2p-shell so that the single-particle basis has
to be enlarged once more to comprise also the 6 spin-orbitals available for 2p electrons. We
may restrict the basis, however, to include only states with 5 electrons (or 1 hole) in these 6
spin-orbitals, so that the dimension of the Hilbert space increases only by a moderate factor of
6. The spin-orbit coupling constant JSO,2p in the 2p-shell of 3d transition-metals is of order
10 eV so we definitely need to include spin-orbit coupling in the 2p-shell. Here the forms (13)
and (14) with l = 1 can be used. The orbital angular momentum l = 1 and the spin of 1

2
can be

coupled to a total angular momentum of either J = 3
2

or J = 1
2
. Using the identity

〈L · S〉 =
1

2

(
J(J + 1)− L(L+ 1)− S(S + 1)

)
we expect a splitting of E 3

2
−E 1

2
= λSO

2
(15
4
− 3

4
) = 3λSO

2
. This means that we actually have two

edges, separated by 3λSO
2
≈ 10 − 15 eV for 2p core levels. The one for lower photon energy,
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Fig. 5: An electron in the 3d-shell and an electron in the 2p-shell scatter from one another.

called the L3 edge, is due to electrons coming from 2P3/2, the one for higher photon energy
(L2-edge) due to electrons from 2P1/2. Since there are 4 2P3/2 states but only 2 2P1/2 states the
L3 edge has roughly twice the intensity of the L2 edge.
Next, there is the Coulomb interaction between the core-hole and the electrons in the d-shell.
For example, there may now be Coulomb scattering between a 2p and a 3d electron as shown
in Figure 5.
This, however, is again described by the corresponding Coulomb matrix element (9). Here now
one of the indices ν1 and ν2 and one of the indices ν3 and ν4 must refer to the 2p-orbital and
there are two possible combinations. If ν2 and ν3 refer to the 2p-orbital we have∑

k

ck(2,m1; 2,m4) c
k(1,m3; 1,m2) F

k(3, 2; 2, 1) .

The triangular condition for ck(1,m3; 1,m2) requires k ≤ 2. Since only Ylm with equal l and
hence with equal parity are combined in one ck only even k give nonvanishing contributions
and we have two relevant Coulomb integrals, F 0(2, 3; 2, 1) and F 2(2, 3; 2, 1).
If ν2 and ν4 refer to the 2p-orbital we have∑

k

ck(2,m1; 1,m4) c
k(2,m3; 1,m2)G

k(3, 2; 2, 1).

The triangular condition for both ck requires k ≤ 3. Since now Y1m and Y2m are combined in
one Gaunt coefficient only odd k contribute, so that we have two relevant exchange integrals,
G1(3, 2; 2, 1) and G3(3, 2; 2, 1). Apart from these minor changes, the implementation of the d-p
Coulomb interaction is exactly the same as for the d-d interaction.
The Coulomb interaction between electrons in the 2p-shell is definitely very strong, but it is
irrelevant because we are considering only states with a single hole in this shell. Since this hole
has no second hole to scatter from, the only effect of the Coulomb repulsion between electrons
in the 2p-shell is via the diagonal matrix elements which give a shift of the orbitals energy
ε2p. On the other hand ε2p merely enters the position of the absorption edge, which would be
≈ ε3d− ε2p, but not its spectral shape. Since we are not really interested in computing the onset
of the edge, the precise value of ε2p and hence the Coulomb interaction between 2p electrons is
not important. The CEF effect on the inner shell electrons is usually neglected.
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CoO

Fig. 6: Comparison of experimental 2p XAS-spectra and results from cluster calculations: NiO
(left) and CoO (right). Reprinted with permission from [22], Copyright 1999 by the American
Physical society, and with permission from [23].

Lastly, we discuss the dipole operator D(n). This involves the matrix element of n · r, where
n is the vector which gives the polarization of the X-rays. This can be rewritten as

n · r = r

√
4π

3

1∑
m=−1

ñm Y1,m(ϑ, ϕ) ,

where ñ1 = (−nx + iny)/
√

2, ñ0 = nz and ñ−1 = (nx + iny)/
√

2. It follows that

O(n) =
∑
m,m′

∑
σ

dm,m′ c†3,2,m,σ c2,1,m′,σ

dm,m′(n) = d ñm−m′ c1(2,m; 1,m′)

d =

∫ ∞
0

dr r3R3,2(r)R2,1(r) .

The factor of d merely scales the overall intensity of the spectrum and is largely irrelevant.
Combining all of the above one can compute X-ray absorption spectra. Figure 6 shows examples
from the literature where experimental 2p-XAS spectra for NiO and CoO are compared to
spectra obtained from the cluster model described above. In both cases one can see the splitting
of approximately 15 eV between the L3 and L2 edges. The edges have an appreciable fine
structure, however, which is reproduced well by theory. The spectrum for CoO is shown at
different temperatures and indeed has a significant temperature dependence. The origin of the
temperature dependence is as follows: Cobalt is Co2+ or d7 in CoO and the ground state of
d7 in cubic symmetry is a spin quartet and is orbitally three-fold degenerate so that the total
degeneracy is n = 12. In this situation, the weak spin-orbit interaction in the 3d-shell can lift the
12-fold degeneracy and produce several closely spaced eigenstates. The splitting between these
12 eigenstates is of the order of the spin-orbit coupling constant in the 3d-shell, λSO ≈ 50 meV,
and the higher lying states therefore may be thermally populated with increasing temperature
(see the Boltzmann factors in (19)). This leads to the temperature dependence of the spectra
which obviously is reproduced at least qualitatively by the cluster calculation.
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XPS and XAS experiments are often performed because for example the valence or the spin
state of the transition-metal ion in a given solid or molecule is unknown. Let us assume that
we have two possible states of the ion, |Ψ0〉 and |Ψ ′0〉, with energies E0 and E ′0 (for simplicity
we assume that these are nondegenerate). Then we may ask: how will the spectrum change if
we go from one ground state to the another? We note first that the final states |Ψν〉 and their
energiesEν in (18) and (19) are unchanged. What differs is first the energy differencesEν−E0.
However, since we do not know E0 and E ′0, otherwise we would know which one of them is
lower in energy and hence the ground state, the absolute position of the peaks in the spectrum is
of no significance. What is really relevant is the intensity of the peaks which involves the matrix
elements |〈Ψν |c|Ψ0〉|2 or |〈Ψν |D(n)|Ψ0〉|2. These matrix elements may change drastically when
the ground state wave function |Ψ0〉 changes and by comparing with cluster simulations the
shape of the spectrum can give information about the valence and spin state of the transition-
metal ion.
To summarize this section: multiplet theory is of considerable importance in the interpretation
of photoelectron spectroscopy and X-ray absorption. The simulated spectra usually show very
good agreement with experimental ones. All of this shows that the multiplets of the free ion
persist in the solid and that the proper description of the Coulomb interaction is crucial for the
description of these compounds.

5 Conclusion

We have seen that the Coulomb repulsion between electrons in partially filled atomic shells
leads to multiplet splitting. The multiplets may be viewed as collective excitations of the ‘not-
so-many-body-system’ formed by the electrons in a partially filled atomic shell. We have seen
that a relatively simple theory, essentially degenerate first order perturbation theory, describes
the energies of the multiplets quite well and gives a good description of the line spectra of free
atoms. When transition-metal atoms are embedded into a solid, the collective excitations of
the electrons in their partly filled 3d-shells are modified by the crystalline electric field of their
environment and by hybridization with orbitals on neighboring atoms. If these effects are taken
into account, which is relatively easy if one uses exact diagonalization, the resulting ‘extended
multiplet theory’ turns out to be spectacularly successful in reproducing a wide variety of ex-
perimental results for transition-metal compounds. Photoemission spectra, X-ray absorption
spectra, optical absorption spectra, electron spin resonance, and inelastic neutron scattering can
be interpreted in terms of multiplet theory. The often excellent agreement between theory and
experiment which can be thereby obtained is clear evidence that the multiplets of the free ion
are a reality also in solids, with the only modification being some additional splitting due to the
lowering of the symmetry and the modification of spectral intensities due to charge transfer. It
has to be kept in mind, however, that in order to obtain agreement with experiment it is crucial
to use the full Coulomb Hamiltonian, with its matrix elements expressed in terms of Slater-
Condon parameters and Gaunt coefficients. Put another way, we may summarize the present
lecture in three words: Multiplets do matter!
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A Gaunt coefficients

m m′ c0 7 c2 21 c4 a0 49 a2 441 a4 b0 49 b2 441 b4

±2 ±2 1 −2 1 1 4 1 1 4 1

±2 ±1 0
√

6 −
√

5 1 −2 −4 0 6 5

±2 0 0 −2
√

15 1 −4 6 0 4 15
±1 ±1 1 1 −4 1 1 16 1 1 16

±1 0 0 1
√

30 1 2 −24 0 1 30
0 0 1 2 6 1 4 26 1 4 36

±2 ∓2 0 0
√

70 1 4 1 0 0 70

±2 ∓1 0 0 −
√

35 1 −2 −4 0 0 35

±1 ∓1 0 −
√

6 −
√

40 1 1 16 0 6 40

Table 5: The Gaunt coefficients ck(2,m; 2,m′) and the products ak(2,m; 2,m′) and
bk(2,m; 2,m′)
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1 Introduction

Electrons in solids behave in most cases like independent particles, and that in spite of the strong
interactions between them. The explanation of this apparent paradox relies on the concept
of the Landau quasi-particle: the multiple forces acting on one electron dress it up with an
interaction cloud and these new dressed particles (quasi-particles) are effectively independent
one from the other. The time evolution of the system with one electron removed is what is
measured in experiments and when this state evolves as a coherent superposition of oscillations
of approximately the same frequency it corresponds to the propagation of a quasi-particle with a
reasonably well defined energy and a sufficiently long life-time. In this situation the low-energy
excitations of the interacting electrons can be put into a one-to-one correspondence with those
of non-interacting electrons with renormalized properties (energy and mass) and the measured
spectra can be reduced to a quasi-particle band structure.
From a theoretical point of view, the simplest way to account for the electron-electron inter-
action is to include it as a mean field, where each electron moves independently under the
influence of the average charge distribution of all the others. Materials for which this rudimen-
tary mean-field description is sufficient have broad energy bands associated with large values
of the electron kinetic energy. This implies that the electrons are highly itinerant and there-
fore it is reasonable to describe them using a picture in which interactions become smooth and
can be averaged over. On the contrary when bands are narrower and the associated kinetic en-
ergy smaller, namely when electrons tend to localize around lattice ions, they see each other
as individual point charges and the correlation between their motion becomes important. For
these systems the single-particle picture is inadequate and their electronic properties have to be
described including the multiple pair-wise e-e interaction as a true many-body term.
Strongly correlated electron systems have been one of the most important topics in theoretical
solid state research for more than half a century. The major challenge is that the interesting
physics occurs in the regime of intermediate coupling strength, where perturbation theory does
not apply. The search for non perturbative approaches has been intense in the last decades, lead-
ing to some widely accepted results, the most prominent one being the choice of the Hubbard
model as the general framework to describe strong e-e correlation.
A variety of non-perturbative techniques have been proposed during the years to tackle this
problem, ranging from Dynamical Mean Field Theory (DMFT) [1] to 3-Body Scattering (3BS)
theory [2, 3]. However the agreement between experiments and many-body calculations is still
far from being fully quantitative [4–6] and different theoretical methods are constantly explored.
Recently schemes based on cluster formalisms have been developed. These so-called Quantum
Cluster (QC) theories [7] share the basic idea to solve the problem of many interacting electrons
in an extended lattice by a divide-and-conquer strategy, namely solving first the many-body
problem in a subsystem of finite size and then embedding it within the infinite medium. The
embedding procedure can be variationally optimized as in the Dynamical Cluster Approach
(DCA) [8] and Cellular Dynamical Mean Field Theory (CDMFT) [9]. Even neglecting op-
timization in the embedding procedure the method, that in this case has been called Cluster
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Perturbation Theory (CPT) [10], gives access to non trivial many-body effects, reproducing ex-
actly both the non-interacting band limit and the atomic limit when on-site repulsion exceeds
intersite hopping; for intermediate values of on-site e-e repulsion CPT opens a gap in metallic
systems at half occupation. QC approaches account for the momentum dependence of many-
body corrections more appropriately than other schemes, and for this reason they should provide
a more accurate description of the quasi-particle dispersion. However QC approaches have been
mostly applied to model systems and only few quasi-particle calculations for realistic systems
have been reported up to now [11, 12]. The application of CPT to multi-orbital solids and to
transition-metal oxides in particular will be our focus.

2 CPT for multiorbital systems

In CPT the lattice is seen as a periodic repetition of identical clusters and the Hubbard Hamil-
tonian can be partitioned in two terms, an intra-cluster (Ĥc) and an inter-cluster one (V̂ )

Ĥ = Ĥc + V̂ , (1)

where

Ĥc =
∑
ilα

εilα n̂ilα +
∑
αβ

∑
ijl

tilα,jlβ ĉ
†
ilαĉjlβ +

∑
ilαβ

U i
αβ n̂ilα↑n̂ilβ↓

V̂ =
∑
αβ

∑
ij,l 6=l′

tilα,jl′β ĉ
†
ilαĉjl′β . (2)

Here α, β are orbital indices, εilα are intra-atomic orbital parameters and tilα,jl′β hopping terms
connecting orbitals centered on different sites. Each atom is identified by the cluster it belongs
to (index l) and by its position inside the cluster (index i). The lattice is a collection of L→∞
clusters each of them containing M atoms whose position is identified by the vector Rl+ri.
Each atom in the cluster is characterized by a set of orbitals norb

i per site and K =
∑M

i=1 n
orb
i is

the total number of orbitals per cluster.
Since in the Hubbard model the e-e Coulomb interaction is on-site, the inter-cluster Hamiltonian
V̂ contains only single-particle terms and the many-body part is present in the intra-cluster
Hamiltonian Ĥc only. Of course the complexity of the problem resides in the coexistence of
the two contributions, while in the two limits t � U or U � t the Hamiltonian can be easily
solved: in the first case the many-body term is negligible and Ĥ is reduced to a trivial one-
body Hamiltonian; the second case, the atomic limit, corresponds to Ĥ ' Ĥc , namely to a
Hamiltonian that does not mix the coordinates of electrons belonging to different clusters. In
this case the eigenstates |ΨNn 〉 of the full Hamiltonian for N electrons (N =→∞) becomes

|ΨNn 〉 = |ΦNn 〉 =
L→∞∏
l=1

|φKn (l)〉 (3)

where |φKn (l)〉 are the few-body eigenstates of the l-th isolated cluster that can be calculated
numerically by exact diagonalization.
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The partition of the Hamiltonian into intra-cluster and inter-cluster terms gives rise to some
exact expressions and suggests some relevant approximations. Let us consider the resolvent
operator Ĝ

Ĝ−1(z) ≡ z − Ĥc − V̂ = Ĝc
−1
− V̂ with Ĝc

−1
≡ z − Ĥc (4)

and the Dyson-like equation that is deduced from it Ĝ = Ĝc + Ĝc V̂ Ĝ, where the lattice Green
function and the cluster one are connected by the inter-cluster interaction. The expectation value
of the resolvent operator over the interacting ground state with one removed/added particle,
ĉkn|ΨN0 〉 / ĉ†kn|ΨN0 〉, gives the one-particle propagator for the extended lattice

G(knω) = G+(knω) + G−(knω) (5)

with G±(knω), the particle and hole propagators, given by

G−(knω) = 〈ΨN0 | ĉ
†
kn Ĝ(−ω + EN

0 + iη) ĉkn |ΨN0 〉 (6)

G+(knω) = 〈ΨN0 | ĉkn Ĝ( ω + EN
0 + iη) ĉ†kn |ΨN0 〉 .

Since we are looking for a relationship between the lattice and cluster Green function, it is
useful to introduce a transformation from the localized to the Bloch basis

ĉkn =
1√

K × L

∑
ilα

Cniα(k)eik·(Rl+ri) ĉilα and ĉ†kn =
1√

K × L

∑
ilα

Cniα(k)∗e−ik·(Rl+ri) ĉ†ilα,

where n is a band index and Cniα(k) are the eigenstate coefficients obtained by a band calculation
for a superlattice of L identical clusters. By straightforward substitutions we get

G(knω) = 1

K

∑
ii′αβ

e−ik·(ri−ri′ ) Cniα(k)∗Cni′β(k)Giαi′β(kω) , (7)

where Giαi′β(kω) is the superlattice Green function, namely the Fourier transform of the Green
function in the local basis

Giαi′β(kω) =
1

L

∑
ll′

e−ik·(Rl−Rl′ ) Giαi′β
ll′

(ω) (8)

and

Giαi′β
ll′

(ω) =
〈
ΨN0

∣∣∣ĉ†ilα (Ĝc(ω) + Ĝc(ω)V̂ Ĝ(ω)
)
ĉi′l′β

∣∣∣ΨN0 〉 (9)

+
〈
ΨN0

∣∣∣ĉilα (Ĝc(ω) + Ĝc(ω)V̂ Ĝ(ω)
)
ĉ†i′l′β

∣∣∣ΨN0 〉 .
All the equations written up to now are exact and approximations are needed in order to make
them of practical use. CPT introduces two approximations:

1) |ΨN0 〉 ∼ |ΦN0 〉

2)
∑

m |ΦN−1m 〉〈ΦN−1m | ∼
∑

ilα ĉilα |ΦN0 〉〈ΦN0 | ĉ
†
ilα = 1∑

m |ΦN+1
m 〉〈ΦN+1

m | ∼
∑

ilα ĉ
†
ilα |ΦN0 〉〈ΦN0 | ĉilα = 1
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The first one substitutes the unknown ground state |ΨN0 〉 of the full interacting Hamiltonian
with |ΦN0 〉, the ground state of Ĥc defined in Eq. (3). As mentioned above, this choice is fairly
accurate in the regime of U/t > 1 and less correct in the opposite limit. The second assumption
corresponds to an approximate expression of the decomposition of unity in terms of a reduced
basis for the Fock space of N ± 1 particles.
Altogether we obtain for the total (causal) Green function

Giαi′β
ll′

(ω) = 〈φK0 |ĉ
†
ilα Ĝ

c ĉi′l′β|φK0 〉 δll′ + 〈φK0 |ĉilα Ĝc ĉ†i′l′β|φ
K
0 〉 δll′ (10)

+
∑
l′′l′′′

∑
i′′i′′′

∑
γγ′

[
〈ΦN0 |ĉ

†
ilα Ĝ

c ĉi′′l′′γ|ΦN0 〉 δl′′l + 〈ΦN0 |ĉilα Ĝc ĉ†i′′l′′γ|Φ
N
0 〉 δl′′l

]
× 〈ΦN0 |ĉ

†
i′′l′′γ V̂ ĉi′′′l′′′γ′|ΦN0 〉〈ΦN0 |ĉ

†
i′′′l′′′γ′ Ĝ ĉi′l′β|Φ

N
0 〉

= Gciαi′β(ω) δll′

+
∑
l′′l′′′

∑
i′′i′′′

∑
γγ′

Gciαi′β(ω) δll′ 〈ΦN0 |ĉ
†
i′′l′′γ V̂ ĉi′′′l′′′γ′|ΦN0 〉〈ΦN0 |ĉ

†
i′′′l′′′γ′ Ĝ ĉi′l′β|Φ

N
0 〉 ,

where Gciαi′β(ω) = 〈ΦN0 |ĉ
†
ilα Ĝ

c ĉi′l′β|ΦN0 〉 + 〈ΦN0 |ĉilα Ĝc ĉ†i′l′β|ΦN0 〉 is the Green function of a
disconnected cluster. It is calculated in the Lehmann representation in terms of the few-body
states of interacting clusters containing K and K ± 1 electrons

Gciαi′β(ω) =
∑
n

〈φK0 |ĉ
†
iα|φK−1n 〉〈φK−1n |ĉi′β|ΦK0 〉
ω − (EK

0 − EK−1
n )

+
∑
n

〈φK0 |ĉiα|φK+1
n 〉〈φK+1

n |ĉ†i′β|φK0 〉
ω − (EK+1

n − EK
0 )

. (11)

Eq. (10) contains the matrix elements of the inter-cluster potential that are simply calculated
identifying the indices l − l′′′, i− i′′′, γ − γ′ that give a non-zero contribution.
After summation over the cluster positions in Eq. (8), one eventually reaches an explicit equa-
tion for the lattice Green function, namely

Giαi′β(kω) = Gciαi′β(ω) +
∑
i′′′γ′

Biαi′′′γ′(kω)Gi′′′γ′i′β(kω) , (12)

where theK×K matrixBiαi′′′γ′(kω) is the Fourier transform of ĜcV̂ matrix elements involving
neighboring sites that belong to different clusters. Eq. (12) is solved by aK×K matrix inversion
at each k and ω.
The k- and ω-dependent lattice Green function G(knω) is obtained by a final summation over
the intra-cluster site positions modulated by the single-particle band coefficients as in Eq. (7).
The quasi-particle excitation energies correspond to peaks of the k and band-index dependent
spectral function

A(k, n, ω) = ImG(knω). (13)

Examples of quasi-particle band structure obtained by CPT for model systems are reported in
the next section where we start analyzing CPT results for a simplified model system. This
analysis will allow us to identify the main features of CPT and to recognize its pro et contra
with respect to the other many-body approaches. This analysis will constitute a benchmark for
CPT and for its application to realistic systems.
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3 CPT for model systems

3.1 The role of symmetry

We consider a square 2D lattice with one orbital per site and the standard orbital-independent
Hubbard Hamiltonian

Ĥc =
∑
il

εil n̂il +
∑
ijl

til,jl ĉ
†
ilĉjl +

∑
il

U i n̂il↑n̂il↓

V̂ =
∑
ijl 6=l′

til,jl′ ĉ
†
ilĉjl′ (14)

For this lattice we easily identify various possible “tilings”: 4-atom 2×2 square, 4-atom chain,
6-atom rectangle etc. They differ by the number of atoms and also by their symmetry, the
4-atom square being the only one that preserves the full point symmetry of the entire lattice.
The simplest way to check the quality of the main approximation of CPT, the expression of
the lattice Green function in terms of Green functions of decoupled clusters, is to look for a
convergence in the cluster size, comparing results obtained with larger and larger cluster sizes.
This procedure has two serious restrictions that arise i) by the dimensions of Hilbert space
used in the exact diagonalization, dimensions that grow exponentially with the number of sites
and ii) by symmetry requirements. The second restriction, even if clearly stated in the early
developments of Quantum Cluster theories [7], is often overlooked in the implementations.
Independently on the various QC flavors such as plain CPT [10], variational CPT [13], cellular
dynamical mean-field theory [9], the cluster symmetry should be as close as possible to the one
of the lattice.
As we know from elementary solid state theory there is a large arbitrariness in the choice of
the elementary units that describe a crystalline solid: either the primitive cell that contains the
minimum number of atoms, or any larger unit that, via translation invariance, reproduces the
crystalline lattice. So the band structure of non-interacting electrons in a 2D square lattice can
be calculated using unit cells containing a variable number of atoms, 1, 2, 4, 6, etc., providing
exactly the same result, except for a trivial “band folding” that can be easily eliminated by an
“unfolding procedure”, see Fig. 1.1

The situation is quite different for interacting electrons as described by QC theories. In this
case the smallest unit must obviously contain more than one atom but its choice is now far less
arbitrary since the extended system is described as a periodic repetition of units of correlated
electrons and the translation periodicity is preserved only at the superlattice level. In other
words, the e-e interaction affects the electronic states inside the cluster, resulting in a sort of
hopping renormalization, while the inter-cluster hopping is unaffected. For this reason the
cluster symmetry should be as close as possible to the one of the lattice: any significant deviation

1The unfolding procedure corresponds to identifying within the bands obtained with a large unit cell those that
correspond to the primitive cell. The unfolding procedure is used in CPT in order to implement correctly Eq. (7)
where the band index n runs over the number of unfolded bands (n = 1 instead of n = 4 or n = 6 in the present
case) but the eigenstates are to be taken in the larger unit cell basis (i = 1, 4 or i = 1, 6)
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(a) (a) (b) (c) 

(k) (k) 

Fig. 1: Single-particle band structure obtained assuming different unit cells for the 2D square
lattice: the 4-site square (a) and the 6-site rectangle (b) (open circles). The red line is the “un-
folded” band structure obtained assuming the usual 1-site unit cell. Panel (c) shows different
tilings for the 2D square lattice (see text).

from this requirement would induce a wrong behavior of the quasi-particle band dispersion:
quasi-particle energies at k andRk,R being a point group rotation, would be different, violating
a very basic rule of solid state theory.

The influence of cluster symmetry on the quasi-particle band structure is illustrated in Fig. 2
for the square lattice at half occupation. It appears that clusters that are not invariant under
lattice point-group rotations give rise to quasi-particle bands that violate the above mentioned
rule. Quasi-particle energies should be identical at k-points K1 and K2 since K1 and K2 are
connected by a point-group rotation but for the 4-site chain and the 6-site rectangle they are not,
major differences occurring in the first case due to the largest symmetry discrepancies.

Fig. 3 shows a similar comparison for another 2D model system, the honeycomb lattice. In this
case two tilings have been considered: the 6-site hexagon and the elongated 8-site cluster. The
differences are striking and this is due to the fact that the 8-site tiling has a preferred direc-
tion. Hence the dispersions along K–K ′ and K ′–K ′′ appear different. This result is particularly
relevant since it explains some significant discrepancies that are present in the literature on cor-
related electrons in graphene [14, 15]. In fact, in the honeycomb lattice where the Dirac cones
are the consequence of perfect long-range order, theories based on quantum cluster schemes,
regardless of them being variational or not and independent on the details of the specific im-
plementations, give rise to a spurious excitation gap for U → 0. A strategy has been proposed
that seems to overcome this shortcoming, providing for the undistorted honeycomb lattice a
semimetal behavior up to some finite U [16]. The strategy consists in choosing clusters that
break the lattice point C6 symmetry (8- and 10-site clusters). The quasi-particle band disper-
sion that is obtained in this way presents, however, the above mentioned unphysical behavior
which, by the way, is just the origin of the semimetallic behavior at finite U since the gap closes
at one K but not at its rotated counterpart. For this reason breaking the rotational symmetry is
not an allowed strategy to correct the erroneous insulating phase.
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Fig. 2: Spectral functions obtained for the square lattice at half occupation (t = 0.25, U = 2)
reproduced by different tilings, 4-site square (a), 4-site chain (b) and 6-site rectangle (c). In (d)
the 2D square Brillouin Zone is shown.
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Fig. 3: Spectral functions obtained for the honeycomb lattice (t = 1, U = 2) at half occupation
using different tilings shown in (c): a 6-site hexagon(a) and an 8-site cluster (b). In (d) the
honeycomb Brillouin Zone is shown.



Multi-orbital CPT 6.9

3.2 CPT vs. other many-body schemes

The agreement between theory and experiments is the ultimate validation of any theoretical
scheme. Many-body quasi-particle band structure calculations rely, however, on drastic approx-
imations that may work as ad-hoc ingredients that affect the final result: different single-particle
band structures are used as a starting point, different strategies are implemented to take into ac-
count the double-counting of the e-e interaction, etc. It is then interesting to make a comparison
within theory, applying different many-body schemes to the same simplified model. This pro-
vides a sort of benchmark for the various theoretical schemes. We choose again the 2D square
lattice at half occupation as a paradigmatic case.
Among the non-perturbative techniques that have been proposed to augment band theory by
e-e correlations we consider 3-Body Scattering (3BS) theory, a method that shares with other
approaches, DMFT above all, the calculation of Green functions in terms of self-energyΣ(knω)

G(knω) = 1

ω − ekn −Σ(knω)
, (15)

where ekn are the single-particle band eigenvalues.
In the 3BS approach the interacting many-body state is expanded in the configurations ob-
tained by adding electron-hole pairs to the ground state of the single-particle Hamiltonian. The
response of the interacting system to the creation of one hole is then described in terms of in-
teractions between configurations with one hole plus one e-h pair, giving rise to multiple h-h
and h-e scattering. The advantage of 3BS with respect to other approaches is to provide a rather
intuitive interpretation of the effect of electron correlation on one electron removal energies in
terms of Auger-like relaxations. Interestingly, the results of DMFT and 3BS are in many cases
quantitatively very similar [4, 17].
The results obtained by 3BS and CPT for the 2D square lattice with t = 0.25 and U = 2, 3, 4 are
shown in Figs. 4 and 5. Both methods provide, for sufficiently large values of U , an insulating
behavior but in 3BS the gap opens up only at very large U (U ≥ 2W ) while in CPT the
gap is present already at much lower U -values. Indeed, in CPT, at half occupation, the gap
is always present. It has recently been shown [18] that the existence of a gap down to U →
0 is characteristic of all quantum cluster schemes with the only exception of the dynamical
cluster approximation (DCA) [8]. This is due to the aforementioned violation of translational
symmetry in quantum cluster methods. DCA preserves translation symmetry and has been
shown to describe better the small-U regime; it becomes, however, less accurate at large U
values where it overemphasizes the metallic behavior [18]. Aware of this shortcomings we are
comparing here results obtained for relatively large U values where CPT limitations are not
effective: For U � t cluster perturbation theory is expected to provide reliable results.
Other remarkable differences exist between 3BS and CPT results, mainly related to the quasi-
particle k-dispersion. This is essentially due to a limitation of the methods based on self-energy
calculation, since the self-energy is in most cases assumed k-independent. On the contrary, CPT
provides a clear k-dependent energy renormalization and single-particle eigenstates at different
k-points are differently affected by e-e correlation. This is shown more clearly by extracting
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Fig. 4: Quasi-particle band structure obtained by 3BS (upper panel) and CPT (lower panel)
for the 2D square lattice with t = 0.25. Increasing values of Hubbard U (U = 2, 3, 4) are
considered. The k-points are shown in Fig. 2(d).
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Fig. 5: Quasi-particle density of states obtained by 3BS (left panel) and CPT (right panel) for
the 2D square lattice. Parameter values are the same in Fig. 4.

from CPT a self-energy

Σ(knω) = ω − ekn − G(knω)−1. (16)

CPT self-energies are shown in Fig. 6 at the high symmetry points of the 2D square lattice
showing a well defined k-dependence.
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Fig. 6: k-dependent CPT self-energy for the 2D square lattice. Parameters as in Fig. 4.

4 Transition-metal oxides

4.1 Preliminaries

We move now to Transition Metal (TM) oxides as an example of the application of CPT to real
materials.
The non interacting contribution to the Hubbard Hamiltonian is a standard Tight-Binding (TB)
Hamiltonian that can be written in terms of Koster-Slater parameters obtained by fitting ab-
initio band structure. Tables 1 and 2 report the Koster-Slater tight-binding parameters of the 3d

transition-metal oxides obtained by least squares fitting of ab-initio band structures calculated
in the DFT-LMTO scheme.
When using TB parameters in the Hubbard Hamiltonian we must take care of the double-
counting issue: the ab-initio band structures, and the TB parameters deduced from it, contain
the e-e Coulomb repulsion as a mean-field that must be removed before including U as a true
many-body term. “Bare” on-site parameters are calculated by subtracting the mean filed value
of the Hubbard term, namely

E∗α = Eα −
∑
i

U i
α 〈niα↑〉〈niα↓〉 . (17)

This definition involves the d occupation inside the cluster that is actually used in exact diago-
nalization and cancels out the energy shift due to double counting within each sub-cluster. Other
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Table 1: On-site Koster-Slater parameters (in eV).

Es(TM) Ep(TM) Et2g(TM) Eeg(TM) Es(O) Ep(O)

MnO 7.313 11.546 -0.763 -0.010 -18.553 -4.806
FeO 8.208 12.232 -0.857 -0.132 -18.489 -4.723
CoO 8.221 12.040 -1.383 -0.734 -18.673 -4.891
NiO 8.6332 12.176 -1.767 -1.165 -18.608 -4.806

Table 2: Inter-site Koster-Slater parameters (in eV).

atom atom ssσ ppσ ppπ ddσ ddπ ddδ spσ sdσ pdσ pdπ
Mn Mn -0.514 1.435 -0.137 -0.353 0.028 0.047 0.486 -0.285 -0.081 0.209
O Mn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.074 -1.243 0.632
O O -0.124 0.519 -0.102 0.0 0.0 0.0 -0.016 0.0 0.0 0.0
Fe Fe -0.529 1.470 -0.128 -0.341 0.023 0.046 0.487 -0.275 -0.083 0.195
O Fe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.083 -1.027 0.640
O O -0.140 0.578 -0.109 0.0 0.0 0.0 -0.015 0.0 0.0 0.0
Co Co -0.537 1.497 -0.109 -0.306 0.015 0.045 0.483 -0.283 -0.123 0.193
O Co 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.023 -1.235 0.616
O O -0.145 0.609 -0.112 0.0 0.0 0.0 -0.043 0.0 0.0 0.0
Ni Ni -0.549 1.527 -0.090 -0.280 0.006 0.043 0.488 -0.294 -0.113 0.189
O Ni 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.969 -1.209 0.608
O O -0.154 0.656 -0.116 0.0 0.0 0.0 -0.101 0.0 0.0 0.0

Table 3: d-orbital occupations.

MnO FeO CoO NiO
nt2g 4.941 5.770 5.961 5.966
neg 0.599 0.672 1.614 2.556
nd 5.540 6.441 7.575 8.522

definitions of double-counting correction have been proposed in the spirit of LDA+U [12] that
involve the average d-occupation in the solid calculated by single-particle theory. Our choice
should be preferred when using multiple partitions of sites/orbitals: this double-counting cor-
rection in fact amounts to readjusting the “center of mass” of the calculated few-particle states
by realigning the calculated 1

2
(EN+1

0 − EN−1
0 ) to its U = 0 value and to keep the distinction

between filled and empty states.

Fig. 7 reports the local density of states obtained in the non-interacting scheme. We focus in
particular on the TM d-orbital contribution. Crystal field symmetry induces a split of d-orbitals
into t2g/eg-states and according to ab-initio band theory these states have different occupations
(see Table 3). This is a crucial point that will be exploited later in applying CPT to TM oxides.
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Fig. 7: Single-particle Density of States (DOS) for TM oxides of the 3d series. The total DOS is
reported (lower panel) together with the contributions of TM d-orbital (in red and blue t2g and
eg, respectively) and of oxygen sp-orbitals in the upper panels.

4.2 Lattice tiling: a multiple partition strategy

As outlined in the previous sections, the first step of the CPT procedure is the partitioning of
the lattice into clusters. Obviously the choice in not unique but must satisfy some requirements:
the clusters should be connected by inter-site hopping as schematically indicated in Fig. 8(c),
namely they should not overlap; moreover they should contain enough atoms to include the
relevant physics of the interacting system and finally the number of sites/orbitals per cluster
should be tractable in an exact diagonalization procedure. Another relevant criterion is that, as
discussed in Section 3, the cluster symmetry should be as close as possible to the lattice one.
TM oxides of the 3d series (MnO, NiO, CoO, FeO) crystallize in the rocksalt structure. An
octahedral cluster containing one TM atom and 6 nearest-neighbor oxygens has been originally
proposed as the elementary unit containing all the relevant physics of the system; atomic multi-
plet theory applied to this isolated cluster [19] has been used to reproduce some features of the
solid state system, losing, however, the translational symmetry and all k-related quantities. The
same cluster has been used as the basic unit to be embedded in an infinite medium in the spirit
of variational CPT [12]. These clusters, however, do overlap in the rocksalt structure and can-
not be used as elementary unit in CPT calculations. Moreover this cluster contains just one TM
atom and even in variational CPT the resulting self-energy turns out to be k-independent [12].
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(a) (b) 

(c) 

Fig. 8: Building blocks of the 3D Rocksalt structure for a transition-metal mono-oxide: (a) a
dimer of 2 TM atoms (filled black circles); (b) a 2 × 2 plaquette containing the two atomic
species (oxygens as open circles); (c) stacking of plaquette layers reproducing the 3D lattice.
Dotted lines indicate the inter-cluster hopping.

The smallest cluster containing more than one TM atom and reproducing, without overlaps, the
3D rocksalt lattice is the 2 × 2 plaquette of Fig. 8(b) with two TM atoms and two oxygens.
Since the bands of TM oxides around the Fermi energy are described by 9 spd-orbitals for each
TM atom and 4 sp-orbitals for each oxygen, the dimension of the Hilbert space spanned by the
Slater determinants that are obtained by populating in all possible ways the K = 26 orbitals
with P electrons of a given spin (P = 13 . . . 16 from MnO to NiO) is far too big (number of
configurations = ( K!

P !(K−P )!)
)2) for exact diagonalization.

A reduction of the number of sites/orbitals per cluster is mandatory. To this end we may iden-
tify, within a single cluster, two classes of orbitals (centered on different sites and of different
symmetry) that we call A and B; we may then write the cluster Hamiltonian as the sum of
on-site and inter-site terms connecting all kinds of orbitals: A-A, B-B (diagonal terms), and
A-B (off-diagonal terms):

Ĥc = Ĥdiag + V̂AB (18)

with
Ĥdiag = ĤAA

c + ĤBB
c and V̂AB =

∑
αAβB

tilαA,jlβB ĉ
†
ilαA

ĉjl′βB . (19)

Here

ĤAA
c =

∑
ilαA

εilαA
n̂ilαA

+
∑
αAβA

∑
ijl

tilαA,jlβA ĉ
†
ilαA

ĉjlβA +
∑
ilαAβA

U i
αAβA

n̂ilαA↑n̂ilβA↓ (20)

and a similar expression for ĤBB
c .

Correspondingly we have again Ĝc
−1

= z− Ĥc = (Ĝdiag)−1− V̂AB which results, as before, in
a Dyson-like equation

Ĝc = Ĝdiag + Ĝdiag V̂AB Ĝc . (21)
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In the local basis Ĝdiag is block-diagonal and the non-zero elements Ĝdiag
AA and Ĝdiag

BB are obtained
by performing separate exact diagonalizations that include either A or B orbitals. In this basis
Eq. (21) can be solved by matrix inversion.

Ĝc = (I− Ĝdiag V̂AB)
−1 Ĝdiag (22)

with I the unit matrix and indices running over the K = 26 sites/orbitals of the plaquette (9
spd-orbitals on 2 TM atoms and 4 sp-orbitals on 2 oxygens). More explicitly

GAA

GAB

GBA

GBB

 =


1 0 −Gdiag

AA VAB 0

0 1 0 −Gdiag
AA VAB

−Gdiag
BB VBA 0 1 0

0 −Gdiag
BB VBA 0 1


−1 

Gdiag
AA

0

0

Gdiag
BB

 . (23)

Of course this multiple partition – within the lattice and within the cluster – makes the problem
numerically tractable. In this case the CPT prescriptions may be rephrased as follows: chose
a partitioning of the lattice Hamiltonian into a set of non-overlapping clusters connected by
inter-cluster hopping; make a further partition inside each cluster defining a suitable collection
of sites/orbitals; perform separate exact diagonalizations plus matrix inversion to calculate the
cluster Green function in the local basis by Eq. (23) and finally obtain the full lattice Green
function in the Bloch basis by Eq. (12).
This technique can be extended to more than two subsets of sites/orbitals, and, in fact, we have
applied it to a triple partition (subsets A, B and C) as we will show in more detail below. It has
the advantage to replace an unmanageable exact diagonalization with two (or more) separate
ones followed by a matrix inversion. It shares with CPT the assumption about the states of
the cluster interacting electrons φK(r1, r2.., rK) ∼ φA(r1, r2.., rA)φB(r1, r2.., rB)... This is a
drastic approximation whose validity must be verified performing calculations with different
partitions and/or finding explicit and justified rules for the adopted choice. These rules must be
based on clear and sound conjectures and will be inevitably system-dependent.

4.3 Multiple partition for TM oxides

We come now to the practical implementation appropriate for transition-metal oxides. TM ox-
ides of the 3d series differ drastically in d-band occupation; according to single-particle band
theory reported in Tab. 3 and Fig. 7, NiO and CoO have t2g-states fully occupied (nt2g ' 6 in
both cases) while the eg-states are responsible for the metallic behavior; on the contrary, in MnO
and FeO both t2g- and eg-states cross the Fermi level. Since only partially occupied shells are
affected by the e-e interaction this suggests different partitions for the two classes of TM oxides,
NiO, CoO on one side (with only eg-orbitals centered on the two TM atoms in the plaquette)
and FeO, MnO on the other site (with both t2g-eg-orbitals).
Once we have made this assumption we are also able to predict straightaway which TM oxide
will develop in CPT a Mott-Hubbard gap: in exact diagonalization, in fact, only systems at
half occupation exhibit a finite energy separation between hole and particle excitations and
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(a) 

(c) 

(b) 

Fig. 9: CPT results for NiO assuming the multiple partition indicated in (a) (see text). (b):
orbital resolved density of quasi-particle states compared with experimental results (open cir-
cles). Blue (red) line is for TM d (Oxygen sp) orbital contribution. (c): Quasi-particle band
dispersion (blue line) compared with the single-particle result (black asterisks).

we expect NiO and MnO (having 2 eg and 5 t2g-eg electrons respectively) to be well-defined
Mott insulators, while in FeO and CoO, where both t2g and eg are not half occupied, local e-
e repulsion is expected to induce a readjustment of spectral weight but not necessarily a well
defined gap. In the following we will describe how CPT can be implemented to capture gap
opening in MnO and NiO.
The multiple-partition–multiple-embedding procedure for NiO starts from a separation of Ni-d
orbitals into t2g and eg contributions. As already mentioned, in NiO only eg-states are partially
occupied and it is reasonable to expect them to be most affected by e-e interaction. We identify
the set of finite systems shown in Fig. 9(a), namely: i) a Ni dimer containing eg orbitals, ii) a
Ni dimer containing sp-orbitals, iii) a 4-atom plaquette with Ni t2g- and O sp-orbitals. Three
distinct exact diagonalizations are performed assuming for simplicity non-zero on-site repulsion
between Ni d-orbitals only. Three cluster Green functions are calculated within the Lehmann
representation: GAA, GBB, and GCC with A ≡ Ni eg, B ≡ Ni sp, and C ≡ O p Ni t2g. The total
Green function for the plaquette is obtained by putting them together. This is the first embedding
procedure and amounts to solving the matrix equation (23) extended to a triple-partition.
The second embedding procedure corresponds to going from the 2×2 plaquette to the extended
lattice and requires the kind of “periodization” described in Sec. 2, where we go from the cluster
Green function to the lattice Green function by solving again the Dyson-like equation involving
now inter-cluster interactions. In order to implement Eq. (12) one needs first of all to define
for each site ri′ in the plaquette the position of the nearest neighbors ri′′ and the corresponding
lattice vectors Rl′′ connecting the cluster with the neighboring ones. Then the matrix Biαjγ(kω)
is obtained as follows

Biαjγ(kω) =
∑
i′i′′l′′

ti′0αi′′l′′γ e
−ik·Rl′′ Gciαi′γ(ω) δi′′j . (24)
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(a) 

(c) 

(b) 

Fig. 10: CPT results for MnO. (a): multiple partition of orbitals in dimer and 2 × 2 plaquette
(see text). (b): orbital resolved density of quasi-particle states compared with the experimental
data (circles). Blue (red) line is for TM d (Oxygen sp) orbital contribution. (c): quasi-particle
band dispersion (blue line) compared with the single-particle result (black asterisks).

Here ti′0αi′′l′′γ are the inter-site hopping terms previously defined (Eq. (2)) obtained in terms of
Koster-Slater parameters in the usual way.
The on-site e-e interaction involving Ni d-orbitals has the effect of opening a gap between t2g-
states as expected and to turn the NiO into a wide-gap insulator. The Hubbard U is used here as
a tunable parameter to reproduce the experimental gap but its value (U = 11 eV) is within the
current estimates. We notice that, in spite of the drastic approximations, the agreement between
theory and experiment is quite good, not only for the correct gap that is somewhat fixed by the
value of the e-e repulsion, but also for the orbital character of the valence-band edge, largely
involving O 2p-states as known from experiments.
Let us consider now MnO where, according to the previous discussion, we include in the small-
est elementary unit (the dimer) all d electrons (Fig. 10(a)). Then also in this case we will be
dealing with an exact diagonalization at half occupation. The dimension of the Hilbert space
spanned by the Slater determinants is here nconf = ( K!

P !(K−P )!)
)2 = 63 504, so large to require

the band-Lanczos algorithm to obtain ∼ 1000 eigenvalues and eigenvectors EN±1
n , ΦN±1n for

the system with N ± 1 electrons as well as the ground state EN
n , ΦN0 for the N electron system.

Also in this case the dimer problem accounts for both hopping and e-e repulsion on the d-orbitals
of the TM atoms and therefore includes a large part of the relevant physics of the interacting
system. In particular, since also in this case the system is half occupied, we expect the ground
state EN+1

0 to be larger than EN−1
0 with an energy distance growing with U . This is essential in

view of a gap opening in the extended system.
We then proceed as before to embed first the dimer into the plaquette and finally the plaquette
into the extended lattice. Results are shown in Fig. 10. In this case the e-e repulsion is respon-
sible for a complete removal of all Mn d-states around the Fermi level as required for the gap
opening.
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Figure 10(b) shows a comparison between the quasi-particle density of states and the experi-
mental results of Ref. [20]. We observe that the gap value is well reproduced as well as most
of the spectroscopic structures. We do not find evidence of structures below the valence-band
bottom that are observed in photoemission experiments; this might be due to the reduced num-
ber of excited states that are obtained by the Lanczos procedure. We mention however that the
origin of satellite features in MnO has been somewhat controversial in the literature attributing
them either to intrinsic [20] or extrinsic effects [21]. Apart from the satellite structure our results
are comparable with what has been obtained by variational cluster approximation [12] in spite
of a different choice of the cluster, and by a recent DMFT calculations [22]. Since these two
approaches are either variationally optimized or self-consistent, we may identify in the present
CPT scheme the advantage of giving comparable results by a single-shot calculation thanks, we
believe, to our cluster choice.

5 Concluding remarks

In this lecture we have reviewed a possible strategy, based on a multi-orbital extension of the
CPT approach, to include on-site e-e interactions in real materials and we have discussed its
application to the paradigmatic case of transition-metal oxides. The CPT strategy is applied
twice, first to identify a partition of the lattice into non overlapping clusters and secondly to
calculate the cluster Green function in terms of two or more local ones. This procedure has the
advantage of replacing an unmanageable exact diagonalization by two or more separate ones
followed by a matrix inversion. This strategy may be adopted whenever dealing with exceed-
ingly large dimensions of the configuration space, for instance in treating correlated electrons
in low-dimensional systems such as surfaces and interfaces, where the translation invariance
is reduced and the unit cell contains many atoms. Of course there are drastic approximations
involved: in the same way as in the standard single-orbital CPT, writing the lattice Green func-
tion in terms of Green functions of decoupled subunits amounts to identifying the many-electron
states of the extended lattice as the product of cluster few-electron states. In the present case
in particular, choosing the TM dimer as the basic unit we have excluded from the few-electron
eigenstates obtained by exact diagonalization the contribution of oxygen sp-orbitals, treating
the O sp – TM d hybridization by the embedding procedure. The non-interacting part of the
lattice Hamiltonian is described in terms tight-binding parameters deduced by a least-squares
fitting of an ab-initio single-particle band structure, including all the relevant orbitals. To our
purposes, since we do not need any real-space expression of the single-particle wavefunctions,
this tight-binding parametrization is fully equivalent to a representation in terms of maximally
localized Wannier functions. We have applied this method to NiO and MnO as test cases and,
using a single value of the HubbardU , we have found a reasonable agreement with experimental
data and with theoretical results obtained by different methods.
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1 Introduction

The term orbital ordering (OO) indicates the emergence of a broken symmetry state in which
localized occupied orbitals form a regular pattern, in a similar way as spins do in magnetically
ordered structures. Orbital ordering phenomena typically occur in Mott insulators with orbital
degrees of freedom; for transition-metal compounds, the main focus of this lecture, the latter
stem from the partially filled d shells of the transition metal. The perhaps most representative
case is the perovskites KCuF3, shown in Fig. 1. In first approximation KCuF3 is cubic (Oh

point group) with Cu2+ at the center of a regular octahedron of F− ions (anions), enclosed in
a cage of K+ (cations). Due to Oh symmetry at the Cu site, the d manifold, 5-fold degenerate
for free Cu2+, splits into a t2g triplet (xz, yz, xy), lower in energy, and a eg doublet (x2 − y2

and 3z2 − r2); the electronic configuration of the Cu2+ ion is thus t62ge
3
g (one hole). The t2g

states are completely filled and do not play any active role in OO; instead, electrons in the e3g
configuration have orbital degeneracy d = 2. Making an analogy with spin degrees of freedom,
they behave as an effective τ = 1/2 pseudospin; in this view, one of the two eg states, say
|x2 − y2〉, plays the role of the pseudospin up, | ↗ 〉, and the other one, |3z2 − r2〉, of the
pseudospin down, | ↘ 〉. The two pseudospin states are degenerate and, by symmetry, one
could expect them to be equally occupied. In reality the symmetry is broken and KCuF3 is
orbitally ordered with the orbital structure shown in Fig. 1; depicted are the empty (hole) eg
states at each Cu site. Furthermore, the system exhibits a co-operative Jahn-Teller distortion,
also shown in Fig. 1, with long and short Cu-F bonds alternating in the ab plane. Indeed, the two
phenomena – electronic orbital ordering and structural Jahn-Teller distortion – are concurrent;
it is therefore difficult to say which one is the cause and which one is, instead, the effect. The
second paradigmatic system showing OO is LaMnO3 (ion Mn3+, configuration 3d4), the mother
compound of colossal magnetoresistance manganites, also a perovskite. Due to the Hund’s rule
coupling J , the actual electronic configuration of Mn3+ is t32ge

1
g. The half-filled t32g state has

no orbital degeneracy; the only orbital degrees of freedom are, as for KCuF3, those associated
with eg electrons. Again, the system is orbitally ordered and orbital ordering goes hand in hand
with the co-operative Jahn-Teller distortion. Among t2g systems, i.e., materials with partially
filled t2g shells, classical examples of orbitally-ordered crystals are the perovskites LaTiO3 and
YTiO3 (configuration t12g), LaVO3 and YVO3 (t22g), and Ca2RuO4 (t42g); in these cases the t2g
electrons behave as a orbital pseudospin τ = 1. Although this is not a prerequisite for orbital
ordering, as we have seen, many orbitally-ordered materials are perovskites; for this reason in
the present lecture we will use the perovskite structure as representative.

The origin of orbital ordering has been investigated for decades. One of the problems in clari-
fying its nature is that, while magnetic order can be directly probed, e.g., via neutron scattering
experiments, orbital ordering is typically only indirectly observed. Indeed, its principal hall-
mark is the presence of the co-operative Jahn-Teller distortion itself. Identifying the origin of
orbital ordering is thus intimately related to finding the cause of the co-operative Jahn-Teller
distortion. In this lecture I will illustrate the two main mechanisms [1, 2] which have been pro-
posed as possible explanation for OO phenomena, the classical Jahn-Teller effect [1], perhaps
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Fig. 1: Crystal structure, distortions, and orbital order in KCuF3. Cu is at the center of F
octahedra enclosed in a K cage. The conventional cell is tetragonal with axes a, b, c. The
pseudocubic axes x, y, z pointing towards neighboring Cu are shown in the corner. Short (s)
and long (l) CuF bonds alternate between x and y along all pseudocubic axes (co-operative
Jahn-Teller distortion). The distortions are measured by δ = (l− s)/(l+ s)/2 and γ = c/a

√
2.

R is the experimental structure (γ = 0.95, δ = 4.4%), Rδ (γ = 0.95) and Iδ (γ = 1) two
ideal structures with reduced distortions. In the I0 structure the cubic crystal-field at the Cu
site splits the 3d manifold into a t2g triplet and a eg doublet. In the R structure, site symmetry is
lowered further by the tetragonal compression (γ < 1) and the Jahn-Teller distortion (δ 6= 0).
The figure shows the highest-energy d orbital. From Ref. [3].

enhanced by Coulomb repulsion [4], and Kugel-Khomskii superexchange [2]. Kanamori well
illustrated the first mechanism in an influential work [1] in 1960; the main idea is that electron-
phonon coupling yields a static Jahn-Teller distortion, which lowers the symmetry of the system
and produces a crystal-field splitting. As a consequence, electrons preferably occupy the lower
energy states, giving rise to a periodic pattern of occupied orbitals. This is self-evident in the
limit in which the crystal-field splitting is very large, let us say, larger than the bandwidth;
the lower-energy states at each site will be clearly the first ones to be occupied. If, however,
the bandwidth is large in comparison with the crystal-field splitting, the hopping integrals can
strongly reduce such a tendency to orbital ordering. A natural question thus arises at this point.
How large should the crystal-field splitting be to give rise to a orbitally-ordered state? To answer
this question we have to remind ourselves that transition-metal systems with partially filled d
shells are also typical examples of strongly-correlated materials. Their low-energy properties
are believed to be well described by a generalized multi-band Hubbard model

Ĥ = Ĥ0 + ĤU ,
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the sum over a one-electron term Ĥ0 describing the transition-metal d bands and a Coulomb
electron-electron repulsion term ĤU . The one-electron term is

Ĥ0 = −
∑
ii′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ ,

where c†imσ creates an electron at site i with spin σ and orbital quantum number m, and the
parameter ti,i

′

mm′ are the hopping integrals (i 6= i′) or the crystal-field splittings (i = i′). The
Coulomb repulsion can be written as

ĤU =
1

2

∑
i

∑
σσ′

∑
mαm

′
α

∑
mβm

′
β

Umαmβm′
αm

′
β
c†imασc

†
imβσ

′cim′
βσ

′cim′
ασ
.

The elements the Coulomb interaction tensor, Umαmβm′
αm

′
β
, can be expressed in terms of the

Slater integrals1 labeled as F0, F2 and F4. Here we will restrict the discussion to the eg or t2g
manifolds only. In this case, in the basis of real harmonics, the Hubbard model takes the form

Ĥ=−
∑
ii′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ + U

∑
i

∑
m

n̂im↑n̂im↓

+
1

2

∑
i

∑
σσ′

∑
m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′

−J
∑
i

∑
m6=m′

[
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

]
, (1)

where m,m′ are here either t2g or eg states, Umm′mm′ = Um,m′ = U − 2J(1 − δm,m′) and, for
m 6= m′, Umm′m′m = Jm,m′ = J . The last two terms describe the pair-hopping and spin-flip
processes (Ummm′m′ = Jm,m′ if we use a basis of real harmonics, while for spherical harmonics
Ummm′m′ = 0). Finally, U = U0 and J = J1 (t2g electrons) or J = J2 (eg electrons), with

U0 =F0 +
8

5
Javg

Javg =
5

7

1

14
(F2 + F4)

J1 =
3

49
F2 +

20

9

1

49
F4

J2 =− 2Javg + 3J1 .

In strongly correlated systems described by a Hamiltonian of type (1) it turns out that a small
crystal-field splitting, a fraction of the bandwidth, is sufficient to produce orbital order even at
high temperature. This happens because the Coulomb repulsion effectively enhances it, while
suppressing orbital fluctuations [4]. Hence, the mechanism illustrated by Kanamori becomes
very efficient in the presence of strong correlations (small t/U limit, the typical limit for Mott
insulators; here t is an average hopping integral). This is, however, not the end of the story:

1For a pedagogical introduction see, e.g, Ref. [5], or the lecture of Robert Eder in the present book.
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Fig. 2: The unit cell of a cubic perovskite ABC3 and its symmetry axes; the lattice con-
stant is a. The transition metal B (red) is at (0, 0, 0); the ligands C (green) are located
at (±a/2, 0, 0), (0,±a/2, 0),(0, 0,±a/2) and form an octahedron; the cations A are located
at (±a/2,±a/2,±a/2), (±a/2,∓a/2,±a/2), (∓a/2,±a/2,±a/2), (±a/2,±a/2,∓a/2) and
form a cube. The bottom figures illustrate the rotational symmetries of the cell.

Coulomb electron-electron interaction provides, in addition, an alternative explanation of the
origin of orbital ordering. In a seminal work, Kugel and Khomskii [2] have shown in 1973 that,
in the presence of orbital degeneracy, many-body effects can produce orbital ordering even in
the absence of a static distortion, i.e., of a crystal-field splitting. This happens via electronic
spin-orbital superexchange, the effective low-energy interaction which emerges, in the small
t/U limit, from the orbitally-degenerate Hubbard model. In this picture, the co-operative Jahn-
Teller distortion is rather the consequence than the cause of orbital order. The predictions of the
two theories for what concerns, e.g., the final broken-symmetry structure, are basically identi-
cal; thus it is very hard to determine which of the two mechanisms, Jahn-Teller effect or Kugel-
Khomskii superexchange, dominates in real systems. In the last part of the lecture we will see
how the problem was recently solved [3, 6] by using a new theoretical approach based on the
local-density-approximation + dynamical mean-field theory (LDA+DMFT) [7, 8] method. For
the representative materials KCuF3 and LaMnO3, it was shown that Kugel-Khomskii superex-
change alone, although strong, cannot explain the presence of the Jahn-Teller distortion above
350 K (KCuF3) [3] and 650 K (LaMnO3) [6]; experimentally, however, the distortion persists
in both systems basically up to the melting temperature. This leads to the conclusion that a
mechanism directly generating a static crystal-field splitting, such as the standard Jahn-Teller
effect, is necessary to explain the experimental findings.
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2 Cubic crystal-field splitting

Let us consider a system with the ideal cubic perovskite structure ABC3, shown in Fig. 2, where
B is the transition metal with partially filled d shell. The site symmetry at a B site is cubic; as we
mentioned before, d states split into eg and t2g at a site with cubic symmetry. Let us understand
how exactly this happens. For a free ion, the potential vR(r) which determines the one-electron
energies is rotationally invariant, i.e., it has symmetry O(3). This means that all one-electron
states within a given l shell are degenerate, as it happens in the case of hydrogen-like atoms.
When the same ion is inside a molecule or a solid, vR(r) has in general lower symmetry, the
symmetry corresponding to a finite point group.2 Thus one-electron states within a given shell l,
degenerate for the free atom, can split. The symmetry reduction arises from the crystal field; the
latter has two components, the Coulomb potential generated by the surrounding charged ions,
dominant in ionic crystals, and the ligand field due to the bonding neighbors. In this section
we will analyze the first contribution; the covalent contribution to the crystal-field splitting is
discussed in the next section. Both effects give rise to a similar splitting of levels, and which
contribution dominates depends on the system.
Let us thus assume that the crystal is perfectly ionic and that the ions can be treated as point
charges qα (point-charge model). Then, the one-electron potential can be written as

vR(r) =
∑
α

qα
|Rα − r|

= v0(r) +
∑
α6=0

qα
|Rα − r|

= v0(r) + vc(r), (2)

where Rα are the positions of the ions and qα their charges. The term v0(r) is the ionic central
potential at site R0, and has spherical symmetry. The term vc(r) is the electric field generated
at a given siteR0 by all the surrounding ions in the crystal and it is called crystal-field potential.
For the perovskite structure ABC3 we are interested in the crystal-field potential at the site
of the transition metal, B. Let us first assume that only the contribution of nearest neighbors
(the negative C ions, typically oxygens or fluorines) is relevant. The six C ions are located
at positions (±dC , 0, 0), (0,±dC , 0), (0, 0,±dC) and have all the same charge qC , while the B
ion is at (0, 0, 0); in terms of a, the cubic lattice constant, dC = a/2. Then we can write the
potential around ion B as

vR(r) =
qB
r

+
qC
dC

[
∆v

(
x

dC
;
r

dC

)
+∆v

(
y

dC
;
r

dC

)
+∆v

(
z

dC
;
r

dC

)]
where

∆v(ξ; ρ) =
1√

1 + ρ2

 1√
1 + 2ξ

1+ρ2

+
1√

1− 2ξ
1+ρ2

 .
Via the Taylor expansion

1√
1 + η

∼ 1− 1

2
η +

3

8
η2 − 5

16
η3 +

35

128
η4 + . . .

2For a concise introduction to group theory see, e.g., Ref. [9], chapter 6.
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we can find the approximate expression of ∆v(ξ; ρ) for small ξ, i.e., close to ion B; the first
contribution with less than spherical symmetry is

voct(r) =
35

4

qC
d5

(
x4 + y4 + z4 − 3

5
r4
)

= D

(
x4 + y4 + z4 − 3

5
r4
)
.

We can rewrite this potential as

voct(r) =
7
√
π

3

qC
d5
r4

[
Y 4
0 (θ, φ) +

√
5

14

(
Y 4
4 (θ, φ) + Y 4

−4(θ, φ)
)]
, (3)

where

Y 4
0 (θ, φ) =

3

16

1√
π

(
35 cos4 θ − 30 cos2 θ + 3

)
=

3

16

1√
π

35z4 − 30z2r2 − 3r4

r4
,

Y 4
±4(θ, φ) =

3

16

√
35

2π
sin4 θe±4iφ =

3

16

√
35

2π

(x± iy)4

r4
.

To obtain the crystal field due to the cubic cage of cations A (with charge qA), shown in Fig. 2
we repeat the same calculation; the main difference is that there are eight A ions, located at po-
sitions of type (±dA,±dA,±dA),(∓dA,±dA,±dA), (±dA,∓dA,±dA), (±dA,±dA,∓dA) with
dA = a/2. By following the same procedure that we used for B octahedron, one can show that

vcube(r) = −8

9

qA
qC

(
dA
dC

)5

voct(r),

i.e., vcube(r) has the same form as voct(r); this happens because a cube and an octahedron are
dual polyhedra3 and have therefore the same symmetry properties. If qA/qC > 0, vcube(r) has
opposite sign than voct(r); in the case of a perovskite, however, A positions are occupied by
cations, i.e., positive ions; thus the crystal field due to the A cage has the same sign of the crystal
field generated by the B octahedron.
The crystal-field potential vc(r) lowers the site symmetry and can therefore split the (2l+1)-fold
degeneracy of the atomic levels. To calculate how the l manifold splits, we use two approaches.
The first is exact and based on group theory. We assume for simplicity that the symmetry is only
O (group of the proper rotations which leave a cube invariant); using the full symmetry group
of the cube, Oh = O ⊗ Ci (where Ci is the group made by the identity and the inversion) does
not change the result, because the spherical harmonics are all either even or odd. The character
table of group O is given by

partner functions O E 8C3 3C2 6C ′2 6C4

(x2 + y2 + z2) A1 1 1 1 1 1

A2 1 1 1 −1 −1

(x2 − y2, 3z2 − r2) E 2 −1 2 0 0

(Rx, Ry, Rz) (x, y, z) T1 3 0 −1 −1 1

(xy, xz, yz) T2 3 0 −1 1 −1

(4)

3Every polyhedron has a dual which can be obtained by exchanging the location of faces and vertices.
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Let us explain this table. The first line yields the group, here O, and the symmetry operations
of the group, collected in classes Ck, here {E}, {C3}, {C2}, {C ′2}, {C4}. For each class only a
representative element is given and the number Nk in front of this element yields the number
of operations in the class; for example 8C3 indicates 8 symmetry operations in class {C3}. The
symmetry operation Cn is an anticlockwise rotation of an angle α = 2π/n. For a finite group
with h elements, the h group operations {O(g)} can be expressed as h matrices {Γ (g)} acting
on an invariant linear space; the basis of this space, {|m〉}, can be, for example, a finite set of
linearly independent functions, such as the spherical harmonics with angular quantum number
l. The collection of matrices {Γ (g)} is a representation of the group; the dimension of the
invariant linear space yields also the dimension of the matrices, i.e., the dimensionality of the
representation. Each group has infinitely many possible representations, but some sets are spe-
cial and play the role of an orthonormal basis in a space of vectors; they are called irreducible.
If G is the group of operations which leave the Hamiltonian invariant, the irreducible represen-
tations of G can be used to classify all eigenstates of the Hamiltonian; eigenstates which build a
basis for different irreducible representations are mutually orthogonal and have typically (leav-
ing the cases of accidental degeneracy and hidden symmetry aside) different energies. The
irreducible representations Γi of group O are listed in the first column of Table 4, below the
group name; they are A1 (trivial representation, made of 1-dimensional identity matrices), A2,
also 1-dimensional, E, two-dimensional, and T1 and T2, both three-dimensional. The numbers
appearing in Table 4 are the characters χi(g), defined as

χi(g) = Tr Γi(g) =
∑
m

〈m|Γi(g)|m〉 =
∑
m

Γmm
i (g) .

For a given representation (corresponding to a line of Table 4) the character for a specific ele-
ment can be found below the corresponding class label (columns of Table 4); all elements in the
same class have the same character. Thus the second column of the character table, showing the
character of the identity, yields also the dimensionality di of the representation itself. Next we
calculate the characters of the matrix representation Γ l constructed using spherical harmonics
with angular quantum number l as a basis. An easy way to do this is to assume that the rotation
axis is also the axis of quantization, i.e., ẑ; the characters do not depend on the actual direction
of the quantization axis but only on the angle α of rotation. Thus for O(g) = Cα we have

Cα Y
l
m(θ, φ) =Y l

m(θ, φ− α) = e−imα Y l
m(θ, φ)

Γ l
mm′(Cα) =δmm′e−imα.

This yields the following expression for the character

χl(Cα) =
l∑

m=−l

e−imα =
sin(l + 1

2
)α

sin α
2

.
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The characters for representations Γ l are therefore

O E 8C3 3C2 6C2 6C4

Γ 0 = Γ s 1 1 1 1 1

Γ 1 = Γ p 3 0 −1 −1 1

Γ 2 = Γ d 5 −1 1 1 −1

Γ 3 = Γ f 7 1 −1 −1 −1

In spherical symmetry (group O(3)) representations Γ l are irreducible. In cubic symmetry
(group O), instead, the Γ l can be reducible, i.e., they can be written as the tensorial sum ⊕
of irreducible representations of the group O. The various components can be found by using
the orthogonality properties of irreducible representations, which lead to the decomposition
formula

Γ l =
⊕
i

aiΓi with ai = 〈Γi|Γ l〉 =
1

h

∑
g

[χi(g)]∗χl(g) , (5)

where h, the number of elements in the group, is 24 for group O. Hereafter the symmetry
representations of electronic states are written in lower case to distinguish them from capital
letters which we will use later for labeling vibrational modes. We find

Γ s = a1

Γ p = t1

Γ d = e⊕ t2
Γ f = a2 ⊕ t1 ⊕ t2 .

Thus, in cubic symmetry, the s- and the p-functions do not split, because the a1 irreducible rep-
resentation is one-dimensional and the t1 irreducible representation is 3-dimensional. Instead,
d-functions split into a doublet and a triplet, and f -functions into a singlet and two triplets.
To determine which functions {|m〉i} form a basis (a so-called set of partner functions) for a
specific irreducible representation Γi we can, e.g., use the projector for that representation

P̂i =
di
h

∑
g

[χi(g)]∗O(g). (6)

In our case, we can read directly the partner functions {|m〉i} for a given irreducible represen-
tation of the group O in the first column of Table 4, on the left. In short, for representation e
partner functions are (x2−y2, 3z2−r2) and for representation t2 they are (xy, xz, yz). A small
step is still missing: As we already mentioned, the full symmetry of the B site is Oh, and the
groupOh can be obtained as direct product,Oh = O⊗Ci; with respect toO, groupOh has twice
the number of elements and classes, and thus twice the number of irreducible representations.
The latter split into even (a1g, a2g, eg, t1g, t2g) and odd (a1u, a2u, eu, t1u, t2u). All d-functions are
even, and therefore x2−y2 and 3z2− r2 are partners functions for the eg irreducible representa-
tion, while xy, xz, yz are partner functions for the t2g irreducible representation. Summarizing,
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t2g states (xy, xz, and yz) and eg states (x2− y2 and 3z2− r2) have in general (again excluding
the cases of accidental degeneracy and hidden symmetry) different energy.
Group theory tells us if the degenerate 2l + 1 levels split at a given site in a lattice, but not of
how much they do split, and which orbitals are higher in energy. We can, however, calculate
the crystal-field splitting approximately using the potential (3) as a perturbation. This is the
second approach previously mentioned; differently from group theory, it is not exact, but it
gives us an estimate of the size of the effect and the sign of the splitting. For d states we
can calculate the elements of the octahedral potential voct(r) in the basis of atomic functions
ψnlm(ρ, θ, φ) = Rnl(ρ)Y m

l (θ, φ), where Rnl(ρ) is the radial part, ρ = Zr, Z is the atomic
number, Y m

l (θ, φ) a spherical harmonic, and n the principal quantum number (Appendix B).
We obtain

〈ψn20 |v̂oct|ψn20 〉 = +6Dq 〈ψn2±1|v̂oct|ψn2±1〉 = −4Dq

〈ψn2±2|v̂oct|ψn2±2〉 = + Dq 〈ψn2±2|v̂oct|ψn2∓2〉 = +5Dq

where Dq = qC〈r4〉/6d5C and 〈rk〉 =
∫
r2dr rk R2

n2(Zr). The crystal-field splitting between eg
and t2g-states can be then obtained by diagonalizing the crystal-field matrix

HCF =


Dq 0 0 0 5Dq

0 −4Dq 0 0 0

0 0 6Dq 0 0

0 0 0 −4Dq 0

5Dq 0 0 0 Dq

 .

We find two degenerate eg eigenvectors with energy 6Dq

|ψn20〉 = |3z2 − r2〉,
1√
2

[|ψn22〉+ |ψn2−2〉] = |x2 − y2〉,

and three degenerate t2g eigenvectors with energy −4Dq

i√
2

[|ψn22〉 − |ψn2−2〉] = |xy〉,

1√
2

[|ψn21〉 − |ψn2−1〉] = |xz〉,

i√
2

[|ψn21〉+ |ψn2−1〉] = |yz〉.

The total splitting is
∆CF = Eeg − Et2g = 10Dq.

Thus the eg-states are actually higher in energy than the t2g-states. This happens because eg
electrons point towards the negative C ions (see Fig. 3), and will therefore feel a larger Coulomb
repulsion than t2g electrons, which have the lobes directed between the negative C ions.
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Fig. 3: The Cu eg and t2g Wannier orbitals for the cubic perovskite KCuF3, obtained from first
principles calculations, using a Wannier basis that spans all bands.

How general is, however, this result? We obtained it via a truncated Taylor expansion of the
potential close to the nucleus. Does this mean that we have perhaps neglected important higher-
order terms? For a generic lattice, we can expand the crystal-field potential (2) in spherical
harmonics using the exact formula

1

|r1 − r2|
=
∞∑
k=0

rk<
rk+1
>

4π

2k + 1

k∑
q=−k

Y k
q (θ2, φ2)Y

k

q (θ1, φ1),

where r< ( r>) is the smaller (larger) of r1 and r2. The crystal-field potential takes the form

vc(r) =
∞∑
k=0

k∑
q=−k

Bk
qY

k
q , (7)

where Bk
q = (−1)qB̄k

−q. Although the series in (7) is in principle infinite, one can terminate it
by specifying the wavefunctions, since

〈Y l
m|Y k

q |Y l
m′〉 = 0 if k > 2l.

For example, for p electrons k ≤ 2, for d-electrons, k ≤ 4, and f electrons k ≤ 6. Thus, for
d-electrons andOh symmetry, the terms that appear in the potential (3) are actually also the only
ones to be taken into account, because all other terms yield an expectation value equal to zero.
Finally, the derivation of both equations (3) and (7) presented here might let us think that the
first-nearest neighbors are those that determine the crystal field. This is, however, not always
the case, because Coulomb repulsion is a long-range interaction; for example, in some systems
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Fig. 4: Independent Slater-Koster two-center integrals for s, p, and d atomic orbitals (Appendix
B). The label σ indicates that the bonding state is symmetrical with respect to rotations about
the bond axis; the label π that the bond axis lies in a nodal plane; the label δ that the bond axis
lies in two nodal planes.

the first-nearest neighbors yield cubic symmetry at a given site but further neighbors lower the
symmetry.4 Furthermore, the point-charge model discussed in this section is useful to explain
the relation between crystal field and site symmetry, however yields unsatisfactory results for
the crystal-field splitting in real materials. Corrections beyond the point-charge approximation
turn out to be important. In addition, as we will see in the next section, in many systems
the crystal field has a large, sometimes dominant, covalent contribution, the ligand field. The
modern approach to calculate crystal-field splittings including the ligand-field contribution is
based on material-specific potentials obtained ab-initio via density-functional-theory (DFT) and
the associated DFT localized Wannier functions. Nevertheless, it is worth to point out the
remarkable success of the point-charge model in giving qualitatively correct d crystal-field states
in cubic perovskites; such a success relies on the fact that this approach, even if approximate,
yields the exact symmetry of final states, i.e., the same obtained via group theory, and does not
neglect any relevant (e.g., high-order) term.

4This means that, of course, Oh is not the actual symmetry of the site.



Orbital Ordering 7.13

Fig. 5: Illustration of the decomposition of a general s-p two-center integral in terms of Vspσ.

3 Tight-binding eg and t2g bands of cubic perovskites

In this section we will construct the bands of KCuF3 in the cubic limit using tight-binding
theory. Let us first remind ourselves of the crucial steps of this approach. The one-electron
Hamiltonian can be written as

ĥe(r) = −1

2
∇2 +

∑
iα

v(r − Ti −Rα) = −1

2
∇2 + vR(r),

whereRα are the positions of the basis {α} atoms in the unit cell and Ti the lattice vectors. We
take as a basis atomic orbitals with quantum numbers lm (we drop here the principal quantum
number for convenience). For each atomic orbital we construct a Bloch state

ψαlm(k, r) =
1√
N

∑
i

eiTi·k ψlm(r − Ti −Rα), (8)

where N is the number of lattice sites. In the Bloch basis (8), the Hamiltonian and the overlap
matrix are given by

Hα,α′

lm,l′m′(k) = 〈ψαlm(k)|ĥe|ψα
′

l′m′(k)〉,

Oα,α′

lm,l′m′(k) = 〈ψαlm(k)|ψα′

l′m′(k)〉.

These matrices define a generalized eigenvalue problem, the solution of which yields the band
structure. The Hamiltonian matrix is given by

Hα,α′

lm,l′m′(k) = ε0l′α′ O
α,α′

lm,l′m′(k) +∆εαlm,l′m′ δα,α′ − 1

N

∑
iα6=i′α′

ei(Ti′−Ti)·k tiα,i
′α′

lm,l′m′ .

Here ε0lα are the atomic levels, and ∆εαlm,l′m′ the crystal-field matrix elements

∆εαlm,l′m′ =

∫
dr ψlm(r −Rα)

[
vR(r)− v(r −Rα)

]
ψl′m′(r −Rα) , (9)
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Fig. 6: Unit cell of idealized cubic KCuF3 with cubic axes in the left corner.

which are two-center integrals. Finally,

tiα,i
′α′

lm,l′m′ = −
∫
dr ψlm(r −Rα − Ti)

[
vR(r)− v(r −Rα′ − Ti′)

]
ψl′m′(r −Rα′ − Ti′). (10)

The hopping integrals (10) contain two- and three-center terms; if the basis is sufficiently local-
ized we can, however, neglect the three-center contributions and assume tiα,i

′α′

lm,l′m′ ∼ −V iα,i′α′

lm,l′m′ ,

where

V iα,i′α′

lm,l′m′ =

∫
dr ψlm(r −Rα − Ti)v(r −Rα − Ti)ψl′m′(r −Rα′ − Ti′)

is a Slater-Koster two-center integral (Appendix B). A generic Slater-Koster two-center integral
can be expressed as a function of a few independent two-center integrals, shown in Fig. 4 for
s, p, and d-functions. Apart from the σ bond, which is the strongest, other bonds are possible;
the π bonds are made of orbitals which share a nodal plane to which the bond axis belongs,
and the δ bond, for which two nodal planes intersect in the bond axis connecting the two ions.
Fig. 5 shows how to obtain a generic two-center integral involving p and s orbitals.5 Let us
now consider the case of the eg and t2g bands of KCuF3; here we assume for simplicity that the
system is an ideal cubic perovskite, shown in Fig. 6. The primitive cell contains one formula
unit (a single K cube in Fig. 1). The cubic axes are x, y, z, and the lattice constant is a. A Cu
atom at siteRi is surrounded by two apical F atoms, F3 atRi +

1
2
z and F6 atRi− 1

2
z, and four

planar F atoms, F1 and F4 atRi± 1
2
x and F2 and F5 atRi± 1

2
y. In Fig. 7 one can see the effects

of the cubic approximation on the eg bands: the crystal-field splitting of the eg states is zero, the
band width slightly reduced, gaps disappear, and the dispersion relations is sizably modified.
The cubic band structure in Fig. 7 was obtained with a unit cell containing two formula units, in
order to compare it with the band structure of the experimental (Jahn-Teller distorted) structure
of KCuF3; hence we see four (instead of two) eg bands. The band-structure of cubic KCuF3 for

5More details on the tight-binding approach can be found either in Ref. [9] or in the lecture of Matthew Foulkes.
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Fig. 7: LDA eg (blue) and t2g(red) band structure of KCuF3 for the experimental structure (R)
and ideal structures with progressively reduced distortions (see Fig. 1). I0: simple cubic. The
unit cell used in this calculation contains two formula units. The figure is from Ref. [3].

a cell with one formula unit is shown in Fig. 8; in the following we will refer for comparison to
that figure only. Let us take as tight-binding basis the atomic 3d eg orbitals for Cu and the 2p

orbitals for F; we neglect for convenience the overlap integrals (i.e., we assume that our atomic
functions are, approximately, localized Wannier functions). For such a tight-binding basis the
only relevant Slater-Koster parameter is Vpdσ. The |3z2 − r2〉i and |x2 − y2〉i states of the Cu at
Ri can couple via Vpdσ to |zc〉i, the pz orbitals of F3 and F6, to |xa〉i, the px orbitals of F1 and F4

and to |yb〉i, the py orbitals of F2 and F5. From the basis |α〉i of localized atomic functions we
construct the Bloch states |kα〉 = 1√

N

∑
i e
ik·Ri|α〉i, and obtain the tight-binding Hamiltonian

HTB
eg |k zc〉 |k xa〉 |k yb〉 |k 3z2 − r2〉 |k x2 − y2〉

|k zc〉 εp 0 0 −2Vpdσsz 0

|k xa〉 0 εp 0 Vpdσsx −
√

3Vpdσsx
|k yb〉 0 0 εp Vpdσsy

√
3Vpdσsy

|k 3z2 − r2〉 −2Vpdσsz Vpdσsx Vpdσsy εd 0

|k x2 − y2〉 0 −
√

3Vpdσsx
√

3Vpdσsy 0 εd

(11)

where sα = ie−ikαa/2 sin kαa/2, α = x, y, z, εp < εd = εp + ∆pd, and Vpdσ < 0. If |Vpdσ|/∆pd

is small, the occupied bands are F p-like, while the partially filled bands Cu eg-like. We now
calculate the bands along high-symmetry lines.6 Along Γ-Z, the eigenvalues εi (εi ≤ εi+1) of

6Special points: Γ = (0, 0, 0), Z= (0, 0, π/a), X= (π/a, 0, 0), M= (π/a, π/a, 0), R= (π/a, π/a, π/a).
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Fig. 8: LDA band structure of cubic KCuF3. The t2g bands are in red and the eg bands in blue.

HTB
eg are

ε2 = εp
ε3 = εp
ε4 = εd

ε1,5 = εp + 1
2
∆pd ± 1

2

√
∆2
pd + 16V 2

pdσ|sz|2

where ε1 (sign−) is bonding and F z-like, while ε5 (sign +) anti-bonding and Cu 3z2− r2-like.
Along Γ-X, we have instead the dispersion relations

ε2 = εp
ε3 = εp
ε4 = εd

ε1,5 = εp + 1
2
∆pd ± 1

2

√
∆2
pd + 16V 2

pdσ|sx|2

where ε1 is bonding and F x-like, while ε5 anti-bonding and Cu x2 − y2-like. To obtain the
eg-like bands, instead of diagonalizing HTB

eg as we have done above, we can also use the down-
folding procedure, which, for non-interacting electrons, can be carried out exactly. This method
works as follows. We divide the orbitals in passive (F p) and active (Cu d), and write the
eigenvalues equation as[

Hpp Hpd

Hdp Hdd

][
|k p〉
|k d〉

]
= ε

[
Ipp 0

0 Idd

][
|k p〉
|k d〉

]
,

where Hpp (Ipp) is the Hamiltonian (identity matrix) in the p-electron space (3 × 3), and Hdd

(Idd) the Hamiltonian (identity matrix) in the d-electron space (2× 2). By downfolding to the d
sector we obtain the energy-dependent operator Hε

dd, which acts in the d space only

Hε
dd = Hdd −Hdp(Hpp − εIpp)−1Hpd,
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and a correspondingly transformed and energy-dependent basis set for the active space, |k d〉ε.
The operator Hε

dd has the same eigenvalues and eigenvectors as the original Hamiltonian. In the
case of the eg bands (Hε

dd = Hε
eg) of KCuF3

Hε
eg |k 3z2−r2〉ε |k x2−y2〉ε

|k 3z2−r2〉ε ε′d−2tσε [1
4
(cos kxa+cos kya)+cos kza] 2tσε [

√
3
4

(cos kxa−cos kya)]

|k x2−y2〉ε 2tσε [
√
3
4

(cos kxa−cos kya)] ε′d−2tσε [3
4
(cos kxa+cos kya)]

(12)

where the effective parameters are

tσε =
V 2
pdσ

ε− εp
, ε′d = εd + 3tσε .

The downfolding procedure has renormalized the parameters εd of the original model (11),
but also introduced a new interaction: inter-orbital coupling. Furthermore, Hε

dd and the Bloch
basis are now energy dependent. Along ΓZ, the eigenvalues of (12) are given implicitly by
the equations ε = εd + 2tσε − 2tε cos kza (band ε5) and ε = εd (band ε4); in second-order
perturbation theory we find

tσε ∼ tσεd =
V 2
pdσ

∆pd

,

ε5 ∼ εd + 2tσεd − 2tσεd cos kza .

From Hamiltonian (12) it is relatively easy to see that the eg bands are 2-fold degenerate along
direction Γ-R, to find the dispersion along Γ-M and R-M, and to obtain the eg-like bands in
Fig. 8. By Fourier transforming the Bloch states |k 3z2 − r2〉ε and |k x2 − y2〉ε we can build
a set of Wannier functions. They have 3z2 − r2 or x2 − y2 symmetry as the atomic orbitals,
and, additionally, they span, to arbitrary accuracy, the eg bands. These Wannier functions are
by construction longer range than atomic orbitals, since they have p tails on the downfolded
neighboring F sites.
We can now repeat the same calculation for the t2g bands. The minimal tight-binding basis is
of course different with respect to the case of eg bands. The states |xy〉i of the Cu ion located at
Ri are coupled via Vpdπ to the |ya〉i, the py orbitals of F1 and F4 and to |xb〉i, the px orbitals of
F2 and F5; in a similar way, |xz〉i is coupled via Vpdπ to the |za〉i, the pz orbitals of F1 and F4,
and to the |xc〉i, the px orbitals of F3 and F6; finally |yz〉i is coupled via Vpdπ to the |zb〉i, the pz
orbitals of F2 and F5, and to the |yc〉i, the py orbitals of F3 and F6. After constructing for each
|α〉i the corresponding Bloch state, we obtain the tight-binding Hamiltonian. The latter splits
into three decoupled blocks,

HTB
t2g

|k ya〉 |k xb〉 |k xy〉
|k ya〉 εp 0 2Vpdπsx
|k xb〉 0 εp 2Vpdπsy
|k xy〉 2Vpdπsx 2Vpdπsy εd
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and cyclic permutations of x, y, and z (and, correspondingly, of a, b, and c). In the Γ-X direction
we thus find

ε2′(k) =εd

ε5(k) =εp +
∆pd

2
+

√
∆2
pd + 16V 2

pdπ|sx|2

2

∼εd + 2tπεd − 2tπεd cos kxa

where tπεd = V 2
pdπ/∆pd. By downfolding the oxygen states we obtain

Hε
t2g |k yz〉ε |k xz〉ε |k xy〉ε

|k yz〉ε ε′′d − 2tπε (cos kxa+ cos kya) 0 0

|k xz〉ε 0 ε′′d − 2tπε (cos kxa+ cos kza) 0

|k yz〉ε 0 0 ε′′d − 2tπε (cos kya+ cos kza)

where the parameters in the matrix are

ε′′d =εd + 4tπε ,

tπε =
|Vpdπ|2

ε− εp
.

As in the case of the eg bands, we find renormalized energy levels and effective band disper-
sions; since different Cu t2g states couple to different F p states, and we neglected hopping
integral between oxygens, the xy, xz, and yz bands are totally decoupled in our model. We are
now in the position of calculating the (approximate) expression of the covalent contribution to
the eg-t2g crystal-field splitting, i.e., the energy difference

∆CF ∼ ε′d − ε′′d = 3
|Vpdσ|2

∆pd

− 4
|Vpdπ|2

∆pd

> 0. (13)

As we can see, the sign of the covalent crystal-field splitting is the same as that of the ionic
contribution. This happens for two reasons. First, the so-called d bands are the anti-bonding
states of the p-d Hamiltonian, hence both the energy of the eg and t2g states moves upwards due
to the interaction with the p orbitals. Second, σ bonds are stronger than π bonds, hence eg states
shift to sizably higher energy than t2g states.
The tight-binding model we have used so far is oversimplified, but it already qualitatively well
describes the eg and t2g bands in Fig. 8. A more accurate description can be obtained including
other Slater-Koster integrals, such as the hopping to apical F s states, or between neighboring
F p states. With increasing number of parameters, it becomes progressively harder to estimate
them, e.g., from comparison with experiments; furthermore a large number of fitting parameters
makes it impossible to put a theory to a test. Modern techniques allow us, however, to calculate
hopping integrals and crystal-field splittings ab-initio, using localized Wannier functions as
basis instead of atomic orbitals, and the DFT potential vR(r) as one-electron potential; because
Wannier functions are orthogonal, the corresponding overlap matrix is by construction diagonal.
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4 Jahn-Teller effect

In order to introduce the Jahn-Teller effect we have to take a step backwards and start from
the central equation of solid-state physics, the eigenvalue problem ĤΨ = EΨ , defined (in the
non-relativistic limit) by the many-body Hamiltonian

Ĥ = −1

2

∑
i

∇2
i︸ ︷︷ ︸

T̂e

+
1

2

∑
i6=i′

1

|ri − ri′|︸ ︷︷ ︸
V̂ee

−
∑
iα

Zα
|ri −Rα|︸ ︷︷ ︸
V̂en

−
∑
α

1

2Mα

∇2
α︸ ︷︷ ︸

T̂n

+
1

2

∑
α6=α′

ZαZα′

|Rα −Rα′|︸ ︷︷ ︸
V̂nn

.

Here {ri} are the coordinates of the Ne electrons, {Rα} those of the Nn nuclei, Zα the atomic
numbers, and Mα the nuclear masses. The Born-Oppenheimer Ansatz

Ψ({ri}, {Rα}) = ψ({ri}; {Rα}) Φ({Rα}) , (14)

splits the Schrödinger equation ĤΨ = EΨ into the system
Ĥeψ({ri}; {Rα}) = ε({Rα})ψ({ri}; {Rα}),

ĤnΦ({Rα}) = EΦ({Rα}),
(15)

where the Hamilton operator for the electrons (Ĥe) and that for the lattice (Ĥn) are

Ĥe = T̂e + V̂ee + V̂en + V̂nn, (16)

Ĥn = T̂n + ε({Rα}) = T̂n + Ûn, (17)

and where in (17) we neglect non-adiabatic corrections.7 In the electronic Hamiltonian (16)
the atomic positions {Rα} are simple parameters. The electronic eigenvalue ε({Rα}) acts as
potential for the nuclei and defines a Born-Oppenheimer (BO) energy surface. While (16) de-
scribes the electronic structure, (17) yields the equilibrium crystal structure and the vibrational
modes. These equations are impossible to solve in the general case. The first difficulty is
that Hamiltonian (16) describes the electronic quantum many-body problem. The latter can
be solved only approximately, for example the energy of the ground state can be obtained
via density-functional theory using one of the known approximations to the universal func-
tional. For strongly-correlated systems, advanced methods combine density-functional theory
with many-body approaches such as the dynamical mean-field theory [7, 8]. The second issue
is the very high number of atoms, and therefore of {Rα} parameters to explore; finally, even
if we solve the electronic many-body problem exactly, we still have to deal with the nuclear
many-body problem, Hamiltonian (17). Despite all these obstacles, let us assume for a moment
that, for a given system, we did solve the electronic problem for general values of {Rα}. Let us
also assume that the set of positions {Rα} = {R0

α} defines a specific crystal structure, whose

7We neglect the operator Λ̂n, with elements 〈m|Λ̂n|m′〉 = −
∑
α

1
Mα

[
1
2 〈ψm|∇

2
αψm′〉+ 〈ψm|∇αψm′〉 · ∇α

]
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electronic ground state (i.e., the lower energy BO surface) has degeneracy d > 1. We can at this
point ask ourself the question: Is structure {R0

α} actually stable?
The Jahn-Teller theorem states that any electronically degenerate system can lower its energy
by undergoing some structural distortions, and therefore is unstable.8 This is due to the cou-
pling between electrons and lattice. In order to better understand the microscopic origin of this
phenomenon, let us consider a system in a high-symmetry structure, {R0

α}, for which the elec-
tronic ground state has energy ε({R0

α}) with degeneracy d > 1. This means that there are d
Born-Oppenheimer surfaces degenerate for {Rα} = {R0

α},

εm({R0
α}) = ε({R0

α}).

In the rest of the chapter we will take ε({R0
α}) as the energy zero. The corresponding degenerate

electronic wavefunctions are ψm({ri}; {R0
α}). Let us expand the nuclear potential Ûn for one

of these surfaces around the symmetric structure {R0
α}. This leads to the Taylor series

Ĥn = T̂n +
∑
αµ

[
∂Ûn
∂uαµ

]
{R0

α}

uαµ +
1

2

∑
αµ

∑
α′µ′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

uαµ uα′µ′ + . . . ,

where uα = Rα −R0
α are displacement vectors with respect to the equilibrium position, and

µ = x, y, z. If {R0
α} is an equilibrium structure, the gradient is zero and

Ĥn ∼ T̂n +
1

2

∑
αµ

∑
α′µ′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

uαµuα′µ′ + · · · = T̂n + ÛPH
n ({R0

α}) + . . . , (18)

The standard procedure to diagonalize (18) consists of two steps. First we change coordinates

ũαµ = uαµ
√
Mα.

Second we introduce the dynamical matrix

Dαµ,αµ′ =
1√
Mα

1√
Mα′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

,

and diagonalize it. Its Nm eigenvectors are the normal modesQη,

DQη = ω2
ηQη,

Qην =
Nn∑
α=1

∑
µ=x,y,z

aην,αµuαµ,

with η = 1, . . . Nm, and ν = x, y, z. The normal coordinates {Qnν}, together with the associ-
ated canonically-conjugated momenta {Pnν}, bring (18) in the form

Ĥn ∼
1

2

∑
ην

[
P 2
ην + ω2

ηQ
2
ην

]
. (19)

8 The only exceptions are linear molecules and Kramers degeneracy.
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In a crystal, this Hamiltonian yields the phonon energy levels. Let us now determine the pos-
sible Nm normal modes for a cubic perovskite. For simplicity we consider here only a single
octahedron and the modes associated with the vibrations of its atoms. Given that each atom can
move in three directions, and there are 6 atoms of type C and 1 atom of type B, in principle
such a system has 21 degrees of freedom; eliminating global translations (3 degrees of free-
dom) and global rotations (3 degrees of freedom), i.e., displacements which are not vibrations,
15 degrees of freedom are left, hence the system has 15 possible normal modes. In group the-
ory language, assuming again for simplicity that the group is O instead of Oh, one can show
that these modes can be labeled as belonging to irreducible representations A1, E, T1 or T2.
To obtain this result we first build a matrix representation of the group in the linear space of
all possible displacements; this space is 21-dimensional, and so is the associated matrix repre-
sentation Γtot. The latter can be expressed as the direct product Γtot = Γa.s. ⊗ Γvector, where
Γa.s. is the so-called atomic-site representation. Γa.s. has as a basis the original atomic positions
(without displacements); in our case it is has therefore dimensionality 7. The character of Γa.s.

for a given operation is simply the number of sites left invariant by that operation. Finally, in
group O the irreducible representation for a vector is Γvector = T1; this can be seen from the
partner functions (x, y, z) in Table 4. Summarizing all this in a character table, we have

O E 8C3 3C2 6C2 6C4

Γ a.s. 7 1 3 1 3

Γ tot = Γ a.s. ⊗ Γvector 21 0 −3 −1 3

Once we know the characters for representation Γtot, we can split the latter into irreducible
representations of group O via the decomposition formula Eq. (5). After subtracting (ten-
sor subtraction 	) the representations for mere translations (T1) and mere rotations (T1) of
the octahedron,9 we arrive at the final decomposition of the vibrational-modes representation
Γvibrations = Γtot	Γvector	Γrotation = A1⊕E⊕2T1⊕2T2.Normal modes which are a basis for
different irreducible representations have in general different energies. Let us focus on modes
A1 and E. We can obtain mode A1 by using the projector, Eq. (6), for irreducible representation
A1. As a matter of fact, if we assume that atom F1 (Fig. 9) is displaced by u1, by applying the
projector P̂A1 to u1 we generate automatically the linear combination of atomic displacements
(all having the same length) forming the mode of symmetry A1. This leads to

Q0 = u1(q0) + u2(q0) + u3(q0) + u4(q0) + u5(q0) + u6(q0).

9The representation for an improper vector (rotation) is Γrotation = T1, as can be seen from the corresponding
partner functions (Rx, Ry, Rz) in Table 4.
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Fig. 9: Unit cell (top) and vibrational modes Q0, Q1, and Q2 of cubic KCuF3.

Here ui are the (normalized) displacements for the Ci atom (see Fig. 9) which we rewrite as

u1(q0) = 1√
6
q0(1, 0, 0)

u2(q0) = 1√
6
q0(0, 1, 0)

u3(q0) = 1√
6
q0(0, 0, 1)

u4(q0) = − 1√
6
q0(1, 0, 0)

u5(q0) = − 1√
6
q0(0, 1, 0)

u6(q0) = − 1√
6
q0(0, 0, 1)

The potential energy of such a breathing mode is

UPH
n =

1

2
CA1q

2
0 .

The Q0 mode expands or compresses the unit cell, but does not change its symmetry which
remains cubic. Hence, this mode has no influence on the stability of the structure, at most it can
affect the actual value of the lattice constant. More interesting are the two degenerate modes
of type E. These modes can be obtained in a similar way as we have done for Q0, this time
using the projector for irreducible representation E; within the resulting 2-dimensional space,



Orbital Ordering 7.23

we choose as basis the mutually orthogonal modes that transform as the l = 2 partner functions
of E, x2 − y2 and 3z2 − r2. These areQ1 andQ2, shown in Fig. 9. They are defined as

Q1 = u1(q1) + u2(q1) + u4(q1) + u5(q1),

Q2 = u1(q2) + u2(q2) + u3(q2) + u4(q2) + u5(q2) + u6(q2),

where the displacements are

u1(q1) = 1√
4
q1(1, 0, 0) u1(q2) = − 1√

12
q2(1, 0, 0)

u2(q1) = − 1√
4
q1(0, 1, 0) u2(q2) = − 1√

12
q2(0, 1, 0)

u3(q1) = (0, 0, 0) u3(q2) = 2√
12
q2(0, 0, 1)

u4(q1) = − 1√
4
q1(1, 0, 0) u4(q2) = 1√

12
q2(1, 0, 0)

u5(q1) = 1√
4
q1(0, 1, 0) u5(q2) = 1√

12
q2(0, 1, 0)

u6(q1) = (0, 0, 0) u6(q2) = − 2√
12
q2(0, 0, 1)

The corresponding quadratic potential has the form

ÛPH
n =

1

2
CE(q21 + q22).

The normal modes T1 and T2 can be obtained in a similar way; since they are not relevant for
structure stability in the example considered here we do not provide their form explicitly.
Up to now we have assumed that the hypothetical high-symmetry structure {R0

α} is a stationary
point. In general, however, this might or might not be true. The behavior of the BO energy
surfaces close to the point in which they are degenerate allows us to separate them into two
classes, the first one in which {R0

α} is a stationary point for all degenerate electronic states m
(Renner-Teller intersection), and the second in which the surface is not a stationary point at
least for some of the surfaces (Jahn-Teller intersection). The classical Jahn-Teller systems are
those for which ∇Ûn({R0

α}) 6= 0 at least in some direction (see, e.g., Fig. 10). Let us now
calculate the first-order correction to the m degenerate eigenvalues due to a small distortion
around {R0

α}. The electronic Hamiltonian (16) has matrix elements

〈ψm|Ĥe({Rα})|ψm′〉 =
∑
αµ

〈ψm|

[
∂Ĥe

∂uαµ

]
{R0

α}

|ψm′〉uαµ︸ ︷︷ ︸
ÛJT
m,m′

+ · · · = ÛJT
m,m′ + . . . .

The perturbation ÛJT, the Jahn-Teller potential, couples the degenerate BO energy surfaces; it
also couples electrons and lattice vibrations, as we can see from the coordinates uαµ appear-
ing in the expression above. Thus, if there are modes for which ÛJT 6= C Î where Î is the
identity matrix and C a constant, the system gains energy at linear order via a distortion which
lowers the symmetry; the Jahn-Teller theorem states that such modes always exist for electron-
ically degenerate systems (with the exceptions of Kramers degeneracy and linear molecules).
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Fig. 10: Born-Oppenheimer potential-energy surface exhibiting the form of a mexican hat. The
slope of the curve at small distortions q1, q2 yields the Jahn-Teller coupling constant λ.

In order to better understand the effect of the electron-lattice coupling, we generalize the Born-
Oppenheimer Ansatz as follows

Ψ({ri}, {Rα}) =
∑
m

ψm({ri}; {Rα}) Φm({Rα}).

To find the equations for the functions {Φm}, we write the Schrödinger equation HΨ = EΨ ,
multiply on the left by ψm, and integrate over the coordinates of the electrons. We obtain

ĤnΦm({Rα}) =
[
T̂n + ÛPH

n

]
Φm({Rα}) +

∑
m′

ÛJT
m,m′Φm′({Rα}) = EΦm({Rα}). (20)

The dynamics of the system close to the degeneracy point is determined by all degenerate
sheets. The minimization of the new potential energy yields a new structure {R̃0

α} in which the
electronic states are not any more degenerate. The modes that can produce such an instability
should satisfy the condition

[Γm ⊗ Γm] ∩ Γvibrations ⊃ A1,

where Γm is the irreducible representation to which the electronic degenerate states belong, and
[Γm ⊗ Γm] is the symmetric direct product. The trivial representation A1 has to be excluded
because, as already discussed, it does not lower the symmetry. In the case cubic KCuF3 the
relevant normal modes coupling to the degenerate eg electronic states are the E modes; as for
the electronic states, if the group O → Oh, then E → Eg. Thus we can say that KCuF3 is
an example of a eg ⊗ Eg Jahn-Teller system, a system in which an electronic doublet (eg) is
coupled to a doublet of normal modes (Eg). The form of the Jahn-Teller potential ÛJT can be
obtained from the effect of perturbations of type Q1 and Q2 on the crystal-field matrix. As for
the crystal field, there are both a ionic and a covalent contribution. For the ionic contribution,
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we can use once more perturbation theory. In this case, we have to take into account that the
Cu-F distance dC depends on the direction, i.e,

dC → dC + δdµC ,

where µ = x, y, z; the specific δdµC values for each atom are given by the specific vibrational
mode. After summing up all contribution, the first non-cubic correction due to Eg modes is

∆vJT =
qC
d6C

25

14
√

3
〈r4〉

(
q2 q1
q1 −q2

)
.

It is, at this point, useful to introduce pseudo-spin operators acting on the eg states, i.e., operators
τ̂µ with µ = x, y, z and

τ̂z| ↘〉 = −| ↘〉, τ̂x| ↘〉 = +| ↗〉, τ̂y| ↘〉 = −i| ↗〉

τ̂z| ↗〉 = +| ↗〉, τ̂x| ↗〉 = +| ↘〉, τ̂y| ↗〉 = +i| ↘〉

where | ↗〉 = |x2 − y2〉 and | ↘〉 = |3z2 − r2〉. In matrix form these operators can be written
as pseudo-Pauli matrices

τ̂z =

(
1 0

0 −1

)
τ̂x =

(
0 1

1 0

)
τ̂y =

(
0 −i
i 0

)
. (21)

We can then rewrite the Jahn-Teller potential as

∆vJT = λ

[
q1τx + q2τz

]
,

where λ = (qC/d
6
C) (25/14

√
3) > 0. This potential expresses both the essence of the Jahn-

Teller theorem and its relation with orbital order; the systems gains energy at linear order by
making a distortion; the latter produces a crystal-field splitting, which leads to preferential oc-
cupation of the lower energy level. For example, if q1 = 0 and q2 < 0 (tetragonal compression)
the 3z2 − r2 state is higher in energy. Let us now calculate the covalent contribution to the
Jahn-Teller potential. In this case the linear-order correction is

∆εlm,l′m′(0,Rα + u)−∆εlm,l′m′(0,Rα) ∼ ∇∆εlm,l′m′(0,Rα) · u

For eg-states we use for simplicity the following approximations10

∆ε3z2−r2,3z2−r2 ∼
[
n2 − 1

2
(l2 +m2)

]2
Ṽddσ,

∆ε3z2−r2,x2−y2 ∼
√

3

2
(l2 −m2)

[
n2 − 1

2
(l2 +m2)

]
Ṽddσ,

∆εx2−y2,x2−y2 ∼ 3

4
(l2 −m2)2Ṽddσ.

10The crystal-field integrals are also two-center integrals; the table of Slater-Koster integrals in Appendix B is
thus still valid, provided that Vll′α are replaced by the corresponding crystal-field terms, which we indicate as Ṽll′α.
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Fig. 11: Linear combinations of eg-states, |θ〉 = − sin θ
2
|x2 − y2〉 + cos θ

2
|3z2 − r2〉. The

θ = 0o orbital is the excited state in the presence of a tetragonal compression along the z axis,
while θ = ±2π/3 are excited states for a tetragonal compression along x or y. This three-fold
degeneracy (rotation by ±2π/3) is due to cubic symmetry.

By summing up the contributions from all C ions for each mode, we obtain

∆εJT(q1, q2) = λ

(
q2 q1
q1 −q2

)
= λ

[
q1τ̂x + q2τ̂z

]
,

where λ ∼ −
√
3
2
Ṽ ′ddσ > 0. This is the same form of potential that we have obtained for the ionic

contribution. Again, if q1 = 0 and q2 < 0 (tetragonal compression) the 3z2 − r2 is higher in
energy. In conclusion, if we neglect the kinetic energy of the nuclei (limit Mα/me → ∞), the
ground state of the system can be calculated by minimizing a potential energy of the form

Û(q1, q2) = ÛJT + ÛPH
n = λ

(
q2 q1
q1 −q2

)
+

1

2
CE (q21 + q22) Î , (22)

where Î is the 2× 2 identity matrix. To find the minimum of (22), it is convenient to introduce
polar coordinates, which we define as q2 = −q cos θ, q1 = −q sin θ, so that for 0 < θ < π/2 we
have q1 ≤ 0 (compression of x̂ axis) and q2 ≤ 0 (compression of ẑ axis); this corresponds to
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the distortion of the octahedron labeled with number 1 in Fig. 1. In these coordinates

ÛJT = −λq

(
cos θ sin θ

sin θ − cos θ

)
.

The diagonalization of matrix (22) yields two eigenvalues; the lower energy branch

E−(q) = −λq +
CE
2
q2

takes the form of a mexican hat, shown in Fig. 10. The minimum of E−(q) is obtained for
q = q0 = λ/C and has value

EJT = −λ2/2CE;

the quantity EJT is defined as the Jahn-Teller energy of the system. The electronic ground state
can be written as

|θ〉G = − sin
θ − π

2
|x2 − y2〉+ cos

θ − π
2
|3z2 − r2〉.

The excited state (hole orbital), with energy

E+(q) = λq +
CE
2
q2,

is then given by

|θ〉E = − sin
θ

2
|x2 − y2〉+ cos

θ

2
|3z2 − r2〉.

The states |θ〉E with different θ are shown in Fig. 11. In the simple model discussed so far,
all states |θ〉G have the same Jahn-Teller energy. Cubic symmetry, however, only requires that
states

|θ〉, |θ + 2π/3〉, |θ − 2π/3〉
are degenerate. The additional (accidental) degeneracy is removed when we take into account
anharmonic terms, the lowest order of which has the form

Uanh(q1, q2) = A(q32 − 3q2q
2
1) = Aq3(cos3 θ − 3 cos θ sin2 θ) = −Aq3 cos 3θ

and yields the tetragonal distortion as a ground state, with θ = 0,±2π/3 for positiveA and with
θ = π, π ± 2π/3 for negative A. Higher-order terms can make the Q1 Jahn-Teller distortion
(θ = π/2, π/2± 2π/3) more stable [1]. For a periodic lattice, modeQ1 leads to a co-operative
distortion where long and short bonds alternate in the x and y direction; in such a case, the hole
orbital rotates by π/2 if we move from a Cu site to its Cu first-nearest neighbors in the ab plane.
Let us now analyze the different electronic configurations that can occur in perovskites. For
the electronic configuration 3d1 = 3t12g, the procedure is as the one illustrated above, except
that t2g states are 3-fold degenerate and form π bonds, which are weaker, therefore the splitting
introduced by the Jahn-Teller effect is smaller than for eg states. In the case of electronic
configurations 3dn with n > 1, to determine if the ion is Jahn-Teller active one has to consider
the degeneracies of the many-body state, including Coulomb repulsion. Weak Jahn-Teller states
are 3d1 (Ti3+ in LaTiO3) and 3d2 (V3+ in LaVO3), as also 3t42g, 3t52g, 3t42ge

2
g, 3t52ge

2
g; strong

Jahn-Teller configurations are, e.g., 3d9 (Cu2+ in KCuF3) and 3t32ge
1
g (Mn3+ in LaMnO3); the

configurations 3t32g and 3t32ge
2
g are not degenerate and therefore not Jahn-Teller active.
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5 Kugel-Khomskii superexchange

Let us now start from a totally different perspective, from the Hubbard model for a cubic per-
ovskite with partially filled eg shells. The Hamiltonian takes the form Ĥ = Ĥ0 + ĤT + ĤU

where

Ĥ0 =εeg
∑
i

∑
σ

∑
m

n̂imσ

ĤT =−
∑
i6=i′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ

ĤU =U
∑
i

∑
m

n̂im↑n̂im↓ +
1

2

∑
i

∑
σσ′

∑
m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′

−J
∑
i

∑
m6=m′

[
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

]
,

and where m,m′ = x2 − y2, 3z2 − r2. Kugel and Khomskii have shown that, in the large t/U
limit, this Hamiltonian can be mapped onto an effective generalized superexchange Hamiltonian
with an orbitally-ordered ground state. To understand this, let us simplify the problem and
consider first a system with only two atoms (i = A,B) for which the hopping matrix is diagonal
in the orbitals

ĤT = −t
∑
σ

∑
m

[
c†AmcBm + c†BmcAm

]
.

Furthermore, let us simplify the Coulomb interaction and neglect the spin-flip and pair-hopping
terms

ĤU =U
∑
i=AB

∑
m

n̂im↑n̂im↓ +
1

2

∑
i=AB

∑
σσ′

∑
m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′ .

Finally, we assume that the systems has one electron per atom (quarter filling, e1g configuration).
In the t = 0 or atomic limit there are two types of possible states for this system, those in
which each atom is occupied by one electron, |1, 1〉α, and those in which one atom has two
electrons and the other zero, |2, 0〉α′ . The 16 states of type |1, 1〉α, all degenerate with energy
Eα(1, 1) = 2εeg , can be written as c†AmAσAc

†
BmBσB

|0〉 with α = (mAσA,mBσB); here miσi are
the quantum numbers for the electron at site i = A,B. There are 12 states |2, 0〉α with one atom
occupied by two electrons; they are listed below together with their energies

|2, 0〉α′ Eα′(2, 0)

|2, 0〉i1m = c†im↑c
†
im ↓|0〉 2εeg + U

|2, 0〉i2m = c†im↑c
†
im′↓|0〉 2εeg + U − 2J m′ 6= m

|2, 0〉i3σ = c†imσc
†
im′σ|0〉 2εeg + U − 3J m′ 6= m

The Coulomb repulsion U is positive and J is small with respect to U ; therefore the |1, 1〉α
states define the ground-state manifold. If t is finite but small (t/U � 1), we can treat ĤT as
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Fig. 12: Superexchange energy gain for possible quarter-filling ground states of a two-site
2-fold degenerate Hubbard model with orbital- and spin-diagonal hopping matrices.

a perturbation, and calculate the second-order correction to the energy of states |1, 1〉α. This
correction is always negative (energy gain) and it is given by the matrix

∆Eα1,α2(1, 1) = −
∑
α′

α1〈1, 1|ĤT |2, 0〉α′
1

Eα′(2, 0)− Eα(1, 1)
α′〈2, 0|ĤT |1, 1〉α2

There are four interesting cases, depicted in Fig. 12. The first is the ferro-magnetic (same spin)
and antiferro-orbital (different orbitals) state, first line of the figure. The corresponding second
order energy gain (α1 = α2 = mσ,m′σ) is

∆Eα1,α1(1, 1) = − 2t2

U − 3J
.

For the ferro-magnetic (same spin) and ferro-orbital (same orbital) state (second line in the
figure, α1 = α2 = mσ,mσ) the energy gain is, instead, zero

∆Eα1,α1(1, 1) = 0.

The reason is that no hopping is possible due to the Pauli principle. For the antiferro-magnetic
antiferro-orbital state (third line, α1 = α2 = mσ,m′ − σ), we have

∆Eα1,α1(1, 1) = − 2t2

U − 2J
,

and finally for the antiferro-magnetic ferro-orbital state (α1 = α2 = mσ,m− σ) we find

∆Eα1,α1(1, 1) = −2t2

U
.
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Among these four states, the ferro-magnetic antiferro-orbital state is thus the lowest in energy.
The main message is that the system gains superexchange energy by occupying preferentially
different orbitals with the same spin, although the orbitals are by themselves degenerate. The
16 × 16 matrix of the second-order energy corrections ∆Eα1,α2(1, 1) can be rewritten as the
effective superexchange Hamiltonian

ĤSE =2Γ−+

[
SA · SB − 1

4

] [
OA
z O

B
z +

1

4

]
+ 2Γ+−

[
1

4
+ SAz S

B
z

] [
OA ·OB − 1

4

]
+2Γ−−

[(
SA · SB − SAz SBz

)(
OA ·OB −OA

z O
B
z

)
−
(
SAz S

B
z −

1

4

)(
OA
z O

B
z −

1

4

)]

where Oi = τi/2 are operators acting only on orbital degrees of freedom and τ are the pseudo-
spin operators introduced in the previous section, Eq. (21), and

Γ−+ =
4t2

U
Γ+− =

4t2

U − 3J
Γ−− = − 4t2

U − 2J
.

When the second-order Hamiltonian is written in this form it is immediately clear that, among
the four states we considered, the ferro-magnetic antiferro-orbital state is lower in energy. This
happens because the superexchange coupling Γ+− is the largest. If the orbital degeneracy is
one, we can replace the terms OA ·OB and OA

z OB
z with the ferro-orbital value 1/4; then, the

terms proportional to Γ+− and Γ−− drop out and we recover the Heisenberg superexchange
Hamiltonian, as expected for the one-band Hubbard model.

What about KCuF3 and LaMnO3? If we consider only hopping integrals between neighboring
B sites in the cubic perovskite structure, the hopping integral matrices take the simple form

ti,i±ẑmm′ = tε

(
0 0

0 1

)
ti,i±x̂mm′ = tε

(
3
4

√
3
4

√
3
4

1
4

)
ti,i±ŷmm′ = tε

(
3
4
−
√
3
4

−
√
3
4

1
4

)
. (23)

The structure of these matrices can be obtained by using Slater-Koster two-center integrals. The
only non-zero hopping integral in the ẑ direction is the one between |3z2 − r2〉 states. As we
have previously seen by using the downfolding approach, it is given by tε = V 2

pdσ/(ε− εp).

As in the case of the two-site molecule, for integer filling (n electrons per atom) and in the
large tε/U limit the lattice Hubbard model can be mapped onto an effective superexchange
Hamiltonian by downfolding high-energy states in which some of the atoms have an electron
number larger than n. Only two electronic configurations are relevant for orbital ordering, e1g
(LaMnO3) and e3g (KCuF3). The remaining partially filled state, e2g, is magnetic with S = 1 but,
due to Hund’s rule coupling J , it exhibits no orbital degeneracy (L = 0). After excluding e2g we
can, for simplicity, set J = 0. Let us now construct all atomic states |Ne〉α with Ne electrons.
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For a single atom they are

|Ne〉α Eα′(Ne) d(Ne)

|0〉 E(0) = 0 d(0) = 1

|1〉 = c†mσ|0〉 E(1) = εeg d(0) = 4

|2〉 = c†mσc
†
m′σ′ |0〉 E(2) = 2εeg + U d(0) = 6

|3〉 = c†mσc
†
m′↑c

†
m′↓|0〉 E(3) = 3εeg + 3U d(0) = 4

|4〉 = c†m↑c
†
m↓c

†
m′↑c

†
m′↓|0〉 E(4) = 4εeg + 6U d(0) = 1

The total (spin and orbital) degeneracy of the n-electron sector, d(Ne), is given in the third
column. Let us consider two neighboring sites i and i′ and their states |Ne〉iα and |N ′e〉i

′

α′ , where
α and α′ run over all degenerate states in the Ne-electron sector. We define the collective
state of such a two-site system as |Ne〉iα|N ′e〉i

′

α′ . Let us start from an e1g configuration. In the
large-U limit, at quarter filling (n = 1) the ground state will be within the Ne = N ′e = 1

manifold, |G〉 = {|1〉iα|1〉i
′

α′}. The latter has a degeneracy 4N , where N is the number of
sites, here N = 2; this degeneracy can be partially lifted via virtual excitations to the doubly
occupied states |E〉 = {|2〉iα|0〉i

′}, {|0〉i|2〉i′α′}, which in turn generate an effective low-energy
Hamiltonian ĤSE. We can again calculate ĤSE by treating ĤT as a perturbation.
Let us consider at first only pairs of sites along the ẑ axis. In second-order perturbation theory
in ĤT , we obtain for the lattice the following effective Hamiltonian

Ĥ ẑ
SE ∼ −

1

U

∑
E

ĤT |E〉〈E|Ĥ†T

= − t
2

U

1

2

∑
ii′

∑
σσ′

∑
α

{
c†iτσ|0〉i i〈0|ciτσ′

[
ci′τσ|2〉i

′

α
i′

α〈2|c
†
i′τσ′

]
+ (i←→ i′)

}
δτ,↘

= −2t2

U

1

2

∑
ii′

∑
σσ′

{
(−1)−σ

′−σP i
τσ−σ′P i′

τσ′−σ +
1

2

[
P i
τσσP

i′

−τσ′σ′ + P i
−τσσP

i′

τσ′σ′

]}
δτ,↘,

where we already replaced in the denominator ∆E = E(2) + E(0) − 2E(1) with its value,
U , and where, once more, | ↘ 〉 = |3z2 − r2〉, | ↗ 〉 = |x2 − y2〉. In Hamiltonian Ĥ ẑ

SE we
introduced the operators P i

τσσ′ , which are given by

P i
τσσ′ = c†iτσ|0〉〈0|ciτσ′ = ôzττ

[
ŝzσσ′ + ŝ+σσ′ + ŝ−σσ′

]
.

In this expression on the right-hand side we rewrote P i
τσσ′ as product of an orbital and a spin

term, defined as follows:

ôzττ ′ =
[ni

2
Î + (−1)τOi

z

]
δττ ′ ŝzσσ =

[ni
2
Î + (−1)σSiz

]
δσσ′

ô+ττ ′ =Oi
+(1− δττ ′) ŝ+σσ′ =Si+(1− δσσ′)

ô−ττ ′ =Oi
−(1− δττ ′) ŝ−σσ′ =Si−(1− δσσ′) ,
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where (−1)σ = +1 for spin (pseudospin) up and −1 otherwise; the operator Î is the identity
matrix. Hence, we can express the effective Hamiltonian as

Ĥ ẑ
SE =

Γ

2

∑
ii′

[
Si · Si′ − nini′

4

] [
Oi
z −

ni
2

] [
Oi′

z −
ni′

2

]
+

1

2

[
Oi
zO

i′

z −
nini′

4

]
,

where Γ = 4t2/U > 0. If we drop all processes involving orbital | ↗〉 we recover the usual
superexchange Heisenberg Hamiltonian for the one-band Hubbard model

Ĥ ẑ
SE =

Γ

2

∑
ii′

[
Si · Si′ − nini′

4

]
.

Let us now consider two neighboring sites and the energy of some possible states |G〉 =

{|1〉iα|1〉i
′

α′}. A ferro-magnetic spin configuration has energy

∆Eτ↑,τ ′↑ = −Γ
4

(1− δτ,τ ′),

hence, there is an energy gain if the electrons occupy different orbitals, i.e., if the systems has
antiferro-orbital arrangement. Let us consider now a antiferro-magnetic spin arrangement. The
corresponding energy is

∆Eτ↑,τ ′↓ = −Γ
2
δτ,τ ′δτ,↘ −

Γ

4
(1− δτ,τ ′)

The expression above shows that in the antiferro-magnetic case the system gains more energy if
the occupied state is | ↘〉 at both sites. Up to now we considered magnetically ordered states.
In LaMnO3 and KCuF3, however, orbital order takes place well above the magnetic transition.
Let us then assume that the system is orbitally ordered but paramagnetic, with occupied state

|θ〉i =− sin
θ − π

2
|x2 − y2〉+ cos

θ − π
2
|3z2 − r2〉

at site i and |θ〉i±ẑ = |θ〉i at the neighboring site i′ = i ± ẑ. This choice corresponds to
ferro-orbital order along ẑ, the type of stacking realized in LaMnO3 (see Fig. 13). What is the
value of θ than minimizes the energy? We can calculate it using the variational method. The
superexchange energy gain with respect to a paramagnetic paraorbital state is given by

∆E(θ) =
Γ

16

[
cos2(θ − π) + 2 cos(θ − π)

]
.

This function is minimized for θ = 0, an angle corresponding to a tetragonal compression. To
determine the optimal angle for the three-dimensional system we have in addition to take into
account the effective Hamiltonian stemming from virtual hoppings in the remaining directions.
Due to cubic symmetry, if we rotate the quantization axis, the superexchange Hamiltonian has
the same form in all directions; to sum up all terms we have merely to rotate back the quantiza-
tion axis to ẑ. Hence, we have to make the replacements

Oi
z →︸︷︷︸
ẑ→x̂

− 1

2
Oi
z −
√

3

2
Oi
x

Oi
z →︸︷︷︸
ẑ→ŷ

− 1

2
Oi
z +

√
3

2
Oi
x
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Fig. 13: Orbital order (LDA+DMFT calculations) in the rare-earth perovskite TbMnO3 with
the GdFeO3-type structure. From Ref. [6]. This system has the same structure of LaMnO3.

Let us assume antiferro-orbital order in the plane, again as in the case of LaMnO3, shown in
Fig. 13. This means that, for i′ = i± x̂ or i′ = i± ŷ, the occupied state is

|θ〉i′ = + sin
θ − π

2
|x2 − y2〉+ cos

θ − π
2
|3z2 − r2〉.

We can easily verify that |θ〉i′ = | − θ + 2π〉i. This is state |θ〉i rotated by π/2 (x → y,
y → −x). The total superexchange energy gain with respect to a paramagnetic paraorbital state
is then given by

∆E(θ) =
Γ

16

[
3 cos2(θ − π)− 3

2

]
.

This expression has a minimum for θ = π/2 (Jahn-Teller-likeQ1 distortion). For the e3g config-
uration (KCuF3), due to particle-hole symmetry, we obtain the same result. This can be verified
by observing, first of all, that the eg bands obtained from the hopping-integrals matrices (23) –
bands which we have discussed in detail in Sec. 3 – are symmetric with respect to the Fermi
level for half filling. In addition, the energy difference entering in the denominator of the su-
perexchange Hamiltonian for an e3g ground state, ∆E = E(4) + E(2) − 2E(3), has the same
value (∆E = U ) as in the case of an e1g ground state. The main difference between LaMnO3 (e1g)
and KCuF3 (e3g), for what concerns the results presented in this section, is that the stacking along
ẑ, ferro-orbital for LaMnO3, can be either antiferro- or ferro-orbital for KCuF3; Fig. 1 shows
the case of antiferro-orbital arrangement. Remarkably, the variational energy gain ∆E(θ) is the
same for both types of stacking along ẑ, i.e., for |θ〉i±ẑ = |θ〉i and for |θ〉i±ẑ = | − θ + 2π〉i.
The conclusions of this section are thus identical for LaMnO3 and KCuF3.
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Fig. 14: Orbital order transition in KCuF3. Orbital polarization p as a function of temperature
calculated in LDA+DMFT. R: experimental structure. Circles: idealized structures Rδ and Iδ
with decreasing crystal-field and U = 7 eV. Green/Triangles: U = 9 eV, I0 only. Red/Squares:
two-sites CDMFT. From Ref. [3].

6 The origin of orbital order

As we discussed in the introduction, the hallmark of orbital order is the co-operative Jahn-
Teller distortion. This static distortion gives rise to a crystal field, which splits the otherwise
degenerate eg doublet. Due to Coulomb repulsion, it turns out that even a crystal-field splitting
much smaller than the band width can lead to orbital order. The importance of this effect for real
materials has been realized first for LaTiO3 and YTiO3 [4]. This reduction of orbital fluctuation
is dynamical, but it can be already understood from the static Hartree-Fock contribution to the
self-energy; the latter yields an effective enhancement of the crystal-field proportional to orbital
polarization p. For an eg system p is defined as the difference in occupation between the most
and the least occupied orbital, |1〉 and |2〉, the so-called natural orbitals. Thus p = n1 − n2, and
the Hartree-Fock self-energy correction to the crystal-field splitting is

∆εCF = Σ2(ωn →∞)−Σ1(ωn →∞) ∼ 1

2
(U − 5J)p.

If p > 0, as it happens in the presence of a crystal-field εCF = ε2 − ε1 > 0, this term ef-
fectively increases the crystal-field splitting. This effect is at work not only in LaTiO3 and
YTiO3, but also in several other systems with different electronic structure and even smaller
crystal-field splittings. The case of 3d9 KCuF3 and 3d4 LaMnO3 is extreme: the eg crystal-field
splitting is∼ 0.5−1 eV; with such a large splitting, orbital fluctuations are suppressed up to the
melting temperature. Thus, Coulomb repulsion makes the Jahn-Teller mechanism proposed by
Kanamori very efficient. This result, however, does not clarify which of the two mechanisms,
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Fig. 15: Orbital order transition in LaMnO3. Orbital polarization p (left) and (right) occupied
state |θ〉 = cos θ

2
|3z2 − r2〉 + sin θ

2
|x2 − y2〉 as a function of temperature. Solid lines: 300 K

experimental structure (R11) and 800 K experimental structure. Dots: orthorhombic structures
with half (R6) or no (R0) Jahn-Teller distortion. Pentagons: 2 (full) and 4 (empty) site CDMFT.
Dashes: ideal cubic structure (I0). Circles: U = 5 eV. Diamonds: U = 5.5 eV. Triangles:
U = 6 eV. Squares: U = 7 eV. Crystal field splittings (meV): 840 (R11), 495 (R6), 168 (R800 K

2.4 ),
and 0 (I0). From Ref. [6].

Kugel-Khomskii superexchange or Kanamori electron-phonon coupling, plays the major role
in causing orbital order and stabilizing the distortion. Remarkably, Coulomb repulsion has also
an important effect on structure stabilization. LDA+U total energy calculations have early on
shown that the co-operative Jahn-Teller distortion is stabilized by U [10,11], a result confirmed
recently by LDA+DMFT [12]. This could be – and initially was – taken as an indication that su-
perexchange is the driving mechanism. If this is the case, it is, however, hard to explain why the
magnetic transition temperature (TN ∼ 40 K for KCuF3 and TN ∼ 140 K for LaMnO3), also
determined by superexchange, is relatively low while the co-operative Jahn-Teller distortion
persists up to the melting temperature. On the other hand, if Kugel-Khomskii superexchange is
not the driving mechanism, the associated energy gain should be small with respect to the total
energy gain due to the Jahn-Teller distortion.
To clarify the nature of the dominant mechanism, we disentangled electron-phonon and su-
perexchange effects. To this end we performed LDA+DMFT (single-site and cluster) calcula-
tions for a series of hypothetical structures, in which the distortions (and thus the crystal-field
splitting) are progressively reduced. In the case of KCuF3, these hypothetical structures are
shown in Fig. 1, and the corresponding eg bands are shown in Fig. 7. For each structure we
calculate the order parameter, the orbital polarization p. In Fig. 14 we show p as a function of
temperature. For the experimental structure (R in the figure), we find that p(T ) ∼ 1 up to the
melting temperature. The empty orbitals on different sites make the pattern shown in Fig. 1. For
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Fig. 16: Superexchange energy gain for LaMnO3, ∆E ∼ −TKK/2. From Ref. [6].

the ideal cubic structure I0, we find that p(T ) = 0 at high temperature, but a transition occurs at
TKK ∼ 350 K. This TKK is the critical temperature in the absence of electron-phonon coupling,
i.e., the superexchange critical temperature. Our results show that around 350 K superexchange
alone could indeed drive the co-operative Jahn-Teller distortion; it cannot, however, explain the
presence of a co-operative Jahn-Teller distortion above 350 K. We performed a similar study
fo LaMnO3. For this t32ge

1
g system we have to take into account the Hund’s rule coupling be-

tween eg electrons and t2g spins, St2g . Thus the minimal model to understand orbital order is
the modified Hubbard model [13]

H =−
∑
ii′

∑
σσ′

∑
mm′

ti,i
′

m,m′ u
i,i′

σ,σ′ c
†
imσci′m′σ′ − h

∑
im

(n̂im↑ − n̂im↓)

+U
∑
im

n̂im↑n̂im↓ +
1

2

∑
i

∑
σσ′

∑
m(6=m′)

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′ .

Here the local magnetic field h = JSt2g describes the Hund’s rule coupling to t2g electrons,
and uiσ,i′σ′ = 2/3(1 − δi,i′) accounts for the disorder in orientation of the t2g spins. By per-
forming the same type of analysis as for KCuF3, we find the impressively large TKK ∼ 700 K
(Fig. 15). There is a small point neglected so far; besides the co-operative Jahn-Teller distor-
tion and tetragonal compression, LaMnO3 exhibits a GdFeO3-type distortion (Fig. 13), which
tends to reduce the eg band width [4]. To account for this we studied the orbital-order tran-
sition for the ideal structure R0, which retains all distortions except for the Jahn-Teller one.
For structure R0 we cannot obtain TKK from p(T ), because, due to the ∼ 200 meV crystal-
field splitting, Coulomb repulsion strongly suppress orbital fluctuations even at 1500 K. We
can, however, study the evolution with temperature of the occupied orbital, here defined as
|θ〉 = cos θ

2
|3z2 − r2〉+ sin θ

2
|x2 − y2〉. For the experimental structure (R11) we find θ ∼ 108o,

in agreement with experiments, while for the I0 structure we obtain θ = 90o. For the R0 struc-
ture we find two regimes: At high temperature the occupied orbital is the lower-energy crystal-
field orbital (θ = 180o). At TKK ∼ 550 K superexchange rotates this θ towards 90o, reaching
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1300 in the zero-temperature limit; this is the actual superexchange transition temperature for
LaMnO3. Such TKK is still remarkably large, however not sufficiently to explain the persistence
of the Jahn-Teller distortion in nanoclusters up to basically melting temperature [14]. Further-
more, the superexchange energy gain associated with orbital order (Fig.16) is small compared
to the total energy gain due to the Jahn-Teller distortion, calculated via LDA+U [10, 11] or
LDA+DMFT [12]. Thus, as in the case of KCuF3, the conclusion is that a static crystal-field
splitting, as the one generated by the electron-lattice coupling, is essential to explain orbital
ordering at high temperature.

7 Conclusion

In this lecture we have studied two mechanisms that can lead to orbital ordering phenomena in
Mott insulators. The first one is well illustrated in the influential paper of Kanamori, Ref. [1].
In this picture, a co-operative Jahn-Teller distortion generates a static crystal-field, which in
turn splits orbitals otherwise degenerate. This mechanism is made more efficient by Coulomb
repulsion; the latter enhances the orbital polarization, leading to a orbitally-ordered state even
if the crystal-field splitting is a mere fraction of the bandwidth [4]. The second mechanism,
proposed by Kugel and Khomskii [2] in 1973, predicts orbital ordering even in the absence of
a static crystal field; in this picture, orbital ordering is due to the superexchange interaction,
the effective interaction emerging from the orbitally-degenerate Hubbard model in the large U
limit. Since both mechanism predict a similar type of order, identifying which one dominates
for real materials is very difficult. Indeed, the origin of orbital order has been a matter of debate
for decades. In the last section we saw how this problem was recently solved by disentangling
the superexchange Kugel-Khomskii interaction from the rest. It was shown for the two most
representative orbitally-ordered materials, KCuF3 and LaMnO3, that although Kugel-Khomskii
superexchange is very efficient, it cannot alone explain the presence of a co-operative Jahn-
Teller distortion up to the melting temperature. An interaction giving directly rise to a crystal-
field splitting, e.g., electron-phonon coupling, is necessary to explain experimental findings.
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Appendices

A Constants and units

In this lecture, formulas are given in atomic units. The unit of mass m0 is the electron mass
(m0 = me), the unit of charge e0 is the electron charge (e0 = e), the unit of length a0 is the
Bohr radius (a0 = aB ∼ 0.52918 Å), and the unit of time is t0 = 4πε0~a0/e2. In these units,
me, aB, e and 1/4πε0 have the numerical value 1, the speed of light is c = 1/α ∼ 137, and the
unit of energy is 1Ha = e2/4πε0a0 ∼ 27.211 eV.

B Atomic orbitals

B.1 Radial functions

The nlm hydrogen-like atomic orbital is given by

ψnlm(ρ, θ, φ) = Rnl(ρ)Y m
l (θ, φ),

whereRnl(ρ) is the radial function and Y l
m(θ, φ) a spherical harmonic, ρ = Zr and Z the atomic

number. In atomic units, the radial functions are

Rnl(ρ) =

√(
2Z

n

)3
(n− l − 1)!

2n[(n+ l)!]3
e−ρ/n

(
2ρ

n

)l
L2l+1
n−l−1

(
2ρ

n

)
,

where L2l+1
n−l−1 are generalized Laguerre polynomials of degree n− l − 1.

The radial function for n = 1, 2, 3 are

R1s(ρ) = 2 Z3/2 e−ρ

R2s(ρ) = 1
2
√
2
Z3/2 (2− ρ) e−ρ/2

R2p(ρ) = 1
2
√
6
Z3/2 ρ e−ρ/2

R3s(ρ) = 2
3
√
3
Z3/2 (1− 2ρ/3 + 2ρ2/27) e−ρ/3

R3p(ρ) = 4
√
2

9
√
3
Z3/2 ρ(1− ρ/6) e−ρ/3

R3d(ρ) = 2
√
2

81
√
15
Z3/2 ρ2 e−ρ/3

where we used the standard notation s for l = 0, p for l = 1 and d for l = 2.

B.2 Real harmonics

To study solids, it is usually convenient to work in the basis of real harmonics. The latter are
defined in terms of the spherical harmonics as follows:

yl0 = Y l
0 , ylm =

1√
2

(Y l
−m + (−1)mY l

m), yl−m =
i√
2

(Y l
−m − (−1)mY l

m), m > 0.
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Fig. 17: The s (first row), py, pz, px (second row), and dxy, dyz, d3z2−r2 , dxz, dx2−y2 (last row)
real harmonics.

Using the definitions x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, we can express the
l = 0, 1, 2 real harmonics (Fig. 17) as

s = y00 = Y 0
0 =

√
1
4π

py = y1−1 = i√
2
(Y 1

1 + Y 1
−1) =

√
3
4π

y/r

pz = y10 = Y 0
2 =

√
3
4π

z/r

px = y11 = 1√
2
(Y 1

1 − Y 1
−1) =

√
3
4π

x/r

dxy = y2−2 = i√
2
(Y 2

2 − Y 2
−2) =

√
15
4π

xy/r2

dyz = y2−1 = i√
2
(Y 2

1 + Y 2
−1) =

√
15
4π

yz/r2

d3z2−r2 = y20 = Y 0
2 =

√
15
4π

1
2
√
3

(3z2 − r2)/r2

dxz = y21 = 1√
2
(Y 2

1 − Y 2
−1) =

√
15
4π

xz/r2

dx2−y2 = y22 = 1√
2
(Y 2

2 + Y 2
−2) =

√
15
4π

1
2

(x2 − y2)/r2
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B.3 Slater-Koster integrals

The interatomic Slater-Koster two-center integrals are defined as

Elm,l′m′ =

∫
dr ψlm(r − d)V (r − d)ψl′m′(r).

They can be expressed as a function of radial integrals Vll′α, which scale with the distance d
roughly as d−(l+l′+1) [15], and direction cosines, defined as

l = d · x̂/d, m = d · ŷ/d, n = d · ẑ/d.

The Slater-Koster integrals for s-, p-, and d-orbitals [15] are listed below.

Es,s = Vssσ

Es,x = lVspσ

Ex,x = l2Vppσ +(1− l2)Vppπ
Ex,y = lmVppσ −lmVppπ
Ex,z = lnVppσ −lnVppπ
Es,xy =

√
3lmVsdσ

Es,x2−y2 = 1
2

√
3(l2 −m2)Vsdσ

Es,3z2−r2 = [n2 − 1
2(l2 +m2)]Vsdσ

Ex,xy =
√

3l2mVpdσ +m(1− 2l2)Vpdπ

Ex,yz =
√

3lmnVpdσ −2lmnVpdπ

Ex,zx =
√

3l2nVpdσ +n(1− 2l2)Vpdπ

Ex,x2−y2 =
√
3
2 l[(l

2 −m2)]Vpdσ +l(1− l2 +m2)Vpdπ

Ey,x2−y2 =
√
3
2 m[(l2 −m2)]Vpdσ −m(1 + l2 −m2)Vpdπ

Ez,x2−y2 =
√
3
2 n[(l2 −m2)]Vpdσ −n(l2 −m2)Vpdπ

Ex,3z2−r2 = l[n2 − 1
2(l2 +m2)]Vpdσ −

√
3ln2Vpdπ

Ey,3z2−r2 = m[n2 − 1
2(l2 +m2)]Vpdσ −

√
3mn2Vpdπ

Ez,3z2−r2 = n[n2 − 1
2(l2 +m2)]Vpdσ +

√
3n(l2 +m2)Vpdπ

Exy,xy = 3l2m2Vddσ +(l2 +m2 − 4l2m2)Vddπ +(n2 + l2m2)Vddδ

Exy,yz = 3lm2nVddσ +ln(1− 4m2)Vddπ +ln(m2 − 1)Vddδ

Exy,zx = 3l2mnVddσ +mn(1− 4l2)Vddπ +mn(l2 − 1)Vddδ

Exy,x2−y2 = 3
2 lm(l2 −m2)Vddσ 2lm(m2 − l2)Vddπ 1

2 lm(l2 −m2)Vddδ

Eyz,x2−y2 = 3
2mn(l2 −m2)Vddσ −mn[1 + 2(l2 −m2)]Vddπ +mn[1 + 1

2(l2 −m2)]Vddδ

Ezx,x2−y2 = 3
2nl(l

2 −m2)Vddσ +nl[1− 2(l2 −m2)]Vddπ −nl[1− 1
2(l2 −m2)]Vddδ

Exy,3z2−r2 =
√

3lm[n2 − 1
2(l2 +m2)]Vddσ −2

√
3lmn2Vddπ

√
3
2 lm(1 + n2)Vddδ

Eyz,3z2−r2 =
√

3mn[n2 − 1
2(l2 +m2)]Vddσ +

√
3mn(l2 +m2 − n2)Vddπ −

√
3
2 mn(l2 +m2)Vddδ

Ezx,3z2−r2 =
√

3ln[n2 − 1
2(l2 +m2)]Vddσ +

√
3ln(l2 +m2 − n2)Vddπ −

√
3
2 ln(l2 +m2)Vddδ

Ex2−y2,x2−y2 = 3
4(l2 −m2)2Vddσ +[l2 +m2 − (l2 −m2)2]Vddπ +[n2 + 1

4(l2 −m2)2]Vddδ

Ex2−y2,3z2−r2 =
√
3
2 (l2 −m2)[n2 − 1

2(l2 +m2)]Vddσ +
√

3n2(m2 − l2)Vddπ +1
4

√
3(1 + n2)(l2 −m2)Vddδ

E3z2−r2,3z2−r2= [n2 − 1
2(l2 +m2)]2Vddσ +3n2(l2 +m2)Vddπ

3
4(l2 +m2)2Vddδ
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1 Introduction

Spontaneous symmetry breaking is amongst the most important concepts in condensed matter
physics. The fact that a ground or thermal state of a system does not obey its full symmetry
explains most of the well-known phase transitions in solid state physics like crystallization
of a fluid, superfluidity, magnetism, superconductivity, and many more. A standard concept
for investigating spontaneous symmetry breaking is the notion of an order parameter. In the
thermodynamic limit it is non-zero in the symmetry-broken phase and zero in the disordered
phase.
Another concept to detect spontaneous symmetry breaking less widely known but equally pow-
erful is the tower of states analysis (TOS) [1, 2]. The energy spectrum, i.e., the eigenvalues of
the Hamiltonian of a finite system in a symmetry-broken phase, has a characteristic and system-
atic structure: several eigenstates are quasi-degenerate on finite systems and become degenerate
in the thermodynamic limit and possess certain quantum numbers. The TOS analysis deals with
understanding the spectral structure and predicting quantum numbers of the groundstate man-
ifold. Also on finite systems spontaneous symmetry breaking manifests itself in the structure
of the energy spectra which are accessible via numerical simulations. Most prominently the
Exact Diagonalization method [3, 4] can exactly calculate these spectra and quantum numbers
on moderate system sizes. The predictions of TOS analyses are highly nontrivial statements
which can be used to unambiguously identify symmetry-broken phases. Thus TOS analysis is a
powerful technique to investigate many condensed matter systems using numerical simulations.
The goal of these lecture notes is to explain the specific structure of energy spectra and their
quantum numbers in symmetry-broken phases. The anticipated structure is then compared to
several actual numerical simulations using Exact Diagonalization.
These lecture notes have been written at the kind request of the organizers of the Jülich 2016
Autumn School on Correlated Electrons. The notes build on and complement previously avail-
able lecture notes by Claire Lhuillier [2], by Grégoire Misguich and Philippe Sindzingre [5] and
by Karlo Penc and one of the authors [3].
The outline of these notes is as follows: in Section 2 we introduce the tower of states of con-
tinuous symmetry breaking and derive its scaling behavior. We investigate a toy model which
shows most of the relevant features. Section 3 explains in detail how the multiplicities and
quantum numbers in the TOS can be predicted by simple group theoretical methods. To apply
these methods we discuss several examples in Section 4 and compare them to actual numerical
data from Exact Diagonalization.

2 Tower of states

We start our discussion of spontaneous symmetry breaking of continuous symmetries by inves-
tigating the Heisenberg model on the square lattice. Its Hamiltonian is given by

H = J
∑
〈i,j〉

Si · Sj (1)
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and is invariant under global SU(2) spin rotations, i.e., a rotation of every spin on each site with
the same rotational SU(2) matrix. Therefore the total spin

S2
tot =

(∑
i

Si

)2

= Stot(Stot + 1) (2)

is a conserved quantity of this model and every state in the spectrum of this Hamiltonian can
be labeled via its total spin quantum number. The Heisenberg Hamiltonian on the square lattice
has the property of being bipartite: The lattice can be divided into two sublattices A andB such
that every term in Eq. (1) connects one site from sublattice A to sublattice B. It was found out
early [1] that the groundstate of this model bears resemblance with the classical Néel state

|Néel class.〉 = |↑↓↑↓ · · ·〉 (3)

where the spin-ups live on the A sublattice and the spin-downs live on the B sublattice. This
state does not have the total spin as a good quantum number. From elementary spin algebra we
know that it is rather a superposition of several states with different total spin quantum numbers.
For example the 2-site state

|↑↓〉 =
|↑↓〉 − |↓↑〉

2
+
|↑↓〉+ |↓↑〉

2
= |Stot = 0,m = 0〉+ |Stot = 1,m = 0〉 (4)

is the superposition of a singlet (Stot = 0) and a triplet (Stot = 1). Therefore if such a state
were to be a groundstate of Eq. (1) several states with different total spin would have to be
degenerate. It turns out that on finite bipartite lattices this is not the case: The total groundstate
of the Heisenberg model on bipartite lattices can be proven to be a singlet state with Stot = 0.
This result is known as Marshall’s Theorem [6–8]. So how can a Néel state resemble the singlet
groundstate? To understand this we drastically simplify the Heisenberg model and investigate a
toy model whose spectrum we can fully understand analytically.

2.1 Toy model: the Lieb-Mattis model

By introducing the Fourier-transformed spin operators

Sk =
1√
N

N∑
j=0

eik·xjSj , (5)

we can rewrite the original Heisenberg Hamiltonian in terms of these operators as

H = J
∑
k∈B.Z.

ωk Sk · S−k , (6)

where ωk = cos(kx) + cos(ky) and the sum over k runs over the momenta within the first
Brillouin zone. Let k0 = (π, π) be the ordering wavevector which is the dual to the translations
that leave the square Néel state invariant. We now want to look at the truncated Hamiltonian

HLM = 2J
(
S2
(0,0) − Sk0 · S−k0

)
(7)
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where we omit all Fourier components in Eq. (6) except k = (0, 0) and k0. This model is
called the Lieb-Mattis model [7] and has a simple analytical solution. To see this, we notice
that Eq. (7) is given by

HLM =
4J

N

∑
i∈A, j∈B

Si · Sj (8)

in real space where A and B denote the two bipartite sublattices within the square lattice and
each spin is only coupled with spins in the other sublattice. The interaction strength is equal
regardless of the distance between the two spins. Thus this model is not likely to be experi-
mentally relevant. Yet it will serve as an illustrative example how breaking the spin-rotational
symmetry manifests itself in the spectrum of a finite size system. We can write Eq. (8) as

HLM =
4J

N

( ∑
i,j∈A∪B

Si · Sj −
∑
i,j∈A

Si · Sj −
∑
i,j∈B

Si · Sj
)

(9)

=
4J

N
(S2

tot − S2
A − S2

B) (10)

From this it is obvious that the Lieb-Mattis model can be considered as the coupling of two
large spins SA and SB to a total spin Stot.
We find that the operators S2

tot, S
z
tot, S

2
A and S2

B commute with this Hamiltonian and therefore
the sublattice spins SA and SB as well as the total spin Stot and its z-component mtot are good
quantum numbers for this model. For a lattice with N sites (N even) the sublattice spins can be
chosen in the range SA,B ∈ {0, 1, . . . , N/4} and by coupling them

Stot ∈ {|SA − SB|, |SA − SB|+ 1, . . . , SA + SB} (11)

mtot ∈ {−Stot,−Stot + 1, . . . , Stot} (12)

can be chosen.1 A state |Stot,m, SA, SB〉 is thus an eigenstate of the systems with energy

E(Stot,m, SA, SB) =
4J

N
[Stot(Stot + 1)− SA(SA + 1)− SB(SB + 1)] (13)

independent of m, so each state is at least (2Stot + 1)-fold degenerate.

Tower of states We first want to consider only the lowest energy states for each Stot sector.
These states build the famous tower of states and collapse in the thermodynamic limit to a
highly degenerate groundstate manifold, as we will see now.
For a given total spin Stot the lowest energy states are built by maximizing the last two terms in
Eq. (13) with SA = SB = N/4 and

E0(Stot) = E(Stot,m,N/4, N/4) =
4J

N
Stot(Stot + 1)− J

(
N

4
+ 1

)
. (14)

The groundstate of a finite system will thus be the singlet state with Stot = 0.2 On a finite system
the groundstate is, therefore, totally symmetric under global spin rotations and does not break

1This set of states spans the full Hilbert space of the model.
2The groundstate of the Heisenberg model Eq. (1) on a bipartite sublattice with equal sized sublattices is also

proven to be a singlet state Stot = 0 by Marshall’s Theorem [8, 6, 7].
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the SU(2)-symmetry. In the thermodynamic limit N → ∞, however, the energy of all states
scales to zero and all these states constitute the groundstate manifold.
The classical Néel state with fully polarized spins on each sublattice can be built out of these
states by a linear combination of all the Stot levels with mtot = 0 [2]. All other Néel states
pointing in a different direction in spin-space can be equivalently built out of this groundstate
manifold by considering linear combinations with other mtot quantum numbers. In the thermo-
dynamic limit, any infinitesimal small field will force the Néel state to choose a direction and
the groundstate spontaneously breaks the SU(2)-symmetry.
The states which constitute the groundstate manifold in the thermodynamic limit can be readily
identified on finite-size systems as well, where their energy is given by Eq. (14). These states are
called the tower of states (TOS) or also Anderson tower, thin spectrum, and quasi-degenerate
joint states [1, 9–11].

Excitations The lowest excitations above the tower of states can be built by lowering the spin
of one sublattice SA or SB by one, see Eq. (13). Let us set SA = N/4 and SB = N/4− 1 which
implies that Stot ∈ {1, 2, . . . , N/2 − 1}. We can directly compute the energy E1(Stot) of these
excited states for each allowed Stot and the energy gap to the tower of states is constant3

Eexc(Stot) = E1(Stot)− E0(Stot) = J . (15)

As the energy gap is constant, the lowest excitations of the Lieb-Mattis model are static spin-
flips. The next lowest excitations are spin-flips on both sublattices, SA = SB = N/4 − 1 with
excitation energy Eexc2 = 2J and Stot ∈ {0, 1, . . . , N/2 − 2}. We see that the energy gap of
no levels except for the TOS vanishes in the thermodynamic limit, so the TOS indeed solely
contributes to the groundstate manifold.

Quantum Fluctuations When we introduced the Lieb-Mattis model Eq. (7) from the Heisen-
berg model Eq. (6) we neglected all Fourier components except of k = (0, 0) and k = k0. This
was a quite crude approximation and it is not guaranteed that all results for the Lieb-Mattis
model will survive for the short-range Heisenberg model. To get some first results regarding
this question, we can introduce small quantum fluctuations on top of the Néel groundstate of
the Lieb-Mattis model and perform a perturbative spin-wave analysis in first order.4 This ap-
proach does not affect the scaling of the tower of states levels, but it has an important effect
on the excitations. They are not static particles anymore, but are spinwaves (magnons) with
a dispersion, which is linear around the ordering-wave vector k = k0 and k = (0, 0). On a
finite-size lattice the momentum space is discrete with a distance proportional to 1/L between
them, where L is the linear size of the system. The energy of the lowest excitation above the

3This is an artifact of the infinite-range interaction in the Lieb-Mattis model. In the original Heisenberg model
these modes become gapless magnon excitations.

4A more detailed discussion can be found in [2].
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Exact Diagonalization

“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ?

 Low-energy dynamics of the order parameter

 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -
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Continuum

Magnons
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Fig. 1: Left: Schematic finite-size energy spectrum of an antiferromagnet breaking SU(2) spin-
rotational symmetry. The TOS levels are the lowest energy levels for each total spin S and scale
with 1/N to the groundstate energy. The low-energy magnon excitations are separated from
the TOS and a continuum of higher energy states and scale with 1/L. Right: Energy spectrum
for the Heisenberg model on a square lattice. The TOS levels are connected by a dashed line.
The single-magnon dispersion (green boxes) with Stot ∈ {1, 2, . . . } are well separated from
the TOS and the higher multi-particle continuum. The different symbols represent quantum
numbers related to space-group symmetries and agree with the expectations for a Néel state
(See section 3).

TOS, the single magnon gap, therefore scales as Eexc ∝ J/L to zero.5 As the scaling is, how-
ever, slower for d > 1-dimensional systems than the TOS scaling, these levels do not influence
the groundstate manifold in the thermodynamic limit. Finally, the excitation of two magnons
results in a two-particle continuum above the magnon mode.

The properties of the TOS and its excitations are summarized in Fig. 1. The left figure shows the
general properties of the finite-size energy spectrum which can be expected when a continuous
symmetry group is spontaneously broken in the thermodynamic limit. The right figure depicts
the TOS spectrum for the Heisenberg model on a square lattice with N = 32 sites, obtained
with Exact Diagonalization. One can clearly identify the TOS, the magnon dispersion and the
many-particle continuum. The existence of a Néel TOS was not only confirmed numerically
for the Heisenberg model on the square lattice, but also with analytical techniques beyond the
simplification to the Lieb-Mattis model [1, 10, 11]. The different symbols in Fig. 1 represent
different quantum numbers related to the space-group symmetries on the lattice. In the next
section we will see that the structure of these quantum numbers depends on the exact shape of
the symmetry-broken state and we will learn how to compute them.

5In the thermodynamic limit the single magnon mode is gapless and has linear dispersion around k = k0 and
k = (0, 0). It corresponds to the well-known Goldstone mode which is generated when a continuous symmetry is
spontaneously broken.
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3 Symmetry analysis

In the analysis of excitation spectra from Exact Diagonalization on finite-size simulation clus-
ters the tower of states analysis (TOS) is a powerful tool to detect spontaneous symmetry
breaking. Symmetry breaking implies degenerate groundstates in the thermodynamic limit.
On finite-size simulation clusters this degeneracy is in general not exact. We rather expect a
certain scaling of the energy differences in the thermodynamic limit. We distinguish two cases:

• Discrete symmetry breaking: In this case we have a degeneracy of finitely many states
in the thermodynamic limit. The groundstate splitting ∆ on finite size clusters scales as
∆ ∼ exp(N/ξ), where N is the number of sites in the system

• Continuous symmetry breaking: Here the groundstate in the thermodynamic limit is
infinitely degenerate. The states belonging to this degenerate manifold collapse as ∆ ∼
1/N on finite size clusters as we have seen in section 2. It is important to understand
that these states are not the Goldstone modes of continuous symmetry breaking. Both the
degenerate groundstate and the Goldstone modes appear as low-energy levels on finite
size clusters but have different scaling behaviors.

The scaling of these low-energy states can now be investigated on finite size clusters. More im-
portantly, also the quantum numbers of these low-energy states such as momentum, pointgroup
representation, or total spin can be predicted [2,5,12]. The detection of correct scaling behavior
together with correctly predicted quantum numbers yields very strong evidence that the system
spontaneously breaks symmetry in the way that has been anticipated. This is the TOS method.
In the following we will discuss how to predict the quantum numbers for discrete as well as
continuous symmetry breaking. The main mathematical tool we use is the character-formula
from basic group representation theory.
Lattice Hamiltonians like a Heisenberg model often have a discrete symmetry group arising
from translational invariance, pointgroup invariance, or some discrete local symmetry, like a
spin-flip symmetry. In this chapter we will first discuss the representation theory and the char-
acters of the representations of space groups on finite lattices. We will then see how this helps
us to predict the representations of the degenerate ground states in discrete as well as continuous
symmetry breaking.

3.1 Representation theory for space groups

For finite discrete groups such as the space group of a finite lattice the full set of irreducible
representations (irreps) can be worked out. Let us first discuss some basic groups. Let’s con-
sider an n × n square lattice with periodic boundary conditions and a translationally invariant
Hamiltonian like the Heisenberg model on it. In the following we will set the lattice spacing to
a = 1. The discrete symmetry group we consider is T = Zn × Zn corresponding to the group
of translations on this lattice. This is an Abelian group of order n2. Its representations can be
labeled by the momentum vectors k = (2πi

n
, 2πj
n

), i, j ∈ {0, · · · , n − 1} which just correspond
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to the reciprocal Bloch vectors defined on this lattice. Put differently, the vectors k are the re-
ciprocal lattice points of the lattice spanned by the simulation torus of our n× n square lattice.
The character χk of the k-representation is given by

χk(t) = eik·t (16)

where t ∈ T is the vector of translation. This is just the usual Bloch factor for translationally
invariant systems.
Let us now consider a (symmorphic) space group of the form D = T × PG as the discrete
symmetry group of the lattice where PG is the pointgroup of the lattice. For a model on an
n × n square lattice this could for example be the dihedral group of order 8, D4, consisting of
four-fold rotations together with reflections. The representation theory and the character tables
of these point groups are well-known. Since D is now a product of the translation and the
point group we could think that the irreducible representations of D are simply given by the
product representations (k ⊗ ρ) where k labels a momentum representation and ρ an irrep of
PG. But here is a small caveat. We have to be careful since D is only a semidirect product of
groups since translations and pointgroup symmetries do not necessarily commute. This alters
the representation theory for this product of groups and the irreps of D are not just simply the
products of irreps of T and PG. Instead the full set of irreps for this group is given by (k⊗ ρk)

where ρk is an irrep of the so called little group Lk of k defined as

Lk = {g ∈ PG; g(k) = k} (17)

which is just the stabilizer of k in PG. For example all pointgroup elements leave k = (0, 0)

invariant, thus the little group of k = (0, 0) is the full pointgroup. In general this does not hold
for other momenta and only a subgroup of PG will be the little group of k. In Fig. 4 we show
the k-points of a 6 × 6 triangular lattice together with its little groups as an example. The K
point in the Brillouin zone has a D3 little group, theM point a D2 little group. Having discussed
the representation theory for (symmorphic) space groups we state that the characters of these
representations are just given by

χ(k,ρk)(t, p) = eik·tχρk(p) (18)

where t ∈ T , p ∈ PG and χρk is the character of the representation ρk of the little group Lk.

3.2 Predicting irreducible representations in spontaneous
symmetry breaking

Spontaneous symmetry breaking at T = 0 occurs when the groundstate |ψGS〉 of H in the
thermodynamic limit is not invariant under the full symmetry group G of H . We will call a
specific groundstate |ψGS〉 a prototypical state and the groundstate manifold is defined by

VGS = span
{
|ψiGS〉

}
, (19)



Studying Continuous Symmetry Breaking with ED 8.9

where |ψiGS〉 is the set of degenerate groundstates in the thermodynamic limit. This groundstate
manifold space can be finite or infinite dimensional depending on the situation. For breaking a
discrete finite symmetry, such as in the example given in section 4.1.2, this state will be finite
dimensional, for breaking continuous SO(3) spin rotational symmetry6 as in section 4.2 this
groundstate manifold is infinite dimensional in the thermodynamic limit. For every symmetry
g ∈ G we denote by Og the symmetry operator acting on the Hilbert space. The groundstate
manifold becomes degenerate in the thermodynamic limit and we want to calculate the quantum
numbers of the eigenstates in this manifold. Another way of saying this is that we want to
compute the irreducible representations of G to which the eigenstates belong. For this we look
at the action Γ of the symmetry group G on VGS defined by

Γ : G → Aut(VGS) (20)

g 7→
(
〈ψiGS|Og|ψjGS〉

)
i,j
. (21)

This is a representation of G on VGS, so every group element g ∈ G is mapped to an invertible
matrix on VGS. In general this representation is reducible and can be decomposed into a direct
sum of irreducible representations

Γ =
⊕
ρ

nρρ . (22)

These irreducible representations ρ are now the quantum numbers of the eigenstates in the
groundstate manifold and nρ are their respective multiplicities (or degeneracies). Therefore
these irreps constitute the TOS for spontaneous symmetry breaking [2]. To compute the multi-
plicities we can use a central result from representation theory, the character formula

nρ =
1

|G|
∑
g∈G

χρ(g) Tr(Γ (g)) , (23)

where χρ(g) is the character of the representation ρ and Tr(Γ (g)) denotes the trace over the
representation matrix Γ (g) as defined in Eq. (20). Often we have the case that

〈ψGS|Og|ψ′GS〉 =

1 if Og |ψ′GS〉 = |ψGS〉
0 otherwise

(24)

With this we can simplify Eq. (23) to what we call the character-stabilizer formula

nρ =
1

|Stab(|ψGS〉)|
∑

g∈Stab(|ψGS〉)

χρ(g) (25)

where
Stab(|ψGS〉) ≡ {g ∈ G : Og |ψGS〉 = |ψGS〉} (26)

is the stabilizer of a prototypical state |ψGS〉. We see that for applying the character-stabilizer
formula in Eq. (25) only two ingredients are needed:

6The actual symmetry group of Heisenberg antiferromagnets is usually SU(2). For simplicity we only consider
the subgroup SO(3) in these notes which yields the same predictions for the case of sublattices with even number
of sites (corresponding to integer total sublattice spin).
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• the stabilizer Stab(|ψGS〉) of a prototypical state |ψGS〉 in the groundstate manifold

• the characters of the irreducible representations of the symmetry group G

We want to remark that in the case of G = D × C where D is a discrete symmetry group, such
as the spacegroup of a lattice, and C is a continuous symmetry group, such as SO(3) rotations
for Heisenberg spins, Eqs. (23) and (25) include integrals over Lie groups additionally to the
sum over the elements of the discrete symmetry group D. Furthermore, also the characters for
Lie groups like SO(3) are known. For an element R ∈ SO(3) the irreducible representations
are labeled by the spin S and its characters are given by

χs(R) =
sin
[
(S + 1

2
)ϕ
]

sin(ϕ/2)
, (27)

where ϕ ∈ [0, 2π] is the angle of rotation of the spin rotation R. We work out several exam-
ples for this case in section 4.2 and compare the results to actual numerical data from Exact
Diagonalization.

4 Examples

4.1 Discrete symmetry breaking

In this section we want to apply the formalism of section 3 to systems, where only a discrete
symmetry group is spontaneously broken and not a continuous one. In this case, the ground-
state of the system in the thermodynamic limit is described by a superposition of a finite number
of degenerate eigenstates with different quantum numbers. On finite-size systems, however, the
symmetry cannot be broken spontaneously and a unique groundstate will be found. The other
states constituting the degenerate eigenspace in the thermodynamic limit exhibit a finite-size
energy gap which is exponentially small in the system size N , ∆ ∝ e−N/ξ. The quantum
numbers of these quasi-degenerate sets of eigenstates are defined by the symmetry-broken state
in the thermodynamic limit.

4.1.1 Introduction to valence-bond solids

In section 2 we have seen that the classically ordered Néel state is a candidate to describe the
groundstate of the antiferromagnetic Heisenberg model Eq. (1) with J > 0 in the thermody-
namic limit on a bipartite lattice. The energy expectation value of this state on each bond is
eNéel = −J/4.
The state which minimizes the energy of a single bond is, however, a singlet state |S = 0〉
formed by the two spins on the bond with energy eVB = −3J/4, called a valence bond (VB) or
dimer. A valence bond covering of an N -site lattice can then be described by a tensor product
of N/2 VBs, where each site belongs to exactly one VB.7 Another possible candidate for the

7The set of all possible valence bond coverings with arbitrary length spans the full Stot = 0 sector of the models
Hilbert space and is overcomplete [13, 14].
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Fig. 2: The four columnar VBS coverings of a square lattice. Valence bonds (spin singlets) are
indicated by blue ellipses.

thermodynamic groundstate of Eq. (1) is then a superposition of all possible VB coverings with
nearest neighbor VBs. Such states do not break the SU(2) spin-rotational symmetry as Stot = 0

and are in general not eigenstates of the Hamiltonian: Acting with the operator Si · Sj between
sites i and j belonging to two different VBs changes the VB configuration.

This classical groundstate manifold is highly degenerate. As the VB coverings are in general
not eigenstates of the Hamiltonian, they encounter quantum fluctuations. The energy correc-
tions due to these fluctuations are usually not equivalent for different coverings, although the
bare energies are identical. The VB coverings with the largest energy gain are selected by the
fluctuations as the true groundstate configurations. If this order-by-disorder mechanism [15,16]
selects regular patterns of VB coverings, the discrete lattice symmetries are spontaneously bro-
ken in the thermodynamic limit, and a valence bond solid (VBS) is formed. Fig. 2 and Fig. 3
show two different VBS states on the square lattice. VBSs show no long-range spin order, but
long-range dimer-correlations 〈(Sa ·Sa′)(Sb ·Sb′)〉 where a, a′ and b, b′ label sites on individual
dimers. In section 4.1.2 we will see how different VBS states can be identified and distinguished
by the quantum numbers of the quasi-degenerate groundstate manifold on finite-size systems.

The groundstate of the Heisenberg model Eq. (1) on the square lattice is not a VBS but a Néel
state, which has already on the classical level a lower variational energy. Nevertheless, several
models in 1- and 2-D are known which feature VBS groundstates [17–21]. Interestingly, in [22]
a model was proposed, which shows a direct continuous quantum phase transition between a
Néel state and a VBS. This transition exhibits very exotic, non-classical behavior and is called
deconfined quantum critical point [23].

4.1.2 Identification of VBSs from finite-size spectra

Columnar valence-bond solid A columnar VBS (cVBS) on a square lattice is shown in
Fig. 2. Four equivalent states can be found, indicating that there will be a four-fold quasi-
degenerate groundstate manifold. A cVBS obviously breaks the translational and point-group
symmetries of an isotropic SU(2)-invariant Hamiltonian on the lattice spontaneously but not the
continuous spin symmetry group.

In the following we use Eq. (25) to compute the symmetry sectors of the groundstate manifold.
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C4 1 C4 C2 (C4)
3

A +1 +1 +1 +1
B +1 −1 +1 −1
Ea +1 +i −1 −i
Eb +1 −i −1 +i

Table 1: Character table for pointgroup C4.

The discrete symmetry group is
G = D = T × PG (28)

where T = Z2 × Z2 = {1, tx, ty, txty} are the non-trivial lattice translations with translation
vectors

t1 = (0, 0), tx = (1, 0), ty = (0, 1), txy = (1, 1) (29)

and PG = C4 denotes the point-group of lattice rotations.8 To compute the groundstate sym-
metry sectors we do not need to consider the full symmetry group G but only the stabilizer
Stab(|ΨcV BS〉), leaving one of the states in Fig. 2 unchanged. Without loss of generality we
choose the first covering as prototype |ΨcV BS〉. The stabilizer is given by

Stab(|ΨcV BS〉) = {1× 1} ∪ {1× C2} ∪ {ty × 1} ∪ {ty × C2} (30)

where C2 denotes the rotation about an angle π around the center of a plaquette.
The irreducible representations (irreps) of the group of lattice translations T can be labelled by
the allowed momenta k

k ∈ Irreps(T ) = {(0, 0), (π, 0), (0, π), (π, π)}, (31)

and the corresponding characters for an element t ∈ T are

χk(t) = eik·t. (32)

The irreps (usually called A, B and E) and characters for the point-group C4 are given in Tab. 1.
Using Eq. (25) we can now reduce the representation induced by the state |ΨcV BS〉 to irreducible
representations to get the quantum numbers of the quasi-degenerate groundstate manifold. Let
us explicitly consider n(π,0)A/B as an example:

n(π,0)A =
1

|Stab(|ΨcV BS〉)|
∑

d∈Stab(|ΨcV BS〉)

χA(d)χk=(π,0)(d) (33)

=
1

4

[
1 eik·(0,0) + 1 eik·(0,0) + 1 eik·(0,1) + 1 eik·(0,1)

]
= 1 (34)

n(π,0)B =
1

|Stab(|ΨcV BS〉)|
∑

d∈Stab(|ΨcV BS〉)

χB(d)χk=(π,0)(d) (35)

=
1

4

[
1 eik·(0,0) + (−1) eik·(0,0) + 1 eik·(0,1) + (−1) eik·(0,1)

]
= 0 (36)

8The dihedral group D4 is also a symmetry group of the model. For the sake of simplicity we decided to only
consider the subgroup C4 in this section.
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Fig. 3: One of the four identical staggered VBS coverings on the square lattice.

Eventually, the cVBS covering will be described by a four-fold quasi-degenerate groundstate
manifold with the following quantum numbers

χ(|ΨcV BS〉) = (0, 0)A⊕ (0, 0)B⊕ (π, 0)A⊕ (0, π)A . (37)

VBS states are a superposition of spin singlets on the lattice, therefore the spin quantum number
for all levels in the groundstate manifold must be trivial, Stot = 0.

Staggered valence-bond solid The columnar VBS is not the only regular dimer covering of
the square lattice. Another possible regular covering is the staggered VBS (sVBS), where again
four equivalent configurations span the groundstate manifold. One of these configurations is
shown in Fig. 3.
Obviously, also the sVBS spontaneously breaks the translational and point-group symmetries
of an isotropic Hamiltonian, but not the spin-rotational symmetry. Following the same steps
as before we can compute the quantum numbers of the four quasi-degenerate groundstates for
the sVBS. The stabilizer turns out to be different to the case of the cVBS and thus also the
decomposition into irreps yields a different result:

χ(|ΨsV BS〉) = (0, 0)A⊕ (0, 0)B⊕ (π, π)Ea ⊕ (π, π)Eb. (38)

Tab. 2 shows a comparison of the irreducible representations in the groundstate manifold of the
cVBS and sVBS states.
By a careful analysis of the quasi-degenerate states and their quantum numbers on finite systems
it is thus possible to identify and distinguish different VBS phases which spontaneously break
the translational and point-group symmetries in the thermodynamic limit.

Irreps cVBS sVBS
(0 , 0)A 1 1
(0 , 0)B 1 1
(π, 0)A 1 0
(0 , π)A 1 0
(π, π)Ea 0 1
(π, π)Eb 0 1

Table 2: Multiplicities of the irreducible representations in the four-fold degenerate groundstate
manifolds of the columnar and staggered VBS on a square lattice.
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4.2 Continuous symmetry breaking

In this section we give several examples of systems breaking continuous SO(3) symmetry. We
discuss the introductory example of the Heisenberg antiferromagnet, calculate the irreps in the
TOS and compare this to actual energy spectra from Exact Diagonalization on a finite lattice in
section 4.2.1. Next we discuss three magnetic orders on the triangular lattice and a model where
all of these are stabilized. We show again results from Exact Diagonalizations and compare the
representations in these spectra to the predictions from TOS analysis in section 4.2.2. Finally we
introduce quadrupolar order and show that also this kind of symmetry breaking can be analyzed
using the TOS technique in section 4.2.3.

4.2.1 Heisenberg antiferromagnet on square lattice

We now give a first example how the TOS method can be applied to predict the structure of the
tower of states for magnetically ordered phases. We look at the Néel state of the antiferromagnet
on the bipartite square lattice with sublattices A and B. A prototypical state in the groundstate
manifold is given by

|ψ〉 = |↑↓↑↓ · · ·〉 (39)

where all spins point up on sublattice A and down on sublattice B. The symmetry group G =

D × C of the model we consider is a product between discrete translational symmetry D =

Z2×Z2 = {1, tx, ty, txy} and spin rotational symmetry C = SO(3). We remark that we restrict
our translational symmetry group to D = Z2 × Z2 instead of D′ = Z × Z because the Néel
state transforms trivially under two-site translations (tx)

2, (ty)
2. Thus, only the representations

of D′ trivial under two-site translations are relevant; these are exactly the representations of D.
Put differently we only have to consider the translations in the unitcell of the magnetic structure
which in the present case can be chosen as a 2-by-2 cell. Furthermore, we will for now neglect
pointgroup symmetries like rotations and reflections of the lattice to simplify our calculations.
At the end of this section we give results where also these symmetry elements are incorporated.
The groundstate manifold VGS we consider are the states related to |ψ〉 by an element of the
symmetry group G, i.e.,

VGS = {Og |ψ〉 ; g ∈ G} . (40)

The symmetry elements in G that leave our prototypical state |ψ〉 invariant are given by two sets
of elements:

• No translation in real space or a diagonal txy translation together with a spin rotation
Rz(α) around the z-axis with an arbitrary angle α.

• Translation by one site, tx or ty, followed by a rotation Ra(π) of 180◦ around an axis
a ⊥ z perpendicular to the z-axis.

So the stabilizer of our prototype state |ψ〉 is given by

Stab(|ψ〉) = {1×Rz(α)} ∪ {txy ×Rz(α)} ∪ {tx ×Ra(π)} ∪ {ty ×Ra(π)} . (41)
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The representations of the discrete symmetry group can be simply labeled by four momenta
k ∈ {(0, 0), (0, π), (π, 0), (π, π)} with corresponding characters

χk(t) = eik·t.

The continuous symmetry group is the Lie group SO(3). Its representations are labeled by the
total spin S and the character of the spin-S representation is given by

χS(R) =
sin
[
(S + 1

2
)ϕ
]

sin(ϕ/2)

where ϕ ∈ [0, 2π] is the angle of rotation of the element R ∈ SO(3). We see that spin rotations
with different axes but same rotational angle give rise to the same character. The representations
of the total symmetry group G = D × C are now just the product representations of D and C,
therefore also the characters of representations of G are the product of characters of D and C.
We label these representations by (k, S) where k denotes the lattice momentum and S the total
spin. We now apply the character-stabilizer formula, Eq. (25), to derive the multiplicities of the
representations (k, S) in the groundstate manifold. In the case of the square antiferromagnet
this yields

n(k,S) = eik·0
1

4 |Rz(α)|

2π∫
0

dαχS(Rz(α)) + eik·(ex+ey)
1

4 |Rz(α)|

2π∫
0

dαχS(Rz(α)) (42)

+ eik·ex
1

4 |Ra(π)|

2π∫
0

dαχS(Ra(π)) + eik·ey
1

4 |Ra(π)|

2π∫
0

dαχS(Ra(π)) . (43)

We compute

|Rz(α)| = |Ra(π)| =
2π∫
0

dϕ = 2π ,

1

2π

2π∫
0

dαχS(Rz(α)) =
1

2π

2π∫
0

dα
sin
[
(S + 1

2
)α
]

sin(α/2)
=

1

2π

2π∫
0

dϕ
S∑

l=−S

eilϕ = 1 , (44)

and

1

2π

2π∫
0

dϕχS(Ra(π)) =
1

2π

2π∫
0

dϕ
sin
[
(S + 1

2
)π
]

sin(π/2)
= (−1)S. (45)

Putting this together gives the final result for the multiplicities of the representations in the tower
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S Γ.A1 M.A1
0 1 0
1 0 1
2 1 0
3 0 1

Table 3: Multiplicities of irreducible representations in the TOS for the Néel antiferromagnet
on a square lattice.

of states

n((0,0),S) =
1

4

(
1 · 1 + 1 · 1 + 1 · (−1)S + 1 · (−1)S

)
=

{
1 if S even
0 if S odd

(46)

n((π,π),S) =
1

4

(
1 · 1 + 1 · 1− 1 · (−1)S − 1 · (−1)S

)
=

{
0 if S even
1 if S odd

(47)

n((0,π),S) =
1

4

(
1 · 1− 1 · 1 + 1 · (−1)S − 1 · (−1)S

)
= 0 (48)

n((π,0),S) =
1

4

(
1 · 1− 1 · 1− 1 · (−1)S + 1 · (−1)S

)
= 0 (49)

Tab. 3 lists the computed multiplicities of the irreducible representations where additionally
the D4 point group was considered in the symmetry analysis. Comparing this to Fig. 1 we
observe that these are exactly the irreducible representations (momenta and point group irreps)
and multiplicities observed in the tower of states for the Heisenberg model on the square lattice.

4.2.2 Magnetic order on the triangular lattice

On the triangular lattice several magnetic orders can be stabilized. The Heisenberg nearest
neighbor model has been shown to have a 120◦ Néel ordered groundstate where spins on neigh-
boring sites align in an angle of 120◦ [24, 25]. Upon adding further second nearest neighbor
interactions J2 to the Heisenberg nearest-neighbor model with interaction strength J1 it was
shown that the groundstate exhibits stripy order for J2/J1 & 0.18 [26]. Here spins are aligned
ferromagnetically along one direction of the triangular lattice and antiferromagnetically along
the other two. Interestingly, it was shown that there is a phase between these two magnetic
orders whose exact nature is unclear until today. Several articles propose that in this region
an exotic quantum spin liquid is stabilized [27–30]. In a recent proposal two of the authors
established an approximate phase diagram of an extended Heisenberg model with further scalar
chirality interactions JχSi · (Sj × Sk) [31] on elementary triangles. Thus, the Hamiltonian of
the system is given by

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj + Jχ
∑

i,j,k∈4

Si · (Sj × Sk). (50)

Amongst the already known 120◦ Néel and stripy phases an exotic Chiral Spin Liquid and a
magnetic tetrahedrally ordered phase were found. Here we will only discuss the magnetic
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Fig. 4: (Left): Simulation cluster for the Exact Diagonalization calculations. (Center): Bril-
louin zone of the triangular lattice with the momenta which can be resolved with this choice of
the simulation cluster. Different symbols denote the little groups of the corresponding momen-
tum. (Right): TOS for the 120◦ Néel order on the triangular lattice. The symmetry sectors and
multiplicities fulfill the predictions from the symmetry analysis (See Tab. 5). One should note,
that the multiplicities grow with Stot for non-collinear states.

orders appearing in this model. The non-coplanar tetrahedral order has a four-site unitcell where
four spins align such that they span a regular tetrahedron. In this chapter we show the tower of
states for the three magnetic orders in this model.
First of all, Fig. 4 shows the simulation cluster used for the Exact Diagonalization calculations
in [31]. We chose a N = 36 = 6 × 6 sample with periodic boundary conditions. This sample
allows to resolve the momenta Γ , K and M , amongst several others in the Brillouin zone.
The K and M momenta are the ordering vectors for the 120◦, stripy and tetrahedral order.
Furthermore this sample features full six-fold rotational as well as reflection symmetries (the
latter only in the absence of the chiral term). Its pointgroup is therefore given by the dihedral
group of order 12, D6. The little groups of the individual k vectors are also shown in Fig. 4. For
our tower of states analysis we now want to consider the discrete symmetry group

D = T × D6 (51)

where T is the translational group of the magnetic unitcell. The full set of irreducible represen-
tations of this symmetry group is given by the set (k⊗ ρk) where k denotes the momentum and
ρk is an irrep of the little group associated to k. The points Γ , K and M give rise to the little
groups D6, D3 and D2 (the dihedral groups of order 12, 8, and 4), respectively. For the stripy
and tetrahedral order we can choose a 2× 2 magnetic unitcell, and a 3× 3 unitcell for the 120◦

Néel order. The spin rotational symmetry lets us again consider the continuous symmetry group

C = SO(3). (52)

We can therefore label the full set of irreps as (k, ρk, S) where S denotes the total spin S

representation of SO(3). Similarly to the previous chapter we now want to apply the character-
stabilizer formula, Eq. (25), to determine the multiplicities of the representations forming the
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D6 1 2C6 2C3 C2 3σd 3σv
A1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1
B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0
E2 2 −1 −1 2 0 0

Table 4: Character table for pointgroup D6.

120◦ Néel stripy order tetrahedral order
S Γ .A1 Γ .B1 K.A1 Γ .A1 Γ .E2 M.A Γ .A Γ .E2a Γ .E2b M.A
0 1 0 0 1 1 0 1 0 0 0
1 0 1 1 0 0 1 0 0 0 1
2 1 0 2 1 1 0 0 1 1 1
3 1 2 2 0 0 1 1 0 0 2

Table 5: Multiplicities of irreducible representations in the Anderson tower of states for the
three magnetic orders on the triangular lattice defined in the main text.

tower of states. The characters of the irreps (k, ρk, S) are given by

χ(k,ρk,S)(t, p, R) = eik·tχρk(p)
sin
[
(S + 1

2
)ϕ
]

sin(ϕ/2)
, (53)

where again ϕ ∈ [0, 2π] is the angle of rotation of the spin rotation R. The characters of
the pointgroup D6 are given in Tab. 4. We skip the exact calculations which follow closely
the calculations performed in the previous chapter, although now also pointgroup symmetries
are additionally taken into account. The results are summarized in Tab. 5. We remark that
the tetrahedral order is stabilized only for Jχ 6= 0 where the model in Eq. (50) does not have
reflection symmetry any more since the term Si · (Sj × Sk) does not preserve this symmetry.
Therefore we used only the pointgroup C6 of six-fold rotation in the calculations of the tower
of states for this order.
If we compare these results to Figs. 4 and 5 we see that these are exactly the representations
appearing in the TOS from Exact Diagonalization for certain parameter values J2 and Jχ. This
is a strong evidence that indeed SO(3) symmetry is broken in these models in a way described
by the 120◦ Néel, stripy, and tetrahedral magnetic prototype states.

4.2.3 Quadrupolar order

All examples of continuous symmetry breaking we have discussed so far spontaneously broke
SO(3) symmetry but exhibited a magnetic moment. In the following we will show examples
of phases that do not exhibit any magnetic moment but break spin-rotational symmetry anyway
and discuss the influences on the tower of states. We will only discuss quadrupolar phases
in S = 1 models here, a broader introduction to nematic and multipolar phases can be found
in [32].
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Fig. 5: (Left): TOS for the stripy phase on the triangular lattice. The multiplicities for each
even/odd Stot are constant for collinear phases. (Right): TOS for the tetrahedral order on the
triangular lattice.

Quadrupolar states We denote the basis states for a single spin S = 1 with Sz = 1,−1, 0

as |1〉 , |1̄〉 , |0〉. In contrast to the usual S = 1/2 case not each basis state can be obtained by
a SU(2) rotation of any other basis state. The state |0〉, for example cannot be obtained by a
rotation of |1〉 or |1̄〉 as it has no orientation in spin-space at all, 〈0|Sα|0〉 = 0 [32]. The state
|0〉 can, however, be described as a spin fluctuating in the x-y plane in spin space as

〈0|(Sx)2|0〉 = 〈0|(Sy)2|0〉 = 1, 〈0|(Sz)2|0〉 = 0. (54)

We can thus assign a director along the z-axis to this state. SU(2) rotations will change the
director of such a state, but not its property of being non-magnetic. These states can be detected
by utilizing the quadrupolar operator [32]

Qαβ = SαSβ + SβSα − 2

3
S(S + 1)δαβ (55)

therefore they are identified as quadrupolar states.
To study the possible formation of an ordered quadrupolar phase on a lattice, where the direc-
tors of the quadrupoles on each lattice site follow a regular pattern, we consider the bilinear-
biquadratic model with Hamiltonian

H =
∑
〈i,j〉

J Si · Sj +Q (Si · Sj)2 (56)

and S = 1. The second term in Eq. (56) can be rewritten in terms of the elements of Qαβ which
can be rearranged into a 5-component vector Q such that

Qi ·Qj = 2(Si · Sj)2 + Si · Sj −
4

3
. (57)

The expectation value of Eq. (57) for quadrupolar states on sites i and j can be given in terms
of their directors di,j [32]

〈Qi ·Qj〉 = 2 (di · dj)2 −
2

3
. (58)
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Therefore, the second term in Eq. (56) favors regular patterns of the directors of quadrupoles.
When such states are formed, they spontaneously break the SU(2) symmetry without exhibiting
any kind of magnetic moment. The first term in Eq. (56), on the other hand, favors spin ordering
as we have already discussed in previous sections.
The phase diagram of Eq. (56) on the triangular lattice shows extended ferromagnetic, antifer-
romagnetic (120◦), ferroquadrupolar (FQ), and antiferroquadrupolar (AFQ) ordered phases. In
the FQ phase quadrupoles on each lattice site are formed with all directors pointing in a single
direction, whereas the directors form a 120◦ structure in the AFQ phase. In the following, we
will see that the FQ and AFQ phases can be identified and distinguished from the spin ordered
phases using a tower-of-states analysis on finite clusters.

TOS for quadrupolar phases The TOS for the FQ and AFQ phases can be expected to show
similar behavior as the TOS for magnetically ordered states as both spontaneously break the
spin-rotational symmetry. If we identify the symmetry-broken quadrupolar phases with their
directors pointing in any direction in spin-space we can perform the symmetry analysis of the
TOS levels in a very similar manner as for the spin-ordered systems in the previous sections.
There is, however, one important thing to consider: The directors should not be considered to
be described with vectors, but with axes; a quadrupole is recovered (up to a phase) by rotations
about an angle π around any axis a in the x-y-plane:

eiπS
a |0〉 = − |0〉 . (59)

Thus, the stabilizer in Eq. (25) is different for quadrupolar phases and the TOS shows a different
structure. This property makes it possible to distinguish, e.g., a magnetic 120◦ phase from its
quadrupolar counterpart, the AFQ phase, with a TOS analysis.
A prototype for the FQ phase is a product states of quadrupoles with directors in z-direction,
|Ψ〉 = |0, 0, 0, . . .〉. This state does not break any space-group symmetries, so only the trivial
irreps of the space group, k = Γ = (0, 0).A1, will be present in the TOS. The remaining
stabilizer of the spin-rotation group is a rotation about the z-axis by an arbitrary angle and a
rotation about an arbitrary axis lying in the x-y-plane,

Stab(|Ψ〉) = {Rz(α), Ra(π)}. (60)

The multiplicities in the TOS can then be computed as

nS =
1

2

(
1

|Rz(α)|

∫ 2π

0

dαχS(Rz(α)) + (−1)N
1

|Ra(π)|

∫ 2π

0

daχS(Ra(π))

)
(61)

=
1

2

(
1 + (−1)N(−1)S

)
, (62)

where the integrals have already been computed in Eqs. (44) and (45). The system size de-
pendent factor (−1)N is imposed from Eq. (59). To sum up, the TOS for the FQ phase has
single levels for even (odd) S with trivial space-group irreps and no levels for odd (even) S
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Fig. 6: Tower of states for the ferroquadrupolar (left) and antiferroquadrupolar (right) states
on a triangular lattice with N = 12 sites from Exact Diagonalization. The single-magnon
branch for the FQ phase is highlighted with green boxes.

sectors when N is even (odd).9 The absence of odd (even) S levels is caused by the invariance
of quadrupoles under π-rotation and distinguishes the TOS for a FQ phase from a usual ferro-
magnetic phase. In Fig. 6 the TOS for the model, Eq. (56), in the FQ phase is shown on the
left. It shows the expected quantum numbers and multiplicities in the TOS and also an easily
identifiable magnon branch below the continuum.

The symmetry analysis for the AFQ phase can be performed in a similar manner and shows a
similar structure to the 120◦-Néel phase, but again, levels are deleted for the AFQ. In this case,
however, not all odd levels are deleted but some levels in both, odd and even, S sectors. Tab. 6
shows the multiplicities of irreps in the TOS of the AFQ model in comparison to the magnetic
120◦-Néel state for even N . Fig. 6 shows the simulated TOS for the AFQ phase for the bilinear-
biquadratic model Eq. (56). The symmetry sectors and multiplicities agree with the expected
ones.

AFQ 120◦ Néel
S Γ .A1 Γ .B1 K.A1 Γ .A1 Γ .B1 K.A1
0 1 0 0 1 0 0
1 0 0 0 0 1 1
2 0 0 1 1 0 2
3 0 1 0 1 2 2

Table 6: Irreducible representations and multiplicities for the AFQ phase compared to the
magnetic 120◦-Néel phase.

9For the simple case of the FQ phase one can also easily calculate the decomposition of a state |S = 1,m = 0〉⊗
|S = 1,m = 0〉 ⊗ . . . into states |Stot,m = 0〉 with the use of Clebsch-Gordan coefficients.
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5 Outlook

In the previous sections we have discussed the features of the energy spectrum for states which
spontaneously break the spin-rotational symmetry, SU(2), in the thermodynamic limit. We have
seen that on finite-size systems the energy spectra of such states exhibit a tower of states (TOS)
structure. The tower of states scales as Stot(Stot + 1)/N and generates the groundstate manifold
in the thermodynamic limit N → ∞, which is indispensable to spontaneously break a sym-
metry. The quantum numbers of the levels in the TOS depend on the particular state which is
formed after the symmetry breaking and can be predicted using representation theory.

As a generalization to the SU(2)-symmetric Heisenberg model, Eq. (1), one can introduce
SU(n) Heisenberg models with n > 2. Such models can experimentally be realized by ultra-
cold multicomponent fermions in a optical lattices. When the on-site repulsion is strong enough,
the Hamiltonian can be effectively described by an SU(n)-symmetric permutation model on the
lattice [33]. When the exchange couplings are antiferromagnetic, SU(n) generalized versions
of the Néel state might be realized as groundstates, which then spontaneously break the SU(n)

symmetry of the Hamiltonian. On finite systems this becomes again manifest in the emergence
of a tower of states, where the scaling is found to be proportional to C2(n)/N [34–37, 33].
C2(n) denotes the quadratic Casimir operator of SU(n).10 The symmetry analysis of the lev-
els in the TOS can, in principle, be performed similar to the case of SO(3) discussed in these
notes, but the symmetry group and its characters have to be replaced with the more complicated
group SU(n).

On the other side, it can be also interesting to study models where the continuous symmetry
group is smaller. In real magnetic materials, the isotropic Heisenberg interaction is often accom-
panied by other interactions which, when they are strong enough, might reduce the symmetry
group of spin rotations from SO(3) to O(2); only spin rotations around an axis are a symmetry
of the system and can be spontaneously broken in the thermodynamic limit. This symmetry
group is also interesting in the field of ultracold gases, as BECs spontaneously break an O(2)

symmetry by choosing a phase. Tower of states can also be found in this case and the quantum
numbers and multiplicities of the TOS levels can be computed similar to the SU(2) case [12].

We have seen, that the energy spectrum of Hamiltonians on finite lattices may contain a lot of
information about the system. One can identify groundstates which will spontaneously break
discrete as well as continuous symmetries in the thermodynamic limit and by imposing a classi-
cal state as symmetry-broken state one can even predict the quantum numbers and multiplicities
of the levels in the tower of states or in the quasi-degenerate groundstate manifold. When we
impose an additional interaction to a system with spontaneously broken groundstate, e.g., a
magnetic field, it is possible that a continuous quantum phase transition (cQPT) from the or-
dered state to a disordered state appears for some critical ratio of the couplings. Such cQPTs are
interesting as they can be described by universal features which do not depend on the details of

10For n = 2 the quadratic Casimir operator C2 = Stot(Stot + 1).
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Fig. 7: Universal torus spectrum for a continuous quantum phase transition in the 3D Ising uni-
versality class. Full symbols denote numerical results while empty symbols denote ε-expansion
results. The dashed line shows a dispersion with the speed of light.

the model. Interestingly, the energy spectrum on finite systems can even be used to identify and
characterize cQPTs. It is given by universal numbers times 1/L, where L =

√
N is the linear

size of the lattice. The quantum numbers of the energy levels show universal features and are
related to the operator content of the underlying critical field theory, although the relation be-
tween them is not yet fully understand for non-flat geometries, like a torus [38,39]. The critical
spectrum for the transverse-field Ising model on a torus is shown in Fig. 7. It is a fingerprint for
the 3D Ising cQPT.
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[38] M. Schuler, S. Whitsitt, L.-P. Henry, S. Sachdev, and A.M. Läuchli, arXiv:1603.03042
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1 Introduction

The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) technique is a stochastic
method to compute the ground-state energy (and expectation values over two-particle operators
of the ground state) of extremely large many-body Hamiltonians, usually in the context of ‘Full
CI’ methods: that is to say electronic wavefunctions expanded in Slater determinant spaces
comprising of all possible determinants constructable from a given spatial orbital basis. Intro-
duced in 2009 [1], it has been developed in a number of ways which greatly extends the scope
of the methodology: the initiator method [2], introduced in 2010, enables much larger Hilbert
spaces to be accessed with a relatively small number of walkers, albeit at the cost of a system-
atically improveable bias, followed in 2012 the development of the semi-stochastic FCIQMC
method (S-FCIQMC) [3, 4], which greatly reduces the stochastic error bars for a given amount
of computer effort, resulting in ∼1000-fold increase in efficiency. In 2014, the replica method
to compute reduced-density matrices (1- and 2-body) was introduced [5], which has enabled
other developments, including property calculations [6], stochastic CASSCF [6, 7], and F12
corrections [8], and finally the method was extended to excited states [9–13]. FCIQMC has
also led to stochastic techniques for solving other types of quantum chemical equations: the
Coupled-Cluster Monte Carlo technique [14], and the density matrix QMC method [15], re-
spectively.

The scope of this short tutorial lecture cannot possibly cover all of the above aspects. We will
limit ourselves to the description of the algorithm, together with its semi-stochastic variant, as
well as some illustrative examples using the Hubbard model. It should be pointed out, however,
that the FCIQMC has proven most useful for quantum chemical systems, often characterized
by large basis sets (i.e., a large ratio of the number of orbitals to the number of electrons), and
in which the full CI eigenvector is very sparse in comparison to the size of the Hilbert space.
FCIQMC manages to perform an efficient sampling of such sparse solutions without a priori
knowledge of the wavefunction, and importantly, without encountering a severe sign problem.
In other words, the signal-to-noise ratio of the simulations are perfectly stable and manageable,
and does not deteriorate with time as the simulation proceeds. However, where sparsity does
not exist in the wavefunction, in other words where the entire Hilbert space is relevant to the
description of the wavefunction, it is inevitable that the computational effort of the FCIQMC
simulation involves sampling the whole (exponentially large) space. This is found to be the case
for the Hubbard model, where, depending on the strength of the Hubbard U , the exact solution
can be either sparse or dense, the latter being the case for example in the Hubbard model as U/t
becomes large (in a plane-wave basis). In this case, FCIQMC is not much more efficient than
conventional exact diagonalization. It does raise the question of representation, though. At very
large U (which by numerical experimentation is found to be around 30t) it is more efficient to
use a real-space representation to express the FCI solution, whereas at smaller U plane-waves
are more efficient. However for the intermediate U regime, i.e., from 4-12, we have not found
any representation to be efficient, and the FCI solution appears to be quite dense in both real
and reciprocal space.
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Nevertheless, the important property of the FCIQMC method rests on its intrinsic ability to
locate the important parts of the wavefunction, and to entangle them correctly. In other words
the correct linear combination of Slater determinants emerges from the simulation, without the
need to perform any explicit diagonalization, or similar numerical procedure. In order to do this,
the key step is the walker-annihilation step of the algorithm, which will be discussed later on.
It turns out that this process can be done in a local manner, in an O(Nw) process, i.e., scaling
linearly with the number of walkers, without the need to invoke global processes involving the
entire walker population or Hilbert space, which would be intractable. Furthermore, this allows
for massive parallelization, which is without doubt one of the key strengths of the technique. It
gives it an exciting future perspective.

2 FCIQMC

Given a second-quantized Hamiltonian of the type

Ĥ =
∑
pq

hpqc
†
pcq +

∑
pqrs

vpqrsc
†
pc
†
qcscr (1)

defined over a set of spin-orbitals {ϕ1, ...ϕp, ..., ϕq, ...., ϕ2M} with

hpq = 〈ϕp|h|ϕq〉 (2)

vpqrs = 〈ϕpϕq|r−112 |ϕrϕs〉 , (3)

the object is to solve for the lowest-energy eigenstate of such an Hamiltonian for an N -electron
system

Ĥ|Ψ0〉 = E0|Ψ0〉 . (4)

FCIQMC can be considered as a stochastic minimization of the energy with respect to a sampled
full configuration interaction wavefunction expansion. This wavefunction is a simple linear
combination of all Slater determinants that can be constructed from distributing the available
electrons within the (orthonormalized) single-particle orbitals spanning the space, as

|Ψ0〉 =
∑
i

Ci|Di〉, (5)

where |Di〉 represents a Slater determinant, labeled by the orbital-occupation string i. The
linear coefficients of this expansion are the objects that are stochastically sampled using a delta
function or walker representation: given an ensemble ofNw walkers distributed over the Hilbert
space, each with a sign s = ±1 and Slater determinant i

{s1i1, s2i2, ...., sNw iNw} (6)

the number of walkers on each determinant is

ni =
Nw∑
w

swδ(iw − i). (7)
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The FCIQMC algorithm is then a population dynamics of such an assembly of walkers with the
aim that in a long-time (β) simulation, the expectation value of the ni becomes proportional to
the Ci

〈ni〉β ∝ Ci . (8)

The stochastic, iterative equations that govern this dynamics are given by

∆ni(β + τ) = −τ

[∑
j6=i

Hij nj(β)

]
− τ(Hii − S)ni(β) , (9)

where ∆ni(β) represents the change in ‘walker’ population/weight on determinant |Di〉 in the
time step β → β + τ . This leads to population dynamics of a set of walkers which occupy
determinants connected to each other in this many-electron Hilbert space. This dynamics can
be achieved by a set of local, stochastically realized, Markov-chain processes as follows:
The first is a ‘spawning’ step, which is performed for each occupied determinant, and a number
of times proportional to the walker weight at that determinant (ni). A single or double excitation
is randomly chosen, with normalized probability pgen(j|i) for the excitation from |Di〉 to |Dj〉.
The walker amplitude on |Dj〉 is then augmented with a signed probability given by

pspawn = −
τHij

pgen(j|i)
. (10)

Finally, a ‘death’ step is performed, by which the amplitude on each determinant, |Di〉, is (gen-
erally) reduced with probability τ(Hii − S)ni. Taken together, these two steps simulate the
dynamic in Eq. (9). However, an additional ‘annihilation’ step is essential in order to overcome
an exponential increase in noise and other features associated with the Fermion sign prob-
lem [1]. In this step, walkers of opposite signs on the same determinant are removed from the
simulation.
The energy of the QMC-sampled wavefunction can be extracted from a projected estimator, the
simplest of which is

EProj =
〈DHF|Ĥ|Ψ〉
〈DHF|Ψ〉

, (11)

where the projection is done onto the Hartree-Fock determinant DHF. This is a reasonable
projection as long as DHF has a non-negligible overlap with the ground-state wavefunction Ψ .
In case of wavefunctions with multi-reference character, it is better to perform a projection onto
a multi-determinantal trial wavefunction ΨT =

∑
{i}C

T
i |Di〉, so that

ET =
〈ΨT |Ĥ|Ψ〉
〈ΨT |Ψ〉

. (12)

For a well-chosen ΨT , so that the denominator stays far from zero (which can be generated
on the fly during the FCIQMC simulation), this leads to a significantly better behaved energy



Introduction to FCIQMC 9.5

estimator with smaller bias and smaller stochastic errors. In the NECI code, ΨT is generated by
diagonalizing H is a sub-space containing a specified number of leading determinants obtained
from an FCIQMC simulation.
The value of the shift S is varied throughout the simulation in order to maintain a constant,
desired weight of walkers. At convergence, this value should fluctuate about the energy of
the system, providing an alternative estimator for the energy based on the total growth rate of
all the walkers in the system. More details on the specific implementation of these steps, and
the derivation of this dynamic from the imaginary-time Schrödinger equation can be found in
Refs. [1, 16, 3]. Furthermore, the systematically improvable initiator approximation is almost
always used (sometimes denoted i-FCIQMC to distinguish it from the full method). This in-
volves a dynamically truncated Hamiltonian operator, where spawning events to unoccupied
determinants are constrained to be only allowed if they come from a determinant with a walker
weight greater than nadd. This approximation can be systematically improved as the number
of walkers increases, as increasing numbers of determinants fulfil the criteria, and the sampled
Hamiltonian therefore approaches the exact Hamiltonian. More details and benchmarking of
this approximation can be found in Refs. [2, 17].

3 Semi-stochastic FCIQMC

The FCIQMC wave function is represented by a collection of walkers which have a weight
and a sign and reside on a particular basis state, sometimes referred to as a site. The total
signed weight of walkers on a site is interpreted as the amplitude of that basis state in the
(unnormalized) FCI wave function expansion. The FCIQMC algorithm consists of repeated
application of the projection operator

P̂ = 1− τ(Ĥ − S1) (13)

to some initial state, where Ĥ is the Hamiltonian operator, τ is some small time step and S is an
energy offset (‘shift’) applied to the Hamiltonian to control the total walker population. With
sufficiently small τ , exact repeated application of P̂ will project the initial state to the ground
state of Ĥ [18]. In FCIQMC, P̂ is applied such that the correct projection is only performed on
average, thus leading to a stochastic sampling of the ground state wave function.
The projection operator can be expanded in the chosen FCI basis as

P̂ =
∑
ij

Pij|i〉〈j|. (14)

In the semi-stochastic adaptation the set of basis states is divided into two sets, D and S. We
refer to the space spanned by those basis states in D as the deterministic space, and refer to the
basis states themselves as deterministic states. The terms in Eq. (14) can then be divided into
two separate operators,

P̂ = P̂D + P̂ S, (15)
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where P̂D refers to the deterministic projection operator,

P̂D =
∑

i∈D,j∈D

Pij|i〉〈j|, (16)

and P̂ S is the stochastic projection operator containing all other terms. In semi-stochastic
FCIQMC, P̂D is applied exactly by performing an exact matrix multiplication, while P̂ S is
applied using the stochastic FCIQMC spawning steps as usual.1

In order to perform an exact projection in the deterministic space, the walkers weights must
be allowed to be non-integers. This differs from most previous descriptions of the FCIQMC
algorithm thus far. To be clear in notation, we use Ci to refer to the signed amplitude on a site,
and Ni to refer to the unsigned amplitude (and so |Ci| = Ni), which we refer to as the weight
on the site.
A complete iteration of semi-stochastic FCIQMC is performed as follows, where we use the
notation T̂ = −(Ĥ − S1):

1. stochastic projection: Loop over all sites. Perform χi spawning attempts from site |i〉,
where χi is specified below. For each spawning attempt, choose a random connected site
|j〉 with probability pij, where connected means that Hij = 〈i|H|j〉 6= 0 and i 6= j. The
attempt fails if both |i〉 and |j〉 belong to D, otherwise a new walker on site |j〉 is created
with weight |Tji| sign(Ci) τ/pij.

2. deterministic projection: New walkers are created on sites in D with weights equal to
τTDCD, where CD is the vector of amplitudes currently on sites in D.

3. death/cloning: Loop over all sites in S. For each site create a spawned walker with
weight and sign given by TiiCi τ .

4. annihilation: Combine all newly spawned walkers with walkers previously in the simu-
lation by summing together the weights of all walkers on the same site.

χi is chosen probabilistically such that the expectation value E[χi] = Ni. Although other
approaches have been used [3], in this work we set

χi = dNie with probability Ni − bNic, (17)

= bNic otherwise. (18)

If integer weights are used, then this reduces to χi = Ni, as used in previous work [1].
In order to reduce the memory demands of having a large number of sites occupied with a low
weight, a minimum occupation threshold, Nocc, is defined. After all annihilation has occurred,
any walkers with a weight less than Nocc are rounded up to Nocc with probability Ni/Nocc or
otherwise down to 0. In practice, we always choose Nocc = 1. The occupation threshold is not
applied to deterministic states such that the deterministic projection is applied exactly.

1If the deterministic space is the entire FCI space, then the algorithm reduces to the power method without
explicit normalization; FCIQMC can be viewed as a stochastic version of this approach.



Introduction to FCIQMC 9.7

We further use a modification to the initiator adaptation to FCIQMC [2, 19] by allowing all
spawnings both from and to the deterministic space to survive. This effectively forces all deter-
ministic states to be initiators, which is sensible since these states should be selected by their
importance (i.e. weight). We note that this is different from the more complicated adaptation
made by Petruzielo et al. [3], where the initiator threshold is allowed to vary based on the num-
ber of steps since a walker last visited the deterministic space. We note that it is not necessary to
use both the initiator and semi-stochastic adaptations together; the benefits from both extensions
are largely independent of each other.
Using non-integer weights can have a significant memory impact compared to integer weights
due to the large number of additional spawned walkers, which also increases time demands due
to expensive extra processing and communication steps. We therefore apply an unbiased proce-
dure to stochastically remove walkers with very small weights, similar to that above. Following
the notation of Overy et al. [5], we use a spawning cutoff, κ, where κ = 0.01 unless stated
otherwise. A spawning of weight Nj < κ is rounded up to κ with probability Nj/κ or otherwise
down to 0. Spawned walkers with weights greater than κ are left unaltered.

4 Choosing the deterministic space

The key to reducing the stochastic error is to choose D such that most of the weight of the true
FCI wave function is in this space. For a given number of basis states in the deterministic space,
|D|, it is expected that the best possible deterministic space (the one which reduces noise the
most) is obtained by choosing the |D| most highly weighted basis states in the exact expansion
of the ground-state wave function. Achieving this optimal space requires knowledge of the
exact wave function and so is not feasible in general.
A sensible choice for D in many systems would be a configuration interaction (CI) or complete
active space (CAS), generally regarded as being effective at describing situations where dynam-
ical and static correlation, respectively, are important. We have found from experience that such
spaces are useful and lead to a large reduction in stochastic noise. This leads to the question:
can one find a better deterministic space, at least in common cases?
Petruzielo et al. [3] describe an iterative method for choosing the deterministic space. First the
space connected to the space from the previous iteration is generated and the ground state of the
Hamiltonian in this subspace is calculated. The most significant basis states in this ground-state
expansion are kept (according to a criterion on the amplitude of coefficients). The initial space
contains (e.g.) the Hartree–Fock determinant. This process is repeated for some number of
iterations. This approach has been demonstrated to give much greater improvements than by
simply using the space connected to the Hartree–Fock state, even with a reduced size for D, as
it can contain the chemically-relevant basis states [3].
In the NECI code we use a different method of generating the deterministic space. Inspired by
the spirit of FCIQMC, we allow the deterministic space to emerge from the calculation itself: we
simply perform a fully-stochastic FCIQMC calculation (or a semi-stochastic calculation with
a simple deterministic space, such as a CISD space) until the ground state is deemed to have
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been reached, and then choose the most populated basis states in the FCIQMC wave function
to form D. In this initial FCIQMC calculation, it is not necessary to employ a large number
of walkers, as its purpose is simply to identify determinants which are likely to be important
in the converged solution. The generation of the deterministic subspace is therefore extremely
rapid. This approach has the benefit that it does not require performing an exact ground-state
diagonalization within a (potentially large) subspace, which can be very expensive. The only
parameter is the desired size of the deterministic space and it is therefore considerably more
black-box like. Since the initial FCIQMC calculation need not be limited to low-order exci-
tations (such as the double excitations of a reference determinant), but can develop significant
walker population on some determinants deep in the Hilbert space (on quadruple, sextuple and
higher excitation levels) our procedure can select close-to-optimal deterministic spaces in a very
inexpensive and rapid manner.
Although the FCIQMC wave function is only a stochastic snapshot of the true ground state, the
most significant basis states in the expansion will tend to remain highly occupied throughout
the simulation with weights fluctuating about their exact values. It is therefore not surprising
that our approach works well. For very large deterministic spaces, states with the minimum
occupation weight, may be included in the space. In this case there is some redundancy in how
D is chosen, and the choice of D will probably not be optimized fully, although we still find
this approach to work very well. It is simple to include a cutoff to avoid this if desired, although
we do not do so in the calculations presented here.
We emphasize that we prefer our approach to the iterative scheme of Petruzielo et al. because
it avoids large ground-state calculations which, for large systems and values of |D|, can take
up a significant amount of time and memory. If the size of the space at the start of an iteration
in this iterative scheme is given by X , and the average number of connections to each state is
nc (which, in general, grows quadratically with system size), then one will have to perform a
ground-state calculation in a space of size ∼ Xnc. For many cases, including those consid-
ered in this article, such a space is extremely, if not prohibitively, large. Indeed, as FCIQMC
is applied to increasingly larger systems, such an approach will become less feasible. Already,
FCIQMC has been applied to systems where the number of connections to the Hartree–Fock
state is O[105 − 106] [20,6]. In these cases, it might be possible to apply the iterative scheme if
only a small number of states are kept in each iteration, but in this case the final space would be
unoptimized. Another approach would be to generate the final space by finding the connections
to the previous (small) space but not performing a ground-state calculation, but again the gen-
erated space would be unoptimized. We therefore feel that our approach is an altogether more
black box and scalable approach to generating an effective deterministic space.

5 An application of FCIQMC to the Hubbard model

The Hubbard model Hamiltonian is usually expressed in a real-space lattice as

Ĥ = −t
∑
〈p,q〉,σ

(
c†pσcqσ + h.c.

)
+ U

∑
p

np↑np↓ , (19)
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Fig. 1: The 18-site Hubbard model on a tilted lattice. (a) Real-space lattice. (b) Reciprocal
space lattice, showing the occied Fermi ‘square’ at half-filled occupancy

where npσ = c†pσcpσ is the number operator on site p for σ-spin electrons. The sum 〈p, q〉 is
taken over nearest-neighbor lattice sites p and q and periodic boundary conditions are applied.
Twisted periodic boundary conditions can also be applied, in order to reduce finite size effects
and to perform “twist-averaging”, but in the numerical examples below this is not done.
For the purposes of FCIQMC, it is more convenient to work in a plane-wave, reciprocal space,
representation in which the orbitals are unitarily transformed as

|k〉 = 1√
Ω

∑
p

e−ik.rp|p〉, (20)

where Ω is the number of sites in the lattice and rp is the position of lattice site p. In this
momentum basis, the Hubbard Hamiltonian takes the form

Ĥ =
∑
k,σ

εkc
†
k,σck,σ +

U

Ω

∑
k,q,Q

c†k+Q↑c
†
q−Q,↓ck↑cq↓ . (21)

The precise form of εk depends on the lattice vectors of the lattice being studied. For this
study we shall use the tilted 2-dimensional square lattice shown in Fig. 1, with super-cell lattice
vectors

T1 =

(
L

L

)
and T2 =

(
−L
L

)
, (22)

where L is an odd integer. This leads to a supercell containing Ω =
√
2L ×

√
2L sites. The

dispersion relation for εk can be expressed in terms of the reciprocal lattice vectors of T1,T2,
namely b1,b2

b1 =
π

L

(
1

1

)
and b2 =

π

L

(
1

−1

)
(23)
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Fig. 2: The number of walkers in a non-initiator FCIQMC calculation, showing a plateau for
the (18,18) U/t = 4 system at ≈ 62 × 106 walkers. The second plateau corresponds to the
onset of variable-shift mode, in which the walker population is stabilized at 108 walkers. The
Hilbert space corresponds to≈ 131×106 determinants. The number of walkers on the reference
determinant is 127000, and is barely visible on this plot. The plot on the right shows the same
information on a logarithmic scale.

with allowable k = kn,m as follows:

kn,m = nb1 +mb2 (24)

εk = −2t
(
cos

π(n+m)

L
+ cos

π(n−m)

L

)
(25)

We are aware of exact diagonalization results for the half-filled 18-site (L = 3) model to which
we will compare the FCIQMC results [21], which we shall refer to as the (18, 18) system.
This system has a Hilbert space of NFCI ≈ 1

18

(
18
9

)2 ≈ 131 × 106 Slater determinants. The
calculations have been done with τ = 0.001 for a range of U/t = 1 – 4. We have also performed
calculations on the Hubbard model with 2 holes (maintaining zero momentum and zero total
spin), i.e., the (18, 16) system, to exhibit the effect of moving off half-filling on the FCIQMC
method.
We first perform a non-initiator FCIQMC calculation, which exhibits a plateau in the walker
growth when the shift is held fixed at S = 0 (Fig. 2). This plateau occurs when roughly 50%
of the Hilbert space has been populated by walkers. For smaller values of U , the plateau height
decreases linearly, vanishing when U < 1 (Fig. 3). This implies that for such values of U , it
is possible to sample the Hilbert space with a vanishingly small number of walkers [22] even
without the initiator method.
Figure 4 shows the error in the projected energy as a function of imaginary time for the (18,18)
Hubbard model with U/t = 4 using FCIQMC without the initiator method. With the initiator
method, it can be seen that a small but systematic bias is induced at small walker population,
which diminishes with increasing number of walkers. Even with a small number of walkers,
the simulations are stable with a constant signal to noise ratio in the long time limit. This is
shown in Fig. 5 for the (18,18) and the (18,16) Hubbard model, both with U/t = 4. The cost
of the initiator runs is however much lower. Fig. 6 shows the time per iteration for each of the
runs, including the 108 walker non-initiator run. The time per iteration is linear in the number
of walkers, and there additional overhead associated with the initiator method compared to the
full method.
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Fig. 3: The ratio of plateau heights to the size of the Hilbert space as a function of U for the
18-electron and 16-electron (2-hole) system. As the value of U decreases, an off-set linear
decrease in the plateau height is observed, vanishing at U = 1. The 2-hole system exhibits
slightly higher values of the plateau as a ratio of the Hilbert space, presumably because of the
more multi-reference nature of the ground state wavefunction.
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Fig. 4: The error in the projected energy as a function of imaginary time for the (18,18) Hubbard
model at U/t = 4. The initiator method is not used, leading to a plateau in the walker-growth
of the simulation (see Fig. 2). The initial value of the energy is the Hartree-Fock energy (−14 t),
which is 3.25239 t above the exact energy of −17.25239 t. All energy plots are shown relative
to this exact energy. It is evident that after propagation of ≈ 2 units of imaginary time (τ =
0.001 t), the simulation has converged, and crucially, the energy stable, i.e., there is no growth
in noise as the simulation proceeds.
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Fig. 5: Error of different initiator runs of varying number of walkers for the Hubbard model
with U/t = 4. Left: Half-filled (18,18) system. The initiator error is seen to decrease as the
walker population is increased. The signal to noise ratio of the initiator simulations is also
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6 Future perspectives

Although the FCIQMC technique has thus far been formulated in a Slater determinant basis,
its ideas can be extended to other more general types of basis functions which span the same
Hilbert space. A notable example are configuration state functions (CSFs), each one of which
preserves the total spin S quantum number, in addition to the spin-polarization quantum num-
ber MS . Spaces of CSFs are typically an order of magnitude smaller than the corresponding
Slater determinant basis, but the matrix element calculations between CSFs is more complex.
Development of fast algorithms capable of handing CSFs would greatly help in the study of
systems with small spin-gaps (which includes Hubbard models in the intermediate U range),
and we believe this to be an important area of research. Another important question is to un-
derstand the factors that govern the rate of convergence of the initiator method, with the aim to
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try to improve it. In the study of quantum chemical systems, and of the uniform electron gas,
it is frequently found that the initiator method works extremely well, so that Hilbert spaces as
large as 10108 have been sampled with∼ 109 walkers [23]. However for the 2D Hubbard model,
particularly in the ‘interesting’ range of U/t = 4−12 one observes much larger initiator biases.
Is this inevitable? In other words, is the complexity of the ground-state wavefunction such that,
no matter which technique is employed, the convergence is governed by the complete Hilbert
space? This is unclear. Perhaps some fusion of FCIQMC with other types of wavefunction rep-
resentations, such as matrix product states or tensor networks could be envisaged. But there is
at present no equivalent projector method to FCIQMC in such representations which does so –
only variational methods or fixed-node approximations. These are indeed extremely important
questions to be addressed in the future.
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10.2 Lucia Reining

1 Introduction

In this lecture we will present the Bethe-Salpeter equation (BSE) from the point of view of its
use in condensed matter physics and chemistry. In this context it is most often applied to the
calculation of optical spectra. For this reason we will work in the framework of linear response
theory, although, as we will see at the end, there are other uses of the BSE.
The BSE solves a many-body problem, expressed in terms of electrons, holes, and their inter-
action. It is convenient to formulate such a problem in terms of Green functions. Therefore, we
will start by briefly recalling the necessary tools.

2 Green functions and Dyson equations

Green functions are often encountered in scattering theory. Suppose a system is described by
Ĥ0, and V̂ indicates an extra potential that acts as a center for scattering. Assuming that the
energies ω form a continuum, one only has to determine the wavefunctions of the scattered
states. The Lippmann-Schwinger equation [1] gives the relation between an unperturbed state
|φ0〉 and an eigenstate of the full Hamiltonian |φ〉 at the same energy ω:

|φ〉 = (1−G0V̂ )−1|φ0〉 with G0 ≡ (ω + iη − Ĥ0)−1
|η→0+

. (1)

The Green functionG0 depends only on the unperturbed system. Moreover, it contains a bound-
ary condition: one imposes that the scattering contribution |φ〉 − |φ0〉 contains only outgoing
contributions. This boundary condition, which guarantees that the solution is causal, is ful-
filled thanks to the positive infinitesimal η. Eq. (1) is equivalent to |φ〉 = GG−1

0 |φ0〉 with the
definition of the full Green function G ≡ (1 − G0V̂ )−1G0, which fulfills the Dyson equation
G = G0 +G0V̂ G.
Like the Hamiltonian, the Green functions are non-local in space. In general they can also be
non-local in a spin coordinate. Moreover, their dependence on the frequency ω (see Eq. (1))
corresponds to a dependence on a time difference (whereas G depends on two times when the
Hamiltonian is time-dependent). In the following we denote a space-spin-time argument with
1→ (x1, t1)→ (r1, σ1, t1), and we use the convention that arguments with a bar are integrated
over: f(1̄)g(1̄)→

∫
d1 f(1)g(1). Then the Dyson equation can be written as

G(1, 2) = G0(1, 2) +G0(1, 3̄) V̂ (3̄)G(3̄, 2) . (2)

The Dyson equation is a general way to move from the Green function of a simpler system to
the Green function of a system in presence of an extra potential, which may depend on space,
spin and time. In the following we do not display spin unless necessary, supposing that we are
interested in spin-unpolarized systems.1 Moreover for simplicity we assume the temperature to

1In the most general case the Green function depends on two spin arguments. When the interaction is spin-
independent, the Green function is spin-diagonal, and in the absence of spin polarization, the two spin components
are equal. We mostly suppose to be in that case, and do not display spin for simplicity. Details on the spin-
dependent BSE can be found in [2].
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be zero, and the system to be in its ground state. To simplify notation we also omit the hat on
operators whenever it does not create confusion.
In the many-body electron system, there is scattering because of the Coulomb interaction be-
tween electrons, so the same considerations as above hold. The starting G0 is an independent-
particle Green function, describing electrons that are not scattered by other electrons.2 Its re-
tarded version GR

0 reads

GR
0 (r, t, r′, t′) = −iΘ(t− t′)

∑
s

ψs(r)ψ
∗
s(r
′) e−iεs(t−t

′) , (3)

where εs and ψs are the eigenvalues and eigenfunctions of the single-electron Hamiltonian h0.
The εs are the poles of G0 in frequency space, where GR

0 (r, r′;ω) =
∑

s
ψs(r)ψ∗s (r′)
ω−εs+iη .

Often it is more convenient to work with time-ordered Green functions instead of retarded ones;
we will also adopt this framework here. The time-ordered Green functionG0 of an independent-
particle system reads

G0(r, t, r′, t′) = −i
[
Θ(t− t′) Θ(εs−µ)−Θ(t′− t) Θ(µ− εs)

]∑
s

ψs(r)ψ
∗
s(r
′)e−iεs(t−t

′) (4)

so that electrons (states above the chemical potential µ) and holes (states below µ) contribute
with opposite sign.
The independent-particle Green function yields some important observables of the independent-
particle system. In particular, the density is n0(r) =

∑occ
s |ψs(r)|2 = −iG0(r, t, r, t+), where

t+ stands for t+ η. The diagonal of the spectral function Ass(ω) = 1
π
ImG0,ss(ω), which is the

imaginary part of the Green function in frequency space, is A0
ss(ω) = δ(ω − εs): it exhibits the

spectrum of electron addition and removal energies.
Suppose now that we add an extra static potential va to the system. The new Green function G
can be obtained from the Dyson equation (2) where V̂ is replaced by va. It will have the same
form as Eq. (4), but the eigenvalues and eigenfunctions that appear in Eq. (4) are those of h0+va.
They can also be used to evaluate the density and spectral function as above. Importantly for
our purpose, the independent-particle expressions are also valid when va is not some external
potential, but a system-internal mean-field potential such as the Hartree (vH) or Kohn-Sham
(vxc) ones. They even hold when one introduces a spatially non-local mean field, such as the
Hartree-Fock potential ΣHx, for which the Dyson equation reads

G(1, 2) = G0(1, ) +G0(1, 3̄)ΣHx(3̄, 4̄)G(4̄, 2) . (5)

Note that like the Hartree or Kohn-Sham potentials, the Hartree-Fock potential is instantaneous,
i.e., local in time, which means that ΣHx(3, 4) is proportional to δ(t+3 − t4).
When va depends explicitly on time, i.e., the system is out of equilibrium, G is no longer of the
simple form of Eq. (3). Although we will implicitly apply such a potential to our system later,
we do not need to consider the resulting Green functions explicitly here, since we will limit
ourselves to linear response.

2An independent-particle system can be the non-interacting one in some external potential, or it can have also
a part of the interaction included through a static mean field.
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However, below we will replace the instantaneous Hartree-Fock mean field by a more general
self-energy Σ(3, 4), which is not instantaneous, i.e., it depends on two time arguments (t3, t4),
or one time difference (t3 − t4) (one frequency) in equilibrium. As a consequence, G has no
longer the same simple structure as G0. Still, it can be calculated from the Dyson equation, if
the self-energy is known.
There are two ways to understand why the full self-energy is not instantaneous, or equivalently,
why the full Green function has a form different from Eq. (4). They are linked to the definition
and meaning of G. The one-body Green function is defined such that it describes electron
addition and removal from the full many-body system. In the Hartree and Hartree-Fock single-
particle Schrödinger equation the eigenvalues are directly the addition and removal energies;
this is Koopmans’ theorem. It implies that electrons are added or removed without influencing
the already present system electrons. However, in reality the system should react to the addition
of a charge, which leads to screening. This reaction is not instantaneous, but it needs time to
build up a screening cloud, and charge oscillations can be excited.3 This explains why the total
effective potential, which includes the self-energy, is not instantaneous but depends on a time
difference.
The fundamental difference between a static mean-field and a fully interacting system can also
be understood by looking directly at the Green function. The generalization of Eq. (4) to the
fully interacting Green function at zero temperature is [3]

G(r, t, r′, t′) = −i〈N |T
[
ψ̂(r, t) ψ̂†(r′, t′)

]
|N〉, (6)

where |N〉 is the N -particle many-body ground state, ψ̂ are field operators in the Heisenberg
picture, and T is the time-ordering operator defined as

T [A(t1)B(t2)]≡

{
A(t1)B(t2),

B(t2)A(t1),

t1 > t2
t1 < t2.

(7)

Eq. (6) shows that the Green function G is the probability amplitude to find an electron in (r, t)

if it has been inserted in (r′, t′) (and vice versa for a hole). This definition reduces to Eq. (4) in
absence of interaction, where the ground state |N〉 is a Slater determinant built with the single
particle orbitals ψs(r). As one can see from the definition (6) of the Green function, in analogy
to the non-interacting case,

n(r) = −iG(r, t, rt+) . (8)

The spectral function becomes

Ass(ω) = − 1

π
ImGss(ω) =

∑
λ

|fsλ|2 δ(ω − ελ) , (9)

3Note that especially in finite systems the Hartree or Hartree-Fock approximations are also used in a ∆ self-
consistent field (∆-SCF) approach, where charges are explicitly added to the system, which is allowed to relax
self-consistently. In this case, one implicitly includes screening, although in an adiabatic approximation that does
not lead to excitations.
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where ελ are electron addition and removal energies, and the fsλ are Dyson amplitudes projected
on single particle orbitals. These projections are in general not sharp. Therefore, contrary
to the non-interacting case the interacting spectral function is not just a single δ-peak, and
it shows a continuous distribution of weight in an extended system, although a pronounced
“quasi-particle” peak may still dominate the spectrum. Such a spectral function can only be
produced if G is solution of a Dyson equation with self-energy that is not instantaneous, and
which has therefore a Fourier transform that depends on frequency.

3 Linear response

In the following we will concentrate mainly on spectroscopic measurements, such as optical
absorption, electron energy loss experiments, or inelastic x-ray scattering. The experimental re-
sults can often be understood in terms of linear response theory. In particular, they are related to
the frequency-dependent dielectric function ε(ω), or equivalently, to the linear density-density
response function χ(ω). The linear response is the first-order change of the density δn in a
system due to an external perturbation vext, given as δn = χ vext. The response function and
the inverse dielectric function are related by

ε−1(r1, r2;ω) = δ(r1 − r2) +

∫
dr3 vc(|r1 − r3|)χ(r3, r2;ω) , (10)

where vc is the bare Coulomb interaction. More specifically, in a periodic system, this reads

ε−1
GG′(q;ω) = δGG′ + vc(q + G)χGG′(q;ω) , (11)

where q is a vector in the first Brillouin zone and G is a reciprocal lattice vector. Spectra are
obtained from ε or χ. The most important quantities are:

• The loss function −Im ε−1
GG(q;ω) = −vc(q + G) ImχGG(q;ω). This quantity can be

measured in an electron microscope by performing a momentum-resolved electron energy
loss experiment with a selected momentum transfer Q = q + G.

• The dynamic structure factor S(Q, ω) = − 1
π
ImχG,G(q, ω). One can measure S as a

function of energy and momentum transfer Q = q + G at a synchrotron by performing
inelastic x-ray scattering (IXS).

• The optical absorption spectrum Im εM(q, ω). Under certain conditions, it is given by
the macroscopic dielectric function εM(q, ω) = 1/[ε(q, ω)]−1

G=G′=0 in the limit of long
wavelength, q→ 0. In rather homogeneous systems, where the off-diagonal elements of
the matrix εG,G′ are small, εM(q, ω) ≈ εG=G′=0(q, ω).

Note that ε−1 yields the screened Coulomb interaction, W = ε−1 vc, which is the effective
interaction between classical charges in a medium. It is a key quantity in Hedin’s equations and
in the GW approximation to the self-energy. Both will be briefly recalled in Sec. 4.
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We will now see how to calculate linear response using Green functions. Let us concentrate on
the density-density response function χ = δn/δvext. With Eq. (8), this can be written as

χ(1, 2) = iG(1, 3̄)
δG−1(3̄, 4̄)

δvext(2)
G(4̄, 1+) , (12)

where we have used δG/δv = −G [δG−1/δv]G. Eq. (12) is a convenient starting point for the
various approximations that we will consider in the following.
Let us first look at the case of non-interacting particles. We can apply a potential vext to the
system and evaluate the linear response. In that case we have

G−1[vext] = G−1
0 − vext , (13)

where we have indicated explicitly that now G is a functional of vext. Using Eq. (12) we obtain
the independent-particle response function

χ0(1, 2) = −iG0(1, 2)G0(2, 1+) . (14)

Because of the opposite time-ordering of the two Green functions, one of the twoG0 contributes
only with a sum over occupied states v in Eq. (4), and the other one with a sum over empty
states c. Altogether, using Eq. (4) for G0, one finds the usual expression for the linear response
function χ0 of a non-interacting system, consisting of a sum over all possible transitions from
occupied to empty states (the resonant part) and vice versa (the anti-resonant part):

χ0(r, r′, ω) =
∑
vc

[
ψ∗v(r)ψc(r) ψ

∗
c (r
′)ψv(r

′)

ω − (εc − εv)− iη
− ψv(r)ψ

∗
c (r) ψc(r

′)ψ∗v(r
′)

ω + (εc − εv) + iη

]
. (15)

This independent-particle approximation is frequently used to describe absorption spectra. In-
stead, it is not at all appropriate to directly access loss spectra. The difference between ab-
sorption and loss is illustrated in Fig. 1: The left panel shows the absorption spectrum of bulk
silicon, the right panel shows the imaginary part of the full density-density response function χ,
as measured in electron energy loss spectroscopy at vanishing momentum transfer. The absorp-
tion spectrum rises steeply above 3 eV, which corresponds to the direct band gap. Instead, the
loss spectrum has its main feature at much higher energy, around 17 eV. In order to understand
how this difference comes about, let us move on and put some interaction in our system.
Suppose that we do this first on a mean-field level, by adding a potential vmf . Since this po-
tential is supposed to stem from the interaction between all electrons, in the spirit of DFT it is
reasonable to assume that it is a functional of the density, vmf = vmf [n]. Now we have

G−1 = G−1
0 − vext − vmf [n] , (16)

which leads to

χ(1, 2) = χ0(1, 2)− iG(1, 3̄)
δvmf [n](3̄)

δvext(2)
G(3̄, 1+) , (17)

where χ0 = −iGG|vext→0 is now built with a pair of equilibrium mean-field Green functions.
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Fig. 1: Electronic spectra of bulk silicon. Left panel: absorption spectrum Im εM(ω) (figure
by Francesco Sottile; experiment from [4]). Right panel: loss spectrum for vanishing momen-
tum transfer, from [5]. The important curves are experiment (dots), RPA (dashed), and BSE
(continuous).

Since vmf is a density functional, and the density itself depends on the external potential vext,
we can use a chain rule in the functional derivative, which leads to a Dyson equation for χ

χ(1, 2) = χ0(1, 2)− iG(1, 3̄)
δvmf [n](3̄)

δn(5̄)

δn(5̄)

δvext(2)
G(3̄, 1+)

= χ0(1, 2) + χ0(1, 3̄)
δvmf [n](3̄)

δn(5̄)
χ(5̄, 2) . (18)

One important example for such a mean-field response is the time-dependent Hartree approxi-
mation, where vmf [n](r, t) = vH [n](r, t) =

∫
dr′ vc(r − r′)n(r′, t). In that case the functional

derivative, the kernel of the Dyson equation, equals simply vc, and χ0 is built with Hartree Green
functions. More generally, an approximation of the form χ = χ0 + χ0vcχ for any χ0 = iGG,
where G is some mean-field Green function, is called Random Phase Approximation (RPA).
The RPA has been proposed for the homogeneous electron gas by Pines and Bohm [6–8], and
it is today used in many contexts and for many materials.
The natural way to go beyond the time-dependent Hartree approximation is Time-Dependent
Density-Functional Theory (TDDFT). We can do this by adding a Kohn-Sham exchange-corre-
lation potential vxc such that vmf = vH + vext + vxc. This potential should be a functional of
the density in the whole space, and at all past times.4 Following the same path that has led to
Eq. (18) this yields

χ(1, 2) = χ0(1, 2) + χ0(1, 3̄)
[
δ(t3̄ − t5̄)vc(r3̄ − r5̄) + fxc(3̄, 5̄)

]
χ(5̄, 2) , (19)

4This is a requirement of causality. TDDFT is usually formulated in a causal framework. We use mostly a
time-ordered formulation in these lecture notes, because this facilitates many-body perturbation theory which is
the main topic here. However, it is easy to move from one to the other, as one can see for example by comparing
Eqs. (3) and (4). One only has to be careful to be consistent.



10.8 Lucia Reining

where we have defined the exchange-correlation kernel fxc(3, 5) = δvxc(3)/δn(5). Note that,
contrary to the Hartree part, it is not instantaneous.
If the exact vxc were known, χ from Eq. (19) would be the exact density-density response
function, because the potential would yield the exact time-dependent density. However, this
is not the case. Most often very simple approximations are used, such as the adiabatic local
density approximation (ALDA), where vxc(r, t) depends only on the density at point r and time
t and fxc(3, 5) is therefore proportional to δ(t3− t5) δ(r3−r5). In extended systems, the ALDA
often yields results close to the RPA ones, when the same χ0 is used. This is illustrated in
the left panel of Fig. 1. The curves labeled RPA and ALDA have been obtained using LDA
Green functions for G. The ALDA shows only minor modifications with respect to the RPA.
Both are not very good: the Kohn-Sham gap in χ0 underestimates the experimental gap by
about 50%. This is not recovered by the RPA or ALDA kernels, so the onset of absorption
is underestimated with respect to experiment. Also the lineshape differs from the measured
one, since there is not enough oscillator-strength on the low-energy side, although one can still
recognize a correspondence between calculated and measured spectra. The loss spectrum in the
right panel, instead, is reasonably well described by the RPA.
In order to understand the difference between absorption and loss spectra, it is enough to look
at the RPA, and to neglect off-diagonal elements of the matrices in reciprocal space. Then, as
outlined in the beginning of this section, absorption is given approximately by

Im εG=G′=0(q, ω) = −vc(q) Imχ0,G=G′=0(q, ω) for q→ 0 ,

whereas the loss function at vanishing momentum transfer is

−Im [1/(1− vc(q)χ0,G=G′=0(q, ω))] for q→ 0 .

To first order in the Coulomb interaction the two expressions are equal. However, the Coulomb
interaction is strong, and the difference is very obvious for bulk silicon in Fig. 1. As anticipated,
comparison of the two panels shows that the loss function in the right panel has its main struc-
tures at much higher energies than the absorption spectrum, which is shown in the left panel. In
the RPA the difference between the two only stems from the long-range Coulomb interaction
vc. This interaction causes a correlated motion of all particles as response to an external pertur-
bation. These are long-range charge oscillations, called plasmons. They give rise to the strong
peak in the loss function in Fig. 1. With vc(q) = 4π/q2, the Coulomb kernel is particularly
important for small momentum transfer q in extended systems. It is the dominant effect in loss
spectra.
At larger momentum transfer 4π/q2 is smaller, and the two kinds of spectra are more similar.
The energy of the plasmon changes as a function of momentum transfer. With this plasmon
dispersion, the sharp peak moves into the continuum of electron-hole transitions and decays into
a broad structure. Plasmons are a broad topic, and more can be found for example in [9]. Here
the important lesson to take away is that the RPA contains the physics of plasmons, because it
includes the long-range variation of the Hartree potential.
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The neglect of off-diagonal elements is an approximation. As Eq. (11) shows, because of scat-
tering at the periodic crystal potential, εGG′ is not diagonal, so its inversion (or, equivalently,
the solution of the Dyson equation) mixes different momentum transfers. Therefore, even when
one is interested in the response to a macroscopic, long-range, perturbation the system can
respond with charge fluctuations on a microscopic scale. These are included in a calculation
through the G 6= 0 components of vc(q + G). The effects of the microscopic components
of vc are called crystal local-field effects (LFE) [10–12]. Microscopic components of the in-
duced Hartree potential gain in importance when the system is inhomogeneous, and when one
probes shorter distances, with increased momentum transfer. In absorption spectra, only the mi-
croscopic components contribute, since the macroscopic component of vc is eliminated by the
double inversion εM = 1/ε−1. The effect of the microscopic components (the LFE) is usually
moderate in extended systems, with variations of spectra of the order of 10% or less for simple
semiconductors, but they can have more important effects in systems with localized electrons,
or in layered systems, which are more inhomogeneous.
The fact that the RPA contains plasmons and crystal local-field effects explains its generally
good performance in describing loss spectra, the dynamic structure factor, and therefore also
the screened Coulomb interaction W . The limitations of the RPA, instead, can be best detected
when one looks at optical absorption in the first few eV spectral range. We have seen the
example of silicon in Fig. 1 above. It is typical for simple semiconductors.
The situation is even worse for insulators, where strongly bound excitons can occur. Roughly
speaking, excitons are due to an effective interaction between the excited electron and the hole
left behind. Since these are a positive and a negative charge, similar to a hydrogen atom, the
interaction can lead to bound states that are clearly detected in experimental absorption spectra.
However, neither in the RPA nor in the ALDA bound excitons can be described. To date, a few
exchange-correlation kernels exist that can produce bound excitons, but their reliability and/or
computational efficiency are not yet satisfactory. Moreover, none of them can overcome the
problem that the Kohn-Sham band gap is usually smaller than the threshold of optical absorp-
tion. This means that the kernel should shift the spectrum to higher energies, which turns out
to be a very difficult task. These problems suggest to move away from density functional the-
ory, towards Green function functional theory, using self-energies and many-body perturbation
theory.

4 Self-energies and generalized response:
the Bethe-Salpeter equation

In order to understand how moving to the framework of Green functions and self-energies can
cure the problems of approximate density functionals, we can look at the simplest approxima-
tion to the self-energy, the Fock exchange operator Σx.
Let us start with the band gap. In Hartree-Fock (HF) we have Koopmans’ theorem, which states
that HF eigenvalues equal electron removal and addition energies, expressed as Hartree-Fock



10.10 Lucia Reining

total energy differences. Since relaxation is not included in this framework, the HF band gap is
in general much too large compared to experiment. For example, in silicon the direct HF gap is
almost 9 eV, whereas the experimental value is about 3 eV (see Fig. 2).
Let us now try to calculate the HF response function using, again, Eq. (12). From Eq. (5) the
equivalent to Eq. (16) is

G−1 = G−1
0 − vext − vH −Σx . (20)

Strictly speaking, like vH also the exchange self-energy Σx is a functional of the density.
However, its explicit form is not known, maybe not existent or at best non-analytic. Instead,
we know Σx(1, 2) as a functional of the one-body spin-resolved density matrix ρ(1, 2) =

−iG(x1.t1;x2, t
+
1 ); it is Σx(1, 2) = −δ(t+1 − t2) vc(r1 − r2) ρ(1, 2). Let us now try to fol-

low the lines of Eq. (18) while using ρ instead of the density n in the chain rule for Σx. This
yields

χ(1, 2) = χ0(1, 2) + χ0(1, 3̄)δ(t3̄− t5̄)vc(r3̄− r5̄)χ(5̄, 2) + χnl
0 (1; 4̄, 3̄)

δΣx[ρ](3̄, 4̄)

δρ(6̄, 5̄)
χnl(6̄, 2, 5̄),

(21)
where we have defined the three-point response functions

χnl
0 (1; 4, 3) ≡ −iG(1, 3)G(4, 1+) and χnl(6, 2, 5) ≡ δρ(6, 5)

δvext(2)
. (22)

The additional non-locality in χnl
0 stems from the non-locality of Σx and is not problematic.

Instead, the functional derivative with respect to the non-local density matrix creates a problem:
Eq. (21) is not a closed equation for the desired χ(1, 2). In order to obtain a closed equation,
we have to generalize the equation to make it fully three-point, by looking from the very start
at δρ(1, 1′)/δvext(2). With δΣx[ρ](3, 4)/δρ(6, 5) = −δ(t+3 − t4) δ(3, 6) δ(4, 5) vc(r3 − r4) and
carrying out the same steps as before, this leads to

iχnl(1, 2, 1
′) = G(1, 2)G(2, 1′) +G(1, 3̄)G(4̄, 1′) iΞHx(3, 5, 4, 6)χnl(6̄, 2, 5̄) , (23)

where the kernel of this Dyson equation reads

iΞHx(3, 5, 4, 6) ≡ i
δΣHx(3, 4)

δG(6, 5)
= δ(3, 4) δ(5, 6) vc(3, 5)− δ(3, 6) δ(4, 5) vc(3, 4) , (24)

and vc(1, 2) includes the δ-function in time. This is now a closed equation for the response
of the spin-resolved density matrix. In order to obtain the desired density response, one has
first to solve for the density matrix response, and then use the fact that by definition χ(1, 2) =

χnl(1, 2, 1).5 Note that G are now HF Green functions at vext = 0. Indeed, Eq. (23) is the linear
response in the time-dependent Hartree Fock (TDHF) approximation.
Fig. 2 shows the result for bulk silicon, taken from [13]. The dots are the experimental spectrum,
the same as in Fig. 1. At the far right of the figure, the dot-dashed curve represents Imχ0 built
with HF Green functions. Since the HF gap is almost 9 eV, the result is far off experiment.

5For the response of the total density one also has to sum over spin.
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Fig. 2: Absorption spectrum of bulk silicon in the TDHF approximation, from [13]. Dots:
experiment. Dot-dashed curve: independent-particle spectrum using Hartree-Fock ingredients.
Continuous curve: TDHF result.

Instead, the kernel ΞHx used in Eq. (23) has a dramatic effect: the spectrum becomes sharper
and moves to lower energies, recovering more than half of the discrepancy to experiment. This
very important effect is due to the second part of ΞHx, the derivative of Σx. The effect of the
first part is a shift of spectral weight to higher energies, but it is very small since, as explained
earlier, only the microscopic part of the variation of the Hartree potential contributes to the final
absorption spectrum.
The TDHF case contains almost everything we need to understand the Bethe-Salpeter equation:

• A Dyson equation for the density-matrix response has to be solved in order to obtain the
density response.

• The starting χ0 has a gap that can be interpreted as a difference between electron addition
and removal energies. This is called the quasi-particle gap, and it is the gap that would be
measured for example in direct and inverse photoemission.

• The variation of the Hartree potential is the same as in the RPA. Its effect on absorption
spectra is moderate (whereas it is responsible for plasmons that are seen in loss spectra).

• The variation of the Fock exchange moves the spectrum to lower energies. Its effect is
strong. We find now spectral weight within the quasi-particle gap: this means that we
have a bound exciton. In other words, the variation of the exchange is responsible for the
electron-hole attraction.

All this might seem to be meaningless, since what judges a theory at the end is agreement with
experiment – and TDHF visibly does less well than the simple RPA based on an LDA G shown
in Fig. 1! However, the problem of HF is clear: it is the absence of screening (or more generally
formulated, of correlation), which makes band gaps too large, and interactions too strong. The
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introduction of screening, even in relatively simple ways, brings remarkable improvement. For
example, hybrid functionals include screening in a effective way by adding a fraction of Fock
exchange to local Kohn-Sham potentials. Moving from time-dependent HF to time-dependent
hybrid-functional calculations leads to very decent absorption spectra in semiconductors, as has
been shown for example in [14].
A more systematic way to introduce screening is to get better self-energies Σxc instead of Σx

from many-body perturbation theory. We will do this in the next section; here we will conclude
by generalizing Eq. (23) to a form that is usually called the Bethe-Salpeter equation (BSE).
The BSE describes a generalized response, where a non-local (in space, spin and time) “poten-
tial” is applied to the system, and the variation of the Green function, instead of its equal-time
limit (the density matrix) is determined. Moreover, since now we are heading for a more general
self-energy, we can no longer suppose that it is known as functional of the density matrix; in-
stead, we will have approximations that are explicit functionals of the Green function. With this
is mind, all steps can be carried out in close analogy to the derivation of the TDHF equations.
With the definition

L(1, 2, 1′, 2′) ≡ δG(1, 1′)

δvext(2′, 2)
(25)

we find the Bethe-Salpeter equation [15]

L(1, 2, 1′, 2′) = L0(1, 2, 1′, 2′) + L0(1, 3̄′, 1′, 3̄)Ξ(3̄, 2̄, 3̄′, 2̄′)L(2̄′, 2, 2̄, 2′) , (26)

with

Ξ(3̄, 2̄, 3̄′, 2̄′) ≡ −iδ(3̄, 3̄′) δ(2̄′, 2̄) vc(3̄, 2̄) +
δΣxc(3̄, 3̄

′)

δG(2̄′, 2̄)
. (27)

The uncorrelated L0(1, 2, 1′, 2′) = G(1, 2′)G(2, 1′) contains the Green function G, solution of
the Dyson equation

G(1, 2) = G0(1, 2) +G0(1, 3̄)Σ(3̄, 4̄)G(4̄, 2) . (28)

This is analogous to Eq. (5), with ΣHx replaced by the full self-energy Σ = vH +Σxc.
From the definition of L in Eq. (25) it follows that

χ(1, 2) = −iL(1, 2; 1+, 2+) ; (29)

as in the case of TDHF, χ can only be obtained after solving the full BSE for L.
The four-point function L is a two-particle correlation function. One can calculate it formally
from Eq. (25), starting from a one-body Green function G in the presence of an external poten-
tial. The derivation is delicate since the potential can be non-local in time [16], but the result
is qualitatively intuitive: the applied potential contributes vext ψ

† ψ to the time evolution in the
Heisenberg picture. The derivative of G = −i〈N |T

[
ψ̂ ψ̂†

]
|N〉 with respect to vext leads there-

fore to an expression with four field operators. It is closely linked to the two-particle Green
function

G2(1, 2, 1′, 2′) = (−i)2 〈T
[
ψ̂(1) ψ̂(2) ψ̂†(2′) ψ̂†(1′)

]
〉 , (30)
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Fig. 3: The Bethe Salpeter equation for the propagation of an electron-hole pair.

via
L(1, 2, 1′, 2′) = −G2(1, 2, 1′, 2′) +G(1, 1′)G(2, 2′) . (31)

The two-particle correlation function, and therefore the BSE, contain much more than just the
density-density response function, which is the small part given by Eq. (29). In particular, the
order of times is crucial to select different pieces of physics, since it determines the order of the
four field operators. In the density-density response this order alternates ψ and ψ†, which means
that electron-hole pairs are described. Alternatively, the order can be for example ψ†ψ†ψψ: this
describes the propagation of two holes. Also various combinations of spin-resolved response
can be described. We will not delve into these subjects, but it should be clear that, given the
general Bethe-Salpeter equation, these problems can be treated in strict analogy to the electron-
hole case. The BSE for the propagation of an electron-hole pair is expressed graphically by the
diagrams in Fig. 3.
The time structure of the BSE is a particular complication. The quantities that appear in the BSE
depend on four time arguments, which corresponds in equilibrium to three time differences, or
three frequencies in the Fourier transform. With the definition of the time differences [17]

τ2 = t1 − t1′ , τ3 = t2 − t2′ , τ1 =
1

2
[(t1 + t1′)− (t2 + t2′)] (32)

and of the Fourier transform

C(t1, t2, t1′ , t2′) =
1

(2π)3

∫
dω̄1 dω̄2 dω̄3 C(ω̄1, ω̄2, ω̄3) e−iω̄1τ1 e−iω̄2τ2 e−iω̄3τ3 , (33)

the frequency structure of the BSE (26) is [18]

L(ω1, ω2, ω3) = L0(ω1, ω2, ω3) +
L0(ω1, ω2, ω̄4)

(2π)2
Ξ(ω1, ω̄4, ω̄5)L(ω1, ω̄5, ω3) . (34)

The definitions are not unique, and the only requirement is to be consistent. With the present
choice, τ2 and τ3 are differences in the time where the electron and the hole are considered, and
τ1 is the average time of propagation. In frequency space the density-density response from
Eq. (29) reads

χ(ω) =
1

(2π)

∫
dω2 L(ω, ω2) =

1

(2π)2

∫
dω2 dω3 L(ω, ω2, ω3) , (35)

where we have used the same symbol L for the integrated function that depends only on two
frequencies.



10.14 Lucia Reining

Since ω3 appears as a dummy index in Eq. (34), it can be integrated before the equation is
solved. The new equation reads

L(ω1, ω2) = L0(ω1, ω2) +

∫
dω4 dω5

L0(ω1, ω2, ω4)

(2π)2
Ξ(ω1, ω4, ω5)L(ω1, ω5) , (36)

with
L0(ω1, ω2) = −iG(ω2 +

ω1

2
)G(ω2 −

ω1

2
) . (37)

If one performs also the integration over ω2 in Eq. (36), one runs into a problem similar to the
density response in HF, namely, the equation is no longer of closed form. Therefore, one has to
solve Eq. (36) and only subsequently perform the integration.

5 The Bethe-Salpeter equation from the GW approximation

At this stage, we have everything in hand to calculate the response function starting from an
arbitrarily complicated self-energy. The task is hence to find a good approximation for Σ,
beyond ΣHx. We have already anticipated that the most important missing ingredient for our
purpose is screening. The task of the present section is to put this hand-waving argument on a
more rigorous basis. A widely used approach is diagrammatic expansions in the framework of
many-body perturbation theory. Here we take another (though strictly analogous) way, which
is closer to the spirit of this lecture about linear response. There is no space for a detailed
derivation; more can be found in the book [19], which we closely follow here.
From the definition (6) of the Green function one can derive its equation of motion

G(1, 1′) = G0(1, 1′) +G0(1, 2̄) vH (2̄)G(2̄, 1′) + iG0(1, 2̄) vc(2̄, 3̄)L(2̄, 3̄+, 1′, 3̄++) . (38)

It expresses the fact that the propagation of a particle in a system of many electrons equals the
propagation of a single particle, modified by the classical electrostatic (Hartree) potential of all
electrons, the Fock exchange that is contained in the last term (and that can be obtained with
the approximation L ≈ L0), and correlation effects such as the reaction of the other electrons,
which is expressed by the fact that L is related to a variation of G via Eq. (25).
We can now transform Eq. (38) into a Dyson equation by using Eq. (25) and the trick δG/δv =

−G [δG−1/δv]G. This defines a self-energy Σ = vH − ivcG [δG−1/δvext]. Moreover, we can
introduce screening by using the chain rule δ/δvext = [δ/δvcl][δvcl/δvext], where vcl ≡ vext+vH .
With this choice, δvcl/δvext = ε−1, which makes the screened Coulomb interaction W = ε−1 vc
appear. Altogether, these manipulations lead to a set of equations known as Hedin’s equations:

Σxc(1, 2) = iG(1, 4̄)W (1+, 3̄) Γ̃ (4̄, 2; 3̄) (39)

W (1, 2) = vc(1, 2) + vc(1, 3̄)P (3̄, 4̄)W (4̄, 2) (40)

P (1, 2) = −iG(1, 3̄)G(4̄, 1) Γ̃ (3̄, 4̄; 2) (41)

Γ̃ (1, 2; 3) = δ(1, 2) δ(1, 3) +
δΣxc(1, 2)

δG(4̄, 5̄)
G(4̄, 6̄)G(7̄, 5̄) Γ̃ (6̄, 7̄; 3) (42)

G(1, 2) = G0(1, 2) +G0(1, 3̄)Σ(3̄, 4̄)G(4̄, 2) . (43)
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These equations contain

• the irreducible polarizability P , Eq. (41). It is the response of the density to the total
classical perturbation vcl. It is linked to χ via χ = P + P vc χ. When the vertex function
Γ̃ is set to 1, P describes non-interacting electron-hole pairs: this is the RPA. Otherwise,
Γ̃ contains the information that the two particles interact. The equation for Γ̃ can be
transformed into a BSE for the irreducible part L̃ (the generalization to four points of P )
of L by integrating with two Green functions, or into the BSE (26) for L by including the
Hartree potential.

• The screened interaction W is different from the bare vc when the system is polarizable,
i.e., P is not zero. It is dynamical, which means, frequency-dependent, because of the
frequency-dependence of P .

• The vertex function Γ̃ also appears in the self-energy: it corrects for the fact that W
is the screened interaction between classical charges, whereas the system particles are
fermions. Moreover, P is the polarizability of all electrons, including the one that should
be screened. This self-screening error is removed by the Γ̃ in the self-energy.

• Variations of the self-energy, in turn, determine the vertex function. Similarly to the bare
Coulomb interaction, which is a first derivative of the Hartree potential, δΣxc/δG plays
the role of an effective exchange-correlation interaction.

The GW approximation consists in setting Γ̃ to 1 everywhere. This means that W is calculated
in the RPA, and Σ = iGW . This approximation is exactly what we have been heading for: it is
a sort of dynamically screened Hartree-Fock. Contrary to Hartree-Fock, the GW self-energy is
not instantaneous, because W depends on a time difference.
The Dyson equation for G in Hedin’s equations is the only equation that exhibits the external
potential via the non-interactingG0. The other equations are universal, and can be used to create
expressions for the quantity of interest with increasing accuracy. Typically one starts with a
guess, like Σxc = 0, and from this calculates Γ̃ , P , W , and then again Σxc as functional of G.
This yields expressions with terms of higher orders in W . The formulae become increasingly
complex, and one cannot go too far. However, at least one update of W has become a standard
ingredient in the toolbox of condensed matter calculations: in a first step Γ̃ = 1, which yields
the RPA for P and W and the GW approximation for Σxc. Then Γ̃ is recalculated. This can be
transformed into a BSE (26) for L, with Ξxc = δΣGW

xc /δG. The resulting kernel reads

ΞGWA
xc (1, 2, 3, 4) = iδ(1, 4) δ(2, 3)W (1, 2) + iG(1, 3)

δW (1, 3)

δG(4, 2)
. (44)

The first term is very similar to Ξx of time-dependent Hartree-Fock, but now it is screened. The
diagrams for the contribution to ΞHxc that contains only the variation of the Hartree potential
and this first term are shown in Fig. 4.
The second term is of higher order inW [20], and it goes beyond the linear response of the elec-
trons to an added charge: the screened interaction itself changes when the system is perturbed.
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Fig. 4: Kernel of the GW-BSE, as explained in the text. The dashed line is the electron-hole
exchange interaction that stems from the variation of the Hartree potential. The wiggly line
represents the direct electron-hole attraction. It is depicted with a minus sign in order to stress
the fact that it is attractive.

Usually this term is neglected, both because it is of higher order, and, very pragmatically, be-
cause it would be much more cumbersome to calculate. It has not been investigated very much,
but there has been no strong evidence to date that it would be crucial to include it. Therefore,
one usually sets

ΞGW
xc (ω1, ω2, ω3) ≈ iW (ω2 − ω3) . (45)

Here we can see a major difference to TDHF: since the GW self-energy is not instantaneous,
the BSE cannot be solved frequency by frequency. From Eq. (36), the coupling of frequencies
reads

L(ω1, ω2) = L0(ω1, ω2) +
1

2π
L0(ω1, ω2)

∫
dω̄3 [vc −W (ω2 − ω̄3)]L(ω1, ω̄3) . (46)

This looks very annoying. However, it should be noted that also L0 has acquired a non-trivial
frequency dependence: the Green functions that yield L0 = GG are now GW ones, which
means, they are no longer of an independent-particle type but have a complicated spectral func-
tion, where weight is transferred from the quasi-particle to satellites. If the remaining quasi-
particle weight is Z < 1 (let us say, 0.7), a transition between quasi-particle peaks would show
up in the spectrum of L0 with weight Z2 [21] (which would yield a weight reduction by a factor
of 1/2). This, however, is not what is observed. The reason is that these dynamical effects in L0

cancel to a large extent with the dynamical effects in ΞGW
xc [22]. Therefore, in realistic calcu-

lations most often the Green functions G in L0 are replaced by quasi-particle ones with weight
Z = 1, and the frequency dependence of W in ΞGW

xc is neglected. Besides the fact that the
quasi-particle G’s are usually derived as an approximation from the fully frequency dependent
GW self-energy, one might call the resulting method “linear-response time-dependent screened
Hartree-Fock”.
Now one can integrate ω2 in Eq. (46), and the GW-BSE becomes

L(x1, x2, x1′ , x2′ ;ω) = L0(x1, x2, x1′ , x2′ ;ω)

− iL0(x1, x̄3, x1′ , x̄3;ω) vc(x̄3, x̄4)L(x̄4, x2, x̄4, x2′ ;ω)

+ iL0(x1, x̄4, x1′ , x̄3;ω)W (x̄3, x̄4)L(x̄3, x2, x̄4, x2′ ;ω) . (47)
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This equation still exhibits all spin arguments. The spin structure of ΞGW
Hxc is

ΞGW
σ3σ2σ3′σ2′

= −iδσ3σ3′ δσ2′σ2 vc + iδσ3σ2′ δσ3′σ2 W. (48)

In spin space, the equation can be decoupled into singlet and triplet contributions [2]. In a
spin-unpolarized material and without a spin-dependent interaction the result is

Lsinglet = L0 + iL0 [W − 2vc]L
singlet

Ltriplet = L0 + iL0 WLtriplet. (49)

As we can see, the variation of the Hartree potential enters with a factor of two in the singlet,
whereas it is absent in the triplet. This difference causes the so-called singlet-triplet splitting.
In the following we concentrate on singlets, which can be optically allowed.

6 A two-body Schrödinger equation

There are various ways to solve the BSE (47), for example, by iterative inversion. For small (less
than 100 electrons) systems sometimes the equation is transformed into the form of an effective
two-particle Hamiltonian that is then diagonalized. This is interesting, because it suggests a
simple physical interpretation. To obtain this form, we first write the equation in the basis of
the orthonormal orbitals ψn(r) that diagonalize G0, and therefore L0, which reads

L n4n2
0n1n3

(z) = 2i
(fn1 − fn2) δn1n4δn2n3

z − (εn1 − εn2)
, (50)

where z is a complex frequency containing the appropriate infinitesimal imaginary part, f are
occupation numbers, and spin has been summed. We also define interaction matrix elements as

vn4n2
n1n3

=

∫
dr1 dr2 ψ

∗
n1

(r1)ψn4(r1) v(r1, r2) ψn3(r2)ψ∗n2
(r2) , (51)

for both vc and W. This transforms the BSE into

Ln4n2
n1n3

(z) = [L−1
0 +

i

2
Ξ]−1 n4n2

n1n3
= 2i [H2p − I z]−1 n4n2

n1n3
(fn2 − fn4) (52)

with I the identity matrix. Here we have defined the effective two-particle Hamiltonian H2p

H2p n4n2
n1n3
≡ (εn2 − εn1) δn1n4δn2n3 + (fn1 − fn3)Ξ

n4n2
n1n3

, (53)

where
Ξn4n2
n1n3
≡ 2v n3n2

c n1n4
−W n4n2

n1n3
. (54)

Optical transitions happen between occupied and empty states. Therefore the only combination
of indices that is needed in a non-metal at T = 0 is couples of occupied and empty states, which
means, we only need terms of the form

Ξv′c′

v c = 2v cc′

c vv′ −W v′c′

v c . (55)
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As we can see, the variation of the Hartree potential gives rise to a dipole-dipole interaction,
called electron-hole exchange. The variation of the GW self-energy, instead, is called direct
electron-hole interaction, since it contains the interaction between the charge densities of elec-
trons and holes.
The full two-particle Hamiltonian is only pseudo-hermitian [23], because of the coupling be-
tween resonant (v → c) and anti-resonant (c → v) transitions. In the Tamm–Dancoff approx-
imation (TDA) [24, 25, 3], this coupling is neglected. This is often a very good approximation
for optical spectra of bulk materials [26]. It is more critical for finite systems [23]. One also has
to be careful when calculating loss spectra [5], because they are influenced by the long-range
part of vc, which gives rise to strong coupling. For simplicity, in the following we give expres-
sions in the TDA; the appropriate formula for the pseudo-hermitian full case can be found for
example in [27, 19].
To perform BSE calculations in practice, one first determines W and the quasi-particle band
structure, typically from a GW calculation. With this, the two-particle Hamiltonian H2p is built
using the expressions above. The next step is its diagonalization,∑

n3n4

H2p n3n4
n1n2

An3n4
λ = EλA

n1n2
λ . (56)

In the TDA, the retarded L is then built from

Ln3n4
n1n2

(ω) = 2i
∑
λ

An1n2
λ A∗n3n4

λ

ω − Eλ + iη
(fn4 − fn3) . (57)

Each couple (nn′) corresponds to a pair (vc) of an occupied and an empty state. In the absence
of electron-hole interaction, each eigenstate A∗n1n2

λ would correspond to a given electron-hole
pair, Avcλ = δvvλδccλ , and the transition energy would be εc−εv. Instead, when the electron-hole
interaction is switched on, one can no longer associate a transition λ with one independent-
quasiparticle transition (vc): transitions are mixed by the interaction. Note that this already
occurs when only the variation vc of the Hartree potential is considered, i.e., in the RPA: the
self-consistent response of the electron system, even on a classical electrostatic level, has non-
trivial effects. Of course, the interaction also affects the transition energies, which are now Eλ
instead of εc − εv.
In a solid and for vanishing momentum transfer q → 0, the resonant part of the independent-
particle retarded response function reads

χ0
00(q→ 0, ω) = 2

∑
vck

|ρ̃vkc|2

ω − (εck − εvk) + iη
, (58)

where the ρ̃ are dipole transition matrix elements between quasi-particle states. Instead, with
all the above approximations the result obtained from the BSE is

χ00(q, ω) = 2
∑
λ

|
∑

vckA
vkc
λ ρ̃vkc|2

ω − Eλ + iη
. (59)
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Again we can see the mixing of transitions induced by the eigenstates Aλ of the BSE two-
particle Hamiltonian, and the modification of transition energies. Note that this expression
yields directly the optical spectra, if the long-range (G = 0) contribution to vc is omitted in the
BSE.
Let us now illustrate and analyze the BSE with two examples. We will concentrate on the effect
of the direct electron-hole interaction W, since the contribution vc has been discussed earlier in
the framework of the RPA.
The first example is the optical absorption of bulk silicon. The modest performance of the RPA
and the ALDA has been shown in the left panel of Fig. 1, and the crucial need for screening
was illustrated by the TDHF results in Fig. 2. The pink dot-dashed curve in the left panel of
Fig. 1 is GW-RPA, which means, the GW-BSE is solved by neglecting W in the kernel. Since
now the starting band structure is the GW one, the spectrum is at higher energies than the RPA
or ALDA ones. However, it is now too much displaced to higher energies. On the other hand,
since screening is included, the overshooting is not as drastic as in HF in Fig. 2. The GW-BSE
results including W in the kernel are given by the continuous black curve: it shows very good
agreement with experiment, both concerning position and spectral shape.
One might wonder why there is any effect ofW at all in bulk silicon, since its dielectric constant
is about εM ≈ 12, so screening is very strong, and W should be small. Indeed, a closer analysis
shows that the transition energies are almost unchanged with respect to the GW-RPA ones.
It should be noted that in infinite systems transition energies do not change to first order in
W , because the first order is given by the diagonal of the matrix, which tends to zero for an
infinitely dense k-point sampling, so for smallW no effect on energies should be expected. The
coefficients Aλ, instead, can change already to first order, since matrix elements are summed in
the first order correction to eigenstates. Moreover, in the first-order perturbation correction to
states, matrix elements appear in the numerator, and differences between zero-order transition
energies in the denominator. The bandstructure of silicon shows almost parallel bands in large
portions of the Brillouin zone, and has therefore many independent-particle transitions at similar
energies. This makes the denominator small and creates a strong effect of the electron-hole
interaction, even though the numerator is small because W is so strongly screened. The shift to
lower energies of spectral weight in the optical spectrum of silicon is hence a pure interference
effect.
On the opposite side, we find large gap insulators or low-dimensional systems with weak screen-
ing. In this case even the transition energies can be strongly affected. In particular, W is an
attractive interaction, because here W is the interaction between an electron and a hole. This
leads to new transition energies within the quasi-particle gap: these are the energies of bound
excitons. The difference between the transition energy and the quasi-particle gap is called exci-
ton binding energy. It can be as large as several eV.
Indeed, when one approximates the band structure by two parabolic bands, calculates the matrix
element of W using plane waves for the orbitals, and replaces sums over k-points in the Bril-
louin zone by integrals over the whole k-space, the GW-BSE takes the form of a Schrödinger
equation for the hydrogen atom, with a modified electron and proton mass and a screened
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Fig. 5: Excitonic spectra q2 Im εM(q, ω) in graphane (left) and a hexagonal BN sheet (right),
for various momentum transfers q along the Γ -M direction, indicated on the right side in Å−1.
The quasi-particle band gap is shown by the red arrow. From [28].

Coulomb interaction. This is the Wannier model for excitons, which predicts Rydberg series of
bound electron-hole states for three-dimensional solids. It works surprisingly well for not too
strongly bound excitons, and can yield reasonable results even for binding energies in the eV
range. For even stronger bound excitons, where the onsite interaction dominates, the Frenkel
model is more appropriate; it can also be derived from the GW-BSE (see [19]).
As an example for bound excitons, Fig. 5 shows q2 Im εM(q, ω) for graphane (a hydrogenated
graphene sheet, left panel) and one layer of hexagonal boron nitride (right panel). In both
cases, important structures are found within the quasi-particle band gap, which is indicated by
the red arrow. Binding energies are larger than one eV in both cases. The different nature of
the excitons in these two materials can be inferred from their dispersion: the bound exciton
in graphane changes its position in a parabolic way, whereas in h-BN the dispersion is rather
linear, after a first, more rapid, rise. This is discussed in [28].

7 Excitons and correlation

In the context of these lecture notes, it is interesting to comment about various aspects of corre-
lation concerning excitons. Here we would like to concentrate on two points:

• Excitons are strongly correlated electron-hole pairs.

• The BSE contains cancellation effects between self-energy corrections and electron-hole
interaction. These can be particularly important in correlated materials with localized
electrons.
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Fig. 6: Excitonic effects in MnO, from [29]. Distribution of spin-up density in the (001) plane
for an excitation at 5.2 eV. The position of the hole is indicated by the large black ball in the
center. Light red balls represent Mn atoms with occupied 3d spin-up orbitals and dark blue
balls are Mn atoms with occupied 3d spin-down orbitals. Oxygen atoms are indicated by small
black balls.

To illustrate the first point, it is enough to look at the exciton wavefunction. It is a superpo-
sition of products of the wavefunctions of the single electrons and holes, determined by the
coefficients Aλ

Ψλ(re, rh) =
∑
vkc

Avkcλ ψ∗vk(re)ψck(rh) . (60)

This is a correlated two-particle wavefunction: in order to know the probability distribution of
the electron, one has to fix the position of the hole, and vice versa.

Let us look at such a wavefunction, for the example of the magnetic material MnO [29]. Its
antiferromagnetic ordering consists of alternating planes of occupied spin-up and spin-down
Mn 3d orbitals. In order to visualize the charge density of an excited electron, one has to
chose the excitation energy, and the position of the hole. In Fig. 6, which is taken from [29],
the excitation energy corresponds to a peak in the absorption spectrum at 5.2 eV. For the hole
position one usually chooses an occupied orbital; here the hole is fixed on an Mn atom where
the spin-up orbital is occupied. Because of the dipole transition rules, a spin-up electron is
excited from an occupied to an empty spin-up orbital. This determines the distribution that is
observed in Fig. 6.

Surprisingly, the picture in Fig. 6 breaks translational invariance, since the exciton extends over
several unit cells. How is this possible? The reason is that we had to fix the position of the hole,
because of the electron-hole correlation. However, the probability to find the hole in a given
unit cell is periodic, so overall translational invariance is respected.
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Let us now come to the second point anticipated above, cancellations. To get an idea, think of
a single electron. Even if you excite it, there should be no interaction effects – there is no other
electron to interact with. However, the BSE starts with L0, in other words, with a difference
of electron addition and removal. In the addition process the system gets two electrons: now
there is interaction! This spurious effect has to be removed by the electron-hole interaction. In a
solid with delocalized electrons some cancellation is seen (look for example at silicon in the left
panel of Fig. 1), but it is far from complete; otherwise, we would never need the BSE. However,
when electrons are localized, and especially at low density, in a certain sense one comes closer
to the regime of single electrons, and cancellations are more important. Therefore in these ma-
terials sometimes the RPA evaluated with Kohn-Sham wavefunctions gives surprisingly decent
excitation spectra, for example in transition metal oxides like V2O3 [30].

There are many more aspects of optical or loss spectra in the BSE that one might want to
address; more can be found for example in [19]. However, one should not forget that the BSE
yields in principle the full two-particle correlation function, and more information can be gained
from it. Applications such as the calculation of correlated two-hole states [31, 32], or total
energies [33], promise an increasingly broad horizon for people interested in the Bethe-Salpeter
equation.
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1 Introduction

Optical spectroscopy is one of the most versatile spectroscopic techniques of condensed matter
physics [1]. It can be used to study lattice vibrations, electronic excitations, electronic collective
modes of materials and can be readily applied in the presence of magnetic fields, high pressure,
low or high temperatures. Optical spectrometers exist for almost any wavelength band of the
electromagnetic spectrum and span from radio-waves through THz, visible, UV to X-rays. By
virtue of a high control and reproducibility various different kinds of calibration techniques
permit to obtain precise absolute numbers for the constants characterizing the optical spectra of
a material. This state of affairs is further improved by advances in the past decade permitting
the direct measurement of the amplitude and phase of reflected signals in the THz band of the
spectrum.
Many possible experimental configurations giving access to the intrinsic optical constants of
materials are nowadays routinely used, including transmission, absorption, reflection, ellipsom-
etry, and combinations thereof. We will not dwell on all these different techniques here, but
give two simple examples and continue with a short summary of how from measured optical
data one obtains the fundamental properties such as optical conductivity and dielectric function.
If a ray of light is reflected from the surface of a material with an angle θ relative to the surface
normal, the two orthogonal types of polarization of the electric field (see Fig. 1) are (i) perpen-
dicular to the plane of reflection (“senkrecht” in German) indicated as s-polarization, and (ii)
perpendicular to the plane of reflection indicated as p-polarization. For an isotropic material the
reflection coefficients for these two geometries are provided by Fresnel’s laws

rs =
cos θ −

√
ε− sin2 θ

cos θ +
√
ε− sin2 θ

and rp =
ε cos θ −

√
ε− sin2 θ

ε cos θ +
√
ε− sin2 θ

. (1)

Note that these reflection coefficients are complex numbers. Experimentally one can measure
the intensity R = |r|2 of a reflected signal quite easily, but obtaining the phase is often much
more difficult. One of the solutions consists of doing a so-called “ellipsometry” experiment,
whereby the state of elliptical polarization of a light-ray is measured after reflection, where the
incident ray is linearly polarized with a polarization being a linear superposition of s- and p-
polarization. We will not dwell on the details here, but the important thing is, that this provides
the ratio rp/rs which now is a complex number. An alternative method is to take advantage
of the fact that ln r = ln

√
R + iφ where φ = Arg(r), and that ln

√
R(ω) and φ(ω) satisfy

Fig. 1: Left (right): Geometry for the reflection of s (p) polarized light.
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Fig. 2: The four steps of calculating the optical conductivity from a reflectivity spectrum using
the example of aluminum (after Ref. [2]).

Kramers-Kronig relations. It is then sufficient to measure R(ω) in a sufficiently broad spectral
range, in order to calculate also φ(ω), and from these two together obtain the real and imaginary
part of ε. This constitutes the first of the four steps providing the optical conductivity function
indicated in Fig. 2 for the example of aluminum. The second is to invert the Fresnel expression
for the reflection coefficient at the given angle of incidence and polarization of the light, giving
as a first step the index of refraction, n = Re

√
ε and the extinction coefficient κ = Im

√
ε, and

from there the optical conductivity

σ(ω) =
ω

4πi
[ ε(ω)− 1 ] . (2)

The optical conductivity is one of the most commonly used parameters to describe the electro-
magnetic response. Macroscopically, the frequency dependent conductivity tensor σ(ω) con-
stitutes a natural extension to the DC electrical conductivity relating electric field and current
density: ~ = σ ~E, where ~ and ~E are the macroscopic current density and electric field com-
ponents. In what follows we will assume that ~ and ~E are parallel to one of the axes of the
conductivity tensor σ(ω), and drop explicit tensor and vector notation to keep the notation as
light as possible. On the microscopic level σ(ω) is proportional to the current-current correla-
tion function

σ(ω) =
e2

ωV

{
iN

m
+

∫ ∞
0

dteiωt〈ψ| [̂(t), ̂(0)] |ψ〉
}
, (3)

where N is the number of electrons, V the volume, m and e the electron mass and charge, and
̂(t) = eiHt/~ ̂ e−iHt/~ is the velocity operator. The time integral can be carried out explicitly,



11.4 Dirk van der Marel

Fig. 3: Illustration of the f -sum rule for the case of aluminum (after Ref. [2]).

providing for the real part of the conductivity of a system in thermal equilibrium

Reσ(ω) =
πe2

V

∑
µν

(Zν − Zµ)
〈ν|̂|µ〉〈µ|̂|ν〉
Eµ − Eν

δ(~ω + Eν − Eµ) , (4)

where |η〉 is a many-body eigenstate with energy Eη and Zη is the statistical probability to find
the system in this state (the “partition function”). Integration of both sides over ω yields∫ ∞

−∞
Reσ(ω)dω =

2πe2

V

∑
µ,ν

Zν
〈ν|̂|µ〉〈µ|̂|ν〉
Eµ − Eν

. (5)

Using Ĥ|ν〉 = Eν |ν〉 and ̂ = i~−1[Ĥ, x̂] one can show in a few steps that∫ ∞
−∞

Reσ(ω) dω =
πe2

i~V
〈[̂, x̂]〉 . (6)

At this point we can substitute on the right hand side the following useful property of the many-
body current and position operators: [̂, x̂] = i~N/m. We take advantage of the fact that
for a time-reversal symmetric situation Reσ(ω) = Reσ(−ω), so we can restrict to positive
frequencies and arrive at the so-called f -sum rule∫ ∞

0

Reσ(ω) dω =
πe2n

2m
. (7)

This f -sum rule, or Thomas Reich Kuhn (TRK) rule, is one of the most powerful tools in
optical studies of materials. It relates the integrated optical conductivity directly to the density
of charged objects, and the absolute value of their charge and mass.
In Fig. 3 the f -sum rule is illustrated by the earlier example of the aluminum: The right hand
panel shows the partial integral

neff(ω) =
2meVu
πe2

∫ ω

0

Reσ(ω′) dω′. (8)
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Fig. 4: Optical conductivity and partial sumrule for the optical phonon spectrum of MgO.

First of all it demonstrates that in the limit ω → ∞ the number neff approaches 13, which is
exactly the number of electrons (core and valence together) per aluminum atom. Moreover, the
function neff(ω) rises in a number of steps: The first step from 0 to 2 eV gives approximately
two electrons, from 2 to 100 eV yields an additional one, from 100 to 1000 eV adds 8 more, and
above 1000 eV a final pair of electrons is added. We see, that the number of electrons in a given
shell is recovered in the optical transitions from the corresponding shell to the empty states
above the Fermi energy, revealing in the present example the configuration 1s22s22p63s13p2

(where the labels 3s and 3p are not to be taken literally in view of the lattice surrounding each
Al atom). The plot also gives an impression of the scale over which one has to integrate in order
to detect the spectral weight of the valence electrons: The full spectral weight corresponding to
the three valence electrons is retrieved only at ~ω ≈ 50 eV.
Of course the nuclei also contribute to the f -sum rule. We left this point out of consideration
until now since it usually plays a minor role, but it becomes important when analyzing the
vibrational spectra of insulating materials. The f -sum rule accounting for all types of particles
j with charge ej , mass mj and density nj in the sample reads

Re

∫ ∞
0

σ(ω) dω =
∑
j

πe2
jnj

2mj

. (9)

In Fig. 4 we show the infrared optical conductivity of the insulator MgO together with the partial
sum-rule integral

neff(ω) =
2Vu

π(2e)2(m−1
O +m−1

Mg)

∫ ω

0

Reσ(ω′) dω′ (10)

to illustrate that masses and charges of the Mg2+ and O2− ions account for the spectral weight
of the optical phonons. Note, however, that the spectral weight having to do with the nuclear
masses is tiny as compared to the electrons. The electronic part contains some 5 orders of
magnitude more spectral weight, but is not visible on this scale since the spectral range shown
here is far below the band gap of this insulating material.
To provide some representative examples of the optical spectra of strongly correlated metals
and insulators, we close this section with the optical spectra of the rare-earth nickelates RNiO3,
where R is a trivalent rare-earth ion. These transition metal compounds display a phase tran-
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Fig. 5: Real part of the optical conductivity for selected temperatures and en-
ergy/temperature color maps of samples (a) NdNiO3/NdGaO3-110, (b) NdNiO3/NdGaO3-101,
and (c) SmNiO3/LaAlO3-001. Metal-insulator phase transitions are indicated by arrows on the
color maps. A and B designate two peaks in the insulating phase (reproduced from Ref. [3]).

sition between a high-temperature metallic phase and low-temperature insulating phases (para-
magnetic or magnetic). This transition is highly sensitive to changing the rare-earth ion R,
as well as structural constraints and strain. This could find applications to switches or to the
recently proposed piezoelectric transistors. Furthermore strain-control can be used in order
to ‘orbital engineer’ the nickelates, stabilizing the dx2−y2 component of the eg doublet at the
expense of the dz2 one. If full orbital polarization could be reached, this would lead to a ‘single-
band’ material, with an electronic structure very similar to that of a cuprate, and hence possibly
to high-temperature superconductivity. A single active band is favorable because of: (i) the
absence of competing orbital fluctuations and (ii) importantly, the large antiferromagnetic su-
perexchange expected in this case. Fig. 5 shows the energy dependence (upper panels) and
energy/temperature color maps (lower panels) of the real part of the optical conductivity for
three differently strain- and composition-tuned samples. In the insulating state, at low tempera-
tures, the dominant features of the optical conductivity are two peaks at 0.6 (A) and 1.4 eV (B)
for all three samples. Upon increasing the temperature and passing through the insulator-metal
transition, the peaks vanish and a broad 1 eV peak along with a weak feature at 0.5 eV for sam-
ples (b) and (c) appear instead. Formation of free carriers is clearly visible with the growth of a
zero energy mode in the optical conductivity for ~ω = 1 eV (Fig. 5) as well as a sign change in
the real part of the dielectric function.

The physics as to why this transition takes place is quite interesting and has been discussed in
a number of recent papers. Here we quote the discussion in Ref. [3]: “Dynamical mean-field
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Fig. 6: Optical conductivity of the semiconductors GaAs, Si, and GaP (after Ref. [4])

theory calculations confirm aforementioned two-peak structure and allow us to identify these
spectral changes and the associated changes in the electronic structure. We demonstrate that the
insulating phase in these compounds and the associated characteristic two-peak structure are
due to the combined effect of bond disproportionation and Mott physics associated with half of
the disproportionated sites. We also provide insights into the structure of excited states above
the gap.”

2 Insulators and excitons

The example of RNiO3 of the previous chapter is perhaps somewhat untypical in that the mate-
rial owes its insulating gap, at least in part, to a many-body effect. In a standard semiconducting
material such as GaAs the optical absorption is understood to arise from the optical excitation of
individual electrons across the band gap, resulting in optical spectra such as displayed in Fig. 6.
However, in many insulating materials additional absorption is observed for energies smaller
than the gap, for reasons having nothing to do with impurities. The reason why this happens
has to do with a fundamental issue related to the interactions between the electrons, and this
shows up already when one is trying to excite a single electron. Naively one may be tempted
to assume that, left by itself, a single electron should not suffer much influence of many-body
effects, but this is nonetheless not justified. The problem is, that in an optical process one always
creates an electron along with a hole, and these two particles interact, in fact, quite strongly. As
a result, provided the electron and hole are not too far apart from each other, can (and do) form
bound states, better known as excitons. The physics of excitons has much in common with that
of the hydrogen atom, or rather of positronium, since both the electron and the hole have about
the same mass. The fact that their masses are different coming from the fact that the electron is
in the band above the gap, and the hole in the band below the gap, and the dynamical masses in
these bands are usually different. The theory of exciton bound states is rather well developed.
We provide a few key elements here.
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Fig. 7: Left: incorrect way to plot the energy of an exciton. Middle panel: Sketch of the single
electron dispersion curves of a direct gap insulator. Right-hand panel: Electron-hole excitation
continuum corresponding to the bandstructure of the middle panel (shaded) and sketch over
several “flavors” of excitons in the gap. The red and blue blobs in the middle panel indicate
roughly the envelope of momentum-values involved in creating an exciton bound state with finite
momentum of the collective center-of-mass coordinate.

Quite frequently excitons are plotted in the band structure, in the way shown in the left-hand
panel of Fig. 7. The difficulty is, that excitons are neutral excitations, they are bosonic, carry
spin S = 0 or S = 1. Since the band-structure graph shows the energies and momenta of
single-electron states, there is no unambiguous way to draw an exciton in such a diagram, and
if one thinks a bit longer about the problem one realizes that by doing so one misses some
important aspects of the excitonic states related to the many-body nature of these excitations,
having far-reaching consequences. The middle and right-hand graphs illustrate how, as a first
step, one associates electron-hole continua with a given momentum-transfer (note that only
one dimension of momentum space is shown, the additional dimensions extend the number of
electron-hole states for a given value of their collective momentum q shown in the right-hand
panel). The electron-hole attractive Coulomb interaction can pull one or several excitonic bound
states out of the continuum for any given value of q.
In the simplest description the excitons are described by the two-particle Hamiltonian

H =
P 2
coll

2M
+
p2
rel

2µ
− e2

εrrel
M = me +mh (11)

µ−1 = m−1
e +m−1

h (12)

so that the energies of the combined electron-hole states are described by

Continuum states: Ecnt = Egap +
~2q2

2M
+

~2k2

2µ

Bound states: Ebnd = Egap +
~2q2

2M
− Ry∗

n2
(13)

Effective Rydberg: Ry∗ =
µe4

2ε2~2
. (14)
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Fig. 8: Electron-hole gap and excitonic bound states of KCl [5] and Cu2O [6] .

In Fig. 8 two examples are shown of simple insulating materials, with clear excitonic spectra.
The left-hand graph is of KCl, having a gap of 8.5 eV, the right one of Cu2O with a gap of and
2.17 eV. However, the single-particle bandstructure of these materials is not really described by
free electron and hole parabolas, and moreover ε has non-trivial momentum dependence, hence
the predictions of Eq. (14) can not be expected to be overly accurate, but they can provide a
ballpark estimate. Indeed, the observed deepest (n = 1) exciton binding energies of about
0.3 eV for KCl and 0.1 eV for Cu2O are in the right ballpark estimated from the q = 0 dielectric
constants ε ∼ 5 for KCl, and ε ∼ 7 for Cu2O.
Even more extreme cases of deeply bound excitons occur in Mott-Hubbard insulators, provided
there is some orbital degeneracy. This is the case in, for example, CuGeO3 [7] and in NiO [8,9].
In both these materials the on-site Coulomb repulsion splits apart the one-electron-removal- and
one-electron-addition-states close to the Fermi-energy, with an energy separation of about 8 eV.
This, in fact, pushes the one-electron removal states below the occupied oxygen band, so that
the observed correlation-induced gap corresponds to the charge transfer from oxygen to Cu in
the former and oxygen to Ni in the latter example. These gaps are several eV large (see Fig. 9),
but a much less energy-costly excitation is possible whereby the electron-hole pair stays on the
same copper or nickel site! This happens by exciting the electron from its ground state orbital

Fig. 9: Optical spectra of the charge-transfer insulators CuGeO3 [7] and NiO [8, 9], demon-
strating bound neutral excitations deep inside the correlation gap.
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in the 3d shell to an unoccupied one. Since the electron-hole attractive interaction is of the
same order as the Hubbard U , this kind of excitations (which go under the name crystal-field
excitation or orbital excitation) lives deep inside the Hubbard gap. In the case of CuGeO3 it
gives rise to a single peak at 1.8 eV, while the charge transfer gap is about 3.1 eV. In NiO the
orbital degeneracy is larger, so that a series of several peaks is observed at 1, 1.5, and 2 eV, deep
inside the charge transfer gap of 4 eV.

3 Superconductors and plasmons

According to BCS theory the superconducting ground state can be described by the wavefunc-
tion

|ΨBCS〉 =
∏
k

(
uk + vkc

†
k,↑c
†
−k,↓

)
|0〉

|uk|2 + |vk|2 = 1

2ukvk =
∆k√

ξ2
k + |∆k|2

(15)

where ∆k is the superconducting gap. One of the most obvious and widely reported optical
phenomena in a superconductor is the BCS gap. An example is shown in Fig. 10 for the con-
ventional s-wave superconductor NbN [10].
However, in the context of superconductivity in the cuprates a number of additional effects
related to superconductivity has been discovered. Here we will discuss some of these: c-axis
kinetic-energy driven superconductivity has been proposed within the context of inter-layer
tunneling, and has been extensively discussed in a large number of papers [11–15]. One of the
main reasons to suspect that superconductivity was c-axis kinetic driven, was the observation of
‘incoherent’ c-axis transport of quasi-particles in the normal state [16] and, rather surprisingly,
also in the superconducting state [17–19], thus providing a channel for kinetic energy lowering
for charge carriers as soon as pairing sets in. A very useful tool in the discussion of kinetic

Fig. 10: Optically detected superconducting gap of NbN
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Fig. 11: Leftmost panel: Loss-function of La2−xSrxCuO4 for field and current oriented perpen-
dicular to the superconducting planes. The plasmon shows up in the superconducting state and
is associated to the Josephson coupling between the planes. Second panel: Energy-momentum
dispersion of photons polarized along the c-direction in La1.85Sr0.15CuO4+δ for different tem-
peratures. Tc of this sample is 33 K. The photons travelling inside the superconductor become
massive, when the U(1) gauge symmetry is broken in the superconductor to which the photons
are coupled. (Figure and caption copied from Ref. [20]) Third panel: Simulation of the di-
electric function in a material with two types of Josephson coupling alternating [21]. Fourth
(rightmost) panel: The c-axis optical conductivity and loss-function, of SmLa0.8Sr0.2CuO4−δ for
4 K (closed symbols), and 20 K (open symbols). Tc of this sample is 16 K. When the sample
enters the superconducting state, two longitudinal collective modes appear (7 and 12.8 cm−1)
and one with transverse polarization (12.1 cm−1). The two modes near 12 cm−1 correspond to
relative phase fluctuations of the two copper-oxygen layers within the unit cell [22]. (Figure
and caption copied from Ref. [20])

energy is the low frequency spectral weight associated with the charge carriers. In infrared
spectra this spectral weight is contained within a the ’Drude’ conductivity peak centered at
ω = 0. Within the context of the tight-binding model a simple relation exists between the
kinetic energy per site, with volume per site Vu, and the low frequency spectral weight [23, 24]

Ekin =
~2Vu
4πe2a2

ω2
p . (16)

Here the plasma frequency, ωp, is used to quantify the low frequency spectral weight

ω2
p,s

8
+

∫ ωm

0+
Reσ(ω) dω =

1

8
ω2
p , (17)

where the integration should be carried out over all transitions within the band, including the
δ-function at ω = 0 in the superconducting state.
The δ(ω) peak in Reσ(ω) is of course not visible in the spectra directly. However, the presence
of the superfluid is manifested prominently in the London term of Re ε(ω) (proportional to
Imσ(ω)): εL(ω) = −ω2

p,sω
−2. In La2−xSrxCuO4 the London term is manifested in a spectacular

way as a prominent plasma resonance perpendicular to the superconducting planes [25]. To
illustrate this, the left-hand panel of Fig. 11 shows the so-called Loss-function

L(ω) = − Im
1

ε(ω)
, (18)
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Fig. 12: Sketch of the forces governing a Leggett mode.

which shows its peak at the frequency where ε(ω) crosses zero, which corresponds to the
screened plasma-frequency. The right-hand panel shows the corresponding dispersion of the
transverse polarized “polariton” waves inside the material (always with electric field perpendic-
ular to the planes, hence the wave propagates along the planes)

p = ~ωc−1
√
ε(ω) . (19)

The right-hand graph is, by the way, a nice demonstration of the Anderson-Higgs mechanism:
The electromagnetic waves inside the superconductor acquire a mass mc2 = ~ωp,s due to the
spontaneous breaking ofU(1) gauge symmetry associated with the superconducting order. Cou-
pling of the superconducting order parameter to the fluctuations of charge and phase introduces
a mass-gap both in the longitudinal plasmons and in the transverse polariton modes.
To return to the Josephson plasmons, a further effect was discovered when two Josephson junc-
tions alternate along the c-direction. In this case one will observe two longitudinal Josephson
plasmons, and an additional one in-between, which shows up as a peak in the optical conductiv-
ity and has transverse polarization (but always with electric field perpendicular to the planes).
This was predicted theoretically and indeed observed experimentally by a number of groups.
Interestingly this mode has many properties in common with the so-called Leggett mode. When
in a two-band system the charge distribution is brought out of equilibrium the electronic com-
pressibility constitutes a restoring force, whereas the inertia is given by the Josephson cou-
pling between the two reservoirs (see sketch in Fig. 12). For a Fermi-liquid the compressibility
Kn2 = ∂n/∂µ corresponds to density of states at the Fermi level. In the context of ’exci-
tons’ in two-band superconductors, the compressibility term has been first considered in 1966
by Leggett [26]. In neutral fluids the compressibility causes propagation of sound, whereas for
electrons it causes the dispersion of plasmons.
The peak in the loss-function can be used to estimate the superfluid spectral weight, ω2

p,s, from
the experimental spectra. Apart from universal prefactors, the amount of spectral weight of
the δ(ω) conductivity peak corresponds to the Josephson coupling energy, which in turn is the
inter-layer pairhopping amplitude. It therefore provides an upper limit to the change of kinetic
energy between the normal and the superconducting state [11], because the spectral weight
transferred from higher frequencies to the δ(ω)-peak cannot exceed this amount. This allowed
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a simple experimental way to test the idea of c-axis kinetic energy driven superconductivity
by comparing the experimentally measured values of the condensation energy (Econd) and EJ .
The inter-layer tunneling hypothesis required, that EJ ≈ Econd. Measurements of λc [13]
(approximately 17 µm) and the Josephson plasma resonance (JPR) [12] at 28 cm−1, allowed
a definite determination of the Josephson coupling energy of this compound, indicating that
EJ ≈ 0.3 µeV in Tl2201 with Tc = 80 K. This is a factor 400 lower than Econd ≈ 100 µeV
per copper, based either on cV experimental data [27], or on the formula Econd = 0.5N(0)∆2

with N(0) = 1eV −1 per copper and ∆ ' 15meV . A direct determination of Ekin,s − Ekin,n

is obtained by measuring experimentally the amount of spectral weight transferred to the δ(ω)
peak due to the passage from the normal to the superconducting state, as was done by Basov
et al. [14, 28]. These data indicated that for under-doped materials about 60% comes from the
sub-gap region in the far infrared, while about 40% originates from frequencies much higher
than the gap, whereas for optimally doped cuprates at least 90% originates from the gap-region,
while less than 10% comes from higher energy.

In summary ∆Ekin,c < 0.1EJ in most cases. For several of the single-layer cuprates it has
become clear now, that ∆Ekin significantly undershoots the condensation energy, sometimes by
two orders of magnitude or worse.

3.1 The internal energy of superconductors

The case of electrons moving in a central potential deserves our special attention: As a result
of the virial theorem particles moving in a central potential of the form V (r) = arn satisfy
the relation 〈Hkin〉 = n

2
〈V 〉. For an ensemble of non-interacting electrons moving in a central

potential (e.g. an ensemble of hydrogen atoms) the only terms in the Hamiltonian are the kinetic
energy and V (r), so that the average kinetic energy is therefore a constant fraction of the average
total energy, 〈Hkin〉 = n

2+n
〈Htot〉. The thermally induced changes of 〈Htot〉 are always smaller

that 3kBT per particle. For electrons moving in an e2/r potential this sets an upper limit of kBT
to the change of kinetic energy, and an upper limit 4kBT/3 on the photon energy range over
which spectral weight can be transferred as a function of temperature. From the example of a
harmonic oscillator, discussed below, we will see that transfer of spectral weight as a function
of temperature can even be completely absent.

A necessary condition for the existence of superconductivity is, that the free energy of the su-
perconducting state is lower than that of the non-superconducting state. At sufficiently high
temperature important contributions to the free energy are due to the entropy. These contri-
butions depend strongly on the nature of the low-energy excitations, first and foremost of all
their nature, be it fermionic, bosonic or of a more complex character due to electron correlation
effects. At T = 0 the free energy and internal energy are equal, and are given by the quantum
expectation value of the Hamiltonian, which can be separated into an interaction energy and a
kinetic energy.
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3.2 The Coulomb interaction energy

In a series of papers Leggett has discussed the change of Coulomb correlation energy for a
system which becomes superconducting [29], and has argued, that this energy would actually
decrease in the superconducting state. Experimentally the changes of Coulomb energy can be
measured directly in the sector of q-space of vanishing q. The best, and most stable, experi-
mental technique is to measure the dielectric function using spectroscopic ellipsometry, and to
follow the changes as a function of temperature carefully as a function of temperature. Because
the cuprates are strongly anisotropic materials, it is crucial to measure both the in-plane and
out-of-plane pseudo-dielectric functions, from which the full dielectric tensor elements along
the optical axes of the crystal then have to be calculated. In a recent study the evolution of the
Coulomb energy was measured as a function of temperature and doping of the loss function
spectra in the infrared-visible spectral range of double- and triple-layer bismuth cuprates [30].
Our experiments indicate that for the overdoped samples the superconducting phase transition is
accompanied by a saving of the Coulomb interaction energy, on the underdoped side there is an
increase of the Coulomb energy below Tc, and the change of Coulomb energy for q < 0.31 Å−1

is about the same size as the condensation energy. This state of affairs calls for studies with other
experimental techniques, in particular electron energy loss spectroscopy, to explore the momen-
tum dependent structure of these phenomena. Departure of a T 2 dependence of the measured
loss-function data indicates a corresponding temperature dependence of the density-density cor-
relations. Unambiguous assignment to a precursor of superconducting pairing, to another type
of correlation, or neither of these two, is not possible at this stage. The S–N difference of the
Coulomb energy has similar doping dependence as the total condensation energy. While the
latter is in the range of 0 to 2 K per CuO2 unit, the Coulomb energy varies between –1 and 1 K.
Consequently, while it cannot be the whole cause of superconductivity, the Coulomb energy is a
major factor in the total energy balance stabilizing the superconducting state. The experiments
presented here demonstrate that it is in principle possible to determine the subtle changes of
Coulomb correlation energy associated with a superconducting phase transition, and constitute
a promising first step in the experimental exploration of the Coulomb correlation energy as a
function of momentum and energy.

3.3 The kinetic energy

Based on the tight-binding approximation, a partial sum rule is sometimes employed, where the
integral is limited to the valence band, excluding all other bands. Although the theoretical ex-
pressions based on the tight-binding formula are well defined, experimentalists face a problem
here, due to the fact that experimentally the valence electron band overlaps with other bands,
thus hindering an unambiguous separation of the various contribution in the experimental spec-
tra. Nevertheless, relatively clear-cut cases have been reported in the literature, thus motivating
us to address also the tight-binding approximation in our discussion. For a square lattice with
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nearest-neighbor coupling the Hamiltonian is

Ht,α = t
∑
~R,σ

(
c†~R+~δα,σ

c~R,σ + c†~R,σc~R+~δα,σ

)
(20)

and H =
∑

αHt,α − µN . The commutators in Eq. (6) can be easily calculated, resulting in the
f -sum ∫ ω

0

Reσ(∞) dω′ = −πe
2a2

2~2V
〈Ht,α〉 . (21)

Note, that the chemical potential term commutes with x and drops out of the expression for
the f -sum. Hence the tight-binding f -sum provides only the kinetic energy contribution, which
depends both on the number of particles and the hopping parameter t. It is easy to see, that
for a small filling fraction of the band we return to the continuum result: The occupied elec-
tron states are now all located just above the bottom of the valence band, with an energy −t.
Hence in leading orders of the filling fraction −〈ψg|Ht|ψg〉 = Nt. Identifying a2~−2t−1 as the
effective mass m∗ we recognize the familiar f -sum rule, Eq. (6), with the free electron mass
replaced by the effective mass. In BCS theory the lowering of the pair-interaction energy is
partly compensated by a change of kinetic energy of opposite sign. This can be understood
qualitatively in the following way: The correlated motion in pairs causes a localization of the
relative coordinates of electrons, thereby increasing the relative momentum and the kinetic en-
ergy of the electrons. Another way to see this, is that in the superconducting state the step of nk
at the Fermi momentum is smoothed, causing Ekin to become larger [31].
A pedagogical example where the kinetic energy of a pair is higher in the superconducting state,
is provided by the negative-U Hubbard model [32]: Without interactions, the kinetic energy is
provided by the expression

Ekin = −t
∑
〈i,j〉,σ

〈
Ψ |c†iσcjσ +H.c.|Ψ

〉
. (22)

Let us consider a 2D square lattice. If the band contains two electrons, the kinetic energy of
each electron is −2t, the bottom of the band, hence Ekin = −4t. (In a tight-binding picture
the reference energy is the center of the band irrespective of EF , causing Ekin to be always
negative). Let us now consider the kinetic energy of a pair in the extreme pairing limit, i.e.
U � t, causing both electrons to occupy the same site, with an interaction energy −U . The
occupation function nk in this case becomes

nk ≈
1

Nk

t

U

1

(1 + 4εk/U)2
. (23)

This implies that the kinetic energy approaches Ekin → −8t2/U . Hence the kinetic energy
increases from En

kin = −4t to Es
kin = −8t2

U
when the local pairs are formed. The paired

electrons behave like bosons of charge 2e. A second order perturbation calculation yields an
effective boson hopping parameter [33] t′ = t2/U . In experiments probing the charge dynamics,
this hopping parameter determines the inertia of the charges in an accelerating field. As a result
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the plasma frequency of such a model would be

ω2
p,s = 4π

n

2
(2e)2 a

2t2

~2U
, (24)

whereas if these pair correlations are muted

ω2
p,n = 4πne2 a

2t

~2
. (25)

Because the plasma frequency is just the low-frequency spectral weight associated with the
charge carriers, this demonstrates, that for conventional pairs, i.e., those which are formed due to
interaction energy lowering, the expected trend is, that in the superconducting state the spectral
weight decreases. Note, that this argument can only demonstrate the direction in which the
plasma frequency changes when the pair correlations become reduced, but it does not correctly
provide the quantitative size of the change, since the strong coupling regime of Eq. (24) implies
the presence of a finite fraction of uncondensed ’preformed’ pairs in the normal state. The same
effect exists in the limit of weak pairing correlations. In Ref. [34] (Eq. 29, ignoring particle-hole
asymmetric terms) the following expression was derived for the plasma resonance

ω2
p,s =

4πe2

V

∑
k

∆2
k

~2E3
k

[
∂εk
∂k

]2

, (26)

where V is the volume of the system, and E2
k = ε2k + |∆k|2. Integrating in parts, using that

∆2
kE
−3
k ∂kεk = ∂k (εk/Ek), and that ∂kεk = 0 at the zone-boundary, we obtain

ω2
p,s =

4πe2

V

∑
k

nk
mk

(27)

wherem−1
k = ~−2∂2εk/∂k

2, and nk = 1−εk/Ek. For a monotonous band dispersion the plasma
frequency of the superconductor is always smaller than that of the unpaired system: Because
the sign of the band-mass changes from positive near the bottom of the band to negative near the
top, the effect of the broadened occupation factors nk is to give a slightly smaller average over
m−1
k , hence ω2

p is smaller. Note that the mass of free electrons does not depend on momentum,
hence in free space ω2

p is unaffected by the pairing.
To obtain an estimate of the order of magnitude of the change of spectral weight, we consider
a square band of width W with a Fermi energy EF = Ne/(2W ), where Ne is the number of
electrons per unit cell. To simplify matters we assume that 1/mk varies linearly as a function of
band energy: 1/m(ε) = (W − 2EF − 2ε)/(Wm0). We consider the limit where ∆ � W,EF .
Let us assume that the bandwidth ∼ 1 eV, and ∆ ∼ 14 meV corresponding to Tc =90 K. The
reduction of the spectral weight is then 0.28%. If we assume that the bandwidth is 0.1 eV, the
spectral weight reduction would typically be 11.4%.
If the state above Tc is not a Fermi liquid, the situation could be reversed. Indeed even for the 1D
Luttinger liquid n(k) has an infinite slope at kF . If indeed the normal state would have a broad
momentum distribution like the one indicated, the total kinetic energy becomes lower once pairs
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are formed, provided that the slope of n(k) at kF is steeper in the superconducting state. This
is not necessarily in contradiction with the virial theorem, even though ultimately all relevant
interactions (including electron-phonon interactions) are derived from the Coulomb interaction:
The superconducting correlations involve the low energy scale quasi-particle excitations and
their interactions. These effective interactions usually have characteristics quite different from
the original Coulomb interaction, resulting in Ec/Ekin 6= −2 for the low-energy quasi-particles.
Various models have been recently proposed involving pairing due to a reduction of kinetic
energy. In strongly anisotropic materials such as the cuprates, two possible types of kinetic
energy should be distinguished: Perpendicular to the planes [11,35] (along the c-direction) and
along the planar directions [36–41]. Interestingly, it turns out that in underdoped samples of
the cuprates the “kinetic” energy behaves oppositely to the BCS prediction (i.e. it is decreased
by the N–S transition), while on the overdoped side it behaves consistently with BCS (i.e.
it is increased) [42–44], which is in fact consistent with numerical calculations based on the
Hubbard model and the t-J model [45, 46].

4 Conclusions

The optical conductivity is a fundamental property of solids that contains the contributions
of vibrational and electronic character. Among the electronic type of excitations the intra-
band and inter-band transitions, excitons, and plasmons of different types correspond to the
most prominent features in the spectra. In addition multi-magnon excitations or more exotic
collective modes can often be detected. The careful study of the optical properties of solids can
provide valuable microscopic information about the electronic structure of solids. In contrast
to many other spectroscopic techniques, it is relatively easy to obtain reliable absolute values
of the optical conductivity. As a result sum rules and sum rule related integral expressions can
often be applied to the optical spectra.
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1 Introduction

In the past decade, Resonant Inelastic X-ray Scattering (RIXS) has made remarkable progress
as a spectroscopic technique. This is a direct result of the availability of high-brilliance syn-
chrotron X-ray radiation sources and of advanced photon detection instrumentation. The tech-
nique’s unique capability to probe elementary excitations in complex materials by measuring
their energy-, momentum-, and polarization-dependence has brought RIXS to the forefront of
experimental photon science. In these lecture notes we discuss both the theoretical background
of RIXS, focusing on those determining the low-energy charge, spin, orbital and lattice excita-
tions of solids. These lecture notes are based on and to a large extend an excerpt from a recent
review article [1].
Resonant Inelastic X-ray Scattering is a fast-developing experimental technique in which one
scatters X-ray photons inelastically off matter. It is a photon-in − photon-out spectroscopy for
which one can, in principle, measure the energy, momentum, and polarization change of the
scattered photon. The change in energy, momentum, and polarization of the photon are trans-
ferred to intrinsic excitations of the material under study and thus RIXS provides information
about those excitations. RIXS is a resonant technique in which the energy of the incident photon
is chosen such that it coincides with, and hence resonates with, one of the atomic X-ray tran-
sitions of the system. The resonance can greatly enhance the inelastic scattering cross-section,
sometimes by many orders of magnitude, and offers a unique way to probe charge, magnetic,
and orbital degrees of freedom on selective atomic sites in a crystal. Early experimental work,
and some more recent reviews include [2–9].

Fig. 1: (Kinetic) energy and momentum carried by the different elementary particles that are
often used for inelastic scattering experiments. The scattering phase-space (the range of ener-
gies and momenta that can be transferred in a scattering event) of X-rays is indicated in blue,
electrons in brown and neutrons in red.
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1.1 Features of RIXS as an experimental method

Compared to other scattering techniques, RIXS has a number of unique features: it covers
a huge scattering phase-space, is polarization dependent, element and orbital specific, bulk
sensitive, and requires only small sample volumes. We briefly illustrate these features below
and discuss them more extensively in the sections to follow.

1. RIXS exploits both the energy and momentum dependence of the photon scattering cross-
section. Comparing the energies of a neutron, electron, and photon, each with a wave-
length on the order of the relevant length scale in a solid, i.e., the interatomic lattice
spacing, which is on the order of a few Angstroms, it is obvious that an X-ray photon
has much more energy than an equivalent neutron or electron, see Fig. 1. The scattering
phase space (the range of energies and momenta that can be transferred in a scattering
event) available to X-rays is therefore correspondingly larger and is in fact without equal.
For instance, unlike photon scattering experiments with visible or infrared light, RIXS
can probe the full dispersion of low energy excitations in solids.

2. RIXS is element and orbital specific: Chemical sensitivity arises by tuning the incident
photon energy to specific atomic transitions of the different types of atoms in a material.
Such transitions are called absorption edges. RIXS can even differentiate between the
same chemical element at sites with inequivalent chemical bondings, with different va-
lencies or at inequivalent crystallographic positions if the absorption edges in these cases
are distinguishable. In addition, the type of information that may be gleaned about the
electronic excitations can be varied by tuning to different X-ray edges of the same chem-
ical element (e.g., K-edge for exciting 1s electrons, L-edge for electrons in the n = 2

shell, or M -edge for n = 3 electrons), since the photon excites different core-electrons
into different valence orbitals at each edge. The energies of these edges are shown in
Fig. 2.

3. RIXS is bulk sensitive: the penetration depth of resonant X-ray photons is material and
scattering-geometry specific, but typically it is on the order of a few µm for photons of
10 keV in the hard X-ray regime, and on the order of 0.1 µm for photons of 1 keV in the
soft X-ray regime.

4. RIXS needs only small sample volumes: the photon-matter interaction is relatively strong,
compared to, for instance, the neutron-matter interaction strength. In addition, photon
sources deliver many orders of magnitude more particles per second, in a much smaller
spot, than do neutron sources. These facts make RIXS possible on very small volume
samples, thin films, surfaces, and nano-objects, in addition to bulk single crystal or pow-
der samples.

5. RIXS can utilize the polarization of the photon: the nature of the excitations created in the
material can be disentangled through polarization analysis of the incident and scattered
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Fig. 2: Energy of the K, L1, L3, M1, and M5 X-ray absorption edges as a function of atomic
number Z. X-ray energies below 1 keV are referred to as soft, above as hard.

photons, which allows one, through the use of various selection rules, to characterize the
symmetry and nature of the excitations. To date, very few experimental facilities allow the
polarization of the scattered photon to be measured [10, 11], though the incident photon
polarization is frequently varied. It is important to note that a polarization change of a
photon is necessarily related to an angular momentum change. Conservation of angular
momentum means that any angular momentum lost by the scattered photons has been
transferred to elementary excitations in the solid.

In principle RIXS can probe a very broad class of intrinsic excitations of the system under study,
as long as these excitations are overall charge-neutral. This constraint arises from the fact that
in RIXS the scattered photons do not add or remove charge from the system under study. In
principle then, RIXS has a finite cross-section for probing the energy, momentum and polar-
ization dependence of, for instance, the electron-hole continuum and excitons in band metals
and semiconductors, charge transfer and d-d-excitations in strongly correlated materials, lattice
excitations and so on. In addition magnetic excitations are also symmetry-allowed in RIXS,
because the orbital angular momentum that the photons carry can in principle be transferred to
the electron’s spin angular moment. This versatility of RIXS is an advantage and at the same
time a complicating factor, because different types of excitations will generally be present in a
single RIXS spectrum.
The generic advantages of the RIXS technique listed above perhaps raise the question as to
why this spectroscopic technique is not as widely used as, say, angle-resolved photoemission
(ARPES) or neutron scattering. The main limitation is that the RIXS process is photon-hungry,
i.e., it requires a substantial incident photon flux to obtain enough scattered photons to collect
spectra with a high enough resolution in energy and momentum in a reasonable time. With a
required resolving power (defined as the incident photon energy divided by the energy resolu-
tion) of four orders of magnitude, RIXS has been a real challenge. Up until a few years ago
this has limited RIXS experiments to measuring energy losses on the order of half an electron
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volt or greater. Thus neutron scattering and ARPES offered a more direct examination of the
low energy excitations near the Fermi level. However, recent progress in RIXS instrumentation
has been dramatic and this situation is now changing. One of the purposes of these notes is
to summarize this progress which is beginning to elevate RIXS into an important condensed
matter physics tool for probing elementary excitations in solids.

1.2 Progress of RIXS in the last decades

As discussed above, the generic features of RIXS make it, in principle, an attractive technique
to study the intrinsic momentum dependent, low-energy response of a material. However there
are of course practical limitations. The most critical of these is the energy resolution, which
is determined both by the availability of the instrumentation necessary to energy-resolve the
photons, and by the availability of tunable photon sources of sufficient intensity.

In order to tune the incident photon energy to a particular edge, a tunable X-ray photon source
is essential. This can be achieved with synchrotron radiation sources and their increase in
brilliance over the past decades has been many orders of magnitudes in the 103-104 eV X-ray
regime. The next generation photon sources include X-ray free electron lasers (FELs), which
are coming on line at the time of writing. The peak brilliance of these sources is again orders of
magnitude larger than that of the third generation synchrotrons and it is likely that these sources
will provide further advances, particularly for time-resolved experiments.

This vast increase in photon flux has been matched by advances in the RIXS instrumentation:
the monochromators, analyzers, and spectrometers. The resulting increase in resolution of
RIXS experiments over time, as measured for instance at the hard X-ray Cu K- and soft X-
ray Cu L3-edges, has greatly improved in the past decade. In concert with the great progress in
the RIXS experiments, there has been a similarly rapid advance in the theoretical understanding
of the scattering process and of the dynamic correlation functions that the technique probes.
Taken together, the theoretical and experimental advances have driven an enormous increase in
the number of RIXS-related publications.

It seems likely that this strong growth will continue. First, because of the ongoing push to bet-
ter energy resolutions. Second, and perhaps more importantly, because there are a multitude
of different X-ray absorption edges, in particular for the heavier elements in the periodic ta-
ble, and each one of these can, in principle, be exploited for RIXS measurements. The bulk
of RIXS data so far has been collected at 3d transition metal and oxygen edges. This is moti-
vated by the intense scientific interest in strongly correlated transition-metal oxides such as the
high-Tc cuprate superconductors and the colossal magnetoresistance manganites. This focus on
transition-metal oxides is an accident of history. It has been very beneficial to the field, driving
advances in instrumentation and theory at the relevant edges, but there is clearly a huge potential
for growth as interest moves on to other materials and other fields.
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1.3 Probing elementary excitations with RIXS

The elementary excitations of a material determine many of its important physical properties,
including transport properties and its response to external perturbations. Understanding the
excitation spectrum of a system is key to understanding the system.

In this respect strongly correlated electron materials, e.g. transition-metal oxides, are of special
interest because the low-energy electronic properties are determined by high-energy electron-
electron interactions (energies on the order of eV’s). From these strong interactions and cor-
relations a set of quantum many-body problems emerge, the understanding of which lies at
the heart of present day condensed matter physics. Most often this many-body physics is cap-
tured in model Hamiltonians, the exact parameters of which must be determined experimentally.
RIXS, along with other spectroscopic techniques, can play an important role there, though we
note that it is a spectroscopic technique applicable to many other materials and is, of course, not
limited to correlated systems.

In the following, we discuss the relevant excitation energy and momentum scale on which RIXS
can probe the excitation spectrum of a solid. We then briefly introduce the kinds of elementary
excitations that are accessible to RIXS.

Excitation Energy and Momentum Scale As is shown in Fig. 3, the elementary excita-
tion spectrum in solids spans the range from plasmons and charge transfer excitations at a few
eV, determining for instance optical properties, through excitons, d-d excitations and magnons
down to phonons at the meV scale. In principle, RIXS can measure the momentum-dependence
of the excitation energy of all these modes, i.e. their dispersion, because the photon transfers
momentum as well as energy to the material under study.

This is unusual if one is accustomed to optical light scattering, such as Raman scattering [12].
Photons in the visible range of the spectrum with an energy of a few eV carry negligible mo-
mentum compared to the quasi-momentum of the elementary excitations of a solid (Fig. 1). A
photon of 2 eV has a momentum of roughly ~q = 10−27 kg m/s, or a wavevector q = 10−3 Å−1

whereas elementary excitations in a crystal with a lattice constant of say 3 Å have wavevectors
up to q = 2π/3 ≈ 2 Å−1. On this scale optical light scattering is in essence a zero momentum
probe. To measure the dispersion of elementary excitations for momenta in a sizable portion
of a typical Brillouin zone, X-rays with energy on the order of 1 keV or more are needed,
corresponding to, for instance, the Cu L-edge.

Overview of elementary excitations In this paragraph we briefly discuss the different ele-
mentary excitations accessible to RIXS.

Plasmons. Collective density oscillations of an electron gas are referred to as plasmons. They
can be observed by inelastic X-ray scattering (IXS) or by optical probes since they occur at
finite energy for q=0. Plasmon-like excitations were also observed early on in RIXS [13], but
their resonant enhancement with respect to IXS is weak, and little work has been done since.



RIXS on Elementary Excitations 12.7

Fig. 3: Different elementary excitations in condensed matter systems and their approximate
energy scales in strongly correlated electron materials such as transition-metal oxides.

Charge-transfer excitations. Charge transport in a condensed matter system is determined by
the energetics of moving electrons from one site to another. In a transition-metal oxide, there
are two relevant energy scales for this process. The first is the energy associated with an electron
hopping from a ligand site to a metal site. This is known as the charge transfer energy, ∆, where
∆ = E(dn+1L) − E(dn), and L represents a hole on the ligand site. The second energy scale
is the energy, U , associated with moving a d-electron from one metal site to another where
U = E(dn+1) + E(dn−1)− 2E(dn). Strongly correlated insulators may be classified by which
of these two energies is the larger [14]. If U > ∆, then the gap is of the charge transfer type
and the system is said to be a charge-transfer insulator. Conversely, if U < ∆, then the gap is
controlled by the d-d Coulomb energy and the system is said to be a Mott-Hubbard insulator.

The bulk of the interesting transition metal oxide compounds, including the cuprates, nickelates
and manganites are all in the charge transfer limit. This means the lowest lying excitations
across the optical gap are charge transfer excitations and therefore these are of central impor-
tance in these materials. Key questions include the size of the gap (typically on the order of
a few eV) and the nature of the excitations: Do they form bound exciton states? Are these
localized or can they propagate through the lattice? What are their lifetimes, symmetries, and
temperature dependence, etc. While some studies have been performed using other techniques,
notably EELS and optical conductivity measurements, RIXS offers a powerful probe for many
of these questions and has been applied extensively.

Crystal-field and orbital excitations. Many strongly correlated systems exhibit an orbital degree
of freedom, that is, the valence electrons can occupy different sets of orbitals. Orbitally active
ions are also magnetic: they have a partially filled outer shell. This orbital degree of freedom
determines many physical properties of the solid, both directly, and also indirectly because
the orbitals couple to other degrees of freedom. For instance, the orbital’s charge distribution
couples to the lattice, and according to the Goodenough-Kanamori rules for superexchange the
orbital order also determines the spin-spin interactions. The nature of the orbital degree of
freedom, i.e., the orbital ground state and its excitations, are an important aspect of strongly
correlated systems.
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In many Mott insulators this orbital physics is governed by the crystal field: the levels of the or-
bitally active ion are split and the orbital ground state is uniquely determined by local, single-ion
considerations. The orbital excitations from this ground state are transitions between the crystal
field levels. Crystal field transitions between different d-orbitals are called d-d excitations. Such
excitations are currently routinely seen by RIXS and are now well understood.
In other cases the crystal field does not split the levels of the outer shell very much, leaving
an orbital (quasi-)degeneracy in the ground state. This local low-energy degree of freedom can
couple to orbital degrees of freedom on neighboring sites by superexchange processes, and in
this way collective orbital excitations can emerge. The quanta of these collective modes are
called orbitons, in analogy to spin waves and magnons. Definitive proof of the existence of
orbitons remains elusive. RIXS is contributing significantly to the search for orbitons.
Magnetic excitations. Magnetism and long-range magnetic ordering are arguably the best
known and most studied consequences of the electron-electron interactions in solids. When
usual magnetic order sets in, be it either of ferro-, ferri-, or antiferromagnetic type, the global
spin rotation symmetry in the material is broken. As a result characteristic collective magnetic
excitations emerge. The resulting low-energy quasiparticles, the magnons, and the interactions
between them determine all low temperature magnetic properties. Magnon energies can extend
up to ∼ 0.3 eV (e.g. in cuprates) and their momenta up to ∼ 1 Å−1. Recently magnon disper-
sions have been measured for the first time at the Cu L-edge on thin films of La2CuO4 [15]. In
K-edge RIXS bi-magnon excitations and their dispersions have also been observed [16].
A melting of the long-range ordering, for instance through an increase in quantum fluctuations
as a result of the introduction of mobile charge carriers in a localized spin system, or by the
frustration of magnetic interactions between the spins, can result in the formation of spin-liquid
ground states. Spin liquids potentially have elusive properties such as high-temperature super-
conductivity or topological order, which one is only beginning to explore and understand. Some
of the more exotic magnetic excitations that emerge from these ground states, such as spinons
and triplons can also be observed by RIXS [17].
Phonons. Phonons are the quantized lattice vibration modes of a periodic solid. These are
bosonic modes with energies typically below 0.1 eV, so that the detection of single phonon ex-
citations is only just possible with present day RIXS resolution. Therefore phonon loss features
were resolved for the first time with RIXS only very recently, at the Cu L- [15] andK-edge [18].
In addition anomalous features in CuB2O4 have been qualitatively described by extending the
electron-only considerations to include the lattice degrees of freedom [19]. Theoretically, the
study of phonons in RIXS promises quantitative investigations of the electron-phonon cou-
pling [20].

2 The RIXS process

The microscopic picture of the resonant inelastic X-ray scattering process is most easily ex-
plained in terms of an example. We will choose a copper-oxide material as a typical exam-
ple, but it should be stressed once more that the focus of RIXS on transition-metal oxides is
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Fig. 4: In a direct RIXS process the incoming X-rays excite an electron from a deep-lying core
level into the empty valence. The empty core state is then filled by an electron from the occupied
states under the emission of an X-ray. This RIXS process creates a valence excitation with
momentum ~k′ − ~k and energy ~ωk − ~ωk′ .

something of an accident of history and is not a fundamental limitation of the technique. In a
copper-oxide material, one can tune the incoming photon energy to resonate with the copper
K, L, or M absorption edges, where in each case the incident photon promotes a different type
of core electron into an empty valence shell, see Figs. 4 and 5. The electronic configuration of
Cu2+ is 1s22s22p63s23p63d9, with the partially filled 3d valence shell characteristic of transition
metal ions. The copper K-edge transition 1s → 4p, is around 9000 eV and in the hard X-ray
regime. The L2,3-edge 2p → 3d (∼ 900 eV) and M2,3-edge 3p → 3d (∼ 80 eV) are soft X-ray
transitions. Alternatively, by tuning to the Oxygen K-edge, one can choose to promote an O 1s

to an empty 2p valence state, which takes ∼ 500 eV.

After absorbing a soft or hard X-ray photon, the system is in a highly energetic, unstable state:
a hole deep in the electronic core is present. The system quickly decays from this intermediate
state, typically within 1–2 femtoseconds. Decay is possible in a number of ways, for instance via
an Auger process, where an electron fills the core hole while simultaneously emitting another
electron. This non-radiative decay channel is not relevant for RIXS, which instead is governed
by fluorescent decay, in which the empty core-state is filled by an electron and at the same time
a photon is emitted.

There are two different scattering mechanisms by which the energy and momentum of the emit-
ted photon can change from the incident one. These are known as direct and indirect RIXS. The
distinction between these two is discussed below.



12.10 Jeroen van den Brink

2.1 Direct and indirect RIXS

Resonant inelastic X-ray scattering processes are classified as either direct or indirect [21, 22].
This distinction is useful because the cross-sections for each are quite different. When direct
scattering is allowed, it is the dominant inelastic scattering channel, with indirect processes
contributing only in higher order. In contrast, for the large class of experiments for which direct
scattering is forbidden, RIXS relies exclusively on indirect scattering channels.

Direct RIXS For direct RIXS, the incoming photon promotes a core-electron to an empty
valence band state, see Fig. 4. Subsequently an electron from a different state in the valence
band decays and annihilates the core hole.
The net result is a final state with an electron-hole excitation, since an electron was created in
an empty valence band state and a hole in the filled valence band. The electron-hole excitation
can propagate through the material, carrying momentum ~q and energy ~ω. Momentum and
energy conservation require that q = k′ − k and ω = ωk′ − ωk, where ~k (~k′) and ~ωk (~ωk′)
are the momentum and energy of the incoming (outgoing) photon, respectively.
For direct RIXS to occur, both photoelectric transitions, the initial one from core to valence
state and succeeding one from conduction state to fill the core hole, must be allowed. These
transitions can for instance be an initial dipolar transition of 1s→ 2p followed by the decay of
another electron in the 2p band from 2p → 1s, in for example wide-band gap insulators. This
happens for instance at theK-edge of oxygen, carbon, and silicon. At transition-metal L-edges,
dipole transitions give rise to direct RIXS via 2p → 3d absorption and subsequent 3d → 2p

decay. In all these cases, RIXS probes the valence and conduction states directly. Although the
direct transitions into the valence shell dominate the spectral line shape, the spectral weight can
be affected by interactions in the intermediate-state driven by, for example, the strong core-hole
potential.

Indirect RIXS The indirect RIXS process is slightly more complicated. For pure indirect
RIXS to occur, photoelectric transitions from the core-state to conduction-band states must
be weak. Instead, the incoming photon promotes a core-electron into an empty state several
electron volts above the Fermi level. Subsequently the electron from this same state decays to
fill the core hole, see Fig. 5. The most studied example is RIXS at the transition-metal K-edges
(1s→ 4p). Obviously, in the absence of any additional interaction, no inelastic scattering would
be observed. But in the intermediate state a core hole is present, which exerts a strong potential
on the 3d valence electrons, that therefore tend to screen the core hole. The core-hole potential
scatters these valence electrons, thereby creating electron-hole excitations in the valence band.
After the 4p→ 1s decay, the electron-hole excitations are then left behind in the system.
Indirect RIXS is thus due to shakeup excitations created by the intermediate state core hole.
The fact that close to the absorption edge the 1s core hole and 4p electron bind together to form
an exciton does not change this picture conceptually. In this case, one may think of the valence
electrons as scattering off this exciton.
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Fig. 5: In an indirect RIXS process, an electron is excited from a deep-lying core level into the
valence shell. Excitations are created through the Coulomb interaction Uc between the core
hole (and in some cases the excited electron) and the valence electrons.

In RIXS, the solid is taken from a ground state with energy Eg, to a final-state with excitations
and an energy Ef . The energy and momentum of the excitation is determined by the difference
in photon energy ~ωk − ~ωk′ and momentum ~k′ − ~k, respectively. The RIXS intensity can
in general be written in terms of a scattering amplitude as

I(ω,k,k′, ε, ε′) =
∑
f

|Ffg(k,k′, ε, ε′, ωk)|2 δ(Ef + ~ωk′ − Eg − ~ωk) ,

where the delta function enforces energy conservation and the amplitude Ffg(k,k′, ε, ε′, ωk)

reflects which excitations are probed and how, for instance, the spectral weights of final-state
excitations depend on the polarization vectors, ε and ε′ of the incoming and outgoing X-rays,
respectively. The following sections derive the RIXS scattering amplitude and demonstrate how
it can be broken down into separate pieces.
First, we need to derive a general expression for the RIXS scattering amplitude. Section 3 looks
at the interaction between photons and matter. RIXS refers to the process where the material
first absorbs a photon. The system is then in a short-lived intermediate state, from which it
relaxes radiatively. In an experiment, one studies the X-rays emitted in this decay process.
This two-step process cannot be described simply by using Fermi’s Golden Rule, but requires a
higher-order treatment, known as the Kramers-Heisenberg equation [23]. Since the absorption
and emission are single-photon processes, the interactions between the X-rays and the material
are dominated by the terms in the cross-section proportional to p ·A, where p is the momentum
of the electrons in the material and A is the vector potential of the photon. The interaction
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Fig. 6: In the theory of RIXS, the scattering amplitude Ffg occurring in the Kramers-
Heisenberg equation is separated into several pieces. One can split off the angular and polar-
ization dependence Tx, leaving fundamental scattering amplitudes Fx. Several approximation
schemes then break down these scattering amplitudes into a resonance function P and effective
transition operators W x.

between the X-rays and the material depends on external quantities, such as wavevector k and
polarization vectors ε of the X-rays, and operators, such as p and r. As a result the electronic
transitions are intermingled. The scattering amplitude can be split into an angular and polar-
ization dependence Tx(k̂, k̂′, ε, ε′) related to the experimental geometry and spectral functions
Fx(k, k′, ωk) that measure the properties of the material, see Fig. 6. This separation can be done
exactly. It is important to note that there are only a finite number of fundamental scattering am-
plitudes Fx(k, k′, ωk) and that the RIXS scattering amplitude is a linear combination of these
fundamental scattering amplitudes weighted by the angular functions Tx(k̂, k̂′, ε, ε′).
The next step is to understand the fundamental scattering amplitudes. This can be done numer-
ically but, in addition, several authors have used approximation schemes in order to provide
more insight into the scattering amplitude. Generally, the approximations involve the propa-
gation of the system in the time between the absorption and emission processes. The schemes
generally allow the separation of the fundamental scattering amplitudes into a resonance func-
tion P (ωk, ωk′) and an effective transition between ground and final states 〈f |W x|g〉, see Fig. 6.
The resonance function gives the strength of the fundamental scattering amplitude, which is a
combination of radial matrix elements of the transition operators and energy denominators that
describe the resonant effect as a function of ωk. The effective transition operators create ex-
citations in the valence shell similar to an optical excitation. In certain cases, these operators
can also be related to correlation functions such as the dynamic structure factor. The approx-
imations depend on the RIXS process. Direct RIXS is approximated by using a fast-collision
approximation and indirect RIXS can be approached via perturbative methods or an ultra-short
core-hole lifetime expansion, see Section 4.1.

3 Interaction of light and matter

To develop the theory of RIXS, we first need to derive the Hamiltonian that describes the in-
teraction of the incident X-ray beam with the electrons in the sample. The interaction terms
in this Hamiltonian are small, controlled by the dimensionless fine structure constant α =
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e2/4πε0~c ≈ 1/137, with e = |e| the magnitude of the elementary charge and ε0 the permittiv-
ity of free space. Therefore they can be treated as a perturbation to the terms in the Hamiltonian
that describe the system under study. To second order in such a perturbation theory, we obtain
the Kramers-Heisenberg formula, which describes RIXS very well. We need to go to second or-
der because two interactions are needed: one to create the core hole, and one for the subsequent
radiative de-excitation.

3.1 Kramers-Heisenberg cross-section

The incident X-rays are described by an electromagnetic field with vector potential A(r, t). The
coupling between such a field and electrons is given by the theory of quantum electrodynamics.
It is common to start from the exactly solvable case of a single electron without potentials (A
and electric potential φ(r, t)). Then, the potentials are (perturbatively) introduced and one takes
two limits. The first of these is that the electrons travel at speeds, v, small compared to the
speed of light. This is a good approximation even for, e.g., copper 1s core electrons, where
we estimate v ∼ ~Z/ma0 ≈ 0.21c with Z the atomic number for copper and a0 the Bohr ra-
dius. At first glance, v/c might not appear small in this case, but γ = 1/

√
1− v2/c2 ≈ 1.02

and relativistic effects are still small. The second limit is that the potentials related to both the
electrons and the photons in the system are small compared to twice the mass of the electron:
eφ/2mc2, e|A|/2mc� 1 (m is the electron mass). Although the intrinsic potentials of materi-
als diverge close to the nuclei, they may be treated consistently within the whole procedure for
Z � 137 (see page 948 in [24]). Photon potentials at existing X-ray sources satisfy these limits.
However, in the future at very strongly focussed X-ray Free Electron Lasers, the electric field
of the photon is projected to exceed 1016 V/m, which gives e|A| ∼ 2mc at a photon energy of
∼ 8 keV so that these approximations are no longer valid. However, such effects are neglected
here and the formalism is developed for non-relativistic electrons in small potentials.
In these limits, one obtains for a system withN electrons, in SI units (see pages 944–947 in [24]
or pages 85–88 in [25]),

H =
N∑
i=1

[
(pi + eA(ri))

2

2m
+
e~
2m
σi ·B(ri)

+
e~

2(2mc)2
σi ·

(
E(ri)× (pi + eA(ri))− (pi + eA(ri))× E(ri)

)]
(1)

+
e~2ρ(ri)
8(mc)2ε0

+HCoulomb +
∑
κ,ε

~ωκ
(
a†κεaκε +

1

2

)
,

where pi, ri and σi are, respectively, the momentum and position operators and the Pauli ma-
trices acting on electron i. A(r) is the vector potential, E(r) = −∇φ − ∂A/∂t, the electric
field, and B(r) = ∇ × A, the magnetic field. a(†)κε annihilates (creates) a photon in the mode
with wave vector κ and polarization vector ε. The second term yields the Zeeman splitting,
and the third includes spin-orbit coupling. The interaction of electrons with an external electric
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potential and with other electrons and nuclei in the sample (including the Darwin term) are all
described by HCoulomb. The vector potential can be expanded in plane waves as

A(r) =
∑
κ,ε

√
~

2Vε0ωκ
(
ε aκεe

iκ·r + ε∗a†κεe
−iκ·r) , (2)

where V is the volume of the system.
In order to derive the photon scattering cross-section one splits the Hamiltonian H into an
electron-photon interaction part, H ′, and the remaining terms, H0, which describe the electron
and photon dynamics in the absence of electron-photon interactions. H ′ is then treated as a per-
turbation to H0. To calculate the RIXS cross-section in this perturbation scheme, it is assumed
that there is a single photon in the initial state with momentum ~k, energy ~ωk and polarization
ε that is scattered to (~k′, ~ωk′ , ε′) in the final state. Photon scattering then induces a change
in the material from ground state |g〉 to final state |f〉, with energies Eg and Ef respectively. In
the process, the photon loses momentum ~q = ~k − ~k′ and energy ~ω = ~ωk − ~ωk′ to the
sample. Fermi’s Golden Rule to second order gives the transition rate for this process :

w =
2π

~
∑
f

∣∣∣∣〈f|H ′ |g〉+∑
n

〈f|H ′ |n〉 〈n|H ′ |g〉
Eg − En

∣∣∣∣2δ(Ef − Eg) , (3)

where the initial state |g〉 = |g;kε〉, the intermediate state |n〉 and the final state |f〉 = |f ;k′ε′〉
are eigenstates of H0 with energies Eg = Eg + ~ωk, En, and Ef = Ef + ~ωk′ , respectively.
The first order amplitude in general dominates the second order, but when the incoming X-rays
are in resonance with a specific transition in the material (Eg ≈ En), then the second order
terms become large. The second order amplitude causes resonant scattering, while the first
order yields non-resonant scattering.
In order to derive H ′ it is useful to classify the terms of Eq. (1) by powers of A. Terms of H
that are quadratic in A are the only ones to contribute to the first order amplitude, because they
contain terms proportional to a†k′ε′akε and akεa

†
k′ε′ . To be specific, the quadratic contribution

from the first term of H gives rise to non-resonant scattering, while the third term of H yields
magnetic non-resonant scattering. Although both appear in the first order scattering amplitude,
they in principle also contribute to the second order, but we neglect these processes because
they are of order α3/2.
The interaction terms linear in A do not contribute to the first order amplitude, but do contribute
to the second order. They thus give rise to resonant processes. In the following, we neglect such
contributions that come from the third term of Eq. (1), because they are of second order in two
separate expansions. Firstly, this term of H is of second order in the limits discussed above, and
secondly, it appears in the second order of the scattering amplitude. Finally, all terms in Eq. (1)
that are independent of A are included in H0. The relevant remaining terms are

H ′ =
N∑
i=1

[
e

m
A(ri)·pi +

e2

2m
A2(ri) +

e~
2m
σi ·∇×A(ri)−

e2~
(2mc)2

σi ·
∂A(ri)

∂t
×A(ri)

]
, (4)

where the gauge was fixed by choosing ∇ ·A(r) = 0 so that A · p = p ·A.
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The two terms of H ′ that contribute to the first order amplitude are the one proportional to A2

and the σ ·(∂A/∂t)×A term. The latter is smaller than the former by a factor ~ωk(′)/mc
2 � 1,

and is therefore neglected. The first order term in Eq. (3) then becomes

e2

2m
〈f|
∑
i

A2(ri) |g〉 =
~e2

2mVε0
ε′∗ · ε
√
ωkωk′

〈f |
∑
i

eiq·ri |g〉 . (5)

When the incident energy ~ωk is much larger than any resonance of the material, the scattering
amplitude is dominated by this channel, which is called Thompson scattering. In scattering
from a crystal at zero energy transfer, this term contributes amongst others to the Bragg peaks.
It also gives rise to non-resonant inelastic scattering. In practice, RIXS spectra show a strong
resonance behavior, demonstrating that for these processes, it is the second order term that
dominates the scattering. We therefore omit the A2 contribution in the following. More details
on non-resonant inelastic X-ray scattering can be found in, for instance, [8, 26].
The second order amplitude in Eq. (3) becomes large when ~ωk matches a resonance energy
of the system, and the incoming photon is absorbed first in the intermediate state, creating a
core hole. The denominator Eg + ~ωk − En is then small, greatly enhancing the second order
scattering amplitude. We neglect the other, off-resonant processes here, though they do give
an important contribution to non-resonant scattering [6]. The resonant part of the second order
amplitude is

e2~
2m2Vε0

√
ωkωk′

∑
n

N∑
i,j=1

〈f | e−ik′·ri
(
ε′∗ ·pi − i~

2
σi ·k′×ε′∗

)
|n〉

Eg + ~ωk − En + iΓn
〈n| eik·rj

(
ε·pj +

i~
2
σj ·k×ε

)
|g〉

(6)
where a lifetime broadening Γn is introduced for the intermediate states. This accounts for the
many non-radiative interaction terms that are not included in H ′ (for example Auger decay),
which make the intermediate states very short lived.
Resonant scattering can thus occur via a magnetic and a non-magnetic term. An estimate shows
that the latter dominates. The size of localized 1s copper core orbitals is a0/Z ≈ 0.018 Å so
that for 10 keV photons the exponential eik·r is close to unity and can be expanded. The non-
magnetic term can induce a dipole transition of order |p| ∼ ~Z/a0 ∼ 5.9·10−23 kg m/s, whereas
the magnetic term gives a dipole transition of order (k · r)~|k|/2 ∼ 2.5 · 10−25 kg m/s. We thus
ignore the magnetic term here, and the relevant transition operator for the RIXS cross-section is

D =
1

imωk

N∑
i=1

eik·ri ε · pi , (7)

where a prefactor has been introduced for convenience in the following expressions.
The double-differential cross-section I(ω,k,k′, ε, ε′) is now obtained by multiplying by the
density of photon states in the solid angle dΩ (= Vk′2 d|k′| dΩ/(2π)3) and dividing by the
incident flux c/V [25, 6, 8]

I(ω,k,k′, ε, ε′) = r2em
2ω3

k′ωk

∑
f

|Ffg(k,k′, ε, ε′, ωk, ωk′)|2 δ(Eg − Ef + ~ω) , (8)
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where the classical electron radius re = 1
4πε0

e2

mc2
. The scattering amplitude at zero temperature

is given by

Ffg(k,k′, ε, ε′, ωk, ωk′) =
∑
n

〈f | D′† |n〉 〈n| D |g〉
Eg + ~ωk − En + iΓn

, (9)

where the prime in D′ indicates it refers to transitions related to the outgoing X-rays. Eqs. (8)
and (9) are referred to as the Kramers-Heisenberg equations, which are generally used to calcu-
late the RIXS cross-section.
Alternatively, we can rewrite the denominator for the intermediate-states in terms of a Green
function, which is also referred to as the intermediate-state propagator, which describes the
system in the presence of a core hole:

G(zk) =
1

zk −H
=
∑
n

|n〉〈n|
zk − En

, (10)

where |n〉 forms a complete basis set and

zk = Eg + ~ωk + iΓ, (11)

where Γ is taken to be independent of the intermediate states. The quantity zk is the energy of
the initial state combined with the finite lifetime of the core hole. In the following we will often
suppress the explicit label k of zk and denote it simply by z, with an implicit incident energy
dependence. With the core-hole propagator G and transition operators D in place, the RIXS
scattering amplitude Ffg finally reduces to the elegant expression

Ffg = 〈f | D′†G(zk)D |g〉 . (12)

3.2 Scattering amplitude in dipole approximation

In the previous section, Eqs. (8) and (9) give the Kramers-Heisenberg expression for RIXS.
The next step is to separate the part pertaining to the geometry of the experiment from the
fundamental scattering amplitudes that relate to the physical properties of the system, see Fig. 6.
In addition, better-defined transition operators will be obtained. Due to the complexity of the
multipole expansion, we first give a derivation in the dipole limit allowing the reader to better
follow the arguments. In the next section, we present the higher order transitions.
In the dipole limit, one assumes that eik·ri ∼= eik·Ri where Ri indicates the position of the ion to
which electron i is bound. Note that Ri is not an operator. This has as a result that the electronic
transitions are due to the momentum operator p and Eq. (7) becomes

D = ε ·D with D =
1

imωk

N∑
i=1

eik·Ripi . (13)
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Generally, the matrix elements are expressed in terms of the position operator r. For example,
in the absorption step, one can write

〈n|D |g〉 =
N∑
i=1

eik·Ri

imωk

〈n|pi |g〉 =
N∑
i=1

eik·Ri

~ωk

〈n| [ p
2
i

2m
, ri] |g〉

∼=
N∑
i=1

eik·Ri

~ωk

(En − Eg) 〈n| ri |g〉 ∼=
N∑
i=1

eik·Ri 〈n| ri |g〉 ,

where ~ωk
∼= En − Eg. The operator thus reduces to the dipole operator D =

∑N
i=1 e

ik·Riri
that causes electronic transitions.
The next step is to separate the part that pertains to the geometry of the experiment (the po-
larization vectors ε′ and ε) from the physical properties of the system. Ultimately, our interest
lies in the spectral functions of a material. The geometry is chosen in an optimal way to mea-
sure them. Using spherical-tensor algebra, we can rewrite the scattering amplitude, Eq. (12),
remaining in the dipole limit, Eq. (13), as

Ffg =
2∑

x=0

[x]n2
11x 〈f | [ε′∗, ε]x · [D†, G(zk)D]x |g〉 ,

using the shorthand [l1 · · · ln] = (2l1 + 1) · · · (2ln + 1); n11x is a normalization constant, and
[ , ]x is a tensor product. Since the tensor product couples tensors of rank 1 (the polarization
vectors and the position vector r), the rank x of the tensor products can assume the values 0, 1,
and 2. The fundamental scattering amplitudes are given by

Fx(zk) = 〈f | [D†, G(zk)D]x |g〉 . (14)

For each value of x, there are 2x + 1 components F x
q with q = −x,−x + 1, . . . , x. Note that,

whereas there is an infinite number of different scattering amplitudes, for dipole transitions,
there are only nine fundamental ones ( 3 × 3 = 1 + 3 + 5 = 9). All the other possible scatter-
ing amplitudes are combinations of these fundamental scattering amplitudes with a weighting
determined by the angular dependence

Tx(ε, ε′) = [x]n2
11x[ε

′∗, ε]x, (15)

which again has nine components T xq (ε, ε
′). For x = 0, 1, the angular dependence is given by

the inner product, T 0
0 (ε, ε

′) = 1
3
ε′∗ · ε, and the outer product, T 1

α(ε, ε
′) = 1

2
(ε′∗ × ε)α of the

polarization vectors, respectively. The total scattering amplitude in the dipole limit can now be
written as

Ffg(ε, ε′, ωk) =
2∑

x=0

Tx(ε, ε′) · Fx(zk) . (16)

The spectra for different x and q are combinations of the spectra for different polarizations.
Usually, the scattering amplitudes are calculated in terms of the components Dα of the dipole
operator, where α = 1, 0,−1 in spherical symmetry or α = x, y, z in Cartesian coordinates.
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The spectra for different polarizations are then combined to form the fundamental scattering
amplitudes. This can be compared with X-ray absorption. The circular dichroic spectrum (the
x = 1 fundamental spectrum for X-ray absorption) is usually calculated by subtracting the
spectra for left and right circularly polarized light (α = ±1). The scattering amplitudes in
terms of the components of the dipole operator are given by

Fα′α = 〈f |D†α′ G(zk)Dα |g〉 =
∑
n

〈f |D†α′ |n〉 〈n|Dα |g〉
~ωk + Eg − En + iΓ

. (17)

Note that again there are only nine spectra and this is just a representation of the nine funda-
mental spectra in a different basis. The simplest scattering amplitude is the isotropic one given
by x = 0. The tensor containing the isotropic scattering amplitudes F0 has only one component
F 0
0 ,

F 0
0 = F00 + F11 + F−1,−1 = Fxx + Fyy + Fzz, (18)

which is just a sum of all the different polarization components. For the expressions in spherical
symmetry, note that, since r†iα′ = (−1)α′

ri,−α′ , there is no net transfer of angular momentum
to the system for the isotropic scattering amplitude. Since the angular dependence is given by
T0 = ε′∗ ·ε, the isotropic contribution to the spectral line shape is removed in many experiments
by the use of a 90◦ scattering condition with the incoming polarization vector in the scattering
plane (π-polarized). This makes the incoming polarization vector perpendicular to both possible
outgoing polarization vectors and therefore ε′∗ · ε = 0. In addition, this has the advantage that
it strongly reduces the non-resonant A2 term from the experimental RIXS data (which has the
same polarization dependence). This contributes mostly to the elastic line and is frequently the
major experimental impediment to measuring low-energy excitations.
Tensors of rank x = 1 have three components. For example, the q = 0 component is given by

F 1
0 = F11 − F−1,−1 = Fxy − Fyx. (19)

For resonant elastic X-ray scattering, the F 1
0 scattering amplitude is the one that gives rise to,

amongst others, magnetic scattering. The angular dependence for x = 1, is given by an outer
product T1 = ε′∗ × ε.
At this point it is useful to make a comparison with X-ray absorption (XAS) and resonant X-ray
(elastic) scattering (RXS), which are determined by the scattering amplitude Fgg

IXAS(ε, ωk) =− 1

π
Im [Fgg(ε, ε, ωk)] (20)

IRXS(ε, ε
′, ωk) = |Fgg(ε, ε′, ωk)|2, (21)

where for X-ray absorption, there is only a polarization vector for the incident X-rays, and
ε′ ≡ ε. Since for XAS and RXS the “final” state is equivalent to the ground state in the
scattering amplitude (|f〉 = |g〉) an additional restriction is imposed on the scattering. In many
symmetries, this means that only the q = 0 component contributes, reducing the scattering
amplitude determining XAS and RXS to

Fgg(ωk) =
2∑

x=0

T x0 (ε, ε
′)F x

0 (zk) . (22)
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This implies that of the 3 × 3 = 9 components in the full scattering amplitude, only 3 compo-
nents, corresponding to x = 0, 1, 2 and q = 0, remain. For X-ray absorption, these correspond
to the well-known isotropic, circular dichroic, and linear dichroic spectra, respectively.

3.3 Scattering amplitude for a multipole expansion

We next generalize the ideas from the previous section to include the different types of multi-
poles arising from the p ·A interaction in Eq. (4). Since the dipolar and quadrupolar transitions
in RIXS are predominantly excitations from a localized core hole into the valence states, the
common approach is to expand the plane wave in the vector potential, see Eq. (2), around the
site where the absorption takes place. Essentially, one is using an approximation of the type
eik·ri ∼= 1 + ik · ri but in spherical harmonics. In the previous section, we treated the case
that eik·ri ∼= 1. The plane wave can be expanded in terms of spherical harmonics Ylm(θ, ϕ) and
spherical Bessel functions jl [27]

eik·ri = 4π
∞∑
l=0

l∑
m=−l

iljl(kri)Y
∗
lm(θk̂, ϕk̂)Ylm(θr̂i , ϕr̂i).

In order to arrive at the standard transition operators, it makes sense, at this point, to rewrite the
above equation in terms of spherical tensors. A common set of tensors are the normalized spher-
ical harmonics, which we write as the tensor r̂(l) with components r̂(l)m =

√
4π/[l]Ylm(θr̂, ϕr̂).

In addition, r(l) = rlr̂(l). Note that r(0) = 1. For spherical harmonic tensors of order l = 1, the
superscript is dropped r = r(l). This allows us to rewrite the expansion as

eik·ri =
∞∑
l=0

[l] iljl(kr) k̂
(l) · r̂(l)i . (23)

As in the previous section, we want to separate the momentum and polarization vectors of the
X-rays (the geometry of the experiment) from the transitions in the material under consideration
(the fundamental spectra). This can be done by recoupling the different tensors. Recoupling of
the tensors [27–29] leads to

D =
1

imω

N∑
i=1

eik·ri ε · pi =
1

imω

N∑
i=1

∑
lL

[lL] il

[l]!!
n2
1lL k

l[pi, r
(l)
i ]L · [ε, k̂(l)]L, (24)

where the approximation jl(kr) ∼= (kr)l/[l]!! for kr � 1 has been used, with the double
factorial l!! = l(l−2) · · · . Note that the operators acting on the electrons, namely the momentum
pi and position ri, are coupled together to form an effective operator DlL of rank L = l−1, l, l+
1. The quantities related to the photons, namely, the wavevector k and polarization ε also form
a tensor of rank L. Let us first consider the transition operators in Eq. (24) by introducing the
transition operators [30]

DlL =
plL(k)

imω

N∑
i=1

[pi, r
(l)
i ]L, (25)
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with plL(k) = [lL]n2
1lL k

l/[l]!! = 1, k/2, k/6 for lL = 01, 11, 12, respectively. The values
of l and L give rise to the usual dipolar (lL = 01), magnetic dipolar (11), and quadrupolar
(12) transition operators. For l = 0, one has r

(0)
i = 1 and the operator simplifies to D01 =∑

i pi/imω, which is equivalent to the dipole operator in Eq. (13) of the previous Section. In
cartesian coordinates, the operator [ri,pi]1 = Li and D11 = αa0

2

∑
i Li, with a0 the Bohr radius

and the angular momentum given in ~. The orbital moment forms, together with the Zeeman
term in Eq. (1), the magnetic dipole transition. Since magnetic dipole transitions are of the order
of α2 = 1/1372, i.e., about five orders of magnitude, smaller than the electric dipole transitions
of the same wavelength, they will be neglected in the remainder of this paper. The next operator
is D12 = k

6

∑N
i=1 r

(2)
i which is the electric quadrupole operator.

In the remainder, we limit ourselves to the electric L-pole transitions, and we can drop the
l = L − 1 from the expressions, i.e., DL−1,L → DL. The transition operators are then
D ∼ [ε,k(L−1)]L ·DL with DL = pL(k)

∑N
i=1 r

(L)
i with L = 1, 2 for dipolar and quadrupolar

transitions, respectively. The relative strengths of the components of the multipole transition op-
erators r(L)M depend on the direction of polarization and wavevector through [ε,k(L−1)]L. These
reduce to ε and [ε,k]2, for the electric dipolar and quadrupolar transitions, respectively. As
discussed in the previous section, the part that depends on the geometry of the experiment and
the fundamental spectra (9 and 25 for dipolar and quadrupolar transitions, respectively) that de-
scribe the physical properties of the system can be separated exactly. This can again be achieved
by applying a recoupling on the scattering amplitude, which can then be rewritten as

Ffg(k,k
′, ε, ε′, ωk) =

2L∑
x=0

TLx(k̂, k̂′, ε, ε′) · FLx(k, k′, ωk) .

Neglecting interference effects between different multipoles, the scattering amplitude for a par-
ticular multipole is given by [30]

FLx(k, k′, ωk) =
∑
n

[〈f | (DL)† |n〉 , 〈n|DL |g〉]x

~ωk + Eg − En + iΓ
,

which has angular dependence

TLx(k̂, k̂′, ε, ε′) = [x]n2
LLx [[ε

′∗, k̂′(L−1)]L, [ε, k̂(L−1)]L]x.

The above equations give an exact separation of the Kramers-Heisenberg expression for RIXS
into an angular dependence and a fundamental scattering amplitude, achieving the first step
shown in Fig. 6.
In the previous section the Kramers-Heisenberg expression for the RIXS scattering amplitude
Ffg , Eq. (9), was derived and re-expressed as a product of a photon absorption operator D, the
intermediate state propagator G and a photon emission operator D†, sandwiched between the
RIXS final and ground state

Ffg = 〈f|D†GD|g〉 . (26)
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Fig. 7: Theoretical approach to the intermediate state propagator, classifying direct and indirect
RIXS processes and common approximations to the propagator: a [31], b [32], c [33], d [34],
e [35], f [36], g [37], h [21], i [22], j [38].

The presence of the intermediate state propagator is what makes the theory of RIXS complicated
– and interesting. The propagator G is defined in terms of the inverse of the total Hamiltonian
H of the system, G(zk) = (zk −H)−1, where the operator H naturally divides into the ground
state Hamiltonian H0 (governing the quantum system without a core hole) and the core-hole
Hamiltonian HC perturbing the system after photon absorption: H = H0 + HC . It should be
noted that even if one commonly refers to HC as the core-hole Hamiltonian, it also includes the
interaction between the electron excited into the conduction band and the rest of the material.
As core hole and excited electron together form an exciton, their separate effects on the system
cannot, in principle, be disentangled.

4 Definition of direct/indirect RIXS

At this point it is useful to separate the full propagator G into the unperturbed propagator G0 =

(zk − H0)
−1 and a term that contains the core-hole Hamiltonian HC , using the identity G =

G0 + G0HCG. This also separates the RIXS amplitude into two parts, which define direct and
indirect RIXS [22]:

Fdirect
fg = 〈f|D†G0D|g〉 (27)

and

F indirect
fg = 〈f|D†G0HCGD|g〉 . (28)

Note that this definition of direct/indirect RIXS, based on the Kramers-Heisenberg expression,
is exact.
For the direct RIXS amplitude, the core hole does not play a role – the photon absorption and
emission matrix elements determine which electronic transitions are allowed. The physical
picture that arises for direct RIXS is that an incoming photon promotes a core-electron to an
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empty valence state and subsequently an electron from a different state in the valence band
decays, annihilating the core hole, see Fig. 4. Thus for direct RIXS to occur, both photoelectric
transitions, the initial one from core to valence state and the succeeding one from valence state
to fill the core hole, must be allowed. These transitions can, for example, be an initial dipolar
transition of 1s → 2p followed by the decay of another electron in the 2p band from 2p → 1s.
This happens at theK-edge of oxygen, carbon and silicon. In addition, at transition-metal (TM)
L-edges, dipole transitions causing direct RIXS are possible via 2p→ 3d and 3d→ 2p dipolar
transitions. In all these cases RIXS probes the valence and conduction states directly.
For indirect RIXS, the scattering amplitude depends critically on the perturbing core-hole Hamil-
tonian; without it the indirect scattering amplitude vanishes. In general the scattering, F indirect

fg ,
arises from the combined influence of HC and transition matrix elements D. Most often for
indirect RIXS, D/D† create/annihilate an electron in the same state, far above the Fermi level.
For instance at the TM K-edge, the 1s↔ 4p process creates/annihilates an electron in 4p states
electonvolts above the TM 3d valence shell. The delocalized 4p electron can then be approx-
imated as being a spectator because (Coulomb) interactions involving the localized core hole
are usually much stronger and dominate the scattering cross-section.
It should be noted that if scattering is direct, as for instance at TM L-edges, indirect processes
can also contribute to the total scattering amplitude. However, as indirect scattering arises in
this case as a higher order process, it is normally weaker than the leading order direct scattering
amplitude. Conversely, in case of indirect RIXS, direct processes are absent by definition.

4.1 Effective theory for indirect RIXS

In the previous section, we have seen that the direct RIXS process can be written in terms of
effective transition operators (see Eq. (27)) that do not involve the core-hole Hamiltonian HC .
When higher-order contribution are neglected, this approach corresponds to the fast-collision
approximation, or the lowest order in the ultrashort core-hole lifetime (UCL) expansion, see
Sec. 4.3. Indirect RIXS is different, as these lowest order terms do not contribute to its RIXS
cross-section and the scattering process critically depends on the higher-order terms. For ex-
ample, K-edge RIXS is dominated by excitations into the transition-metal 4p states. Since
the 4p states are usually almost completely empty, the effective operators for direct RIXS only
contribute to the elastic line, where the effective transition operator creates an electron in the
valence shell in the excitation step and annihilates it again in the emission process.
Experimentally, however, RIXS is observed at the K-edge. Particularly prominent are the
charge-transfer type excitations. Also the excitation of d-d transitions and magnons have been
observed. The general consensus is that these excitations are created through the interaction be-
tween the valence shell and the 1s-4p excitation created in the absorption process. Most work
has focused on the interaction with the potential of the 1s core hole, which is known to be of
the order of 6–8 eV. This potential can be written as

HC =
∑

kk′qµσσ′

U1s,3d d
†
k+q,µσs

†
k′−q,σ′sk′σ′dkµσ , (29)
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where µ sums over the different orbitals. The potential can in principle contain exchange terms,
but these are negligible at the K-edge. The transient presence of this potential in the interme-
diate state leads to strong screening dynamics in the valence shell giving rise to the final-state
excitations. This Section discusses some of the methods used to describe the excitations created
by interactions in the intermediate state.

4.1.1 Momentum dependence for indirect RIXS

Recognizing that for indirect RIXS the core hole dominates the scattering process has an im-
portant consequence for the momentum dependence. In the hard X-ray regime photons have
a momentum q that can span several Brillouin zones because it is larger than the reciprocal
lattice vectors G. The photon momentum reduced to the first Brillouin zone is, by definition,
κ = q− nG. The translational invariance and localized nature of the core potential in Eq. (29)
imply that the momentum dependence of RIXS is determined by the reduced momentum κ. It
will only weakly depend on nG as in reality a finite, but small, length-scale is associated with
the core potential. RIXS spectra will therefore appear practically identical in different Bril-
louin zones. This is confirmed experimentally by [39]. The weak variations found in [40], are
attributed by the authors to polarization effects.
This is remarkable because in IXS the total momentum q determines the scattering amplitude.
The reason for this is that in IXS q enters directly into the transition matrix elements, which in
RIXS are dominated by dipolar transitions for which eiq·r ∼= 1 and that are therefore indepen-
dent of q. In the following, we will see how in certain limits the indirect RIXS amplitude can
be related to the dynamic electronic structure factor Sk(ω), which is directly measured by IXS.
The important difference is thus that IXS measures Sq(ω) and RIXS is, in these cases, related
to Sκ(ω).

4.2 Perturbative approach

The most straight-forward approach to include effects of the interaction HC between the core
hole and the valence shell is the use of perturbation theory. This amounts to replacing G by G0

in Eq. (28) [32, 34, 33, 36, 35, 41], so that

F indirect
fg = 〈f |D†G0HCG0D|g〉, (30)

which is also referred to as the Born approximation and shown in terms of a Feynman dia-
gram expansion in Fig. 8. For dipolar 1s → 4p transitions at the K-edge, we have D =√
3P 1

1s,4p

∑
κkα εαp

†
κ+k,ασsκασ with α = x, y, z, and P 1

1s,4p the reduced matrix element contain-
ing the integral over the radial parts of the wavefunction.
In indirect RIXS, one considers the case where the 1s-4p exciton created in the absorption step
is annihilated in the emission process. Since there is a momentum transfer q from the photons
to the system, this implies that the momentum of the 1s-4p exciton must have changed in the
intermediate state. This can only be a result of interactions of the 1s-4p exciton with the valence
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Fig. 8: Feynman diagram for the transition probability in an indirect RIXS process in the Born
approximation. Green functions for Cu 1s, 4p, and 3d electrons correspond to the solid lines
labeled 1s, 4p, and 3d, respectively. The wavy and broken lines represent the photon propagator
and core hole potential U1s,3d, respectively. The shaded triangle is the effective scattering vertex
of the renormalized interaction between the valence electrons in the 3d-shell [36].

shell. If the dominant interaction is the Coulomb interaction of the core hole with the valence
shell, then the isotropic scattering amplitude can be rewritten as [33, 8]

F indirect
fg (q, ω) = P (ωk, ωk′)T (ε, ε′) 〈f |ρq|g〉 . (31)

Note that all the operators involving the 1s and 4p states have been removed from the expression.
The density operator is

ρq =
∑
kσ

d†k+q,σdkσ . (32)

The resonance behavior is determined by the resonant function

P (ωk, ωk′) = 3(P 1
1s,4p)

2 U1s,3d

(zk − ~ω)zk
, (33)

using the fact that ~ω = ~ωk − ~ωk′ = Ef . The resonant function is more complex than for
direct RIXS reflecting the fact that this is a higher-order excitation. The polarization dependence
requires some careful consideration. In the situation where the 4p electron is a spectator an
electron is excited into the 4p band with momentum k and band index n and subsequently
removed from the same state

T (ε, ε′) =
1

N

∑
kαα′

ε′∗α′εα 〈0|pkα′|E4p
kn〉〈E

4p
kn|p

†
kα|0〉 , (34)

with α = x, y, z. In the atomic limit, this expression reduces to ε′∗ · ε, since the orbital of the 4p
electron is unchanged in the intermediate state. In the absence of band effects, a change in the
polarization therefore implies that the angular momentum of the valence electrons has changed.
However, the 4p states form wide bands that are mixtures of the different 4p orbitals, and these
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local-symmetry arguments only apply at the Γ -point. Therefore, the use of a scattering condi-
tion where the incoming polarization vector is perpendicular to the outgoing polarization vectors
does not necessarily imply that a symmetry change has to occur for the valence electrons.
The essential physics of the material is contained in the fundamental scattering amplitude

Ffg(q) = 〈f |ρq|g〉. (35)

This quantity is directly related to the dynamic structure factor, through

Sq(ω) =
∑
f

|Ffg|2 δ(Ef − ~ω) = − 1

π
Im 〈g|ρ−q

1

~ω −H + i0+
ρq|g〉 , (36)

which corresponds to the bubble in the Feynman diagram in Fig. 8. It should be noted that
RIXS measures a projected Sq(ω), meaning that ρq contains only d†k+q,σdkσ terms. This is a
direct result of the fact that the core-hole Coulomb interaction does not scatter between different
orbitals. This is different from IXS, where in principle the photon can induce a direct transition
from the d states to the ligands. This does not imply that RIXS does not create charge-transfer
excitations, since the charge-transfer states also have d character. In [42] multiple scattering
corrections to the Born approximation are also considered on the basis of a Keldysh Green
function formalism. It was found that multiple scattering effects lead to small modifications in
the shape of the RIXS spectrum, which partly justifies the Born approximation for wide gap
insulators such as La2CuO4 and NiO [43].
For direct RIXS, the detailed dependence on the polarization is given in the fundamental scat-
tering amplitude F x

fg,q. When including the polarization dependence for indirect RIXS, one
obtains a similar fundamental scattering amplitude. The quantity Ffg in Eq. (35) then reduces
to F 0

fg,0 and corresponds to the isotropic term. In the absence of interactions causing a transfer
of angular momentum between the 4p and the valence shell, the indirect RIXS amplitude is
simply proportional to ρq. In terms of tensors, ρq = wdd00 (q).
A significant difference between the two processes is that when direct excitations are made into
the valence shell (e.g. 2p/3p → 3d), the effect of the operator wdd00 = nh is relatively small,
since the excited electron screens the 2p/3p core-hole potential very well. The isotropic con-
tribution then mainly contributes to the elastic line. For indirect RIXS, the excited delocalized
4p electron does not screen the 1s core-hole potential very well. This produces appreciable
screening dynamics of the valence electrons in the intermediate state. This is the reason why
the ρq response generates significant inelastic scattering intensity for indirect RIXS.

4.3 Ultrashort core-hole lifetime expansion

The potential that the core hole exerts on the valence electrons is strong, the attraction U1s,3d

between a 1s core hole and 3d electron is typically ∼ 6–8 eV, which is of the same order
as the d-d Coulomb interaction U3d,3d that appears in Hubbard-like models. Treating such a
strong interaction as a weak perturbation renders a perturbation expansion uncontrolled. To
deal with the strong core-hole interaction, the Ultrashort Core-hole Lifetime (UCL) expansion
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was developed in [21, 22, 38], which treats the core-hole potential as the dominating energy
scale.
The UCL relies on three observations. First for most RIXS intermediate states, the core hole
lifetime broadening is quite large: typically Γ is of the order of 1 eV. This yields a time scale
τ = 1/2Γ = 4 fs. Only during this ultrashort time is the system perturbed by the core hole.
Many elementary excitations have an intrinsic time scale that is much larger than 4 fs. This
intrinsic timescale is the fundamental oscillation period, related to the inverse frequency ω of an
excitation with energy ~ω. For example, phonons have a typical energy scale of up to 100 meV,
and magnons of up to 250 meV, thus corresponding to timescales almost an order of magnitude
larger than the core hole lifetime. Even low energy electronic valence band excitations can be
within this range.
The resulting physical picture of a RIXS process involving low-energy excitations is therefore
that the dynamics in the intermediate state are limited because of this lack of time, provided that
the excitation time scale is not decreased significantly by the core hole. The second observation
is that the core-hole potential can, to good approximation, be treated as a local potential, i.e.,
its dominating effect is to perturb electrons on the same atom on which the core hole resides.
Finally, the core hole is considered to be immobile, which is a reliable assumption for the deep
core-states such as Cu 1s.
The calculation of the indirect RIXS amplitude within the UCL expansion by [21, 22, 38] is
based on a series expansion of the Kramers-Heisenberg equation, (Eq. 9). But a Green function
approach is equally viable, which then starts by inserting in Eq. (28) the identity G = GC +

GCH0G

F indirect
fg = 〈f|D†G0HCGC(1 +H0G)D|g〉, (37)

where the Green functions,G0 = (zk−H0)
−1,GC = (zk−HC)

−1,G = (zk−H)−1, correspond
to the Hamiltonian of the unperturbed system H0, the valence-electron core-hole interaction
HC , and the total Hamiltonian H = H0 +HC . The UCL is best illustrated by considering the
core-hole Hamiltonian HC = UC

∑
i ρ

s
iρ
d
i , where UC = U1s,3d and ρ1si (ρ3di ) are the density

operators counting the number of 1s core holes (3d electrons) at site i. The simplest system
one can consider is one in which the 3d states are only occupied by either 0 or by 1 electron,
for instance due to strong correlation effects in the 3d shell. As there is only one localized core
hole present in the intermediate state, HC then has the interesting property H l

C = U l−1
C HC for

any integer l > 0 [21, 22], which implies that HC is either 0 or UC . This directly implies the
relation HCGC = HC(zk − UC)−1. One now obtains for the indirect RIXS amplitude

F indirect
fg = 〈f| D†G0

HC

zk − UC
(1 +H0G)D |g〉 . (38)

Note that this expression is exact, but of course specific for the present form of the core-hole
potential; generalized forms are given in [21,22,38], which include the spin and possible orbital
degrees of freedom of the 3d electrons.
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In the leading order of the UCL expansion one retains in Eq. (38) the first order term in HC so
that

F indirect
fg =

〈f| D†HCD |g〉
(zk − ω)(zk − UC)

= P (ωk, ωk′) 〈f| ρdq |g〉 , (39)

where the resonance function

P (ωk, ωk′) = (P 1
1s,4p)

2UC((zk − ω)(zk − UC))−1 (40)

is introduced, and P 1
1s,4p is the 1s → 4p dipole transition amplitude. The generic shape of

the resonance function depends on the form of the core-hole potential. It is remarkable that
the RIXS amplitude found in leading order of the strong coupling UCL is directly related to
the dynamic structure factor Sq(ω) of Eq. (36), which is a situation very similar to the weak
coupling perturbative approach, see Eq. (35). In fact for UC → 0 the strong coupling UCL
resonance function reduces to the perturbative one. This result has important implications for
the interpretation of RIXS spectra since this approach then suggests that with proper handling
of the prefactor, RIXS can be considered as a weak probe that measures Sq(ω).
The sub-leading contributions to the indirect UCL scattering amplitude of Eq. (38) are of the
type HCH0HC . Such terms a priori cannot be reduced to a response of ρq because H0 and HC

do not commute. Physically this term corresponds to an electron (or hole) hopping onto the
core-hole site in the intermediate state. Denoting the hopping amplitude as t, these contribu-
tions to the scattering amplitude are down by a factor t/(zk − UC) with respect to the leading
term. When tuning off-resonance, corrections to the UCL expansion thus become progressively
smaller. On resonance these terms constitute contributions to the RIXS intensity of the order
of (t/Γ )2, which are thus governed by UC and the inverse core-hole lifetime Γ . Corrections to
the UCL are thus smaller for shorter-lived core holes. In cuprates, for instance the effective 3d

valence bandwidth t ≈ 0.4 eV and such corrections are expected to be moderate. For a specific
system, the commutation relation for H0 and HC is known, and such a higher order term can
be calculated explicitly and again be cast in the form of a product of a resonance function and a
generalized charge response function.
The observation that within the UCL the RIXS cross-section can be factored into a resonant pre-
factor and the dynamic structure factor, Sq(ω) was tested experimentally [44]. There an empir-
ical comparison of Cu K-edge indirect RIXS spectra was reported, taken at the Brillouin-zone
center, with optical dielectric loss functions measured in a number of copper oxides: Bi2CuO4,
CuGeO3, Sr2Cu3O4Cl2, La2CuO4, and Sr2CuO2Cl2. Analyzing both incident and scattered-
photon resonances [44] extracted an incident-energy-independent response function. The over-
all spectral features of the indirect resonant inelastic X-ray scattering response function were
found to be in a reasonable agreement with the optical dielectric loss function over a wide energy
range. In the case of Bi2CuO4 and CuGeO3 [44] observed that the incident-energy-independent
response function, Sq=0(ω), matches very well with the dielectric loss function, −Im(1/ε(ω))

measured with spectroscopic ellipsometry, suggesting that the local core-hole approximation
treatment of the UCL works well in these more localized electron systems. Corner-sharing two-
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dimensional copper oxides exhibit more complex excitation features than those observed in the
dielectric loss functions, likely related to non-local core-hole screening effects.
The UCL expansion describes the RIXS cross-section in the limits of small and large core-
hole potential. In the intermediate region, one has to resort to numerical calculations [45]. In
the dynamic structure factor, excitations are created via ρq, implying that electrons and holes
are excited in an equivalent fashion. When dynamical effects are strong in the intermediate
state, this can change and an asymmetry in the excitation of electron and holes can occur [45].
Since the screening electron is strongly bound to the core hole in the intermediate state, it is
more likely to be scattered to higher lying states. The hole excitations on the other hand can
delocalize and have a tendency to be closer to the Fermi level.
Besides charge excitations also magnetic and orbital excitations were studied with the UCL.
Theoretically the two-magnon response of antiferromagnetic La2CuO4 was calculated within
the UCL [46, 47], agreeing nicely with experiment [16]. Collective orbital excitations were
investigated theoretically for LaMnO3 [48] and for YTiO3 [49] and compared to experiments
on titanates [50].
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1 Introduction: NMR basics

The electronic properties of solids were, in the first half of the twentieth century, considered
mostly in the framework of an independent electron approximation with spin degeneracy. Their
resulting electronic band structure is such that each electronic level could be doubly occupied.
In such an approach one expects metals or insulators with no significant magnetic properties [1].
The traditional experimental studies of the electronic states in such solids usually require a de-
termination of their electronic band structure and an investigation of its effects on the physical
properties. Those are usually experimentally obtained by measurements taken at the macro-
scopic scale such as optical, transport, and magnetic data. To go beyond these approaches
Nuclear Magnetic Resonance is thoroughly used. This technique, discovered in the mid of the
20th century is essential as it permits to perform atomic-scale measurements in the materials,
differentiating the properties which can be attributed to specific phases or sites in the structure.
The aim of this lecture is to present the main physical parameters accessible to NMR experi-
ments, and to illustrate how they do reflect many aspects which are specific to the occurrence
of electronic correlations in materials.
Correlations are at the origin of many exotic electronic properties of a series of compounds
which have emerged from recent experimental observations. The most important phenomena
discovered are related with electronic magnetic properties, which have been quite accessible to
Nuclear Magnetic Resonance techniques. They specifically permit to distinguish the orbitals
or electronic bands responsible for magnetism, metallic, and superconducting behaviors. They
revealed quite often the physical properties which are distinct what is expected within an inde-
pendent electron scheme.
In non-interacting electronic systems, one considers energy levels with spin degeneracy and fills
them with two electrons per level, without any consideration of U , the local Coulomb repulsion
on the atomic orbitals. But, as soon as one considers a solid which displays magnetic properties,
the latter has to be considered, as U is responsible for atomic and solid-state magnetism. This
is fully described in various other lectures in the present series of books.
If one starts with a completely free electron gas, the first incidence of weak correlations can
be expressed in a Fermi liquid approach, that is, the electronic states at the Fermi level are not
single-particle but rather quasiparticle states in which the electron is dressed by an electronic
cloud which involves the electronic correlations. Those quasiparticles are populated in a same
way as free-electron states, except that the population jump at the Fermi level is smaller than
unity. Correspondingly these quasiparticles have effective masses m? which differ from the
electron mass. This is seen for instance in the magnitude of the specific heat and the Pauli-like
spin susceptibility.
With increasing electron correlations one reaches situations where electron states are in an in-
termediate regime between independent extended electronic states and local states. Those in-
termediate electronic states are at the basis of the correlated electron physics which gives exotic
properties to the materials and various competing low T states which are often far from being
understood at this time.
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As the NMR technique is described at length in various books and articles (see Wikipedia and
Scholarpedia) for its applications in chemistry, biology, and medical sciences, we shall only
recall very briefly the technical principles of NMR in the next section. However we shall recall
in more detail the couplings between nuclear spins and electron spins in section 1.2. Those are
essential to allow one to probe by NMR the electronic and magnetic properties of solids.

1.1 The magnetic resonance phenomenon: basic applications

Let us recall that the physical properties of solids, and in particular their magnetic properties,
are of course determined by the electronic states. On the other hand, the nuclear spin moments,
which do not affect these properties, provide an extremely useful probe for the electronic prop-
erties. Atomic nuclei are made up of neutrons and protons, which are spin 1/2 particles. They
are assembled into quantum states in which the nuclear ground state has a total spin I that
may be integer or half-integer. The associated magnetic moment µn is proportional to the mag-
netic moment of the proton µp, where the multiplicative factor is analogous to the Landé factor
for an atomic electronic moment. Each atomic nucleus thus has a specific magnetic moment
µn = ~γnI . The gyromagnetic ratio γn is known to great accuracy for each of the stable iso-
topes in the periodic table. Since µp ' 10−3µB, the nuclear moments are extremely small,
as are their mutual interactions. As a consequence, they are almost always in a paramagnetic
state with a Curie magnetization µz = N(~γn)

2I(I + 1)B0/3kBT . We see immediately that, in
a given applied field, the nuclear magnetization is about 106 times smaller than the electronic
magnetization. The nuclear magnetism is practically impossible to detect using just macro-
scopic magnetization measurements taken on bulk samples. But, although the nuclear magnetic
susceptibilities are weak, they can be detected by magnetic resonance which is a spectroscopy
that permits a selective detection of the nuclear spin response.
Discovered at the outset of the second world war by F. Bloch and E.M. Purcell, the nuclear mag-
netic resonance technique has rapidly become a unique method to investigate the chemical and
physical properties of condensed matter [2, 3]. Its success results from the fact that it resolves
spectroscopically the properties of the nuclear spins of the distinct atomic species present in a
material. A homogeneous applied external magnetic field B0 induces a splitting of the nuclear-
spin energy level hνL = ~γnB0 which usually falls in the radio-frequency range of the order
of 10 MHz per Tesla. The absorption of a radio-frequency field at the adequate frequency νL
permits to detect the presence of the corresponding nuclei.
One highlight of NMR is the acquired possibility to provide images of the spatial distribution of
1H nuclei in-vivo in biological matter, which is the basis of medical Magnetic Resonance Imag-
ing (MRI). Though this is the most popular application of NMR known by a large audience,
NMR is an even more powerful technique when one uses the interactions of given nuclear spins
in a material with their neighboring atomic states. This results in rich spectroscopic splittings
of the NMR lines, which permit to locate the atoms in molecular states and therefore to deter-
mine the molecular structures in chemistry or in the solid state. Such spectroscopic techniques
have been revealed since the 1960s but their impact has been tremendously highlighted by the



13.4 Henri Alloul

improvement of the superconducting-magnet industry which has allowed to produce extremely
homogeneous magnetic fields B0 as large as 21 Tesla with negligible drift in time. In the cor-
responding range of frequencies νL, exceptionally stable coherent sources are available, with
narrower spectral widths than the transitions to be observed. These are obtained by electronic
oscillators with frequency stabilized on the resonant mode of a piezoelectric quartz crystal.
Moreover, for such frequencies, very powerful amplifiers are also available. High intensity
radio-frequency pulses are used to significantly modify the populations of the spin quantum
states. This approach is essential for nuclear spin relaxation studies. Therefore on the electron-
ics side, NMR has highly benefited from all the developments of the fast semiconductor and
computing capabilities associated with the expansion of information technologies.

1.2 Electronic hyperfine couplings

It is clear that changes in the magnetic induction in a material can be detected directly by a
change in the nuclear Larmor frequency. In weakly magnetic materials, for which the magne-
tization is negligible, B0 = µ0Ha and the nuclear Larmor frequency νL should be determined
solely by the applied external field Ha. It would be difficult to obtain information about the
physical properties of materials in such a limit. But we have to recall that the nucleus is a
kind of atomic scale microscopic probe, coupled to the electrons. Interactions like the dipole
interactions between nuclear and electronic spins are such that the nuclear spin feels a magnetic
field associated with the polarization of the electronic magnetic moments. This means that the
magnetic field felt by the nuclear spins is modified with respect to the applied field. It is the
spectroscopy of these fields that provides atomic scale information about the immediate vicin-
ity of the nuclei in the material. Let us examine the different on-site interactions between the
nuclear spins and the magnetic moments of electronic origins, known collectively as hyperfine
interactions [2, 3].
The dipole interaction between the moments associated with a nuclear spin I and an electron
spin S separated by a displacement r is

Hdd = −
µ0

4π

γeγn ~2

r3

[
I · S − 3(I · r)(S · r)

r2

]
, (1)

where γn and γe are the nuclear and electronic gyromagnetic moments, respectively, and S and
I are here dimensionless quantities. This dipole interaction diverges when r tends to zero, and
is therefore only valid for electrons with zero probability of being at the site of the nucleus.
This is the case for electrons in the p, d, or f shells. On the other hand, the s electrons have
nonzero probability of being at the site of the nucleus. The Dirac Hamiltonian can be used to
show that the corresponding interaction, called the contact interaction Hc is scalar, and is given
in this case by

Hc =
µ0

4π

8π

3
γeγn ~2 I · S δ(r) . (2)

Finally, the interaction with the magnetic field associated with the orbital angular momentum



NMR in Correlated Electron Systems 13.5

of the electron is
Horb = −µ0

4π
γeγn ~2 I · `

r3
. (3)

These Hamiltonians can all be written in the form

Heff = −γn ~ I ·Beff (4)

and we may consider that each electron induces a magnetic fieldBeff at the nuclear site. As the
temporal fluctuations of the electronic moments are very fast compared with the nuclear Larmor
frequency, the static component ofBeff is its time average. The position of the NMR for a given
nucleus is thus determined by the time average Beff of the resultant of the fields due to the
different electrons in the material. It is easy to see that the hyperfine interaction will vanish for
filled electronic shells, because they have zero total spin and total orbital angular momentum.
When there is no applied field, Beff can only be nonzero for materials in which there is a static
spin or orbital magnetic moment. This will be the case for magnetically ordered materials. The
weakness of the interaction between electronic and nuclear spins permits to consider the nuclear
spins as somewhat ideal probes of the electronic properties of materials. Those are essentially
obtained from measurements of the NMR shifts or spin-lattice relaxation parameters that we
shall describe in some details in these lecture notes, which are organized as follows:
It will be shown first (section 2) that in metals the Pauli paramagnetism, that is the electronic
density of states is accessible through NMR-shift data. Then, in section 3, we shall demon-
strate that NMR spectra do give clear evidence of the local effects induced by impurities. Such
experiments permit as well (Sec. 3.1) to understand that the nuclear spins are not limited to
the detection of on-site magnetic responses, but do sample as well the behavior of nearby sites
through transferred hyperfine couplings.
The good knowledge of the NMR characteristics in solids for which non-interacting electron
theories apply quite well, naturally permitted in the initial experiments on correlated electron
systems to detect the unexpected modifications of electronic properties that occurred in such
materials. This appears as an advantage of the NMR technique, with respect to most recent ex-
perimental probes which have been developed specifically to study strongly correlated electron
systems. This will be illustrated in section (section 4) on two cases highlighted by NMR-shift
data on important correlated physics cases. First in Sec. 4.1, we discuss the relatively simple
case of the NMR studies on the magnetic properties of 3d impurities in metallic sp metals, well
known as the “Kondo effect”. This has been the earliest correlated-electron physics case which
has been understood. It has opened the way to the studies of heavy fermions and Kondo lat-
tices which are touched on in Ref. [4]. The second case is that of the high-Tc cuprates, which
is of course the family of compounds that has attracted a large interest on correlated-electron
physics. NMR hyperfine-coupling studies in the cuprates permitted to understand the actual
electronic structure. Furthermore the NMR-shift data in the low doping part of the phase dia-
gram were the first experimental evidence for the occurrence of a pseudogap as will be detailed
in Sec. 4.3. NMR spectra taken on cuprates with substituted impurities permitted as well to
reveal the magnetic properties of the pure correlated electron system, as detailed in Sec. 4.4.
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Other important parameters accessible to NMR experiments are the longitudinal and transverse
nuclear spin-lattice relaxations. Those processes will be recalled in section 5. They quite gen-
erally permit to use the dynamics of the nuclear magnetization to probe the excited electronic
states in condensed matter. In correlated electron systems the comparison with NMR-shift data
using eventually data taken on different sites of the atomic structure do give important indica-
tions on the strength of the electronic correlations (Sec. 5.3). Such measurements give access
to determinations of electronic gaps in some electronic structures.
Such gaps are important in the case of superconductors as they do reflect the pairing of electrons
in the superconducting state. Their existence can be probed by the large incidence on NMR-shift
and spin-lattice relaxation NMR data (Sec. 6). The study of exotic superconductivities and the
capability of NMR to give some hints on the symmetry of the superconducting order-parameter
are illustrated in Sec. 6.3.

2 NMR shifts

In a material, each of the distinct hyperfine couplings listed above induces a specific contribution
to the NMR shift. Those are of course quite dependent on the magnitude of the corresponding
hyperfine coupling and of the electronic state of the considered material.

2.1 Chemical shifts

In substances where the electrons are paired in atomic or molecular orbitals, the static part of the
hyperfine coupling is only nonzero in the presence of an applied field B0, and is proportional
to B0 as is the magnetization. The resonance is shifted with respect to that of the free atom in
a gas. The relative shift Beff/B0 may be due to the orbital part of the hyperfine coupling. This
is the case, for example, for the displacement due to the orbital currents induced by the external
magnetic field in electronic or molecular shells close to the nucleus. Since this shift depends
on the electronic charge distributions, it is highly sensitive to the chemical environment of the
given atom, hence the name chemical shift. These effects are generally small, and expressed
in parts per million (ppm) but can be used to distinguish the nuclear spin resonances of the
different atoms depending on their environment. This has become a very powerful tool, used
universally in chemistry and biology. Routine chemical analyses are carried out by NMR. It
also helps one to determine the 3D structures of biological molecules, using multidimensional
methods, which have reached an exceedingly high level of refinement.

2.2 Knight shifts in metals

When the electron states are not paired in molecular states or in bonds, the spin degeneracy of
the electronic states might be lifted by the applied field, as for electron states at the Fermi level
in a metallic band. In that case aBeff component due to the electronic atomic moment may arise
via the contact hyperfine term. In a metal the corresponding frequency shift K of the Larmor
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frequency is called Knight shift [5] and is directly proportional to the Pauli spin susceptibility
χP0 of the metallic band. In usual metallic systems such as alkali metals the early-day studies
by NMR permitted to demonstrate that this technique gives indeed the best evaluation of the
electronic spin susceptibility. Assuming that the main hyperfine coupling is the direct on-site
contact interaction of Eq. (2), which can be written Hc = A0 I · S δ(r) this yields an NMR
Knight shift

K = A0χP0/(gµB~γn) . (5)

In such simple metals the spin susceptibility χP0 = (gµB)
2ρ(EF )/2 measures the actual density

of states ρ(EF ) taken per spin direction at the Fermi level, which is typically T -independent as
the conduction-electron bandwidth is usually quite large and the Fermi level much higher than
kBT . The Knight shift is usually a large quantity which is measured in %. This comes about
because the contact coupling A0 is usually much larger than the corresponding dipole or orbital
couplings, which permits to sense very effectively the Pauli susceptibility.

2.3 NMR in magnetic materials

In magnetic materials, the electronic moments are static at low temperatures, as compared with
their behavior at the Curie or Néel temperatures. It follows that the static effective fields are
nonzero even in the absence of any applied field. For atomic nuclei carrying an electronic
moment, this field will be very large (several Tesla in general), and will give rise to a resonance
at the Larmor frequency hνL = ~γnBeff , which can be detected in the absence of an applied
external field. One speaks then of Zero Field Nuclear Magnetic Resonance (ZFNMR). The
fields induced on the nuclear spins of non magnetic atomic sites are generally weaker but can
still give valuable information on the properties of the magnetic state.

3 Impurities: example of transferred hyperfine couplings

All real crystalline materials contain structural defects. Those are often impurity atoms substi-
tuting some atoms in the ideal structure, or disorder induced by vacancies on some sites of the
atomic structure or by deviations to the ideal structural arrangement of atoms. The incidence
of specific substituted impurities on the physical properties of the material is sometimes well
understood. The essence of the observed phenomena is that an impurity is a local screened
Coulomb potential, which ideally is a uniform perturbation in q space inducing a response,
which is inhomogeneous in real space but which reflects the response to all q values. In a clas-
sical metallic system, since the response is homogeneous up to |q| = kF , the main detected
feature comes from this truncation of the response at kF , which yields the well known Friedel
oscillations in the local density of states for a charge defect, and the RKKY oscillation for a spin
defect. Such effects differentiate the electronic response on sites in the vicinity of the defect
and can be detected by NMR experiments. We shall first illustrate this in the case of magnetic
defects in spmetals and show that NMR spectra permit to probe directly the RKKY oscillations.
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3.1 Local RKKY spin-density oscillations induced by magnetic impurities
in metals

If one substitutes a magnetic impurity on a lattice site of a metal such as Cu, the neighboring
sites are differentiated and the magnetic response depends on the distance to the impurity. For
local moment impurities, Yosida [6] calculated explicitly the spin-density oscillations assuming
that the free electron spin s and local moment S interact by an exchange interaction

H = −J S · s δ(r). (6)

The resulting local spin density, calculated in perturbation theory at a position Rn with respect
to the impurity is given by

n(Rn) = −
1

4π
Jρ(EF )

cos(2kFRn)

R3
n

〈Sz〉 (7)

for a field applied in the z direction. For local-moment impurities such as Mn in Cu the NMR
Knight shift of a Cu nuclear spin at position Rn with respect to the impurity acquires an extra
shift ∆K given in an applied field H by

H∆K(Rn) = Ahf n(Rn) = A(Rn)〈Sz〉, (8)

where Ahf is the on-site Cu hyperfine coupling. In most dilute alloys of transition elements
only a few near-neighbor shells of the impurity could be resolved. However in Cu-Mn, the
impurity magnetization 〈Sz〉 becomes so large at low T and high fields that n(Rn) becomes
sizable on many neighboring sites of the impurity. Up to 17 distinct shells of neighbors could
be detected in that case, as can be seen in the spectra of Fig. 1, which gives a straightforward
illustration of the occurrence of spin-density oscillations. One can see that there are about as
many extra lines (we call them satellite lines) on the right and on the left of the central line. The
technical details about the assignment of the different lines to specific shells of neighbors, and
the analysis of the spatial dependence of the spin polarization which can be deduced from those
data are summarized in Ref. [7]. One could push the analysis to a stage permitting to confirm
the overall R−3

n dependence, but also to evidence deviations from the asymptotic limit at short
distances. Such deviations with respect to the spatial dependence of Eq. (7) could be analyzed
by using a more reliable model than an exchange coupling between the impurity and electron
spins.

3.2 Transferred hyperfine couplings

So far we have only considered hyperfine couplings between nuclear spins and the electrons
involved in the atomic orbitals of the corresponding site. However the above illustration of the
RKKY interaction did allow us to demonstrate that electrons on a given atomic site interact as
well with the neighboring sites. Indeed, if we consider Eq. (8) we see that it permits to define
a transferred hyperfine coupling A(Rn) between the local moment at the origin and the nuclear
spin at Rn.
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Fig. 1: NMR spectra of the 63Cu and 65Cu nuclear spins in dilute Cu-Mn alloys obtained
by sweeping the applied external field, at 1.3 K. The spectra have been expanded vertically to
exhibit the satellite lines by cutting the large intensity central lines at the pure copper NMR
positions, which are pointed by arrows. On both sides of the central lines one can see the
weak NMR signals of the diverse copper shells of neighbors. The sites far from the impurities
are better resolved by reducing the impurity concentration, as shown in the expanded bottom
spectrum. (adapted from Ref. [7])

Therefore, in systems where different atomic sites with distinct electronic properties are in-
volved in a unit cell, such transferred hyperfine couplings do play an important role. In par-
ticular, if one considers atomic sites which are not displaying the most important magnetic
response they will still sense the response of the magnetic sites through such transferred hyper-
fine couplings. In the case of Cu-Mn the transferred hyperfine coupling with the Mn magnetism
extends over a large number of Cu sites. But, as the transferred hyperfine coupling decreases
strongly with distance, it is often sufficient to consider solely transferred hyperfine couplings
with the first nearest neighbors. For instance in a square lattice such as that of the CuO2 planes
of cuprate superconductors, for which the electronic magnetic response is located on the Cu
sites, the 63Cu nuclei will be coupled to the on-site magnetic response and with that of the near
neighbors. This can be cast in a combined wave-vector q-dependence of the hyperfine coupling
A(q) = A0 +

∑
Ai e

iq·ri in which A0 is the on-site local hyperfine interaction between the
observed nuclear and electron spins and Ai is the hyperfine interaction with electron spins at
neighboring sites at ri. We shall see later that these transferred hyperfine couplings are impor-
tant for the nuclear spin-lattice relaxation induced on the various atomic sites of the structure.
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4 Correlation effects: some incidences on hyperfine couplings
and NMR shifts

In this section we shall consider how correlation effects can influence the electronic structure
and spin susceptibilities. One of the initially most studied cases is that of the Kondo effect,
which was expected to induce a modification of the spin susceptibility of a Kondo impurity and
of the induced spin polarization in the host metal. Another important effect is the pseudogap
which appears in the underdoped cuprates and has been discovered by NMR-shift experiments.

4.1 Magnetic impurities and Kondo effect

One of the first correlated-electron physics problem which has been fully solved has been re-
vealed by studies of 3d impurities substituted on the atomic sites of regular sp metals. One
usually assumed that a local moment S resides on the 3d sites and interacts with the free elec-
tron spin s by the exchange interaction of Eq. (6).
The Kondo problem arose with the discovery by J. Kondo that perturbation theory of the Hamil-
tonian of Eq. (6) resulted in a − lnT term in the resistivity of the alloys, which was indeed
observed experimentally. It was understood that the conduction-electron interaction with the
local moment induced a crossover of the impurity electronic state towards a low-T ground state
quite different from the quasi-free local moment and that the crossover temperature defines an
energy scale

kBTK = EF exp

[
1

J ρ(EF )

]
. (9)

This expression for the Kondo temperature TK bears some analogy with that of Tc and the
energy-gap variation with electron-phonon coupling for superconductivity. It has been harder
to qualify the actual properties of the Kondo ground state, but from the observed transport and
thermodynamic properties associated with the impurity degrees of freedom, it has been accepted
rather soon that the impurity properties experimentally appear to evolve from a high-T magnetic
state to a non-magnetic like behavior below TK . In other words, the weak coupling regime
where the impurity moment can be treated in a perturbation scheme evolves at low-T into a
strong coupling regime, where the impurity and conduction electrons are bound into the ground
state. The basic picture which was initially accepted is that the conduction electrons might form
a singlet state with the impurity and compensate its magnetization. If such a spatially extended
state occurs, one would expect to see its experimental signature on local magnetic measurements
in the corresponding spatial range around the impurity, so that NMR experiments appeared as
the ideal probe to view such effects. From the study of the macroscopic properties of impurities
in noble metal hosts, it was established that the crossover temperature TK was highly dependent
on the impurity. This was, of course, quite compatible with the exponential expression of
Eq. (9). Values of TK could be estimated from the maximum in the impurity contribution to the
specific heat or from the Weiss contribution to the spin susceptibility measured at high enough
temperature, etc. This permitted to establish that TK was below 10 mK for Cu-Mn, ∼ 1 K for
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DK/K T2 (K2)

c~

Fig. 2: The variations of the normalized NMR shift ∆K/K induced by Fe impurities in Cu for
three satellite resonances, and of the impurity susceptibility obtained by Mössbauer data (Kd)
scale perfectly with each-other. This gives a good experimental determination of the variation of
the local spin susceptibility through TK ∼ 30 K, which crosses over from a high-T Curie-Weiss
dependence above TK toward a quadratic T 2 variation below TK (see inset) from Ref. [9].

Cu-Cr,∼ 30 K for Cu-Fe,∼ 300 K for Au-V, etc. [8]. It was harder to consider Al-Mn along the
same lines as all temperature variations were very weak in this case, so that this crossover could
only occur above 1000 K, for which the alloy would have molten. Anyway, if one wanted to
study experimentally the change from the magnetic state to the non-magnetic state, one needed
to consider a system in which one can explore both regimes T � TK and T � TK . Therefore
Cu-Fe appeared immediately as the most suitable case if one wanted to avoid extremely low
temperature experiments, while Cu-Mn and Al-Mn appeared as the two extreme opposite cases.

4.2 T -dependence of the susceptibility and spatial extent of the
Kondo singlet

This idea of a Kondo singlet has led to some attempts to detect modifications of the host 63Cu
NMR width when T is decreased through TK . Those early experiments were initially taken
as a signature of the development of a static polarized cloud anti-parallel to the local impurity
magnetization. But the situation was only fully clarified when NMR resonances of 63Cu near
neighbors to the Fe were detected (see section 3). The shifts of the various lines had T variations
which scaled with each-other and displayed the same Curie-Weiss dependence as the magnetic
susceptibility data taken in very dilute samples, as displayed in Fig. 2. So, on a small number
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Fig. 3: (a) Atomic structure of YBa2Cu3O6+x . The O filling of the lower and upper CuOx planes
is responsible for hole doping. (b) Phase diagram versus hole doping of the CuO2 planes in
cuprates showing the fast decrease of the AF Néel temperature, and the SC dome.(c) Band
structure of the undoped parent compound. (d) possible two-band electronic structure in the
absence of interaction between Cu and O holes. (Reproduced from [7])

of sites near the impurity, the magnetic behavior does display a smooth T variation through TK ,
which allowed one to deny the existence of a static compensating cloud. This result confirmed
that the susceptibility reaches a low-T behavior similar to that achieved in the non-magnetic
case, as has been also found by the numerical solutions of the Kondo model established by
Wilson [10]. However, these results do not give any answer about the spatial extension of the
correlated Kondo state (this matter is discussed in Ref. [7]).

4.3 The cuprate pseudogap

The cuprates contain as common elements CuO2 planes (Fig. 3(a)) which are considered to
contain all the important physics. Their structure is a stacking of such planes separated by
other oxide layers, which maintain charge neutrality and the cohesion of the structure essen-
tially through ionic interactions. They display the highest known superconducting temperature
Tc obtained after chemical doping a parent state which is a Mott insulator. Indeed in the un-
doped cuprates the Cu are in a 3d9 state in which the Cu hole bears a S = 1/2 local moment
(Fig. 3(c)). Those have been of course the physical properties which have driven the interest
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for these systems initially both for their fundamental aspects and their potential applications.
Another aspect responsible for their appeal has certainly been the fact that the carrier concen-
tration can be easily changed by chemical heterovalent substitutions or oxygen insertion in the
layers separating the CuO2 planes, which play the important role of charge reservoirs. Electron
or hole doping can then be fairly continuously controlled from zero to about 0.3 charges per
unit cell, which allows one to study the evolution of the physical properties of these materials
with doping and to map out their rich phase diagram (Fig. 3(b)). One important question raised
concerning these doped compounds was that of the electronic structure of the band responsi-
ble for the metallic behavior. At a time when no ARPES experiments were available to map
out the electronic structure, one expected that the doping holes would be located in an inde-
pendent oxygen band, as exhibited in Fig. 3(d). As recalled hereafter in Sec. 4.4, the analysis
of the 17O,89Y, and 63Cu NMR shifts in YBa2Cu3O6+x cuprates has permitted to demonstrate
unambiguously that the holes responsible for the measured macroscopic spin susceptibility are
located on the Cu sites as expected for the undoped compound. The study of the evolution of
the NMR shifts with hole doping (Sec. 4.5) allowed then to reveal the occurrence of a pseudo-
gap in the samples with lower than optimal doping. The latter was found quite generic of the
clean cuprate families (Sec. 4.6). The analysis of the NMR spin-lattice relaxation suggested a
k-space differentiation of the spin excitations which has been studied later in great detail by
ARPES experiments (Sec. 5.3).

4.4 Carriers and hyperfine couplings

Let us assume that the Cu holes responsible for the local moments yielding the AF state of the
parent compounds and the doped holes expected to be located on the oxygen orbitals are uncor-
related. In that case the macroscopic magnetic susceptibility should sum up the contributions
of these two bands, while the 63Cu nuclear spins would probe the spin contribution on the cop-
per sites. Similarly the 89Y and 17O nuclear spins would be more likely coupled to the oxygen
holes. The determination of the hyperfine fields which couple the nuclear spins with the sus-
ceptibility has been essential in the understanding of the electronic structure. The anisotropies
of orbital contributions to the 63Cu NMR shifts and of the 63Cu spin hyperfine couplings per-
mitted to establish that the Cu holes are located in the Cu 3dx2−y2 orbitals [11]. The evidence
for a negative hyperfine coupling of 89Y with the spin susceptibility allowed to demonstrate
that 89Y also probes the susceptibility localized on the Cu 3dx2−y2 orbitals through a transferred
hyperfine coupling via O 2pσ orbitals [12], which was found identical for the insulating and
doped compounds. This suggested that the spin susceptibility resides in a single spin fluid [13],
involving Cu 3dx2−y2 – O 2pσ hybridized orbitals, so that the two types of holes are correlated
and not independent as would be suggested by Fig. 3(d). This is fully confirmed below by the
analysis of the T variations of the NMR shifts.
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Fig. 4: (a) Temperature variation of the 89Y NMR shift −∆Ks for YBa2Cu3O6+x powder sam-
ples from optimal doping to a non-superconducting sample with x = 0.41. The progressive
increase of the pseudogap magnitude is apparent (from ref. [14]). (b) The comparison of the
17O NMR-shift data in YBCO and Hg1201 permits to demonstrate that the pseudogap temper-
atures T ∗ are identical for these two compounds (from [15]).

4.5 Evidence for a pseudogap from NMR-shift data

The optimally doped highest-Tc compounds exhibited a rather regular T -independent suscep-
tibility together with a strange linear T variation of the resistivity above Tc. The possibility to
control the hole doping in the YBa2Cu3O6+x cuprate by decreasing the oxygen content which
is inserted in the intermediate planes between the CuO2 planes permitted controlled NMR ex-
periments in the underdoped regime for which Tc drops with decreasing hole doping. Those
experiments revealed a quite distinct behavior of the NMR shifts with a dramatic drop of the
spin component Ks that is of the spin susceptibility with decreasing T . Such an observation
made initially by 89Y NMR measurements (see Fig. 4(a)) remarkably revealed that for a com-
position with Tc = 60 K, the spin susceptibility drops by more than a factor three between room
T and Tc [14]. As the spin susceptibility remains still sizable at Tc, this appeared as the signature
of the opening of an imperfect gap which was qualified as a pseudogap already in 1989. This is
remarkable inasmuch as it was not experimentally possible to detect any further sharp decrease
of the spin susceptibility below Tc. The other aspect which was revealed by these experiments is
that the onset-temperature T ∗ of the drop in Ks increases with decreasing doping. This had led
to the indication that the magnitude of the pseudogap increases with decreasing doping, that is,
with decreasing Tc. Most other experiments measuring uniform macroscopic responses, such as
specific heat, planar resistivity ρab, do detect an onset at similar temperatures as that of T ∗ [16],
which is undoubtedly the highest temperature below which a detectable deviation with respect
to the high-T Pauli like behavior occurs. Signatures for the pseudogap have been seen as well
in optical absorption, photoemission (ARPES), or tunnel-effect experiments.
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Fig. 5: (a) Cuprate phase diagram obtained for YBa2Cu3O6+x by changing the oxygen content
x of the Cu intermediate planes. There the phase diagram obtained for 4% Zn substitution
on the Cu sites (open symbols) demonstrates that Tc is highly affected while T ∗ values are
insensitive to disorder. (b) The determination of the T ∗ values from the departure of the 89Y
NMR shift from its high-T constant value is illustrated here by arrows. Figure composed from
experimental results reported in Ref. [18].

4.6 Universality of the pseudogap phase diagram

Data taken for the spin components of the NMR shifts for 63Cu or 17O in YBa2Cu3O6+x have
evidenced a perfect scaling of the T variations with that of 89Y, which confirmed the idea of
a single spin-fluid contribution to the spin susceptibility. That was in line with the Zhang and
Rice suggestion [17] that oxygen holes just form singlets with Cu and only modify the Cu
susceptibility, so that the Cu and O holes are highly correlated. This identical T variation found
by NMR on the various nuclear spin sites has given a universality to the pseudogap T ∗ deduced
by NMR. Comparison between 17O NMR shifts in the YBa2Cu3O6+x two-layer compound and
the single layer compound Hg1Ba2CuO4 evidenced that T ∗ is generic within the clean cuprate
families [15] (see Fig. 4(b)). This has been confirmed by nearly all experimental determinations
done by macroscopic measurements of T ∗. This pseudogap T ∗ line introduced in the phase
diagram of YBCO is displayed in Fig. 5 for pure samples but also when Tc and TN have been
decreased by 4% Zn substitution on the Cu sites, as will be discussed in Sec. 6.3.

4.7 Local magnetism induced by in-plane impurities in cuprates

An impurity is a local screened Coulomb potential, which ideally is a uniform perturbation
in q-space, inducing a response which is inhomogeneous in real space but which reflects the
response to all q values. So quite generally, an impurity potential is a fundamental tool to probe
the specific response of a pure system. For instance, the RKKY oscillations induced by a local
moment impurity in a classical metal are due to the singularity associated with the truncation of
the response at |q| = kF . In correlated electron systems, if some singularity occurs at a specific
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Fig. 6: (a) Non magnetic impurities such as Zn or Li substituted on the Cu site in the CuO2

plane in cuprates induce a 2D staggered magnetic response. (b) Inset: The 89Y NMR spectrum
exhibits a central line and satellite lines. Main: the T dependence of the satellite or 7Li NMR
shift permits to monitor that of the induced paramagnetism. (Figures from ref. [18]).

“q” value for a pure system, this singular response will dominate the modifications introduced
by the impurity. For instance, in magnetic materials for which AF correlations can be important
at a wave vector q = qAF , a staggered magnetic response at this wave vector is expected. So
quite generally, an impurity potential is a fundamental tool to probe the specific response of a
pure system, which is all the more interesting when some physical properties might be hardly
measurable directly in the pure system, or when some of the hidden physical properties can
be revealed by the impurity potential. NMR experiments ideally permit to map out the spatial
changes occurring around extrinsic defects. Those cannot be accessed through macroscopic
non-local techniques. For instance we give evidence in Ref. [18] that the staggered magnetism
induced by defects in spin chains allows to determine by NMR the correlation functions of the
pure state. Similarly we underline hereafter that Zn or Li non-magnetic atoms substituted on
the Cu sites in the cuprates induce an extended paramagnetic state in their vicinity. Such studies
have been important to qualify the incidence of disorder in the various doping ranges of the
cuprate phase diagram (see Ref. [18]).

As shown above, the underdoped regime of cuprates, for which a pseudogap is detected, is the
interesting range, where the system is a metal with magnetic correlations, for which the use of
impurities to probe the physical properties was expected to be the most fruitful. The first basic
qualitative information were obtained by an approach, started in the early 1990’s, using Zn and
Ni impurities substituted for Cu in the YBaCuO6+x system specifically for x ' 0.6 for which
the pseudogap occurs at T ∗ � Tc. The question which arose was whether a non-magnetic
site induces a free paramagnetic moment in a metallic correlated system, as was seen later in
the case of undoped spin chains and ladders. An indirect but unambiguous evidence that Zn
induces a paramagnetic moment in an underdoped cuprate was obtained by monitoring the 89Y
NMR linewidth in YBCO6.6:Zny [19]. The significant low-T increase of the linewidth that was
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detected revealed the increase of the static staggered spin polarization around the impurity. This
was clearly confirmed later by resolving in dilute samples the satellite NMR signals of the 89Y
near neighbor (n.n.) sites of the substituted Zn [20] (see Fig. 6(b)). This provided the first local
detection of the field induced paramagnetism near the Zn, well before the equivalent information
could be monitored in the case of spin chains. These data implied that the spin polarization of
the Cu ”n.n.” to Zn is already at 100 K more than ten times larger than that of the pure host,
so this was not a mere minor modification of the host density of states, but a strong effect of
the electronic correlations of the system. Quite analogous 89Y n.n. NMR data were obtained
later (see Fig. 6(b)) for non magnetic Li impurities, which provided the possibility to use in the
same sample the 7Li, 89Y, 17O and 63Cu nuclear spin probes. The 7Li NMR permitted accurate
measurements of χ(T ) of the four Cu n.n. of the Li non-magnetic impurity. In the underdoped
samples, this variation was found to display a Curie variation at low doping, which confirmed
the observation made from the 89Y NMR that the impurity-induced state behaves as a nearly
free paramagnetic moment [21]. For increasing doping the Curie law is found to transform
into a Curie-Weiss law with a Weiss temperature Θ which increases abruptly with doping. One
could conclude that the low-T reduction of the susceptibility in the optimally doped case is due
to the onset of the energy scale kBΘ in analogy with the Kondo reduction of local moments
in classical metallic systems. The data taken on the other nuclei has enabled the quantitative
determination of the spatial structure of the induced polarization, that is, its magnitude and
magnetic correlation length ξimp(T ) which increases significantly at low T . Although ξimp has
been found of similar magnitude at room temperature for optimal doping, it displays much
weaker variations at low T than in the underdoped case. The energy scale Θ may control the T
variations of both quantities, however. Since overdoping corresponds to an increase of Θ well
beyond the value found for optimal doping, such a scheme would allow a smooth crossover
towards the Fermi-liquid limit for large overdoping.

5 Spin-lattice relaxation

The local susceptibility measurements are giving pertinent information on the electronic prop-
erties of the material in its ground state. But NMR also permits to probe the excited electronic
states through the fluctuations of the local fieldBeff . This occurs through the nuclear spin-lattice
relaxation (NSLR) processes which drive back the nuclear spins towards their thermodynamic
equilibrium once the latter has been disturbed intentionally.
Indeed the nuclear spin magnetization is not established immediately if an external magnetic
field is applied instantaneously to the material. The very interactions between the nuclear spins
and the electronic degrees of freedom govern the spin-lattice relaxation time T1 which is re-
quired to establish thermodynamic equilibrium. One typically needs transverse local field com-
ponents at the Larmor frequency hνL to induce the difference of population of the nuclear spin
levels. Therefore T1 is directly linked with the transverse field Fourier component at νL of
Beff(t). One can see that, for the hyperfine couplings considered above, this results in a mea-
surement of the electronic dynamic susceptibility of the electron spin system.
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So, in systems with unpaired spins the dominant T1 process is due to local field fluctuations
induced by the dynamics of the local electronic magnetization. Theoretically, the spin contri-
butions to (T1T )

−1 may be written using the imaginary part of the dynamical electron spin-
susceptibility χ′′(q, νn) as

(T1T )
−1 =

2γ2
nkB

g2µ2
B

∑
q

|A0|2
χ′′(q, νn)

νn
. (10)

Here, as for the Knight shift, we assumed that the dominant hyperfine coupling is the contact
term. We shall see later many examples, which give evidence that T1 measurements permit one
to monitor the occurrence of phase transitions and to give relevant information on energy gaps
between the ground state and excited states in many electronic systems. In cases where some
ionic species are mobile in a material, as for instance in ionic conductors, the atomic diffusion
processes can govern the local field fluctuations sensed on some nuclear spin sites, and the T1

measurements may permit to monitor these ionic diffusion motions.

5.1 Spin-lattice relaxation in standard 3D metals

For a simple metallic band, the dynamic electronic susceptibility response is simple enough and
one writes

χ0(ω) =
∑

q
χ0(q, ω) = χP0 [1 + iπ~ω ρ(EF )] . (11)

One can immediately see that this yields a simple expression for the spin-lattice relaxation from
Eq. (10)

(T1T )
−1 = πkB A

2
0 ρ

2(EF )/~ (12)

so that a universal relation holds between the Knight shift and T1.

K2 T1T = S =(~/4πkB) (gµB/~γn)
2 . (13)

As K is T independent, this so called “Korringa” relation applies rather well in the absence of
electronic correlations. As an example (see [22]) one could see that T1T of 27Al is constant in
pure aluminium metal on a T range which extends over more than three orders of magnitude.
The T1 value in a metal is quite often used to define an empirical temperature scale especially
in the very low T regime below 1 K.

5.2 Incidence of weak electron correlations

So far we did not consider any influence of electronic correlations though even in simple alkali
metals electron-electron interactions play a role in the electronic scattering processes. We also
do know that some electronic systems are on the verge of becoming magnetic. Those quasi AF
or quasi ferromagnetic metals can be identified by the very fact that the Korringa relation does
not apply straightforwardly as the spin susceptibility does not behave as described above for
free electron Fermi liquid systems. In such cases the dynamic spin susceptibility is not uniform
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Fig. 7: (a) Schematics of the Cu 3dx2−y2 and O 2pσ orbitals in the CuO2 plane showing why
the AF fluctuations are filtered at the 17O and 89Y nuclei. This explains why the T variations
of (T1T )

−1 taken for oriented powder samples of YBCO7 (Tc = 90 K) and YBCO6.6 (Tc = 60
K) are quite different for 63Cu and 89Y. (b) 89Y data taken from Ref. [26] (c) 63Cu data taken
from Ref. [11]. While the data for Tc = 90 K are T independent for 89Y, as is the Knight shift,
they increase at low T for 63Cu. Similarly for the underdoped samples both (T1T )

−1 and 89 K
increase regularly up to T ∗ ∼ 350 K, while those for 63Cu display a maximum at T ∼ 150 K,
assigned to a spin gap.

in q space as was shown initially by Moriya [23], and exhibits enhanced values either for q = 0

for nearly ferromagnetic metals or for an AF wave vector qAF for nearly AF materials.
In the former case the q = 0 spin susceptibility is enhanced by a factor S = 1/(1 − IχP0),
usually called the Stoner factor, and χP = SχP0 exhibits a large increase with decreasing T and
only saturates at very low T , as has been illustrated in the nearly ferromagnetic metals like TiBe2

or in elemental Pd metal. In those cases, the enhancement of the dynamic spin susceptibility
χ0(q, ω) is not uniform in q space and is weaker for q 6= 0, therefore the Knight shift is more
enhanced than (T1T )

−1. The Korringa relation does only apply when χP saturates [24], with
a T = 0 Korringa constant K2T1T = ∆ S increased by an S-dependent factor ∆(S). On
the contrary in nearly AF metals χ0(q, ω) is peaked for q = qAF which means that the static
spin susceptibility and the Knight shift K are less enhanced than χ0(qAF , ω). Correspondingly
K2T1T = ∆ S corresponds in that case to ∆ < 1, that is a decreased Korringa constant, as has
been seen for instance in the compound MnSi [25].

5.3 Dynamic spin susceptibility and electronic correlations

We shall discuss below the actual information on the AF correlations given by the measurements
of the spin-lattice T1 and transverse T2 nuclear spin relaxation in the cuprates. As shown in the
previous section, the T1 give determinations of χ′′(q, ω) while we shall show here that the
transverse T2 is related to χ′(q, 0).
The feature which had been clearly evidenced was that for 89Y nuclear spins (T1T )

−1 and 89K
have very similar T variations (with T and doping). This is illustrated in Fig. 7(b) on data
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taken on field-aligned YBCO samples realized for two compositions, O7 for which (T1T )
−1 is

T independent as is 89K, while for O6.6 both quantities exhibit large T increases. Similar results
on the 17O NMR have been obtained, which established that the dynamic susceptibility viewed
by these nuclei appeared quite correlated with the static susceptibility. It has been established
that T1TKs is nearly T independent, which has been taken as an evidence for the presence of a
Fermi-liquid like component in the magnetic response.
However, as was seen by many authors, the (T1T )

−1 of 63Cu behaves quite differently (for ref-
erences, see Ref. [27]). In the optimally doped compound (T1T )

−1 increases at low T while
it goes through a maximum at a temperature much lower than T ∗ in the underdoped sample
(see Fig. 7(c)). This difference between 63Cu and 17O (or 89Y) NMR is understood as the two
latter nuclear spins being coupled to two (or four) Cu moments do not detect AF fluctuations
at the AF wave vector qAF = (π, π), as sketched in Fig. 7(a). In other words, the 63Cu data
uniquely reveals the occurrence of a peaked response of χ′′(q, ω) at qAF . This has been con-
firmed directly by inelastic neutron scattering experiments taken on underdoped samples. The
maximum in (T1T )

−1 for 63Cu has been assigned to a spin gap which is quite distinct from the
pseudogap T ∗. It would increase much less rapidly than T ∗ for decreasing doping. Both the
pseudogap T ∗ and the spin gap are detected only in underdoped samples, which suggests that
they are connected.
Let us point out now that this strong magnetic response in cuprates induces a contribution to
the nuclear spin transverse T2 relaxation, which has been found to be quite important on the Cu
sites. In weakly correlated solids T2, which is measured with spin-echo experiments (see NMR
wikipedia) is usually fully determined by the direct dipole-dipole interactions between nuclear
spins. In cuprates and more generally in correlated systems, a nuclear spin atRi can be viewed
as a moment which induces, through the q-dependent susceptibility χ′(q, 0), a polarization of
the electronic spins which extends on the sites nearbyRi. This polarization does in turn couple
to the nuclear spins on these sites. This indirect (RKKY-like) dipolar interaction between the
nuclear spins induces a contribution to the spin echo decay. After summation of the interaction
of a nuclear spin with all its neighbors, the spin echo is found to get a Gaussian decay with a
time constant T2g given by(

1/T 2g

)2

∝ A4
0

∑
q
[χ′(q, 0)]

2− A4
0

[∑
q
χ′(q, 0)

]2

.

In the cuprates, χ′(q, 0) is expected to be peaked at qAF and the width of the peak defines a
correlation length ξ for the AF response, which might be estimated from the T2g data. Even in
the underdoped pseudogapped regime ξ is found to increase steadily with decreasing T as has
been seen as well from impurity studies described in Sec. 4.7.
Coming back to the pseudogap, more recently ARPES or STM experiments have given ev-
idence that a gap in the charge excitations only occurs for the antinodal directions (0, π) in
k-space. So the closed Fermi surface which occurs at high T in underdoped cuprates loses
weight in the antinodal directions when T decreases, and the Fermi surface then reduces to
Fermi arcs, which shrink with decreasing T (see [28]). The experimental results on (T1T )

−1 of
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63Cu are certainly precursor indications of this k-space differentiation which has been found by
k-dependent spectroscopies.
Phenomenological attempts have been done to describe the shape functions of the spin sus-
ceptibilities χ′′(q, ω) and χ′(q, 0), in order to fit the NMR data [29]. Satisfactory qualitative
descriptions could be achieved, with ξ values of about two lattice constants at room T in both
the optimal and underdoped samples, with much larger low-T increases of ξ in the latter. How-
ever, these approaches required to introduce by hand the Fermi liquid like metallic component
and did not include explicitly the occurrence of the pseudogap. A complete theory of the phys-
ical phenomena at play would require a model which generates altogether the pseudogap, the
AF correlation length and its T variation.
To conclude, the pseudogap is most probably intimately linked with the correlated nature of
these systems, and its actual physical origin is intensely debated. One interpretation, proposed
quite early on, is that it represents a precursor pairing state, the superconducting phase being
only established at Tc when the pairs achieve long-range phase-coherence [30]. Such an inter-
pretation would imply that the SC gap increases with decreasing Tc. This is so far contradicted
by direct or indirect determinations of the SC gap. Another class of interpretations could be
the establishment of a hidden order disconnected from superconductivity, such as a spin order-
ing, for instance a Resonant Valence Bond (RVB) state (see [31]), a d density wave (ddW), a
charge segregation into stripe order or an ordering involving orbital currents. Such possibilities
have been recently underlined by experimental discoveries of such type of orders, which appear
system dependent, and often occur at temperatures below T ∗. These experiments are so novel
that they have initiated vivid debates on the pseudogap, but did not permit so far to resolve the
issues they raised. The pseudogap remains still today the central point debated on the cuprates
and at the present writing the understanding of the pseudogap state remains controversial. The
author believes that magnetic short-range correlations explain the pseudogap crossover at T ∗

and the Fermi surface differentiation, while the orders detected at lower T than T ∗ are rather
consequences of the pseudogap formation than direct manifestations of the pseudogap itself.

6 NMR in superconductors

Obviously, the establishment of a SC state yields profound transformations of the electronic
properties which will be seen in the NMR response. NMR experiments do not only evidence the
occurrence of SC. They also permit to characterize the properties of the SC electronic state [32].

6.1 Knight shift, relaxation, and gap in the SC state

One of the major effects which occur for phonon mediated SC in usual metals is the pairing of
electrons in a singlet state. Such a pairing suppresses totally the normal state spin susceptibility
at T = 0. This is seen quite simply as a full suppression of the spin contribution Ks to the
Knight shift in NMR. In type I superconductors, the magnetic induction vanishes in the Meiss-
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Fig. 8: The 155Cs and 13C NMR shifts measured in the Cs3C60 phase are plotted versus T below
the superconducting temperature Tc = 30 K. The NMR shifts follow the standard Yosida type
decrease expected for singlet superconductivity [33].

ner state which by itself forbids observation of the NMR signal in the SC state. But in type II
superconductors the field penetrates as an array of vortices, which becomes so dense near the
upper critical field Hc2 that it becomes possible to detect the NMR signal in that regime, and
to see the suppression of the Knight shift. Taking into account the variation of the SC gap
and the thermal population at temperatures near Tc, yields a specific T dependence of the spin
susceptibility, that is of Ks(T ), which has been computed by Yosida [6], and which is given by

Ks(T )/Kn =

∫ ∞
∆

N(0)|E|√
E2 −∆2

df

dE
dE . (14)

Here f is the Fermi function. The actual variation of the Knight shift with decreasing tem-
perature can be measured and displays an agreement with this Yosida function as can be seen
in Fig. 8 in the particular case of Cs3C60. As for spin-lattice relaxation data, it can be taken
in type I SC using ingenious tricks such as experiments in which the external field is cycled
from a field exceeding the critical field Hc down to a field H < Hc in which the nuclear spin
magnetization is let free to evolve under the influence of the electronic system.
The opening of the SC gap yields an activated exponential increase of the NMR spin-lattice
relaxation rate as T approaches 0, which permits a determination of the SC gap magnitude
from the corresponding low T variation of T−1

1 (Fig. 9). However the great advance of BCS
theory has been its ability to describe the excited states in the SC state up to Tc. Indeed in
such a BCS SC state subtle effects are revealed by T1T data taken near Tc. An increase of the
spin-lattice relaxation rate above the normal state Korringa value takes place below Tc. This



NMR in Correlated Electron Systems 13.23

Fig. 9: The log(1/T1) of 51V in V3Sn is plotted versus 1/T for three distinct applied fields,
which induce changes of Tc. In the normal state above Tc the relaxation rate is field independent
with T1T=0.42 sec◦K. Below Tc the reduction of T1 represents the Hebel Slichter coherence
peak. At low T all curves point towards an activated behavior associated with the full opening
of the superconducting gap (adapted from Ref. [32]).

so called coherence peak evidenced by Hebel and Slichter [34] results partly from the thermal
population of the increased density of electronic states which piles up above the SC gap. The
T1 only lengthens at somewhat lower temperatures than Tc (see Fig. 9).
Both these discoveries of the decrease of the spin susceptibility and of the occurrence of a
Hebel-Slichter coherence peak have given the early evidences for the applicability of BCS the-
ory of superconductivity in usual metallic systems.

6.2 Field distribution in the mixed state of type II superconductors

In type II superconductors the magnetic induction varies significantly in space in the mixed
state. This leads to a distribution of Larmor frequencies for the nuclear spins in the material.
The shape of the NMR spectrum reconstitutes the histogram of the magnetic fields. Close
to Hc2, singularities appear in the spectrum for values of the magnetic field corresponding to
the extrema of the field distribution. The shape and width of the observed resonance can be
used to deduce λ, the magnetic field penetration depth. However, for experimental reasons,
NMR is not the best method for studying the superconducting state. A related technique uses
elementary particles called muons. These behave like heavy electrons (or light protons), and
have the property of decaying by emission of positrons in the direction of their spin. A muon
whose spin is initially polarized perpendicularly to the field B0 is implanted in the sample at
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time zero. One then observes the direction of the emitted positrons when it decays. By repeating
this experiment for a large number of events, the free precession signal of the muon spin can
be reconstructed statistically. This experiment is equivalent to an NMR experiment, and can be
used to determine λ. Since muons can be implanted in almost any sample, it has been possible
to make comparative measurements of λ in a wide range of superconducting materials.

6.3 Exotic superconductivities

The importance of the cuprates in the physics of correlated systems has resulted from the dis-
covery that, when the AF is suppressed by hole doping, the doped metallic state which results
has a SC ground state and displays strange metallic and magnetic properties. The most sur-
prising feature has been the fact that the superconductivity discovered in these materials has
the highest critical temperatures Tc found so far in any superconducting material, and exceeds
any Tc which could be expected within the BCS approach known to apply in classical metallic
states. An important observation in the cuprates has been the fact that the phase diagram with
increasing hole doping displays a dome-shaped SC regime, that is, SC disappears for dopings
beyond about 0.3. These non-expected features have immediately led to the idea that SC in the
cuprates has an exotic origin linked with electron-electron interactions rather than the classical
electron-phonon driven superconductivity which prevails in classical metals.
Obviously, the establishment of any SC state yields profound transformations of the electronic
properties which are reflected in the NMR response. In BCS Superconductors the formation of
singlet Cooper pairs is directly seen as a loss of the normal state spin susceptibility, that is, a
drop of the NMR shift, as evidenced hereabove. NMR studies appeared then quite important
in the early days after the discovery of HTSC. One indeed was interested to see whether BCS
like observations would be made. For HTSC samples with high Tc around the optimal doping,
the NMR data appear quite similar to those obtained in standard BCS materials inasmuch as the
NMR shift of most nuclear species in the material 63Cu, 17O, 89Y were found T independent
down to Tc, and dropped abruptly at Tc in accord with spin-singlet superconductivity Fig. 10(a)
[35]. In many cases for which SC is probably also more exotic than for phonon mediated SC
the pairing state remains a singlet, which has been confirmed by similar NMR-shift studies.
In some exotic SC states the pair wave function can be in a spin-triplet state, a situation which
has been found first for superfluidity of 3He which are fermions which bind to form spin-triplet
Cooper pairs [36]. As a spin triplet can be in three distinct states either |↑↑〉, |↓↓〉, |↑↓〉+|↓↑〉 or
quantum superpositions of these components, the magnetic response to an applied field depends
on the actual state of the bound pairs. This explains why 3He has two different triplet superfluid
phases. Phase A with equal spin states formed by | ↑↑ 〉 and | ↓↓ 〉 pairs displays no change
of the nuclear spin susceptibility though the superfluid transition, while phase B is an equal
superposition of the three states which leads to a marked decrease of the spin susceptibility
which, however, does not vanish completely at T = 0.
In correlated electron systems one similarly expects that with spin-triplet SC the behavior of
the NMR shift below Tc should permit to establish the spin-triplet pairing and to determine the
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Fig. 10: 17O NMR-shift data taken below Tc in the two planar directions (a) in YBaCuO7 it
drops below Tc and vanishes for T � Tc [35]. (b) in Sr2RuO4 it remains constant through
Tc, which supports spin-triplet superconductivity. Here the reported lines would correspond to
expectations for a singlet SC case (from ref. [37]).

superposition of spin states. A system which has been thoroughly studied is Sr2RuO4, in which
the RuO2 form a square lattice which is similar to that of the cuprate La2CuO4. Indeed it has
been shown in that compound that both 17O and 99Ru NMR shifts exhibit absolutely no change
though Tc, Fig. 10(b), which is a strong case for spin-triplet SC with equal spin states [37]. Once
the spin properties of the pairs has been established, their orbital state has a symmetry which is
imposed by the total antisymmetry of the wave function. So that an antisymmetric spin-singlet
state implies an even orbital state, that is an s- or d-wave symmetry of the wave function.
Similarly for a symmetric triplet state, the orbital wave function should be antisymmetric that is
p-wave or higher order. In most of these exotic pairing states the SC gap is not uniform over the
Fermi surface as is the case for most phonon mediated cases. In these exotic superconductors
the gap depends of the wave vector (k,−k) of the pairs and might exhibit gap nodes for some
k values or some wave vector directions. For instance for a 2D system, if the gap has a d-wave
order-parameter symmetry, the gap changes sign and therefore vanishes along two axes of the
unit cell. This implies that the gapless states will be filled much faster with increasing T than
in a pure s-wave BCS superconductor.

In such spin singlet states the functional form of the increase of the spin susceptibility (that is
of the NMR shift) with increasing temperature from T = 0 permits, in principle, to determine
whether nodes occur in the gap function. Experimentally this is somewhat difficult to establish
from NMR shift measurements which have limited accuracy at low T due to the inhomogeneous
field penetration in the vortex lattice. This is however much more accessible from 1/T1 data
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Fig. 11: (a) In YBaCuO7 the 63Cu 1/T1 data has a T 3 dependence, which agrees with d-wave
SC [38]. (b) In Sr2RuO4 the sample-dependence of the Ru NQR 1/T1 data is illustrated. The
use of a clean sample permits to evidence a T 3 variation which establishes the existence of
nodes in the gap function [39].

which display then a power law increase with an exponent that depends of the wave vector
dependence of the gap. A T 3 variation of 1/T1 has been best evidenced by zero-field NQR
experiments in cuprates, which is in accord with the d-symmetry of the SC order-parameter,
Fig. 11(a) and [38]. Though these NMR data were rather conclusive, this d-wave symmetry
has such an implication for the understanding of the pairing mechanism that it has only been
fully accepted within the community when ARPES and phase-sensitive tunneling experiments
established it independently. One has however to recall that low-T NMR measurements can be
contaminated by extra contributions of impurities to the relaxation. So to conclude about the
symmetry of the SC order-parameter in a given compound, great care has to be taken to avoid
the presence of impurities in the actual materials. This is for instance illustrated in Fig. 11(b) for
the spin-triplet SC of Sr2RuO4, for which a T 3 variation of 1/T1 has also been found once clean
samples could be produced [39]. Here again this result points out the existence of lines of gap
nodes, though their spatial location on the Fermi surface is not yet clarified. The spatial structure
of the p-wave state symmetry which governs SC in this compound is therefore not yet fully
characterized. A p-wave spin-triplet state has been proposed as well from NMR experiments
in some Heavy Fermion compounds such as UPt3 or in low-dimensional organic conductors,
although more experimental confirmations would be required to fully establish the validity of
these proposals.
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7 Summary

Most, if not all, the discoveries which have been done since the 1980’s on correlated-electron
systems resulted from extensive experimental investigations. In this lecture I have shown that
the NMR technique has been quite successful in this process. This has been exemplified here
by revealing some important problems highly debated nowadays in correlated-electron physics.
The main impact of NMR comes about as preliminary experiments can be done on powder
materials which are not perfect. The second aspect which highlights this technique is that NMR
results, which are not surface sensitive, are quite reproducible so that most results presented
here have usually been confirmed by independent investigations done in different laboratories
on distinct sample materials. All this is eased by the fact that NMR experiments allow one
to detect the incidence of defects and disorder effects on the very samples on which the data
are taken. We have shown here that the introduction of specific defects, associated with the
capability to detect locally their incidence is a powerful tool to unravel the properties of the
pure material. This altogether has induced large efforts to clarify the incidence of disorder on
the properties of correlated-electron systems. A similar advantage has been highlighted as well
for the STM techniques, which however require samples with sufficient surface quality and do
not probe the magnetism induced by defects.

As emphasized in many instances in this article, NMR permits to probe on the local scale a large
set of relevant physical quantities ranging from magnetic susceptibility, the spin fluctuations, the
superconducting properties etc.. In metallic correlated electron systems, an important aspect is
the ability to identify by NMR the electronic band(s) which are involved in the metallic state
and to establish whether magnetism is associated with different degrees of freedom or due to
the same bands. Coming to SC, one of the points which has attracted most attention is its
interference (destructive or constructive) with metallic magnetism. The cuprates are in that
respect certainly exotic superconductors, in which the incidence of electron correlations and
AF short range interactions can be essential to drive superconductivity, or at least enhance
the SC transition temperatures. Many other materials have been shown to display situations
where magnetism and SC are proximate to each-other in phase diagrams. In Fe superconductors
(pnictides or chalcogenides) the phase diagrams are sometimes spanned by doping as in the
cuprates, but in other families of compounds the phase diagrams are spanned by pressure control
of the overlap integrals as for organic, heavy fermions, or Cs3C60 compounds.

In most of these cases a thorough experimental characterization of the SC order-parameter sym-
metry is needed prior to any determination of the pairing glue, and NMR data can be helpful
in that respect. The d-wave symmetry of the order-parameter for cuprates is considered as the
strongest indication that electronic correlations could be responsible for the pairing in these
compounds. Even for materials less correlated than the cuprates the incidence of electronic
correlations is definitely less detrimental to SC than initially expected and the existence of AF
correlations in the material could as well be the boson field mediating the SC state. Many pos-
sible glues between electrons such as phonons, AF fluctuations, or charge correlations near a
Quantum Critical Point, have been considered and may be at work in distinct materials. But all
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this is far from being settled and requires thorough investigations specific to the various families
of correlated-electron materials.
We did address here only a limited number of correlated-electron families of compounds which
have been investigated using NMR techniques. One might find in Ref. [4] many other strik-
ing examples, such as 1D organic compounds, nanotubes, heavy fermions, Na cobaltates, or
Kagome compounds with magnetic frustration leading to spin-liquid ground states, on which
successful NMR experiments have been undertaken. Other examples are compounds on which
NMR techniques permitted to study recently the insulator to metal transition induced by pres-
sure in undoped half-filled systems, that is the actual Mott transition. This has been made
possible by the recent discovery of quasi 2D organic and 3D alkali fulleride compounds, which
display quasi ideal 2D or 3D Mott transitions.
Finally I should mention at this stage that I did not address here one important aspect of the
NMR technique which takes advantage of nuclear quadrupole effects detected in NMR for
nuclear spins with I > 1/2. Those quadrupole splittings of the NMR spectra usually permit
to distinguish the charge environment of these nuclei. In correlated electronic solids this gives
an access to charge differentiation on atomic sites or to charge density waves due to Fermi
surface reconstruction when they do occur. This is also illustrated in Ref. [4] in the case of
layered Na cobaltates or for the CDW which occurs well below the pseudogap T ∗ in underdoped
cuprates [40]. The latter experiments have triggered new ideas about the origin of the pseudogap
in the cuprates, but while the pseudogap T ∗ is generic, the CDW order and its symmetry appear
somewhat dependent of the cuprate family. Therefore the charge order appears as a consequence
of the pseudogap rather than its actual origin. An important tendency towards charge ordering
situations has been proposed to dominate the ground state properties of correlated electron
systems. Quadrupolar effects in NMR ideally permit to unravel such situations in great detail.
I shall conclude here that the description of some selected experimental cases given in this
lecture permitted us to underline the importance of the NMR technique and to reveal altogether
to the reader a wide range of novel phenomena specific to correlated-electron physics.
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1 Introduction

During the last 15–20 years, scanning tunneling microscopy and spectroscopy (STM/STS) has

developed into an indispensable experimental tool of modern condensed matter physics. This

method provides real-space dependent spectroscopic information of a solid’s surface at the

atomic scale. It is thus capable to directly observe quantum mechanical effects, which in turn

provide new insight into the properties of a solid, which includes, remarkably, even momentum-

resolved information on electronic states.

The purpose of this lecture is to convey the main experimental concepts of STM/STS for the

research on correlated materials. Thereby, it cannot and does not aim at comprehensively cov-

ering STM/STS work on all kinds of different material classes of correlated systems. The focus

will be specifically on unconventional superconductors, which are, among the electronically

correlated materials, the most prominent ones where STM/STS has been successfully used,

providing new ground-breaking insights. After a more general introduction to the experiment

itself, the lecture will first specifically address the unconventional superconductor LiFeAs, for

which comprehensive STM/STS data of high quality exist and which is still a matter of ongo-

ing research. This will be complemented by briefly summarizing fundamental work on cuprate

superconductors. It can be expected readers who digest the thereby introduced techniques and

concepts will be able to easily access other existing and future work on correlated materials

with STM/STS.

2 Basics

2.1 Methods

We consider an atomically sharp metallic tip that is brought into close distance (a few Ångstroms)

to the surface of a solid, i.e. the sample which we would like to investigate. In this situation,

electrons tunnel from the tip to the sample and vice versa. If both are at the same electrochem-

ical potential the net current will be zero. A finite net tunneling current will, however, arise

when we apply an electrical bias voltage Ubias between the tip and the sample [1–3]

I = A|M |2N0

∫ ∞

−∞

ρs(E)[f(E)− f(E − eUbias)] dE , (1)

with A a constant of proportionality, M the tunneling matrix element, and f the Fermi distribu-

tion function. N0 and ρs are the density of states (DOS) of the tip and the local density of states

(LDOS) of the sample at the position of the tip, respectively. Note that already in Eq. (1) signif-

icant approximations have been made which we will assume to be valid throughout this chapter

unless stated otherwise: Both N0 and |M |2 are assumed to be energy independent, and thus can

be written in front of the integral. Approximate energy independence can be achieved for the

former by using an appropriate tip material. For the latter it is reasonably valid at small Ubias

and for sufficiently simple electronic structure (see e.g. [4] for a more elaborate discussion).
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It has been shown further – and this is crucial for the exploitation of the tunneling current for

microscopy – that the tunneling matrix element decays exponentially with increasing distance

d between the tip and the sample [2, 3], viz. I ∝ e−2κd, where κ depends on the work functions

of the sample and the tip. This means the well known exponentially decaying tunneling prob-

ability for one-dimensional electron tunneling depending on the width of the vacuum barrier is

recovered. The other crucial finding from Eq. (1) is that, at temperature T = 0, the tunneling

current I is proportional to the LDOS of the sample integrated between the Fermi level ǫF and

ǫF + eUbias. At finite temperature, this energy interval is, of course, broadened through the

Fermi functions.

2.1.1 Scanning tunneling microscopy (STM)

In a scanning tunneling microscope, the relative position of the tunneling tip to the sample can

be controlled in the three spatial dimensions x, y parallel and z perpendicular to the sample’s

surface, where nowadays a precision in the picometer range can be achieved (see e.g. [4, 5] for

details on the technical realization). This opens up a plethora of possibilities for probing the

surface of a sample. A fundamentally important measurement mode is scanning tunneling

microscopy (STM), i.e., a high-resolution measurement of the surface topography. A very

important way to do this (among others) is the so-called constant-current topography mode:

The actuator for tip motion along the z-direction is connected to a feed-back loop that measures

the tunneling current I and maintains it constant during scanning the tip in the (x, y)-plane

by appropriately adjusting the z-position of the tip which regulates the distance d between tip

and sample. Inspection of Eq. (1) tells us that the resulting data set z(x, y) describes a plane of

constant integrated LDOS of the sample (within ǫF and ǫF +eUbias). Due to the very high lateral

and vertical resolution in STM, it is possible to resolve even the atomic corrugation of a surface.

Fig. 1 depicts representative data taken from 2H-NbSe2. This compound exhibits a charge

density wave (CDW) at low temperature, yielding a 3 × 3 superlattice [6]. The topographic

STM data in Fig. 1 very clearly reveal this superstructure [8], which highlights that the STM is

susceptible to the spatial modulations of the electronic LDOS (which in the present example is

generated by the CDW). Further below, we shall see more examples of spatial modulations in

the LDOS which can be detected in STM.

2.1.2 Scanning tunneling spectroscopy (STS)

Eq. (1) implies that through measuring the tunneling current as a function of Ubias, the LDOS

of the sample at a fixed position of the tip, i.e. ρs(E) with E = eUbias, can be accessed. In the

experiments, the differential conductance

dI

dU

∣

∣

∣

∣

U=Ubias

∝
∫ ∞

−∞

ρs(E)
∂f(E − eU)

∂(eU)

∣

∣

∣

∣

U=Ubias

dE, (2)

is evaluated, either by numerical derivation or by directly measuring it using a lock-in amplifier

(see [4, 5] for details). Eq. (2) describes the convolution of ρs with the voltage derivative of the
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Fig. 1: (a) Constant current topographic image of 2H-NbSe2 in a field of view of 10 nm×10 nm,

Ubias = −200 mV, I = 0.7 nA, T = 10 K. The topography shows the atomic corrugation of the

topmost layer of Se atoms, and reveals the CDW with a periodicity of 3a × 3a with the lattice

constant a = 0.0345 nm [7]. (b) Line section taken along the arrow. Image and graph taken

from [8].

Fermi distribution function which is a bell-shaped curve centered around Ubias with a FWHM of

about 3.5 kBT . Thus, the spectroscopic resolution in energy ∆E is inevitably thermally broad-

ened. Scanning tunneling spectroscopy (STS) with high energy resolution therefore requires

measurements at very low temperatures. Typical values for ∆E at the cryogenically relevant

temperatures 300 mK and 4.2 K are 90 µeV and 1.3 meV, respectively.

In a scanning tunneling microscope, spectroscopic measurements of the differential conduc-

tance dI/dU can be performed as a function of the spatial tip position, which provides the

unique possibility to map out the energy dependent LDOS as a function of the (x, y) position.

The resulting data for ρs(E, x, y) are often false-color plotted in a two-dimensional fashion as

a function of (x, y) at a fixed E = eUbias, a technique often called Spectroscopic Imaging (SI-

STM). The resulting images provide valuable information about the energy dependence of the

spatial modulations of the LDOS. Fig. 2 shows an example for the spatially dependent LDOS

due to the CDW in 2H-NbSe2 at two selected energies. The data reveal a much stronger impact

of the CDW on the LDOS at Ubias = −100 mV than at Ubias = +100 mV [8].

One way to acquire the data is to measure dI/dU at a fixed Ubias, while scanning a surface

of interest as a function of (x, y). Here, a small modulation voltage Umod is added to Ubias,

and dI/dU |Ubias
is measured directly with a lock-in amplifier. This method (sometimes called

dI/dU-imaging) has the advantage that a spatially highly resolved dI/dU-map can be relatively

quickly recorded together with a topographic map (in the order of minutes to a few hours), thus

posing only moderate constraints on the stability of the used microscope. However, the data

contain dI/dU information only for one specific energy E. Therefore, in order to acquire a

much more comprehensive data set of ρs(E, x, y) at a larger set of energy values, a different

measurement protocol is used: The surface of interest is scanned topographically where the

position of the tip is kept fixed (with feed-back loop switched off) at a grid of (x, y) positions,

and at each of these positions the differential conductance is measured as a function of Ubias.

This technique typically yields a large and comprehensive data set which allows to visualize,
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Fig. 2: 128× 128 spectroscopic dI/dU maps in a field of view of 8 nm× 8 nm of 2H-NbSe2 at

stabilization conditions Ubias = 200 mV, I = 0.7 nA, T = 10 K, RMS lock-in excitation Umod =
6 mV, tmap = 16.5 h, spectra measured from 100 mV to −100 mV; (a) dI/dU spectroscopic map

at 100 mV; (b) dI/dU spectroscopic map for −100 mV. The CDW pattern is hardly visible at

100 mV but clearly observable at −100 mV. The atomic structure is prominent at both voltages.

Images taken from [8].

e.g., the spatial dependence of ρs(E, x, y) at deliberate E values. This is particularly important

if the details of the energy dependence of the phenomenon under scrutiny are unknown, as is

often the case for the case of correlated materials as well. The only drawback with respect to

the dI/dU-imaging is the relatively long measurement duration of several days1 for this often

called full-spectroscopy mapping. Such long measurement times require perfect stability of the

microscope with atomic fidelity during the whole measurement.

2.2 Quasiparticle interference

The screening of a point-like impurity in a metal results in an oscillating charge density as

a function of distance from the impurity, known as Friedel oscillation [9]. The observation

of such oscillations emerging from impurity atoms or atomic step edges [10, 11] has been

one of the early groundbreaking discoveries of STM. Fig. 3 shows corresponding data for the

Cu(111) surface, which possesses a two-dimensional surface state with a band minimum at

about −0.44 meV [10] (see also Fig. 4c for the Fermi surface). The topography measurement

in Fig. 3a very clearly reveals wave-like modulations of the integrated LDOS at the step edges,

and in addition the signatures of point-like impurities on the terraces with radially emerging

wave-like patterns. The latter can be observed even better in Fig. 4a. For modeling the energy-

dependent modulation of the LDOS, typically a scattering scenario is invoked, where an electron

is back-scattered at the step edge or the point-impurity, resulting in the wave interference of the

incoming and the outgoing electrons, and thus a standing electronic wave pattern. For the step

edges one finds [12, 10]

ρs(E, x) ∝ {1− J0[2q(E)x]}, (3)

1Simple math tells us that if a single full-spectroscopy dI/dU curve requires about 10 s measurement time, a

spatially highly resolved data set at e.g. 256× 256 pixels requires about 7.5 days of total measurement time.
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Fig. 3: Left: constant-current 500 Å× 500 Å image of the Cu(111) surface (Ubias = 0.1 V, I =
1.0 nA). Three monatomic steps and about 50 point defects are visible. Spatial oscillations with

a periodicity of ∼ 15 Å are clearly evident. The vertical scale has been greatly exaggerated to

display the spatial oscillations more clearly. Right: Solid lines: spatial dependence of dI/dU ,

measured as a function of distance from step edge at different Ubias. Zero distance corresponds

to the lower edge of the step. Dashed lines: theoretical fits of Eq. (3) to the data. Curves have

been shifted vertically for viewing. Inset: experimental surface state dispersion, obtained from

fits of Eq. (3) to the dI/dU linescan data. The dashed line is a parabolic fit used to extract the

surface state effective mass and band edge. Figures taken from [10].

with the energy E, the distance from the step edge x, and q the length of energy dependent wave

vector of the modulation. J0 is the zeroth-order Bessel function. For the point-like impurities

the result is [12, 10]

ρs(E, r) ∝ 1 +
2

πqr

[

cos2
(

qr − π

4
+ η0

)

− cos2
(

qr − π

4

)]

, (4)

where r is the radial distance from the impurity and η0 a phase shift.

Fig. 3b shows dI/dU |Ubias
measurements as a function of the distance x from the step edge at

various energies E = eUbias, which clearly reveals the energy dependence, i.e., the dispersion

of the modulation, and very good fits according to Eq. (3). Since the length of the electron

scattering wave vector q can therefore be related to the energy E, the ’band’ dispersion E ′(q) =

E(q) + ǫF of the modulation can be determined (see inset of Fig. 3b). This dispersion has

a close connection to the band structure of the surface state because q, as mentioned above,

is the (elastic) scattering wave vector between two electronic states with opposite momenta

±k, i.e. q = 2k. Petersen et al. [13] pointed out that a very natural way for determining the

scattering wave vector from real-space data such as shown in Fig. 4a is to investigate the data’s

Fourier transform, shown in Fig. 4b. These data show a ring with a radius that equals twice

the Fermi wave vector, i.e. 2kF . This reflects that the real-space data have been recorded at
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Fig. 4: (a) Constant current STM image (425×550 Å
2
) of Cu(111) obtained at Ubias = −5 mV,

T = 150 K, showing a complex pattern of circular waves extending out from point defects. (b)

2D Fourier transform of the image in (a). (c) Sketch of the surface Brillouin zone of Cu(111)

with the Fermi contour.

an energy E = eUbias very close to the Fermi level. Of course, the spatial mapping of Friedel

oscillations is in principle viable at other Ubias. Furthermore, the Fourier analysis allows to

extract not only the length but also the direction of the scattering wave vector q, which becomes

important when the Fermi surface, or more generally, the electronic constant energy contours

(CEC) are not two-dimensional isotropic, in contrast to the case of the Cu(111) surface state.

Thus, the investigation of the Friedel oscillations by means of STM/STS, which in connection

to superconducting materials has been dubbed Quasiparticle Interference (QPI) [14], emerges

as a viable route to experimentally obtain fundamental information about the electronic band

structure, viz. the band dispersion of electronic states ξ(k) = E ′(q) (with q = 2k), very much

complementary to angular resolved photoemission spectroscopy (ARPES). The advantage of

QPI measurements with respect to ARPES is that it allows to access also unoccupied electronic

states. Its disadvantage is, however, that ξ(k) = E ′(q) not necessarily holds if the scattering

connects different CECs. We shall see examples for this complication further below.

3 Iron-based superconductors

In 2008, superconductivity has been discovered in a compound of the so-called iron pnictide

family, viz. the materials LaFeAsO1−xFx [15]. This has initiated a tremendous research effort

which soon yielded a large variety of new superconducting iron pnictide compounds with Tc up

to 55 K [16]. All compounds feature Fe2As2-layers as the common structural unit, with typical

examples being RFeAsO (R=La or Rare Earth), AFe2As2 (A=alkaline earth or Eu), LiFeAs and

FeSe, which commonly are referred to as ’1111’, ’122’, ’111’ and ’11’ compounds, respectively

(note that Se replaces As in the last example). While the latter two compounds exhibit super-

conductivity already in their stoichiometric form, the parent materials RFeAsO and AFe2As2

are poor metals which exhibit an antiferromagnetic spin density wave (SDW) ground state.

Chemical doping destabilizes this state in favor of superconductivity. The obvious proximity of
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superconductivity and antiferromagnetism has lead to the conjecture that superconductivity is

unconventional in these materials in the sense that spin fluctuations are the driving mechanism

of superconductivity with a so-called s±-wave order parameter [17].

STM/STS has been applied to the iron-based superconductors very rapidly after the discovery

of superconductivity. In an initial phase, the experimental work focused on the ’122’-, ’1111’-,

and ’11’-phases, where these pioneering studies revealed very valuable information, including

topographic investigations of the surfaces, the superconducting gap, vortices, and in few cases

even QPI. An essential finding of that period is that for ’122’ and ’1111’ reliable STM/STS

measurements are complicated by either the presence of surface states, as in ’1111’ [18, 19], or

due to a non-trivial cleaving behavior and surface reconstruction in ’122’ [20]. A comprehensive

review of all these works is given in Ref. [21]. The focus will be instead on one particular

material, viz. LiFeAs, for which many of the mentioned difficulties are not an issue, rendering

this compound paradigmatic.

Single crystals of LiFeAs exhibit clean, charge neutral cleaved surfaces [22–26] as we shall

see below, with a bulk-like electronic structure at the surface [27]. LiFeAs is a stoichiometric

superconductor, i.e., superconductivity occurs without any doping, at a relatively high critical

temperature Tc ≈ 18 K [28]. This renders it very different from the canonical ’1111’ and ’122’

iron-arsenide superconductors where the SDW instability is believed to be related to strong

Fermi surface nesting. In the next sections we will discuss how STM/STS can contribute to

revealing more details about the compound’s electronic structure and the superconducting state.

3.1 Gap spectroscopy

Already long time before the invention of the scanning tunneling microscope [29], the pioneer-

ing work of Giaever [30,31] and Rowell et al. [32] on electron tunneling through planar tunnel-

ing junctions with one or two superconducting electrodes provided fundamental insights into

the nature of superconductivity. This concerns the revelation of both the gap in the quasiparticle

tunneling spectrum [30, 31] as well as the signatures of the phonon density in the quasiparticle

DOS of a conventional strong-coupling superconductor [32, 33], which have been understood

as basic supporting evidence of the theories of Bardeen, Cooper and Schrieffer (BCS) [34] and

Eliashberg [35], respectively, showing that the electron-phonon interaction is responsible for

the Cooper pairing in conventional superconductors.

We give a brief reminder of some basic considerations of the superconducting state: Accord-

ing to BCS theory, the Bogoliubov quasiparticle bands Ek are connected to the normal state

electronic bands ξk through E2
k = ξ2k + ∆2

k, where ∆k generally is a momentum dependent

energy gap (see Fig. 5a for illustration). For simplicity, we neglect this momentum dependence,

a situation which occurs in purely isotropic s-wave superconductors. If one performs tunneling

spectroscopy on such a superconductor in the normal state (here always with a normal-state tip)

one finds a linear dependence of the tunneling current I of the bias voltage Ubias (see Fig. 5b)

if an idealized energy independent DOS as measured by dI/dU (see Fig. 5c) is present. In the

superconducting state, however, the gap ∆ opens. Hence, the quasiparticle DOS becomes zero
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Fig. 5: (a) Sketch of an electronic band ξk (green) and of Bogoliubov quasiparticle bands Ek

(red). The dashed curve indicates Bogoliubov states at different momenta for the case of a mo-

mentum dependent gap. (b) and (c): Idealized tunneling current I and differential conductance

dI/dU for the superconducting state at T = 0 (blue) and T > 0 (red) and in the normal state

(green).

at eUbias < ∆ and is strongly enhanced at higher energy with a divergence towards eUbias = ∆.

In the tunneling experiment, this drastically changes I and dI/dU in the vicinity of ∆: since

essentially no current flows up to ∆, it remains largely suppressed with respect to the normal

state. Even more interesting is dI/dU , as it directly reflects the quasiparticle DOS, convoluted

with the thermal broadening according to Eq. (2) (see Fig. 5c). This means that the differential

conductance would reproduce the quasiparticle DOS only a T → 0. In reality, there is of course

always some inevitable finite thermal broadening, which enhances dI/dU at energies below the

gap and broadens the divergence at ∆ into a peak. The latter is usually referred to as quasipar-

ticle coherence peak. Note, that the Bogoliubov quasiparticle states are particle-hole symmetric

(as is indicated in Fig. 5a), i.e. one expects dI/dU = −dI/dU . Thus, the distance between the

two coherence peaks in a tunneling spectrum provides convenient means to determine 2∆.

In unconventional superconductors the situation is typically more complicated than sketched

above. The superconducting order parameter could possess nodes as is the case for d-wave

superconductors. Since the STS averages over all momenta, this results in a ’V’-shaped dI/dU

spectrum as compared to the ’U’-shaped one of s-wave superconductors. This situation is, e.g.,

realized in cuprate superconductors. In iron-based superconductors, the Fermi surface is charac-

terized by multiple pockets which are expected to possess differently sized and even anisotropic

gaps. The tunneling spectrum should provide respective information, ideally by exhibiting mul-

tiple coherence peaks. Thus, STS on a superconductor with unknown order parameter structure

can already provide crucial information on the order parameter symmetry.

The currently available data on LiFeAs [23, 24, 36] nicely illustrate the capabilities of STS.

Fig. 6a shows an overview dI/dU spectrum [23] for Ubias = [−100 mV, 100 mV]. The data

immediately tell, that, apart from the superconducting gap near zero sample bias, the normal

state DOS is far from being constant in energy as is assumed in the simplified conditions dis-

cussed above. The origin of the strong variation is not yet clarified for this compound. It is

however reasonable to understand it as a consequence of the complicated band structure of the
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Fig. 6: (a) Tunneling dI/dU spectrum of LiFeAs at 1.5 K in a large energy window. (b) Low-

energy tunneling spectra at different temperatures. Two gaps are visible in the spectra and both

gaps disappear above 18 K. Figures (a) and (b) are taken from [23]. (c) Two isotropic gaps

fit (blue line) on top of measured dI/dU spectrum (black line, 2 K). The dashed lines indicate

the fitting bias range from -6.8 to 6.8 mV. (d) The large gap determined by isotropic s-wave

fits (red error bars) generally follows the temperature dependence predicted by the BCS weak

coupling limit (dashed black line). The development of the smaller gap (blue error bars) is

obscured by thermal broadening at elevated temperatures. The bulk Tc can be inferred from

SQUID magnetometry data with a 1 G magnetic field (gray dots and right y axis). Figures (c)

and (d) are taken from [24].

material. Despite the strong apparent asymmetry, the tunneling data in the superconducting

state (Fig. 6b) [23] is practically particle-hole symmetric at the lowest investigated temperature,

as expected for the density of states of Bogoliubov quasiparticles. Interestingly, the data reveal

two peaks on either polarity, one approximately at ±6 mV, the other at about ±3 mV. In view of

the above considerations, these findings directly imply that at least two different predominant

gap sizes are present in this material. Both gaps have no nodes, as revealed by the completely

suppressed tunneling conductance dI/dU in a finite energy interval around zero bias voltage.

This very clearly excludes d-wave type gaps to be relevant in this compound. STS can not reveal

where in momentum space these gaps are located at. Further, complementary information from

momentum sensitive techniques such as ARPES is indispensable to elucidate this question.

Before we come back to this point further below, it is interesting to investigate the temperature

evolution of the dI/dU spectra. Upon increasing the temperature, the data in Fig. 6b show that

the thermal broadening rapidly smears out the detailed gap features as already at T & 5 K the

signatures of the smaller gap have practically vanished. Chi et al. [24] nevertheless undertook

the attempt to determine the temperature dependence of both gap features through fitting the

spectra with an appropriate two-gap formula (Fig. 6c). The result shown in Fig. 6d suggests

that the large gap follows a BCS-type temperature dependence with a gap closing at Tc ≈ 17 K.

However, such a statement is not possible for the smaller gap, obviously due to the thermal

smearing.

Nag et al. have addressed the evolution of the differential conductance in the vicinity of Tc in

more detail, by carefully studying spatially averaged dI/dU-spectra within a well-defined area

as a function of temperature [36]. Fig. 7a depicts the averaged spectra for all temperatures which

reveal an interesting and unexpected temperature evolution of superconductivity. At first glance,

the data suggest the onset of superconductivity at Tc = 16K, signalled by a clear depletion of the
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Fig. 7: a) Temperature dependent tunneling spectra of LiFeAs measured between 6 K and 20 K.

The up-arrow indicates the order of the curves at Ubias = 0 with increasing temperature. Inset:

Zero bias differential conductance as a function of temperature. The horizontal dashed line is

a guide to the eye. Vertical dashed lines indicate Tc and T ∗
c , see text. b) Waterfall represen-

tation of the differential conductance dI/dU for various temperatures. The spectrum at 16 K

is highlighted in bold. Black up-arrows indicate the shift of the position of the positive energy

dip at ∆+ + Ω+ towards lower energy upon raising the temperature through Tc = 16 K. The

down-arrow indicates the coarse position of the negative energy dip at −∆− − Ω−. c) Wa-

terfall representation of normalized spectra in c) at 16 K to 18 K. Superconducting coherence

peaks and dip positions at 17 K are indicated by solid and dashed vertical lines, respectively.

d) Schematic diagram of the first Brillouin zone (one-Fe unit cell) in LiFeAs based on ARPES

data [37]. The indicated γ- and β- pockets possess only a weak kz-dispersion while the α1-

and α2-pockets are located only close to kz = π. The back arrow indicates the incommensurate

spin fluctuation between the γ- and the β-bands observed by Qureshi et al. [38–40]. Figures

taken from [36].

LDOS near zero bias voltage. However, closer inspection of dI/dU at zero bias voltage (inset of

Fig. 7a), and in particular after normalizing the data with respect to the normal state (Fig. 7b and

c) yields that even at higher temperature clear spectral features of superconductivity are present

already at T . 18 K, i.e., a slightly reduced zero-bias dI/dU and particle-hole symmetric

coherence peaks at ∆± together with a pronounced dip at eUbias = ∆± ± Ω± followed by a

hump. These features are clearly present at all temperatures T . T ∗
c = 18 K, but concern

at T > 16 K only a tiny portion of the LDOS. Nag et al. concluded from this observation

that two distinct superconducting phases exist in this material: upon cooling one sets first in at

T ∗
c = 18 K, however being supported only by a very small portion of the Fermi surface, whereas

full superconductivity, i.e., supported by all Fermi surface pockets, sets in at Tc = 16.

We have seen up to here that STS is capable to provide very comprehensive information about

the superconducting gap even for a complicated material like LiFeAs which possesses multiple

Fermi surface pockets. However, since STM/STS is (unless QPI is invoked) not momentum

resolving, the further interpretation of the data requires the combination with, e.g., ARPES

data. For LiFeAs, several high-resolution ARPES studies [41–43] consistently suggest a Fermi

surface as sketched in Fig. 7d. It consists of quasi two-dimensional hole-like (labeled γ) and

electron-like pockets (labeled β) centered around Γ = (0, 0) and M = (±π, 0) or (0,±π),

respectively. Two further hole-like Fermi surface pockets (labeled α1 and α2) are centered
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Fig. 8: a) Tunneling spectra of LiFeAs taken at the center of vortex (red) and away from vortices

(blue). b) Line profile of tunneling conductance across the vortex center along the nearest Fe-Fe

direction. c) Image of vortices at 1.5 K obtained by mapping the tunneling conductance at ǫF .

The tip was stabilized at Ubias = +20 mV and I = 100 pA. Umod = 0.7 mVrms. Images taken

from [23].

around the Z-point. Since the latter are tiny, Nag et al. [36] concluded these to be natural

candidates for supporting the faint superconductivity at 16 K < T < 18 K. Interestingly, these

pockets have been observed in ARPES to possess the largest superconducting gap ∆α ≈ 6 meV

as compared to ∆γ,β = 3.5 to 4 meV at the γ- and β-pockets [42,43]. With this information the

larger superconducting gap discussed for Fig. 6 can now be assigned to exactly the α-pockets,

whereas the smaller gap is connected to either the γ- or the β-pockets, or both.

There is even more information provided by the dI/dU-spectra, viz. through the dip-hump

structures at eUbias = ∆± ± Ω± in Fig. 7, the signatures of which are already apparent in the

unnormalized spectra shown in Fig. 6b and c. These details have been much debated in terms

of a bosonic mode of energy Ω that couples to the electrons and which should give rise to clear

anomalies in the quasiparticle DOS [35,33]. Chi et al. suggested [24] an antiferromagnetic spin

resonance as the nature of the bosonic mode. In contrast, Nag et al. pointed out [36] that this is

not supported by the temperature independence of Ω, which in case of the dip being connected

to an antiferromagnetic resonance should track the temperature dependence of order parameter,

and the de facto absence of an antiferromagnetic resonance in inelastic neutron scattering results

on LiFeAs [38,39]. It is interesting to note that recent theoretical work [44] suggested inelastic

tunneling processes to play a very important role in the interpretation of the dip-hump feature.

3.1.1 Vortex spectroscopy

In the above considerations, the spatial dependence of the superconducting state did not play

a role, i.e., the particular strength of STM/STS to spatially resolve electronic structure has not

been exploited. This is in order as long as the material exhibits a spatially homogeneous super-

conducting state, which is often the case. A very obvious situation where the superconducting

state is spatially inhomogeneous is the Shubnikov phase of a type-II superconductor, where

magnetic flux lines (vortices) enter the superconducting volume. Each flux line holds one mag-
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Fig. 9: (a) Surface topography of LiFeAs measured in constant current mode (I = 600 pA,

Vbias = −50 mV) taken at T ≈ 5.8 K. Black arrows indicate the direction of the lattice constants

[28] with a = 3.7914 Å. (b) Spatially averaged tunneling spectrum taken in the square area

(dashed lines) in (a). The spectrum exhibits a gap with 2∆ ∼ 10 mV, which (taking thermal

broadening into account) is consistent with low-temperature (∼ 500 mK) tunneling data in

Fig. 6 of the superconducting gap of LiFeAs. Representative energy values for further QPI

analysis in Fig. 10 are marked by red circles. Figure taken from [22].

netic flux quantum φ0 = h/(2e). The magnetic field is maximum inside the vortex core and

then radially decays on a length scale given by the London penetration depth λL. At the same

time, the superconducting wave function decays from outside towards zero at the vortex core

with the Ginzburg-Landau coherence length ξGL as the determining length scale. This has a

strong impact on the LDOS measured at the vortex core, because it should be enhanced at en-

ergy values inside the superconducting gap with respect to the superconducting LDOS. This is

indeed the case also for LiFeAs as is shown in Figure 8. Hanaguri et al. [23] report a complete

suppression of the both sets of coherence peaks in favor of pronounced and asymmetric vortex

core states inside the gap (Fig. 8a). Fig. 8b shows the spatial evolution of the spectrum along

the Fe-Fe direction. In principle, one can expect interesting information about the nature of the

superconducting order parameter from such spatial studies. However, it has been pointed out by

Wang et al. [45] that it is a priori difficult to disentangle the effect of order parameter symmetry

from anisotropy effects of the Fermi surface.

The enhanced LDOS at the vortex core leads to an enhanced value of the differential conduc-

tance dI/dU and thus can be used to visualize the structure of the vortex lattice as is exemplified

in Fig. 8c. The investigation of such vortex matter is a separate field as such. The interested

reader is referred to the original literature [23, 45] and references therein.

3.2 Quasiparticle interference

In the following we begin by largely following the first experimental paper on the QPI of

LiFeAs [22]. Afterwards, we compare and discuss the earlier findings with more recent pub-

lications [26, 46, 47]. Prior to performing QPI measurements it is important to have a good

account on the surface to be investigated which can be achieved by topographic STM mea-
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surements. Fig. 9a shows a representative topography of the presumably Li-terminated surface

taken at low-temperature (∼ 5.8 K) after cleaving a crystal [22]. The data reveals a highly pe-

riodic atomically resolved surface layer and several impurity sites. A spatially averaged dI/dU

spectrum, taken on a defect-free area clearly reveals a superconducting gap (Fig. 9b). Sub-

sequently, a full-spectroscopic map was recorded on this surface as described before in sec-

tion 2.1.2: STS was measured at each of the 256×256 pixel by stabilizing the tip with feedback

loop engaged at a setpoint of Ubias = −50 mV and I = 600 pA followed by subsequently

ramping Ubias to +50 mV with the feedback loop switched off. During ramping the voltage

I(Ubias) and dI/dU(Ubias) were recorded where a lock-in amplifier with a modulation voltage

Umod = 1.2 mV (RMS) and a modulation frequency fmod = 3.333 kHz was used.

dI/dU maps at representative energies (Fig. 10a-h) show very clear QPI patterns which are

most pronounced at energies in the vicinity of the coherence peaks at negative energy (Ubias &

−20 mV). In this energy range, the QPI is clearly not only visible in real space as relatively

strong modulations close to the defects but also appears as clear wave-like modulations (with

a wavelength of a few lattice spacings) in the relatively large defect-free area in the center of

the field of view. QPI patterns are also discernible at positive energy, but compared to the pro-

nounced modulations at negative values, the amplitude of the modulations decay more rapidly

when moving away from a defect.

In analogy to the previous example on the Cu(111) surface the real space data were Fourier-

transformed in order to extract the wave vectors of the QPI at each of the measured energies.

Figures 10i-p reveal a very rich structure which we discuss now in detail: The least interesting

features of the data show at all energies bright spots at (±π,±π) and at higher q (the choice of

reciprocal coordinates refers to a one-iron unit cell). These result from the atomic corrugation

in the real space images. The most salient feature is, however, a bright structure distributed

around q = (0, 0). In similarity to the observed real-space modulations this feature is par-

ticularly pronounced at energies Ubias ≈ [−20 mV, 0] where it attains a squarish shape with

the corners pointing along the (qx, 0) and (0, qy) directions. Upon increasing Ubias to positive

values, the intensity at the square corners increasingly fades and for Ubias > 10 mV the squar-

ish shape changes to an almost round structure which remains in that shape up to 50 mV. The

Fourier transformed images also reveal further well resolved structures with significantly lower

intensity centered around (π/2, π/2), (π, 0) and (π, π) which again are most pronounced be-

tween −20 mV and the Fermi level. At more negative bias, these finer structures fade, while at

positive bias voltage they develop into a rather featureless diffuse background.

These rather complicated Fourier-transformed images directly account for the relevant scatter-

ing wave vectors in the QPI, and thus allow to deduce important qualitative information about

the electronic structure of LiFeAs. However, one should stay extremely cautious when seeking

the extraction of quasiparticle bands from the scattering image, as this is not straightforward,

in contrast to one-band systems, such as the Cu(111) surface state. In order to illustrate this

difficulty, we will now first show how the observed scattering vectors can clearly be assigned

to particular scattering processes if other experimental data for the electronic band structure

deduced from ARPES experiments [41] are taken into account. Afterwards, we will point out
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Fig. 10: (a-h) SI-STM maps of the region shown in Fig. 9 at selected representative bias volt-

ages. (i-p) Fourier transformed images of the maps shown in a-h. Bright spots at (±π,±π) and

at higher q result from the atomic corrugation in the real space images. Figure taken from [22].

an alternative interpretation of the data [26], which, however, is not compatible with the com-

pound’s electronic structure.

Fig. 11a and b compare the CEC of LiFeAs at E = −11.7 mV derived from ARPES data [41]

with the observed QPI intensities in the Fourier transformed image. Most prominent is that the

observed central squarish structure in Figure 11b appears like a somewhat enlarged smeared

replica of the large, hole-like CEC of the γ-band around (0, 0). This observation can directly

be understood as stemming from interband scattering processes (q1) connecting the very small

CEC of the α-bands2 and the larger squarish-shaped γ-CEC around (0, 0). Furthermore, the

much weaker structure at q = (π, 0) in Fig. 11b apparently can be rationalized as stemming

2For simplicity we do not distinguish between the α1 and α2-bands.
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Fig. 11: (a) Simplified CEC [41] at E = −11.7 meV in the periodic-zone scheme of the Bril-

louin Zone (BZ), where the first BZ (referring to the unit cell with two Fe atoms) is indicated by

the dashed lines. However, the used coordinates in reciprocal space refer to the unit cell with

one Fe atom, in order stay consistent with the theoretical work in Ref. [48]. This choice of recip-

rocal coordinates leads to Bragg-intensity at (±π,±π) instead of (±2π, 0) (and (0,±2π)) as

one would expect for a two-Fe unit cell. The two pockets around (0, 0) represent hole-like CEC

while the pockets at the zone boundary are electron-like. q1,2 represent scattering processes

which connect states on the small hole-like CEC and on other CEC, q3 and q4 represent scat-

tering between the electron-like and within the large hole-like CEC, respectively. q5,6 represent

umklapp processes. Note that each scattering process q1,...,6 is described by a set of scattering

vectors as is illustrated for q1 (dashed and solid arrows). (b) Measured Fourier transformed

image at the same energy (the same as in Fig. 10l) with q1,...,6 superimposed. The most salient

QPI features around (0, 0) and (π, 0) match well with q1 and q2 (see text). The further ob-

served but less prominent QPI intensities around (π, π) and at (π/2, π/2) are well described by

q3 and q4, respectively. The umklapp scattering vectors q5 and q6 might also be of relevance

here. (c-g) Calculated QPI in q space assuming the normal state and a superconducting order

parameter with s±-, d-, p-, and s++ symmetry. Figure taken from [22].

from interband scattering processes (q2) connecting the electron-like CEC of the β-bands with

again the small α-CEC. The further observed but less prominent QPI intensities around (π, π)

and at (π/2, π/2) are well described by q3 and q4, respectively, which represent scattering

between the electron-like β-CEC and within the large hole-like γ-CEC, respectively. q5,6 rep-

resent umklapp processes, which might also be of relevance here.

An analogous analysis can be performed at other energies. Fig. 12a and b show QPI data and

a corresponding assignment to scattering processes for E = −6.8 meV [46], where the focus

is just on small scattering vectors. Here, the contour of q1 in the QPI image is particularly

sharp. The comparison between the QPI scattering image and the band structure can of course

be undertaken on a much deeper level through comparing the experimental QPI image with

calculations of the QPI pattern based on the electronic band structure of the compound. For
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Fig. 12: (a) Fourier transformed QPI data of LiFeAs at E = −6.8 meV ((the same as in

Fig. 10m). (b) Simplified constant energy contours (CEC) of the hole-like α and γ bands at E =
−6.8 meV. q1 represents interband scattering processes which connect states on both bands. It

has the same length as qh2
(i.e., the diameter of the dashed h2-CEC) reported in Ref. [26].

q4 represents intraband scattering within the γ band. (c-e) Numerical simulation of the QPI

patterns applied to a tight-binding model of the ARPES results [41, 43]. (c) Only intraband

scattering within the small, hole-like band α and the large, hole-like band γ is considered. All

scattering processes between α and γ and those processes involving the electron bands are

suppressed in the calculation. (d) Only interband scattering between α and γ is considered. (e)

Contributions displayed in panels (c) and (d) are summed up in order to enable the comparison

of the intensities. The scattering vectors q1, q4 (see a, b) are indicated. Figures taken from [46].

LiFeAs, high-precision band structure data exist. The corresponding theoretical results for the

QPI are depicted in Fig. 12c to e, where intraband scattering processes within the γ-CEC (c)

and interband scattering processes between the α-CEC and the γ-CEC (d) have been consid-

ered separately. Only when summed up (e), these account for the experimentally determined

scattering image.

A different conclusion concerning the compatibility with ARPES is, however, reached by an-

other QPI study on LiFeAs [26], despite geometrically very similar QPI data of excellent qual-

ity. The authors of this work attempted the very difficult task to reconstruct the band structure

of LiFeAs solely based on QPI data. In order to circumvent the problem that QPI provides

only access to elastic scattering vectors, i.e., the relative momentum difference of two different

states at a given energy, they suggested that the QPI emerges solely from intraband scattering

within the separate hole-like bands. Based on this assumption, the extracted scattering vectors

have been used to construct three hole-band dispersions along high-symmetry directions. One

of the resulting bands (labeled h3 in Ref. [26]) is in good agreement with the size of the larger

hole-like Fermi surface observed in ARPES [41,43,42], and another (h1) matches quite well the

α-bands. However, the third of the suggested bands (h2) lacks such a correspondence since its
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Fig. 13: a) Schematic illustration of the Fermi surface (FS) sheets of LiFeAs. Solid lines il-

lustrate the approximate size of the FS sheets as observed by ARPES [41, 49, 42, 43], dashed

lines correspond to the hole-like FS resulting from the hole-like bands h2 and h3 as obtained

from QPI by Allan et al. [26]. Note that Allan et al. extract the Fermi wave vectors along high-

symmetry directions and that the shown FS sheets are respective isotropic two-dimensional

extrapolations. The shown unfolded Brillouin zone (BZ) refers to the one-Fe unit cell. The BZ

related to the two-Fe unit cell is indicated by dotted lines. b) LiFeAs band structure at negative

energies. Circles represent the extracted quasiparticle dispersions Ek of the hole-like bands h1,

h2, h3 obtained in [26], where k is given by half of the length of the observed scattering vec-

tors q. Grey shaded contours represent α and γ bands as observed by ARPES [41, 49, 42, 43].

The extended width of the α band indicates kz dependence obtained from different photon ener-

gies [43]. The indicated dispersion shown as a dashed line corresponds to data obtained at a

photon energy hν = 20 eV. Figure taken from [46]. c) Fourier transformed QPI data of LiFeAs

at E = −6.6 meV, taken from [26]. Note that the data refer to the two-Fe unit cell, in contrast

to the data in Figures 10, 11, and 12 which causes a rotation of the coordinate system by 45◦.

Fermi wave vector kF ≈ 0.2 Å−1 [26] neither matches that of the large γ nor the small hole-like

α Fermi surfaces observed in ARPES, see Fig. 13a.

Fig. 13b depicts the dispersion of all three bands h1, h2, and h3. In fact, the QPI structure which

has been used to extract the h2 is geometrically very similar to the q1-contour in Figures 10

and 12, see the corresponding data in Figures 12 and 13. This means that the QPI intensity in

Fig. 13, which has been interpreted to stem from intraband scattering of a hypothetical h2 band

which is unsupported by other methods like ARPES or de-Haas-van-Alphen measurements

[50], can be well reinterpreted as interband scattering as described by q1 [46].

The latter example illustrates that QPI measurements can provide very valuable insights into

a compound’s electronic structure, in particular the electronic band structure. The caveat is,

however, that QPI is not capable to provide direct information about quasiparticle states because

it is only sensitive to the scattering states. Thus, one is advised to always complement QPI data

with results from other techniques: ARPES and also de-Haas-van Alphen data are well suited

for double checking the QPI results. On the other hand, the sensitivity to scattering events

potentially brings about access to qualitatively new information which remains inaccessible by

other means. We shall introduce some ideas in this respect in the following section.
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Fig. 14: (a) A simplified two-band model for the pnictides with a hole-like band centered at

k = (0, 0) and an electron-like band centered at k = (π/a, π/a). (b) The Fermi surfaces

of the bands in (a). The vectors qh-h and qe-e show intraband scattering within the hole and

electron pockets, respectively, while qh-e shows interband scattering between the two. In the

s± scenario ∆k switches sign between the initial and final states of the qh-e scattering process,

while it remains the same in the s++ scenario. Image taken from [47]. (c) A summary of the

QPI selection rules expected for a pnictide superconductor with s++ or s±. The QPI intensity

of a scattering vector is either suppressed or enhanced inside the superconducting gap relative

to the intensity outside the gap. The intensity variations stem from the energy dependence of the

coherence factors. The four combinations of two pairing symmetries and two kinds of impurities

result in four distinct sets of selection rules. Table taken from [47].

3.2.1 Accessing the structure of the superconducting order parameter

In the superconducting state the DOS is redistributed by the opening of the superconducting

gap. More specifically, in the superconducting state the DOS at energy-values close to the gap

value is further boosted in comparison to the normal state since the quasiparticle dispersion

Ek = ±(ξ2k + |∆k|2)1/2 is rather flat (see Fig. 5a). Furthermore, depending on the gap function

∆k, particular scattering channels are suppressed while others are enhanced according to the co-

herence factors of the superconducting state. Consequently, the QPI measured at energies |E|
close to the averaged gap value will be redistributed, thereby containing detailed information

about the structure of the superconducting order parameter. More specifically, the scattering

rate between quasiparticle states with momenta k and k′ is proportional to coherence factors

(uku
∗
k′ ∓ vkv

∗
k′), where the ∓ sign is determined by the magnetic/non-magnetic nature of the

underlying scattering mechanism. The coherence factors are sensitive to the phase of the super-

conducting order parameter via the Bogoliubov coefficients uk and vk which fulfil the relation

vk/uk = (Ek − ξk)/∆
∗
k with the quasiparticle energy Ek = ±(ξ2k + |∆k|2)1/2 [34, 51]. Thus,

through the coherence factors, the QPI pattern is in principle decisively influenced by the nature

of superconductivity, in particular the symmetry of the superconducting gap. Pioneering studies

which involve the analysis of QPI data along these lines have been performed on cuprate high-

temperature superconductors [52] and, more recently, also for iron-based superconductors [53].

Here, we summarize briefly the currently available results for LiFeAs.

In order to exploit the phase sensitivity of the QPI, Hänke et al. [22] calculated the QPI in the su-

perconducting state using an appropriate BCS model for LiFeAs which can describe three cases

of elementary singlet pairing (s++, s±, and d-wave) as well as a p-wave triplet pairing scenario.

These calculations were based on a band structure model matching the ARPES results [41] (see
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Fig. 15: (a) The integrated intensity of the QPI signal for the intraband h-h (red) and inter-

band h-e (blue) scattering vectors. The curves are normalized to the value at 12 meV and

the interband intensity has been offset for clarity. The dashed lines indicate the values of the

superconducting gaps. (b) The red sector and blue circle are the integration windows for in-

traband h-h and interband h-e scattering intensities in (a), respectively. A noise background

signal is integrated in the grey rectangular area and subtracted. Here the windows are shown

in one quarter for simplicity but the integration is performed over the equivalent areas in all

four quadrants of the image. Image taken from [47].

Fig. 11c-g for results at E = −11.7 mV).3 One firm qualitative outcome of these calculations

was, from the location of the high intensity region around (0, 0), that in the superconducting

state the dominating scattering processes are those which connect states on the hole-like bands

as it was afore inferred from the mere geometrical analysis shown in Fig. 11(a), (b). The closer

examination of the individual QPI patterns revealed a very strong dependence of the pattern on

the assumed pairing symmetry. Interestingly, a direct comparison with the experimental result

yielded a striking agreement between the experimentally observed QPI and the calculated im-

age of Fig. 11(f), which is the result for a triplet paired state. The agreement is obviously much

less pronounced for s±, s++, and d-wave singlet pairing cases. These qualitative statements

also hold at other energies (see [22] for details).

Chi et al. come to a different result based on their data [47]. Based on the coherence factor

analysis, they derive a set of selection rules which describe the expected enhancement and the

suppression of particular scattering vectors upon tuning the energy from values outside to inside

the superconducting gap depending on the type of scattering impurity and on the symmetry of

the superconducting order parameter, see Fig. 14.

For the analysis, Chi et al. introduced to integrate with the scattering data the QPI intensity

which belongs to a specific scattering process, i.e., either to intraband scattering h-h within the

hole-like CEC or to interband scattering between hole and electron-like CEC h-e. From the

very different energy dependence of the integrated QPI intensity for the two regions and the

selection rules they conclude a support of a s±-wave order parameter, see Fig. 15 and [47] for

details.

3The experimentally observed strong intensity at q ∼ (0, 0) reflects a constant background in the SI-STM maps

which is not taken into account in the calculations. Thus there is no enhanced intensity in the calculated Fourier

transformed images at (0, 0).
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It is worth pointing out that these unsatisfactory conflicting results [22, 47] provide the moti-

vation for ongoing research. Hirschfeld et al. have theoretically addressed this problem [54]

and suggested to use the temperature dependence of momentum-integrated QPI data in order to

give a firm statement on the superconducting gap structure. Experimentally, this is, however,

still open.

4 Cuprate superconductors

There exists vast literature which provides excellent introduction to the physics of the cuprate

superconductors, see e.g. [55]. What we need to know here is that the electronic phase diagram

of hole-doped cuprates has much resemblance to that of the canonical 122 or 1111 iron-based

superconductors. One important difference is that the undoped parent state is an antiferromag-

netic (charge transfer) insulator. Charge-doping causes its destruction and the emergence of

superconductivity with the highest critical temperature Tc known so far (up to ∼ 135 K) for

ambient pressure conditions [55]. The hole-like Fermi surface consists only of one band (which

renders the situation in QPI investigations much simpler as compared to the iron-based super-

conductors), with a d-wave order parameter in the superconducting state with nodes on the

Fermi surface along the (±π,±π) directions.

4.1 Quasiparticle interference and the octet-model

In fact, the modern investigation of QPI analysis has first been introduced in pioneering work

on the cuprate superconductors [14, 56, 57]. Fig. 16 shows representative experimental data for

the material Bi2Sr2CaCu2O8+δ [56]. The topographic data in Fig. 16a reveal the characteristic

BiO-terminated surface of Bi2Sr2CaCu2O8+δ which exhibits a stripe-like periodic superstruc-

ture. Full dI/dU spectroscopic mapping of the same field of view reveals pronounced QPI

signatures; representative real space and Fourier transformed data are shown in Figures 16b

and (c-f), respectively. The latter reveal multiple high-intensity spots which possess a clear

energy dispersion. It has been proposed by McElroy et al. [56] that these spots result from

quasiparticle scattering between eight specific points in momentum space which emerge in the

superconducting state. The situation is illustrated in Fig. 16g which shows ’banana’-shaped

quasiparticle CEC which emerge at energies smaller than the maximum |∆k| in the supercon-

ducting d-wave state. McElroy et al. argued [56] that since the quasiparticle DOS ρs at a given

energy Ek = ω is proportional to

∫

Ek=ω

|∇kEk|−1 dk, (5)

the primary contributions to ρs(ω) stem from the two tips of the ’banana’ where |∇kEk|−1

is largest, and thus the QPI should be dominated by the seven scattering vectors q1...7 which

connect the eight ’banana’ tips (see Fig. 16g and h). This model has proven to describe the
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Fig. 16: Atomic resolution images of the LDOS of Bi2Sr2CaCu2O8+δ and the resulting Fourier-

space images of the wave vectors making up the LDOS modulations. (a) A topographic image

of the BiO surface used, with location and resolution identical to the LDOS maps. The ×2
magnification inset (from part of the same image) demonstrates the atomic resolution achieved.

(b) Representative example of the real space g(r, E) = dI/dU |E=eUbias
in this field of view.

All g(r, E) were acquired using the same atomic resolution and register. (c-f) Examples of the

Fourier transformed g(q, E). The only non-dispersive signals (which are due to the supermod-

ulation) are marked by arrows in (c). The reciprocal atomic lattice is located at the square of

intense points near the corners of each panel. One can readily see 12 of the 16 LDOS mod-

ulations of the quasiparticle interference model. The dispersion and evolution of all the wave

vectors of these modulations is evident in the differences between frames. (g, h) The expected

wave vectors of quasiparticle interference patterns in a cuprate superconductor with d-wave

order parameter. (g) Solid lines indicate the k-space locations of several banana-shaped quasi-

particle CEC as they increase in size with increasing energy. As an example, at a specific energy,

the octet of regions of high |∇kEk|−1 are shown as red circles. The seven primary scattering q-

vectors interconnecting elements of the octet are shown in blue. (h) Each individual scattering

q-vector from this set of seven is shown as a blue arrow originating from the origin in q-space,

and ending at a point given by a blue circle. The end points of all other inequivalent q-vectors

of the octet model (as determined by mirroring each of the original seven in the symmetry planes

of the Brillouin zone) are shown as solid green circles. Thus, if the quasiparticle interference

model is correct, there would be sixteen inequivalent local maxima in the inequivalent half of

q-space detectable by Fourier transformed STS. Images taken from [56].
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Fig. 17: a) Schematic electronic phase diagram of the cuprates showing the antiferromagnetic

parent phase (AF), the superconducting phase (SC) and the pseudogap-phase (PG). Image taken

from [58]. b) Spectroscopic map of Ca1.9Na0.1CuO2Cl2 at E = 24 meV in the superconducting

state. Image taken from [59]. c) Magnetic-field induced additional LDOS at magnetic vortex

cores of Bi2Sr2CaCu2O8+δ. d) A schematic model of the electronic/magnetic structure of the

vortex core showing the superfluid velocity v, the superconducting order parameter |Ψ |, LDOS,

and the anticipated periodicity of the spin density modulation M . Images taken from [60].

QPI in a compelling way and referring to the eight momentum space points has been dubbed

’octet-model’.

Hanaguri et al. [52] extended the octet model by adding, for the first time, a coherence factor

analysis which has been ground-breaking for all later experimental and theoretical work in this

direction.

4.2 Nanoscale electronic order

In the cuprates, the emergence of superconductivity from the antiferromagnetic parent state

is accompanied by the so-called pseudogap phase (see Fig. 17a). Evidence is growing that

electronic order within the pseudogap phase is a crucial bit for understanding the electronic

phase diagram of the cuprates and eventually the nature of superconductivity in these com-

pounds [61, 62]. The correlation lengths of the electronic order often are relatively short which

renders it challenging to be detected by neutron or X-ray diffraction techniques. Spectroscopic

imaging STM, as local probe, therefore played an important role to reveal the electronic or-

dering states in the cuprates. In the experiments the electronic order manifests as CDW-like

electronic superstructures, see, e.g., data by Hanaguri et al. [59] in Fig. 17b. These states seem

to compete with superconductivity, as their amplitude is enhanced when superconductivity is

suppressed, e.g., in the core of a magnetic vortex [60] (see Fig. 17c and d.)

5 Conclusion

In this lecture we have seen which possibilities a low-temperature scanning tunneling micro-

scope offers to investigate the physics of correlated electron systems. This included an intro-

duction to the most important measurement modes for microscopy and spectroscopy and the

concept of studying the quasiparticle interference for achieving even momentum space infor-

mation from real space data. The system which we focused on, LiFeAs, offers the advantage
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that clean experimental data exist that allow to discuss many different aspects of scanning tun-

neling spectroscopy and the different types of information that can be gained. Further aspects

of scanning tunneling spectroscopy of correlated materials were introduced through briefly dis-

cussing important work on cuprate superconductors. Thus, this lecture, together with the given

literature, should provide the necessary basis for understanding the work on different systems

such as the heavy fermion systems or non-superconducting transition-metal compounds.

It should be noted that the electronic ordering states which are ubiquitous in correlated electron

systems in principle are expected to be accompanied by a spin density wave, as is indicated

in Fig. 17d. This magnetic superstructure has not yet been observed by STM/STS because

this techniques a priori is not sensitive to magnetism. This changes, however, if a magnetic

tunneling tip is used, a technique which has been explored and brought into maturity for non- or

weakly correlated systems [63]. The experimental efforts to apply this spin-polarized scanning

tunneling microscopy (SP-STM) to correlated electron systems have just started, yielding first

exciting results [64]. One may stay tuned.
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energy resolution, 14.3
full spectroscopy mapping, 14.4
spectroscopic imaging, 14.4
thermal broadening, 14.3

Schrödinger equation
many-electron, 3.19, 3.29
mean-field form, 3.2
variational statement, 3.3

screening, 10.4
second quantization, 2.5, 3.31
self doping, 1.11
self-energy, 6.9

CPT, 6.10
single-particle spectral function, 5.20
singlet superconductivity, 13.21
Slater determinant, 2.3, 3.29, 9.3
Slater-Condon parameters, 5.9
Slater-Koster parameters, 3.10
Slater-Koster two-center integrals, 7.40
spectral density, 4.20
spectral function, 6.5
spectral weight, 11.5, 11.11, 11.12
spherical harmonic, 3.9, 3.33

rotation, 3.11, 3.33



I.4 Index

spin contamination, 2.24
spin susceptibility enhancement factor,

13.19
spin-orbit coupling, 5.13
spin-polarised STM/STS, 14.24
spin-statistics connection, 2.2
spontaneous symmetry breaking, 8.2
stochastic projection, 9.4
Stoner Hamiltonian, 3.38

collinear, 3.38
vector, 3.38

sum rule
f -sum, 11.4
kinetic energy, 11.15

superconductivity, 11.10
superexchange interaction, 7.28

T
T1 coherence peak, 13.23
Tanabe-Sugano diagrams, 5.17
tensor

Cartesian, 3.36
eighth-rank isotropic, 3.37
fourth-rank isotropic, 3.35
irreducible Cartesian, 3.36

tetrahedral order, 8.16
Thompson scattering, 12.15
tight-binding d bands, 7.13
tight-binding model

ab initio, 3.5
many-electron, 3.30
molecular dynamics, 3.7
self-consistent, 3.5
semi-empirical, 3.7
total energy, 3.18
transferability, 3.12
two-center approximation, 3.9
Wannier, 3.6

tiling, 6.6
time-dependent density functional the-

ory, 10.7
tower of states, 8.2

quantum numbers, 8.8
scaling, 8.2

transferred hyperfine couplings, 13.8
transition-metal oxides, 6.11
triangular antiferromagnet, 8.16

tunneling current, 14.2
tunneling matrix element, 14.2

U
ultrashort core-hole lifetime expansion

(UCL), 12.25

V
vacuum state, 2.5, 2.6
valence counting, 1.2
valence-band photoemission, 5.20
valence-bond solid, 8.10

columnar, 8.11
staggered, 8.13

variational CPT, 6.6
variational principle

linear, 3.4, 3.30
of density-functional theory, 3.20
projection operator approach, 3.5
Rayleigh-Ritz, 3.5

W
Wannier function, 3.6
Wick’s theorem, 2.11

X
X-ray absorption, 5.22

Z
Zaanen-Sawatzky-Allen classification, 1.9
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