
Forschungsinstitut  
zur Zukunft der Arbeit
Institute for the Study  
of Labor 

D
I

S
C

U
S

S
I

O
N

 
P

A
P

E
R

 
S

E
R

I
E

S

On Nonparametric Identification of
Treatment Effects in Duration Models

IZA DP No. 10247

September 2016

Per Johansson
Myoung-jae Lee



 
On Nonparametric Identification of 

Treatment Effects in Duration Models 
 
 
 

Per Johansson 
IFAU, Uppsala University 

and IZA 

 
Myoung-jae Lee 

Korea University 

 
 
 
 

Discussion Paper No. 10247 
September 2016 

 
 
 

IZA 
 

P.O. Box 7240 
53072 Bonn 

Germany 
 

Phone: +49-228-3894-0 
Fax: +49-228-3894-180 

E-mail: iza@iza.org 
 
 
 
 
 

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in 
this series may include views on policy, but the institute itself takes no institutional policy positions. 
The IZA research network is committed to the IZA Guiding Principles of Research Integrity. 
 
The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center 
and a place of communication between science, politics and business. IZA is an independent nonprofit 
organization supported by Deutsche Post Foundation. The center is associated with the University of 
Bonn and offers a stimulating research environment through its international network, workshops and 
conferences, data service, project support, research visits and doctoral program. IZA engages in (i) 
original and internationally competitive research in all fields of labor economics, (ii) development of 
policy concepts, and (iii) dissemination of research results and concepts to the interested public.  
 
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. 
Citation of such a paper should account for its provisional character. A revised version may be 
available directly from the author. 



IZA Discussion Paper No. 10247 
September 2016 

 
 
 
 
 
 

ABSTRACT 
 

On Nonparametric Identification of Treatment Effects 
in Duration Models 

 
We show that the main nonparametric identification finding of Abbring and Van den Berg 
(2003b, Econometrica) for the effect of a timing-chosen treatment on an event duration of 
interest does not hold. The main problem is that the identification is based on the competing-
risks identification result of Abbring and Van den Berg (2003a, Journal of the Royal Statistical 
Society, Series B) that requires independence between the waiting duration until treatment 
and the event duration, but the independence assumption does not hold unless there is no 
treatment effect. We illustrate the problem using constant hazards (i.e., exponential 
distribution), and as it turns out, there is no constant-hazard data generating process 
satisfying the assumptions in Abbring and Van den Berg (2003b, Econometrica) so long as 
the effect is not zero. We also suggest an alternative causal model. 
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1 Introduction

In a typical static treatment e¤ect framework, there appear a treatment D and a

response variable Y , and the e¤ect of D on Y is found by E(Y jD = 1)� E(Y jD = 0)

with some covariates controlled. In real life, however, things can happen over time such

that individuals choose when to take the treatment so that there appears a waiting

duration W to treatment in addition to D and Y . In such a case, �nding the e¤ect of

D on Y is not so straightforward because the treatment group changes over time with

more individuals getting treated as time passes. For instance, an unemployed person

chooses W to enrol in a job training D after the waiting time W , and the response

variable Y is the unemployed duration from the baseline of losing the previous job.

Another example is that a diseased person chooses W to take a medicine D, and

the response Y is the survival duration from the baseline of the disease onset. In cases

like this, the essential problem is that the untreated tend to have shorter Y than the

treated, because the untreated die before getting treated. Even if there is no genuine

treatment e¤ect, the simple fact that one should survive long enough to get treated

makes the treatment look like having a Y -lengthening e¤ect. One way to avoid this

illusionary e¤ect would be �to treat the dead�.

Abbring and Van den Berg (2003b) have been in�uential for �nding e¤ects of a

timing-chosen treatment on a response duration. As of this writing, Abbring and Van

den Berg (2003b) have been cited 508 times in Google Scholar, and there are many

studies using their results: Abbring and Van den Berg (2004), Abbring et al. (2005),

Bergemann et al. (2011), De Graaf-Zijl et al. (2011), Gaure et al. (2012), Hogelund et

al. (2010), Jahn and Rosholm (2013), Kyyrä (2010), Kyyrä et al. (2013), Lalive et al.

(2005,2008), Melberg et al. (2010), Richardson and Van den Berg (2001,2013), Roed

et al. (2006), Svarer (2011), Svarer and Verner (2008), Tatsiramos (2010), Van den

Berg et al. (2004), Van den Berg and Vikström (2013) and Van Ours and Williams

(2009,2012). In addition to these published studies, although not listed here, there are

tens of papers unpublished yet also invoking the results in Abbring and Van den Berg

(2003b). For brevity, we will abbreviate Abbring and Van den Berg (2003a,b) as AV1
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and AV2, respectively.

With t indexing time, AV2 envisioned three hazards: a waiting time hazardhw(t)

forW , an untreated hazard h0(t) for Y before treatment, and a treated hazard h1(t) for

Y after treatment as the treatment can alter the hazard for Y . Their identi�cation proof

was done in two stages. The �rst stage nonparametrically identi�es hw(t) and h0(t)

using the competing risks framework in AV1 based on observing only min(W;Y ), and

the second stage nonparametrically identi�es h1(t). A critical assumption for the �rst

stage is the conditional independence betweenW and Y given time-constant covariates

and unobserved heterogeneities. We will show in this paper that this independence

assumption cannot hold unless the treatment has no e¤ect, which invalidates the main

nonparametric identi�cation �nding of AV2, unfortunately. We then suggest another

causal model for nonparametric identi�cation.

The rest of this paper is organized as follows. Section 2 presents our main point:

the failure of the conditional independence betweenW and Y so that the results in AV1

cannot be invoked. Section 3 provides a speci�c example using the simplest possible

setup (i.e., constant hazards) with no covariate nor unobserved heterogeneity: there is

no data generating process (DGP) that satis�es the assumptions in AV2 and give the

desired identi�cation. Section 4 presents another causal model where nonparametric

identi�cation holds. Finally, Section 5 concludes.

2 Failure of Independence and False Untreated

2.1 Dependence between W and Y

Let hw(t) > 0 8t be the hazard for W at time t that may depend on covariates X

and an unobserved heterogeneity (�frailty�). Then W can be generated by solving

expf�
Z W

0

hw(�)d�g = Uw (2.1)

where Uw � U [0; 1] with U [0; 1] denoting the uniform distribution over [0; 1]. SinceRW
0
hw(�)d� is strictly increasing in W , the unique solution exists in (2.1), where the

left-hand side is the survival function of W with W as its argument.
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Let h0(t) > 0 8t be the hazard before treatment, and h1(t) > 0 after treatment;

h0(t) and h1(t) may also depend on X and unobserved heterogeneities, although the

presence of these terms is suppressed for notational simplicity as they do not matter

for our point. The AV2 causal model generates (W;Y ) as follows. First, generate W

using (2.1). Second, given W , generate Y by solving for Y

expf�
Z W

0

h0(�)d� �
Z Y

W

h1(�)d�g = Uy (2.2)

where Uy � U [0; 1] and Uy q Uw. AV2 (2003b, p. 1496) explained this Y -generating

process using the fact �(M) � Expo(1) where � is the cumulative hazard function of

a random variable M and Expo(1) stands for exponential distribution with parameter

1, which is equivalent to using the survival function and U [0; 1] in (2.2).

The main identi�cation �nding of AV2 (pp. 1505-1506) is proved in two stages.

The �rst stage invokes the identi�cation result of AV1 for competing risks where only

min(W;Y ) is observed and two hazards for W and Y are identi�ed nonparametrically,

and the second stage refers to the case of both (W;Y ) observed due to W < Y . The

�rst-stage identi�cation result of AV1 (p. 702) assumes the conditional independence

of W and Y given X and the unobserved heterogeneities. But this is violated in (2.2)

because Y depends on W .

It is curious why the above failure in the �rst-stage proof has not been noticed in

the literature. The most likely reason is that AV2 is a di¢ cult paper to read and the

applied studies in the literature simply took the �nding at the face value. It is curious

that Gaure et al. (2007) used only zero-e¤ect models for their simulation study to

show that their estimator works; why not show this under a non-zero e¤ect? Gaure et

al. (2007) then used a model with non-zero heterogeneous e¤ects only to demonstrate

biases in their Table 12.

When does the problem of Y depending onW disappear? This happens if h0 = h1,

under which (2.2) becomes

expf�
Z Y

0

h0(�)d�g = Uy

regardless of W . The two hazards hw and h0 are nonparametrically identi�ed as AV1
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showed because the conditional independence holds between W and Y generated by

expf�
Z W

0

hw(�)d�g = Uw and expf�
Z Y

0

h0(�)d�g = Uy with Uw q Uy: (2.3)

2.2 False Untreated: Treating the Dead

It is important to be aware that the post-treatment hazard h1 and W are involved

in generating Y in (2.2) so long as h0 6= h1. Hence so long as h0 6= h1, any Y is a

treated duration. Still yet, Y < W (untreated) can happen if Uy in (2.2) is relatively

large to make
RW
0
h0(�)d� +

R Y
W
h1(�)d� small, which in turn forces Y small. Since W

was generated using
RW
0
hw(�)d� in (2.1) whereas

RW
0
h0(�)d� appears for Y in (2.2),

Y < W can happen despite that h1 and W are involved in generating Y . This is

treating the dead: a person gets treated at W , but the person was in fact dead before

W . Other than the false control group, AV2 presumed the �genuine�control group:

those with W =1 (p. 1495).

Abbring and Van den Berg (2014, personal communication; AV3 hereafter) ac-

knowledged that Y and W are not independent. They, however, maintained that their

�nding still holds, because the subdensity functions of �Y with Y < W�and �W with

W < Y �are, omitting the covariates and unobserved heterogeneities,

(i) : h0(y) expf�
Z y

0

h0(�)d�g � expf�
Z y

0

hw(�)d�g; (2.4)

(ii) : hw(w) expf�
Z w

0

hw(�)d�g � expf�
Z w

0

h0(�)d�g:

AV3 stated �these are the subdensities of an independent competing risks model in

which the risks have hazard rates hw and h0. This model does not involve the treatment

e¤ect, so its analysis can proceed without knowledge of h1�. The next section will use

constant hazards

hw(t) = � > 0; h0(t) = �0 > 0 and h1(t) = �1 > 0 8t (2.5)

to show that there is no constant-hazard-based DGP satisfying the assumptions in

AV2, and that (2.4)(i) is false for feasible constant-hazard DGP�s that would arise in

real life.
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A reviewer suggested another DGP that is free of the treating-the-dead problem:

(i) : expf�
Z W

0

h0(�)d� �
Z Y

W

h1(�)d�g = Uy if Uy � expf�
Z W

0

h0(�)d�g

(ii) : expf�
Z Y

0

h0(�)d�g = Uy if Uy > expf�
Z W

0

h0(�)d�g: (2.6)

To ease referring, call this �DGP2�as there are two equations, relative to �DGP1�in

(2.2) with a single equation. For the constant hazards in (2.5), this becomes, with

�d � �1 � �0,

(i) : expf��0W � �1(Y �W )g = Uy () Y =
�d
�1
W � 1

�1
lnUy if Uy � exp(��0W )

(ii) : exp(��0Y ) = Uy () Y = � 1

�0
lnUy if Uy > exp(��0W ): (2.7)

In DGP2, there is no treating-the dead problem because W � Y in (i) and Y < W in

(ii); h1 and W are involved in generating Y only in the former.

We think DGP2 will give (2.4) even when h0 6= h1; i.e., DGP2 will pass the �rst

stage to identify hw and h0. This would be a good news, but as we showed in the

appendix, AV2 adopted DGP1 instead of DGP2. More importantly, even if DGP2 is

used for AV2, the second stage identi�cation of h1 fails due to the sample selection

problem that Uy in (2.6)(i) is subject to Uy � exp(��0W ) and thus related to W .

The easiest way to see this selection problem is considering the least squares estimator

(LSE) of Y on (1;W ) in (2.7)(i) to estimate �d=�1 where the error term is ���11 lnUy:

since Uy is related to W , the LSE is inconsistent. No instrument for W will help,

because any variable a¤ecting W would be related to UyjfUy � exp(��0W )g.

There is a trade-o¤ between the treating-the-dead and sample selection problems,

which can be seen in comparing DGP1 and DGP2. DGP1 avoids the selection problem

because Uy is not related to W in DGP1, but it su¤ers from the treating-the-dead

problem. Viewed di¤erently, by treated the dead, we can avoid the selection problem

of the untreated having shorter durations than the treated simply because the untreated

did not make it to the treatment even if the e¤ect is zero. DGP2 overcomes the treating-

the-dead problem at the expense of the selection problem. DGP1 fails in the �rst stage

of the AV2 identi�cation steps, whereas DGP2 fails in the second stage. Notice that
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DGP2 includes DGP1 as a limiting case with W ! 0: everybody treated except those

with W =1.

3 DGP Problem under Constant Hazards

Suppose that constant hazards hold as in (2.5) to get

HW (t) = �t; fW (w) = � exp(��w); FW (w) = 1� exp(��w) (3.1)

where HW denotes the cumulative hazard, fW the density and FW the distribution

function. Then, recalling the treatment e¤ect parameter �d � �1 � �0,

exp(��W ) = Uw =) W = � 1
�
lnUw;

expf��0W � �1(Y �W )g = Uy =) Y =
�d
�1
W � 1

�1
lnUy: (3.2)

In (3.2), there is no guarantee for Y > 0 unless �d � 0. Hence we will assume �d � 0.

We will also assume �d 6= � as (�d � �)�1 will appear below; this is only for brevity,

as we can easily allow for the case �d = �.

For the constant hazards, the claimed subdensity function of Y with Y < W by

AV3 in (2.4)(i) equals

�0 expf�(�+ �0)yg: (3.3)

We will show in the next section that the true subdensity of Y with Y < W equals the

claimed form (3.3) under no e¤ect �d = 0, but otherwise not when �d > 0.

3.1 Subdensity under Zero E¤ect

Suppose �d = 0. Using (3.2) with �d = 0() �0 = �1, it holds that

P (Y > yjW = w) = P (� 1

�0
lnUy > yjW = w):

�jW = w�drops out to result in Y j(W = w) � Expo(�0):

P (Y > yjW = w) = P (Y > y) = exp(��0y):
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Consider

P (Y > yjY < W ) = P (Y > y; Y < W )

P (Y < W )
=
`cause-Y subsurvival function�

P (Y observed, not W )
:

The appendix shows that

(i) : P (Y > y; Y < W ) =
�0

�+ �0
expf�(�+ �0)yg (3.4)

(ii) : P (Y < W ) =
�0

�+ �0
:

Hence, P (Y > yjY < W ) follows Expo(�+ �0):

P (Y > yjY < W ) = �+ �0
�0

�0
�+ �0

expf�(�+ �0)yg = expf�(�+ �0)yg: (3.5)

By symmetry, we also have W jW < Y following Expo(� + �0). That is, � + �0

is identi�ed by both Y jY < W and W jW < Y . Combining this with P (Y < W ) =

�0=(� + �0), we can identify both � and �0. Di¤erentiating the subsurvival function

(3.4)(i) with respect to y and then multiplying by �1, we obtain the true subdensity

that equals the claimed form in (3.3) under no e¤ect.

3.2 Subdensity under Positive E¤ect

Now suppose �d > 0 and �d 6= �. The appendix proves that

(i) : P (Y > y; Y < W )

=
�d

(�d � �)
exp(� �

�d
�1y)�

��1
(�d � �)(�+ �0)

expf�(�+ �0)yg (3.6)

(ii) : P (Y < W ) =
�0

�+ �0
:

The ratio of (i) to (ii) is

P (Y > yjY < W ) = (�+ �0)�d
�0(�d � �)

exp(� �
�d
�1y)�

��1
�0(�d � �)

expf�(�+ �0)yg; (3.7)

if �d = 0 () �0 = �1, (3.7) becomes expf�(� + �0)yg in (3.5). Note that (3.7)

converges to 0 as y !1, and converges to 1 as y ! 0 because

(�+ �0)�d
�0(�d � �)

� ��1
�0(�d � �)

=
��d + �0�d � �(�0 + �d)

�0(�d � �)
=
�0(�d � �)
�0(�d � �)

= 1:
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Di¤erentiating the subsurvival function in (3.6)(i) with respect to y and then

multiplying by �1, we obtain the subdensity for Y with Y < W :

��1
(�d � �)

fexp(� �
�d
�1y)� expf�(�+ �0)yg: (3.8)

Note that the di¤erence between the two exponents is

� �
�d
�1 + (�+ �0) =

1

�d
(���1 + ��d + �0�d) =

1

�d
(���0 + �0�d) =

�0
�d
(�d � �) :

this is positive/negative according to �d� � positive/negative, which ensures that the

subdensity is positive always. The subdensity function (3.8) for Y with Y < W di¤ers

from the claimed form (3.3), and (3.8) does involve �d.

Figure 1: True & Empirical SubSurvivial Functions under Zero & Positive E¤ects

To dissipate any doubt the reader might have about (3.6), we generated data using

N = 500; � = 0:5; �0 = 1; �d = 0 or 5

and plotted the true subsurvival functions y 7�! P (Y > y; Y < W ) in solid lines and its

estimated versions in dashed lines. The left panel of Figure 1 is for no e¤ect (�d = 0),

whereas the right panel is for a positive e¤ect (�d = 5). Figure 1 demonstrates that the

empirical subsurvival functions closely match the true versions in (3.4)(i) and (3.6)(i).

Also P (Y < W ) = 0:67 is closely matched by two sample means 0.65 (under �d = 0)

and 0.68 (under �d = 5).
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Equation (A.2) in the appendix shows

P (Y > yjW = w) = 1[y � �d
�1
w] + 1[

�d
�1
w < y] expf��0y � �d(y � w)g:

Taking ln on this survival function and multiplying by �1 gives the cumulative hazard:

0 when y � �d
�1
w and �0y + �d(y � w) when

�d
�1
w < y:

Consider now P (Y > yjW = w) and P (Y > yjW = w0) with w 6= w0. Their cumulative

hazards do not fully agree on y 2 f0;min(w;w0)g due to �d(y � w) versus �d(y � w0).

This violates the no-anticipation assumption of AV2 (p. 1497), as the anticipation

behavior is evident in �d(y�w) and �d(y�w0) for the intervention timing. Hence, the

no-anticipation assumption rules out �d > 0.

With �d < 0 already ruled out as a DGP, there is no DGP for AV2 under constant

hazards and �d 6= 0. This casts doubt on the role of the no-anticipation assumption,

because the constant hazard model with �d > 0 is the simplest DGP one can think

of that can easily arise in reality. In short, there is nothing left, as far as DGP under

constant hazards and non-zero e¤ect goes.

4 Causal Model with Three Durations

Having presented a negative result, one may wonder if it is possible to have a

nonparametric identi�cation for the e¤ect of a timing-chosen treatment on a response

duration. The answer is positive when the �three-duration� framework in Lee and

Johansson (2013) is adopted.

Lee and Johansson (2013) considered three durations: W , an untreated duration

Y 0 and a treated duration Y 1, instead of the two durations (W;Y ). In the three-

duration framework, W and Y 0 are generated with

expf�
Z W

0

hw(�)d�g = Uw and expf�
Z Y 0

0

h0(�)d�g = U0 (4.1)

where Uw and U0 are iid U [0; 1]:

Then the �net treated duration�Y 1 from the time W and onward is generated by

expf�
Z Y 1

0

h1(�)d�g = U1 where U1 � U [0; 1]; (4.2)
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h1(t) may depend on W to make Y 1 depend on W , in which case �Y w�would be more

appropriate as the potential treated duration when treated at w. The �gross treated

duration�from the baseline is

W + Y 1 (or W + Y W ). (4.3)

Nonparametric identi�cation of the three hazards can be done in two stages laid

out in the next paragraph, under the assumption of mixed proportional hazards (MPH)

and the assumption that (Y 1; Y 0;W ) are conditionally independent given X and the

unobserved heterogeneity factors. The MPH assumption is that each hazard is a prod-

uct of a function of t (the baseline hazard), a function of X, and an unobserved factor;

the three unobserved factors are assumed to be independent of X, although they may

be related to one another. AV1 and AV2 required the MPH assumption. All functional

forms including the distribution of the unobserved factors are allowed to be unknown.

In the �rst stage, both hw and h0 are nonparametrically identi�ed due to AV1�s

competing-risks identi�cation �nding, because W and Y 0 are conditionally indepen-

dent given X and the unobserved factors. In the second stage, h1 is nonparametrically

identi�ed using only the treatment group (i.e., the group with W < Y 0 so that W is

observed) due to the assumption that (Y 1; Y 0;W ) are conditionally independent given

X and the unobserved factors. This is so because the selection problem of condition-

ing on W < Y 0 does not occur under the conditional independence assumption, and

because identifying h1 using only Y 1 is strictly easier than the �rst stage identi�cation.

5 Conclusions

We showed that the critical independence assumption between treatment-waiting

and response durations invoked in Abbring and Van den Berg (2003b) fails, and thus

their main nonparametric identi�cation �nding does not hold unless there is no treat-

ment e¤ect. We also showed that, under constant hazards, there is no DGP satisfying

the assumptions of Abbring and Van den Berg (2003b) due to the critical no anticipa-

tion assumption. A causal model based on three durations was then presented as an

alternative where nonparametric identi�cation holds.
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Will there be any valid DGP for non-constant hazards? Perhaps, but unlikely,

as constant hazards are the simplest and they are the building blocks for more so-

phisticated hazards. Certainly, we cannot prove that no valid DGP exists for any

hazards; rather, it will be up to Abbring and Van den Berg to demonstrate that a

practically reasonable and useful DGP holds within their framework, e.g., under the

popular Weibull hazards. Abbring and Van den Berg (2003b) did not provide any

speci�c DGP that satis�es all their assumptions, although they provided a speci�c ex-

ample where the identi�cation fails. Our conjecture is that there exists no such DGP.

This may be the reason why there has been no simulation evidence in the literature

that their identi�cation and ensuing estimation work.

Despite the negative points just mentioned, this paper also provided a positive

point: if a di¤erent DGP without the �treating-the-dead�problem is adopted that a

reviewer suggested and if the selection problem associated with the DGP can be dealt

with somehow, then the nonparametric identi�cation of Abbring and Van den Berg

(2003b) may hold. Of course, it would not be easy to overcome the selection issue, but

at least there is a direction to pursue.

APPENDIX

DGP1 Adopted by AV2

With our W being their S in AV2, AV2 (p. 1495) stated their causal model as

�our dynamically assigned binary treatment can be reinterpreted as a set

of mutually exclusive treatment indexed by �R+ � R+ [ f1g. Here, the

point 1 represents the no-treatment case. To each treatment s 2 �R+

corresponds a random variable Y �(s) � 0, the potential outcome in the

case that we would intervene and assign treatment s.�,......,�The actual

outcome is Y := Y �(S);�

Hence, in AV2, W is a mixture of a R+-valued random variable and 1. That is,

generate a binary random variable Z, and if Z = 0, set W = 1; otherwise, generate
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W from, e.g., Expo(�). The genuine control group (Z = 0) occurs only because they

get never treated with W =1. For those with Z = 1, the intervention at w alters the

hazard from h0 to h1 to give

hY �(w)(y) = h0(y)1[y � w] + h1(y)1[w < y];

Model 1A of AV2 (p.1503) is a sophisticated version of this. This leads to de�ning

Y �(w) by inverting the cumulative hazard function in

expf�
Z w

0

h0(�)d� �
Z Y �(w)

w

h1(�)d�g = Uy;

see the equation in the middle of AV2 (p. 1496). Replacing w with W in this display

gives the observed Y � Y �(W ).

In discussing their Model 1A, AV2 (p. 1504, lines 4-5) stated �Conditional on

(X;V ), the variables Y and S are only dependent through �(tjS;X)�, where �(tjS;X)

is the hazard shifter. DGP2 goes against this, because the hazard shifter is a constant

in the constant hazard model, and yet Y and W are dependent through the selection

condition. Also, it should be noted that AV3 did not object to DGP1, nor did they

suggest DGP2.

Proof for (3.4)

Observe

P (Y > y; Y < W ) =

Z
P (Y > y; Y < wjW = w)fW (w)dw (A.1)

=

Z
P (y < Y < w)1[y < w]� exp(��w)dw

= �

Z 1

y

fexp(��0y)� exp(��0w)g exp(��w)dw

= exp(��0y)�
Z 1

y

exp(��w)dw � �
Z 1

y

expf�(�+ �0)wgdw]

= exp(��0y) exp(��y)�
�

�+ �0
expf�(�+ �0)yg

= expf�(�+ �0)yg �
�

�+ �0
expf�(�+ �0)yg =

�0
�+ �0

expf�(�+ �0)yg:
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Also observe

P (Y < W ) =

Z
P (Y < wjW = w)fW (w)dw = �

Z
f1� exp(��0w)g exp(��w)dw

= �

Z 1

0

exp(��w)dw � �
Z 1

0

expf�(�+ �0)wgdw = 1�
�

�+ �0
=

�0
�+ �0

:

Proof for (3.6)

As a preliminary, we have

P (Y > yjW = w) = P (
�d
�1
W � 1

�1
lnUy > yjW = w) = PfUy < exp(��1y + �dw)g

= exp(��1y + �dw) if exp(��1y + �dw) < 1 and 1 otherwise

= exp(��1y + �dw) � 1[w <
�1
�d
y] + 1[

�1
�d
y � w]: (A.2)

It is interesting that despite �d 6= 0, y = w gives, since �1=�d > 1 =) w < �1w=�d,

P (Y > wjW = w) = exp(��1w + �dw) = exp(��0w) (A.3)

as if Y were independent of W and Y � Expo(�0) due to �d = 0.

Recalling (A.1) and (A.2), it holds that

P (Y > y; Y < W ) =

Z
P (y < Y < wjW = w)1[y < w]� exp(��w)dw

= �

Z 1

y

fP (y < Y jW = w)� P (w < Y jW = w)g exp(��w)dw

= �

Z 1

y

fexp(��1y + �dw)1[w < ��1d �1y]

+1[��1d �1y � w]� exp(��0w)g exp(��w)dw

= � exp(��1y)
Z ��1d �1y

y

expf(�d � �)wgdw

+�

Z 1

��1d �1y

exp(��w)dw � �
Z 1

y

expf�(�+ �0)wgdw

=
�

�d � �
exp(��1y) expf(�d � �)wgj

��1d �1y
y (A.4)

+exp(����1d �1y)�
�

�0 + �
expf�(�+ �0)yg:

The �rst term in (A.4) equals

�

�d � �
exp(��1y)[expf(�d � �)��1d �1yg � expf(�d � �)yg]

=
�

�d � �
[exp(����1d �1y)� expf�(�+ �0)yg]:
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Substituting this into (A.4), we obtain (3.6)(i):

�

�d � �
[exp(����1d �1y)� expf�(�+ �0)yg]

+ exp(����1d �1y)�
�

�0 + �
expf�(�+ �0)yg

=
�d

(�d � �)
exp(� �

�d
�1y)�

��1
(�d � �)(�+ �0)

expf�(�+ �0)yg:

As for (3.6)(ii), it holds due to (A.3):

P (Y < W ) =

Z
P (Y < wjW = w)fW (w)dw = �

Z
f1� exp(��0w)g exp(��w)dw.
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