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1 Introduction

Since the seminal works by Oaxaca (1973) and Blinder (1973), numerous empirical

studies have adopted the decomposition technique to quantify the unexplained part of

wage differentials between groups, e.g. male vs. female, unionized vs. non-unionzed

workers, workers in private vs public-sector, etc. As well documented in a comprehen-

sive survey by Fortin et al. (2011), a large number of studies also aimed at suggesting

alternative approaches to cope with methodological issues such as 1) the choice of

omitted reference groups in detailed wage decompositions; 2) the choice of counterfac-

tual reference parameters; 3) extensions to non-linear models; and 4) decompositions

beyond sample means.

Identification of the discrimination-free wage structure is one of the key issues in

decomposition analyses. While the coefficient estimates of male workers were suggested

initially as the counterfactual reference parameters (Oaxaca, 1973), the male wage

structure may not be appropriate for the counterfactual wage structure in the absence

of labor market discrimination. Among other alternatives, Neumark (1988) proposed

to use the coefficient estimates based on a pooled regression without group-specific

intercepts. More recently, however, we still observe a debate on the ways to measure

the unexplained gaps: pooled-sample vs. intercept-shift approaches (Elder et al., 2010;

Lee, 2015).

Another source of ambiguity in wage decompositions is the lack of invariance with

respect to the choice of left out reference groups when estimating the separate contri-

butions of group differences in dummy variable coefficients to the unexplained wage

gap (Oaxaca and Ransom, 1999). Solutions to this problem are found in Gardeazabal

and Ugidos (2004) and Yun (2005). For further extensions, among others, the decom-

position techniques are extended to the decomposition of the group differentials across
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the entire wage distribution (Machado and Mata, 2005) and to the applications for

non-linear models (Bauer and Sinning, 2008).

Panel data models and selectivity correction models each present interesting compli-

cations for decomposition methodology. For panel data models, special considerations

arise with respect to unobserved heterogeneity in the presence of repeated observa-

tions. In the case of the popularly used Heckman selection correction method (Heck-

man, 1979), there is inherent ambiguity about how to characterize group differences in

a) selection equation parameters and b) covariances between selection equation errors

and main (outcome) equation errors.

In Neuman and Oaxaca (2003, 2004), gender wage decompositions were examined

in a cross-section setting in which Heckman selection models were used. A convenient,

but in our view often a less than satisfactory, solution is to simply net out the selection

terms from the observed wage gap. The resulting wage decomposition is identical

in form to the conventional decomposition. The problem is that this decomposition

describes an estimated counterfactual wage gap that is different from the one observed

in the data. In this earlier work the authors developed 6 alternative decompositions of

the selection terms corresponding to different assumptions about what is explained and

what is unexplained. These involve constructing different counterfactuals regarding

gender differences in parameters and covariates in the selection equation and gender

differences in covariances between selection equation errors and the main equation

errors. This work shows how dramatically inferences about discrimination change with

different assumptions about the counterfactuals associated with the sample selection

process.

The central idea of our paper is premised on the idea that the special circum-

stances surrounding sample selection panel data methods carry over to decomposition
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methodology. These special considerations have to be addressed when conducting wage

decompositions using selection models estimated by panel data techniques. The con-

tributions of the paper lie in showing how issues associated with correlated random

effects carry over to wage decompositions based on panel data estimation methods.

Among these issues is a unique decomposition identification problem that arises from

the presence of time-invariant regressors combined with an empirical strategy of em-

ploying time-averages of the exogenous variables to estimate the selection mechanism

and control for unobserved heterogeneity. We develop decomposition methods intended

to accomodate sample selection and decomposition identification issues in panel data

settings. For simplicity we confine ourselves to the normal distribution in a correlated

random effects setting. We apply our methods to investigate the gender wage differen-

tials in Germany using the well known German Socio-Economic Panel (GSOEP) data

(1986-2011).

Given that many different longitudinal data sets are available across countries,

we also expect that our paper can serve as a practical guide for researchers on the

application of panel data selection methods developed in Wooldridge (1995, 2010).

Moreover, our decomposition methods are readily generalizable to other types of wage

differentials e.g. union, race, and more broadly to any sort of outcome differential.

2 Methods: panel data decomposition

2.1 Wage Model

Consider the following panel data model:

yit = xitβ + ci + uit

where yit is some measure of wages, e.g. log wages, xit is a 1xK vector of observa-

tions on the covariates, β is the conforming Kx1 parameter vector, ci is unobserved
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heterogeneity, and uit is a random error term. In the case of an unbalanced design and

following Wooldridge (2010, p. 833-35), the conditional mean of yit can be expressed

as

E (yit | xit, z̄i, sit = 1) = xitβ + z̄iπ + θ1λit + θ2d2tλit + . . .+ θTdTtλit

where sit = 1(yit observed), z̄i is a 1xJ vector of individual time averages for all

exogenous variables in the model including those in xit and the wage equation exclusion

restrictions1, J represents the number of exogenous variables in the model, the djt

variables are period indicators, T is the last possible time period in the data, and λit is

the Inverse Mills Ratio (IMR) associated with labor force participation for individual

i in period t.

The IMR may be expressed as

λit = φ (z̄iγt)
Φ (z̄iγt)

,

and the reduced form probit selection equation estimated for a particular year t for

the binary labor force participation variable lit for Nt cross-section units is given by

prob(lit = 1 | z̄i) = Φ (z̄iγt) ,

where γt is the conforming Jx1 parameter vector.

In practice one constructs the IMR variables from probit models that are estimated

separately for each year. Accordingly, the predicted IMR for a given individual in a

given year is calculated as

λ̂it = φ (z̄iγ̂t)
Φ (z̄iγ̂t)

.

The resulting estimating equation is therefore expressed by

yit = xitβ + z̄iπ + θ1λ̂it + θ2d2tλ̂it + ...+ θTdTtλ̂it + error.

1For each individual the elements of z̄i in every period are calculated as the averages of the exogenous
variables over all periods that the individual appears in the sample, not just the periods in which the
individual is employed.
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A special case arises from the presence of time invariant regressors in xit. Without

loss of generality, we will let x1i = z̄1i represent the vector of time invariant regressors

common to xit and z̄i, including the constant term. Therefore, the vector x1i (z̄1i) can

appear only once for each cross-sectional unit. Consequently, the parameter vectors

β1, π1 are not identified. Only their sum (β1 + π1) can be estimated in the selectivity

corrected equation. As shown below, this identification issue impacts decompositions

that asymmetrically treat gender differences in the β’s and the π’s and/or in the x’s

and the z’s.

2.2 Decomposition Methods

Suppose the sample selected main equation is estimated separately for males and fe-

males by OLS:

ymit = xmitβ̂m + z̄miπ̂m + θ̂m1λ̂mit + θ̂m2d2tλ̂mit + ...+ θ̂mTdTt λ̂mit + error

yfit = xfitβ̂f + z̄fiπ̂f + θ̂f1λ̂fit + θ̂f2d2tλ̂fit + ...+ θ̂fTdTt λ̂fit + error.

At the overall wage sample mean (across all individuals and time periods in the wage

sample), the estimated models can be expressed as

ÿm = ẍmβ̂m + z̈mπ̂m + θ̂m1λ̈m + θ̂m2λ̈m2 + ...+ θ̂mT λ̈mT

ÿf = ẍf β̂f + z̈f π̂f + θ̂f1λ̈f + θ̂f2λ̈f2 + ...+ θ̂fT λ̈fT ,

where ÿ =
∑N
i=1
∑Tei
t=1yit∑N

i=1
Tei

, ẍ =
∑N
i=1
∑Tei
t=1xit∑N

i=1
Tei

, z̈ =
∑N
i=1Teiz̄i∑N

i=1
Tei

, λ̈ =
∑N
i=1
∑Tei
t=1λ̂it∑N

i=1
Tei

,

λ̈2 =
∑N
i=1
∑Tei
t=1d2tλ̂it∑N

i=1
Tei

=
∑N
i=1λ̂i2∑N

i=1
Tei

,..., λ̈T =
∑N
i=1
∑Tei
t=1dTtλ̂it∑N

i=1
Tei

=
∑N
i=1λ̂iT∑N

i=1
Tei

,

N is the number of individuals, and Tei is the number of times the ith individual
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appears in the wage sample, i.e. is employed.2

When the male wage structure is the baseline, the decomposition at the overall

mean is given by

ÿm − ÿf = (ẍm − ẍf ) β̂m + (z̈m − z̈f ) π̂m +
(
λ̈m − λ̈f

)
θ̂m1 +

(
λ̈m2 − λ̈f2

)
θ̂m2 + ...

+
(
λ̈mT − λ̈fT

)
θ̂mT

+ ẍf
(
β̂m − β̂f

)
+ z̈f (π̂m − π̂f ) + λ̈f

(
θ̂m1 − θ̂f1

)
+ λ̈f2

(
θ̂m2 − θ̂f2

)
+ ...

+ λ̈fT
(
θ̂mT − θ̂fT

)
.

Differences in the mean IMR’s can be further decomposed into gender differences in

the probit parameters and gender differences in the probit regressors:

λ̈m − λ̈f =
(
λ̈m − λ̈0

f

)
+
(
λ̈0
f − λ̈f

)
λ̈m2 − λ̈f2 =

(
λ̈m2 − λ̈0

f2

)
+
(
λ̈0
f2 − λ̈f2

)
·

·

·

λ̈mT − λ̈fT =
(
λ̈mT − λ̈0

fT

)
+
(
λ̈0
fT − λ̈fT

)

where λ̈0
f =

∑N
i=1
∑Tfi

t=1λ̂
0
fit∑Nf

i=1
Tfi

, λ̂0
fit = φ (z̄fiγ̂mt)

Φ (z̄fiγ̂mt)
, λ̈0

f2 =
∑Nf

i=1λ̂
0
fi2∑Nf

i=1
Tfi

, λ̂0
fi2 = φ (z̄fiγ̂m2)

Φ (z̄fiγ̂m2) , ...,

λ̂0
fiT = φ (z̄fiγ̂mT )

Φ (z̄fiγ̂mT ) , λ̈
0
fT =

∑Nf

i=1λ̂
0
fiT∑Nf

i=1
Tfi

.

The λ̈0
f , λ̈

0
f2, ..., λ̈

0
fT terms represent the evaluation of the IMR’s for females using

the estimated probit parameters for the males. Accordingly, the term
(
λ̈m − λ̈0

f

)
mea-

sures how much of the gender difference in λ̈m− λ̈f is attributable to gender differences

2For notational convenience, we suppress the gender group subscript.
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in the variables determining selection and
(
λ̈0
f − λ̈f

)
measures how much of the gender

difference arises from gender differences in the probit parameters in the selection equa-

tion. These interpretations carry over to decompositions of
(
λ̈m2 − λ̈f2

)
, ...,

(
λ̈mT − λ̈fT

)
.

The more detailed decomposition becomes

ÿm − ÿf = (ẍm − ẍf ) β̂m + (z̈m − z̈f ) π̂m +
(
λ̈m − λ̈0

f

)
θ̂m1 +

(
λ̈0
f − λ̈f

)
θ̂m1

+
(
λ̈m2 − λ̈0

f2

)
θ̂m2 +

(
λ̈0
f2 − λ̈f2

)
θ̂m2 + ...+

(
λ̈mT − λ̈0

fT

)
θ̂mT +

(
λ̈0
fT − λ̈fT

)
θ̂mT

+ ẍf
(
β̂m − β̂f

)
+ z̈f (π̂m − π̂f ) + λ̈f

(
θ̂m1 − θ̂f1

)
+ λ̈f2

(
θ̂m2 − θ̂f2

)
+ ...

+ λ̈fT
(
θ̂mT − θ̂fT

)
.

There are of course any number of ways to combine the decomposition terms to

reflect explained and unexplained (discrimination?) differences (for the cross-section

case see Neuman and Oaxaca, 2003, 2004). Below, we consider eight alternative de-

composition methods. In our view these alternatives span the most obvious (and

potentially interesting) ways one would want to consider for allocating decomposition

components to the categories of explained and unexplained. Each method is introduced

by a succinct statement that captures the essence of the approach being taken.

Method 1

As a first approximation one can simply lump together all differences associated

with gender differences in characteristics into the explained category and all differences

associated with gender differences in parameters into the unexplained category:

ÿm − ÿf = E1 + U1,

where
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E1 = (ẍm − ẍf ) β̂m + (z̈m − z̈f ) π̂m +
(
λ̈m − λ̈0

f

)
θ̂m1 +

(
λ̈m2 − λ̈0

f2

)
θ̂m2 + ...+

(
λ̈mT − λ̈0

fT

)
θ̂mT ,

U1 = ẍf
(
β̂m − β̂f

)
+ z̈f (π̂m − π̂f ) + λ̈f

(
θ̂m1 − θ̂f1

)
+ λ̈f2

(
θ̂m2 − θ̂f2

)
+ ...+ λ̈fT

(
θ̂mT − θ̂fT

)
+
(
λ̈0
f − λ̈f

)
θ̂m1 +

(
λ̈0
f2 − λ̈f2

)
θ̂m2 + ...+

(
λ̈0
fT − λ̈fT

)
θ̂mT .

Method 2

The second method treats gender differences in coefficients on the IMR’s as ex-

plained or at least not discriminatory:

ÿm − ÿf = E2 + U2,

where

E2 = (ẍm − ẍf ) β̂m + (z̈m − z̈f ) π̂m +
(
λ̈m − λ̈0

f

)
θ̂m1 +

(
λ̈m2 − λ̈0

f2

)
θ̂m2 + ...+

(
λ̈mT − λ̈0

fT

)
θ̂mT

+ λ̈f
(
θ̂m1 − θ̂f1

)
+ λ̈f2

(
θ̂m2 − θ̂f2

)
+ ...+ λ̈fT

(
θ̂mT − θ̂fT

)
,

U2 = ẍf
(
β̂m − β̂f

)
+ z̈f (π̂m − π̂f ) +

(
λ̈0
f − λ̈f

)
θ̂m1 +

(
λ̈0
f2 − λ̈f2

)
θ̂m2 + ...+

(
λ̈0
fT − λ̈fT

)
θ̂mT .

Method 3

A somewhat agnostic approach is to identify a separate selection effect that is not

included in either the explained or the unexplained components of the decomposition.

ÿm − ÿf = E3 + U3 + S3,

where

E3 = (ẍm − ẍf ) β̂m + (z̈m − z̈f ) π̂m +
(
λ̈m − λ̈0

f

)
θ̂m1 +

(
λ̈m2 − λ̈0

f2

)
θ̂m2 + ...+

(
λ̈mT − λ̈0

fT

)
θ̂mT

U3 = ẍf
(
β̂m − β̂f

)
+ z̈f (π̂m − π̂f ) +

(
λ̈0
f − λ̈f

)
θ̂m1 +

(
λ̈0
f2 − λ̈f2

)
θ̂m2 + ...+

(
λ̈0
fT − λ̈fT

)
θ̂mT

S3 = λ̈f
(
θ̂m1 − θ̂f1

)
+ λ̈f2

(
θ̂m2 − θ̂f2

)
+ ...+ λ̈fT

(
θ̂mT − θ̂fT

)
8



The selectivity term S3 arises solely from gender differences in the IMR coefficients.

Method 4

A more agnostic approach is to lump together all gender differences in the IMRs

and IMR coefficients as selection effects. This approach confines the explained and

unexplained components to a) gender differences in both the time varying covariates

and the time-averaged means for the non IMR terms, and b) gender differences in the

coefficients on the time varying covariates and the time-averaged means for the non

IMR terms.

ÿm − ÿf = E4 + U4 + S4

where

E4 = (ẍm − ẍf ) β̂m + (z̈m − z̈f ) π̂m

U4 = ẍf
(
β̂m − β̂f

)
+ z̈f (π̂m − π̂f )

S4 =
(
θ̂m1λ̈m + θ̂m2λ̈m2 + ...+ θ̂mT λ̈mT

)
−
(
θ̂f1λ̈f + θ̂f2λ̈f2 + ...+ θ̂fT λ̈fT

)
.

Method 5

A fifth variant on our decomposition methodology regards the following elements

as explained: all gender differences in the z̈ time averaged variables, their wage effects

π, the ẍ regressors, and gender differences in the IMR coefficients. The resulting

decomposition may be expressed as

ÿm − ÿf = E5 + U5,

where
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E5 = (ẍm − ẍf ) β̂m + (z̈mπ̂m − z̈f π̂f ) +
(
λ̈m − λ̈0

f

)
θ̂m1 +

(
λ̈m2 − λ̈0

f2

)
θ̂m2 + ...+

(
λ̈mT − λ̈0

fT

)
θ̂mT

+ λ̈f
(
θ̂m1 − θ̂f1

)
+ λ̈f2

(
θ̂m2 − θ̂f2

)
+ ...+ λ̈fT

(
θ̂mT − θ̂fT

)
,

U5 = ẍf
(
β̂m − β̂f

)
+
(
λ̈0
f − λ̈f

)
θ̂m1 +

(
λ̈0
f2 − λ̈f2

)
θ̂m2 + ...+

(
λ̈0
fT − λ̈fT

)
θ̂mT .

This decomposition method eliminates the selection effect as a separate component

in the decomposition and treats gender differences in the parameters of the probit

selection equations as unexplained. It imposes the assumption that gender differences

in unobserved heterogeneity as captured by z̈mπ̂m− z̈f π̂f are conceptually no different

than the explained effects of gender differences in the observed characteristics,

(ẍm − ẍf )β̂m.

Note that Method 5 is a decomposition that treats gender differences in the β’s

and the π’s asymmetrically. This asymmetry arises because gender differences in the

β parameters are included in the unexplained gap while gender differences in the π

parameters are assigned to the explained gap. Without identifying restrictions in

the presence of time-invariant regressors appearing in xit, one cannot calculate the

decomposition components (ẍm1 − ẍf1)β̂m1, ẍf1(β̂m1 − β̂f1), and z̈m1π̂m1 − z̈f1π̂f1.

In general we cannot anticipate what, if any, identifying restrictions would be jus-

tified in a panel data decomposition analysis. Nevertheless, two normalization restric-

tions are worth considering. The normalization π1 = 0 would allocate (ẍm1 − ẍf1)β̂m1

to E5 and ẍf1(β̂m1 − β̂f1) to U5. We refer to this variant as Method 5a. Alterna-

tively, the normalization β1 = 0 would allocate z̈m1π̂m1 − z̈f1π̂f1 to E5. This variant

is Method 5b. With these two normalizations it is the case that

β̂j1|(πj1 = 0) = π̂j1|(βj1 = 0) and ẍj1 = z̈j1, for j = m, f .

Method 6
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Another decomposition approach is to treat gender differences in the z̈ time av-

eraged variables entirely as part of the selection mechanism on the assumption that

unobserved heterogeneity is inextricably bound up with selection:

ÿm − ÿf = E6 + U6 + S6,

where

E6 = (ẍm − ẍf ) β̂m,

U6 = ẍf
(
β̂m − β̂f

)
,

S6 = (z̈mπ̂m − z̈f π̂f ) +
(
θ̂m1λ̈m + θ̂m2λ̈m2 + ...+ θ̂mT λ̈mT

)
−
(
θ̂f1λ̈f + θ̂f2λ̈f2 + ...+ θ̂fT λ̈fT

)
.

Because all of the gender differences in the selection terms are lumped together

and included in the selection component, this methodology confines the explained and

unexplained components of the decomposition to gender differences in the xit covariates

and gender differences in the β coefficients on the xit covariates, respectively.

Note that Method 6 is a decomposition that asymmetrically treats gender differ-

ences in the β’s and the π’s and in the x’s and z’s. The asymmetry here arises because

a) the explained gap includes gender differences in the x’s but excludes differences in

the z’s, and b) the unexplained gap includes gender differences in the β parameters

but excludes gender differences in the π parameters. Consequently, the presence of

time invariant regressors in xit introduces identification issues in the decomposition

analysis.

Again without identifying restrictions, one cannot in general calculate the decom-

position components (ẍm1− ẍf1)β̂m1, ẍf1(β̂m1− β̂f1), and z̈m1π̂m1− z̈f1π̂f1. Similar to

Method 5, the normalization π1 = 0 allocates (ẍm1− ẍf1)β̂m1 to E6 and ẍf1(β̂m1− β̂f1)

to U6. This decomposition is referred to as Method 6a. On the other hand, the nor-

malization β1 = 0 allocates z̈m1π̂m1 − z̈f1π̂f1 to S6. We refer to this decomposition as
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Method 6b.

3 Data and Summary Statistics

The estimation of our model is carried out using data from the German Socio-Economic

Panel (G-SOEP). The survey is a continuous series of national longitudinal data that

was started in 1984. Approximately 11,000 private households are randomly drawn

from the Federal Republic of Germany. The survey included a sample of Eastern

German residents since 1990. Individuals are followed over time through an annual

questionnaire on household composition, employment, occupations, earnings, health

and satisfaction indicators.

Our sample is restricted to prime age working persons (age 18 to 65) in Western

Germany, who are not serving in the armed forces and are not self-employed. We also

exclude persons with missing data for any variables used in the empirical analyses.

The final samples include 112,711 men (85,928 employed) and 124,059 women (69,476

employed) over the period 1986-2011.

In Table 1 we report the summary statistics on human capital and job character-

istics, including immigration status and information on the years in Germany since

migration. Predictably, males exhibit higher wage rates, experience, and a more fa-

vorable occupational distribution. Males are also slightly more highly educated. The

hourly wage is calculated as monthly earnings divided by the number of monthly work-

ing hours. Monthly working hours are estimated as weekly working hours multiplied

by 4.33. The mean wage of male workers is 30.8% higher than the mean wage of

female workers (e16.32 versus e12.47). Of course, between-group differences in job

and productivity-related characteristics can explain a portion of the wage differences

between male and female workers. For instance, men are more likely to obtain higher
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education, have much longer job tenure or are more likely to have managerial or profes-

sional positions. Males are more likely to be immigrants and conditional upon being

immigrants, have lived in Germany about 8 to 9 months longer than female immi-

grants. Women are more likely to work in the service or trade sector while men are

more likely to work in the manufacturing or construction sector.

4 Results

4.1 Wage Equations by Gender

The estimated (log) wage equations are reported in Table 2. The variables listed

under Time varying covariates are the time varying regressors that appear in the

vector xit. On the other hand, the variables listed under Time averaged means are the

regressors appearing in the vector z̄i. Among these variables, those designated with

an ‘(m)’ are time averages of the time varying covariates in xit, the time invariant

regressors x1i = z̄1i appearing in xit, and the time varying wage equation exclusion

restrictions.3 The usual concavity in work experience is evident as well as the expected

returns to education and occupational ordering. Wage rates are lower for immigrants,

especially among males. Years since migration have no independent effect on the

wage rates of males but do reduce the migration wage penalty for female immigrants.

The nonstandard elements of the wage equations arise from the yearly IMR’s and the

time averaged means of the time-varying covariates. Interestingly, the selection results

suggest a negative selection into the labor force, especially among males.

4.2 Decomposition of Wage Differentials

Table 3 reports the results of eight alternative decomposition methods. The overall,

unadjusted gender wage differential across all individuals and time periods is 0.277. As

3The exclusion restrictions are age, age squared, married, and children under 18.
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was the case in Oaxaca and Neuman (2004), there is large variation in the magnitudes

of the decomposition components. These differences arise from how gender differences

in the components of the selectivity term are allocated.

We first examine Methods 1,2, 5a, and 5b for which all of the selectivity terms are

allocated to either the explained or the unexplained gaps, leaving no pure selectivity

component in the decomposition. The two alternative normalizations for Method 5

yielded very nearly identical results. Method 2 yields the smallest positive estimate of

the explained gap at 0.066 or 24% of the overall wage gap. Recall that this method

simply aggregated all gender differences in characteristics and gender differences in

coefficients on the IMR’s into the explained gap while aggregating all other gender

differences in parameters into the unexplained gap.

Methods 1, 5a, and 5b produced very nearly the same decompositions. The es-

timated explained gaps are respectively 0.107 (39%), 0.118 (43%), and 0.115 (41%).

Accordingly, the estimated unexplained gaps are 0.170 (61%), 0.159 (57%), and 0.163

(59%). These three methods treat gender differences in the IMR coefficients (θ′s) as

explained but they differ from Method 2 in that the latter treats only the gender dif-

ferences in the time-averaged means (z̄i) as explained. In addition Methods 5a and

5b treat gender differences in the coefficients (π′s) on the time-averaged means as

explained.

Methods 3, 4, 6a, and 6b all include a separate selectivity component in the decom-

position. As was the case for Methods 5a and 5b, the two alternative normalizations

corresponding to Methods 6a and 6b yielded very nearly identical results. Method

3 yields the largest positive explained gap which is calculated identically to the ex-

plained gap associated with Method 1, i.e. 0.107 (39%). Method 3 also yields a sizable

unexplained gap which is constructed identically to the unexplained gap from Method
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2, i.e. 0.212 (76%). The difference here is that Method 3 allocates gender differences

in the IMR coefficients to a separate selectivity component of the decomposition. On

the other hand Method 4 places all gender differences associated with the IMR terms

in a separate selection term in the decomposition while Methods 6a and 6b augment

the selection term by counting all gender differences associated with the time-averaged

means as part of the selection process.

Selection for the most part has only a modest effect on the gender wage gap. In

the cases of Methods 3 and 4, selection has a modest narrowing effect on the wage at

-0.041 (-15%) and -0.024 (9%), respectively. Whereas for both Methods 6a and 6b, the

selection effect modestly increases the gender wage gap at 0.059 (21%).

Methods 4, 6a, and 6b yielded similar explained gaps of 0.087 (31%), 0.056 (20%),

and 0.053 (19%), respectively. The unexplained decomposition components were also

similar for Methods 4, 6a, and 6b corresponding to to fairly substantial magnitudes of

0.214 (77%), 0.162 (58%), and 0.165 (60%), respectively.

5 Concluding Remarks

The diversity of results that are produced from our eight alternative panel data wage

decompositions is to be expected given the seemingly endless number of ways in which

one can group decomposition components, conditional upon a given counterfactual.

Our selection of these particular decompositions was guided by the desire to concen-

trate on the most obvious and salient features one would look for in a panel data setting

with selectivity correction. We use the estimated parameters for males to construct

our counterfactuals. One can of course alternatively use the estimated parameters for

females or from a generalized decomposition methodology. What can be regarded as

“best practice” in this setting is for the most part highly subjective.
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Arguably, the most important factor to consider is what is the objective of the

decomposition in the first place. When one seeks to identify the unexplained gap as

discrimination, decomposition methodology is at its most equivocal point. For one

thing a researcher has to be quite confident that the model is correctly specified and

that the β coefficients on the time-varying covariates should be identical for males

and females in the absence of discrimination. If this were indeed the case, then all

eight methods include gender differences in the β coefficients in the unexplained gap.

Conditional on these beliefs about the true β′s, it is probably not too great a leap

to then assume that any gender difference in the returns (π′s) to the time averaged

covariates (z′s) are discriminatory. This step rules out Methods 5 (‘a’ and ‘b’) and 6

(‘a’ and ‘b’) which are potentially susceptible to identification problems anyway, and

rules in Methods 1 - 4.

It is difficult to imagine broad support for the argument that gender differences in

the probit selection equation parameters should be treated as discriminatory. If one

takes this position, then only Method 4 survives. This method suggests that selection

narrows the observed gender wage gap in our data by -9%. In this decomposition

endowment effects favor men by about 31% of the observed gender wage differential.

Men are also estimated to receive a major wage premium accounting for 77% of the

observed wage differential.

If one is simply interested in a less restrictive exercise of estimating how much of

the (log) wage differential arises from parameter differences versus endowment effects,

Method 1 would be appropriate. However, the empirical model we estimate corrects

for sample selection so it might make sense to isolate the effects of selection in the

decomposition exercise. The least committal way (with respect to parsing out the

unexplained gap) in which to estimate the effects of selection on the wage gap is
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either with Method 4 or 6 (‘a’ and ‘b’). Because of the panel nature of the data with

sample selection, the time-averaged regressors are intended to control for unobserved

heterogeneity and the selection process. Accordingly, Methods 6a and b would be the

appropriate approach to use in this context if identification is not an issue or if the

existence of an identification problem could be managed by plausible restrictions.

Regardless of how one might ultimately choose to allocate components of the se-

lection terms, the presence of a separate selection component in a decomposition can

be informative about the sources of gender wage gaps. In our example, the evidence

consistently reveals modest effects of sample selection on observed gender wage gaps.

Methods 3 and 4 suggest selection of women into the workforce with higher earnings

capacities. On the other hand Methods 6a and 6b imply selection of women into the

work force with lower earnings capacities.

If one were not interested in conducting decompositions, the presence of time-

invariant regressors would be fairly benign. In estimating wage equations one would

estimate a single parameter for each time-invariant/time averaged mean regressor.

Practically speaking, whether each of these parameters is viewed as the sum of two

parameters or a single parameter identified off of a ‘0’ restriction would not be all that

important. As we have shown, from the standpoint of conducting decompositions,

the identification issue only matters when it asymmetrically affects the allocation of

decomposition components to explained and unexplained categories.

Although we use the GSOEP data set for our example because it is well known

internationally, our methodology can be applied to the Korean Labor & Income Panel

Study (KLIPS) which is well known to Korean researchers.
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Table 1: Sample characteristics

Male Female
Mean STD Mean STD

Hourly wage 16.32 9.54 12.47 7.93
Log of hourly wage 2.66 0.52 2.39 0.52

Exp 18.42 11.83 15.16 10.55

Less than primary 0.03 0.18 0.03 0.17
Primary 0.16 0.37 0.19 0.39
Middle Vocational (ref) 0.48 0.50 0.49 0.50
Vocational Plus Abi 0.06 0.23 0.08 0.27
Higher Vocational 0.08 0.28 0.07 0.26
Higher Education 0.19 0.39 0.15 0.35

Immigrant to Germany since 1948 0.20 0.40 0.16 0.37
Years since Migration 4.15 9.29 3.46 8.70

Managers 0.06 0.24 0.02 0.15
Professionals 0.17 0.38 0.12 0.33
Technicians 0.16 0.37 0.28 0.45
Clerks 0.08 0.27 0.20 0.40
Service & sales workers 0.04 0.20 0.19 0.39
Agricultural & fishery 0.01 0.08 0.01 0.08
Craft & related workers 0.28 0.45 0.04 0.20
Operators & assemblers 0.13 0.34 0.04 0.20
Elementary occupations (ref) 0.06 0.24 0.10 0.30

Agriculture 0.01 0.10 0.01 0.07
Energy 0.02 0.12 0.00 0.07
Mining 0.01 0.09 0.00 0.02
Manufacturing 0.30 0.46 0.17 0.37
Construction 0.22 0.41 0.05 0.22
Trade 0.10 0.30 0.19 0.40
Transport 0.06 0.25 0.03 0.18
Finance 0.04 0.19 0.05 0.22
Service (ref) 0.25 0.43 0.50 0.50

Age 40.61 11.55 39.82 11.47
Married 0.60 0.49 0.56 0.50
Children under age 18 0.67 1.00 0.51 0.85

Number of observations 85928 85928 69476 69476
Notes: Based on 1986-2011 German Socio-Economic Panel (G-SOEP) data. STD represents standard
deviation.
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Table 2: Coefficient Estimates of the Wage Equations

Male Female
Coef. S.E. Coef. S.E.

Time varying covariates
Exp 0.054∗ (0.001) 0.048∗ (0.001)
Exp squared/100 -0.091∗ (0.002) -0.092∗ (0.002)
Years since Migration -0.002∗ (0.001) 0.002† (0.001)
Managers 0.083∗ (0.011) 0.185∗ (0.017)
Professionals 0.124∗ (0.010) 0.223∗ (0.013)
Technicians 0.042∗ (0.009) 0.110∗ (0.009)
Clerks -0.003 (0.010) 0.081∗ (0.010)
Service & sales workers -0.049∗ (0.013) 0.007 (0.009)
Agricultural & fishery -0.079∗ (0.031) -0.050 (0.045)
Craft & related workers -0.057∗ (0.008) 0.005 (0.014)
Operators & assemblers -0.019† (0.009) 0.013 (0.014)
Agriculture -0.068∗ (0.026) -0.040 (0.035)
Energy 0.039‡ (0.022) 0.136∗ (0.041)
Mining 0.073∗ (0.028) 0.458∗ (0.134)
Manufacturing 0.018† (0.008) 0.016‡ (0.009)
Construction 0.008 (0.008) 0.043∗ (0.013)
Trade -0.049∗ (0.009) -0.032∗ (0.008)
Transport -0.038∗ (0.011) 0.049∗ (0.017)
Finance 0.048† (0.019) 0.096∗ (0.018)
Time averaged means
Less than primary -0.046∗ (0.008) -0.044∗ (0.010)
Primary -0.051∗ (0.004) -0.050∗ (0.005)
Vocational Plus Abi 0.029∗ (0.006) 0.050∗ (0.006)
Higher Vocational 0.040∗ (0.005) 0.063∗ (0.007)
Higher Education 0.164∗ (0.005) 0.136∗ (0.006)
Immigrant to Germany since 1948 -0.124∗ (0.008) -0.099∗ (0.011)
Exp (m) -0.038∗ (0.001) -0.027∗ (0.001)
Exp squared/100 (m) 0.055∗ (0.002) 0.061∗ (0.003)
Years since migration (m) 0.007∗ (0.001) 0.002† (0.001)
Managers (m) 0.458∗ (0.016) 0.501∗ (0.026)
Professionals (m) 0.311∗ (0.014) 0.485∗ (0.019)
Technicians (m) 0.258∗ (0.013) 0.327∗ (0.015)
Clerks (m) 0.157∗ (0.015) 0.208∗ (0.016)
Service & sales workers (m) 0.104∗ (0.018) 0.129∗ (0.016)
Agricultural & fishery (m) 0.168∗ (0.043) 0.251∗ (0.060)
Craft & related workers (m) 0.125∗ (0.012) 0.129∗ (0.023)
Operators & assemblers (m) 0.063∗ (0.013) 0.034 (0.023)
Agriculture (m) -0.176∗ (0.035) -0.185∗ (0.056)
Energy (m) 0.124∗ (0.027) 0.121† (0.055)
Mining (m) 0.108∗ (0.037) -0.040 (0.241)
Manufacturing (m) 0.117∗ (0.009) 0.089∗ (0.012)
Construction (m) 0.129∗ (0.010) 0.113∗ (0.018)
Trade (m) -0.114∗ (0.012) -0.111∗ (0.011)
Transport (m) 0.045∗ (0.014) 0.049† (0.023)
Finance (m) 0.196∗ (0.022) 0.122∗ (0.022)
Age (m) 0.046∗ (0.002) 0.046∗ (0.002)
Age squared/100 (m) -0.042∗ (0.002) -0.054∗ (0.002)
Married (m) 0.084∗ (0.004) -0.023∗ (0.005)
Children under age 18 (m) 0.018∗ (0.002) 0.005‡ (0.003)
Inverse Mills Ratios
IMR -0.195∗ (0.035) 0.009 (0.025)

Continued on next page
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Table 2 – Continued from previous page
Male Female

Coef. S.E. Coef. S.E.
IMR × 1987 -0.065 (0.047) -0.007 (0.031)
IMR × 1988 0.015 (0.047) 0.029 (0.031)
IMR × 1989 0.139∗ (0.044) 0.053‡ (0.029)
IMR × 1990 0.151∗ (0.045) 0.077∗ (0.029)
IMR × 1991 0.116∗ (0.044) 0.065† (0.029)
IMR × 1992 0.204∗ (0.044) 0.139∗ (0.029)
IMR × 1993 0.280∗ (0.044) 0.139∗ (0.029)
IMR × 1994 0.252∗ (0.044) 0.129∗ (0.029)
IMR × 1995 0.187∗ (0.044) 0.084∗ (0.029)
IMR × 1996 0.171∗ (0.044) 0.140∗ (0.030)
IMR × 1997 0.175∗ (0.045) 0.067† (0.029)
IMR × 1998 0.162∗ (0.043) 0.087∗ (0.028)
IMR × 1999 0.147∗ (0.043) 0.095∗ (0.029)
IMR × 2000 0.153∗ (0.039) 0.085∗ (0.026)
IMR × 2001 0.108∗ (0.040) 0.059† (0.026)
IMR × 2002 0.177∗ (0.039) 0.103∗ (0.027)
IMR × 2003 0.218∗ (0.041) 0.077∗ (0.027)
IMR × 2004 0.114∗ (0.042) 0.054† (0.027)
IMR × 2005 0.077‡ (0.043) -0.006 (0.028)
IMR × 2006 0.060 (0.044) -0.031 (0.028)
IMR × 2007 -0.029 (0.044) -0.074∗ (0.028)
IMR × 2008 -0.007 (0.044) -0.125∗ (0.029)
IMR × 2009 -0.069 (0.044) -0.069† (0.029)
IMR × 2010 -0.082‡ (0.046) -0.093∗ (0.030)
IMR × 2011 -0.087† (0.044) -0.100∗ (0.029)

Notes: Based on 1986-2011 German Socio-Economic Panel (G-SOEP) data.; ∗, † and ‡ indicate
significance at 1, 5 and 10 percent levels respectively.; IMR × Year indicates the interactions between
lambda terms and year dummies.
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