
Energie & Umwelt /  
Energy & Environment
Band/ Volume 332
ISBN 978-3-95806-163-7

En
er

gi
e 

& 
U

m
w

el
t

En
er

gy
 &

 E
nv

iro
nm

en
t

332

Bi
op

ur
ifi

ca
tio

n 
of

 p
es

tic
id

es
 w

ith
 n

ov
el

 m
ix

tu
re

s
Sa

nt
an

u 
M

uk
he

rje
e

M
em

be
r o

f t
he

 H
el

m
ho

ltz
 A

ss
oc

ia
tio

n

Energie & Umwelt /  
Energy & Environment
Band/ Volume 332
ISBN 978-3-95806-163-7

Analysis of biomixtures to determine the fate  
of pesticides

Santanu Mukherjee



Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment Band / Volume 332





Forschungszentrum Jülich GmbH
Institute of Bio- and Geosciences
Agrosphere (IBG-3)

Analysis of biomixtures to determine the fate  
of pesticides

Santanu Mukherjee

Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment Band / Volume 332

ISSN 1866-1793  ISBN 978-3-95806-163-7



Bibliographic information published by the Deutsche Nationalbibliothek.
The Deutsche Nationalbibliothek lists this publication in the Deutsche 
Nationalbibliografie; detailed bibliographic data are available in the 
Internet at http://dnb.d-nb.de.

Publisher and Forschungszentrum Jülich GmbH
Distributor: Zentralbibliothek
 52425 Jülich
 Tel:  +49 2461 61-5368 
 Fax:  +49 2461 61-6103
 Email:  zb-publikation@fz-juelich.de
  www.fz-juelich.de/zb
 
Cover Design: Grafische Medien, Forschungszentrum Jülich GmbH

Printer: Grafische Medien, Forschungszentrum Jülich GmbH

Copyright: Forschungszentrum Jülich 2016

Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment, Band / Volume 332

D 5 (Diss., Bonn, Univ., 2016)

ISSN 1866-1793
ISBN 978-3-95806-163-7

The complete volume is freely available on the Internet on the Jülicher Open Access Server (JuSER)  
at www.fz-juelich.de/zb/openaccess.

 This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,  
 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Analysis of biomixtures to determine the fate of pesticides  

ii 
 

 

 

 

 

 

Dedicated to 

my mother 

 

 

 

 

 

 

 

 

 





Analysis of biomixtures to determine the fate of pesticides  

iii 
 

Zusammenfassung 

Während der letzten Jahrzehnte wurde der Gewässerverunreinigung durch 

Anwendung von Pestiziden in der Landwirtschaft zunehmend Beachtung geschenkt. 

Als Eintragspfade in Gewässer und Grundwasser kann generell zwischen diffusen 

(indirekten) und punktförmigen (direkten) Einträgen unterschieden werden. Um 

direkte Verunreinigungen von landwirtschaftlichen Betrieben durch Reinigung von 

Spritzen und Zubehör auf dem Betriebsgelände zu vermeiden, werden in einigen 

Regionen „Biobeds“ oder Biofilteranlagen zur Behandlung des Waschwassers 

betrieben. Das konventionell in diesen Systemen verwendete organische Material ist 

unter Umweltgesichtspunkten oftmals nicht nachhaltig (wie im Falle von Torf) oder es 

führt zu  heterogenen hydraulischen Flüssen, was sich negative auf den Rückhalt 

und den Abbau von Pestizide auswirken kann.Das Ziel dieser Arbeit war es deshalb, 

die üblichen Materialien, Torf und Stroh, durch organische Reste aus der Gewinnung 

von Bioenergie, wie Gär- und Pyrolyserückstände, zu ersetzen und unterschiedliche  

Mischungsverhältnisse auf  den Verbleib von Pestiziden zu untersuchen. 
In einem ersten Schritt wurde die mikrobielle Respiration über drei Monate bestimmt, 

um Kenntnisse über die Umsatzrate der Boden/Organik-Mischungen zu erhalten. 

Diesekann als erster Hinweis auf das Abbaupotential der unterschiedlichen 

Mischungen auf Pestizide genutzt werden und Informationen über die 

Langzeitstabilität der Materiale liefern. Mischungen aus Boden mit Gär- und 

Pyrolyserückständen ergaben eine mittlere CO2-Freisetzungsrate verglichen mit 

Mischungen aus Boden und den jeweils einzelnen Komponenten. Die Respiration in 

Bodenmischungen mit Gärrückständen lag generell niedriger, wenn zusätzlich 

Pyrolyserückstände eingearbeitet wurden.Desweiteren wurde in einer Laborstudie 

über eine Inkubationszeit von 135 Tagen mit drei unterschiedlichen Pestiziden 

(Bentazon, Boscalid und Pyrimethanil) die Korrelation zwischen mikrobieller 

Respiration und dem Abbaupotential der Mischungen für Pestizide 

untersucht.Mischungen, welche Pyrolyserückstände enthielten erhöhten generell die 

Festlegung der untersuchten Pestizide bei einer entsprechend schlechteren 

Extrahierbarkeit. Andererseits wurde die Mineralisierung der Pestizide durch 

Einmischung von 5% und 30% Gärrückständen in Boden erhöht und mit zusätzlich 

5% Pyrolyserückständen wurde eine gewünschte Balance zwischen verstärkter 

Festlegung und Mineralisierung der Pestizide erreicht.Sorptions-
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Desorptionsversuche ergaben für alle Gemische stärkere Sorptionseigenschaften im 

Vergleich zu reinem Boden. Die Kd- und Koc-Werte der Pestizide waren entsprechend 

ihrer physiko-chemischen Eigenschaften und der Art des beigemischten organischen 

Materials unterschiedlich. Die Desorption aller Pestizide verhielt sich hysteretisch zur 

Sorption. 

Diese Arbeit erweitert und ergänzt das derzeitige Wissen bezüglich des 

Mechanismus` des Kohlenstoffumsatzes in den neuartigen Bodenmischungen für 

Biofilteranlagen und das Langzeitverhalten dreier unterschiedlicher Pestizide und 

ihrer Wechselwirkungen mit diesen Bodenmischungen. Dennoch bedarf es weiterer 

Forschung zur Bestätigung der Eignung dieser Bodenmischungen in technischen 

Biofilteranlagen über noch längere Zeiträume (> 3 Jahre) unter Freilandbedingungen 

und unter wechselnden hydraulischen Bedingungen und Wirkstoffbelastungen.   
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Abstract 
Worldwide, water contamination from agricultural use of pesticides has received 

increasing attention within the last decades. In general, sources of pesticide water 

pollution are categorized into diffuse (indirect) and point sources (direct). To reduce 

point pollution from farm yards, where the spray equipment is washed, biobed or 

biofilter systems are conventionally used to treat the washing water. The organic 

material usually used in these systems is often not environmentally sustainable (e.g. 

peat) and incorporated organic material such as straw leads to a highly 

heterogeneous water flow, with negative effects on the retention and degradation 

behavior of the pesticides. Therefore, the objective of this present study was to 

substitute the classical materials (peat and straw) with bioenergy residues namely 

biochar and digestate to investigate their effects on fate of pesticides in soil at 

different mixing ratios.  

Prior to study the pesticides fate, the microbial respiration was measured over 3 

months to gain information about the turnover rate of the organic biomixtures, which 

can be used as an indirect indicator of the soils/biomixture degradation potential for 

pesticides and provides information about the long-term stability of the material. 

Mixtures of biochar and digestate showed an intermediate CO2 flux compared to the 

single addition of biochar or digestate, whereby the oxygen consumption in presence 

of biochar was generally significantly lower compared to the consumption after 

addition of digestate only. Additionally, to correlate the microbial respiration with the 

dissipation (or degradation) potential of pesticides a laboratory incubation study was 

performed over 135 days with three contrasting pesticides (bentazone, boscalid, and 

pyrimethanil). In general, biochar based mixtures resulted in stronger binding of all 

studied pesticides, and therefore, ensued higher dissipation. On the other hand, 5 % 

and 30 % digestate based mixtures enhanced mineralization and addition of 5 % 

biochar to these mixtures showed a desired balance between stronger sequestration 

and mineralization for all pesticides. A sorption-desorption study revealed that 

biochar and digestate based mixtures caused stronger sorption for all compounds 

compared to bare soil. Kd and Koc values of the pesticides were different according to 

their physico-chemical properties and quality (nature) of organic matter. Desorption 

was hysteretic for all pesticides.  

Overall, this thesis elucidated and updated the knowledge of the mechanisms for C-

turnover rates of novel biomixtures for biopurification (or biobed) systems along with 



Analysis of biomixtures to determine the fate of pesticides  

vi 
 

the long term behavior of three different pesticides and their interaction with these 

biomixtures. However, future work is required to qualify these mixtures for long-term 

(>3 yrs) outdoor biofilter constructions under varying hydraulic and chemical 

conditions.  

 
  



Analysis of biomixtures to determine the fate of pesticides  

vii 
 

Contents  
 
Zusammenfassung……………………………………………………………………….  iii 

Abstract…………………………………………………………………………………….  V 

Contents…………………………………………………………………………………… Vii 

List of figures………………………………………………………………………………  x 

List of Tables……………………………………………………………………………… xiii 

List of abbreviations……………………………………………………………………… xv 

 

I. General introduction……………………………………………………………20 
 
I.1  Theory…………………………………………………………………….      21 

I.2 Rationale…………………………………………………………………       22 

I.3 State of the art……………………………………………………………       24 

  I.3.1         Biopurification system and biofilter………………………………    24 

  I.3.2  The role of biomixtures in biopurification system………………….  25 

  I.3.3         Biochar and Digestate as novel biomixtures………………………    26 

  I.3.4         Stabilization mechanisms of natural, pyro (biochar) - bio (digestate) -         

genic organic matter…………………………………………………………….  26 

  I.3.5        Soil respiration as an indicator of pesticides degradation…………     27 

  I.3.6         Biochar and Digestate as adsorbents……………………………….   28 

I.4Objectives and outline of the thesis……………………………………   29 

II. Microbial respiration of biochar- and digestate- based mixtures…………. 32 
 
II.1 Introduction………………………………………………………………     33 

II.2 Materials and methods……………………………………………………     35 

II.2.1 Soils and organic amendments………………………………………         35 

     II.2.2 Preparation of soils with organic amendments……………………        36 

     II.2.3 Measurement of microbial respiration……………………………… .   36 

     II.2.4 Characterization of mixtures (DOC, SUVA254 and pH measurement)... 37 

     II.2.5 DOC adsorption study…………………………………………………  40 

II.2.6 CO2 flux calculation……………………………………………………...   40 



Analysis of biomixtures to determine the fate of pesticides  

viii 
 

II.2.7 Kinetics of the carbon turnover…………………………………………..  41 

II.2.8 Statistical analysis……………………………………………................... 41 

II.3Results and discussion……………………………………………………… 44 

II.3.1 Cumulative CO2-C releases……………………………………………… 44 

II.3.2 CO2 release with respect to C added……………………………………    46 

II.3.3 Carbon turnover kinetics…………………………………………………  48 

II.3.4 Characterization of soil, biochar and digestate mixture………………….. 50 

II.3.5 Influence of DOC, SUVA and clay content on CO2 evolution…………    51 

II.4Conclusions…………………………………………………………………  55 
 

III. Dissipation of bentazone, pyrimethanil and boscalid in biochar and digestate 
based soil mixtures for biopurification systems……………………………….58 

 
III.1 Introduction………………………………………………………………….59 

III.2 Material and methods………………………………………………………..62 

III.2.1 Substrates………………………………………………………………     62 

     III.2.2 Pesticides……………………………………………………………… 62 

     III.2.3 Characterization of used soil-mixtures……………………………….  63 

     III.2.4 Mineralization/Dissipation experiments……………………………… 66 

III.2.5Analytical procedures…………………………………………………       69 

III.2.6Pesticide mineralization/dissipation kinetics…………………………        71 

     III.2.7 Goodness-of-fit statistics…………………………………………….... 71 

III.3Results and discussion……………………………………………………… 72 

III.3.1 Pesticide mineralization and kinetics…………………………………..72                 

III.3.2 Pesticide dissipation and kinetics…………………………………….   77 

     III.3.3 Formation of non-extractable pesticide residues………………………78 

III.4Summary and conclusion…………………………………………………… 81 
 

IV. Sorption-desorption behavior of three contrasting pesticides in biochar and 
digestate based soil mixtures for biopurification systems……………………82 
 
IV.1 Introduction………………………………………………………………   83 

IV.2 Material and methods…………………………………………………….   85 

IV.2.1 Substrates…………………………………………………………….      85 

     IV.2.2 Pesticides…………………………………………………………….  86 

     IV.2.3 Characterization of used soil-bio mixtures………………………….   86 



Analysis of biomixtures to determine the fate of pesticides  

ix 
 

IV.2.4 Equilibrium adsorption experiments…………………………………       87 

     IV.2.5 Equilibrium desorption experiments…………………………………  89 

     IV.2.6 Analytical procedures………………………………………………     89 

     IV.2.7 Equilibrium adsorption-desorption isotherms………………………..  90 

     IV.2.8 Statistical analysis……………………………………………………  91 

IV.3Results and discussion…………………………………………………….   92 

IV.3.1Characterization of Soil, Biochar and Digestate Mixture……………   92 

IV.3.2 Determination of suitable soil: solution ratio………………………..   92 

     IV.3.3 Equilibrium adsorption isotherms……………………………………  94 

IV.3.4Equilibrium desorption isotherms……………………………………      100 

IV.4 Conclusions………………………………………………………………..105 

 
V. Synopsis…………………………………………………………………………106 

 
V.1 Extended summary………………………………………………………… 107 

V.2 Synthesis…………………………………………………………………    109 

V.2.1Responses of the soil biota to biochar and 

digestate………………....................................................................................109 

V.2.2 Influence of biochar and digestate on fate (dissipation and 

sorption/desorption) of pesticides used for biopurification 

setups………………………………………………………………………....110 

                V.3 Outlook……………………………………………………………………….111 

VI. References………………………………………………………………………113 
 

VII. Appendix………………………………………………………………………  131 
Appendix A………………………………………………………………………… 131 

Appendix B………………………………………………………………………… 132 

Appendix C………………………………………………………………………… 133 
 

Acknowledgement………………………………………………………………………….134 

 

 



Analysis of biomixtures to determine the fate of pesticides  

x 
 

List of figures 
Figure I.1: Distribution of pesticides in the groundwater in different countries of 

Europe(Source: Modified after European Commission, 2010)…………………….  22 

Figure I.2: Causes of water contamination(modified after Capri et al., 1999)……  23 

Figure I.3: Model Biofilter System (modified after Pussemier et al.1998)………….25 

Figure II.1:Cumulative amount of CO2-C evolution [mg g-1 dry mass mixture] for the 

Merzenhausen soil (silt loam). Control = Merzenhausen soil (silt loam), HTB = high 

temperature biochar, LTB = low temperature biochar, and DG = digestate. The 

percentage indicates the mass ratios in the mixtures. Error bars indicate standard 

deviation……………………………………………………………………………………. 45 

Figure II.2:Cumulative amount of CO2-C evolution [mg g-1 dry mass mixture] for the 

Kaldenkirchen soil (loamy sand). Control = Kaldenkirchen soil (loamy sand), HTB = 

high temperature biochar, LTB = low temperature biochar, and DG = digestate. The 

percentage indicates the mass ratios in the mixtures. Error bars indicate standard 

deviation…………………………………………………………………………………….46 

Figure II.3: Percentage of C degraded with respect to total C added to the system 

for the Merzenhausen soil (silt loam). Control = Merzenhausen soil (silt loam), HTB = 

high temperature biochar, LTB = low temperature biochar, and DG = digestate. The 

percentage indicates the mass ratios in the mixtures. Error bars indicate standard 

deviation……………………………………………………………………………………47 

Figure II.4: Percentage of C degraded with respect to total C added to the system 

for the Kaldenkirchen soil (loamy sand). Control = Kaldenkirchen soil (loamy sand), 

HTB = high temperature biochar, LTB = low temperature biochar, and DG = 

digestate. The percentage indicates the mass ratios in the mixtures. Error bars 

indicate standard deviation………………………………………………………………49 

Figure II.5: Logarithmic regression function studied between dissolved organic C 

(DOC) and Cumulative amount of CO2-C evolution [mg g-1 dry mass mixture] for the 

Kaldenkirchen soil (loamy sand) and Merzenhausen soil (silt loam)……………….53 

Figure II.6: Conceptual model for SOC turnover a) without biochar and b) with 

biochar added to the system…………………………………………………………….53 

Figure II.7: Adsorption isotherms for DOC on LTB (n = 3)………………………...  55 



Analysis of biomixtures to determine the fate of pesticides  

xi 
 

Figure III.1a-1c: Pesticide residues calculated from full mineralization of 14C- 

bentazone, pyrimethanil, and boscalid in % for the different soil/amendment mixtures. 

Error bar represents standard deviation (n = 3). Reference soil = loamy sand, BC = 

low temperature biochar, and DG = digestate. The percentage indicates the mass 

ratios in the mixtures. Note that the y-axis does not have the same scale for better 

visualization. Points indicate measurements and line the best fitting model (here 

DFOP) as listed in Table A1……………………………………………………………..68 

Figure III.2: Extractable pesticide residues of 14C- bentazone, pyrimethanil, and 

boscalid in % for the different soil/amendment mixtures. Error bar represents 

standard deviation (n = 3). Reference soil = loamy sand, BC = low temperature 

biochar, and DG = digestate. The percentage indicates the mass ratios in the 

mixtures. Points indicate measurements and line the best fitting model as listed in 

Table III.4…………………………………………………………………………………..71 

Figure III.3: Cumulated 14CO2 and (extractable + non-extractable) pesticide residues 

(at day 120) of 14C- bentazone, pyrimethanil, and boscalid in % of applied 

radioactivity for the different soil/amendment mixtures (n= 3). Reference soil = loamy 

sand, BC = low temperature biochar, and DG = digestate. The percentage indicates 

the mass ratios in the mixtures…………………………………………………………80 

Figure IV.1: Sorption kinetics of bentazone, boscalid and pyrimethanil (after an 

equilibrium time of 168 h and a 1:100 soil/solution mixture) on reference soil (A) and 

soil amended with 30% DG and 5 % BC (B). Data points represent means (n=3) and 

error bars indicate standard error. Reference soil (KK) = loamy sand, BC = low 

temperature biochar, and DG = digestate (the percentage indicates the mass ratios in 

the mixtures)………………………………………………………………………………93 

Figure IV.2a-2c: Adsorption (solid lines fitted with Henry, Freundlich and Langmuir 

model) and sequential desorption (dashed lines fitted with Henry and Freundlich 

model) isotherms of bentazone, boscalid and pyrimethanil for the different 

soil/amendment mixtures. Data points represent means (n=3) and error bars indicate 

standard error. Cs denotes sorbed concentrations and Ce indicates equilibrium water 

phase concentration. Soil (KK) = loamy sand, BC = low temperature biochar, and DG 

= digestate (the percentage indicates the mass ratios in the 

mixtures)……………………………………………..……………………………………103 



Analysis of biomixtures to determine the fate of pesticides  

xii 
 

Figure A1: The respirometer device used for the incubation experiment of the 

biomixtures…………………………………………………………………………………131 

Figure A2: Thermostat Incubator for Degradation Experiment (~ 25 °C)…………  132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Analysis of biomixtures to determine the fate of pesticides  

xiii 
 

List of tables 

Table II.1: Main physico-chemical properties of the native soils, biochars and 

digestate used for incubation. HTB = high temperature biochar, LTB = low 

temperature biochar………………………………………………………………38 

Table II.2: Observed cumulative CO2-C and degraded C (both after 90 days of 

incubation), pool sizes (C1 and C2), degradation rates (k1 and k2) fitted by the double 

first order in parallel model (DFOP) [Equation II.4], as well as calculated mean 

residence time (MRT) [Equation II.5] for the Merzenhausen (MRZ) soil (silt loam). 

HTB = high temperature biochar, LTB = low temperature biochar, and DG = 

digestate. The percentage indicates the mass ratios in the 

mixtures…………………………………………………………………………… 39 

Table II.3: Observed cumulative CO2-C and degraded C (both after 90 days of 

incubation), pool sizes (C1and C2), degradation rates (k1and k2) fitted by the double 

first order in parallel model (DFOP) [Equation II.4], as well as calculated mean 

residence time (MRT) [Equation II.5] for the Kaldenkirchen (KK) soil (loamy sand). 

HTB = high temperature biochar, LTB = low temperature biochar, and DG = 

digestate. The percentage indicates the mass ratios in the 

mixtures…………………………………………………………………………… 43 

Table II.4:Main physico-chemical properties of the mixtures for the 

Kaldenkirchen (KK) soil (loamy sand) and Merzenhausen (MRZ) soil (silt loam) 

used for incubation. HTB = high temperature biochar, LTB = low temperature 

biochar, and DG = digestate. The percentage indicates the mass ratios in the 

mixtures…………………………………………………………………………… 51 

Table II.5: DOC and SUVA254 values for the three different amounts of low 

temperature biochar (LTB) added to different DOC concentrations…………56 

Table III.1:Main physico-chemical properties of the soil-mixtures for the 

Kaldenkirchen (KK) soil (loamy sand), BC = low temperature biochar, and DG = 

digestate. The percentage indicates the mass ratios (w/w dry mass) in the 

mixtures…………………………………………………………………………… 64 



Analysis of biomixtures to determine the fate of pesticides  

xiv 
 

Table III.2:Physico-chemical and degradation properties of used pesticides 

(data taken from PPDB, 2016)………………………………………………… 65 

Table III.3:Mathematical expressions for different kinetic models used in the 

incubation study and estimation of MinT50 and DT50…………………………67 

Table III.4:Kinetic parameters for the dissipation (derived from extractable 

pesticide residues) of the different pesticides (bentazone, pyrimethanil, 

boscalid) for the KK = loamy sand soil, 1% BC, 5% BC, 5% DG, 30 % DG, KK+ 

5% DG + 1% BC, KK+ 5% DG + 5% BC, KK+ 30% DG + 5% BC (BC = low 

temperature biochar, and DG = digestate) obtained from fitting kinetics to a 

single first order (SFO) and  bi-exponential (DFOP) model(bold data indicate 

fairly good fit and italics indicate no good fit to the described models)…… 75 

Table IV.1:Estimated model parameters for the fitted adsorption isotherms of 

pesticides to different sorbent systems and calculated Kd/Koc values……   97 

Table IV.2:Estimated model parameters for fitted desorption isotherms of 

pesticides and calculated Kd, Koc and H values………………………………102 

Table A1:Kinetic parameters for the mineralization (derived from cumulative 
14CO2 fluxes) of the different pesticides (bentazone, pyrimethanil, boscalid) for 

the KK = loamy sand soil, 1% BC, 5% BC, 5% DG, 30 % DG, KK+ 5% DG + 1% 

BC, KK+ 5% DG + 5% BC, KK+ 30% DG + 5% BC (BC = low temperature 

biochar, and DG = digestate) obtained from fitting kinetics to a single first order 

(SFO) and  bi-exponential (DFOP) model (bold data indicate fairly good fit and 

italics indicate no good fit to the described models)………………………….133 

 

 

 

 

 



Analysis of biomixtures to determine the fate of pesticides  

xv 
 

List of abbreviations 

2  Chi-square test 

𝑥obs Observed cumulative CO2-C fluxes(gCO2-C g-1 mixture) 

𝑥sim  SimulatedcumulativeCO2-C fluxes(gCO2-C g-1 mixture) 

1/n ads Freundlich adsorption exponent  

1/n des  Freundlich desorption exponent 

14C Carbon-14 

Ads Adsorption  

BC Biochar 

BET Brunauer, Emmett and Teller  

C  Carbon 

C Constant partitioning 

C(t) Instantaneous CO2-C flux at time t (min)   

C1 Total percentage of the labile pool from total carbon stock 

C2 Total percentage of the refractory pool from total carbon  

Ce Equilibrium solute concentration in water phase  

Ci Initial solute concentration in water phase  

CO2-C Carbon-dioxide carbon 

Corg        Organic carbon content  

Cs           Amount of sorbed pesticides 

Csmax Langmuir constant implies maximum sorption capacity 

d Day 

Da      Dalton 



Analysis of biomixtures to determine the fate of pesticides  

xvi 
 

DFOP  Double first-order in parallel 

DG       Digestate 

DOC     Dissolved organic carbon     

dof        Degrees of freedom 

dt   Time interval 

DT50     Dissipation half-life time-50 

ECEC    Effective cation exchange capacity 

ESI    Electrospray ionization  

FOCU    Forum for the Co-ordination of pesticide fate models and their Use 

g    The ratio between the slow and fast pool 

h     Hours 

H     Hysteresis coefficient 

H3PO4     Phosphoric acid 

HPLC     High-performance liquid chromatography 

HTB        High temperature biochar  

i     Time step 

ICP-OES  Inductively coupled plasma optical emission spectrometer 

IR        Infrared 

k       Rate constant 

K               Kelvin 

k1                     first- order mineralization rate of the labile C pool 

k2                     first- order mineralization rate of the refractory C pool 

Kd                    Distribution coefficient 



Analysis of biomixtures to determine the fate of pesticides  

xvii 
 

Kf                 Adsorption coefficient  

KK    Kaldenkirchen soil 

KL               Langmuir sorption coefficient 

Koc            Carbon normalized partitioning coefficient 

Kow           Octanol-water partition coefficient 

kV         Kilovolt 

L           Liter 

L           Langmuir type 

LODs    Limits of detection 

LOQs    Limits of quantification 

LSC      Liquid scintillation counter 

LTB   Low temperature biochar 

M          Mass of the substances 

MBq    Mega Becquerel 

MinT50   Mineralization half-life time-50 

Mo            Total amount of chemical present at time=0 

MRT     Mean residence time 

MRZ     Merzenhausen soil 

MS       Mass spectrometry 

Mt            Total amount of chemical present at time t 

N         Nitrogen 

N        Total number of observations 

NA      Not applicable 



Analysis of biomixtures to determine the fate of pesticides  

xviii 
 

NaOH   Sodium-hydroxide 

NH3         Ammonia 

NH4Cl   Ammonium chloride 

O          Oxygen 

OC       Organic carbon 

OECD   Organization for Economic Co-operation and Development 

Pka       Logarithmic value of the acid dissociation constant, 

Ppm      Parts per million 

R2             Coefficient of determination 

Rpm     Revolutions per minute 

S          Side-by-side association 

SD        Standard deviation 

SFO      Single first order model 

SOC      Soil organic carbon  

SOM      Soil organic matter  

SSA       Specific surface area 

SSR       Sum of squared residuals 

STD     Standard deviation 

SUVA254  Specific ultraviolet absorbance 

T             Time of sampling 

T             Time 

TOC        Total organic carbon 

TQ-S       Triple Quadrupole mass spectrometry 



Analysis of biomixtures to determine the fate of pesticides  

xix 
 

UPLC    Ultra performance liquid chromatography 

UVA254    Ultraviolet absorbance 

V            Volume of the solution 

v/v          Volume/volume 

w/v         Weight/volume 

w/w         Weight/weight 

WHCmax   Maximum water holding capacity  

 



General introduction 

 
 

 
 

 

I. General introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General introduction  

 

21 
 

I.1Theory  
 
Indiscriminate usages of pesticides by farmers in agriculture increase the risk of 

environmental contamination due to widespread non-target specific dispersions of 

pesticides. A good agricultural practice provides the reduction of application doses 

and number of treatments in an integrated pest management strategy. This concept 

is strictly applied, when pest damage reaches below the economic injury level with a 

purpose to minimize risks to human and environment. However, the agricultural 

sector continues to be one of the most prominent sources for delivering contaminants 

into the environment. In order to decrease pollution of the environment, and more 

specifically of water bodies, it is important to know the extent of environmental 

contamination and its origins. Therefore, it is necessary to adopt a good prevention 

strategy because especially groundwater has a low self-purification capacity.  

The term pesticide will be used throughout this thesis and refers to synthetic organic 

plant protection products, which can be subdivided into insecticides, fungicides, 

herbicides, rodenticides, etc. When pesticides are applied under appropriate 

ecological conditions in recommended dosages using specified practices, they can 

be effective in pest control with little adverse effects on the surrounding environment.  

A vulnerable and important compartment of the environment is water. The 

contamination of water by pesticides is a major environmental issue in Europe 

(Kolpin et al., 1995;Kreuger and Nilsson, 2001). Water covers about two-thirds of the 

earth's surface, and this is predominantly salt water. Only 2.5% is fresh water, and 

thereof, two-thirds are locked up in the icecaps and glaciers. Drinking water for 

human purposes is therefore limited to only 0.08% of the entire water inventory on 

earth. Therefore, contamination of these limited resources could be catastrophic and 

fatal to the human race and other species living on this planet. 

Rivers, lakes and other water bodies are vital natural resources of drinking water. 

They are the important habitats for many different types of wildlife, and are necessary 

resources for industry and recreation. A significant proportion of them are under risk 

partly due to indiscriminant use of toxicants. Drinking water companies across the EU 

have taken initiative to spend large sums on water treatment every year. An annual 

investment of €24.4 million in the Netherlands, €130 million in Germany, and €170 

million in the UK is made for water purification purposes (PAN Europe, 2016). 

Actually, these huge amounts are passed on to the consumer. Quality standards for 

pesticide concentrations in drinking water are specified by the EU Directive and allow 
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management practices, on the other hand by using advanced depurification systems 

based on sophisticated physical, chemical, and/or biological methods to treat any 

remnants of pesticides on farm (De Wilde et al., 2009; Ramwell et al., 2004). 

Unfortunately, many methods for remnant treatment are cost and labor intensive. To 

overcome these obstacles the “biobed” concept was developed in Sweden in the 

early 1990s to establish an environmentally sustainable low cost technology; easy to 

install and maintained by the farmer (De Wilde et al., 2007).  

I.3State of the art  
I.3.1 Biopurification system and Biofilter  
Bioremediation or biopurification is defined as the process in which organic 

substances are degraded under controlled conditions by microorganisms or their 

enzymes to an innocuous state, or to levels below concentration limits established by 

regulatory authorities (Braschi et al., 2000). The concept of biopurification of pesticide 

remnants on farm has generated interest in various countries all over the world. The 

concept of biobed originated in Sweden, but several other systems, based on the 

principles of the biobed, have now been developed and implemented in many 

countries, where they have often been renamed, for example as biofilter, 

biomassbed, phytobac, and biobac (Torstensson and Castillo, 1997). Actually, these 

are often the more effective systems to reduce environmental pollution compared to 

other cost and labour intensive methods like chemical coagulation, sedimentation, 

oxidation and photo catalysis. As a low-cost operating system, the biofilter concept 

can minimize the risks of pollution when filling and storing the sprayer at the places 

near the farm. The concept of all of these systems is similar: They are basically 

composed of different mixtures of topsoil with organic matter (e.g. lignocellulosic 

material like straw) through which pesticides containing waste water is percolated. 

While the waste water passes through the biofilter, the pesticides are retained 

(sorbed) and/or degraded and the water is released with reduced concentrations of 

pesticides to surface waters or it is percolated into the surrounding soils. Depending 

on climate, hydraulic load, and mode of operation, a substantial part of the treated 

water volume might be reduced by evaporation. 

Biofilter (in Figure I.3) is constructed of 2 to 3 containers or Intermediate Bulk 

Carriers (IBCs) of 1m3 vertically stacked onto each other and filled with the same 

organic materials as the biobeds (De Wilde et al., 2007). These systems are in 

general much smaller and have lower amounts of active filter substrate or biomix (2-5 
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m³) than biobeds where 10-30 m3 filter substances can be used. The principle of the 

biopurification system relies on degradation under aerobic conditions, which means it 

is necessary to maintain proper moisture conditions throughout the experiment. 

 

Figure I.3: Model Biofilter System (Source: Modified after Pussemier et al., 1998). 

I.3.2The role of biomixtures in biopurification system  
Basically, biobed systems are filled with locally available organic carbon-rich 

materials mixed with topsoil. Typically, a mixture of soil, peat, and straw in the 

volumetric ratio of 2:1:1 is used. The addition of organic rich substances is essential 

to retain the pesticides in the biofilter matrix and to stimulate and sustain microbial 

growth, which promotes pesticide degradation. Therefore, the choice of the 

biomixture material plays a crucial role for its effectiveness. Additionally, the choice of 

material also determines the hydraulic regime, and therefore, the residence time of 

the pesticides in the soil, which directly influences the sorption and degradation 

processes (Castillo et al., 2008). Besides the hydraulic load, the chemical load is also 

an important factor that influences the elimination effectiveness of the system, 

whereby this role is less well studied (Karanasios et al., 2010). 

It is well known that the presence of ligno-cellulosic material, like straw, promotes the 

activity of white rot fungi which accelerate the co-metabolic degradation of pesticides 

by ligninolytic enzymes (phenoloxidases) (Castillo et al., 2008). Peat on the other 

hand is essential to maintain optimum moisture conditions, to improve aeration, and 

to keep acidic pH conditions, which are favorable for microbial (mainly fungi) activity 

(Torstensson and Castillo, 1997). The addition of soil is recommended as a source of 

native microorganisms, nutrients and carbon (C) source for the microbes (Mukherjee 

et al., 2016a), whereby the choice of soil material (e.g. different soil textures) was 
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reported to have only little or no effect  on the biopurification of the contaminants in 

the system (De Wilde et al., 2007). 

I.3.3Biochar and Digestate as novel biomixtures 
In the present study/dissertation, the biomixtures were prepared using two bioenergy 

residues, namely biochar and digestate. Biochar is a man-made product of 

incomplete combustion, i.e. thermal conversion of C-rich biomass under limited 

oxygen supply at temperatures ranging from 500- >1000°C (Glaser et al., 2002;Sun 

et al., 2014). This process of thermal conversation is called dry pyrolysis (Smith et al., 

2010). Biochar contains ash, labile and recalcitrant C (Lehmann et al., 2011). The 

compounds of recalcitrant C refer to black carbon (BC), describing the aromatic 

microstructures of biochars (Accardi-Dey and Gschwend, 2003; Keiluweit et al., 

2012). 

In general, there is an increasing trend towards biogas production in most industrial 

countries because biogas is an important form of renewable energy (Möller et al., 

2008; Gunnarsson et al., 2010). It is also documented that by the year 2050 most of 

the world’s energy demand (approx. 77%) will be fulfilled by renewable energy 

(IPCC, 2011). Digestate is the solid by product of the biogas industry following the 

anaerobic digestion process (Arthurson, 2009). Digestate, as a source of easily 

available carbon can enhance the microbial activity by increasing the microbial 

growth and respiration as shown by e.g Mukherjee et al. (2016a), Makádi et al. 

(2008). 

To our knowledge, no investigation is reported on turnover rate and stability of 

recalcitrant carbon source like biochar under different soil conditions, and in the 

presence of easily available sources of organic C like digestate. 

I.3.4Stabilization mechanisms of natural, pyro (biochar) - and bio (digestate) - 
genic organic matter 
The processes responsible for the stabilization of soil organic matter (SOM) 

constitute an essential component of global biogeochemical cycles (Lehmann et al., 

2011). Overall, the chemical composition of the organic matter (OM) and the 

interactions with other soil components such as the mineral phase largely drive the 

mechanisms for SOM stabilization (Rasmussen and Rohde, 1988), which can be 

summarized as: (1) biochemical stabilization, (2) physical stabilization and (3) 

chemical stabilization (Six et al., 1998; Tryon, 1948). The extent of protection offered 

by each mechanism depends on the chemical and physical properties of the mineral 
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matrix and the morphology and chemical structure of the organic matter (Six et al., 

1998). Thus, each mineral matrix presents a unique and finite capacity to stabilize 

organic matter (Rasmussen and Rohde, 1988). According to Kögel-Knabner et al. 

(2008), the protection of organic matter (OM) against decomposition by the following 

mechanisms decreases in the order: chemically protected > physically protected > 

biochemically protected > non-protected. 

Due to the physical and chemical diversity of biochar, unknown environmental effects 

on biochar decomposition rates, the mean residence time of biochar in soil is still 

unknown (Prayogo et al., 2014). Some studies indicate that biochar may persist in 

soil for millennia (e.g. Kuzyakov et al., 2009; Liang et al., 2008); others reported from 

laboratory incubations that significant parts of biochar may be decomposed within 

weeks (Smith et al., 2010; Cross and Sohi, 2011). On the contrary, charcoal is not 

totally stable and several authors (e.g. Kuzyakov et al., 2009; Steinbeiss et al., 2009) 

have drawn attention to the need for long-term experiments under a diverse range of 

environmental conditions, soil types and biochar to better understand their fate in soil. 

Biochar made from hard wood is mechanically and biologically more stable than 

biochar from soft wood and herbaceous plants (Zimmerman et al., 2011). The 

mechanical stability and hardness of biochar made from plant feedstock relates to 

their higher lignin contents (Marchetti and Castelli, 2013). However, Keith et al. 

(2011) found for tropical soils that during the first 30 years after deposition there was 

a rapid decrease of biochar content in soil, though apparently after 30 years 

decomposition and/or loss declined to very slow rates and a steady state evolved. 

However, there is little information available for the stability of digestate based 

mixtures. On amending soil with digestate, an instant flush of high CO2 (response in 

respiration) production has been reported, unlike with other organic residues 

(Mukherjee et al., 2016a). This instant response in respiration is most likely an effect 

of a comparatively higher fraction of easily degradable carbon in the digestate 

becoming immediately accessible to the soil microorganisms (Möller et al., 2008), 

compared with e.g. non-digested animal manure (Arthurson, 2009) and compost 

(Odlare et al., 2008).The origin of organic residues (digestate, animal manure, 

compost) also causes different responses in soil respiration (Walsh et al., 2012).   

I.3.5Soil respiration as an indicator of pesticides degradation  
Soil respiration is a general process performed by most microorganisms and 

methods for measuring this activity are probably the most common tool for 
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investigating soil microbial activity (Stenstrom et al., 2001). Several methods exist for 

determination of soil respiration based on either oxygen consumption or release of 

carbon dioxide. The background respiration activity of a soil microbial community, 

also called basal respiration, can simply be measured as CO2 produced without any 

addition of substrate. Instead of adding glucose or a set of carbon sources, the 

respiratory response of the active microbial biomass can also be measured after 

addition of different organic fertilizers (Alburquerque et al., 2012). This assesses the 

capacity of the soil community to utilize a complex mixture of organic substances 

under more natural conditions where the microorganisms in the soil sample have to 

compete for the substrates. Adding organic residues to soil generally increases soil 

respiration, since carbon serves as an energy source for most soil microorganisms, is 

termed as substrate induced respiration (Marchetti and Castelli, 2013).  

The combination of the basal and substrate induced respiration represent carbon 

availability index (Cheng et al. 1996). Therefore, soil respiration can be used as an 

indirect indicator of a soils pesticide degradation potential (Torstensson and Castillo, 

1997).Like other metabolic activities, it depends on the physiological state of the 

microbial cells and is influenced by several soil factors. De Wilde et al. (2008) also 

found a good correlation between basal respiration and degradation of pesticides for 

conventional biobed materials. It supports the findings of Karanasios et al. (2010) 

and Mukherjee et al. (2016b) who demonstrated that microbial respiration is a strong 

or good indicator for co-metabolic degradation or dissipation of pesticides. There is 

no information available how microbial respiration will change, if biochar and 

digestate mixtures with soils will be used in such setup. This information is vital for 

using novel biofilter material in replacement with conventional mixtures, especially to 

analyze and interpret further pesticide degradation studies using such biomixtures in 

the biopurification process. 

I.3.6 Biochar and Digestate as adsorbents 

One possibility to characterize biochar and/or digestate surface properties is to 

investigate their role in adsorption processes. In general, their chemical and physical 

properties (e.g. aromaticity, porosity, surface area and surface chemistry) determine 

their abilities to adsorb organic or inorganic substances. Applications of both of them 

for remediation or restoration of contaminated soils are thus considered as 

environmentally beneficial (Kookana, 2010). 
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Nevertheless, positive effects on biochar amendments for contaminant retention have 

not always been observed (Keiluweit et al., 2012). Additionally, application of biochar 

containing high amounts of labile C may reduce adsorption of contaminants due to 

competing adsorption sites. Biochar with high ash contents elevate soil pH, and thus 

the mobility of organic contaminants (Kookana, 2010). And, if dissolved organic 

matter (DOM) is released, there might be a co-transport of contaminants (e.g. 

Uchimiya et al., 2012; Mukherjeeet al., 2016b). However, the influence of biochar 

amendments on sorption/desorption of contaminants in soils was hardly explored. 

Usually, previous research only focused on the sorption properties (Yang and Sheng, 

2003; Yu et al., 2010).  

Retention of cationic nutrients and contaminants is primarily affected through Cation 

Exchange Capacity (CEC) (De Wilde et al., 2009; El Bakouri et al., 2007). To elevate 

CEC in soils, applications of soil conditioners with higher CEC are required! However, 

the CEC of fresh and/or ash-free biochar is low (Accardi-Dey and Gschwend, 2003, 

Tatarkova et al., 2013). Considerable increase of CEC of biochar in soils (via surface 

oxidation with enrichment of carboxylic groups) requires long time (e.g.Jin, 2010; 

Martin et al., 2012) which diminishes the potential use of biochars assoil conditioner. 

Hence, biochar surface properties should be improved prior application using well 

established technologies, e.g. physical activation and/or composting. Yet, so far to 

our knowledge no research has been done to elucidate effects of digestate in single 

or combined application (with biochar) on sorption-desorption properties and/or 

nutrient retention. 

I.4 Objectives and outline of the thesis 
The overall aim of the present study was to examine the processes and factors that 

influence the fate of three contrasting pesticides (bentazone, boscalid, and 

pyrimethanil) in novel biomixtures (biochar and digestate based) for biopurification 

systems. The aim of the first study (chapter II) was to analyze the effect of novel 

biofilter materials on the microbial respiration to gain information about the optimal 

composition with respect to heterotrophic respiration as an indirect measure for 

pesticide degradation. In the second study (chapter III), pesticides dissipation (DT50) 

and mineralization (MinT50) potential was analyzed by using different soil/amendment 

mixtures in laboratory degradation studies. While the first and second study were 

focused either on the fundamental biological processes, in a third study (chapter IV), 

the basic physico-chemical properties (sorption-desorption) of selected 
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soil/biochar/digestate mixtures were examined. Based on these experiments, 

guidance for an appropriate soil / substrate (biochar and/or digestate) combinations 

for a novel biofilter setup can be derived.  

In the above studies, the following questions/hypotheses were addressed: 

i) How resistant are biochar- and digestate- based mixtures in soil to 
degradation and how do they affect biological and chemical soil 
properties? 

To assess the stability of biochars and digestate, their impact on soil 

properties under laboratory conditions, a short term respiration experiment 

(90 days) was conducted. This experiment was performed with two 

different biochars (produced at 400°C and 800°C) as well as digestate from 

biogas production. They were added in different combinations to two soils 

(loamy sand and silt loam texture).Additionally, both amendments were 

mixed together into the soils to study interactions between biochar and 

digestate and to investigate the interactions of both amendments with clay 

minerals resulting in a total of 13 mixtures (plus control soils) per soil type. 

ii) How doesthe biomixtures affect the fate (dissipation and degradation) 
of three different pesticides (bentazone, boscalid and pyrimethanil) 
use for biopurification systems? 

In order to elucidate the dissipation and degradation behavior of three 

pesticides with varying properties (ranging from low sorption and fast 

degradation to high sorption and slow degradation), a short term lab 

incubation study (135 days) was conducted using different configurations 

of mixtures. Seven different biomixtures comprised of two bioenergy 

residues (low temperature biochar and digestate) in combination with a 

loamy sand soil were used to investigate the pesticide degradation 

potential. The mineralization and dissipation kinetics were fitted to a single 

first order (SFO), the modified Gustafson-Holden (FOMC), and the bi-

exponential or double first-order in parallel (DFOP) model. 

iii) How do these novel mixtures affect the adsorption-desorption of 
studied pesticides used for biopurification systems? 

To assess sorption/desorption properties of three contrasting pesticides    

to novel biomixtures (biochar and digestate based) and loamy sand soil, a 

laboratory batch equilibrium experiments were investigated. Attempts were 
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made to correlate sorption-desorption properties of the studied pesticides 

with the organic carbon content of the biomixtures and their surface areas. 

Interaction of soil minerals with biomixtures and their effects on sorption-

desorption properties of pesticides were also discussed. To describe 

adsorption and desorption properties, Henry (linear), Freundlich and 

Langmuir isotherms were used and hysteresis was calculated using the 

Index of irreversibility. 
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II.1Introduction 
Soil organic C (SOC) or soil organic matter (SOM) plays an important role with 

respect to soil fertility and agricultural productivity, mainly yield (Möller et al., 2008; 

Feller et al., 2010). There are different ways to add external organic C to the soil or to 

increase soil organic C stocks, namely by N fertilization with organic manure 

(Rasmussen and Rohde,1988), reduced or zero-tillage (e.g., Ismail et al., 1994; Lal, 

2009), application of larger amounts of plant residues (e.g., cover crops) manure or 

compost (e.g., Buyanowski and Wagner, 1998; Lal, 2009), or by introducing black 

carbon or biochar to the soil (e.gTryon, 1948; Glaser et al., 2002). It is generally 

known that the C added to the soil will be turned over and CO2 will be released 

(heterotrophic respiration), whereby the heterotrophic respiration is a function of C 

quantity (size of the carbon stocks), environmental drivers (soil water content, soil 

temperature, and aeration), C availability or accessibility for microbial degradation, 

and C quality (Skopp et al., 1990; Six et al., 1998; Bauer et al., 2012). 

  Over the last 20 years the application of C-rich pyrogenic biomass (e.g., biochar or 

charcoal) has been suggested to increase soil C stocks and to improve soil fertility 

especially of C-poor soils (Sun et al., 2014; Prayogo et al., 2014; Smith et al., 2010). 

Unfortunately, the impact of biochar addition to soils on heterotrophic respiration is 

not fully understood and inconsistent findings are reported. Despite the recalcitrant 

nature of biochar, several studies have reported increased soil respiration rates when 

biochar was added to soils (e.g., Pietikainen et al., 2000; Zimmerman et al., 2011). 

Basically, pure biochar is comprised of a small labile C-pool with short turnover times 

(days to months) and a large recalcitrant C-pool with long turnover times from years 

to decades (Smith et al., 2010). The application of biochar to the soil can impact 

(increase or decrease) the mineralization of native SOM and fresh inputs of labile 

organic matter, which is classically described by a double exponential models to 

account for the mineralization of the active and slow carbon pools, respectively 

(Liang et al., 2008; Zimmerman et al., 2011). Often, C mineralization after biochar 

addition shows an initial flush, after which CO2 evolution continues at much lower 

rates, similar to the biphasic mineralization observed after addition of non-pyrolyzed 

organic materials to soils. Das et al. (2008) observed this phenomenon in soils 

amended by biochar made from poultry litter, and explained the observed 

phenomena by the presence of labile compounds in the poultry litter biochar. These 

labile compounds of the biochar can be easily and rapidly degraded followed by slow 
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to negligible degradation of the condensed aromatic ring structures of the biochar 

(Smith et al., 2010; Cross and Sohi, 2011). The initial stage of fast mineralization has 

been reported to last between 6 (Smith et al., 2010) to 60 days (Kuzyakov et al., 

2009; Steinbeiss et al., 2009), whereby 2 to 20% of the biochar-C can be 

mineralized. On the other hand, biochar addition has also been reported to affect 

freshly added organic residues as well as soil organic matter turnover. For example, 

sugarcane residues were stabilized into soil aggregates more rapidly in biochar-rich 

than in biochar-poor Brazilian soils resulting in lower heterotrophic respiration and 

long-term C-enrichment for the biochar-rich soils as reported by Liang et al. (2010). 

Keith et al. (2011) studied different biochars (high and low temperature biochar) 

added to sugarcane mulch. Their results indicated an increased mineralization of the 

biochar in presence of mulch, which acts as labile organic matter, but also a 

decrease of mulch turnover in presence of biochar. The authors speculated that the 

reactive surfaces of the aged biochar particles in soils may protect the labile organic 

matter of the mulch much better than freshly added biochars. In another study 

Zimmerman et al. (2011) compared the addition of different high temperature 

biochars to soils with different SOM contents and observed that C mineralization 

decreased in the soils amended with biochars. 

  Although biochar is very stable there are several mechanisms by which biochar can 

also interact with soil minerals particularly with clay. Joseph et al. (2010) 

hypothesized that the process of intercalation within clay minerals surfaces by 

hydrophobic-hydrophilic interactions are the main mechanisms behind this 

interaction. Additionally, biochar can be protected in soil micro-aggregates and by 

other types of physical protection (Liang et al., 2008; Kuzyakov et al., 2009). 

Therefore, the soil type especially clay content, is an important driving factor affecting 

the stability of biochar in soils. However, there are only few data available regarding 

the effects of soil characteristics on biochar stability. 

  Anaerobic digestion of different feedstocks (e.g., manure, organic wastes, or energy 

plants (e.g., maize) allows the production of biogas as a renewable energy, but at the 

same time it enables the conservation of practically all plant nutrients contained in the 

initial feedstock material, which can then be applied to soils as fertilizer (Möller et al., 

2008; Gunnarsson et al., 2010; Walsh et al., 2012). In comparison to the direct 

application of the feedstock to the agricultural fields, digestate contained less amount 

of total C and highly enriched in N (Möller et al., 2008), and therefore, less organic C 
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is available for growth and activity of the soil microbial community, which might lead 

to a gradual depletion of the soil organic matter stocks with time (Arthurson, 2009). It 

has been also observed that heterotrophic respiration will increase directly after 

digestate amendment due to the easily available C as shown by Marchetti and 

Castelli (2013). 

  In some cases both biochar and digestate might be applied to the soil at the same 

time or at different years. Both amendments seem to influence each other by co-

metabolism or suppression and their overall turnover is not well studied. To our 

knowledge, there is scarcity of data regarding interaction of digestate with clay 

minerals and the stabilization effect by the clay. Similarly, only few studies are 

available describing the soil respiration response with respect to simultaneous 

biochar and digestate amendment. As already mentioned, Marchetti and Castelli  

(2013) showed that digestate addition to the soil increased CO2 evolution, whereby a 

suppression of CO2 flux was observed when biochar was added to the system. 

Because the findings for biochar as well as digestate addition to soils are 

controversially discussed further systematical studies are urgently needed. To our 

knowledge the influence of different biochars (high and low temperature), contrasting 

soils (light to heavy), and amounts of biochar and digestate addition (low to high), 

and their response if added simultaneous are not studied yet within one experiment. 

  In the present study we therefore investigated the effects of the addition of biochar 

and digestate on microbial respiration in two contrasting soils at different mixing 

ratios. Additionally, the two amendments were mixed together into the soils to 

investigate any interactions with soil organic matter and potentially also with soil 

texture, particularly with clay. For interpretation of the respiration data physico-

chemical characteristics of the mixtures in terms of dissolved organic C (DOC) 

content, and aromaticity were also measured and correlated with observed CO2 

fluxes. 

II.2 Materials and Methods 
II.2.1 Soils and Organic Amendments 

Two contrasting soil types, a loamy sand (Gleyic Cambisol) from Kaldenkirchen, 

Germany (51°19’13 N and 6°11’47E) and a silt loam (Orthic Luvisol) from 

Merzenhausen, Germany (50°55’48 N and 6°17’51 E) were used in this study (see 

TableII.1). A detailed description of both soils can be found in Kasteel et al. (2010). 

These soils were mixed with three different organic amendments at different mixing 
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ratios, namely low temperature (400°C) biochar (LTB) (Carbon Terra GmbH, 

Augsburg, Germany), high temperature (800°C) biochar (HTB) (Pyreg GmbH, Dörth, 

Germany), and digestate (PlanET Biogastechnik GmbH, Vreden, Germany) for the 

incubation experiment. Both chars were obtained from slow pyrolysis processes 

using woodchips as feedstock and the digestate was obtained from anaerobic 

digestion process used chicken manure, beef waste, and maize silage. Additionally, 

the two types of biochars were also mixed each with digestate. The main physico-

chemical properties of the raw substances used for incubation are depicted in 

TableII.1. 

II.2.2 Preparation of soils with organic amendments 
Field-moist soil samples were sieved (≤2 mm), and kept at 5 ± 2°C in the dark until 

further analysis. Raw biochar was also sieved and the fraction between 1.5 to 2.0 

mm was selected. The soil amendments were mixed as large portions with 3 kg dry 

mass equivalent soil in 12 L plastic pots and stored at 20 ± 5 °C in the dark. Soil 

moisture content was determined separately, and the soil was adjusted to 20% of 

maximum water holding capacity (WHCmax). After rewetting, the soil was stored again 

in the dark at 20°C for 3 to 4 days to re-establish soil humidity equilibrium and to 

reactivate the soil microflora. The final moisture content was adjusted to 50% of 

WHCmax by adding de-ionized water. Finally, subsamples of 50 g (dry matter 

equivalent) each were taken from the pots and transferred to the microcosms (250 

mL Schott Duran glass bottles). 

  The experiment consisted of 14 different treatments in triplicate for each soil type: 

one control (bare soil without any amendment) and 13 different application ratios of 

organic residues or amendments. An overview for all samples with the labelling used 

throughout the study is listed in TablesII.2 and II.3. All mixtures (in triplicate) are 

based on dry matter basis (W/W) in contrast to most reported studies. 

II.2.3 Measurement of microbial respiration   
For the respiration measurements an automated 12 channel respirometer was used 

(Manufacturer: Messtechnik für Gasumsätze bei biologischen Prozessen, 42799 

Leichlingen; Model: 12 channel Respiration Monitor equipped with a Zirconium 

oxydsensor Typ FCX- MCxx-CH and two IR sensors, 5000ppm and 5ppm max. 

range; madur electronics; madirD01v3). In total 28 different compositions in triplicate 

were investigated (in total 84 mixtures). The CO2 efflux of the microcosms was 

recorded over one day (24 h) before disconnecting the bottles and connecting the 
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next sample series. Each sample was measured semi continuously by switching the 

gas flows between the sensors and sample bottles with a multiplex valve. This gave 8 

to 10 measuring points for each sample within the given 24 hours. With respect to the 

turnover of samples within the respirometer device, soil respiration rates of the 

respective identical aliquots could be measured every 10 days. At each 

measurement cycle water content was adjusted to 50% WHCmax to provide optimal 

water content and aeration conditions for microbial activity (Skopp et al., 1990). 

Finally, the arithmetic mean and the standard deviation (STD) of the evolved CO2 

were calculated from the triplicates for each consecutive measurement date. The 

incubation time was 90 days for all samples and the incubation was performed at 20 

± 5°C. 
II.2.4 Characterization of mixtures (DOC, SUVA254 and pH measurement) 

II.2.4.1 Determination of DOC and SUVA254 
Dissolved organic C (DOC) from mixtures was characterized according to Cox et al. 

(2004). Therefore, 10 g of dry mass equivalents soil (mixture) and 20 ml10 mM CaCl2 

were mixed in a jar and placed on a horizontal shaker at 225 rpm (SM25, Edmund 

Bühler) for 10 min at room temperature (20 ± 2°C). Subsequently, the soil-water 

slurry was centrifuged (Allegra 6 KR, Beckman Coulter Inc. CA, USA, GH-3.8 

Swinging-bucket Rotor) for 15 min at 2910×g and the supernatant was decanted and 

filtered through a 0.45-μm sterile cellulose acetatemembrane filter. DOC was 

measured with a TOC analyser 5050A equipped with an autosampler ASI-5000A 

from Shimadzu (Kyoto, Japan) after acidification and sparging the samples for 1 min. 
  UV absorbance at 254 nm was measured with Uvikon 860 UV/Vis 

spectrophotometer (Tegimenta AG, Rotkreuz, Switzerland). Specific UV-absorbances 

at 254 nm (SUVA254) (Leenheer and Croue´, 2003; Cox et al., 2004) of the extracts 

were calculated by dividing the absorptions by the respective DOC concentrations. 

The pH of the mixtures was determined with 10 mM CaCl2 at a 1:2 soil/solution ratio 

(w/v) with a portable pH-meter (Orion 3-star, Thermo Electron Co., USA) using a 

glass electrode. 
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Table II.1:  Main physico-chemical properties of the native soils, biochars and 

digestate used for incubation. HTB = high temperature biochar, LTB = low 

temperature biochar. 
 

Material 
 

Soil 1 
 

Soil 2 
 

LTB 
 

HTB 
 

Digestate 
Source /place and texture 

 
Kaldenkirchen 
(loamy sand) 

Merzenhausen 
(silt loam) Woodchips Woodchips Maize-silage, chicken 

manure and beef waste 

pH 6.12 6.19 7.8 7.5  
8.7 

Clay content (%) 4.90 15.40 - -  
- 

 
Corg(%) 

 
0.825 ± 0.006 

 
1.15 ± 0.03 

 
75.90 

 
74.40 

 
40 

 
Total N content (%) 

 

0.082 ± 0.006 

 

0.126 ± 0.010 

 

0.536 ± 0.046 

 

0.520 ± 0.016 

 

6.51 ± 0.02 

Surface area N2  (m2/g) 2.05 2.12 231 225  
3.09 

Surface area CO2 (m2/g) - - 634 625  
37.90 

DOC (mgL-1) 3.42 ± 1.10 2.76 ±  0.33 3.97 ± 0.40 3.56 ± 0.75 
 

1301.87 
 

SUVA254 (L mg-1 m-1) 6.52 1.98 1.26 1.06 5.92 
-= Not determined 
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II.2.4.2 DOC adsorption study  
Equilibrium adsorption experiments were conducted at room temperature (20 ± 2°C) 

with four different DOC concentrations (10, 20, 30, and 40 mg L-1) gathered from 

digestate. Three different doses of  low temperature biochar  (100, 250, and 500 mg) 

were mixed to the DOC solutions (3.33, 6.66, 10.00, 13.33 mL for four different 

concentrations of DOC) in 50 mL centrifuge tubes (Oak ridge Nalgene centrifugation 

tubes, Rochester, NY, USA). Final volume of solution was made with 20 mL 10 mM 

CaCl2. All tubes were covered by aluminum. Samples were shaken continuously for 

72 h on a horizontal shaker at 225 rpm (SM25, Edmund Bühler). After, the samples 

were centrifuged (Allegra 6 KR, Beckman Coulter Inc. CA, USA , GH-3.8 Swinging-

bucket Rotor) for 15 min at 2910×g and the supernatant was decanted and filtered 

through a 0.45-μm sterile cellulose acetate membrane filter. Concentration of DOC in 

the extracts was measured with a TOC analyzer and SUVA254 was determined with 

UV/Vis spectrophotometer (Please see II.2.4.1 section for details) and percentage of 

DOC adsorbed on the three different dosage of LTB was calculated as:  

                                                                                 
[II.1] 

Where, Ci is the initial and Ce (mg L-1) is the equilibrium DOC concentration water 

phase, respectively. Cs as the amount of sorbed DOC on the LTB (mg kg-1) was 

calculated by:  

                                                                                          
[II.2] 

Where V is the volume of DOC solution (mL) and M is the mass of LTB added (mg). 

 

II.2.5 CO2 flux calculation 

The cumulative amount of CO2 evolved from the mixtures during the incubation study 

was calculated as CO2-C using stepwise integration of the instantaneous fluxes over 

the entire incubation time period:  

                                                    [II.3] 
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With C (t) [µg min-1] as the instantaneous CO2-C flux at time t [min], dt as the time 

interval [min], and T as the time of sampling.
 

In a next step, the fluxes were related to soil dry matter of the input mixture for direct 

comparison and /or related to input C content to calculate the percentage of C 

degraded. 

II.2.6 Kinetics of the carbon turnover 

For the description of the dynamics of carbon turnover a double carbon pool or 

double first order in parallel model (DFOP) was used, whereby the corresponding 

CO2-C efflux over time t [d] can be described by: 

)()( 21
21

tktk
t eCeCC 

                                                            [II.4] 

where C (t) is the mineralized total C stock [%], C1 is the total percentage of the labile 

(active) C-pool from total C, C2  is the percentage of the refractory (slow) C-pool 

which is basically 1-C1, k1 is the first order mineralization rate of the labile C-pool [d-

1], and k2 is the first order mineralization rate of the refractory C-pool [d-1] (Liang et 

al., 2008; Qayyum et al., 2012).  

 Mean Residence Time (MRT) (days) for the labile and refractory carbon pools can 

be calculated from their corresponding mineralization rates, k1 andk2 respectively by: 
















21

1
kork

MRT
                                                                         [II.5] 

II.2.7 Statistical Analysis 

The parameters providing the best prediction of the measured data were determined 

by minimizing the sum of squared residuals: 
2

1
,, )(




n

i
isimiobs xxSSR                                                                                                     [II.6] 

Where, xobs and xsim are the observed and simulated cumulative CO2-C fluxes [g 

CO2-C g-1 mixture] at time step i and n is the total number of observations. For the 

minimization of the objective function [EquationII.6] the global optimization routine 

shuffled complex evolution developed at the University of Arizona (SCE-UA) as 
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described by Duan et al. (1992 and 1994) was used. This optimization routine has 

been already successfully applied in a wide range of applications in hydrology 

(Mertens et al., 2005; Mboh et al., 2011) but also for the estimation of parameters in 

non-linear C models (Weihermüller et al., 2009 and 2013; Bauer et al., 2012). 

  To quantify the quality the agreement between measured and fitted data of the 

inversion the coefficient of determination R2 was calculated: 

                                                         [II.7] 

Where,  and  are the arithmetic mean of the fitted and measured cumulative 

CO2-Cfluxes,respectively.
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II.3 Results and Discussion  
II.3.1 Cumulative CO2-C releases 
The cumulative CO2 evolution measured in the microcosms over the course of the 

incubation experiment for the Merzenhausen (silt loam) and Kaldenkirchen (loamy 

sand) soil and the corresponding mixtures are plotted in Figure II.1 and II.2. In the 

following the cumulative CO2 evolution after 90 days as listed in Table 2 and 3 will be 

discussed. The values for the two contrasting native soils without amendments were 

0.47 ± 0.04 mg CO2-C g-1 soil for Merzenhausen and 0.31 ± 0.03 mg CO2-C g-1 soil 

for Kaldenkirchen soil, whereby the CO2 evolved for the Kaldenkirchen was only 66 

% of the Merzenhausen soil. The lower CO2 flux for the Kaldenkirchen soil was in line 

with the relative difference in the total C content of about 71% of the Kaldenkirchen  

soil (0.825 % ± 0.006) compared to the Merzenhausen soil (1.15 % ± 0.03).  

  Respiration was substantially higher where 30% digestate was added due to the 

large amount of fresh C added for both Kaldenkirchen and Merzenhausen soils. 

Nevertheless, total cumulated CO2-C was slightly larger for the Merzenhausen soil 

mixture (with 16.88 ± 5.93 mg CO2-C g-1 soil compared to the Kaldenkirchen soil 

mixture with 14.90 ± 2.31 mg CO2-C g-1 soil, whereby the relative difference was still 

12%. Soil mixtures with less digestate (15 and 5%) had lower respiration rates, which 

can be expected due to the lower amount of available C in the mixtures. Surprisingly, 

the height of the CO2 flux did not correspond linearly to the total amount of C in these 

mixtures. The Kaldenkirchen soil mixture with 15% digestate evolved 14.00 ± 2.60 

mg CO2-C g-1 soil which is only 6% less compared to 30% digestate. In 

Kaldenkirchensoil mixture with 5% digestate the flux added up to 11.32 ± 0.90 mg 

CO2-C g-1 soils, which is only 24% less compared to the 30% addition. The same 

trend can be found for the Merzenhausen soil, whereby the 15% digestate already 

showed a much lower absolute (11.25 ± 0.66 mg CO2-C g-1) CO2 flux. Addition of 

only 5% digestate reduced CO2 release even more by 38.1%. The mechanisms for 

these differences between digestate loading and increase in CO2 evolution are still 

unclear but show a kind of saturation effect in the turnover as already observed by 

Cayuela et al. (2009) and Liu (1998).  

  For the lowest loading with high temperature biochar (1% w/w), CO2 evolution is 

114 and 122 % compared to the native Merzenhausen and Kaldenkirchen soil and 

for the highest biochar loadings (5% w/w) 180 and 232 %, respectively. For the low 
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temperature biochar CO2 evolution is in the same range and again total CO2 

evolution is slightly higher for the Kaldenkirchen as for the Merzenhausen soil. Again 

the CO2 evolution and biochar loadings are not a 1:1 relationship and likewise show a 

kind of saturation effect as for the digestate. Nevertheless, an increase of CO2 

evolution with higher biochar loadings is detectable, which indicates that part of the 

biochar can be degraded even during the relatively short incubation period as already 

shown by Pietikainen et al. (2000) or Zimmerman et al. (2011). On the other hand, 

the reported higher flux of CO2 at the beginning of the incubation of biochar amended 

soils as reported by Kuzyakov et al. (2009) or Steinbeiss et al. (2009) could not be 

observed. 

Mixtures of digestate and biochar indicate a more complex behavior as can be seen 

from Figure II.1 and II.2 and Table II.2 and II.3. Hereby even relatively low additions 

of biochar to the soil digestate mixture reduced CO2 evolution, which could be 

potentially produced from the digestate in the mixture. For example, 1% of biochar 

added to the 5 % soil/digestate mixture reduced CO2 evolution by more than 45% for 

all soils and biochar types. Increasing the biochar ratio to 5% shows an even smaller 

flux with less than 83 % of the digestate/soil mixture alone. This reduction in C 

turnover in addition of biochar has been already reported by Keith et al. (2011) and 

Zimmermann et al. (2011). 

 

Figure II.1: Cumulative amount of CO2-C evolution [mg g-1 dry mass mixture] for the 

Merzenhausen soil (silt loam). Control = Merzenhausen soil (silt loam), HTB = high 
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temperature biochar, LTB = low temperature biochar, and DG = digestate. The 

percentage indicates the mass ratios in the mixtures. Error bars indicate standard 

deviation. 

 

Figure II.2: Cumulative amount of CO2-C evolution [mg g-1 dry mass mixture] for the 

Kaldenkirchen soil (loamy sand). Control = Kaldenkirchen soil (loamy sand), HTB = 

high temperature biochar, LTB = low temperature biochar, and DG = digestate. The 

percentage indicates the mass ratios in the mixtures. Error bars indicate standard 

deviation. 

II.3.2 CO2 release with respect to C added 
In the following step, the ratio of degraded C was calculated and the results are also 

listed in Table II.2 and II.3. For both soils, the percentage of degraded C was highest 

following the addition of 5% digestate (Figure II.3 and II.4), where roughly 40 % of the 

total added carbon was turned over within 90 days. For higher digestate loadings the 

turnover was much slower with less than 22% and 17% for the 15 and 30% digestate 

loadings. A kind of saturation effects occurred leading to fewer turnover for higher 

digestate based C contents, which may relate to higher N content of the pure 

digestate (Table II.1). This is supported by the observations of  Cayuela et al. (2009) 

and Tenuta and Lazarovitis (2004), who illustrated that the higher percentage of 

amendment lead to NH3 toxicity to different microbial species in soil. They also found 

an inverse relationship between the percentage of mineralized C and application rate 

of organic amendments. To account for this effect Liu (1998) proposed a growth yield 
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model where “energy uncoupling” is the driving mechanism for suppression of 

microbial growth under “substrate-sufficient” conditions. He also observed the 

mismatch between fundamental biochemical processes such as anabolism and 

catabolism. 

  Relative degradation also dropped for the mixtures where biochar was added to the 

soil, whereby the differences in C degraded are less pronounced in comparison to 

the native soil. For both the high temperature and low temperature biochar maximum 

relative degradation was detectable for the lowest amount of char added to the 

system compared to highest loadings probably due to sorption of DOC to the biochar 

surface.  

  Biochar additions to the digestate/soil mixture reduced not only total CO2 evolved as 

discussed before but also the relative proportion of degraded C, whereby for both 

soils the addition of 1 % high temperature biochar to the 5 % digestate/soil mixture 

reduced the degradation by > 45 % and 1% low temperature biochar mixed to the 5 

% digestate/soil mixture reduced the relative degradation to <13%. For higher 

biochar additions the relative degradation dropped even more. Again differences 

between the biochars are detectable, which have to be associated to the pyrolysis 

temperature and the physico-chemical characteristics of the chars. 
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Figure II.3: Percentage of C degraded with respect to total C added to the system 

for the Merzenhausen soil (silt loam). Control = Merzenhausen soil (silt loam), HTB = 

high temperature biochar, LTB = low temperature biochar, and DG = digestate. The 

percentage indicates the mass ratios in the mixtures. Error bars indicate standard 

deviation. 

II.3.3 Carbon turnover kinetics 

Finally, the C turnover kinetics was estimated using the double pool model 

[EquationII.4].The total percentage of the labile (C1) and refractory pool (C2) and their  

corresponding  mineralization rates , k1 and k2 [d-1] as well as the mean residence 

time (MRT) [days] are listed in Table II.2 and Table II.3 for the Merzenhausen and 

Kaldenkirchen soil based mixtures, respectively. The goodness of the fit expressed 

by the R2 (Equation II.7) exceeds 0.98 for all samples, indicating that the DFOP is the 

adequate model to describe the data sufficiently. 

For both reference soils (MRZ and KK) the largest proportion of total C was allocated 

to the slow C-pool (C2) with more than 97.9 % of the TOC. Additionally, both soils 

showed large MRTs for the slow C-pools with 3334 years for the Merzenhausen and 

5000 years for the Kaldenkirchen soil. The fast C-pool (C1) which turned over with 

MRTs of 0.59 and 0.26 years for both soils indicate that only a small but still active C-

pool was detectable. Surprisingly, the slow C-pool seems to turnover faster for the 

clayic Merzenhausen soil compared to the sandy Kaldenkirchen soil, which is in 

contradiction to findings that clay stabilized C in the soil (Six et al., 1998). On the 

other hand, these long-term turnover cannot be precisely described using a short-

term incubation experiment of only 90 days. 

For the Merzenhausen soil the total percentage of the fast C-pool (C1), as well as the 

corresponding rate constants (k1) and MRTs did not differ much between the 

reference soil and the mixtures, whereby smallest MRTs were found for the reference 

soil and low dosage of HTB char (1 and 2.5%). On the other hand, digestate alone 

based mixtures did not increase the labile C-pool and corresponding MRTs increased 

slightly. Adding biochar to the digestate did not change the proportion or the MRTs 

either. For the mineralization of the slow C-pool (C2) an order in the rate constant k2 

of: digestate > digestate + biochar based mixture ≥ control soil ~ biochar, could be 

found. 
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Figure II.4: Percentage of C degraded with respect to total C added to the system 

for the Kaldenkirchen soil (loamy sand). Control = Kaldenkirchen soil (loamy sand), 

HTB = high temperature biochar, LTB = low temperature biochar, and DG = 

digestate. The percentage indicates the mass ratios in the mixtures. 

The influence of the amendments is more pronounced in the results of the slow C-

pool, where the total fraction stays nearly constant between reference soil and all 

mixtures but MRTs increased for the biochar based mixtures slightly, whereby no 

clear trend between the two types of char is detectable. The MRTs decreased 

substantially for the digestate only based mixtures down to less than 667 day, which 

is a 5 times reduction compared to the reference soil. This decrease is caused by the 

carbon added to the soil which is neither fully easily degradable nor recalcitrant. 

Mixing biochar to the digestate increased again the MRT, whereby the low 

temperature biochar (LTB) indicted a stronger effect compared to the high 

temperature biochar. For the slow C-pool turnover MRTs increased in the order: 

digestate based mixtures, digestate + biochar to the biochar only soils. 

   For the Kaldenkirchen based soil mixtures the percentage of the labile C-pool 

varies much stronger and a fraction of more than 18% was fitted for the mixture with 

5 % DG as well as 1% DG and 1% HTB. Additionally, MRTs are slightly lower for the 

fast C-pool except for the digestate + biochar based mixtures, where MRTs are 

roughly 5 times larger as for the Merzenhausen based mixtures. An extreme high 
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MRT could be found for the Kaldenkirchen soil mixed with 1 % DG and 1% HTB with 

14.28 years. The reasons for these differences are unclear. Again a clearer order is 

detectable for the slow C-pool, where again MRTs are slowest for the digestate 

based mixtures followed by digestate + biochar and biochar only mixtures. Also the 

recalcitrant nature of the biochar is detectable with largest MRTs for these samples. 

II.3.4Characterization of Soil, Biochar, and Digestate Mixture 

All of the mixtures used for the respiration study showed slightly acidic pH-values 

ranging from 6.04 to 6.74 (see Table II.4), whereby the Kaldenkirchen soil has 

slightly lower pH-values due its sandy character. Additionally, digestate based 

mixtures had highest pH-values, which are caused by the alkaline character of the 

digestate. The two contrasting soil types contained different amounts of clay, 

whereby the Merzenhausen soil had >3 times more clay as the Kaldenkirchen soil. 

Generally, the sorption capacity of a the soil for organic matter is related to the 

surface area of the soil which in turn is related to its clay content (Nelson et al., 

1997), because most clays have a net negative charge, small size and large surface 

area (Oades, 1988). Additionally, clay rich soils tend to form stable aggregates which 

physically protect the organic substance (Six et al., 1998). Therefore, our hypothesis 

was that water extractable DOC content will decrease with increased clay content 

due to greater sorption of DOC onto the clays. However, this was not the case except 

for the 15% and 30 % digestate based mixtures. Because this phenomenon cannot 

be described by the clay content alone other soil properties must also play a role. 

Clay content also does not affect SUVA254, and therefore, does not change DOC 

quality (see TableII.4). 

 

Table II.4: Main physico-chemical properties of the mixtures for the Kaldenkirchen 

(KK) soil (loamy sand) and Merzenhausen (MRZ) soil (silt loam) used for incubation. 

HTB = high temperature biochar, LTB = low temperature biochar, and DG = 

digestate. The percentage indicates the mass ratios in the mixtures. 
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Compared to pH-values extractable DOC differs greatly between the soil mixtures 

(Table II.4), whereby digestate based mixtures showed highest extractable DOC. For 

these mixtures extractable DOC increased also with increasing digestate content and 

mixtures with high and low temperature biochar had much lower extractable DOC 

with no clear trend between the two biochars. Interestingly, extractable DOC dropped 

in the biochar/digestate soil mixtures compared to the digestate soil mixtures by a 

factor of >1.8 and >1.6 for the Kaldenkirchen and Merzenhausensoil, respectively. 

Based on these data, biochar seems to act as a sink of DOC. 

Digestate based mixtures showed significantly higher SUVA254 values than the 

biochar/soil mixtures and, additionally, Merzenhausen soil based mixtures showed 

much lower SUVA254 values compared to the Kaldenkirchen based soil mixture. This 

means that DOC extracted from digestate based mixtures is more aromatic 

compared to the DOC extracted from biochar and that DOC extracted from 

Merzenhausen soil based mixtures is also less aromatic compared to the DOC 

extracted from the Kaldenkirchen soil. This can be explained by the fact that the 

hydrophobic nature of biochars tends to preferentially bind aromatic fractions of the 

DOC and that the silt-clay rich Merzenhausen soil also adsorbs major fractions of the 

aromatic DOC. 

II.3.4.1Influence of DOC, SUVA and clay content on CO2 evolution  

As Marschner and Kalbitz (2003) stated in their review paper dissolved organic C 

might be probably the most bioavailable fraction of soil organic C, since all microbial 

Substrate 
Composition 

pH 
DOC SUVA254 

[mgL-1] [L mg-1 m-1] 

 KK                      MRZ KK MRZ KK MRZ 
1.0 % HTB  6.04                       6.15 1.91 ± 0.20 2.23± 0.43 5.36 1.43 
2.5 % HTB  6.05                       6.17 2.63 ± 0.06 2.34 ± 0.21 3.26 1.48 
5.0 % HTB  6.07                       6.22 3.27± 0.70 3.58± 0.19 8.14 2.19 
1.0 % LTB  6.09                       6.12 1.73 ± 0.13 1.57± 0.32 4.43 1.36 
2.5 % LTB  6.14                       6.14 2.15 ± 0.58 2.10 ± 0.51 7.50 1.81 
5.0 % LTB  6.06                       6.06 3.53 ± 0.46 2.14 ± 0.15 13.09 2.33 
5.0 % DG  6.16                       6.34 9.69 ± 0.24 10.10 ± 0.89 17.31 4.35 
15 % DG  6.20                       6.29 26.73 ± 5.06 17.53± 1.49 18.62 4.43 
30 % DG  6.26                       6.74 41.69 ± 3.09 23.63± 1.07 25.02 4.73 

5 % DG: 1 % HTB  6.17                       6.25 5.25 ± 1.45 6.32± 0.32 8.41 3.27 
5 % DG: 5 % HTB  6.15                       6.26 4.84± 1.63 5.25 ± 0.47 5.42 2.32 
5 % DG: 1 % LTB  6.13                       6.20 4.36 ± 1.10 4.63± 0.70 6.81 1.97 
5 % DG: 5 % LTB  6.06                       6.16 2.64 ± 0.24 2.26 ± 0.34 11.05 2.41 
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uptake mechanisms require an aqueous environment (Metting, 1993). A conceptual 

model for the forming of DOC from SOC and the microbial turnover of DOC is 

provided in Figure 6a without the intention to be complete. The microbial turnover of 

DOC depends by microbes depends not only on the total available DOC but also on 

its aromaticity and hydrophobicity, which increases its recalcitrance and might inhibit 

enzyme activities. Additionally, if DOC is hidden in pores, which are present when 

biochar is added to the soils, DOC will not be accessible for microorganisms 

(Zsolnay, 1997).  

  To analyze if the amount of extractable DOC and aromaticity (measured by 

SUVA254) can describe the CO2 efflux differences as seen in our incubation study 

(especially between digestate and char/digestate based mixtures) these soil 

parameters were correlated against total evolved CO2. As can be seen in Figure II.5 

there is a strong logarithmic correlation (R2 = 0.90) between extractable DOC and 

total CO2 evolved over the 90 days of incubation. It has to be noted that not the 

regression function itself is of high importance because it may change with the 

extraction procedure applied, but the overall shape of the function plays an important 

role. As discussed earlier, higher DOC values could be extracted in digestate based 

mixtures followed by char/digestate and char based ones. This is in good agreement 

with the CO2 evolution measured in the incubation study. A comparable correlation 

for Australian pasture topsoil over an incubation time of 21-days was found by 

Marschner and Noble (2000), whereby their relationship was more linear-like. Based 

on the information which can be deduced from the regression (low DOC leading to 

low CO2 and high DOC to high CO2) the question arise which mechanisms and 

parameters influence extractable DOC amounts. The simplest explanation for height 

of extractable DOC would be the total amount of available C in the soil. The Lowest 

SOC contents were in the native soil and increased with biochar, digestate, and 

digestate/biochar based mixtures. Unfortunately, total mass of carbon cannot explain 

the full behavior because mixing a small proportion of biochar to the same amount of 

digestate shows that the biochar addition will reduce CO2 evolution but also 

extractable DOC. Therefore, it seems that either DOC production is limited in 

systems where biochar was added or that the biochar sorbed some of the DOC 

which will then not be available for the microbes. To illustrate the mechanism which 

might be responsible for the lower CO2 production in biochar amended soils the 

conceptual model in Figure II.6b can be used.  
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significantly sorbed to biochar, (Smith et al., 1992; Jin, 2010; Liang et al., 2010), 

leading to stabilization of organic matter in biochar amended soils. Looking at the 

percentage of DOC which can be potentially sorbed to the biochar it turns out that up 

to 70 % of the DOC can be sorbed at high biochar load. Normalizing the absorption 

of DOC on the amount of biochar added to the system (DOC absorbed in mg DOC 

per kg biochar added) shows a slightly different picture with lower relative amounts of 

DOC which can be sorbed to high biochar additions (see also Figure II.7). Finally, 

aromaticity is lower for those batches where higher biochar additions were used 

indicating, that aromatic DOC will be preferentially sorbed to the char leading to an 

enrichment of less aromatic DOC in the microbially accessible liquid phase. 

Therefore, two opposing mechanisms occur simultaneously in the liquid phase in 

presence of biochar: i) reduction of DOC leads to lower CO2 production and ii) 

enrichment of less aromatic DOC which might favor DOC degradation and CO2 

formation. 

As already mentioned, CO2 evolved for the Kaldenkirchen was only 66 % of the 

Merzenhausen soil despite the difference in clay content, which indicates that clay is 

not playing a major role in C mineralization at short time scales. Also for the other 

biomixtures higher CO2 fluxes were found for Merzenhausen soil. These findings 

contradicted with the observation by Liang et al. (2008) who observed that old black 

carbon mineralized at similar rates in soils of different texture. On the other hand, 

Kuzyakov et al. (2009) observed enhanced mineralization of biochar in silt loam soil 

(mostly during the first 3 months) over a total incubation period of >3 yrs. The 

hypothesized that mechanical disturbance which occurred during mixing of the soil 

with the biochar lead to release of labile organic matter from protected sites, which 

facilitated faster mineralization rates of the biochar at the beginning of the 

experiment.  
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Figure II.7: Adsorption isotherm for DOC on LTB (n = 3).  

II.4Conclusions 

In the study presented incubation experiments with different soil amendments, 

namely biochar and digestate, were performed over the course of 90 days. Hereby 

not only the amendments were used in different application ratios but the 

amendments were also mixed together with the soil to analyze their interactions with 

soil texture. Additionally, two contrasting soil types (loamy sand and silt loam soil) 

were used. The dynamics of C mineralization followed a biphasic pattern which leads 

to rapid decomposition at the early incubation periods and then decomposition 

gradually slowed down in a comparatively steady stage. This mineralization pattern 

could be well described by a bi-exponential or two pool model.  

Expected the highest addition of a fresh C source (digestate) lead to the largest CO2 

fluxes, whereby the increase in CO2 flux was not proportional to the amount of 

digestatate.
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Surprisingly, mixtures of digestate and biochar indicated a profound suppression of 

CO2 evolution even at relatively low biochar additions (1 % W/W).In this context, both 

soil types reacted in the same way. To analyze the mechanism of this reduction in 

soil C turnover additional measurements were performed to characterize the 

soil/digestate/biochar mixtures. It was found that extractable DOC content highly 

correlates with the total CO2 evolved over 90 days and that the addition of biochar to 

the system significantly reduced microbial accessible DOC in the liquid phase by 

DOC sorption. Additionally, more aromatic DOC seems to be favorably sorbed to the 

biochar, and therefore, the microbially accessible liquid phase is enriched with more 

labile DOC which on the other hand can be turned over more easily. In consequence, 

two contrasting mechanisms compete in the C turnover if biochar is added to the soil. 

i) DOC sorption to the biochar and therefore, reduction of the degradable DOC pool, 

and ii) enrichment of labile (or less aromatic) DOC in the microbial accessible liquid 

phase which favors C (DOC) turnover. It seems that the DOC reduction 

overcompensates the enrichment of less aromatic DOC and consequently totals C-

turnover is reduced in presence of biochar. To quantify these effect and for 

generalization more and specific research is needed, where the DOC production 

(quality and quantity) should be studied not only at the end of the experiment, but 

also over the course of incubation. This increase of understanding of C turnover in 

biochar amended soils will help to improve the assessment of the environmental and 

economic benefits of biochar addition to agricultural soils. 
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III.1Introduction 
Inappropriate use of pesticides can cause high concentrations in soils, ground and 

surface-waters with significant environmental consequences (Kolpin et al., 1995 and 

1998; Acevedo et al., 2011). In general, pesticide pollution of water stemms either 

from diffuse source pollution caused e.g. by pesticide leaching to goundwater or by 

surface runoff from fields to water bodies (Carter, 2000). Pollution may also origin 

from point sources caused by the release of pesticide contaminated waters from e.g. 

washing of the spray equipment, pesticide handling (filling of spray equipment), or 

e.g. by illegal dumping of post harvest pesticide treatment waters (Coppola et al., 

2011b; Karanasios et al., 2010a). At the catchment scale, studies have elucidated 

that 40 to 90% of surface water contamination by pesticides can be due to point 

source pollution (Carter, 2000; Kreuger and Nilsson, 2001). 

The fate of pesticides in the environment is closely connected to dissipation, of which 

mineralization is one key process, and soil sorption, which in combination mainly 

governs the leaching potential of the substances in soils (Boesten and Van der 

Linden, 1991). To assess the environmental fate of pesticides, standard laboratory 

experiments are performed to measure the mineralization (total breakdown of 

substance to CO2) and dissipation (sum of mineralisation, metabolization, and non-

extractable residue formation, which is measured via extractable active ingredient) 

behavior and to determine appropriate end-points for pesticide registration. These 

end-points are the half-life values which express the time required for 50% of the 

initial mass to mineralize (MinT50) or to dissipate (DT50). Hereby the DT50, or 

dissipation, does not differentiate between transfer processes (e.g., leaching or 

erosion), sequestration (e.g., non-extractable by organic solvents due to strong 

sorption), or degradation (biotic or abiotic transformation of the substance) processes 

(FOCUS, 2006). 

Dissipation and mineralization of pesticides are not only influenced by the chemical 

properties of the substances but they also depend on physico-chemical properties of 

the soil (such as pH value, soil organic carbon content (SOC), or soil texture), 

biological properties (activity and distribution of microorganisms), as well as 

environmental conditions controlling the chemical and biological processes (mainly 

soil temperature and soil water content). As a consequence, the dissipation (DT50) 

and mineralization (MinT50) half-life times have to be determined for each pesticide 

and soil combination individually. 
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Biopurification systems, like the biobed concept developed in Northern Europe 

(Castillo et al., 2008), biofilter system in Belgium (De Wilde et al., 2007), biobac or 

phytobac system in France (Guyot and Chenivesse, 2006), or biomassbed in Italy 

(Coppola et al., 2007) aim to reduce point pollution from farmyards by collecting all 

pesticide contaminated waters (e.g., from cleaning spray equipment) and to purify 

this waste water in a simple treatment system. The basic idea of these biofilter 

systems is that the pesticides will be degraded or sorbed/sequestered during the 

passage (drainage) of the water through suitable media (Castillo et al., 2000 and 

2008; Coppola et al., 2011a), whereby systems with a balance between 

sorption/sequestration, and mineralization/degradation are the most promising 

purification approach. Typically, different media are in use for such purpose 

depending on the location of the biopurification system and the availability of 

substrates such as mixtures of soil, straw, peat, but also residues from agricultural 

product processing or wastes (e.g., citrus peels,vine branches, coconut byproducts) 

have been reported (Coppola et al., 2007; De Roffignac et al., 2008; Karanasios et 

al., 2010a). The addition of fresh organic matterto the biofilter matrix in these setups 

is an essential component for pesticide purification because it enhances the microbial 

activity, and therefore, also the microbial turnover of the pesticides (Perucci et al., 

2000; Walker, 1975; Nair and Schnoor, 1994). Not all substrates are locally available 

or can be sustainably sourced (e.g., peat). On the other hand, byproducts or wastes 

from bioenergy production (e.g., digestate from biogas production or biochar) 

become more and more available and might be suitable to substitute more traditional 

substrates in the biopurification systems. 

The addition of biochar to soils and its influence on pesticide mineralization is 

currently controversally discussed. Biochar is characterized as a highly recalcitrant 

pyrolysis product (i.e. charcoal), showing high organic C content and a high specific 

surface area (Lehmann et al., 2011). Some authors reported an increase of pesticide 

mineralization as a result of the microbial stimulation in the system, whereas other 

studies report reduced mineralization, due to a lower pesticide bioavailability to 

microorganisms because of the increase in sorption/sequestration of pesticides at 

biochar surfaces. A higher sorption or sequestration on soils amended with biochar 

(made from wood pellets) has been reported for a range of pesticides (e.g. Cabrera 

et al., 2014; Si et al., 2011). However, for anionic pesticides or pesticide metabolites, 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=organic+matter
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beech wood biochar (fresh and composted) amendments did not show enhanced 

sorption in soils (Dechene et al., 2014). Regarding biochar influence on pesticide 

degradation, Loganathan et al. (2009) reported a decrease in atrazine mineralization 

in soils amended with 1% (w/w) wheat char and they hypothesized that this reduction 

is associated with the increase in sorption of the herbicide to the char surface. On the 

other hand, Guo et al. (1991) suggested that atrazine and alachlor degradation could 

be inhibited in presence of activated carbon, and stimulated by other uncharred 

amendments, such as municipal sewage sludge and manure. An increase in atrazine 

mineralization by the addition of organic amendments to a sandy loam soil was also 

reported by Mukherjee (2009). 

In general, there is an increasing trend towards biogas production in most industrial 

countries because biogas is an important form of renewable energy (Makádi et al., 

2008). Digestate is the solid and residual byproduct of the biogas industry following 

the anaerobic digestion process (Möller et al., 2008; Mukherjee et al., 2016a). On the 

other hand, it is a good source of easily available carbon and lignin rich material 

which generally enhances microbial activity by increasing the microbial growth and 

respiration as shown by e.g Makádi et al. (2008), Odlare et al. (2008), and Kirchmann 

(1991). To our knowledge, no investigation has been done yet to determine how 

digestate addition to soil influences the dissipation and mineralization behavior of 

pesticides. 

As mentioned earlier, biobed systems do not only rely on the full mineralization of the 

pesticides but combine pesticide mineralization, degradation, and 

sorption/sequestration leading to overall pesticide dissipation, and as a consequence 

of this, to water purification. Therefore, it is mandatory not only to look at the 

mineralization (which can be also fairly low for some specific recalcitrant pesticides) 

but to analyze the overall dissipation potential of the pesticides in the biomatrix, 

considering also sequestration of pesticide in the soil matrix, which also leads to 

reduced availability of pesticides for leaching. Additionally, Nowak et al. (2011 

and2013) reported the importance of biogenic non-extractable residues. They stated 

that microbes utilized carbon from pollutants to build up their own biomass. This 

microbial biomass containing 14C from pesticide labelling and full degradation of the 

pesticides will contribute to the non-extractable fraction, even if it was already turned 

over completely. However, determining this specific pathways and fraction of 
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microbially immobilized pesticide originated 14C is out of scope of this paper. As 

different pesticides react diversely in the soil systems a test of biopurification 

materials should encompass a range of pesticides with contrasting properties. 

The aim of this study was to analyze the pesticide mineralization and dissipation 

potential of seven different soil-amendment  mixtures (biochar and digestate) and the 

reference soil in a laboratory incubation experiments using 14C labelled pesticides. In 

particular, the effects of different biochar and digestate dosages on pesticide fate 

were evaluated in combination with pesticides of varying chemical properties 

(bentazone, boscalid, and pyrimethanil). Based on the experimental findings, 

guidance for appropriate soil/substrate (biochar and/or digestate) mixtures can be 

provided, helping to design efficient biopurification (biobed) systems for a wide range 

of pesticides. 

III.2Material and Methods 
III.2.1Substrates 
For the experiment, loamy sand topsoil (0 to 10 cm depth) from Kaldenkirchen, 

Germany (51°19’13 N and 6°11’47E) (Gleyic Cambisol) was used as basis for the 

soil biomixtures. The soil was mixed with two different organic amendments, namely 

low temperature biochar (BC) and digestate (DG), each in different mixing ratios.The 

BC originates from slow pyrolysis processes (400°C) using Pine woodchips as 

feedstock and the DG added was obtained from biogas production using maize 

silage,chicken manure, as well as beef  and pig urine as feedstock (in a ratio of 

15:1:5:4). Both amendments were used as received from the production and were 

not pretreated before the study. A detailed description of both amendments and soil 

can be found in Mukherjee et al. (2016a). The main physico-chemical properties of 

the raw substances and soil mixtures used for the experiments are listed in Table II.1 

and Table III.1, respectively. It has to be noted that for the experiments already 6 

month aged biomixtures were used to ensure that the active microbial population has 

been already adapted to the biomixture and for being more representative for the 

long-term use of the biopurification matrix. Therefore, all biomixtures were stored at 

room temperature for 6 months prior our experiment. 

III.2.2 Pesticides 
Three different pesticides were used in the experiments, two of them are fungicides 

(pyrimethanil and boscalid) and one is a herbicide (bentazone). All pesticides were 
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radioactively labelled (14C labeling, Specific radioactivities for bentazone, boscalid 

and pyrimethanil were 5.31, 5.34, and 6.42 MBq mg-1,respectively) and provided by 

BASF SE with >97% chemical and >99% radiochemical purity. Non-radioactive 

pesticides(>99% purity) for blending the radioactive substance were purchased from 

Sigma-Aldrich Chemie GmbH (Steinheim, Germany). The pesticides were selected to 

span a wide range in their sorption and degradation properties. Their physico-

chemical characteristics are given in Table III.2. 

III.2.3 Characterization of used soil-mixtures  
Extractable dissolved organic carbon (DOC) from mixtures was characterized 

according to Cox et al. (2004). To this aim, 10 g dry mass equivalents of soil (-

mixture) and 20 ml 10 mM CaCl2 were mixed in a jar and placed on a horizontal 

shaker at 225 rpm (SM25, Edmund Bühler) for 10 min at 20 ± 2°C. Subsequently, the 

soil-water slurry was centrifuged (Allegra 6 KR, Beckman Coulter Inc. CA, USA , GH-

3.8 Swinging-bucket Rotor) for 15 min at 2910×g and the supernatant was filtered 

sterile through a 0.45-μm cellulose acetate membrane filter. DOC was measured with 

a TOC analyser 5050A equipped with an autosampler ASI-5000A from Shimadzu 

(Kyoto, Japan) after acidification and sparging the samples for 1 min.
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UV absorbance at 254 nm (UVA254) in water-based soil extracts was measured with 

a Uvikon 860 UV/Vis spectrophotometer (Tegimenta AG, Rotkreuz, Switzerland). 

DOC-specific UV-absorbances at 254 nm (SUVA254) (Leenheer and Croué, 2003; 

Cox et al., 2004) of the extracts were obtained by dividing the UVA254 values by 

therespective DOC concentrations. The pH of the soil/soil-mixtures was determined 

by equilibrating soil/soil-mixture with 10 mM CaCl2(soil/solution ratio 1:2 (w/v)) with a 

portable pH-meter (Orion 3-star, Thermo Electron Co., USA) using a glass electrode. 

Effective cation exchange capacity (ECEC) of soil (-mixtures) was determined 

according to Lüer and Böhmer (2000): In a first step 2.5 g soil was equilibrated with 

10 mL 1 M NH4Cl for 24 h. Subsequently, a folded paper filter (640d, Macherey-

Nagel, Düren, Germany) was wetted with 1 M NH4Cl and placed in a filter funnel. The 

wet soil was completely transferred to the filter and percolated with 1 M NH4Cl until a 

volume of 100 mL percolate was collected. Exchangeable cations (Al+3, Ca+2, K, 

Mg+2, Na ) were determined in the filtrate using an inductively coupled plasma optical 

emission spectrometer (ICP-OES) (Ciros CCD, SPECTRO Analytical Instruments 

GmbH, Kleve, Germany). 

III.2.4 Mineralization / Dissipation experiments 
All mineralization/dissipation experiments were performed in accordance to the 

OECD guideline 307 (OECD, 2002) for the duration of 120 d. Overall eight different 

soil/-mixtures were investigated for each pesticide in triplicate, resulting in 24 

incubation flasks for each pesticide. With respect to the three pesticides analyzed, a 

total of 72 Schott Duran flasks were used and filled with 150 g (dry mass) 

soil/biomixture each. An overview of all soil/-mixtures is listed in Table III.1. All 

incubation flask were covered by aluminum foil to minimize light exposure and the 

incubation flasks were stored in dark over the entire incubation time. The soil water 

content was adjusted to 50% WHCmax using demineralized water (OECD, 2002). 

Applied pesticide mass added to each incubation system was based on 

recommended field application rates (960 g ha-1 for bentazone, 100 g ha-1 for 

boscalid, and 800 g ha-1 for pyrimethanil), assuming full distribution in the soil with a 

mixing depth of 5 cm (assumed soil bulk density of 1.5 g cm-3). To simulate much 

higher concentrations in biopurification matrices, as expected for biobed systems, 

these loads were multiplied by 10. The resulting pesticide concentrations in the 

experiments were therefore 12.80 mg kg-1soil/biomixture for bentazone, 1.33 mg kg-1 

for boscalid, and 10.67 mg kg-1 for pyrimethanil. 

http://link.springer.com/article/10.1007/s11368-012-0524-y/fulltext.html#CR30
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14C labeled pesticides were applied in organic solvent to inert quartz sand, which 

served after evaporation of solvent as a carrier to achieve a homogeneous mixing 

with the soil and biomixures. This procedure avoids the addition of any potentially 

toxic solvents/solution directly to the soils. Therefore, approx. 5 g of the quartz sand 

was mixed with the calculated loads of pesticides solved in corresponding solvents 

(bentazone & boscalid in acetonitrile and pyrimethanil in toluene) in a smooth 

porcelain container. Afterwards, the solvent was allowed to evaporate under a fume 

hood for 5 hrs and the quartz sand was well homogenized. Finally, the pesticide-

loaded quartz sand was well homogenized with the biomixtures using a spatula. The 

flasks were equipped with a carbon-dioxide trap, consisting of 1.5 ml 2 M NaOH 

(maximum entrapment capacity of one filling: 18.03 mg CO2-C)  solution and then 

closed air-tight. The water content of incubation flasks was controlled once a week 

via weighing of the flasks and water losses >5 g were compensated by adding the 

respective amounts of deionized water. 

Table III.3:Mathematical expressions for different kinetic models used in the 

incubation study and estimation of MinT50 and DT50. 

 

 

 

 

 

 

To  determine any pesticide losses over the course of preparation of the incubation 

system, soil subsamples were taken immediately from each incubation flask and 

combusted via an biological oxidizer (OX 500, R.J.Harvey Instrument Corp., Tappan, 

NY, USA). Evolving 14CO2 was trapped in Oxysolve C-400 oxidizer scintillation 

cocktail (Zinsser Analytic, Germany), and analyzed using liquid scintilation counting 

(LSC) (LSC; 2500 TR, Tri-Carb, Packard). Based on the results (recoveries of 

pesticides in the sand after spiking ranged from 99.5 to 99.7% based on the 

radioactivity measurement), the initial pesticide concentrations per flask were 

calculated. Analytical quality control tests have shown that the recovery of pesticides 

(based on active ingredient) after mixing the spiked sand to the soils ranged from 

      model Mathematical equation MinT50 /DT50 determination    
      
       

Simple first order (SFO) 
 

 
Mt =MOe-kt 

 
MinT50 /DT50 = ln 2/ k    

      Bi-Exponential (DFOP) Mt  = M1 e -k1
d t + M2e -k2

d t iterative method   

 Where, M2 = 100- M1 
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87.7 to 108.6% for soil and 82.0 to 88.7% for mixtures. The low recovery from BC-

amended soil is explained by instantaneous sequestration on biochar. The increased 

concentration of biochars categorically enhanced (irreversible) 

adsorption/sequestration due to increased micropore quantity in amended soils. 

Pesticide mineralization from the incubation flasks was measured by trapping 

evolved 14CO2 in 2 M NaOH solution, whereby the NaOH traps were replaced after 0, 

3, 8, 14, 23, and 30 days after application, and thereafter twice a month until day 

135. Quantification of trapped 14CO2 was done via LSC.Based on a preliminary study 

(Mukherjee et al., 2016a) and calculations, it was ensured that all evolved CO2 could 

be trapped in the NaOH and that the traps were exchanged much earlier as 

maximum saturation capacity would be reached for all biomixtures. In the worst case 

(30% digestate based mixture), less than 50 % of the entrapment capacity was used. 

1a 
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1c 
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FigureIII.1a-1c: Pesticide residues calculated from complete mineralization of 14C- 

bentazone, pyrimethanil, and boscalid in % for the different soil/amendment mixtures. 

Error bar represents standard deviation (n = 3). Reference soil = loamy sand, BC = 

low temperature biochar, and DG = digestate. The percentage indicates the mass 

ratios in the mixtures. Note that the y-axis does not have the same scale for better 

visualization. Points indicate measurements and line the best fitting model as listed in 

Table A1. 

Soil/ biomixture samples were taken at day 0, 8, 30, 60, 90,and 120. To this aim, 5 

times 1 g were randomly sampled to give an aliquot of approx. 5 g (dry mass) of each 

flask. Each subsample was shaken with 50ml of methanol (MeOH, Merck Lichrosolv, 

≥99.9% purity) and Milli-Q ultrapure water (50:50 (v/v)) on a horizontal shaker (225 

rpm, 25 h) at room temperature in the dark (by covering the flasks with aluminum 

foil). Analytical quality assurance data have shown that recoveries of pesticide 

extraction using above solvent mixture varies from 67.8 to 82.7% for reference soil 

and 4.0 to 88.7% for biomixtures. Marinozzi et al. (2013) and Marín-Benito et al. 

(2012 and 2014), also reported >65% recoveries by using methanol as an extraction 

solvent for different pesticides and biobed substrates. The low recovery from 

biomixtures in our study, can be explained by different physico-chemical properties 

(poor water solubility and hydrophobicity) of the pesticides and strong instantaneous 

sequestions/sorption of pesticides on biochar as already described above. The final 

activities and pesticide concentrations were determined after centrifugation from the 

supernatants by LSC and HPLC. Total residual 14C activity was determined by 

incineration-oxidation to 14CO2 and quantified via LSC. 

III.2.5 Analytical procedures 
Pesticide concentrations in the liquid phase were measured using HPLC equipped 

with a UV and radioactivity detector. A reversed phase C-18 column (HPLC column 

Agilent Technologies, Zorbax eclipse XDB-C18 ,150 × 4.6 mm × 5 µm particle size) 

was used and a 0.25 ml aliquot of each sample was injected into the combined 

UV/Radio-HPLC. Solvent A was Millipore water with 0.1% conc. H3PO4 (pH 3.0) for 

all studied pesticides. As a solvent B methanol (Merck Lichrosolv, ≥99.9% purity) was 

used for bentazone and pyrimethanil and acetonitrile (Merck Lichrosolv, ≥99.9% 

purity) for boscalid. The flow rate was 0.80 ml min-1 and the column temperature was 

kept constant at 25 °C. A linear gradient was used: 0 to 5 min: 70% solvent A, then to 
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100% solvent B for 11 min. Hold 100% B for 16 min, switch back to 70% A and hold 

for 25 min. The UV detector was adjusted to 219, 243, and 270 nm for bentazone, 

boscalid, and pyrimethanil, respectively. Quantification of active ingredients via radio-

HPLC was performed by calculating the measured radioactivity for each substance 

peak. The limits of quantification (LOQs) and limits of detection (LODs) of the method 

were 10 and 3 Bq ml-1, respectively, for all of the studied pesticides based on an 

injection volume of 0.25 ml. Therefore, LOQs for the labelled pesticide concentrations 

were 2.00 ng ml-1 for bentazone, 2.24 ng ml-1 for boscalid, and 1.66 ng ml-1 for 

pyrimethanil, respectively. No metabolites were detected and quantified in these 

concentration ranges (which corresponds to 0.002 to 0.021% of applied radioactivity) 

which are in line with the observations of Coppola et al. (2011a) and Marín-Benito et 

al. (2012). 

2a 

2b 

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

time [day]

D
is

si
pa

te
d

[%
of

ap
pl

ie
d

14
C

]

reference soil
1.0% BC
5.0% BC
5.0% DG
30.0% DG
5% DG + 1% BC
5% DG + 5% BC
30% DG + 5% BC

Bentazone

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

time [day]

reference soil
1.0% BC
5.0% BC
5.0% DG
30.0% DG
5% DG + 1% BC
5% DG + 5% BC
30% DG + 5% BC

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

time [day]

D
is

si
pa

te
d

[%
of

ap
pl

ie
d

14
C

]

reference soil
1.0% BC
5.0% BC
5.0% DG
30.0% DG
5% DG + 1% BC
5% DG + 5% BC
30% DG + 5% BC

Pyrimethanil

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

time [day]

reference soil
1.0% BC
5.0% BC
5.0% DG
30.0% DG
5% DG + 1% BC
5% DG + 5% BC
30% DG + 5% BC



Dissipation of bentazone, pyrimethanil and boscalid in biochar and digestate based 

soil mixtures for biopurification systems 

71 
 

2c 

FigureIII.2a-2c: Extractable pesticide residues of 14C- bentazone, pyrimethanil, and 

boscalid in % for the different soil/amendment mixtures. Error bar represents 

standard deviation (n = 3). Reference soil = loamy sand, BC = low temperature 

biochar, and DG = digestate. The percentage indicates the mass ratios in the 

mixtures. Points indicate measurements and line the best fitting model as listed in 

Table III.4. 

III.2.6 Pesticide mineralization / dissipation kinetics 

Different kinetic models were fitted to the data of the incubation experiment in order 

to derive mineralization and dissipation parameters (MinT50andDT50). For each data 

set, the the single first order (SFO) model and the bi-exponential or double first-order 

in parallel (DFOP) model  as proposed by the FOCUS Kinetics guidance document 

(FOCUS, 2006) were tested in order to derive best-fit endpoints. The respective 

model descriptions and corresponding equations for calculating endpoints (MinT50 

and DT50) are shown in Table 4. MinT50 was determined directly from fitting of the 

14CO2 evolution curves (Figure III.1a-1c).  

III.2.6.1 Goodness-of-fit statistics 
The goodness-of-fit of the kinetic models was assessed by visual inspection and 

statistical measures, as recommended by FOCUS (2006). The software package 

KinGUI (version 2.2012.320.1629) was used for parameter fitting (Schäfer et al., 

2007; Schmitt et al., 2011). The error tolerance and the number of iterations of the 

optimization tool were set to 0.00001 and 100, respectively. For visual inspection 

both the observed and modeled decline curves over time as well as the distribution of 

the residuals over time were used. As a statistical measure of the goodness-of-fit a 2 

test was performed. Moreover, the sum of squared residuals (SSR) was evaluated 

(FOCUS, 2006) and the endpoints MinT50 for the mineralization and (DT50) for 
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dissipiation were reported. For all fittings a 
2  error threshold was set to 15%, which 

corresponds to a probability level of p = 0.05. That means that a calculated 
2  error 

less than 15% indicates a good fit. For those pesticide / soil (-mixture) combination 

where a model did not show good results, based on the 
2  error and SSR, no kinetic 

parameters and end-points are reported. For the 2   test  Equation III.1was used: 




 2

2

2

)(1100
O
OCerror

tabulated
                                                                           [III.1] 

where, the error is model error at which the 2 test is passed, 2
tabulated is tabulated 

value of 2 distribution (m = degree of freedom and  chosen probability), C is the 

calculated value and O is the observed value and Ō is the average of all observed 

values. 

For the reliability of individual parameters Equations (III.2 and III.3), a single-sided t-

test was used: 

)( valueparameterSD
valueparametert





                                                                        [III.2] 

                             [III.3] 

Hereby, t is the empirical t-value, SD is the standard deviation of parameter value 

and dof is the degrees of freedom. Significance level was considered at p<0.05. The 

goodness-of-fit statistics, i.e. 2 error level and type-I error rate, were calculated 

within the KinGUI runs and documented in the respective output files. The fit passed 

the 2 test if the calculated 2 is lower than the tabulated 2 for a given degree of 

freedom and significance level (here 5% significance level). The parameters of the 

kinetic models were optimized according to the recommendation of the FOCUS 

working group using using the least-squares method. 

III.3 Results and Discussion  
III.3.1 Pesticide mineralization and kinetics 
Overall seven different biomixtures plus the native soil for comparison were analyzed 

with respect to their pesticide mineralization capabilities. Figure III.1a-1c shows the 

14CO2 evolution curves in percentage of total applied 14C bentazone, pyrimethanil, 

and boscalid as a function of incubation time. As can be seen, the different mixtures 

behave differently in the mineralization pattern but also the physico-chemical 

)1,,( doftondistributitrateerrorItype 
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characteristics of the three compounds influence the complete mineralization of 

pesticides substantially. After 135 days, the lowest mineralization of bentazone was 

found in the biochar amended soils (1 and 5% biochar) with <11%, followed by the 

reference soil (~15%) and the digestate-soil mixtures (18 to 25%). Addition of biochar 

to the digestate-soil mixtures resulted in more complex effects, whereby the addition 

of 1 and 5% biochar to 5% digestate showed an increase of mineralization compared 

to the addition of the same amount of digestate only. On the other hand, addition 5% 

biochar to the higher load of digestate (30%) reduced the total mineralization slightly 

(Figure III.1a).  

Pyrimethanil (see Figure III.1b) is less mineralized compared to bentazone as it can 

be expected from its known properties (Table III.2). It was mineralized to less than 

6.5% except for the 30% digestate mixture where about 15% of pyrimethanil was 

mineralized until 135 d after application. Similarly to bentazone, biochar-only 

mixtures showed the lowest mineralization while the digestate-biochar mixtures again 

showed an increased mineralization of these two pesticides.  

The same trend was found for boscalid with a mineralization of <7.0% for all 

substrates except for the 30% digestate based mixture, where mineralization was ~ 

11% (Figure III.1c) untl 135 d after application. Mineralization is clearly increased in 

mixtures with digestate contents ≥ 5%, but the additional application of 5% biochar to 

soil-digestate mixtures reduces boscalid mineralization significantly. 

The observed findings of reduced pesticide mineralization in biochar-containing soils 

has been already reported by e.g. Yang et al. (2003a and 2006), Cornelissen et al. 

(2005), Sobek et al. (2009), and Yu et al. (2006). In those studies, lower 

mineralization of pesticides was attributed to the stronger (in terms of quality) and 

larger (in terms of quantity) pesticide sorption onto biochar surfaces, and as a 

consequence, a reduction of bioavailable pesticides in the soil liquid phase 

(Fernandez et al., 2006; Cabrera et al., 2007).  

Digestate alone increased the mineralization of the studied pesticides compared to 

the native soil and all other mixtures, which can be attributed to the high ligno-

cellulosic compounds found in digestate (see Table II.1). The positive effect of ligno-

cellulosic compounds in different maturity stages has been already observed by 

Tortella et al. (2012) and Marinozzi et al. (2013), and the mechanisms for the higher 

mineralization may be ascribed to the higher activity of white-rot fungi, which co-
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metabolize pesticides by extracellular enzymes, targeting ligno-cellulosic structures 

(Coppola et al., 2011a; Castillo et al., 2000 and 2008). 

It has to be pointed out that the increase in pesticide mineralization was not 

proportional to the amount of added digestate (5 or 30%).Mineralization was 

increased only ~1.4 fold (bentazone), ~2 fold (boscalid), and 2.5 fold (pyrimethanil) 

when digestate was added in six–fold amounts.



D
is

si
pa

tio
n 

of
 b

en
ta

zo
ne

, p
yr

im
et

ha
ni

l a
nd

 b
os

ca
lid

 in
 b

io
ch

ar
 a

nd
 d

ig
es

ta
te

 b
as

ed
 s

oi
l m

ix
tu

re
s 

fo
r b

io
pu

rif
ic

at
io

n 
sy

st
em

s 

 
 Ta

bl
e 

II
I.4

: K
in

et
ic

 p
ar

am
et

er
s 

fo
r t

he
 d

is
si

pa
tio

n 
(d

er
iv

ed
 fr

om
 e

xt
ra

ct
ab

le
 p

es
tic

id
e 

re
si

du
es

) o
f t

he
 d

iff
er

en
t p

es
tic

id
es

 (b
en

ta
zo

ne
, 

py
rim

et
ha

ni
l, 

bo
sc

al
id

) f
or

 th
e 

KK
 =

 lo
am

y 
sa

nd
 s

oi
l, 

1%
 B

C
, 5

%
 B

C
, 5

%
 D

G
, 3

0 
%

 D
G

, K
K

+ 
5%

 D
G

 +
 1

%
 B

C
, K

K
+ 

5%
 D

G
 +

 5
%

 B
C

, 

K
K

+ 
30

%
 D

G
 +

 5
%

 B
C

 (B
C

 =
 lo

w
 te

m
pe

ra
tu

re
 b

io
ch

ar
, a

nd
 D

G
 =

 d
ig

es
ta

te
) o

bt
ai

ne
d 

fro
m

 fi
tti

ng
 k

in
et

ic
s 

to
 a

 s
in

gl
e 

fir
st

 o
rd

er
 (

S
FO

) 

an
d 

 b
i-e

xp
on

en
tia

l 
(D

FO
P

) 
m

od
el

(b
ol

d 
le

tte
rs

 i
nd

ic
at

e 
fa

irl
y 

go
od

 f
it 

an
d 

ita
lic

s 
in

di
ca

te
 n

o 
go

od
 f

it 
to

 t
he

 d
es

cr
ib

ed
 m

od
el

s)
.

K
in

et
ic

 m
od

el
 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
S

FO
 

   
   

   
   

D
FO

P 

  P
es

tic
id

e 
   

   
   

   
   

 
  S

ub
st

ra
te

 
M

o (
%

 o
f i

ni
tia

l) 
  k

 (d
ay

-1
)  

D
T 5

0  
(d

ay
s)

  R
2

   
  S

S
R

   
  

pa
ss

ed
 

M
o (

%
 o

f i
ni

tia
l) 

 g
   

 k
1 (

da
y-1

)  
k 2

 (d
ay

-1
)  

D
T 5

0  
(d

ay
s)

  R
2 

   
   

SS
R

   
pa

ss
ed

   

B
en

ta
zo

ne
 

K
K 

1%
   

 B
C

 
5%

   
 B

C
 

5%
   

 D
G

 
30

%
  D

G
 

5%
   

 D
G

 +
 1

%
   

B
C

 
5%

   
 D

G
 +

  5
%

  B
C

 
30

%
  D

G
 +

  5
%

  B
C

  

77
.9

0 
   

   
   

   
   

0.
00

3 
   

   
 3

05
.7

0 
   

   
 0

.7
5 

   
8.

00
   

  2
93

.2
0 

   
  x

 
86

.9
8 

   
   

   
   

   
0.

09
9 

   
   

 7
.0

0 
   

   
   

  0
.9

8 
   

21
.5

0 
  3

24
.1

0 
70

.8
8 

   
   

   
   

   
0.

16
1 

   
   

 4
.3

0 
   

   
   

  0
.9

7 
   

32
.2

0 
  4

89
.9

5 
   

 
80

.5
6 

   
   

   
   

   
0.

01
0 

   
   

 7
2.

50
   

   
   

 0
.8

4 
  1

2.
40

   
43

3.
20

 
62

.7
1 

   
   

   
   

   
0.

00
7 

   
   

 1
01

.8
0 

   
   

 0
.3

8 
   

26
.4

0 
 1

41
4.

80
   

   
 

76
.3

8 
   

   
   

   
   

0.
04

3 
   

   
 1

6.
10

   
   

   
 0

.9
9 

   
29

.9
0 

  8
41

.4
0 

   
   

   
   

   
   

   
  

83
.6

7 
   

   
   

   
   

0.
17

4 
   

   
 4

.0
0 

   
   

   
  0

.9
7 

   
32

.5
0 

  6
67

.4
0 

57
.0

2 
   

   
   

   
   

0.
00

6 
   

   
 1

14
.3

0 
   

   
 0

.9
5 

   
4.

80
   

  4
0.

20
   

   
  x

 
 

88
.0

9 
   

   
   

   
 0

.8
0 

   
 0

.0
01

02
   

1.
90

36
0 

  4
57

.3
   

   
0.

70
   

  6
.2

0 
   

 1
10

.5
0 

  
87

.9
6 

   
   

   
   

 0
.4

5 
   

 0
.0

25
09

   
1.

92
52

0 
  1

.2
   

   
   

 0
.9

6 
   

 2
1.

50
   

20
4.

14
  

71
.0

9 
   

   
   

   
 0

.2
2 

   
 0

.0
03

76
   

1.
92

37
0 

  0
.5

   
   

   
 0

.9
8 

   
10

.7
0 

   
34

.2
6 

88
.6

5 
   

   
   

   
 0

.8
0 

   
 0

.0
07

68
   

1.
92

91
0 

  6
2.

3 
   

   
 0

.8
9 

   
12

.8
0 

   
28

2.
80

  
86

.3
6 

   
   

   
   

 0
.4

8 
   

 0
.0

01
33

   
1.

93
01

0 
  1

.7
   

   
   

 0
.8

6 
   

15
.8

0 
   

32
0.

00
 

87
.2

6 
   

   
   

   
 0

.4
2 

   
 0

.0
11

72
   

1.
93

38
0 

  1
.0

   
   

   
 0

.9
9 

   
 6

.3
0 

   
 2

3.
83

 
83

.8
8 

   
   

   
   

 0
.2

3 
   

 0
.0

05
72

   
1.

93
33

0 
  0

.5
   

   
   

 0
.9

9 
   

 4
.0

0 
   

 6
.4

5 
   

   
   

   
x 

57
.9

8 
   

   
   

   
 0

.9
6 

   
 0

.0
05

86
   

1.
94

19
0 

 1
12

.9
0 

   
 0

.9
5 

   
 5

.9
0 

   
 3

8.
42

   
   

   
  x

 
 

P
yr

im
et

ha
ni

l 

K
K 

1%
   

 B
C

   
   

   
   

   
   

   
   

   
 

5%
   

 B
C

 
5%

   
 D

G
 

30
%

  D
G

 
5%

   
 D

G
 +

 1
%

   
B

C
 

5%
   

 D
G

 +
  5

%
  B

C
 

30
%

  D
G

 +
  5

%
  B

C
 

75
.4

9 
   

   
   

   
   

0.
00

34
   

   
20

6.
20

   
   

   
0.

71
   

 7
.0

0 
   

19
1.

70
   

   
x 

32
.4

2 
   

   
   

   
   

0.
01

07
   

   
65

.0
0 

   
   

   
 0

.9
6 

   
6.

10
   

 1
5.

20
   

   
  x

 
3.

68
   

   
   

   
   

   
0.

00
69

   
   

99
.9

0 
0.

42
   

23
.4

0 
 3

.8
2 

61
.5

8 
   

   
   

   
   

0.
00

39
   

   
17

8.
00

 0
.7

7 
 7

.0
0 

  1
22

.0
0 

   
   

   
   

   
 x

   
   

   
   

   
   

   
   

   
  

63
.4

7 
   

   
   

   
   

0.
00

07
   

   
96

5.
50

   
   

  0
.2

2 
  4

.5
0 

   
71

.8
0 

   
   

   
x 

30
.6

6 
   

   
   

   
   

0.
01

71
   

  4
0.

50
   

   
   

  0
.6

7 
  2

8.
90

  2
31

.5
0 

 
28

.3
9 

   
   

   
   

   
0.

05
57

   
   

12
.5

0 
   

   
   

0.
98

   
14

.6
0 

 1
9.

90
  

21
.0

8 
   

   
   

   
   

0.
00

47
   

   
14

7.
50

   
   

  0
.8

2 
  7

.1
0 

   
13

.5
0 

   
   

  x
 

82
.6

7 
   

   
   

   
0.

84
   

 0
.0

02
37

   
 1

.9
04

29
   

 2
20

.4
   

   
0.

85
   

  6
.3

0 
   

98
.2

0 
32

.4
7 

   
   

   
   

0.
99

   
 0

.0
10

61
   

 1
.9

01
20

   
 6

4.
90

   
   

0.
97

   
  7

.7
0 

   
15

.1
0 

4.
03

   
   

   
   

   
0.

81
   

 0
.0

05
09

   
 1

.7
38

70
   

 9
5.

00
   

   
0.

46
   

  2
8.

40
   

3.
54

 
62

.4
9 

   
   

   
   

0.
97

   
 0

.0
03

70
   

 1
.7

36
60

   
 1

80
   

   
   

0.
77

   
  8

.8
0 

   
12

0.
50

 
67

.6
7 

   
   

   
   

0.
89

   
 0

.0
00

16
   

 1
.7

36
60

   
 3

63
2.

6 
   

0.
87

   
  4

.3
0 

   
 4

1.
60

   
   

   
 x

 
38

.8
9 

   
   

   
   

0.
46

   
 0

.0
06

10
   

 1
.4

75
50

   
 1

.7
   

   
   

 0
.9

3 
   

15
.5

0 
   

42
.2

0 
28

.4
5 

   
   

   
   

0.
97

   
 0

.0
53

70
   

 1
.3

34
90

   
 1

2.
5 

   
   

 0
.9

8 
   

18
.2

0 
   

19
.5

0 
23

.7
6 

   
   

   
   

0.
79

   
 0

.0
03

20
   

 1
.1

50
00

   
 1

43
.6

   
   

0.
99

   
  0

.9
0 

   
  0

.1
3 

   
   

   
 x

 

B
os

ca
lid

  

K
K 

   
   

   
   

   
   

   
   

1%
   

 B
C

 
5%

   
 B

C
 

5%
   

 D
G

 
30

%
  D

G
 

5%
   

 D
G

 +
 1

%
   

B
C

 
5%

   
 D

G
 +

  5
%

  B
C

 
30

%
  D

G
 +

  5
%

  B
C

 

63
.8

6 
   

   
   

   
   

0.
00

21
   

   
33

7.
00

 0
.6

5 
  5

.2
0 

   
83

.9
3 

   
   

   
   

  x
 

38
.0

2 
   

   
   

   
   

0.
01

00
   

   
69

.3
0 

   
   

   
0.

99
   

 3
.0

0 
5.

41
   

   
   

   
x 

6.
34

   
   

   
   

   
   

0.
01

43
   

   
48

.4
0 

   
   

   
0.

85
   

17
.2

0 
   

3.
69

 
81

.0
7 

   
   

   
   

   
0.

00
47

   
   

14
7.

00
   

   
  0

.9
5 

   
3.

60
   

  5
0.

73
   

   
x 

81
.2

1 
   

   
   

   
   

0.
00

36
   

   
19

5.
 0

0 
   

   
0.

74
   

 7
.0

0 
   

21
6.

87
   

  x
 

49
.2

8 
   

   
   

   
   

0.
01

58
   

   
44

.0
0 

   
   

  0
.7

7 
  2

2.
20

  3
66

.3
4 

17
.3

9 
   

   
   

   
   

0.
02

72
   

  2
5.

50
   

   
   

0.
95

   
14

.4
0 

 1
2.

05
 

31
.8

5 
   

   
   

   
   

0.
01

16
   

   
59

.6
0 

   
   

  0
.8

8 
  5

8.
89

   
12

.5
0 

 

67
.7

6 
   

   
   

   
0.

10
   

 1
.7

03
90

   
  0

.0
01

52
   

38
7.

5 
   

 0
.7

6 
   

5.
40

   
  5

7.
20

   
   

   
   

x 
38

.5
8 

   
   

   
   

0.
03

   
 1

.7
04

40
   

  0
.0

09
75

   
67

.9
0 

   
0.

99
   

 3
.6

0 
   

 4
.8

0 
   

   
   

   
  x

   
   

   
  

6.
34

   
   

   
   

   
0.

00
   

 1
.7

04
38

   
  0

.0
14

31
   

 4
8.

40
   

 0
.8

5 
   

21
.6

0 
  3

.7
0x

 
81

.0
7 

   
   

   
   

0.
00

   
 1

.7
04

41
   

  0
.0

04
71

   
 1

47
.2

0 
  0

.9
5 

  4
.5

0 
   

 5
0.

73
 

86
.5

8 
   

   
   

   
0.

11
   

 1
.7

00
90

   
  0

.0
02

83
   

 2
02

.2
0 

  0
.7

9 
  7

.6
0 

   
16

3.
64

   
   

58
.9

3 
   

   
   

   
0.

40
   

 1
.7

17
40

   
  0

.0
08

76
   

 1
9.

10
   

  0
.9

2 
  1

6.
10

  1
21

.0
0 

18
.5

5 
   

   
   

   
0.

21
   

 1
.7

13
30

   
  0

.0
21

10
   

 2
1.

20
   

  0
.9

7 
  1

3.
 9

0 
 7

.1
0 

36
.7

6 
   

   
   

   
0.

38
   

 0
.1

55
94

   
  0

.0
06

46
   

 3
2.

80
   

  0
.9

9 
  1

.4
0 

   
 0

.4
8 

   
   

   
  x

  
 

2


2


2


2




Dissipation of bentazone, pyrimethanil and boscalid in biochar and digestate based 

soil mixtures for biopurification systems 

 
 

A kind of saturation effect occurred, leading to non-proportional turnover of pesticides 

for higher digestate based C contents, which may relate to higher N content of the 

pure digestate (see Table II.1). This is supported by the observations of Cayuela et 

al. (2009) and Tenuta and Lazarovitis (2004), who illustrated that the higher 

percentage of amendment lead to NH3 toxicity to different microbial species in soils. 

Additionally, the water extractable DOC quantity is not proportional to the digestate 

content (see Table III.1) and it is widely accepted that DOC provides the most 

important carbon and energy source for heterotrophic bacteria. Moreover, DOC 

quality and quantity have been shown to affect microbial community composition and 

functionality which has direct or indirect effects on pesticide mineralization behaviour 

(Metting, 1993; Findlay et al., 2003; Docherty et al., 2006).  

In biomixtures of digestate and biochar a positive effect on the mineralization rates 

for all pesticides was observed (least for pyrimethanil) in comparison with soils 

amended only with biochar.  This finding can be explained by the priming effect of the 

digestate addition and the observation that biochars can act as a good habitat for soil 

microbes (Lehmann et al. 2011) and that soil microbial communities changed in 

biochar-amended soils, there by enhancing mineralization (Anderson et al., 2011). 

The mineralization of pyrimethanil solely in the digestate based mixtures as well as in 

the 30% DG and 1% BC amended soil shows a lag phase of up to 40 days (Figure 

III.1b), with an initially slow mineralization, followed by a phase of more rapid 

mineralization. The existence of a lag phase has already been observed for some 

pesticides, and it can be attributed to the adaptation time needed for the microbial 

community to mineralize the pesticide (e.g., Rodríguez-Cruz et al., 2006). On the 

other hand, it is not clear yet why only the digestate-based mixtures exhibit such 

behavior and why it is only detectable for the pyrimethanil mineralization. 

To describe the mineralization kinetics of the pesticides added to the different 

substrates two different kinetic models, namely the single first-order, and the double 

first-order in parallel (Table III.3) were tested to identify which best describes the 

mineralization (based on cumulative 14CO2 fluxes) kinetics.  

The fitted MinT50, the ratio between the slow and fast pool (g-parameter) for the 

DFOP model, as well as the 
2  error and the SSR for the mineralization are 

provided in the supplementary information (Table A1). As can be seen, the single 

first-order model (SFO) is not appropriate to describe the bentazone and pyrimethanil 

mineralization, whereas mineralization of boscalid could be described by this model. 
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The double first-order in parallel (DFOP) model could descibe all pesticide 

mineralization and despite the fact that boscalid is a stable compound and SFO 

model is sufficient to describe the kinetics, the mineralization could be even better 

described using the DFOP model compared to the SFO model based on statistical 

measures such as SSR and also visual inspection. It has to be noted that the  MinT50 

values are not of primary interest in this study and lie well beyond any valid 

extrapolation range from our observation period (see appendix, Table A1). For our 

study, the main interest is on the different mineralization dynamics  among  the tested 

substrates for one pesticide, which is discussed.  

As already described in the mineralization plots over time (Figure III.1a-1c) the impact 

of the different soil amendments becomes clear. Biochar addition to the soil generally 

increases mineralization and larger amounts of biochar inhibited the mineralization of 

pesticides in the substrates. In contrast, the addition of digestate accelerates 

pesticide mineralization. Unfortunately, the DFOP fit for pyrimethanil in the 30 % 

soil/digestate mixture was not able to describe the lag-phase appropriate, but 

nevertheless passed the statistical test. For example, the addition of 30% DG led to a 

mineralization of 14.4% of applied radioactivity until 135 d after application, for 

pyrimethanil, compared with 5.8% for the addition of 5 % DG.  

Finally, simultaneous addition of biochar and digestate lead to slower mineralization 

compared to the digestate based mixtures but faster as compared to the biochar 

based ones. The general mechanisms and processes for this accelerated or 

decelerated mineralization have been already discussed before. 

III.3.2 Pesticide dissipation and kinetics 
To assess pesticide dissipation in the soil/-mixtures, the active ingredient contents 

were quantified in methanol/water soil extracts (Figure III.2a-2c). The extraction of 

soil/-mixtures with methanol/water can be assumed to exhaustively extract the 

potentially water-desorbable and thus also bioavailable pesticide residues (e.g. 

Laabs et al., 2005; Cabrera et al., 2008). In general, pesticides dissipated over time 

in all substrates, whereby significant difference (p<0.05; t-test) in dissipation was 

observed for all pesticides among the tested soil treatments. The slowest dissipation 

was always observed for the control soil and the digestate based mixtures. In 

comparison, fastest dissipation was measured for the biochar-based mixtures 

(biochar/ soil and biochar/digestate/soil). For the reference soil and the solely 

digestate-based mixtures, only bentazone showed a priming effect on dissipation, 
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while for boscalid and pyrimethanil no clear effect of digestate addition could be 

observed. For the biochar-amended soils, pesticide dissipation increased 

substantially with increasing biochar content for boscalid and pyrimethanil, while for 

bentazone biochar addition also increased dissipation, but no clear difference 

between the two biochar treatments was detectable.  

An observed low extractability of pesticides (and thus faster dissipation) for the 

biochar-amended soils was also reported by Sopeña et al. (2012) and Spokas et al. 

(2009). The faster pesticide dissipation in biochar-amended soils is thus mainly 

caused by the higher sequestration (and hence lower extractability), which is caused 

by the strong or irreversible sorption of the tested pesticide onto biochar with its high 

surface area, hydrophobic surface properties, as well as their nano-porous structure. 

Because the biobed systems are designed to purify pesticide containing waters 

irrespectively of the processes involved (mineralization or sorption) a better 

comparison of the suitability of the soil/-mixtures can be drawn from the dissipation 

(here derived from extractable residues) kinetics. The fitted end-points DT50, the ratio 

between the slow and fast pool (g-parameter) for the DFOP model, as well as the 
2  

error and the SSR for the dissipation are listed in Table III.4. Unfortunately, the 

picture is less clear as for the mineralization, where full pesticide sets could be either 

described by one model or not. As can be seen in Table III.4, only 5 combinations 

could be best described using the SFO model, whereas 12 combinations could be 

well described using the DFOP model, respectively. Additionally, some combinations 

could not be described using any model such as for bentazone mixed into 30% 

digestate, pyrimethanil mixed into 5 % biochar, and boscalid mixed into the reference 

soil, 5% BC, 30% DG, and 5% DG + 1% BC, respectively.  

Nevertheless, even from these sparse data it can be seen that the addition of biochar 

accelerated dissipation of the pesticides, which is mainly driven by the sequestrations 

of pesticides onto the biochars and corresponding low extractability. The influence of 

sequestration/strong sorption on the dissipation kinetics of pesticides in soils has 

been observed in many studies (e.g., Laabs et al., 2000), due to a decrease in the 

bioavailability and biodegradation of compounds sequestered in soil (Cabrera et al. 

2007; Alexander, 2000).  

III.3.3 Formation of non-extractable pesticide residues 
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As discussed, dissipation for the three pesticides is mainly controlled by a fast 

formation of non-extractable residues rather than full mineralization to CO2.The 

intention of biochar and digestate additions to the test soil was two-fold. The primary 

aim was to increase mineralization, which would be the preferred dissipation pathway 

regarding any environmental long-term effects of residues. Since a full mineralization 

of any pesticide in soil is hardly achievable, the second objective was to immobilize 

(i.e. sequester) as much pesticides as possible to minimize the pesticide 

concentrations in water percolating through and potentially exiting the biopurification 

system. In the long-term view, also the leaching potential to groundwater needs to be 

minimized, based on the assumption that used biopurification material might be  

returned to the agricultural fields after its use period (usually 3 to 5 years) (Castillo et 

al., 2008). The maximization of sequestration of pesticide residues, while 

mineralization rates are kept high, were achieved with the combination of 

digestate/biochar additions, as shown in Figure III.3a-3c. The positive effect of 

biochar on the sequestration of pesticides is one of the desired effects in biobed 

systems, especially for pesticides with low mineralization potential or high mobility in 

soil. This will ensure minimal export of pesticides via percolate (in case the total 

amount of water added to the system cannot be evapo-transpirated to a sufficient 

degree), and therefore, a high overall water purification rate.  

For all studied pesticides the amounts of non-extractable residues increased for 

bentazone from 0 to 120 d after application from 4.38 to 91.1%, for pyrimethanil from 

8.73 to 94.6%, and for boscalid from 10.5 to 93.7% (detailed data not shown) (Figure 

III.3a-3c), as reported previously for other compounds (Fenlon et al., 2011 and Marín-

Benito et al., 2012). The percentages of non-extractable residues of bentazone 

formed at the incubation time of 120 days were ~42% of the applied radioactivity for 

the reference soil and ~85%, ~64% and 77% for 5% BC, 5% DG, and 5% BC 

+5%DG mixtures, respectively. For boscalid and pyrimethanil, these percentages for 

non-extractable residues were 36 to 45% of applied radioactivity for the reference soil 

and 87 to 94%, 47 to 53%, and 94 to 95% for 5% BC, 5% DG, and 5% BC + 5% DG 

mixtures, respectively. 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0048969714000618#bb0045
http://www.sciencedirect.com/science/article/pii/S0048969714000618#bb0130
http://www.sciencedirect.com/science/article/pii/S0048969714000618#bb0130
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Bentazone 

     3a 

Pyrimethanil 

 

  

 

3b 

 

 

                                                     Boscalid 

 3c 

FigureIII.3a-3c:Cumulated 14CO2 and (extractable + non-extractable) pesticide 

residues (at day 120) of 14C- bentazone, pyrimethanil, and boscalid in % of applied 

radioactivity for the different soil/amendment mixtures (n = 3). Reference soil = loamy 

sand, BC = low temperature biochar, and DG = digestate. The percentage indicates 

the mass ratios in the mixtures. 
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The formation of non-extractable residues in the biochar and digestate amended 

mixtures was in general higher for boscalid and pyrimethanil than for bentazone, 

possibly due to the higher sorption of these pesticides by the biomixtures than 

bentazone (Table III.2). The formation of non-extractable residues for all pesticides 

was always higher after the addition of biochar (1 and 5%) and digestate (5%) than 

reference soil. Moorman et al. (2001) and Mamy et al. (2005) reported that organic 

carbon content is the key factor involved in the formation of non-extractable residues 

of pesticides in soil. An exception to this was the 30% DG mixture, which led to a 

decrease of non-extractable residues formation for boscalid and pyrimethanil (~36 

and ~35% of applied radioactivity, respectively), presumably due to its high content of 

DOC, which may co-solubilize these moderately non-polar pesticides or compete for 

available strong sorption sites in soil. 

III.4. Summary and Conclusion 
Before proposing new materials for use in biopurification systems for pesticide 

remnants, the materials need to be tested for their purification potential. The optimal 

biopurification system setup should find a balance between high mineralization and 

sufficient sorption/sequestration of pesticides for long-term effectiveness of the 

system and for reducing potential export of pesticides via percolate from these 

systems. 
In our experiments, total mineralization varied among the pesticides with generally 

lower mineralization for boscalid and pyrimethanil (0.7 to 15% of applied radioactivity) 

and slightly larger one for bentazone (9 to 24%). The results indicated that the 

addition of digestate as an easily available carbon source increased pesticide 

mineralization mainly by the stimulation of the soil microbial activity. However, the 

mineralization did not increase proportionally with increasing digestate content in the 

mixture. Biochar addition decreased the mineralization for all pesticides and led to 

larger formation of non-extractable residues, resulting in increased dissipation of 

pesticides via sequestration in soil for all tested mixtures. Using mixtures of 5% 

biochar and 5% digestate in soil showed intermediate mineralization and high 

sorption, resulting in largest pesticide dissipation of all tested mixtures.  

However, more work is required to analyze also the hydraulic response and the 

resulting contact times of the biopurification mixtures and the pesticide-containing 

drainage water, which are fundamental for the setup of an optimal biobed system. 

Additional research is also required to study the long term fate (>1 year) and effects 

http://www.sciencedirect.com/science/article/pii/S0048969714000618#t0005
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of aged pesticide residues in biomixtures, which might be returned to and distributed 

onagriculturalfields.
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Mukherjee, S., Weihermüller, L., Tappe, W., Hofmann, D., Koeppchen,S., Laabs, 

V., Vereecken, H., Burauel, P. Sorption-desorption behavior of bentazone, 

boscalid and pyrimethanil in biochar and digestate based soil mixtures for 

biopurification systems. Sci.Total Environ. 559,63-73. 
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IV.1Introduction 

Pesticide pollution caused by point or diffuse sources may lead to the contamination 

of ground and surface water. Point sources typically contribute 40 to 90% of 

contamination of natural water resources (Castillo et al., 2008, Karanasios et al., 

2010). They mainly arise from on-farm activities, such as filling, mixing, and washing 

of sprayer equipment (De Wilde et al., 2009). The contamination potential is larger 

when farmers are located close to any open water body or if washing activities are 

performed on gravelly or sandy soils with low retention capacity for any spilled 

pesticides (Karanasios et al., 2010). Mitigation or prevention of point sources can on 

one hand be achieved by implementing best management practices, on the other 

hand by using advanced depurification systems based on sophisticated physical, 

chemical, and/or biological methods to treat any remnants of pesticides on farm (De 

Wilde et al., 2008). Unfortunately, many methods for remnant treatment (e.g., 

chemical coagulation, sedimentation, oxidation and photocatalysis) are cost and/or 

labour intensive (Spanoghe et al., 2004). To overcome these limitations the “biobed” 

concept was developed in Sweden in the early 1990s to establish an environmentally 

sustainable low cost technology, which can be  easily installed and maintained by the 

farmers (Torstensson and Castillo, 1997). The principal of the biofilter is that 

pesticide remnants (aqueous solutions of pesticides stemming from sprayer dead 

volume, washing operations, spillages, etc.) are percolated over a bioactive matrix, in 

which pesticides are sorbed and degraded. Biofilters may function without any 

outflow of water, if enough evaporation occurs from the system to eliminate the 

excess water in the system, or a certain amount of treated water may exit at the 

bottom of the biofilter (if the water retention capacity of the biofilter is exceeded at 

certain times). 

In general, two processes occur simultaneously within the biobed system: i) sorption 

of the pesticide to the biomixture material, which reduces the pesticide concentration 

within the liquid phase and therefore reduces leaching and toxic effects for microbes, 

and ii) degradation which reduces the load directly (Castillo et al., 2008; Karanasios 

et al., 2010). Adsorption is considered to be one of the most effective physical 

processes for pesticide removal (De Wilde et al., 2009; El Bakouri et al., 2007). 

Hence, there is a growing demand to find relatively efficient, low cost and easily 

available adsorbents for the adsorption of pesticides for such setups. In natural soils 
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organic matter and clay are the main soil components contributing to the sorption of 

pesticides (El Bakouri et al., 2007; Spark and Swift, 2002). Because sorption is one 

of the main processes reducing the mobility of these chemicals in soils, the addition 

of exogenous organic matter to soil has been suggested as a possible method to 

reduce pesticide leaching (Singh, 2003; Si et al., 2011). Although the conventional 

biomixture used in this system is soil, peat and straw, several recent publications 

reported the use of low-cost and locally available adsorbents e.g. garden waste 

compost, cow manure, coconut chips, raw and bio transformed olive cake (Delgado-

Moreno et al., 2010; De Wilde et al., 2008), which improved the sorption and 

degradation behaviour of the studied pesticides even when the pesticides were 

added in repeated applications and high dosage. Even if some studies already 

analyzed the sorption and mobility of pesticides in different substrates used for 

biopurification concepts (e.g., Albarrán et al., 2004; El Bakouri et al., 2007) more 

investigations are needed for new substrate combinations and different target 

pesticides.   

In the present study, the biomixture was prepared using two bioenergy residues, 

namely biochar and digestate. Biochar as an anthropogenic pyrogenic solid carbon 

source has been proven to be good replacement of peat in horticultural media (Tian 

et al., 2012) and might be therefore also suitable for biopurification systems. The 

main process induced by addition of biochar into the matrix for biopurification 

systems is strong sorption of the pesticides which lead to the development of non-

extractable residues and reduced bioavailability over time (Spokas et al., 2009; 

Tatarkova et al., 2013). Several studies reported that biochar enhanced the sorption 

of pesticides by 400-2500 times compared to soils without biochar addition (Yang 

and Sheng, 2003; Yu et al., 2010), whereby Loganathan et al. (2009) and Kookana 

(2010) observed that biochar amendment was even effective in low dosages (<1 % 

w/w) for the sorption of polar and non-polar pesticides if compared to the sorption in 

the reference soil. The high sorption capacity of biochar for different pesticides is 

mainly attributed to its aromaticity and high specific surface area (Accardi-Dey and 

Gschwend, 2003). Additionally, the biochar sorption properties primarily depend on 

the pyrolysis conditions, mostly by production temperature (Keiluweit et al., 2012). 

For example, high temperature biochar is characterized by highly condensed 

aromatic structures, which will lead to surface adsorption of the pesticides whereas 

partitioning into the amorphous carbon and different site specific interactions with 
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functional groups can be the principle adsorption mechanisms for low-temperature 

biochar (Chun et al., 2004). This indicates that biochar can sorb different compounds 

which may vary in their polarity and planarity (Chun et al., 2004). Even if high 

pesticide sorption was reported in several studies Martin et al. (2012) stated that the 

sorption capacity of the biochar might be reduced over longer incubation time periods 

(>1 year) due to aging. Additionally, most studies focused on the adsorption 

processes but did not analyze the desorption mechanism, which is a key process 

affecting pesticide behavior in soils and controls the predisposition of a pesticide to 

be degraded and/or leached at different times (Boivin et al., 2005). This process is 

equally essential in the assessemnt of biochar addition in biopurification systems. 

Especially, the entrapment of organic compounds in biochar micropores can cause 

pore deformation and changes,  which may induce desorption hysteresis. 

Digestate as a source of easily available carbon has been investigated with respect 

to its influence on the microbial activity and microbial growth by e.g. respiration 

studies (e.g., Mukherjee et al., 2016a). Yet, to our knowledge no study reported on 

pesticide sorption-desorption properties for digestate amended soils so far.  

Therefore, the aim of this study is to analyze the pesticide sorption-desorption 

behaviour in six different soil/amendment (biochar and digestate) mixtures including 

reference soil (without amendment) in a laboratory experiment. Additionally, the 

effects of different biochar and digestate dosages were tested in combination with 

pesticides of varying chemical properties (bentazone, boscalid, and pyrimethanil). 

Based on the experimental findings guidance for appropriate soil/substrate (biochar 

and/or digestate) mixtures will be provided, which will help to set up efficient 

biopurification (biobed) systems for a wide range of pesticides.  

IV.2. Material and Methods 
IV.2.1 Substrates 
A loamy sand topsoil (0 to 10 cm depth) from Kaldenkirchen, Germany (51°19’13 N 

and 6°11’47E) (Gleyic Cambisol) was used as basis for the soil biomixtures. The soil 

contained 73.3% sand, 23.1% silt, and 4.9% clay. A full description of the test site 

can be found in Karlsson et al. (2016). The soil was mixed with two different organic 

amendments namely, low temperature biochar (BC) and digestate, each in different 

mixing ratios. The BC originates from slow pyrolysis processes (400°C) using Pine 

woodchips as feedstock and the digestate added was obtained from biogas 

production using maize silage,chicken manure,as well as beef and pig urine as 
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feedstock (in a ratio of 15:1:5:4). The main physico-chemical properties of the raw 

substances and soil mixtures used for the experiment are listed in Table II.1 and  

III.1. It has to be noted that for the experiments already aged soil-biomixtures were 

used for being more representative for the long-term use of the biopurification matrix. 

All soil-biomixtures had been stored at room temperature in the dark for 6 months 

prior the experiments. 

IV.2.2 Pesticides 
Three different pesticides were used in the experiments, two fungicides (pyrimethanil 

and boscalid) and one herbicide (bentazone). These pesticides were selected based 

on their different environmental propertiese, namely persistence in soil and extent of 

sorption to soil. All pesticide standards including internal standard (Pyrimethanil-d5) 

(>99% purity) were purchased from Dr. Ehrenstorfer GmbH (Bayern, Germany). 

Stock solutions were prepared in methanol (MeOH, Merck Lichrosolv, ≥ 99.9 % 

purity). Working solutions were prepared by dilutions of stock solutions with an 

aqueous 10 mM CaCl2 solution. The percentage of solvent in the final pesticide 

solution was less than 0.1%. The standard stock and working solutions were stored 

at 4ºC prior to the experiment. An overview of the physico-chemical characteristics of 

the three compounds is provided in Table III.2. 

IV.2.3 Characterization of used soil-biomixtures  
Extractable dissolved organic carbon (DOC) from mixtures was characterized 

according to Cox et al. (2004). To this aim, 10 g dry mass equivalents of soil/-

mixture) and 20 ml 10 mM CaCl2 were mixed in a jar and placed on a horizontal 

shaker at 225 rpm (SM25, Edmund Bühler) for 10 min at 20 ± 2°C. Subsequently, the 

soil-water slurry was centrifuged (Allegra 6 KR, Beckman Coulter Inc. CA, USA , GH-

3.8 Swinging-bucket Rotor) for 15 min at 2910×g and the supernatant was filtered 

through a 0.45-μm sterile cellulose acetate membrane filter. DOC was measured with 

a TOC analyser 5050A equipped with an autosampler ASI-5000A from Shimadzu 

(Kyoto, Japan) after acidification and purging the samples for 1 min. 

UV absorbance at 254 nm in water-based soil extracts provides information on the 

presence of specific bonding arrangements in the DOC molecules. Spectra obtained 

for a complex mixture of molecules, such as DOC, are generally considered to 

represent the average of individual compounds that comprise the mixture. In our 

experiment it was measured with a Uvikon 860 UV/Vis spectrophotometer 

(Tegimenta AG, Rotkreuz, Switzerland), measuring specific DOC UV-absorbances at 
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254 nm (SUVA254) (Cox et al., 2004) of the extracts and by dividing the measured 

absorption by the respective DOC concentrations. The pH of the soil/-mixtures was 

determined by equilibrating soil/-mixture with 10 mM CaCl2 at a 1:2 soil/solution ratio 

(w/v) and measuring pH with a portable pH-meter (Orion 3-star, Thermo Electron Co., 

USA) using a glass electrode. 

Effective cation exchange capacity (ECEC) of soil (-mixtures) was determined 

according to Lüer and Böhmer (2000): In a first step 2.5 g soil was equilibrated with 

10 mL 1 M NH4Cl for 24 h. Subsequently, a folded paper filter (640d, Macherey-

Nagel, Düren, Germany) was wetted with 1 M NH4Cl and placed in a filter funnel. The 

wet soil was completely transferred to the filter and percolated with 1 M NH4Cl until a 

volume of 100 mL percolate was collected. Exchangeable cations (Al+3, Ca+2, K, 

Mg+2, Na ) were determined in the filtrate using an inductively coupled plasma optical 

emission spectrometer (ICP-OES) (Ciros CCD, SPECTRO Analytical Instruments 

GmbH, Kleve, Germany). 
The specific surface area (SSA) of the soil and biomixtures was determined by The 

Brunauer, Emmett and Teller (BET) gas adsorption method for dry surface area 

measurement on a previously degassed 0.2 g sample at 80 °C for 24 h. The principle 

of measurement based on nitrogen adsorption-desorption isotherms at 77 K within 

the 0.03-0.3 relative pressure range (AUTOSORB-1, Quanta chrome apparatus). 
The measurement of the organic carbon of the soil and biomixtures were  performed 

with a Leco RC 612 multiphase carbon determinator (LECO instrumentation GmbH, 

Germany) at the central chemical laboratory (ZEA-3) of the Forschungszentrum 

Jülich GmbH.  
IV.2.4 Equilibrium adsorption experiments  
All equilibrium sorption-desorption experiments were performed in accordance to the 

OECD guideline 106 (OECD, 2000). The experiment consisted of five different 

biomixtures and one reference soil (see Table III.1), whereby all combinations were 

analyzed in triplicates. The blank soil (-biomixtures) in 10 mM CaCl2 (without any 

pesticides) was included in the experiments to check for artifacts and matrix effects 

caused by them in the analytical method. Additionally, control samples without 

sorbent (pesticides in 10 mM CaCl2) were analyzed on all equipments (shaken for 

168 h) to test the stability and their possible adsorption on the batch container 

surfaces, but no sorption and no metabolization could be detected.  

http://link.springer.com/article/10.1007/s11368-012-0524-y/fulltext.html#CR30
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Pesticide loads were calculated based on recommended field application rates (960 

g ha-1 for bentazone, 100 g ha-1 for boscalid, and 800 g ha-1 for pyrimethanil) 

assuming a mixing depth of 5 cm into the soil and a soil bulk density of 1.5 g cm-3. To 

cover a broader spectrum of concentrations for the sorption/desorption study these 

concentrations were multiplied by a factor of 0.5, 1, 2, 4, and 6. The resulting initial 

pesticide concentrations (Ci) for the experiment were therefore 7.10, 14.2, 28.4, 57.0, 

and 85.2 µg L-1 for bentazone, 7.0, 13.0, 23.0, 43.0 and 66.0 µg L-1 for  pyrimethanil 

and 0.71, 1.43, 2.85, 5.70, and 8.54 µg L-1 for boscalid, respectively assuming a 

1:100 soil (and biomixtures)/solution ratio. This ratio was selected due to preliminary 

experiments, which indicated that strong sorption of the pesticides in biochar based 

biomixtures occurred and that at least 50 % of the added pesticide should not be 

adsorbed, and therefore, be available for analysis as recommended by the OECD 

guideline. 

Equilibrium adsorption experiments were conducted at room temperature (20 ± 2°C). 

Therefore in total 270 centrifuge tubes (Falcon Corning centrifugation tubes, Corning, 

NY, USA) were filled with 1 g biomixture on dry mass basis and the final volume was 

filled with 100 mL 10 mM CaCl2. Preliminary studies indicated that sorption 

equilibrium was not reached before a contact time of 168 h for the 1:100 soil/-mixture 

solution ratio and all pesticide concentrations. According to Aubee and Lieu (2010), 

Boivin et al. (2005) and Vanni et al. (2006), no measurable degradation occurred for 

these studied pesticides over the equilibration time of 168 h. Based on a preliminary 

study (Mukherjee et al., 2016b) and calculations, it was ensured that <5 % 

degradation could be reached for all pesticides during this time period. Samples were 

shaken continuously for 168 h on a horizontal shaker at 225 rpm (SM25, Edmund 

Bühler). After that, the samples were centrifuged for 15 min at 2910×g and the 

supernatant was decanted. Equilibrium concentrations (Ce) of pesticides in the 

supernatant were measured with ACQUITY UPLC (Ultra Performance Liquid 

Chromatography) system coupled to a Xevo TQ-S triple quadrupole mass 

spectrometer (both Waters, Eschborn, Germany). Finally, a 10 mL aliquot from 

supernatant was stored as backup for pH measurement. Percentage of pesticides 

adsorbed on the different soil/-mixtures was calculated by:  

                                                                                  [IV.1] 
 
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Where Ci is the initial and Ce (µg L-1) is the equilibrium pesticide concentration in 

water phase, respectively. Csas the amount of sorbed pesticides on the soil/-mixtures 

(µg kg-1) was calculated by:  

                                                                                                [IV.2] 

Where V is the volume of pesticides solution (L) and M (kg) is the mass of soil/-

mixture.  

IV.2.5 Equilibrium desorption experiments 
Equilibrium desorption experiments were conducted immediately after the sorption 

experiments according to the OECD guideline 106 (OECD, 2000) by the decant and 

refill method. For all three steps of the desorption study 60 mL 10 mM CaCl2 solution 

was added to centrifugation bottles, shaken for 24 h, centrifuged and solution was 

sampled as described before. The shorter time period for desorption was chosen due 

to practical reason. Centrifugation tubes were weighed at the start and end of each 

sorption-desorption step to account for residual solution in the centrifugation tubes. 

For the desorption study the maximum initial pesticide concentrations (85.2 µg L-1 for 

bentazone, 66.0 µg L-1 for pyrimethanil and 8.54 µg L-1 for Boscalid) were chosen. 

The lower concentrations of the adsorption study were not used for desorption 

experiment because expected concentrations were lower than the limit of detection of 

the method. 

IV.2.6 Analytical procedures 
The analysis of pesticides in the supernatant from both experiments were carried out 

by Ultra Performance Liquid Chromatography (UPLC) – electrospray (ESI) - mass 

spectrometry (MS) using an ACQUITY UPLC system coupled to a Xevo TQ-S triple 

quadrupole mass spectrometer.  

UPLC analyses were run at 40°C using a reversed-phase Kinetex Core Shell PFP 

(pentafluorophenyl) column with TMS endcapping (100 mm × 2.1 mm × 2.6 µm, 

Phenomenex, Aschaffenburg, Germany). Solvent A was Millipore water (Millipore 

GmbH, Schwalbach, Germany) buffered with 0.1 % formic acid (pH 3.0) for all 

pesticides. As solvent B methanol (Merck Lichrosolv, ≥ 99.9 % purity) was used for 

pyrimethanil,  acetonitrile (Merck Lichrosolv, ≥ 99.9 % purity) for bentazone and 

boscalid. The separation was performed with following program: 0 to 1.7 min: 34 % 

solvent B, 1.7 to 2.9 min: linear from 34  to  100 % solvent B, 2.9 to 3.3 min hold 100 

 
M
VCCC eis 
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% solvent B, 3.3 to 4.5 min switch back to starting conditions and hold for 2 min.  The 

flow rate was 0.60 mL min-1, injection volume 10 µL.  

Electrospray ionization parameters were: desolvation temperature 600 ºC, capillary 

voltage 3.6 kV, cone voltage 45 V, source temperature 150 ºC. Nitrogen was used as 

desolvation and cone gas at a flow of 1000 and 150 L h-1, argon was used as collison 

gas at flow of 0.15 mL min-1. Positive ESI mode was applied for boscalid and 

pyrimethanil, negative ESI mode for bentazone. Three transitions were considered 

for each compound: Bentazon 239 Da 132 Da (26 V), 175 Da (18 V) and 197 Da 

(24 V); Boscalid 343 Da  112 Da (18 V), 140 Da (20 V) and 307 Da (18 V) and 

Pyrimethanil 200 Da  82 Da (26 V), 107 Da (22 V) and 183 Da (22 V), in brackets 

corresponding collision energies, respectively. As internal standard D5-pyrimethanil 

was used: 206 Da  173 Da (26 V), 108 Da (24 V) and 187 Da (26 V). Calibration 

curves (R2 > 0.99) were established from 6 concentrations respectively. Limits of 

quantification (LOQ) were 1 pg mL-1 for bentazone and 5 pg mL-1 for boscalid and 

pyrimethanil. 

IV.2.7 Equilibrium adsorption-desorption isotherms 
Equilibrium sorption-desorption isotherms were used to describe the sorption / 

desorption characteristics of the different soil/-mixtures. Three different sorption 

models (Henry, Freundlich, and Langmuir) were used to fit the experimental data. 

The simplest sorption model (Henry-model) assumes a linear sorption behavior over 

the entire concentration range and can be expressed by:  

edS CKC .                                                                                                   [IV.3]     

where Cs and Ce are the equilibrium pesticide concentration in is the solid (µg kg-1) 

and liquid phase (µg L-1) and Kd (L kg-1) is the distribution coefficient.  

The second model tested was the Freundlich model, which theoretically accounts for 

heterogeneous binding surfaces and infinite surface coverage (sorption) resulting 

from extremely strong matrix and/or solute–solute interactions. The Freundlich model 

can be written as: 
n

efS CKC
/1

.
                                                                                                    [IV.4] 

where Kf (µg1-1/n L1/n kg-1)is the adsorption coefficients and 1/n (-) is the Freundliche 

exponent. Hereby, Kf refers to the multilayer adsorption capacity and the Freundlich 

exponent referes to the adsorption intensity (Hussein et al., 2004). In consequence, 

different Kf values cannot directly compared without taking the 1/n-value into account. 
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Therefore, the sorption distribution coefficients Kd were determined as Cs / Ce, by 

taking values from each concentrations studied in the batch sorption. 

The Langmuir model assumes monolayer sorption on a set of different localized 

sorption sites with uniform energies and can be expresssed by (Langmuir, 1918): 

eL

eLS
S CK

CKC
C




1
max

                                                                                               [IV.5] 

where CSmax (µg kg-1) is the maximum sorption capacity of the adsorbent, KLis the 

Langmuir sorption coefficients (L kg-1) (constant related to the affinity between the 

adsorbent and the adsorbate). 

All models were fitted on the experimental data using the Excel solver routine. 

The influence of the organic matter on the sorption behavior has been discussed in 

many studies (Correia et al., 2007; Delgado-Moreno et al., 2010). Consequently, the 

sorption partition coefficient Kd is generally related to the fraction of organic carbon 

associated with the sorbent to yield an organic-carbon-partition coefficient, Koc 

(Majumdar and Singh, 2007) and was calculated by: 

OC
K

K d
OC %

100.


                                                                                              [IV.6]  

where, % OC is the percentage of organic carbon. The C-normalized partitioning 

coefficient (KOC) is generally assumed to be constant for a particular chemical when 

sorption is only occuring on the  soil organic matter (De Wilde et al., 2009).  

As the isotherms of the Freundliche and Langmuir model are not linear, the Kd values 

were calculated for all concentration ranges. Therefore, mean KOC were determined 

from their corresponding mean Kd values. As a consequence  the Koc values cannot 

be generalized and only indicate differences in sorption between substrates 

normalized to the organic carbon content at these concentrations level. Desorption 

isotherms were calcualted using the same models as for the adsorption. Hysteresis 

coefficient were determined according to Cabrera et al. 2014 by:  

 ads

des

n
nH

/1
/1



                                                                                              [IV.7] 

In general, lower H values indicate increased difficulty of the sorbed pesticide to be 

desorbed from the matrix (Barriuso et al., 1994; O'Connor et al., 1980). 

IV.2.8.  Statistical Analysis 
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For the reliability of individual parameters Equations (IV.8 and IV.9), a single-sided t-

test was used: 

)( valueparameterSD
valueparametert





                                                                           [IV.8]                

                                          [IV.9] 

Hereby, t is the empirical t-value, SD is the standard deviation of parameter value 

and dof is the degrees of freedom. Significance level was considered at p<0.05. 

IV.3. Results and Discussion  
IV.3.1 Characterization of Soil, Biochar, and Digestate Mixture 
All of the mixtures as well as the native soil showed slightly acidic pH-values ranging 

from 6.0 to 6.5 (see Table III.1), which is expected due to the sandy character of the 

Kaldenkirchen soil. Additionally, digestate based mixtures had highest pH-values, 

which are caused by the alkaline character of the digestate. The biochar mixture had 

the highest surface area of 8.56 m2 g−1, whereas the pure biochar has a surface area 

of 231 m2 g−1.  

Compared to pH-values extractable DOC differs greatly between the soil/-mixtures 

(Table III.1), whereby digestate based mixtures showed highest extractable DOC. 

For these mixtures extractable DOC increased also with increasing digestate content, 

whereas biochar based mixtures had much lower extractable DOC. Interestingly, 

extractable DOC dropped in the biochar/digestate soil mixtures compared to the 

digestate alone soil mixtures by a factor of >1.8. Based on these data, biochar seems 

to act as a sink of DOC as already suggested by Mukherjee et al. (2016a). Digestate 

based mixtures showed significantly lower and higher SUVA254 values with and 

without biochar than the biochar/soil mixtures (p<0.05; t-test). This means that DOC 

extracted from digestate based mixtures is more aromatic compared to the DOC 

extracted from biochar. This can be explained by the fact that the hydrophobic nature 

of biochar tends to preferentially bind aromatic fractions of the DOC. 

IV.3.2 Determination of suitable soil: solution ratio 
Four different soil/-mixture/solution ratios (1:10, 1:25, 1:50, 1:100) and nine 

equilibration time lengths (4, 8, 15, 24, 48, 72, 96, 120 and 168 h) were tested in 

preliminary study for selecting the suitable ratio and time for the batch equilibrium 

adsorption experiment. Sorption capacity (%) of reference soil and 30 % DG and 5 % 

BC biomixture was plotted as a function of the equilibrium time intervals (h) with a 

)1,,( doftondistributitrateerrorItype 
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lowest initial pesticide concentrations(Figure IV.1) and it was observed that 

pesticides removal capacity increased with time up to adsorption equilibrium. The 

shorter equilibration times did not explain sorption equilibrium particularly for boscalid 

and pyrimethanil in the 30 % DG and 5 % BC biomixture, as can be seen in the plots 

in Figure IV.1. 

 

 

FigureIV.1.Sorption kinetics of bentazone, boscalid and pyrimethanil (for 168 h, 

1:100 soil/solution mixtures) on reference soil (A) and soil amended with 30% DG 

and 5 % BC (B). Data points represent means and error bars indicate standard errors 

of triplicate samples (symbols in part cover smaller error bars). Reference soil = 

loamy sand, BC = low temperature biochar, and DG = digestate. The percentage 

indicates the mass ratios in the mixtures. Note that the x and y-axis do not have the 

same scale for better visualization. 

It can be hypothesized that, the adsorptions of these pesticides on the studied 

organic amendment were multi-step processes, involving adsorption on the external 

surface, intra-particle diffusion and chemical interaction (adsorption of the pesticide at 

the active sites via hydrophobic and/or hydrophilic interaction) which are in line with 
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the observations of El Bakouri et al., 2007 and 2009. After 168 h of shaking the 

amount of bentazone sorbed on the reference soil was 69 % of the initial 

concentration (matrix to solution ratio = 1:10), and decreased to 5 % when the ratio 

was set to 1:100. Sorption of bentazone in the 30 % DG and 5 % BC biomixture 

decreased from 72 % to 45 % when biomixtures/solution ratio changed from 1:10 to 

1:100. 

Boscalid and pyrimethanil showed strong sorption affinity towards biomixture. For the 

reference soil, adsorption of boscalid was 49 % of the initial concentration (8.54 µg  

L-1) when the soil/solution ratio was set to 1:10 and dropped to 18 % when ratio 

changed to 1:100. But for the biomixture studied (30 % DG and 5 % BC) adsorption 

of boscalid decreased from 98 % (1:10) to 96 % (1:100). Sorption of the pyrimethanil 

changed from 72 % (1:10) to 3 % (1:100) on the reference soil. For 30 % DG and 5 % 

BC same trend was followed (99 % to 95 %). According to these results, the ratio of 

1:100 was selected for all studied pesticides. 

IV.3.3 Equilibrium adsorption isotherms 
The sorption (and desorption) behavior as well as the fitted isotherms of all pesticides 

on each soil-/mixtures are depicted in Figure IV.2a-2c and the fitted sorption 

parameters are listed in Table IV.1. As an indicator of the goodness of the fits the R2 

as well as the sum of squared residuals (SSR) are also listed. Irrespectively, of the 

carefully performed prelimenary experiments, recording sorption data of all pesticides 

to the 5 % BC mixture was not possible due to analytical problems, and therefore, no 

sorption-desorption coefficients could be determined for this combinations. The 

values of the coefficient of determination (R2) for almost all other combinations were 

moderate to high, and quite similar between Freundlich and Langmuir models.  

For pyrimethanil and boscalid sorption could be described using the linear Henry 

model with R2 exceeding 0.88 (see Table IV.1) as well as the Freundlich and 

Langmuir model. Even if the R2 is already high for the linear model fit, fitting error 

decreased for the more complex models as indicated by a decrease of the sum of 

squared residuals (SSR). Additionally, the fits are much closer to the 

measured/observed values and represent the adsorption over the concentration 

range much better as can be seen in the plots in Figure IV.2. The reason for the 

better fitting results of the non-linear models can be explained by the specific 

interactions between polar groups of the pesticide and the organic matter of the 

substrate as described by De Wilde et al. (2009). Spectroscopic observations 
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emphasized the prominent role of hydrogen bonding and electron donor-acceptor 

reactions (via charge-transfer processes through free radical intermediates), in 

phenylurea-soil organic matter interactions (Senesi and Testini, 1983; Spurlock and 

Biggar, 1994). It was shown that specific interactions dominate at low concentrations, 

whereas the relative contribution of hydrophobic and van der waals  forces increases 

with increasing concentrations of sorbates in the solid-solution phase. Basically, 

natural chemical and photochemical transformations of pesticides in soil appears to 

be dependent upon the amount and the adsorption capacity of soil organic matter, 

and in particular of the humic fractions. Khan and Mazurkevich (1974), described that 

adsorption of polar pesticides on humic acid is mostly goverened through physical 

forces (ionic bonding and charge transfer complexes), rather than weak chemical 

bonds such as dipole-ion (cation bridges) or dipole-dipole (hydrogen bonds) due to 

coordination to cations on the humic acids. Hydrophobic interactions found to be the 

most vital interaction mechanisms for non-polar pesticides (Torrents et al.,1997). 

Boscalid and pyrimethanil are more hydrophobic pesticides with low water solubility 

and consequently their affinity for organic matter is higher, which makes these 

compounds less mobile than more soluble pesticide like bentazone which is 

supported by their Log Kow and Koc values from Table III.2. A comparison of the 

adsorption capacity of each pesticide revealed that the sorption (Kf ads value) of the 

pesticides was higher for the more hydrophobic compounds (pyrimethanil and 

boscalid) and lower for the more polar one (bentazone,Table IV.1). Similar results 

were found by Rojas et al. (2013), who studied the pesticide sorption capacity of 

unmodified organic residues and a soil and found an increase in sorption of six 

pesticides, which depended on the hydrophobic characteristics of the compounds. 

The results obtained in this study were different  than results reported by Rouchaud 

et al. (1996) and Tejada et al. (2011) who showed the higher effectiveness of the 

organic soil amendments (cow manure, pig slurry, compost , green manure and 

municipal solid wastes) for the removal of the pesticides. 

For Boscalid the isotherm pattern looks differently. Again, all combinations could be 

fairly well described (in statistical sense) by the linear model with R2 exceeding 0.92 

and only the biomixtures based on digestate and biochar yielded better results (seen 

from SSR values) for the Freundlich and Langmuir model.Looking at the plotted data 

and the fitted model results it becomes clear that the linear model describes the 

system well compared to the pyrimethanil data, where better fits were obtained by the 

http://www.sciencedirect.com/science/article/pii/S0045653508014379#bib48
http://www.sciencedirect.com/science/article/pii/S0045653508014379#bib48
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Freundlich and Langmuir models. This good fit is also indicated by the fairly low sum 

of SSR. Compared with pyrimethanil and boscalid, bentazone indicated a different 

sorption pattern, which could not described by the linear model except for the 

combined digestate and biochar mixture. All other combinations could be described 

using the Freundlich and Langmuir concept, whereby the R2 is much lower and 

rangesbetween0.61and0.75.  
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Looking again at the plotted data shown in Figure IV.2a-2c, it becomes obvious that a 

systematic problem is detectable, where sorption greatly increased for the third 

concentration used (28.4 µg L-1) and stayed nearly constant for all higher 

concentrations. This already indicates a kind of sorption saturation pleateau, which 

should be best described by the Langmuir model, which assumes a saturation of the 

sorption sites. An indicator of the better fitting using the Langmuir concept can be 

found in the slightly smaller SSR values for this fit. 

Analyzing the fitted sorption parameters is becomes evident, that the different 

mixtures behave differently in their sorption capacity. For pyrimethanil the Kd value 

calculated from the linear model did not increase for the 5 % digestate addition 

compared to the native soil and only double in case of 30 % DG addition. Addition of 

biochar on the other hand significantly increased Kd values to 1584 for the 5 % DG + 

5 % BC and even to 2153 for the adding of 30 % DG + 5 % BC (p<0.05; t-test). To 

account for the different amounts of organic carbon available for sorption the KOC was 

also calculated and indicated that the addition of digestate (5 and 30 %) did not 

increase normalized sorption capacity compared to reference soil. Moreover, KOC 

values dropped by more than three times (~3.11) for the low DG addition and even 

maximum to >7 times for the higher DG loads. On the other hand, mixing of biochar 

to the digestate increased KOC values substantially with an increase of 4173 % for the 

5 % DG + 5 % BC and 2264 % for the 30 % DG + 5 % BC. The reduction for the 

latter mixture can be explained by the large fraction of digestate added and the low 

sorption capacity of digestate already shown before. 

The boscalid data show the same general trend for the Kd and KOC values, whereby 

Kd values are generally higher than for the pyrimethanil. For example Kd for the 

native soil is 4.54 for pyrimethanil and 19.3 for boscalid. The stronger sorption of 

boscalid has been already reported in several studies (Chen and Zhang et al., 2010; 

Karlsson et al., 2016), and can be explained by the lower water solubility and higher  

hydrophobicity of this substance (see also Table III.2). The changes in normalized 

KOC values are siginificantly lower (p<0.05; t–test) in relative terms for the boscalid 

compared to pyrimethanil. For the addition of 5 % DG the KOC values drops only to 

36% and decreases with higher loads (30 %) to 77 % compared to the native soil. 

Adding biochar and digestate at the same time leads to an increase of the KOC to 573 

and 453 % for the 5 % DG + 5 % BC and 30 % DG + 5 % BC mixtures respectively. 

This means that the normalized sorption capacity is by more than a factor 1.4 smaller 
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for the boscalid in these mixtures compared to pyrimethanil. Therefore, the high 

sorption on these substrates cannot be attributed mainly to their high organic carbon 

content. Other factors, such as the nature of the organic matter or physicochemical 

characteristics of the surface could play vital role. Moreover, it is now widely 

recognized that chemical sorption is also affected by the quality or nature of the OC 

(De Wilde et al., 2009; Delgado-Moreno et al., 2010). This is mainly due to aromatic 

C content, which increased Koc values, and O-alkyl C and alkyl C content which make 

Koc values usually decreased. These negative correlations may reflect a lower affinity 

of these carbon types for the studied pesticide, but they may also be due to blocking 

of higher affinity sites by organic matter constituents rich in these functional groups. 

But not only organic carbon content or carbon quality can lead the sorption of 

contaminants; other factors have been reported previously also played a vital role. 

Bentazone sorption could not be described by one model for all mixtures, which 

makes the interpretation much more difficult but the general sorption can be 

described as less strong (compared to boscalid and pyrimethanil) with Kd (KOC) 

values. For the most sorbing biochar + digestate mixtures, 65 (966) and 78 (470) 

values of Kd (KOC) can be estimated for the lower and higher digestate loads. 

For bentazone, the Langmuir model was not applicable for describing sorption on 

blended mixture of digestate and biochar, as negative values for Langmuir constants 

Csmax and KL were obtained, which is improbable (De Wilde et al., 2009).  

Additionally, soil and digestate based combinations for boscalid could not be 

described either using this model. This may indicate that monolayer adsorption, 

assumed in this model, was not valid for these specific experiments (De Wilde et al., 

2009; El Bakouri et al., 2009). On the other hand, Freundlich model was applicable to 

describe three biomixture combinations for bentazone and 2 combinations for 

boscalid.  

Based on the Freundlich exponent, or more precisely on the inverse of the exponent 

(1/n), isotherms can be classified as an L (non-linear or Langmuir), S (side-by-side 

association) , or C (constant partitioning) type according to Giles et al. (1960). These 

are an indication that different mechanisms of sorption may exist between pesticides 

and soil components and/or biomixture moieties (Chiou et al., 2000).  L, S or C types 

of isotherm have frequently been found to describe the sorption of other pesticides 

on soils, such as triazines, organophosphates, or phenylureas (Wauchope et al. 

2002). For the studied pesticides/biomixtures combinations, it was observed that 
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isotherms were of the L-type (1/n < 1), which indicates that the pesticides molecules 

are adsorbed in a horizontal orientation on sorbents/biomixtures with strong 

intermolecular attraction, without being affected from a strong competition by the 

solvent molecules, which explains the high affinity of sorbent for solute at low 

concentrations (Giles et al., 1960).  

Basically, sorption of pesticides on the biomixtures is related also to the DOC and 

SSA content of the mixtures. Although, the effects that DOC exerted on the sorption 

of pesticides and hydrophobic compounds by soils were discussed contradictory by 

previous researchers (Barriuso et al., 1994; Müller et al., 2007). Andrades et al. 

(2004) reported an increase in the sorption of pesticides if organic soluble 

compounds from DOC are sorbed by soils and give rise to the formation of new 

hydrophobic surfaces. A decrease in sorption might occur if pesticides interact with 

the soluble moieties of organic matter in the soil-solution interface (Luo et al., 2009) 

or when the pesticides compete with the soluble organic molecules for the same 

sorption sites (Cox et al., 2000). These effects could explain our results, which 

indicated decreased pesticides sorption by the amended soil mixtures with the 

highest DOC load (30 % DG mixture). Additionally, many authors reported smaller 

pores for organic amendments than soil, and found that the larger proportion in small 

non conducting pores in organic wastes than in soil increase the residence time of 

the herbicides in the immobile water phase (Cañero et al., 2012; Cox et al., 1997). 

High micropores proportion in rice husk residue was reported by Yuzer et al. (2013). 

In our study, micropores proportion was not studied, but BET equation revealed a 

SSA of 8.56, 6.87 and 3.31 for 5 % BC, 5% digestate and 5 % biochar and 30 % 

digestate respectively (Table III.1), which were in agreement with reported values for 

the other organic matrices (Méndez et al., 2013; Thinakaran et al., 2008). Basically, 

biochar  contains active carbon which is one of its characteristics which give its high 

adsorbent capability. Uchimiya et al. (2012) and Yu et al. (2010) have also 

doccumented the increase of sorption of pesticides with the increase of the SSA of 

the biochars added to soils. However, for polar pesticides and metabolites it was 

shown that the influence of black carbon addition to soil with regard to sorption on 

soil was rather limited (Dechene et al., 2014). 

IV.3.4Equilibrium desorption isotherms 
The adsorption behavior as well as the corresponding equilibrium desorption 

isotherms are plotted in Figure IV.2a-2c. The desorption isotherms were fitted using 
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the Henry (linear) and Freundlich equation [Equations IV.3 and4]. The Henry 

desorption (Kd des and Kocdes) and Freundlich coefficients (Kf des and 1/n des), the 

coefficient of determination (R2), as well as the hysteresis coefficients (H) are listed in 

Table IV.2. 

For pyrimethanil, desorption could be described using the linear model for the soil 

and 5 % DG mixture, whereas for the 30 % digestate and digestate/biochar based 

mixtures the Freundlich model was used. For the Freundlich based desorption, the 

isotherm is always higher as for the adsorption, which indicates that pyrimethanil 

cannot be desorbed well from the 30 % digestate and digestate/biochar soil matrix. 

On the other hand, bentazone desorption seems to be influenced strongly by the 

sorbent properties. For the reference soil and digestate mixtures (without biochar) 

desorption is easier than adsorption, as indicated again by the desorption isotherms 

lying below the adsorption ones, which is in line with the observations of Loganathan 

et al. (2009). From the physicochemical characteristics (e.g., high water solubility), 

bentazone would be expected to sorb only weakly and also to be desorbed better as 

compared with the other two pesticides studied. Additionally, our findings 

corroborated with the observations of Gebremariam (2011) and Zhang and He 

(2013), who hypothesized a higher desorption (no hysteresis) for polar compounds 

due to presence/interference of dissolved organic matter. This is particularly 

important for the sorption of acidic (anionic) pesticides like bentazone, where this 

effect can be also attributed due to repulsion between negatively charged bentazone 

molecules and COO− groups of the DOC derived from biomixtures. On the other 

hand, mixing biochar into the soil resulted in stronger sorption and in comparison 

even lower desorption. The reason for the observed strong sorption to 

digestate/biochar based mixtures cannot be explained easily.  
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IV.4. Conclusions  
The selection of appropriate substrates in biobed systems, used for elimination of 

pesticides from aqueous remnants, is crucial for their effectiveness. Biochar and 

digestate, from bioenergy production seem to be a promising novel organic 

amendment for effective biofilter systems because they are widely available and 

might replace traditional compounds such as peat.  

In our batch sorption experiments the best sorption capacities were obtained by 

pyrimethanil and boscalid when sorbed on digestate and biochar based mixtures. In 

contrast, for both pesticides, blank soil was the worst adsorbate. Bentazone showed 

highest adsorption by blended mixture of digestate and biochar followed by digestate 

based mixture. 5 and 30 % digestate combinations showed almost similar sorption 

capacity for bentazone and pyrimethanil respectively. We conclude that a blended 

mixture of biochar and digestate significantly increases the adsorption and decreases 

the desorption potential of pesticides compared to bare soil (p<0.05; t-test). 

However, more work is required to analyze the quality of organic carbon as well as 

other physico-chemical characteristics (hydraulic responses) and their interactions 

which are fundamental for the setup of an optimal biobed system. It is also imperative 

to study desorption potential of the metabolites in aged biomixtures for longer time 

periods (>1 year). This information will be crucial to assess the availability of aged 

pesticide residues in biofilter matrix for plant uptake and leaching, after their potential 

return to topsoil in agricultural fields. 
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V.1Extended summary 
The overall aim of the present study was to identify and quantify the processes 

and factors that influence the fate of three different pesticides in biochar and 

digestate based biomixtures used for biopurification systems and to give 

recommendations of a potentially suitable biomixture for biopurification systems. 

Several recent publications reported the use of low-cost and locally available 

adsorbents for pesticide removal: e.g., peat mix, garden waste compost, straw, 

cow manure, coconut chips, raw and bio transformed olive cake (De Wilde et al., 

2008; Delgado-Moreno et al., 2010) but information covering the purification 

capacity of each individual new adsorbent (or mixture) has to be studied 

individually for a wide range of pesticides. 

Therefore, this study was aligned along with three major points providing 

essential information about the suitability of digestate and biochar for the 

purification of pesticide contaminated wastewaters from on farm activities.  

i) How resistant are biochar- and digestate- based mixtures in soil to 
degradation and how do they affect biological and chemical soil 
properties? 
As a proxy for the pesticide degrading potential and to gain information 

about the temporal evolution of the degradation of the materials 

themselves, soil respiration was measured over 3 months using different 

biochar and digestate based mixtures added to a sandy and silt loam. To 

our knowledge the influence of different biochars (high and low 

temperature), contrasting soils (light to heavy), and amounts of biochar 

and digestate addition (low to high), and their response if added are not 

studied yet within one experiment. The results indicated that an easily 

available C-source like digestate leads to high CO2 evolution from the 

mixture in comparison to other mixtures, whereby the rate of CO2 

evolution was not proportional to the amount of digestate applied. The 

addition of biochar to the native soil resulted in CO2 fluxes comparable to 

the fluxes of the native soil, irrespectively of the higher carbon content in 

these mixtures. Additionally, adding biochar and digestate simultaneously 

decreased CO2 fluxes compared to the addition of the same amount of 

digestate only, which could be explained by the sorption of DOC onto the 

reactive biochar surface. Finally, the results revealed the recalcitrant 
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nature of the biochar and proved the suitability of biochar for long term C-

storage in soils.  
ii) How does the biomixtures affect the fate (dissipation and 

degradation) of three different pesticides (bentazone, boscalid and 
pyrimethanil) use for biopurification systems? 
For the purification processes pesticide sorption and degradation are 

essential and both largely depend on the type of filling material and the 

pesticide in use.In a135 day dissipation and degradation study, seven 

different biomixtures comprised of two bioenergy residues (low 

temperature biochar and digestate) in combination with a loamy sand soil 

were used. The results indicated that the addition of digestate increased 

pesticide mineralization, whereby the mineralization was not proportional 

to the digestate loads in the mixture. Biochar addition, on the other hand, 

decreased the mineralization and led to larger sorption/sequestration, 

resulting in faster decrease of extractable residues. Largest differences 

between the mineralization was found for pyrimethanil, where the half-life 

time was more than 27 times smaller for the digestate based mixture 

compared to the biochar addition. Among the mixtures tested, a mixture of 

digestate (5%) and biochar (5%) gave optimal results with respect to 

degradation and simultaneous sorption for all three pesticides. 

iii) How do these novel mixtures affect the adsorption-desorption of 
studied pesticides used for biopurification systems?         
The composition and types of organic material present in the biobed 

system are crucial for the retention of agro-chemicals. Matrix substrates 

that can be used in a biopurification system can have different organic 

carbon contents in terms of quality and quantity and more importantly, 

differing pesticide sorption capacities. In general, higher adsorption 

coefficients were obtained for all pesticides for the digestate and biochar 

based mixtures, which are characterized by high organic carbon content. 

However, lower sorption of the pesticides was observed in blank soil 

compared to the other biomixtures, which was attributed to the lower 

organic carbon content of the blank soil. Our results showed that boscalid 

and pyrimethanil are highly sorbed to the mixture of digestate and biochar.  
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Based on the three studies presented, the most suitable mixture of biochar and 

digestate could be identified for the setup of a novel biobed system, namely 5% 

biochar along with 5 and 30% digestate due to its long-term stability, and balance 

between mineralization and sorption. 

V.2 Synthesis 

If biochar and digestate based mixtures are increasingly recommended for use in 

biopurification systems, it must hold the promise of both: maintaining stability of 

organic C content of the biomixtures and improved dissipation and 

sorption/desorption potential for the pesticides to be purified. 

V.2.1Responses of the soil biota to biochar and digestate 
Despite the recalcitrant nature of biochar, several studies have reported        

increased soil respiration rates when biochar was added to soils (Kuzyakov et al., 

2009;Pietikainen et al., 2000). Zimmerman (2011) reported higher oak biochar 

mineralization rates (approximately 20 mg C g-1 char) in non-sterilized incubation 

compared to sterilized incubation (mineralization rates of approximately 10 mg C g-1 

char), emphasizing the importance of soil microorganisms for biochar degradation. In 

many cases, C mineralization after biochar addition shows an initial flush, after which 

CO2 evolution continues at much lower rates, similar to the biphasic mineralization 

rates observed after addition of non-pyrolyzed organic materials to soils. After 

mineralization of the labile biochar-C pool in the short-term, mineralization rates in 

biochar-amended soils drop dramatically and are nearly equal to rates in treatments 

without biochar. The time lag is highly dependent on the biochar type, biochar 

application rate, and soil characteristics. On the other hand, digestate as a byproduct 

of biogas industry is getting popular now-a-days in the emerging economy of 

bioenergy sector. Although, digestate is used as a fertilizer to agricultural field it is 

depleted in total C and enriched in nitrogen compared to the initial feedstock (Möller 

et al., 2008), and therefore, less organic C is available for growth and activity of the 

soil microbial community, which might lead to a gradual depletion of the soil organic 

matter stocks with time (Arthurson, 2009). Marchetti and Castelli (2013) reported that 

heterotrophic respiration will increase directly after digestate amendment due to the 

easily available carbon. In some cases both biochar and digestate might be applied 

to the soil simultaneously or at different years. Both amendments seem to influence 

each other by co-metabolism or suppression and their overall turnover is not well 
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studied. There are only few studies reported in literature describing the soil 

respiration response with respect to simultaneous biochar and digestate amendment. 

To assess the persistence of the digestate and biochar based novel biomixtures used 

for biopurification systems, a double C pool or double first-order in parallel (DFOP) 

model was used (Chapter II). The results of the present study nicely showed that the 

mineralization rate of biochar /soil mixtures is slower compared to the turnover of 

digestate based mixtures (even if the same amount of biochar and digestate was 

used), which reflects the recalcitrant nature of the biochar and probability of sorption 

of DOC to biochar surface. Our findings are corroborated by findings of Das et al. 

(2008) who reported very low soil respiration rates after the addition of biochar which 

further decreased over time, while for the addition of wheat straw respiration rates 

increased. Besides that, it was also shown that the input of complex structured 

organic matter in soil stabilized the soil organic carbon. 

V.2.2 Influence of biochar and digestate on fate (dissipation and 

sorption/desorption) of pesticides used for biopurification setups 
Biochar and digestate materials could successfully replace peat and straw in the 

traditional biomixture used in northern Europe. This is based on the significantly 

higher degrading capacity of blended mixture of biochar and digestate compared to 

only bare soil. Guo et al. (1991) suggested that atrazine and alachlor degradation 

could be inhibited by the presence of activated carbon, and stimulated by other 

uncharred amendments, such as municipal sewage sludge and manure. An increase 

on atrazine degradation by the addition of organic amendments to a sandy loam soil 

was also reported by Mukherjee (2009).To our knowledge, there was no study 

concerning digestate or combined effect of digestate and biochar on pesticide 

dissipation behavior. To address this issue, in the present study (chapter III) kinetic 

evaluation was performed in order to derive degradation parameters as triggers for 

additional work (trigger endpoints) as well as modeling endpoints. Kinetic analysis 

and calculation of DegT50 and MinT50 values was performed following the 

recommendations of the FOCUS Kinetics workgroup.For each data set, the kinetic 

models proposed by the FOCUS Kinetics guidance document (FOCUS, 2006) were 

tested in order to identify the best-fit model and the appropriate model to derive 

modeling endpoints, i.e. single first order (SFO) kinetics, the Gustafson-Holden 

model (FOMC) and bi-exponential (DFOP) kinetics. The present study (chapter III) 

showed that after 135 days, the lowest mineralization of all studied pesticides were 
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found in the biochar amended soils (1 and 5% biochar) with <11% (bentazone), and 

<7% for boscalid and pyrimethanil. Addition of 30% digestate enhances the 

mineralization of bentazone (24%), whereas 11% and 15% of boscalid and 

pyrimethanil was mineralized. In general, biochar-only mixtures showed the lowest 

mineralization (and lower extractability) while the digestate-biochar mixtures again 

showed an increased mineralization (and higher extractability compared to biochar) 

of these two pesticides (Mukherjee et al., 2016b). 

In the present study, pesticide sorption increases in all cases, when soils are 

amended with the blended mixtures of biochar and digestate (chapter IV, Table 4). 

Kd and Koc values were much higher for the most hydrophobic pesticides 

(pyrimethanil and boscalid) for digestate and biochar based mixtures than the more 

hydrophilic one (bentazone) (chapter IV, Tables 3 and 4). When comparing Koc 

values between blank soil and soil/digestate based mixtures for pyrimethanil and 

boscalid, it was found that digestate based mixtures possess much lower Koc values 

in spite of having higher Kd values and organic carbon content. Therefore, the high 

sorption on these substrates cannot be attributed mainly to their high organic carbon 

content. Other factors, such as the nature of the organic matter or physicochemical 

characteristics of the surface could play vital role. Our observations are corroborated 

by the findings of Wang and 

 Xing (2007), who hypothesized that the sorption of organic compounds to un-

charred biomass is dominated by absorption mechanisms, whereas adsorption 

becomes the dominant process with charred materials, largely due to the newly 

created atomic surfaces and micropores. Basically, we found that (chapter IV) 

sorption of pesticides on the biomixtures is related also to the specific surface area 

(SSA) and dissolved organic carbon (DOC) content of the mixtures. Nevertheless, 

5% digestate and 5% biochar based mixture among other combinations showed 

highest Koc values for all pesticides. So, this mixture probably contains organic matter 

with a better sorption capacity than the other studied organic mixtures for the sorption 

of all studied pesticides.  

V.3 Outlook 

Bioenergy residues, namely biochar and digestate, were investigated at different 

mixing ratios with respect to their effects on the fate of pesticides in soils. 

Experiments were performed at the laboratory scale through measuring microbial 

respiration in the mixtures and investigating the dissipation/degradation as well as 
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sorption-desorption behaviour of the three pesticides. The results contribute to a 

deeper knowledge about the fundamental processes and factors that might impact 

the fate of pesticides in soil/biomixtures and they will be relevant for the proper 

operation of biopurification systems with such alternative biomixtures. 

Further studies should investigate the influence of different hydraulic regimes and 

chemical inputs on the fate of contrasting pesticides in biopurification systems. 

Desorption potential of metabolites should also be assessed in aged biomixtures (>3 

years) before they are disposed on fields. This information will give further insights in 

the potential bioavailability, plant uptake, and leaching behavior of aged mixtures, 

which might be essential for studying their suitability as a substrate for composting.
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 Figure A1: The respirometer device used for the incubation experiment of the 

biomixtures. 
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Appendix B 

 

 

 

Figure A2: Thermostat Incubator for Degradation Experiment (~ 25 °C). 
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