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Efficient Task-Local I/O Operations of Massively  
Parallel Applications

Wolfgang Frings

On current large-scale HPC systems often occur I/O patterns that produce a high load on the 
file system during access to checkpoint and restart files. Applications running on systems with 
distributed memory will often perform such I/O individually by creating task-local file objects 
on the file system. At large scale, these task-local I/O patterns impose substantial stress on the 
metadata management components of the I/O subsystem. Such metadata contention occurs 
also at the startup of dynamically linked applications while searching for library files. 

The reason for these limitations is that the serial I/O components of the operating system  
do not take advantage of application parallelism. To avoid the above bottlenecks, this work 
describes two novel approaches which exploit the knowledge of application parallelism, the 
underlying I/O subsystem structure, the parallel file system configuration, and the network 
between HPC-system and I/O system to coordinate and optimize access to file-system objects. 
The underlying methods are implemented in two tools, SIONlib and Spindle, which add layers 
between the parallel application and the corresponding POSIX-based standard interfaces of the 
operating system, eliminating the need for modifying the underlying system software.

SIONlib is already applied in applications to implement efficient checkpointing and is also  
integrated in the performance-analysis tools Scalasca and Score-P to efficiently store trace 
data. Latest benchmarks on the Blue Gene/Q in Jülich demonstrate that SIONlib solves the  
metadata problem at large scale by running efficiently up to 1.8 million tasks while maintaining 
high I/O bandwidths of 60-80% of file-system peak with a negligible file-creation time. The  
scalability of Spindle could be demonstrated by running a benchmark on a cluster of Lawrence 
Livermore National Laboratory at large scale. The results show that the startup of dynamically 
linked applications is now feasible on more than 15000 tasks, whereas the overhead of Spindle 
is nearly constantly low.

With SIONlib and Spindle, this work demonstrates how scalability of operating system  
components can be improved without modifying them and without changing the I/O patterns  
of applications. In this way, SIONlib and Spindle represent prototype implementations of  
functionality needed by next-generation runtime systems.

This publication was edited at the Jülich Supercomputing Centre (JSC) which is an integral 
part of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation 
sciences and the supercomputer facility in one organizational unit. It includes those parts of 
the scientific institutes at Forschungszentrum Jülich which use simulation on supercomputers 
as their main research methodology.
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Abstract

Applications on current large-scale HPC systems use enormous numbers of processing ele-
ments for their computation and have access to large amounts of main memory for their data.
Nevertheless, they still need file-system access to maintain program and application data per-
sistently. Characteristic I/O patterns that produce a high load on the file system often occur
during access to checkpoint and restart files, which have to be frequently stored to allow the
application to be restarted after program termination or system failure. On large-scale HPC
systems with distributed memory, each application task will often perform such I/O indivi-
dually by creating task-local file objects on the file system. At large scale, these I/O patterns
impose substantial stress on the metadata management components of the I/O subsystem. For
example, the simultaneous creation of thousands of task-local files in the same directory can
cause delays of several minutes. Also at the startup of dynamically linked applications, such
metadata contention occurs while searching for library files and induces a comparably high
metadata load on the file system. Even mid-scale applications cause in such load scenarios
startup delays of ten minutes or more. Therefore, dynamic linking and loading is nowadays
not applied on large HPC systems, although dynamic linking has many advantages for mana-
ging large code bases.

The reason for these limitations is that POSIX I/O and the dynamic loader are implemented
as serial components of the operating system and do not take advantage of the parallel nature
of the I/O operations. To avoid the above bottlenecks, this work describes two novel approa-
ches for the integration of locality awareness (e.g., through aggregation or caching) into the
serial I/O operations of parallel applications. The underlying methods are implemented in two
tools, SIONlib and Spindle, which exploit the knowledge of application parallelism to coordi-
nate access to file-system objects. In addition, the applied methods also use knowledge of the
underlying I/O subsystem structure, the parallel file system configuration, and the network bet-
ween HPC-system and I/O system to optimize application I/O. Both tools add layers between
the parallel application and the POSIX-based standard interfaces of the operating system for
I/O and dynamic loading, eliminating the need for modifying the underlying system software.

SIONlib is already applied in several applications, including PEPC, muphi, and MP2C, to im-
plement efficient checkpointing. In addition, SIONlib is integrated in the performance-analysis
tools Scalasca and Score-P to efficiently store and read trace data. Latest benchmarks on the
Blue Gene/Q in Jülich demonstrate that SIONlib solves the metadata problem at large scale by
running efficiently up to 1.8 million tasks while maintaining high I/O bandwidths of 60-80%
of file-system peak with a negligible file-creation time. The scalability of Spindle could be de-
monstrated by running the Pynamic benchmark, a proxy benchmark for a real application, on
a cluster of Lawrence Livermore National Laboratory at large scale. The results show that the
startup of dynamically linked applications is now feasible on more than 15000 tasks, whereas
the overhead of Spindle is nearly constantly low.

With SIONlib and Spindle, this work demonstrates how scalability of operating system com-
ponents can be improved without modifying them and without changing the I/O patterns of
applications. In this way, SIONlib and Spindle represent prototype implementations of func-
tionality needed by next-generation runtime systems.





Zusammenfassung

Auf heutigen Supercomputer-Systemen belasten parallele Anwendungen, welche regelmäßig
Checkpoints der im Hauptspeicher befindlichen Simulationsdaten erstellen, das Dateisystem
enorm. Zum Beispiel werden auf Supercomputern mit einem verteilten Hauptspeicher die
Checkpoints oft individuell von jedem Ausführungsprozess erzeugt, wodurch eine große An-
zahl von Dateien entsteht. Neben der aufwendigen Handhabung der Dateien bewirkt dieses
als tasklokaler I/O bezeichnete Zugriffsmuster zudem eine hohe Belastung der Dateisystem-
Komponenten, die für die Verwaltung der Metadaten zuständig sind, was zu Verzögerungen im
Programmablauf oder sogar zu dessen Abbruch führen kann. Ähnliche Auswirkungen durch
die hohe Belastung des Metadatenmanagements findet man auch bei parallelen dynamisch
gelinkten Programmen, die beim Start nach den benötigten Bibliotheken auf dem Dateisystem
suchen und diese von dort laden.

Hauptursache der oben beschriebenen Verzögerungen ist, dass die für den I/O zuständigen
seriellen Komponenten des Betriebssystems keine Vorteile aus der Parallelität der Anwen-
dungen ziehen können. In dieser Arbeit werden zwei neuartige Lösungen vorgestellt, welche
Charakteristika der I/O-Operationen von parallelen Programmen ausnutzen und mit geeigne-
ten Mechanismen wie z.B. Aggregation oder Zwischenspeicherung die oben beschriebenen
Engpässe vermeiden. Die zugrundeliegenden Methoden wurden in den beiden Werkzeugen
SIONlib zur effizienten Speicherung von tasklokalen Daten und Spindle für das Laden von
dynamisch gelinkten Programmen implementiert. Beide Tools nutzen verfügbare Informatio-
nen über die Parallelität der Anwendung, die Struktur der I/O-Komponenten und des Ver-
bindungsnetzwerks des Supercomputers sowie die Konfiguration des parallelen Dateisystems
zur Koordinierung und Optimierung der I/O-Operationen aus. Als eine Zwischenschicht zwi-
schen der parallelen Anwendung und den vorhandenen POSIX-Schnittstellen können sie ohne
Modifikation des Betriebssystems und mit minimaler bzw. ohne Änderung der Anwendung
eingesetzt werden.

SIONlib wird bereits in Anwendungen für die effiziente Erstellung von Checkpoints eingesetzt
und ist in die parallele Performance-Analysewerkzeuge Scalasca und Score-P für die Speiche-
rung von Ereignisspuren integriert. Messungen auf dem Blue Gene/Q System in Jülich zeigen,
dass SIONlib auch bei 1,8 Millionen Prozessen eine effiziente Ein-/Ausgabe von Daten mit
bis zu 60-80% der nominellen Bandbreite des Dateisystems unterstützt, ohne Probleme beim
Metadatenmanagement zu verursachen. Auch die Leistungsfähigkeit von Spindle konnte mit
Hilfe von Benchmarks nachgewiesen werden. Zum Beispiel ermöglichte Spindle auf einem
Supercomputer des Lawrence Livermore National Laboratory das gemeinsame dynamische
Laden mit nahezu konstantem Zeitaufwand auf einer ohne Spindle erst gar nicht erreichbaren
Größenordnung von über 15.000 Prozessoren.

Mit Hilfe von SIONlib und Spindle konnte in dieser Arbeit die Leistungsfähigkeit von Kom-
ponenten des Betriebssystems gesteigert werden, ohne diese oder die I/O-Muster der Anwen-
dungen zu verändern. Damit stellen beide Werkzeuge Prototypen für die Implementierung
von Funktionalitäten dar, die von Betriebssystemen der nächsten Generation bereitgestellt
werden sollten.
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1 Introduction

Simulation codes as a complementary pillar of scientific research have a high demand for com-
puting power. As a result, programmers have to substantially optimize the application codes
for supercomputing architectures. In general, the optimization focuses on parallelization in
order to adapt the simulation program structure to the parallel architecture of today’s super-
computers. In addition, the results of such simulations have to be stored persistently on disk
to evaluate the data in post-processing steps or to feed it as input to subsequent simulations.
Along with the parallelization of applications, also their I/O comes into focus as an additional
topic of optimization. Especially, with the evolution of supercomputers in the recent years the
computing performance increases much faster than the performance of I/O subsystems, which
leads to an increasing portion of application runtime spent for I/O. Therefore, programmers
have also to parallelize I/O in applications to benefit from the parallelism of the underlying
hardware and infrastructure. Similarly, the start-up of parallel applications uses an I/O pattern
that current operating systems do not support with parallel methods that exploit the parallel
capabilities of the supercomputer.

This chapter provides the basic concepts of parallel computing, parallel infrastructure, and
parallel I/O as well as parallel task-local I/O and dynamic linking and loading of parallel
applications. The latter two are needed to discuss the design and implementation of two new
approaches for the integration of locality-aware methods into existing I/O layers of parallel
applications. The major contribution of this thesis is the design and the implementation of the
new tools SIONlib and Spindle to realize these approaches.

1.1 Parallel Computing

Parallel computing offers methods to run simulation programs at a much larger scale than
traditional serial programs. The parallelism has to be implemented in computer hardware,
system software and in simulation programs. For example, parallelism in hardware is given
by duplicating computing elements on each scale. On small scale, this is implemented by
multi-core CPUs or by using special accelerators like GPUs or Xeon Phi coprocessors; on
larger scale, parallelism is given by connecting multiple compute nodes with an internal net-
work. Furthermore, applications also have to be designed to run in parallel. The two main
parallel programming paradigms supporting this are OpenMP [8] (Open Multi-Processing),
designed for shared-memory systems, and MPI [68] (Message Passing Interface), designed
for distributed-memory systems. We will discuss in the following sections the structure of
parallel architectures as well as the two parallel programming paradigms with respect to I/O
relevant implications, which have to be considered for the design of SIONlib and Spindle.
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1 Introduction

1.1.1 Parallel architectures

Modern supercomputers are constructed by combining multiple computing elements into a
single system. As depicted in Figure 1.1 architectures of such supercomputers can be classi-
fied by their memory architecture as shared-memory systems, distributed-memory systems, or
hybrid-memory systems.
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Figure 1.1: Architectures of parallel computers are classified by the memory configuration.

In shared-memory systems, all processors share a common physical memory and can access
it via a shared internal network. The memory has a global address space, which is visi-
ble to all processors. Therefore, memory access has to be coordinated to avoid concurrent
access to the same data. Systems where multiple processor units of the same kind are lo-
cated on one board and which are connected to a shared memory are classified as Symmetric
Multi-Processor (SMP) systems. This class also includes multi-core processors which com-
bine multiple processor elements on one processor die (socket) and combinations of the two
(multi-socket multi-core systems). Typically, SMP systems are equipped with a multi-level
cache-hierarchy, consisting of processor-private and shared caches. Memory in multi-socket
systems is often locally attached to a socket, so that processors have a direct access to data in
the local memory bank and indirect access to data in more distant memory banks. The access
to more distant memory must occur over the internal network and typically has higher latency
and lower bandwidth. In contrast to the traditional design of SMP systems with Uniform Mem-
ory Architectures (UMA), these modern SMP systems are classified as Non-Uniform Memory
Architectures (NUMA). In case of processor-local caches, the processors of NUMA systems
have to ensure consistency of memory data in the different local caches. Typically, a hardware
cache coherency protocol synchronizes the local caches. Architectures that implement such
coherency are described as cache-coherent Non-Uniform Memory Architectures (ccNUMA).

Computing elements of distributed-memory systems have a private local memory, which is
only accessible to the local processor. In order to exchange data, processors have to trans-
fer data explicitly from processor to processor and are thus interconnected via a network.
Congestion of access to data in local memory is not possible since other processors have no
direct access to it. Typical modern supercomputers are built as a combination of both dis-
tributed and shared memory architectures (cf. Figure 1.1c). Such systems consist of multiple
SMP nodes, which are connected to a network. While memory is shared by all processors
of the same node, it is not shared between processors in different nodes. Examples of such
systems are massively parallel multiprocessor (MPP) systems like the IBM Blue Gene series
or clusters like the Linux clusters JUROPA or Sierra, which were used in this thesis for I/O
performance studies.
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Figure 1.2: Different schemes of file system attachment to a supercomputer.

Nodes are typically not equipped with local disks that can be used by applications. Instead,
applications have to read and write data from a central file system, which is connected to
the supercomputer via a network. Therefore, processors have to communicate directly with
file-system nodes to read data from or write data to a file. Figure 1.2 shows two different con-
figurations of how file systems could be connected to the parallel system. In the first configu-
ration, the file-system nodes are coupled with the interconnect network of the supercomputer
(cf. Figure 1.2a). File-transfer speed is then only limited by the speed of the interconnect net-
work and their adapters to the nodes. Interconnect networks of center-wide file systems that
are accessible by multiple supercomputers are often separated and in some cases implemented
by a different technology (e.g. 10GE vs. Infiniband). Supercomputers in that configuration
are connected via network switches or bridge nodes to the file system, which could limit the
transfer speed to the file system further. The second configuration, shown in Figure 1.2b,
describes the special configuration of the IBM Blue Gene system: Compute nodes have no
direct connection to locations outside the internal torus network. Instead, nodes are connected
via internal torus links to special I/O forwarding nodes (ION). On JUQUEEN, the IBM Blue
Gene/Q system at the Jülich Supercomputing Centre (JSC), one ION is shared by 128 compute
nodes. In this configuration, file data is transferred in multiple hops; each of these hops can
further limit the file-transfer speed.

On distributed and hybrid-memory architectures there exists another implication for applica-
tion I/O: data is distributed over the local memory of the compute nodes. To get access to all
data, at least one processor per SMP node has to be involved in I/O operations. That means
that applications are required to perform I/O in parallel on those architectures or to collect and
distribute data on application level. In addition, distributed multi-dimensional and domain-
decomposed application data has to be re-arranged before writing it to the disk. That requires
I/O operations which map contiguous regions in local memory to non-contiguous data parti-
tions in output files.

1.1.2 Parallel software

The parallel nature of the underlying architectures of modern supercomputers requires that ap-
plications also have a parallel structure. A parallel program is executed on multiple processors
of multiple compute nodes, each executing one thread or task. According to Flynn’s classifi-
cation of parallel architectures [27], computers supporting such execution models follow the
multiple instruction multiple data (MIMD) model: the application code is executed multiple
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times and typically, the threads or tasks are working on different sections of data. As is the
case for the classification of parallel architectures, parallel programs can be classified into
two categories, the single program multiple data (SPMD) and the multiple program multiple
data (MPMD) category. Most of the applications on current supercomputers are following the
SPMD scheme: an application that consists of one simulation code being executed on all pro-
cessors. On the other hand, MPMD programs are special applications that implement multiple
models (e.g. multi-physics applications) and therefore use a set of sub-codes. These sub-codes
have to be executed concurrently on a subset of processors each. The MPMD programs are
typically strongly coupled inside the sub-codes that are working on one model. The sub-codes
themselves are more loosely coupled. They exchange data, for example, only after each or
several simulation steps.

The behaviors of SPMD and MPMD programs are different in terms of parallel I/O and parallel
loading: although threads of an SPMD program are working on different parts of the data sets,
simulation data is typically domain-decomposed and an application will write output files that
describe one (global) data set. In contrast, MPMD programs will typically output different data
sets for each of the processor subsets, because they are simulating different sub-models. In
terms of parallel loading, SPMD programs are running the same executable on each processor.
Furthermore, dynamic libraries will usually be loaded in the same order. MPMD programs
either will load a number of different executables, one for each subset, or will load the same
driving main program but branch into different code segments afterwards.

To exploit parallel architectures, traditional sequential simulation programs have to be paral-
lelized, either by message passing for distributed-memory systems or by multi-threading for
shared-memory systems.

The Message Passing Interface (MPI) defines a standard applications programming interface
(API) for programming distributed or hybrid-memory architectures. MPI provides language
bindings for C and Fortran and implementations are available for nearly all parallel architec-
tures. Therefore, most current applications, which are intended to run on such distributed-
memory systems, are parallelized with MPI. Primarily, MPI defines, in its API, functions to
exchange data between the processes of a parallel application. Although it is not described in
the MPI standard, processes in an MPI application are typically called tasks. This document
will adopt this notation and in the rest of the document this term is used to identify processes
within a MPI context. Each task is assigned a unique number (rank), which makes it able to
be addressed by other tasks. MPI tasks have their own address space and therefore have no di-
rect memory access to data of other tasks. Although MPI is designed for distributed-memory
systems, MPI applications can also run on SMP systems. In this case each MPI-task will run
as its own Unix-process, which has its own address space.

As already described, MPI defines functions for data exchange. Data could be exchanged as
messages between two tasks as a point-to-point operation or in collective operations between
all or a number of application tasks (e.g. broadcast). To dedicate MPI operations to subsets
of tasks, MPI provides functions to define groups of tasks. With the so-called communica-
tor, a tasks group gets a communication context, which allows programmers to separate and
limit communication to tasks of this group. Besides functions for data exchange, MPI pro-
vides a large number of additional functions (e.g. for task synchronization). Data, which will
be sent to other tasks, have to be described to MPI. In addition to a memory pointer data
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exchange functions also require data type and size information. MPI defines a set of data
types (basic data types) and provides functions to construct data types and data structures
(derived data types).
MPI provides additional functions for parallel I/O with the MPI I/O API. This API uses knowl-
edge about data structures for I/O optimization, which is given by the application through the
type declaration of the data parameters. In addition, MPI I/O lets the applications describe
how the data is arranged in the resulting output file (file views). This helps MPI, for example,
to use in its library methods to reorder and aggregate data on the tasks before writing them
to disk, which avoids non-contiguous file access. MPI scales to very large numbers of tasks:
for example, codes from the High-Q Club [13] demonstrate their scaling to the full size of 1.8
million MPI tasks on the Blue Gene/Q system JUQUEEN at JSC.
Another class of programming interfaces supports shared-memory programming. The most
popular programming interface is OpenMP, which supports a large number of platforms with
parallel shared-memory architectures in its version 4.0. In contrast to message-passing models,
OpenMP starts multiple light-weight threads within an application process and assigns these
to the processors of an SMP node. An advantage of threading is that all threads have access
to the same address space and can concurrently access data within that address space without
needing to exchange data explicitly. OpenMP is a combination of compiler directives and
library functions. Language bindings are available for C, C++, and Fortran. The structural
parallelization of an application code is mainly done by inserting compiler directives. Starting
from a sequential program, the user has to insert compiler directives to mark code parts that
the threads can execute in parallel (parallel region). Program execution follows a fork-join-
model, where the initial sequential execution is forked to multiple threads at the beginning of
a parallel region, and where the parallel threads are joined at the end of parallel region.
Further OpenMP constructs are necessary to describe work sharing. Typically, computational
loops are parallelized by assigning independent loop iterations to individual threads in a round-
robin fashion. As the address space is accessible to all threads, OpenMP has to provide meth-
ods to organize concurrent access. This is done by declaring variables as thread-private or
shared. Alternatively, parts of the code could be marked as critical, so that only one thread
at a time will enter those regions. In comparison to MPI, OpenMP programmers have to
spend most of their effort organizing data access, instead of coding the data transfer between
application tasks with MPI functions.
On hybrid architectures, OpenMP will be often combined with MPI. In these configura-
tions, MPI will run one or a few MPI tasks per SMP node and each MPI task is further
parallelized with OpenMP. Depending on the thread-support level of the MPI implementa-
tion, MPI functions can be called concurrently from multiple threads within a parallel re-
gion (MPI THREAD MULTIPLE), serialized within a parallel region (MPI THREAD SERIALIZED),
called only by the master thread (MPI THREAD FUNNELED), or called only outside of a paral-
lel region (MPI THREAD SINGLE). As already explained, most of the parallelization is done
by defining work-share instructions for loops, which perform local computations. Therefore,
MPI communication mostly occurs outside of OpenMP parallel regions, which requires the
second lowest thread support (MPI THREAD FUNNELED) from the MPI implementation.
Similarly, application I/O is typically done outside parallel regions. Data which is intended to
be written into output files is typically not thread-private. The master thread has access to the
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shared application data, so that this thread can write the total amount of output data sequen-
tially to file. Although this strategy serializes the I/O on one SMP node, the parallelization of
I/O is further possible on the outer MPI level by using APIs as MPI I/O.

Finally, the loading of shared-memory parallel or hybrid applications reduces the number of
load operation at program startup, because fewer processes are started on an SMP node. This is
because OpenMP threads are created by copying the execution context of the existing process
and not by starting a new process. Therefore, the binary code does not need to be loaded
again. Multi-threaded shared libraries are particularly useful, because the read-only section of
libraries is loaded only once into memory.

1.2 Parallel I/O

Parallel I/O is defined by I/O operations that write or read shared data simultaneously from
multiple tasks of a parallel application. Figure 1.3 depicts different approaches to implement
parallel I/O [67]. A simple approach is to assign each task an individual file. Typically, this
approach is used for writing checkpoint or restart files, where data belonging to individual
tasks can be clearly separated. In this work, this I/O pattern will be referred to parallel task-
local I/O (cf. Figure 1.3a). Alternatively, all tasks can access the same shared file, collectively
or individually performing write and read operations on it (shared I/O). This parallel shared file
I/O requires support on different software levels to coordinate concurrent access to the same
location in a file from different tasks. I/O operations on shared files are typically supported
by parallel I/O libraries, which use their functionality to manage the collective access to the
shared file (cf. Figure 1.3b). A third approach, centralized I/O, is to limit I/O operations to
one designated tasks. This task manages the write and read operations in a file on behalf of
all other tasks (cf. Figure 1.3c). Furthermore, parallel applications and parallel I/O libraries
often use combinations of this three approaches. This involves the use of multiple shared files
where each is accessed by a subset of tasks.

The continuously growing number of processor elements of supercomputers and the growing
size of usable memory, used by a single application makes parallel I/O for large-scale appli-
cations mandatory. However, the I/O capability of a single compute node is limited on current
architecture which means the overall file-system speed can only be achieved by using all or a
large number of compute nodes. Traditional approaches like collecting and writing data from

T1 TnT2 …

… File nFile 1 File 2

(a) Task-local I/O

T1 TnT2 …

File

(b) Shared I/O

TnT2 …

File

T1
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Figure 1.3: Different parallel I/O approaches, using individual files per task or a shared file.
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only one instance of the parallel application would waste the I/O capabilities of the other nodes
and is only reasonable for small datasets.

As a general introduction to parallel I/O, we will discuss different aspects from an application
standpoint. The resulting characterization of I/O patterns and access methods helps to classify
parallel I/O libraries according to the application interface, the integration into software layers,
and the data representation in application and on disk. The parallel file system implements the
low-level POSIX I/O interface, which is used by nearly all I/O libraries. Important aspects of
the two parallel file systems used in this dissertation are introduced.

1.2.1 Characteristics

Different aspects of parallel I/O have a direct influence on the scalability. These aspects are
the data file size, the frequency of I/O operations, the data distribution in distributed-memory
systems, and the data representation in the memory and in the file. Additionally, how the data
is stored on the file-system level (e.g. as shared or individual files) is an important factor for
I/O scalability.

File size

Not all application data has to be exchanged between memory and the file systems. Some data
is only needed for calculation and therefore only held in memory temporarily. Output results
are computed or derived from the calculated data at the end of the simulation run or regularly
after a number of simulation steps. Consequently, the size of the output file is typically smaller
than the data held in memory. Therefore, the size of the output files containing the simulation
results can be assumed to be smaller than the size of available memory.

The situation is different for applications that regularly store a snapshot of the current compu-
tation state to disk. This is required for restarting long-running simulations which have to be
broken down into shorter jobs and for writing checkpoints, which allow restarting the compu-
tation after a failure. As such restart and checkpoint files contain a simulation snapshot, their
size is typically of the same order of magnitude as the size of the application data in memory.
File-system designers often consider such factors, when planning the capacity of a parallel
file system: they must ensure that an application can write a certain share of the system main
memory to a file in a reasonable time. Furthermore, as computing power and system main
memory are growing faster than file-system performance, it will be more difficult to guarantee
this for future systems. As a compromise, application programmers have to reduce the size
of I/O data or reduce the frequency of writing checkpoints. In addition, new techniques like
burst buffers may be used to address this problem by implementing faster local staging storage
to compensate for longer writing times.

In contrast, input data of applications is typically very small. Depending on the simulation,
only input parameters are read at the beginning of the simulation run. All intermediate data
will be derived from these parameters. For example, the initial configuration of simulation data
can be generated statistically from a set of parameters and boundary conditions. Another class
of applications reads the initial simulation data from the output of a (parallel) pre-processing
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step. One example is the generation of irregular lattices for Computational Fluid Dynamics
computations (CFD). Although these applications need high input bandwidth, most I/O infras-
tructures and I/O-libraries are optimized for data output. The reason is that the input phase
happens only once per simulation run, whereas the data output and writing of checkpoints
happen more frequently.

Frequency of operations

Next, we want to discuss the frequency and insularity of I/O operations in parallel applications.
As already described, a program traditionally has an input phase during startup and an output
phase at the end of the simulation run. In contrast, checkpointing is done regularly through-
out the computation. Typically, checkpointing operations are completed immediately after the
write operation. This means that checkpoint files are created just before and closed just after
the write operation. This requirement is especially important for checkpointing, because op-
erations have to be completed to ensure that the data can be used for restarting the simulation
after a failure. There are also cases where applications write to a file continuously. Exam-
ples are log files, which contain information about simulation states. These files are opened
at program start and closed at program end. This type of I/O can be denoted as application
monitoring, which is needed to ensure that applications are running correctly. Monitoring is
performed by the user by inspecting the log file regularly, which implies that write operations
have to be completed in each simulation step and flushed to the file. This I/O driven applica-
tion monitoring has its complementary counterpart in online visualization and computational
steering, where data is directly sent to a visualization application instead of being written to
the file system.

Data distribution and data representation

Simulation data on distributed-memory systems are typically distributed over the local mem-
ory of the compute nodes. The partitioning of data is mainly influenced by its dimensionality,
the simulation algorithms, and the parallelization strategy. For example, three-dimensional
data will be divided typically into sub-blocks, which are contiguous in the three-dimensional
space. In contrast, memory and file space are one-dimensional (cf. Figure 1.4). Therefore,
multi-dimensional data has to be folded into the linear space, typically for a three-dimensional
field by iterating first the x-coordinate, then by iterating the y-coordinate, and finally by it-
erating the z-coordinate. Although this folding scheme keeps the data of sub-blocks in local
memory in one contiguous block, it will not be contiguous in the folded representation of
the global three-dimensional field. Instead, data of sub-blocks would be spread over different
locations in the global representation. Because of this, and since applications typically store
multi-dimensional fields in the folded global representation in output files, a reordering of data
is necessary. Technically, this reordering can be done on different levels of the software stack.
The following section, which describes the I/O libraries, will revisit this aspect.

As a compromise with respect to performance, applications often avoid the reordering of data
stored in checkpointing- and restart-files. Instead, data is written as a sequence of sub-blocks
into the output file. An application which wants to read such a file needs not only to know the
field size in each dimension, but must also know the number and the size of each sub-block.
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Figure 1.4: Three-dimensional domain-decomposed field stored in task-local or global file
representation.

Restarting an application with the same domain decomposition from such a file is possible.
However, starting the application with another number of tasks and therefore with another
domain decomposition would require a reordering of the data during the input phase.

Data representation in file

Data is typically written as binary data to a file. Only in rare cases is data converted into
human-readable ASCII format, such as log-files, which users can monitor directly. ASCII
conversion requires additional time during writing and reading and is not necessary, if both
writer and reader are part of a simulation program. However, writers of binary data need be
aware of the binary representation when data is used on other systems: for example, binary
data written on a big-endian system cannot be read on a little-endian system, because the
byte-order of multi-byte data types (words) is different. Big-endian systems store the most
significant bytes at the largest address, whereas little-endian systems store that bytes at the
smallest address. Data conversion between both formats is only possible if the word-length is
known.

Besides that, an application has to know the data representation in a file in order to be able
to read it. In the simplest cases, data structure and data types are defined implicitly by means
of direct coding in the corresponding read operations. The input file itself is only a stream of
bytes and contains no additional information about data structures and data types. Such files
are therefore dedicated to one application: they are not portable and cannot be used by other
applications or tools using a different sequence of read operations.

Portability requires that data files be combined with metadata. Metadata describes the data
format (e.g. binary, endianness), data types and structure, as well as the data size. The meta-
data can be coded directly into the output file or it can be stored in a different and possibly
human-readable file.

More sophisticated file formats are those that store additional application-dependent metadata
in the file. This includes both a description the structure and the meaning of the data (seman-
tics). Examples for such self-describing formats are given in the next section with NetCDF
and HDF5. Output files in this format can easily be used as input for a visualization program,
which uses the metadata to present data sets graphically to the user.

9
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Shared or individual file

With the increasing number of processors of supercomputers, how data is written to files has
become more important. Writing data to individual local files yields a large number of output
files, which have to be managed by the file system. This task-local approach is embarrass-
ingly parallel. It does not require the synchronization of I/O operations in the application.
Furthermore, with the one-to-one mapping of tasks and files, this approach can exploit all
available data paths to the file system. Although this promises a good I/O performance, some
operations, such as parallel file creation are very costly. Therefore, parallel I/O libraries are
typically working with shared files, where all tasks of an application are writing to the same
shared file, but at different positions. Parallel file systems are designed to handle such large
shared files and have functionality to prevent data corruption when writing concurrently to a
shared file (locking).

We have now introduced the following types of I/O: program input, result output, restart files,
checkpointing data, and continuously written log-files. In the next section, we will discuss
how such data can be managed with different I/O libraries and their access methods.

1.2.2 Access methods

Application I/O involves the interaction of the parallel program with the operating system and
with the file system. To implement this I/O interaction, users can select from a large number
of I/O libraries, which differ in terms of abstraction level and access method. Figure 1.5 shows
a classification of representative I/O libraries and access methods, which we will discuss in
the following sections.

Low-level I/O methods

On low level, the file system provides I/O functionality by supporting the standard of the
Portable Operating System Interface (POSIX). The POSIX interface for I/O was designed in
1988 to have a common software layer between the file system, the operating system, and
the application [47]. Initially designed as an interface for a single computer and its local file
system, the POSIX I/O interface is currently supported by nearly all file systems. According
to POSIX, data is stored in files. Additionally, these files have metadata, which describes
their size, last access time, and access rights. Files are stored hierarchically in directories
and are consistently visible to all clients accessing the file system. C-code programmers can
directly use the POSIX I/O API while those using C++ and Fortran will need the support of
language-specific modules (C++ streams, Fortran I/O).

With this tool set, applications can directly write data to files. A simple use case is parallel
task-local I/O (cf. Section 1.3). One file object on the file system is assigned to each process.
Operations on that file are done only by that process. Interaction or synchronization with
other processes is therefore not needed. As described in the previous section, this approach
promises a good I/O bandwidth, but has limited scalability due to the large number of files
(cf. Section 2.2).
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Figure 1.5: Classification of I/O libraries and their data access schemes.

Moreover, the POSIX I/O API can also be used to write collectively from multiple processes
to a common shared file. The I/O operations are unchanged, but all processes open a com-
mon file instead of an individual one. To prevent conflicting access to the same byte ranges,
the application has to coordinate access to the shared file. This can be done in a temporal
distribution, meaning that access to the file is serialized among the processes, or in a spatial
distribution, where the application will assign different non-overlapping chunks of the file to
each of the processes. In case of concurrent access to a shared file, the parallel file system has
to maintain precautions to prevent write operations at the same time to the same file location.
For this, the file system typically implements a file locking mechanism, which grants only one
process write access to the whole file or to a part of the file at a time.

The POSIX-based approaches for parallel I/O only store byte streams to files. The write and
read commands of POSIX are very simple and accept as parameters only a memory pointer
and size information. Data is written to the file as it is stored in memory. Information about
endianness or other metadata have to be maintained by the application. The implementation of
the POSIX I/O API is part of the standard system library libc and has no further dependencies
on other libraries. Therefore, the implementation of application I/O with that interface is easy
to use and popular.

MPI I/O

The main reason to implement special parallel I/O libraries is that the management of shared
file access can be hidden in such libraries. Furthermore, parallel I/O libraries typically have
access to the parallel environment of the application and can incorporate that knowledge into
their design. The I/O libraries described in the rest of this section all follow this concept.
Therefore, in an abstract view, these I/O libraries have to be positioned above the native POSIX
I/O layer (e.g. MPI I/O in Figure 1.5).

MPI I/O as an extension of MPI implements two different strategies for parallel I/O. The
first one is based directly on the POSIX I/O API calls and implements their corresponding
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counterparts in MPI syntax. Consequently, the write and read functions have an additional
parameter that describes the MPI datatype of the payload. Those calls support I/O for both
one-file-per-process and shared-file I/O, which were both described previously. Similar to
the POSIX seek call, MPI implements a seek function or a combined write at/read at

function, which allow processes to move to certain positions in the file. In addition, MPI
provides a shared file pointer to coordinate the access to a shared file. With this shared file
pointer, the MPI tasks collectively manage the current position in the file. For example, this
feature is useful when writing into a common log file.

The second I/O strategy of MPI I/O requires more information about the data management
in the application. It provides an additional set of high-level I/O calls: instead of writing
chunks of bytes to a file, first the programmer has to describe data structure and the data
distribution among the MPI-tasks with these I/O calls. With that information, MPI I/O is
able to remap the distributed application data to the global view in the resulting file. This
is done transparently using the write calls described below. MPI provides the derived data
types and the file views for the data description. For example, the distribution structure of
a three-dimensional domain-decomposed simulation field can be described directly with the
MPI create subarray function and a corresponding MPI File set view call (as depicted
in Figure 1.4 on page 9).

MPI I/O write and read calls are implemented in two ways. The independent I/O operations
can be called individually by a task without synchronization with other tasks and will be
performed directly on the file. The second set of I/O calls is collective. They have to be called
on all MPI tasks simultaneously, which offers more options for optimization to MPI I/O by
applying collaborative I/O techniques. In this case, MPI can apply a two-phase I/O [23], where
tasks rearrange their data in a first phase by exchanging parts of it such that in the second phase
the data can be written to the disk with better performance. MPI I/O is therefore an example
where the communication layer of the application (MPI) is used to optimize parallel I/O.

In addition, MPI I/O provides a separate function to pass hints to MPI I/O allowing the user
to select between different I/O optimization schemes. In this way, it relays information about
I/O access patterns and platform-specific optimization hints without modifying the I/O calls
in the code.

High-level I/O libraries

On the next higher classification level of I/O libraries, we find the libraries P-HDF5, NetCDF-
4, and Parallel NetCDF. In contrast to the previously described I/O-libraries, the underlying
file formats are self-describing. Files of these formats contain not only the binary data, they
also contain a description of the data. This description comprises information about data
structure and type as well as a set of descriptive attributes. Importantly, these attributes can be
used to make data interpretable for others. Overall, these formats are standardized, portable
and, hence, can be used to archive data in long-term storage.

The Parallel NetCDF library [63] is the parallel access library for the NetCDF format, which is
widely used in the climate community. Parallel NetCDF development was begun by Argonne
National Laboratory in 2002 in order to efficiently create NetCDF files from parallel applica-
tions. The classic NetCDF file format is very simple. It allows the storage of set of variables
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and multi-dimensional arrays of fixed size as well as multi-dimensional arrays where one di-
mension is unlimited. Parallel NetCDF is based internally on the MPI I/O layer, which makes
the previously described collaborative I/O techniques of the collective MPI I/O calls available
in the Parallel NetCDF layer.

The HDF5 library [42] implements the rich Hierarchical Data Format (HDF) that allows
the storage of data of different types and structures and supports hierarchical grouping of
those entities. HDF files implement a kind of a file system within a container, using groups
analogous to directories, and datasets similar to files [60]. The initial version of HDF was
defined by the National Center for Supercomputing Applications (NCSA) in 1987. It became
very popular in its latest format (HDF5), which was developed in collaboration with DOE
laboratories and with support from NASA. Similar to Parallel NetCDF, the Parallel HDF5
library (PHDF5) implements a high-level parallel I/O interface, which is based internally on
MPI I/O. In addition, HDF5 can also directly use the POSIX I/O interface for file access.

Besides these two previously described I/O-libraries, the initially serial NetCDF library has
been enhanced in version 4 with a parallel implementation (NetCDF-4 [91]). Instead of in-
terfacing directly with MPI I/O for file access, this new version uses either HDF5 to write
NetCDF data in HDF5 format or Parallel NetCDF to write the classic NetCDF file format in
parallel. In both cases, NetCDF-4 uses the parallel capabilities of other libraries to parallelize
I/O operations, which are behind the native NetCDF interface calls.

High-level parallel I/O libraries like HDF5 and NetCDF provide I/O interfaces that require
applications to provide information about the type and structure of data. They use this infor-
mation to store the data in a global and self-describing format. Therefore, the focus of these
libraries is on data portability and data preservation. In contrast, parallel I/O using low-level
I/O-interfaces has other goals. In these cases, the data will stay on the system and is temporary.
The focus of parallel I/O using low-level I/O-interfaces is often high I/O performance, where
the data should be processed by the file system as quickly as possible. Typically, parallel
task-local I/O is applied in those cases. As this is one of the main topics of this dissertation,
Section 1.3 will describe this I/O type in more detail and we will discuss two use cases of
parallel task-local I/O.

1.2.3 Parallel file systems

Parallel file systems are mandatory for large-scale parallel systems as they provide functional-
ity for parallel access to shared file data from a very large number of computing elements. The
parallel file system can be seen as a third component of a supercomputer. In large-scale sys-
tems, the file system itself consists of several server components, building together a parallel
cluster with special support for I/O. In general, a parallel file system consists of two compo-
nents: the hardware and software environment. Software is needed, on the server nodes, where
file-system daemons provide access to the local file system for network attached clients. On
the client side (e.g. compute nodes), software is also needed to interact with the remote file
system. Depending on the file system, the software is either fully integrated into the Linux
kernel (e.g. Lustre), or is partly running as an independent daemon (e.g. GPFS).
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While HPC sites deploy a parallel file system for those data spaces that require high I/O band-
width and support for parallel access, they are often using the Network File System (NFS)
protocol to mount a center-wide HOME file system to the HPC system. While the NFS is
not designed to support parallel access to files from a large number of clients, it allows a file
system to be easily distributed to different computers of an HPC site. The HOME file system
is typically used to store program source files and small configuration files. Parallel access
is not necessarily needed for such a file system: compilation is typically done on the login-
nodes of the HPC systems and job execution directories are typically located on the parallel
file system. Storing binary files like executables or shared libraries on an NFS-mounted file
system may result in bottlenecks and is therefore not allowed at some HPC sites. These sites
require files to be copied to an execution directory on the parallel file system before job exe-
cution. Nevertheless, the limitations of loading shared libraries in parallel at large scale have
motivated the design and implementation of a tool to support dynamic loading in this work
(cf. Section 2.3.2).

Both SIONlib and Spindle, whose design and implementation are discussed in this disser-
tation, are approaches which were motivated by I/O limitations on HPC systems equipped
with one of the two parallel file systems (GPFS and Lustre). While most of the optimization
strategies will also be useful for other parallel file systems [76], the focus in the following
description will be on these two aforementioned file systems.

GPFS

The General Parallel File System (GPFS) from IBM has its origins in 1993, when IBM started
the development of the Tiger Shark file system. First commercial versions of GPFS were
available under the name Parallel I/O File System (PIOFS). Since 1998, the file system has
been distributed under the name GPFS [80, 44]. A large number of HPC systems listed in
the current Top500 ranking list [70] are using GPFS to provide fast storage capabilities. The
IBM Blue Gene/Q system JUQUEEN in Jülich is one of these. The GPFS file system of
JUQUEEN is installed on a dedicated I/O cluster named JUST (Jülich storage server, [56]),
which is an IBM System x GPFS Storage Server (GSS). It implements a new approach, where
functionality of Redundant Array of Independent Disks, Level 6 (RAID-6) is not built into
hardware controllers [21]. Instead, the RAID-6 functionality is performed by the GPFS native
RAID feature (GNR) on the software level. Main reasons to move this functionality from
hardware to software is that in case of a disk failure, the rebuilt speed is significantly improved.

As a cluster file system, GPFS provides access to file-system data from multiple nodes. There-
fore, GPFS deploys a daemon on each node of the cluster. File systems are built on disk storage
that is attached to one, some, or all of these cluster nodes. The file system is globally visible
on all nodes and provides file storage with a global name space. Figure 1.6a shows a GPFS
configuration using the Network Shared Disk (NSD) server model. In this configuration the
GPFS daemons (NSD clients) that are running on the application nodes use the NSD block I/O
protocol to communicate over the network to the GPFS daemons (NSD servers) that running
on the file-system nodes. In general, GPFS daemons can take over file management tasks,
which is a key element for scalability. For example, metadata of a file is handled by the first
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Figure 1.6: General structure of GPFS and Lustre.

client that opens or creates a file. There are only a few file system tasks that are centralized
and assigned to one GPFS daemon (e.g. the management of the file system itself).

Generally, parallel access to different files and concurrent access from different nodes to the
same file is possible. To ensure protected access, GPFS provides a flexible and scalable byte-
range locking mechanism. Initially, write or read locks for new or un-used files have to be
requested from a central token manager. In contrast to other file system implementations, the
lock tokens will then be delegated to the requesting daemon. Further daemons requesting locks
for byte ranges of the same file must request a lock from the daemon holding the corresponding
lock and will inherit a lock token for the requested byte-range. This mechanism offers a
scalable parallel distribution of write/read locks in case of parallel access to a shared file.

In GPFS data is stored in units of file-system blocks. These blocks can be described as the
smallest unit of data that can be handled efficiently. For example, GPFS daemons allocate an
internal GPFS page pool in memory as buffer for incoming or outgoing data. GPFS pages are
moved between memory and disk storage only as a whole block. Therefore, applications can
achieve the best performance on the file system when they write and read data according to
the file system block structure. This means that I/O requests have to be aligned to file sys-
tem block borders and that chunk sizes should be a multiple of the block size. Efficient and
easy-to-use I/O libraries should be designed to hide these constraints internally.

Lustre

The first version of the parallel file system Lustre [95] began development in 1999 under the
name object-based disk file system (obfds). The first version of Lustre [11] was deployed 2003
on a production cluster system at the Lawrence Livermore National Laboratory (LLNL). The
development of Lustre has continued and the file system is installed on a large variety of large-
scale HPC systems. Most of the HPC systems at LLNL are meanwhile driven with Lustre
file systems, importantly, the Sierra cluster that was used for development and evaluation of
Spindle, one of the tools in this dissertation, has access to one of the Lustre file systems.
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Lustre is also used at the general-purpose cluster JUROPA at JSC. Two of the largest Lustre
installations can be found at the Oakridge National Laboratory [84] and under the name FEFS
(Fujitsu Exabyte File System) at the Riken Institute in Japan [79] where it serves as the file
system for the K computer.

Lustre implements a distributed, object-based, storage. It internally handles objects to store
data: files are stored in data objects and Lustre uses special index objects to store directory
information and file metadata. The file system is implemented with Object Storage Targets
(OSTs), which are running on the Object Storage Server (OSS) nodes (cf. Figure 1.6b). The
OSTs maintain local file systems to store the data, using ext4 (ldiskfs) or other Linux file
system implementations. Lustre builds the parallel Lustre file system by distributing file data
over these OSTs. In contrast to GPFS, Lustre gives users and applications the right to influence
this file distribution. To facilitate this, the OSTs of a Lustre file system are visible to users and
each has a unique identifier. This allows users to select how a file should be distributed over the
OSTs by using special lfs sub-commands before the file is created. The distribution model
has only a few parameters: the number of OSTs, a starting offset number, and the chunk
size can be specified. According to the specified parameters, the file byte range is divided
into chunks which are distributed in a round-robin fashion over the selected OSTs during the
write operation. Enabling users to select OSTs for their I/O operation could potentially cause
an imbalance in OSTs usage. As we will see later in Section 4.3, such an imbalance can
directly cause delays in parallel applications. However, the simple model does not allow for
the selection of a set of OSTs by specifying their identifier, which limits the usability of the
lfs sub-commands for implementing optimizations to prevent such imbalance.

The Lustre client is integrated into the Linux kernel. It can use the Linux file cache in memory
to store Lustre file data. Therefore, Lustre need neither start an additional daemon on the
client nodes nor allocate additional memory for caching. The Lustre kernel extension will
communicate over the Lustre network abstraction layer (LNet) with the Lustre servers. In
addition to object targets, Lustre implements Meta Data Targets (MDTs) on the Meta Data
Servers (MDSs), which are responsible for maintaining the name space of the file system. In
contrast to the OSTs, only one metadata target is typically active for a file system; multiple
MDTs are only used to build failover groups. The MDT stores the metadata information of
files and directories (e.g. their names, access rights and ownerships). In addition, the MDS
is responsible for selecting the OSTs that store file data according to the user specifications.
The corresponding information about OST mapping and file distribution will be returned to
those Lustre clients that open the file. After file creation, the MDS is no longer involved in the
I/O operation. The Lustre clients directly interact with the assigned OSTs. The file metadata
on MDS is updated after closing the file and the MDS is not involved in file block allocation.
In contrast to GPFS, MDS functionality is not distributed over multiple servers. This causes
bottlenecks when a large number of clients perform file look-up operations in parallel.

Lustre implements an additional service on each storage target for file locking, the Lustre
Distributed Lock Manager. This is used to protect concurrent file and metadata operations,
serializing such operations and ensures a consistent view. Similar to GPFS, Lustre implements
byte-range locking. This enables shared-file I/O where different clients write disjointed chunks
of a file.
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1.3 Parallel Task-Local I/O

Historically, applications used often a one-file-per-task I/O access scheme to implement fast
I/O for dumping large data as quickly as possible to disk. This scheme, which is described in
this work as parallel task-local I/O, offers some advantages. The first is that contiguous data
sections in memory are directly mapped to contiguous file data, which makes I/O operations
very efficient. The second is that applications do not have to program additional logistics
to align local I/O operations with other tasks; all I/O operations are local to the tasks and
therefore independent.

The typical I/O interfaces for parallel task-local I/O are POSIX I/O and its equivalent language
bindings like ANSI C I/O, C++ streams, or Fortran I/O. We will discuss the fundamental
serial scheme of these I/O interfaces in the next section. Although the task-local file approach
becomes a bottleneck at large scale, the fundamental scheme to preserve the contiguity of local
data in output files persists as requirement of current applications. The following sections
introduce two use cases which can benefits from an efficient implementation of parallel task-
local I/O.

1.3.1 Serial I/O based on the POSIX I/O interface

As already described, POSIX I/O [47] is the native application interface of current parallel file
systems. It standardizes access to file system data by providing a serial interface to write and
read binary data. A subset of these functions are open, close, read, write, and lseek. A file
will be opened with the open function. More precisely, this function connects the file with a
file descriptor, which can then be used by other POSIX I/O calls to operate on that file. The file
descriptor is of type integer and maps internally to a data structure that contains information
needed by the POSIX I/O to operate on that file. For example, this data structure includes a file
pointer for the current file position. Files can be opened for either writing or reading, which
is determined by one of the function parameters. An additional flag allows the modification
of the desired behavior of the open operation. This allows a file to be replaced or to have
data added to it when opened for writing. The interface of the write and read function
is quite simple: besides the file descriptor, which specifies the file on which the operation
should be performed, these functions have a pointer and a number of bytes as parameters.
Both functions operate without buffering data. Therefore, data is transferred directly between
the current position in the file and the location in memory, which is specified by the pointer.
The functions automatically advance the current file position by the number of bytes that are
successfully written or read. In this way, I/O has stream characteristics: consecutive calls to
the write or read function will operate sequentially on the file contents. However, the current
position can be moved within a file using the lseek function, which implements a direct
access scheme to a file.

In general, the POSIX I/O interface allows the same file to be opened from multiple processes
at the same time. Developed for traditional local file systems, POSIX I/O has no special
support to coordinate concurrent access. Furthermore, it defines semantics that guarantee the
atomic behavior of write access. This requires that modifications to the file of such I/O calls
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have to be visible immediately to other processes [41]. Since a parallel file system has to
provide a POSIX-I/O compliant interface, it has to guarantee these semantics. File systems
often use more relaxed semantics, which guarantee consistency only after closing the file (e.g.
NFS). Parallel I/O libraries that implement collaborative I/O operations among all tasks can
arrange the underlying I/O operations in such a way that they guarantee the semantics without
requiring this from the file system [43].

The C language defines an additional set of I/O functions, the ANSI C I/O stream inter-
face [66]. Streams are used in the C language, for example, to implement formatted I/O to
the standard I/O channels stdout and stderr. Furthermore, C also defines functions to open
file streams (fopen) and to write (fwrite) and read (fread) unformatted binary data to/from
files. Although the interface is different from POSIX I/O, its functionality is mainly the same.
Moreover, since the file system handles I/O through the POSIX I/O interface, ANSI C has
to implement I/O on top of the POSIX I/O interface. The main difference between the two
implementations is that ANSI C implements buffered I/O by allocating an additional memory
buffer for each file. This buffer is used for caching data of the I/O operations. The buffer size
is adapted to the block size of the file system. This optimizes especially long I/O sequences
of small data because data is aggregated in the buffer and the only I/O requests that arrive at
the file system are those aligned to the file system block size. In contrast to this, applications
that perform direct and random access to a file have to ensure that the data in the memory
cache is consistent when moving the file pointer to another position in the file. Here, ANSI C
provides the fflush routine for flushing the memory buffer. Another possible disadvantage of
the memory buffer is its size. Typical file system block sizes are large on parallel file systems
to ensure high I/O performance for large data I/O. For example, the scratch file system on
JUQUEEN, which is intended to store efficiently large data, has a block size of 4 MiB. The
memory requirement of an application can significantly grow with these additional buffers,
especially when the application is simultaneously managing multiple files.

Similar to ANSI C, C++ implements a set of I/O streams in object-orientated classes which
are typically buffered. The language bindings for the Fortran unformatted I/O differ, since the
binary data representation in the output file has an internal record structure. Consequently,
Fortran inserts additional descriptive data around the data of a write call. This allows Fortran
to move easily from record to record in a file without reading all data. Both language bindings
(for C++ and Fortran) are typically realized on top of the POSIX I/O layer.

1.3.2 Checkpointing with task-local I/O

In large-scale simulations application-level checkpointing is an indispensable technique for
preventing data loss in case of system or program failures [17]. In this sense, applications
have to regularly write the current state of the simulation to storage, from which the state can
be recovered after a potential simulation abort. As explained in Section 1.2.1, the file size of
checkpoint files can be in the order of the overall memory size of the application nodes. Due to
the high demands that checkpointing imposes on the I/O infrastructure, application must use
parallel I/O to benefit from the capabilities of a parallel file system. It is typical that check-
pointing does not require a change in the local representation of simulation data in local mem-
ory to a global representation in the checkpoint file. The data represents the application state
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… T1 TnT2

./checkpoint/file_t01.0001
…

./checkpoint/file_t01.nnnn

…

…

Figure 1.7: Example of checkpointing to task-local files from a parallel application. The I/O
is embarrassingly parallel, because all tasks perform individual I/O operations.

at a certain simulation time, and it is intended only for restarting the application after a failure
and for rolling back to the corresponding simulation state. The application state typically de-
pends on the size of the simulation (e.g. number of tasks). In case of failure, the simulation
is restarted with the same number of tasks. A conversion of data to a global representation, as
depicted in Figure 1.4 on page 9, would lead only to an additional overhead of write and read
time. Additionally, the probability of failure is very low on contemporary large-scale systems
(e.g. BG/Q) . Therefore, checkpointing read operations are very seldom performed, and it is
acceptable to rearrange the checkpointing data when a simulation is restarted with a different
application size.

An important feature of checkpointing is that data describing a simulation state have to be
dumped as quickly as possible into storage. As a consequence, application programmers often
use parallel task-local I/O, which is easy to implement and promises a high I/O bandwidth –
thanks to its embarrassingly parallel programming scheme. As illustrated in Figure 1.7, at a
checkpoint the application creates a number of individual files, each containing the data from
one task. Checkpoint files are often organized into directories, each containing the data from
one checkpoint. Moreover, not all checkpoints are retained. A common and minimal scheme
is to remove a previously written checkpoint after having successfully written the current one.
That means that disk space for at least two checkpoints must be available. Schemes that
are more sophisticated implement multi-level checkpointing, which manages different storage
classes level to store checkpoint files: checkpoints are written at high frequency to fast, op-
tionally local and less reliable storage. At lower frequency, checkpoint files are migrated to
slower but more reliable storage systems. Examples of software implementing these schemes
are SCR [73] and FTI [4]. The deployment of local storage has some implications. One of
which is that file systems are local and do not provide a global name space. In this case,
applications or underlying I/O libraries also have to manage the location of a checkpoint file
as additional metadata. There are two ongoing projects at JSC which deploy local storage on
HPC systems: in the EU project Deep-er [88] local storage will be integrated into the HPC file
system structure with the help of the Fraunhofer parallel file system BeeGFS [28]. In the other
project, local storage is deployed on the Blue Gene/Q system JUQUEEN at JSC. This Blue
Gene Active Storage (BGAS) not only provides fast local storage to Blue Gene I/O nodes, it
also provides local computing capability on the I/O nodes to work actively on locally stored
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data [18]. The optimization techniques for parallel task-local I/O, which are described in in
this dissertation, are to be tested and verified in both projects.

A positive side effect of checkpointing is that the checkpoint files can also be used as regular
restart files of applications, particularly if the simulation has to be performed in multiple sub-
sequent compute jobs because the overall computation time is longer than the maximum wall
clock limit of compute jobs on an HPC system. For example, jobs on JUQUEEN are limited
to 24 hours. Long-running simulations have to be split into multiple 24h-jobs, whereas each
subsequent job has to be started with the last system state of the previous job. Therefore, in this
case, restart files are kept after the successful end of a compute job, in contrast to checkpoint
files.

An example of checkpointing in an application will be discussed in Section 4.4.1, In this
section the application state of MP2C, a simulation code for Massively Parallel Multi-Particle
Collision Dynamics, is mainly defined by positions and velocities of the simulated particles.
The overall number of particles can grow in large simulations with this code on the order of
billions, which leads to multi-TiB checkpoint files.

1.3.3 Performance-tools using task-local I/O

The second use case for parallel task-local I/O is not directly driven by application require-
ments: besides application checkpointing, high scalable tools may also deal with task-local
data. As an example, we will discuss the I/O requirements of the Scalasca toolset [36]. The
open-source toolset Scalasca analyzes parallel applications in order to find possible perfor-
mance limitations and to identify opportunities for optimization. Scalasca can work in two
different measurement modes. In the profiling measurement, Scalasca collects performance
information during runtime, this includes execution times of application functions and the time
spent in calculation or communication. In this way, it provides a performance profile of the
program execution. In measurement mode, Scalasca records event traces during runtime and
analyses these afterwards in a separate step with a parallel trace analyzer program. Events
are captured when a process enters or exits a program function or a code region or when
communication with other processes is triggered. The event trace measurement allows the
identification of wait states in a program that occur as a result of unevenly distributed work-
loads. Furthermore, this measurement also allows the identification of critical paths and root
causes of such wait states automatically [9]. The event traces are collected on each process
and have to be stored on disk in temporary files. Due to a potentially high number of events,
this measurement can generate a high I/O load during the measurement and the analyzer step.

Technically, Scalasca instruments the parallel application and stores the recorded events in
a memory-based collection buffer during runtime. The content of these task-local buffers is
written at the end of the measurement to task-local files. As memory is limited, the collec-
tion buffer has a limited size and can only store a certain number of event records. However,
the overall number of events that have to be recorded on one task is not limited. Therefore,
Scalasca has implemented so-called intermediate flushes, which empty the buffers directly to
file as soon as they are full. This increases the complexity of the I/O pattern as write operations
can happen randomly and are not coordinated among the tasks during runtime. Following the
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Figure 1.8: The parallel trace analysis in Scalasca consists of two steps. The first step runs the
application and creates a local event trace file for each application task or thread. These files
are read again in the second step into the parallel trace analyzer tool.

work flow depicted in Figure 1.8, the traces are loaded postmortem into the distributed memory
of a parallel trace analyzer program. The trace analysis is available for MPI applications and
for the hybrid MPI/OpenMP programming model. Similar to MPI tasks, OpenMP threads per-
form the event trace collection individually. Therefore, task-local trace files are generated for
each OpenMP thread. In general, the number of these trace files is not limited and not known
in advance as OpenMP threads can be generated dynamically during runtime (e.g. OpenMP
nesting). However, Scalasca assumes a fix number of OpenMP threads per task. Although the
completion of trace analyses for applications running on up to 64 K cores has already been
demonstrated [36, 72], a notable bottleneck was found in the initial version of Scalasca during
the experiment activation (i.e., creating the trace files and initializing the tracing library), as
one would expect.

The newest generation of Scalasca (2.x) has been structurally changed [96]: the components,
which instrument the parallel application and collect the event traces, are functionally replaced
by components of the Score-P instrumentation and measurement infrastructure [59]. Similar
to the first version of Scalasca, Score-P produces trace data for each task or thread of a parallel
application. The data will be stored in the Open Trace Format 2 (OTF2), where the Score-P
infrastructure uses an abstract I/O layer (substrates) for the I/O operations. Score-P supports
not only Scalasca, but also works with the performance tools Periscope [37], Vampir [58] and
Tau [83].

1.4 Dynamic Linking and Loading

Dynamic linking has many advantages for managing large code bases. Splitting a monolithic
executable into many dynamically shared object files (i) decreases the compile time for large
codes, (ii) reduces runtime memory requirements by allowing modules to be loaded and un-
loaded as needed, and (iii) allows common libraries to be shared among many executables.
Dynamic libraries are often used in small and mid-size applications, such as software for
desktop systems. However, software complexity is increasing in high performance computing
(HPC) applications and dynamic linking and loading [62] also offers advantages for managing
this complexity.

Dynamic libraries allow large applications to be modularized, or split into independently built
packages. Modules can greatly reduce build time for developers, and each module can be
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loaded and unloaded dynamically at runtime as needed. This saves memory and frees devel-
opers from the burden of maintaining multiple pre-configured builds of large applications.
Furthermore, dynamic loading is used extensively by dynamic languages such as Python.
High-level abstractions in these languages enable the rapid development of new plugins and
packages, and they reduce software complexity for application programmers. These features
are increasingly used to manage complexity in large, multi-physics simulation codes, which
may have millions of lines of code and thousands of runtime configurable parameters.

Dynamic linking and loading first appeared in the MULTICS [22] operating system (OS) in
1964 as a way to share common code between processes. For this reason, dynamically linked
libraries are often called shared libraries, and any object that can be linked and loaded by the
dynamic loader is called a Dynamic Shared Object (DSO).

1.4.1 Dynamic shared objects

DSOs are stand-alone containers for compiled code and program data. DSOs are linked and
loaded at start-up time or at runtime to the program. The data format for storing DSOs and
executable files on Unix-like systems is the Executable and Linkable Format (ELF) [20, 90].
DSOs are independent objects and have to be able to be placed at any desired position in the
address space of a process (relocatable). This means that absolute references to memory po-
sitions of library symbols have to be re-computed after the object is placed into memory. To
avoid this, a compiler can directly create Position-Independent Code (PIC), which uses only
relative memory address references. With this independence from a location in address space,
DSOs can be linked against different executables without re-compilation. In addition, running
multiple instances of a dynamically linked program on a shared-memory system avoids multi-
ple instances of the dependent DSOs in memory. This is possible because the read-only parts
of the DSO (e.g. code section) can be shared.

ELF objects are structured in sections that describe different code components (cf. Figure 1.9).
Sections are available, for example, to store code, data, or symbol tables. The symbol table

DSO: my_lib.so

.dynamic:
DT_RPATH= …
DT_NEEDED=

.text:
…

.data:
…

…

…
DSO: lib_a.so

.dynamic:

.text:

.data:
…

…

 lib_a
 lib_b

DSO: lib_b.so

.dynamic:
DT_RPATH= …
DT_NEEDED=

.text:
…

.data:
…

…

…

 lib_u DSO: lib_u.so

.dynamic:

.text:

.data:
…

…

my_app.rts

.dynamic:
DT_RPATH= …
DT_NEEDED=

.text:    …

.data:    …

…

…
.header:

.interp:    …

my_lib

Figure 1.9: DSO structure and dependencies. A DSO in ELF are structured in different sec-
tions. References to code in other libraries lead to dependencies between DSOs, which are
stored in the .dynamic section.
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contains references to function or data objects which are accessible from outside the DSO.
The dynamic loader will use these tables to combine code sections from different DSOs to
create executable code.

Libraries can contain references to codes from other libraries. These libraries have to be loaded
and added to the executable in the address space in order to resolve all references. The library
names are stored in the attribute DT NEEDED of the section .dynamic. This section also stores
a number of other attributes which are required for dynamic loading. One example is the
DT RPATH attribute, which contains search path information for locating the related libraries.

1.4.2 The dynamic loader

The dynamic loader, also called the dynamic linker, is responsible for locating object code and
making it available within a process’s address space. These actions make the object code’s
subroutines callable by the main program. Most HPC systems, including Linux clusters, IBM
Blue Gene, and Cray machines, use the dynamic loader implementation from GNU’s libc. This
loader is based on standards detailed in the System V Application Binary Interface (ABI) [90].

The dynamic loader is implemented as a DSO that is loaded by the OS during process start-up.
A reference to the loader is stored in the interp-section of the dynamically linked application.
At startup time the OS examines this section and gives control to the specified loader, which
then loads the main executable’s dependent libraries and transfers control to the executable’s
entry point. Figure 1.10 depicts this procedure: the dynamic loader parses the dynamic section
of the dynamically linked executable for DT NEEDED entries. For each of these entries the
loader will search within a set of locations for a library file with a specified file name. When
found the file will be read into memory and inserted into the address space of the process. This
procedure will be repeated for each entry in this DSO and in subsequently loaded DSOs.

During the load procedure, the dynamic loader performs two types of file-system operations:
query operations to locate a DSO and read operations to load its contents into memory. Locat-
ing a DSO is necessary because an executable does not specify its dependent libraries with full
path information. Instead, the executable provides only the names of the required libraries. To
load a particular library, the dynamic loader searches for files by name in system locations
(e.g., /lib), directories named in the executable (rpaths), or directories named in environment

dynamic loaderDT_NEED:

…
address space

Process… > Scan (lib A)

> Read (lib A)

locations

lib B

Section <>: 

…

lib A
lib A1.

2.
3.

4.

Figure 1.10: Load process of dynamically linked executables. During startup of the executa-
bles, the dynamic loader searches in a list of locations for the required libraries.
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variables such as LD LIBRARY PATH. The GNU implementation tests for existence by append-
ing the name to each directory and calling the POSIX open function for the resulting path.
This look-up protocol is not scalable because the search operations are repeated for each li-
brary and for each process of a parallel application.

The second type of file-system operation is loading the library file into memory. Similar to
the first type of interaction, POSIX I/O calls are used to perform the read operation. Once
a library has been located, the dynamic loader maps it into memory. Each library contains a
table of program headers that describe which parts of the library on disk should be mapped
into memory. Typically, its code and data are mapped into memory while its debug and linking
information are not. Unfortunately, the loading protocol is – similar to the look-up protocol –
not scalable. The GNU loader uses open and read system calls to access the program headers,
then the mmap system call to load the bulk of the library into memory.

The executable may re-invoke routines in the dynamic loader to resolve symbols or to load
new DSOs during runtime (via routines such as dlopen). Typical use cases are applications
that have a script-based driver environment. Section 1.4.5 will discuss this use case in more
detail.

1.4.3 Optimization of symbol binding

Position-independent DSOs (e.g. PIC) have more flexibility in terms of re-use. The downside
of this characteristic is that symbol binding has to be done by the dynamic loader at runtime
and not the dynamic linker at compile time. Binding of symbols is required to ensure that
references to external objects are resolved. Examples for such external references are calls to
functions that are stored in other DSOs. The symbol binding has to be done at each program
loading and in a parallel application within each parallel process. On the other hand, symbols
in statically linked programs are bound only once at link time.

Before binding a symbol to a memory address, the loader has to look up the symbol in spe-
cial tables, which are generated during the load process from information of already loaded
DSOs. Performing this operation for each symbol would be too costly, especially since in typ-
ical programs only a part of the functions of a DSO are referenced. The ELF format and the
GNU loader implement for this lazy binding as an optimization of the load process (described
in [5]): symbols are resolved the first time they are referenced at runtime.

Figure 1.11 illustrates the implementation of the technique with the help of two additional
sections in the DSO: the Procedure Linkage Table (PLT) and the Global Offset Table (GOT).
The first data structure, the PLT, is a list of short code fragments that are needed to perform
lazy binding. Calls to external functions are directed to these entries. The first instruction of
the PLT entry is to jump directly to an address that is stored in the corresponding entry of the
second data structure, the GOT, which contains absolute addresses of external functions in the
process address space. At initialization time, the external symbols are not resolved. Instead,
the entries in the GOT contain an address that points back to the second instruction of the
corresponding code fragment in the PLT. The following code of the fragment executes a look-
up procedure for the symbol and replaces the GOT entry with the real address of the called
function in the process address space. After this lazy binding, following calls to an external
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Figure 1.11: Lazy binding optimization of dynamically loaded code. The symbol location in
process address space is resolved the first time the process execution reaches references to that
symbol in the code.

function will jump directly to the real address of the function. The look-up procedure is part
of the dynamic loader and will be called only once for each symbol with this method.

The lazy binding optimization reduces the number of look-up requests to the number of func-
tion calls that are really needed. However, the look-up requests are shifted from initialization
to process execution and can therefore produce disturbing noise in the application. Overall,
this optimization is needed for efficient execution of dynamically linked programs, especially
for parallel applications. The GNU linker enables the lazy binding technique by default.

It is remarkable that only the global offset table has to be stored in a segment with read/write
access rights. The code section and the PLT do not change during this load process and can
therefore be stored in a read-only segment.

1.4.4 Dynamic linking and loading in parallel applications

Processes of parallel applications, which follow the SPMD scheme, execute the same code on
each process and only one executable is used. As the required DSOs are listed as DT NEEDED
entries in the dynamic section of the same executable, the sequence of load requests of the pro-
cesses is identical. This results in identical sets of DSOs as depicted in Figure 1.12a.

Large simulation codes sometimes do not follow a pure SPMD scheme. Instead, they consist
of multiple partitions, each dedicated to one part of the simulation. The simulation of coupled
models is an example of a setup that follows the MPMD scheme. The number of partitions
is small compared to the number of processes in the parallel application and because multiple
processes are running the same executable, the sequence of load requests and the set of DSOs
are identical. However, processes running different executables may have different sets of
DSOs and load orders of DSOs, as demonstrated in Figure 1.12b.

The load sequences of DSOs are not only similar for all processes; they are also concentrated
to a short time interval: most load requests occur at program start-up. The load operations are
performed concurrently on all tasks, but they are not synchronized. Because of the missing
synchronization, the start time of library load operations can vary among the processes as
indicated in both cases in Figure 1.12.

The dynamic loader is not aware of the parallel nature of the underlying application. The
loader operates in serial for each process and cannot take advantage of the parallel nature of
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Figure 1.12: Library load sequences of parallel programs. Setups in SPMD scheme issue
library loads in the same order on all tasks. Setups in MPMD schemes typically consist of
multiple SPMD blocks that each locally loads the same set of libraries in the same order.

the application. Therefore, each task will execute the previously described search and look-up
operations in the same execution order in parallel. This disadvantage will be discussed in more
detail in Section 2.3.1.

1.4.5 Dynamic loading at runtime and within scripting languages

As described in the previous sections, the dynamic loader supports dynamically linked pro-
grams where DSO dependencies are evaluated and where DSOs are loaded at program start.
Furthermore, the dynamic loader also supports library loading at runtime. To interact with the
dynamic loader from a user program, the application programmer has to insert special system
calls like dlopen. The user program passes a library name and load options to the dlopen call.
The function returns a handle for the specified library. Afterwards, functions of the library can
be called directly via this library handle. Applications use this feature in order to determine
which auxiliary library has to be loaded at runtime according to the configuration options in
the input file.

Furthermore, dynamic loading at runtime is also used extensively by dynamic languages such
as Python. Scripts in interpreted languages run often as driver scripts of applications as these
are easier to manage and to configure than input files of compiled programs. Computation
intensive parts of the application are typically written in languages like C or C++, stored in
external core libraries, and included at runtime via dlopen. Script-driven applications allow
easy configuration and programming of application workflows in combination with efficiently
implemented compute kernels in core libraries.

In script environments like Python, it is characteristic that not only libraries are searched and
loaded during runtime. In Python libraries are integrated within functional modules, whereas
files containing the byte-compiled Python code of these modules also have to be searched
and read. Read operation of such files can occur more often than read operations of shared
libraries. Similar to the dynamic loader, the files are read from each Python driver process
individually.
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The characteristic that load sequences of libraries are similar on all processes and are concen-
trated to short time interval can only be assumed at program startup and not during runtime.
For example, dlopen may only be used on a subset of application processes and these pro-
cesses can load different sets of libraries. These choices are determined by input configurations
or intermediate results of computation. The load operations may also not concentrated on a
short time interval because even if all processes load the same DSOs via dlopen, the load
operations may not start at the same time or in the same order.

1.5 Contribution of this Thesis

Common use cases of parallel task-local I/O are application checkpointing and the non-volatile
storage of temporary data in tools and applications during the runtime of a job. Both require
a high I/O bandwidth from the parallel file system, because the size of the data is often on
the order of the size of the available memory. Particularly at large scales, the performance of
traditional parallel task-local I/O is limited. As we will discuss in Chapter 2, this limitation is
mainly caused by metadata handling which can result in the creation of tens of thousands of
files in a directory. Bottlenecks can originate from the serial nature of the POSIX I/O interface,
which ignores the parallelism of the I/O operation and passes the burden of metadata handling
onto the file system. Additionally, POSIX I/O is ultimately a limiting factor when starting
parallel applications, which are dynamically linked and which add additional binary library
data to the process during startup or runtime. The dynamic loader is designed as a serial tool
and uses POSIX I/O internally for file access. Therefore, in this way it does not exploit the
parallelism of the loaded applications.

POSIX I/O, is provided by the file system as the general interface to interact with the operating
systems and applications. The interface has a long history. Enhancements to this interface
require a long time to be implemented and manifested. However, the increasing size of parallel
applications and the underlying parallel HPC systems, requires a modernization of the POSIX
I/O interface, at least for the previously described use cases. The main goals of such an
enhancement are (i) to provide high I/O bandwidths at large scale and (ii) to simultaneously
limit the metadata management overhead for applications and tools, which perform task-local
I/O operations at large scale. To accomplish these goals, a solution should exploit application
and HPC parallelism for task-local I/O operations. Such a solution should operate in user-
space without modification of the runtime and file system. The solution should leave the task-
local file I/O strategy unmodified and it should be scalable, both in terms of I/O bandwidth
and metadata overhead.

This dissertation introduces two new approaches that fulfill the above-mentioned objectives.
These approaches are implemented in the parallel I/O library SIONlib and with the tool Spin-
dle, which supports the efficient loading of dynamically linked executables at large scale.

The main issue of traditional parallel task-local I/O is the generation of a large number of
individual files, which causes overhead in file creation and management. The first major con-
tribution of this dissertation, the parallel I/O Library SIONlib, replaces the individual files by
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a small number of shared files preventing such overhead. Application tasks are assigned one
or more chunks of these shared files, to which the task has exclusive access. This approach
leaves the task-local file I/O strategy of applications unchanged. Furthermore, SIONlib uses
the communication layer of the application to aggregate and distribute metadata among the
tasks, which guarantees scalability to the size of the simulation. Efficiency is further improved
by exploiting the I/O infrastructure and file-system properties, for example, to align data or
to organize I/O aggregation according to the hierarchy of the I/O infrastructure. However,
metadata performance in shared file I/O also suffers at very large scale (more than 64k tasks).
Therefore, SIONlib can also use multiple files to build a virtual shared file. This strategy par-
allelizes metadata handling, because the physical files are handled by different components
of the file system. As a result, the techniques, which are presented in this dissertation and
implemented into SIONlib, enable applications to perform parallel task-local I/O on shared
files with comparable I/O bandwidths and considerably less metadata overhead. For example,
as described in Section 4.4.1, SIONlib improves I/O efficiency of the application MP2C. Now
it can scale to the full BG/Q JUQUEEN system, running with 1.8 million tasks and writing
checkpoint files of several TiB with more than 50 % of file-system peak.

The second major contribution is the efficient support of the dynamic loading of parallel ap-
plications. The approach, which will be presented in this thesis, consists of three main tech-
niques, (i) the interception of the dynamic loader, (ii) the distributed caching of load-path
information and the library data, and (iii) the deployment of an overlay network to connect the
distributed cache servers. All these components are running in user space. Modifications to
the runtime system and to the applications are not necessary. For example, the standard GNU
Linux loader provides a user-space interception technique, which allows Spindle to monitor
library load requests and to modify the results of look-up operations. The distributed cache
buffers the results of library look-up operations and thus prevents multiple similar accesses to
the file system. In addition, with the help of the overlay network library data is transferred to
a location near the process that needs it. Taken these techniques reduce the number of file-
system operations for loading a parallel, dynamically linked application to those needed to
load a single program instance; the dynamic loading overhead remains constant.

Both, SIONlib and Spindle represent transient solutions that implement approaches which
even demonstrate their efficiency at scale. They should, therefore, be adopted in the next
generation of large-scale runtime and file systems.

The dissertation is organized as follows. After the introduction of both, parallel task-local I/O
and dynamic loading in Chapter 1, Chapter 2 discusses the limitations of these techniques at
large scale and the root causes of these limitations. Chapter 3 presents the design of SIONlib,
which implements the approach of improved parallel task-local I/O. Next, Chapter 4 shows the
results of evaluating these techniques with artificial I/O workloads as well as with real-world
applications. Chapter 5 presents the design of Spindle, an approach designed to aggressively
cache library look-up and load operations. Spindle performance is then evaluated on two
different platforms in Chapter 6. Finally, Chapter 7 gives a concluding summary of the disser-
tation and provides an outlook for future research based on both SIONlib and Spindle.
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2 I/O Limitations at Large Scale

With the increasing number of tasks of parallel applications, the efficiency of application I/O
becomes more crucial. Similar to the parallelization of the computational part of the appli-
cation with programming models like MPI and OpenMP, the I/O of the application has also
to be parallelized. Common tools for this are, parallel I/O libraries like MPI I/O, pNetCDF,
or parallel HDF5 on a higher, application oriented abstraction level, whereas task-local I/O
patterns are typically realized with native POSIX I/O operations on a lower file-system ori-
ented abstraction level (cf. Figure 1.5 on page 11). As already described, this work focuses
on task-local I/O patterns that are given by I/O operations to individual files of parallel ap-
plications and dynamic loading of library data for starting parallel applications. Both patterns
have scalability issues at larger scale. This chapter discusses the limiting factors, which hinder
applications with such I/O patterns to scale to very large number of tasks. The limitations are
addressed by I/O strategies that are designed in this work and which are implemented in two
tools SIONlib and Spindle. In the following, an abstract model for parallel I/O data flow on
complex I/O infrastructures is introduced, which helps to explain the limitation of the different
types of parallel task-local I/O and dynamic loading patterns.

2.1 Schematic View of the Parallel I/O Data Flow

The objective of I/O is to move data between different storage resources. In the simplest case,
data is moved by an I/O call from a location in the local memory of a compute node to a file
on a local disk. In systems, which are more complex and support I/O from multiple compute
nodes, the data will be moved in a number of steps from a compute node’s memory to a disk
of a shared parallel file system.

Figure 2.1 shows a simple model of an abstract I/O node, which represents one processing
step in the data flow from compute node to the file system. In addition to the input and output
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Figure 2.1: Abstract model of a simple I/O infrastructure.
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streams, an abstract I/O node has also memory buffers for incoming and outgoing data. With
the use of these buffers, I/O-operations of the application can be asynchronous to the disk
I/O, because data is written to the memory buffer first and transferred to disk later in time.
The I/O handling within a compute node is similar. Therefore it can be modeled also with
this abstraction. The Unix kernel will process the data, which is handed over by system calls
from the application. The data itself is stored in application memory or in system memory
(cf. Figure 2.2). GPFS starts an own client daemon and allocates a page pool in memory to
maintain file system operations. The page pool is used for managing file-system pages, which
are read or modified by client processes. In contrast, Lustre uses the system I/O memory
caches to store data, which have to be transferred between compute nodes and file system.

Further, the model can be applied also to the file system. A file system consists typically of
multiple server nodes, which are connected to the file system client daemons on compute- or
I/O-nodes. The server nodes manage also the file system disk storage, which is attached to
these nodes. In principle, the server has the same functionality as I/O nodes. The data will be
transferred between disks and connected client nodes, using an internal memory buffer.

The data transfer in parallel I/O can be modeled by a network of these abstract I/O components.
This network will contain compute nodes, I/O forwarding nodes, and file-system nodes as
depicted in Figure 2.2. Typically, the number of components will decrease on the way from
application to file-system disk. Multiple incoming I/O streams will be serialized to a smaller
number of outgoing I/O streams. Those points in the network are therefore typical bottlenecks
at large scale.

Metadata plays a special role in this model: Depending on the underlying file system, meta-
data will be handled either together with the file data or it will be handled on separate servers.
In the first case, the network can also reflect these operations. In the second case, additional
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servers and meta-data storage have to be added to the network as new abstract I/O nodes. For
example, GPFS has its own meta-data server with own disk storage, but meta-data will be
handled directly by the client daemons itself (cf. Figure 2.3).

2.2 Scalability of Parallel Task-Local I/O

The main reason to use task-local I/O in parallel applications is that the I/O can be easily
implemented by using built-in function calls (e.g., with write/read-calls of POSIX, ANSI C,
or Fortran). No additional I/O libraries are needed. These I/O calls are serial and they are not
aware of the collective nature of application I/O. This leads to independent I/O streams, which
are characteristic for task-local I/O in that way that the I/O calls are not synchronized between
the tasks of a parallel application. Each I/O stream has one source (e.g., a process) and a
destination, which is the individual file on the file system. Therefore, in terms of parallelism,
task-local I/O can be seen as embarrassingly parallel.

On an ideal I/O infrastructure and file system, this approach should give the best performance,
since waiting time at synchronization points between I/O tasks will not occur. Depending on
the underlying I/O infrastructure, this type of I/O will give the best I/O throughput on a system.
However, the I/O throughput can be limited if the I/O infrastructure has nodes/hubs on which
multiple I/O streams are interleaved.

Another downside of the traditional parallel task-local I/O approach is the large number of
files. They can cause problems on the file system and are difficult to handle by users. The next
two sections will cover these aspects.

2.2.1 Parallel file creation

Trying to create tens of thousands of files simultaneously in the same directory may be se-
rialized on the metadata servers. For example, on the IBM Blue Gene/Q system JUQUEEN
described later in this document, the parallel creation of 1.8 million files in the same directory
will take about 13 minutes. In general, parallel file systems handle metadata in a different way
than the file data itself. Two types of metadata have to be considered for file creation: the
inode of the created file and the inode of the directory that contains the files. The first one is
not critical, because, the file inode is only accessed by the task that creates the file. In contrast,
the inode of the directory is shared by all tasks. The directory’s inode stores the pointers to
the inodes of files in this directory in a list data structure (cf. Figure 2.3a). Typically, the
inodes are stored on special metadata disks, and can therefore be seen as special file objects.
The file system has to serialize the access to these objects to ensure consistency (e.g. by file
locking). Depending on the file system, the management of the directory’s inode is done by
different components. Lustre has a special metadata server (MDS), which manages all inodes.
GPFS has implemented the delegation of the responsibility for the management of a file to
the first client that accesses an inode. As shown in Figure 2.3b, one of the GPFS clients has
control over the inode; all other clients have to contact this client to get access to the inode. In
addition, GPFS implements load balancing for directory inodes by distributing the inode over
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Figure 2.3: Schematic view of parallel file creation. Tasks creating a file have to add an entry
to the inode of the directory. As the directory inode exists only once, concurrent file creation
of multiple tasks has to be serialized. GPFS optimize metadata handling by delegating the
control over metadata to the first GPFS clients that opens a file.

multiple file-system blocks and distributing file entries across file-system blocks by comput-
ing hash values from the file name. This optimization allows moderate parallel access to the
inode, because the file-system blocks will be locked separately (GPFS FGDL, Fine Granular
Directory Locking).

Figure 2.4 shows the timings for parallel file creation on JUQUEEN in a directory on the
GPFS scratch file system (blue curve). The time for file creation scales approximately linearly
with the number tasks. The file creation rate (red curve) increases first from 1400 files/s to a
maximum 3800 files/s at 128k task. The rate decreases again to a value around 2200 files/s at
larger scale, which seems to remain constant up to the full system. A reason for the decrease
of the file creation rate can be that the parallelization strategy of GPFS FGDL scales only up
to certain number of tasks, which seems to be reached on the JUQUEEN file system at 128k
tasks.

The measurement results for file creation show impressively that task-local file I/O is not
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Figure 2.4: Parallel file creation in one directory of the GPFS scratch file system on the Blue
Gene/Q system JUQUEEN.
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applicable for massively parallel applications. When using this I/O pattern for output files, the
creation time has to be spent for each new set of files. Although checkpoint files can be reused
after creating it at program start, in general, massively parallel applications have to abandon
the traditional task-local file approach and need to implement parallel I/O to shared files.

A popular workaround for the parallel file creation issue is to pre-create a reasonable number
of sub-directories, and to distribute the files over those sub-directories. The inodes of the sub-
directories are then managed from multiple GPFS clients in parallel. In this case, the number
of directories should have the same order of magnitude as the number of tasks, to guaran-
tee low file creation overhead. However, at large scale, this technique only multiplies the
manageability issues of using task-local files as it increases the number of inodes needed for
directories and files. In addition, this workaround only shifts the problem to the parallel create-
operation of the sub-directories in the same parent directory. Albeit less expensive in terms of
compute time, creating the files beforehand is inconvenient and requires maintaining some of
the I/O functionality of an application separate from the main code. A script to generate the
files during a preceding serial job would have to know number, names, and locations of the
files, needing some form of agreement between the application and the script. Furthermore,
the large number of files and directories has to be handled in all following post-processing
steps of the simulation. These issues are described in the next section.

2.2.2 File management

Even with those workarounds described in the last sections, large numbers of files severely
complicate file management on different levels. For example, copying files to a tape archive
(e.g., during backup) may be significantly slowed down. Especially when archival requests
from different users are executed in an interleaved fashion, different files of the same directory
may end up on different tapes; making their later retrieval challenging or even impractical if
the tape cartridge has to be exchanged too often.

Merging all of the files into a single file during a post-processing step, for example, using the
tar command, also has disadvantages both in terms of the time needed to perform the opera-
tion and the at least temporary duplication of the required storage space. Not only access from
a parallel application to individual files, but also from serial tools will become a bottleneck
at large scale, as typical Unix-commands like ls or tar will process the files in a list-based
execution order. The large execution time, which is caused by metadata operations (e.g., file
open), will grow linearly with the number of files. This makes the administration of directories
with tens of thousands of entries without support for group operations and automated filtering
ineffective. Besides the high complexity of managing large numbers of files, large-scale file
operations can cause side effects including temporary service disruptions that are noticeable
by other users and that can jeopardize the stability of the overall system. To avoid such phe-
nomena, some environments impose limits on the total number of files a user or a group of
users can have, offering another good reason not to use one physical file per task.

In summary, the file management issues described in this section reveal another important
reason to abandon task-local I/O patterns. As a solution, these task-local I/O patterns have to
be replaced with shared-file I/O patterns.
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2.3 Scalability of Parallel Loading

As described in the introductory section 1.4, the demand of parallel applications for dynamic
linking and loading becomes more popular with increasing software complexity and the adop-
tion of new software concept like Python-script driven applications on parallel HPC systems.
Despite the described benefits, there are serious scalability problems with most modern load-
ing mechanisms. Dynamic linking defers the process of locating object code and resolving its
symbols to runtime. To load a library, most loaders first search in a list of file-system locations
until the target library is found, and then they load the library into memory. This mechanism
does not differ significantly from the method used by the MULTICS [22] operating system
that introduced dynamic linking in 1964.
While this load method is suitable for a single-node machine, it breaks down in parallel appli-
cations at larger scale. Applications may have over a 100,000 concurrent processes. Typically,
processes load the same libraries they depend on simultaneously, but not synchronously. In
addition, modern supercomputers typically lack node-local storage, and even large parallel file
systems cannot quickly service millions or billions of small, simultaneous I/O requests. As we
will see later in this section, loading an application initiates an I/O storm that may manifests
like a denial-of-service attack. Whereby the file system becomes unavailable and dependent
jobs idle until all requests are cleared. In the following sections, we will analyze that issue
in more detail and show examples for dynamic loading on large-scale systems like LLNL’s
Sierra cluster or the Blue Gene/Q system JUQUEEN at JSC.

2.3.1 Scaling issues

As described in the introduction, the GNU loader is part of process startup. Therefore, loading
is performed individually on each process of parallel applications. The loader uses the serial
POSIX I/O API to interact with the file system. That interaction consists of two types of
operations: Searching and loading the library files.

Library searching

The dynamic loader looks up libraries by searching a list of file-system locations. This list
of directories consists of system defaults and user-level environment settings (library search
paths). The latter one allows users to decide at runtime about libraries (late binding). In this
way, it supports a flexible user environment. By simply modifying the search path, users can
run the same executable with an updated or improved version of a library without recompiling
the application. The concept has remained largely unchanged since MULTICS. However, this
algorithm requires a large number of file-system operations, which are not a problem for a
sequential program running on a local file system. Typical runtime environments provide a
default list of search locations that consists of more than ten directories and each can contain
a large number of library files.
A parallel application with P processes, L library dependencies, and D directories in its search
path will perform

nsearch = O(PDL)
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file-system operations simply to locate shared libraries. The GNU loader uses the POSIX open

function to test the existence of files. On Linux clusters, this function will directly interact with
the file system. Hence, it will potentially cause a file-system storm at large-scale. Figure 2.5a
illustrates this for typical Linux clusters running Lustre or NFS based file systems: Each task
of a SMP node will issue the open call. The buffering mechanism of system software is able to
cache file data in local memory, but that is not the case for metadata. Typically, local memory
buffers do not store information about existence of a file in a directory (positive/negative look-
up). Therefore, the open request will be forwarded to the files system. In case of a Lustre file
system, all requests will arrive at the metadata server (MDS), which has to handle them. Then
the MDS has to send back the same number of responses to the clients.
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Figure 2.5: Schematic view of look-up and load operations for an library on a Linux cluster
with n nodes using a Lustre file system. The number of requests i per library file are shown
for each path (’/i’).

Library loading

Libraries are loaded by the GNU dynamic loader of each process individually. Consequently,
for parallel application with P processes and L library dependencies this will result in

nload = O(PL)

load operations during application start-up. Figure 2.5b depicts how these load requests are
handled on Linux clusters. The Lustre file system is able to use the page cache in local mem-
ory to buffer data from the file system. Therefore, an SMP-node will issue only one load
request if cache can be exploited. Overall, n load requests from n compute nodes will arrive
on each file-system server (OST) which holds data of this corresponding library file.

Caching on the local node is done through the operating-system page cache. The GNU loader
will first open the library file with the POSIX open call and afterwards map the contents of
the file into the process address space with the mmap function call. Memory access within the
address space of the library will cause only a load operation of the corresponding memory
page if it is not already available in the page cache. To be more precise, memory pages in
library sections, which are used in read-write mode (e.g., data sections), have to be duplicated,
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whereas pages in read-only sections can be referenced directly. This requires that the operating
system supports shared page access among the processes of a node.

With this optimization and the use of N nodes (P/N processes per node), the number of load
operation can be reduced to

nload,cache = O(NL)

operations. This improvement will not change the complexity of the application loading,
because the number of tasks per node is constant and small (e.g. <64) compared to the number
of nodes.

Nearly all major runtime environments in use today utilize these algorithms to locate and
to load executable code. Languages like Python and Java use search paths to find and to
load modules. Major OSs such as Mac OS X and Windows also use search paths in their
dynamic loaders. When run in parallel, these approaches produce O(PDL) search operations
and O(NL) load operations, which produce a high load on the file systems. The following
section will demonstrate the resulting scaling issue with experimental results.

2.3.2 Dynamic loading on a Linux cluster

To demonstrate the scaling issue of dynamic loading at large-scale, a parallel benchmark was
run on two different Linux clusters: Sierra at LLNL and JUROPA at JSC. The first cluster
Sierra is equipped with 1,856 compute nodes, each with 12 cores. Data is stored on an NFS
or on a Lustre file system. The test environment on the cluster will be illustrated in more
detail in Section 6.4. Figure 2.6 shows the results of scaling Pynamic, a benchmark that
stresses the dynamic loader (cf. Section 6.2). The benchmark loads in this test 495 libraries
with a total size of 1.1 GiB. In the first test, the benchmark loads the libraries from NFS. The
overall runtime increased rapidly, and this measurement had to be stopped at a small scale to
prevent an I/O storm that would affect other users on the system. This demonstrate the poor
parallel support of NFS. It makes dynamic loading impossible when using more than 5 % of
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objects, 215 utility libraries, 1.1 GiB library data).

36



2.3 Scalability of Parallel Loading

the system. This is noteworthy, because system files, including system libraries, are often
stored on a central NFS file system. The benchmarks on Sierra ran during production time
concurrently with other applications. Therefore, the tests were repeated multiple times and
the local memory caches for the file systems were reset before program execution. This gave
more reproducible results.

The second test was run with libraries stored in the Lustre file system. The results show a
more linear growth in the runtime. The tests were performed with up to 512 nodes (6,144
processes). In general, the parallel file system is better suited for this kind of file operation.
However, parallel HPC file systems are typically optimized for heavy write operations with
large files and data parallelism. Parallel read operations to small files and a high metadata rate
are not the typical file access pattern for which the file system is optimized. The measurements
show that using the Lustre file system can be a partial solution to the loading problem, but only
up to a moderate number of processes. The tests had to be stopped at 30 % of the system size
because the performance of the Lustre file system was already starting to degrade at this scale.
The improved scaling of the benchmark can be explained by the higher read bandwidth of
library data and the use of local memory by Lustre to cache and share the data. Similar to NFS,
the look-up requests are all sent to one metadata server (MDS) and are potentially a reason
for the exponential growth of the load time with an increasing number of tasks. To verify
that metadata operations occur in a high count during runtime, the benchmark program was
instrumented to count the number of corresponding system calls. For the above benchmark
run each task will issue about 5,671 open and stat system calls. Extrapolating this to the
total system size of Sierra (23,328 tasks), the number would increase to more than 130 million
system calls. Without optimization of metadata handling, such a high number of file-system
operations would overload the metadata server.

The results of the benchmark runs on the second Linux cluster JUROPA are shown in Fig-
ure 2.7. Meanwhile, the JUROPA system is replaced by its successor JURECA [54]. The
JUROPA system was equipped with 3288 compute nodes, each with 8 cores and 24 GiB mem-
ory [55]. In contrast to the Sierra cluster, all file systems of JUROPA were Lustre file systems,
including the home file system. All measurements were done within the production environ-
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ment of JUROPA. That implies that other applications were running parallel to the benchmark.
Measurements on shared resources like the parallel file system could be influenced by these
applications. Contrary to the first tests on the Sierra cluster, it was not possible to reset the
local memory caches of Lustre on the compute nodes. Therefore, in multiple similar tests on
the same nodes, subsequent runs will benefit from the local memory caches and will need less
time to load the libraries. The measurements were repeated at least three times and the best
value was reported. The caching on local nodes influences only the timings for data loading,
not the look-up timings, because the Lustre file system does no local caching of metadata. All
metadata requests are sent directly to the metadata server. On JUROPA, a self-written bench-
mark program (CLoadtest) was used for the measurement. The benchmark consists of a set
of dynamic libraries containing compiled C-code and a main program written in C that loads
the libraries at startup (cf. Section 6.1). The implementation of the main program is differ-
ent to Pynamic, which uses a Python script as a main driver program. Furthermore, dynamic
libraries are embedded in Python modules, which have to be loaded additionally.

As data caching on JUROPA could not be influenced, the tests were configured to focus on
metadata operations by increasing the number of look-up operations and decreasing the size
of libraries. This leads to a benchmark configuration of 710 dynamic libraries with 32 MiB
library data per task. Similar to Sierra, the test runs were stopped at a scale of 512 nodes (4096
tasks) to prevent an overload of the MDS. Up to this scale, the load time increases linearly with
the number of tasks. This indicates that metadata operations are serialized on the MDS.

Compared to the results on Sierra, the timings show no exponential behavior when scaling to
a larger number of tasks. The different configurations of the tests on Sierra (focus on data and
metadata) and JUROPA (focus only on metadata) indicate that the exponential contribution
might be caused by contention during parallel data loading and not by the look-up operations.

To summarize the results of these experiments, it can be concluded that the startup of dynam-
ically linked applications on Linux clusters does not scale to a large number of processes.
Furthermore, it exposes a fundamental scaling problem due to the serial behavior of the dy-
namic loader. Especially, optimizations of the look-up and the load procedure are required.
This optimization can be achieved by caching the metadata in local memory and the exploita-
tion of application parallelism. The next section will show an example of how I/O caching
strategies can help improve library look-up and loading on the hierarchical I/O infrastructure
of the Blue Gene system.

2.3.3 Dynamic loading on JUQUEEN

The Blue Gene/Q system JUQUEEN has a hierarchical I/O-infrastructure. I/O-requests from
the application are delegated to I/O-Nodes (IONs). The configuration of the BG/Q system
has an ION-to-compute node rate of 1:128 (production racks). This means that one ION has
to serve requests from 8192 MPI-tasks (pure-MPI, 4-way SMT) at most. The I/O nodes are
connected to the compute nodes via network links to the internal 5D-torus network and each
ION has network links to two different compute nodes, which are denoted as I/O-bridge nodes.
I/O traffic between the ION and the other 126 compute nodes is routed over these I/O-bridge
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Figure 2.8: Look-up and loading of libraries on a hierarchical I/O infrastructure (JUQUEEN).
The number of requests i per library file are shown for each path (’/i’).

nodes on a lower network layer. Similar to application I/O, the dynamic loader uses also the
I/O forwarding mechanism to search and load libraries.

Figure 2.8 schematically illustrates the look-up and search mechanism. Look-up requests for
files are processed by the GPFS client, which is running on the ION. In GPFS, information
about the contents of directories is stored in so-called directory blocks, which are handled by
GPFS in the same way as file-system blocks containing file data. This means that directory
information is stored locally in the GPFS page cache of the ION. The GPFS client will only
forward look-up requests for files in a directory when the corresponding directory pages are
not in the local cache. Otherwise, positive look-ups (file exists) and negative look-ups (file
does not exist) can both directly be answered by the local GPFS client without interacting
with file-system nodes. Metadata requests will therefore arrive at the file-system server only
once per ION. JUQUEEN consists of 28 racks and each rack is equipped with eight IONs.
This results in only 224 requests for a library directory in the case of full system runs.

On JUQUEEN, the same self-written benchmark program CLoadtest for dynamic loading
was used as on JUROPA. Figure 2.9 shows the results of runs up to the full system with this
benchmark. Again, a benchmark configuration of 710 dynamic libraries was selected, but with
a total library size of 400 MiB. This allows the program to run with up to 16 processes on a
compute node, which has a physical memory of 16 GiB. The measurements were done for
different job sizes, starting with one midplane (512 compute nodes) up to 28 racks (28.672
compute nodes, max. 458.752 cores). The diagram shows a slightly different behavior of load
timings compared to the Linux clusters: The timings for a fixed number of tasks per compute
node are nearly constant and independent of the total size of the job. The main reason for this
nearly constant load time over the whole system is the locality of I/O operations on the I/O
nodes. Only requests that occur for the first time on an ION are forwarded to the file system.
The number of I/O requests is an order of magnitude smaller than on the Linux clusters. At
this scale, the influence of serialization and contention at the file system’s metadata server is
very small. As already explained, GPFS uses a page pool in the local memory of the ION to
cache data-blocks for file and directory data. The size of this cache is about 8 GiB, which is
enough to host all library data in our test runs.
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Figure 2.9: Load times of a dynamically linked application on Blue Gene/Q system JUQUEEN
for different number of tasks per compute node and scaled up to full system size of 28 racks
using the GPFS scratch file system.

The number of tasks per compute node has a significant influence on the load time. The dy-
namic loader of each process on a compute node will read the library data from the ION,
regardless whether other processes have read the data already. In the test case with 16 tasks/n-
ode, this leads to nearly 800 GiB of library data, which has to be transferred by each ION to
the related compute nodes. With a maximum data transfer rate of about 4 GiB/s, this takes at
least 200 seconds. The limited data transfer rate from the IONs to the compute nodes is al-
ready saturated with two tasks per compute node. With higher numbers the load time increases
linearly with the number of tasks per node.

The redundant read operation on a compute node is unique for dynamic libraries. Statically
linked applications or the executable file of a dynamically linked program will be transferred
only once to the compute node. The application loader, a component of the Blue Gene runtime
system, is aware of application parallelism and uses this information to implement the data
transfer in two hierarchical steps. First, the executable data file will be read from the file
system and distributed to the compute nodes. Second, the application loader copies the file
into local memory in the address spaces of all local processes. These optimizations cannot be
applied to the dynamic loader because of its serial nature of library processing. The long load
time applies only to those applications that use a larger number of MPI-tasks on a compute
node. Through the introduction of hybrid models (MPI+OpenMP) for the parallelization of
applications, we see currently less often pure MPI codes that would suffer from the described
load delays. Hybrid programs start typically only one or two MPI tasks per compute node,
each running a number of OpenMP threads. Load times for such configurations are moderate
and comparable to loading of statically linked executables.

As already discussed, GPFS uses a special page pool in memory to cache file system data.
However, this cache is not used for system library files such as the libraries for the MPI runtime
environment. They are stored in an NFS-mounted file system. The typical size of loaded
system libraries in parallel applications is about 50 MiB. At large-scale the total amount of
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data transfers would jeopardize the NFS server, which we do not see in the measurements.
The reason is that also those libraries are cached in the file cache of the operating system on
the I/O nodes. With the use of both caches, the GPFS page pool and the NFS system cache,
I/O requests caused by system library loading are local to I/O nodes.

On Blue Gene systems without a GPFS file system, users often store library files on an NFS-
mounted file system (e.g. home directory). As a comparison to our previous measurements,
this situation was emulated on JUQUEEN by selecting an NFS-mounted system directory to
store library data, which is hosted by NFS daemons running on the BG/Q service node. As
this service node is only used by the Blue Gene system, the results are expected to be better
than loading data from a site-wide NFS-server. Figure 2.10 shows the results of running the
dynamic loader benchmark in the same configuration as the previous measurements with 710
libraries and a total size 400 MiB. On the NFS directory, the load time is no longer constant.
Instead, it increases with a growing number of tasks. The tests are stopped at a size of twelve
racks to prevent an overload of the Blue Gene server node. Furthermore, measurements with
the same number of compute nodes were performed in one job on the same partition. As a
result of this, the load time in the first test (one task/node) is higher than the ones of following
tests on same compute nodes. The additional time in the first test is spent to read the library
data from the NFS file system, whereas in subsequent runs the file data is already cached in the
local memory of the I/O node. The increasing load time in these tests indicates that look-up
requests in NFS directories are possible not cached in the I/O node. Moreover, an increasing
load on the NFS server was observed during the tests, which is another indicator that look-up
requests are not cached on the I/O node. Similar to our experiments on Linux-Clusters with
Lustre or NFS, the measurements demonstrate that dynamic loading does not scale on those
systems with an NFS file system, although a special hierarchical I/O infrastructure was used.

On the other hand, the hierarchical approach of the I/O infrastructure on Blue Gene presents,
together with GPFS caching, a system-level solution for dynamic libraries at large-scale by im-
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Figure 2.10: Load times of a dynamically linked application on Blue Gene/Q system
JUQUEEN for different number of tasks per compute node and scaled up to a size of
twelve racks using an NFS file system.
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plementing file and directory caching on I/O nodes. Especially the reduction of the number of
search and look-up requests issued to the file system is essential for dynamic loading at scale.

This chapter on I/O limitations at large scale demonstrates two different problems, which are
caused by the serial design of the underlying I/O functionality: First, parallel task-local I/O
suffers from the missing ability of the file system to exploit the knowledge about the parallel
nature of applications. Therefore, the file system cannot apply collective I/O processing tech-
niques to those applications. As a consequence, it has to act on a large number of files. On the
other hand, the dynamic loader works independently for each process of a parallel application
and interacts separately for each library file with the parallel file system. Similar to parallel
task-local I/O, the file system is not able to optimize this massive storm of I/O requests with
collective aggregation operations.

The next chapters will show with SIONlib and Spindle two solutions on application-near soft-
ware layers that apply such collective aggregations.
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This chapter introduces the parallel I/O library SIONlib, which is designed to support parallel
task-local I/O at large scale. The general idea behind the SIONlib approach is to use a shared
file instead of the individual files that parallel applications create when performing parallel
task-local I/O. As explained in the previous chapter, parallel task-local I/O has disadvantages
at large scale, which are mainly caused by the management of the large number of individual
files. Using a shared file as a container for these individual files avoids this metadata overhead.
Similar to the concepts of high-level parallel I/O libraries, the access to a shared file from
multiple tasks has to be organized in order to prevent data corruption and bottlenecks through
concurrent access.

First, we will discuss how task-local data can be mapped to a shared file and how such a file
container can be accessed from multiple tasks. Because of the potentially higher overhead
to manage the concurrent access to a shared file, optimization strategies have to be applied
to achieve similar I/O bandwidth as traditional parallel task-local I/O. The reasons for the
higher overhead and corresponding optimization strategies are discussed in the next section
about scalability of shared file I/O. This leads to the definition of the objectives of SIONlib
to optimize task-local I/O to shared files, which will be explained in the following sections,
including the detailed shared file structure, the design of the SIONlib API, and special features
for parallel performance tools that require parallel task-local I/O.

3.1 File Container for Task-Local Data

I/O to shared files is a well-known strategy in high-level parallel I/O libraries. These libraries
typically store data in its global view, as described in Section 1.2.2. The libraries require that
applications describe the structure and the distribution of data, so that the exact position of data
elements in the file can be derived. This generally predefines the file layout, which the libraries
have to follow (e.g., MPI I/O). High-level libraries using a self-describing format have more
freedom to define the file layout (e.g., chunking in HDF5). This is possible, because access to
a file is only allowed using the library and the mapping of data to file positions can be derived
from the metadata stored in the file. The situation is different for typical task-local I/O patterns
as illustrated in Figure 3.1a. These are often implement with POSIX I/O and have byte stream
character. The I/O layer is therefore not aware of the data structure and data distribution.
Furthermore, as data is seen as a stream of bytes, the size of data elements and their type is
also not known. Hence, the desired file format has to support task-local sequential access to
the data. In addition, the data has to be byte-addressable in the file to support seek operations.
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T1 TnT2
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File 1 File 2 File n

(a) Task-local I/O

T1 TnT2
…

…
Shared File

(b) Shared file I/O with file container

Figure 3.1: Transition to a shared file format. Traditional task-local I/O manages one individ-
ual file per task, whereas a file container reserves one chunk for each task.

Figure 3.1b demonstrates how file data within a file container can be organized. The container
reserves a chunk of the file for each task (chunk-based file format). At the beginning, the cur-
rent file pointer of a task will be set to the position before the first byte of the chunk, allowing
to perform the original write operations without change. The write operations advance the file
pointer within this chunk, which allows writing of data as long as it does not exceed the chunk
size. As the chunks are dedicated to a single task, such a file container can guarantee parallel
access without conflicts. However, this strategy introduces a new limitation to the application.
Whereas task-local files can grow as long as the file system allows this, the above container
format limits the size of the chunks. Tasks are not allowed to exceed the initial chunk size.
Otherwise, data of the following task will be overwritten, which corrupts the file. Furthermore,
each task has to specify the chunk size before the first task writes data to the file. The chunk
size has to remain unchanged until the file is closed. These restrictions allow an I/O library
to compute the start positions of each chunk after creating and opening the file. It also allows
that chunk sizes can vary across tasks.

A further issue of shared file structures is that the metadata information about the chunks has
to be stored in addition to the data. Otherwise, an application cannot read the data back again,
because it does not know offsets and sizes of the chunks. On a more abstract level, this means
that functionality of the file system (inode management of individual files) has to be moved to
functionality of the I/O library implementing parallel task-local I/O using shared file contain-
ers. Therefore, the file container can also be thought of an application-level virtual file system.

An alternative approach to map task-local I/O to a shared file is to interleave data from different
tasks (interleaved file format). The data blocks of the individual POSIX I/O write operations
would naturally determine the granularity of the interleaved segments. The data segments can
then be stored in write order, which gives the advantage that the amount of data need not be
specified beforehand. Furthermore, the size of task-local data remains unlimited, similar to I/O
on individual files. However, as multiple tasks accessing the file in a non-predictable order,
the write operations have to be synchronized among the tasks. A typical example for synchro-
nization is to select one task that manages the files, whereas all other tasks have to query file
positions for the next write operation from this task. At large scale, such task synchroniza-
tion will lead to limited scalability. In addition, this fine-grained interleaved storage scheme
requires storing additional metadata for each segment (e.g., origin and size). Furthermore, the
segments have to be linked with a pointer list to allow seek operations inside the data of a sin-
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gle task. This is similar to the Fortran record format. A third limiting factor for the scalability
of this method will be explained later in this chapter. Data to be written from different tasks
should be aligned to file-system blocks to prevent file cache invalidation cycles like the issue
of false sharing in the memory access of multi-threaded applications [10]. The limitations of
this alternative file format let not expect a good scalability at large scale. Therefore, only the
chunk-based file format with one chunk per task will be used in the following scalability study
and it is selected as the file format of SIONlib.

3.2 Scalability of Shared-File I/O

A shared file as a container for parallel task-local I/O solves the scalability issues of classi-
cal task-local I/O, as it reduces the metadata overhead of managing large numbers of files.
However, the concurrent access from a large number of tasks to a single shared file introduces
new scaling issues. These are caused, for example, by the limited scalability of the file-system
mechanism, which coordinates the shared file access among tasks. For this purpose file sys-
tems manage file locks, which guarantee that only one task at a time can obtain the right to
modify the file or a part of it. In addition, the metadata management of a shared file leads to
scalability limitations, because the file system manages now only one inode, which stores the
file metadata (e.g., the list of file blocks). Changes of this metadata from a large number of
tasks introduce a new bottleneck. We will discuss these issues in the following, especially for
the chunk-based file container scheme.

3.2.1 File locking (GPFS)

The POSIX standard requires that a file locking mechanism is available, which allows a pro-
gram to lock the whole file or a part of the file for one task before starting an I/O operation
on this file. This mechanism can grant exclusive locks, typically needed for write operations,
and shared locks, which multiple tasks can use for concurrent read operations. Depending
on the file system, one or more daemons are responsible for managing the locks. For exam-
ple, GPFS implements a distributed token management for file and byte-range locking. GPFS
clients, requesting a lock for a region in a file, have to request a token from the GPFS client
that owns a lock for a file region containing the requested region. The responsibility for the
requested region is then delegated to the requesting GPFS client. Depending on the imple-
mented strategy for shared file access, the number of requests and delegate operations will
grow with the number of tasks accessing the file. The number will increase linearly when
applying the chunk-based container scheme, as a task only has to request a lock once for its
chunk. The number of lock operations will grow much faster when applying the interleaving
strategy, where a task owns a large number of small segments within the file. However, both
strategies will lead to a possible bottleneck at large scale.

A strategy to avoid this bottleneck is the parallelization of the lock management, which can be
done on user level by partitioning the shared file into multiple physical files. File locking for
each physical file is independent from the file locking of the other files and has to scale only
to a limited number of tasks accessing this file. Therefore, this strategy is considered for the
design of SIONlib and will be described in Section 3.4.
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Furthermore, GPFS provides a special feature to push information about I/O access patterns
directly to the lock daemons of the file system (gpfs fcntl). This feature can be used for
optimizing file locking for the chunk-based file container format as it ensures that information
about position and size of the chunks is available at open time. As a result, no further request
and delegate operations are needed for file locking [46].

Alignment

Most of the components of a file system on the server and compute nodes have an internal
memory cache to buffer data that has to be written to disk or that was read from disk. In
case of write operations, data can reside in this memory buffer as long as the corresponding
client has a write lock on the data region in the file. This feature can be used to aggregate
the data of small write operations in the memory cache and send it to the file system later as
one big block. GPFS, for example, allocates a page cache as a memory buffer on each client,
which mirrors file-system blocks in local memory. Because such blocks can only be handled
in one piece, a GPFS client has to invalidate a full page in the memory cache when it has to
release a write lock on a region that overlaps with the data region of this page. To synchronize
page handling with the lock handling, GPFS restricts byte-range locking to the granularity of
file-system blocks.

The approach to dedicate a chunk of the file container to one task guarantees that tasks do
not concurrently access identical parts of a file. However, adjacent chunks may nonetheless
occupy parts of the same file-system block. With write locks being assigned at the granularity
level of file-system blocks, this may cause lock contention when writing to these chunks. The
situation is similar to the false sharing of cache lines in a multiprocessor. As depicted in
Figure 3.2a, the GPFS client of the second task has to wait until the GPFS client of the first
task has flushed the file-system block to disk and has released the corresponding write lock.
Subsequently, the second GPFS client gets the write lock and can read the file-system block
in its page cache to add data to it. Consequently, write accesses to the same file-system block
are serialized through this mechanism.

To avoid this limitation, the chunks have to be aligned with file-system block boundaries as
shown in Figure 3.2b. This guarantees that only one task accesses a file system block. The file-
system block can stay in the page cache as long as a caching algorithm does not purge it out.

FS Block FS Block FS Block 

data 
task 1

data 
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… …

lock

T1 T2

lock

…

(a) No alignment

FS Block FS Block FS Block 

… …

lock lock
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(b) Alignment to file-system blocks

Figure 3.2: No alignment of data to file-system blocks in a dense shared file leads to a serial-
ization of data access from multiple tasks, whereas the alignment of chunks supports parallel
access.
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Furthermore, due to these concepts, other tasks will not request write locks for this block and
a GPFS client does not have to release an existing write lock. This omits lock communication
between the clients and read-modify-write cycles on a client during write time. File-system
access to a shared file container with aligned chunks is therefore efficient. To verify this, we
will discuss the results of a measurement on JUQUEEN comparing I/O bandwidth of writing
and reading data to unaligned and aligned chunks in Section 4.2.3.

The Lustre file system handles the byte-range locking differently. It has no restriction on the
granularity of file-system blocks. On the other hand, caching of file data is done in the file-
system components with different granularity. The data blocks in the client memory cache
have the same size as the memory pages of the operating system, whereas on the server side
the file data is partitioned in file-system blocks of the underlying local file systems on the
OSTs. Furthermore, file data is distributed over the OSTs in portions of user-defined size
(stripe size). Especially with the latter partitioning, Lustre is able to delegate part of the file
metadata and lock management to individual OSTs. From this perspective, an alignment of
chunks to these blocks should result in good I/O performance.

3.2.2 Number of tasks per files

Running shared file I/O with a very large number of tasks introduces a new bottleneck in the
handling of file metadata, which is stored in the file inode. Similar to other file systems, GPFS
uses the inode structure and indirect blocks to manage the addresses of the file-system blocks
of a file. For small files, GPFS stores references to file-system blocks directly in the inode. As
files become larger, the space in the inode structure is exhausted and the pointers are stored in
additional blocks, the indirect blocks. In this case, the inode contains only references to the
indirect blocks, as indicated in Figure 3.3. The inode structure exists only once for a shared
file. This requires that the access to the inode and its indirect blocks from multiple clients has
to be coordinated with write locks.

GPFS optimizes the management of the inode structure by delegating the responsibility to the
first client that opens or creates a file. The corresponding GPFS daemon becomes the desig-
nated metadata manager of the file and owns the exclusive lock for the inode and the indirect
blocks [44]. All other clients that access the file will sent their update requests to this metadata
manager (e.g., to add new file-system blocks). As depicted in Figure 3.3, only the metadata
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Figure 3.3: GPFS inode handling of a shared file on a hierarchical I/O infrastructure. Refer-
ences to file-system blocks of a shared file are stored in the inode or in indirect blocks. In
GPFS, these data structures are managed by the first GPFS client that opens the file.
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manager has to communicate with the file system servers; all other clients communicate in-
ternally to this client and cause a cross-traffic between the I/O components of a HPC system
with their update requests.

In case of multiple (task-local) files, the delegation of metadata responsibility implements a
separation and parallelization of metadata handling, because potentially different GPFS clients
will handle the metadata of the files. This is a good strategy in the case of a file system with
multiple concurrently running applications performing I/O to individual files. However, it
does not help for a single application using shared-file I/O at large scale, as only one GPFS
client has to manage the update requests of the inode structure for all processes accessing the
shared file. Although the GPFS strategy of the distributed inode and lock management is faster
than traditional parallel access with explicit lock handling, it will become a bottleneck a larger
scale. This will be demonstrated in Section 4.2.4 with a measurement of shared file I/O on
JUQUEEN. It shows that the I/O write bandwidth to a single file is degraded using 32k tasks
or more.

The aforementioned strategy of GPFS to separate the metadata management for different files
is used as a motivation for SIONlib’s multi-file approach. Instead of writing to one physical
file, the logical file container is distributed over multiple physical files (cf. Figure 3.4). With
this optimization, the metadata handling will be parallelized over the GPFS clients that manage
the inodes of the physical files. This helps especially on a hierarchical I/O infrastructure like
the IBM BG/Q configuration to keep the metadata management local to one I/O-node and its
assigned application tasks. With such an optimized mapping of tasks to physical files, GPFS
clients need not communicate with each other to exchange metadata and no additional cross-
traffic between I/O-nodes is produced. This approach reduces the complexity of the metadata
management for the shared file container from a global problem size of all application tasks to
a local problem size, which is limited by the number of tasks per file or I/O node.

SIONlib’s multi-file approach with its separation of I/O handling improves the I/O perfor-
mance also for the Lustre file system. Lustre supports this with the distribution of files over
the OSTs. In Lustre, a file consists of a number of file chunks, which are stored on the local
file systems of the OSTs according to the selected file striping parameters. As they are nor-
mal files, they have their own inodes, which leads to local metadata management. Therefore,
a multi-file container should be distributed using one physical file per OST. However, this
cannot avoid the complete overhead because file locking and part of the metadata has to be
adjusted globally.
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Figure 3.4: GPFS inode handling for a shared multi-file on a hierarchical I/O infrastructure,
where each I/O-node manages its own physical file.
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The strategy to split a shared file into multiple physical files in the file system requires the
virtualization of these files on the software level. The mapping of tasks to chunks of the file
container has to be extended to map the task to the corresponding physical file also. This
increases the complexity of I/O management in the application or in the I/O-library. More
abstract, this reflects the general strategy of the shared file container to move functionality
from the file system to a higher software level to improve scalability.

3.2.3 Shared files and data size

In traditional parallel task-local I/O, only one task accesses an individual file. The application
typically appends data to the end of the files, so they grow simultaneously on the file system
with each write operation. In contrast, a shared file container stores a number of such linearly
growing chunks in a large collective file and reserves a pre-defined space in the shared file for
each task. The file container is therefore a sparse shared file, where the chunks of tasks can be
empty, partly filled, or completely filled (cf. Figure 3.1). The gaps between chunks can grow
further if these chunks are aligned to file-system block boundaries, as proposed in the previous
section.

The usual file system techniques to reduce wasting of disk space for small files cannot be
applied directly to such sparse shared files. For example, GPFS stores the data of very small
files directly in the inode structure instead of allocating a separate file-system block for it. The
size of files up to which this will be done depends on the file-system configuration and is set
for the scratch file system on JUST to 3968 bytes. Furthermore, GPFS manages sub-blocks,
which have a size of 1/32 of a file-system block. Files that are smaller than one file-system
block are stored in a fragment, which is built of one or more of these sub-blocks [46]. Since
file-system blocks on scratch file system are typically large (for example, 4 MiB on JUST),
the file system can preserve a large amount of space in the file system with these two tech-
niques. The total size of a sparse shared file typically exceeds these limits. Therefore, GPFS
cannot apply these optimization techniques to these files. Consequently, a file-system block is
allocated completely on disk, although only a small part of it is used for data storage.

The fragmentation of sparse files on disk can also influence the usage of the memory based
disk caches as depicted in Figure 3.5. For example, the page pool of GPFS is working with
pages of the same size as file-system blocks. Pages in this cache are directly mirrored from
the file-system blocks on disk. Furthermore, GPFS will only transfer complete pages to the
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Figure 3.5: GPFS page handling for sparse shared files in a system with a hierarchical I/O
infrastructure like JUQUEEN. On I/O nodes, file data is received in an incoming memory
buffer and transferred by the operating system and the GPFS client to the pages in the page
pool. File-system pages are transferred as full blocks to the file system, disregarding their
degree of filling.
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file system, when data has to be flushed out of the page pool. In this way, the number of file-
system blocks and not the amount of application data that is stored in the file-system blocks,
limits the data transfer bandwidth between I/O nodes and file system. Therefore, the efficiency
of parallel I/O using a shared file container depends on the efficiency of its internal alignment.
Best results can be expected, if the size of task local data is a multiple of the file system block
size, which guarantees completely filled blocks. The efficiency will be degraded, if the file
contains blocks that are nearly empty or only partly filled. The percentage of these blocks
decreases reciprocally with the application data size. This means that applications with large
task-local data will not suffer from this fragmentation.
In contrast, applications with small task-local data will suffer from the shared file container
approach and therefore need further optimization. The container would be denser if the align-
ment of task-local data was abandoned. However, as discussed previously, in this case file lock
handling would lead to a serialization of I/O operations of different processes when accessing
the same file-system block. The second possibility is to reduce the number of tasks writing to
the file, which would directly reduce the number of alignment points in the file. Consequently,
file fragmentation would be reduced. Again, this optimization requires more functionality on
application or I/O-library level, because data first has to be aggregated on a number of collec-
tor tasks and secondary has to be written representatively for the other tasks into the file. The
number of the collector tasks influences the efficiency and is – together with the number of
tasks and the data size – an input factor for the calculation of the trade-off between I/O per-
formance optimization and disk space optimization. This two-step I/O method is considered
in the SIONlib approach for coalescing I/O to optimize parallel task-local I/O with small data
chunks at large scale (cf. Section 3.8). The results of comparative measurements of coalescing
I/O with different configurations are discussed in Section 4.2.6 of the next chapter Evaluation
of SIONlib.
Furthermore, the size of the file container can be another issue. When each task is writing a
large amount of data, a shared file will have the aggregated size and can exceed the system
or site limits for file sizes. In this case, SIONlib’s multi-file approach provides a mechanism
to limit the size of the individual physical files without limiting the overall size of the virtual
shared file.
A restriction of old file-system implementations is that files may not exceed a size of 2 GiB.
Data structures in the file system that use 32-bit integer variables to store file offsets or size
information (e.g., in the FAT32 file system) cause this technical issue. Although this limitation
is not given any more in modern file systems, functions of the POSIX I/O layer uses such 32-bit
integer variables per default in parameter data structures (e.g., the stat function). Therefore,
programs requesting file sizes with more than 2 GiB have to enable special large file support
during compilation to change the variable type to 64-bit integers in order to be able to handle
large file offsets. As large file sizes have to be foreseen, the large file support is incorporated
into the SIONlib library layer.

3.2.4 Shared files and threaded applications

Although hybrid applications often have implemented their parallel I/O in the MPI layer, there
is a need to support hybrid applications and tools that use I/O operations in OpenMP parallel
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regions. One example is the performance analysis tool Scalasca (cf. 1.3.3), which supports in
its version 1.x hybrid applications with a fixed number of OpenMP threads and requires that
each thread writes and reads trace data itself. With the restriction that the number of threads is
known in advance when the file is created, the proposed container format can support parallel
task-local I/O from hybrid applications without modification. Instead of assigning a chunk
of the file to each MPI task, a chunk is assigned to each OpenMP thread. In this case, all
I/O operations have to be performed inside the parallel region, where all OpenMP threads are
forked and active.

The restriction to require that the number of threads is known in advance excludes the category
of applications that define the number of threads dynamically during runtime. For example, the
application can define the number of threads depending on the computational algorithm used,
input data requirements or the maximum available threads on the compute node. To support
such applications, the current scheme of the shared file container has to be enhanced in a way
that chunks can be created and added to the existing container on the fly after opening the
file. Such changes to the file container structure would require that updates are communicated
directly to all other threads in the application, which introduces a potentially large number
of synchronization points during runtime. Similar to the implementation with interleaving
records, the overhead to guarantee a consistent view of the container would limit scalability
and will therefore not be considered for SIONlib.

Partial support for multi-level parallelization with a variable number of threads can be imple-
mented if parallel write operations can be performed outside the parallel region. The orga-
nization of the file container could then be implemented in following way: chunks will only
be assigned to MPI tasks. Similar to the coalescing approach, only one thread per MPI task
will write the data on behalf of all threads. To allow a separation of the different data streams
at read time, the data blocks have to be annotated with their corresponding thread number.
This strategy will fix the number of chunks in the file container to the number of MPI tasks
on the outer parallelization level. Furthermore, parallel read operations can be threaded on the
inner parallelization level, because they do not change the container structure. One applica-
tion example that benefits from this strategy, is the Score-P instrumentation and measurement
infrastructure, because it supports hybrid programs with variable number of threads (cf. Sec-
tion 1.3.3). Score-P realizes writing of trace data on the outer level, whereas reading of trace
data is multi-threaded.

3.3 Objectives and Strategy

The major objective of SIONlib is to provide efficient support for task-local I/O patterns at
large scale. Recapitulating the findings from the previous discussion about traditional parallel
task-local I/O and shared file I/O, SIONlib should fulfill the following goals:

• The general structure of application I/O patterns should be unchanged. Especially, the
task-local representation of application data has to be kept. This helps to ease the tran-
sition from standard POSIX I/O to parallel I/O with support of an I/O library.
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• The library has to mitigate the limitations of parallel task-local I/O on current file sys-
tems, which are mainly caused by the large number of individual files. A transition from
a file-per-task scheme to a shared file container with parallel I/O is mandatory.

• The solution should also eliminate the limitations of parallel I/O to a shared file at large
scale, as described in the previous section. This means that the metadata overhead of
accessing one big shared file from a large number of tasks has to be reduced.

• Existing software layers on current HPC systems should not be modified. Furthermore,
all components should run in user space. Therefore, it is advisable to use POSIX I/O
in the low-level interface to access the file system. On the application level, the solu-
tion should be integrated as a library into the parallel application, where it can use the
communication layer of the application to exchange data internally.

• Access to the file data should be possible from parallel applications and tools as well as
from serial applications. This allows an easy integration into existing workflows.

• The solution should support applications with different requirements with respect to data
size and distribution. Examples are the support of small data chunks per task and the
support of hybrid applications.

As required, SIONlib has to avoid large numbers of files due to limited metadata scalability.
This leads to the basic strategy of SIONlib to use a file container instead of individual files as
illustrated in Figure 3.6. Located as an additional software layer between a parallel application
and the underlying parallel file system, SIONlib maps a large collection of logical task-local
files onto a number of SIONlib shared files. The limitations of shared-file I/O at large scale
motivated the design of the multi-file approach of SIONlib, which uses multiple physical files
to represent the virtual shared file container. This strategy is described in more detail in Sec-
tion 3.4, whereas the organization of the file container into multiple files and chunks for each

…

…

Application
Tasks
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Parallel file system

Physical
multi-file

T1 T2 T3 Tn-2 Tn-1 Tn
Serial

program

SIONlib

Figure 3.6: File-container concept of SIONlib. A large number of logical task-local files is
mapped onto a single physical file (or a small set of physical files), called a multi-file. The
multi-file can be accessed from both a parallel and a serial application.
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task is described in Section 3.5. To meet the above objectives, applications have to fulfill some
requirements, which are described in Section 3.6. For example, SIONlib requires the specifica-
tion of chunk sizes at file creation time. The library layers and interfaces, which are described
in Section 3.7, support the integration of SIONlib into serial programs as well as into parallel
applications with different parallelization strategies (e.g., MPI and OpenMP). Moreover, with
a special generic interface, SIONlib can be adapted to new parallelization schemes without
modification of the library itself. The modular concept of SIONlib and its implementation as a
user-space library does not require changes in the software stack of an HPC system. Therefore,
SIONlib can be seen as a very simple application-level file system with an API and command-
line utilities to access task-local logical files in a shared file container. Section 3.8 describes the
design of a special SIONlib feature to support I/O of very small data chunks (coalescing I/O).
Section 3.9 introduces the key-value containers needed by hybrid applications with variable
numbers of threads. Section 3.10 describes additional functionality, which helps to integrate
SIONlib into other parallel tools like Scalasca, Score-P, or Vampir. The chapter concludes
with an overview of related tools and libraries for parallel I/O addressing task-local I/O.

3.4 Separation of I/O Streams

As described in Section 3.2.2, the number of tasks that write to a shared file concurrently
influences the efficiency of parallel I/O. A large number of tasks introduces bottlenecks in file
metadata handling. Therefore, SIONlib follows the multi-file approach to separate the data
chunks of subgroups of tasks into different physical files to parallelize and optimize metadata
handling. Each of these files is an independent POSIX file, whereas all together represent the
SIONlib shared file. In this strategy, metadata operations are concurrent on the local level for
one physical file and not any longer on the global level.

According to the requirements, the handling of multiple physical files has to be transparent
to the user and should be implemented in user space. This implies that the mapping of tasks
to physical files has to be defined on the library level and need to be stored persistently in
the metadata of the SIONlib container. However, applications should be able to influence this
mapping, for example, if application tasks are already divided into subgroups of tasks. In this
case, data of different subgroups would be stored in different physical files.

The technical requirement to reduce the number of tasks per file leads to another design ap-
proach. The separation of tasks into multi-files can be used to define sets of I/O streams that
are local to components of the I/O infrastructure (cf. Figure 3.7). For example, on systems
with a hierarchical I/O infrastructure, all tasks that are assigned to one I/O node can be mapped
to the same physical file. In this case, only one I/O node manages and accesses the file. Data
of a physical file therefore only exist in local memory caches of the corresponding node and
cross-traffic to other I/O nodes to adjust metadata is not necessary. Although the global par-
allel file system will be an end-point of all I/O stream sets, the separation of I/O operations
can also be conducted on the file system level. As GPFS delegates the metadata management
to the first client that opens a shared file, the metadata management will be performed indi-
vidually for each physical file by another I/O node. The HPC runtime system typically knows
the mapping of tasks to I/O nodes, which allows SIONlib to exploit this mapping for the sep-
aration of multi-files. Furthermore, Lustre provides file stripping over the OSTs, where file
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Figure 3.7: SIONlib’s multi-file approach supports the separation of I/O streams according to
the I/O infrastructure (e.g. I/O nodes) and data locality (e.g. local or global file system).

metadata is partially managed locally on the OSTs. Therefore, multi-files should be separated
by assigning the physical files to different subsets of OSTs. In this case, two conditions, the
I/O infrastructure and the file-system layout, define the mapping. Fortunately, the application
or the I/O-library can define the file-to-OST mapping, since Lustre provides user-level config-
uration of file striping. Moreover, also the information about the network structure can be used
to optimize the file mapping. On inhomogeneous interconnects, multi-files can be defined by
grouping those nodes that have a stronger connection and separate those nodes that are loosely
connected. For example, some HPC systems have nodes combined in islands, which have a
full fat tree interconnect, whereas the islands themselves are connected with less bandwidth
between them. The resulting file mapping should assign nodes in the same island to the same
physical file.

In the multi-file approach, not only the I/O streams are separated. Moreover, the data is also
localized, because a global file system with a global name space is no longer necessary. As
illustrated in Figure 3.7, the physical file can reside on local storage, which is only accessible
from those tasks that access it. This is possible because metadata management for the virtual
SIONlib file is done within the library using application level communication. More research
on this locality property of SIONlib’s file container is performed within the EIC cooperation
with IBM about Blue Gene Active Storage (BGAS, [18]) and in the DEEP-ER project [88]. In
both projects, SIONlib will be adapted to use the local storage on the I/O-nodes (BGAS) or on
the so-called cache domains (DEEP-ER) to exploit locality. Since multi-files are implemented
in SIONlib transparently, data on local storage can be migrated to global storage without losing
data accessibility. This supports the management of multi-level checkpoints [73], which could
reside on different storage levels and be migrated between them.

3.5 File Organization

This section introduces the organization of the SIONlib file container step by step, starting
with a simple and preliminary layout, which will be refined as new features are discussed.
The file container has a substructure based on chunks, which are assigned to the application
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tasks. Additional chunks are used to store metadata, which describes the structure of the file
container. Figure 3.8 depicts this format of the file container, which starts with a metadata
block. The data chunks of the application tasks are placed according to their rank order. The
size of the chunks has to be known in advance before creating the file container. Therefore,
the application tasks have to specify the maximum requested size as parameter of the file open
statement. SIONlib takes this information and reserves the corresponding space in the file.
In addition, SIONlib extends each chunk so that its end position is aligned with the boundary
of a file-system block. As discussed in Section 3.2.1, this prevents possible congestion when
accessing chunks from different tasks.

The metadata block that precedes the data chunks is needed to ensure that the content of the
file container can be read again by an application. It stores scalar attributes and arrays with one
element per task. For example, scalar attributes are used to store the number of tasks that have
written data to the file. Array data is needed to describe the size and the fill rate of chunks.
The number of elements of these arrays is known in advance, because the number of tasks
writing to the file is required to be fixed after opening the file (cf. next Section). Therefore,
the size of the metadata block is known in advance and it can be placed at the beginning of
the file. The space for this block is also extended to be aligned with the boundaries of file-
system blocks. The metadata block exists only once in the file, and because of efficiency
multiple tasks should not access the metadata block concurrently. To ensure this, SIONlib
aggregates the metadata on one tasks in its collective file open operation using the application
communication layer. In detail, all tasks send their requested chunk size to the master task,
which is responsible for writing the metadata block, to calculate the individual start addresses
of each chunk, and to return the start position of the chunks to the tasks. With this, the tasks
can advance the file pointer to the beginning of the reserved chunk. Because the file creation
and the calculation of chunk positions are done during the open operation, no further collective
operation is needed until the file is closed. Application tasks can act individually on the file
container for writing and reading data. During the close operation, the master task collects the
number of bytes written from each task and stores it in the metadata block. The close operation
is again collective to avoid the inefficiency of having all tasks writing to the metadata block
concurrently.

The presented file format requires that chunks sizes are defined when the file is opened. How-
ever, the need to know the total amount of data each task writes is too restrictive for applica-
tions that cannot compute the data size in advance. With an extension of the file format, this
restriction can be relaxed to the requirement to know the maximum amount of data written in
one piece by each task. The file format extension leads to the layout depicted in Figure 3.9.
The file container is now organized in blocks with each block containing one chunk per task.
If a task wants to write more bytes than there are left in the current chunk, it can request a

FS Block 0 FS Block 1 FS Block 2 FS Block 3 FS Block 4 FS Block 5 FS Block 6 FS Block 7 FS Block 8 FS Block M-2 FS Block M-1 FS Block M…
Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk N

Meta
Block

1 data data data data data

Figure 3.8: Simple and preliminary structure of the SIONlib file container. The chunks are
assigned to the application tasks and their size is extended to be aligned to file-system blocks.
The metadata block stores information about chunk sizes and fill rates.
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Figure 3.9: Extended structure of the SIONlib file container. The chunks are now organized
in blocks, which can be repeated multiple times in the file. A second meta block at the end of
the file is needed to store metadata with variable size.

new chunk of the same size. As chunks have a predefined size, the size of a block is also
known beforehand and each task can compute the positions of subsequent chunks on its own
without the need to communicate with other tasks. It is noteworthy to mention, that this may
create substantial gaps in the file container if only a subset of the tasks ask for additional
chunks. However, since file systems typically do not allocate space for empty file-system
blocks, these blocks exist only on the logical level and not on disk. To avoid their physical
materialization, for example, when the file container is copied, the file can be defragmented in
a post-processing step with tools provided by SIONlib.

SIONlib needs to store metadata indicating the space used in each chunk without knowing
the total number of blocks in advance, the first fixed-sized metadata block cannot be used for
this purpose. Instead, SIONlib allocates a second metadata block at the end of the file in the
collective file close operation. In this block, SIONlib stores the number of chunks per task
and the space occupied by data in each of the chunks. However, appending data to a SIONlib
container beyond the initially allocated space after it has been closed would require updating
and re-writing the second metadata block. Although this feature is not required for SIONlib,
adding it would not pose a fundamental design problem.

As discussed in Section 3.4, SIONlib shared file containers should be dividable into multi-
ple physical files to improve scalability and to use the hardware or software parallelism that is
available between the application and the disks. Therefore, the SIONlib file format is extended
further to offer the option of distributing the chunks across a user-defined number of physical
files (cf. Figure 3.10). Each task is still mapped onto a single physical file, but two tasks may
now end up being mapped onto different physical files. The first physical file stores additional
data that is needed to manage multi-files (e.g., the number of multi-files) in the first metadata
block. In addition, a mapping table is added to the second metadata block of the first file. This
table contains the file number of the physical file and the local rank number in this file for
each task. Each file is complete in terms of the SIONlib file format. A multi-file contains the
two metadata blocks and stores a subset of chunks. This allows SIONlib to dump metadata
or to read file data independently for each of the multi-files. To implement this transparency,
the first metadata block of each file will maintain additionally a list of global rank numbers,
indicating the application tasks that have written data to chunks of this file.

The use of multi-files with SIONlib is optional. Applications are able to use multi-file con-
tainer or single-file containers without modifying their code. This means that the SIONlib file
is identified by the name given in the file open operation in both cases. Therefore, the first
physical file is stored under the originally specified name, whereas a consecutive number is
appended to the filenames of the other physical files.
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Figure 3.10: Multi-file structure of the SIONlib file container (example with two physical
files). Each file is a consistent SIONlib file and stores a subset of chunks. The first file has a
third metadata block now, containing a task-to-file mapping table.

Data and metadata is written at different positions in the file and at different times. In cases of
failure, this can lead to corrupted data, because data can only be accessed from the file con-
tainer if the corresponding metadata is available. For example, with a missing second metadata
block, the reading application cannot determine how much data has been written by each task,
because the number of bytes written is not known and an end-of-file cannot be detected by
the corresponding POSIX-call (feof), since the end position of a chunk is not located at the
end of the physical file anymore. Therefore, file consistency is only given after closing the
SIONlib file correctly. Although this limits the usability of data in failure situations, it is not a
general problem in typical uses cases of parallel task-local I/O. For example, the consistency
of checkpointing data is often ensured on the file level. The corresponding file operations will
create a new checkpoint file in each checkpoint step and will delete earlier checkpoint files
only after the current operations succeeded.

3.6 Application Requirements

The objectives described in Section 3.3 and the design of the SIONlib file format lead to a set
of requirements, that applications have to fulfill before using SIONlib. A first requirement is
that task-local data is only accessed by one task, ensuring a one-to-one relationship. While
simultaneous read operations to same data are possible, writing from different tasks to the
same chunk would corrupt SIONlib’s metadata, because metadata will be maintained only by
the task that has been assigned to the corresponding chunk.

Furthermore, SIONlib requires that all tasks create, open, and close the SIONlib file at the
same time. This is needed, because these operations are collective in SIONlib in order to
collect and synchronize metadata among all tasks. This requirement is not given for file write
and read operations while the file container is open. Application tasks can perform these
operations individually and asynchronously.

In addition, each individual task must know in advance the maximum amount of data that
may be written in one piece (i.e., in a single write call). In many cases, this limitation can
already be addressed simply by choosing a generous maximum that can accommodate all
foreseeable data sizes of a given application. With the information about the maximum chunk
size, SIONlib can provide continuous space of this size in the file container. In the current
version of SIONlib’s API, application tasks are able to get direct access to the internal ANSI
file pointer, so that they can use standard ANSI C I/O calls to write or read data from the
file. As SIONlib has no control over these operations, the library cannot manage the data in
another way, for example, by using smaller chunks and spreading the data across multiple

57



3 SIONlib

ANSI C or POSIX-I/O MPI

SION MPI API

callbacks

Serial layer

SION OpenMP API SION Hybrid API

callbacks

OpenMP

SI
O

N
lib

call-
backs

Serial Tools

Parallel Tools

Serial API

SION Generic API

Parallel Application

Parallel generic layer

Figure 3.11: Software architecture of SIONlib.

chunks. However, SIONlib also offers its own version of write and read functions for binary
data. Although these functions are provided to improve and simplify usability, they can also
be used to circumvent this restriction in a more systematic fashion by overlaying the striped
chunk structure with a continuous virtual address space. To implement this, SIONlib needs to
require to use the own write and read functions. The appropriate API changes are planned for
the next major releases of SIONlib.

As already described, all these assumption are realistic for a broad range of applications that
use task-local I/O patterns similar to those presented in Section 1.3. For example, code for
checkpointing is often concentrated in one routine, which is called at the same time from all
tasks. Collective I/O operations and the pre-calculation of data sizes are therefore easy to
implement.

3.7 Software Layers and APIs

Although SIONlib is designed as a parallel I/O library to be integrated in parallel applications,
it provides additional interfaces for parallel and serial pre- and post-processing tools. To re-
duce the software complexity and limit the dependencies between the software components,
the library is organized in multiple abstraction layers. As depicted in Figure 3.11, on the top
layer SIONlib provides the parallel APIs, which support applications that are parallelized with
MPI, OpenMP, or, in a hybrid variant with both parallelization paradigms. Besides this, an ad-
ditional parallel generic API is designed to support the integration of SIONlib into parallel
tools like Score-P (cf. Section 3.10).

The parallel functionality of SIONlib is implemented in a generic layer below the application
APIs. It includes the management of metadata and the maintenance of the metadata blocks in
the SIONlib files. This layer only needs support from the application’s communication layer
for the aggregation and distribution of information among the tasks. The generic layer does
not directly use the required communication functions, which are only available in a higher
software layer. Instead, the parallel API layer have to provide these via callback functions.
With the use of the callback technique, the core layers of SIONlib can be designed without
dependencies to higher software layers or external parallel libraries like MPI [16].
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The task-local and serial functionality is encapsulated in the serial layer of SIONlib. Functions
of this layer will be called from the parallel generic layer and the serial API. Serial tools
are needed for example to integrate SIONlib into existing workflows, because the pre- and
post-processing tools in those workflows have to be adapted to write or read the SIONlib file
format. Alternatively, conversion tools can be implemented on the basis of SIONlib’s serial
API, which convert data between the application specific file format and the SIONlib file
format. Additionally, SIONlib provides a number of serial commandline tools to manage the
file container.

I/O operations on the physical files that represent the SIONlib shared file container, use
ANSI C or POSIX I/O calls. The user can select, which of these two should be used. This
is optional, because, depending on I/O pattern and available memory, ANSI C I/O opera-
tions with their internal buffering mechanism have some advantages: using these I/O calls,
which are directly available in C programs, SIONlib does not need to rely on external I/O
libraries like MPI I/O. Only the upper API layer has dependencies on MPI and OpenMP, all
other layers can directly be built without prerequisites. This makes SIONlib a lightweight and
easy-to-install library.

SIONlib is implemented in the programming language C. The SIONlib C API is designed
as an extension of the ANSI C file I/O API, demanding only very little source code changes
for applications that already use ANSI C I/O to write multiple task-local files in parallel. In
the simplest case, changing the application to write a SIONlib file only requires replacing
the open and close calls, as we will see below. Existing standard ANSI C read and write
calls can be retained and the conversion of ANSI C file handles to numerical file descriptors
for subsequent use in POSIX I/O calls remains possible. To allow parallel codes written in
FORTRAN to use the library, a FORTRAN language mapping is supplied in addition to the
C API. Multi-files with multiple underlying physical files are handled transparently. The next
sections will discuss the following four modes of accessing a SIONlib’s shared file container:
parallel write, parallel read, serial write, and serial read.

3.7.1 Parallel write

This mode is the default mode when writing logical task-local files from a parallel applica-
tion. Both open and close calls are collective operations (cf. Listing 3.1). Besides file name
and open mode, the open call takes the maximum number of bytes expected to be written in
one piece (chunksize) as a parameter, which can be individually chosen for each task. The
global communicator gcom includes all tasks for which a logical file needs to be created. The

sid=sion_paropen_mpi( fname, "bw", /* open, collective */
&numfiles, gcom, &lcom,
&chunksize,
&fsbsize, &gblrank,
&fileptr, &nfname);

/* write, non-collective */
sion_ensure_free_space(sid, nbytes); /* with ANSI-C call */
fwrite(data, 1, nbytes, fileptr);

sion_fwrite(data, 1, nbytes, sid); /* or, with SIONlib call */

sion_parclose_mpi(sid); /* close, collective */

Listing 3.1: SIONlib Parallel write.
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parameter numfiles and the local communicator lcom can be used to define a subset of tasks
that share the same underlying physical file. Further parameters are the size of a file-system
block (fsbsize), which can be used to specify a non-default block size, the global rank of the
tasks (gblrank), and in case of multi-files, the filename of the physical file used by this task
(nfname). The open operation returns two file handles: (i) a normal ANSI C file handle for the
task-local file to be used in subsequent ANSI C write operations just as if the logical file was a
physical file and (ii) a SIONlib file handle to be used in subsequent calls to the SIONlib API.
For most of the parameters the corresponding pointer is passed to SIONlib’s open call (call-
by-reference). This allows the definition of only one open function for write and read mode. In
write mode, all parameters have to be initialized and to contain values, whereas in read mode
these parameters are filled by the open function with information from the file metadata block.
Writing can be done in two ways, either by using the standard ANSI-C fwrite function or by
using the SIONlib wrapper function sion fwrite. The function sion ensure free space

has only to be called in the first case, if the number of bytes to be written may exceed the
available space in the current chunk so that a new chunk must be allocated. In this case, the
file pointer is advanced to the start of the new chunk. sion fwrite simplifies the handling
of writing and opens the possibility for optimization, because in this case, file interaction is
under the control of SIONlib and operations to update the internal status information about the
file are not needed. If the use of POSIX write is preferred to ANSI C fwrite, the ANSI C
file handle can be converted into a numerical file descriptor. In addition, all three options can
be mixed freely. This applies to the other access modes accordingly.

3.7.2 Parallel read

Reading the multi-file in parallel is similar to writing it (cf. Listing 3.2). Again, open and
close are collective operations, whereas the actual reading can occur individually. A call to
sion feof ensures that the end of the file has not yet been reached, similar to the standard
feof call for ANSI-C. Like in the previous case, the user has two choices: either (i) reading
within the limits of the current chunk using fread, with the limit being enforced by a preced-
ing call to a SIONlib guard function to identify the number of bytes left in the chunk, or (ii)
reading with the customized read function sion fread.
sid=sion_paropen_mpi( fname, "br", /* open, collective */

... &fileptr, ...);

if (!sion_feof(sid)) { /* read, non-collective */
btoread=sion_bytes_avail_in_chunk(sid);
fread(localbuffer, 1, btoread, fileptr); /* with ANSI-C call */
/* or */
sion_fread(localbuffer, 1, nbytes, sid); /* or, with SIONlib call */

}

sion_parclose_mpi(sid); /* close collective */

Listing 3.2: SIONlib parallel read.

3.7.3 Serial write

In addition to writing a SIONlib file from a parallel application, the serial API also offers
functions to write a SIONlib file from a serial application (cf. Listing 3.3), a necessary prereq-
uisite to build serial pre- and post-processing tools. Since only one process executes the open
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call now, a whole array of chunk sizes needs to be supplied as a parameter. The sion seek

call helps to navigate within the multi-file, allowing the user to conveniently locate a specific
position within a given chunk of a given task (e.g., the task with rank i).
sid=sion_open( ..., &chunksizes, &fileptr); /* open, serial */

for(rank=0;rank<size;rank++) { /* loop over ranks */
sion_seek(sid, rank, chunk, pos); /* seek chunk */
sion_fwrite(..., sid); /* write data */

}
sion_close(sid); /* close, serial */

Listing 3.3: SIONlib serial write.

3.7.4 Serial read

Serial reading can happen with either a task-local or a global view. The local view is con-
venient for extracting the portion belonging to a single task only, whereas the global view is
needed to read the data of all tasks, for example, when calculating global statistics. To open a
multi-file in the local-view mode, the rank of the task is supplied as an argument to the open
operation (cf. Listing 3.4). The actual reading is done in the same way as in the parallel case.
sid=sion_open_rank( ..., rank, &fileptr); /* open one rank, serial */

/* reading like in the parallel case */

sion_close(sid); /* close, serial */

Listing 3.4: SIONlib serial read with task-local view.

If a SIONlib file is opened in the global view mode (cf. Listing 3.5), the user usually needs
to retrieve first all metadata to obtain the number of tasks (i.e., ranks), the number of chunks
per task, and the chunk sizes used by individual tasks, etc.. Using the metadata information, a
meaningful seek target can be chosen as starting point for a subsequent read operation.
sid=sion_open( ...,&fileptr); /* open, serial */

sion_get_locations(sid, ..., /* get file info */
&nrranks, &nrchunks,
&chunksizes, ...);

sion_seek(sid, rank, chunk, pos); /* seek chunk and position */
fread(..., fileptr); /* read data */

sion_close(sid); /* close, serial */

Listing 3.5: SIONlib serial read with global view.

3.7.5 Fortran interface

Taking into account that numerous scientific codes are written in Fortran, SIONlib provides
Fortran language bindings. The Fortran interface essentially mirrors the C interface with the
exception that read and write operations must use the SIONlib functions, potentially requiring
slightly more source code changes. This is needed, because Fortran cannot write to ANSI C or
Fortran file handles directly. Instead, Fortran provides write and read functions for unformat-
ted I/O, which accept a Fortran unit number as file handle. Furthermore, Fortran adds a record
structure to the data in the binary file, which would affect SIONlib’s internal file structure.
With the SIONlib wrapper function, data is written unmodified to the file, which also allows
data to be read later from programs that are implement in other languages.
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3.7.6 Commandline Utilities

Standard Unix tools cannot read or modify SIONlib files directly, because these tools cannot
interpret the file format. Therefore, SIONlib provides a set of serial commandline utilities
to work with SIONlib file containers. All these tools use the serial API of SIONlib and are
therefore examples of how this API can be used to build customized tools.

The dump tool siondump prints the metadata of the SIONlib file to standard output. This is a
convenient way to learn more about the structure of the multi-file in order to see, for example,
how many logical files it contains and how large they are. With additional options, the dump
tool can generate reports on task level, for example, the chunk size, the filling rate, or the
file number of a multi-file container (task mapping). The tool sionsplit extracts all distinct
logical files from a given SIONlib file and recreates the corresponding physical files, whereas
sioncat extracts only the data of one task from the SIONlib file and prints it to standard
output or to a file. The defragmentation tool siondefrag generates a new multi-file from an
existing one, contracting all of the chunks of a task, which are spread in the file over multiple
blocks, into a single chunk. The new file contains only one chunk per task. In addition, all
gaps in the form of unused file-system blocks are removed.

3.8 Coalescing I/O

SIONlib file containers can become very sparse, if the number of tasks is high and the individ-
ual data sizes are very small. As proposed in Section 3.2.3, SIONlib implements a aggregation
of data among the tasks (coalescing I/O). The general strategy is illustrated in Figure 3.12.
The application tasks are divided into two groups namely collectors and senders. The collec-
tor tasks receive data from the sender tasks and write their data on behalf of these to the file
container. A sender task sends its data to the assigned collector instead of writing it to the file
container.
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Chunks
… …

…

FS BlockFS BlockFS Block FS Block 

…
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Figure 3.12: Simple example for coalescing I/O with SIONlib, which reduces the file size by
a factor of three, assuming that data of at least three tasks fits into one file-system block.

The main advantage of this aggregation scheme is that the collector task can write larger con-
tiguous blocks of data, because chunks written by one collector do not have to be aligned to
the boundaries of file-system blocks. Furthermore, the size of the resulting SIONlib file is
reduced by the size of the gaps between the sender chunks in the classical one-to-one scheme
of SIONlib. Gaps in the file container only exist between the sets of data chunks that will be
written by different collector tasks. Additionally, the coalescing approach leads to a reduced
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number of writer tasks and therefore fewer I/O streams, which potentially reduces the prob-
ability of congestion in the I/O infrastructure. In general, the distribution of collector tasks
is variable, but cannot be changed after creating the file container. SIONlib knows the max-
imum size of the chunks in advance and is therefore able to compute a distribution scheme
of collectors according to the given chunk sizes. The optimal distribution depends not only
on the chunks. Additionally, the file-system block size, the structure of the I/O infrastructure
and the characteristics of the interconnect are additional decisive factors. An additional factor
is the file density, which results in a trade-off between I/O efficiency and disk space usage.
Currently, SIONlib assigns so many tasks to a collector that a file-system block is almost be
filled, whereas the number of tasks may not extend a certain limit. The number of sender
tasks is computed individually for each collector, so that the number of sender tasks can vary
across the collectors. Optionally, the user can set the number of collectors himself. In this
case, sender tasks are distributed equally across the collectors.

Consequently, the write and read operations have to be collective, because communication
is needed between sender and collector tasks. The SIONlib API provides special calls for
this: sion fwrite coll and sion fread coll. In general, the data aggregation can be im-
plemented with collective or with point-to-point communication patterns. The underlying
communication pattern is not uniform in general, because chunk sizes do no have to be equal
for all tasks and, consequently, the number of the assigned senders per collector can vary
across the collectors. This makes an efficient implementation with collective communication
operations difficult. Therefore, for hybrid applications the coalescing scheme implements a
hierarchical aggregation: OpenMP threads aggregate their data first, and one of the threads
will then participate in SIONlib’s MPI coalescing scheme.

Particular attention has to be paid to the memory usage of the collector tasks, as they have
not only to maintain their own data, but also to aggregate data of the sender tasks. SIONlib
pursues the approach of minimizing the buffer space to the size of one file-system block. This
is reasonable, because I/O operations have good performance if they operate on blocks of this
size. On the other hand, coalescing I/O is only applicable to small chunk sizes, so that typi-
cally data of one collector will fit into one or a few file-system blocks. The collector loops over
the sender task and collects the data task by task. Every time the receive buffer is filled, the
collector flushes it to disk. The sender tasks send data to the collector only on request. In this
way, the collector receives data only from one sender at a time. Overall, this communication
scheme can be seen as a compromise between efficiency and memory usage.

3.9 Key-Value Containers

The size of a chunk in a SIONlib file container has a lower limit. To ensure the exclusive
access to file-system blocks, a chunk has to have a least the size of one file-system block. With
coalescing I/O, SIONlib can circumvent this issue for applications that can perform the write
and read operations collectively. Other applications that are not able to perform collective I/O
will not benefit from SIONlib’s approach, because they have to allocate larger chunk sizes,
although they need to write only a few bytes. Furthermore, applications and tools that do not
know the exact number of participating tasks/threads in I/O operations in advance have similar
requirements for a more flexible storage scheme.
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To support I/O of fine-grained structured data with variable number of partitions, the design
of SIONlib is enhanced by task-local key-value containers. Instead of raw data, tasks can now
store sequences of short data blocks, each attributed with a key. Especially, applications with
multi-level parallelization can use this feature by integrating SIONlib into the outer MPI par-
allelization level and storing thread-related data as key-value pairs in the task-local container.
In this case the key would be the thread number. Pairs with the same key can occur multiple
times in a chunk. In this way sequences of data blocks with the same key represent a virtual
data-stream on key level.

For this purpose SIONlib’s API provides a special open mode and a number of additional
functions. The function sion fwrite key writes one key-value pair to the task-local chunk.
The read function sion fread key requires a key as parameter, which is used to look up the
next occurrence of data for this key and to read it from the chunk. Seeking in data blocks of
the same key is possible with the sion seek key function, similar to the sion seek function
for normal data chunks. Additionally, SIONlib offers iterator functions to operate on SIONlib
files with an unknown set of keys.

Only functions on the task-local level were added or modified to implement the key-value
containers. The overall file container and the metadata handling did not have to be modified.
The structure of the local key-value container can be defined in different ways. For example,
descriptive information (e.g. key, size, or offset) can be stored in a separate, local metadata
block or it can be interleaved with the data. The right selection of an implementation depends
on different factors, like the overall data size, the size of a single data entry, the number of
key-value pairs, and the number of different keys. Therefore, SIONlib implements an abstract
API for key-value functions and users can select one of the implemented storage types at open
time.

Currently SIONlib only supports the storage type inline, which interleaves descriptive data
and application data as depicted in Figure 3.13. A short metadata block containing the key
and the data size precedes each data block. A task that reads data for a certain key has to
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Figure 3.13: Simple example of a SIONlib key-value container using an inline storage scheme.
The key and data size are interleaved with the data. Each task maintains a data structure in
memory to buffer metadata of already read key-value pairs to optimize the procedure.
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start at beginning of the file and has to traverse all metadata blocks until the block of the
requested key is found. To optimize the read and look-up procedure, SIONlib maintains a
hash table in memory, which contains key, size and offset for each key-value pair already
found. As indicated in Figure 3.13, data blocks can be extended to the next chunk if space is
not sufficient in the current chunk.

3.10 Support for Tools

Parallel tools like Scalasca [36] or Score-P [59] place different requirements on parallel I/O
libraries. These tools interact with applications and inherit additional restrictions from them
concerning the parallelization scheme and runtime configuration. Therefore, tools like Score-
P have to support applications with different parallelization schemes, as they instrument the
application code to obtain event-trace data.

The Score-P instrumentation and measurement infrastructure, which is used by Scalasca and
Vampir, provides support for applications with a variable and not pre-defined number of
threads and hence, the I/O layer, which is used to store event traces on disk, must support
this feature as well. SIONlib fulfills this requirement by providing the key-value container.
For hybrid applications, Score-P records event traces on each thread, but writes the event
traces to output files from only one thread. The output format of these files is the OTF2 for-
mat. Conversely, VampirServer, the parallel version of Vampir, and Scalasca read OTF2 data
from multiple threads concurrently. Therefore, SIONlib provides a function to duplicate a
SIONlib file handle (sion dup) as an additional enhancement. Once a SIONlib file is opened
in parallel, this function can be used to replicate the internal data structures for each thread.
This allows each thread to perform independent read operations. Further tool-specific support
is available in SIONlib with the generic API, with the reinitialization of already opened files,
and with the mapped parallel open mode, which supports to open SIONlib files with a different
number of tasks at file creation time.

3.10.1 Generic API

The generic interface of SIONlib is primarily designed for the integration of SIONlib into the
Score-P infrastructure. Score-P internally uses an abstract communication layer and provides
callback functions to propagate the communication methods to underlying software layers. As
described in Section 3.7, the interfaces of SIONlib for MPI, OpenMP, and hybrid applications
provide communication methods via callback functions to the generic parallel layer in the
same way. SIONlib only needs a few communication functions for metadata management
in the parallel generic layer. These are the broadcast, the gather, and the scatter method to
distribute and collect metadata, as well as a barrier method to synchronize the tasks. All
methods are collective and have to be performed either on all tasks or on a subset of tasks.
The global communicator group consists of all tasks participating in SIONlib I/O, whereas the
local communicator group includes only those tasks that access the same physical file.

SIONlib’s generic interface provides an API to define and register a user-defined set of call-
back functions and helps in this way to implement a new parallel API for SIONlib, for exam-
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ple, to support applications and tools that are based on parallelization paradigms other than
MPI or OpenMP (cf. Figure 3.11). This has simplified the integration of SIONlib, because
the Score-P callback functions can be propagated directly to the generic interface of SIONlib.
A more practical advantage of the generic interface is that all required software layers have
no dependencies to external libraries. This eases the integration of SIONlib into the build
environment of tools.

3.10.2 Reinit

The reinit function of SIONlib allows postponing the exact specification of chunk sizes to
a later time of execution, which is possible as long as no data has been written to the file.
Reinit was implemented as a special feature for Scalasca 1.x to improve the efficiency of
SIONlib I/O for trace data. Scalasca provides an internal buffer on each task, which is filled
with trace data during runtime. Typically, the buffer is large enough to store all data of the
run and it will be written to a SIONlib file at end of execution. Only in the rare cases of
insufficient free buffer space, the buffers have to be flushed during runtime as illustrated in
Figure 3.14 (left). Therefore, the file has to be created and opened at start time to be prepared
for intermediate flushes. However, at this time, the exact chunk size is not known and Scalasca
has to specify the size of the memory buffer as a maximum chunk size. In the case that the
memory buffer size is much larger than the size of the recorded event set the resulting SIONlib
file would be very sparse and I/O would be less efficient, because file systems blocks are not
filled completely. The exact chunk size is known at the end of the execution and can be passed
to SIONlib via the reinit call. SIONlib will then reinitialize the internal data structures
without recreating and reopening the physical files. This feature becomes more important, if
the data in the memory buffer is compressed in-place and not during the write operation as it is
implemented in Scalasca (1.x). In this case, the chunk sizes can be further reduced to the size
of the compressed data. Especially in combination with the coalescing I/O feature of SIONlib,
files can be much denser as depicted in Figure 3.14 (right).
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Figure 3.14: Example of using the SIONlib reinit feature in Scalasca. The instrumented appli-
cation records event traces in memory buffers. The use of the SIONlib reinit function reduces
the chunk size of the forehandedly opened file to the actual required sizes (right) compared to
the original scheme (left).
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3.10.3 Mapped open

Parallel access to SIONlib files requires that the number of participating tasks is equal to the
number of chunks in the file. Therefore, applications reading a previously created SIONlib
file have to run with the same size as the creating application. Applications or parallel tools
that run with less or more tasks can only fall back to the serial API to open the file container
on each task individually. As the memory and logistic overhead for this serial open is very
high compared to the parallel collective open, the feature mapped open was added to SIONlib.
This feature is not only useful for restarting applications on a different number of tasks. It
also supports parallel tools that often run in smaller configurations than the simulation itself.
Parallel post-processing tools are becoming more important as the size of application output
files grows in such a way that they cannot be moved off-site and have to be processed at
the same location. A special use case is VampirServer, the parallel version of the performance
analysis tool Vampir. The server part of VampirServer is used to access large trace data directly
on the HPC system, instead of moving it first to a local desktop system or reading it serialized
on a login node. VampirServer interacts directly with a Vampir client, which is running on a
local desktop system or a login node of the HPC system. As VampirServer runs in parallel, it
can read and process trace data in parallel on the HPC system and therefore it provides a faster
interaction with the user and requires less data movement than reading the data locally on a
desktop system. However, VampirServer typically runs on a moderate number of tasks, which
is mainly defined by the required main memory needed to store the trace data of large runs.

Figure 3.15 shows a simple example for a mapped open, where a SIONlib file is read from
an application, running only with half the number of tasks. With mapped open, each task can
specify an individual list of global rank numbers whose data chunks are intended to be read
from this task. The mapped open is a collective operation. Therefore, the metadata of the
SIONlib files is read only once from a file by one task and is distributed to the other tasks
with collective communication operations, similar to the parallel open. Furthermore, SIONlib
only has to maintain the metadata of the specified tasks in memory and only has to open those
physical files that contain a requested chunk. In comparison with a native serial open from
each task, the operation is more efficient in memory usage and causes less file-system activity.
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FS Block FS Block FS Block FS Block FS Block FS Block FS Block FS Block 

T2T1 T3 T4

Write (1:1)

Mapped read (1:2)

Figure 3.15: Example of using the SIONlib mapped open to read a file container with four
reader tasks, while it was initially written using eight tasks. Each of this reader tasks now has
to read chunks from multiple writer tasks (in this example two).
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The mapped open also supports the creation of SIONlib files with a different number of tasks.
This is typically used in parallel preprocessing tools to prepare input files for larger simulation
runs.

3.11 Related Work

One of the strategic goals of parallel I/O libraries on higher abstraction level is to exploit
knowledge of access patterns to optimize the data flow between applications and disks, uti-
lizing the parallelism available on hardware and software layers in-between. Typically, this is
done by introducing an additional software layer, which applications can use to describe data
types, the data structure, and its distribution among the application tasks.

A prominent example of such a platform-independent interface supporting parallel binary I/O
is MPI I/O [69]. Using this library, data can be written collectively from all or a subset of the
application tasks to a shared file, potentially taking advantage of hints including the number of
disks to stripe files across, the stripe depth, or access patterns. Noteworthy is also MPI’s sup-
port for shared I/O of non-contiguous distributed data. Each task can specify a non-contiguous
view of a shared file, greatly simplifying the work with fined grained data distribution schemes.
Apart from these more advanced features, MPI I/O also offers all mechanisms needed to per-
form I/O in the traditional way, similar to the POSIX I/O interface. While offering high-level
functionality for striped and irregular access patterns, a transparent mapping of many logical
task-local files on few physical files is not directly supported, although it can be implemented
using MPI I/O functions as lower-level routines. However, this would force the application
to use MPI data types and an MPI-style programming interface, unnecessarily restricting the
generality of our approach and potentially entailing more complex source code changes in the
application than needed. In this sense, MPI I/O can be seen as orthogonal to the SIONlib
approach.

MPI I/O models data in terms of basic data types and user defined data types. Data structures
are derived from these data types by specifying their locations in an address space. High-
level parallel I/O libraries, like HDF5 [42], Parallel NetCDF [63], and NetCDF-4 [91], allow
reading and writing of data in terms of structured data models including annotated multidi-
mensional arrays of typed elements and hierarchical groups of objects. These libraries also
store metadata describing the specific data format in addition to the actual data in order to
facilitate easy sharing of files. The libraries support parallel reading and writing of their data
sets, internally leveraging the MPI I/O layer. Whereas high-level parallel I/O libraries are
useful for storing and retrieving structured scientific data, SIONlib is more suitable for binary
stream data without any predefined structure. Similar to MPI I/O, using one of the high-level
libraries instead of SIONlib would increase the transition cost by having to move to a more
complex interface while offering no obvious performance advantages. Specifically, the need
to define data structures before starting the actual I/O represents an extra burden for applica-
tions such as tracing tools that already use self-contained binary file formats. Furthermore,
as described in Section 1.2.1, high-level libraries store the data in a global file representation,
which potentially requires an unnecessary data reordering, when output files are intended for
checkpointing and restarting.
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ADIOS [65] provides an abstraction layer on top of various standard I/O interfaces ranging
from low-level APIs such as simple POSIX I/O to MPI I/O and parallel high-level APIs, in-
cluding the ones discussed above. Using this additional layer, an application can be easily
configured to replace the underlying I/O transport method simply by modifying an XML con-
figuration file. This improves flexibility when porting a code from one platform to another.
Moreover, the data-group feature allows the selection of individual transport methods for dif-
ferent parts of the code to optimize the performance for a variety of file access patterns within
the same application. In fact, the ADIOS-BP native binary file format employs concepts re-
lated to those underlying the design of the SIONlib format. First, it allows the definition of
process groups. A process group is the entire self-contained output from a single process that
can be written independently into a contiguous disk space [51]. Second, a footer index ensures
that the data section can grow beyond what is known at file creation time without moving data.

In addition to high-level parallel I/O libraries, where optimization is one of the goals besides
the simplification of complex I/O operations on application-based data structures, one can find
a number of approaches that propose strategies or implement libraries to optimize existing
I/O solutions. For example, to optimize two-phase implementations of MPI collective I/O
operations, Liao et al. [64] proposed dynamic file partitioning techniques that align the file
domains assigned to aggregator processes with file-system block boundaries. This helps to
avoid the serialization of I/O operations caused by lock conflicts when multiple aggregating
processes want to write in parallel. The approach is similar in spirit to the block alignment
used in SIONlib, only that SIONlib application processes write directly to the file without
rearranging the file access pattern via aggregating processes.

TBON-FS [12], a virtual file system, defines scalable operations on whole groups of files. It
allows a client to communicate efficiently with a group of files via a tree-based multicast-
reduction network. Extending familiar file-access idioms including file descriptors to groups,
TBON-FS specializes in scalable operation request distribution and the aggregation of group
file operation responses. Although making group operations more convenient by eliminating
iterations across all group members, TBON-FS still operates on a potentially large number of
physical files.

The I/O Forwarding Scalability Layer IOFSL [3] represents an approach to implement I/O
forwarding for parallel applications over dedicated IOFSL servers, similar to I/O forwarding
on IBM Blue Gene/Q systems. IOFSL provides a framework to implement strategies to ex-
ploit knowledge about application I/O patterns and to implement an optimized treatment of
application I/O requests on the I/O server. For example, this strategy is used to support task-
local I/O patterns of VampirTrace and Vampir at large scale by adding aggregation techniques
to the IOFSL servers [48]. As IOFSL servers have to be deployed in user-space if IOFSL is
not installed on file-system nodes or special I/O nodes, additional compute nodes have to be
allocated to run applications together with the IOFSL framework. This requires a higher effort
and increases the complexity of the application software environment, whereas SIONlib im-
plements similar optimization strategies in a lightweight library without further requirements
to the runtime environment.

Techniques like SIONlib’s multi-file approach, which is used to reduce the metadata overhead
by accessing shared files from a large number of tasks, are meanwhile already integrated
into other I/O libraries. The technique of transparently dividing shared Parallel NetCDF files
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into multiple physical files is denoted as subfiling [34] or file partitioning [86]. Subfiling is
integrated in the latest version of Parallel NetCDF (1.4.1). A similar technique to subfiling is
also implemented in GLEAN [15], a topology-aware data movement and staging framework.
This framework improves I/O performance by leveraging knowledge of the structure of the
internal network and the I/O infrastructure. Further techniques of GLEAN are the adaptation
of data movement in collective I/O operations to the underlying network topology and the
reduction of data size via lossless data compression. The efficiency of the approach is shown
using benchmarks and applications on a Blue Gene/Q system with the GPFS file system. The
results demonstrate good efficiency when using subfiling with one file per I/O node, which is
similar to SIONlib’s multi-file approach for Blue Gene/Q.

The Parallel Log-structured File System PLFS [7] implements a user-based file system on
top of the existing (parallel) file system. The goal of PLFS is to optimize parallel I/O for
different usage patterns. Optimization modes are provided for shared file I/O, flat file I/O
(task-local files), and small file I/O operations. Applications can access the file system via a
patched MPI-library if they use MPI/IO. Alternatively, PLFS API calls can be integrated or
the file system can be accessed by using the unmodified I/O call via the kernel module FUSE
(Filesystem in Userspace), which may introduce additional high overhead [6]. For shared files,
PLFS splits parallel I/O streams to a shared file into I/O streams to individual files, which are
stored in a hierarchy of directories. This approach is diametral to the SIONlib approach as
it increases the number of files and replaces shared file I/O with task-local I/O. PLFS can
limit the metadata overhead for parallel file creation by distributing the file over a hierarchy of
directories. By using individual files, PLFS omits the concurrent access of file-system blocks,
which is caused by unaligned access. SIONlib solves this problem by implementing alignment
is its shared file format to optimize the I/O. In contrast to PLFS, which uses the file system to
store metadata collectively in a separate file, SIONlib can use the application’s communication
layer to aggregate and distribute metadata across the tasks without involving the underlying
file system.

It remains an intriguing question why parallel systems themselves often do not provide better
support for task-local I/O. According to our experiences, the main problem is not the aggre-
gated bandwidth but the metadata server contention that occurs when attempting to create
large numbers of files in a single directory. Although the use of hashing to look up the file-
system block designated for a certain directory entry brought some improvements [26, 80],
the concurrent access to the file-system blocks that contain the directory inode more or less
serializes this operation. SIONlib can handle this situation better only because it relies on
superior knowledge of the intended access pattern.
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SIONlib is designed to support parallel task-local I/O at large scale. The performance of the
approaches implemented in SIONlib is shown in this chapter with quantitative I/O bench-
marks on the IBM Blue Gene/Q system JUQUEEN [53] at JSC and for different application
use cases. JUQUEEN represents a large-scale system that requires efficient parallel I/O for its
applications to run up to 1.8 million MPI tasks. Furthermore, it is an appropriate example for
hierarchical I/O infrastructures, which will be seen more often in future exascale systems.

After discussing the architecture and I/O infrastructure of the IBM Blue Gene/Q system, re-
sults of I/O benchmarks on JUQUEEN will be shown from small scale (base line measure-
ments) to the full system size with more than 1.8 million tasks. Furthermore, the impact of
concurrent usage of shared resources like the file system on application I/O performance will
be discussed. As an example, measurements demonstrating these effects are shown for the
Lustre file system and the Cray XT system at Oak Ridge National Laboratory. The usabil-
ity of SIONlib for checkpointing, which is one of the designated use cases, is shown with the
simulation code MP2C for massively parallel multi-particle collision dynamics on JUQUEEN.
Finally, tool support will be discussed as second use case of SIONlib. Results will be shown
for the Scalasca performance tool set and SIONlib’s integration in its measurement environ-
ment will be described.

4.1 Architecture and I/O-infrastructure of Blue Gene/Q

The IBM Blue Gene/Q system JUQUEEN has a modular structure as depicted in Figure 4.1.
The compute nodes (CN) are equipped with an IBM PowerPC A2 CPU and 16 GiB of main
memory. Applications have access to 16 cores of the CPU, a 17th core is used internally.
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Figure 4.1: Components of IBM Blue Gene/Q system JUQUEEN.
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The cores support 4-way SMT, which allows programs to run with up to 64 threads or tasks
on one compute node. At least 2-way SMT is recommended to exploit the capability of the
floating-point units. Thirty-two of these compute nodes build a node board (or node card).
A node board with 512 cores or 2,048 possible threads is the smallest partition that can be
allocated on the JUQUEEN system for user jobs. Sixteen of these node boards are packed
into one midplane, which has a size of 8,192 cores (8k cores) and 8 TiB of main memory.
Whereas jobs with a size of one or a few node boards are intended for test and development
runs, production jobs should have a size of at least one midplane, which requires parallel
applications to run with at least 16k tasks. A Blue Gene/Q rack consists of two midplanes.
JUQUEEN has twenty-eight of these racks and provides therefore resources to run application
with up to 1.8 million tasks. Additionally, a rack can host up to 32 I/O nodes (ION) in special
I/O drawers. The IONs are equipped, similar to the CNs, with an IBM PowerPC A2 CPU and
16 GiB of main memory. Furthermore, they have access via PCIe (gen2) slots to a network
interface (10GigE or Infiniband) [40]. Twenty-seven racks of JUQUEEN are equipped with 8
IONs each and one rack hosts 32 IONs.

The Blue Gene/Q system has a 5D torus network, connecting each of the CNs with its ten
neighbors over links with a bi-directional bandwidth of 2 GiB/s. In contrast to the prede-
cessor system Blue Gene/P, the torus network itself handles collective and barrier communi-
cation operations. As the smallest partition, the node card represents a 5D torus with a size
of 2x2x2x2x2 CNs. The last dimension is limited to a size of two, in order to connect two CNs
within the same node board. As the next scaling step, a midplane builds a torus of 4x4x4x4x2
CNs, a rack has a size of 4x4x4x8x2 CNs and the 5D torus on the full JUQUEEN system
extends to 8x28x8x8x2 CNs. The core number on a CN will often be labeled as the sixth
dimension of the torus. This extends the naming scheme of the torus dimensions to ABCDE T.
Using this labeling scheme, applications can specify at program startup how application tasks
should be mapped on the torus.

Whereas CNs are running a reduced Linux kernel, IONs and login nodes are running a full
Linux operating system. One example for the limitation of the reduced kernel is that CNs have
no support for direct access to the file systems. Therefore, the operating system on the CN
cannot execute I/O system calls directly, instead, the I/O requests are forwarded to the IONs,
which have access to the file system.

The JUQUEEN system is connected via the IONs to the Jülich Storage Cluster JUST, which
hosts the GPFS home and scratch file systems (cf. Section 1.2.3). The scratch file system, on
which the benchmark and application evaluation was performed, has a capacity of 3.8 PiB and
provides a maximum aggregate I/O bandwidth of about 160 GiB/s to JUQUEEN. The IONs
are connected via two 10 Gigabit Ethernet (10GigE) links to a 10GigE network switch fabric,
which is also connected to the I/O servers of JUST.

4.1.1 I/O-Forwarding on Blue Gene/Q

As already described, the I/O requests on CNs are automatically forwarded to I/O daemons on
the IONs. I/O forwarding is implemented on the level of system calls as function forwarding.
In this way, the system will forward the corresponding POSIX I/O calls to the daemons on the
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IONs. The daemons on the IONs execute the corresponding I/O operations on behalf of the
tasks running on the CNs. As shown in Figure 4.1, CNs on a Blue Gene/Q rack have typically
access to eight IONs. This results in an ION to CN ratio of 1:128. Therefore, each daemon
has to serve I/O requests for up to 8192 tasks. One rack of JUQUEEN has a better ION to CN
ratio of 1:32, as it is equipped with 32 IONs to support small jobs for testing and development.
Because of the higher ION to CN ratio this rack is not used in this work for measurements that
do not require all racks.

One major characteristic of I/O forwarding on Blue Gene/Q is that I/O streams between CNs
and ION are interleaved into one I/O stream between ION and the file system. Because the
IONs have to forward data from the CNs to the file system or vice versa, I/O node performance
is directly related to the ability to buffer data. Therefore, to transfer data between ION and
CNs the I/O daemons on the IONs maintain an internal memory buffer. Data to be transferred
between ION and the file system is stored in an additional memory buffer, the GPFS page
pool. These buffers occupy most of the main memory on the IONs.

The IONs are not directly integrated into the 5D torus of the Blue Gene/Q system. Instead,
two CNs, the so-called I/O-bridge nodes, are connected via their eleventh network link to the
two network adapters of the ION. In this way, the I/O-bridge nodes are responsible for routing
network traffic between the IONs and the CNs assigned to the I/O-bridge node. The I/O traffic
is managed on a lower network transportation level, so that computation on the bridging CNs
is not influenced. The communication between ION and CN is handled with Remote Direct
Memory Access (RDMA) with the help of the 17th compute-node core.

The mapping scheme of IONs is hard-wired in the system. Each ION has two links, which are
connected to I/O-bridge nodes in different node boards. The scheme for a configuration with
four IONs per midplane is illustrated in Figure 4.2. Because node boards have to be attached
with exactly two links, only 4 of the 16 node boards have a wire to the IONs. Therefore, two
I/O-bridge nodes are located in one node board and are responsible for routing I/O traffic of
CNs in four node boards. This leads to an irregular mapping of CNs to bridge nodes, which is

MidplaneI/O Nodes
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B

B
B
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N00 N01 N02 N03

B
B

N04 N05 N06 N07

N08 N09 N0A N0B

N0C N0D N0E N0F

Figure 4.2: Mapping of I/O nodes to tasks of JUQUEEN BG/Q midplanes. The four I/O nodes
have network links to eight I/O-bridge nodes (marked with ’B’) that route I/O traffic of 64
compute nodes each (indicated by color mapping).
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indicated by the color of the CNs in Figure 4.2. All CNs of a node board route their I/O traffic
through the same I/O-bridge node, except the second I/O-bridge node itself (e.g. the blue CN
in N00) which switches roles with one CN of another node board (e.g. the red CN in N02).
The reason for this is that I/O bridge nodes always route their own traffic and the traffic of the
CNs of the associated node boards. Therefore, to avoid an imbalance in I/O load, the second
I/O-bridge node switches its assignment with one CN of another node board to guarantee the
same number of CNs per I/O-bridge node.

In the JUQUEEN configuration, the IONs are connected to the GPFS file system with an
ethernet channel over two 10GigE connections. The raw bandwidth on this channel is about
2.5 GiB/s, whereas the two Blue Gene/Q torus links together provide a raw bandwidth of
4 GiB/s. Consequently, the I/O bandwidth for an application has an upper limit of 2.5 GiB/s
per ION. The measurement of the achievable bandwidth over one ION is subject of the baseline
benchmarks, which will be discussed in Section 4.2.2.

4.2 I/O Benchmarks

Before testing SIONlib with applications, the I/O performance of the library has been evalu-
ated with a benchmark program. This allows measuring different features of SIONlib under
well defined conditions. The benchmarks are run in the previously described test environment
of JUQUEEN and use the GPFS scratch file system on JUST (cf. Section 1.2.3). Furthermore,
all runs were performed within the normal production environment and production time. This
means that influences from external applications and activities on the shared resources net-
work and file system could not be precluded. Therefore, most of the benchmark runs were
repeated at least three times and the best results are reported here. Only a few large-scale and
very costly runs were not repeated and were ran only once on the system. SIONlib has its
own parallel benchmark program partest, which is designed to evaluate the I/O performance
of shared file I/O with SIONlib at large scale and to compare the performance of shared file
I/O and traditional task-local I/O with individual files.

First, the results of measuring the time for shared file creation with SIONlib will be presented
and compared to the creation time of task-local files. Next, baseline measurements on one
ION were performed with a quasi-standard I/O benchmark for this purpose, the IOR (Inter-
leaved Or Random) parallel I/O benchmark [50, 82]. Results of I/O benchmark runs with IOR
using shared-file I/O are compared with corresponding SIONlib results, to validate the bench-
mark program partest of SIONlib. The measurements, how the alignment of data chunks to
file-system blocks optimizes the I/O efficiency, will be discussed as next, followed by mea-
surements showing the limitations of shared file I/O to one physical file on JUQUEEN and
the GPFS file system and how they can be avoided with the multi-file approach of SIONlib.
Benchmark runs at large scale, up to 1.8 millions tasks, are performed solely with SIONlib
and are shown for large data sizes using the standard configuration of SIONlib and for small
data sizes using the coalescing I/O feature of SIONlib.

Write and read timings are measured in the following benchmarks as the time span between
the first task starting to open the file and the last task completing the close operation of the file.
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This means that the file creation as part of the open operation is accounted in the calculation
of the write and read I/O bandwidths. Data sizes are specified in powers of two: e.g. 1 MiB =
220 bytes = 10242 bytes = 1,048,576 bytes.

4.2.1 Parallel file creation

One of the major limitations of parallel task-local I/O is the handling of the large number
of individual files. As demonstrated in Section 2.2.1, the time for the parallel creation of
individual files in the same directory increases on GPFS linearly with the number of files,
which is caused by the serialization of the directory i-node updates needed for each new files.
SIONlib file-creation and file-open strategy is different to the traditional approach. Shared
files are first created by one task and subsequently opened by all tasks. As result, only a
few shared files have to be created and the time for creating the files reduces dramatically.
Opening an existing file is not critical, because the directory i-node will not be modified by
this operation. Therefore, the time for opening a file is independent of the number of tasks
involved. Figure 4.3 shows the results of a measurement with partest for creating and opening
a SIONlib file container on JUQUEEN. At the largest scale with 1.8 million tasks, SIONlib
needs not more than 3 seconds for this operation. In comparison, creating individual files on
JUQUEEN for this scale took about 777 seconds (cf. Figure 2.4 on page 32).

SIONlib adds some administrative overhead in its open function, because tasks have to be
synchronized and metadata has to be exchanged. This shows up as additional time in the mea-
surements. As recommended, the benchmark was configured for these measurements to use
one file per I/O-bridge node. In this case, SIONlib’s open operation gets as second parameter
a local MPI communicator. SIONlib will create one shared file for each local communicator
and will assign all tasks of the local communicator to this shared file. For convenience, the
runtime environment on Blue Gene/Q provides the MPIX Pset diff comm create call as an
extension to MPI, which returns exactly such a communicator, where all tasks of the same
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Figure 4.3: Creating and opening SIONlib container file in parallel on JUQUEEN with one
file per I/O-bridge node.
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communicator are routing their I/O traffic via the same I/O-bridge node. SIONlib has to per-
form only a few collective operations on the global communicator during file opening. For ex-
ample, the first task assigns each local communicator a unique file number and communicates
this to all tasks. Subsequently, collective operations for collecting or distributing metadata are
performed on local communicators of each physical file individually. The slightly increasing
time for opening the file shown in Figure 4.3 is partly due to the initial communication on the
global communicator. Another reason is the impact of the I/O operations on the file system
when the shared files are created. The number of physical files increases linearly with the
number of I/O-bridge nodes to 495 files at largest scale. These files are created concurrently
by the first task of each local communicator. In addition, at startup each of these tasks has
to write the first metadata block to the file, which is also accounted for the time for creating
and opening a SIONlib file. Overall, the time for opening and creating the files is significantly
reduced and is negligible in comparison to the traditional approach with individual files.

4.2.2 Baseline measurements

To evaluate the performance of SIONlib, we first discuss the results of baseline measurements
on one ION of JUQUEEN with IOR and compare these with results using SIONlib. The results
of baseline measurements help to assess the I/O bandwidth at larger scale in the subsequent
measurements in this chapter. The scales of benchmark runs for baseline measurements were
selected based on the criterion that they should run only one component of the I/O infrastruc-
ture. Because the I/O infrastructure separates I/O streams by assigning the CNs to different
IONs, the smallest scale for a baseline measurement is in this way a partition that includes
only tasks of one ION. However, as illustrated in Figure 4.2, the 128 CNs that are assigned
to the first ION are not in a continuous partition. Moreover, they are located in five different
node boards. To solve this, the benchmark was configured to run on a full midplane and the
tasks had to be reordered with an own mapping file to select only the CNs that are assigned
to the first ION. The remaining CNs of the midplane were kept idle during measurement. As
only one ION is involved in the measurements, I/O bandwidth is naturally limited by the I/O
bandwidth of this ION, which is about 2.5 GiB/s due to the two 10GigE external connections.

Figure 4.4a shows the results of measurements with the standard I/O benchmark IOR on
128 CNs with one file per task (individual file). The number of MPI tasks per CN is scaled
from one to 64 tasks, so that the total number of tasks has a range from 128 to 8192 tasks. The
data size per CN was fixed to 2 GiB of data, which results in an overall file size of 256 GiB.
This amount of data exceeds the page pool size of 8 GiB on the ION by far and prevents the
influence of cache effects in the measurements. The transfer size was set to 4 MiB, which
matches the size of one file-system block. This guarantees that all I/O operations are aligned
to the size of file-system blocks and that the runtime system and GPFS daemons can handle the
I/O operations efficiently. The results can therefore be seen as an upper limit for real I/O pat-
terns. Running the IOR with individual files the average write bandwidth is about 1,630 MiB/s
and the average read bandwidth is about 16 % higher (1,900 MiB/s). As expected, these I/O
bandwidths are independent from the number of tasks as they are achieved by independent
I/O streams. Figure 4.4b presents the results of IOR with a similar configuration only that
the benchmark uses a single shared file instead of individual files. In this configuration, the
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Figure 4.4: Baseline measurement with tasks using one I/O node on JUQUEEN with IOR
(1-64 tasks per node, 2 GiB file data per node).

write I/O bandwidth decreases slightly to an average of 1544 MiB/s and is again not dependent
on the number of tasks. However, the read I/O bandwidth decreases from 1,905 MiB/s at 128
tasks to 1,324 MiB/s at 8k tasks. Therefore, the handling of read requests depends on the num-
ber of tasks on the Blue Gene/Q system with GPFS, which indicates that these requests are
handled differently than the write requests. Like the SIONlib benchmark partest, IOR com-
putes the achieved bandwidth by dividing the number of bytes transferred by the time span
between the first tasks starting to open a shared or individual file and the time the last task has
finished the close operation.

Similar measurements were performed with the SIONlib benchmark program partest, using
one shared file. Figure 4.5 shows the results in comparison with the IOR results and indicates
that SIONlib can achieve similar I/O bandwidths, although SIONlib has a higher overhead due
to the collective metadata handling and writing or reading of two additional metadata blocks.
Similar to the IOR measurements, the read bandwidth with SIONlib decreases in the same
way (cf. Figure 4.5b).

0

500

1,000

1,500

2,000

2,500

128 256 512 1,024 2,048 4,096 8,192

Ba
nd

w
id

th
 (M

iB
/s

)

# Tasks

SIONlib Shared Write
IOR Shared Write

(a) Writing data

0

500

1,000

1,500

2,000

2,500

128 256 512 1,024 2,048 4,096 8,192

Ba
nd

w
id

th
 (M

iB
/s

)

# Tasks

SIONlib Shared Read
IOR Shared Read

(b) Reading data

Figure 4.5: Comparison of IOR and SIONlib for baseline measurement with tasks using one
I/O node on JUQUEEN (1-64 tasks per node, 2 GiB file data per node).
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In a second benchmark, SIONlib was configured to use one file per I/O-bridge node, which
yields in this case to two physical files, each accessed by 64 CNs. The results of the measure-
ment are shown in Figure 4.6. The average write I/O bandwidth increases with this approach
by 5 % from 1,562 MiB/s for one file per ION to 1,645 MiB/s for one file per I/O-bridge node.
Since in both cases file metadata handling remains inside the ION and is performed by the
same GPFS daemon, the observed I/O bandwidth improvement may be a result of a better
handling of I/O streams and less overhead in local metadata handling on the ION. For exam-
ple, file-system locks have to be negotiated only between 4k tasks for each of the files, instead
of 8k tasks in the case of one file per ION. Assuming an exponential increase of the time for
lock handling, it would be advantageous to use less tasks per file. Justified with the results
of this measurement, most of the following benchmarks are performed in the configuration
with one file per I/O-bridge node. This is also the recommended default configuration for
applications using SIONlib on JUQUEEN.
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Figure 4.6: Comparison of IOR and SIONlib, including the SIONlib’s multi-file ap-
proach (IOB) for baseline measurement with tasks using one I/O node on JUQUEEN
(1-64 tasks per node, 2 GiB file data per node).

4.2.3 Alignment and file locking

A fundamental strategy of SIONlib is to consider the size of the file-system blocks in the
file-layout of the SIONlib shared file container (cf. Figure 3.8 on page 55). This is necessary,
because the partitioning of a file space into file-system blocks has two implications for shared
file I/O. First, the file system will only handle whole file-system blocks on the I/O-subsystem
level and not the data chunks, which have a user-defined size. Second, file locking is, at
least in GPFS, limited to the granularity of file-system blocks. Therefore, SIONlib aligns the
boundaries between data chunks of different writers to the boundaries of file-system blocks in
the shared file container.

The following measurements on JUQUEEN, using the scratch file system on JUST, demon-
strate that such an alignment to file system block boundaries can avoid the degradation of the
I/O write bandwidth caused by concurrent access of different tasks to one file-system block
(cf. Section 3.2.1). The measurements were performed on one rack of JUQUEEN (1024
CNs) with the SIONlib benchmark program partest in a multi-file configuration with one file
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Aligned: 16.2 MB in 4 chunks a 4.05 MB, FS size = 4.0 MiB

√ √ √ √ √ √ √ √ √ √√ √

Unaligned: 16.2 MB in 4 chunks a 4.05 MB, FS size = 4.0 MiB

! ! ! ! ! ! ! ! ! ! !

Figure 4.7: Unaligned vs. aligned shared access (three tasks). Without alignment, all chunks
are consecutively positioned in an interleaving order. As a result, all file-system blocks are
accessed by two different tasks concurrently. In contrast, if alignment is enabled, file-system
blocks are accessed by only one task.

per I/O-bridge node, which yields 16 physical files in total. The tasks were configured to
write 16.2 millions bytes into the shared file container, and the data was separated into four
chunks of 4.05 million bytes. This configuration was selected to fill the page pool on the IONs
sufficiently and to avoid caching effects in the measurements. To evaluate the influence of
alignment, the test was run once with the correct file system block size of 4 MiB and once by
instructing SIONlib to use a much smaller file-system block size of 16 KiB, which disables the
alignment in the file container. Figure 4.7 illustrates the resulting file layout of both tests for
an example with three tasks. The alignment ensures that only one task accesses a file-system
block. Without alignment, GPFS will serialize the access of two tasks to a file-system block.
Furthermore, a file-system block can potentially be purged out of the page pool before the
second task can write data to the block. Both effects reduce the I/O write performance as
shown in Figure 4.8: using relatively small data size and aligning chunks to file system block
boundaries, the I/O write bandwidth increases linearly with the number of tasks per ION from
4.0 GiB/s to 9.7 GiB/s using 64 tasks per CN. In contrast, the I/O bandwidth of the unaligned
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Figure 4.8: Measurement on JUQUEEN of aligned versus unaligned shared access, showing
that alignment to file-system blocks increases the I/O bandwidth for writing significantly (1024
compute nodes with 1-64 tasks per node, 16.2 million bytes per task).
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access does not exceed 3.8 GiB/s. Additionally, the measurements show that data reading is
not affected by alignment in the same way. According to the baseline measurements, the read
bandwidth is higher than the write bandwidth, but it is limited to a maximum of 2 GiB/s per
ION. Therefore, the read bandwidth cannot exceed 16 GiB/s using eight IONs in the current
measurement. With an increasing number of tasks, the read bandwidth increases first to its
maximum value reached with four tasks per CN node and decreases then to its minimum
value, using 64 tasks per CN. The reason for the first increase could be the read-ahead opti-
mization of GPFS, whereas the decrease is according to the achievable read bandwidth in the
baseline measurement on one ION (cf. Figure 4.4b).

These measurements show that the alignment to file-system blocks is essential. With such an
alignment, high efficiency can be achieved, when the file-system blocks are filled more than
half. For lower fill rates using the unaligned mode, a file-system block can store two or more
chunks that are written by different tasks. As long as such blocks are not purged out of the page
pool, such unaligned access can benefit from the dense packaging of chunks in file-system
blocks, although the benefit will be diminished by the serialization of concurrent accesses
due to locking. In aligned mode, GPFS has to manage full file-system blocks internally, even
though those blocks are mostly empty. Therefore, applications should use the coalescing I/O
feature of SIONlib for small chunk sizes to reduce the number of alignment points in the
shared file and to benefit from the internal alignment of chunks in the SIONlib file container
(cf. Section 3.8 on page 62).

4.2.4 Shared file I/O with SIONlib

As discussed in Section 3.2.2, the number of tasks writing to one shared file is becoming
a bottleneck at larger scale. SIONlib supports therefore shared-file I/O to multiple physical
files. The comparison of this special SIONlib feature with the standard shared-file I/O will
be discussed in this section. The results of the measurements on JUQUEEN are shown in
Figure 4.9 for one midplane (512 CNs) and one rack (1024 CNs). Similar to the baseline
measurements, the number of tasks per CN was scaled from 1 to 64 tasks, which leads to
maximum size of 64k MPI tasks in this measurement with the SIONlib benchmark partest.

The first set of tests was run on one midplane using four IONs to handle the I/O streams. Ac-
cording to the baseline measurements on one ION and under the assumption that I/O to one
physical file can be performed locally on the corresponding ION, the maximum achievable I/O
bandwidth should be four times the I/O bandwidth of one ION (4*1645 MiB/s = 6580 MiB/s).
The measurements show that using SIONlib with multi-file support can achieve an average
write bandwidth of 6223 MiB/s, which is about 95 % of the computed I/O bandwidth (Fig-
ure 4.9a). The results of scaling these runs to one rack indicate that this bandwidth is nearly
constant (95.5 % on eight IONs, Figure 4.9c). Furthermore, the read bandwidth of SIONlib
with multi-file support also scales with the number of IONs involved and is about four times
higher than the corresponding baseline measurements (Figure 4.9b and 4.9d). The achieved
read bandwidth is lower than the read bandwidth of I/O from individual files, because of the ad-
ditional metadata overhead in SIONlib and the Blue Gene/Q specific degradation of read band-
width from a shared file as shown in the baseline measurements (cf. Figure 4.4b on page 77).
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Figure 4.9: Comparison of SIONlib multi-file I/O with single-file I/O and with parallel task-
local I/O on a midplane and on a rack of JUQUEEN (1-64 tasks per node, 512 MiB file data
per node).

The I/O bandwidth of writing to individual task-local files decreases with the number of tasks.
The reason is, that file creation, which is part of the file open operation, becomes more time
consuming, whereas the time for writing remains constant. For example, with 64k tasks, 80 %
of the I/O time was spent in file creation. As the files in the read measurements already exist,
reading from individual files is not affected (Figure 4.9b and 4.9d).

As a comparison, the I/O measurements were also run with one shared file (cf. Figure 4.9,
Shared File Write/Read). The results indicate that collective I/O over multiple IONs decreases
the write and read bandwidth significantly. For example, the I/O bandwidth for writing is
decreasing linearly with the number of tasks to a value below the I/O bandwidth of one ION
at the largest scale. This demonstrates apparently that within this configuration (Blue Gene/Q
systems and GPFS) parallel I/O to one shared file cannot exploit the available I/O bandwidth.
A substantial bandwidth degradation can already be seen at a scale of one midplane or rack
of JUQUEEN. Therefore, the remaining benchmarks at large scale were only performed with
SIONlib’s multi-file approach, which is also SIONlib’s default configuration on such systems.
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4.2.5 Scalability

Large-scale benchmark runs were performed with SIONlib up to the full system size of
JUQUEEN (1.8 million tasks on 28 racks). Because of the limited scalability of traditional
parallel task-local I/O and shared file I/O to one file, only the multi-file approach of SIONlib
was used with one file per I/O-bridge node. The benchmarks were performed on JUQUEEN
for different numbers of racks and each test was repeated with 1 to 64 tasks per CN. The data
size per CN was configured to 256 MiB, which yields in an overall file size of 14 TiB on 28
racks. At full scale this data is stored in 496 physical files. In this case, the tasks running on
the 27 racks that are equipped with 8 IONs (16 I/O-bridge nodes) have created 432 files. The
task running on the special rack that is equipped with 32 IONs (64 I/O-bridge nodes) have
created the remaining 64 files.

Figure 4.10 shows the I/O bandwidths for writing. As already observed in the measurements
of the small-scale benchmarks, the I/O bandwidth for a given number of racks is constant for
different numbers of tasks per CN. The slight variation at large scale (with more than 8 racks)
is caused by the fact that the maximum of the usable file system bandwidth is reached and the
tests become affected by other activities on the file system. The tests on 28 racks demonstrate
the scalability of SIONlib’s multi-file approach for data output even up to 1.8 million tasks.
The results of the corresponding read benchmarks are shown in Figure 4.11. The trend of a
decreasing I/O read bandwidth in the baseline measurements on JUQUEEN is also observed
at larger scale and leads to a proportional drop of the I/O bandwidth from initially 150 GiB/s
to about 85 GiB/s on 28 racks with 64 tasks per CN. However, since this is caused by the
characteristics of the I/O infrastructure and the runtime system of the Blue Gene/Q system,
these read tests demonstrate also the scalability of SIONlib for this type of I/O operation.

The scratch file system of JUST has a maximum achievable bandwidth of about 160 GiB/s,
whereas the aggregated I/O bandwidth of JUQUEEN is 370 GiB/s. This number can be com-
puted from the results of the baseline measurements and the maximum number of 248 IONs.
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Figure 4.10: Measurement of writing data with SIONlib multi-file I/O on JUQUEEN up to the
full scale of the machine (1-64 tasks per node, 256 MiB file data per node).
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Figure 4.11: Measurement of reading data with SIONlib multi-file I/O on JUQUEEN up to the
full scale of the machine (1-64 tasks per node, 256 MiB file data per node).

Taking both I/O bandwidths into account, the expected saturation point of the I/O write band-
width should be at a scale of 12 racks, which is confirmed by the results shown in Figure 4.12.
The achieved maximum I/O write bandwidth is at 114 GiB/s, which is 71 % of the maximum
I/O bandwidth of the file system. The achieved I/O write bandwidth follows the maximum
available bandwidth provided by the involved IONs, as long as the file system is not saturated.
Therefore, SIONlib allows to achieve a significant percentage of the maximum available file-
system bandwidth, even at largest scale on JUQUEEN.
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Figure 4.12: Comparison of write bandwidth on JUQUEEN for different number of tasks per
node (TpN). ’Max. ION’ shows the maximum I/O bandwidth, which can be achieved by that
number of nodes (1-64 tasks per node, 256 MiB file data per node).
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4.2.6 Small data I/O at large scale

With the coalescing approach, SIONlib supports applications that require to store only a small
amount of data per task (cf. Section 3.8). Because SIONlib normally extends chunks to the
minimum size of one file-system block, this would lead to a high amount of unused disk space
in the SIONlib file container without using the coalescing feature. SIONlib solves this issue
by aggregating data collectively on a smaller number of collector tasks that write the data to
the file container on behalf of the other tasks. A critical configuration parameter of coalescing
I/O is the number of sender tasks, which send their data to one collector. SIONlib has im-
plemented a heuristics to find a default number of collectors according to the specified chunk
sizes. Optionally, users can overwrite this default number of tasks per collector (collsize).

Figure 4.13 shows the results of a parameter study on JUQUEEN to find the optimal parameter
ranges for different chunk sizes. The tests were performed on one midplane of JUQUEEN with
64 tasks per CN using one file per ION, which results in four physical files. As an example,
the measurement of the write bandwidth with a chunk size of 1 MiB will be explained in the
following. With a file system block size of 4 MiB and less than four tasks per collector, the file-
system blocks are not filled in the SIONlib file container. Therefore, GPFS has to handle up
to four times more file-system blocks. This leads to a linearly decreasing write time from one
to four tasks per collector. In next task range from four to 64 tasks per collector, file-system
blocks are completely filled (as all measurement points are multiples of four), which leads to
nearly constant writing time. Up to a collsize of 64 tasks, one collector is located on each
CN on average. This is changed with higher collsize numbers of 128 and more. In this case,
collector tasks are running only on a subset of CNs and only those are actively communicating
with the IONs. As I/O traffic is maintained on the ION with a multi-threaded daemon, the
concurrency of the threads will be reduced with decreasing number of collectors, which has
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Figure 4.13: Evaluation of the influence of the parameter collsize on the time for writing
and reading data of different size with coalescing I/O on one midplane of JUQUEEN (64 tasks
per node).
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Figure 4.14: Scalability of coalescing I/O with SIONlib on JUQUEEN, using a collsize of
512 tasks: write time and bandwidth for different data sizes and numbers of nodes (64 tasks
per node).

another positive effect on the writing time. The writing time decreases further until 256 tasks
and remains constant up to 512 tasks. Starting from 1024 tasks per collector, the bandwidth
decreases linearly from initially 3500 MiB/s to 500 MiB/s at 8192 tasks per collector. The
reason for this decrease is that not enough I/O streams to each ION are in use. The bandwidth
of one I/O stream seems to be saturated at less than 500 MiB/s. Consequently, at least four
collectors should be used per ION to fulfill the overall ION bandwidth of about 2 GiB/s. The
results of the read time and the runs with smaller data sizes show a similar behavior. However,
the runs with smaller data size are faster because the collectors have to transfer less data.

Resulting from the discussion above, the selection of a collsize of 512 tasks is optimal for
the tested data sizes. Therefore, this number of tasks per collector was configured for the scal-
ability benchmarks that are shown in Figure 4.14. The benchmarks were run for data sizes
from 1 KiB to 4 MiB from two racks of JUQUEEN up to the full system. Because of the re-
duced number of tasks that interact with the file system, the tests were configured to create one
file per ION. While the two tests with the small chunk sizes of 1 KiB and 32 KiB created only
small data sets of less than 56 GiB, the other two tests with 1 MiB and 4 MiB were dominated
by the I/O bandwidth. For example, the latter test with 4 MiB chunk size created about 7 TiB
of data on disk on 28 racks. The coalescing approach of SIONlib scales for the two smaller
data sizes constantly up to one million tasks, which leads to a writing time from below ten
seconds up to only 17 seconds at full scale with 1.8 million tasks.

As coalescing I/O is intended for large-scale applications with small data size per task, the
measurements demonstrate that SIONlib can enable also task-local I/O for those applications
without structural changes to the code. Additionally, Figure 4.14 shows that the coalescing
approach also scales for applications with larger chunk sizes. The achieved write bandwidth
of 108 GiB/s for a chunk size of 4 MiB is in the same range as the full-scale measurements
without coalescing I/O (cf. previous section).
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4.3 File System as a Shared Resource

The file system is a shared resource and multiple applications are using it at the same time,
which makes it very likely that an application’s I/O interferes with I/O operations of other ap-
plications. However, a single application cannot be optimized to reduce such an interference,
because the necessary information about I/O activity of other application is not available. In
a more detailed view, applications are typically using multiple I/O servers to store their data
according to the file striping rules of the file systems. For example, GPFS implements a homo-
geneous file striping over all file servers and does not allow applications or users to influence
the striping. On the other hand, the Lustre file system provides command line tools that allow
users to configure the file striping for the files individually for each application. As a result, the
distribution of the usage of Lustre I/O servers (OSTs) may not be homogeneous. Figure 4.15
shows an example for such a heterogeneous distribution of I/O workload. All parallel appli-
cations that perform synchronous parallel I/O to shared or individual files on the OSTs will
suffer from such an uneven distribution of I/O load.

Figure 4.16 shows, as an example, the results of measurements on Jaguar, a Cray XT system
at the Oak Ridge National Laboratory in the US, which has meanwhile been replaced by its
successor Titan [75]. Jaguar was combined with one of the largest Lustre installations, which
hosted the scratch file system for applications. The SIONlib benchmarks were performed
in a configuration, where the physical files were assigned one-to-one to the available OSTs,
which allows measuring the writing time individually for each OST. The individual timings
are shown in the inner diagram of Figure 4.16. More intuitive is the plot in the outer diagram.
For each time point (x axis) it shows the number of tasks that could finish the write operations
in that time. The write operation of the first task ended after 6.2 seconds, whereas the last
task required ten times longer to finish the write operation (62.9 seconds). Because an ap-
plication’s I/O routines are typically called synchronously by all tasks, the application cannot
continue computation before the last task has finished the I/O operation. As the measurement
indicates, a single slow OST can slow down the whole parallel application. To circumvent
this, an application has to omit using slow OSTs. Desirable would be an adaptive mapping of
OSTs to files, depending on the actual load on the OSTs. Since Lustre does not provide this
kind of information, the application needs to test the actual I/O bandwidth of each OST itself.
This technique has been proposed recently as an extension to parallel NetCDF [86], which
skips OSTs with limited bandwidth within the I/O library. For parallel task-local I/O, SIONlib
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Figure 4.16: Write time per Lustre OST on Jaguar shown per OST (inner graph) and sorted by
finishing time (outer graph).

provides with the multi-file approach a solution to map physical files and tasks to OSTs. This
mapping scheme can be similarly extended by testing OSTs before using them and skipping
OSTs with limited bandwidth. However, because the user-based configuration of Lustre strip-
ing does not allow specifying a set of OST numbers for a physical file, a physical file has to
be mapped to one OST (cf. section 1.2.3). This is not a direct disadvantage, because this
one-to-one mapping reduces the number of tasks accessing one physical file and therefore the
metadata overhead. Additionally, the metadata handling will be localized to the OST storing
this file.

In a broader perspective, the described problem of shared usage of the file system should
be solved on the system level. For example, similar to the I/O node mapping in the I/O
infrastructure of IBM Blue Gene/Q systems the OSTs can be mapped to parts of the compute
nodes. Depending on the number of OSTs and compute nodes and the granularity of the
distribution, this would dedicate OSTs to I/O streams of a single application, which is running
on these compute nodes. One example for such an I/O zoning is the FEFS file system of the K
computer at Riken [79]. The Lustre OSTs of the local FEFS scratch file system are physically
and logically located adjacent to a compute-node partition. Data on the local file system can
only be accessed by the local compute nodes, whereas the name space is globally managed by
a Lustre MDS. SIONlib can directly support such distributed and separated file systems with
its multi-file approach.

4.4 Applications

There are a number of applications that have already integrated SIONlib to improve parallel
task-local I/O. Mostly, SIONlib is used to replace task-local POSIX I/O in checkpointing rou-
tines. Among these applications are the parallel tree code PEPC [39], muphi [92], a code for
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the simulation of water flow and solute transport in porous media, and the simulator for spiking
neural network models NEST [81]. Another application using SIONlib is the Korringa-Kohn-
Rostoker Green function code for quantum description of nano-materials (KKRnano) [49].
This code benefits extremely from the coalescing-I/O feature of SIONlib, as the checkpoints
consist of task-local data with a size of not more than 100 KiB. SIONlib enables this applica-
tion to run on the full JUQUEEN system while writing checkpoints in a reasonable time.

In the remaining section, two further examples for the integration of SIONlib are shown and
corresponding measurements are discussed. The first one is the integration of SIONlib into the
simulation code MP2C to support efficient checkpointing at large scale. The second example
describes the integration of SIONlib into the parallel performance tool Scalasca, which has
high I/O demands to store intermediate event trace files.

4.4.1 Checkpointing in MP2C

Mesoscale simulations of hydrodynamic media bridge the gap between microscopic sim-
ulations on the atomistic level and macroscopic simulations on the continuum level. To
study colloidal suspensions or semi-diluted polymer systems, the Fortran90 code MP2C cou-
ples multiple-particle collision dynamics, an established mesoscale simulation approach, with
molecular dynamics. The current version of MP2C uses MPI and implements a domain de-
composition approach, where geometrical domains of the same volume are distributed across
the different processes [74]. Due to the extremely large numbers of particles involved, the sim-
ulation of realistic system sizes on long time scales requires an efficient implementation of the
simulation code. Although the basic algorithm used in MP2C was shown to scale well, a lim-
iting factor in production runs was met in file I/O operations used to write checkpoint/restart
and particle trajectory files.

Traditional I/O approach

To avoid file handling issues that arise from having a potentially large number of files from
the very beginning, the authors of the code had originally decided to follow the single-file
sequential approach. In this approach, only one task of the application is selected to write or
read data on behalf of the other tasks. Data will be transported in two steps to disk: first, the
data is sent from the generating task to the writer task. Second, the data is written from the
writer task to disk. In general, the data transfer bandwidth between compute nodes will be
much higher than the bandwidth between compute node and disk storage. Therefore, only the
I/O operations on the writer tasks and not the data transfer to the writer tasks are considered
for further analysis. The performance of these I/O operations is limited by the speed of the
single core on which the task is running and by the transfer speed to write data to the file
system. A higher parallelization rate of the application cannot solve either limitation because
only one instance writes the data and therefore uses only one data path to the file system.

Especially on a hierarchical I/O infrastructure, this serial approach will not scale very far. The
essential I/O optimization on those architectures is to use parallel I/O over multiple data paths.
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The individual data stream is limited. For example, on JUQUEEN one task is writing data over
one I/O node, although the maximum write bandwidth on the I/O node is limited to 2 GiB/s
(cf. Section 4.2.2).
First experiences on the Blue Gene/P system JUGENE, the predecessor of JUQUEEN, in 2009
showed that the scalability limitations of this approach resulting from serialized I/O in combi-
nation with alternating gather and write operations does not allow running MP2C effectively
on more than 1,024 cores of JUGENE and with more than ten million particles. We could
observe similar limitation on the current JUQUEEN system (cf. Figure 4.17). The author of
the code has implemented the input of checkpoint data in a different way. Each task reads the
whole data set into a temporary buffer and extracts the required data from this afterwards (data
sieving). Apart from more flexibility, this approach reduces the read performance again. In
the worst case, when no data caching is enabled, all tasks will read the data directly from the
file system. This increases the overall read size by a factor equivalent to the number of tasks.
The measurements on JUGENE and JUQUEEN confirm this (Figure 4.17) and show that on
both systems the read time is an order of magnitude slower than the write time, although the
Blue Gene I/O infrastructure provides read caching capabilities.
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Figure 4.17: Time needed by MP2C for writing and reading restart files at small scale on
JUGENE and JUQUEEN with and without using SIONlib.

Integration of SIONlib

The particle data is distributed over all tasks of MP2C, because each task stores only those
particles that are located inside a sub-box of the simulated 3D-volume that belongs to the
corresponding task. Depending on the forces that are applied to the particles a movement of
particles between sub-boxes and therefore between tasks is possible. To identify the parti-
cles over the whole simulation MP2C assigns a unique identifier to each particle, which is
also stored in the checkpoint data. These characteristics of the application allows an easy im-
plementation of parallel I/O to task-local files, where each task writes its data to a separate
physical file. Since having each task writing its restart data to a separate file was no option due
to the limited performance of file creation, MP2C is a suitable candidate for SIONlib. After
modifying approximately 50 lines of code in such a way that each task writes its restart data
to its own logical file instead of funneling it to the central writer task, the application could
run problem sizes of more than one billion particles instead of 33 million particles with the
traditional approach. [30, 89].
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Figure 4.17a shows results from this first integration step of SIONlib on JUGENE. The graph
compares the time needed by MP2C to write and read restart files on 1,024 cores of JUGENE
with and without using SIONlib, respectively. The measurements were taken on a single rack
in SMP mode. The 1,024 task-local files were mapped with SIONlib onto a single physical
file. Since SIONlib writes at least one file-system block per task to accommodate the 56 bytes
per particle, the advantage of using the SIONlib approach amortizes only for larger problem
sizes, where they are significant. For 33 million particles, the I/O performance was improved
by 1-2 orders of magnitude.

Coalescing I/O

The integration of SIONlib and the automatic alignment of chunks to file-system blocks intro-
duced the new optimization requirement to the application in order that task-local data should
fill file-system blocks as much as possible to achieve good I/O bandwidth. The reason for this
requirement is that chunks of different tasks are aligned to file system block boundaries and
file systems typically have to handle and to write full file-system blocks to disk although they
might be filled only partially (cf. Section 3.2.1). Configuration and application sizes of typical
production runs of MP2C show that this optimization requirement is violated. The number of
particles per task in such runs is only in the range of 10,000 to 30,000. MP2C stores 56 bytes
in a checkpoint file for each particle. This leads to a maximum chunk size of 1.6 MiB, which is
less than 50 % of the file system block size on the GPFS file system (4 MiB). Moreover, MP2C
will potentially move particles between tasks during run time. This will change the chunk sizes
from checkpoint to checkpoint, which will make an alignment optimization difficult.

Therefore, the integration of SIONlib was modified to use coalescing I/O. The usage of this
feature avoids the disk space overhead and an I/O performance degradation caused by small
data chunks (Section 3.8). A prerequisite for coalescing I/O is that the SIONlib calls have
to be collective. MP2C fulfills this prerequisite, because checkpoint I/O is arranged in one
subroutine and this routine is called collectively by all tasks at the same time. Figure 4.18
shows measurements of MP2C checkpoint operations using the SIONlib coalescing feature
with different numbers of tasks per collector. Similar to the results of measurements with
the SIONlib benchmark program (Section 4.2.6), the optimal number of tasks per collector
is 512. Therefore, this value was used in all subsequent measurements with MP2C. In the
current version of SIONlib, coalescing I/O operations are implemented using the two-phase
I/O scheme, where a collector task collects the data from a number of tasks and writes it to
the file system on behalf of these tasks. This scheme is executed for each collective I/O call
separately, because SIONlib does not buffer the data internally. Consequently, a collector task
can only write data consecutively to disk when all tasks write all data of their chunk in one
I/O call. Otherwise, multiple write calls will force the collector task to write multiple times
smaller data chunks at different positions in the file. However, such a striped file access pattern
degrades the I/O bandwidth. To avoid such a bandwidth degradation, the checkpoint routine of
MP2C was adapted to combine the I/O operations to one I/O call. Future versions of SIONlib
will integrate the buffering and coalescing feature. Then, data will be buffered on sender tasks
and data will be sent in one chunk to the collector task.
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Figure 4.18: SIONlib coalescing tests with MP2C with different numbers of tasks per collector.
Bandwidth and timings for writing and reading a checkpoint file are shown for one rack of
JUQUEEN (64 tasks per node, 311 million particles).

Scaling to the full system of JUQUEEN

Beyond performance improvements for 1 K cores on JUGENE or 8 K cores on JUQUEEN,
adopting the library allowed MP2C to scale to much larger configurations than before – both
in terms of the number of particles and the number of cores. Figure 4.19a shows the time
needed for checkpoint I/O from 512 K tasks on JUQUEEN. The data chunks of the tasks were
mapped onto 16 physical files per rack, which are 128 files in total. The measurements indicate
that good performance can be achieved for a wide range of local data sizes using the coalescing
I/O feature of SIONlib. The overall data size varies from 8.3 GiB at 156 million particles to
0.42 TiB when simulating 8 billion particles. In all test cases, SIONlib was able to manage
writing the data from 512 K tasks to file in less than 11 seconds. For small data sizes, the
latency of the I/O operations dominated the I/O time. For large data sizes, the overall available
bandwidth to the file system was a limiting factor. The measurements show that this effect will
start at 4 billion particles for write operations and at 2 billion particles for read operations. The
earlier saturation point and the smaller read bandwidth compared with the write bandwidth are
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Figure 4.19: Bandwidth and time of MP2C checkpoint I/O for different numbers of particles
on JUQUEEN using 512 K tasks on eight racks (64 tasks per node).
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related to the I/O infrastructure of Blue Gene/Q, as explained in Section 4.2.2.

MP2C only needs the latest checkpoint file after the successful completion of a simulation job
for a restart. Therefore, former checkpoint files can be overwritten. The measurements show
a higher bandwidth for overwriting, which could be explained by less overhead in the file
system: in this case, the file system does not have to create the files and to allocate file-system
blocks because they are already allocated and assigned to the files. Figure 4.19b indicates a
bandwidth improvement of nearly 50 % when overwriting an existing checkpoint file in MP2C.
In this case, the maximum time for writing a checkpoint will be reduced to 6 seconds. The
checkpoint frequency therefore only depends on the calculation time, which increases with the
number of particles.

With SIONlib, the scaling tests could be pursued up to the full system size of 28 racks, running
MP2C with 1.8 million tasks. The total number of particles could be increased to 270 billion
particles. Figure 4.20 shows the achieved bandwidth for different particle numbers. At largest
scale, the file-system bandwidth measured with the SIONlib benchmarks could be confirmed
(cf. Section 4.2.5). The checkpoint file had a size of 14.4 TiB at this scale and was written in
147 seconds (read in 108 seconds). Since the file-system bandwidth starts to be saturated at
about 20 billion particles, the time for checkpointing remains constant up to this number of
particles and increases from there linearly.
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Figure 4.20: Achieved bandwidth running MP2C with SIONlib support on full JUQUEEN
system for different particle numbers (28 racks, 1,8 million tasks, 64 tasks per node).

Integration into the application workflow

Writing data to task-local files or to SIONlib containers has implications for the subsequent
data processing steps, unless the data is read from an application running with the same num-
ber of tasks. Only in this case, individual data files or chunks of a SIONlib file can be assigned
to reader tasks in a one-to-one fashion. However, typical post-processing steps will not run on
such large number of tasks that are needed for the simulation runs. In those cases, the post-
processing tool will run in an m:n-scheme, where n is the number of data files or SIONlib
chunks and m the number of consumer tasks in the post-processing program. For serial data
processing steps, the mapping scheme will degrade to 1:n.
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In contrast to high-level parallel I/O libraries, SIONlib only provides an interface for binary
data and does not require to describe the data format and its structure. Typically, data from dif-
ferent chunks cannot be merged automatically without this knowledge about data format and
structure. This is only possible in exceptional situations where data chunks can be concate-
nated without modification. A serial customized conversion tool for such a concatenation can
be implemented with the serial API of SIONlib. Furthermore, a parallel conversion tool can
be implemented with support of the mapped open feature of SIONlib, which allows SIONlib
to open a file in an m:n-scheme (cf. Section 3.10.3).

At start time MP2C requires the sorting of particles according to their position in the 3D-
simulation box. This requirement is fulfilled when the application restarts from a checkpoint
file with the same number of tasks and the same problem configuration. In other cases, the
particles have to be resorted according to the new configuration. In the traditional I/O approach
of MP2C, this sort operation was done implicitly during reading, where each task reads all
particles from the input file and selects those particles that are inside the local box. Although
this scheme is practicable for small particle numbers, it is not usable at large scale or with
large numbers of particles, as demonstrated in initial measurements of MP2C (cf. Figure 4.17
on page 89).

MP2C has a serial conversion tool to convert output data between the traditional format and
SIONlib files. Typically, this tool is designed to convert data for post-processing, like visual-
ization. For small data sets, this tool can also be used to resort the particles in two steps. First,
the latest checkpoint file in SIONlib format will be converted to a single data file in traditional
format. Second, at start time of MP2C the input routines for the traditional format will read
the file and extract the local data (data sieving). Such a conversion is only needed in rare
cases, where checkpoint data will be written and read from applications with different number
of tasks. Typically, such a conversion is only needed at the initialization of a production run
with multiple jobs in a job chain. SIONlib provides a much better I/O bandwidth for writing
and reading intermediate checkpoint and restart files, so that the higher effort for such a data
conversion is justified.

For larger use cases, a more scalable and flexible integration of the SIONlib format into the
workflow of MP2C has to be implemented. The input routines of MP2C have to be modified,
so that they can read checkpoint files with different number of chunks using the mapped open
feature for data input with SIONlib. Depending on the number of SIONlib chunks and the
number of consumer tasks in the post-processing program, tasks will read no data, one chunk,
or multiple chunks from the input file. In general, the particle data will not map to the local
box of this task. Therefore, non-local particles have to be sent to other tasks. Such a redistri-
bution can be implemented in different ways. For example using the MPI Alltoall collective
communication function or sending data in multiple steps along a ring-topology from task
to task with MPI Send. In the latter method, all particle data will pass each task, and local
particles can be fetched from the circulating data, similar to the traditional input scheme. For
post-processing, either using the serial conversion tool or adding directly a SIONlib reader to
the post-processing tool is proposed.
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4.4.2 Trace-file generation with Scalasca

SIONlib has been integrated into Scalasca version 1.x to improve parallel task-local I/O of
event traces from MPI and hybrid programs (MPI+OpenMP) at large scale. In the first step,
trace files containing the event records are written from an instrumented parallel application
to a SIONlib file container. In a second step, the trace files will be read again from the parallel
trace analyzer. As an example, the results of measurements of I/O operations in the first step
are discussed in this section. These measurements were performed on JUQUEEN with one
of the sample programs of Scalasca (ctest). The results of the first test with the pure MPI
variant of the program are shown in Figure 4.21. The runs were scaled from one midplane of
JUQUEEN to two racks and were repeated for 16, 32, and 64 tasks per compute node. The
sample program was configured to generate trace data with a size of 3.5 MB per task. The data
is compressed during the write operation on-the-fly with a typical compression rate of 50 %.
This results for the largest configuration in an output file size of about 200 GiB.

The trace-file generation consists of two different parts. The first part includes creating and
opening the physical files, which is performed at program start before executing the first in-
struction. The second part, writing the event traces and closing the files, is done at the end
of the program. Intermediate flushes did not occur in these tests, as the memory buffers of
Scalasca were defined large enough to store all local event data. The I/O timings shown in Fig-
ure 4.21 are the summation of the timings of both parts. The I/O timings show that Scalasca
with SIONlib support is faster than the variant using traditional parallel task-local I/O in each
test case. Because the size of the task-local event traces is constant, the overall size of the
generated trace files grows with the number of tasks. Furthermore, the overall I/O bandwidth
is limited by the number of involved I/O nodes. This causes that the I/O time increases lin-
early with the size of the output files and consequently with the number of involved tasks.
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Figure 4.21: I/O timings for Scalasca’s trace-file generation using traditional task-local I/O
or using a SIONlib container with one file per I/O-bridge node. The tests were repeated
for different number of tasks per node on one midplane, on one rack, and on two racks of
JUQUEEN (3 curves, 16-64 tasks per node).
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The subsequent read operation in the second analysis step of Scalasca could not be improved
with SIONlib for pure MPI codes since the metadata handling of existing individual files does
affect the read performance (cf. baseline measurements in Section 4.2.2).

In an additional test, the benchmark program was modified to run in hybrid mode by execut-
ing the inner loops within an OpenMP parallel region. In this case, Scalasca records for each
thread of the parallel region a local event trace. Without SIONlib support, these event traces
are merged on the thread level to one trace file per MPI task at the end of the program execu-
tion. Furthermore, each OpenMP thread reads the whole trace file of the corresponding MPI
task and extracts its own data from the merged event trace. Scalasca with SIONlib support
is not required to merge event traces on the thread level, because SIONlib provides space for
each thread in the container file that this thread can access directly. Tests at small scale show
that merging is very time consuming. For example, on 128 compute nodes, running ctest

with one MPI task and 64 threads per compute node yields an I/O time of 391 seconds for
the traditional approach and 25 seconds for the SIONlib approach, which is about 15 times
faster. Further tests at larger scale with the traditional approach were not possible due to the
overhead caused by the additional merging of trace data. Therefore, the evaluation of hybrid
applications with Scalasca at larger scale can only be performed with support of SIONlib.

The on-the-fly compression of trace data in the measurement phase reduces the size of local
data during writing. However, as SIONlib requires to know the chunk size in advance, this
leads to unused space in the file container. Furthermore, as SIONlib reserves at least one file-
system block per chunk, such small data will fill the chunks only partly. For example, in the
previous measurement (Figure 4.21), the chunks are only filled half (less than 2 MiB/task). To
improve Scalasca’s I/O also for such configurations, the integration of SIONlib in the Scalasca
measurement environment was prototypically modified in such a way that SIONlib with co-
alescing I/O operation could be used. This was achieved by applying an in-memory com-
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Figure 4.22: I/O timings for Scalasca’s trace-file generation using standard SIONlib support
and using SIONlib support with coalescing I/O. The tests were repeated for for different num-
ber of tasks per node on one midplane, on one rack, and on two racks of JUQUEEN (3 curves,
16-64 tasks per node).
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pression of the event data at end of the program and calling the reinit function of SIONlib
to reduce the chunk size according to the size of the compressed data afterwards (cf. Sec-
tion 3.10). This makes the SIONlib file container denser and reduces the data transfer to a
minimum. Figure 4.22 shows the results for a configuration with only 160 KiB compressed
data per task. In comparison, the new approach has improved the I/O time in this measurement
by 40 % on average.

Further tests of Scalasca version 1 with SIONlib support are performed on the Stampede sys-
tem at Texas Advanced Computing Center (TACC) [94]. Compute nodes in this system are
equipped by a Xeon Phi coprocessor. Depending on the usage model, application processes
can run on both (symmetric mode), the host processor or the coprocessor, while MPI tasks
on the coprocessor typically spawn a number of OpenMP threads. The tests in this study
were performed on four Stampede nodes, running two MPI tasks on the host processor and
15 further MPI tasks on the coprocessor, each which 16 OpenMP threads (1088 threads in
total). The study has demonstrated that SIONlib can support also the symmetric mode without
modification by creating one physical file per MPI task.
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As demonstrated in Section 2.3 loading dynamically linked executables has limited scalability.
The reasons for the increasing load time are the parallel, not coordinated look-up and read
operations during load time. The dynamic loader, the software component that performs these
operations, has been designed as a serial procedure, which itself refers to the serial POSIX
I/O interface to interact with the file system. Therefore, the dynamic loader does not use
application parallelism to coordinate look-up and read operations. In this chapter, Spindle
is introduced, which offers new concepts to circumvent these limitations of the traditional
dynamic loader. The main idea is to transfer parallel characteristics of the application to the
layer of the dynamic loader.

The first section illustrates the objectives and the overall architecture of Spindle. The following
sections describe the particular components of Spindle and its interaction with the application
and the runtime system. The last section gives an overview of related approaches to this
problem and highlights the unique properties of Spindle.

5.1 Objectives and Overall Architecture

Parallel applications that follow the SPMD model issue redundant load requests of DSOs
across a potentially large number of processes (cf. Section 1.4.4). Most load requests occur at
program start-up and are concentrated to a very short time interval. This is one of the issues
that causes the type of file-access storm that was described previously.

An infrastructure that collects the I/O requests from the individual dynamic loaders and for-
wards only unique requests can avoid the file-access storm. This infrastructure is implemented
in Spindle, which intercepts on the one hand requests for libraries made by the dynamic loader.
On the other hand, Spindle handles the requests with a combination of scalable parallel broad-
casts and local file system caches. The caches provide efficient local access, because the
broadcast operations lead to a single load operation from the file system for each requested
object. Loaded objects are then propagated to the nodes that need them. This removes the
O(P) scaling bottleneck, which was discussed in Section 2.3.1.

Additionally, with high probability, each process loads the same sequence of libraries at start-
up, because link dependencies are embedded in the executable and libraries. This is especially
given for SPMD programs. However, on large-scale systems, even applications that employ
the MPMD model tend to divide processes into SPMD groups (cf. Section 1.4.4). For each
of the SPMD groups similar sets of DSOs and load orders are given. The second objective
of Spindle is to exploit this characteristic. Therefore, the Spindle broadcast operation can be
initiated in two different ways. With the push model, Spindle assumes that when it receives
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Figure 5.1: Overall architecture of Spindle. The client adapter is attached to each application
process. The adapter communicates with the local load server, which interacts itself with other
load servers via an overlay-network.

the first request for a particular library, other processes are likely to make the same request.
With push, Spindle immediately broadcasts each library to all processes when it is requested
the first time. In contrast, the pull model sends libraries to nodes only as they request them.

Figure 5.1 shows the overall architecture of Spindle for coordinating the loading procedure
among different processes of a parallel application. It maintains a collection of load servers
(daemons) alongside the application processes, which cache replicas of DSOs in local storage
(e.g., RAM disks). A client adapter that is dynamically linked into each application process
redirects all load requests to a nearby load server. In this way, the client adapter is kept as
light-weight as possible. The servers are attached to a network that connects them to each
other and to the underlying file system. With this network, load requests for an object, issued
by different application processes, can be combined and data broadcasting can be efficiently
facilitated.

As mentioned, application processes usually load most of their required libraries during start-
up. However, MPI and other runtime communication systems are typically unavailable during
this time. This makes it difficult to coordinate loading in parallel. This restriction leads to the
first design decision: Spindle establishes its own independent communication network, imple-
mented as an overlay network on top of the physical one. The load servers are designed to
communicate with an arbitrary number of application processes and other load servers at the
same time. This provides the flexibility needed to build customized overlay network topolo-
gies that optimally match the underlying hardware communication structure and the capa-
bilities of the file systems. Figure 5.1 shows a tree topology with one root server, which is
connected to the file system. In the future, it is planned that Spindle is extended in order to
support additional topologies to be more efficient, such as a forest of trees whereby multi-
ple roots connect to a more capable file system. Furthermore, the daemon concept keeps the
design open for integration with other daemon-based system services. Therefore, it forms a
precursor of a more general parallel loading service architecture.

Finally, the application client adapter has to reroute all file-system requests such as searching
for libraries or loading the library code to the Spindle servers. To avoid implementing an own
dynamic loader, the rtld-audit auditing API of the GNU loader is used for this purpose. This
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interface allows user code to intercept load requests and modify the dynamic loader’s behavior.
The design of Spindle allows all components to run in user space and without having to modify
the runtime system.

The next sections explain the components of Spindle, including the client adapter, the load
server, and the overlay network.

5.2 Client Adapter

Spindle has to interact with the dynamic loader. The responsible component of Spindle is
the client adapter, which hooks into the load process of the dynamic loader by intercepting
load requests and file searches. To implement the interception, the rtld-audit [78] interface is
used, which is provided by the GNU dynamic loader. The interface allows users to register
callbacks that are invoked when the dynamic loader performs certain operations. One of these
callbacks (la objsearch) is triggered before the loader tests a directory for the existence of
a library. This callback can optionally return an alternate location that the loader should look
into. The Spindle implementation of this function reroutes load requests to the Spindle load
server, which obtains the DSO and returns its location in the local RAM disk. The callback
routine then returns this location to the loader for access from the faster local storage on a
RAM disk (cf. Figure 5.2).

The rtld-audit interface was originally intended to help debug the dynamic loader, thus en-
abling it has several implications when used for Spindle. Most of the callback functions im-
plement a read-only access to loader-internal data. One exception is the la objsearch, which
is used by the Spindle client adapter to modify the load path of a DSO. There is, for example,
no callback function to influence the library read operation itself, because data will be read
directly via POSIX calls from the file system. It is not possible to pass library data, which is
already stored in memory, directly to the loader. Therefore, Spindle first stores the data on a
local RAM disk and passes then only the new location to the loader.

The callbacks for rtld-audit are supplied in a DSO, which is specified via the LD AUDIT en-
vironment variable, and loaded into a special library namespace. This namespace protects
the rtld-audit library by disallowing other application libraries from seeing its symbols. The
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Figure 5.2: Spindle client adapter. The client adapter implements a number of callback func-
tions, which are called from the dynamic loader at runtime.
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strong isolation also restricts the access to functionalities in other libraries, with an exception
for libc. Thus, the client adapter cannot use the TCP/IP stack, which resides in additional dy-
namic libraries. Instead, Spindle uses Unix-named pipes to communicate with the load servers,
which can be managed directly using libc. Because named pipes do not allow inter-node com-
munication, Spindle requires currently that at least one load server is running on each node.

Furthermore, enabling rtld-audit puts the dynamic loader into debug mode and has a perfor-
mance impact on the application. Under normal execution mode, the first time an inter-library
call site is invoked, the dynamic loader will look up its target function and cache it in the
global offset table (GOT, cf. Section 1.4.3). Subsequent invocations of the call site will use
the GOT entry and skip the look-up. This binding has performance advantages, in particular,
when this call site is executed multiple times. With rtld-audit enabled, however, the loader
will not modify the GOT entry, which is needed to ensure that rtld-audit callbacks are invoked
for each inter-library call. Without caching the look-up results in the GOT table, the debug
mode of the dynamic loader imposes an additional performance overhead, which is addressed
by having the client adapter take over the responsibility of filling the GOT for the dynamic
loader.

The rtld-audit interface does not provide any mechanism for intercepting load requests for
the executable or the rtld-audit library. However, loading the executable through Spindle is
particularly important because executables can contain a large percentage of application code
and cause significant load on shared file systems. Spindle solves this using LaunchMON [1],
a scalable tool infrastructure for launching parallel applications and tools across a wide range
of HPC platforms. The user gives Spindle the command that launches the parallel application.
Spindle then modifies the command to launch a small statically linked bootstrapper executable
first and transfers control to LaunchMON. Next, LaunchMON starts this bootstrapper along-
side the load server on each node. Finally, the bootstrapper works with the load server to move
the executable and rtld-audit library to the RAM disk and then executes the application using
the exec-system call.

5.3 Load Server

The second component of Spindle is the load server. As illustrated in Figure 5.1, the load
server act as independent daemon process, which run alongside the application processes on
each node. As described in the previous sections, the load server has to run on each compute
node due to the limited communication functionality of the client adapter. The load server
communicates on the one hand with the Spindle client. On the other hand, it communicates
with the other load servers running on other compute nodes. This configuration allows the
daemon to use local storage (e.g., local disks or RAM disk) to store library data and to allocate
memory to manage internal data structures.

The daemon will consume most of the CPU cycles during the start-up of the application. Dur-
ing application execution, the daemon will sleep, while it is waiting for client requests. Thus,
the Spindle daemon activity will not disturb the application. Besides CPU cycles, memory
is another resource that has to be shared with the application. We will discuss the memory
usage of the Spindle server in Section 5.3.2 in detail and will show how to reduce the memory
overhead.
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5.3.1 Operation

To handle DSO search and load requests for clients, the load server has three roles: it manages
local replicas, interacts with other load servers through an overlay network, and accesses the
file system if it is designated to perform the initial read of the library data. Locally, the server
stores copies of DSOs and metadata of search directories and libraries. The files are stored in
a RAM disk, and the server maintains the metadata in a memory-based data structure.

Two different schemes of data management in the Spindle server can be distinguished: The
first scheme is metadata handling, where the test on file existence contributes a significant
part to the load on the shared file system. Spindle optimize these operations by caching the
contents of directories (at the time of the first look-up) instead of single file metadata. When
the dynamic loader tests a file path for existence, the operation is rerouted to the load server.
The server looks up the corresponding directory in its metadata table. If it exists, the table
provides information of all files in the directory and the existence of a file can be verified
locally. Otherwise, the load server triggers a designated-reader protocol, whereby a server
responsible for the directory reads it via file-system operations and broadcasts the results to
the rest of the servers. Figure 5.3 illustrates this metadata handling: on a search request, a
server either parses the directory by itself or forwards the search request to another nearby
server in the overlay network. The metadata table is implemented in Spindle as a hash-table,
which allows fast search operations.
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Figure 5.3: Handling of look-up requests by the Spindle server. Metadata will be processed
for whole directories. If an object in a certain directory is searched, the metadata (e.g., file
names) of the directory will be stored in the internal data structure.

The second scheme is the handling of the DSOs itself: One server reads the file from the file
system and distributes it to the remaining servers, which store it on their local RAM disks
(cf. Figure 5.4). In terms of data management, Spindle can apply a replication scheme,
where all objects are pro-actively replicated across servers, as well as distribution schemes,
where data distributed among the servers reactively services requests. The first scheme is
supported by Spindle’s push model; the second scheme is served by the pull model of Spindle.
Although replication requires more memory, it offers a significant performance advantage
over the alternative. The load requests typically occur in the same order in a short interval,
and thus the replication-based push model can better exploit such strong locality of reference.
For example, the replicated metadata allow the bulk of search operations to be satisfied locally
without relying on frequent server-to-server communication. Library files themselves will also
be locally available, shortly after one server reads the file from the file system, ready to service
other identical requests expected in near future.
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Figure 5.4: Handling of load requests by the Spindle server. One server reads the library file
from the file system and distributes the data to all other servers. The local storage is typically
a RAM disk.

Figure 5.5 shows the implementation details how the load server reacts on the different re-
quests from different input sources. The Spindle clients are connected with named pipes to
the local server. Requests from local clients will occur in a non-deterministic order, because
the dynamic loaders of different processes are not coordinated. Therefore, the server has to
listen on all incoming pipes to respond to client requests. A similar situation is also given on
the server side: In the tree topology, the server is connected to a number of child servers and
to a parent server if the server is not the root node of the tree. Requests can arrive from both
sides. The parent sends for example metadata and file data to its children. Child nodes send
look-up and file requests to its parent nodes. Additionally, requests for new connections can
occur during the initialization phase. Such additional requests can originate from new client
processes that are forked from existing processes. Therefore, the server has to listen also for
new connections. In the case of name pipes, this has to be implemented by monitoring the
directory, in which new pipe files will be created.

All sources the server has to monitor are or can be mapped to POSIX file descriptors. With the
POSIX select function, all sources can be monitored at once. The Spindle server will run
this call in a loop and responds each time one of the sources is becoming active. The server
provides a special request handler routine for each type of request and source, which performs
the corresponding action and submits new requests or acknowledgments to other connections
if necessary.
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Figure 5.5: Scheduling of requests by the Spindle server. The Spindle server is listening on all
connections, and responds to incoming requests by selecting one of the request handlers. As a
result, the request handler may send further requests to other components of Spindle.
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5.3.2 Memory overhead

As described in the previous section, Spindle uses a part of the memory, the RAM disk, to
store library files. We discuss in this section the implications on applications when library
file data is handled in such a way. The virtual address space of an application process on
Linux systems is divided into memory pages. These pages can be loaded separately from disk
into memory, which happens typically at page fault events. Such an event is issued when
the processor executes instructions or access data that is located in a page existing only on
disk. The processor has to stop execution of the code and to wait until the page is loaded into
memory. Depending on memory space, pages can also be swapped out, for example, when
space is needed and the page was not used recently. The pages that are used during runtime
and that are stored in memory are described as the working set of an application process.
Figure 5.6 (upper part) depicts a situation where part of the pages are loaded into the memory
(working set) and the rest of the pages resides only on the file system. On HPC systems, the
files are typically stored on a remote file system. Therefore, each page fault will issue a request
to the remote file system to read the data if the file is not already stored in a local file system
cache. This page-load strategy is not only used for the program executable, it is also applied
to dynamically linked library files.
Spindle loads the whole library file to a local RAM disk. The code is stored and kept in phys-
ical memory for the entire execution of an application. Fortunately, the RAM disk is not a
direct duplication of code pages; Linux is smart enough to use the same physical memory to
back both the RAM disk and the application’s virtual memory pages. Thus, pages of the work-
ing set are only stored once in memory. However, also the unused pages are stored in the RAM
disk. The bulk of Spindle’s memory overhead thus comes from placing code pages into the
RAM disk that would not have been touched or loaded without Spindle. Figure 5.6 (lower part)
illustrates this situation. The memory overhead is approximately equal to the total amount of
code in libraries and the executable minus the amount of code in the application’s working
set. In other words, Spindle makes an application use memory as if every code page was in its
working set.
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Figure 5.6: Memory usage of an application process without and with Spindle support.
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Furthermore, memory used by libraries that are loaded by Spindle is treated differently in low-
memory situations. Since the memory pages that store libraries are backed by a RAM disk,
they cannot be paged out when the system runs low on memory. If those pages were backed
by a shared file system, they could be dropped and reloaded as needed. This means that an
application using Spindle may run earlier out of memory as if it does not use Spindle.

While code preloading causes extra memory overhead, it has advantages for extreme-scale
environments. Loading pages from the file system as needed during execution is a well-known
source of undesirable OS noise. Thus, high-end systems like IBM Blue Gene intentionally
pre-load pages into memory and avoid this noise [38]. On such systems, Spindle would not
use extra memory. Even on other systems without preloading of pages, Spindle would avoid
undesirable OS noise, which caused by on-demand loading of pages.

As an optimization, Spindle does not load the entire library file into the RAM disk. Each DSO
specifies parts of itself that should be loaded into memory via a table of program headers.
Typically, a DSO will specify that its code and data should be mapped into memory, while
debug information and the symbol table are left on disk. The load server reads these program
headers and caches only the parts of a library that are needed at runtime. Essentially, Spindle
strips libraries before transmitting them. This does make using a debugger on a Spindle ap-
plication difficult, though it is planned to hide these effects by pointing debuggers back to the
original library files.

To conclude the discussion about memory overhead, the concepts of Spindle improve the
performance and scalability of shared library loading by the trade-off that Spindle requires
extra memory on each node.

5.4 Overlay Network

The dynamic loader becomes active very early in the startup phase of application processes.
The client adapter intercepts the dynamic loader and redirects load requests to local copies
of library files. A network of load server is established, which take over this task. To funnel
requests to the file system and to broadcast DSOs back to the application, Spindle load servers
have to rely on a communication infrastructure. However, the load servers are running as
separate daemon processes outside the application domain, which makes it difficult to use the
infrastructure of this domain for Spindle communication purposes. Additionally, at start-up
time, when the dynamic loader is active, the communication infrastructure of the application
(e.g., MPI) has not been initialized. This is because shared libraries that contain the communi-
cation functions have not been loaded. Furthermore, the application does not have execution
control at this time and initialization calls (e.g., MPI Init) have not been executed. There-
fore, an own communication infrastructure has to be established, an overlay network on top of
existing communication software stacks.

To avoid at large scale communication bottlenecks in the way how Spindle distributes libraries,
an efficient network topology has to be used. Typically, this is a tree topology, which reduces
the number of communication hops for broadcast operation to a logarithmic scale. Spindle
uses for this COBO [19], the Collective Bootstrapper, which is a scalable implementation of
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a collective protocol named PMGR. This protocol is used as an MPI job start-up mechanism.
Unlike the original PMGR protocol, which connects all clients to one master client, COBO
uses a scalable tree topology. COBO is part of the LaunchMON software infrastructure [1],
which allows tool servers to be co-located with a parallel job. Spindle integrates LaunchMON
to start the load servers along with the application processes. The overlay network is initialized
during application start-up. Given a list of hosts as input, COBO establishes the overlay net-
work by distributing connection information from the root down to the leaf nodes. Given that
the servers — in contrast to the clients — are not part of the parallel application and are not
restricted to libc functions, the TCP/IP sockets can be used for inter-server communications.
With COBO collective communication operations, metadata and library data are distributed
from the root Spindle server in a binomial tree topology to the load servers of Spindle. To
connect n nodes, the resulting binomial tree has a order d (n ≤ 2d). According to the proper-
ties of such a tree, messages broadcast from the root will arrive at each node after at most d
hops. Thus, tree depth and walk distance vary no more than logarithmically with the number
of load servers. Figure 5.7 illustrates this data distribution scheme for a tree with order d = 3.
Nodes that receive a data packet from their parent nodes first forward the packet to the child
nodes, starting with the outermost one on the left. Afterwards the nodes process the data.
Figure 5.7 shows the data distribution for a binomial tree with eight nodes in which all nodes
have received the packet after three steps. The data processing will start therefore with this
distribution scheme on all nodes at the same time.

The main communication direction in Spindle is broadcasting data from the root node to
the inner and leaf nodes. However, for applications requiring the pull model of Spindle
(e.g. MPMD), requests have also to be transmitted back to the node that has to interact with
the file system. Therefore, COBO has been extended by adding functions that provide point-
to-point messages targeting the root node of the tree. With this modification, Spindle realizes
with the tree topology both models push and pull for request handling.

The presented implementation of communication with a tree topology is adequate for con-
figurations where the data source is at a single node. In Section 5.7, we will discuss a more
general approach, which allows flexible topologies and multiple nodes that are responsible for
file-system interaction.
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Figure 5.7: Spindle network data distribution. Data will be distributed in each node first to the
child nodes and then processed on the local node.

105



5 Spindle

5.5 Bootstrapping and Bulk Preloading

During parallel program startup, some actions will be performed on the front-end node. For
MPI, for example, the mpiexec caller is executed on this node. It parses the call parameters
and communicates with run time daemons that are responsible for starting the executable on
each assigned compute nodes. The Spindle design takes this activity on the front-end node
as part of application startup into account and integrates the node into the overlay network
topology by connecting it to the root node of the tree topology. As described in the previous
section, LaunchMON and COBO are used to implement the initialization of communication
channels, which supports Spindle in implementing two application scenarios: bootstrapping of
the executable and bulk preloading. For both, the front-end node has to send local information
to the Spindle load servers.

As described in Section 5.2, the executable of the application program will not be loaded by
the dynamic linker. Typically, this is done by the startup function of the parallel environment
(e.g., mpiexec). Spindle can also be used for this purpose. In this case, Spindle will first start
a small statically linked executable for each application process (bootstrapper), which gets
the name and parameter of the real application executable from the front-end node of Spindle.
Next, the bootstrapper will send a request to the Spindle load server to move the original
executable file to the local disk. Last, the bootstrapper will give the control to the executable
with the exec-call.

The second application of this feature of Spindle is the bulk preloading. Normally, Spindle
loads a library only if at least one of the processes requests it at runtime. A complementary ap-
proach is to predict the demand and stage all required libraries in advance. Therefore, Spindle
analyzes the executable and extracts its library dependencies. With these, it can initialize the
caches of the load servers without waiting for runtime load requests. The subsequent requests
for the pre-loaded files are fulfilled immediately. Bulk preloading does not have to cover every
possible library. Libraries accessed dynamically, such as those loaded via dlopen, can still
be loaded through Spindle’s push mechanism. In the future, other hints, such as suggestions
from the user, can be used to increase the number of preloaded DSOs.

Spindle provides bulk preloading through the front-end client. Since the front-end client is also
part of the overlay network, it enables direct communication with the load servers. This allows
Spindle to push proactively a collection of libraries to the load servers before the application
requests them. On HPC systems where the runtime environment differs between front- and
back-end nodes, the paths of preloaded libraries have to be changed to the back-end location.
This is supported by the FGFS mechanism (Fast Global File Status [2]), a scalable utility to
obtain global file properties.

5.6 Python Module Loading

Interpreted languages like Python as a driver of parallel applications do often not only load ex-
ternal binary libraries, they also load (Python) modules, which are represented by small byte-
compiled or text-based files required by external modules. These can often be more numerous
than shared libraries. In addition to DSOs, Spindle is designed to accelerate the parallel read-
ing of these Python modules, too. When the Python interpreter opens such a file, the client
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adapter intercepts the attempt using another rtld-audit callback function (* pltenter), which
is called when an entry in the procedure linkage table (PLT) is resolved. The Spindle client
routes these files through the same caching mechanism: they are stored on the local RAM disk
and the open call is rerouted to their new location. In addition to open calls to module files,
Python performs also a large number of stat calls, which are requesting metadata from the
file system. Therefore, the design of Spindle is extended to cache the stat metadata of files, too.

As demonstrated in this section, the rtld-audit enables Spindle to intercept various system calls
that are issued from the application. This extends Spindle functionality to provide a distributed
cache for operations of the dynamic loader to a general cache layer for applications to perform
efficient look-up and read operations. Further application scenarios are therefore possible. For
example, Spindle can cache common application input files of parallel application.

5.7 Flexible Caching Algorithms

The Spindle design is flexible enough to support a variety of algorithms for request handling,
caching, and information forwarding. In its most general form, a client injects search and read
requests into the server network. The server forwards the incoming request to the server that is
designated as the responsible server for the desired file. Figure 5.8 illustrates the general struc-
ture of the Spindle network with five load servers. The load server uses an internal mapping
function to find the designated server, which then performs the actual file operation on behalf
of the client. The load server should be able to evaluate the mapping function locally without
interaction with other load servers. Otherwise, additional traffic will be produced to acquire
information from other servers. To fulfill this requirement, the function can, for example, map
libraries and directories to load servers by selecting the corresponding server according to the
hash value of its file name (or path). Changing the mapping function is one way of configuring
Spindle’s behavior. The data distribution scheme for results of look-up requests and library
data depends on the selected model (pull or push). For the pull model the node that sends a
request to another node to obtain file information will also be the destination for the result. Es-
pecially the pull model leads to a distributed cache in Spindle, because the data in such a cache
structure is distributed among all participating server according to the results of the mapping
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Figure 5.8: Spindle network and mapping-function. In the general architecture of Spindle,
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function. The push model requires to broadcast all data directly to all other load servers and
implements therefore a replicated cache in Spindle.

In the current implementation, the network topology is a tree. This constrains the commu-
nication scheme to a top-down distribution of information from the root node to other nodes
(cf. Figure 5.1). In this case, the mapping function is quite simple, because the root server is
responsible for all library files. Viewed from the perspective of the file system, the load time of
a parallel application is equal to the load time of a single process. The initial implementation
assumes that all processes request the same libraries in the same order, which is common for
SPMD codes. In this case, a load server does not have to forward an incoming request up the
tree. Since the root server will receive all possible requests from its local client, an arbitrary
server just has to wait until the root server pushes the desired libraries in its direction. This pol-
icy reflects a proactive top-down distribution of cache data, but can cause problems if different
processes load different libraries. However, this assumption eased the initial implementation
and provided convenient optimizations, but it is not fundamental to the Spindle approach.

For future versions of Spindle it is planned to provide more sophisticated file-distribution
schemes. There are at least three use cases that would benefit from more complex distribution
schemes. The first one is to use a forest of trees to support efficient access to parallel file
systems. Second, a forest of trees can also support the startup phase of MPMD programs and,
third, the support for other underlying communication infrastructure like 3d-torus networks
using distribution schemes that are adapted to the communication infrastructure.

A communication topology that is built from a forest of trees can take advantages of mul-
tiple root nodes that access data from a parallel file system in parallel. Typically, parallel
file systems have the capacity to support reading file data from a moderate number of nodes
concurrently. Figure 5.9 (right) illustrates how the Spindle network would be configured as
a forest of trees. Assuming that the root nodes read their data in parallel, the propagation of
data inside individual trees is also accelerated. For example, when replacing a tree containing
n ≤ 2d nodes by two sub-trees, the number of nodes in each individual tree will be reduced by
a factor of 2 in comparison to a single tree and the maximum distance between the root node
and the other nodes will be reduced to d −1 hops.

A similar approach can also help for the second use case. As described in Section 1.4.4, ap-
plications following the MPMD scheme are running different executables concurrently. This
leads to different load sequences of DSOs between these sub-partitions of the application.
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With a forest of trees where each partition maintains its own sub-tree, the load phases of the
sub-partitions can be separated. Figure 5.9 (left) demonstrates this optimization for an appli-
cation that is divided into three partitions running three different executables. A tree root node
is then responsible for the requests of only one executable. DSOs and metadata related to the
load sequence of this executable are only distributed inside the tree attached to this root node.
Compared to a single tree, not only the traffic is separated, also the maximum distance will be
reduced by one. This is because a common root node at the top level can be omitted. Tree-
to-tree communication is only necessary to a small extend. Therefore, nodes do not need a
direct connection to other trees. Instead, only the root nodes of the subtrees will be connected
together, for example, with a ring topology.

Third, a flexible network topology for the overlay network gives also advantages on HPC
communication infrastructures that uses a 3D- or 6D-torus network. One example is the 3D
network of the Cray system, where some of the nodes are selected as I/O routing nodes, which
have a direct connection to the file system network. An optimized Spindle network topology
would take advantage of this and would select those Spindle load servers as tree root nodes that
are on one of the routing nodes or at least close to the routing nodes. Additionally, the nodes
could be arranged inside the tree according to number of network hops to the file system.
This metric is hardware-related and can be obtained, for example, by the front-end node at
application startup. Generally, this approach adapts the overlay network topology of Spindle
to the hardware network topology of the HPC system which the application is running on.

5.7.1 Variable network topologies

The bootstrapper COBO implements a single binomial tree topology. The variable network
topologies as described in the previous section cannot be implemented by using this soft-
ware layer. Therefore, a new software layer named MSocket was designed as an alternative
approach, which allows Spindle to use different network topologies. It implements a fully
configurable self-bootstrapping overlay network within the Spindle framework, which allows
a free and dynamic definition of the network topology. Similar to COBO, MSocket uses inter-
nally TCP/IP sockets to implement point-to-point communication channels.

The flexible topology definition of MSocket is given with two functions, which have to be
specified for each desired topology. The first function will be called at the beginning of the
bootstrapping process. It receives a host list of all nodes and computes a connection list,
which contains a number of rank pairs, describing each a bi-directional connection in the
topology. The rank order given by the host list is obtained on the front-end node or defined by
an external layer like LaunchMON. The second function is called during runtime and supports
the resolution of routing destinations.

The bootstrapping with MSocket is implemented as follows: Each load server is opening a
listening port to receive new connection requests. At the beginning of the startup phase, the
front-end node connects to the first load server and sends the full contents of the host list to
this load server. This server will then compute the connection list using the provided dynamic
function. After that, the server will compute for each rank its direct connections to other
servers and submit messages containing this information to the other servers. Each load server
will establish the connection to the adjacent servers as soon as the content of the message is
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available. After establishing the connection, the servers are able to route messages according
to the results of the provided dynamic routing function. This function has to decide for each
message that is not intended for the load server itself to which adjacent server the message
has to be forwarded. The function should be able to decide this based on the rank numbers of
source node, destination node, and local node.

For example, to implement the binomial tree topology, the connection list can be computed in
a similar scheme as the insert operation of priority queues with underlying binomial trees. The
insert operation guarantees that keys of the child nodes and its sub tree are larger than the key
of the node itself. With this ordering, routing can be decided based on the rank of the child
nodes and the destination rank: The message will be forwarded to the child with the largest
rank that is smaller than the destination rank.

5.7.2 Optimization for Blue Gene/Q architecture

The network topologies based on COBO and MSocket are connecting load servers together.
However, the special hardware and system configuration of some large-scale HPC systems do
not allow running such a load server on each compute node. One example is the Blue Gene/Q
system, where the compute nodes are driven by the reduced Linux kernel and are not equipped
with local disk storage. Further, a local RAM disk is also not available on compute nodes
and most of the I/O-system calls are forwarded to the I/O nodes. As seen in Section 2.3.3,
GPFS supports dynamic loading in a way similar to Spindle: GPFS maintains a big memory
cache (page pool), which caches not only files but also metadata information. However, such
aggressive caching is not given on BG/Q systems with a Lustre file system. As learned during
the tests on Linux clusters with Lustre, metadata requests are forwarded to the Lustre metadata
server, which will become a bottleneck at large scale. Therefore, it is expected that dynamic
loading on BG/Q with Lustre file systems will have a limited usability. Hence, Spindle is
adapted to BG/Q systems as well to support dynamic loading from Lustre file systems.

Due to the limitation on the compute-nodes, Spindle’s load server cannot run there. Instead,
the load server has to run on the I/O node, which operates a full Linux kernel. However, the
number of tasks, which are running on the assigned compute nodes and send requests to the
load server on the I/O node, can grow up to 8k processes. The runtime system of Blue Gene/Q
addresses this bottleneck by using multiple threads for the I/O daemons on the I/O node to
handle the high load of I/O requests. Although this would be possible for Spindle, the load
server is not designed as a multi-threaded version of the load server. One reason for this deci-
sion is that a multi-threaded daemon would compete with the other daemons on the I/O nodes.
Another reason why multi-threading of the daemon is not needed is that Spindle can already
take advantage of that typically the processes of SPMP and MPMD programs will start the
same executable on one compute node and issue therefore the same sequence of requests for
DSOs. So, at least look-up requests can be handled on the compute node locally by exchanging
the information directly between the client adapters. Figure 5.10 illustrates how the additional
communication layer between the client adapters is implemented. The communication will
be established by using a shared-memory segment. The shared segment contains the table for
metadata information, which is already requested from the load server. Read and write access
to the table is protected by semaphores, in order to serialize the request handling among the
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different client adapters. The first client adapter that does not find a requested metadata entry
in the table will send a request for this metadata entry to the load server and will insert the
entry in the table as soon it arrives back on the compute node. The connection to the load
server is also shared between the client adapters. Therefore, requests are send only once to
the load server and the number of connections to the load server is. Compared to a Spindle
implementation without local communication, the number of connections is reduced in the
case of 8k processes/I/O node by a factor of 64.
Nevertheless, the dynamic loader reads library data furthermore directly from the file system.
The I/O calls that are issued by the dynamic loader will be forwarded to the BG/Q I/O daemon
on I/O node and executed there. Consequently, library file data of a requested DSO will be
transferred multiple times to the compute node. An implementation of a RAM disk on the
compute nodes would help only partially, because the runtime system has to be modified to
avoid that the I/O calls of the dynamic loader are forwarded to the I/O node.

5.8 Related Work

Spindle is not the first approach that addresses the problem of scalable parallel loading. In this
section, we discuss existing solutions to put the work on Spindle into context. The approaches
discussed here can be broken down into two categories: those that attempt to improve I/O and
storage technologies so that the existing, un-scalable loading algorithm will perform faster,
and those that attempt to tackle the root of the problem by modifying the loader to make
loading algorithm more scalable.

5.8.1 Parallel file system

A first optimization that can also be done on user level is to stage object code in parallel file
systems [45, 95] so that the loader can access it more effectively. This seems like a simple
solution to the loading problem. Modern parallel file systems are clusters themselves, which
combine multiple disks spread across their nodes into a logical unit. While parallel access to
a single disk does not scale well, parallel access to the array of disks scales to the number of
nodes in the cluster. Thus, parallel file systems like Lustre [95] significantly improve data-
parallel access to large data set files that are striped across the array of disks and where the
processes read different parts of the data set. Unfortunately, parallel loading does not exhibit
this access pattern.
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Parallel loading exhibits no data parallelism, as each process accesses the same, small files.
Worse, for library search, parallelism is needed for large numbers of metadata operations,
and parallel file systems typically have far fewer metadata servers than data servers. As a
result, the analysis of dynamic loading on parallel file systems shows that while they offer a
performance advantage over NFS when used with a traditional loader, they do not address the
fundamental scaling problem in the loader. Coordinating I/O operations in parallel among the
loaders themselves can easily outperform NFS or a parallel file system like Lustre.

As demonstrated in Section 2.3.3, GPFS performs besides file data caching also metadata
caching in a memory-based page pool. Therefore, less metadata operations like look-up of
files in a directory are directly accessing the remote file system server. GPFS implements also
replica of metadata blocks, which support parallel access to it. Instead of having one metadata
server responsible for all requests, each GPFS client can be the meta-node for a specific file or
directory. Therefore, requests are processed from different GPFS clients in parallel. However,
file look-ups operations in a directory from a large number of clients can also overload the
GPFS client that is responsible for the directory metadata block (cf. Section 1.2.3).

5.8.2 Caching and staging solutions

Many large-scale systems, such as IBM’s Blue Gene machines and more recent Cray XT
machines, have dedicated I/O nodes that sit closer to the compute nodes than the parallel file
system. A common approach for loading on these architectures is staging object code on these
I/O nodes and mounting the staging area on the compute nodes. This approach has been used
at Argonne National Laboratory (ANL) to accelerate the loading of Python applications on the
Intrepid Blue Gene/P machine. It is effective in speeding up the loading process, but it is not
transparent to users.

First, it requires application developers to stage their application in a custom I/O node image,
which can be tedious when there are large numbers of libraries. Second, users often cannot
easily determine which libraries an application needs to load. Most end users of Python, for
example, are not familiar with its standard libraries or with those that have DSOs that need
to be staged. Third, in some cases the library search path is not known until runtime, so it is
impossible to stage all DSOs that the application needs.

Cray uses DVS [52, 57], a proprietary I/O forwarding service, to make this process more
transparent. DVS forwards file operations via the DVS clients, running on the compute nodes,
to the DVS servers that have access to an NFS server using a hierarchy of caches along the
I/O forwarding path. However, this approach requires users to stage all application-shared
libraries to the dedicated NFS server, which can be tedious — similar to ANL’s approach.
Further, they do not exploit the full available parallelism of read-only dynamic load routines.
Caching directly in the loader is a more direct, coordinated, and scalable approach.

5.8.3 Peer-to-Peer solutions

Dosanjh, et al. propose a peer-to-peer (P2P) architecture for distributing shared libraries across
a network [24, 25]. The approach is similar in spirit to Spindle, in that it caches loaded libraries
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in a RAM disk and aims to satisfy most load requests within the HPC network to reduce file-
system load. The approach has the potential for high-bandwidth file distribution, as it is based
on the BitTorrent protocol. The authors share the vision of a high-availability parallel loading
service; their architecture integrates a loading daemon with the OS. The proposed design
requires users to specify all library dependencies in a job description so that they can be seeded
to the compute nodes for P2P sharing. This requires, as do the techniques in Sections 5.8.1
and 5.8.2, that users know all library dependencies of their application and specify them in
advance. Spindle optimizes the case where dependencies are known in advance, but it is still
efficient when dependencies are not known until runtime. In addition, the proposed approach
does not address the metadata storm resulting from large-scale application startup. The authors
mention that initial seeder processes must handle the first set of requests for libraries as well
as a large number of stat calls issued by the dynamic loader. However, they do not discuss a
coordinated I/O strategy that would allow these seeders to satisfy millions of requests quickly
for each job launch. The authors mention distributed hashing techniques, which are promising
for scalable P2P loading. These problems are addressed in Spindle with a low-latency tree-
based architecture, and by using the rtld-audit interface to modify the loader’s behavior. The
Spindle approach does not require OS daemons and runs entirely in user space.

Solutions that modify the loader

The collfs library [14] developed jointly by ANL and the King Abdullah University of Science
and Technology (KAUST) provides a scalable dynamic loading service for Python applica-
tions. The library allows one process to load libraries, which are broadcast synchronously
to the full system. This solution customizes the GNU loader and the Python runtime to use
MPI to load libraries. This approach is effective and can drastically speed up many Python
programs, but the implementation changes the semantics of loading by requiring that it has to
be synchronous. When used this way, some Python programs will require modification so that
all loads are performed at the same time, otherwise programs may deadlock.

The Spindle solution handles asynchronous loads of different libraries as well as synchronous
loads of the same DSO. The library collfs is a good example of how coordinated I/O can speed
up loading, but its synchronous semantics and application-specific nature limit its use. It also
has technical limitations for system-wide use: it requires a modified version of glibc, which
makes it very difficult to install. In contrast, Spindle uses the rtld-audit interface, which allows
Spindle to intercept GNU loader actions without requiring direct modifications to the loader
itself. collfs also relies on the MPI library, which is not always available at runtime. Spindle
works with any programming model for large-scale systems.

5.8.4 Loading as a parallel service

Parallel loading is an example of a case in which a sequential solution applied by each of P
processes does not yield good parallel performance. The key observation is that most pro-
cesses request the same objects from the file system, or at least objects that have also been
loaded by nearby processes. Rather than accessing the remote file system each time a file is
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needed, the likelihood that a neighbor has already requested the file should be exploited. Thus,
I/O can be coordinated to distribute files much more efficiently and the stress on the limited
file system resources can be reduced.

Alternative techniques, like DVS (discussed above), attempt to increase the level of I/O coor-
dination transparently at the file-system level while keeping loader behavior fixed. These tech-
niques have the advantage of maintaining existing abstractions, such as POSIX I/O, which are
familiar to users of Unix-like operating systems and which make sense in a sequential environ-
ment. However, the strict semantics of such abstractions can limit their scalability in a parallel
environment. As an example, POSIX file I/O semantics disallow caching of failed open calls,
forcing every library search query to go all the way to the file system. Further, traditional
file I/O abstractions are oblivious to the type of data being transferred, which precludes many
parallel optimizations.

In the Spindle approach, the abstraction is raised to the level of the loader, which allows the
loader to perform its own coordinated I/O. Thus, it can exploit the knowledge about the files
in parallel use. Object code is nearly always read-only and further ample parallelism exists
in parallel loading. The performance advantages of exploiting both of these characteristics
are too great to be ignored in a parallel environment. For this reason, it is a recommendation
that the loader architecture has to be changed for parallel machines. Spindle represents a
significant step towards such a truly massively parallel loading service architecture.

As described, Spindle implements a new approach for supporting dynamic loading at large
scale, which does not require changes to system software or hardware. Further, executables
do not have to be re-compiled or re-linked to be supported by Spindle. The next chapter will
show results of measurements with Spindle, which demonstrates its scalability.
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As described in the previous chapter, Spindle is designed to reduce the load time of parallel
applications that make extensive use of DSOs. To verify this as well as to show the scalabil-
ity of the described approach, Spindle was tested with two benchmarks, which are running
automatically generated codes that load DSOs at program start or during runtime. The first
one is CLoadtest , a benchmark that generates a pure C-code program and library sources.
The second one is the synthetic benchmark named Pynamic [61], which is co-designed to-
gether with a real application at LLNL to emulate its behavior in a proxy benchmark. The
first benchmark program was evaluated on the JSC system JUROPA and was used for the ini-
tial performance studies on JUQUEEN; the second one was tested on the Sierra Linux cluster
installed at LLNL. The following sections introduce both benchmark programs and present
the results running these benchmarks on the two systems JUROPA and Sierra. Finally, the
memory footprint of Spindle is discussed.

6.1 Simple Loader Benchmark

Essentially, the simple loader benchmark CLoadtest is a code generator, which produces the
benchmark code and the corresponding libraries. The main program and the libraries are
generated with pure C-code and have to be compiled before running the benchmark. In this
simple benchmark, dynamic loading is only tested for DSOs that are directly linked to the
main program. Therefore, only measurements of the application startup phase are possible.
Configurations that are more sophisticated like DSO loading at runtime are tested with the
Pynamic benchmark, which is described in the next section.

As depicted on the left of Figure 6.1, the code generator can be configured with a number
of input parameters: the number of libraries, the code size, the number of functions in a
library, and number of C source code files for each library. This set of parameters allows the

Code-
generator

- # libs
- # code size
- # functions
- # C-files/library driver_main.rts

main:

…

DSO:     lib_001.so

function_001()

…

function_002()

function_<n>()

function_003()

…

Makefile

Figure 6.1: The code generator of CLoadtest creates the benchmark program and the DSOs.
Libraries and main program are compiled from pure C-code sources.
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benchmark to test different aspects of the dynamic loader. For example, on the one hand,
large numbers of libraries produce high load on the metadata servers. On the other hand, large
code size will generate large library files, which require high bandwidth to the file system
(or Spindle caches) during program startup. The third parameter describes the number of
functions in each library file. The main program calls only the first function of each library
directly. A cascading call tree links together the remaining library functions, so that at the end
each function was executed once. The code generator can produce large C files, depending
on the selected values for code size and number of functions. To limit the file size and the
time to compile a library, the code generator splits the library’s source code into multiple files.
The number of C files per library is therefore an extra input parameter. In addition to the code
files, the generator produces a Makefile, which is used to compile all libraries and to generate
the dynamically linked program executable. For comparison, the Makefile produces also a
statically linked program executable.
The benchmark CLoadtest was used for initial measurements of traditional dynamic loading
on JUQUEEN and JUROPA, as described in Section 2.3. In addition, it was also used to eval-
uate Spindle’s performance on the JUROPA system (cf. Section 6.3). Especially, the simple
approach of using only libraries with automatically generated C-functions without external
dependencies, made it easy to port and run the benchmark on these systems. Furthermore, it
has excluded external sources that could interfere with the measurements (e.g., external library
files on other file systems or the load of additional files) and therefore, it represents a low-level
benchmark for dynamic loading.

6.2 Pynamic

Pynamic is a more advanced benchmark. It supports a configurable emulation of dynamic
loading in Python-based applications on massively parallel systems [61]. In this way, Py-
namic is a proxy application that closely models the behavior of Python-based multi-physics
applications, as they are used on the LLNL systems.
The benchmark uses the scripting language Python together with a parallel MPI environment
(pyMPI [71]). Similar to the previously described simple benchmark, it uses a code gener-
ator to create the Python driver script and DSOs for function libraries and utility libraries.
Functions from the first type of libraries are called by methods of the corresponding Python
modules. The second type of libraries takes into account that real-world applications often de-
pend on external libraries, which, for example, provide functions for mathematical or physical
algorithms. Pynamic has a set of input parameters, which allow users to configure and generate
arbitrary numbers of dynamic Python modules and utility libraries of an arbitrary size (cf. Fig-
ure 6.2). The number of functions per library is specified as an average value over all libraries
and the generator uses randomization to vary this number for individual libraries. Each library
has one entry function, which is called by the main driver. Depending on the call depth d,
which is an input parameter of Pynamic, the entry function will call every dth function directly;
all other functions are called in a cascading chain from there. In addition to this internal de-
pendency, the library function will also call randomly functions from the set of utility libraries.
The main program of the benchmark is a Python script that first imports all library modules
and afterwards calls the entry function from each module. The library modules are defined in
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Code-
generator

- # libs
- # utility libs
- avg. # fncts
- seed value
- call depth
…

driver.py

call entry-fncts

import modules

…

DSO:        lib_001.so

entry_fnct()

… ……
fnct_<0*d>()

1 2 d

DSO: util_001.so

…

…
DSO: util_<u>.so

…

…

…

……
fnct_<n*d>()

1 2 d

Module: mod001.py

Figure 6.2: The Pynamic code generator creates the Python driver script and the DSOs. In ad-
dition, Pynamic generates also a set of utility libraries. Their functions will be called randomly
from the functions of the DSOs.

stand-alone Python files, which have the file name suffix .py. Internally, Python will look up
these files with a similar scheme like libraries, for example, by using a Python search path.
After reading the module file, Python will also load the corresponding DSO itself. As an
additional action on file system, Python will call the stat function on the library file before
loading it. As a result, Python generates multiple I/O requests per library, which Spindle has
to handled to improve load performance.

The overall measurement results of Pynamic includes three performance metrics, which cap-
ture three phases of real world applications using dynamic loading and linking. These are the
startup time for the initial executable and library loading, the module-import time for sym-
bol resolution, and the visit time for executing the library functions at runtime. Spindle can
reduce the duration of the first two phases in which the program will interact with the file sys-
tem. However, Spindle cannot change the overhead of process-internal activity like symbol
resolution in the third phase. Because Spindle influences the first two Pynamic phases and
does not influence the operations in the third phase, the overall runtime of Pynamic was taken
as measurements result in the following sections. Pynamic was used for measurements on the
LLNL cluster Sierra (cf. Section 6.4).

6.3 Scaling Spindle on JUROPA

JUROPA [55] was until recently the general-purpose Linux cluster at the Jülich Supercomput-
ing Centre. In 2015 the cluster was replaced by the successor system JURECA [54], which
is also a general-purpose Linux cluster. Access to the cluster is provided to scientists of
Forschungszentrum Jülich, at universities, and at research laboratories in Germany and Eu-
rope. It is a resource for small to mid-scale jobs and is in this way complementary to the Blue
Gene/Q system as JSC, which is designated to large-scale computing jobs. JUROPA consists
of 3288 compute nodes, each equipped with a 2-socket Intel Xeon X5570 CPU (2.93 GHz,
Nehalem) and 24 GiB of RAM. The nodes are connected with Infiniband QDR with a non-
blocking fat tree topology. On JUROPA, Lustre is used for the scratch and home file systems
running together on 14 OSSs within the same interconnect. Therefore, the file systems can be
accessed directly over the Infiniband interconnect without using Lustre-specific LNET routers.
The scratch file system has 120 Object Storage Targets and a maximum bandwidth of about
50 GiB/s.
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All of the following measurements were performed on JUROPA during normal production
time. This means that the file system and the interconnect were shared with other jobs during
the benchmark runs. Therefore, the measurements were repeated at least three times and the
best value was selected. Indeed, with this test scheme, the results showed a variation of load
timings, which can be explained with the shared usage of the cluster and the file system.
In addition, the JUROPA system does not allow resetting local Lustre memory caches from
within a job. Thus, it can be assumed that in the subsequent test runs most of the file data is
already available in memory caches. In the first test run it can not be determined how many of
the required files are already stored in the memory cache. This is a further reason to select the
best of multiple test runs and not the first one. In the next section, we show measurements on
the LLNL Sierra cluster, which allow the caches to be cleared at job startup.

The simple loader benchmark was run on JUROPA on up to one third of the system size
(1024 nodes) with eight tasks per node in different configurations. Figure 6.3 shows the re-
sults for the first test with 710 DSOs and a total library size of 32 MiB. Each library defines
three library functions. As already explained in Section 2.3.2, the tests on JUROPA were de-
signed to measure the metadata overhead by using a large number of library files. The first
graph (Dynamic) shows the initial measurements of dynamic loading without acceleration with
Spindle. The time to load the benchmark executable grows linearly with the number of nodes.
Therefore, these test runs were stopped at a size of 4096 MPI tasks (512 nodes). As explained
in Section 2.3.2, the main reason for this behavior is the serialization of parallel accesses to
the Lustre metadata server (MDS). The next curve (Static) shows the load time of the statically
linked executable. As expected, the load time is very small and increases slightly to 14.3 sec-
onds. Due to the small size of the executable and the simple main program, this curve reflects
the system overhead of the initial startup, the MPI initialization, and termination phase. With
Spindle support, dynamic loading could be tested on up to 8192 MPI tasks (1024 nodes). The
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Figure 6.3: Results of CLoadtest benchmark runs on JUROPA loading a statically linked pro-
gram or a dynamically linked program without and with support of Spindle and preloading (8
tasks per node, 710 libraries, 32 MiB library data).
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results show that the load time increases slightly with the number of tasks and remains below
42 sec at the largest scale tested. It is noteworthy that dynamic loading with Spindle support
performs at a scale of 4096 MPI tasks (512 nodes) more than ten times faster than traditional
dynamic loading.

The last curve (Spindle Preload) of Figure 6.3 shows the load time of CLoadtest when using
Spindle and bulk preloading (cf. Section 5.5). The name and path information of required
DSOs was extracted with the Unix-tool ldd from the binary file and was passed to Spindle
at program start. Spindle then submits the list of libraries to the Spindle servers, which load
in this case the libraries to local caches in advance. With this optimization, the load time has
been reduced by a factor of 1.7 to a load time of 24 seconds at the largest test scale. For
both tests with Spindle, the default push model was used. In this case, the top-level Spindle
server transfers all library data directly to its children, without waiting on children requests for
libraries. Therefore, the data flows down the tree topology directly to the leaf nodes. Without
preloading, the top-level server has to wait for a load request for a library from one of the
assigned Spindle clients before it can read and transmit the library data. As a result, data
transmission is interleaved with the client interaction, which can cause additional waiting time
between the transmission steps. In contrast, Spindle with preloading performs all read and
transmit operations beforehand in a sequence, which is not interrupted by client interaction.
Afterwards, all load requests of Spindle clients can be fulfilled directly by redirecting the client
to local copies of the requested libraries. These operations are local to the node and therefore
do not lead to additional waiting time.

The remaining extra time of dynamic loading with Spindle and preloading compared to load-
ing a statically linked application is most likely caused by the symbol resolution, which has to
be done in the case of dynamic loading during runtime instead of a symbol resolution at link
time for static libraries. Another factor is the additional overhead of the so-called hostbin

startup of Spindle on JUROPA. The mpiexec command of the MPI implementation does not
support the MPI R interface. Therefore, Spindle cannot use the LaunchMON framework to
start the Spindle servers on the application nodes. Instead, Spindle has to start first for each
application process a small hostbin executable, which then in turn starts the Spindle server
and the application process.

In a second test, the benchmark program was run with a set of libraries with different sizes to
determine how the amount of library data affects Spindle. The previously described issue of
Lustre caching on local nodes can be ignored in this case: Spindle reads library data only on
one node from the Lustre file system, whereas all other nodes get their data via interconnect
from this node without file-system interaction. Figure 6.4 shows results of the measurement
for overall library sizes from 5 MiB to 1.1 GiB using the four different load schemes. The
number of libraries and the number of library functions remain unchanged compared to the
previous test. As expected, the size of the executable does not influence the time for loading
the statically linked executable and for traditional dynamic loading. The observed variation
of load timings is most likely due to the influence of activities of other jobs on the system.
Even with the local caching of library data, the load time for the traditional dynamic loading
increases significantly with the number of tasks, which is independent of the library data size.
This indicates again that look-up operations of the Linux loader are the main bottleneck on
the metadata server. Both measurements with Spindle support indicate that the overall library
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Figure 6.4: CLoadtest benchmark on JUROPA with varying library sizes and different load
schemes (8 tasks per node).

size does not directly influence the load time. Similar to the previous test with small library
sizes, the variations of the load timing are much larger without preloading than the timings
with bulk preloading. One exception is the measurement with a total library size of 1.1 GiB.
Possible reasons are limitations of the capacity of memory cache and the saturation of network
traffic on individual links of the interconnect. In the latter case, a mapping of the Spindle tree
topology of the overlay network onto the interconnect topology (fat tree) would help, which
will be a topic of future investigation.

The results of both tests on JUROPA demonstrate that Spindle enables dynamically linked
applications to run at large scale. Especially, Spindle solves the metadata bottleneck of the
parallel file system Lustre when performing large number of file tests in parallel.

6.4 Scaling Spindle on Sierra

The Sierra Linux cluster is utilized at Lawrence Livermore National Laboratory as a work-
horse for solving computationally intensive problems. It is equipped with 1,856 compute
nodes. The nodes have a 2-socket Intel Xeon EP X5660 CPU (2.8 GHz, Westmere) with 12
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cores and 24 GiB of RAM. Nodes are connected by a Qlogic Infiniband QDR interconnect.
Two file systems are available on Sierra: NFS and Lustre. NFS is used for the home file
system and Lustre is used for scratch data space. Similar to JUROPA, all tests ran within the
normal production environment, the system was shared with other concurrently running jobs.
Therefore, measurements were repeated multiple times, and results were taken from the best
run. In all of these tests, Pynamic was configured to load 495 shared objects, a total of 1.1 GB
of library files.

In the first test, the Pynamic benchmark was run without Spindle and with loading libraries
from NFS. As shown in Figure 6.5, the overall runtime increased rapidly. The measurement
was stopped at a small scale (< 1200 processes) to prevent an I/O storm, which would have
affected other users on the system. The runtime increased more than linearly. The poor parallel
support of NFS can explain this.

As described in Section 5.8.1, a parallel file system is better suited for the types of file oper-
ations used in Pynamic. Therefore, the same test was run on Sierra with loading library files
from the Lustre file system. Figure 6.5 shows a nearly linear growth in the runtime on Lustre,
which allowed to run the tests on up to 6,144 processes (512 nodes). The linear scaling of these
runs shows significant improvement compared to prior experiences with Lustre on Sierra. Pre-
sumably, the relatively recent enabling of read caches on the Lustre servers is the reason for
this behavior. Further improvements could be expected if Lustre was better configured for
the type of I/O access pattern associated with Pynamic (small files and high metadata rate),
although this is not the typical file access pattern for HPC file systems (large files and data
parallelism). The measurements show that Lustre could be a partial solution to the loading
problem, but only up to a moderate number of processes. The Lustre performance was already
starting to degrade at these scales, and would likely have suffered more at larger scales.
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In the third test case, Pynamic was run with Spindle, with libraries hosted on the NFS file
system. As shown in Figure 6.5, Spindle allows Pynamic to be run at the largest allocation
size on Sierra, with 15,312 processes distributed over 1,276 compute nodes. Spindle reduced
the overall Pynamic runtime to 276 seconds. This is faster than the NFS test with 64 nodes
and the Lustre test with 256 nodes.

Spindle allowed to run Pynamic at a significant larger scale. However, there is an unexpected
growth in the total runtime, from 81 seconds at a small scale to 276 seconds at higher scales.
Pynamic’s built-in timings did not help to distinguish whether this increase in time was due to
poor scaling in Spindle or whether it was part of Pynamic’s internal activity. To get a better
understanding of this effect, tests were repeated using the bulk-preloading feature of Spindle,
which separates the library load process from the benchmark execution (cf. Section 5.5). In
this mode, the front-end process reads the list of prerequisite libraries and instructs the load
server to load them into their caches before Pynamic starts. This allows the time for Spindle
data distribution to be measured separately and not as part of the Pynamic overhead. Figure 6.6
shows the results of this measurement. The time for bulk preloading seems constant, although
in theory it should show logarithmic growth. The maximum number of message transfer hops
from the root node to the leaf nodes in the tree topology of Spindle overlay network grows
from eight hops at 128 nodes to twelve hops at 1,276 nodes (cf. Section 5.4). Furthermore,
the Spindle tests at larger scale were performed with multiple hand-coded trees, which limited
the depth of each individual tree and the time to broadcast data (cf. Section 5.7). Given
that the total Pynamic runtime continued to grow, even with all files pre-staged to the RAM
disk, it can be concluded that this growth is caused by other internal activities of Pynamic.
Besides the communication as one of the possible reasons, a stat system call is issued in
the Python module loading process for each library, which accesses, similar to the open-calls,
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the file system too. In the meantime, Spindle has been developed further and in the current
version the Spindle clients handle also these calls. Unfortunately, the measurements, which
were performed in the first development phase, could not be repeated with the new version of
Spindle due to operational access restriction on Sierra.

6.5 Memory overhead of Spindle

As discussed in Section 5.3.2, the Spindle memory overhead depends on the portion of code
pages that an application normally maps into memory. Spindle causes the application to use
memory as if 100% of its code pages were always resident. This overhead was measured on a
single node of the LLNL cluster Sierra using Pynamic, configured to load 495 libraries, which
produced an application with 488 MiB of loadable code. To do this, the version of Pynamic
used was modified to touch a certain part of its memory pages artificially, loading them into
its working set. This allowed to compare Spindle memory overheads for different working set
sizes. The amount of memory used was measured by running Pynamic, writing data to each
page and then checking how much memory could be allocated before the system began paging
out in order to make room for the new allocations.

Figure 6.7 illustrates two aspects of the memory overhead of Spindle. First, it shows that the
memory overhead is predominately a factor of the application’s working set size. In the cases,
where the application has only a small working set, Spindle loads many unneeded pages into
memory via the RAM disk and produces an overhead in the order of the application’s size. In
the cases, where the application actually uses most of its code, the RAM disk shares most of
its physical memory with the process and the amount of memory available does not change
significantly. Second, Figure 6.7 shows that the memory overhead of the client and server
is relatively small. The data point at 100% represents the case where the RAM disk mem-
ory is completely shared with the virtual memory of the process. The remaining overhead of
15.2 MiB is approximately equal to the memory used by the client and the server.
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7 Conclusion & Outlook

This chapter summarizes the concepts and techniques for parallel task-local I/O and the load-
ing of dynamically linked applications developed in this dissertation. Furthermore, the current
states of the two tools SIONlib and Spindle, which implement these techniques, are discussed.
Finally, the chapter provides an outlook for each approach and speculates about further devel-
opment based on the results of this work.

Task-Local I/O with SIONlib

The first part of this dissertation addresses a common scalability problem of traditional parallel
task-local I/O on large-scale systems: the very high overhead of file creation and the difficulty
of managing excessive numbers of files. These limitations have motivated the development of
the I/O library SIONlib. It solves the two problems by transparently mapping a large number
of task-local files onto a very small number of physical files and by implementing a method
to handle internal metadata. In this way, the time needed for the parallel creation of hundreds
of thousands of task-local files can be reduced from several minutes to just a few seconds.
With the introduction of shared file I/O, new challenges appeared. For example, to avoid con-
current access to file-system blocks, which results in file-locking overhead, SIONlib aligns
data chunks to the boundaries of these file-system blocks in its internal data format. Further-
more, the parallel access to a shared file creates another metadata bottleneck at larger scale.
To address this, SIONlib implements a multi-file approach, which separates tasks of parallel
applications into smaller sub-groups; each creating its own shared file to distribute metadata
management across multiple I/O components. This approach could serve as one of the key
solutions to the implementation of high scalable I/O on exascale systems.
As demonstrated with benchmarks and application scenarios, the approaches described in this
dissertation enable applications, with the support of SIONlib, to perform task-local I/O up to
a scale of 1.8 million tasks. This is achieved while maintaining a high bandwidth of 60-80 %
of file-system peak bandwidth without paying the penalty of long file creation times. A final
key advantage of SIONlib is that it operates fully in user space and requires very few source
code changes in applications to make use of the library. To allow a broad range of applications
to take advantage of SIONlib, a fully documented version has been made available to the
community for download under an open-source license [85].
Additional features of SIONlib address special use cases of parallel task-local I/O. For exam-
ple, the coalescing I/O feature enables those applications that write and read small data blocks
from a large number of tasks to benefit from SIONlib. As demonstrated with the evaluation of
parallel task-local I/O in the application MP2C and also recently with the KKRnano code, ap-
plications with such small I/O requirements per tasks benefit considerably from this approach.
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Further new features of SIONlib, such as the support for key-value containers and the process-
ing of SIONlib files from parallel programs with a different number of tasks (mapped open),
enable parallel tools like Scalasca, Score-P, and Vampir, which perform internally task-local
I/O, to benefit from the approaches of SIONlib.

Shared I/O to a file container as implemented by SIONlib imposes some restrictions on the
application. For example, the maximum amount of data written or read in one piece has to be
known in advance. This restriction can be lifted with the planned changes to SIONlib API in
the next major release. The use of the write and read wrapper functions will be mandatory.
This will improve the management of data blocks within the file container considerably. An-
other limitation of the SIONlib file layout is that the maximum number of tasks must always be
known in advance. This is especially challenging for dynamic process management. SIONlib
addresses this restriction by using key-value containers, which allow the library to store dif-
ferent data segments in a file container without any limitation in number. Since currently only
parallel tools require this feature, it has to be analyzed whether parallel applications can also
benefit from key-value containers. If so, additional optimization and adaptation of this feature
for use in parallel applications may be needed. The technique of using multiple physical files
for a file container also enables the use of node-local or partition-local storage for managing
these files, namely because SIONlib does not require a global name space. For example, this
allows users on the K computer to exploit local storage in its file system. More evaluation of
SIONlib on such I/O architectures will be undertaken in the near future.

Further work on SIONlib within the EU project DEEP-ER [88] will add functionality to ex-
ploit local storage for efficient checkpointing. This allows, in combination with the multi-level
checkpoint library SCR [73], to establish higher levels of resiliency. SIONlib is already in-
tegrated into a number of applications, including the mesoscopic hydrodynamics code MP2C
[30, 89], the parallel coulomb solver PEPC [39], the highly scalable program muphi [92] for
simulation of flow and transport in porous media, and the simulator for spiking neural network
models NEST [81]. The integration of SIONlib into further applications will continue within
the EU project EoCoE (Energy-oriented Centre of Excellence), which started in October 2015.
As the number of large-scale applications that use SIONlib for parallel task-local I/O grows,
SIONlib is gaining further attention. One recent example is the report ”Storage Systems and
Input/Output to Support Extreme Scale Science” sponsored by the US Department of Energy
(DOE), which already cites SIONlib as a state-of-the-art I/O library [77].

Putting this work in a broader perspective, we believe that the observations regarding the
scalability of traditional parallel task-local I/O will raise the awareness of this problem in
the wider HPC community. Furthermore, we hope that the general ideas developed in this
work to implement a scalable solution for parallel task-local I/O will ultimately be adopted by
designers of standard file systems, I/O infrastructures, and high-level I/O libraries. SIONlib
represents in this way a reference implementation for efficient parallel task-local I/O.
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Dynamic loading with Spindle

The second part of this dissertation addresses the scalability of loading dynamically linked
applications. Dynamic linking and loading have gained recognition in HPC due to their ad-
vantages for managing growing application complexity. However, the mechanisms used to
load shared objects today do not scale to the level required by larger supercomputers. The
tasks of locating and then loading a dynamic shared object involve many file-system opera-
tions. When a large number of processes load many DSOs simultaneously, the resulting I/O
storm can disrupt even the largest parallel file system. As shown by experience, loading of
such applications does not scale further than 512 compute nodes on typical Linux clusters.
The main reason for this limitation is the serial design of the dynamic loader, a component
that searches and loads the dynamic libraries at program startup. These search and load oper-
ations are done independently by each process, although in parallel applications all processes
load a similar set of DSOs and the look-up and search operations occur during a short time
interval at program startup.

Spindle addresses these critical challenges by extending the dynamic loader to exploit the
similarity of load operations of parallel applications for the coordination of the file-system op-
erations. Therefore, three main techniques are applied. First, the look-up and load operations
of the GNU dynamic loader are transparently intercepted via the audit interface in user space.
Second, instead of operating on the file system, they interact now with the Spindle server,
which is running side-by-side with the application. Finally, an overlay network connects the
servers and in this way allows the implementation of a distributed cache for library files and
their metadata. Spindle is working transparently with applications and all components are
running in user space. In addition, modifications to the runtime system are not necessary and
users are not required to make changes to their applications or work flows. With the presented
techniques, Spindle reduces the number of file-system operations for a parallel application to
the number of operations for a single program. The experiments with two benchmarks on the
Linux clusters at LLNL and JSC, both equipped with a Lustre file system, show that Spindle
is highly scalable with limited memory and performance overhead. Although the implemen-
tation of these techniques is very new and some engineering efforts to port, optimize, and
customize Spindle are expected, it is imperative to provide Spindle to a broader range of plat-
forms and applications. Thus, Spindle is available to the community for download under an
open-source license [87].

Spindle is already capable of addressing scalability challenges in current production environ-
ments like the Linux clusters at LLNL and JSC and has no apparent scalability limit in sight.
The scalability of Spindle could be demonstrated by running the benchmark Pynamic, a proxy
benchmark for a real application on the Sierra cluster at LLNL at large scale. The results show
that the startup of dynamically linked applications is now feasible on more than 15,000 tasks,
whereas the overhead of Spindle is nearly constantly low. Similar results could be achieved
with another benchmark on the JUROPA at JSC. First experiments on the Jülich Blue Gene/Q
system JUQUEEN show that the GPFS file system together with the hierarchical infrastruc-
ture of Blue Gene/Q provides some kind of implicit caching of file metadata. However, as
indicated by measurements on JUQUEEN on a NFS based file system, this caching is not
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provided on non-GPFS systems. Therefore, the port and optimization of Spindle to the Blue
Gene/Q system with its hierarchical I/O infrastructure is the next step in the road map. Further
optimizations of Spindle will include the automatic reduction of data exchanged among load
servers. For example, Spindle could check whether a requested library is a system library.
System libraries may reside in a node-local file system, where caching is not needed. Finally,
it is planned to improve server efficiency through multithreading to allow local and network
operations to be performed concurrently.

Spindle implements a transparent solution for the loading of dynamically linked applications
at scale. Furthermore, Spindle represents a transient solution as it mitigates the limitations of
current system components, which were initially developed for a serial environment. Looking
at the complexity of future systems, the basic ideas and the architecture of Spindle will help to
pave the way for a massively parallel OS/runtime loading service for future exascale machines.
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Contribution to Publications

The work on the approach to improve parallel task-local I/O at large scale was begun in 2008.
The first version of SIONlib, which implements this approach, has been integrated into
Scalasca v1.0 [35, 93, 94]. The principles, the implementation, and first results were presented
in 2009:

Wolfgang Frings, Felix Wolf, and Ventsislav Petkov. Scalable Massively Parallel I/O to
Task-Local Files. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC’09, pages 17:1–17:11, New York, NY, USA,
2009. ACM. [33]

In 2011, further optimization and measurement results on the JUGENE system were reported
in the following paper:

Wolfgang Frings and Michael Hennecke. A system level view of Petascale I/O on
IBM Blue Gene/P. Computer Science - Research and Development, 26:275–283, 2011.
10.1007/s00450-011-0154-4. [32]

SIONlib is under ongoing development. The recently developed methods for mapped open,
storage of key-value pairs and the design of the generic interface are work within a BMBF
funded project on Score-P [59]. SIONlib is integrated into Score-P for applications run-
ning with different programming models and included in the latest available release of Score-
P (2015). Further development of SIONlib in the direction of resiliency will be done within the
EU project DEEP-ER [88]. SIONlib is already integrated into a number of applications, for
example, MP2C [89, 30], PEPC [39], muphi [92] and NEST [81]. The integration of SIONlib
into further applications will also be continued within the EU project EoCoE (Energy-oriented
Centre of Excellence, started Oct. 2015).

The research on the second approach to improve dynamic loading at large scale was begun in
2011 and was performed by the author during a research visit to Lawrence Livermore National
Laboratory (LLNL) in 2012. The developed methods were combined to create the tool Spindle
and benchmarked at this time. The results were published in 2013 and received the best paper
award of the ICS’13 conference:

Wolfgang Frings, Dong H. Ahn, Matthew LeGendre, Todd Gamblin, Bronis R. de
Supinski, and Felix Wolf. Massively Parallel Loading. In Proceedings of the 27th
International ACM Conference on International Conference on Supercomputing, ICS
’13, pages 389–398, New York, NY, USA, 2013. ACM, Best Paper Award. [31]

Since the research visit in 2012, the author has been working together with LLNL on Spindle.
One of the LLNL goals is to make Spindle to an easy-to-install open source project by adding
an automatic configuration and build system. In addition, LLNL added code to secure the in-
ternal communication. One of the future goals of the author will be to focus on communication
strategies for Blue Gene/Q.
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Glossary

ccNUMA cache-coherent Non-Uniform Memory Architectures.

CN compute node.

DSO Dynamic Shared Object.

ELF Executable and Linkable Format, used on most Unix-like systems to store program exe-
cutables.

ethernet channel or EtherChannel is primarily deployed on Cisco-switches. It aggregates
the available bandwidth of multiple physical ethernet links by grouping these into one
logical ethernet link.

false sharing describes a memory access pattern of multi-threaded applications on systems
with coherent cashes. It degrades the performance of such applications [10].

FEFS Fujitsu Exabyte File System, is scalable parallel file system based on Lustre and is
used for the K computer at Riken.

GiB gibibyte, 230 = 10243 bytes (cf. IEC 80000-13 [29]).

GNR GPFS native RAID feature.

GOT Global Offset Table.

GPFS General Parallel File System, is a commercial parallel file system from IBM.

GSS IBM System x GPFS Storage Server, which implements RAID functionality on software
level in GPFS.

HDF Hierarchical Data Format.

HDF5 Hierarchical Data Format (version 5).

ION I/O node, e.g. in Blue Gene/Q system used to forward I/O requests to the file system.

JSC Jülich Supercomputing Centre.

KiB kibibyte, 210 = 10241 bytes (cf. IEC 80000-13 [29]).

lazy binding describes the deferred symbol binding during runtime.

LLNL Lawrence Livermore National Laboratory.

Lustre is a open-source parallel file system for large-scale system, which implements a dis-
tributed object based storage.

MDS Meta Data Server, component of the Lustre parallel file system.

MDT Meta Data Target, stores metadata information about files and directories of the Lustre
parallel file system.

MiB mebibyte, 220 = 10242 bytes (cf. IEC 80000-13 [29]).

MIMD multiple instruction multiple data, execution model following Flynn’s classification
of parallel architectures [27].
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Glossary

MIMD multiple instruction multiple data.

MPI Message Passing Interface, a parallel programming paradigm, designed for distributed-
memory systems.

MPMD multiple program multiple data.

MPP parallel multiprocessor.

NFS Network File System.

NUMA Non-Uniform Memory Architectures.

obfds object-based disk file system, predecessor of the Lustre file system.

OpenMP Open Multi-Processing, a parallel programming paradigm, designed for shared-
memory systems.

OSS Object Storage Server, component of the Lustre parallel file system.

OST Object Storage Target, maintain a local files system to store data of the Lustre parallel
file system.

OTF2 Open Trace Format 2.

PHDF5 Parallel HDF5 library.

PiB pebibyte, 250 = 10245 bytes (cf. IEC 80000-13 [29]).

PIC Position-Independent Code.

PIOFS Parallel I/O File System, was designed for the parallel computer IBM SP2 and is the
predecessor of GPFS, a commercial parallel file system from IBM.

PLT Procedure Linkage Table.

RAID Redundant Array of Independent Disks.

RAID-6 Level 6 of RAID using block-level striping with double distributed parity.

RDMA Remote Direct Memory Access is often used in HPC network design to optimized
the communication between components of a HPC system. RDMA implements a one-
sided-communication and supports zero-copy.

SMP Symmetric Multi-Processor.

SPMD single program multiple data.

TiB tebibyte, 240 = 10244 bytes (cf. IEC 80000-13 [29]).

UMA Uniform Memory Architectures.

working set describes the pages of an application process, which are used during run-time
and are therefore stored in memory.
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[93] Brian J. N. Wylie, David Böhme, Wolfgang Frings, Markus Geimer, Bernd Mohr, Zoltán
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Efficient Task-Local I/O Operations of Massively  
Parallel Applications

Wolfgang Frings

On current large-scale HPC systems often occur I/O patterns that produce a high load on the 
file system during access to checkpoint and restart files. Applications running on systems with 
distributed memory will often perform such I/O individually by creating task-local file objects 
on the file system. At large scale, these task-local I/O patterns impose substantial stress on the 
metadata management components of the I/O subsystem. Such metadata contention occurs 
also at the startup of dynamically linked applications while searching for library files. 

The reason for these limitations is that the serial I/O components of the operating system  
do not take advantage of application parallelism. To avoid the above bottlenecks, this work 
describes two novel approaches which exploit the knowledge of application parallelism, the 
underlying I/O subsystem structure, the parallel file system configuration, and the network 
between HPC-system and I/O system to coordinate and optimize access to file-system objects. 
The underlying methods are implemented in two tools, SIONlib and Spindle, which add layers 
between the parallel application and the corresponding POSIX-based standard interfaces of the 
operating system, eliminating the need for modifying the underlying system software.

SIONlib is already applied in applications to implement efficient checkpointing and is also  
integrated in the performance-analysis tools Scalasca and Score-P to efficiently store trace 
data. Latest benchmarks on the Blue Gene/Q in Jülich demonstrate that SIONlib solves the  
metadata problem at large scale by running efficiently up to 1.8 million tasks while maintaining 
high I/O bandwidths of 60-80% of file-system peak with a negligible file-creation time. The  
scalability of Spindle could be demonstrated by running a benchmark on a cluster of Lawrence 
Livermore National Laboratory at large scale. The results show that the startup of dynamically 
linked applications is now feasible on more than 15000 tasks, whereas the overhead of Spindle 
is nearly constantly low.

With SIONlib and Spindle, this work demonstrates how scalability of operating system  
components can be improved without modifying them and without changing the I/O patterns  
of applications. In this way, SIONlib and Spindle represent prototype implementations of  
functionality needed by next-generation runtime systems.

This publication was edited at the Jülich Supercomputing Centre (JSC) which is an integral 
part of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation 
sciences and the supercomputer facility in one organizational unit. It includes those parts of 
the scientific institutes at Forschungszentrum Jülich which use simulation on supercomputers 
as their main research methodology.
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