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Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Untersuchung und Weiterentwicklung

praktikabler und mit vertretbarem Rechenaufwand machbaren Ab-initio-Methoden zur

zuverlässigen atomistischen Modellierung nuklearer Materialien. Hierzu wurde die Lei-

stungsfähigkeit von verschiedenen DFT-Funktionalen und DFT-basierten Methoden

(beispielsweise vom DFT+U -Verfahren) untersucht, die explizit die Elektronenkorre-

lation beschreiben, um damit die strukturellen und thermochemischen Eigenschaften

von lanthaniden- und aktinidenhaltigen Materialien korrekt beschreiben und vorher-

sagen zu können.

In früheren Untersuchungen wurde der Wert des Hubbard-U -Parameters, der beim

DFT+U -Verfahren erforderlich ist, oft nur erraten oder empirisch abgeleitet. Im Ge-

gensatz dazu wurden hier in jüngerer Zeit entwickelte Ab-initio-Methodenwie die ’cons-

trained Local Density Approximation’ (cLDA) und die ’constrained Random Pha-

se Approximation’ (cRPA) angewendet und intensiv getestet, um die Hubbard-U -

Parameterwerte aus den Grundprinzipien zu berechnen. Hierdurch wird die DFT+U

Methode zu einem echten parameterfreien Ab-initio-Verfahren. Unsere erfolgreichen

Benchmarking-Studien des parameterfreien DFT+U -Verfahrens zur Vorhersage von

Strukturen und Reaktionsenthalpien An- und Ln-haltiger Moleküle und Festkörper zei-

gen, dass die linear-response-Methode (cLDA) eine sehr gute Schätzung der Hubbard-

U -Parameter ermöglicht und konsistent mit den cRPA-Berechnungen ist. Insbeson-

dere konnte gezeigt werden, dass der Hubbard-U -Parameterwert, der die Stärke der

Coulomb-Abstoßung zwischen den f -Elektronen beschreibt, wesentlich von der Oxida-

tionsstufe des f -Elements, sowie auch von der Kristallstruktur der Materialien abhängt,

was bisher noch nicht im Detail betrachtet wurde. Es konnte gezeigt werden, dass der

verwendete Berechnungsansatz die Fehler der prognostizierten Reaktionsenthalpien si-

gnifikant reduziert, wodurch die Genauigkeit dieser Vorhersage vergleichbar mit den

Unsicherheiten rechnenintensiverer quantenchemischer Berechnungsmethoden höherer

Ordnung oder auch von Experimenten ist. Mit der entwickelten Methode wurden er-
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folgreich verschiedene, bezüglich der Langzeitstabilitätwichtige, thermochemische und

thermodynamische Eigenschaften potenzieller keramischer Abfallformen für, wie Mo-

nazit und Pyrochlor simuliert. Hierbei wurden insbesondere die Wärmekapazitäten,

die Exzessenthalpien der Mischkristalle so wie thermochemische Parameter der Pha-

senübergänge betrachtet. Die hier durchgeführte Benchmarking- und Anwendungs-

studien zeigen Wege für die Suche und Weiterentwicklung rechnerisch handhabbarer

Ab-initio-Berechnungsmethoden, für eine zuverlässige und aussagekräftige Simulation

von Materialien mit Relevanz für die Entsorgung radioaktiver Abfälle. german
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Abstract

The studies in this PhD dissertation focus on finding a computationally feasible ab

initio methodology which would make the reliable first principle atomistic modeling

of nuclear materials possible. Here we tested the performance of the different DFT

functionals and the DFT-based methods that explicitly account for the electronic cor-

relations, such as the DFT+U approach, for prediction of structural and thermochem-

ical properties of lanthanide- and actinide-bearing materials. In the previous studies,

the value of the Hubbard U parameter, required by the DFT+U method, was often

guessed or empirically derived. We applied and extensively tested the recently devel-

oped ab initio methods such as the constrained local density approximation (cLDA)

and the constrained random phase approximation (cRPA), to compute the Hubbard

U parameter values from first principles, thus making the DFT+U method a real ab

inito parameter free approach.

Our successful benchmarking studies of the parameter-free DFT+U method, for

prediction of the structures and the reaction enthalpies of actinide- and lanthanide-

bearing molecular compounds and solids indicate, that the linear response method

(cLDA) provides a very good, and consistent with the cRPA prediction, estimate of the

Hubbard U parameter. In particular, we found that the Hubbard U parameter value,

which describes the strength of the on-site Coulomb repulsion between f -electrons, de-

pends strongly on the oxidation state of the f -element, its local bonding environment

and crystalline structure of the materials, which has never been considered in such

detail before. We have shown, that the applied computational approach substantially,

if not dramatically, reduces the error of the predicted reaction enthalpies making the

accuracy of the prediction comparable with the uncertainty of the computational un-

feasible, higher order methods of quantum chemistry, and experiments. The derived

methodology resulted in various, already published, successful modeling of the impor-

tant, from the long-term stability point of view, thermochemical and thermodynamical

properties of the prospective nuclear waste forms, such as monazite- and pyrochlore-
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type ceramics. These include the heat capacities, the excess enthalpies of mixing or

thermochemical parameters of phase transitions, to name but a few. The performed

here benchmarking and application studies give a solid basis and paths for the quest

to find and design computationally feasible ab initio computational methods, which

would allow for reliable and meaningful simulations of materials relevant for nuclear

waste management.
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Chapter 1

Introduction

1.1 Nuclear waste management: current state and

prospects of atomistic modeling

Nuclear waste is a material that contains radionuclides with concentration larger than

certain clearance levels determined by national laws [1]. Being radioactive, it represents

a threat to the health of people and environment. Safe management of nuclear waste

is thus an important problem related to the safety of our and future generations. The

main source of the radioactive waste is the nuclear fuel cycle. Because in the year

2016, there are 437 operational nuclear reactors in 31 countries and 64 new reactors

are currently under construction [1], the amount of the accumulated nuclear waste will

increase in the future. Most of the nuclear countries utilize the open-nuclear fuel cycle

in which the spent nuclear fuel is not reprocessed and reused (the closed nuclear fuel

cycle is sometimes utilized [2, 3]) and the back-end of nuclear fuel cycle (called ”high-

level waste”) contains the long-lived actinide isotopes such as 238U, 235U, 239Pu, minor

actinides 237Np, 243Am, 244Cm, and the wide range of fission products [1]. The total

inventory of the high-level waste in storage around the world amounts to 2, 7 × 106

m3 [1], and by 2022 Germany alone will have 2, 8 × 104 m3 of waste which has to be

disposed [4]. In long-term safety analysis for deep geological disposal of spent nuclear
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Figure 1.1: Relative radiotoxicity over 106 years of spent nuclear fuel with burn-up of 55 megawatt
days/kg U of pressure water reactor with 4.5% UOX fuel. Actinides are depicted in blue and fission
products in red [6].

fuel or high-level radioactive wastes, some long-lived fission products (e.g. Se-79, I-

129, Cs-135) are the radionuclides dominating the biosphere dose, whereas Pu and the

minor actinides listed above require attention due to their high radiotoxicity (see Fig.

1.1) [5].

Although significant amounts of electric power in Germany has been produced by

nuclear power plants (17% in 2015 [1]), as a consequence of the Fukushima accident, in

May 2011 Germany decided to phase-out of nuclear power and to stop the operation

of all its nuclear power plants (except the research reactors) by the year 2022 [7]. The

accumulated spent nuclear fuel is scheduled for the direct geological disposal [8]. It

is the last step of the management of radioactive waste, during which the waste is

permanently disposed in deep geological formation.

In July 2013 Germany passed the Repository Site Selection Act and plans to start

the evaluation of the best final disposal candidate sites [9]. Some countries have

already decided on their nuclear waste disposal strategy and some also on the disposal

location. For example, Sweden and Finland plan to dispose their spent nuclear fuel

in the crystalline rock formations at Forsmark and Olkiluoto Island, respectively [10,

2



11]. In November 2015 the government of Finland granted the license to the expert

organization in nuclear waste management to build the disposal facility [12].

There is a consensus that before disposal, the radionuclides have to be safely stored

with various barriers preventing their potential migration and any possibility of their

dispersion into environment [1]. One such barrier is the waste form itself. It is con-

sidered to seclude the radionuclides into a stable, radiation-resistant material [1, 13].

There are several materials which are being considered for the immobilization of all

types of nuclear waste: glass, crystalline ceramics such as monazite and pyrochlore,

glass composite materials, cements, geopolymers, bitumen and metals [1].

However, the number of types of available materials with well characterized prop-

erties is very limited due to the lack of in-depth understanding of their behavior after

incorporation of radionuclides into their structures. The important materials prop-

erties, such as durability, radiations damage resistance or thermodynamical stability,

are mainly determined by the atomic-scale processes. Significant experimental [5, 14–

22] and theoretical [23–31] efforts and initiatives have been ongoing to characterize

properties of potential nuclear waste forms and investigate the mechanisms of their

interaction with the disposal environment. Atomistic modeling has been starting to

play an important role in these efforts, not only as an effect of increasing availability

of computing power, but especially because of no limitation as for the radiotoxicity

or form of the investigated materials, which, on the other hand, cause a significant

limitations of the experimental techniques [22].

The Nuclear Waste Management Institute (IEK-6) at Forschungszentrum Jülich,

Germany, performs fundamental and applied research focused on safe management of

nuclear waste. One of the main research scopes is the long-term safety of nuclear waste

disposal. Therefore, various aspects of this problem are investigated. These include

the corrosion of spent nuclear fuel [32], formation of secondary phases [33, 34], novel

nuclear waste forms such as ceramic materials [21, 19, 35] or solid state chemistry

of actinides [36, 37], to name but a few. Important new addition to these studies is

the utilization of the supercomputers and the state-of-the-art software that have been
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Figure 1.2: Growth of supercomputers performance (red - fastest supercomputer, green - supercom-
puter on 500th place, blue - combined performance of the 500 largest supercomputers). Data taken
from www.top500.org.

becoming extensively used for modeling of various atomic scale and reactive transport

processes.

Steady and exponential in time increase in the availability of computing power (Fig.

1.2) has made atomistic simulation methods a popular research tool in various research

fields [38–43]. Because of internal complexity of the quantum mechanical equations,

first ab initio simulations of complex materials, utilizing first principle methods of

quantum mechanics, were performed in the last decade of 20th century [44, 38]. The

steady increase in the popularity of these methods, which is related to the possibility

of simulation of more structurally and chemically complex systems with more power-

ful supercomputing resources, is reflected by the steady increasing number of relevant

scientific publications, as illustrated in Figure 1.3. There is no doubt that this trend

will continue in the future and that because of reasoning outlined in the previous para-

graph these methods will gain more popularity in actinide-science, including nuclear

waste management.
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Figure 1.3: Number of scientific publications published every year since 1985 to 2014 which mention
DFT. Data taken from ISI Web of Knowledge.

1.2 Current state of the atomistic modeling of f-

materials

In the last two decades the ab initio methods of computational quantum chemistry

have been successfully applied in many research fields [38]. Most of these studies where

performed using density functional theory (DFT) which is the most computationally

feasible method allowing for simulations of chemically complex systems (currently up

to a few hundred atoms). However, containing strongly correlated f electrons, lan-

thanides and actinides are the most challenging elements for computational quantum

chemistry methods. This is especially true for DFT, where its crucial approximations,

namely the exchange-correlation functionals, originate from the free electron gas limits

and the electronic properties of light elements. Because f electrons are usually packed

in large numbers on localized f -orbitals, the correlations between them resulting from

strong Coulomb repulsion are often not adequately captured by this method. In ad-

dition, different problems arise such as potentially strong relativistic and spin-orbit

effects or menagerie of different electronic and magnetic states [45, 46]. Although

DFT has been applied for computation of f -elements, including actinides [28–31, 47–
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49], various studies have shown that it can fail, even dramatically, for lanthanide and

actinide systems [29–31]. For example, it easily fails even on the qualitative level,

wrongly predicting metallic state for actinide oxides such as UO2 (which is a wide

gap Mott insulator) [29] (Fig. 1.4). On the quantitative level, the difference between

the enthalpies of reactions predicted by DFT and the measured ones, between various

uranium-bearing molecular compounds, are highly overestimated by ∼ 100 kJ/mol, a

value which is unacceptably large from the experimental and practical point of view

[24, 30, 50, 51]. This is especially unfortunate because ab initio methods could be pre-

cious in estimation of the thermodynamic parameters of actinide-bearing materials,

including potential nuclear waste forms.

Because of the failure of DFT, it is often proposed in the literature, that more

accurate, higher order, but much more computationally demanding methods of quan-

tum chemistry (eg. hybrid functionals [52], MP2 or CCSD(T) [53]) should be used

[30] in ab initio modeling of f -electron-bearing materials. Unfortunately, because of

bad scaling with the number of modelled electrons (N , scaling N4-N7) these methods

are in general unfeasible, and will remain so in the next decades, for computation of

large and chemically complex systems, which would prevent ab initio based simula-

tions of materials that are important for nuclear waste management. As an example,

computation of the electronic structure of a ∼ 100 atoms containing solid would take

half a year for hybrid functionals, 12 years for MP2 and 3 million years for CCSD(T)

methods using average size nowadays supercomputing resources (∼ 100 CPUs). This

shows that DFT or its simple modification to better account for the strong correla-

tions between f electrons and the only reasonable choice as an ab initio method for

computation of complex, f -elements bearing materials [54–56].

The DFT+U method is a modification of DFT to account for strong electronic

correlation using the Hubbard model [58] and is usually applied to d and f orbitals

and electrons. In this method an additional term is added to the Hamiltonian [56].

It contains a so called Hubbard U parameter which describes the strength of the on-

site Coulomb repulsion between electrons occupying the same d or f orbital. This

6



-6 -5 -4 -3 -2 -1 0 1 2 3
Energy (eV)

0

10

20

30

40

50

In
te

n
si

ty
 (

ar
b
. 
u
n
it

)

Figure 1.4: Total density of states of UO2 oxide calculated using regular PBE [57] functional.
Fermi level (Ef ) is set to zero.

parameter makes the DFT+U method a parameter dependent approach. Usually, the

value of this parameter is selected empirically so that the method reproduces certain

experimentally measured properties, such as the lattice constants or band gaps, but

is usually ”guessed” and only rarely estimated basing on the sparsely available exper-

imental data, for instance X-ray photoelectron spectroscopy (XPS) [59–64]. In spite

of these potential shortcomings, the DFT+U has been already successfully applied in

calculation of actinide-bearing materials. Wen et al. [45] have shown that using the

DFT+U method one can correctly model the band gaps of actinide oxides and predict

insulating state for these solids. Among others, this method has been successfully

used in the description of UO2 and its metastable states [65, 66], in the calculation

of U(VI) aqua complexes on titania particles [50] and in the investigation of incorpo-

ration of uranium in the ferric garnet matrices [67]. It was also shown that DFT+U

can correctly predict the magnetic state of actinide compounds [68] and full phonon

dispersion of strongly correlated materials [69]. Recently, a few methods have been

developed and applied to compute the Hubbard U parameters from first principles.

The two leading approaches are the constrained local density approximation (cLDA)

[70–72], also known as the linear response approach [72], and the constrained random
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phase approximation (cRPA) [73–78]. However, at the time of starting these studies,

these methods had never been applied to actinide-bearing systems. Application and

validation of these methods for prediction of properties of nuclear materials were one

of the main tasks of this dissertation studies.

The importance of feasible and reliable modeling nuclear materials was highlighted

in a report of the US Department of Energy in 2010 [79]. It postulates the need

for a feasible ab initio methodology, capable to produce reliable results for systems

containing strongly correlated f electrons, which could make reliable simulations of

nuclear materials possible. This is also the motivation which initiated this dissertation

studies and the results reported here represent an important step towards achieving

the postulated goal.

1.3 Aims and outlook of the thesis

The leading goal of this PhD study was to find, validate and apply reliable and feasible

ab initio methodologies which could be used for modeling of f -element-bearing materi-

als relevant for nuclear waste management. Because the feasibility of a computational

method is of the utmost importance, the focus is on the DFT+U method and espe-

cially on testing and application of the recently developed ab initio-based methods for

derivation of the Hubbard U parameters. The derived methodologies were then exten-

sively tested and applied to predict different structural and thermodynamic properties

of various nuclear materials, including actinide-bearing complexes and monazite- and

pyrochlore-type ceramic waste forms.

The starting point was the systematic benchmarking studies of performance of

different DFT functionals and the DFT+U method for uranium-baring complexes for

which large sets of relevant experimental data exists [17, 30, 31] and which were also

computed using computationally intensive methods such as CCSD(T) [30, 31]. Up

to now there have been no systematic test calculations of the structural parameters

and the reaction enthalpies of actinide-baring molecules or solids using the DFT+U

8



method, where the Hubbard U parameter values have been derived ab initio, and

the extensive studies of the performance of the linear response method [72] presented

here are first of such kind [24]. The follow-up studies were performed on molecular

complexes of transuranic elements Np, Pu and Am [80]. These calculations showed the

dependence of Hubbard U parameter value on oxidation state of the actinide, which

has never been found or considered before [24].

For the derivation of the Hubbard U parameters, we mostly used the linear response

approach (cLDA) [70–72], which was applied by using the Quantum-ESPRESSO pack-

age [81]. However, we also used the cRPA approach [73–78] for the selected systems in

order to check the consistence of the two methods, which is sometimes disputed in the

literature [77]. For the cRPA calculations we used FLEUR and FLEUR-SPEX codes

[82] developed at the Peter-Grünberg-Institute at Forschungszentrum Jülich. These

calculations has been performed in close collaboration with the code developers and

aimed into comparison of the performance of cLDA and cRPA methods for f -elements,

which to our knowledge has not been done before.

Having obtained successful results for actinides with the parameter free DFT+U

method, we tested its performance on the structural and thermochemical properties

of monazite-type ceramics, considered as potential nuclear waste disposal form. The

Hubbard U parameter values were calculated for series of lanthanide orthophosphates

(LnPO4, where Ln = La to Dy) [21, 23] and for lanthanide-oxides (Ln2O3) using both

cLDA and cRPA methods. We compared the obtained structural and thermochemical

parameters to DFT calculations [28] and available experimental data [83]. Besides the

further testing of the DFT+U method, the goal of these studies was also to comple-

ment the ongoing experimental research on monazite-type ceramics ongoing at IEK-6

institute and at partner institutions. Excellent results obtained in the scope of our

studies allowed for selecting a correct computational methodology which was subse-

quently used for prediction of various properties of monazite-type ceramics. These

studies are now being extended to xenotime-type compounds (LnPO4, where Ln =

Tb to Lu).

9



Testing different computational methodologies helped us in understanding the elec-

tronic structure of f -materials and the performance of different computational ap-

proaches, which is essential for correct prediction of the thermodynamic parameters

of f -element-bearing materials. These parameters such as the excess enthalpies of

mixing, the heat capacity or the entropy are useful in the assessment of the stability

of different nuclear waste forms under repository conditions. Excellent results have

been obtained for the heat capacity of monazite-type ceramics. Although the heat ca-

pacities have been measured for many lanthanide monazites, there exist only limited

data on the actinide analogues (AnPO4)[84, 85]. Dependence of heat capacity and

entropy on the physical and chemical properties of Ln and An cations is also poorly

understood [84]. Using density functional perturbation theory [25] we thus computed

the heat capacities and the standard entropies of the actinide- and lanthanide-bearing

monazite-type ceramics. The results for LnPO4 were found to be in an excellent

agreement with the existing experimental data and provided complete information on

the variation of the heat capacities and entropies along the lanthanide and actinide

series [25]. We demonstrated the importance of Schottky contribution arising from

the thermal excitations of f electrons for the correct description of heat capacities of

these materials [25]. This contribution required the knowledge of the excited states

of Ln+3 and An+3 cations in the considered materials, which were derived as apart of

the dissertation studies using the Crystal Field Theory.

The derived methodology was also applied to model properties of the pyrochlore-

type ceramics (A2B2O7, where A and B are metallic cations) [27], which are also con-

sidered as a potential host matrix for high level waste [1, 15, 86, 87] and are actively

investigated at IEK-6 institute. We tried to understand better the order-disorder tran-

sition from ordered pyrochlore to disordered fluorite phase, which is responsible for en-

hanced radiation damage tolerance of some pyrochlore compositions (e.g. Gd2Zr2O7,

[15]). Our investigation of the transition temperatures from ordered to disordered

phase, resulting in good match of the modeled and computed temperatures, show

excellent performance of the parameter free DFT+U method for pyrochlore phases.
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Subsequent atomistic modeling studies allowed for derivation of the significantly im-

proved maps of defect (cation antisite and anion Frenkel pair) formation energies in

pyrochlore systems and finding interesting correlations of these parameters with the

stability field of pyrochlores.

The computational methodologies developed and applied in the scope of this PhD

thesis proved to be successful in modeling the properties of lanthanide- and actinide-

bearing compounds, including the novel nuclear waste forms. We have shown that by

explicit accounting for the electronic correlations, the parameter free DFT+U method

gives superior predictions to DFT, being on many occasions well consistent with the

experiment. The found that the Hubbard U parameter value can depend strongly on

the local coordination and oxidation state of the f -element cation, which indicates the

necessity of deriving this parameter from first principles for each considered cation

and structure. We hope that the work performed in this project sets path for future

progress towards the feasible and reliable modeling of complex materials relevant for

nuclear waste management.

Studies reported in this thesis were performed in the recently established (in 2012)

at IEK-6 institute Atomistic Modeling research group under direct supervision of the

group’s leader Dr. Piotr Kowalski. The research of the group focuses on the appli-

cation of the atomistic modeling techniques and supercomputers for investigation of

nuclear materials relevant for nuclear waste management. This dissertation is the first

PhD thesis coming out of this group. It resulted in 4 published papers [23–25, 27],

including one awarded a front page cover [23], and the obtained results have been

acknowledged by the poster prize awarded at Goldschmidt2015 conference by the Eu-

ropean Mineralogical Union to the author. The research has been performed mainly

using the supercomputing resources provided within Jülich-Aachen Research Alliance-

High Performance Computing (JARA-HPC) [88]. In particular, Forschungszentrum

Jülich JUQUEEN, JUROPA, JURECA, RWTH Aachen Bullx and Dortmund LIDO

supercomputers were used for the calculations.
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Chapter 2

Computational Methods

In this chapter we discuss the different methods that have been tested and applied in

this thesis. In particular we discuss the status of the ab initio methods of computational

quantum chemistry and materials science, focusing on the density functional theory

(DFT) and the DFT+U method, which is an extension of DFT that improves the

description of the strongly correlated (f -) electrons and which we extensive testing

was a leading goal of this thesis. In addition we discuss all the modeling methods that

have been used in the execution of the applied part of this dissertation research.

2.1 An overview of the wave function-based ab initio

methods

The ultimate goal of most of the quantum chemical calculations is to compute the total

energy, E, of an atomic system, which can be done by solving the time-independent

Schrödinger equation:

ĤΨ = EΨ (2.1)

where Ĥ is the Hamilton operator of the system, which contains all the interactions

between the N electrons and the M nuclei that constitute the considered system, and

Ψ is the N electrons wave function which depends on 3N spatial and N spin coordi-
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nates of the electrons and 3M coordinates of the nuclei. Although the Schrödinger

equation gives an exact description of the system, because it requires integrations in

the multi-dimensional space, solving it for atoms heavier than lithium is a very com-

plicated and computationally demanding task. In order to make a feasible calculations

one has to use approximate Hamiltonians, try to simplify the wave functions or use

alternative approaches (such as the Density Functional Theory (Section 2.2)) [89, 90].

One of the widely known approaches to find an approximate wave function is the

Hartree-Fock method (HF) [91], in which the many-electron wave function is approxi-

mated by a Slater determinant constructed from a set of one electron wave functions.

This method describes electrons as being independent and interacting with other elec-

trons through an average mean field produced by the other electrons. The calculations

are performed using the variational principle [92] to find the best Slater determinant

which minimizes the energy [53]. The energy obtained from the Hartree-Fock method

is always larger than the exact ground state energy of a considered system because

applying a single electron approximation it does not account for the electronic corre-

lations, which lower the energy. The difference between the Hartree-Fock and the real

energies is thus called as the correlation energy [53]. There are various wave functions

based ab initio approaches which try to account for correlations. One of these meth-

ods is Configuration Interaction (CI) approach [90], in which the trial wave function is

written as a linear combination of determinants with the expansion coefficients chosen

by the requirement that the total energy is a minimum. If we include all possible

determinants, we will have a so called ’full CI’ wave function, which will give a correct

correlation energy and will be exact. Unfortunately, the factorial growth of the number

of determinants makes it usable only for only small systems. Even calculating a single

water molecule with 10 electrons will require diagonalizing very large matrices of size

30046752 × 30046752 [53], which is barely manageable on current computing resources.

If one reduces the number of excited determinants in the wavefunction and includes

only single, double and/or triple excitations (CIS,CISD,CISDT), one can make this

approach more feasible, with the CISDT method still scaling with the eighth power of

13



the system size (as N8), while the regular Hartree-Fock calculations, that are already

computationally demanding, scale with only the fourth power (as N4) [53].

Another post Hartree-Fock approach uses the Møller-Plesset perturbation theory

[93]. In this method, the Hamilton operator is modified and divided into the refer-

ence and the perturbation parts. The reference Hamiltonian consists of one-electron

Fock operators, and the electron correlations are computed as a perturbation of the

zero-order reference Hamiltonian (Hartree-Fock solution). Subsequent applications of

the second order perturbations results in the MP2, MP3 and MP4 approaches. Con-

vergence of these methods is usually extremely slow due to the scaling from fifth to

seventh power (as N4 −N7) [53].

The coupled cluster (CC) method [94] is an alternative post-HF approach which

tries to fully account for the electron correlation effects. In this approach, the wave

function of a system is re-written as an exponent of Slater determinants in the power

of a cluster operator [53]. However, the cluster operator must be truncated to make

this method feasible at least for small systems. Similar to the CI methods, single,

double and/or triple excitations (S,D,T,Q) are usually included and the CCSD(T) is

the most accurate method used in this theory, although the scaling with the size of

the system (seventh power) remains the limiting factor preventing using this method

on larger scale.

There are several commercial and academic codes which can perform HF and post-

HF calculations: NWchem [95], Gaussian [96], CP2K [97], MOLPRO [98], FLEUR

[82], GAMESS [99] and TURBOMOLE [100], to name but few. The majority of these

programs are written in the FORTRAN programming language [101], which we also

used for scripting purposes. Even though the listed post-HF methods could provide

very accurate results for geometries and energetics of various materials [53], due to

the unfavorable scaling of these methods with the system size, these approach can

be applied to molecular complexes containing no more than 100 electrons, which is

way to small for calculations of actinide-bearing solid systems. Application of these

methods the modeling of nuclear waste related materials is thus extremely limited.
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An alternative and more computationally feasible ab initio method that is equivalent

to solving the Schrödinger equation is the Density Functional Theory (DFT). It is

based on using the electron charge density - a function of only three spatial variables

- instead of the more complex wave function [92]. This method will be explained in

the next section.

2.2 Density Functional Theory

The Density functional theory (DFT) dates itself back to 1920’s, i.e. the founding years

of quantum mechanics, when Thomas and Fermi formulated the kinetic energy of the

electronic system as a function of the electron density [92, 102, 103]. However, the

Thomas-Fermi model was not successful in chemical applications, failing to reproduce

the shell structure of atomic electronic configurations. This failure is mainly due

to insufficient description of kinetic energy and the electron correlation effects [92].

Nevertheless, in 1951 Slater [104] described the exchange contribution to the Hartree-

Fock representation using only the electron density.

In 1964 Hohenberg and Kohn [105] published a notable paper connecting the charge

density of the electronic system to its wave function by postulating and proving two

simple, but of extreme importance, theorems. First Hohenberg-Kohn theorem shows

that the external potential Vext of the system is a unique functional of the electronic

charge density (ρ(r)). Thus it shows that the ground state charge density also uniquely

determines the Hamiltonian of the system and its ground state. Hohenberg and Kohn

defined the functional FHK [ρ] as:

FHK [ρ] = T [ρ] + Eee[ρ] = 〈Ψ|T + Vee|Ψ〉, (2.2)

where T [ρ] is the kinetic energy functional, Eee[ρ] is the functional that describes the

electron-electron repulsion, Vee is the electron-electron repulsion operator and Ψ is the

ground state wave function of the system. DFT is, in principle, an exact and equivalent
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to the Schrödinger equation theory and the knowledge of FHK [ρ] would be equivalent

to the solution of the Schrödinger equation (Eq. 2.1) [92]. But the exact expression

for the constituting functional, including T [ρ], is unknown. From the electron-electron

repulsion functional only the classical part, J [ρ], can be described explicitly:

Eee[ρ] = J [ρ] + Encl[ρ]. (2.3)

The non-classical part Encl in the Eq. 2.3 is an unknown and contains the self-

interaction correction, exchange and Coulomb correlation effects.

The second Hohenberg-Kohn theorem uses the variational principle to prove that

the functional FHK [ρ], which delivers the ground state energy of the system, does

so only if the input ρ is the true ground state density [105], showing uniqueness of

the ground state density. Even though these two theorems prove the existence of the

connection between the ground state density and the wave function of the system,

they do not give us a pathway to construct the functional FHK .

The issue of the unknown functional describing the ground state properties of the

system was addressed by Kohn and Sham [106]. In their 1965 publication, the authors

introduced the idea of a non-interacting reference system (similar to the Hartree-Fock

approach). Kohn and Sham [106] approached the problem of unknown form of the

kinetic energy by proposing T [ρ] to be the same as the one for the non-interacting

system, Ts[ρ]. They defined the exchange-correlation functional as

EXC [ρ] = (T [ρ]− TS[ρ]) + (Eee[ρ]− J [ρ]) = TC [ρ] + Encl[ρ]. (2.4)

This functional contains all the unknown parts in DFT: the residual part of the kinetic

energy TC and the already mentioned Encl. In the Kohn-Sham formalism, the energy

functional of the real system is expressed as:

E[ρ(r)] = TS[ρ] + J [ρ] + EXC [ρ] + ENe[ρ] (2.5)
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Only term which has no explicit form is EXC Numerous approximations of this exchange-

correlation energy exist [57, 107–117], but current state of the research indicates that

there is no straightforward way to improve the functional or to find its exact form.

2.2.1 Exchange-Correlation functionals

Kohn and Sham [106] themselves proposed the form of the exchange-correlation func-

tional called Local Density Approximation (LDA). This approximation is based on

uniform electron gas, which is a system of electrons moving in a positively charged

background and which is the one of the few cases for which the exact quantum me-

chanical solution is known. The EXC is expressed as

ELDA
XC =

∫
ρ(r)εXC(ρ(r))dr, (2.6)

where εXC is the exchange-correlation energy per unit volume of the uniform electron

gas. In LDA, the exchange part of the energy functional is similar to the Slater’s

description, only the pre-factor is different. The correlation part of the functional

was analytically derived based on quantum Monte-Carlo simulations of the uniform

electron gas [92]. Widely used LDA functional, VWN was developed by Vosko et al.

[107] in 1980. It is a good starting approximation and performs well for atoms and

molecules and gives good results for the systems with the slowly varying density.

Despite many successes the LDA has some notable drawbacks such as strong over-

binding and thus had a wider use in solid state physics, where electrons are more

delocalized, than in computational chemistry [92]. In general LDA is not enough for

accurate description of the real chemical systems and an extension has been proposed.

First step was to implement the gradient of the charge density in construction of the

relevant functionals, i.e. to explicitly account for the spacial variation of the electronic

charge density. Such a Generalized Gradient Approximation (GGA) could be realized
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in the following way:

EGGA
X = ELDA

X − β
∑
σ

∫
(∇ρσ)2

ρ
4/3
σ

, (2.7)

where different β parameters values were suggested over the years by Becke [108]

and others [109–114]. Other form of the GGA exchange functional was suggested by

Perdew [115] and simplified by Perdew and Wang [116, 117]:

EGGA
X = −3

4
(
3

π
)1/3

∫
ρ4/3FX(s)dr, (2.8)

where the reduced electron density, s, is equal to:

s =
|∇ρ(r)|

2κρ
, (2.9)

and the exchange energy functional enhancement function is described as

FX(s) = (1 + 1.296s2 + 14s4 + 0.2s6)1/15 (2.10)

and

κ = (3π2ρ)1/3. (2.11)

In 1996 Perdew et al. [57] proposed a simplified and more computationally stable form

of the enchancement function, FX(s), as

FX(s) = 1 + κ− κ

1− µs2/κ
, (2.12)

with κ=0.0804 and µ=0.21951. This approach, known as PBE, is currently the most

widely used DFT exchange-correlation functional.

Usually, the different forms of the exchange-correlation functionals are dictated

by their ability to reproduce certain results [92]. The fact that by switching to a

different GGA functional one can improve the prediction of the reaction enthalpies at

a cost of worsening the structural parameters and vice versa, is a known shortcoming
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Figure 2.1: Left panel: The enthalpies of dissociation reactions of UF6 molecule (red, upper set
of curves) and UF5 molecule (black, lower set of curves) computed with the PBE-like functionals
and different values of κ (horizontal axis) and µ =0.109755 (dashed lines), 0.21951 (solid lines, PBE)
and 0.43209 (dotted lines). µ and κ determine the enhancement function of the exchange functional
(see Eq. 2.12). Right panel: the U − F bond length of UF6. The different results are marked using
the convention applied in right panel. On both panels, the horizontal lines indicate the experimental
values.

of today’s exchange-correlation functionals. Such behavior was investigated in this

work by computing the U-F bond length in UF6 (uranium hexafluoride) molecule and

the dissociation enthalpies of UF6 and UF5 (uranium pentafluoride) molecules with a

modification of PBE functional [24] (See Section 3.2.1).

PBEsol functional used in this theses is a PBE-like functional with µ = 10/81 =

0.123456789, which was derived from the exact solution for the slowly varying electron

density limit [118]. Another functional used in this work is BPBE [119, 57], which

differs from PBE functional only by the exchange part (they have the same PBE

correlation energy functional [57]). Especially instructive is the mixture of the BPBE

and PBE results, labeled as PBE-BPBE corr., which will also be discussed in Section

3.2.1.

In this dissertation we also attempted a modification of the PBE functional, here-

after we call such a new function the ”modified PBE”, to make better prediction for
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the U-F bond length in UF6 and the dissociation enthalpies of UF6 and UF5 molecules.

The modification was made by treating κ (PBE value of 0.804) and µ (PBE value of

0.21951) parameters of the exchange energy functional enhancement function Fx(s)

(Eq. 2.12, [57]) as free parameters., The result is given in Figure 2.1. It is clearly

seen that the smaller µ results in a better bond length. In fact, this result with µ

being half the value of that of the PBE functional, which closely resembles the case of

PBEsol functional [118], gives better U-F bond length than PBE. On the other hand,

the computed reaction enthalpy become worse and it can not be easily improved by

just modifying κ. For a fixed value of µ, increase of κ always leads to better description

of the reaction enthalpies, but at a cost of worsening the bond length. The larger the

µ, the worse the U-F bond length that results in good enthalpy, is. In the subsequent

sections we will show the performance of the modified PBE functional, where keeping

the PBE value of µ = 0.21951 we set κ to 6. Such set of parameters was chosen

because it results in relatively good prediction of the dissociation enthalpies of UF6

and UF5 molecules, which is indicated in Figure 2.1.

2.2.2 Hybrid functionals

The other types of DFT functionals used in the literature are the so called hybrid

functionals in which the Hartree-Fock theory and the DFT are combined. They incor-

porate the part of the exact exchange from the first theory and the number of exchange

and correlation density functionals. The most popular hybrid functional is the B3LYP

functional [120], which has the following form:

EB3LY P
XC = (1− a)ELSDA

X + aEHF
X + bEB88

X + cELY P
C + (1− c)EVWN,

C (2.13)

where a=0.20, b=0.72 and c=0.81 are the mixing weights of different functionals that

were fitted empirically to to reproduce the selected properties of molecular systems. In

Equation 2.13, LSDA (the local spin density approximation), the standard exchange

functional [92], the VWN [107] correlation functional, the Becke exchange functional
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(B88) [119] and the LYP correlation functional Lee et al. [121] are used. The other

widely used hybrid functional is the PBE0 functional [57, 122] which is a non-empirical,

parameter-free functional designed basing on the theoretical consideration. This hybrid

functional mixes the PBE [57] correlation energy with the PBE and HF exchange

energies:

EPBE0
XC = EPBE

XC + 0.25(EHF
X − EPBE

X ). (2.14)

In fact, the most of the meaningful DFT studies of actinide-bearing materials were

performed using the hybrid functionals such as B3LYP, PBE0 or HSE [46, 123–126].

However, the usage of these types of functionals or any post-Hartree-Fock method

requires substantial computational resources. This limits the applicability of these

methods to the simplest molecular compounds and solids, although it can improve in

the in coming decades with increasing in the available computational power. Materials

that are interesting for nuclear engineering have usually complex chemical composi-

tions and structures with supercells containing often more than hundred atoms. This

is especially true when solid solutions with diluted concentration of elements are of in-

terest [21, 26]. Therefore, we found the hybrid functionals unfeasible for our purposes.

2.3 Plane-waves and pseudopotentials

All ab initio methods use known functions called ”basis sets” that are used in the

construction of the approximations to the unknown wavefunctions functions such as

molecular orbitals. Most of the post-Hartree-Fock-based codes listed in previous sec-

tion use two types of atomic orbitals: Gaussian Type Orbitals (GTO) or Slater Type

Orbitals (STO). In general, functional form of STO makes them superior to GTOs.

This is because three times more GTOs are needed to achieve the same accuracy as

with STOs. However, calculation of the required integrals in case of the former orbital

functions are easier and more computationally efficient. Therefore, GTOs are more

often used in quantum chemical codes [53].
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For the extended systems such as solids, plane waves are usually used as basis

sets, since the outer valence electrons in metals behave similarly to free electrons and

plane waves are the solutions of the Schrödinger equation for a free moving electrons.

The plane waves can also be applied for modeling molecular systems using a supercell

approach, in which the molecule is placed in a large-enough unit cell so that it does

not interact with its image in the neighboring cells [92]. For condensed systems such as

solids it is favorable to use plane waves rather than GTOs or STOs, since the number

of plane waves depends only on the size of the periodic cell and not on the number of

atoms in the cell.

When representing the wave functions of valence electrons with a plane wave basis

set, large oscillations occur near the core region, giving rise to the significant kinetic

energy. Very large number of plane-waves will thus be needed to correctly model

this behavior. This problem is even more pronounced in case of the heavier elements

such as lanthanides and actinides. Fortunately, only the electrons in the outer shells

determine the nature of chemical bonding in molecules and crystals. Thus, one can

divide the electrons into core valence ones and replace the effects of their presence by

a modified interaction potential (Fig. 2.2). Such a potential is called an effective core

potential (ECP) or a pseudopotential. The idea of pseudopotentials was introduced

independently by Hellmann [127], Fermi [128] and Gombas [129] in 1930s. The method

was later extended to systems with many-valence electrons by Weeks and Rice [130].

By using pseudopotentials, one reduces the computational time needed for the cal-

culations of solids by reducing the number of electrons that required explicit computa-

tion and terms which are required for the plane wave description of the wave function

[131]. Furthermore, the relativistic effects can be included in the pseudopotential and

be even better addressed than by all-electron calculations [132].

In the plane wave codes, most frequently used pseudopotential types are the norm-

conserving [133] and the ultrasoft [134, 135] pseudopotentials. In the norm-conserving

pseudopotentials the total valence electron density within the core radius equals to

the density in the all-electron case. For ultrasoft pseudopotentials this constrain is
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Figure 2.2: Schematic plot of pseudopotential. The blue line represents the all-electron function
and the red line - pseudopotential approximation.

removed which results in smaller number of plane-wave basis that have to be used,

which substantially saves the computational time [131].

The pseudopotentials are generated using the ab initio atomistic calculations and

usually number of test calculations are necessary to check their quality. Several soft-

ware packages exist for building different types of pseudopotentials. The one used by

us to generate the ultrasoft pseudopotentials has been developed by Vanderbilt [134].

Studies of Shamov et al. [30], Schreckenbach and Shamov [31] and Odoh and

Schreckenbach [136] indicate that the results of calculations of different actinide-

bearing systems can also depend on the number of core-electrons modeled by pseudopo-

tentials and that at least 32 electrons of uranium atom (5s25p65d106s26p65f 36d17s2)

should be treated explicitly, which increases the computational cost. However, it has

to be noted, that this result is still in dispute. For instance, Iche-Tarrat and Mars-

den [51] have shown that the explicit treatment of 32 electrons of uranium atom only

marginally improves the performance of either DFT or hybrid-DFT functionals over

the case when only 14 valence electrons of uranium (6s26p65f 36d17s2) are treated

explicitly. Results reported in this dissertation studies implicitly support the later

conclusion. In our studies the core electrons of the computed atoms were replaced by

the ultrasoft pseudopotentials [134]. In case of actinides, 6s26p65f 36d17s2 electrons
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of uranium atom, 6s26p65f 46d17s2 electrons of neptunium atom, 6s26p65f 67s2 of plu-

tonium atom and 6s26p65f 77s2 electrons of americium atom were treated explicitly.

Such pseudopotentials are referred to as “large core pseudopotential”.

Considering other type of pseudopotentials-based approaches, one of the simplest

approaches to calculate the electronic structure of a solid is to solve the Schrödinger

equations for the one-atom unit cells inside the solid and at the boundary of these

cells to match the atomic functions with each other. To achieve this, one can use the

augmented plane waves, which contain atomic functions in the atomic spheres and a

single plane wave outside of it. The FLAPW method is considered as one of the most

accurate approaches for band-structure calculations [137]. Several quantum chemistry

codes (FLEUR [82], WIEN2k [138], ELK [139]) use a so called full potential linearized

augmented plane wave (FLAPW) method [140], which is considered to be one of the

most accurate methods for performing electronic-structure calculations.

2.4 DFT+U formalism

Characteristic properties of f -electrons bearing materials are determined by the par-

tially filled f -shell of these elements. The standard model based on the properties

of free electron gas is thus not suitable to describe the correlation effects in these

strongly correlated electronic systems exibiting narrowly laying energy bands. A so

called DFT+U method, an extension of DFT, has been proposed to cure the inade-

quate description of strongly correlated materials by the standard DFT approximations

[141–144].

The DFT+U approach is based on a model proposed by Hubbard [58], in which

the on-site repulsion between electrons is described by the Hubbard U parameter.

The method was initially designed for the s-bands [58] and was later extended to more

challenging cases of d- and f -electrons [145–149]. The model was implemented in DFT

after Anisimov et al. [141, 142] and Solovyev et al. [143] suggested adding an energy

correction term to the energy functional and applied them successfully to transition
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metal oxides. The total energy functional in DFT+U is given as

EDFT+U [ρ, nσ] = EDFT + EU [nσ] = EDFT [ρ] + EHub[n
σ]− Edc[nσ], (2.15)

where nσ is the given (f -) orbital occupation matrix, σ is the spin of electrons and

EDFT is the approximate DFT energy functional. The correction term, EU , is divided

into two terms, where EHub contains the Hubbard Hamiltonian, which describes the

correlated states [150]. The double-counting term, Edc, is a mean-field approximation

to EHub and describes the part of the electron correlations that is already accounted

for by DFT [144, 151]. The more general, rotationally invariant form of EHub and Edc

term is given by Liechtenstein et al. [152]:

EHub[n] =
1

2

∑
m,σ

(< m,m′′|Vee|m′,m′′′ > nσmm′n−σm′′m′′′

+ (< m,m′′|Vee|m′,m′′′ > − < m,m′′|Vee|m′′′,m′ >)nσmm′n−σm′′m′′′), (2.16)

Edc[n
σ] =

1

2
Un(n− 1)− 1

2
J [n↑(n↑ − 1) + n↓(n↓ − 1)], (2.17)

where m is a state index and Vee integrals represent the screened Coulomb interaction

between two electrons on the localized orbital. nσ=Tr(nσmm′), n = n↑+n↓ and U and J

parameters represent the strength of the screened Coulomb and exchange interactions

[152, 71]. In terms of the spherical harmonics, the Vee integrals can be written as:

< m,m′′|Vee|m′,m′′′ >=
∑
k

ak(m,m
′,m′′,m′′′)F k, (2.18)

where F k are the radial Slater integrals describing the electron-electron interaction and

ak are the so called Clebsch-Gordan coefficients [150]. The parameters that describe

the on-site Coulomb and exchange interactions can be expressed by the Slater integrals:

U =
1

(2l + 1)2

∑
m,m′′

< m,m′′|Vee|m,m′′ >= F 0 (2.19)
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and

J = U − 1

2l(2l + 1)

∑
m,m′′

[< m,m′′|Vee|m,m′′ > − < m,m′′|Vee|m′′,m >)]

= F 0 − 286F 2 + 195F 4 + 250F 6

6435
(2.20)

where l=3 for f -electron-bearing systems [144]. For the simplified case, to estimate the

F 0 one can, for instance, use the value of the band gap in the case of Mott system (eg.

UO2) and the higher order Slater integrals can be estimated from fitting the atomistic

calculation to the experimental spectroscopic data [153].

More simplistic form of the DFT+U correction term was proposed by Dudarev et al.

[154] and implemented first by Shick et al. [155] and later adjusted by Cococcioni and

de Gironcoli [72]. In this approach, the higher order Slater integrals, F 2, F 4 and F 6

are set to 0 and the energy correction term EU is described simply as

EU = EHub − Edc =
∑
l,σ

Ueff
2

Tr[nl,σ(1− nl,σ)] (2.21)

where Ueff = U − J is the effective screened Coulomb parameter that is assumed

to account for the exchange term [151, 154]. This approach we have used in our

calculations by the linear response method [72].

2.4.1 Ab initio calculation of the Hubbard U parameter val-

ues

The successful application of the DFT+U method depends on the good choice or the

accurate derivation of the Hubbard U parameter. There are several ways that could

be used to obtain the desired value of this parameter. One way is to reproduce certain

experimental observable of a system, such as the band gap, the lattice constants, or

the formation energies. But such cases, the predictive power of the method could be

limited due to specific choice of the Hubbard U parameter. The best and most reliable
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Figure 2.3: Total energy profile of the system as a function of the number of electrons. The red
lines represent the exact energy of the system, the black lines - the DFT energy and the green line -
the difference between the two.

way to obtain the Hubbard U parameter values is to calculate them ab initio. There

are two main methods to calculate the Hubbard U parameters from the first principles.

First one is the constrained local density approximation (cLDA) [70–72], which has

been frequently used throughout this work. The second method, the constrained

random phase approximation (cRPA) [73–78] was also utilized in order to validate the

calculated Hubbard U parameter values obtained by the cLDA approach and to have a

better understanding of the differences between and the reliability of the two methods

in case of f electrons, which is still to great extend an unexplored research topic. In

theory, both methods should give the same Hubbard U parameter values, but because

of the differences in the ways they are implemented, significant divergences between

the values derived using these two methods have been previously reported [77].

One of the recently introduced ways to calculate the Hubbard U parameter value

is cLDA, also called the linear response method (hereafter, we will call the so derived

U parameter values as ULR and the method a DFT+ULR) following Cococcioni and

de Gironcoli [72]. This approach is implemented in the Quantum-ESPRESSO package
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[81] - a plane waves and pseudopotentials-based DFT code utilized in our research.

The linear response method offers an intuitive and straightforward approach to cal-

culate the U parameter values. It is based on the idea of improving the regular DFT

description of the total energy profile of the open system (system where an atom A

can exchange the electrons with an atom B). The correct total energy depiction of

this open system, or energy in case of the fractional charges, can be visualized by the

straight lines connecting the energies of states with different number of electrons and

discontinuities for the integral charges, whereas the DFT calculation results a continu-

ous change of energy as a function of charges and introduction of an artificial curvature

(Fig. 2.3) [156, 157]. DFT thus underestimates the derivatives of the total energy as

a function of charge density which results in incorrect description (underestimation)

of the fundamental gap of the computed system [72]. The difference between the two

lines on the Fig. 2.3 can be seen as the correction of the DFT energy represented

by the Eq. (2.21), where the U parameter value is equal to the artificial curvature

of the DFT energy. In order to calculate the Hubbard U parameter value one needs

thus to obtain the second derivative of the energy of the system with respect to the

occupations of the localized states and subtract the second derivative of the energy of

the perturbed, non-interacting system computed with the same ground state charge

density

U =
d2EDFT [nf ]

d(nf )2
− d2EDFT

0 [nf ]

d(nf )2
, (2.22)

where EDFT and EDFT
0 are the total energies of the real system and non-interacting

systems, respectively [72].

In the actual calculations performed in these dissertation studies, a perturbation

with an amplitude α is applied to the external potential of an atom acting on a f

orbital at site I

V P
ext = Vext + α

∑
m=−3,3

|ϕIm〉〈ϕIm|. (2.23)

After solving the Kohn-Sham equations for various values of α one can obtains the
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amplitude dependent ground state energy

E(α) = minρ{EDFT [ρ] + αnIf}. (2.24)

Then, from Eq. (2.24) by using the Legendre transformation [158], one obtains the

occupations dependent energy

E(nIf ) = minα{E[α] + αnIf}, (2.25)

from which the second derivatives of the energy with respect to the occupations can

be derived
d2E

dn2
f

= − dα

dnf
. (2.26)

In the linear response calculations using the Quantum-ESPRESSO code [81], the

Kohn-Sham equation is solved for various different α shifted systematically from 0

and the changes of nIf are monitored. These values are stored in the response matrix

χIJ =
dnI

dαJ
, (2.27)

where I and J are the site indices that label the atom to which the perturbation α is

applied. To obtain the Hubbard U value one needs to subtract the obtained response

matrix with the one computed for the non-interacting system (Eq. (2.22))

U =
dαI

dnIf0

− dαI

dnIf
= (χ−1

0 − χ−1)IJ . (2.28)

To obtain the exchange parameter J by the same method, the linear response

method was further improved by Himmetoglu et al. [159]. The response of the on-

site magnetization m = n ↑ −n ↓ with respect to a magnetic perturbation βm is

considered. Similar to the U calculation, the exchange parameter J is obtained as

J = −2[(χ0)−1
II − (χ)−1

II ], (2.29)
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where the response matrix χ can be expressed as

χIJ =
∂mI

∂βJ
(2.30)

and χ0 is the bare response matrix of the non-interacting Kohn-Sham system and

could be obtained in a similar way as χ.

The direct calculation of the Hubbard U parameter can be also performed using the

constrained Random Phase Approximation (cRPA) approach [73–78]. This method

allows the determination of individual elements of the Coulomb matrix, but is more

computationally intensive than the linear response method [160]. In this method, the

fully screened Coulomb interaction W is given as

W =
v

1− vP
, (2.31)

where v is the bare Coulomb interaction and P is the polarization function [144, 75,

161]. After dividing the Hilbert space in two, f (where the narrow f band is located)

and r (the rest of the bands) subspaces, the polarization function P is divides in two

parts

P = Pf + Pr. (2.32)

where Pf contains the transitions between the f orbitals only and Pr is the rest of the

polarization [144, 75]. The effective interaction between the electrons in the narrow

energy band can be expressed as

Wr =
v

1− vPr
. (2.33)

Multiplying Wr with the localized basis functions and integrating over space yields the

following effective screened Coulomb interaction [162]:

Umm′′;m′m′′′ =

∫ ∫
ω∗m(r)ωm′′(r)Wr(r, r

′)ω∗m′′′(r′)ωm′(r′)drdr′, (2.34)
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from which the on site Hubbard U and J parameter values can be derived using the

following formulas [160]:

U =
1

L2

∑
m,m′=1

Umm′,mm′ = F 0 (2.35)

and

J =
1

L(L− 1)

∑
m6=m′=1

Umm′,m′m, (2.36)

where L=7 in case of the f -orbitals and F 0 is the previously mentioned Slater integral

(Eq. 2.19). We note that the derivation of the Hubbard U parameter value using

cRPA depends strongly on the choice of the energy window in which the localized

orbital basis (Wannier orbitals [163] in this case) is formed [164].

The cRPA calculations reported here were performed using SPEX [165] code. In

this code the maximally localized Wannier functions (MLWFs) [162, 166–168] are

internally constructed. The FLEUR [82] code, which uses full-potential linearized

augmented-plane-wave (FLAPW) method [169] was used for the initial ground state

calculations.

Several studies report calculation of the Hubbard U parameter values using cRPA

method, mostly for d- but a few for f -electrons-bearing materials [77, 160, 162, 164,

170, 171]. However, up to now, only few of these studies directly compare the results

of cLDA and cRPA approaches. We note that discrepancies between the Hubbard U

parameter values calculated using cLDA and cRPA methods were observed towards

the end of the 3d element series by Aryasetiawan et al. [77].

2.5 Computing heat capacities of f-materials

Vibrational contribution to the heat capacity can be estimated after calculating full

phonon dispersions. In this work the density functional perturbation theory (DFPT)

[172] was used for estimation of the phonon frequencies and the density of states using
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the Quantum-ESPRESSO package [81]. The heat capacity can be expressed as:

CV =
∑
q

kB(
~ωq(V )

2kBT
)2cosh2(

~ωq(V )

kBT
)2, (2.37)

where kB is the Boltzmann constant ~ is the reduced Planck constant and ωq(V )

is the frequency of the phonon with the wave vector q at constant volume V [173].

Accurate description of the heat capacities and entropies of the f -element-bearing

systems requires consideration of the thermal excitation of f -electrons by computing

the so called Schottky contributions [84, 174, 175]. The Schottky term is given by

Cexs = Q−1R−1T−2
∑
i

giε
2
i exp(−εi/RT )

−Q−2R−1T−2(
∑
i

giεi exp(−εi/RT ))2, (2.38)

where

Q =
∑
i

gi exp(εi/RT ) (2.39)

is the partition function, εi is the energy of i-th excited state of degeneracy gi, R is

the gas constant and T is the temperature. The excess contribution to the entropy is

given by:

Sexc = RQ−1T−1
∑
i

giεi exp(−εi/RT ) +R ln(Q). (2.40)

Here, the code LANTHANIDE [176] was used for calculating the energy levels of

Ln3+ and An3+ ions by constructing the relevant Hamiltonian and diagonalizing the

matrix containing all allowed electronic states for a certain configuration. In general,

the commonly used Hamiltonian of the rare-earth cations [177] consists of spherical,

non-spherical and crystal field parts:

H = Hs +Hns +Hcf (2.41)
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The non-spherical part of the Hamiltonian (Hns) contains the electrostatic parameter,

the spin-orbit interaction constant and the two and three body interaction terms [177,

176] (Judds and Trees parameters [178, 179]). All these parameters can be found in

the literature for specific ions of interest [180, 181].

The crystal field effect [180] gives rise to the last term, Hcf , in the Eq. 2.41 which can

be described as

Hcf =
∑
k,q

Bk
qC

(k)
q . (2.42)

This term contains the crystal field parameters Bk
q (where k = 2, 4, 6 and the value of

q depends on the site-symmetry of the ion in the host crystal [177] and ranges from

0 to ±k), which are usually empirical and are obtained from fitting the energy levels

to the experimental ones. The number of the crystal field parameters can range from

2 to 27. C
(k)
q terms are the many-electron spherical tensor operators for the 4 − 5fn

configurations.

While it is straightforward to compute the heat capacity at the constant volume, the

heat capacity is usually measured at constant pressure. The difference between the

two quantities is given by [182]:

Cp − CV = NAV α
2BT, (2.43)

where NA is the Avogadro constant, V is the molar volume, α is the thermal expansion

coefficient, B is the bulk modulus and T is the temperature in K. The outlined here

equations have been used in derivation of the heat capacities of monazite-type ceramics

(Section 3.3.4).

2.5.1 Computation of the order-disorder transition tempera-

ture in pyrochlore

The temperatures of order-disorder transition from pyrochlore to defect fluorite phase,

that will be discussed in Section 3.3.5, were computed following the procedure outlined

33



by Jiang et al. [183] and by modeling the disordered fluorite structure by a quasirandom

structures derived in that studies. The transition temperature is derived from the

thermodynamic consideration as:

T =
∆H

Sconf

, (2.44)

where ∆H is the enthalpy difference between the two phases (it is computed ab initio)

and Sconf = −4kB[x lnx + (1 − x) ln(1 − x) + 2y ln(y) + 2(1 − y) ln(1 − y)], kB is the

Boltzmann constant, x=1/2 and y=1/8, is the configurational entropy of the defect

fluorite derived assuming full disordering of the cation and oxygen/oxygen-vacancy

sublattices [183].
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Chapter 3

Applications

This chapter summarizes the results and application part of the dissertation studies.

We discuss here our extensive benchmarking studies of the DFT+U method, which

includes the calculation of the Hubbard U parameter values using ab initio methods,

and application of the derived computational methodologies to simulation of various

properties of nuclear waste management related materials. Some parts of the reported

studies were performed as joint projects with the members of the Atomistic Model-

ing group at IEK-6. The specific and independent contribution of the PhD candidate

includes: derivation of the Hubbard U parameters values and benchmarking of the

DFT+U method, calculation of the reaction enthalpies of An-bearing compounds and

computation of the Schottky contribution to the heat capacities of monazite-type ce-

ramics.

3.1 Derivation of the Hubbard U parameter values

In this section we present the results of systematic derivation of the Hubbard U pa-

rameter values (or the effective Hubbard U parameter Ueff = U − J) for the number

of Ln- and An-bearing molecules and solids. For all compounds investigated in this

thesis, these parameters were derived using the cLDA method [70–72] following the

recent implementation of the linear response approach [72] in the DFT code Quantum-

35



ESPRESSO [81]. In addition, the Hubbard U parameter values were derived for the

series of Ln-bearing oxides using the cRPA methodology [75–78] and the FLEUR-

SPEX code [82]. The presented here systematic derivation of the Hubbard U param-

eter values for many molecular and solid compounds is the first such study conducted

for the lanthanide- or actinide-bearing materials.

3.1.1 Uranium-bearing compounds

Molecular complexes

Using cLDA methodology [72] implemented in the Quantum-ESPRESSO code [81] we

derived the Hubbard U parameter values for uranium-bearing molecules (fluorides,

chlorides, halogenides, halcogenides and hydroxides) that contain uranium in various

oxidation states from +3 to +6 (Table 3.1). These molecular complexes have been ex-

tensively studied experimentally [17, 18] and have also been investigated using various

ab initio modeling methods [30, 31]. As indicated in Table 3.1 the resulted Hubbard

U parameter values range from 1.9 eV to 3.1 eV and show a clear dependence on the

oxidation state of the actinide cation, which is clearly seen in Figure 3.1. Increasing

the oxidation state of uranium atom results in larger Hubbard U parameter values. In

addition to consideration of the f -orbitals in the DFT+U calculations, we computed

the on-site Coulomb repulsion on the d-orbitals in the uranium-bearing complexes.

These results are also reported in Table 3.1. The values for d orbitals are similar for

all species and ranging from 0.6 eV to 0.8 eV are substantially smaller than the Hub-

bard U parameter values derived for f orbitals. To check the performance of different

exchange-correlation functionals we performed calculations with PBE [57] and PBEsol

[118] functionals. We found that both functionals produce similar results in terms

of the Hubbard U parameter. The values reported in Table 3.1 were subsequently

used for the geometric optimizations (see Section 3.2.1) and the derivation of reaction

enthalpies (see Section 3.3.1) of uranium-bearing molecular complexes.
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Table 3.1: The Hubbard U parameter values for the uranium-bearing molecules calculated using
the linear response method of Cococcioni and de Gironcoli [72]. The values are given in eV. The last
column represents the values computed for the d-orbitals.

Molecule Hubbard ULR

PBE (f electrons) PBEsol (f electrons) PBE (d electrons)
UF6 3.1 3.0 0.6
UF5 2.3 2.3 0.6
UF4 1.8 1.7 0.7
UF3 1.9 1.9 0.8
UCl6 2.2 2.2 0.5
UCl5 2.2 2.2 0.5
UCl4 1.7 1.7 0.5
UCl3 1.4 1.5 0.6
UOF4 2.8 2.7 0.6
UO2F2 3.1 3.1 0.7
UO2(OH)2 2.8 2.8 0.6
UO3 2.6 2.6 0.6
UO2 2.0 1.9 0.6

Table 3.2: The Hubbard U parameter values for the uranium-bearing solids calculated using the
linear response method of Cococcioni and de Gironcoli [72]. The values are given in eV.

Solids Hubbard ULR
PBE PBEsol

UF6 2.9 2.8
α-UF5 2.3 2.3
β-UF5 2.3 2.3
UF4 1.4 1.3
UF3 0.8 0.8
UCl6 2.7 2.7
UCl4 1.6 1.6
UCl3 0.8 0.9
U3O8 2.4 2.3
α-UO3 2.7 2.7
UO2 1.8 1.7
α-U 1.9 1.9

Solids

We computed the Hubbard U parameter values also for various uranium-bearing solids.

In this work we have considered twelve uranium-bearing crystals: α-U[184], UF6[185],

α-UF5 [186], β-UF5[187], UF4[188], UF3[189], UCl6[190], UCl4[191], UCl3[191], UO2[192],

α-UO3[193] and U3O8[194].
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Figure 3.1: Dependence of Hubbard U parameter value on the oxidation state of uranium atom
in molecular complexes and solids (left) and on various actinide atoms in actinide-baring complexes
(right).

The results are presented in Table 3.2 and range from 0.8 eV to 2.9 eV. As indi-

cated in Figure 3.1 (left) the dependence of the Hubbard U parameter values on the

oxidation state of uranium atom is very similar to that obtained for molecular com-

plexes. These results indicate that a common practice of choosing the same Hubbard

U parameter value for calculations of different, but bearing the same actinide cation,

solids is not justified. In the literature, usually the Hubbard U parameter value of 4.5

eV is used as the optimal parameter for the DFT+U calculations of uranium-bearing

solids. This value is taken from the XPS and inverse photoemission spectroscopy

(IPES) measurements of UO2 by Baer and Schoenes [59] and Kotani and Yamazaki

[61]. We note that in this work we get a smaller value of 1.8 eV for uranium dioxide

and this discrepancy will be discussed in Section 3.3.1. Similar to the case of uranium-

bearing molecules, the Hubbard U parameter values were calculated using both PBE

and PBEsol functionals and, as shown in Table 3.2, no significant differences were

found.

3.1.2 Other actinide-bearing compounds

Using the linear response approach [72] we derived the Hubbard U parameter values

also for various neptunium-, plutonium- and americium-bearing molecules. The results

of these calculations are presented in the Table 3.3. In this case we also considered
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Table 3.3: The Hubbard U parameter values for uranium-, neptunium-, plutonium- and americium-
bearing molecules calculated using the linear response method of Cococcioni and de Gironcoli [72].
Values are given in eV.

Molecule ULR Molecule ULR
NpF6 3.1 PuF2 1.2
NpF4 1.9 PuF 2.5
NpF3 2.0 PuCl4 2.8
NpF2 1.0 PuCl3 2.0
NpF 1.9 PuO3 3.2
NpCl4 2.2 PuO2 2.9
NpCl3 1.6 PuO 2.0
NpO2 2.4 AmF6 3.9
NpO 2.0 AmF3 2.0
PuF6 3.5 AmO2 3.6
PuF4 2.5 AmO 2.5
PuF3 2.0

actinides with oxidation states +1 (eg. NpF) and +2 (eg. NpF2). Similarly to the

case of uranium, the Hubbard U parameter values decrease with decreasing oxidation

state of the An cations, however they increase slightly for An(I) (See Fig. 3.1 (right)).

In general there is an increase in the strength of the on-site Coulomb repulsion from

uranium to americium, considering the actinides having the same oxidation state.

For instance, U(VI) has the average Hubbard U parameter value of 3.1 eV, while for

Am(VI) we got 3.9 eV. The dependence of the Hubbard U parameter on the oxidation

state of actinide-cation has never been considered before. In the next sections we will

show that it influences the computed structural and thermochemical parameters.

3.1.3 Monazite- and xenotime-type ceramics

The values of the Hubbard U parameters derived here for A- (hexagonal), B- (mon-

oclinic) and C-type (cubic) lanthanide-oxides and monazite- and xenotime-type ce-

ramics using the linear response method [72] are reported in Tables 3.4 and 3.5. We

found that the Hubbard U parameter value varies for different elements, rising with

occupation of f orbitals and reaching the highest value for Eu. In most cases the val-

ues for oxides are consistent with those derived for monazite (Table 3.4). The largest

difference is observed in the case of C-type oxides, especially for Tb and Dy. This

is because among the considered oxides C-type structures exhibit most different Ln
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Table 3.4: The Hubbard U parameter values in eV for LnPO4 monazite and Ln2O3 oxides using
cLDA and cRPA methods. Although for some structures slightly different U values were obtained
for distinctly different cation sites and applied in the calculations, here only the average values are
reported.

Ln cation Ln2O3 (cLDA) Ln2O3 (cRPA) LnPO4

La (A) 2.8 5.2 3.2
Ce (A) 4.5 4.9 3.6
Pr (A) 4.8 5.8 4.1
Nd (A) 4.9 5.1 4.9
Pm (A) 5.2 6.0 5.5

Sm (A/B/C) 6.0/6.0/8.7 5.1 6.6
Eu (A/B/C) 9.6/7.1 6.5 8.1
Gd (A/B/C) 4.2/3.9 9.1 3.4

Tb (A/C) 4.5/10.0 4.9 4.9
Dy (A/C) 5.5/10.9 6.8 5.0

coordination (6 vs. 9 in monazite, and shorter Ln-O bond-lengths than in monazite).

Our results are also consistent with a few published theoretical studies. We got the

same value of the Hubbard U parameter for Ce in Ce2O3 (4.5 eV) as the one applied

by Da Silva [195], Fabris et al. [196] and Fabris et al. [197] and only slightly larger

than 7 eV applied for Eu by Concas et al. [198] and Kunes and Laskowski [199] in com-

putation of Eu2O3. Hüfner and Wertheim [63] and Kotani and Yamazaki [61] derived

the values of Hubbard U parameter for lanthanides from spectroscopic measurements.

Hüfner and Wertheim [63] showed that the correlation energy can vary between dif-

ferent lanthanides and also between different structures having the same lanthanide

cation. They also found that this energy is largest for cations exhibiting large magnetic

moment. These results are consistent with our finding. On the other hand, in both

mentioned studies the derived U values are usually larger than the values derived here.

For instance, Kotani and Yamazaki [61] found U values for lanthanide-oxides ranging

from 9.5 eV to 10.5 eV. We notice that such large values are inconsistent with the ones

used in aforementioned theoretical studies. In the next sections we will show that our

values result in excellent description of the structures and energetics for most of the

investigated materials.

The derivation of the Hubbard U parameter values were extended to xenotime-

type ceramics and lanthanide oxides beyond Dy (See Table 3.5). With the exception
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Figure 3.2: Left: The Hubbard U parameter values of LnPO4 (black) and Ln2O3 (red) as presented
in Table 3.4. Right: The Hubbard U parameter values of a-type Ln2O3 oxides calculated ab initio
using cLDA (red) and cRPA (blue) methods.

of the Er case, the values for the oxides are larger than these obtained for xenotime.

In case of xenotime, the largest Hubbard U parameter values were obtained for ErPO4

(9.7 eV) and TmPO4 (10.3 eV). The results of application of the derived Hubbard U

parameter values in the calculations of the structural and thermodynamic parameters

of lanthanide oxides and phosphates will be discussed in Sections 3.2.3 and 3.3.3.

There is a discussion in the literature whenever the cLDA [72] and cRPA [75–78] ab

initio methods used for calculation of the Hubbard U parameter value give consistent

results. Significant discrepancies have been observed for the elements at the end of

3d series [77]. Therefore, after computing the Hubbard U parameter values using the

linear response method (cLDA) we recomputed these values for the a-type Ln-oxides

using the cRPA approach. The comparison of the results of the two methods is given

in Figure 3.2 (right panel). The two calculations give very consistent results with the

deviation not larger than 1 eV for most of the cases, except for La and Gd, where

the deviation is larger than 2 eV. While this deviation is still acceptable, the larger

differences can be attributed to the not fully adequate description of the cases where

there is no f electrons (La2O3) and for the system with the half filled f -shell (Gd2O3).

Nevertheless, the obtained results show that the both methods give consistent

values of the Hubbard U parameters and that they can be successfully utilized in

computation of the Hubbard U parameter value for the lanthanide-bearing materials.
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Table 3.5: The Hubbard U parameter values in eV for xenotime and the lanthanide oxides.

Cation Hubbard ULR

xenotime oxide
Tb 4.8 10.0
Dy 7.9 10.9
Ho 5.6 10.8
Er 9.7 7.0
Tm 10.3 10.8
Yb 7.8 10.9

3.1.4 Pyrochlore-type ceramics

The Hubbard U parameter values were calculated for several pyrochlores using the

linear response method of Cococcioni and de Gironcoli [72]. The results are presented

in Table 3.6. Gd-bearing zirconate and hafnate resulted in the same value of the

Hubbard U parameter, 3.4 eV. The values of Sm-zirconate and Tb-hafnate were higher

by a factor of 2 and more. The derived values were used to calculate the transition

temperatures from the ordered pyrochlore to the disordered fluorite phase and were

applied in calculations of defect formation energies in pyrochlore compounds (Section

3.3.5).

Table 3.6: The Hubbard U parameter values (in eV) for different pyrochlores.

Hubbard ULR

Gd2Zr2O7 3.4
Sm2Zr2O7 6.5
Tb2Hf2O7 7.3
Gd2Hf2O7 3.4

3.1.5 The Hubbard U parameter values and the problem of

band gaps

One of the shortcomings of standard DFT method is its inability to correctly predict

the band gaps or even state (metal/insulator) of strongly correlated materials [38]. It

usually underestimates the band gaps by as much as ∼ 40% [156, 200, 38]. Therefore,
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when investigating solids by the DFT+U method often the ability of this method to

reproduce the band gaps of the considered materials is discussed (eg. [45]). In Table 3.7

the values of the band gap obtained in all our DFT+U calculations of uranium-bearing

solids are provided. The experimental band gap of UO2 is 2.1 ± 0.1 eV [201]. In the

previous DFT+U studies that utilize the Hubbard U value of 4.5 eV and J = 0.51 eV

Dorado et al. [65] got the band gap of 2.4 eV, which is only slightly larger than the

experimental value. Our calculations with U = 4.5 eV give band gaps of 2.0 eV and

1.9 eV for PBE+ULR and PBEsol+ULR methods respectively,

Table 3.7: The values of band gaps (in eV) for the uranium-bearing solids calculated with PBE+U
and PBEsol+U method for different U values.

PBE+U PBEsol+U
Solids 3 eV 4.5 eV 6 eV ULR 3 eV 4.5 eV 6 eV ULR
UF6 3.5 3.7 3.9 3.5 3.6 3.8 4.0 3.6
α-UF5 3.3 4.4 4.4 2.8 3.1 4.3 4.7 2.6
β-UF5 1.8 2.5 2.3 1.5 1.7 2.4 2.8 1.3
UF4 2.0 2.9 3.6 1.0 1.9 2.8 3.6 1.0
UF3 2.6 3.5 4.1 1.0 2.4 3.1 3.8 0.9
UCl6 2.0 1.9 1.8 2.0 2.1 2.0 1.8 2.0
UCl4 1.4 1.5 1.5 1.1 1.5 1.6 1.6 0.9
UCl3 2.3 3.3 4.0 1.0 2.2 2.9 3.6 0.5
U3O8 2.1 2.4 2.4 1.8 1.8 2.5 2.5 1.2
α-UO3 2.2 2.5 2.9 2.1 1.1 1.5 1.4 1.2
UO2 1.2 2.0 2.6 0.7 1.1 1.9 2.5 0.4
α-U 1.4 2.0 2.1 0.4 1.2 2.0 2.2 0.3

which are very consistent with the experimental value. However, due to smaller

values of the Hubbard U parameter derived by the linear response method (see Table

3.2), both the DFT+ULR calculations resulted in much smaller band gap of 0.7 eV

(PBE+ULR) and 0.4 eV (PBEsol+ULR), which is inconsistent with the aforementioned

measurements. Similar performance of the DFT+U method is also observed for the

considered lanthanide-oxides. It predicts metallic state for all the considered ox-

ides, while all these systems have significant band gaps. With the DFT+U method

these materials are correctly predicted to be insulators. In Table 3.8 we compare

the band gaps derived by different methods, including PBEsol+ULR. For most cases

PBEsol+ULR underestimates the band gaps by ∼ 1.7 eV on average. The partial cor-

rection to the band gap by DFT+U is a well known feature of this method, because it
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Table 3.8: Minimum band gaps (eV) of the some Rare Earth oxides obtained from different
theoretical approaches and experiments.

Oxide (type) PBEsol+ULR HSE06[202] G0W0[203] Exp.
La2O3 (A) 4.5 5.1 4.95 5.5a , 5.34b

Ce2O3 (A) 1.6 3.38 1.5 2.4a

Pr2O3 (A) 2.8 3.77 2.86 3.9a, 3.5b

Nd2O3 (A) 2.3 4.63 4.5 4.7a, 4.8b

Sm2O3 (B/C) 1.5/3.1 3.4 4.38 5a

Eu2O3 (B/C) 3/1.5 2.5 2.77 4.4a

Gd2O3 (B/C) 2.7/3.6 5.26 4.89 5.4a

Tb2O3 (C) 3.6 4 3.81 3.8a

Dy2O3 (C) 3.6 4.9 4.41 4.9a

M.A.E. 1.73 0.59 1.59
A.E. -1.73 -0.31 -0.05

a[204], b [205]

corrects only for energies of selected states (f orbitals in our case). On the other hand,

we notice that the deviation from the experimental values is not significantly larger

than for other methods such as GW or hybrid functionals. We notice however, that in

principle the DFT is a ground state theory and the Kohn-Sham eigenvalues have no

strict physical meaning [38, 156, 200]. This would imply that the interpretation of the

Kohn-Sham band gap as the fundamental band gap, although performed on the reg-

ular basis, is also not well justified. In fact, Perdew and Levy [156] and Perdew [200]

have shown that due to the discontinuity in the derivative of the exchange-correlation

energy, even having the exact ground state density and the exact Kohn-Sham poten-

tial, the Kohn-Sham band gap is still expected to be underestimated. From this point

of view the underestimation of the band gap by a DFT-based method can not be seen

as a flaw. On the other hand, from the construction of the Hubbard energy functional

it is expected that the DFT+U method with the correct Hubbard U parameter should

result in the discontinuity in the derivative of the exchange-correlation energy and re-

produce the fundamental band gap [56]. Thus, the possibility that the linear response

method underestimates the U values and therefore the band gaps can not be excluded.

On the other hand, as will be discussed in the next sections, the DFT+ULR method

results in good prediction of the reaction enthalpies, for the considered actinide- and

lanthanide-bearing solids. The problem of potential underestimation of the Hubbard
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U parameters by the linear response method of Cococcioni and de Gironcoli [72] could

be further addressed by computation of the Hubbard U parameter values with other

methods, such as cRPA [164]. We note however that an investigation reported here

shows consistent prediction of the cLDA and cRPA methods (see Section 3.1.3). In

general, the analysis of the band gap problem is also complicated due to lack of the

experimental information on the band gaps of the most of the investigated materials.

Therefore, being more interested in prediction of the thermochemical properties, we

did not investigated further this problem. However, we notice that the performance of

DFT+U for the prediction of the band gaps and the electronic densities of states was

already a subject of many previous studies (eg. [45, 65]).

3.2 Structural properties of f-materials

In this chapter we benchmark the performance of different DFT functionals and

DFT+U method with the fixed and derived the Hubbard U parameter values. As

reference materials we used simple actinide-bearing molecules, lanthanide-containing

oxides and monazite- and xenotime-type phosphates.

3.2.1 Uranium-bearing materials

The set of uranium-bearing molecular compounds, including U(VI), U(V), U(IV)

and U(III) halogenide, oxide and oxyhalide molecules computed here contains all the

species considered by Shamov et al. [30], Iche-Tarrat and Marsden [51] and Batista

et al. [206]. In addition we computed the series of uranium-chlorides for which good

experimental data exist.

Molecular compounds

The stable geometries of the uranium-bearing molecules found in our calculations are

in agreement with previous studies of the same systems [30, 31, 51, 206]. Uranium hex-
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Figure 3.3: Two possible structures of UOF4 molecule: the trigonal bipyramide (left) and the
square pyramidal configuration (right).

ahalogenides (UX6, where X = F,Cl) have Oh symmetry. The symmetry of uranium

pentahalogenides (UX5) is C4v and that of UX4 molecules is C2v. UX3 and UO2F2

molecules have C3v and C2v symmetries respectively. UO3 molecule has T-shaped pla-

nar geometry and UO2 has linear geometry. The two possible structures of UOF4 are

shown in Figure 3.3. The DFT-PBE calculation indicates that the square pyramidal

structure is more stable than the trigonal bipyramide form by 2.4 kJ/mol, which is in

agreement with the studies of Shamov et al. [30].

Three of the considered molecules, UF6, UCl6 and UCl3, have measured structural

parameters (the U − F,Cl bond lengths and the Cl − U − Cl angle in the case of

UCl3). Therefore, we started the analysis by an assessment of performance of different

methods in prediction of the bond lengths in these compounds. First, we compared the

U-F bond length computed for the gas-phase UF6 molecule to the experimental value

and to the previous theoretical estimates [207–209]. All the results are given in Table

3.9. The measured U-F bond length is 1.999 Å [207] and 1.997 Å [208]. The PBE

functional overestimates the bond length by slightly more than 1%, which is a known

feature of this functional [210]. The BLYP functional [209] gives even worse prediction,

which is also expected [211]. The hybrid B3LYP functional used in the same studies

improved the value of the bond distance and the Hartree-Fock calculation also shows

surprisingly good agreement with the experiment. The all-electron PBE0 calculation

[30] with 1.997 Å gives the best match to the experimental value.

Because the PBEsol functional recovers correctly the slowly varying density limit of

the exact exchange energy functional, it usually improves description of the structural

parameters over PBE [210, 118]. This is also visible in the calculations performed in
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Table 3.9: The bond distances in UF6, UCl6 and UCl3 molecules between uranium and halogen
atoms and U−Cl−U bond angle in UCl3 molecule obtained using different computational methods.
The bond lengths are given in Å and angles in degrees.

Functionals and methods U− F U− Cl(UCl6) U− Cl(UCl3) Cl− U− Cl
PBE 2.024 2.469 2.509 106.4
PBEsol 2.009 2.445 2.488 105.0
BPBE 2.025 2.506 2.519 106.4
modified PBE 2.048 2.471 2.559 111.8
PBE+U (U=0.5 eV) 2.025 2.470 2.525 106.4
PBE+U (U=1.5 eV) 2.027 2.472 2.550 106.7
PBE+U (U=3.0 eV) 2.031 2.477 2.557 106.3
PBE+U (U=4.5 eV) 2.034 2.486 2.570 106.7
PBE+U (U=6.0 eV) 2.039 2.500 2.581 106.4
PBE+ULR 2.030 2.474 2.535 106.3
PBEsol+U (U=0.5 eV) 2.010 2.446 2.495 105.4
PBEsol+U (U=1.5 eV) 2.012 2.449 2.504 105.1
PBEsol+U (U=3.0 eV) 2.015 2.453 2.538 105.8
PBEsol+U (U=4.5 eV) 2.024 2.462 2.548 106.3
PBEsol+U (U=6.0 eV) 2.015 2.474 2.563 106.2
PBEsol+ULR 2.015 2.451 2.509 105.1
BLYPa 2.043
PBE0a 1.997 2.565 109.5
HFb,c 1.984 2.48
B3LYPa 2.014 2.592 114.5
MP2a 2.005 2.521 106.9
exp.d,e,f,g 1.999 (1.996) 2.42 (2.461) 2.549±0.008 95±3

a

[209], b [212], c [213], d [207], e [214], f [215], g [208]

this work. PBEsol results in 2.009 Å for the U-F bond length of UF6 that is in better

agreement with the experiment than the PBE value. The U-F bond length obtained

with the modified PBE functional is in the worst agreement to the experimental value.

On the other hand, this functional predicts much better the enthalpies of reactions than

the PBE or PBEsol functionals, including the dissociation enthalpy of UF6, which will

be discussed later. The fact that by switching to a different GGA functional one can

improve the prediction of the reaction enthalpies at a cost of worsening the structural

parameters and vice versa, is a known shortcoming of current GGA-DFT functionals.

The DFT+U approach in general results in larger U-F bond length for UF6 than the

one predicted by the applied GGA functional. However, we will show that, in line

with the above conclusions, it also results in much better prediction of the gas-phase

reaction enthalpies.
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We observe the same trends as for UF6 in the case of UCl6 molecule that has the

same geometry and the oxidation state of uranium. Also in this case the PBEsol

functional results in better match to the measured U − Cl bond length. The exper-

imental U-Cl bond length for uranium trichloride, UCl3 is 2.549±0.008 Å [216]. All

the GGA functionals underestimate this bond length by ∼ 0.05 Å. In that case the

DFT+U method improves the bond length and the modified PBE functional also re-

sults in a good match to the experiment. However, all the methods overestimate the

Cl-U-Cl bond angle. Interestingly, for that parameter the hybrid functionals, PBE0

and B3LYP, give worse prediction than the PBE and PBEsol methods.

Solids

Uranium-bearing fluorides, chlorides, oxides and α-uranium were studied in this thesis.

The initial structures were taken from the available experimental works [184–194]. In

Tables 3.10, 3.11 and 3.12 we provide the computed with different methods and mea-

sured experimentally lattice parameters of all the considered solids. All the methods

usually overestimate the lattice lengths and volumes of the uranium fluorides solids

(see the cases of UF6, α-UF5 and β-UF5, Table 3.10). This is consistent with the

results obtained for the gas-phase UF6. Similarly to this case, the PBEsol functional

gives the best match to the experiment. The DFT+U method, in general, worsens the

agreement, when comparing with the prediction of respective GGA functionals, and

modified functional gives the worst prediction. Interestingly, all the methods overes-

timate the lattice parameters of UCl6 solid (Table 3.11), which is different from the

result for the gas-phase UCl6 (see Table 3.9). However, the PBEsol+ULR method re-

sults in good prediction of the lattice parameters of UCl4 and UCl3. α-U is the only

pure-uranium solid considered here. Both the GGA functionals result in relatively

good predictions of its lattice constants. This result is consistent with other com-

putational studies [217]. However, it is not well described by the DFT+U method,

including the DFT+ULR cases, which significantly overestimates its volume. Surpris-

ingly, we obtained very good description of the α-U structure with the modified PBE
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Table 3.10: The lattice parameters of uranium fluoride solids and α-uranium calculated using
different methods and measured [17, 18]. All length values are given in Å and volumes are given in
Å3.

UF6 α-UF5 β-UF5

a b c V a=b c V a=b c V
PBE 10.62 9.53 5.58 565 6.93 4.53 217.8 11.56 5.40 721
PBEsol 10.42 9.32 5.46 530 6.75 4.48 204.1 11.41 5.28 687
BPBE 11.50 10.36 6.04 720 7.37 4.54 246.7 11.57 5.49 735
modified PBE 12.16 10.92 6.41 852 8.37 4.67 326.9 18.36 6.70 2260
PBE+U(3 eV) 10.74 9.69 5.67 590 6.95 4.57 220.5 11.64 5.43 736
PBE+U(4.5 eV) 10.82 9.69 5.70 598 6.95 4.59 221.8 11.67 5.45 743
PBE+U(6 eV) 10.82 9.75 5.70 602 6.96 4.61 223.0 11.72 5.45 749
PBE+ULR 10.74 9.68 5.66 588 7.12 4.56 231.6 11.62 5.43 733
PBEsol+U(3 eV) 10.59 9.51 5.57 561 6.85 4.52 212.1 11.51 5.31 703
PBEsol+U(4.5 eV) 10.60 9.52 5.58 563 6.78 4.53 208.6 11.55 5.33 711
PBEsol+U(6 eV) 10.62 9.53 5.58 565 6.79 4.56 210.0 11.61 5.33 718
PBEsol+ULR 10.55 9.45 5.53 551 6.77 4.51 206.5 11.49 5.30 700
exp. 9.90 8.96 5.21 462 6.52 4.47 189.9 11.46 5.20 682

UF4 UF3 α-U
a b c V a=b c V a b c V

PBE 12.88 10.85 8.43 950 7.18 7.42 331 2.73 5.82 4.92 78.1
PBEsol 12.72 10.74 8.32 916 7.05 7.30 314 2.68 5.69 4.86 74.3
BPBE 12.90 10.86 8.43 953 7.20 7.39 332 2.72 5.82 4.93 78.2
modified PBE 14.90 11.53 11.19 1554 7.49 7.58 369 2.76 5.89 4.97 80.8
PBE+U(3 eV) 13.02 10.95 8.51 979 7.27 7.48 343 3.76 6.22 6.05 141.3
PBE+U(4.5 eV) 13.08 11.00 8.54 993 7.33 7.50 349 3.82 6.37 6.18 150.6
PBE+U(6 eV) 13.13 11.06 8.58 1008 7.38 7.55 356 3.86 6.47 6.28 156.9
PBE+ULR 12.96 10.89 8.47 965 7.22 7.41 335 3.61 5.95 5.88 126.4
PBEsol+U(3 eV) 12.87 10.83 8.41 946 7.16 7.37 327 3.65 5.96 5.93 128.8
PBEsol+U(4.5 eV) 12.93 10.89 8.45 960 7.21 7.40 333 3.74 6.19 6.06 140.2
PBEsol+U(6 eV) 12.98 10.95 8.49 974 7.24 7.43 338 3.77 6.34 6.17 147.2
PBEsol+ULR 12.80 10.78 8.38 930 7.09 7.31 318 3.47 5.52 5.77 110.5
exp. 12.73 10.75 8.43 929 7.18 7.35 328 2.84 5.87 4.94 82.1

functional, which badly overestimates the volumes of many other solids (see Tables

3.10-3.11).

3.2.2 Neptunium-, plutonium- and americium-bearing molecules

We studied fluorides, chlorides and oxides of other actinides in different valence state

(Np(I-IV), Np(VI), Pu(I-IV), Pu(VI), Am(III) and Am(VI)).
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Table 3.11: The lattice parameters of uranium chloride solids calculated using different methods
and measured [17, 18]. All length values are given in Å and volumes are given in Å3.

UCl6 UCl4 UCl3
a=b c V a=b c V a=b c V

PBE 11.76 6.46 774 8.36 7.76 543 7.55 4.28 210.6
PBEsol 11.25 6.13 672 8.23 7.47 506 7.37 4.14 194.8
BPBE 13.89 7.81 1305 8.36 7.87 551 7.57 4.27 212.1
modified PBE 15.33 8.50 1729 11.21 15.28 1918 11.76 3.91 445.9
PBE+U(3 eV) 11.76 6.46 775 8.44 7.82 558 7.61 4.39 220.1
PBE+U(4.5 eV) 11.78 6.45 774 8.49 7.90 569 7.66 4.42 224.3
PBE+U(6 eV) 11.78 6.45 775 8.54 7.88 574 7.68 4.44 227.4
PBE+ULR 11.76 6.46 774 8.40 7.87 556 4.56 4.32 213.6
PBEsol+U(3 eV) 11.25 6.15 673 8.33 7.56 524 7.42 4.35 207.0
PBEsol+U(4.5 eV) 11.24 6.15 674 8.37 7.57 531 7.47 4.35 211.1
PBEsol+U(6 eV) 11.24 6.19 677 8.42 7.58 538 7.52 4.37 214.3
PBEsol+ULR 11.28 6.14 676 8.28 7.54 517 7.40 4.23 199.9
exp. 10.95 6.02 625 8.30 7.49 515 7.44 4.32 207.5

Table 3.12: The lattice parameters of uranium oxide solids calculated using different methods and
measured [17, 18]. All length values are given in Å and volumes are given in Å3.

UO2 U3O8 α-UO3
a=b=c V a b c V a b c V

PBE 5.37 154.8 7.02 11.58 4.16 338 3.74 7.15 4.12 110.2
PBEsol 5.30 149.0 6.77 11.69 4.12 326 3.73 7.00 4.09 106.7
BPBE 5.41 158.6 7.02 11.58 4.16 338 3.74 7.15 4.12 110.2
modified PBE 5.49 165.4 7.28 11.62 4.20 355 3.44 10.77 4.18 174.7
PBE+U(3 eV) 5.54 170.0 7.23 11.53 4.17 347 3.41 9.96 4.17 141.6
PBE+U(4.5 eV) 5.58 173.1 7.28 11.55 4.18 351 3.42 9.97 4.18 142.2
PBE+U(6 eV) 5.62 176.4 7.34 11.57 4.19 355 3.42 10.34 4.19 148.4
PBE+ULR 5.52 167.7 7.20 11.52 4.17 346 3.41 9.96 4.17 141.5
PBEsol+U(3 eV) 5.48 164.3 7.14 11.43 4.14 338 3.71 7.14 4.10 108.7
PBEsol+U(4.5 eV) 5.52 167.5 7.19 11.45 4.15 341 3.70 7.27 4.12 111.0
PBEsol+U(6 eV) 5.55 170.7 7.25 11.48 4.15 345 3.74 7.29 4.14 113.0
PBEsol+ULR 5.45 161.6 7.11 11.43 4.14 336 3.80 6.94 4.11 108.5
exp. 5.47 163.5 6.70 11.95 4.14 332 3.96 6.86 4.17 113.2
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Table 3.13: Bond distances in NpF6 and PuF6 molecules between actinide and halogen atoms
obtained using different computational methods and functionals. Experimental value is also presented
for comparison. The bond lengths are given in Å.

Functionals and methods Np− F Pu− F
PBE 2.013 2.012av
PBEsol 1.997 1.994av
PBE+ULR 2.020 2.033av
PBEsol+ULR 2.003 2.011av
B3LYPa 1.991 1.977
exp.b,c 1.981(9) 1.971(10)

a [218], b [209], c [208]

Figure 3.4: Molecules of NpF6, NpF4, NpF3 and NpF2 in Oh, Td, C3v and C2v symmetries
respectively.

Hexafluorides of all four actinides were optimized in Oh symmetry. Data for

pentahalogenides is not available experimentally for most of the actinides and these

molecules were not studied in this work. The tetrahalogenides were optimized in Td

symmetry and the trihalogenides of the three actinides were optimized in C3v symme-

try. All dioxide molecules have planar geometry with the 180 degree oxygen-actinide-

oxygen bond angle. Similar to the UO3, PuO3 molecules has T shaped geometry with

the dihedral angle equaling 180 degrees. There are only few experimental geometries

of the molecules in the gas phase that are available for comparison. Values for PuF6

and NpF6 are presented in this paper in Table 3.13. The worst agreement for the

actinide-fluoride bond distance is obtained with PBE functional. The overestimation

of the bond lengths is a known feature of this functional [210]. The best agreement

with the experiment is obtained when using the PBEsol functional [210]. The differ-

ence between the experimental value and the value obtained with the latter functional

is 0.015 Å for NpF6 and 0.023 Å for PuF6. The DFT+U calculations using both

the functionals worsen slightly the geometry in comparison to the standard DFT cal-
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Figure 3.5: Structure of monazite.

culation by ∼ 0.3 percent. Overestimation of geometric parameters when using the

DFT+U method has already been reported previously by Wen et al. [45]. The case of

Pu− F bond length in PuF6 molecule is different from the discussed cases. Although

in the case of NpF6 all actinide-halogen bonds are equal in length, the calculation of

the PuF6 molecule resulted in four equal Pu−F bonds in equatorial plane, which were

shorter than the two bond distances of the axial Pu − F bonds. The average value

of these bond lengths is presented in Table 3.13. The DFT+U calculations worsen

slightly the bond distance by ∼ 1 percent.

3.2.3 Monazite- and xenotime-type ceramics

Within the context of future nuclear waste management strategies monoclinic or-

thophosphates LnPO4 (Ln = La to Gd) (Fig. 3.5) are potential candidates for the

safe disposal of minor actinides (Np, Am and Cm) and Pu [21]. These monazite-type

ceramics appear to be promising for the immobilization of the radionuclides because

of exceptional radiation resistance and chemical durability. Such phases are able to

take up large amounts of actinides on regular positions in their crystal structures and

keep such elements safe permanently. Natural monazites being as old as 3.2 billion

years contain up to 52 wt% ThO2 and up to 16 wt% UO2 without signs of significant

radiation damage to their crystalline structure [219]. Because monazite reveals a high
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structural flexibility (space group P 21/n, Z = 4) a simultaneous incorporation of tri-

and tetravalent lanthanides and actinides into their structure is possible. Actinides

can be integrated in the crystal structure by coupled substitution of the trivalent lan-

thanides [220]. For a more detailed description of the possible substitutions see Schlenz

et al. [21].

Figure 3.6: Structures of a-, b- and c-type Ln2O3 oxides from left to right.

However, our understanding of the behavior of monazite, and in general actinide-

bearing materials, upon incorporation of actinides and its subsequent interaction with

the environment is still incomplete. This is mainly because the key indicators of

the atomic scale characteristics of monazite, such as structure-property relationships

are still poorly understood [21], which is one of the main factors that prevents the

utilization of this material as safe nuclear waste form.

In this section we present the results of calculations of structural parameters of

lanthanide oxides and monazites- and xenotime-type ceramics. The computed values

are compared with the following measured structures indicated for each Ln cation: For

lanthanide-oxides: A-type: La[221], Ce[222], Pr[223], Nd[224], and Sm[225]; B-type:

Sm[226], Eu[227], and Gd[228]; C-type: Sm, Gd, and Dy of Bartos et al. [229], Eu[230]

and Tb[231]; For monazite from La to Gd by Ni et al. [232], Tb[233] and Dy[234].

Lattice constants

The structural parameters of lanthanide oxides (Fig. 3.6) obtained by using differ-

ent computational methods are reported in Figures 3.7 and 3.8 and the respective
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Table 3.14: Mean absolute error/mean error of A-type oxides (Ln2O3) lattice parameters (Å),
volume (Å3/formula unit), monoclinic angle (deg) and Ln-O bond lengths (Å).

Method a/b/c V Ln-O
PBEsol 0.081/-0.014 4.032/-4.032 0.050/-0.049
PBEsol+U (3.5 eV) 0.062/-0.062 1.661/-1.6601 0.030/-0.023
PBEsol+U (6.0 eV) 0.056/0.021 0.655/0.315 0.020/-0.003
PBEsol+ULR 0.048/-0.010 0.693/-0.369 0.021/-0.009
PBE 0.039/0.027 0.943/-0.289 0.028/-0.009
PBEa 0.106/0.106 2.630/2.630 0.033/-0.009
PBEb 0.099/0.099 2.555/2.555 0.026/0.026

a 4f electrons confined in the core, b [28]

deviations from experimental values are reported in Table 3.14. In all the cases

PBE functional gives larger values than PBEsol for all lattice parameters. PBE gives

slightly better results for A-type structures but PBEsol performs better for B-type and

C-type oxides. None of the considered standard DFT methods is able to satisfactory

reproduce the experimental values with PBE and PBEsol being off by up to 3.5% for

lattice constants and by 6% for volume.

The PBEsol+U method with fixed values of the Hubbard U parameter improves

the description of lattice parameters with the smallest deviation from the experiment

obtained with U = 6 eV, value which is more consistent with the average of computed

ULR values (Table 3.4). We obtained nearly perfect match to the experimental lattice

parameters in many cases, namely for La, Nd, Sm (C-type), Eu, Gd, Tb and Dy.

We observed largest disagreement with experiment for lattice constants of A-type

Ce2O3 and Pr2O3. However, even in these cases being only ∼ 1.5 % off PBEsol+ULR

still gives better prediction than PBE or PBEsol functionals. We get similarly good

results with PBE+ULR method, which is indicated in Figure 3.7 for few representative

oxides.

We obtain a superior match to the experimental values with PBEsol+ULR method

in most cases, especially in terms of predicted volumes. This method gives mean

deviation from the experiment no larger than 0.3%. Our excellent result for lattice

constants of rare-earth oxides using the PBEsol+ULR method indicates, that in order

to obtain correct description of the structures using the DFT+U method it is essential
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Figure 3.7: Lattice constants of Ln2O3 oxides obtained with different methods: PBE with f -
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Figure 3.8: Ln-O bond lengths in Ln2O3. The results of different methods are marked according
to convention used in Figure 3.7.

to chose proper DFT functional (PBEsol in this case) and the Hubbard U parameter

value, which should be derived not only for each lanthanide-cation but also for each

investigated structure.

Looking for the structure-property relationships in materials such as monazite it is

important to understand change in the interatomic distances resulting from lanthanide

contraction [21]. The results for Ln−O bond-length in oxides and monazite are given

in Figures 3.8 and 3.16. It is evident that PBEsol+ULR results in superior match

to the measured values. In case of monazite the agreement with measurement is

nearly perfect for most of the Ln cations. The goodness of the match is illustrated by

mean errors given in Table 3.15, that are a few times smaller for PBEsol+ULR than
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in the case of PBE or PBEsol methods. This is an astonishing result indicating that

PBEsol+ULR method can be successfully used for investigation of structural properties

of Ln-bearing materials such as monazite-type ceramics, which is important in context

of nuclear waste management.

Similarly, nearly perfect agreement with experiment has been reached for Ln −

P distances in monazites (Fig. 3.16). At the same time P − O bond lengths are

overestimated by ∼ 0.02 Å, i.e. the same value as the offset of bond-length of PO

molecule discussed above, resulting in a systematic offset of the predicted volume

shown in figure 3.9. Nevertheless, the experimentally seen monotonic decrease in

volume with increasing the atomic number of lanthanides is well reproduced. Good

predictions of the Ln−O and Ln−P bond lengths by PBEsol+ULR suggest that if there

were not an offset in P − O bond-lengths this method would result in nearly perfect

description of the monazite-type crystal structure. In the discussed figures and tables

that describe the structural parameters of the investigated materials we also included

results obtained by Rustad [28] who used PBE functional to perform the calculations.

Our own PBE results do not match these results in all the considered cases. This is

because in his calculations Rustad [28] used pseudopotentials with f -electrons treated
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Figure 3.10: Ln−O and Ln− P distances in LnPO4 obtained with different methods.The results
of different methods are marked according to convention used in Figure 3.7.

implicitly, i.e. not treated explicitly as valence electrons but included into the core and

modeled by pseudopotential. By using so constructed pseudopotentials we got very

similar lattice parameters for all lanthanide-oxides and monazites as Rustad [28], which

proofs the origin of discrepancy. Our results clearly show that in order to obtain good

structures of lanthanide-bearing materials f -electrons have to be treated explicitly and

the strength of the on-site Coulomb repulsion represented by U parameter has to be

accurately estimated for each f -element and the investigated structure. We found

that the linear response approach of Cococcioni and de Gironcoli [72] provides a good

estimate of the Hubbard U parameter at least for systems containing lanthanide-oxide

components.
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Table 3.15: Mean absolute error/absolute error of Monazite-type ceramic (LnPO4) lattice param-
eters, volume (Å3/formula unit), monoclinic angle (in degrees) and Ln−O, P−O and Ln−P bond
lengths. All lengths are in Å).

Method a/b/c V β
PBEsol 0.025/0.018 0.732/0.466 0.262/0.262
PBEsol+U=3.51 0.032/0.031 0.910/0.910 0.272/0.253
PBEsol+U=6.01 0.041/0.041 1.233/1.233 0.224/0.220
PBEsol+ULR 0.034/0.034 1.026/1.026 0.224/0.224
PBE 0.107/0.107 3.325/3.325 0.429/0.429
PBE 2 0.092/0.092 2.880/2.880 0.391/0.391
PBE 3 0.089/0.089 2.805/2.805 0.275/0.275

Ln−O Ln− P P−O
PBEsol 0.015/-0.004 0.015/0.008 0.020/0.020
PBEsol+U=3.51 0.009/0.002 0.010/0.010 0.021/0.021
PBEsol+U=6.01 0.010/0.006 0.015/0.013 0.021/0.020
PBEsol+ULR 0.002/-0.001 0.005/0.004 0.020/0.020
PBE 0.029/0.029 0.038/0.038 0.021/0.021
PBE 2 0.022/0.022 0.015/0.015 0.021/0.021
PBE 3 0.033/0.033 0.030/0.030 0.015/0.015

We have shown that the DFT+ULR method with PBEsol exchange-correlation

functional results in very good, even perfect, prediction of the Ln − O distances in

monazite. We extend these studies to xenotime-type ceramics, which are similar to

monazite (LnPO4), but incorporate lanthanides beyond Tb and have a tetragonal

symmetry [232]. The computed Hubbard U = ULR parameter values for xenotime and

the respected C-type (hexagonal) oxides are reported in Table 3.5.

In the previous paragraphs we have shown that DFT f -in-core approach results in

the reaction enthalpies that are rather consistent with the prediction of DFT+ULR and

different from DFT f -in-valence approach. In case of monazite, we were interested in

the direct comparison with DFT f -in-core PBE calculations of Rustad [28] and did not

performed f -in-core PBEsol calculations. However, having much better performance

of PBEsol functional than PBE for monazite it is interesting to compare directly

the f -in-valence PBEsol, f -in-core PBEsol and PBEsol+ULR approaches for monazite

and xenotime phases. The computed Ln − O distances of the two phases is given

in Figure 3.12. Similarly to the case of monazite PBEsol+ULR approach results in

superior prediction of the Ln−O distances for xenotime. Interestingly, DFT f -in-core

approach gives good values of the Ln−O distances for the first three lanthanides and

60



La Ce Pr NdSm Eu Gd Tb Dy Ho Er TmYb
2.20

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60

L
n
--

O
 (

Å
)

Figure 3.12: The computed and measured Ln−O bond distances in monazite and xenotime.

then systematically underestimates this parameter by ∼ 0.03 Å.
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3.3 Thermochemical parameters of f-materials

In this chapter we discuss the performance of different DFT functionals and the

DFT+U method with the fixed and derived Hubbard U parameter values for ther-

mochemical parameters of simple actinide-bearing molecules and solids, lanthanide-

bearing oxides and phosphates and pyrochlore-type ceramics.

3.3.1 Uranium-bearing materials

The difference between predicted by DFT and the measured enthalpies of reactions

for various uranium-bearing molecular compounds can be as large as 100 kJ/mol

[30, 50, 51]. By testing the different computational methods, including various DFT

generalized gradient approximations (GGA) and hybrid functionals as well as post

Hartree-Fock methods such as MP2 and CCSD(T), Shamov et al. [30] and Schrecken-

bach and Shamov [31] have shown that in order to reach the experimental accuracy

(20 kJ/mol) at least hybrid functionals such as PBE0 have to be used in computation

of the enthalpies of reactions involving uranium-bearing molecular compounds. In line

with these findings, most of the meaningful DFT studies of actinide-bearing materials

utilize the hybrid functionals such as B3LYP, PBE0 or HSE [46, 123–126]. Moreover,

studies of Shamov et al. [30], Schreckenbach and Shamov [31] and Odoh and Schreck-

enbach [136] indicate that the result of such hybrid calculations can also depend on the

number of core-electrons modeled by pseudopotentials and that at least 32 electrons of

uranium atom (5s25p65d106s26p65f 36d17s2) should be treated explicitly, which further

increases the computational cost. We note however, that this result is still in dispute.

For instance, Iche-Tarrat and Marsden [51] have shown that the explicit treatment

of 32 electrons of uranium atom only marginally improves the performance of either

DFT or hybrid-DFT functionals over the case when only 14 valence electrons of ura-

nium (6s26p65f 36d17s2) are treated explicitly. We will show that our results implicitly

support the later conclusion.

The usage of hybrid functionals or any post-Hartree-Fock method requires sub-
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stantial computational resources. This limits the applicability of these methods to the

simplest molecular compounds and solids. Materials that are interesting for nuclear

engineering have usually complex chemical compositions and structures with super-

cells containing often more than hundred atoms. This is especially true when solid

solutions with diluted concentration of elements are of interest [21, 26]. Thus, DFT

and its simple modifications, such as DFT+U , remain the only choice if one wants to

compute complex materials and simulate their dynamical behavior by methods such

as ab initio molecular dynamics [54–56] on nowadays supercomputing resources.

Wen et al. [45] have shown that the DFT+U method with a reasonable choice of the

Hubbard U parameter can reproduce the band gaps of actinide oxides and correctly

predict insulating state for these solids. This method has been successfully used in the

description of UO2 and its metastable states [65, 66], in the calculation of U(VI) aqua

complexes on titania particles [50] and for the investigation of incorporation of uranium

in the ferric garnet matrices [67]. It also predicts correctly the magnetic state of

actinide compounds [68] and the full phonon dispersion of strongly correlated materials

[69]. These successes have been achieved sometimes at a cost of worse description of

lattice parameters [45] or even anomalous change in volume [235]. In all these studies

the same Hubbard U parameter value for uranium of 4.5 eV (or Ueff = U − J =

4.5 eV− 0.5 eV = 4 eV) has been used, which has been derived from the spectroscopic

measurements of UO2 [61, 59]. We note however, that there is no guarantee that the

value derived for one system should be easily transferable to another, especially that

other estimates for neutral uranium atoms provide somehow lower values of U = 2.3 eV

[62] and U = 1.9 eV [64].

In this contribution we systematically test the performance of DFT+U method for

the prediction of the thermochemical parameters, namely the reaction enthalpies, of

simple uranium-bearing molecular complexes and solids, most of which were considered

in previous studies (eg. [30, 51]). We do that in order to compare our results with

already published predictions of much more demanding computational methods such

as hybrid functionals, MP2 or CCSD(T) [30] and with the available experimental data.
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Table 3.16: List of the considered 17 reactions between the gas-phase uranium-containing molecules.
The reactions 1-2, 7-12 and 14-16 were computed by Shamov et al. [30].

(1) UF6 → UF5 + F (10) UO3 → UO2 + O
(2) UF5 → UF4 + F (11) UOF4 + UO3 → 2UO2F2

(3) UF4 → UF3 + F (12) 2UOF4 → UF6 + UO2F2

(4) UCl6 → UCl5 + Cl (13) UO3 + H2O→ UO2(OH)2

(5) UCl5 → UCl4 + Cl (14) UF6 + H2O→ UOF4 + 2HF
(6) UCl4 → UCl3 + Cl (15) UF6 + 2H2O→ UO2F2 + 4HF
(7) UOF4 → UF4 + O (16) UF6 + 3H2O→ UO3 + 6HF
(8) UO2F2 → UO2 + 2F (17) UO2F2 + 2H2O→ UO2(OH)2 + 2HF
(9) UF6 + 2UO3 → 3UO2F2

Up to our knowledge there exist no systematic studies of the performance of

DFT+U method for prediction of the thermochemical parameters of actinides. The

reactions taken into consideration are given in Table 3.16. We considered only the al-

ready computed reactions in order to make a broad comparison of the results reported

in this work with the results obtained by using different computational methods, in-

cluding hybrid functionals and higher level post Hartree-Fock methods such as MP2

and CCSD(T) [30]. The thermochemistry data used as a reference were derived from

the formation enthalpies taken from Morss et al. [17] and Guillaumont et al. [18]. We

computed the reaction enthalpies by taking the differences in the total energies of the

reactants. The initial structural parameters of computed solids were taken from dif-

ferent experimental studies and the adequate references are indicated in the relevant

text and tables.

Molecular compounds

We selected several reactions involving gas-phase molecules to asses the performance of

different methods in the prediction of enthalpies of reactions involving uranium-bearing

molecules. As already mentioned, the experimental data exist for all of them and the

enthalpies of most of the considered reactions were already computed using different

methods of computational quantum chemistry. All the reactions are listed and labeled

in Table 3.16. This labeling will be used subsequently in all further discussion in the

text. All the reaction enthalpies computed with the standard GGA functionals are
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Table 3.17: The reaction enthalpies computed with different DFT methods for the reactions given
in Table 3.16 and the respective experimental values [17, 18]. Term PBEmodif indicates the modified
PBE functional. The enthalpies are given in kJ mol−1.

PBE PBEsol BPBE PBEmodif PBE-BPBE corr. exp.
(1) 422 458 403 324 328 313±17
(2) 514 549 497 413 429 385±22
(3) 619 641 607 541 558 618±27
(4) 278 317 254 176 155 205±20
(5) 312 347 302 217 261 204±20
(6) 414 447 395 339 320 412±25
(7) 554 613 529 441 430 405±20
(8) 1153 1204 1131 964 1045 1033±20
(9) -207 -206 -208 -214 -213 -311±22
(10) 678 718 658 568 577 576±20
(11) -113 -114 -105 -114 -72 -170±40
(12) 19 23 1 14 -69 -25±31
(13) -141 -157 -133 -63 -105 -182±11
(14) 178 190 173 112 152 65±12
(15) 337 356 344 210 373 189±12
(16) 608 638 620 421 666 437±12
(17) 131 125 143 149 189 272±11

mean error 78 101 70 4 35
M.A.E. 95 119 88 51 74 20

given in Table 3.17. First of all, despite the different pseudopotentials used in our and

Shamov et al. [30] studies (large core ultrasoft pseudopotentials were used here, while

Shamov et al. [30] used the all electrons or the small core pseudopotential calculations)

the PBE results of the two studies are well consistent. The difference, measured by

the mean absolute error (M.A.E), between the two calculations is only 3.2 kJ/mol1.

This result validates our computational setup. The M.A.E. obtained with the PBE

functional for all the considered reactions is 95 kJ/mol. Because the mean error (M.E.)

is of similar value, this indicates a systematic offset from the measured values. Such a

significant systematic error is unacceptably large, having the largest experimental er-

ror of 40 kJ/mol. The PBEsol functional results in even larger error, which as already

discussed, is a known feature of this functional. In their studies Shamov et al. [30]

used the PBE, BPBE and OLYP standard GGA-DFT functionals. These calculations

resulted in a systematic offset for all the considered reactions, with BPBE performing

slightly better than PBE, and OLYP resulting in reduction of the error by ∼ 50%.

1Considering only the reactions computed by Shamov et al. [30]
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Our calculations show similar trend. The BPBE functional gives slightly better match

to the measured values for all the considered reactions. We found that this behavior is

not restricted to the reactions between uranium-bearing compounds but has been also

observed for the bond energies of metal-ligand complexes [236]. Because the different

GGA functionals result in different systematic offsets from the measured values, we

decided to test the possibility of using a combination of two functionals in order to

get better estimation of the reaction enthalpies. Especially instructive is the mixture

of the BPBE and PBE results, because both functionals differ only by the exchange

functional (they have the same, PBE correlation energy functional [57]). In Table 3.17

in column labeled by PBE-BPBE corr. the reaction enthalpies obtained by mixing the

results of PBE and BPBE functionals as EPBE + 5(EBPBE−EPBE) are given, where E

indicates enthalpy. As shown in Table 3.17, such a mixing results in significant reduc-

tion of the mean error, although M.A.E. is reduced by only 21 kJ/mol. Interestingly,

the modified PBE functional, with M.E of only 4.1 kJ/mol, significantly improves the

prediction of reaction enthalpies. It gives results that are better than predictions of

the PBE or PBEsol functionals, not only for the reactions (1) and (2) used in the con-

struction of the functional (see Section 2.2.1), but for most of the considered reactions.

This is a promising result. However, we will show that such a simple modification of

the PBE functional does not give similarly good results for solids. Shamov et al. [30],

Odoh and Schreckenbach [136] and Schreckenbach and Shamov [31] concluded that cal-

culations with the large core pseudopotential (14 valence electrons for uranium, which

is also our setup) can result in significant under-performance of the PBE0 functional

in prediction of the reaction enthalpies and suggest to use a small core or all-electron

calculations in order to get converged energies. Because with the PBE and BPBE

functionals we obtained results that are consistent with the all-electron calculations

of Shamov et al. [30] and Schreckenbach and Shamov [31], we suspect that the size of

the core is not that important, when a GGA functional is used. Interestingly, Iche-

Tarrat and Marsden [51] have shown that the 32 electrons core pseudopotential only

marginally improves, or even worsens in some cases, the performance over the 14 elec-

66



0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

M
e
a
n
 a

b
so

lu
te

 e
rr

o
r 

(k
J/

m
o
l)

P
B

E

B
P

B
E

P
B

E
so

l

m
o
d
if

ie
d
 P

B
E P

B
E

-B
P

B
E

 c
o
rr

.

P
B

E
so

l+
U

L
R

P
B

E
+

U
L

R

P
B

E
0

C
C

S
D

(T
)

M
P

2

Figure 3.13: The mean absolute error for the eleven reactions considered by Shamov et al. [30]
obtained using different methods. The PBE0, CCSD(T) and MP2 results are those of Shamov et al.
[30].

trons core pseudopotential in the case of GGA and hybrid functionals. One exception

is PBE0, which is also shown in results of Iche-Tarrat and Marsden [51]. Therefore

we suspect that the number of valence electrons can impact the result, when that

functional is used in calculations. In most of the studies that utilize the DFT+U

method the Hubbard U parameter, and sometimes J (representing strength of the

on-site electron exchange), is chosen in a way that particular, known properties of

the investigated systems, such as the lattice parameters or the band gaps, could be

reproduced by calculations. Some studies use ab initio based methods for the estima-

tion of the Hubbard U parameter value [56], such as the linear response method [72],

which we used in our studies, the constrained random phase approximation (cRPA)

[164] or simple approaches such as the Slater transition state [71]. The Hubbard U

parameter values can be also derived from the spectroscopic measurements [59–64].

We first computed the reaction enthalpies for different Hubbard U parameter values

of 0.5 eV, 1.5 eV, 3 eV, 4.5 eV and 6 eV that are kept the same for all the reactants and

products. All the results are given in Tables 3.18 and 3.19. It is clearly visible that

the DFT+U method improves the prediction of the enthalpies of reactions over the
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PBE+U and PBEsol+U calculations, respectively. The curves represent fits by a parabola that were
used to estimate the optimal Hubbard U parameter values (see discussion in the text).

PBE and PBEsol functionals. In the next step, we determined the values of Hubbard

U parameter in a way, that it minimizes the deviation from the measured reaction en-

thalpies (i.e. minimizes the M.A.E.). These values were obtained by fit of the M.A.E.

for different values of the U parameter by a parabola. The Hubbard U parameter

value is given by the minimum of the fitted curve and the fitting results are illustrated

in Figure 3.15. For the PBE+U and PBEsol+U methods we obtained the following

values: U = 3.0±1.0 eV and 3.8±1.0 eV, respectively. We estimated the uncertainties

on these values from Figure 2.3 taking into account the mean experimental error of

20 kJ/mol/
√

17 ∼ 5 kJ/mol.2 In addition to these studies, we derived the Hubbard U

parameters for each considered molecular compound using the linear response method

proposed by Cococcioni and de Gironcoli [72] (see Section 3.1). The obtained values

of ULR are reported in Table 3.1. Interestingly, on average these values are slightly

smaller than the ones that minimize the M.A.E. However, as reported in Section 3.1,

2Computed as the standard error of the arithmetic mean.
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Figure 3.15: The mean absolute error and mean error (in kJ mol−1) of the selected 11 gas-phase
reactions considered by Shamov et al. [30] (see Table 3.16) obtained with different methods indicates
on the horizontal axes as: (1) PBE, (2) PBEsol, (3) BPBE, (4) modified PBE, (5) PBE-BPBEcorr,
(6) PBE+U(U = 0.5 eV), (7) PBE+U(U = 1.5 eV), (8) PBE+U(U = 3 eV), (9) PBE+U(U = 4.5
eV), (10) PBE+U(U = 6 eV), (11) PBE+ULR, (12) PBEsol+U(U = 0.5 eV), (13) PBEsol+U(U
= 1.5 eV), (14) PBEsol+U(U = 3 eV), (15) PBEsol+U(U = 4.5 eV), (16) PBEsol+U(U = 6 eV),
(17) PBEsol+ULR, (18) PBE0, (19) MP2 and (20) CCSD(T). Here the experimental values [17, 18]
and the calculations of Shamov et al. [30] using PBE0, MP2 and CCSD(T) methods were chosen as
reference and the references are indicated in the left-upper corners.

it is noticeable that the derived Hubbard U parameters decrease with decreasing the

oxidation state of uranium. When only the values computed for U(VI) complexes

are considered, the obtained U value of 2.8 eV is in good agreement with the values

obtained from minimization of the M.A.E. This is not surprising as most of the consid-

ered reactions involve U(VI) complexes. On the other hand, our result indicates that

the thermochemistry data can be used to determine the Hubbard U parameter value

independently from other experimental methods such as spectroscopy [59–64]. Our
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Table 3.18: The reaction enthalpies computed with the PBE+U method for the reactions given
in Table 3.16 and the respective experimental values [17, 18]. The ULR, d column represents the
PBE+ULR results corrected with the PBE+U calculations applied to the d-orbitals (see text for
details). The enthalpies are given in kJ mol−1.

0.5 eV 1.5 eV 3 eV 4.5 eV 6 eV ULR ULR, d exp.
(1) 410 386 349 311 271 273 270 313±17
(2) 496 460 405 349 310 402 410 385±22
(3) 609 627 594 559 511 622 621 618±27
(4) 266 241 200 157 100 222 223 205±20
(5) 294 254 193 136 99 198 198 204±20
(6) 399 411 330 300 261 357 361 412±25
(7) 528 474 391 311 248 346 352 405±20
(8) 1176 1107 1120 1079 1048 1048 1015 1033±20
(9) -232 -283 -363 -443 -497 -260 -225 -311±22
(10) 693 608 598 536 497 579 560 576±20
(11) -127 -158 -204 -247 -278 -121 -98 -170±40
(12) 23 32 45 52 59 -19 -28 -25±31
(13) -147 -158 -173 -186 -187 -149 -146 -182±11
(14) 175 170 160 145 130 127 125 65±11
(15) 328 308 275 238 201 272 278 189±12
(16) 607 603 593 579 550 538 530 437±12
(17) 133 138 146 154 162 117 106 272±11

mean error 71 47 14 -23 -55 8 8
M.A.E. 90 63 55 70 90 45 50 20

studies also show that the linear response approach of Cococcioni and de Gironcoli

[72] gives U values that minimize the error of DFT+U reaction enthalpies.

Solids

We extended the calculations and analysis performed for the molecular complexes

into computation of simple uranium-bearing solids. We wanted to check if by us-

ing the mixture of GGA functionals, the modified PBE functional and the DFT+U

method one can also improve the description of structures and the prediction of re-

action enthalpies in the case of periodic systems. As for molecular compounds, in

these calculations we derived the Hubbard U parameter value for each solid using the

linear response approach [72] and the results for the values of ULR are given in Table

3.2. As discussed in Section 3.1, the ULR values derived for the solids are consistent

with those derived for the molecular complexes (Table 3.1). Here we also observe that

ULR is larger for the U(VI)-bearing solids (UF6 and UO3) and is the smallest for the
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Table 3.19: The reaction enthalpies computed with the PBEsol+U method for the reactions given
in Table 3.16 and the respective experimental values [17, 18]. Columns represent results obtained
with the fixed values of U and with U = ULR. The enthalpies are given in kJ mol−1.

reactions 0.5 eV 1.5 eV 3 eV 4.5 eV 6 eV ULR exp.
(1) 447 423 387 349 309 322 313±17
(2) 532 496 441 385 328 432 385±22
(3) 634 617 615 584 553 653 618±27
(4) 305 280 240 198 148 261 205±20
(5) 329 289 228 169 123 231 204±20
(6) 429 438 397 332 300 428 412±25
(7) 586 533 452 373 292 410 405±20
(8) 1188 1157 1113 1075 1096 1030 1033±20
(9) -228 -281 -358 -436 -513 -244 -311±22
(10) 696 648 583 524 526 558 576±20
(11) -127 -159 -204 -247 -288 -109 -170±40
(12) 27 37 51 57 64 -25 -25±32
(13) -162 -172 -185 -197 -208 -161 -182±11
(14) 187 182 171 156 140 139 110±11
(15) 348 326 292 255 217 302 189±12
(16) 635 630 618 601 582 574 437±12
(17) 126 132 140 149 157 111 272±11

mean error 90 68 33 -6 -35 28
M.A.E. 107 84 60 63 83 50 20

Table 3.20: List of the 9 considered reactions between the uranium-bearing solids.

(33) α-UF5 + F→ UF6

(34) β-UF5 + F→ UF6

(35) UF4 + F→ α-UF5

(36) UF4 + F→ β-UF5

(37) UF3 + F→ UF4

(38) UO2 + O→ α-UO3

(39) 3UO2 + 2O→ U3O8

(40) UCl4 + 2Cl→ UCl6
(41) UCl3 + Cl→ UCl4

U(III) carrying materials. We computed the enthalpies of nine reactions between the

considered solids. All the reactions are provided in Table 3.20. We note that in the

calculation of reaction enthalpies for the gas-phase species, F, O and Cl, the energies

of atoms are considered, not the relevant molecules (i.e. for instance the energy of

F atom is used, not 1/2 F2). The results are provided in Tables 3.21 and 3.22. The

PBE and PBEsol functionals result in significant, systematic errors of 168 kJ/mol and

184 kJ/mol respectively. Similarly to the case of the enthalpies of reactions between

the molecular compounds, the mixture of PBE and BPBE functionals and the mod-
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Table 3.21: The reaction enthalpies computed with different DFT methods for the reactions given
in Table 3.20 and the respective experimental values [17, 18]. Term PBEmodif indicates the modified
PBE functional. The enthalpies are given in kJ mol−1.

PBE PBEsol BPBE PBEmodif PBE-BPBE corr. exp.
(33) -324 -352 -327 -280 -341 -200±8
(34) -363 -369 -378 -277 -439 -192±6
(35) -407 -414 -403 -443 -385 -240±10
(36) -368 -397 -352 -446 -288 -248±8
(37) -554 -578 -541 -522 -488 -491±9
(38) -490 -510 -439 -487 -236 -250±3
(39) -1208 -1191 -1086 -1037 -598 -818±4
(40) -490 -515 -492 -389 -499 -290±6
(41) -310 -335 -278 -298 -148 -276±5

mean error -168 -184 -143 -131 -46
M.A.E. 168 184 143 131 128 7

ified PBE functional result in improvements over the PBE and PBEsol functionals,

although the improvement is not that pronounced as for the molecules. On the other

hand the DFT+U method, similarly to the case of reactions between the molecular

compounds, significantly improves the reaction enthalpies and the best results are ob-

tained with the DFT+ULR method. The M.A.E. is significantly reduced to 31 kJ/mol

and 47 kJ/mol for PBE+ULR and PBEsol+ULR respectively, which is comparable to the

error obtained for the enthalpies of reactions between the uranium-bearing molecules.

In general, even the DFT+U method with fixed U value ranging from 3 eV to 6 eV

substantially improves the prediction of DFT, and such calculations with U = 4.5 eV

(the value that reproduces the band gap of UO2) give the best results. The results

obtained for solids are thus in line with the conclusions reached from the studies of

molecular compounds. The both benchmark calculations indicate that the DFT+U

method could allow for meaningful, computer-aided simulations of actinide-bearing

materials, including those relevant for nuclear waste management, and that very good

results for the thermochemistry can be obtained, when the Hubbard U parameter is

derived ab initio for each considered molecular or solid structure.
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Table 3.22: The reaction enthalpies computed with the DFT+U method for the reactions given in
Table 3.20 and the respective experimental values [17, 18]. Columns represent results obtained with
the fixed values of U and with U = ULR. The enthalpies are given in kJ mol−1.

PBE PBEsol exp.
reaction 3 eV 4.5 eV 6 eV ULR 3 eV 4.5 eV 6 eV ULR

(33) -256 -219 -186 -201 -284 -248 -211 -241 -200±8
(34) -295 -257 -217 -241 -305 -268 -229 -262 -192±6
(35) -302 -246 -184 -275 -319 -263 -206 -281 -240±10
(36) -263 -208 -153 -235 -298 -242 -188 -260 -248±8
(37) -471 -432 -399 -491 -491 -455 -423 -518 -491±9
(38) -369 -282 -207 -333 -392 -306 -221 -362 -250±3
(39) -898 -702 -503 -839 -964 -773 -578 -921 -818±4
(40) -317 -229 -171 -266 -351 -264 -194 -297 -290±6
(41) -223 -178 -159 -229 -281 -214 -164 -268 -276±5

mean error -43 28 92 -12 -76 -3 65 -45
M.A.E. 59 55 97 31 76 41 77 47 7

Table 3.23: List of considered 15 reactions between gas-phase actinide-bearing molecules.

(18) NpF6 → NpF4 + 2F (26) AmF6 → AmF3 + 3F
(19) NpF4 → NpF3 + F (27) NpCl4 → NpCl3 + Cl
(20) NpF3 → NpF2 + F (28) PuCl4 → PuCl3 + Cl
(21) NpF2 → NpF + F (29) NpO2 → NpO + O
(22) PuF6 → PuF4 + 2F (30) PuO3 → Pu2 + O
(23) PuF4 → PuF3 + F (31) PuO2 → PuO + O
(24) PuF3 → PuF2 + F (32) AmO2 → AmO + O
(25) PuF2 → PuF + F

3.3.2 Neptunium-, plutonium- and americium-bearing molecules

following the successful results for uranium-bearing compounds we benchmarked the

DFT+ULR methods for other actinides, namely U, Np, Pu and Am. The considered

reactions that involve these molecular complexes are presented in Table 3.23.

The Hubbard U parameter values derived for each considered actinide compound

is presented in Table 3.3. As discussed in Section 3.1, in general, the Hubbard U

parameter values decrease with decreasing the oxidation state of actinide. In this work

we made a systematic comparison of the formation enthalpy of 15 reactions involving

fluorides, chlorides and oxides of uranium, neptunium, plutonium and americium with

experimentally available data [18, 17]. The mean average error (M.A.E.), taking the

experimental values as the reference, of the reactions enthalpies obtained with the

DFT+ULR method using the PBE and PBEsol functionals was significantly reduced.
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Table 3.24: The reaction enthalpies computed with different DFT and DFT+U methods for 15
reactions given in Table 3.23 and respective experimental values [17, 18]. The enthalpies are given in
kJ mol−1.

PBE PBEsol PBE+ULR PBEsol+ULR exp.
(18) 835 902 575 643 518±42
(19) 528 556 492 515 524±47
(20) 644 668 614 632 573±55
(21) 646 663 645 665 573±55
(22) 345 373 268 294 319±15
(23) 690 759 411 476 422±42
(24) 460 484 389 411 459±28
(25) 584 601 557 575 632±12
(26) 616 637 609 629 805±16
(27) 414 567 357 428 412±25
(28) 950 1034 595 670 685±47
(29) 678 718 579 577 582±22
(30) 707 734 597 626 599±35
(31) 479 521 356 393 407±35
(32) 577 616 460 470 509±65

mean error 89 131 -17 21
M.A.E. 95 135 41 52 36

The M.A.E. obtained using the PBE functional is 89 kJ/mol. The DFT+ULR

method reduces the error to 40 kJ/mol. In the case of the PBEsol functional the

difference between the plain DFT and the DFT+U calculations is even larger, 92

kJ/mol (Table 3.24), with the PBEsol+U method better describing the formation

enthalpies. Mean error of the 15 reactions is also presented in Table 3.24. The mean

error is similar to M.A.E., thus the offset to the experimental values can be considered

as systematic. These results are graphically shown in Figure 1.4. Comparison to all

electron PBE0 and CCSD(T) calculations is available for reactions 10, 29 and 31 from

Tables 3.16 and 3.23 [237, 238, 30]. The M.A.E. for these three reactions is 19 kJ/mol

for calculations with DFT+ULR method, 14 kJ/mol for calculations with the PBE0

hybrid functional and 13 kJ/mol for the CCSD(T) calculations.

3.3.3 Monazite- and xenotime-type ceramics

Having good description of structural parameters with PBEsol+ULR performance of

the method was tested for the description of energy-related properties of lanthanide

74



orthophosphates. For that purpose the enthalpies of formation of monazite were com-

puted, assuming the reaction:

1

2
Ln2O3 +

1

2
P2O5 → LnPO4. (3.1)

The results are given in Figure 3.16. In our derivation the contribution from zero

point energies was neglected, as it was already shown that these are second order

effects affecting the derived enthalpies by no more than a few kJ/mol [28], which

is substantially less than the error carried by the computational method. Adding

2 kJ/mol error by not accounting for spin-orbit interaction, we can assume, that these

calculations carry an error of ∼ 10 kJ/mol, but not significantly larger. With both

PBE and PBEsol functionals the enthalpies of reactions are overestimated by up to

∼ 80 kJ/mol. We got substantially larger offset than that of ∼ 40 kJ/mol obtained

by Rustad [28]. The only noticeable difference between the two calculations is the

treatment of f -electrons. When the f -electrons are treated implicitly by putting them

into the core as Rustad [28] did, his reaction enthalpies are reproduced. Comparing

to DFT predictions, the DFT+U calculations in this work result in significant change,

in both structural parameters and reaction enthalpies, in all considered cases. As is

clearly visible in Figure 3.16, with the U parameter derived by the using the linear

response method one significantly improves the prediction for the reaction enthalpies.

Interestingly, PBEsol+ULR results in ∼ 40 kJ/mol improvement over DFT and an off-

set from experimental values [83] of also ∼ 40 kJ/mol, which is the value of the offset

reported by Rustad [28] in his PBE calculations. If we blindly take the difference

between the PBEsol+ULR and the PBEsol calculations and treat it as a correction to

DFT, then the results using pseudopotentials with f -electrons included into the core

with such a correction would lead to much better agreement with the experimental

values. Rustad [28] also performed DFT+U calculations for case of Ce and claims that

there is no significant difference in terms of enthalpy of formation (only a few kJ/mol).

Our results show that this is rather a coincidence caused by different treatment of f -
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Figure 3.16: Volume of monazite. The results of different methods are marked according to con-
vention used in Figure 3.7.

electrons (to perform the DFT+U calculation these must be included in the valence).

For Ce PBE+U calculation with U = 3 eV and f electrons treated as valence results

in similar structures and reaction enthalpies (−288.4 kJ/mol) as PBE calculation with

f -electrons included into the pseudopotential core (−285.6 kJ/mol), i.e. effect of U

is canceled out by effect of implicit treatment of f electrons. Results for enthalpy of

formation of monazite given in Figure 3.16 contain a clue for the origin of the offset

between the computed and measured values. First of all, both the DFT and DFT+U

methods result in the same reaction enthalpy in case of lanthanum, where there are

no f -electrons, which is offset from the measured value by 36.1 kJ/mol. Surprisingly,

similar offset is seen in case of other lanthanides, which suggests that it is independent

on lanthanide cation. In fact, if one shifts the PBEsol+ULR reaction enthalpies by the

offset obtained for lanthanum one ends up at the experimental curve for all the lan-

thanides, well reproducing experimentally seen increase in the reaction enthalpy with

the atomic number of lanthanide (see Figure 3.16). Having a lanthanide-atom inde-

pendent offset would be rather unexpected, if the offset is related to the treatment of

f -electrons. This is because the strength of the on-site Coulomb repulsion represented

by ULR parameter varies significantly between lanthanides (see Table 3.4). Therefore,

it would be surprising if an error in estimation of energy due to strong correlations
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would be independent of the lanthanide-cation. In addition our ULR values result in

very good structures of both lanthanide-oxides and monazites, which would not hold

if our Hubbard U values were wrong. On the other hand, having the same offset for

the lanthanum, where there are no f electrons, as for other lanthanides points into

the lanthanide independent (f electrons independent) origin of the discrepancy. The

only lanthanide-independent factor in the considered reaction is P2O5. Knowing that

DFT overestimating P − O bond length is not able to accurately describe the struc-

ture of P2O5 (see Table 3.15) the constant offset between the computed and measured

formation enthalpies can be explained by an error in computations of P2O5 and not

by Ln-bearing reactants. In order to check this, we computed the PBEsol energy of

P2O5 by using the experimental structure of Cruickshank [239]. The obtained energy

is higher by 29.6 kJ/mol than the one obtained for the fully relaxed structure. When

we performed PBEsol+ULR calculations of La2O3 and LaPO4 experimental structures,

the respected energies that enter Eq. 3.1 are much smaller, 0.1 kJ/mol for the oxide

and 4.6 kJ/mol for the monazite. All these results lead to increase in the formation

enthalpy of LaPO4 by 24.9 kJ/mol. This number is comparable to the observed energy

offset of 36.1 kJ/mol, which supports the conclusion that the inaccurate description

of the P2O5 structure is the main source of the offset between the computed and the

experimental values of the considered formation enthalpies.

The studies performed for monazite-type ceramics were extended on the xenotime-

type ceramics (LnPO4) and prediction of formation enthalpies using the DFT+ULR

method and the f -in-core PBESol functional for the LnPO4 series is shown on the

Figure 3.17. The f -in-core PBEsol calculations result in the formation enthalpies that

are consistent with the PBEsol+ULR results and both predictions are consistent with

the experimental measurements. There is a visible constant-like offset of 30 kJ/mol

between the measured and the computed values of the formation enthalpies. In case

of monazite we attributed this offset to the overestimation of the P−O bond lengths

and consequently overestimation of the volume of P2O5. If this is indeed the case

we should obtain the same offset for xenotime. Indeed, our calculations of xenotime
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Figure 3.17: The formation enthalpies computed for monazite (filled symbols) and xenotime (open
symbols) computed considering the 1/2Ln2O3 +1/2P2O5 → LnPO4 reaction and using the DFT and
DFT+U methods.

show constant offset of 30 kJ/mol which support previous explanation. As in the case

of monazite, for xenotime DFT f -in-valence approach underestimates the formation

enthalpies and the experimentally seen trend along the lanthanide-series is also not well

reproduced. On the other hand PBEsol f -in-core approach results in good agreement

with the PBEsol+ULR calculations, providing even less noisy and more consistent with

the experimental values trend along the lanthanide series. This shows that the DFT

f -in-core approach is a good method for computation of the energetics of lanthanide-

phosphates and can be considered as a method of choice for further calculations such

as the heat capacities of monazites reported in the next section.

3.3.4 Heat capacities of monazite-type ceramics

The characterization of thermodynamic properties of f -materials is of significant im-

portance for in-depth study of potential nuclear waste host materials. Experimen-

tal studies of actinide-bearing materials are often problematic due to the activity of

the samples. Therefore, many thermodynamically relevant properties of these ma-

terials, including the heat capacities, are often estimated with the aid of atomistic

modeling (eg. Kaur et al. [240], Li et al. [26]). The heat capacity and entropy are
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important thermodynamic parameters useful, for instance, in the assessment of the

thermodynamic stability of materials under repository conditions. The pure-phase

lanthanide and actinide monazite-type ceramics exist for Ln=La,...,Dy (LnPO4) and

An=Pu, Am, Cm (AnPO4) [241]. The experimental data on the heat capacities and

absolute entropies are available for some of these compounds. The low temperature

heat capacities and the standard entropies have been measured for LaPO4[242, 174],

CePO4[243], NdPO4[244], EuPO4[245] and GdPO4[174]. The high temperature heat

capacities have been reported for LaPO4[246], CePO4[246], NdPO4[244], SmPO4[247],

EuPO4[247] and GdPO4[246]. For actinides, the analogous data are available only for

PuPO4. Thiriet et al. [84] and Benes et al. [248] measured the heat capacity of the

pure PuPO4 at low and high temperatures, respectively. Popa et al. [85] measured the

low temperature heat capacity of the La0.9Pu0.1PO4 solid solution. Because for many

monazites the experimental data on low temperature heat capacities and standard en-

tropies are missing, Thiriet et al. [84] estimated the standard entropies for the whole

series of lanthanide monazites assuming that the contribution of vibrational entropy

is constant for all these compounds and is equal to the measured standard entropy

of LaPO4 [174]. Thiriet et al. [84] further assumed that the vibrational contribution

to the standard entropies of AnPO4 is larger than this of the lanthanides by a factor

of 1.10. They computed this factor by comparing the vibrational entropies of various

isoelectronic lanthanide and actinide compounds such as sesquioxides, trifluorides and

trichlorides. Crystal field theory and the available spectroscopic data were then used

for estimation of

the excess entropy arising from the thermal excitation of f electrons. However,

these estimates and the underlying assumptions require validation. Here we show that

ab initio atomistic modeling is an excellent tool for such a purpose. Recently, the heat

capacities of the lanthanide monazites were computed ab initio by Feng et al. [182].

However, the computed heat capacities are smaller than the measured values. We will

show that this deficiency is caused by the neglect of the contribution from the electronic

specific heat, which is known to be significant for the considered orthophosphates [84].
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Figure 3.18: The computed (open circles) and measured (filled squares) volumes of LnPO4 and
AnPO4 monazites.

Feng et al. [182] explain the low heat capacity of GdPO4, in comparison to the other

monazites, by the temperature-induced monazite to zircon phase transition. We will

demonstrate that the explicit accounting for the thermal excitation of the f electrons

explains this difference without necessity of involvement of another processes. We also

note that the local spin density approximation (LSDA), variation of DFT method used

by Feng et al. [182], resulted in significantly underestimated (by ∼ 10%) volumes of the

investigated compounds. Such deficiency must have also affected the computed heat

capacities, which indicates that the computational approach has to be carefully chosen

in order to get accurate estimation of the thermodynamic properties of monazite-type

ceramics. Thermal excitations of f electrons can contribute significantly to the entropy

and the heat capacity of monazite-type ceramics [84, 174]. This contribution arises

from the electronic thermal excitations inside the partially filled f -shells and is often

referred to as the Schottky contribution [175, 174]. The excited electronic levels that

contribute to the effect arise from the Stark splitting of the ground state by the crystal

electric field. For the elements that show very small excitations of the ground state

(eg. Gd3+ or Cm3+, Table 3.25) the Schottky contribution to the heat capacity is very

small. However, this contribution to the standard entropy can be still significant due

to multiplicity of the ground level, g0. When the energy splitting of the ground state
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Table 3.25: The energy levels of Ln3+ and An3+ in An : LaCl3 and Ln : LaCl3. The results for
Ce3+ are these estimated for CePO4 monazite by Thiriet et al. [174]. The energy units are cm−1.

Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+

2F5/2 0 3H4 0 4I9/2 0 5I4 0 6H5/2 0 7F0 0
339 0 113 0 46 7F1 363
669 29 128 55 75 363

2F7/2 2217 106 240 55 6H7/2 1009 417
2669 106 250 78 1060 7F2 1034
2903 130 4I11/2 1969 92 1110 1034
3015 130 2008 92 1186 1041

156 2020 108 6H9/2 2243 1041
215 2041 206 2259 1096

3H5 2106 2045 5I5 1548 2331 7F3 1869
2138 2053 1563 2357 1885
2138 1563 2389 1902
2168 1576 1902
2168 1576 1925
2177 1605 1943
2205 1605 1943
2205 1608
2236 1608
2236 1613
2269 1623

Gd3+ Tb3+ Dy3+ Pu3+ Am3+ Cm3+

8S7/2 0 7F6 0 6H15/2 0 6H5/2 0 7F0 0 8S7/2 0
0.12 0 9 23 7F1 2718 6
0.19 55 9 81 2718 6
0.23 55 20 6H7/2 3097 2779 8

6P7/2 32436 91 51 3213 7F2 5285 6D7/2 16996
32458 98 85 3364 5285 17076
32473 98 126 3450 5289 17223
32477 98 157 6H9/2 6022 5289 17294

6P5/2 33024 98 4H13/2 3455 6039 5378 6P5/2 20217
33046 110 3490 6142 7F3 7436 20280
33050 118 3493 6153 7449 20363

118 3523 6287 7492
130 3544 7492

7F5 2050 3551 7569
2086 3558 7588
2086 7588
2098
2098
2120
2157
2157
2173
2173
2202

is negligible, the entropy effect can be computed as Rlng0, which gives Sexc ∼ Rln8 =

17.3 JK−1mol−1 for the cases of Gd3+ and Cm3+. The energy levels of Ln3+ and An3+,

εi, were estimated with the aid of Crystal Field Theory. For calculating the crystal-field

splitting of the energy levels in lanthanide and actinide monazites we used the code
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Figure 3.19: The heat capacity of LaPO4. The solid line represents the computed values (at
constant volume, CV) and the dotted line represents the fit with the equation 3.2 discussed in section
3.3.4. The symbols show the experimental results (at constant pressure, Cp) of Gavrichev et al.
[242], Thiriet et al. [174] (filled circles) and Popa et al. [246] (filled squares).
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Figure 3.20: The heat capacities of CePO4 and NdPO4. The solid line represents the computed
values, the dashed line shows the lattice contribution and the dotted line represents the fit with the
equation 3.2 discussed in section 3.3.4. In the left panel the symbols show the experimental results of
Thiriet et al. [243] (filled circles) and Popa et al. [246] (filled squares) and in the right panel of Popa
et al. [244]. The insert panel shows the low temperature part of the figure.

developed by Edvardsson and Aberg [176]. It performs diagonalization of an effective

Hamiltonian which results in prediction of the splitting of the energy levels of a free

ion by the electric field of a particular crystalline compound. The parameters of the

effective Hamiltonian, namely the electrostatic, the spin-orbit, Judds [178] and Trees

[179] parameters, are usually constrained from the spectroscopic data. Unfortunately,

the complete set of such data is not yet available for the lanthanide- and actinide-

monazites of interest. Partial information is available for Nd-, Eu- and Cu-doped

LaPO4 [249, 250]. However, variations in the crystal-field splitting of Ln(III) and
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Figure 3.21: The heat capacities of SmPO4 and EuPO4. The solid line represents the computed
values, the dashed line shows the lattice contribution and the dotted line represents the fit with Eq.
3.2 discussed in section 3.3.4. In the left panel the symbols show the experimental results of Popa
and Konings [247] and of Gavrichev et al. [245] (filled circles) and Popa and Konings [247] (filled
squares), in the right panel.

An(III) ions due to different crystal structures of host minerals are usually small. For

example, the splitting of the F0, F1 and F2 levels of Eu3+ remains approximately the

same in LaCl3, LaF3, LaPO4, and in different polymorphs of CaCO3 [249–251]. These

small differences in the energy levels when converted into the Schottky contributions

certainly result in small change in the computed heat capacities and the standard

entropies. However, these variations are insignificant relative to the experimental

uncertainties. For instance, the Schottky contribution of Eu3+ varies within the range

of 0.5 J mol−1K−1 for different crystal structures. Therefore, for practical needs, the

Schottky contributions to the heat capacities of monazites can be estimated from the

spectroscopic data available for other crystalline phases. An almost complete set of

experimental data is available for Ln and An doped LaCl3 [252, 249, 253], which we

decided to use in our calculations. The one

exception is CePO4. Because we were not able to find the relevant data on CeCl3,

in the estimations of the Schottky correction for this compound we used the energy

levels values estimated for CePO4 by Thiriet et al. [174]. The energy levels used in the

calculations of all the considered cations are given in Table 3.25. We will show that

they result in the Schottky contributions to the heat capacities and the entropies that

are consistent with the previous estimates of Thiriet et al. [84] and Popa and Konings
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Table 3.26: The standard heat capacities of LnPO4 and AnPO4 monazites at T = 298.15 K.

Ln/An CV,lat (JK−1mol−1) CV,exc CV,tot CP,exp

La 102.8 0.0 102.8 102.6a

101.3b

Ce 102.5 5.2 107.7 106.4c

Pr 102.2 0.9 103.1
Nd 102.1 1.7 103.8 104.8d

Pm 101.8 0.9 102.7
Sm 101.7 2.0 103.7
Eu 101.5 9.7 111.2 112.9e

Gd 101.4 0.0 101.4 102.2f

Tb 101.2 0.4 101.6
Dy 101.1 0.5 101.6
Pu 102.2 0.2 102.4 114.5g

Cm 102.0 0.0 102.0
Am 101.9 0.0 101.9

a [242], b [174, 246], c [243, 246], d [244], e [245], f [174, 246], g [84].

[247].

Heat capacities of LnPO4

The measured heat capacities of LnPO4 for Ln = La,Ce,Nd, Sm,Eu and Gd are

well reproduced by the calculations (Figures 3.19-3.22). Because La does not have

f electrons, the heat capacity of LaPO4 arises from lattice vibrations only. The cal-

culated heat capacities of LaPO4 agree well with the measured ones [242, 174, 246]

up to T = 700 K. Within this interval the deviation from the measured values is

smaller than 1.5 JK−1mol−1 (Figure 3.19). For temperatures greater than 700 K the

calculations underestimate the heat capacity.

This deviation suggests that the quasi-harmonic approximation becomes invalid for

LaPO4 monazite above 700 K. The validity limit of the quasi-harmonic approximation

will be further discussed in section 3.3.4. The measured heat capacity of CePO4 [243,

246] is also well reproduced by our calculations (Figure 3.20). Here the Schottky effect

is significant with the contribution to the standard heat capacity of 5.2 JK−1mol−1

(Table 3.26). In the case of NdPO4 the match to the measured heat capacities is the

worst, but still the calculations differ from experiment by not more than 3.5 JK−1mol−1

at T < 300 K (Figure 3.20).
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Table 3.27: The standard entropies of LnPO4 and AnPO4 monazites at T = 298.15 K.

Ln/An Slat (JK−1mol−1) Sexc Stot Sexp

La 109.8 0.0 109.8 108.7a

108.2b

Ce 108.7 10.5 119.2 120.0c

Pr 107.9 17.8 125.7
Nd 107.6 18.3 125.9 122.9d

Pm 107.1 18.0 125.1
Sm 107.1 15.2 122.3
Eu 106.7 9.2 115.9 116.8e

Gd 106.6 17.3 123.9 124.1f

Tb 106.3 21.1 127.4
Dy 106.2 22.8 129.0
Pu 113.0 14.8 127.8 137.0g

Cm 112.5 17.3 129.8
Am 112.2 0.0 112.2

a[242], b[174, 246], c[243, 246], d[244], e[245], f [174, 246], g[84].

The heat capacity of SmPO4 has been measured only at high temperatures (T >

300 K). As shown in Figure 3.21, the high temperature data are well reproduced by

the calculations. Interestingly, in this system the Schottky effect becomes significant

even at very low temperatures. The reason is that Sm3+ has low lying excited states

(see Table 3.25) which become populated even at temperatures as low as few K. The

measured heat capacities of EuPO4 and GdPO4 are also well reproduced (Figures 3.21

and 3.22). EuPO4 shows the largest Schottky effect with 9.7 JK−1mol−1 contribution

to the standard heat capacity. Because Gd3+ in GdPO4 has half filled f -shells, the

splitting of its 8S7/2 ground state is insignificant, while its first excited state, 6P7/2, has

a very high energy of 32436 cm−1 (Table 3.25). Therefore, the Schottky contribution

to the heat capacity of GdPO4 is negligible (Table 3.25). This explains why the heat

capacity of GdPO4 is low and similar to this of LaPO4. In Table 3.26 we give the com-

puted standard heat capacities of all LnPO4 monazites. We note that there is a slight

monotonic decrease in the lattice vibrations contribution along the lanthanide series.

In DyPO4 the vibrational contribution to the standard heat capacity is 1.7 JK−1mol−1

smaller than in LaPO4. This is the effect of the slightly smaller vibrational frequencies

of heavier lanthanides. It explains why GdPO4 with its negligible Schottky contribu-

tion and a small lattice vibrations contribution has the lowest heat capacity among
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Figure 3.22: The heat capacity of GdPO4. The solid line represents the computed values, the
dashed line gives the lattice vibrations contribution and the dotted line represents the fit with the
equation 3.2 discussed in section 3.3.4. The symbols show the experimental results of Thiriet et al.
[174] and Popa et al. [246].

the lanthanide monazites. Thus the low heat capacity of GdPO4 noted by Feng et al.

[182] is a consequence of the electronic structure of Gd+3 and its relatively high mass.

Therefore, the monazite to zircon phase transition in GdPO4 proposed by Feng et al.

[182] to explain the low heat capacity of this compound can be ruled out.

Table 3.27 lists the standard entropies of LnPO4 monazites. The Schottky contribu-

tion to the standard entropy is significant for almost all LnPO4 monazites. This is

because the second term in Eq. 2.40 can be significant even when the crystal-field

splitting of the ground state is negligible. In Table 3.27 we compare the predicted

values of standard entropies to those derived from the measured heat capacities. The

computed values agree well with the measured ones for LaPO4, CePO4, EuPO4 and

GdPO4 but the standard entropy of NdPO4 is slightly overestimated. This small excess

is caused by the overestimation of the heat capacity of NdPO4 at low temperatures

(see the insert panel in Figure 3.20).

Validity of the quasi-harmonic approximation

The heat capacities and the vibrational entropies are computed with the quasi-harmonic

approximation [38] in which anharmonic vibrational effects are neglected. This model
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Table 3.28: The coefficients of polynomial given by Eq. 3.2 obtained by the least squares fits to the
computed values of heat capacities of LnPO4 and AnPO4. The units of a, b and c are JK−1mol−1,
10−3JK−2mol−1 and 106JKmol−1, respectively

Ln/An a b c
La 120.86 29.31 -2.48
Ce 125.14 27.75 -2.37
Pr 119.40 34.18 -2.46
Nd 119.71 34.63 -2.46
Pm 121.42 34.57 -2.72
Sm 126.91 30.78 -3.02
Eu 135.69 21.76 -2.92
Gd 129.43 16.71 -3.14
Tb 125.15 25.22 -2.96
Dy 127.13 19.93 -2.99
Pu 121.33 28.68 -2.55
Am 117.33 36.70 -2.45
Cm 129.53 16.57 -3.10

usually breaks down above a certain temperature, leading to the underestimation of

the heat capacities at high temperatures. The limiting temperature at which the ap-

proximation is still valid appear to vary significantly along the Ln-series. For LaPO4

this temperature is about 700 K (Figure 3.19). For CePO4 and SmPO4 the valid-

ity limit appears to hold up to T ∼ 900 K, while for the heavier lanthanides, i.e.

EuPO4 and GdPO4, deviations from the harmonic behavior are barely detectable up

to T = 1200 K. This increase in the limiting temperature is apparently related to

the decrease in the volume of monazite compounds along the lanthanide series (see

Figure 3.18), which reduces the anharmonic effects on lattice vibrations. It is a com-

mon practice to approximate the high temperature tail of the heat capacity function

by a polynomial in T . For example, Popa and Konings [247] have used the following

equation:

C = a+ bT + cT−2. (3.2)

We fitted the parameters of this polynomial to the computed high temperature (T >

300 K) tails of the heat capacities. The upper temperature of the fitted interval was

chosen to be 700 K for LaPO4, 800 K for CePO4, PrPO4, NdPO4, PmPO4, SmPO4

and PuPO4, 900 K for EuPO4 and AmPO4 and 1000 K for GdPO4, TbPO4, DyPO4

and CmPO4. These temperatures were assumed to match the limit of validity of
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the quasi-harmonic approximation discussed in the previous paragraph. The upper

temperature limits for the actinide monazites were chosen to be identical to those of

their isoelectronic lanthanide compounds. The parameters of the polynomial of Eq. 3.2

obtained for all the considered monazites are given in Table 3.28. The resulting heat

capacities are also plotted in Figures 3.19-3.23. With Eq. 3.2 we are able to reproduce

the high temperature heat capacities and the procedure emulates the anharmonic

effects not accounted for by the quasi-harmonic approximation. Equation 3.2 together

with the polynomial parameters given in Table 3.28 can thus be used to estimate the

heat capacities of the considered monazites at high temperatures.

Heat capacities of AnPO4

Monazite-type ceramics with trivalent actinide cations exist for An= Pu, Am, Cm

[241]. Although the thermal excitations of f electrons contribute significantly to the

standard entropy of these compounds (see Table 3.27), the Schottky effect to the stan-

dard heat capacity is negligible (Table 3.25). This happens because the excited states

of An3+ have higher energies than those of Ln3+ (see Table 3.25). The only signifi-

cant contribution to the heat capacity comes from the lattice vibrations. Due to the

mass effect, this contribution is slightly larger for the actinide monazites than for their

lanthanide analogues (see Table 3.26). The mass effect can be accurately reproduced

by substituting the mass of Sm by the mass of Pu in the dynamical matrix computed

for SmPO4. The heat capacity computed from vibrational eigenstates of the modified

matrix almost exactly matches this computed directly for PuPO4. For instance, for

T = 298.15 K we got Cv = 102.1 JK−1, which is very close to the value reported in

Table 3.25 for PuPO4. The lattice vibrations contributions to the standard entropies

of actinide monazites are also slightly larger than in the lanthanide case (Table 3.27).

Out of the three cases of actinide monazites, the heat capacity has been measured only

for PuPO4 [84, 248]. In Figure 3.23 we compare the results of our calculations to these

experimental data. The computed values are substantially smaller than the measured
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Figure 3.23: The heat capacity of PuPO4. The solid line represents the computed values, the
dashed line shows the lattice vibrations contribution and the dotted line represents the fit with the
Eq. 3.2 discussed in section 3.3.4. The symbols show the experimental results of Thiriet et al. [84]
(filled circles) and Benes et al. [248] (filled triangles). The filled squares represent the heat capacity
measured for La0.9Pu0.1PO4 by Popa et al. [85]

ones. We found the difference in the standard heat capacity to be 12.1 Jmol−1K−1,

which is significant. It is difficult to understand the origin of this discrepancy, espe-

cially when the contribution to the heat capacity is expected to arise from the lattice

vibrations only, while the effect of mass is adequately taken into account in our sim-

ulations. The calculated standard entropy is smaller than the measured value by 9.2

Jmol−1K−1. Although the origin of this discrepancy cannot be fully resolved within

this study, we note that the calorimetric data on Pu-bearing monazites of Popa et al.

[85] and Benes et al. [248] are inconsistent. In Figure 3.23 we plotted the heat capacity

of La0.9Pu0.1PO4 solid solution measured by Popa et al. [85] together with the exper-

imental data on pure PuPO4 and LaPO4. The heat capacity data for La0.9Pu0.1PO4

lie between the experimental measurements for LaPO4 and PuPO4, implying that

the lattice contributions to the standard heat capacity and the standard entropy of

La0.9Pu0.1PO4 are approximately equal to the half sum of the corresponding values

for LaPO4 and PuPO4. This result is not expected as, under the assumption of ad-

ditivity, the data for La0.9Pu0.1PO4 should lie much closer to those of LaPO4. The

available data thus suggest that the solid solution of La1−xPuxPO4 is characterized by
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a very large excess vibrational entropy, which amounts to about SE = 27 Jmol−1K−1

at x = 0.5. This value is much larger than the effect of ideal configuration entropy

of 5.7 Jmol−1K−1, or the excess enthalpy of mixing of ∼ 1 kJmol−1 computed for the

La1−xPuxPO4 solid solution [26], and thus is unreasonably large. On the other hand,

under the assumption of the absence of an excess heat capacity, the data of Popa

et al. [85] and the data on LaPO4 [242, 174, 246] could be used to extract the contri-

bution of PuPO4 to the heat capacity of the mixture. The heat capacity of PuPO4

evaluated in this way would amount to about 165 Jmol−1K−1 at 298 K. This value is

also unreasonably large. These speculations together with the observed discrepancy

between the calculated and measured data for PuPO4 suggest that the data on PuPO4

or La1−xPuxPO4, or both, could be subjected to an error. A potential explanation for

the mentioned difficulties with the interpretation of the experimental data could be

caused by impurity of the samples. For instance, a possible admixture of PuO2 could

lead to a significant Schottky contribution to the heat capacity, similarly to the case of

EuPO4. Indeed, Krupa and Carnall [254] have shown that excited states of Pu4+ have

much lower excitation energies than those of Pu3+. A potential excess contribution to

the heat capacity of PuPO4 can also occur due to the activity of the sample. For ex-

ample, the self-heating of the sample would cause its temperature to be slightly higher

than the temperature of the calorimeter. This could make an effect on interpretation

of the relaxation calorimetry measurements, as the Physical Property Measurement

System (PPMS) software assumes that the temperature relaxes exactly to the temper-

ature of the heat bath. An additional potential difficulty could be related to the use

of encapsulation. The heat capacity of the encapsulator, e.g. a two-component epoxy,

has to be subtracted from the total heat capacity of the encapsulated sample [255].

A potential uncertainty could come from a difficulty of preparing the epoxy of exact

composition, as the two components are involved. The study of Javorsky et al. [255]

have shown that inhomogeneities in the epoxy could lead to significant variations in its

heat capacity. In view of the outlined problems with the data on Pu-monazites and in

view of the absence of experimental data on other actinide monazites, our calculations
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Figure 3.24: Representations of the pyrochlore (a) and the defective fluorite structures (b).

for the actinide compounds cannot be fully validated. However, based on our suc-

cessful prediction of the heat capacity data on lanthanide monazites, we assume that

our calculations should provide realistic estimates of the heat capacities and standard

entropies of the actinide analogues. On the other hand, we note that the discrep-

ancies observed for the Pu-monazites points to the need of additional experimental

measurements.

3.3.5 Defect formation energies in pyrochlore-type ceramics

Natural pyrochlore oxides (A2B2O7) contain up to 30 wt% UO2 and 9 wt% ThO2

without damaging their crystalline structure [256]. For this reason, the pyrochlore-type

ceramics are considered as a final crystalline form for nuclear waste disposal [86, 15, 87].

The relevant properties of pyrochlores have been systematically investigated by various

methods such as the actinide-doping [257–263], the dissolution experiments [35, 19,

264], the ion beam-irradiation [265–275], and by atomistic calculations. The latter

includes simulations of the disordering process [276–279] and of the defect formation

energetics [271, 280]. The results of these atomistic simulations have been widely

used to interpret the experimental findings [22]. Pyrochlore and defective fluorite

have cubic symmetry [272]. In figure 3.24 the relationship between their crystalline

structures is shown. The local ionic configurations are represented with the cubes

that have cations in the center and oxygen or vacancies distributed at the corners.

The different cation sites are interconnected via common cube edges. In pyrochlore
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cations A and B are eight- and six-fold coordinated, respectively. This leads to an

appearance of a superlattice with the ordered arrangement of cations and vacancy

sites. In defective fluorite both cations are seven-fold coordinated which makes their

positions indistinguishable and results in random distribution of cations and oxygen

vacancies [15]. Two main point defects that form in pyrochlore are the cation antisite

(CA) and anion Frenkel pair (AFP) defects. The CA defect in pyrochlore is formed

by flipping the position of A and B cations and the AFP results from the transfer

of a 48f oxygen to the vacant site 8a. The ordered pyrochlore (Fig. 3.24(a)) could

be transformed to defective fluorite (Fig. 3.24(b)) by a combination of these defects.

It is commonly accepted that the accumulation of these defects leads to the order-

disorder (O-D) transition (i.e. transition from the ordered pyrochlore to the disordered

defective fluorite) [280, 281]. Although the O-D transition has been extensively studied

experimentally [257, 282, 283], the underlying physics of the phase transition remains

unclear.

DFT and DFT+U calculations

The relationship between the structural stability of pyrochlore and the defect formation

energies (DFE) has been systematically investigated by the force-field (FF) atomistic

simulations. These studies have shown that the compounds with smaller cation radius

ratio, rA/rB, which form defective fluorite have relatively small CA DFE [272, 271, 280,

281]. However, these energies are still at least 2 eV, which is too large for disordering to

occur. On the other hand, recent DFT studies of DFEs for selected pyrochlores [284–

290] (see Table 3.29) show that these energies are substantially smaller than those

predicted with FF methods (e.g. Sickafus et al. [271]). This puts the FF results in

doubt and shows the necessity of revision of the previously published DFE contour

maps for pyrochlores.

We carried out ab initio calculations using two approaches which were successfully

applied to study the monazite-type lanthanide-phosphates in previous sections [23,

26]: the DFT+ULR method, with the Hubbard U parameter derived ab initio using
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Figure 3.25: Comparison of the calculated O-D transition temperature with the experimental data
[291, 292] for selected pyrochlores. The symbols represent DFT results of [183] (black filled squares)
and our DFT (black squares) and DFT+U (red filled circles) calculations.

the linear response method of Cococcioni and de Gironcoli [72] and the f -in core

approach in which f electrons are modeled by the pseudopotential. As we shown

in previous sections, the second approach results in energies and structures that are

usually better than when f electrons are computed explicitly, and consistent with the

DFT+U method [23, 28, 26], being at the same time computationally more stable.

Jiang et al. [183] performed DFT calculations of the O-D transition temperatures

for a series of A2B2O7 pyrochlores and obtained temperatures that are systematically

lower by 250 K than the measured values. In order to test our computational ap-

proaches these temperatures were recomputed for Sm2Zr2O7, Gd2Zr2O7, Tb2Hf2O7

and Gd2Hf2O7 with the two chosen methods. The Hubbard U parameter values used

in the DFT+U calculations are provided in Table 3.6. The results are illustrated in Fig

3.25. The DFT+ULR method significantly improves the DFT prediction of O-D tran-

sition temperatures. This clearly indicates that this method improves the description

of 4f electrons. On the other hand, because of the explicit treatment of f electrons,

in many instances the convergence of the DFT+U was very slow, and in some cases
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Figure 3.26: The CA DFEs for A2Ti2O7 (left) and A2Zr2O7 (right) obtained with FF [271] and
DFT/DFT+U methods.

Table 3.29: CA DFEs (in eV) obtained in this study (ts), the previous DFT calculations (ps) and
with previous FF calculations. The pyrochlore compositions are indicated as (A,B).

Comp. ts ps FF Comp. ts ps FF
(La,Ti) 1.02 1.93a 6.0 (Gd,Sn) 2.93 2.52d 4.5
(Sm,Ti) 1.89 2.18a 5.8 (Tb,Sn) 2.83 3.58d

(Gd,Ti) 2.00 1.80b 5.6 (Y,Sn) 2.48 1.97c 4.1
2.32a 3.39d

(Tb,Ti) 2.01 2.31a (Er,Sn) 2.48 3.23d 4.0
(Y,Ti) 1.95 1.77c 5.5 (Lu,Sn) 2.06 2.16d 3.5

2.29a

(Er,Ti) 1.93 2.24a 5.4 (La,Hf) 2.73 2.84d

(Lu,Ti) 1.42 2.06a 5.3 (Gd,Hf) 1.60 2.15d

(La,Sn) 3.20 2.83d 5.0 (La,Hf) 1.96 1.38f

(Nd,Sn) 3.21 3.42d 4.9 (Gd,Zr) 1.66 1.78b 3.6
(Sm,Sn) 3.11 3.06d 4.6 (Y,Zr) 0.23 0.26c 3.3
a [285], b [282], c [284], d [287], e [289], f [290].

it was difficult to reach the ground state. This was never the case with the f -in-core

approach. In terms of the energy difference between the two phases, the results of

the two computational methods deviate by no more than 0.3 eV. Although it matters

for the precise derivation of the O-D transition temperature, such a small difference

is negligible comparing to up to ∼ 5 eV difference between DFT and FF calculations

(Table 3.29) of DFEs. Facing the number of calculations required to recompute the

DFE contour maps and the convergence problems with the DFT+U method it was

decided to stick to the f -in-core method and use DFT+ULR for a few selected cases to

assess the associated uncertainties. In Figure 3.26 we present the results of the calcu-
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Figure 3.27: The contour maps of CA (left) and AFP (right) DFEs. The experimentally confirmed
A2B2O7 solid compounds are indicated with different symbols: pyrochlore (black filled squares),
defective fluorite (black empty squares) and non-cubic phase (triangles). The thick black line separates
the positive and negative DFEs regions. The energy unit is eV.

lations of CA DFEs for titanate and zirconate pyrochlores. Our ab initio energies are

consistent with previous DFT studies (see Table 3.29) but differ significantly from the

FF results of Sickafus et al. [271] and Minervini et al. [280] with ab initio DFE being

lower by 1 eV to 5 eV. The new energies show also different trends along the lanthanide

series. In the case of titanates, the CA DFE increases from La to Gd and decreases

for heavier elements, while the FF show a continuous decrease. For zirconates with

A = Er to Lu the DFE even becomes negative which indicates instability of pyrochlore

and explains why these compositions never form pyrochlore, but the defective fluorite.

In Figure 3.27 we show the contour maps of the DFEs for the broad range of A

and B cations. The positions of cations along the axes reflect the A3+ and B4+ cation

ionic radii. The cations A range from La3+ to Lu3+ and the cations B from Ti4+ to

Pb4+. On top of the contour maps we plotted symbols indicating the stable phases of

the considered A2B2O7 oxides. The compositions which form defective fluorite occupy

the bottom-right corners of the diagrams with cation A radii smaller than 1.05 Å and

cation B radii larger than 0.7 Å. Both contour maps are significantly different from

the FF based results of Sickafus et al. [271] and Minervini et al. [280]. The DFT

DFEs are substantially lower. In fact the FF DFEs are usually larger by at least a
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few eVs, and only the AFP DFEs become small or negative for a few compositions

at the lower right corner [280]. There is also substantial difference on the qualitative

level. While the FF studies show gradual DFEs decrease across the cation B series

(with increasing B cation radius) and an increase across the cation A sequence, our

ab initio results show a more complex behavior. Both DFE diagrams show an energy

maximum along cation B sequences (such as the maximum of CA DFE for Sn). The

most striking difference between the present DFT and the previous FF calculations is

seen in the lower right corner, exactly for the compositions that form defective fluorite.

The CA DFEs are usually smaller than 1 eV in the lower right part of the diagram

and some of the compositions that form defective fluorite even show negative values.

This is important information, because the easiness of disordering the cation sublattice

should be the key factor behind the disordering of the cation sublattice, a structural

property of defective fluorite. However, the new CA DFE diagram shows that there are

still several compositions which are known to form a defective fluorite and for which

the CA DFEs are in the order of 1 eV. This indicates that the disordering of the cation

sublattice can not be the sole driver of the O-D transition in pyrochlores. The right

panel of Figure 3.27 shows the AFP formation energies. The energy contours of this

diagram resemble the contours obtained for the CA defect, but are smaller in value by

about 1 eV. As a result, many pyrochlore compositions in the lower right part of the

diagram exhibit negative or very small AFP DFEs. Interestingly, these compositions

contain all the cases that are known to form defective fluorite instead of pyrochlore.

This part of the diagram also overlaps the zirconates that form pyrochlore (A2Zr2O7

for A = Sm, ...,Tb). However, most of these pyrochlores are known to form defective

fluorite at high temperatures (see also Fig. 3.25 and the relevant text). The correlation

of the smallness and negativeness of the AFP DFEs with the formation of the defective

fluorite clearly shows that the easiness of defect formation on the oxygen sublattice is

essential to the disordering of the pyrochlores and for subsequent formation of defective

fluorites. This is because the still significant energy cost associated with creation of

the CA defects can be compensated by the energy gained from accumulation of the
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AFP defects. Using the FF approach Minervini et al. [280] have shown that although

the energy cost to form single defects is large (a few eV), the energy of formation of a

combined defect consisting of an AFP attached to a CA defect can be negative for some

of the compositions that form defective fluorite and correlated with the occurrence of

the O-D transition. However, the FF energies of this combined defect are still positive

and significant (above 2 eV) for many zirconates that are known to form defective

fluorite (e.g. Gd2Zr2O7). Our ab initio calculations show a much better correlation

between the negativeness or small value of the AFP formation energy, accompanied

by a relative small value of the CA DFEs, with the formation of the defective fluorite.

This clearly indicates that the easiness of the defects formation, namely of the AFP,

is one of the driving forces behind the O-D transition in pyrochlores.

3.4 Other application studies

The computational methodologies tested in the scope of this dissertation thesis, namely

the DFT+ULR method and f -in-core DFT approach, have been used in subsequent,

successful calculations of various other properties of nuclear materials performed by

the Atomistic Modeling group of Dr. Kowalski at IEK-6. These include calculations

of the elastic moduli [293], the excess thermodynamic properties of solid solutions [26],

the solid state chemistry of actinides [294, 295] and the composition dependent order-

disorder transition in Nd2xZr1− xO7+x compound [296]. The reported here successful

benchmarking and applications indicate that the aforementioned ab initio computa-

tional approaches can be successfully applied for feasible and reliable calculations of

chemically complex f -elements bearing systems. These studies give thus a basis for

applied, reliable and computationally feasible computer-aider research of materials

related to nuclear waste management.
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Chapter 4

Conclusions

4.1 Achievements of this thesis

The main idea of this thesis was to the find, validate and apply feasible ab initio com-

putational methods that would allow for reliable simulations of materials considered in

the nuclear waste management. We thus extensively tested various DFT-based com-

putational approaches for prediction of the structural and thermodynamic properties

of relevant materials, including lanthanide- and actinide-bearing molecular and solids

compounds, phosphates, halogenides and zirconates. We were especially interested in

the DFT+U approach with the Hubbard U parameter value derived ab initio, which

makes the method a parameter free approach. In particular, we applied and tested

the two recently developed ab initio methods, cLDA and cRPA, to derive the val-

ues of this parameter (Chapter 2). These tests are first such extensive benchmarking

studies performed for lanthanide- and actinide- systems and set a solid ground for fu-

ture application of the parameter free DFT+U method for f -elements. The obtained

results represent thus an important step in a quest to find a feasible an reliable ab

initio methodology that would allow for the efficient atomistic simulations of nuclear

materials.

Initial benchmark calculations were carried out on simple An-bearing molecules
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and solids (Sections 3.2 and 3.3). The reaction enthalpies calculated using DFT+ULR

method for several reactions between An-bearing molecules show a significant improve-

ment over DFT results. The accuracy of the results were comparable to higher order,

usually more accurate than DFT but computationally very intensive, post Hartree-

Fock methods such as MP2 and CCSD(T), and the hybrid-DFT method. This is an

important result because the high computational cost of these methods limits their

applicability to very simple, usually a few atoms bearing molecules and solids, which,

for instance, prevents the full scale ab initio atomistic modeling research of chemi-

cally complex solids relevant for nuclear waste management. Feasibility of DFT+ULR

method we see as the most important achievement because it allows for a success-

ful application of this methods for the simulations of complex, radionuclide-bearing

materials. In addition, our results indicate a clear dependence of the Hubbard U pa-

rameter value on the oxidation state of the actinide cation, which is an important

finding that emphasizes the need for correct accountancy for the strong correlations

between f -electrons and to use an ab initio derived Hubbard U parameter values to

achieve reliable results for f -elements-bearing systems (Section 3.3).

We continued the test studies and investigated the lanthanide-bearing oxides and

monazite- and xenotime-type phosphates, the later being materials considered as a

matrix for immobilization of radionuclides. We were especially interested in ability

of the DFT+ULR method to predict the structural parameters and the formation en-

thalpies of the investigated materials. It has been previously shown that DFT is

not that accurate in these aspects [28]. We found that in order to accurately repro-

duce the structural parameters of the investigated lanthanide-oxides and phosphates a

DFT functional has to be carefully chosen and the on-site Coulomb repulsion between

f electrons has to be explicitly taken into account. Our studies show that PBEsol

functional outperforms PBE in that aspect and that the DFT+U method describes

better than standard DFT the structural parameters and the reaction enthalpies of the

investigated materials. We found that the PBEsol+ULR method, where the Hubbard

U parameter is derived by linear response approach, gives excellent description of the
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lattice parameters and the ionic structures of the investigated materials, especially the

Ln−O and Ln−P distances. This indicates that to obtain the correct description of

the structures of lanthanide-bearing materials, f electrons have to be treated explic-

itly with a correct description of the Coulomb on-site repulsion between f -electrons,

strength of which can differ not only between the Ln cations but also can depend on

the material (local structural environment of Ln cations). Our studies demonstrate

that the method of Cococcioni and de Gironcoli [72] gives reasonable and consistent

with the predictions of the cRPA method estimation of the Hubbard U parameter for

lanthanides. Although our results show that the DFT+U method allows for mean-

ingful investigation of the Ln-bearing materials with much better accuracy than with

standard DFT methods, we found that modeling the f -electrons by pseudopotentials,

instead of their explicit treatment, results in very good prediction of the formation en-

thalpies and a more stable calculation procedure. This method we thus subsequently

used in the successful studies of properties of novel ceramic nuclear waste forms.

With the obtained knowledge on the proper methods for computation of monazite-

type solids we performed a systematic computational studies of the heat capacities

of lanthanide (Ln=Ce, ..., Tb) and actinide (An=Pu, Am and Cm ) monazite-type

ceramics (Subsection 3.3.4). By considering the lattice vibrations and the thermal

excitations of f electrons we obtained an excellent match to all the available and

numerous experimental data on the heat capacities and the standard entropies of lan-

thanide monazites. We found that the contribution from the lattice vibrations to the

heat capacity decreases slightly along the lanthanide-series. Further, we have shown

that the contribution of electronic excitations to the heat capacities of Pu-, Am- and

Cm-monazites is expected to be negligible, while the contribution of the lattice vibra-

tions in these compounds is slightly larger than in lanthanide analogues due to the mass

effect. Our results show potential difficulties with the available experimental data, or

their correct interpretation, on the heat capacity of PuPO4, which is also indicated by

the inconsistency between the different measurements. The excellent agreement be-

tween the computed and experimentally measured heat capacities of monazites-type
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ceramics is an outcome of the careful atomistic modeling using reliable computational

method found and well tested in this dissertation studies. The obtained results allowed

us for further characterization and understanding of the thermodynamic properties of

these, often experimentally challenging materials.

In addition to computation of the heat capacities, using the derived here computa-

tional methodologies, the colleagues from atomistic modeling group at IEK-6 carried

out the ab initio calculations of La1−xLnxPO4 (Ln=Ce, ..., Tb) and La1−xAnxPO4

(An=Pu, Am and Cm) solid solutions in order to derive the excess enthalpies of mix-

ing and the corresponding Margules interaction parameters [26]. The obtained infor-

mation, which is difficult to obtain by the experimental methods, is important for the

assessment of the long-time stability of the monazite-type nuclear waste forms. These

studies shows thus that the reliable computer-aided atomistic modeling, such as the

one proposed and extensively tested here, is a valuable tool for the derivation of ma-

terials properties, measuring which is challenging, or even impossible, to experimental

methods.

Another group of materials that is broadly investigated in the literature as a solid

matrix for conditioning of radionuclides are pyrochlore-type ceramics (A2B2O7). This

is because some ordered pyrochlores under irradiation transfer to the disordered, but

still crystalline, defect fluorite phase, instead become amorphous [280, 281]. In order

to understand the forces driving such a behavior of selected pyrochlores we computed

order-disorder transition temperatures and cation antisite and anion Frenkel pair de-

fect formation energies in these materials (Section 3.3.5) - key factors that determine

the stability of pyrochlore-type ceramics against irradiation. The obtained excellent

match of the computed by DFT+ULR method to measured temperatures of disor-

dering of pyrochlore to defect fluorite, and significant improvement over previously

performed DFT studies in this aspect [183], validated the approach for the considered

materials and indicate that the conclusions on the performance of the computational

method obtained by studying the actinide-compounds and the monazite-type ceramics

are generally applicable. The computed defect formation energies contour maps are
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substantially, and even dramatically different from the previous force field calculations.

They allowed for more detailed understanding of mechanisms driving order-disorder

transition from pyrochlore to defective fluorite. Because our studies show a clear corre-

lation between the negativeness of the anion Frenkel pair defect formation energies and

the formation of defective fluorite, we conclude that the oxygen diffusion through the

formation of these defects is the leading factor driving the order-disorder transition

by compensating the large energy required for randomization of the cations sublat-

tice. The applied computational methodology has been subsequently and successfully

applied in the combined experimental (XRD and thermochemistry methods) and ab

initio atomistic modeling studies of the NdxZr2−2xO7+x system, where further excellent

matches to the experimental data by results of the atomistic simulations were obtained

[296].

The performed work in this PhD thesis extensive benchmarking and application

studies of the parameter free DFT + U method, and the excellent matches of its

prediction to the experimental data in many cases, indicate that the method allows

for feasible and reliable ab initio simulations of chemically complex f -materials on

nowadays supercomputing resources. It thus represents a valuable research tool for

investigation of experimentally challenging f -electrons bearing materials and could be

of great usage for the fundamental research on the management of nuclear waste.

4.2 Arising problems

In spite of achieved successful results our studies raised another questions and show

some remaining difficulties with proposed here ab initio approach. For instance, al-

though the Hubbard U parameter values computed with the linear response method

resulted in good prediction of the enthalpies and on many time the excellent repro-

duction of the structural parameters, the band gaps of the investigated lanthanide

and actinide solids were underestimated by ∼ 2 eV. For UO2 the Hubbard U param-

eter value of 2.1 eV computed with the linear response method resulted in the band
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gap of 0.7 eV, which is much smaller than the measured value of 2.0 eV. On one

hand the experimental band gap of uranium dioxide is reproduced in the literature

[46], and in our calculations, with the Hubbard U parameter value of 4.5 eV, which

is also the value frequently used in the DFT+U studies. On the other hand, in case

of the Mott insulator the value of the Hubbard U parameter should be identical to

the value of the band gap, which is the case in our calculations. This intriguing and

unresolved problem deserves more in depth investigation. It could be connected to

the usage of atomic-type orbitals as projectors in the estimation of the occupations

of the f -orbitals, which results in non-negligible occupations of unoccupied orbitals.

This problem could be potentially fixed by application of the Wannier functions as

projectors, which should be tested in the future.

Obtaining the correct ground magnetic state of the investigated system was often

a challenge for several actinide- and lanthanide-bearing materials. On many occasions

we had to enforce the occupation number of electrons in the f orbital and control the

correctness of the occupation matrix during the calculation. In some cases the con-

verged solution for the ground electronic state could not be even achieved. Although

this is a known, already reported in the literature problem [45, 46, 65], it requires an

efficient solution in order to realize a full power of the DFT+U method.

In general the accuracy of the derived Hubbard U parameters using the cLDA

and cRPA methods must be further tested. Both methods should ideally give the

same values of this parameter, which, although the deviations are small, is not always

the case. Due to computational limitations, calculating the Hubbard U parameter

values using the cRPA method for systems containing more than 40 atoms with the

FLEUR/SPEX codes is currently not possible, which should also be improved in the

future. Recently, the cRPA method has been implemented in the DFT code ABINIT

[297], and is being introduced in other codes, which should give an opportunity for

further meaningful tests of this method for derivation of the Hubbard U parameter

values.

We obtained many excellent results by modeling the f -electrons by pseudopotential.
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While it is also practiced in literature, usually without solid justification, one needs to

understand the general applicability of this approach. For instance, although implicit

treatment of f -electrons could be a solution for lanthanide elements, which 4f orbitals

are very localized and rarely participate in the chemistry of the elements, the general

applicability of this approach to actinides that have more diffusive 5f orbitals is not

that certain and has to be tested.

In these studies, although we applied the most powerful computing resources that

are currently available, we were still limited to the application of the simple extension

of DFT, such as DFT+U method. Having more computing power in the incoming

decades it should be possible to compute some of the complex systems with accurate

post Hartree-Fock methods or at least with the hybrid- DFT approach. This should

allow for more extensive benchmarking and improvements of the feasible computational

methods, such as DFT+U , for the prediction of the electronic structures of f elements

bearing materials.

4.3 Prospects for the future

The results of our dissertation studies show clear paths for the future developments

towards establishments of reliable ab initio methodologies that could be successfully

applied to the field of nuclear waste management. Regarding the applicability of the

parameter free DFT+U method, a one reliable methodology for the computation of the

Hubbard U parameters should be established. This will require more test calculations

with the cLDA, cRPA and other emerging approaches that should be performed on a

large set of 4f and 5f elements bearing materials and validated on various experimen-

tal data sets, including the thermochemical and the optical data. Up to our knowledge

there is only one publication available, in which the Hubbard U parameter values are

calculated for 5f -electron-bearing materials using the cRPA approach Amadon et al.

[170]. This is because the method has been just recent implemented in the codes and

the size of the system that could be computes is very limited by the computing power
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demand. Nevertheless, we expect that in the near future the Hubbard U parameters

will be much easily computed using the cRPA methodology, allowing for more exten-

sive benchmarking of the method on complex actinide-bearing molecular and solids

compounds. This will be an important step allowing for more meaningful compari-

son of the cRPA approach with other methods, especially with the cLDA approach.

Within these studies we already started to work along these lines in collaboration with

the colleagues from Quantum Theory of Materials group at Peter Grünberg Institute

at Forschungszentrum Jülich. Using recently proposed DFT+U+V [298] approach, in

which a novel Hamiltonian is designed to tackle the more delocalized systems, may

be a potential option to obtain more reliable values of the Hubbard U parameters for

actinides.

Besides here investigated topics and materials, there are other systems and prob-

lems for investigation of which the parameter free DFT+U -based atomistic simulation

techniques could be useful. Hydration of Ln and An cations, their coordination num-

ber in solution and the effects of solvent are important topics when investigating, for

instance, the solvent extraction processes in the research on spent nuclear fuel. Perfor-

mance of the DFT+U method has not been yet studied for Ln or An cation complexes

with water molecules or with small organic ligands. Systematic calculations using the

DFT+U method with the Hubbard U parameter derived from first principles would

be useful for modeling the different thermodynamic parameters of these complexes,

such as binding energies and complexation constants involving lanthanide and ac-

tinide cations. In that aspect, similar studies as the ones performed in this thesis that

require the benchmarking of the DFT+U method against the results obtained by post-

Hartree Fock methods could be beneficial. If successfully validated, the parameter free

DFT+U method could be used for reliable modeling of large metal-ligand complexes

that are of interest for instance in research on partitioning of actinides and lanthanides

from spent nuclear fuel. The work on these topics, both experimental and theoretical,

is already ongoing at the IEK-6 institute and in collaboration with the partners form

other Helmholtz institutions.
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Topics such as corrosion of spent nuclear fuel and its dissolution are of significant

importance for the safety-case of the nuclear waste in planned deep geological reposi-

tories. The expertise on modeling of uranium-bearing molecular and solid complexes

gathered in this thesis can be used to investigate the behavior of UO2 under different

redox conditions. The work on this topic is planned to be initiated in the near future

and the detailed studies of the available literature are already ongoing in the atomistic

modeling group of Dr. Kowalski, where this thesis has been finalized.

Another important topic in the nuclear waste management research is the investi-

gation of radiation damage processes in potential nuclear waste host matrices. Because

a radiation damage cascade is a highly energetic phenomenon, to simulate it one has to

model systems containing at least several hundreds or even thousands of atoms. Having

the world class computational resources, Forschungszentrum Jülich is well equipped

to tackle such problems. However, when modeling such large systems, the force field

methods have to be used, in which the interatomic interactions are described by an

interaction potential (force field). There is a variety of force fields available, although

only very limited set for f -elements, and parameters of these force fields are constantly

being adjusted for different atoms and molecules. For reliable force field-based simu-

lations of nuclear waste materials, the applied force field must represent an accurate

description of the interatomic interactions, especially these involving actinide and lan-

thanide elements, which can be delivered from the reliable ab initio calculations, as for

instance the ones performed in these studies. Development of polarizable force fields

would allow for simulations of the Raman spectra of complex materials, which, having

the popularity of the Raman spectroscopy in the research, would be extremely useful

for interpretation of the Raman measurement.

This work shows that it is possible to have a feasible and reliable ab initio method-

ology and that the methods developed and applied here, especially the parameter free

DFT+U approach, can be used to successfully complement the experimental research

in the field of nuclear waste management and such investigations will be continued in

the future. Following the success of this thesis, there are several follow up research ac-
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tivities planned in the atomistic modeling group of Dr. Kowalski. These future studies

will be performed in collaboration with the experts from both theory and experimen-

tal side and will be essential part of the collaborative “TheoRad” BMBF project on

“Development and application of quantum chemistry methods for understanding the

radionuclides chemistry under the disposal-relevant conditions” that will be conducted

as a joint initiative of various German institutions.
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Eötvös University Press, 2002.

[90] I. Levine, Quantum Chemistry, Pearson Prentice Hall, 2009.

[91] A. Szabo, N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory, Dover Books on Chemistry Series, Dover Publica-
tions, 1996.

[92] W. Koch, M. Holthausen, A chemist’s guide to density functional theory, Wiley-
VCH, 2000.

[93] C. Møller, M. S. Plesset, Phys. Rev. 46 (1934) 618–622.
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