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Abstract

DFT calculations were employed to model thermodynamic properties on in-
tercalation compounds for lithium ion batteries. Two compounds were inves-
tigated: the commercially available LixCoO2 and the silicon based LixMg2Si.
The LiCoO2 compound was modelled under two aspects. Firstly, total energy
calculations were carried out on the two-phase region between the delithiated,
metallic phase and the lithiated, semiconducting phase in the attempt to
model the two-phase equilibrium. It was possible to observe that the metal-
lic state is energetically more stable at low lithium contents agreeing with
experimental evidence. It was, however, not possible to map the two-phase
region properly, most likely due to deficiencies in the applied approach using
a single Hubbard U parameter on the cobalt d-orbitals. The computed aver-
age intercalation voltage was derived for a series of compositional segments
between LiCoO2 and Li0.5CoO2 and demonstrate a good agreement to prior
DFT calculations. Secondly, isobaric heat capacities were calculated within
the quasi-harmonic approximation for three stoichiometries of LixCoO2 rang-
ing from LiCoO2 to Li0.5CoO2. The results indicate a good agreement with
available experimental data when accounting for the phase impurities of the
sample. Calculations on a boron doped compound LiCo11/12B1/12O2 were
also done and yielded results which fall into the expected range.
In case of LixMg2Si a more elaborate approach was employed to explore the
configurational space of the solid solution in terms of the vacancy arrange-
ments by using the cluster expansion method (employed software: ATAT).
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iv ABSTRACT

Prior investigations by other researchers had led to the estimation of the sol-
ubility limit to be around x=0.91. In this respect, the computed results indi-
cate a continuously increasing destabilization of the host lattice, which begins
to distort significantly when the lithium content exceeds x=0.5. To derive
the solubility limit from the DFT calculations two other phases (MgxLi1–x

and Li2MgSi) would still need to be calculated as well since they form a three
phase field with LixMg2Si. The derivation of the average intercalation volt-
age yielded on average a shift of 0.5 V lower compared to the experimental
profile.



Zusammenfassung

DFT Rechnungen wurden zur Modellierung thermodynamischer Eigenschaften
von Interkalationsverbindungen für Lithium-Ionen Batterien eingesetzt. Dazu
wurden zwei Verbindungen untersucht: das kommerziell erhältliche LixCoO2

und das siliziumbasierte LixMg2Si. Das LixCoO2 wurde unter zwei As-
pekte modelliert. Auf der einen Seite wurden Berechnungen zur Energie
im Bereich des zwei-Phasen Gebietes zwischen der delithiierten, metallischen
Phase und der lithiierten, halbleitenden Phase durchgeführt. Anhand der
Modell-Ergebnisse konnte beobachtet werden, dass die metallische Phase in
Übereinstimmung mir experimentellen Bestimmungen bei niedrigen Lithium-
Gehalten energetisch stabiler ist. Allerdings war es nicht möglich das zwei-
Phasen Gebiet adequat abzubilden, was wahrscheinlich auf Unzulänglichkeiten
des verwendeten Ansatzes mit nur einem Hubbard U Parameter auf den
Kobalt d-Orbitalen zurück zuführen ist. Über die Energien wurden die
mittleren Interkalationsspannungen für eine Reihe von Segmenten zwischen
LiCoO2 und Li0.5CoO2 abgeleitet, welche eine gute Übereinstimmung mit
vorhergegangenen DFT Rechnungen aufweisen. Auf der anderen Seite wur-
den isobare Wärmekapazitäten im Temperaturintervall 0 bis 600 K mit-
tels der quasiharmonischen Näherung für drei Stöchiometrien der LixCoO2-
Verbindung berechnet. Die Ergebnisse zeigen eine gute Übereinstimmung mit
vorhandenen experimentellen Daten unter Berücksichtigung von Phasenun-
reinheiten der Proben. Die Berechnungen wurden auch auf die Bor-dotierte
Verbindung LiCo11/12B1/12O2 ausgeweitet, dessen Ergebnisse im erwarteten
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vi ZUSAMMENFASSUNG

Bereich liegen.
Im Fall von LixMg2Si wurde ein umfangreicherer Ansatz eingesetzt, um den
Konfigurationsraum der Mischkristallverbindung bezüglich der Leerstellen-
Anordnungen abzudecken. Dies erfolgte mittels der Cluster Expansion Meth-
ode (verwendete Software: ATAT). Vorangegangene Untersuchungen hat-
ten zu einer Schätzung der Löslichkeitsgrenze auf etwa x=0,91 geführt. In
dieser Hinsicht deuten die Ergebnisse der Rechnung auf eine kontinuierlich
zunehmende Destabilisierung des Wirtsgitters hin, welches bei einem Über-
schreiten des Lithiumgehaltes von x=0,5 anfängt sich signifikant zu verz-
erren. Um die Löslichkeitsgrenze abzuleiten müssten zwei andere Phasen
(MgxLi1–x and Li2MgSi) ebenfalls noch modelliert werden, da diese zusam-
men mit LixMg2Si im Phasengleichgewicht stehen. Die Ableitung der mit-
tleren Interkalationsspannung weist eine durchschnittliche Abweichung von
0,5 V nach unten im Vergleich zum experimentellen Spannungsprofil auf.
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Chapter 1

Introduction

1.1 The framework of this thesis

In our industrialized world the need for a stable and secure energy supply
continuous to grow, with the rapid modernization of countries like China
and India pushing resources to their limit. In the last 200 years mankind
has been drawing energy mainly from the combustion of fossil fuels to power
vehicles, private households and industry. In the second half of the century
fission reactors were introduced as an alternative technology and reduced
the dependence on coal as a resource. Over the course of the late twentieth
century the common understanding formed that the anthropogenic emission
of CO2 is partly responsible for global warming. This had resulted in the
change of policy in Germany during the 80s and 90s. During this time the
term "Energiewende" emerged which was seized on again as a guiding prin-
ciple within Germany’s recent political agenda. The target is to reduce CO2

emissions successively over a specified time-scale with pre-defined goals to
achieve. This is accompanied by profound changes, e.g. the phasing out of
coal power plants by successively cutting down on the number of active power
plants. With the core melt accident in Fukushima in year 2011 the situation
culminated in the decision to discontinue any use of nuclear fission to meet

1



1.1. THE FRAMEWORK OF THIS THESIS CHAPTER 1. INTRODUCTION

the energy needs of the country. Given the fact that coal power plants were
not considered a suitable technology any more this suggested the necessity of
replacing nuclear fission reactors and coal power plants by increasingly more
"green" technology such as solar, wind and water power. However, wind and
solar power cannot guarantee a constant power output due to the intermit-
tent availability of wind and sunlight. To accommodate fluctuations in the
power output the capacity to store energy at times of high power output
and its respective release at times of low power output has to be provided
(load levelling) in a cost effective way. In this respect, hydroelectric dams
and large scale batteries are the most feasible solutions.
Unfortunately, Germany does not have the geographical setting to rely on
hydroelectric dams. Hence, batteries are needed for the purpose of energy
storage. Currently, lithium ion batteries (LIBs) are the most advanced tech-
nology, providing high energy density (storable energy per mass) and cy-
clability (amount of charge and discharge cycles battery can tolerate before
reaching end of life). The performance of lithium-ion batterys (LIBs) is shown

Figure 1.1: Ragone plot of different battery chemistries comparing specific
power and specific energy [1]

2



CHAPTER 1. INTRODUCTION 1.1. THE FRAMEWORK OF THIS THESIS

in the ragone plot in relation to other battery chemistries in figure 1.1. As
can be seen, LIBs can outperform all of the fully developed chemistries and
research continues to push this chemistry to reach its full potential. Fur-
thermore, there are also new battery concepts under investigation such as
the metal-metaloxide batteries which in theory can deliver a much higher
specific energy than the current LIBs. Within the institute this direction is
condensed in the project MEMO. However, the focus of this thesis as part of
the project MEET-HiEnD and the Helmholtz-Portfolio is on LIBs.

In the framework of this thesis the target is to establish the methodological
approach of calculating equilibrium properties of intercalation compounds
for LIBs within the institute by means of atomistic modelling using density
functional theory (DFT) calculations. The equilibrium properties provide
key data (such as voltage and phase stabilities) essential to the design of
reliable battery cells. In particular, we investigate the thermodynamic prop-
erties of LiCoO2 and LiMg2Si2. For the LiCoO2 system we modelled the
metal-to-insulator two phase region in an effort to understand changes to the
voltage profile. This was carried out by calculating the enthalpy of formation
for the metallic and the semiconducting state over a series of stoichiometries.
Furthermore, we investigated heat capacities in dependence of stoichiome-
try. Along with the thermal conductivity coefficients this thermodynamic
property is of high relevance for proper thermal design of LIBs with LiCoO2

as cathode material due to thermal safety hazards during abuse operation
(see subsection 1.7.3). The intention is to exploit the capacilities of DFT
calculations due to deficiencies of an experimental approach. In particular
when investigating delithiated compounds in this system the measurement
of heat capacities are difficult because the material decomposes and can not
be obtained easily as a pure phase sample. Hence, in this thesis the results
between calculated and experimental data is being compared to elucidate the
accuracy of the calculated data. Moreover, the effect of doping with boron
is investigated. Lastly, a silicon based anode material, LixMg2Si, was inves-

3



1.1. ELECTROCHEM. ENERGY STORAGE CHAPTER 1. INTRODUCTION

tigated which could be a candidate for the next-generation anodes in LIBs.
In this respect, the investigations were carried out by means of the cluster
expansion method to more thoroughly explore the configurational space in
dependence of lithium concentration in order to derive the average interca-
lation voltage.

1.2 Concept of electrochemical energy stor-
age

The idea behind electrochemical energy storage is to convert chemical en-
ergy into electrical energy when needed to power an electrical device and
vice versa when electrical energy is available to store it as chemical energy.
The exothermic reaction of a compound A and B resulting in compound C
and D provides electrical work which can then be used to power electric de-
vices.

A+B −−→ C+D with ∆H � 0

A might be an oxidant and B the reductant or vice versa with electrons
flowing from B to A or from A to B respectively. The driving force for the
reaction is the chemical potential difference of the transferred, specific chem-
ical species between the educts whereas it’s transfer proceeds from the higher
to the lower chemical potential.
In an electrochemical cell the oxidant and the reductant are separated by an
ionic conducting compound (electrolyte) so that the electron charges can flow
separately from B (the anode) to A (the cathode). The electrode reactions
can be defined as follows:

Anode: A+ne– −−→ D Cathode: B −−→ C + ne–

4



CHAPTER 1. INTRODUCTION 1.2. ELECTROCHEM. ENERGY STORAGE

In the discharge mode the batteries operate like Galvanic cells, in which
the electrochemical reaction takes place due to the electrochemical potential
difference between the cathode and the anode. There are many electrochem-
ical reactions. However, since certain criteria such as inherent safety, price,
toxicity, energy density and rate of reaction have to be met, only few are
suitable for battery applications.

Battery systems can be distinguished in a variety of ways, for instance: [2]

1. Primary (single use) versus secondary (rechargeable, multi-use) systems

2. Stationary systems (electrodes do not move) versus flow systems (redox
moieties are in solution phases). Examples of important flow batteries
are ZnBr2 and V2+ /V3+ – V4+ /V5+.

3. LIBs using Li-metal as the anode material versus LIBs which contain
no Li-metal and are usually rechargeable. Most of the practical LIBs
utilize intercalation reactions at their cathodes:
Li+MXy −−→ LiMXy where the intercalation materials are usually
transition-metal oxides or sulfides (M=Ni,Mn,Co, etc. and/or their
mixture: X=oxygen or sulfur). There are also cathode materials where
X is F– , SO4

2– or PO4
3+. In LIBs the Li anode is replaced by interca-

lation compounds, alloys or even by transition-metal compounds where
the transition-metal is in a low oxidation state. There are three main
anodic reactions in Li ion batteries: intercalation [3], alloying [4], and
conversion [5].

4. Aqueous versus non-aqueous batteries which have to use polar-aprotic
electrolyte solutions due to reactivity considerations.

5. Metal-air batteries
In this type of battery the anode is a pure metal and the anode is the
ambient air. Among metal-air batteries the primary (non-rechargeable)

5



1.3. LITHIUM ION BATTERIES CHAPTER 1. INTRODUCTION

zinc-air battery has already been in use for decades in low-current, long
lifetime applications, e.g. hearing aids, isolated signal light, and elec-
tronic devices requiring operation over long periods of time in remote
places. This battery type has received renewed attention for its po-
tential use as large-scale energy storage system. However, metal-air
batteries still suffer from reversibility issues and are therefore not con-
sidered as short-term secondary battery solutions. [6]

1.3 Lithium Ion batteries

Non-rechargeable LIBs developed in the 70s [7] employed metallic lithium
as anode. Due to irreversible lithium loss during operation by its dendritic
growth on the lithium anode these batteries could not be recharged. The first
rechargeable LIBs with a graphite anode and LiCoO2 as cathode were intro-
duced in 1991 by Sony. This led to the expansion of the market for mobile
devices ever since. Rechargeable batteries used before the introduction of
LIBs were for instance nickel-cadmium or lead-acid batteries. In comparison
to these systems LIBs posses superior properties. Among those properties
are the higher specific capacity and the high reversible cyclability. What is
more, LIBs do not suffer from the memory-effect. Nowadays LIBs can be
found literally in all mobile devices like laptops, tablets, camcorders, cam-
eras and smartphones which provide people with an unprecedented mobility.
Since then LIBs have gone through phases of development and optimization
enhancing its performance. In a typical LIB at present the cathode material
is comprised of a lithium-transition-metal-oxide as the cathode and graphite
as the anode with a liquid organic electrolyte as shown in figure 1.2. The
open-circuit voltage is determined by the difference in the chemical potential
µLi of lithium between the anode and the cathode [8]:

V (x) = −µ
cathode
Li (x)− µanode

Li

zF
= −µ

cathode
Li (x)− µanode

Li

F
, (1.1)

6



CHAPTER 1. INTRODUCTION 1.3. LITHIUM ION BATTERIES

Figure 1.2: Schematics of a typical LIB with intercalation hosts as anode
and cathode

where F is the Faraday constant and the charge z is equal to 1 in case of a
LIB. In such a set-up as depicted in figure 1.2 the cathode is the capacity
limiting component of the LIBs. Therefore, over the past decade reinforced
research has been invested into the cathode development in order to extend
the limitations imposed by the state-of-the art battery chemistries (figure
1.1). Nevertheless, research is carried out on the electrolyte and the anode
as well since on the one hand all components have to be optimized with
respect to each other (see section 1.9). On the other hand there is a search
for entirely new materials with much higher specific capacities.

7



1.4. THE SOLID ELECTROLYTE INTERFACE CHAPTER 1. INTRODUCTION

1.4 The solid electrolyte interface

The main electrolyte components of a LIB are lithium hexafluorophosphate
(LiPF6) and organic carbonate solvents. [9] During the first charging cy-
cle these carbonates (e.g. ethylene carbonate (EC), propylene carbonate
(PC),diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl
carbonate (EMC)) decompose due to the low potential at the graphite elec-
trode. The decomposition products react with lithium-ions which diffuse
from the host electrode to graphite thus forming a reacted layer on top of
the graphite electrode. Therefore, a fraction of lithium ions is irreversibly
lost to the formation of this layer during the first cycle. This layer is called
the solid electrolyte interface (SEI). However, the growth of the SEI stops
after a certain amount of time since electrons are not able to pass it, thereby
inhibiting the continued reduction of the electrolyte components. The de-
tailed mechanism is as follows:
In the organic electrolyte solution the lithium-ions exist as solvated ions in
the form of Li-ion-solvent-adducts. These continue to diffuse to the graphite
electrode and penetrate to intercalate in between the graphite layers. How-
ever, due to the reducing conditions the solvents soon get decomposed form-
ing a hardly soluble reaction product. In general, these are lithium-Alkyl-
carbonates Li[OC(O)OR] and Li2[OC(O)O–(CHR)n –O(O)CO]. Other re-
action products are possible depending on the exact chemistry of the elec-
trolyte [10]. Since the reaction product is electrically insulating, a continued
reductive decomposition of the electrolyte components is inhibited. More-
over, when further lithium-ion-solvent-adducts pass the SEI, the lithium-ion
strips off the solvating molecules and continues to move into the graphite
electrode as the bare ion (figure 1.3). Apart from inhibiting a continued
loss of lithium-ions and active electrolyte components the SEI also protects
the graphite from too extreme volume changes induced by repetitive inter-
calation and deintercalation of the lithium-ion-solvent-adducts which would
otherwise lead to a fast deterioration of the electrode integrity and rapid fail-

8



CHAPTER 1. INTRODUCTION 1.4. THE SOLID ELECTROLYTE INTERFACE

Figure 1.3: The process of SEI formation: lithium-alkyl carbonates form the
SEI, eventually the formed SEI layer prevents further growth.

ure of the battery. No matter what carbonates are employed charging always
leads to the SEI formation. Nevertheless the chemistry has been optimized
over the last 20 years and it has been found that the quality of carbonates
decreases in the order of EC » DMC » EMC » DEC » PC in terms of their
respective reduction potential. The structure and properties of the SEI can
be significantly influenced by using additives which are basically designed to
react instead of the carbonates. This is exploited systematically by choosing
additives which decompose earlier in the charging process.
In the past recent years SEI formation has also been studied on the high
potential electrode when it became conceivable that the electrolyte compo-
nents would not be stable against oxidation at higher electrode potentials
aimed for with the 5-V electrodes. Examples are the high-voltage spinels
and LiCoPO4. The strategy has been analogous to the graphite electrode so
far by means of developing additives which are more prone to being oxidized
than the active electrolyte components. [11]

9



1.5. THE GRAPHITE ANODE CHAPTER 1. INTRODUCTION

1.5 The Graphite anode

Depending on the morphology of the carbonaceous material the specific ca-
pacity can vary significantly. Hard carbon was employed in the 2nd genera-
tion of LIBs whereas graphite was eventually used in the 3rd generation [7]
owing to the good reversibility of the lithium intercalation. Its low electro-
chemical potential of 0 to 0.25 V vs lithium is one of its most favourable
properties. Lithium can intercalate up to a stoichiometry of LiC6 which
equals a specific capacity of 372 mAh/g. The intercalation takes place in
a sequence of steps during which different stoichiometric compounds can be
observed, also termed graphite intercalation compound (GIC). These are for
instance LiC12, LiC18 and LiC25–30. At low charging rates the theoretical
specific capacity of 372 mAh/g can indeed be achieved. However, the ma-
terial suffers from drawbacks such as poor cyclability and volume changes
which lead to significant deformation of the material. [11]

1.6 Layered oxides as intercalation cathode
materials

Conceptionally, layered structures provide two-dimensional pathways for the
lithium-ions to diffuse as is the case for graphite. That is the essential con-
dition for sufficient mobility of the lithium-ions. Among the chemistries of
layered transition-metal-oxides the chemistry of LiCoO2 was the first to enter
the commercial market.
The general structure is a stacking arrangement of alternating planes of
lithium, oxygen and transition metal ions. The crystal system is hexago-
nal but can be described in a lower symmetry setting as well (rhombohe-
dral centered). Since the lithium ions are too small, close packing is not
achieved. The oxygen and cobalt ions form octahedrals connected to form
sheets. The layered oxides can exist in various polytypes of which the so-
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called O3-LiCoO2 is the structure commonly found in commercial LIBs. The
other polytypes are: O2-, O4- and O6-LiCoO2. The different polytypes
are displayed in figure 1.4. Among these the metastable O2-LiCoO2 was
first synthesized by Mendiboure et al. by Na+/Li+ exchange from the P4-
Na0.70CoO2 [12]. O4-LiCoO2 was termed metastable by Berthelot et al. since

Figure 1.4: The different layered polytypes of LiCoO2: starting from the left
O2-, O3-, O4- and O6-LiCoO2

it transforms to the O3-LiCoO2 at temperatures between 350 and 400 ◦C [13].
The nomenclature is defined by the letter ’O’, an abbreviation for the oc-
tahedral sites in which the lithium ions reside, followed by a number. The
numbers define the number of sheets after which the translational symme-
try is achieved again. So in O2-LiCoO2 there are two, in O3-LiCoO2 three
and O6-LiCoO2 six layers of stacked lithium, oxygen and cobalt ions in the
rhombohedral centred setting of the unit cell.
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Investigations on the modifications LiNiO2 and LiMnO2 have also been car-
ried out and are still subject to research as possible materials with lower
toxicity and costs. LiNiO2 by itself is unsuitable since there has been dif-
ficulties in sythesizing the compound in the right stoichiometry. This is
due to the fact that the nickel-ions partially reside within the lithium-layer.
Consequently, the theoretic capacity is being impaired. Moreover, during
delithiation LiNiO2 tends to release oxygen which can cause exothermic re-
actions with the organic components of the electrolyte (see subsection 1.7.3),
a severe safety concern. LiMnO2 on the other hand transforms into the
spinel-type structure during delithiation which also leads to a decrease in
the available capacity. In order to keep the basic electrochemical properties
of LiCoO2 with the advantage of lower costs and toxicity much effort has
been spent in the investigation of partial substitution of cobalt with nickel
and manganese [14] leading to the development of lithium-nickel-manganese-
cobalt oxides (Li-NMC cathodes). These chemistries offer slightly superior
safety. [15]

1.7 Properties of LiCoO2

1.7.1 Structural stability

Extensive studies have been carried out on the layered O3-LiCoO2 in the last
20 years including electrochemical testing [16–20], structural analysis with
TEM [19,21], XRD [22,23] and SEM [24–27], analysis of the electronic [28,29]
and magnetic properties [30, 31], examination of phase stabilities [21, 32–
34], synthesis [35–38] and morphological investigations [19,26,27,39–42].This
material has shown to possess a complex behaviour in terms of phase stability
and phase transformations upon lithium intercalation and removal. The
phase transformations are of both electronic and crystallographic nature [43,
44]. With respect to crystallographic phase transformations the O3-LiCoO2

solid solution shows different vacancy ordering phenomena during successive
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lithium removal. Reimers et al. [45] were the first to observe the in-plane
vacancy ordering at a lithium content of x=0.5 which can be described by
every other lithium lattice site in either a or b direction being occupied by a
vacancy. This is illustrated in figure 1.5. A consequence of this ordering is a

Figure 1.5: In-plane vacancy ordering at a lithium-concentration of x=0.5

slight monoclinic distortion of the whole structure and is hence detected via x-
ray diffraction (XRD) (see figure 1.6). Upon further lithium removal another
ordered arrangement becomes thermodynamically favourable in which the
planes shift with respect to each other, ultimately forming a stacking of
the type ’AABCAABC’, which was therefore termed H1-3-LiCoO2. It is
remarkable that this stacking arrangement was first suggested from results
of first-principles calculations by Van der Ven et al. before there was any
experimental evidence [32]. The designation accounts for the stacking, which
resembles a hybrid between the O1- and the O3-LiCoO2 in an alternating
fashion. Complete removal of the lithium-ions results in the O1-CoO2. These
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Figure 1.6: Lattice parameters in dependence of lithium content at room
temperature (a),(b) and (c) as well as phase diagram by Reimer et al. in
dependence of lithium content in the O3-LiCoO2 (d)

phase relations were assessed by Chang et al. [44] and the results can be seen
in figure 1.7. Moreover, there is both experimental and theoretical evidence
that the O3-LiCoO2 gets less stable compared to the spinel-type LiCo2O4

when lithium is removed [46].
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Figure 1.7: The phase diagram of LiCoO2 at 298 K in different thermody-
namic assessments as compiled in [44]

Experimental studies on operated LiCoO2 indeed confirmed the formation
of H1-3-LiCoO2 and spinel-type Li1+yCo2O4 in heavily cycled O3-LiCoO2

and that capacity loss is amongst other causes ascribed to these irreversible
transformation products due to their lower capacity to intercalate lithium
[21]. Another contribution to the capacity fade of LiCoO2 is possibly made by
the contraction and expansion of the interslab distance upon lithium removal
and reinsertion, which may be causing damage to the structural integrity
of the material. Consequently, some research effort has been devoted to
mitigate the extent of the contractions. Doping with Mg-ions have shown
to improve the capacity retention due to the migration of the Mg-ions to
the interslab layers providing a pillaring effect and therefore preventing a
significant contraction of the interslab distance [47,48].
The electronic phase transformation for x ∈ [0.75; 0.94] was first detected by
Reimer et al. [49] by XRD although at that time the authors were not aware
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of the electronic nature of this transformation. The XRD solely revealed

Figure 1.8: The voltage profile of O3-LixCoO2 vs lithium with the plateau
in the metal-to-insulator 2-phase region: the charging starts from x=1 until
reaching a voltage of 4.5 V, subsequently the discharge curve is displayed up
to x=0.88

that a two-phase region existed with two different sets of lattice parameters
within the same space group R-3m (166) (see figure 1.6). Ménétrier et al. [50]
reinvestigated this issue by means of Li NMR and XRD and were able to
attribute the phase transformation to a metal-to-insulator transition (MIT)
as suggested by theoretical calculations of Van der Ven et al. [32] a year
before. It is because of this two-phase region that the typical voltage profile
of LiCoO2 versus lithium exhibits a plateau in this lithium concentration
range [50] as can be seen in figure 1.8.
Another process affecting the structural stability of the O3-LixCoO2 occurs
at deep lithium extraction close to x=0.5 at which point oxygen loss limits the
practical capacity. This oxygen loss is due to the hybridization of the oxygen
2p orbitals with the cobalt 3d orbitals leading to an orbital overlap as seen in
figure 1.9 as evidenced by the investigations of Venkatraman and Manthiram
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[51]. Their findings are supported by the results of ab initio calculations of
Van der Ven et al. [32] and spectroscopic observations of Montoro et al. [52].
In the process of lithium extraction, first, Co3+ gets oxidized by the removal
of 3d electrons. At later stages of this oxidation process O2– starts to get
oxidized when reaching the energy levels of the oxygen p orbitals, ultimately
leading to the formation and release of molecular oxygen.

Figure 1.9: The electronic DOS of LixCoO2 taken from Venkatraman and
Manthiram [51]: overlap of the O-2p and the Co-3d orbitals leads to the
oxidation of oxygen at deep lithium extraction close to x=0.5 prompting
the formation of oxygen. This imposes a limit to the reversible capacity of
LixCoO2.

1.7.2 The metal-to-insulator transition of LiCoO2

The MIT can be explained within the framework of an impurity model.
[53,54] It is used to describe the effects of high doping concentrations (nI =
1018 cm-3 in case of doped silicon [55]) on the band structure of semicon-
ductors. In a semiconductor, just like LiCoO2, the valence band is separated
from the conduction band by a band gap which leads to conduction only
at sufficiently high temperatures to excite electrons from the valence band
to the conduction band. In the specific case of LiCoO2 the band gap is 2.7
eV. Delithiation of LiCoO2 leads to a lack of positive charge in the struc-
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ture which is compensated by the oxidation of cobalt ions from Co3+ to
Co4+. This increased positive formal charge essentially means that an elec-
tron from the cobalt d-orbitals is removed leaving an electronic hole behind.
At very low lithium deficiencies (close to x=1) the concentration of these
electronic holes is therefore analogously low, too, and assuming a random
distribution, these holes are separated by rather large distances on average.
An increasing delithiation lowers the average distances whereas local accumu-
lations of electronic holes lead to the overlap of the wave functions of the hole
states causing the formation of new bands (impurity bands) which are well
separated from the valence and conduction band. Even further delithiation
leads to the broadening of the impurity bands due to the increasing overlap,
causing a merging of the impurity bands with the valence and conduction
band, respectively. At this stage, this is observable as tails in the electronic
DOS [56] as has been observed by Marianetti et al. [53]. Developing further
thoughts a continuous increase of those impurities (Co4+/holes for the case
at hand) ultimately leads to the complete vanishing of the band gap in the
course of the broadening of the tails. It thus explains the transition from a
semiconducting to a metallic behaviour in LiCoO2.

1.7.3 Behaviour at elevated temperatures

The material class of lithium-transition metal oxides including LiCoO2 are
sensitive to temperature increase. In general, storing batteries with these
cathode materials at slightly elevated temperatures leads to an increase in
self-discharge. Commercial LiCoO2-based batteries by Sanyo have been re-
ported to show a capacity retention of 93, 89 and 75 % after storage at 0, 25
and 60 ◦C, respectively, for 6 months [57]. Thermal runaway is an issue in
LIBs with lithium transition metal oxides as cathode material. This undesir-
able cascade reaction can be triggered during abuse operation of the battery
by over-charging in combination with elevated environmental temperatures.
The induced cascade reaction itself generates additional heat so that the ul-
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timate consequences can be severe. The series of processes of the cascade
reaction include the decomposition of the SEI which normally protects the
negative electrode from reactions with the electrolyte, the vaporization of
the organic electrolytes typically used, the exothermic reaction of the hence
unprotected negative electrode releasing oxygen which in turn reacts with
the electrolyte components in a highly exothermic process. Oxygen release
occurs according to the following reaction [58,59]:
LiCoO2 −−→ xLiCoO2 +

(
1−x

3

)
Co3O4 +

(
1−x

3

)
O2

The temperature increase can ultimately lead to the melting of the separator
and consequently to a short circuit causing additional heating. This poses a
significant fire and explosion hazard. The onset temperature of thermal run-
away varies depending on the exact chemistry of the battery components. It
has been proposed to be 85◦C obtained from thermal modelling by Spotniz
and Franklin [60]. Experimentally the onset temperature for Sony US18650
cells has been determined to be 144 ◦C at 2.8 V, 109 ◦C at 3 V and 104 ◦C
at 4.06 V by Al Hallaj et al. [61].

1.8 Mg-Si-alloys as alloying anode material

Alloying reactions of different metals with lithium have received attention
from the battery community due to the potentially higher theoretical capac-
ity. This is related to the nature of the reaction mechanism to form inter-
metallic alloys in such cases opposed to intercalation compounds in presently
available, commercial electrode materials. This analysis has to be taken with
care since the theoretical capacity in these cases (4200 mAhg-1 and 2400
mAhcm-3 for silicon) are simply derived from the maximum ratio of lithium
to metal atoms in existent intermetallic compounds. While the commer-
cially used graphite-anode can host 6 intercalated lithium ions per carbon
atom LiC6 metals like germanium, tin, silicon and lead can form compounds
with more than 4 Li atoms per metal alloying atom to form Li22M5. [62]
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Silicon-based alloys containing other metals than silicon itself have been in-
vestigated as well due to their more favorable voltage profile and reversible
capacity [63].
The Mg-Si system has been under reinforced investigation as a potential ma-
terial system to be used in anodes of LIBs. Within the ternary Li-Mg-Si
system many of the thermodynamically stable phases have been identified
and provide a solid basis for directed investigations [64]. Among the mul-
titude of compounds within the Li-Mg-Si system the Mg2Si compound has
been investigated both experimentally and theoretically by means of DFT
modelling [3, 65–67].
Studies were performed on the Mg2Si compound with respect to its potential
as an anode material. In this context, it was found that Mg2Si is in fact an
"end member" of the solid solution phase LixMg2Si as highlighted in figure
1.10 with an estimated solubility of x ∈ [0; 0.91±0.05] [64].

Figure 1.10: The Li-Mg-Si phase diagram at 200◦C with the solid solution
phase LixMg2Si, (Mg) and τ2 constituting the 3 phase field, adapted from [64].
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Consequently, using Mg2Si as a starting composition for lithiation will in-
evitably first lead to the formation of the solid solution phase LixMg2Si,
which is essentially an intercalation reaction. This compound is displayed in
figure 1.11. As can be seen the geometry shows a fundamental difference to
the layered transition metal oxides shown in figure 1.4. The LixMg2Si com-
pound is a non-layered structure similar to olivine-, spinel- and tavorite-type
intercalation compounds [68].
Exceeding the solubility limit leads to the precipitation of two phases in a
three phase field as can be seen in figure 1.10: Li2MgSi, designated τ2, and
MgxSi1–x , designated (Mg). For Li2MgSi a new structure was predicted to be
more stable by DFT calculations. The latest thermodynamic assesment by
Kevorkov et al. was carried out before this discovery. Hence, a remodelling
of the three-phase field may be necessary.

Figure 1.11: The crystal structure of LixMg2Si: this compound has a cubic
unit cell and crystallizes in space group F-3m (225). The crystal structure
data is taken from Imai et al. [67]
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1.9 The voltage window

The voltage of a LIB is defined by the difference in chemical potential of
lithium between the cathode and the anode. During operation this differ-
ence may change continuously due to the variation of lithium content in both
electrodes. It is imperative to know the boundaries of the voltage window
suitable for the battery chemistry at hand. In general, the properties of the
three main cell components (anode, electrolyte and cathode) put a constraint
on the voltage window. On the one hand it is restricted by the amount of
reversibly extractable lithium ions from the cathode host. But on the other
hand the employed electrolyte imposes a constraint as well as already men-
tioned in section 1.4. The window imposed by the electrolyte is determined
by the lowest unoccupied molecular orbital (LUMO) and the highest oc-
cupied molecular orbital (HOMO) in case of a liquid electrolyte or by the
bottom of the conduction band and the top of the valence band in case of a
solid electrolyte. If the electrochemical potential moves beyond these limits
then the electrolyte gets either oxidized or reduced. This is conceptionally
illustrated in an energy diagram (figure 1.12) displaying the electron energies
in the cathode, electrolyte and anode. Starting condition is the charging of

Figure 1.12: Illustration of the operational voltage window of a LIB in an
energy diagram [69].

the LIB with a layered lithium transition metal compound which represents

22



CHAPTER 1. INTRODUCTION 1.9. THE VOLTAGE WINDOW

the anode in this setting since during the extraction process oxidation takes
place (Co3+/Co4+). We term the electrochemical potential of the anode µA.
The electrochemical potential of the cathode (graphite) will be µC. If µA
lies above the LUMO or the bottom of the conduction band, then electrons
get transferred to the electrolyte. This means that the electrolyte is being
reduced. If µC lies below the HOMO or the top of the valence band then
electrons from the electrolyte HOMO get transferred to the cathode and the
electrolyte is oxidized in this process. Both the uncontrolled oxidation and
reduction of the electrolyte have adverse effects on the capacity and cycle
life of the battery. Uncontrolled reduction at the anode and oxidation at the
cathode leads to the irreversible loss of electrolyte components and salts and,
depending on the electrolyte composition, to the formation of by-products
on the electrode surfaces, which can give rise to a layer of increased ohmic
resistance. Consequently, the impedance of the LIB would be unfavourably
affected [70,71].
To sum up, the development of batteries has to be carried out as a whole sys-
tem. Modifying the cathode requires the evaluation of its impact on possible
undesired reactions with the other components which might compromise the
batteries performance. The same applies to the anode and the electrolyte
respectively.
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Chapter 2

Theory

2.1 Thermodynamic potentials

Thermodynamic potentials are state functions which describe the equilib-
rium behaviour of systems with a set of variables, called ’natural variables’,
through it’s maximization or minimization with respect to one particular
variable keeping all other variables constant. Therefore, if the state func-
tions can be determined as a function of these respective variables all other
thermodynamic properties can be obtained by calculating its partial deriva-
tives. All state functions can be related to the fundamental equations of
thermodynamics by so-called Legendre transformations.
The scenario, from which the fundamental equations of thermodynamics are
derived, resembles an isolated system meaning that no heat Q and no particle
N can be exchanged with the surroundings as well as no volume (V) work
can be exerted (system cannot expand) due to imposed constraints. The
equilibrium properties are derived by maximizing the system’s entropy at
constant U,V,N. However, in general, these conditions are difficult to main-
tain for any experiment. For experiments the most convenient constraints
are usually constant temperature and pressure, which are put into practice
by means of ovens or cooling systems and an unsealed vessel allowing the
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system to expand to maintain the surrounding’s pressure. In this case a new
thermodynamic potential is necessary to derive the equilibrium properties
which is the Gibbs free energy. This thermodynamic potential is yielded by
applying the Legendre transformation. Using Legendre transformation the
thermodynamic potential U can be transformed to obtain the Gibbs free en-
ergy (G, also termed free enthalpy), enthalpy (H) and Helmholtz free energy
(commonly termed F, H or A).
The Helmholtz free energy is a thermodynamic potential which is used when
temperature, volume and the number of particles are the independent prop-
erties of the system since they are the natural variables of the Helmholtz
free energy. It is defined as F = F (T, V,N) = U − TS. As is described in
chapter 3.7 the Helmholtz free energy is a particularly convenient thermo-
dynamic potential to chose when deriving thermodynamic properties from
first-principles based calculations. The fundamental thermodynamic equa-
tions for F by taking the partial derivatives are:

S = −(∂F
∂T

)V,N

U = F − T (∂F
∂T

)V = −T 2( ∂
∂T

F
T

)V

CV = (∂U
∂T

)V = T ( ∂S
∂T

)V = −T (∂2F
∂T 2 )V

p = −(∂F
∂V

)T

BT = V (∂2F
∂V 2 )TT = −V ( ∂p

∂V
)T

( ∂p
∂T

)V = αBT = − ∂
∂V

[(∂F
∂T

)V ]T = −( ∂S
∂V

)T

CV is the specific heat at constant volume, BT is the isothermal bulk modulus
and α is the volume coefficient of thermal expansion. [72]
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2.2 Equation of states

Since in the context of phonon calculations thermal properties are obtained
from a fitting procedure to an equation of state (EOS) (see section 3.7), this
section serves as a quick introduction into this topic. An EOS relates ther-
modynamic state variables to each other. Such state variables are pressure
p, volume V and temperature T . The most prominent and simple one is the
ideal gas law, which is adequate to describe the state of a gas in the limit of
low pressure and high temperature. EOS are all empirical or semi-empirical
in the sense that they contain coefficients which are fitted in a minimiza-
tion procedure. In Materials Science these coefficients are most commonly
the bulk modulus and the thermal expansion coefficient. The EOS is either
given in the form of P(V) or E(V). However, in the context of ab initio cal-
culations the EOS are used in the integrated form, i.e. E(V). In this manner
the function of the integrated EOS is then fitted to the ab initio total energies
obtained for different volumes according to the general relation [73]:

dE = −pdV (2.1)

Some of the most common EOS used to describe the behaviour of solids
under compression or expansion are:

• Vinet EOS:

P (V ) = 3B0

(
V

V0

)− 2
3

1−
(
V

V0

) 1
3

 exp
−3

2 (B′0 − 1)
( V
V0

) 1
3
− 1


(2.2)

E(V ) = E0 + 2B0V0

(B′0 − 1)2

2−
5 + 3

(
V

V0

) 1
3

(B′0 − 1)− 3B′0
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· exp
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) 1
3
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 (2.3)
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• Murnaghan EOS:

P (V ) = B0

B′0

[(
V

V0

)B′0
− 1

]
(2.4)

E(V ) = E0 + B0V

B′0

[(
V0

V

)B′
0 1
B′0 − 1 + 1

]
− B0V0

B′0 − 1 (2.5)

• Third-order Birch-Murnaghan EOS:

P = 3B0

2

[(
V

V0

)7/3
−
(
V

V0

)5/3] [
1 + 3
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[(

V
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(2.6)

E(V ) = E0+9V0B0
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(2.7)

B0 denotes the bulk modulus, B′0 = dB
dV

, V the volume, p the pressure and
the index 0 denoting the state at equilibrium.

2.3 Electron wave functions

As will be described in chapter 3 DFT calculations rely on the quantum-
mechanical treatment of electrons in the atomic potential. There is a big
difference in treating electrons in a crystalline structure, which obey trans-
lational symmetry in opposition to treating electrons in isolated molecules.
That is also the reason why DFT codes designed for treating molecules are
fundamentally different from DFT codes designed for treating solid state.

2.3.1 Electrons in a periodic solid

Conceptionally, in a periodic solid the valence electrons can be assumed to
be affected only by a weak Coulomb potential of the atomic core. This is re-

28



CHAPTER 2. THEORY 2.3. ELECTRON WAVE FUNCTIONS

lated to the fact that the electrons close to the core partially screen the core
potential of Zαe (with Z the atomic number and e the elemental charge).
Consequently, the valence electrons see only a reduced effective potential.
To simplify the model the valence electrons can be treated independently
in a first approximation. The wave function of these independent electrons
moving in a crystalline solid have to fulfil certain conditions. The atom
nuclei impose a periodic potential U(~r) acting upon the electron wave func-
tions. Due to the periodicity of the potential the Hamilton operator of the
Schrödinger equation for a single independent electron would take on the
following form:

HΨ =
(
− ~2

2m∇
2 + U(~r)

)
Ψ = εΨ (2.8)

The Schrödinger equation of a free electron is a special case of equation
2.8, in which the periodic potential is simply zero. Assuming electrons to
be independent in a periodic potential is the basis for the so-called Bloch’s
theorem, in which the eigenstates Ψ of the Hamiltonian in equation 2.8 with
U(~r + ~R) = U(~r) are described by equation 2.9:

Ψn~k(~r) = eik·~run~k(~r) (2.9)

Essentially it is the product of a plane wave ei~k·~r and a periodic function
un~k(~r). ~k denotes a wave vector in reciprocal space. This function, called
the Bloch-wave, is a periodic plane-wave with the translational symmetry
of the lattice. In equation 2.9 the plane wave is written in its exponential
representation, but it can be decomposed into cosinus and sinus functions
according to:

eix = cosx+ i sin x (2.10)
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2.4 Some concepts of solid state physics

Solid state physics form the theoretical foundation for the employed calcula-
tion methods to a great extent. To understand the principles behind these
methods some concepts and theories are recalled in this section to serve as a
linking element to chapter 3.

2.4.1 The harmonic oscillator

The harmonic oscillator is an ubiquitous concept in both science and en-
gineering to describe and explain analogous phenomena as for instance a
pendulum, acoustic and electromagnetic waves. Therefore it is not limited
to the field of Solid state physics. Although simplifying it often provides a
conceptional apt view on matters which are related to vibrations and wave
propagation. The harmonic oscillator is most intuitively accessible in the
context of a mechanical harmonic oscillator like a mass attached to a spring.
Displacing the mass to stretch the spring induces a restoring force acting
in the opposite direction of the displacement. In the context of a harmonic
oscillator the restoring force is linearly proportional to the displacement:

F = −kx (2.11)

To study the equation of motion it is necessary to look at the general relation
between force and momentum.

F = dp

dt
= d(mv)

dt
= m

dv

dt
= m

d2x

dt2
(2.12)

Combining equations 2.11 and 2.12 shows that the product of mass m and
the second derivative of x with respect to the time t is supposed to yield the
product of x and a constant:
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m
d2x

dt2
= −kx⇒ d2x

dt2
= − k

m
x (2.13)

A function x(t) meeting this requirement in equation 2.13 is the sine or cosine
function. Therefore this suggests equation 2.14 to be the potential solution:

x(t) = A cos(ωt) + b sin(ωt) (2.14)

Substituting this solution into equation 2.13 yields:

− ω2A cos(ωt)− ω2b sin(ωt) = − k
m

[A cos(ωt) + b sin(ωt)] (2.15)

At this point it can be deduced that the assumed solution is a solution only
then if:

ω2 = k

m
⇔ f = 1

2π

√
k

m
(2.16)

Equation 2.16 essentially states that the eigenfrequency of a harmonic oscil-
lator is determined by the force constant of the spring and the mass of the
oscillator and is used to determine the frequencies of phonons as described
later on in section 3.7.

2.4.2 The origin of thermal expansion

Along the lines of a harmonic potential well between the atoms in a solid,
thermal expansion cannot be explained. Only the equilibrium atomic dis-
tance is defined in the minimum at r = r0. An increase of temperature
induces oscillations along the tie line connecting two atoms. Due to the har-
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monic potential, which is symmetric, the amplitudes are equal to both sides
of r0. In consequence, even upon temperature rise the probability density
distribution of the atoms location remains symmetric and hence the atomic
distance stays constant. A more realistic empirical model of the atomic po-
tential, which is also able to explain thermal expansion, is an anharmonic
potential as is for instance the general Lennard-Jones potential.

V (r) = λn
rn
− λm
rm

(2.17)

The most commonly used form is the Lennard-Jones (6-12) potential with
n=12 and m=6. However, for an ionic solid a more fundamentally based
model would be the potential as given by equation 2.18,

V = Vatt + Vrep = − αe2

4πε0r
+ λe−r/ρ. (2.18)

The attractive potential is the Coulomb interaction whereas the repulsive
potential is maintained by the Pauli exclusion principle based on the over-
lap of the electronic wave functions. For a general anharmonic potential V
rises more slowly for r > r0. In effect the atomic oscillations induced by
temperature will lead to a shift of the average position (probability density
of the atom location) of the atoms to larger r, hence the thermal expansion
is described qualitatively. This effect is shown in figure 2.1. However, this
model cannot explain the phenomenon of negative thermal expansion which
is known to exist in a number of compounds. For that purpose one has to
look at the transversal oscillations, in which the atoms move perpendicular
to the tie line. This gives rise to a mechanism pulling the atoms towards
each other thereby decreasing the distance between the atoms. [74]
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Figure 2.1: An anharmonic potential is shown with the tie lines represent-
ing energy levels corresponding to excitations due to elevated temperatures.
The red dotted line indicates the shift of the average position of the atom in
dependence of the successively increasing excitation and provides a concep-
tional description of thermal expansion.

2.4.3 Lattice dynamics

Lattice dynamics are a fundamental part of solid state physics and describes
the temperature effects on the atomic motion in the periodic lattice of a
crystalline compound. In general, when temperature increases, the solid
compound absorbs the energy, leading to an increase of its internal energy
U. A major fraction of this energy is consumed by atomic excitations in
the form of motion (phonons). The other fractions are of electronic and
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magnetic nature. The formular according to equation 2.19 describes the
different fractions with Estatic being the energy of the static lattice, Eelec the
electronic energy, Emag the magnetic energy and Ephon the phonon energy.

U = Estatic + Eelec + Emag + Ephon (2.19)

Focussing on the lattice vibrations,called phonons, with increasing temper-
ature, more and more phonons are excited and increase in amplitude. In
essence, the heat work done on the compound is mainly transformed into
kinetic energy of the atoms or ions. It has been observed for simple solids
that at high temperatures the heat capacities reach the limit of 3R (R: gas
constant), which is called the Dulong-Petit limit. It is derived from the
equipartition theorem, which basically states that the energy is distributed
evenly among all atoms and all degrees of freedom. The degrees of freedom
are translations in x,y and z direction as well as vibrations along the x, y and
z axis. For each degree of freedom an energy of kT/2 has to be accounted for,
which ultimately adds up to a total of 3kT per atom or 3kTNA per mole. By
using the definition in equation 2.20 one obtains 3kNA=24.96 Jmole-1K-1
as the Dulong-Petit limit for the heat capacity,

CV = ∂U

∂T
. (2.20)

Experimentalists usually refer to the heat capacity at constant pressure CP
which is simply owed to the conditions under which the measurements are
carried out. Technically, it is much more convenient to do heat capacity mea-
surements at constant pressure allowing the sample to expand or contract
upon temperature change instead of constraining the sample to maintain its
volume. The thermal expansion is a direct consequence of the anharmonic-
ity of the atomic potentials as described in chapter 2.4.2. Therefore, in a
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perfectly harmonic solid, the heat capacity at constant pressure would be
identical to the heat capacity at constant volume due to the absence of ther-
mal expansion.
The Dulong-Petit law is not able to explain the temperature-dependence of
the heat capacity. More sophisticated models are presented in the next sec-
tions. Basically, regarding the atoms in a solid as a lattice of interconnected
oscillators illustrates the principle well. Thermal energy can excite the lattice
to perform vibrations along certain directions of the structure and in differ-
ent modes. Firstly, one distinguishes between longitudinal and transversal
modes. In longitudinal mode the atoms oscillate parallel to the propagation
direction of the wave whereas in transversal mode they oscillate perpendicular
to the propagation direction. Secondly, there are acoustic modes and optical
modes. Acoustic modes posses the characteristics of sound waves propagation
through a medium whereas optical modes have neighbouring atoms moving
in anti-phase to each other. They are called optical modes since they can be
excited by electromagnetic waves. There are always 2 transversal modes and
1 longitudinal mode. The remaining ones are all optical. The total number
of possible modes in a solid containing N atoms is 3N since each atom can
oscillate in 3 directions of the Cartesian coordinate system. Consequently,
the total number of optical modes is 3N-3. At 0 K all modes are frozen ex-
cept for the zero-point vibrations. Successively increasing temperature leads
to the excitation of one mode after the other.

The Bose-Einstein distribution

The Bose-Einstein distribution is the energy distribution function of bosons,
i.e. quasi-particles without angular momentum like photons and phonons as
opposed to electrons. The Bose-Einstein distribution differs from the Fermi-
Dirac distribution for electrons due to the fact that electrons obey the Pauli
exclusion principle by which the same quantum state can never be occupied
by more than one electron at once. Bosons do not obey this rule meaning
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that an arbitrary number of bosons can occupy the same quantum state. For
the Bose-Einstein distribution one assumes the energy states to be described
by a harmonic oscillator with En = ~ω(n + 1

2). The probability of having a
particle of energy En is given by the equation 2.21.

Pn = 1
Z
e
− En
kBT = 1

Z
e
− 1
kBT

~ω(n+ 1
2 )
. (2.21)

Z is the normalisation factor and has the following form:

Z =
∞∑
n=0

e
− En
kBT =

∞∑
n=0

e
− 1
kBT

~ω(n+ 1
2 )
.

The average occupation number for a boson 〈n〉 is given by

〈n〉 =
∞∑
n=0

n · Pn = 1
Z

∞∑
n=0

ne
− 1
kBT

~ω(n+ 1
2 )
.

This can be transformed to:

〈n〉 = e
− ~ω

2kBT

Z

∞∑
n=0

n · e−
~ωn
kBT = e

x
2

Z

d

dx

∞∑
n=0

exn,

with x = − ~ω
kBT

.

The expression in the sum is an infinite geometric series and can be expressed
as ∑∞n=0 e

xn = 1
1−ex . With |e−

~ω
kBT | < 1 the expression can be transformed to:

〈n〉 = 1
e
− ~ω
kBT
−1
, (2.22)

which is the Bose-Einstein-distribution.
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The Debye Model

The Debye model is a common model to describe the heat capacity of a solid
compound. It is accurate for the high-temperature limit, where it recovers
the Dulong-Petit limit, and describes the low temperature range qualitatively
correctly. Its foundation is the derivation of the Debye frequency or Debye
temperature in the reciprocal space. For that purpose a crystal consisting
of N atoms is considered with equal dimensions in x, y and z direction.
Furthermore it is assumed that each q-vector occupies the same volume in
reciprocal space of (2π/L)3 = 8π3/V .
Since the vibrational frequencies are limited by the distance between the
atoms there is an upper cutoff-frequency, which is termed Debye frequency
ωD with the relation:

qD = ωD/vs, (2.23)

where qD is the wave number and vs the velocity of wave propagation at the
Debye frequency.
With the further assumption that all wave vectors are excited up to the Debye
frequency the total number of phonon modes can be expressed as follow:

N = (4
3πq

3
D)/(8π3

V
).

Then the Debye frequency can be written as ωD = vs(6π2N
V

)1/3 and the Debye
temperature is derived as:

TD = ~ωD
kB

= ~vs
kB

(6π2N

V
)1/3.

The specific heat within the Debye model (equation 2.24) is obtained by inte-
grating the product of density of states, Bose-Einstein distribution-function
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(equation 2.22) over the frequency with the Debye frequency as the upper
limit to yield the internal energy and deriving the function with respect to
temperature:

U =
∫
dωD(ω)n(ω)~ω =

∫ ωD

0
dω

V ω2

2π2v3
s

~ω
e~ω/kBT − 1 ,

CV = ∂U

∂T
⇒ CV = 9NkB( T

TD

3
)
∫ xD

0
dx

x4ex

(ex − 1)2 , (2.24)

with x = ~ω/kBT and xD = TD/T .
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Chapter 3

Ab initio computation

Ab initio computation is founded on the principles of quantum-mechanics.
As such a method the classical description of electrons as a particle is replaced
by the quantum-mechanical treatment, in which the electrons are described
by a wave function. Their energy is determined by the wave length whereas
the location cannot be given exactly any more but instead in terms of a
probability density distribution. In ab initio computation the main equation
to solve is the Schrödinger equation.
Ab initio methods can be divided into two classes: the wave function methods
and the density functional methods. In wave function methods the target
quantity is the electron wave function whereas for DFT methods it is the
electron density. Solving the Schrödinger equation in terms of the wave
function is computationally much more expensive than solving it for a given
electron density distribution. Given a system with n electrons the wave
function to solve would depend on 3n spatial coordinates whereas if choosing
the density as the target property the solution would solely have to be found
in dependence of the 3 spatial coordinates. In any case, as will be described
in the following section, it was proven that obtaining ground state properties
does not necessitate the knowledge of the exact wave function but only the
electron density. Consequently, the DFT has become the dominant method
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in ab initio computation.

3.1 The basics about Density Functional The-
ory

DFT provides the conceptional framework on which all available codes are
based on. The methods developed in the first part of the 20th century were
incorporated into powerful computational programs such as the Vienna ab-
initio simulation package (VASP), the Cambridge serial total energy package
(CASTEP) and Quantum Espresso, with which nowadays it is possible to
calculate molecular and condensed matter properties derived from the cal-
culated ground states. The versatility of this method lies in the fact that,
in principal, no experimental input is needed except for information on the
crystal structure. Once this information is known a wide range of properties
like thermodynamic, mechanical, electrical and magnetic properties can be
calculated. Nevertheless it still requires careful and elaborate considerations
in the process of setting up the calculations in order to acquire sensible in-
formation, which provides adequate physical results.

The first part of the theory is the so-called Hohenberg-Kohn theorem, which
states that the energy of an n-electron system is determined uniquely by its
electron density distribution.
In other words, knowing the ground state electron density distribution makes
it possible to determine the corresponding ground state wave function and
therefore to derive the ground state properties.

ρ0(x) = |Ψ0|2 (3.1)

However, the Hohenberg-Kohn theorem is only an existence theorem, which
signifies that it does not provide the means to map the electron density onto
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the electron wave function. It only states that this mapping exists. The sec-
ond part of the theory states that minimizing the energy as a function of the
electron density will converge to the ground state energy and thereby to the
ground state electron density distribution as well. Due to equation 3.1 the
wave function itself is also part of the calculation procedure when running
DFT calculations. The general algorithm is called self-consistent field (SCF)
method and will be explained in more detail later.
As outlined in section 2.3 the Schrödinger equation is only solvable for a one-
electron system. When going to n-electron systems solving the Schrödinger
equation becomes computationally intractable due to the n electrons all in-
teracting with each other. Therefore, before DFT methods could actually
become useful in practice, a way of treating n-electron systems had to be de-
vised beforehand. This way was provided by the Kohn-Sham ansatz, which
treats the system of n interacting electrons in a static external potential
as a system of n non-interacting electrons in an effective potential. In other
words, the density functional of an n-electron system is written as a fictitious
density functional with a set of one-electron systems.

Eeff[ρ] = 〈Ψeff[ρ]|Teff + Veff|Ψeff[ρ]〉 (3.2)

In equation 3.2 Teff denotes the noninteracting electrons’ kinetic energy and
Veff is an external effective potential in which the electrons are moving. It
is assumed that the fictitious model system has the same energy as the real
system. The effective potential is written as the sum of the potential of
the interacting electron system, the so-called Hartree term (electron-electron
Coulomb repulsion) and the exchange-correlation potential VXC (equation
3.3) which includes all the many-electron interactions.

Veff = V +
∫ ρeff(r′)
|r − r′|

d3r′ + VXC [ρeff(r)] (3.3)
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Since this term can not be calculated and is hence unknown, equation 3.3
is only exact as a formalism. But certain approximations exist allowing the
calculation of real systems (section 3.3).
The resulting effective Hamiltonian is given by the following equation:

Heff =
N∑
i=1

[
−1

2∆i + Veff(ri)
]

=
N∑
i=1

heff(ri) (3.4)

The above equation basically yields the orbitals ρi(r) that reproduce the
density ρ(r) of the original many electron system. For each single-particle
orbital the equation 3.5 has to be solved:

heffρi = ερi (3.5)

The above equations are the Kohn-Sham equations in which both the Hartree
term and the exchange-correlation potential depend on ρ(r), which in turn
depends on the densities of the individual orbitals ρi. These depend on Veff
again so that the Kohn-Sham equations are only solvable though an itera-
tive self-consistent way. Normally the procedure starts with an initial guess
for the electron density, then the effective potential is calculated. Then the
Kohn-Sham equations are solved (equation 3.2) yielding the energy eigen-
value of the system and a new set of electron densities. The whole procedure
is iterated until convergence is reached, i.e. the difference between the ener-
gies of two subsequent iterations drops below a specified threshold. Figure
3.1 displays the workflow of a typical DFT code. To calculate the equilibrium
crystal structure the ionic positions are shifted after each SCF loop whereas
the new coordinates are derived according to a specified algorithm. During
each SCF loop the positions of the atomic nuclei are considered stationary.
This decoupled treatment of the electrons and the atomic cores is essen-
tial for the algorithm and only possible since the atoms have a much higher
mass than the electrons. Due to the much smaller mass of the electrons
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Figure 3.1: The Self-consistent-field method

the time-scale of their motion is orders of magnitude lower and relax almost
instantaneously to their ground-state configuration in response to a change
in position of the atomic nuclei (Born-Oppenheimer approximation). All
DFT codes come with a huge library consisting of atomic potentials for each
chemical element of the periodic system, which supply information about the
number of electrons and the electron configuration, i.e. how the electrons are
distributed among the orbitals.

3.2 Spin in DFT

In the classical form of DFT electronic spin is not taken into account since
the energy and the potential are only a functional of the electron density.
So to account for the electronic spin the electron density has to be explicitly
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written as the sum of two different spin densities, n↑(r) and n↓(r), that the
electrons can take on.

n(r) = n↑(r) + n↓(r) =
∑
s

ns(r) (3.6)

Then the exchange-correlation functional is also a functional of n↑(r) and
n↓(r):

EXC = EXC [n↑, n↓] (3.7)

The Kohn-Sham-equations can then be written as:[
− ~2

2me

∇2 + V s
eff(r)

]
Ψs(r) = EsΨs(r) (3.8)

with s=±1.

3.3 The exchange functional

As mentioned before the exchange-correlation functional is the remaining
unknown term of the Kohn-Sham-equation (equation 3.2). A separation
into exchange and correlation parts is not well defined. Nevertheless, in
practice it is divided into 2 parts, the exchange-functional and the correlation-
functional:

EXC [ρ] = EX [ρ] + EC [ρ] (3.9)

The exchange functional is in principle exactly known for a homogeneous
electron gas, but involves the calculation of computationally expensive in-
tegrals. However, in contrast, there exists no analogous expression for the
correlation functional in terms of accuracy. Since the accuracy is determined
by the least accurate term the exchange and the correlation functional have
to be matched in terms of accuracy.
The most commonly used exchange-correlation functionals can be divided

44



CHAPTER 3. AB INITIO COMPUTATION 3.3. THE EXCHANGE FUNCTIONAL

into 2 groups: the local density approximation (LDA)- and the general gradi-
ent approximation (GGA)-functionals. The LDA-functionals (equation 3.10)
are based on the assumption that a general inhomogeneous electron system
is locally homogeneous. The energy of the whole system is calculated by inte-
grating the locally homogeneous densities multiplied with the energy density
εLDAXC [ρ(r)] over the whole volume.

ELDA
XC [ρ] =

∫
ρ(r)εLDAXC [ρ(r)] dr (3.10)

The GGA-functional is one of the results obtained from a variety of differ-
ent attempts to improve the predictive capabilities of the LDA-functional.
The fundamental basis for the GGA-functionals is the so-called gradient ex-
pansion, which is essentially an expansion of the exchange-correlation energy
functional as a series in terms of the density and its gradients (equation 3.11).
In this manner inhomogeneities of the density are included. [75]

EGGA
XC [ρ] =

∫
ρ(r)εXC [ρ(r)]FXC

[
ρ(r),∇ρ(r),∇2ρ(r), ...

]
dr (3.11)

A variety of different parametrizations for the functionals exist among which
most are adapted to reproduce experimental data for specific systems.
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3.4 Treating strongly correlated systems within
DFT

DFT is known to yield reasonable results for metals since the behaviour
of electrons in metals resembling a free electron gas is treated well within
the classic exchange functionals as LDA and GGA. However, for materials
containing transition metals the prediction of properties usually fails within
the classical GGA approximation. This is due to the fact that transition
metals contain d-electrons which are much more localised than the electrons
in a metallic system whereas the LDA- and GGA-functionals represent one-
electron delocalized exchange functionals (as is based on the simplifications
of the DFT). Consequently, within LDA or GGA exchange functionals the
d-bands are modelled as being partially filled with-non-localized electrons
hereby incorporating the physical behaviour of a metal. Often this results
in the prediction of metallic properties for compounds which are actually
insulators or semiconductors [76]. To account for the more localised nature of
the electrons in the d-shell a common approach is to add a Coulomb repulsion
term on the d-orbitals so as to decrease the tendency of these electrons to
delocalise to the other d-orbitals. This is called the on-site Coulomb repulsion
U. Figure 3.2 illustrates this concept. This idea is condensed in the so-called
Hubbard-U model (equation 3.12).

Ĥ = −t
∑
iσ

(
c†iσci+1σ + c†i+1σciσ

)
+ U

∑
i

ni↓ni↓ (3.12)

t is the kinetic term (also designated transfer integral) which describes the
electronic motion between atomic sites and is usually restricted to nearest
neighbouring sites. n is the ratio between the number of electrons N and the
number of sites Nα (n= N

Nα
). c†iσ and ciσ are the creation and annihilation

operators of an electron of spin σ at site i. In the case of U=0 the Hamiltonian
corresponds to a system of N non-interacting electrons moving in a band of
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Figure 3.2: Effect of the Hubbard U parameter on the electron behaviour:
a low U value decreases the Coulomb repulsion between electrons in the
same orbital. Consequently, the electrons can delocalize, which resembles a
metallic behaviour. A high U value has the opposite effect.

width W = 2zt with z the coordination number. On the other hand when
U >> t the electronic motion becomes increasingly suppressed due to the
penalization of the energy of doubly occupied sites. In the simple case of
n = 1 this would translate into singly occupied sites with anti-ferromagnetic
ordering of the electronic spins [77]. This suggests that halfway between
these 2 cases there is a metal-insulator transition.
The drawback of this model is that the U-value is unknown and needs to be
optimized to reproduce the experimental properties. The U-value may vary
even among compounds within the same family of structures. What is more,
in many cases a specific U-value can reproduce one property but not a second
property at the same time. Therefore, if applying this approach great care
has to be taken with respect to the problem to be investigated.
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3.5 The pseudopotential and PAW method

According to Blochs’ theorem (section 2.3.1 equation 2.9) electrons in a peri-
odic solid can be conveniently described in terms of plane waves. A complete
basis set for the construction of the electron wave functions can be obtained
by developing a Fourier series with which the electron wave functions are
expanded into a series of plane waves.

Ψi,k(r) =
|G|<Gmax∑

G

cik,Ge
i(k+G)·r (3.13)

with cik,G the Fourier coefficients, G denoting the reciprocal lattice vectors
and k an arbitrary vector in reciprocal space.The formalism is exact in the
limit of an infinite number of plane waves. However, in practice the infinite
sum is not necessary. The kinetic term of the Hamiltonian is proportional
to the square of the wave vector, hence, states with high |G + k| have a
high kinetic energy. Above a specific limit depending on the chemical species
present in the structure |G+k| will be so high that the Fourier coefficients are
negligible and the series can be truncated. The standard truncation criterion

Figure 3.3: Schematic representation of the energy cutoff in the reciprocal
lattice

is: Ecut = 1
2G

2
max. This corresponds to a sphere in reciprocal space with the
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radius r = Ecut as shown in figure 3.3. However, DFT calculations with basis
sets solely based on plane waves are highly inefficient. The main reason is
attributed to the nature of the atomic core charge inducing a deep Coulomb
potential, which causes the electron wave function to oscillate rapidly close
to the atomic core. To represent the electron wave function in terms of plane
waves this would necessitate plane waves up to very high kinetic energies.
This requires large computational resources and cannot be carried out in a
feasible manner. Therefore this imposes an obstacle for the implementation of
calculation algorithms for DFT-codes. However, if the expansion series were
to be truncated at a certain energy level (energy cutoff) the problem would be
tractable. In order to be able to take advantage of the truncation the atomic

Figure 3.4: Illustration of the pseudopotential and the pseudo-electron wave
function

core potential has to be modified to avoid the high kinetic energy of the
electrons in the vicinity of the atomic core. [78] This is done by introducing
pseudo-potentials, which basically replace the atomic core potential. That is
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in many cases a legit approach since the electrons at the core levels usually
do not take part in chemical bonding and reactions. Since the exact atomic
potential is only replaced by a pseudo-potential at the core the description
of the valence electrons remains accurate and the system is solved for only
the valence electrons, which require less plane waves. This is illustrated in
figure 3.4.
However some properties which do depend on the core electrons may not be
reproduced in this fashion. Moreover for transition metals the 3d electrons
cannot be treated as part of the core without loosing their specific properties.
But these are very local orbitals and therefore need a very large basis set to
converge. Consequently other methods had to be developed resulting in the
projector-augmented wave (PAW) method, which extends the idea of the
original pseudopotentials. Space is partitioned into 2 regions: a spherical
one surrounding the atom and an interstitial one. The wave functions in the
spherical region and the interstitial regions are expanded separately in order
to be able to reproduce the nodes within the spherical region without having
to use the same basis set in the interstitial region. This way the all-electron
information is retained without loosing the computational efficiency of the
pseudopotential. [79, 80] The PAW method is implemented in VASP.
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3.6 Brillouin zone integration

To calculate the Kohn-Sham eigenvalues of a DFT structure or the electron
density an integration of the observables in the Brillouin zone (BZ) is neces-
sary.

Etot = 1
VBZ

∫
1.BZ

E(k)d3k (3.14)

with n(r) = 1
VBZ

nk(r)d3k

However, in numerical practice these integrals have to be converted into sums
over discrete k-points in reciprocal space. As for all numerical methods the
issue of convergence is of vital importance. In this specific case that is the
convergence of the calculated sums with respect to the number of k points.
The established way of choosing k-points is to generate a uniform grid of
k-points in the irreducible BZ according to Monkhorst and Pack. To do so
properly the crystal shape has to be considered since the dimensions of the
lattice parameters determines the reciprocal lattice parameters, hence the
three dimensions of the irreducible BZ. If the BZ has a larger dimension in
one direction this has to be accounted for by placing more k points along
that direction to maintain the same k-point density in all locations of the
irreducible BZ. Before running data production jobs on a larger scale it has
to be ensured that the total energies of the calculations have converged with
respect to the number of k-points. [78]
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3.7 Phonon calculations

The total energies obtained via a DFT code are always with respect to 0 K
since the atoms are motionless. In order to be able to obtain the energies for
finite temperatures it is necessary to incorporate the quantized lattice vibra-
tions, also called phonons. These are ultimately the atomistic cause for the
material property "heat capacity". The basic approach to calculate the lattice
dynamics within the DFT framework is to calculate the force constants, i.e.
the first derivative of the forces with respect to atomic displacements away
from their equilibrium positions, that draw them back to the energetically lo-
cal or global minimum. Within the model of treating atoms as oscillators the
calculated force constants (derivative of the forces with respect to displace-
ment) allow to yield the eigenfrequencies of each particular atomic oscillator
in all their respective possible modes (k-vectors). The equation that relates
the eigenfrequencies and the force constants to each other was shown in sec-
tion 2.4.1 (equation 2.16). In principle, when holding the complete frequency
spectrum it is possible to compute thermal properties as average values from
the so-called phonon partition function, a statistical representation of the
excited phonons in dependence of the temperature.

Basically, one distinguishes between two methods which are both descibed
since both are employed in this work:

1. Finite difference method

2. Linear response method
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3.7.1 Finite difference method

The finite difference method is an approach in which the force constants
are computed by calculating the forces of systematically generated struc-
tures with distinct atomic displacements and computing the ratio between
the force differences and the absolute displacements. This is formalized in
equation 3.15

k = ∂2Epot(R)
∂u2

∼= −
F (R +4u)− F (R)

4u
(3.15)

F is the force, R the equilibrium coordinates, 4u the displacement Epot the
energy and k the force constant. In the limit of infinitesimal small displace-
ments the fraction attains the mathematical expression of the 2nd derivative
of the energy (Hessian) with respect to the displacement and represents a
numerical approximation for calculating the force constant.
The major advantage of this approach that it is easy to implement since it
is only necessary to pre-process the equilibrium structure to generate dis-
placed structures and post-process the obtained data. Codes can be and are
developed modularly to accommodate the demands. One major drawback is
that the supercell has to be chosen sufficiently large in order to reach con-
vergence with respect to the supercell size which is due to interactions with
atoms/ions from the neighbouring cell originating from the periodic bound-
ary conditions. Moreover, it is not possible to evaluate the Born charges on
the longitudinal optical modes near gamma point, which can have significant
effects on the thermal properties. Born charges refer to the phenomenon
of induced dipoles in ionic compounds caused by displacements of the ions
from their equilibrium positions. Since these exert an additional force, the
resulting force constants can be affected.
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3.7.2 Linear response method

The linear response method, a method based on the density functional pertur-
bation theory, evaluates the Hessian in response to an external ionic pertur-
bation in a self-consistent way. This is made possible since density functional
perturbation theory states an analytical method to calculate this:

∂2E(R)
∂RIRJ

= − ∂FI
∂RJ

=
∫ ∂nR(r)

∂RI

∂VR(r)
∂RJ

∂r +
∫
nR(r)∂

2VR(r)
∂RIRJ

∂r + ∂2EN(R)
∂RIRJ

(3.16)

RI/J is the coordinate of the Ith/Jth nucleus, VR(r) is the electron-nucleus
interaction and EN(R) is the electrostatic interaction between different nu-
clei.
In essence the force constants are obtained directly by using the ground state
electron charge density and calculating its linear response to a perturbation
of the nuclear geometry.
The major advantage of this approach is that Born-charge effects can be eas-
ily dealt with and that basically it is not necessary to use supercells to run
the calculations. However, in the VASP code only Gamma point calculations
are implemented for the linear response method, which in return does neces-
sitate the use of supercells to obtain accurate results. Another drawback of
this method in VASP is the fact that the linear response calculations cannot
be started with the wave functions of the precedent relaxation. This can be
problematic in case of spin-polarized calculations because the optimization
of the wave functions before the starting of the linear response can converge
to a different spin-state and ultimately leads to errors in the force constants.
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3.7.3 Harmonic phonon calculations

The phonon number is proportional to the temperature and is given by equa-
tion 3.17:

n = 1
exp(~ω(qν)/kBT )− 1 (3.17)

The harmonic phonon free energy is calculated via the product of the phonon
number and the energy of a quantum oscillator as shown in equation 3.18. It
can be seen from the factor The addition term 1

2 additionally takes the zero
point energy into account.

E =
∑
qν

~ω(qν)[12 + 1
exp(~ω(qν)/kBT )− 1] (3.18)

Then the heat capacity at constant volume is derived by deriving equation
3.18 with respect to temperature T. To be exact, it would have to be the in-
ternal energy U to be derived with respect to T since the phonon free energy
is only the major fraction of the internal energy as already shown in chap-
ter 2.4.3. But when specifically calculating the lattice dynamics (phonons)
the remaining fractions are simply not accounted for within this formalism.
Therefore the phonon free energy is taken as the internal energy and CV

arises exclusively from the phonon energy intake:

CV = (∂E
∂T

)V =
∑
qν

kB(~(qν)
kBT

)2 exp(~ω(qν)/kBT )
[exp(~ω(qν)/kBT )− 1]2 (3.19)

The Helmholtz free energy F and the vibrational entropy are derived from
the phonon partition function Z:

Z = exp (−φ/kBT )
∏
qν

exp (−~ω (qν) /2kBT )
1− exp (~ω (qν) /kBT ) (3.20)
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F = −kBT lnZ

= φ+ 1
2
∑
qν

~ω (qν) + kBT
∑
qν

ln [1− exp (−~ω (qν) /kBT )] (3.21)

S = dZ

dT
= 1

2T
∑
qν

~ω (qν) coth (~ω (qν) /2kBT ) (3.22)

− kB
∑
qν

ln [2 sinh (~ω (qν) /2kBT )] (3.23)

3.7.4 The quasi-harmonic approximation

The quasi-harmonic approximation (QHA) is a method to include the ther-
mal expansion into the calculations, which are otherwise completely neglected
since the calculations are exclusively calculated at constant volume. The har-
monic approximation is only accurate for low temperatures where the atoms
are only displaced slightly from their equilibrium position. Moreover, in the
harmonic approximation one always obtains the constant volume thermal
properties, which is rather inconvenient if to compare with experimental val-
ues. These are usually obtained at constant pressure. By calculating the
harmonic vibrational spectrum in an iterative procedure (see figure A2.2 in
chapter A) at different fixed volumes of the compound to both sides of the
equilibrium volume a mapping of the vibrational free energy onto the volume
can be done and the Helmholtz Free energy is obtained as a function of vol-
ume at specified temperatures. For each temperature an equation of state is
fitted in F vs V with their own respective minima. The type of equation of
state can vary depending on the implementation in different code packages or
might be specified, but some of the most important ones were shown in sec-
tion 2.2. From the curves interconnecting the minima the equilibrium volume
for each temperature can be derived and the thermal expansion coefficient
can be calculated. The bulk modulus is the second derivative of the free en-
ergy with respect to the volume (section 2.1). These two physical properties
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are then incorporated into a correction term adding to the heat capacity at
constant volume and resulting in the constant pressure heat capacity.

cp,m − cv,m = Vm(T )T α(T )2

βT (T ) = Vf.u. ·NA · T
α(T )2

βT (T ) (3.24)

The model is called "quasi"-harmonic since it is still solely based on the
harmonic model but includes the thermal expansion in the explained manner.
It neglects anharmonic effects of higher order, e.g. phonon-phonon coupling
and electron-phonon coupling. Formally this is contained in the truncated
Taylor expansion series of the total energy with respect to displacements u,
which is valid for small |u| (equation 3.25). The second-order term is the one
which is being calculated by evaluating the force constants, which are then
related to the eigenfrequency of a harmonic oscillator as shown in equation
2.16. The first-order term vanishes due to the condition of a fully relaxed
structure, for which all forces have diminished to zero.

Etot(Rlul) =
∑
Iα

p2
Iα

2MI

+
∑
Iα

∂Etot

∂uIα
uIα + 1

2
∑
Iα,Jβ

∂2Epot

∂uIα∂uJβ
uIαuIβ... (3.25)

These effects are responsible for the finite lifetime of the phonon excitations.
Since they are not part of the QHA the calculated phonons have an infinite
lifetime and the derived thermal properties may differ from the experimental
values. However, these effects become significant in the limit of high temper-
atures meaning that for room-temperature applications the calculated results
should be reliable in this respect. Discrepancies may still arise from the fact
that the calculations are for a perfect ideal mono-crystalline compound with
no defects.
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3.8 Cluster expansion

When it comes to the modelling of systems in which two or more atomic
species occupy the same lattice sites (substitutional solid solutions) one is
faced with a combinatorial problem of a vast amount of possible atomic
arrangements and the main question to answer is which of the atomic ar-
rangements represent the ground state configuration with the lowest energy
possible. In essence, when looking at a solid with N atomic sites which can
be occupied by either the element A or B (whereas B can also be a va-
cancy) then the number of possible atomic arrangements is 2N . It would
be a futile task to calculate the energies for all of these configurations. The
so-called cluster expansion is a method to alleviate this problem by providing
a formalism (equation 3.26) for enabling the prediction of the energies of an
arbitrary configuration based on the knowledge of a finite set of configura-
tions (structures). The formalism is based on a series expansion constructed
from specific arrangements of two to four specific atoms in a range of crystal
structures. These arrangements or figures within the crystal structures are
called clusters. So the clusters can be doublets, triplets and quadruplets etc.
They can be constituted of next neighbour atoms or of atoms separated by
medium to longer distances (as exemplified in figure 3.5) depending on the
size of the crystal structures which are successively generated in the process
of this prediction algorithm. So depending on the structure at hand cer-
tain symmetry rules apply and the specific clusters have multiple equivalents
within the structure. These multiplicities are counted and are an integral
part of the expansion series. The last part of the expansion series are the
occupation variables σi. They essentially represent how the lattice sites are
occupied, whether site i is occupied by atom A or B. In the convention of
an Ising model spin values of -1 and 1 are assigned to the sites occupied by
A-atoms and B-atoms respectively as shown in figure 3.6. Each σi repre-
sents one lattice site i and therefore to describe the configuration of clusters
one needs as many σi-values as there are lattice sites in the cluster. This
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Figure 3.5: Some possible clusters on a 2-dimensional square lattice

Figure 3.6: Binary alloy representation in the Cluster expansion formalism

is condensed in the product of σi-values, also called correlation functions,
within the expansion series. If the cluster has symmetry equivalents then the
products of the σi of all equivalent clusters are averaged as indicated by the
angle brackets in equation 3.26.

E(σ) =
∑
α

mαJα〈
∏
i∈α′

σi〉 (3.26)
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3.8.1 The correlation function

The correlation functions are supposed to span the space of all possible con-
figurations. To be able to represent the energy of all possible configurations
with the Cluster expansion these correlation functions therefore need to form
a complete basis set. It is possible to span the whole configurational space
with different basis sets. The correlation functions are defined by the product
of the occupation variables of the sites within a considered cluster. The cor-
relation functions themselves are distinguished into point-, pair- and triple-
etc. correlation functions to map the occupational state of figures with essen-
tially arbitrary sizes. The point-correlation function would simply reflect the
occupational state of a single site within a cluster. This is shown examplarily
for a binary A-B-alloy in equation 3.27.

fA = σiA =

1 if site is occupied by atom A

0 if site is occupied by atom B
(3.27)

Whatever definition to distinguish the occupations can be applied without
altering the outcome and accuracy of the cluster expansion as long as the
selected basis set is complete. A pair-correlation function would be described
as follows:

fAA = σiAσjA =

1 for alike neighbours

0 for unlike neighbours
(3.28)

3.8.2 The Collony-Williams inversion

Given a binary A-B-alloy the expansion of the total energy for a sample of
3 structures (pure A, pure B and A:B=1:1) would conceptionally be looking
as follows when taking point-correlation and pair-correlation functions into
account:
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Ecompound = E0 + fA · JA + fAA · JAA, (3.29)

EA = E0 + 1 · JA + 1 · JAA,

EB = E0 + 0 · JA + 0 · JAA,

EAB = E0 + 1
2 · JA + 0 · JAA,

with the first line corresponding to the general form of the expansion for an
arbitrary binary compound. In this context, E0 is the empty cluster term
(an energy offset), JA the point energy and JAA the pair energy. In a pure
B compound there would be no energy associated with sites occupied with
A-type atoms, hence fA = 0. The same can be said about a cluster of two
sites (fAA = 0). For an A-B compound with equivalent amounts of A and
B the next neighbours are never of the same atom type (assuming a NaCl-
structure for this case). That is why fAA = 0. The above system of linear
equations is equivalent to the following matrix equation:



EA

EB

EAB


=



1 1 1

1 0 0

1 1
2 0





E0

JA

JAA


(3.30)

The 3x3 matrix is the Sanchez-Connoly-Williams matrix (scwm). The ef-
fective cluster interaction parameters are therefore obtained by inverting the
matrix with the correlation functions:

I = [scwm]−1 · E (3.31)
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More cluster interaction parameters can only be included in the expansion
formalism if more structures are calculated to provide additional equations
keeping the system of linear equations determined.

3.8.3 The quality of a cluster expansion

The quality of the fit by the expansion series is evaluated by means of the
predictive power of the cluster expansion. A very common way to do so
is to apply the so-called ’leave-one-out-cross-validation’ (LOOCV). In this
procedure the calculated energy of one single structure is excluded from the
cluster expansion to evaluate the expansion-predicted energy of this specific
structure compared to the calculated energy value. This is repeated for all
other structures. If there are N calculated structures then ∆Ei with i ∈ [1;N]
are obtained which are then aligned according to the following formula:

LOOCV =

√
1
N

N∑
∆E2 (3.32)

To sum up: the Cluster expansion formalism provides a method to express
the energy of an alloy as an expansion series over symmetry distinct clusters
and is exact when all possible atomic clusters are included. In practice, one
makes use of the intuitive fact that with increasing distance between the
atoms of the clusters the effective cluster interactions decrease to a negligible
value. This allows the truncation of the expansion series after including
only relatively small clusters and is the real power of the Cluster expansion
formalism. However it still strongly depends on the system at hand how
many structures are necessary to get converged expansion series.
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Chapter 4

Modelling

4.1 Computational details

4.1.1 The Metal-to-insulator transition

The projector-augmented wave potentials in the generalized gradient approxi-
mation as parametrized by Perdew-Burke-Enzerhof (GGA-PBE) are used [81]
to run full-structure relaxations. A plane-wave energy cutoff of 520 eV is em-
ployed and the k-mesh has been varied to obtain convergence of 5 meV/atom
for LiCoO2. To explore different vacancy concentrations a 2x2x1 supercell
of the rhombohedrally centered structure is used as a parent lattice whereas
successive removal of lithium ions yields sufficient lithium sites to model
the dilute stoichiometries. Configurations of clustered (close arrangements
of vacancies) and distributed vacancies are probed. In order to account for
both unoxidized Co3+ and oxidized Co4+ species two potential files of cobalt
are supplied and are treated with disparate electronic spins by setting the
MAGMOM-tag respectively. From the electron orbital configuration it can
be expected that the Co3+ exhibits a low-spin state close to zero since all
electrons are paired whereas Co4+ should exhibit a higher spin-state due to
one unpaired electron. To be able to converge to different possible electron
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configuration the electron spins are initialized in varying fashions. The ob-
tained total energies are used to calculate the average intercalation voltage
of LixCoO2 versus pure lithium. For the computation of the average interca-
lation voltage it is common to calculate the voltage with respect to lithium
since its chemical potential remains constant over the whole reaction process
independent of the amount of transferred lithium. Accordingly the change
in free energy can be expressed as:

−∆Gr = −
∫ x2

x1

[
µcompound

Li (x)− µ0
Li

]
dxLi (4.1)

= − [Gcompound(x2)−Gcompound(x1)− (x2 − x1)GLi] . (4.2)

For solid state reactions it can be assumed that volume changes ∆V and
entropy changes ∆S are negligible so that

∆G = ∆E + p∆V − T∆S = ∆E. (4.3)

Combining with equation 1.1 from section 1.3 the average intercalation volt-
age is obtained as follows:

V̄ = − [Etot (Lix2CoO2)− Etot (Lix1CoO2)− (x2 − x1)Etot (Li)]
(x2 − x1)F . (4.4)
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4.1.2 Calculating heat capacities for LixCoO2

The same plane-wave energy cutoff and k-mesh as in the above section is
employed. Due to the hexagonal symmetry of the lattice a Gamma centered
k-mesh is employed. The resulting k-meshes are 5x5x2 for the supercell cal-
culations. Full structure relaxation is carried out on the structures with
forces converged to 10−5 eV/Å with the exchange functional parametrized
by Perdew-Burke-Enzerhof GGA-PBE [81] and spin polarization is allowed
to account for magnetism on cobalt. Both the impact of a Hubbard U term
and Born-charge on the outcome is checked. In general, the finite differ-
ence method is applied to obtain the Hessian due to its lower computational
cost. However, the Born effective charge tensors are not calculated within
this algorithm in VASP. Consequently, to be able to investigate the Born-
charge effects the linear response theory is employed as implemented in VASP.
The Hubbard U term in the rotationally invariant form introduced by Du-
darev et al. [82] is added on the Co d orbitals to account for the electron
self-interaction. A value of 5.6 eV is assigned as has been calculated self-
consistently by Juhin and de Groot [83]. In total, three discrete stoichiome-
tries of the O3-LixCoO2 are investigated: LiCoO2, Li0.67CoO2 and Li0.5CoO2.
In case of Li0.5CoO2 two different vacancy arrangements are investigated, one
for which a vacancy configuration is adopted which is analogous to the ex-
perimentally detected, monoclinically distorted structure but maintaining
the O3-structure. The other structure (also O3-LiCoO2) is constructed with
an alternative vacancy arrangement. Both configurations are shown in the
appendix B1. In all cases in this thesis the quasi-harmonic fit is done by
employing the third order Birch-Murnaghan-EOS (equation 2.6) to get the
parametrized E(V )-functions.
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4.1.3 Cluster expansions on LixMg2Si

In the lat.in file the LixMg2Si crystal structure is provided in the primitive
setting. The data is included in the appendix B2. The projector-augmented
wave potentials in the generalized gradient approximation as parametrized
by Perdew-Burke-Enzerhof are used [81]. A plane-wave energy cutoff of 320
eV is employed and the k-mesh was varied again to reach convergence of
5 meV/atom for the structures with the most extreme compositions of the
respective cluster expansions. Whenever required by the crystal symmetry
of the generated structures the k-mesh is set to a grid centred around the
Γ (Gamma) point. The full structure relaxations are carried out with forces
converged to 10−2 eV/Å. About 170 structures in the concentration range
of x ∈ [0;1] are calculated to get a sufficiently accurate parametrization of
the energies for cell sizes up to 44 atoms. The total energies of a set of
compositions are used to calculate the average intercalation voltage of the
compounds versus pure lithium in the same manner as for the LixCoO2 sys-
tem. Combining with equation 1.1 from section 1.3 the average intercalation
voltage is obtained as follows:

V̄ = − [Etot (Lix2Mg2Si)− Etot (Lix1Mg2Si)− (x2 − x1)Etot (Li)]
(x2 − x1)F . (4.5)
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4.2 Results & discussion

4.2.1 Mapping the metal-to-insulator two-phase region

Aim
Due to deficiencies of the DFT method the two-phase equilibrium between
the semiconducting and the metallic phase in the LixCoO2 solid solution
has not been modelled yet. A multi-phase equilibrium manifests itself in a
voltage plateau as dictated by the Gibbs phase rule. Thus, the ability to
model such a transition would be beneficial for further investigations, e.g.
in the direction of dopant effects on this two-phase equilibrium. In this
section the results on the attempt to model the two-phase region between
the semiconducting and the metallic phase in the LixCoO2 solid solution
are discussed. To be able to capture the electronic properties related to
the d orbitals of cobalt the Hubbard U model is employed accounting for
the localized nature of it’s d electrons. To distinguish between Co(III) and
Co(IV) two cobalt potentials were provided in the POTCAR file whereas the
number of Co(IV) ions has to match the number of lithium vacancies in the
respective supercells due to charge balancing. The aim is to converge to both
metallic and semiconducting states by measures of the electronic DOS in a
range of x ∈ [0.5; 1] and, subsequently, cross-referencing with the associated
total energies in order to evaluate the energy devolution of both states.

Discussion
First, the sensitivity of the resulting band gap with respect to the chosen U-
value is investigated by evaluating the resulting electron DOS for calculations
with U=3.3, 4.9, 5.6 and 7 eV. The increase of the U parameter from 3.3 eV
to 7 eV causes an increase of the band gap by around 1 eV. Since the effect
of the U parameter on the band gap is not that significant the U value of
3.3 eV is selected for all calculations. This specific value is adopted from the
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Figure 4.1: Electronic density of states in dependence of U-value obtained
from spin-polarized calculations: band gaps range from 2.1 eV for U=3.3 eV
to 3.2 eV for U=7 eV.

Materials project [84,85], within which the U values have been optimized for
the purpose of matching experimental enthalpies of formation.
In all cases the configurations with distributed vacancies led to lower energies.
Regarding the transition from semiconductor to metal it can be observed
that the electronic band gap decreases when lithium atoms are successively
removed from the structure and eventually closes below a lithium content of
x=0.77 (see figure 4.2).
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Figure 4.2: Electronic DOS in dependence of lithium content: tail states
on top of the valence band and at the bottom of the conduction band can
be observed when lithium is removed. The tail states merge below x=0.777
leading to the metallic phase.
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In particular, the merging of the conduction band and the valence band can
indeed be interpreted in terms of the formation of an impurity band (see
subsection 1.7.2 for explanation) visible as band tails on the valence and
the conduction band in concordance with prior observations on very dilute
concentrations by Marianetti et al. with the LDA-functional [53]. Ulti-
mately, the merging of both bands occurs when reaching a stoichiometry of
Li0.66CoO2. Judging these results, anything below x=0.77 resembles a metal-
lic state agreeing with what has been determined experimentally [49,50].
The band gap value corresponding to the pristine, fully lithiated structure
compares well to experimental data as can be seen in figure 4.3. Evaluating
the crystal structure data reveals a similar trend compared to experimental
data as can be observed in figure 4.4. Removing lithium ions successively

Figure 4.3: Calculated band gaps plotted in dependence of lithium content
and comparison to experimental data: computed and experimental data at
x=1 show good agreement.

leads to an expansion of the c-axis parameter resulting from the increased
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Coulomb repulsion between the layers. It is also possible to converge to both

Figure 4.4: c lattice parameter in dependence of lithium content in LixCoO2:
comparison with experimental data of Ménétrier et al. [50] and Takahashi et
al. [22] reveals good overall agreement.

metallic and insulating states for the same stoichiometry over a lithium con-
tent between x ∈ [0.5; 0.917] depending on the Li/Vac arrangement. Hence,
it does indicate the phase coexistence of the metallic and the semiconducting
phase. However, in general it is difficult to control the magnetic moments.
Initializing with high spins on specific cobalt atoms does not necessarily lead
to high spins on the respective cobalt atoms after the calculations. After
analysing all results with respect to electronic DOS and total energy the en-
ergies are plotted both for the metallic and the insulating state in dependence
of lithium content as shown in figure 4.5.
As can be seen, it is not possible to define a two-phase region by using the
common tangent approach since the evolution of the energies for both states
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are clearly non-parabolic. It might be necessary to model additional vacancy
arrangements within the range of x ∈ [0.5;1] to obtain the true ground state
configurations which might not yet be represented by the calculated crystal
structures. Aside from this aspect the lack of the parabolic behaviour could

Figure 4.5: Enthalpies of formation versus the constituting elements for
metallic and insulating states vs lithium content: good agreement in com-
parison to Wang and Navrotski [86]. It is clearly observable that the semi-
conducting phase is more stable at high lithium contents. At x=0.5 it is not
possible any more to converge to a semiconducting phase.

also be related to the neglection of the contributions made by the entropy of
mixing Sm to the Gibbs free energy which have significant effects in the limit
of dilute concentrations according to the following equation for the Gibbs
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free energy of mixing [87]:

Gm = Hm − TSm (4.6)

= 1/2Nz · [(1− x)HAA + xHBB + 2x (1− x)H0]

+NkT · [x ln x+ (1− x) ln (1− x)]

, whereas A and B denote two different atomic species, N the number of
atoms, z the coordination numberH0 the exchange enthalpy,HAA andHBBthe
enthalpy of bonding between A or B atoms. In the limit of dilute concen-
trations the logarithm function converges to zero, i.e. lim

c−→0
−TSm −→ 0 and

lim
(1−c)−→0

−TSm −→ 0, whereas a finite absolute value is being subtracted for
intermediate concentrations. Therefore this can alter the enthalpy of mixing
to much lower values when moving away from dilute concentrations intro-
ducing local minima. To elucidate this aspect, the influence of the entropic
term of equation 4.6 is checked assuming N to be the number of atoms in
the cell. The analysis shows that the impact of that term is just marginal
around room temperature. Only when going to high temperatures of 10000
K the effect is perceivable.
In conclusion, this hypothesis may be excluded as the cause for the lack
of the parabolic behaviour. The remaining other hypothesis, as mentioned
before, is that not the true ground states are obtained with the calculated
structures. In this respect, constructing a cluster expansion with lithium and
vacancies on one sublattice and cobalt(III) and cobalt(IV) on their respec-
tive sublattice can provide further insights by more thoroughly exploring the
configurational space. This approach has been taken by Aykol et al. [private
communication]. The authors applied different potentials for Co3+ and Co4+

respectively to account for the different number of electrons. Moreover, they
assigned different Hubbard-U values to Co3+ and Co4+, respectively, as they
found evidence that the U value depends strongly on the oxidation state of
the transition metal ion [88]. The results of this approach indeed display the
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two-phase region whereas the authors are still uncertain about the specific
cause for the correct mapping of this behaviour. They suggest the explicit
treatment of cobalt(III) and cobalt(IV) as separate species as the reason for
this behaviour but cannot confirm this hypothesis until proven. To investi-
gate this, a separate cluster expansion should be carried out with identical U
values on both Co3+ and Co4+ in order to be able to compare the changes with
respect to the former approach. Despite the fact that the metal-to-insulator
phase transition cannot not be modelled with the approach of this work the
obtained total energies are used to calculate the average intercalation voltage
in x ∈ [0.5; 1] according to equation 4.4. The results, as displayed in figure
4.6, show an essentially flat profile with values between 3.5 V and 4 V.

Figure 4.6: Computed average intercalation voltage of LixCoO2 compared
to ab initio result of Aydinol et al. [89] and experimental voltage profile of
Ozhuku et al. [16]
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This is in good agreement with prior ab initio predictions of Aydinol et al.,
who computed one value as the average in the range of [0.5; 1] to be 3.75
V [89]. The discrepancy to experimentally obtained voltages (between 4 and
4.4 V [16]) is therefore in the same order of magnitude. Generally speaking,
the calculated average intercalation voltage gives a rough estimate on the
true intercalation voltage of the compound. However, the adopted approach
is not sufficient to map the two-phase region accordingly.

Conclusion
With the applied approach it was possible to converge to both metallic and
semiconducting states over a lithium concentration range of x ∈ [0.5; 1]. The
electronic DOS reveals the formation of band tails in the course of removing
lithium from the pristine structure which broaden and ultimately merge be-
low a lithium content of x=0.777 with an associated total energy lower than
for the semiconducting state. However, the devolution of the energies closely
resembles a linear behaviour making it impossible to use the common tangent
approach for deriving the two phase region. Still, at least the approach does
confirm the metallic state to be more stable at lower lithium contents. The
effects of the entropy of mixing are determined to be negligible around room
temperature and do not even out the missing curvature of the total energy
devolution. The computed average intercalation voltage is in agreement with
the experimental profile and prior DFT calculations.
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4.2.2 Heat capacities within the QHA

Aim
LixCoO2 is prone to have serious thermal issues under abuse conditions.
Therefore, thermal modelling may contribute to an increase in safety of the
battery design. For this purpose, data on heat capacities of the constitut-
ing battery components are relevant. In this section the advantage of the
DFT method in obtaining heat capacities on delithiated stoichiometries of
LiCoO2 is exploited. Isobaric heat capacities are calculated within the QHA
for LiCoO2, Li0.67CoO2, Li0.5CoO2 and LiCo11/12B1/12O2.

Discussion
The lattice parameters obtained from the GGA+U approach are shown in
the previous section. Here, the lattice parameters from GGA-PBE calcu-
lations are compiled in Table 1 and show that the pristine structure is in
good agreement with experimental data. Both the results obtained from
GGA-PBE and GGA+U are close to the experimental values. While the c-
lattice parameter of the pristine structure is overestimated within GGA+U
(as already seen in the previous section in dependence of different lithium
concentrations in figure 4.4) it is only slightly underestimated within GGA-
PBE in case of the pristine structure. However, the delithiated structures
show significant deviation. In both Li0.67CoO2 and Li0.5CoO2 the c-lattice
parameter is overestimated. This is likely due to increased contribution from
van der Waals interactions that are not being considered with the applied ex-
change functionals [90]. It should be noted here that the calculated c-lattice
parameter also depends on the lithium vacancy configuration of the chosen
supercell. Another aspect to look at is the space group of the calculated
structures, which deviate from the experimental ones in case of Li0.67CoO2

and Li0.5CoO2.
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Table 4.1: The calculated lattice parameters for different stoichiometries of
LixCoO2 and experimental lattice parameters by Takahashi et al. [22] and
Hertz et al. [30]

Compound a [Å] b [Å] c [Å]

LiCoO2 R-3m (166) U=5.6eV 2.838(1) 2.838(1) 14.144(5)

LiCoO2 R-3m (166) GGA-PBE 2.856(2) 2.856(2) 14.014(9)

Li0.67CoO2 Cm (8) GGA-PBE 2.844(9) 2.844(9) 15.104(2)

Li0.5CoO2 P2/c (13)GGA-PBE 2.813(7) 2.813(7) 15.012(1)

Li0.5CoO2 P12/m1 (10)
GGA-PBE

4.884(2) 2.838(2) 14.474(6)

LiCoO2 R-3m (166) exp. [22] 2.8156(6) 2.8156(6) 14.0542(6)

Li0.68CoO2 R-3m (166) exp. [22] 2.8107(5) 2.8107(5) 14.2235(6)

Li0.67CoO2 R-3m (166) exp. [30] 2.81172(3) 2.81172(3) 14.2863(4)

Li0.51CoO2 C12/m1 (12) exp. [30] 4.8645(1) 2.80964(7) 5.0551(1)

Li0.5CoO2 P12/m1 (10) exp. [23] 4.865(3) 2.809(3) 5.063(3)

Li0.48CoO2 R-3m (166) exp. [22] 2.8090(15) 2.8090(15) 14.3890(17)
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For Li0.67CoO2 this is caused by a slight distortion of the structure and can
be found to be described with space group C12/m1 (12) when lowering the
tolerance for finding the underlying symmetry. For Li0.5CoO2 the discrepancy
can be explained by the fact that all the modelled structures are based on the
O3-polytype unit cell. Therefore, in spite of the full structure relaxations, the
host structure is maintained and does not transform into the monoclinically
distorted structure as determined by Takahashi et al. [22] of which the unit
cell size is a third of the O3-polytype unit cell.

Figure 4.7: Phonon DOS of LiCoO2 calculated by the linear response method
with 3 different parameters: GGA-PBE accounting for Born-charge, GGA-
PBE without Born-charge and GGA+U accounting for Born charge. Phonon
frequencies ν>0 indicate that calculations are well converged and structures
are stable.

78



CHAPTER 4. MODELLING 4.2. RESULTS & DISCUSSION

The linear response calculations of the Hessian enabled the evaluation of
Born charge effects on the phonon derived properties. The results on LiCoO2

yielded no phonon frequencies ν<0 and therefore indicate convergence to a
stable geometry irrespective of the employed functional and the inclusion of
Born charge effects. The inclusion of Born-charges in the calculations re-
vealed no significant impact on the isochoric heat capacity curves as can be
seen in figure 4.8. Since the induced polarizations only affect the long wave-
length longitudinal frequencies this might be an explanation for its vanishing
impact.

Figure 4.8: Demonstration of Born charge effects on the heat capacity of the
pristine LiCoO2: no significant impact on the resulting heat capacities can be
observed. The inlet displays the basic mechanism behind the Born effective
charges, which are induced in the limit of long wave lengths of longitudinal
modes. Dipoles induce an additional contribution ~p to the restoring force.
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The quasi-harmonic results with the GGA+U functional on LiCoO2 show
that there is no significant influence either (figure 4.9). Comparing the
phonon DOS of the calculations with a Hubbard U value to the calculations
without a Hubbard U value shows that they do not display significant differ-
ences. The phonon DOS obtained from the Hubbard U calculation features
slightly higher frequencies but lower DOS at frequencies in the vicinity of 15
THz. The presence of higher frequencies may explain the larger heat capac-
ity values above 600 K. The phonon DOS of all three stoichiometries (figures

Figure 4.9: The impact of a Hubbard U value of 3.3 eV on the isobaric heat
capacity of LiCoO2: the results show only negligible effects.

4.7 and 4.10) revealed no imaginary frequencies indicating stable structures
and well converged geometry except for the Li0.5CoO2 P12/m1 (10) struc-
ture. In this case residual imaginary frequencies are still present even after
careful re-relaxation and by modulating along the imaginary modes. Since
the Li0.5CoO2 P2/c (13) structure does not show any imaginary frequencies
this particular structure is used to calculate the heat capacities.
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Figure 4.10: Phonon DOS of LiCoO2, Li0.67CoO2 and Li0.5CoO2 calculated
by the finite difference method. ν>0 indicates stable structures.

Figure 4.11: Bulk modulus and thermal expansion coefficient: obtained from
the EOS fit on LiCoO2 and used to compute Cp by utilizing equation 3.24.
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It can be assumed that there is no major difference in the derived heat ca-
pacities due to the fact that the heat capacity is obtained as a sum over all
frequencies in the phonon DOS (equation 3.19). Small changes in the distri-
bution of the DOS would not affect the heat capacity as an integral property.
Due to the negligible impact the rest of the calculations are carried out with
the exchange functional GGA-PBE and without taking Born-charges into
account.
The quasi-harmonic fit for pristine, fully lithiated structure is shown exem-
plarily in figure 4.12 from which the thermal expansion and the bulk modulus
is derived according to the equations in section 2.1.

Figure 4.12: Quasi-harmonic fit of LiCoO2 over a series of volumes using
the Birch-Murnaghan-EOS. The red line interconnects the minima at each
temperature respectively, highlighting the thermal expansion.

These are shown in figure 4.11. What is also obtained from the fitting proce-
dure is the Gibbs free energy by Legendre transformation of the Helmholtz
free energy as illustrated in figure 4.13. The remaining plots of the other
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structures are summarized in appendix B1.

Figure 4.13: Gibbs free energy of the pristine LiCoO2 obtained by Legendre-
transformation of the Helmholtz free energy

The obtained isobaric heat capacities are compiled in figure 4.14. As can be
seen from the heat capacity curves the overall trend is modelled correctly
although there is a deviation of the calculated results from the experimen-
tal ones. For the pristine structure the deviation between the calculated
and the experimental heat capacity at T=298 K amounts to ≈6.8 %. In
general, deviations are to be expected due to the idealization of the crystal
structure model. The results are obtained for a single crystalline compound
with no grain boundaries and point defects apart from those introduced by
the lithium vacancies. The even larger discrepancy for Li0.5CoO2 can be
explained by inaccuracies of the experiment since the experimental data of
Li0.5CoO2 is not based on a pure phase sample.
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Figure 4.14: Calculated heat capacities at constant pressure for LiCoO2,
Li0.67CoO2 and Li0.67CoO2 compared to available literature data.

The authors stated that their sample contained graphite and binder due
to the experimental process of obtaining the sample. Based on the speci-
fied weight ratios of LiCoO2, Graphite and PVDF-binder (see data sheet in
appendix B1) the heat capacity for a hypothetically pure Li0.5CoO2 com-
pound is estimated for a temperature of 298 K to be Cp(Li0.5CoO2)=70.98
J/molK which would be roughly 7 % larger than the calculated Cp(calculated
Li0.5CoO2)=66.31 J/molK. [31] This correction is shown in figure 4.15. Con-
sequently, it displays agreement with the experimental data of Ito et al. The
lack of experimental shortcomings, which usually introduce insecurities to
experimental results, stresses the power of DFT calculations for obtaining
properties of isolated materials (pure), which are otherwise difficult to access
by experiment and principally underpins the usefulness of the calculated re-
sults. What is more, the experimental data by Ito et al. on Li0.5CoO2 is only
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Figure 4.15: Heat capacity of Li0.5CoO2 by Ito et al. with correction by
accounting for the heat capacities of PVDF [91] and graphite [92] impurities
in the sample.

obtained up to around 250 K (see 4.14) and does not cover the operational
range with respect to temperature of a typical LIB. When calculating phonon
properties within the DFT framework the temperature poses no big issue in
terms of obtaining the target property and stresses its strength once again.
The comparison of the pristine, fully lithiated structure indicates that these
results give a reasonable estimate of the heat capacities at different stoi-
chiometries and can complement the data set on physical properties to im-
prove thermal modelling attempts in batteries. As of today, the models only
apply the heat capacity data for fully lithiated compounds as part of the
applied equations, thereby ignoring the composition dependency of the heat
capacity. As mentioned by Wu et al. [93], one of the major shortcomings in
the thermal modelling of battery cells is indeed the neglection of the com-
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positional influence on thermal parameters. One of his findings is that the
maximum temperature during operation is very sensitive to the exact heat ca-
pacity value. This strengthens the importance of the obtained data set in this
work for adequately designing battery cells with improved thermal safety. A
refined model for computational fluid dynamics (CFD) simulations, as done
by Ponchaut et al. [94], taking the stoichiometry dependence of the heat ca-
pacities into account could yield more accurate results. The general trend
in the calculated results of decreasing heat capacity with decreasing lithium
content is physically plausible since the delithiated structures contain fewer
atoms per formula unit to absorb the heat in the form of phonon vibrations.
Therefore, a similar trend is also to be expected for other materials.
Doping with boron leads to a slight decrease in heat capacity which is no-
ticeable at temperatures above 300 K (see figure 4.16). The relative decrease
of the heat capacity values is in agreement with theoretical considerations
which would predict a lower heat capacity due to the smaller atomic weight of
the substituent boron. The smaller atomic weight requires less energy (heat)
to excite phonons of similar order of magnitude. For possible utilization in
the calculation of phase diagrams (CALPHAD) community the results are
fitted by an empirical polynomial in a temperature range of T ∈ [250; 600] K
using the adjusted R2 as the measure of the goodness of fit. It is designed to
penalize a fit function with more parameters than necessary. A R2 is there-
fore a good measure for a good fit function with as few terms as possible.
The adjusted R2 is defined by:

R̄2 = R2 − (1−R2) · p

n− p− 1 (4.7)

with R̄2 being the adjusted R2, p the number of independent variables (in
this case just one), and n the sample size, i.e. the number of data points. R2
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Figure 4.16: Influence of boron-doping on heat capacity: substitution of
cobalt with boron leads to a decrease of the isobaric heat capacity as a result
of the smaller weight of boron.

itself is the coefficient of determination defined by:

R2 = 1−
∑
i(yi − fi)2∑
i(yi − ȳ)2 (4.8)

where the enumerator is the square sum of residuals and the denominator is
the error sum of squares (SSE). The following polynomial was employed and
yielded good fits:

Cp = a1 + a2 · T + a3 · T−2. (4.9)

The fits are shown in figure 4.17. The fitting coefficients along with the
adjusted R2 values are listed in table 4.2.
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Table 4.2: Coefficients for the heat capacity polynomials

compound R̄2 a1 / J
mol·K a2 / 10−4 J

mol·K2 a3 / 106 J·K
mol

LiCoO2 0.99993 82.4± 0.219 374± 3.589 −1.46± 0.010

Li0.67CoO2 0.9996 84.7± 0.350 98± 5.736 −1.37± 0.016

Li0.5CoO2
(P2/c)

0.9993 75.1± 0.564 224± 9.225 −1.37± 0.0263

LiCo11/12B1/12O2 0.99929 90.5± 0.605 157± 9.903 −1.69± 0.028
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Figure 4.17: CALPHAD-type fitting curves (red lines) from 250 K to
600 K by employing the empirical polynomial of equation 4.9 on LiCoO2,
Li0.67CoO2, Li0.5CoO2 and LiCo11/12B1/12O2.

Conclusion
Born-charge effects and the impact of a Hubbard U term have been deter-
mined to be negligible with regard to the computed heat capacities. The
calculated isobaric heat capacities are in good agreement with available ex-
perimental data and therefore demonstrate that the QHA is a robust method
to yield the data particularly for delithiated LiCoO2 which is only difficult to
obtain via an experimental approach. The obtained data for the delithiated
stoichiometries could be used to enhance CFD models for a more accurate
evaluation of the heat distribution in cells in pursuit of the identification of
hot spots.
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4.2.3 Cluster expansion of LixMg2Si

Aim
In the recent years the LixMg2Si compound has been studied as a potential
candidate for the anode of a LIB. Its advantages are the abundance of silicon
and magnesium as well as their non-toxicity. In the following section the av-
erage intercalation voltage of the compound is derived from the total energies
obtained from the cluster expansion method as implemented in ATAT. This
method is used in order to probe different configurations more thoroughly.
In this context, the effect of lithium insertion on the host lattice is evaluated
as well.

Discussion
Total energies of over 150 structures are obtained in the concentration range
x ∈ [0;1] by running the cluster expansion code ATAT. These are displayed in
the plot of figure 4.18. As it can be observed the cluster expansion still pre-

Figure 4.18: Cluster expansion of LixMg2Si
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dicts structures with lower energies. Consequently, further structures have
to be calculated via DFT. Structures, which show significant non-isotropic
relaxation, are excluded from the cluster expansion since the inclusion leads
to large errors in the parametrization of the energy for the cluster expansion.
One can observe (figure 4.19) that the relaxations show systematic deviations
at higher lithium concentrations > 0.5 (vacancy concentrations < 0.5) due
to the increased lithium incorporation in the parent lattice. This is a po-
tential drawback of this compound if chosen as the electrode material since
the alternating volume changes would induce mechanical stress and quickly
lead to cracks in the bulk material and the disintegration thereof promoting
capacity fade as has been observed in many other intercalation compounds
before [95–102].

Figure 4.19: Non-isotropic relaxation of calculated structure on LixMg2Si.
As can be observed the relaxations at lower vacancy concentrations the re-
laxations increase significantly due to lattice distortions upon lithium intake.

The effective cluster interactions (ECIs) are shown in figure 4.20 and reveal
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that there is no clear decay of the ECIs in dependence of the atoms distance.
This explains the slow convergence of the cluster expansion. With the effec-

Figure 4.20: ECIs obtained from the cluster expansion: no clear decay can
be observed with growing size of the clusters from pairs to triplets to quadru-
plets.

tive cluster interactions so far the predictions made by the cluster expansion
are reasonably well as shown in figure 4.21. We used the obtained total en-
ergies of a selected set of compositions to compute the average intercalation
voltage according to equation 4.5. These results are shown in figure 4.22.
Comparing the calculated voltage profile with experimental data by Kim et
al. has to take into account that the experimental profile extends up to a 3.9
mol (1370 mAh/g) of lithium insertion [103] which exceeds the range that
is computed. The computed range is equivalent to the reaction of 1 mol of
lithium which translates into 351 mAh/g. As can be seen from figure 4.22
the computed average intercalation voltage is well within the range as ob-
tained experimentally although it is underestimated by about 0.4 V. Due to
the underestimation the computed results suggest a negative potential versus
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Figure 4.21: Predicted energies by the LOOCV method plotted versus the
calculated energies show good agreement.

Figure 4.22: The calculated average intercalation voltage of LixMg2Si com-
pared to the first electrochemical cycle of an experiment by Kim et al. [103]
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pure lithium whereas experimentally the potential takes an average value of
0.07 V. The singular behaviour of the experimental profile at dilute concen-
trations (x −→ 0) is not captured in the computed profile since no structures
with x<0.111 are computed which would require very large supercells. But
the larger part of the profile with the slightly sloping feature in the range
above x=0.111 is reproduced. In general, when computing the average in-
tercalation voltage for several segments, there is a high degree of freedom in
choosing the set of structures from which to derive the average intercalation
voltages due to the large number of computed structures. Depending on the
specific choice, the derived voltage profile can differ and contains steps in
the devolution. Also, using the structures assigned as ground states does not
imply a closer resemblance to experimentally obtained voltage profiles since
the compounds do not fully reach thermodynamic equilibrium at the applied
cycling rates and temperature. But this approach can be conveniently used
as a screening method to check the intercalation voltage of different electrode
compounds relative to each other.

Conclusion
The cluster expansion approach has been employed to explore configurational
space with regard to the total energy more thoroughly for the solid solution
compound LixMg2Si. The analysis of the structure relaxations indicates a
progressing lattice distortion of the host lattice with increasing lithium con-
tent and may point out a possible deterioration cause of the material by
means of destabilization of the lattice in combination with material fatigue
due to alternating mechanical strain during cycling. This reaffirms the im-
portance of morphological design for the reduction of intercalation-induced
stresses [27,100]. The computed average intercalation voltage underestimates
the experimental profile by around 0.4 V resulting in a slightly negative profile
versus lithium. Nevertheless, the slightly sloping trend at x>0.1 is captured
accordingly.
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Chapter 5

Summary and outlook

In this thesis the methodological approach of calculating equilibrium prop-
erties of intercalation compounds for LIBs by means of DFT calculations
has been established within the institute. This included the choice of the
proper ab initio code, in which case the code of choice was VASP, which
uses projector-augmented waves to efficiently model solid state compounds
with high accuracy. Moreover, the writing of project proposals for computing
time on the supercomputing cluster JUROPA and JURECA was a part of
the work.
Investigations were carried out on the intercalation compounds LixCoO2 and
LixMg2Si. Since there is no published DFT-based work on the metal-to-
insulator transition on the LixCoO2 compound it was attempted to map this
transition in terms of the two phase region by calculating the enthalpy of
formation with respect to the constituting elements. The applied approach
with a single Hubbard U parameter of U=3.3 eV for all cobalt ions and
varying spin polarizations did not prove to be sufficient to capture the two
phase equilibrium properly although it was possible to converge to metallic
and semiconducting states with the metallic state being energetically more
stable at lower lithium contents. In this respect, the transition from the
semiconducting to the metallic state can be observed by means of the elec-
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tronic DOS. Band tails at the upper edge of the valence band and the lower
edge of the conduction band can be observed as a result of the formation of
impurity bands when removing lithium from the structure ultimately leading
to the merging of valence and conduction band. The two-phase equilibrium
could not be defined due to the absence of local minima in the energetic de-
volution of the phases. However, due to renewed evidence, a more promising
approach is to use two U parameters to account for the different oxidation
states of the cobalt ions in order to facilitate hole localization at predefined
sites. Nevertheless, the computed average intercalation voltage based on the
obtained total energies of a set of compositions gives a good estimate on the
true intercalation voltage. Discrepancies in the range of x ∈ [0.5; 1] amount
to an average intercalation voltage 0.5 V lower in comparison to experimental
data.
Motivated by existing safety hazards related to thermal abuse conditions of
LIBs containing LiCoO2 as cathode the DFT guided derivation of relevant
data (such as heat capacities) for an improved design of such batteries was
sought to be imperative. In this respect, modelling isobaric heat capaci-
ties in the quasi-harmonic approximation on three different stoichiometries
of LixCoO2 revealed good agreement with experimental data. Particularly
for delithiated states, the calculations provide a powerful approach to ob-
tain heat capacities on pure compounds whereas experiments can only yield
data on contaminated samples caused by the experimental conditions. Pre-
dictions made on doped material are reasonable. Therefore this shows that
heat capacities obtained by DFT can provide a superior method to yield data
relevant for the thermal design and modelling (CFD modelling) of battery
cells with LiCoO2 which are prone to have thermal issues. The isobaric heat
capacities were fit in the range of T ∈ [250; 600] K by polynomials for po-
tential usage in CALPHAD-type modelling.
Lastly, the cluster expansion method was utilized to get a detailed mapping
of the total energy surface of the intercalation compound LixMg2Si in the
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range of x ∈ [0; 1] to calculate the average intercalation voltage. The data
displayed a shift of roughly 0.4 V less compared to the experimental voltage
profile resulting in a negative voltage versus lithium. The significant volume
changes occurring in the course of increasing lithium incorporation display
potential drawbacks of this intercalation compound similar to LiCoO2 or
LiMn2O4. In this respect, the importance of adequate morphological design
for intercalation electrode materials to accommodate the volume changes,
e.g. by combining with an elastic matrix to form composite electrode archi-
tectures, is emphasized once again.
In conclusion, computing the voltage profile in dependence of lithium content
is a feasible task. The undetermined aspect lies in the choice of structures
(lihtium/vacancy configuration) since there is basically an infinite amount of
possible configurations and can introduce variations in the computed profiles.
Regarding the remodelling of the three phase region between the LixMg2Si
solid solution, Li2MgSi and the magnesium-rich solid solution (MgxLi1–x)
it would be worthwhile to continue with the cluster expansion approach in
combination with lattice Monte Carlo calculations as implemented in ATAT.
This allows the computation of the free energy of these phases in their sto-
ichiometry ranges whereas the Monte Carlo code extends the size of the
DFT based structures to cover a larger configurational space than possible
with sole DFT calculations. The strength of this approach in comparison
to the CALPHAD approach using just the calculated enthalpy of formation
on the end members (Mg2Si, MgxLi1–x and Li2MgSi) lies in the additional
parametrization of the energy surface by explicitly providing data between
the end members. Hence, there is less degrees of freedom for the interpola-
tion within the CALPHAD method allowing for a more accurate modelling
of the phase diagram.
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Appendices

A A short guide to running the codes

A1 The VASP input files

In VASP four input files have to be specified: INCAR, POTCAR, POSCAR
and KPOINTS. INCAR contains specific information about the calculation
details, i.e. whether a full structure relaxation or a constrained structure
relaxation has to be performed, whether symmetry of the crystal is to be
exploited to reduce the computational demand or whether electron spins
should be accounted for to calculate the magnetic properties. Additionally
it is possible to specify the desired accuracy which is influenced by various
factors. Among these are the convergence criteria, the energy cutoff for the
plane-waves and the smearing method for integrating the electron occupation
function. The POTCAR file contains the atomic PAW-potentials acting on
the electrons for the constituent atomic species. At the same time it provides
the necessary information to construct the electron density and to derive the
total energy. The POSCAR file specifies the crystal structure and atomic
positions whereas the KPOINTS file is necessary to define the k-mesh for
the integration in reciprocal space.
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A2 The Phonopy code

The Phonopy code is a post-processing tool on top of ab initio codes as
VASP or Quantum Espresso. [104, 105] It is written to read specific data
from the output of the ab initio code when calculating lattice dynamical
(phonon) properties. The actual computationally demanding part lies with
the ab initio calculations to obtain atomic forces on structures which are
displaced from equilibrium or to directly calculate the force constants. Once
this data is obtained Phonopy can be used to extract the relevant data from
the vasprun.xml output file and process it to yield the phonon DOS, band
structure and calculate the phonon harmonic free energy as well as fit a spec-
ified EOS within the framework of the QHA.
Phonopy works hand in hand with VASP. The calculation of phonon prop-
erties requires the structures to be fully relaxed to equilibrium and uses a
specified supercell of the fully relaxed geometry as input to generate su-
percells of structures with symmetry-distinct atomic displacements and the
supercell of the pristine structure. So going from here, there are two ways of
proceeding with VASP/Phonopy:

• Finite-differences method
The supercells with symmetry-distinct displacements are supplied as
input for the ab initio code to calculate the atomic forces as a response
to those displacements. After successful termination of the calculations
the vasprun.xml files contain the atomic response forces of each of the
atoms in the supercells. These are then evaluated together with the
atomic displacement vectors according to equation 3.15 yielding the
atomic force constants.

• Linear response method
In the currently available version (VASP 5.3) the linear response algo-
rithm is only implemented as Γ (Gamma) point calculation. This means
that it also requires supercells to obtain converged results (otherwise
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the k-points grid is too loose) The supercell of the pristine structure
is supplied to the ab initio code and the force constants are directly
calculated within linear response theory (equation 3.16) as readily im-
plemented in VASP.

To ensure a clean calculation it is necessary to check that the structures
have converged within strict convergence criteria. If the structures have not
reached the global minimum yet, force constants are obtained as negative
values as illustrated in figure A2.1. If the force constants are negative the

Figure A2.1: Atom on an energy surface with a local minimum, starting
position is at coordinate R if structure is not properly relaxed, generating a
displaced structure leads to coordinate R+∆ u which is closer to the local
minimum, resultant force constant is negative

eigenfrequencies have the form of an imaginary number (equation 2.16), but
are displayed as negative numbers in the graphical output. Since the ther-
mal properties are derived from the phonon DOS the existence of imaginary
frequencies in the phonon DOS can influence the calculated properties sig-
nificantly especially if these specific frequencies have a relatively high DOS.
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This is due to the fact that imaginary frequencies are not taken into account
for the calculation of the thermal properties. Consequently, residual imagi-
nary frequencies with rather large contributions to the phonon DOS should
be avoided and hence the structure at hand needs to be relaxed again by
modulating along the k-vectors of the respective frequencies (see subsection
A2).
To extract the frequency spectrum for constant volume calculations the com-
mands ’phonopy -t’ and ’phonopy -p’ were issued. To obtain the quasi-
harmonic results after iterating over the constant volumes the command
’phonopy-qha’ includes the thermal properties of the volumes specified by
the user. The whole iteration sequence is shown in figure A2.2. Usually the
inclusion of 4 to 6 volumes are sufficient for an adequate fit.

Modulating along k-vectors of imaginary modes

If imaginary frequencies are obtained from the calculation of the frequency
spectrum the structure at hand may still not be residing in its most stable
geometry. This can either signify that the full structure relaxation was not
sufficient in order to reach the global minimum (this can happen if the com-
pound exhibits a complex energy surface complicating convergence) or it may
indicate that the structure is metastable and that another crystal structure
is thermodynamically more stable. In any case, having large contributions of
the imaginary frequencies in relation to the phonon DOS is detrimental for
the reliability of the data since the phonon free energy and its derived prop-
erties like the heat capacity can only be calculated from the normal modes
(positive frequencies). Because the imaginary frequencies imply that the to-
tal energy is decreasing along the vibrational direction artificially moving
the respective atoms/ions in that direction should help to relax to the global
minimum. The vibrational direction is the direction of the amplitude vector
or the k-vector of the frequency. Using the code phonopy this process is
called modulation and can be done by specifying the k-vector along which to
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Figure A2.2: The iterative process of the quasi-harmonic approximation,
computational time was mainly consumed for the calculation of the frequency
spectrum (2nd step)

modulate the structure. The respective input file is ’band.conf’ with which
one can plot the band structure to see which k-vectors are related to the
imaginary frequencies.

A3 ATAT

ATAT is a code written by Axel van de Walle and consists essentially of
a Cluster expansion code and a Monte Carlo code [106]. It is designed to
derive phase diagrams purely from ab initio. ATAT can interface with a list
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of different DFT codes such as VASP, Exciting and Quantum Espresso. The
main part of the Cluster expansion code is the "maps"-executable. Running
this executable will start a process, during which the program looks for any
calculated structures matching the parameters of the parent lattice (lat.in)
and attempts to expand the energy in a series of terms in the fashion of
equation 3.26.

The input files for the cluster expansion

The cluster expansion code needs two input file: lat.in and vasp.wrap. In
lat.in the crystal structure on which the cluster expansion is to be carried out
is specified and should be provided by the user in the setting of the primitive
unit cell. This is due to the fact that supercells are generated with respect to
the specified cell. So if the conventional cell is provided then there is a chance
that some intermediately large supercells are missed and are not included to
construct the cluster expansion. The lat.in file has the following format:

a b c α β γ
1 0 0
0 1 0
0 0 1
x0 y0 z0 A,B
...
xi yi zi C

The first line defines the lattice parameters and the angles. The second
to the fourth line specify the supercell of the unit cell and can usually be
taken as in the example. The remaining lines describe the atom positions in
fractional coordinates whereas at the end of the lines the atoms are specified.
If the site at hand can host more than one atom type then they are separated
by a comma.
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In vasp.wrap the settings for the DFT calculations are defined. Once these
files are provided the code can be initialized. Structures are generated of
which the total energies are to be calculated with the DFT code. After hav-
ing calculated a certain number of structures there is enough information for
the code to attempt a fit with equation 3.26 and will continuously print out
the quality of the fit as the calculations advance. Successively the code is
able to systematically predict new ground state structures to be calculated
which improve the fit.

The Cross-validation-score

In the cluster expansion code of ATAT the measure of quality of the fit is the
cross-validation-score as explained in section 3.8.3. It is designed such that it
estimates the error made by the predicted energy of structures i when using
the i-1 other energies. Ei is the calculated energy of structure i whereas Êî is
the energy of structure i as predicted from the other i-1 structures. During
the process of the cluster expansion when successively providing increasingly
more energies as input the cross-validation score is being printed and updated
in the maps.log file.
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B Supplementary data

B1 Heat capacities within the QHA

Table B1.1: Data on the derivation of Cp for Li0.5CoO2 based on specified
weight ratio of Li0.5CoO2, PVDF and graphite of Ito et al. [31].

compound mass ratio mol ratio Cp [J/K mol] at 298 K

PVDF 3.5 0.0366 58 [91]

graphite 5 0.279 8.23 [92]

Li0.5CoO2 100 0.6844 70.98

Figure B1.3: The two vacancy arrangements of Li0.5CoO2 (O3-polytype) used
for the calculation of Cp within the QHA: P12/m1 (left, unstable) and P2/c
(right, stable).

130



APPENDICES B. SUPPLEMENTARY DATA

Figure B1.4: Bulk modulus and thermal expansion for Li0.67CoO2, Li0.5CoO2
and LiCo0.917B0.083O2 derived from EOS-fit.
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Figure B1.5: Gibbs energy for Li0.67CoO2, Li0.5CoO2 and LiCo0.917B0.083O2.
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B2 The cluster expansion of LixMg2Si

The format of the lat.in file for the compound in the primitive setting:

4.617 4.6171 4.617 60 60 60
1 0 0
0 1 0
0 0 1
0.250000000 0.250000000 0.250000000 Mg
0.750000000 0.750000000 0.750000000 Mg
0.000000000 0.000000000 0.000000000 Si
0.500000000 0.500000000 0.500000000 Li,Vac

Figure B2.6: LiMg2Si in the primitive unit cell as supplied as parent lattice
for ATAT.
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