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1 Introduction

Recent work by Eeckhout and Kircher (2010b) has demonstrated that in a market in which sellers

compete for buyers with private valuations by posting mechanisms, the process that governs

meetings between agents—i.e., the meeting technology—is crucially important for equilibrium

outcomes, such as the choice of trading mechanism and the degree of market segmentation. For

example, if buyers randomly select a seller among the ones that maximize their expected payo↵

and sellers are unconstrained in the number of buyers that they can meet (urn-ball meetings),

then auctions are useful instruments to identify the buyer with the highest valuation. The

e�cient equilibrium in this case consists of a single market in which all sellers post auctions

and all buyer types pool, as this maximally spreads high-type buyers across sellers. However,

if sellers can only meet one buyer at a time (bilateral meetings), low-type buyers may crowd

out high-type buyers. In that case, sellers can o↵er more value to high-valuation buyers by

excluding low-valuation buyers. In equilibrium, sellers induce perfect separation of buyers into

homogeneous submarkets by posting prices.

This insight is important because it reveals that easily observable equilibrium outcomes,

like trading mechanisms and market segmentation, can be informative of a fundamental but

less observable characteristic of a market, i.e. the degree of frictions in the meeting process.

However, inference along these lines requires knowledge of whether there exist other meeting

technologies that lead to the same outcomes. After all, bilateral or urn-ball meetings—although

nearly universal in the search literature1—are not necessarily the most adequate description

of meeting technologies in real-life markets.2 In this paper, we therefore derive necessary and

su�cient conditions on the meeting technology under which it is optimal to have (i) perfect

separation, i.e. a separate market for each type of buyer, or (ii) perfect pooling, i.e. a single

market with all agents, for all distributions of buyer types.

To do so, we analyze an environment based on Eeckhout and Kircher (2010b), in which

a continuum of homogeneous sellers tries to trade with heterogeneous buyers, subject to the

frictions generated by an arbitrary meeting technology. After describing this environment in

detail in section 2, we start our analysis in section 3 by considering the trade-o↵ of a social

planner between the desire to spread high-type buyers as much as possible and the risk of

them being crowded out by low-type buyers. Throughout, we extensively make use of a one-

to-one transformation of the probability-generating function of a meeting technology. This

transformation—the probability that a seller meets at least one buyer with an arbitrary label

or characteristic—is developed in a companion paper Cai et al. (2016) and greatly simplifies the

analysis.

1See below for an overview of the literature.
2For example, it might be more reasonable to suppose that a seller can meet and learn the type of multiple

but not all buyers who try to match with him.
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Our first result concerns the optimality of perfect separation. We find that bilateral meetings

are not only su�cient for this outcome, but also necessary. That is, if one moves away from

bilateral meetings by allowing a seller to meet multiple buyers (potentially with arbitrary small

probability), then there exist distributions of buyer valuations for which perfect separation is

no longer e�cient. Intuitively, separation does not exploit the e�ciency gains that arise from

sellers ranking multiple buyers: with homogenous submarkets, any meetings beyond the first

are meaningless since they always yield the seller a clone of the buyer that he has already met.

Although the necessity of bilateral meetings for perfect separation is a new result in the

literature, it is perhaps not very surprising. Most of our attention therefore goes out to the

optimality of a single market. We show that this is the e�cient outcome if and only if the

meeting technology satisfies a novel condition which we call “joint concavity.” Loosely speaking,

this condition guarantees that social surplus can be increased by merging any two submarkets,

irrespective of their composition. Joint concavity is satisfied by the urn-ball meeting technology,

which explains why pooling is the e�cient outcome in e.g. Peters and Severinov (1997), but we

also describe a number of other meeting technologies that exhibit this property.

In the second half of section 3, we describe—based on Cai et al. (2016)—how both the

separating and the pooling outcome can be decentralized by each seller posting a second-price

auction, combined with a meeting fee to be paid by (or to) each buyer meeting him.3 Intuitively,

in a large market, sellers take buyers’ equilibrium payo↵s as given, making sellers the residual

claimant on any extra surplus that they create and providing them with an incentive to post

e�cient mechanisms. Auctions guarantee that the good is allocated e�ciently, while the meeting

fees price any positive or negative externalities in the meeting process, providing all agents with

a payo↵ equal to their social contribution.

We conclude our analysis by comparing our findings to existing results in section 4. In

particular, we discuss how joint concavity relates to two other properties of meeting technologies

described in the literature: (i) invariance as introduced by Lester et al. (2015), and (ii) non-

rivalry as introduced by Eeckhout and Kircher (2010b). We show that invariance is a su�cient

(but not a necessary) condition for joint concavity, while non-rivalry is a necessary (but not a

su�cient) condition, and we explain why this is the case. Finally, the appendix contains all

proofs, while additional results and discussion can be found in the online appendix.

Related Literature. Most of the search literature assumes that meetings are either bilateral

(e.g. Moen, 1997; Guerrieri et al., 2010; Menzio and Shi, 2011) or take place according to

an urn-ball meeting technology (e.g. Peters, 1997; Burdett et al., 2001; Shimer, 2005; Albrecht

et al., 2014; Auster and Gottardi, 2016). Eeckhout and Kircher (2010b) were the first to consider

3As we explain in more detail below, this mechanism reduces to posted prices when meetings are bilateral.
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arbitrary meeting technologies.4 Relative to their paper, we contribute by identifying conditions

for pooling or separating equilibria that are both necessary and su�cient.

Lester et al. (2015) use arbitrary meeting technologies in a model in which buyers’ valuations

are realized after they arrive at sellers. Their paper has therefore no implications for market

segmentation and focusses instead on the question when meeting fees arise as part of the equi-

librium mechanism. They show that this is the case if and only if the meeting technology is not

invariant. We discuss the relation between joint concavity and invariance in section 4.

Cai et al. (2016) make a methodological contribution by introducing the alternative rep-

resentation of meeting technologies that we also use here. They show that this representation

keeps the analysis of competing mechanisms with arbitrary meeting technologies tractable, even

when heterogeneity is two-sided, but they do not characterize the optimal degree of market seg-

mentation.5 Instead, they establish existence and e�ciency of the market equilibrium—a result

we employ in section 3.2—and derive conditions on the meeting technology such that sellers’

beliefs about the buyers that they will attract are uniquely determined by the market utility

condition.6

Finally, Cai (2016) uses the alternative representation to extend the e�ciency result of Hosios

(1990) to an environment in which workers can meet multiple firms, e.g., through on-the-job

search. However, he considers random search and wage bargaining, as in Gautier et al. (2010),

and is therefore silent on market segmentation as well.

2 Environment

Agents and Preferences. A static economy is populated by a measure 1 of sellers, indexed

by j 2 [0, 1], and a measure ⇤ > 0 of buyers. Both types of agents are risk-neutral. Each

seller possesses a single unit of an indivisible good, for which each buyer has unit demand.7 All

sellers have the same valuation for their good, which we normalize to zero. A buyer’s valuation

is an independent draw from a distribution F (x) with 0  x  1.8 We impose no additional

structure on F (x), although we will sometimes pretend that buyers have either a low valuation

4Alternatively, some papers (e.g. Fraja and Sákovics, 2001; Lester and Woltho↵, 2014; Woltho↵, 2015; Lester
et al., 2016) propose specific (classes of) meeting technologies that are neither bilateral nor urn-ball.

5With two-sided heterogeneity, a single market never arises, as documented before by e.g. Shi (2001), Shi
(2002), Shimer (2005), Eeckhout and Kircher (2010a) and Albrecht et al. (2014) for bilateral or urn-ball meetings.

6In this paper, we use the standard assumption that sellers expect the most favorable queue in case of a
multiplicity. See section 3.2 for a detailed discussion.

7Although we analyze a goods market, it is straightforward to cast our model in a labor market setting in
which homogeneous firms post menus of wages to attract workers who di↵er in their productivity, as in Shi
(2006). All our results carry over to such an environment.

8The assumption that all buyers have a (weakly) higher valuation than the seller is standard as well as
innocuous. Buyers with lower valuations would simply never trade.
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x1 or a high valuation x2 when describing the intuition behind our results.9 Buyers observe their

valuation before making any decisions. An agent’s payo↵ is the sum of (i) his monetary transfers

and (ii) his valuation if he possesses the good at the end of the period (and zero otherwise).

Search. In order to attract buyers, each seller posts and commits to a direct mechanism

(hereafter: “mechanism”).10 A mechanism specifies an extensive form game that determines

for each buyer i a probability of trade and an expected payment as a function of: (i) the total

number n of buyers that meet with the seller; (ii) the valuation xi that buyer i reports; and (iii)

the valuations x�i reported by the n� 1 other buyers.11

All identical mechanisms are treated symmetrically by buyers and are therefore said to form

a submarket. After observing all submarkets, each buyer chooses the one in which he wishes

to attempt to match.12 As standard in the literature (see e.g. Shimer, 2005), we capture the

anonymity of the large market by assuming that: i) sellers can condition their strategies on the

actions of buyers but not on their identities, and ii) identical buyers must use identical mixed

strategies in equilibrium. Consequently, agents’ search decisions can be summarized by three

endogenous variables for each submarket: the measure s of sellers, the measure b of buyers, and

the distribution G (x) of valuations among these buyers.

Meeting Technology. Within a submarket, meetings between buyers and sellers are governed

by a frictional process, the meeting technology, which we model as in Eeckhout and Kircher

(2010b).13 That is, the probability Pn (�) that a seller meets n 2 N0 = {0, 1, 2, . . .} buyers only

depends on the queue length � = b/s in the submarket, is twice-continuously di↵erentiable,

and satisfies
P1

n=0 nPn (�)  �, since the number of meetings cannot exceed the number of

buyers in the submarket. Further, we assume that the allocation of buyers to sellers within each

submarket is independent of types.14 In other words, if a fraction µ/� 2 [0, 1] of the buyers in

the submarket are labeled “blue,” then the probability for a seller to meet i blue buyers and

9Neither proposition 1 nor proposition 2 below is driven by the requirement that they should hold for all
F (x), i.e. they remain the same under the weaker requirement that they should hold for all F (x) with only two
points of support.

10The assumption that the homogeneous side of the market posts mechanisms is in line with e.g. Peters
and Severinov (1997), Shi (2006), Eeckhout and Kircher (2010b) and Albrecht et al. (2014). The nature of the
equilibrium may change if the heterogeneous side of the market posts, as in e.g. Delacroix and Shi (2013) and
Albrecht et al. (2016). See also Delacroix and Shi (2016) for a study of whether buyers or sellers should post.

11See the online appendix for a precise definition. In line with most of the literature (e.g. Peters, 1997;
Eeckhout and Kircher, 2010b; Lester et al., 2015, 2016), we abstract from mechanisms that condition on other
mechanisms in the market. Epstein and Peters (1999) and Peters (2001) provide a detailed discussion.

12The assumption that a buyer can meet only one seller per period is standard in the directed search literature.
See Albrecht et al. (2006), Galenianos and Kircher (2009), Kircher (2009), Gautier and Holzner (2014) and
Woltho↵ (2015) for papers that relax this assumption.

13Our assumptions about the meeting technology are adopted from Eeckhout and Kircher (2010b) and shared
by any model using either urn-ball or bilateral meetings.

14Of course, the equilibrium (or planner’s) allocation of buyers to submarkets can depend on types.
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Pn (�)
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◆⇣µ
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�
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Alternative Representation. Cai et al. (2016) show that the analysis of arbitrary meeting

technologies is often greatly simplified by using an alternative representation of Pn (�). This

alternative representation is the probability � (µ,�) that a seller with a queue µ of blue buyers

and a queue ��µ of other buyers meets at least one blue buyer. We follow this approach here.

Given the assumption regarding type-independent allocation of buyers, � (µ,�) equals

� (µ,�) = 1�
1X

n=0

Pn (�)
⇣
1�

µ

�

⌘n
. (1)

To simplify notation, we will often omit the arguments of � and use subscripts to indicate its

partial derivatives.15

Examples of Meeting Technologies. For future reference, it will be useful to formally

define a few examples of meeting technologies that satisfy all our assumptions.

1. Urn-Ball. First explored by Butters (1977) and Hall (1977), this technology specifies

that—within a submarket—each buyer is randomly allocated to one of the sellers. As a

result, the number of buyers that meet a particular seller follows a Poisson distribution

with mean equal to the queue �. That is, Pn (�) = e�� �n

n! and � (µ,�) = 1� e�µ.16

2. Bilateral. With this technology, each seller meets at most one buyer, i.e. P0 (�)+P1 (�) = 1

or � (µ,�) = P1 (�)
µ
�
, with P0 (�) strictly convex. A potential micro-foundation consists

of randomly pairing agents and keeping only pairs that consist of one buyer and one seller,

yielding P1 (�) =
�

1+�
.17

3. Pairwise Urn-Ball. This technology, described by Lester et al. (2015), is a variation on the

urn-ball technology. Buyers first form pairs, after which each pair is randomly assigned to a

seller in the submarket. That is, Pn (�) = 0 for n 2 {1, 3, 5, . . .} and Pn (�) = e��/2 (�/2)
n/2

(n/2)!

for n 2 {0, 2, 4, . . .}, which implies �(µ,�) = 1� e�µ(1� 1
2

µ
�).

4. Multi-Platform. This technology consists of two platforms or rounds. In the first round,

all b buyers and a fraction 0 < ↵ < 1 of the s sellers in a submarket attempt to meet

15See Cai et al. (2016) for a proof that the relation between � (µ,�) and Pn (�) is one-to-one.
16To keep the exposition concise, we omit the (straightforward) derivation of �(µ,�) for each example.
17This micro-foundation can be found in the money search literature (see e.g. Kiyotaki and Wright, 1993).

Some papers in the labor search literature provide an alternative, consisting of an urn-ball process augmented
with the constraint that each seller can only contact one random buyer among the ones that wish to meet him,
such that P1 (�) = 1� e

�� (see e.g. Albrecht et al., 2006; Galenianos and Kircher, 2009; Gautier and Woltho↵,
2009; Gautier et al., 2016).
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according to the random-pairing bilateral technology described above. The b
b+↵s

b = �
�+↵

b

buyers who fail to meet a seller then participate in the second round, in which they meet

the remaining (1� ↵) s sellers according to an urn-ball process. That is,

Pn (�) =

8
>>><

>>>:

↵ ↵
�+↵

+ (1� ↵) e�⇠ if n = 0

↵ �
�+↵

+ (1� ↵) ⇠e�⇠ if n = 1

(1� ↵) ⇠ne�⇠

n! if n 2 {2, 3, . . .} ,

where ⇠ = �2

(1�↵)(�+↵) is the queue length in the second round. This yields � (µ,�) =

↵ µ
�+↵

+ (1� ↵)
⇣
1� e�

�µ
(1�↵)(�+↵)

⌘
.18

3 Planner’s Problem and Market Equilibrium

We start by analyzing the problem of a planner whose objective is to maximize social surplus,

subject to the frictions generated by the meeting technology. To keep the exposition as simple as

possible, we initially assume that the planner knows buyers’ valuations, allowing him to provide

di↵erent types of buyers with di↵erent instructions. This naturally raises the question whether

the planner’s solution would be di↵erent without that knowledge. We establish that this is not

case using the result of Cai et al. (2016) that—for any meeting technology—the solution can

be decentralized with a particular incentive-comptabile mechanism, which provides a way for a

planner who does not know buyers’ valuations to implement the same solution.

3.1 Planner’s Problem

The problem of a planner who knows buyers’ valuations consists of two parts. First, the planner

has to allocate buyers and sellers to submarkets, creating a queue length and a distribution of

buyer types at each seller. Second, the planner has to specify how trade will take place after

buyers arrive at sellers. We solve these stages in reverse order.

Trading Rule. Once a number of buyers n 2 N1 ⌘ {1, 2, 3, . . .} has arrived at a seller, surplus

is clearly maximized by allocating the good to the buyer with the highest valuation. Cai et al.

(2016) show that the expected surplus generated by this trading rule can be written as the

integral of �.

18While this technology may seem more involved than the other examples, the two-round structure actually
resembles the meeting process in various real-life markets: (i) buyers who cannot find a product at the local
bazaar may subsequently submit a bid at an online auction site; (ii) workers who have trouble finding a job are
often put in touch with firms by a public employment agency; and (iii) singles who fail to meet someone in a
bar may subscribe to a dating website. Admittedly, the analogy is not perfect because terms of trade may di↵er
across platforms in reality, which is ruled out here by the definition of a submarket.
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Lemma 1 (Cai et al., 2016). The surplus created by a seller with a queue � of buyers whose

types are distributed according to the distribution G (x) equals

S (�, G) =

Z 1

0

� (� (1�G (x)) ,�) dx. (2)

Allocation of Buyers. Now consider the allocation of buyers to sellers. For each seller

j 2 [0, 1], the planner chooses—with a slight abuse of notation—a queue length � (j) and

a distribution of buyer types G (j, x) to maximize total surplus
R 1

0 S (� (j) , G (j, x)) dj. Of

course, the planner cannot allocate more buyers of a certain type than are available. Formally,R 1

0 �(j)⌫(j, B) dj  ⇤⌫F (B) for any Borel-measurable set B, where ⌫F is the measure associated

with F and ⌫(j, ·) is the measure associated with G(j, ·).

Perfect Separation. We first establish that bilateral meetings are a necessary and su�cient

condition for the optimality of perfect separation. Recall that bilateral meeting technologies are

defined by the property that P0(�) + P1(�) = 1 for any �, with P1(�) strictly concave.

Proposition 1. Bilateral meetings are a necessary and su�cient condition for the planner to

create a separate submarket for each type of buyer under any type distribution F (x).

Su�ciency of bilateral meetings for perfect separation is a well-known result in the literature:

a separate submarket for each active buyer type avoids the high degree of crowding-out that

arises if high-type and low-type buyers visit the same submarket and sellers meet one of both

at random.19

Necessity is however—to the best of our knowledge—a new result. To understand the intu-

ition, suppose that a seller can meet two or more buyers with positive probability. With perfect

separation, any meetings beyond the first are irrelevant—as a seller will always meet a clone

of the first buyer—and the gain in surplus relative to a bilateral technology is zero. Letting

one high-type and one low-type buyer swap submarket, however, provides a way to increase

surplus. After all, there is a positive probability that both these buyers meet sellers who meet

other buyers as well. In that case, the buyers’ joint contribution to surplus was 0 before the

swap, but x2 � x1 after the swap (generated by the high-type buyer; the low-type buyer still

contributes 0). Of course, this argument is complete only if a buyer’s probability to meet a seller

is the same in both submarkets, or otherwise the change in surplus associated with changing

the buyers’ meeting probabilities has to be taken into account. Necessity therefore follows from

distributions in which buyers’ types are arbitrarily close. In contrast, if types are discretely

di↵erent, a meeting technology may give rise to perfect separation even though it is not strictly

bilateral (see Eeckhout and Kircher, 2010b, for a detailed discussion).

19A planner may of course keep the lowest types out of the market altogether if a marginal seller can generate
more surplus in a di↵erent submarket (see e.g. Eeckhout and Kircher, 2010b).
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Perfect Pooling. To state our main result regarding the optimality of a single market, we

define a novel property of meeting technologies, which we call “joint concavity.”

Definition 1. A meeting technology exhibits joint concavity if and only if � (µ,�) is concave

in (µ,�), i.e.

�µµ��� � �2
µ�, (3)

for all 0  µ  � < 1.20

The following proposition then establishes that joint concavity is closely related to the op-

timality of a single market.

Proposition 2. Joint concavity is a necessary and su�cient condition for the planner to send

all agents to the same market under any type distribution F (x).

The intuition for this result is straightforward.21 Joint concavity is su�cient because it

implies that by merging two submarkets, the probability �(�(1�G(x)),�) of a seller meeting at

least one buyer with a valuation higher than x will increase for all x. Since the surplus created

by a submarket is the integral of � over x, pooling all agents into one submarket is optimal.

In contrast, necessity follows from distributions that have two points of support, with one of

both being zero, i.e. x1 = 0 and x2 > 0. For these distributions, only the number of meetings

with high-type buyers matters for surplus and (2) reduces to x2� (�(1�G (x1) ,�). Hence, if

joint concavity of � fails, there exist measures of low-type and high-type buyers such that either

partially or completely separating them into multiple submarkets is optimal. We provide a

detailed discussion of joint concavity in section 4, after considering decentralization first.

3.2 Market Equilibrium

Equilibrium Definition. Next, we define the market equilibrium.22 To do so, let R (m,�, G)

denote the expected payo↵ of a seller who posts a mechanism m and attracts a queue of buy-

ers (�, G). Further, let U (x,m,�, G) denote the expected payo↵ of a buyer with valuation

x who visits this seller. Each seller aims to maximize his revenue R, but must take into ac-

count that his queue (�, G) is endogenously determined and depends on the mechanism that he

posts. In line with the literature, we follow the market utility approach. That is, given a tuple

(m (j) ,� (j) , G (j, ·)) for each seller j 2 [0, 1], let U (x) denote the highest expected payo↵ that

a buyer with valuation x can obtain, i.e. U (x) = maxj2[0,1] U (x;m (j) ,� (j) , G (j, ·)). A seller

posting a mechanism m then expects a queue satisfying

U (x,m,�, G)  U (x) , with equality for each x in the support of G. (4)

20Condition (3) is necessary and su�cient for concavity, since �µµ  0 for all meeting technologies.
21Here the advantage of using � becomes apparent; the equivalent condition in terms of Pn, which we derive

in the online appendix, is far less simple and intuitive.
22We provide a brief discussion here. See the online appendix for additional details.
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For many meeting technologies, (4) uniquely determines the seller’s queue. In case of multiplic-

ity, we follow McAfee (1993), Eeckhout and Kircher (2010b) and Auster and Gottardi (2016)

by assuming that sellers are optimistic and expect the solution that maximizes their revenue.23

Finally, sellers expect a queue that gives them a non-positive payo↵ if no solution to (4) exists.

An equilibrium can then be defined as follows.

Definition 2. A directed search equilibrium is a mechanism m (j) and a queue (� (j) , G (j, ·))

for each seller j 2 [0, 1], and a market utility U (x) for each type of buyer x, such that ...

1. each (m (j) ,� (j) , G (j, ·)) maximizes R (m,�, G) subject to equation (4);

2. aggregating queues across sellers does not exceed the total measure of buyers of each type;

3. incentive compatibility is satisfied, so buyers report their valuations truthfully.

Decentralization. The following proposition, which follows from Cai et al. (2016), states

the main result regarding the market equilibrium: for any meeting technology, the planner’s

solution can be decentralized by having each seller post a second-price auction combined with

a meeting fee, to be paid by each buyer meeting the seller.24

Proposition 3 (Cai et al.,2016). For any meeting technology, the planner’s solution {� (j) , G (j, x)}

can be decentralized as a directed search equilibrium in which seller j 2 [0, 1] posts a second-price

auction and a meeting fee equal to

⌧ (j) = �

R 1

0 �� (� (j) (1�G (j, x)) ,� (j)) dx

�µ (0,� (j))
. (5)

The intuition for this result is similar to the intuition for e�ciency in many other directed

search models. Since sellers take buyers’ equilibrium payo↵s as given, they are the residual

claimant on any surplus that they create. This provides them with an incentive to post mecha-

nisms that decentralize the planner’s solution, which requires e�ciency along two margins: (i)

the allocation of buyers to sellers, and (ii) the allocation of the good given a queue of buyers.

The second-price auction fulfills the second requirement and provides each buyer with a

payo↵ equal to the extra surplus that he creates when he has the highest valuation. To satisfy

the first requirement however, each buyer must receive an expected payo↵ exactly equal to

his marginal contribution to social surplus, which includes the externality that he may impose

during the meeting process (e.g. by preventing a buyer with a higher valuation from meeting

the seller). Because this externality is type-independent, it can be priced by the meeting fee

23We discuss this issue in detail and derive conditions for uniqueness in Cai et al. (2016).
24The meeting fee can be negative, turning it into a subsidy paid to each buyer. The equilibrium is of course

not unique. Because of risk neutrality, the seller could for example condition the meeting fee on the number of
buyers that shows up. However, all equilibria give rise to the same expected payo↵s. See Peters and Severinov
(1997), Albrecht et al. (2014), Lester et al. (2015) for detailed discussions of e�ciency in related models.
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(5), which equals (the negative of) the spillovers that a buyer imposes on other buyers (the

numerator) conditional on the event that he meets a seller (the probability of which is given by

the denominator).

Posted Prices versus Auctions. It is worth highlighting that the equilibrium mechanism

nests two popular trading mechanisms as special cases. As we discuss in more detail in the

next section, technologies that exhibit joint concavity give rise to meeting fees that are non-

positive. For a subset of those technologies, the equilibrium meeting fee is exactly zero, reducing

the equilibrium mechanism to a standard auction. In contrast, when meetings are bilateral, the

second-price auction does not generate any revenue and the meeting fees, which are then strictly

positive, act as posted prices.

4 Categorization of Meeting Technologies

Bilateral meetings are well understood, but joint concavity is a novel condition and warrants

discussion. To better understand this condition, we compare it in this section to two other prop-

erties of meeting technologies described in the literature, invariance and non-rivalry. We show

that invariance is a su�cient (but not a necessary) condition, while non-rivalry is a necessary

(but not a su�cient) condition. Figure 1 summarizes this discussion.

All Meeting Technologies

Non-Rivalry

Joint Concavity

Invariance

Urn-Ball

Pairwise Urn-Ball

Multi-Platform

Bilateral

Figure 1: Venn Diagram of Meeting Technologies
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Invariance. Introduced by Lester et al. (2015), an invariant technology is one in which the

queue of blue buyers µ at a seller is a su�cient statistic for the distribution of the number of

meetings between blue buyers and that seller. Formally,

1X

N=n

PN (�)

✓
N

n

◆⇣µ
�

⌘n ⇣
1�

µ

�

⌘N�n

= Pn (µ) , (6)

for all 0  µ  � < 1 and n 2 N0. Perhaps the best-known example of an invariant technology

is the urn-ball technology.25 In Lemma 2, we establish that if (6) holds for n = 0, then it holds

for all n. That is, invariance can alternatively be defined as the condition that the probability

that a seller meets at least one of the µ blue buyers is independent of the number of other

buyers visiting the same submarket.

Lemma 2. A meeting technology is invariant if and only if �� (µ,�) = 0 for all 0  µ  � < 1.

Using this lemma, it is easy to establish that invariance is a su�cient condition for joint

concavity: if �� = 0, then �µ� = ��� = 0 and joint concavity is (weakly) satisfied. In words,

invariance implies that meetings between blue buyers and sellers are una↵ected by the presence

of other buyers in the submarket. Joint concavity therefore reduces to concavity in the measure

of blue buyers, which is always satisfied.

In contrast, invariance is not necessary for joint concavity; the condition for joint concavity

can hold without ��, �µ� or ��� being zero. We prove this using the pairwise urn-ball technology:

although this technology exhibits joint concavity, it is not invariant, as explained by Lester et al.

(2015). Intuitively, when there are very few other buyers in the submarket, most buyer pairs

consist of two blue types, making it likely that a seller will meet an even number of blue buyers.

Adding additional other buyers to this submarket increases the probability that a buyer pair

will consist of one blue and one other type, and that a seller will meet an odd number of blue

buyers. This makes it more likely that a seller will meet at least one blue buyer, i.e. �� > 0,

violating invariance.26 The following proposition formalizes this.

Proposition 4. Invariance implies joint concavity, but joint concavity does not imply invari-

ance.

Non-Rivalry. Eeckhout and Kircher (2010b) define a (purely) non-rival technology as one in

which a buyer’s probability to meet one of the sellers is not a↵ected by the presence of other

buyers in the market. We first establish that their definition is equivalent to �µ� (0,�) = 0 for

all 0  � < 1.

25Recall that urn-ball implies � (µ,�) = 1� e

�µ. As discussed in Lester et al. (2015), a second example of an
invariant technology is the geometric distribution Pn (�) =

�n

(1+�)n+1 , which yields � (µ,�) = µ
1+µ .

26We prove in the online appendix that �� � 0 is a necessary but not a su�cient condition for joint concavity.
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Lemma 3. A meeting technology is non-rival if and only if �µ� (0,�) = 0 for all 0  � < 1.

To understand this expression, recall that � (µ,�) represents the probability that a seller

meets at least one blue buyer, which is clearly zero if µ = 0. The partial derivative �µ (0,�)

captures how this changes if a single buyer (or more precisely, an arbitrarily small measure

of buyers) in the queue becomes blue and must therefore equal the probability that this blue

buyer succeeds in meeting the seller. Since meetings are type-independent, the same expression

applies to all � buyers in the queue, irrespective of how many of them are blue. Non-rivalry

then says that this meeting probability should be independent of �.

It is easy to verify that the above examples of technologies that exhibit joint concavity,

i.e. urn-ball and pairwise urn-ball, both satisfy non-rivalry. This is not a coincidence. As

the following proposition establishes, all technologies that exhibit joint concavity are non-rival.

However, not all non-rival technologies exhibit joint concavity.

Proposition 5. Joint concavity implies non-rivalry, but non-rivalry does not imply joint con-

cavity.

To understand why non-rivalry is a necessary condition for joint concavity, consider a sub-

market with an arbitrarily small measure of blue buyers, i.e. µ ! 0. A seller’s probability of

meeting at least one blue buyer in this submarket then goes to zero, � (0,�) = 0. Since this

is the case irrespective of the queue � of other buyers, the derivatives of all orders of � (0,�)

with respect to � are zero as well. By (3), joint concavity then requires �µ� (0,�) = 0, which is

exactly the condition for non-rivalry.

More generally, however, joint concavity requires that condition (3) is satisfied for any

0  µ  � and not just for µ = 0. Hence, non-rivalry is not su�cient. The multi-platform

technology is a good example. This technology is non-rival, because every buyer meets a seller

with probability 1. However, this technology clearly does not satisfy joint concavity for su�-

ciently large ↵, as it converges to a bilateral technology for ↵ ! 1. The proof of proposition

5 formalizes this and establishes that joint concavity is in fact violated for any ↵ > 0. Hence,

non-rivalry does not imply joint concavity.27

5 Conclusion

We study an environment in which sellers compete for heterogeneous buyers by posting mecha-

nisms. Buyers can direct their search to the mechanism that maximizes their expected payo↵,

but may experience frictions in meeting a particular seller. We derive necessary and su�cient

27Joint with proposition 3, this result contradicts proposition 5 in Eeckhout and Kircher (2010b) which states
that non-rivalry is a su�cient condition for a single market. The discrepancy originates in the fact that the proof
of their proposition implicitly assumes invariance rather than non-rivalry when treating the trading probability
for high-type buyers as independent of the queue of low-type buyers.
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conditions on the technology that governs these meetings under which either a separate submar-

ket for each type of buyer or a single market with all agents are optimal. We find that perfect

separation is the e�cient equilibrium outcome if and only if meetings are bilateral, while perfect

pooling is optimal if and only if the meeting technology satisfies a novel property, which we call

“joint concavity.”

Appendix

Proof of Lemma 1. This result first appeared in Cai et al. (2016). For completeness, we

also provide a short proof here. The maximum valuation at a seller who meets n 2 N1 buyers

is an order statistic, distributed according to Gn (x). Taking the expectation over x and n,

followed by integration by parts and using the Dominated Convergence Theorem to interchange

summation and integration, yields

S (�, G) =
1X

n=1

Pn (�)

Z 1

0

x dGn (x) =

Z 1

0

 
1�

1X

n=0

Pn (�)G
n (x)

!
dx.

The result then follows because the rightmost integrand equals � (� (1�G (x)) ,�).

Proof of Proposition 1. Part 1 (bilateral meetings imply perfect separation): Eeckhout

and Kircher (2010b) demonstrate su�ciency for two types of buyers; we extend their result

to arbitrary distributions. We do so in two steps: (i) buyers with di↵erent valuations must

belong to di↵erent submarkets, and (ii) buyers with the same valuation must belong to the

same submarket.

For (i), suppose that there exists a submarket with a measure s of sellers and a queue

(�, G). Because of lemma 1 and the fact that meetings are bilateral, the surplus created in this

submarket equals

sS (�, G) = sP1 (�)

Z 1

0

(1�G (x)) dx. (7)

Now suppose the planner would decompose this submarket into a separate submarket for each

type of buyer x, allocating the s sellers according to a distribution H (x). Let b� (x) = � dG(x)
dH(x)

denote the queue length in submarket x. A seller in this submarket then creates a surplus

P1

⇣
b� (x)

⌘
x, such that surplus across all submarkets equals

s

Z 1

0

P1

⇣
b� (x)

⌘
x dH (x) . (8)

Clearly, if the planner chooses H (x) = G (x), then b� (x) = � for all x and surpluses (7) and

(8) are equal to each other. In that case, the marginal value of a seller in submarket x equals
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(P1 (�)� �P 0
1 (�)) x. This value is increasing in x, which means that the allocation of sellers is

suboptimal and surplus (8) can be increased by sending some sellers to di↵erent submarkets.

Since P1(�) is concave, P1 (�)� �P 0
1(�) is increasing in �, and the planner can increase surplus

by allocating relatively more sellers to the submarkets in which buyers have high valuations.

For (ii), suppose that there are two submarkets for buyers with valuation x. Let si and �i

respectively denote the measure of sellers and the queue length in submarket i 2 {1, 2}. By the

strict concavity of P1(�), merging the two submarkets then increases surplus:

xs1P1 (�1) + xs2P1 (�2) < x (s1 + s2)P1

✓
s1�1 + s2�2

s1 + s2

◆
.

Part 2 (perfect separation implies bilateral meetings): We prove this result in two steps.

We first prove that (i) if P0(�) is not convex, then the planner may create multiple submarkets,

even when all buyers are homogeneous, and (ii) if P0(�) is convex and, for some ⇤ > 0, P0 (⇤)+

P1 (⇤) < 1, then there exists a two-type distribution of buyers such that perfect separation is

not optimal.28

For (i), if P0(�) is not convex, then by definition there exist s, �1, and �2 such that

sP0(�1) + (1� s)P0(�2) < P0(s�1 + (1� s)�2). (9)

Now, let the market be populated by a measure 1 of sellers and a measure s�1 + (1 � s)�2 of

buyers with valuation 1. A single market with all agents generates surplus 1�P0(s�1+(1�s)�2).

However, the surplus generated by two submarkets—one with s sellers and s�1 buyers and the

other one with the remaining buyers and sellers—equals s(1 � P0(�1)) + (1 � s)(1 � P0(�2)),

which is higher because of (9).

For (ii), let the market be populated by a measure 1 of sellers, a measure b1 of buyers with

valuation x1, and a measure b2 of buyers with valuation x2, satisfying b1 + b2 = ⇤ and x2 > x1.

We will prove the claim by contradiction. Suppose the planner fully separates the two types of

buyers and optimally allocates si sellers to the submarket for valuation xi, where s1 + s2 = 1.

Define queue lengths �i =
bi
si
.

Let now a measure " of buyers with valuation x1 and an equally large measure of buyers

with valuation x2 swap submarket, such that—in both submarkets—the queue lengths stay the

same, but the composition of types becomes marginally more diverse. Again by lemma 1, social

28Of course, if P0 (⇤) + P1 (⇤) < 1, then—by continuity—there exists a small neighborhood of ⇤ for which
P0 + P1 < 1.
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surplus of this new allocation equals

S (") = s2


(x2 � x1)�

✓
b2 � "

s2
,�2

◆
+ x1� (�2,�2)

�

+ s1


(x2 � x1)�

✓
"

s1
,�1

◆
+ x1� (�1,�1)

�
. (10)

Clearly, " = 0 corresponds to perfect separation. For this to be the optimal allocation, it must

be the case that S(")  S(0) for all " > 0. Hence, a necessary condition is that S

0 (0)  0.

Di↵erentiating equation (10) and evaluating at " = 0 gives

S

0 (0) = (x2 � x1) (�µ (0,�1)� �µ (�2,�2)) . (11)

For x1 ! x2, the economy converges to the case in which all buyers are homogeneous.

Because of the convexity of P0(�), there will be a single market with all agents in this limit.

That is, �1 ! ⇤ and �2 ! ⇤, such that equation (11) converges to

S

0 (0) = (x2 � x1) (�µ (0,⇤)� �µ (⇤,⇤)) . (12)

Note that

�µ(µ,�) =
1X

n=1

nPn(�)

�

⇣
1�

µ

�

⌘n�1

,

This implies that

1

x2 � x1
S

0 (0) =
1X

n=2

nPn(⇤)

⇤
�

1X

n=2

2Pn(⇤)

⇤
=

2 (1� P0 (⇤)� P1 (⇤))

⇤
> 0,

where the last strict inequality is by assumption. Hence, when x1 is su�ciently close to x2,

perfect separation is not optimal and social surplus can be increased by slightly mixing the

submarkets.

Proof of Proposition 2. Part 1 (joint concavity implies perfect pooling): To prove this

result, suppose that there are two submarkets, indexed by i 2 {1, 2}, consisting of si > 0 sellers

who each have a queue (�i, Gi). By lemma 1, total surplus across the two submarkets is equal

to

s1

Z 1

0

� (�1 (1�G1 (x)) ,�1) dx+ s2

Z 1

0

� (�2 (1�G2 (x)) ,�2) dx. (13)

We show a higher surplus can be generated by merging the two submarkets, creating one

market with s0 = s1 + s2 sellers, each with a queue �0 = s1�1+s2�2
s1+s2

of buyers whose valuations
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are distributed according to

G0 (x) =
s1�1G1 (x) + s2�2G2 (x)

s1�1 + s2�2
.

Again by lemma 1, this combined market will create a surplus s0
R 1

0 � (�0 (1�G0 (x)) ,�0) dx,

which is larger than (13) because concavity of � (µ,�) implies that

s1� (µ1,�1) + s2� (µ2,�2)  s0�

✓
s1µ1 + s2µ2

s1 + s2
,
s1�1 + s2�2

s1 + s2

◆
.

Hence, a single market is optimal for technologies that exhibit joint concavity.

Part 2 (perfect pooling implies joint concavity): We prove this result by showing that if � is

not concave, there exists a two-type distribution of buyers such that one market is not optimal.

Note that if � is not concave, then—by the definition of concavity—there exist values ↵, µ1, µ2,

�1 and �2, such that

↵�(µ1,�1) + (1� ↵)�(µ2,�2) > �(µ0,�0), (14)

where µ0 = ↵µ1 + (1� ↵)µ2 and �0 = ↵�1 + (1� ↵)�2.

Consider now a market in which buyers’ valuations are either x1 or x2, with 0 < x1 < x2. Set

the measure of high-type buyers equal to µ0 and the measure of low-type buyers equal to �0�µ0,

while maintaining the assumption that the measure of sellers equals 1. Then by Lemma 1, the

social surplus of creating a single market is S1 = (x2 � x1)�(µ0,�0) + x1�(�0,�0).

Now, decompose the single market into two submarkets A and B, with seller measures ↵

and 1�↵, total queue lengths �1 and �2, and high-type queue lengths µ1 and µ2, respectively.29

The social surplus per seller for the two submarkets is

SA
2 = (x2 � x1)�(µ1,�1) + x1�(�1,�1)

SB
2 = (x2 � x1)�(µ2,�2) + x1�(�2,�2)

and total surplus across the two submarkets equals S2 = ↵SA
2 + (1� ↵)SB

2 .

In the limit x1 ! 0, the two submarkets create more surplus than the single market, i.e.

S2 > S1, if and only if

x2 (↵�(µ1,�1) + (1� ↵)�(µ2,�2)) > x2�(µ0,�0),

which holds because it is exactly equation (14). Hence, joint concavity is a necessary condition

for a single market.

29This is possible because µ0 = ↵µ1 + (1� ↵)µ2 and �0 = ↵�1 + (1� ↵)�2.
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Proof of Proposition 3. This result follows from Cai et al. (2016). For completeness, we

provide a short proof here, while referring to their paper for additional detail. The proof con-

sists of two parts. First, we consider a seller who can choose the length and composition of his

queue directly in a competitive market (“relaxed maximization problem”). By the first welfare

theorem, the equilibrium in this market is Pareto optimal, which necessarily implies that it max-

imizes social net output as there is only one consumption good. Subsequently, we establish that

a seller who posts the proposed equilibrium mechanism to attract an endogenously determined

queue of buyers (“constrained maximization problem”) implements the same solution.

Part 1 (relaxed maximization problem): For a given market utility function U (x), a seller

chooses the queue (�, G) that maximizes his expected payo↵, which equals the di↵erence between

surplus S (�, G) and the expected payo↵ that the seller has to o↵er to each of the buyers. That

is, Z 1

0

� (� (1�G (z)) ,�) dz �

Z 1

0

U (z) d�G(z).

Because the seller takes the market utility function as given, he is a residual claimant on any

extra surplus that he creates. Hence, the seller will compare the marginal cost U (x) of attracting

a buyer with valuation x to this buyer’s marginal contribution to surplus T (x). To calculate

T (x), increase the measure of buyers with values around x, formally [x, x + �x], by " and

denote the new market tightness and buyer value distribution as �0 and G0 respectively. That

is, �0 = �+ ", while �0(1�G0(z)) = �(1�G(z)) for z > x and �0(1�G0(z)) = �(1�G(z)) + "

for z < x. By Lemma 1, the average contribution to surplus by buyers with values around x is

S(�0, G0)� S(�, G)

"
=

1

"

✓Z x

0

�(�(1�G(x)) + ",�+ ")� �(�(1�G(x)),�)

◆

+
1

"

✓Z 1

x

�(�(1�G(x)),�+ ")� �(�(1�G(x)),�)

◆

Let " ! 0, then the above equation converges to

T (x) =

Z 1

0

�� (� (1�G (z)) ,�) dz +

Z x

0

�µ (� (1�G (z)) ,�) dz. (15)

The solution to the relaxed maximization problem must therefore satisfy

U(x) � T (x) for all x, with equality for all x 2 suppG (16)

Part 2 (constrained maximization problem): Consider now a seller who posts a second-price

auction and a meeting fee ⌧ , attracting a queue (�, G). A buyer with valuation x in the support

of G meets the seller together with n � 1 other buyers with probability nPn(�)
�

.30 Hence, he

30See Eeckhout and Kircher (2010b) or Lester et al. (2015).
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pays the meeting fee ⌧ with probability 1
�

P1
n=1 nPn (�) = �µ (0,�) and trades with probability

1
�

P1
n=1 nPn (�)G(x)n�1 = �µ (� (1�G (x)) ,�). As a result, his expected payo↵ is

U (x, ⌧,�, G) = ��µ (0,�) ⌧ +

Z x

0

�µ (� (1�G (y)) ,�) dy, (17)

where the second term is the payo↵ from the auction, which—by standard results in auction

theory—equals the integral over the trading probabilities (see e.g. Peters, 2013). A queue (�, G)

is therefore compatible with an auction with fee ⌧ if and only if

U(x) � U(x, ⌧,�, G) for all x, with equality for all x 2 suppG (18)

Clearly, if a queue (�, G) satisfies (16), then by setting the entry fee ⌧ in equation (17) equal

to

⌧ = �

R 1

0 �� (� (1�G (x)) ,�) dx

�µ (0,�)
,

it also satisfies (18). Therefore, any queue chosen by an unconstrained seller who can buy queues

directly at a price U(x) is also compatible with an auction with an entry fee.

Proof of Lemma 2. Part 1 (invariance implies �� = 0): Evaluating the definition of invari-

ance (6) in n = 0 yields
1X

N=0

PN (�)
⇣
1�

µ

�

⌘N
= P0 (µ) . (19)

The left-hand side of this equation is 1 � � (µ,�) and the right-hand side is independent of �.

Hence, �� (µ,�) = 0 for all 0  µ  � < 1.

Part 2 (�� = 0 implies invariance): Note that �� (µ,�) = 0 for all 0  µ  � < 1 implies

that �(µ,�) = �(µ, µ). By equation (1), � (µ, µ) = 1 � P0(µ). Consequently, equation (19)

must hold for all 0  µ  � < 1. By standard results from analytic function theory (see e.g.

Ahlfors, 1979, p.32), we can di↵erentiate both sides of this equation n times with respect to µ,

which yields
1X

N=n

N !

(N � n)!
PN (�)

✓
�

1

�

◆n ⇣
1�

µ

�

⌘N�n

= P
(n)
0 (µ) , (20)

for all 0  µ  � < 1. For µ = �, this gives P (n)
0 (µ) = n!

(�µ)nPn (µ). Substitute this into the

right hand side of equation (20) and rearrange the term n!
(�µ)n to the left hand side gives (6).

Hence, �� = 0 implies invariance.
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Proof of Proposition 4. Part 1 (invariance implies joint concavity): This result follows

immediately from lemma 2: �� (µ,�) = 0 for all 0  µ  � < 1 implies that ��� (µ,�) =

�µ� (µ,�) = 0 for all 0  µ  � < 1, which in turn implies that equation (3) is satisfied.

Part 2 (joint concavity does not imply invariance): Consider the pairwise urn-ball technol-

ogy, which satisfies �(µ,�) = 1 � e�µ(1� 1
2

µ
�). Since 1 � e�y is an increasing, concave function,

a su�cient condition for �(µ,�) to be concave is that the map (µ,�) ! µ(1 �

1
2
µ
�
) is con-

cave.31 The Hessian of this map is indeed negative semi-definite. However, the technology is

not invariant, as

�� (µ,�) =
1

2

µ2

�2
e�µ(1� 1

2
µ
�) > 0.

Hence, joint concavity does not imply invariance.

Proof of Lemma 3. As shown by Lester et al. (2015), non-rivalry is satisfied if and only

if @
@�

1
�

P1
n=1 nPn (�) = 0, for all 0  � < 1. The desired result then follows directly from

observing that �µ (0,�) =
1
�

P1
n=1 nPn (�).

Proof of Proposition 5. Part 1 (joint concavity implies non-rivalry): For any meeting

technology, � (0,�) = 0 for all 0  � < 1, i.e. the probability of meeting a blue buyer is zero

if µ = 0, irrespective of the value of �. This implies that @n

@�n� (0,�) = 0 for all n 2 N1.

Suppose now that a technology does not satisfy non-rivalry, i.e. �µ� (0,�) 6= 0. Then

�µµ (0,�)��� (0,�)� �2
µ� (0,�) < �µµ (0,�)��� (0,�) = 0,

i.e. � does not exhibit joint concavity. Hence, joint concavity implies non-rivalry.

Part 2 (non-rivalry does not imply joint concavity): Consider the multi-platform technology.

Starting from the expression for � (µ,�) for this technology, one can derive

�µ� = �

✓
1� e�

�µ
(1�↵)(�+↵)

�

�µ

(1� ↵) (�+ ↵)
e�

�µ
(1�↵)(�+↵)

◆
↵

(�+ ↵)2
 0,

which equals 0 (only) for µ = 0. Hence, the multi-platform technology is non-rival.

Further, we get

�� = �

⇣
1� e�

�µ
(1�↵)(�+↵)

⌘ µ↵

(�+ ↵)2
,

which is strictly negative for all 0 < µ  � < 1 and ↵ > 0. As we show in the online appendix,

�� � 0 is a necessary condition for joint concavity. Hence, the multi-platform technology does

not exhibit this property.

31See, for example, Theorem 5.1 in Rockafellar (1970, p.32).
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1 Joint Concavity Using P

n

(�)

In the main text, we define joint concavity in terms of �, but an equivalent condition in terms

of Pn, the actual primitive of the model, can be derived.1 Starting from the definition of �,

taking partial derivatives yields

�µµ = �
1X

n=0

(n+ 2)(n+ 1)
Pn+2

�

2

⇣
1� µ

�

⌘n

,

�µ� =
1X

n=0


(n+ 1)

�P

0
n+1 � Pn+1

�

2
+ (n+ 2)(n+ 1)Pn+2

µ

�

3

�⇣
1� µ

�

⌘n

,

��� = �
1X

n=0


P

00
n + 2µ(n+ 1)

�P

0
n+1 � Pn+1

�

3
+

(n+ 2)(n+ 1)Pn+2µ
2

�

4

�⇣
1� µ

�

⌘n

.

Using the fact that
P1

n=0 any
n
P1

n=0 bny
n� (

P1
n=0 cny

n)2 =
P1

n=0

Pn
i=0 (aibn�i � cicn�i) yn, the

condition for joint concavity can then be written as

�11�22 � �

2
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1X

n=0
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1� µ

�
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To save on notation, we suppress the argument of Pn throughout this derivation.
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where, after some simplification, Zn equals

Zn =
nX

i=0


(i+ 2)(i+ 1)Pi+2P

00
n�i

�

2
� (i+ 1)(n� i+ 1)

�P

0
i+1 � Pi+1

�

2

�P

0
n�i+1 � Pn�i+1

�

2

�
.

2 Mechanisms and Equilibrium Conditions

Our description of the mechanism space and equilibrium conditions is similar to Eeckhout and

Kircher (2010) and Auster and Gottardi (2016). See those papers for additional details.

Mechanism Space. A direct mechanism m is an extensive form game, which determines

buyers’ trading probabilities and payo↵s. To be precise, for a buyer with valuation x, meeting

the seller joint with n � 1 other buyers whose valuations are (x1, . . . , xn�1), the mechanism

specifies

1. a trading probability ✓n (x; x1, . . . , xn�1;m), symmetric in x1, . . . , xn�1.

2. a transfer tn (x; x1, . . . , xn�1;m), symmetric in x1, . . . , xn�1.

Feasibility requires that the sum of the trading probabilities across all buyers meeting a seller

does not exceed 1, i.e.

nX

i=1

✓n (xi; x1, . . . , xi�1, xi+1, . . . xn;m)  1 8 (x1, . . . , xn) 2 [0, 1]n .

Incentive Compatibility. Given a queue (�, G), the expected probability of trade for a buyer

with valuation x equals

✓ (x;m,�, G) =
1X

n=1

nPn (�)

�

Z
. . .

Z
✓n (x; x1, . . . , xn�1;m) dG (x1) . . . dG (xn�1) ,

while the expected transfer equals

t (x;m,�, G) =
1X

n=1

nPn (�)

�

Z
. . .

Z
tn (x; x1, . . . , xn�1;m) dG (x1) . . . dG (xn�1) .

Incentive compatibility then specifies that buyers maximize their payo↵ by by truthfully report-

ing their type. That is,

✓ (x;m,�, G) xi � t (x;m,�, G)

is maximized in x = xi for all xi.
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Payo↵s. If a mechanism m is incentive compatible and attracts a queue (�, G) , then the

expected payo↵ of a buyer with valuation x is

U (x;m,�, G) = ✓ (x;m,�, G) x� t (x;m,�, G) ,

while the expected payo↵ of the seller is

R (m,�, G) = �

Z
t (x;m,�, G) dG (x) .

Beliefs. Given a mechanism m (j) and a queue (� (j) , G (j, ·)) for each seller j 2 [0, 1], define

the market utility U (x) as the highest payo↵ that a buyer with valuation x can obtain, i.e.

U (x) = max
j2[0,1]

U (x;m (j) ,� (j) , G (j, ·)) .

A queue (�, G) solves the market utility condition for a mechanism m if

U (x;m,�, G)  U (x) with equality for each x 2 supp G. (1)

Denote the set of queues (�, G) that solve (1) for a mechanism m by Q (m). A seller who posts

a mechanism m then expects to obtain a payo↵

max
�,G

{R (m,�, G) | (�, G) 2 Q (m)} ,

where the max operator represents sellers’ optimism in case Q (m) contains more than one

element. By convention, sellers expect a non-positive payo↵ if Q (m) is empty.2

Aggregate Consistency. Consistency requires that aggregating queues across sellers does

not exceed the total measure of buyers of each type. That is,

Z 1

0

�(j)⌫(j, B) dj  ⇤⌫F (B)

for any Borel-measurable set B, where ⌫F is the measure associated with F and ⌫(j, ·) is the

measure associated with G(j, ·).
2
The motivation for this assumption is the following. A seller who o↵ers all buyer types a payo↵ less than

their market utility, irrespective of the queue, expects to attract no buyers, which yields a zero payo↵. A seller

who o↵ers certain buyer types a payo↵ higher than their market utility, irrespective of the queue, expects to

attract an infinite queue, which yields the seller a payo↵ that approaches minus infinity.
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3 Invariance, Non-Rivalry and Pooling

Invariance. Proposition 2 and 4 jointly imply that invariance is a su�cient condition for a

pooling equilibrium, but not a necessary condition. The intuition for su�ciency is straightfor-

ward. Invariance implies that the presence of low-type buyers in a submarket has no e↵ect on

the meetings between high-type buyers and sellers. Surplus is therefore maximized by spread-

ing high-type buyers evenly across all sellers, as opposed to concentrating them at a subset, to

maximize the number of high-type buyers that will trade. A single market results.

To see why invariance is not necessary, consider again the pairwise urn-ball technology. As

discussed in the main text, �� > 0 for this technology. That is, adding low-type buyers to

a submarket increases the probability that a seller will meet a high-type buyer. This feature

violates invariance, but not joint concavity: the fact that the addition of low-type buyers to the

submarket helps to spread the high-type buyers better across sellers strengthens the incentive

to send all buyers to the same market.3

Non-Rivalry. Proposition 2 and 5 jointly imply that non-rivalry is a necessary condition

for a pooling equilibrium, but not a su�cient condition. To understand why non-rivalry is

necessary, consider a submarket with a single high-type buyer with valuation x2 > 0 and a

number of low-type buyers with valuation x1 ! 0, such that surplus only depends on the trading

probability of the high-type buyer. Violation of non-rivalry would imply that this probability

could be increased by sending either some low-type buyers (if �µ� (0,�) < 0) or some sellers

(if �µ� (0,�) > 0) to a di↵erent submarket, contradicting the optimality of the single market

associated with joint concavity.

To see why non-rivalry is not su�cient, consider again the multi-platform technology. As

discussed in the main text, this technology is non-rival. However, the presence of low-type

buyers in the submarket increases the chances for high-type buyers to be crowded out at one

of the ↵s sellers in the first round, concentrating them at the (1� ↵) s second-round sellers in

higher numbers than optimal. It is therefore better to send at least some low types to a separate

submarket.

4 Necessity and Insu�ciency of �

�

� 0

The fact that the pairwise urn-ball technology satisfies �� � 0 as well as joint concavity may

raise the question how these two properties are related. The following proposition establishes

that �� (µ,�) � 0 for all 0  µ  � < 1 is a necessary but not a su�cient condition for joint

3
This may raise the question how �� � 0 relates to joint concavity. We prove in section 4 of this online

appendix that it is a necessary but not a su�cient condition.
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concavity.

Proposition 1. Joint concavity implies �� � 0, but �� � 0 does not imply joint concavity.

Proof. Part 1 (joint concavity implies �� � 0): We prove this result by contradiction.

Suppose that there exists a meeting technology for which �(µ,�) is concave in (µ,�), but

��(µ0,�0) < 0 in some point (µ0,�0). Note that �µµ < 0 for all technologies that exhibit joint

concavity, hence �(µ,�) must also be concave in � alone, i.e. ���  0. In other words, ��(µ,�)

is a non-increasing function of �, such that ��(µ0,�)  ��(µ0,�0) < 0 for all � > �0. This

implies that �(µ0,�)  �(µ0,�0) + ��(µ0,�0)(� � �0) for all � > �0. Let � ! 1 and thus

��(µ0,�0)(�� �0) ! �1, such that �(µ0,�) ! �1. Since � is a probability, this leads to the

required contradiction. Hence, concavity of �(µ,�), i.e. joint concavity, implies �� � 0.

Part 2 (�� � 0 does not imply joint concavity): Consider the following technology.

Minimum Demand. This technology consists of two rounds. In the first round, the b

buyers in the submarket are allocated to the s sellers according to the urn-ball technology.

In the second round, each seller draws a minimum demand requirement and operates only

if the number of buyers that came to him weakly exceeds this minimum.4 We assume

that the minimum demand requirements follow a geometric distribution, such that the

minimum is weakly less than n 2 N1 with probability 1� (1�  )n for 0 <  < 1. Hence,

Pn(�) = e

�� �n
n! (1� (1�  )n) for n 2 N1 and P0 (�) = 1�

P1
n=1 Pn (�) = e

� �.

This technology gives � (µ,�) = 1�e

�µ�e

� �+e

�� �µ(1� ). Hence, �� =  e

� � �1� e

�µ(1� )�,
which is strictly positive. However, the determinant of the Hessian of �, evaluated in µ = 0,

equals � 2(1� )2e�2� 
< 0, which means that � is not concave. Hence, �� � 0 does not imply

joint concavity.

4
Geromichalos (2012) analyzes minimum demand requirements in a di↵erent context. Minimum class size

requirements are also common in the matching between students and schools.
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