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I. Introduction

Many households own almost nothing but their human capital. Moreover, there is strong

evidence that human capital investment is risky, while consumption insurance against this

risk is far from complete. In other words, a significant fraction of labor income is the return to

human capital investment, and a voluminous empirical literature has shown that individual

households face large and highly persistent labor income shocks that have strong effects on

individual consumption. In this paper, we argue that one financial friction—limited contract

enforcement—can explain a substantial part of the observed lack of consumption insurance.

Intuitively, in equilibrium households with high human capital returns and little financial

wealth would like to borrow in order to buy insurance and invest in human capital, but they

cannot do so because of borrowing constraints that arise endogenously due to the limited

enforceability of credit contracts.

Our analysis proceeds in two steps. First, we develop a tractable human capital model

with limited contract enforcement and provide a useful equilibrium characterization result.

Second, we show that a calibrated macro model with physical capital, human capital, and

limited contract enforcement can explain the observed lack of consumption insurance for a

large group of households. Moreover, we show that this result is robust to realistic vari-

ations in the model parameters describing human capital risk, risk aversion, and contract

enforcement.

The model developed in this paper is a version of the type of human capital model that

has been popular in the endogenous growth literature. More specifically, we consider a

production economy with an aggregate constant-returns-to-scale production function using

physical and human capital as input factors. There are a large number (a continuum) of

individual households with CRRA-preferences who can invest in risk-free physical capital

and risky human capital. Human capital investment is risky due to shocks to the stock
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of human capital that follow a stationary Markov process with finite support (a Markov

chain). In the main part of the paper, we assume that all shocks are idiosyncratic, but we

also discuss how our theoretical characterization result can be extended to the case in which

idiosyncratic and aggregate shocks co-exists. Households have access to a complete set of

credit and insurance contracts, but their ability to use the available financial instruments is

limited by the possibility of default, which produces endogenous borrowing, or short-sale,

constraints. Defaulting households continue to participate in the labor market, but part of

their labor income might be garnished and they are excluded from financial markets until a

stochastically determined future date.

The tractability of the model derives from two equilibrium characterization results. First,

the consumption-investment choice of households is linear in total wealth (financial wealth

plus human capital) and the portfolio choice of households is independent of wealth. Further,

the solution to the household decision problem can be obtained solving a static maximization

problem. Moreover, the maximization problem of individual households is shown to be

convex so that a simple FOC-approach is applicable. Second, recursive equilibria can be

found by solving a fixed-point problem that is independent of the wealth distribution. Thus,

a rather complex, infinite-dimensional fixed-point problem has been transformed into a much

simpler, finite-dimensional fixed-point problem.

In the quantitative part of the paper, we consider a version of the model with i.i.d. human

capital shocks and stochastically aging households divided into 9 age groups. Household age

affects expected human capital returns and younger households have higher returns than

older households. The model is calibrated to be consistent with the U.S. evidence on labor

market risk and life-cycle earnings. Specifically, we choose the model parameters determining

the life-cycle profile of expected human capital returns so that the implied life-cycle profile

of median earnings growth rates matches the data. Further, in our model, i.i.d. shocks to
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the stock of human capital translate into a labor income process that follows a logarithmic

random walk; that is, labor income shocks are permanent. The random-walk specification

has often been used in the empirical literature to model the permanent component of labor

income risk, and we use the estimates obtained by this literature to calibrate our model

economy. Finally, for the baseline calibration we use a degree of relative risk aversion of 1

(log-utility) and a level of contract enforcement (exclusion from financial markets in case of

default) in line with the US bankruptcy code. The results of our quantitative analysis can

be summarized as follows.

First, the calibrated model is in line with the observed life-cycle pattern of household

portfolio choices (mix between financial capital and human capital). Second, many young

households are borrowing constrained and substantially under-insured, where we measure

the degree of consumption insurance by one minus the ratio of the volatility of consumption

growth to the volatility of income growth (the insurance coefficient). For example, households

of age group 26−30 only insure 40 percent of their human capital risk even though insurance

markets exist and are perfectly competitive. Further, the welfare consequences of the lack of

consumption insurance are severe. For households of age group 26−30, welfare would increase

by 6 percent of lifetime consumption if they had unlimited access to financial markets. Third,

the result that many young households are substantially under-insured is robust to realistic

variations in the model parameters describing human capital risk, risk aversion, and contract

enforcement. However, such parameter variations have non-negligible effects on the extent

of equilibrium insurance, which suggest that the model presented here has the potential to

account for substantial differences in consumption insurance over time and across countries.

In sum, this paper makes a methodological contribution and a substantive contribution.

Theoretically, we develop a general framework and prove a characterization result for recur-

sive equilibria that provides a powerful tool for the quantitative analysis of a wide range
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of interesting macroeconomic issues. Substantively, we show that, contrary to the results

obtained by most of the previous literature, limited contract enforcement can explain the

observed lack of consumption insurance for a large group of households.

Literature: This paper builds on the large literature on limited commitment/enforcement.

See, for example, Alvarez and Jermann (2000), Kehoe and Levine (1993), Kocherlakota

(1996), and Thomas and Worrall (1988) for seminal theoretical contributions and Krueger

and Perri (2006) and Ligon, Thomas, and Worrall (2002) for highly influential quantita-

tive work. Our theoretical contribution is to develop a tractable model with human capital

accumulation and to show how to avoid the non-convexity problem that often arises in lim-

ited enforcement models with production.1 Our substantive contribution is to show that a

calibrated macro model with physical capital and limited contract enforcement generates a

substantial degree of underinsurance. In contrast, previous work on consumption insurance

in limited enforcement models did not consider life-cycle variations in earnings and human

capital investment decisions. As a consequence, in these models there is little reason for

households to borrow, and a common finding of the previous literature has been that con-

sumption insurance is almost perfect in calibrated models with physical capital (Cordoba,

2008, and Krueger and Perri, 2006).2 Finally, we share with Andolfatto and Gervais (2006)

and Lochner and Monge (2011) the focus on human capital accumulation and endogenous

borrowing constraints due to enforcement problems, but we go beyond their work by studying

the interaction between borrowing constraints and insurance.

The current paper is most closely related to Krebs, Kuhn, and Wright (2015), who pro-

1Wright (2001) has shown how to circumvent the non-convexity issue in linear production models (AK-
model) with limited enforcement. The model structure we use in this paper is based on the human capital
model with incomplete markets analyzed in Krebs (2003).

2Krueger and Perri (2006) match the cross-sectional distribution of consumption fairly well, but the
implied volatility of individual consumption is negligible in their model.
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vide evidence from the life insurance market that human capital returns and insurance are

negatively correlated. Krebs, Kuhn, and Wright (2015) also conduct a quantitative analysis

of under-insurance based on a calibrated macro model similar to the one studied here. The

current analysis goes beyond Krebs, Kuhn, and Wright (2015) in two important dimensions.

First, the theoretical results derived in the current paper cover the case of general CRRA-

preferences, non-steady state behavior, and aggregate risk. In contrast, Krebs, Kuhn, and

Wright (2015) confine attention to steady state equilibria in economies with log-preferences

and no aggregate risk. Second, in the current paper we provide a comprehensive analysis

of the conditions that generate non-negligible under-insurance in calibrated models with

limited enforcement and risky human capital investment.

Our paper is also related to the voluminous literature on macroeconomic models with

exogenously incomplete markets, and in particular studies of human capital accumulation

(Krebs, 2003, Guvenen, Kuruscu, and Ozkan, 2014, and Huggett, Ventura, and Yaron,

2011). The current paper and Krebs, Kuhn, and Wright (2015) are complementary to the

incomplete-market literature on human capital investment in the sense that they address

similar issues from different angles. Specifically, the incomplete-market approach studies

the effect of human capital risk on investment/saving and consumption behavior when no

insurance beyond self-insurance is available. In contrast, the limited-enforcement approach

analyzes the effect of human capital risk on investment/saving and consumption behavior

when insurance markets are available, but endogenous borrowing constraints due to limited

contract enforcement generate under-insurance.

II. Model

In this section, we develop the model and define the relevant equilibrium concept. The model

is a generalization of Krebs, Kuhn, and Wright (2015), which in turn is based on a combi-

nation of the human capital model developed in Krebs (2003) and the limited commitment
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model with linear technology presented in Wright (2001).3

a) Human Capital Production

Time is discrete, open ended, and indexed by t = 0, 1, . . .. There is a continuum of households

who live for a stochastic amount of time. A household who dies is replaced by a new-born

household so that the mass of all households alive is normalized to one. We denote the cohort

of a household (the period of birth) by n, but will suppress the cohort-index for notational

ease until we discuss the aggregate market clearing conditions. The exogenous state of an

individual household is denoted by st and has several components st = (s1t, . . . , smt). In

our quantitative application, st has two components, one denoting the age of the household

and a second representing human capital risk. Depending on the application, additional

components can be used to model either ex-ante heterogeneity or ex-post heterogeneity

(risk). For example, Krebs, Kuhn, and Wright (2015) use additional components to model

the family structure of households in detail. For simplicity, we assume that st can only

take on a finite number of values. We assume that for each household of cohort n, the

process {st}∞t=n is Markov with a stationary transition function and denote the transition

probabilities by π(st+1|st). Note that household variables should in principle have a cohort

index n in addition to the time index t, but to ease the notation we suppress the cohort

index whenever possible.

There is one good that can be consumed or used as physical capital in production (see

below). Each household can transform one unit of the good into φ(st) units of human capital.

The accumulation equation for human capital, h, of an individual household is given by

ht+1 = (1 + ε(st−1, st))ht + φ(st)xht , (1)

3Angeletos (2007) and Moll (2014) develop tractable models of entrepreneurial activity in which individual
consumption/saving policies are linear in wealth. In all these approaches, tractability is achieved through
the assumption that individual investment returns are independent of household wealth.
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where xht is human capital investment of the individual household in period t and ε is an

idiosyncratic human capital shock.

In line with Jones and Manuelli (1990) and Rebelo (1991), the human capital accumula-

tion equation (1) focuses on the goods cost of human capital production. In contrast, Lucas

(1988), Huggett et al. (2011), and Lochner and Monge (2011) assume that the only cost of

human capital production is a time cost. As suggested by Ben-Porath (1967) and Trostel

(1993), in many applications both goods cost and time cost are important components of

the total cost of human capital production. It is straightforward to extend our model to

the case that allows for both goods cost and time cost of human capital production (see our

discussion in Section III.f below).

The term ε in (1) captures deterministic and random changes in human capital that

are due to depreciation, learning-by-doing, and various shocks to human capital (skills) of

households. For example, a negative human capital shock could can occur when a household

member loses firm- or sector-specific human capital subsequent to job termination (worker

displacement). A decline in health (disability) or death of a household member provide

further examples of negative human capital shocks. In this case, both general and specific

human capital are lost. Internal promotions and upward movement in the labor market

provide two examples of positive human capital shocks.

We impose the restriction that the stock of human capital must be non-negative, or h ≥ 0.

This creates no technical difficulty and our general characterization of the household decision

rule (proposition 1) holds with this constraint imposed, regardless of whether or not it binds.

In our quantitative analysis, this constraint never binds (does not bind for all households

types and uncertainty states). We do not impose the requirement that gross human capital

investment be non-negative, or xh ≥ 0. This is necessary for tractability which, in turn, is

essential for the theoretical and quantitative analysis conducted in this paper. However, in
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the calibrated model economy used for our quantitative analysis, a number of alternative

formulations of non-negativity constraints on human capital investment are always satisfied

in equilibrium; that is, they hold for all household types at all ages and all realizations

of uncertainty. See the quantitative Section IV for more details. Thus, imposing these

restrictions would not change the conclusions drawn in the quantitative analysis.

b) Household Budget Constraint

An individual household born in period n of type sn begins life with an initial endowment

of human capital, hn and an initial endowment of financial assets, an. Thus, the initial state

of an individual household is a vector (an, hn, sn). In each period t ≥ n, households can buy

and sell a (sequentially) complete set of financial contracts (assets) with state-contingent

payoffs, and we assume that for each state s there is one contract or Arrow security. We

denote by at+1(st+1) the quantity bought (or sold, if negative) in period t of the contract

that pays off one unit of the good in period t + 1 if st+1 occurs, and denote the price of this

contract by qt(st+1). A budget-feasible plan has to satisfy the sequential budget constraint

r̃htz(st)ht + at(st) = ct + xht +
∑

st+1

at+1(st+1)qt(st+1)

∑

st+1

at+1(st+1)qt(st+1) ≥ −D̄ht+1 (2)

ct ≥ 0 , ht+1 ≥ 0.

The variable z denotes an idiosyncratic shock to the productivity of human capital while r̃ht

denotes the (common) rental rate per efficiency unit of human capital. The term D̄ < 1 is

an explicit debt constraint that requires debt not to exceed the value of human capital. The

explicit debt constraint in (2) is sufficient to rule out Ponzi schemes. Since D̄ can be chosen

arbitrarily close to 1 it amounts to the “natural borrowing constraint” in our setting.

Given the initial state (an, hn, sn), a household of cohort n chooses a plan {ct, at, ht}∞t=n,

where each plan is a sequence of functions mapping histories, sn,t, into actions, ct(s
n,t),
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at+1(s
n,t, .), and ht+1(s

n,t), where for given sn,t the variable at+1(s
n,t, .) is a vector with

components st+1. Here sn,t = (sn, . . . , st) denotes the history of individual states st from

period n up to period t. Note that the household level equations (1) and (2) have to hold in

realizations; that is, they have to hold for all histories, sn,t.

c) Preferences

Households have identical preferences over consumption plans. Households are risk-averse

and their preferences allow for a time-additive expected utility representation:

U ({ct}∞t=n|sn)
.
=

∞∑

t=n

βt−nE[νtu(ct)|sn] , (3)

where νt is the probability that a household born in period n is alive in period t and the

expectations is taken over all individual histories

E[νtu(ct)|sn]
.
=

∑

sn,t |sn

νt(s
n,t−1)u(ct(s

n,t))π(sn,t|sn) .

Here π(sn,t|sn) stands for the history that sn,t occurs given sn, which is given by π(sn,t|sn) =

π(sn+1|sn)× . . . (st|st−1). We assume that νt(s
n,t−1) =

∏t−1
k=n ρ(sk), where ρ(sk) is the survival

probability in period k + 1 of a household who in period k is in state sk. Note that survival

probabilities depend on age, as encoded in st, but do not depend on cohort. We assume that

the one-period utility function exhibits constant relative risk aversion: u(c) = c1−γ

1−γ
for γ 6= 1

and u(c) = ln c otherwise. In other words, preferences are homothetic in consumption.

d) Participation/Enforcement Constraint

We confine attention to equilibria in which households have no incentive to default. Thus,

household allocations are required to satisfy the sequential enforcement (or participation)

constraints. That is, for all t ≥ n and all sn,t we have:

∞∑

m=t

βm−tE[νmu(cm)|sn,t] ≥ Vd(ht(s
n,t−1), st) (4)
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where Vd is the continuation value of a household who decides to default in period t. This

default value is determined as follows.

We assume that upon default all debts of the household are canceled and all financial

assets seized so that at(st) = 0. While in the default state, households are excluded from

purchasing insurance contracts and borrowing (going short). Further, households in default

retain their human capital, can invest in human capital, and earn a wage rate (1 − τ )r̃h

per efficiency unit of human capital, where 0 ≤ τ ≤ 1 is a parameter that measures the

fraction of labor income that is garnished. Thus, the punishment for default is exclusion

from financial markets and possible garnishment of labor income. We assume that households

remain in the default state until a stochastically determined future date that occurs with

probability (1 − p) in each period; that is, the probability of remaining in default is p.

After moving out of the default state, the household’s expected continuation value is V e,

which depends on h and s at the time of exiting default (a = 0 at that point in time).

For the individual household the function V e is taken as given, but we close the model and

determine this function endogenously by requiring that V e = V , where V is the equilibrium

value function associated with the maximization problem of a household who participates in

financial markets.4

In sum, Vd is the value function associated with the following household maximization

problem

Vd(ht(s
n,t−1), st)

.
= max

{cm,hm}∞m=t

∞∑

m=t

(pβ)
m−t

E[νmu(cm)|sn,t]

4The previous literature has usually assumed p = 1 (permanent autarky). See, however, Krueger and
Uhlig (2006) for a model with p = 0 following a similar approach to ours. Note also that the credit (default)
history of an individual household is not a state variable affecting the expected value function, V e; we assume
that the credit (default) history of households is information that cannot be used for contracting purposes.
This is in line with the U.S. bankruptcy code, which limits the history of past behavior that can be retained
in credit reports.
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+
∞∑

m=t

βm−t
(
1 − pm−t

)
E[νmV e

m(hm(sn,m−1), sm)|sn,t]

where the continuation plan {cm, hm}∞m=t has to satisfy the sequential budget constraint

(1 − τ )r̃h,mz(sm)hm = cm + xh,m

hm+1 = (1 + ε(sm−1, sm)) hm + φ(sm)xh,m (5)

cm ≥ 0 , hm+1 ≥ 0

e) Household Decision Problem

For given initial state (an, hn, sn), a household of cohort n chooses a plan {ct, at+1, ht+1}∞t=n.

The set of budget feasible household plans is defined as

B(an, hn, sn)
.
= { {ct, at+1, ht+1}∞t=n | {ct, at+1, ht+1}∞t=n satisfies (1), (2), and (4)}

The decision problem of a household of initial type (an, hn, sn) is

max
{ct,at+1,ht+1}∞t=n

U ({ct}∞t=n|sn) (6)

s.t. {ct, at+1, ht+1}∞t=n ∈ B(an, hn, sn)

where the lifetime utility function, U , is defined in (3).

f) Goods Production and Physical Capital Accumulation

There is one good that can be consumed or used as physical capital in production. Production

of this good is undertaken by a representative firm that rents capital and labor in competitive

markets and uses these input factors to produce output, Yt, according to the aggregate

production function Yt = F (Kt,Ht). Here Kt is the aggregate stock of physical capital and

Ht is the aggregate level of efficiency-weighted human capital employed by the firm.

The aggregate production function, F , is a standard neoclassical production function,

that is, it has constant-returns-to-scale, satisfies a Inada condition, and is continuous, con-
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cave, and strictly increasing in each argument. Given these assumptions on F , the im-

plied intensive-form production function, f(K̃) = F (K̃, 1), is continuous, strictly increasing,

strictly concave, and satisfies a corresponding Inada condition, where we introduced the

”capital-to-labor ratio” K̃ = K/H. Given the assumption of perfectly competitive labor

and capital markets, profit maximization implies

r̃kt = f ′(K̃t) (7)

r̃ht = f(K̃t) + f ′(K̃t)K̃t ,

where r̃k is the rental rate of physical capital and r̃h is the rental rate of human capital.

Note that r̃h is simply the wage rate per unit of human capital. Clearly, (7) defines rental

rates as functions of the capital-to-labor ratio: r̃k = r̃k(K̃) and r̃h = r̃h(K̃).

The accumulation equation for the aggregate stock of physical capital is

Kt+1 = (1 − δk)Kt + Xkt , (8)

where δk is the depreciation rate of physical capital and Xkt is investment in physical capital.

g) Equilibrium

We confine attention to equilibria in which financial contracts are priced in a risk-neutral

manner,

qt(st+1) =
π(st+1|st)

1 + rft
, (9)

where rf is the interest rate on financial transactions, which is equal to the return on physical

capital investment, rft = r̃kt−δk. The pricing equation (9) can be interpreted as a zero-profit

condition. More precisely, consider financial intermediaries that sell insurance contracts to

individual households and invest the proceeds in the risk-free asset that can be created from

the complete set of financial contracts and yields a certain return rf . Given that financial
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intermediaries face linear investment opportunities and assuming no quantity restrictions

on the trading of financial contracts for financial intermediaries, equilibrium requires that

financial intermediaries make zero profit, namely condition (9).

Capital market clearing requires that the aggregate stock of physical capital employed by

the representative firm is equal to the value of financial wealth held by households. Similarly,

labor market clearing requires that the firm’s demand for labor equals the aggregate amount

of efficiency-weighted human capital supplied by households. More precisely, in equilibrium

we have

Kt+1 =
∑

st+1

t∑

n=0

E[νn,t+1qt(st+1)an,t+1(st+1)|st+1] +
∫

at+1

at+1dµnew,t+1(at+1) (10)

Ht+1 =
t∑

n=0

E[νn,t+1z(st+1)hn,t+1] +
∫

ht+1 ,st+1

z(st+1)ht+1dµnew,t+1(ht+1, st+1) ,

where µnew,t+1 is the distribution of new-born households in period t + 1 over initial states,

(at+1, ht+1, st+1), which is an exogenous object. Note that the expectations in (10) is taken

over all individual histories and all possible initial states. That is, we define

E[νn,t+1qt+1(st+1)an,t+1(st+1)|st+1]
.
=

∫

an,hn,sn

∑

sn,t+1 |sn

νn,t+1(s
n,t)qt(st+1; st)an,t+1(st+1; s

n,t, an, hn, sn)π(sn,t|sn)dµnew,n(an, hn, sn)

and

E[νn,t+1z(st+1)hn,t+1]
.
=

∫

an,hn,sn

∑

sn,t+1 |sn

νn,t+1(s
n,t)z(st+1)hn,t+1(s

n,t, an, hn, sn)π(sn,t+1|sn)dµnew,n(an, hn, sn)

Note that we allow the distributions of new-born households, µnew,n, to depend on the cohort

n in order to be permit an endogenous growth path.

The distribution µnew,n has to satisfy an aggregate resource restriction. Specifically, we

assume that the aggregate stock of physical capital (human capital) of new-born households
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is proportional to the aggregate stock of physical capital (human capital) of households who

have died:
∫

an′+1

an′+1dµnew,n′+1(an′+1) = (11)

λa

n′∑

n=0

∫

an,hn,sn

∑

sn,n′
(1−ρ(sn′))νn,n′(sn,n′−1)an,n′+1(s

n,n′
, an, hn, sn)π(sn,n′|sn)dµnew,n(an, hn, sn)

and
∫

hn′+1

hn′+1dµnew,n′+1(hn′+1) =

λh

n′∑

n=0

∫

an,hn,sn

∑

sn,n′
ρ(sn′)νn,n′(sn,n′−1)hn′+1(s

n,n′
, an, hn, sn)π(sn,n′|sn)dµnew,n(an, hn, sn)

where λa is a parameter that measures the relationship between physical capital of households

born in period n′ + 1 relative to the physical capital of households who leave the model in

period n′ + 1. These parameters summarize to what extent physical capital is passed on to

the next generation and to what extent a new-born generation starts with additional capital

unrelated to the capital of their parents/grandparents. In most cases, we have λa = 1

(closed economy), but other cases are possible. The parameter λh expresses the size of

human capital of new-born households relative to the aggregate stock of human capital in

the economy. Equation (11) imposes a restriction on the exogenous distributions µnew,n.

The aggregate resource constraint states that total output produced is equal to aggregate

consumption plus aggregate investment

Yt = Ct + Xkt + Xht (12)

where Xkt is aggregate investment in physical capital and Xht is aggregate investment in hu-

man capital. As in (10), we compute aggregate variables from the respective household-level

variables by summing over cohorts and averaging over individual histories and possible initial

states. It is straightforward to show that the capital and labor market clearing conditions

(10) in conjunction with the household budget constraint (2) and the capital accumulation
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equations (1) and (8) imply the goods market clearing condition (12) using the asset pric-

ing formula (9). In our equilibrium analysis we will use focus on the two market clearing

conditions in (10), which can be subsumed to one market clearing condition because of the

constant-returns-to-scale assumption (see below).

Our definition of a sequential equilibrium is standard:

Definition 1 A sequential equilibrium is a sequence of aggregate stocks of physical capital

and (productivity weighted) human capital, {Kt,Ht}, rental rates, {r̃kt, r̃ht}, and a family of

household plans, {ct, at, ht}∞t=n, one for each cohort n and initial household type (an, hn, sn),

so that

i) Utilitymaximization of households: for each initial state, (an, hn, sn), the plan {ct, at, ht}∞t=n

solves the household problem (6).

ii) Profit maximization of firms: (Kt,Ht) maximizes profit for all t, that is, the aggregate

capital-to-labor ratio, K̃t, and rental rates, r̃kt and r̃ht satisfy the first-order conditions (7)

for all t.

iii) Profit maximization of financial intermediaries: financial contracts are priced accord-

ing to (9).

iv) Market clearing in capital and labor markets: equation (10) holds.

v) Rational expectations: expected continuation value functions are equal to actual con-

tinuation value functions: V e = V .

We next turn to the characterization of equilibria.
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III. Theoretical Results

In this section, we state the two main theoretical results. First, the solution to the individual

household maximization problem is linear in total individual wealth (financial and human).

This partial equilibrium result is stated in proposition 2 and the proof is based on a monotone

operator argument (proposition 1). Second, the distribution of total wealth (financial plus

human), Ω, over household types, s, is a sufficient aggregate state variable. This general

equilibrium result is stated in proposition 3. We begin this section with a discussion of a

convenient change of variables and a definition of recursive equilibria with aggregate state

Ω.

a) Change of Variables

For the characterization of equilibria, it is convenient to introduce new variables that em-

phasize the fact that individual households solve a standard inter-temporal portfolio choice

problem (with additional participation constraints). To this end, introduce the following

variables:

w̃t =
ht

φ(st)
+
∑

st

qt−1(st)at(st)

θht =
ht

φ(st)wt
, θat(st) =

at(st)

wt

1 + r(θt, st−1, st) =

{
(1 + rht(st−1, st))θht + θat(st) if no default
(1 + rhd,t(st−1, st))θht if default

(13)

where rht(st−1, st)
.
= z(st)φ(st)r̃ht + ε(st−1, st) is the return on human capital investment

if the household does not default and rhd,t(st−1, st)
.
= (1 − τ )z(st)φ(st)r̃ht + ε(st−1, st) is

the return on human capital investment in case of default. In (13) the variable w̃t stands

for beginning-of-period wealth consisting of the value of human wealth, ht

φ(st)
, and financial

wealth,
∑

st
qt−1(st)at(st). The variable θt = (θht, θat) denotes the vector of portfolio shares

and (1 + r) is the total return to investment. Recall that for given history of shocks, θht
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is a number, but θat is a vector with components θat(st). Using the new notation and

substituting out the investment variables, xkt and xht, the budget constraint (2) and human

capital accumulation equation (1) read

w̃t+1 = (1 + r(θt, st−1, st)) w̃t − ct

1 = θh,t+1 +
∑

st+1

qt(st+1)θa,t+1(st+1) (14)

∑

st+1

qt(st+1)θa,t+1(st+1) ≥ D̄θh,t+1

ct ≥ 0 , w̃t+1 ≥ 0 , θh,t+1 ≥ 0 .

Clearly, (14) is the budget constraint corresponding to an inter-temporal portfolio choice

problem with linear investment opportunities and no exogenous source of income.

It is convenient to use as individual state variable wealth including current asset payoffs

(“cash at hand”) defined as wt
.
= (1+ rt)w̃t. Using this concept of total wealth, the budget

constraint (14) can be written as

wt+1 = (1 + r(θt+1, st, st+1)) (wt − ct)

1 = θh,t+1 +
∑

st+1

qt(st+1)θa,t+1(st+1) (15)

∑

st+1

qt(st+1)θa,t+1(st+1) ≥ D̄θh,t+1

ct ≥ 0 , wt+1 ≥ 0 , θh,t+1 ≥ 0 .

Further, the default value function, Vd, can be written as a function of w, and (w, s) is there-

fore a sufficient state for the enforcement constraint (4). Thus, the household maximization

problem (6) is equivalent to the household maximization problem

max
{ct,wt+1,θt+1}∞t=n

U ({ct}∞t=n|sn) (16)

s.t. {ct, wt+1, θt+1}∞t=n ∈ B(wn, sn)

where the budget set is now defined as

B(wn, sn)
.
= { {ct, wt+1, θt+1}∞t=n | {ct, wt+1, θt+1}∞t=n satisfies (4) and (15)}
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b) Recursive Equilibrium: Definition

We next define a recursive equilibrium. To this end, we first note that the market clearing

condition (10) can be reduced to the condition

K̃t+1 =

∑
st+1

∑t
n=0 E[νn,t+1qt(st+1)an,t+1(st+1)|st+1] +

∫
at+1

at+1dµnew,t+1(at+1)
∑t

n=0 E[νn,t+1z(st+1)hn,t+1] +
∫
ht+1 ,st+1

z(st+1)ht+1dµnew,t+1(ht+1, st+1)
(17)

because of the constant-return assumption. In a sequential equilibrium, the expectations

in (17) is taken over all individual histories and all initial states, and it depends in general

explicitly on time t. In a recursive equilibrium, the expectations is taken over individual

states conditional on the aggregate state, and it is time-independent.

The household maximization problem (16) suggests that we can use (w, s) as the indi-

vidual state variable. For the aggregate state, in general the distribution, µ, over individual

states, (w, s), is the minimal state variable. However, for the current model, the type-

dependent wealth distribution, Ω ∈ IRn, defined as

Ωt(st)
.
=

E
[∑t

n=0 νn,twn,t|st

]

E
[∑t

n=0 νn,twn,t

] .

turns out to be sufficient (see below). Here Ωt(st) is the share of aggregate total wealth owned

by all households of type st. Note that Ω is a distribution since E[Ωt] =
∑

st
Ωt(st) = 1. Note

further that the distribution µ is an infinite-dimensional object, whereas the distribution Ω

is finite-dimensional.

Below we construct a recursive equilibrium with aggregate state variable Ω that evolves

according to an endogenous law of motion Ω′ = Φ(Ω), where the prime denotes next period’s

variable. We further show that next period’s optimal portfolio choice is independent of w,

which implies that the market clearing condition (17) becomes a condition that defines a

function K̃ ′ = K̃ ′(Ω). Together with the first-order conditions (7) this defines rental rate

functions r̃′k = r̃′k(Ω) and r̃′h = r̃′h(Ω). Given our definition of sequential equilibrium and the

variables defined so far, our definition of recursive equilibrium is standard:
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Definition 2 A recursive equilibrium is a law of motion, Φ, for the aggregate state variable,

Ω, a function K̃ ′ = K̃ ′(Ω), rental rate functions r̃′k = r̃′k(Ω) and r̃′h = r̃′h(Ω), an expected

value function, V e, and a household policy function, g,5 such that

i) Utility maximization of households: for all household cohorts, n, and household types,

(wn, sn), the household policy function, g, in conjunction with the law of motion, Φ, gener-

ates a plan, {ct, wt+1, θt+1}∞t=n, that solves the household maximization problem (16).

ii) Profit maximization of firms: for any sequence {K̃}∞t=0, the rental rate sequences {r̃kt}∞t=0

and {r̃ht}∞t=0 are defined by the first-order conditions (7).

iii) Profit maximization of financial intermediaries: financial contracts are priced according

to (9)

iv) Market clearing: for any initial state Ω, the law of motion Φ in conjunction with the

function K̃ ′ generate a sequence {K̃}∞t=0 that satisfies the market clearing condition (17)

v) Rational expectations: V e = V and Φ is the law of motion induced by g.

c) Characterization of Household Problem (Partial Equilibrium)

The principle of optimality in conjunction with our discussion in the previous section re-

garding the appropriate aggregate state suggest that the household maximization problem

(16) is equivalent to the Bellman equation

V (w, s,Ω) = max
c,w′,θ′

{
u (c) + βρ(s)

∑

s′
V (w′, s′,Ω′)π(s′|s)

}

s.t. w′ = (1 + r(θ′, s, s′,Ω))(w − c) (18)

1 = θ′h +
∑

s′

π(s′|s)θ′a(s′)
1 + rf (Ω)

∑

s′

π(s′|s)θ′a(s′)
1 + rf (Ω)

≥ −D̄θ′h , θ′h ≥ 0 , w′ ≥ 0

5The function g defines next period’s endogenous state as a function of this period’s endogenous state
and this period’s exogenous shock:wt+1 = g(wt, st).
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V (w′, s′,Ω′) ≥ Vd(w
′, s′,Ω′)

Ω′ = Φ(Ω)

where the default value function is given by

Vd(w, s,Ω) = max
c,w′

{
u (c) + βρ(s)p

∑

s′
ρ(s′)Vd (w′, s′,Ω′) π(s′|s)

+βρ(s)(1− p)
∑

s′
V e (w′, s′,Ω′) π(s′|s)

}

w′ = (1 + rhd(s, s
′,Ω))(w − c)

Ω′ = Φ(Ω)

Let T be the operator associated with the Bellman equation (18). In contrast to the stan-

dard case without a participation constraint, the Bellman operator, T , defined by equation

(18) is in general not a contraction. However, it is still a monotone operator. Monotone

operators might have multiple fixed points, but under certain conditions we can construct

a sequence that converges to the maximal element of the set of fixed points. This maximal

solution is also the value function (principle of optimality). More precisely, if the condition

that for all s

∀θ′ : βρ(s)
∑

s′
(1 + r(θ′, s, s′,Ω′))

1−γ
π(s′|s) < 1 if 0 < γ < 1 (19)

∃θ′ : β ρ(s)
∑

s′
(1 + r(θ′, s, s′,Ω′))

1−γ
π(s′|s) < 1 if γ > 1

holds,6 then we have the following results:

Proposition 1. Suppose that condition (19) is satisfied and that the law of motion, Φ, and

the value function of a household in financial autarky, Vd, are continuous. Let T stand for

the operator associated with the Bellman equation (18). Then

6Note that for the log-utility case, no condition of the type (19) is required.
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i) There is a unique continuous solution, V0, to the Bellman equation (18) without par-

ticipation constraint.

ii) limk→∞ T kV0 = V∞ exists and is the maximal solution to the Bellman equation (18)

iii) V∞ is the value function, V , of the sequential household maximization problem.

Proof . See Appendix.

Consider the case V e = V . Using proposition 2 and an induction argument, we can then

show that the value function, V , has the functional form

V (w, s,Ω) =

{
Ṽ (s,Ω)w1−γ if γ 6= 1

Ṽ0(s,Ω) + Ṽ1(s) lnw otherwise
(20)

and that the corresponding optimal policy function, g, is

c(w, s) = c̃(s,Ω)w

w′(w, s, s′,Ω) = (1 + r(θ′, s, s′,Ω))(1 − c̃(s,Ω))w

θ′(w, s,Ω) = θ′(s,Ω) .

In other words, the value function has the functional form of the underlying utility function,

consumption and next-period wealth are linear functions of current period wealth, and next-

period portfolio choices are independent of wealth. Moreover, we also show that the intensive-

form value function, Ṽ , together with the optimal consumption and portfolio choices, c̃ and

θ, can be found by solving an intensive-form Bellman equation that reads

Ṽ (s,Ω) = max
c̃,θ′

{
c̃1−γ

1 − γ
+ βρ(s)(1− c̃)1−γ

∑

s′
(1 + r(θ′, s, s′,Ω))

1−γ
Ṽ (s′,Ω′)π(s′|s)

}

s.t. 1 = θ′h +
∑

s′

θ′a(s
′)π(s′|s)

1 + rf(Ω)
(21)

∑

s′

π(s′|s)θ′a(s′)
1 + rf (Ω)

≥ −D̄θ′h , θ′h ≥ 0 , 0 ≤ c̃ ≤ 1
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(
Ṽ (s′,Ω′)

Ṽd(s′,Ω′)

) 1
1−γ

(1 + r(θ′, s, s′,Ω)) ≥ (1 + rhd(s, s
′,Ω))θ′h

Ω′ = Φ(Ω)

and

Ṽd(s,Ω) = max
c̃d

{
c̃1−γ
d

1 − γ
+ pβρ(s)(1 − c̃d)

1−γ
∑

s′
(1 + rhd(s, s

′,Ω))
1−γ

Ṽd(s
′,Ω′)π(s′|s)

(1 − p)βρ(s)(1 − c̃d)
1−γ

∑

s′
(1 + rhd(s, s

′,Ω))
1−γ

Ṽ (s′,Ω′)π(s′|s)
}

for γ 6= 1. In the case of log-utility, the intensive-form Bellman equation reads

Ṽ0(s,Ω) = max
c̃,θ′

{
ln c̃ + βρ(s)

∑

s′
Ṽ0(s

′)π(s′|s) + βρ(s) ln(1 − c̃)
∑

s′
Ṽ1(s

′)π(s′|s)

+ βρ(s)
∑

s′
Ṽ1(s

′) ln(1 + r(θ′, s, s′,Ω))π(s′|s)
}

s.t. 1 = θ′h +
∑

s′

θ′a(s
′)π(s′|s)

1 + rf (Ω)

∑

s′

π(s′|s)θ′a(s′)
1 + rf (Ω)

≥ −D̄θ′h , θ′h ≥ 0

e(1−β)(Ṽ0(s′,Ω′)−Ṽd0(s
′ ,Ω′)) (1 + r(θ′, s, s′,Ω)) ≥ (1 + rhd(s, s

′,Ω))θ′h

Ω′ = Φ(Ω)

and

Ṽ0d(s,Ω) = max
c̃d

{
ln c̃d + β ln(1 − c̃d)

∑

s′
Ṽ1(s

′)ρ(s′)π(s′|s)

+ βρ(s)
∑

s′
Ṽ1(s

′) ln(1 + rhd(s, s
′,Ω))π(s′|s)

+ pβρ(s)
∑

s′
Ṽ0d(s

′)π(s′|s) + (1 − p)βρ(s)
∑

s′
Ṽ0(s

′)π(s′|s)
}
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where the coefficients Ṽ1 are the solution to

Ṽ1(s) = 1 + βρ(s)
∑

s′
Ṽ1(s

′)π(s′|s)

Proposition 2. Suppose that condition (19) is satisfied, the law of motion, Φ, is continuous,

and V e = V . Then value function, V , and optimal policy function, g, have the functional

form (20). Moreover, the intensive-form value function, Ṽ , and the corresponding optimal

consumption and portfolio choices, c̃ and θ′, are the maximal solution to the intensive-form

Bellman equation (21). This maximal solution is obtained by iteratively applying T̃ , the

operator associated with the intensive-form Bellman equation (21), starting from Ṽ0, the

solution of the intensive-form Bellman equation (22) without participation constraint:

Ṽ = lim
n→∞

T̃ nṼ0 .

Proof . See Appendix.

Note that proposition 2 cannot simply be proved by the guess-and-verify method since

multiple solutions to the Bellman equation (21) may exist. Specifically, the operator asso-

ciated with the Bellman equation is monotone, but not a contraction, and hence multiple

fixed points may exist. However, proposition 2 ensures that we have indeed found the value

function associated with the original utility maximization problem, and also provides us with

a iterative method to compute this solution. Note further that the constraint set in (21) is

linear since the return functions are linear in θ. Thus, the constraint set is convex and we

have transformed the original utility maximization problem into a convex problem. In other

words, the non-convexity problem alluded to in the introduction has been resolved.

d) Characterization of Recursive Equilibria

Proposition 2 shows how to rewrite the maximization problem of individual households

as a recursive problem that is wealth-independent. One implication of the intensive-form
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representation of the individual maximization problem is that optimal portfolio choices are

independent of wealth, w. This result in turn implies that the market clearing condition

(17) can be re-written as

K̃ ′ =

∑
s [ρ(s) + λa(1 − ρ(s))] (1 − θh(s,Ω)) (1 − c̃(s,Ω))Ω(s)

z̄
∑

s [ρ(s) + λh]φ(s)θh(s,Ω)(1 − c̃(s,Ω))Ω(s)
(22)

where we have already incorporated restriction (11) and z̄ stands for the mean of z. Equation

(22) defines a function K̃ ′ = K̃ ′(Ω), which in turn defines rental rate functions r̃′k = r̃′k(Ω)

and r̃′h = r̃′h(Ω) using the first-order conditions (7). A second implication of proposition 2 is

that the equilibrium law of motion, Φ, can be explicitly derived:

Ω′(s′) =

∑
s ρ(s)(1 − c̃(s,Ω))(1 + r(θ′(s,Ω), s′,Ω))π(s′|s)Ω(s) + λΩ′

new(s′)
∑

s,s′ ρ(s)(1 − c̃(s,Ω))(1 + r(θ′(s,Ω), s′,Ω))π(s′|s)Ω(s) + λ
(23)

where the parameter λ is related to the parameters λa and λh through the restriction (11).

Note that the expression in the denominator of (23) ensures that
∑

s′ Ω
′(s′) = 1.

In sum, a recursive equilibrium can be found by solving (21) and (22), and using (23) as

the law of motion:

Proposition 3. Suppose that (θ, c̃, Ṽ , K̃ ′) is an intensive-form equilibrium, that is, (θ, c̃, Ṽ , K̃ ′)

solves (21) and (22). Then (g, Ṽ , K̃ ′,Φ) is a recursive equilibrium, where g is the individual

policy function associated with (θ, c̃) and Φ the aggregate law of motion defined in (23).

Proof . See Appendix.

Proposition 3 simplifies the computation of recursive equilibria. In our framework, the

infinite-dimensional wealth distribution is not a relevant state variable. Instead, the distribu-

tion of wealth shares over household types, Ω, becomes a relevant state variable. Note that Ω

is in many applications a low-dimensional object. For example, suppose that st = (s1t, s2t),

where {s1t} and {s2t} are two independent processes and {s2t} is an i.i.d process. In this

case neither c̃ nor θ depend on s2 and the relevant aggregate state is Ω(s1) only.
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e) Extension: Aggregate Shocks

So far, we have considered economies with only idiosyncratic risk, but it is straightforward

to introduce aggregate risk into the framework. To this end, suppose that there are idiosyn-

cratic shocks, s, and aggregate shocks, S, and that uncertainty is described by a stationary

joint Markov process {st, St} with transition probabilities denoted by π(st+1, St+1|st, St).

The relevant aggregate state then becomes (Ωt, St), where Ωt is defined as before. In a

recursive equilibrium, the evolution of the endogenous aggregate state variable is given by

an endogenous law of motion Ωt+1 = Φ(Ωt, St, St+1). Further, the aggregate capital-to-labor

ratio is a function K̃t+1(Ωt, St) and the rentals rates are function r̃k,t+1 = r̃k(Ωt, St) and

r̃h,t+1 = r̃h(Ωt, St). The definition of a recursive equilibrium is, mutatis mutandis, as before.

A straightforward (though lengthy) extension of the subsequent theoretical analysis shows

that a modified version of our general characterization results still hold. In particular,

recursive equilibria can be computed by solving a convex problem that is independent of the

wealth distribution, though clearly the finite-dimensional distribution of relative wealth, Ω,

still enters into the equilibrium conditions.

f) Further Extensions

There a several further extensions of the model that can be incorporated without sacrificing

the tractability of the model. First, we can introduce a time cost in human capital production

if we replace the term φ(st)xht in (1) by φ(st)(htlht)
αx1−α

ht , where lht is the time spent in

human capital production. In the simplest extension, the household allocates time between

working and producing human capital (learning). However, we can also add a labor-leisure

choice as long as preferences remain homothetic in consumption. It is straightforward to

show that the human capital production function φ(st)(htlht)
αx1−α

ht gives rise to a human

capital accumulation equation (1) that is still linear in xht after the optimal choice of lht has
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been substituted out.

A second extension is shocks to preferences (taste shocks, health shocks, change in family

structure). These can easily be incorporated by replacing the one-period utility function by

one that depends on the state st. Third, the tractability is preserved in a model with taxes

and transfers as long as these payments are proportional to either financial capital (capital

income) or human capital (labor income). To see this, simply re-define the returns in (13) as

returns after taxes and transfers have been taken into account. Note that taxes and transfers

can be an arbitrary (non-linear) function of the state st.

IV. Quantitative Analysis

In this section, we provide a quantitative analysis based on a special version of the model.

To this end, Section IV.a first presents the model specification for the special case of interest.

Sections IV.b and IV.c then discuss the equilibrium conditions for the special case and our

computational approach. Section IV.d briefly discusses the data and Section IV.e presents

the calibration of the partial equilibrium model. Section IV.f and IV.g discuss the life-cycle

implications of the model with respect to portfolio choice, insurance, and welfare. The next

three sections analyze the model response to changes in contract enforcement, labor market

risk, and risk aversion based on the partial equilibrium version of the model.7 Section IV.k

concludes with a discussion how to calibrate the general equilibrium version of the model.

a) Specification

We set the period length to one year. We assume that the economy is in stationary equi-

librium and drop the time index t. We further assume that the exogenous individual state

7We do not re-calibrate the model when we change the value of one parameter and in this sense we
conduct a comparative statics analysis. Our results barely change if we re-calibrate the model to match all
targets before and after the parameter change.
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has two components, s = (s1, s2). The first component, s1, denotes the age of a household,

which can take on 9 values, s1 = 1, . . . , 9, corresponding to the following 9 age groups: 25

and younger, 26 - 30, 31 - 36, . . . , 56 - 60, and older than 60. We assume that households

stochastically age with the transitions from one age group to another age group governed

by transition probabilities π(s′1|s1). We assume that households cannot move up more than

one age group at a time, and choose π(s1 + 1|s1) so that so that households spend on av-

erage 5 years in the first 8 age groups. That is, for s1 ≤ 8 we have π(s1|s1) = 4/5 and

π(s1 +1|s1) = 1/5. Households in the oldest age group die stochastically and the probability

of death is chosen so that these households live on average a further 25 years. Old households

who leaves the model are replaced by households in the youngest age group.

The second component of the state, s2, describes human capital risk. Both s1 and s2 affect

human capital accumulation through the ε-function appearing in the human capital equation

(1) as ε(s1, s2) = ϕ(s1)− δh + η(s2). We interpret ϕ as a learning-by-doing parameter which

depends on age and which, in our calibration below, is stronger for younger households so

that ϕ(s1) > ϕ(s1 + 1). The parameter δh is the average depreciation rate of human capital

in the economy. We have set the labor productivity parameter z = 1 so that all labor

income risk is generated through the human capital shock η, which is assumed to be i.i.d.

over time and across households and independent of household age s1.
8 Assuming that the

cost of human capital in terms of consumption goods φ is constant, the return to human

capital is given by rh(s1, s2) = φr̃h +ϕ(s1)− δh + η(s2). Normalizing the mean of the human

capital shocks to zero, or
∑

s2
η(s2)π(s2) = 0, we find that the expected human capital

returns for a household of age s1 are r̄h(s1) =
∑

s2
rh(s1, s2)π(s2) = φr̃h + ϕ(s1) − δh. For

the oldest household group, s1 = 9, we assume that human capital returns are low enough

so that they only invest in financial capital yielding a portfolio return equal to the risk-free

rf (retirement).

8In Krebs, Kuhn, and Wright (2015) we consider the more general version with additional shocks to z.
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With this specification in hand, we can verify that human capital accumulation decisions

satisfy various non-negativity constraints on human capital investment. For example, in

equilibrium the restriction holds that total human capital investment inclusive of learning-

by-doing is always non-negative: ϕ(s1)ht + φxht ≥ 0.

b) Equilibrium Conditions

Given the assumption made so far, the intensive-form Bellman equation (21) for households

of age s1 ≤ 8 becomes

Ṽ (s1) = max
c̃,θ′





c̃1−γ

1 − γ
+ β(1− c̃)1−γ

∑

s′1,s′2

(1 + r(θ′, s′1, s
′
2))

1−γ
Ṽ (s′1)π(s′2)π(s′1|s1)





(24)

s.t. 1 = θ′h +
∑

s′1 ,s′2

θ′a(s
′
1, s

′
2)π(s′2)π(s′1|s1)

1 + rf
, 0 ≤ c̃ ≤ 1 , θ′h ≥ 0

(
Ṽ (s′1)

Ṽd(s′1)

) 1
1−γ

(1 + r(θ′, s′1, s
′
2)) ≥ (1 + rh(s

′
1, s

′
2))θ

′
h ∀ (s′1, s

′
2)

with

Ṽd(s1) = max
c̃d





c̃1−γ
d

1 − γ
+ pβ(1 − c̃d)

1−γ
∑

s′1 ,s′2

(1 + rhd(s
′
1, s

′
2))

1−γ
Ṽd(s

′
1)π(s′2)π(s′1|s1)

(1 − p)β(1 − c̃d)
1−γ

∑

s′1 ,s′1

(1 + rhd(s
′
1, s

′
2))

1−γ
π(s′2)Ṽ (s1)π(s′1|s1)





for γ 6= 1. In the case of log-utility, the intensive-form Bellman equation (21) becomes

Ṽ (s1) = max
θ′



ln(1 − β) +

β

1 − β
lnβ +

β

1 − β

∑

s′1 ,s′2

ln(1 + r(θ′, s′1, s
′
2)π(s′2)π(s′1|s1)

+β
∑

s′1

Ṽ (s′1)π(s′1|s1)




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s.t. 1 = θ′h +
∑

s′1,s′2

θ′a(s
′
1, s

′
2)π(s′2)π(s′1|s1)

1 + rf
, θ′h ≥ 0

e(1−β)(Ṽ (s′1)−Ṽd(s′1)) (1 + r(θ′, s′1, s
′
2) ≥ (1 + rhd(s

′
1, s

′
2))θ

′
h ∀ (s′1, s

′
2)

with

Ṽd(s1) = ln(1 − β) +
β

1 − β
logβ +

β

1 − β

∑

s′1,s′2

log(1 + rhd(s
′
1, s

′
2)π(s′2)π(s′1|s1)

+ p β
∑

s′1

Ṽd(s
′
1)π(s′1|s1) + (1 − p)β

∑

s′1

Ṽ (s′1)π(s′1|s1)

From (24) it immediately follows that the optimal portfolio choice, θ, and the optimal

consumption-saving choice, c̃, only depend on age s1 but not on human capital shocks s2. In

other words, household consumption and portfolio choices are independent are independent

of i.i.d. shocks. This in turn implies that the relevant aggregate state, Ω, only depends on

age, s1. The stationary Ω is then determined by the following set of equations, defined first

for s1 = 1:

Ω(1) = N


4

5

∑

s′2

(1 − c̃(1))(1 + r(θ′(1), 1, s′2))π(s′2)Ω(1) + λ




and then ∀s1 with 2 ≤ s1 ≤ 8 :

Ω(s1) = N


4

5

∑

s′2

(1 − c̃(s1))(1 + r(θ′(s1), s1, s
′
2))π(s′2)Ω(s1) + (25)

1

5

∑

s′2

(1 − c̃(s1 − 1))(1 + r(θ′(s1 − 1), s′2))π(s′2)Ω(s1 − 1)




and then lastly:

Ω(9) = N
[
24

25
(1 − c̃(9))(1 + rf )Ω(9) +

1

5
(1 − c̃(8))(1 − θh(8))(1 + rf )Ω(8)

]

where N is a normalization constant chosen to ensure
∑

s1
Ω(s1) = 1. Note that (25) is

the stationary version of (23) for the current model set-up, where we have already used the

assumption that new-born households begin life in age group (state) s1 = 1.
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Suppose we choose λa = 1. Taking into account that ρ(s1) = 1 for s1 = 1, . . . , 8 and

θh(9) = 0, we find that the market clearing condition (22) becomes

K̃ =

∑
s1

(1 − c̃(s1))(1 − θh(s1))Ω(s1)

(1 + λh)φ
∑

s1 6=9(1 − c̃(s1))θh(s1)Ω(s1)
(26)

where λ in (25) and λh in (26) are related through

λ = [1 + r̄(θ(1))]


 1

25
(1 − c̃(9))Ω(9) + λhφ

∑

s1 6=9

(1 − c̃(s1))θh(s1)Ω(s1)


 (27)

where r̄(θ(1)) is the average investment return for a household of age group s1 = 1. Equations

(24), (25), and (26) determine a stationary recursive equilibrium for this specification of the

model.

c) Computation

For the general equilibrium analysis, one needs to solve the three equations (24), (25), and

(26). The algorithm for doing so works as follows. First, pick an aggregate capital-to-labor

ratio, K̃, which determines the rental rates r̃k and r̃h and therefore also the investment

return function r. Second, given the values for the investment returns, solve the intensive-

form household decision problem (24) and recover the stationary state Ω. Third, use the

values for θ, c̃, and Ω, to determine a new value for K̃ using (26). Finally, iterate until

convergence. Note that in the log-utility case with ρ(s1) = 1 there is no need to solve for c̃

since we have c̃ = 1 − β.

We solve the partial equilibrium problem (24) by iteration. More precisely, consider the

case γ 6= 1 and define the values Ṽ k(s1) and Ṽ k
d (s1), recursively by

Ṽ k+1(s1) =





(
c̃k(s1)

)1−γ

1 − γ
+ (28)

β
(
1 − c̃k(s1)

)1−γ ∑

s′1 ,s′2

(
θk

h(s1)(1 + rh(s
′
1, s

′
2)) + θk

a(s1, s
′
1, s

′
2)
)1−γ

ṽk(s1)π(s′2)π(s′1|s1)




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c̃k(s1) = 1 −

β

∑

s′1 ,s′2

(
θk

h(s1)(1 + rh(s
′
1, s

′
2)) + θk

a(s1, s
′
1, s

′
2)
)1−γ

π(s′2)π(s′1|s1)




1
γ

and

Ṽ k+1
d (s1) =

(c̃d(s1))
1−γ

1 − γ
+ β(1− c̃d(s1))

1−γp
∑

s′1 ,s′2

(1 + rhd(s
′
1, s

′
2))

1−γ
ṽk

d(s
′
1)π(s′2)π(s′1|s1)

+β(1 − c̃d(s1))
1−γ(1 − p)

∑

s′1,s′2

(1 + rhd(s
′
1, s

′
2))

1−γ
π(s′2)Ṽ

k(s′1)π(s′1|s1)

c̃d(s1) = 1 −


β

∑

s′1 ,s′2

(1 + rhd(s
′
1, s

′
2))

1−γ
π(s′2)π(s′1|s′1)




1
γ

where the portfolio choices (θk
h(s1), θ

k
a(s1)) for each s1 are the solution to

max
θh,θa

∑

s′1,s′2

(θh(1 + rh(s
′
1, s

′
2)) + θa(s

′
1, s

′
2))

1−γ
π(s′)

s.t. θh +
∑

s′1,s′2

θa(s
′
1, s

′
2)π(s′2)π(s′1|s1)

1 + rf

= 1 (29)

θh(1 + rh(s
′
1, s

′
2)) + θa(s

′
1, s

′
2) ≥ θh(1 + rhd(s

′
1, s

′
2))

(
Ṽ k

d (s′1)

Ṽ k(s′1)

) 1
1−γ

The intensive-from value function and the corresponding optimal portfolio choice are ob-

tained by taking the limit Ṽ = limk→∞ Ṽ k, Ṽd = limk→∞ Ṽ k, and θ = limk→∞ θk. To

solve the portfolio problem (29) for given k and s1, we first fix θk
h(s1) = θ̄k

h(s1) and find

θk
a(s1) solving (29) for given θ̄k

h(s1). To this end, for each s′1, order the pairs (s′1, s
′
2) so that

rh(s1, 1) > rh(s1, 2) > . . . > rh(s1, S). Given s1 suppose that the participation constraint is

binding for the first J(s1) states. Then for the first J(s1) states θk
a(s1) is given by

θk
a(s1, s

′
1, s

′
2) = θ̄k

h(s1)


(1 + rhd(s

′
1, s

′
2))

(
Ṽ k

d (s′1)

Ṽ k(s′1)

) 1
1−γ

− (1 + rh(s
′
1, s

′
2))


 for (s′1, s

′
2) = 1, . . . , J(s1)

(30)

while for the remaining states, we have

θk
a(s1, s

′
1, s

′
2) = r̄k(s1) − θ̄k

h(s1)(1 + rh(s
′
1, s

′
2))
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where r̄k(s1) is determined by the portfolio constraint in (29). Using the corresponding

first-order conditions it is easy to see that, for given θ̄k
h(s1), the solution θk

a(s1) to (29) is

determined by (30), where J(s1) is the smallest number for which the portfolio choice satisfies

the participation constraint. Finally, we find optimal θk
h(s1) using a standard one-dimensional

optimization routine.

d) Data

For the calibration and the results discussed below, we use data on earnings and financial

wealth drawn from the Survey of Consumer Finances (SCF). The SCF is a triennial survey

of U.S. households and we use data from 1989 to 2013. For most steps, we follow Krebs,

Kuhn, and Wright (2015) with our construction and treatment of the data. Our measure

of earnings (labor income) is wages and salaries plus two-thirds of the farm and business

income (if applicable). Our measure of financial wealth is net worth, defined as the sum of

the consolidated household balance sheet (including net housing wealth). All data has been

deflated using the BLS consumer price index for urban consumers (CPI-U-RS)

We follow Heathcote et al. (2010) for the sample selection and confine attention to

households with household head age 23 years and older. Specifically, we drop the wealthiest

1.47 % of households in each calender year, which makes the sample more comparable to

that of the Panel Study of Income Dynamics (PSID) and the Consumer Expenditure Survey

(CEX). Further, we drop all households that report negative labor income or that report

positive hours worked but have missing labor income or that report positive labor income

but zero or negative hours worked. We also drop in each year households with a wage rate

that is below half the minimum wage of the respective year, where we compute the wage

rate by dividing labor income by total hours worked.

We construct separately for each survey year life-cycle profiles of median log earnings and
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financial wealth to earnings ratios. We smooth life-cycle profiles separately for each survey

year using linear least squares on a cubic polynomial in age and average the smoothed profiles

across survey years to remove time effects.9 We compute earnings growth rates from age

differences in earnings of the smoothed, cross-sectional earnings profiles.

e) Calibration: Partial Equilibrium

In this section, we calibrate the partial equilibrium version of the economy, that is, we find

values for the expected investment returns rf and r̄h(s1) = φr̃h+ϕ(s1)−δh without specifying

the production function that generates these returns. We calibrate an annual risk-free rate

of rf = 3%, in line with Kaplan and Violante (2010) and roughly in line with Huggett et al.

(2011) and Krueger and Perri (2006) who use a 4% annual risk-free rate, but also deduct

capital income taxes.

We choose the age-dependent expected human capital returns, r̄h(s1), to match life-cycle

profile of earnings growth of the median household in the data for the first 8 age groups.

Specifically, we first construct a life-cycle profile of annual median household earnings and

earnings growth as described in the previous section, and then construct a corresponding

life-cycle profile of earnings growth for the relevant age groups. The result is depicted in

Figure 1 and shows the expected life-cycle pattern. Earnings growth rate are very high for

young households, monotonically decreasing in age, and turn negative for households older

than 50.

We assume that human capital shocks, η, are approximately normally distributed, that

is, we choose the probabilities π(s2) and the realizations η(s2) to approximate a normal

distribution with mean 0 and standard deviation ση = 0.15. The parameter ση measures

human capital risk and our choice of ση = 0.15 is motivated by the following considerations.

9We only use observations until age 60 for the regression.
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In the model economy, labor income of an individual household in period t is given by

yht = r̃hht, so that the growth rate of labor income is equal to the growth rate of human

capital: yh,t+1/yht = hh,t+1/ht. We can use the equilibrium solution to compute the human

capital growth between year t and year t + 1. Neglecting transitions across age groups s1,

this yields:

ht+1

ht
= β (θh(s1,t−1)(1 + φr̃h + ϕ(s1,t) − δh + η(s2t)) + θa(s1,t−1, s1t, s2t)) (31)

Equation (31) can be written as

ln yh,t+1 = ln yht + d(s1) + η̃t, (32)

where d(s1) is a constant and {η̃t} is a sequence of i.i.d. random variables with

σ2
η̃(s1) = θ2

h(s1)σ
2
η + var[θa|s1] (33)

Hence, the logarithm of labor income follows a random walk with drift d and innovation

term η̃t.
10 The random walk specification is often used by the empirical literature to model

the permanent component of labor income risk (Carroll and Samwick (1997), Meghir and

Pistaferri (2004), and Storesletten et al. (2004)). Thus, their estimate of the standard

deviation of the error term for the random walk component of annual labor income can be

used to find a value for σ2
η̃ for given portfolio choices θh and θa. For young households, we

will see below that θh is close to one and insurance payments, θa(s2), are small, so that we

have σ2
η̃ ≈ σ2

η. In our baseline calibration, we use ση = .15, which lies on the lower end of the

spectrum of estimates found by the empirical literature. For example, Carroll and Samwick

(1997) find .15, Meghir and Pistaferri (2004) estimate .19, and Storesletten et al. (2004)

have .25 (averaged over age-groups and, if applicable, over business cycle conditions). All

10We have η̃t instead of η̃t+1 in equation (32), and the latter is the common specification for a random
walk. However, this is not a problem if the econometrician observes the idiosyncratic depreciation shocks
with a one-period lag. In this case, (32) is the correct equation from the household’s point of view, but a
modified version of (31) with η̃t+1 replacing η̃t is the specification estimated by the econometrician.
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these studies use labor income before transfer payments, which is the relevant variable from

our point of view.

For the baseline calibration, we assume that households who default regain access to

financial markets after 7 years: (1 − p) = 1/7. Finally, we assume a degree of relative risk

aversion of γ = 1 (log-utility) and set the annual discount factor to β = 0.95.11 We choose

the human capital rental rate, φr̃h, to match the average value of the financial wealth to

earnings ratio for households age 23-60 (see Figure 2 below).

f) Portfolio Choice and Human Capital Returns

In this subsection, we examine household’s portfolio allocation between financial assets and

human capital. To this end, we first use current earnings as a proxy for human capital

and construct the life-cycle profile of the ratio of financial wealth to earnings in the model

and in the data.12 Figure 2 depicts the result and shows that the model does an excellent

job of matching this life-cycle profile, though it somewhat over-predicts the financial wealth

holdings of the oldest households. Note that the model matches the life-cycle average of the

financial wealth to earnings ratio by construction since we choose the human capital rental

rate, φr̃h, accordingly. However, we have no additional parameter to match the shape of the

life-cycle profile depicted in Figure 2.

The advantage of using the financial wealth to earnings ratio as a measure of portfolio

choice, as we have done in Figure 2, is the ease with which this variable can constructed

from the data without imposing additional assumptions. The disadvantage is that current

earnings is a very crude proxy of human capital. We therefore construct an alternative

measure of portfolio choice that uses the present value of future lifetime earnings as a proxy

11An alternative calibration approach is to require the model to match a given expected human capital
return for the young and then use β to match the observed earnings growth rate of the young.

12In the model, this ratio is computed as 1−θh(s1)
φr̃hθh(s1)

.
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for human capital, where future earnings are discounted at the risk-free rate implied by the

calibrated model. Figure 3 depicts the result and shows that the model lines up reasonably

well with the data. However, the model over-predicts the human capital share, and this

over-prediction becomes more severe with age. The explanation for this is that in the model

older households are almost fully insured against the human capital loss upon retirement,

which means that the model tends to overstate the value of human capital. Clearly, this

type of “model error” becomes more important with age.13

In order to help understand the portfolio allocation decisions of households, Figure 4

presents the excess return to investing in human capital as a function of age. As shown in

the figure, young households face an excess return of almost ten percent, explaining why the

young hold very little financial wealth. Moreover, excess human capital returns in the vicinity

of 10 percent are in line with estimated rates of return to on-the-job-training (Blundell et al.

1999 and Mincer 1994). The excess return available to the oldest working households is less

than one-half of one percent, which explains why they hold so much more financial wealth

than the young.

g) Consumption Insurance and Welfare

The youngest households not only hold little financial wealth, but they are also dramatically

under-insured. Figure 5 plots a measure of consumption insurance, the insurance coefficient,

defined as one minus the ratio of the standard deviation of household consumption growth

to the standard deviation of household income growth. As shown in the figure, households

of the youngest age group are insured against only one third of their income risk, whereas

13Note that the value of human capital in the model is always equal to the expected present discounted
value of lifetime earnings if future earnings are discounted using the relevant intertemporal marginal rate of
substitution and the model earnings process is used to computed expected lifetime earnings. The difference
between the model implication and the data depicted in Figure 3 arises because i) different discount rates
are used and ii) the model earnings process (in conjunction with the almost full-insurance result for older
households) does not capture the data well after age 60.
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older households are insured against roughly 90 percent of their income risk.

Figure 6 examines the welfare consequences of this underinsurance, depicting the equiv-

alent variation of moving to full insurance measured in units of lifetime consumption. As

shown in the figure, the youngest households would require an increase of almost 7.5 percent

in their annual consumption to be as well off as if they had access to full insurance. Thus, for

young households the welfare loss due to lack of insurance against labor market risk are quite

substantial. Further, even for households age 40 these welfare losses amount to 3 percent of

lifetime consumption. For the older working households, however, this equivalent variations

has fallen to less than one-half of one percent.

h) The Effect of Changing Personal Bankruptcy Regimes

Figures 7 through 10 explore the consequences of changing the details of the personal

bankruptcy regime either by increasing the time for which a household is considered bankrupt,

or by allowing for wage garnishment during bankruptcy. Figures 7 and 8 focus on the effects

of changing the duration of bankruptcy from an average of 7 years to an average of 10 years.

As shown in Figure 7, the human capital portfolio share of the youngest households rises

from almost one, denoting no financial wealth, to a value greater than one, denoting negative

net financial assets. This increase is reflected throughout the age distribution, although the

increases are quite modest in size and decline with age. Figure 8 shows that, although hu-

man capital investment increases, insurance against human capital risk is almost unchanged,

with the blue and red lines almost atop one another. The reason is that households prefer,

on the margin, to borrow more in order to invest in human capital and not buy any further

insurance. This is also confirmed by the green line in Figure 8 which shows the effect on

risk sharing if the household is constrained from increasing their human capital portfolio. In

this case, risk sharing is increased across all age groups, with the largest effect on the young,

who are most likely to be constrained, and whose consumption insurance rises from about a
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third of income risk to roughly 40 percent of income risk.

Figures 9 and 10 repeat the above analysis, this time by introducing garnishment of 20

percent of wages while bankrupt. Figure 9 shows that this results in a qualitatively simi-

lar increase in human capital portfolio shares with the portfolio share of the very youngest

working households exceeding one by roughly 7 percent. Borrowing levels are also positive

(the human capital share remains larger then one) for households throughout their 30’s and

into their 40’s. Figure 10 also shows that there is no significant increase in risk sharing. If

households are constrained from investing more in human capital (the green line), consump-

tion insurance increases dramatically with the young now insured against almost 60 percent

of their income risk.

i) The Effect of Changing Human Capital Risk

We now consider an increase in the standard deviation of labor income shocks from ση = 0.15

to ση = 0.20. Figure 11 shows that the effect of this increase on human capital investment is

not monotone: young households increase, while older households decrease, their investments

in human capital. This is the result of two offsetting forces. On the one hand, an increase in

labor income risk makes investments in human capital less attractive for a given mean return.

On the other hand, increases in labor income risk make the prospect of declaring bankruptcy

less attractive as the household must bear the full cost of this risk while bankrupt. For young

households, who desire to hold more human capital, the latter effect dominates, while for

older households the former effect dominates.

Figure 12 shows the implications of these choices for consumption insurance. Whereas the

blue line shows that consumption insurance is increased for all household ages, the green

line depicts what would have happened to consumption insurance if the households had

been unable to adjust their human capital holdings. As shown in the figure, the youngest
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households would have increased their consumption insurance even further, while the oldest

households would have had less consumption insurance as the costs of declaring bankruptcy

were significantly reduced and thus the extent of available insurance constraints was reduced.

j) The Effect of Changing Risk Aversion

Lastly, Figures 13 and 14 illustrate the effects of changing the coefficient of relative risk

aversion from γ = 1 to γ = 2 keeping all factor returns constant at the levels calibrated

in the baseline. Figure 13 shows that greater risk aversion, everything else equal, results

in greater investments in human capital. This result stems from the fact that declaring

bankruptcy is now more expensive, and hence households are able to borrow more for the

purpose of investing in human capital. This offsets the fact that more risk averse individuals

are otherwise less inclined to invest in risky assets.

Figure 14 shows that consumption insurance is also improved for households with higher

risk aversion reflecting both a greater demand for insurance and greater possibilities for

insurance resulting from the fact that default is less desirable for such households. Also

shown in the figure, as depicted by the green line, if that consumption insurance would have

increased still further if households had been unable to increase their investments in risky

human capital.

k) Closing the Model (General Equilibrium)

We now return to the full general equilibrium model (endogenous investment returns) and

show how to complete the model calibration by introducing a production function and

imposing a number of aggregate targets. We use a Cobb-Douglas production function

f(K̃) = AK̃α, where 0 < α < 1 is capital’s share in output and A is a productivity pa-

rameter. In this case, the rental rates of physical capital and human capital are given by

r̃k = αAK̃α−1 (34)
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r̃h = (1 − α)AK̃α

As in Krebs, Kuhn, and Wright (2015), we target an aggregate share of capital income,

r̃kK/Y , of 0.32 so that α = 0.32. We also follow Krebs, Kuhn, and Wright (2015) and target

an aggregate capital-to-output ratio of 2.94. This target in conjunction with the target

rf = r̃k − δk = 0.03 yields r̃k = 0.1085 and δk = 0.0785.

Recall that in the partial equilibrium calibration we have chosen the value of φr̃h to match

the average financial-wealth-to-earnings ratio from the SCF for households age 23-60. Given

that the values for capital’s share in output/income and r̃k and δk are also pinned down, the

only way to have the general equilibrium model match a particular target for the aggregate

capital-to-output ratio is to vary λ in (25), respectively λh in (26), which is the approach

taken Krebs, Kuhn, and Wright (2015).

The calibration approach discussed so far determines φr̃h, the rental rate of human capital

in consumption units, but does not determine separately φ and r̃h. To resolve this indeter-

minacy, Krebs, Kuhn, and Wright (2015) impose the (somewhat arbitrary) condition that

K̃ = 0.4, where the value 0.4 for the capital-to-labor ratio is in line with the results obtained

in Krebs (2003) using a model with φ = 1 (one unit of the consumption/capital good can

be transformed into one unit of human capital).

Finally, we note that the life-cycle profile of human capital returns, r̄h(s1), which is

pinned down by the partial equilibrium calibration, and the human capital rental rate, φr̃h

(see above), imply a life-cycle profile for the difference ϕ(s1) − δh. However, the values

for the learning-by-doing parameters and the human capital depreciation rate are still not

separately identified. Krebs, Kuhn, and Wright (2015) choose δh = 0.04, which then pins

down the life-cycle profile of learning-by-doing parameters.
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Appendix

Proof of Proposition 1

To simplify the notation, suppress the dependence on the aggregate state, Ω, and consider a

household of cohort n = 0. Further, define an action variable xt = (ct, θt+1) and a feasibility

correspondence, Γ, that for every (wt, st) restricts the choice of (wt+1, xt) according to (15).

Using this notation, the household maximization problem reads

max E

[ ∞∑

t=0

βtνtu(xt|w0

]
(A1)

s.t. (wt+1, xt) ∈ Γ(wt, st)

E

[ ∞∑

m=0

βmνmu(xt+m)|w0, s
t

]
≥ Vd(wt, st)

The corresponding Bellman equation reads:

V (w, s) = max
x,w′

{
u(x) + βρ(s)

∑

s′
V (w′, s′)π(s′|s)

}
(A2)

s.t. (x,w′) ∈ Γ(w, s)

V (w′, s′) ≥ Vd(w
′, s′)

Define an operator, T , that maps semi-continuous functions into semi-continuous func-

tions as

TV (w, s) = max
x,w′

{u(x) + βE[V (w′, s′)|s]} (A3)

s.t. (x,w′) ∈ Γ(w, s)

V (w′, s′) ≥ Vd(w
′, s′) .

A standard contraction mapping argument shows that there is a unique continuous solution,

V0, to the Bellman equation (A2) without participation constraint if i) u is continuous, ii)

Γ is compact-valued and continuous, and (19) holds. Extending the argument of Rustichini
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(1998),14 it can be shown that V∞ = limk→∞ T kV0 exists, is equal to the maximal solution of

the Bellman equation (A2), and is the value function of the sequential maximization problem

(A1) if the following four conditions hold: i) u is continuous, ii) Γ is compact-valued and

continuous, iii) for all states, (w, s), there exists a feasible plan for the sequential problem

(A1) so that the corresponding expected lifetime utility (payoff) is greater than −∞, and

iv) for any given state, (w, s), the value function of the max-problem without participation

constraints satisfies V ∗
0 (w, s) < +∞. Thus, to prove proposition 1 it suffices to show that

conditions i)-iv) hold.

The continuity of the payoff function, u, is obvious. The correspondence, Γ, is compact-

valued since portfolio-choices, θ′, are elements of a closed and bounded subset of IRm. Closed-

ness follows from the fact that the set is defined by equalities and weak inequalities. Restrict-

ing attention to a bounded set can be shown to be without loss of generality. Continuity

of the correspondence Γ is also straightforward to show. A standard argument shows that

conditions iii) and iv) hold if condition (19) is satisfied. This proves proposition 1.

Proof of Proposition 2

As before, let V0 be the solution of the Bellman equation (A2) without the participation con-

straint. To save space, we only conduct the prove for the case γ 6= 1. Simple guess-and-verify

shows that V0 has the following functional form:

V0(w, s) = Ṽ0(s)w1−γ (A4)

where Ṽ0 is the solution to the intensive-form Bellman equation (22) without participation

constraint. Let the operator T be defined as in (A3). We show by induction that if Vk = T kV0

14Rustichini (1998) consider a class of dynamic programming problems with participation constraint (in-
centive compatability constraint) and possibly unbounded utility. However, he requires bi-convergence,
which is always satisfied if lifetime-utility is bounded for all feasible paths (Streufert, 1990). Unfortunately,
in our problem with γ ≥ 1 the requirement of lower convergence is not satisfied, so that Rustichini (1998) is
not directly applicable.
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has the functional form, then Vk+1 = T k+1V0 has the functional form. For k = 0 the claim is

true because V0 has the functional form. Suppose now Vk has the functional form. We then

have

Vk+1(w, s) = T Vk(w, s)

= max
w′,c,θ′

{
c1−γ

1 − γ
+ ρ(s)

∑

s′
Ṽk(s

′)(1 + r(θ′, s, s′))1−γ(w′)1−γπ(s′|s)
}

s.t. w′ = (1 + r(θ′, s, s′))(w − c)

1 = θ′h +
∑

s′

θ′a(s
′)π(s′|s)

1 + rf
(A5)

∑

s′

π(s′|s)θ′a(s′)
1 + rf

≥ −D̄θ′h , θ′h ≥ 0 , w′ ≥ 0

Ṽk(s
′) (1 + r(θ′h, θa(s

′), s, s′))
1−γ

(w′)1−γ

≥ Ṽd(s
′)(1 + rhd(s, s

′))θ′h .

Clearly, the solution to the maximization problem defined by the right-hand-side of (A5) has

the form

w′
k+1 = (1 − c̃k+1(s))w (A6)

θ′k+1 = θ′k+1(s) ,

where the subscript k + 1 indicates step k + 1 in the iteration. Thus, we have Vk+1(w, s) =

Ṽk+1(s)w
1−γ where Ṽk+1 is defined accordingly.

From proposition 1 we know that V∞ = limk→∞ T kV0 exists and that it is the maximal

solution to the Bellman equation (A2) as well as the value function of the corresponding

sequential maximization problem (A1). Since the set of functions with this functional form

is a closed subset of the set of semi-continuous functions, we know that V∞ has the functional

form. This prove proposition 2.
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Proof of Proposition 3

From proposition 2 we know that individual households maximize utility subject to the

budget constraint and participation constraint if condition (19) is satisfied. Thus, it remains

to show that the market clearing condition can be written as (22) and that the law of motion

(23) describes the equilibrium evolution of the relative wealth distribution.

For simplicity, we only consider the case of infinitely-live households (one cohort n = 0).

For the aggregate value of financial asset holdings we find:

E

[
θa,t+1wt+1

1 + rt+1

]
= E[θa,t+1(1 − c̃t)wt] (A7)

= E[E[θa,t+1(1 − c̃t)wt|st]]

= E[θa,t+1(1 − c̃t)E[wt|st]]

= E [wt]
E[θa,t+1(1 − c̃t)E[wt|st]]

E [wt]

= E [wt] E [θa,t+1(1 − c̃t)Ω(st)] .

where the first line follows from the budget constraint, the second line from the law of iterated

expectations, the third line from the fact that θa,t+1 and c̃t are independent of wealth and

st−1, and the last line from the definition of Ω. A similar argument shows that

Ht+1 = E [wt] z̄E [θh,t+1(1 − c̃t)Ω(st)] . (A8)

Dividing the two expressions shows that K̃ ′ is given by (22).

Finally, the law of motion for Ω can be found as:

Ωt+1(st+1) =
E [wt+1|st+1]

E [wt+1]
(A9)

=
E [(1 + rt+1)(1 − c̃t)wt|st+1]

E [(1 + rt+1)(1 − c̃t)wt]

=
E [E [(1 + rt+1)(1 − c̃t)wt|st] |st+1]

E [E [(1 + rt+1)(1 − c̃t)wt|st]]

=
E [(1 + rt+1)(1 − c̃t)E [wt|st] |st+1]

E [(1 + rt+1)(1 − c̃t)E [wt|st]]
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=
E [(1 + rt+1)(1 − c̃t)E [wt|st] |st+1]

E [(1 + rt+1)(1 − c̃t)E [wt|st]]
× E [wt]

E [wt]

=
E [(1 + rt+1)(1 − c̃t)Ωt(st)|st+1]

E [(1 + rt+1)(1 − c̃t)Ωt(st)]
,

where the second line follows from the budget constraint, the third line from the law of

iterated expectations, the fourth line from the fact that θt+1 and c̃t are independent of

wealth and st−1, and the last line from the definition of Ω. This completes the proof of

proposition 3.
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Figure 1: Earnings growth rates
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Notes: Earnings growth rates from the model and the data. The red line with circles shows the model,
the blue line with squares the data. Horizontal axis shows average age within each age group and vertical
axis shows annual earnings growth in percent.

Figure 2: Financial wealth to earnings ratio
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Notes: Wealth-to-income from the model and the data. The red line with circles shows the model, the
blue line with squares the data. Horizontal axis shows average age within each age group.
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Figure 3: Human capital portfolio share
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Notes: Human capital portfolio share in total wealth from the model and the data. The red line with
circles shows the model, the blue line with squares the data. Horizontal axis shows average age within
each age group.

Figure 4: Excess human capital returns
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Notes: Excess human capital returns over the life-cycle. Horizontal axis shows average age within each
age group.
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Figure 5: Consumption insurance

25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

Notes: Consumption insurance of households over the life-cycle. Consumption insurance is measured by
the insurance coefficient. The insurance coefficient is constructed as one minus the ratio of the variance
of consumption growth over the variance of income growth. Full insurance yields an insurance coefficient
of 1 and no insurance (autarky) an insurance coefficient of 0. Horizontal axis shows average age within
each age group.

Figure 6: Welfare cost of underinsurance
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Notes: Welfare costs of limited contract enforcement over the life-cycle. Welfare costs are shown as
consumption equivalent variation in percentage points. Horizontal axis shows average age within each
age group.

iii



Figure 7: Human capital portfolio share after change in enforcement
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Notes: Human capital portfolio share in total wealth from the baseline model and from comparative
statics experiment. The comparative statics experiment changes p from 1

7
to 1

10
. The red line with circles

shows the baseline model, the blue line with squares shows the comparative statics results. Horizontal
axis shows average age within each age group.

Figure 8: Consumption insurance after change in enforcement
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Notes: Consumption insurance of households over the life-cycle for baseline model and from comparative
statics experiment. The comparative statics experiment changes p from 1

7
to 1

10
. The red line with

circles shows the baseline model, the blue line with squares shows the comparative statics results, the
green line with diamonds shows the comparative statics results with human capital allocation fixed to the
baseline. Consumption insurance is measured by the insurance coefficient. Horizontal axis shows average
age within each age group.
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Figure 9: Human capital portfolio share after introduction of wage garnishment
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Notes: Human capital portfolio share in total wealth from the baseline model and from comparative statics
experiment. The comparative statics experiment introduces a 20% wage garnishment during default. The
red line with circles shows the baseline model, the blue line with squares shows the comparative statics
results. Horizontal axis shows average age within each age group.

Figure 10: Consumption insurance after introduction of wage garnishment
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Notes: Consumption insurance of households over the life-cycle for baseline model and from compara-
tive statics experiment. The comparative statics experiment introduces a 20% wage garnishment during
default. The red line with circles shows the baseline model, the blue line with squares shows the com-
parative statics results, the green line with diamonds shows the comparative statics results with human
capital allocation fixed to the baseline. Consumption insurance is measured by the insurance coefficient.
Horizontal axis shows average age within each age group.
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Figure 11: Human capital portfolio share after change in human capital risk
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Notes: Human capital portfolio share in total wealth from the baseline model and from comparative
statics experiment. The comparative statics experiment changes the standard deviation of human capital
risk from 0.15 to 0.2. The red line with circles shows the baseline model, the blue line with squares shows
the comparative statics results. Horizontal axis shows average age within each age group.

Figure 12: Consumption insurance after change in human capital risk
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Notes: Consumption insurance of households over the life-cycle for baseline model and from comparative
statics experiment. The comparative statics experiment changes the standard deviation of human capital
risk from 0.15 to 0.2. The red line with circles shows the baseline model, the blue line with squares shows
the comparative statics results, the green line with diamonds shows the comparative statics results with
human capital allocation fixed to the baseline. Consumption insurance is measured by the insurance
coefficient. Horizontal axis shows average age within each age group.
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Figure 13: Human capital portfolio share after change in risk aversion
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Notes: Human capital portfolio share in total wealth from the baseline model and from comparative
statics experiment. The comparative statics experiment changes the degree of relative risk aversion γ

from 1 to 2. The red line with circles shows the baseline model, the blue line with squares shows the
comparative statics results. Horizontal axis shows average age within each age group.

Figure 14: Consumption insurance after change in risk aversion
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Notes: Consumption insurance of households over the life-cycle for baseline model and from comparative
statics experiment. The comparative statics experiment changes the degree of relative risk aversion γ

from 1 to 2. The red line with circles shows the baseline model, the blue line with squares shows the
comparative statics results, the green line with diamonds shows the comparative statics results with
human capital allocation fixed to the baseline. Consumption insurance is measured by the insurance
coefficient. Horizontal axis shows average age within each age group.
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