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Dynamic Treatment Evaluation* 

 
We develop a nonparametric instrumental variable approach for the estimation of average 
treatment effects on hazard rates and conditional survival probabilities, without model 
structure. We derive constructive identification proofs for average treatment effects under 
noncompliance and dynamic selection, exploiting instrumental variation taking place during 
ongoing spells. We derive asymptotic distributions of the corresponding estimators. This 
includes a detailed examination of noncompliance in a dynamic context. In an empirical 
application, we evaluate the French labor market policy reform PARE which abolished the 
dependence of unemployment insurance benefits on the elapsed unemployment duration 
and simultaneously introduced additional active labor market policy measures. The estimated 
effect of the reform on the survival function of the duration of unemployment duration is 
positive and significant. Neglecting selectivity leads to an underestimation of the effects in 
absolute terms. 
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1. Introduction

In the evaluation of treatment effects on duration outcomes, such as the effect
of job search assistance on unemployment durations, it is often interesting to
distinguish effect sizes by the elapsed duration of unemployment. Differences
between effects at low durations and high durations may shed light on the extent
to which individual behavior changes over time and this may be relevant for
policy design (see e.g. Van den Berg, 2001). Empirical studies therefore tend to
estimate effect sizes on hazard rates or on conditional survival probabilities at a
range of elapsed durations.

However, the identification of such dynamic treatment effects is hampered by
some hurdles even if the assignment is randomized. First, suppose the treatment
is randomized at some elapsed duration t after inflow into some state of interest.
In the presence of unobserved determinants of the outcome, their distributions
among survivors at some later point in time will differ across different treatment
arms; see Meyer (1996), Ham and LaLonde (1996), Eberwein et al. (1997) and
Abbring and van den Berg (2005). A second hurdle is posed by the standard
issue of noncompliance. If individuals can choose a treatment status different
from the one that has been assigned to them, then estimation results will suffer
from the standard selection bias. We refer to these two hurdles as dynamic and
static endogeneity, respectively. A third hurdle is posed by the fact that duration
variables are often subject to right-censoring. In this paper, we develop an in-
strumental variable (IV) approach for identification and estimation of dynamic
treatment effects on the conditional survival function and the hazard of a dura-
tion variable. Our method solves the dynamic and static endogeneity problems
and allows for right-censoring. We do not adopt parametric or semiparametric
structures. We also do not impose independence of observed and unobserved
characteristics or separability in their effects on the outcome. We propose esti-
mation procedures and derive their asymptotic properties. Our estimators are
dynamic versions of the Wald estimator.

We focus on a setting in which a single comprehensive treatment is assigned
at a specific calendar point in time to all individuals in some state of interest. A
typical example is a labor market policy reform that changes the unemployment
benefits system. Cohorts of individuals receive the treatment at the same point
in calendar time but at different elapsed durations of their spells. The policy
intervention can be regarded as exogenous, but due to dynamic selection the
distribution of unobserved characteristics at the moment of treatment will differ
across cohorts. Additionally, we allow for noncompliance in the sense that indi-
viduals may influence the extent to which they are exposed to the new policy
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regime. As an alternative example, we may replace the role of the labor market
policy reform by a randomized field experiment.

Van den Berg et al. (2014) considered exogenous policy interventions and
demonstrated that nonparametric causal inference of effects on hazard rates and
conditional survival probabilities greatly benefits from the availability of data
in which ongoing spells are interrupted by the intervention. In particular, such
data allow for a comparison of subsamples of treated and not-yet treated that
experienced the same dynamic selection pattern at durations before the elapsed
duration at which the treated subsample was exposed to the intervention. Our
approach also exploits ongoing spells that are interrupted by an exogenous
intervention. The major contribution of our paper is to allow for partial compli-
ance. Thus, the treatment assignment is not mandatory, and only some of those
assigned select into it. The problem of noncompliance has received much atten-
tion in the static evaluation literature in recent years (references are provided
below). This contrasts to noncompliance in a dynamic nonparametric context.
We achieve identification of treatment effects using the time to assigned treat-
ment as an instrument for the actual treatment status. Notice that we effectively
have a setting in which the instrumental variable and the treatment indicator are
realized at the same elapsed duration. This serves to prevent that individuals
respond to the instrumental variable before the treatment indicator is realized, in
which case the dynamic selection pattern would differ between the subsamples
of those who are assigned to the treatment and those who are not.

In the second part of the paper we evaluate the French 2001 labor market policy
reform PARE which changed the dependence of unemployment benefits on
the elapsed unemployment duration and simultaneously introduced additional
active labor market policy measures. Individuals who were unemployed at the
moment of the reform could choose whether to stay in the old regime for the
remaining duration of their spell – or to enter the new regime immediately.
In this empirical analysis we apply the methods devised in the first part of
the paper. This includes an extensive examination of the plausibility of the
assumptions required for the use of the methods. We address the non-testable
independent right-censoring assumption in a simulation study. This suggests
that the estimation results are robust to violations of the assumption, primarily
because violations that are likely to occur in the PARE setting have opposite
directions and offset each other’s impact on the estimates.

An additional contribution of our paper concerns the development of a theo-
retical framework to analyze the importance of endogeneity due to noncompli-
ance in a dynamic setting. Specifically, we propose how to measure the extent
of noncompliance and the bias that would be induced if its role is ignored. Un-
derstanding noncompliance is an important ingredient in the analysis of policy
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effectiveness and policy design. Pilot studies with noncompliance can be used
to derive bounds for the effect of a comprehensive policy reform with perfect
compliance. Our methods are based on a comparison of untreated noncompliers
with a whole nontreated cohort at the same elapsed duration. In the empiri-
cal analysis, the results indicate that noncompliance is endogenous and that one
major reason for noncompliance is the expectation of a quick exit. These findings
are in line with Blasco (2009) who studied noncompliance in the PARE reform.

By dealing with both dynamic and static selection, our paper provides a link
between the IV literature on treatment effects, the literature on dynamic treat-
ment evaluation, and the regression discontinuity literature. The emphasis on
noncompliance and IV estimation means that the link to the existing literature
on IV in survival models and dynamic models is particularly strong. Much of
the latter literature is surveyed in Abbring and van den Berg (2005). Eberwein
et al. (1997) were the first to introduce IV in econometric survival analysis. They
applied this to study the causal effect of training on unemployment durations.
See also Robins and Tsiatis (1991), Chesher (2002), Bijwaard and Ridder (2005),
Heckman and Navarro (2007), Bijwaard (2008) and Tchetgen et al. (2014). Typ-
ically, these studies adopt a semiparametric or a parametric model structure.1

Abbring and van den Berg (2005) develop a nonparametric IV estimator of the lo-
cal average treatment effect on the survival function for the case that instrument
and treatment indicator are realized at the inflow into the state of interest.

Another branch of literature that is relevant for our study comprises of ex-
isting empirical evaluations of the PARE reform. These impose semiparametric
or parametric model structures and/or focus on other outcome measures than
we do. They are discussed in section 3 below. The remainder of this paper is
structured as follows. We present our IV approach in section 2. In section 3, we
apply our IV method to the French labor market policy reform PARE. Section 4
concludes. All proofs are in the appendix.

2. Identification and estimation of dynamic treatment effects

2.1. Notation and a framework for dynamic treatment evaluation. Assume
that all agents in some state of interest O are assigned to receive a treatment at a
specific calendar point in time r > 0. We are interested in the causal effect of this
treatment on the distribution of the duration of stay in O. We embed our analysis
in a framework with dynamic potential outcomes. We assume that potential
outcomes of the individual i depend on pretreatment characteristics Xi and Vi,

1The use of dynamic discrete choice models such as the reduced-form model in Heckman
and Navarro (2007) enables the evaluation of complex treatment effects as well as the distribu-
tion of counterfactuals. Identification allows for general time-varying unobservables but uses
identification at infinity as well as some separability and random effects assumptions.
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of which the q-dimensional Xi is observed, q ≥ 1, and the one-dimensional Vi not.
Let the random variable Zi denote the time from inflow to the assigned point in
time of treatment and Si the elapsed duration in O at which individual i actually
receives the treatment. Si is a choice variable whereas Zi is exogenous. For each
X = x,V = v,Z = z,S = s, denote with Ti(s, z,x,v) the potential duration of stay in
O of individual i if he or she had characteristics (x,v) and received (z, s) as values
for (Z,S). We allow Ti(s, z,x,v) to be a random variable. This assumption reflects
some intrinsic uncertainty in the transition, not necessarily observed and/or
controlled by the agent, see Lancaster (1990) for a discussion. Throughout the
paper, we assume that Z is an exclusion restriction in the sense that Ti(s, z,x,v) =
Ti(s,x,v). For notational simplicity, we will suppress the dependence on X and
V as well as the individual index i and write simply T(s).

This setup corresponds to a labor market program implementation, in which
a policy reform is administered at a fixed point in time. Our methods however,
as shown in the discussion below, can be extended to a setup with ongoing pro-
grams, in which the treatment is assigned at random points in time to different
individuals. In a labor market context, X might be education, gender, number
of siblings, age and experience at inflow, whereas V might be the ability of an
unemployed or his or her motivation. In a medical study, X might be some ob-
served health marker, whereas V might be some genetic unobserved component.
X and V obtain values in ΩX and ΩV.

We enrich this dynamic framework by allowing the agents to opt out of the
assigned treatment. We refer to this opting out as static selection. To fix ideas, for
each z ∈ R+ and each (x,v) ∈ ΩX ×ΩV, let the random variable S(z,x,v) denote
the potential compliance status of an individual with observed and unobserved
characteristics x and v, respectively, given that the treatment z is assigned to that
individual. For notational simplicity, we write S(z). S(z) can be interpreted as
the potential elapsed duration in O at which an agent would like to be treated,
if he or she was assigned to be treated at elapsed duration z. To make the model
tractable, an agent is only allowed to accept or reject an assigned treatment,
and the treatment is only offered once (see assumption A1 in the following
subsection, as well as the corresponding discussion). Thus, for each z ∈ R+,
S(z) may take only the values z ( the case of compliance) and ∞ (the case
of noncompliance).2 Agents are allowed to have an arbitrary time structure of
their compliance preferences. A cancer suffering patient might be reluctant to
accept a new therapy at an early stage of the disease, but his or her preference
might change at an advanced stage of the disease. Similarly, an unemployed

2Alternatively, we might restrict the maximal potential duration of the state of interest to be
equal to some positive real number S̄. In that case, noncompliers receive S(z) = S̄. We do not
differentiate between these two cases and write ∞.
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person might refuse a training early in the unemployment spell and be willing
to attend it later on. To account for the possibility of changing preferences, we
refer to individuals who would be willing to receive a treatment at some elapsed
duration z, given that they were asked to do so, as z-compliers. This notion
generalizes the static compliance definition.

Allowing for static selection is common in the standard literature on (static)
treatment evaluation, see Heckman and Vytlacil (2007). In a labor market pro-
gram, unemployed individuals might decide not to accept an offer for a training
or a counselling service. In a medical study, patients assigned to drop out from
a therapy might be able to participate in a substitute program. Selection into or
out of a certain treatment status creates a potential endogeneity problem, which
has given rise to the development of the Local Average Treatment Effect (LATE)
literature, see Imbens and Angrist (1994). Typically, the randomized treatment
assignment is used as an instrument for the endogenous actual treatment status.3

Let T be the actual duration of the spell. T might be right censored by a random
variable C. Define T̃ ∶= min{T,C} and the censoring indicator δ ∶= 1{T̃ = T}. We
observe (T̃, δ) and not directly (T,C). We assume access to an i.i.d. sample

(T̃1,S1,Z1,X1, δ1), . . . , (T̃n,Sn,Zn,Xn, δn),

where Si is missing if Si > T̃i.

Remark
Unless explicitly otherwise stated, we will denote with t, s, z elapsed durations
in O (and not calendar time). Thus, for example, 0 refers to the point in time of
inflow of an agent into O. Furthermore, we do not need a binary process Di(t)
that denotes the treatment status of an agent i at time t. Before the calendar
point in time r, nobody is treated. After r, all compliers are treated, that is, all
individuals whose value of S is equal to the corresponding value of Z. Therefore,
the treatment status can be deduced from S, Z and the calendar time.

Let t ≥ t′′. The treatment effect of interest is

(2.1) P(T(s) ∈ [t, t + a) ∣ T(s) ≥ t′′,X,V) − P(T(s′) ∈ [t, t + a) ∣ T(s′) ≥ t′′,X,V),

that is, the additive effect of replacing the treatment s′ with the treatment s
on the probability to exit the state of interest between t and t + a conditionally
on surviving up to t′′. The case s′ = ∞ induces a comparison between those
treated at s and those never treated. Another special case is the limit case a → 0,
t′′ = t. Denote with θT(s)(t ∣ X,V) the hazard of T(s) at t for an individual with
characteristics X and V. Then the individual additive treatment on the hazard at

3In line with the biometry literature, this instrument is also called Intention-to-Treat (ITT)
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t is defined as

(2.2) θT(s)(t ∣ X,V) − θT(s′)(t ∣ X,V).

It reflects the additive change in the exit rate induced by a change of the treatment
from s′ to s. One appealing feature of additive treatment effects is their intuitive
interpretation. To see this, write P(T(s) ∈ [t, t + a) ∣ T(s) ≥ t′′) = E[1{T(s) ∈

[t, t + a)} ∣ T(s) ≥ t′′,X,V]. The indicator function is a Bernoulli random variable
and its distribution is completely determined by its expectation.

One might be interested in identifying the (additive) effect on the uncondi-
tional survival function, that is, t′′ = 0:

(2.3) P(T(s) ∈ [t, t + a)) − P(T(s′) ∈ [t, t + a)),

However, this precludes dynamic selection; see Abbring and van den Berg (2005)
for a discussion.4 Often though it might be of interest to identify the effect of a
treatment assigned at a later point in time only for those who actually would
receive the treatment. In the labor market example, such a case would arise
if a treatment is targeted at longterm unemployed individuals. In the medical
example, due to its side effects, a therapy might be targeted only at patients who
are at an advanced stage of a disease. For this reason, we consider the general
case of conditioning on survival up to a point t′′ = t for 0 ≤ t = s < s′ ≤∞, that is

(2.4) P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,X,V) − P(T(s′) ∈ [t, t + a) ∣ T(s′) ≥ t,X,V).

Conditioning on survival has one further justification. Note that allowing for
noncompliance requires the observability of the compliance status. In our frame-
work, individuals who exit the state of interest prior to revealing compliance
preferences have an unknown compliance status (that is, we do not know
whether they are compliers).

We do not impose a parametric form on the distribution of T(s) and we allow
for separability and general dependence of observed and unobserved covariates
X and V, respectively. The restriction t = s is necessary to ”unify” the dynamic
selection between treated and untreated, as discussed in the next subsection. By
redefining s to be the time to dropout of a treatment, we can analyze the effect
of the length s of a treatment on the distribution of T(s).

There are two limitations we have to consider. First, not specifying the depen-
dence of the distributions of T(s) and the unobservables V makes it impossible to
identify the individual treatment effect (2.4). The price to pay for the functional
form generality is that we have to average V out. Due to dynamic selection,

4Abbring and van den Berg (2005) consider a case with conditioning on a positive elapsed
spell duration, t′′ > 0, that is, conditioning on T(s) > t′′, t′′ > 0, and derive bounds for the effect.
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the distribution of the unobservables might 1) be different in the subpopula-
tion of survivors at some point in time t > 0 from the distribution in the whole
population and 2) differ among different treatment arms. Therefore, it arises the
question over which distribution of V to average. Van den Berg et al. (2014)
suggest to condition on different subpopulations of survivors, such as treated
survivors. A second limitation that arises in our context due to the possibility of
static selection is that one can observe only the t-compliers with the treatment.
This problem has been discussed in the literature on static treatment effects, see
Imbens and Angrist (1994). Their solution is to consider only a treatment effect
on the subpopulation of compliers. We adapt this restriction to our dynamic
concept of compliance. We condition on S(t) = t. This restricts the analysis to the
subpopulation of t-compliers, that is, to those individuals who would take the
treatment at an elapsed duration of t if they were asked to do so. With these con-
siderations, we define the Average Treatment Effect on the Treated Complying
Survivors, shortly TE, as

TE(t, t′, a) ∶= E[P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,S(t) = t,X,V) −(2.5)

P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,S(t) = t,X,V) ∣ T(t) ≥ t,S(t) = t,X].

The effects on the nontreated and on the whole population are defined anal-
ogously.5 The positive constant a is chosen such that a < t′ − t. This restriction
insures a comparison of treated with nontreated individuals. Similarly, the treat-
ment effect on the hazard (HTE) is defined as

HTE(t, t′) ∶= E[θT(t)(t ∣ S(t) = t,X,V) −(2.6)

θT(t′)(t ∣ S(t) = t,X,V) ∣ T(t) ≥ t,S(t) = t,X].

Remark
An alternative treatment effect that can be considered in this framework is a
relative effect on the hazard rate at t, θT(s)(t ∣ X,V)/θT(s′)(t ∣ X,V). Abbring and
van den Berg (2005) prove identification of this treatment effect under multi-
plicative unobserved heterogeneity, that is, under θT(s)(t ∣ X,V) = θ∗T(s)(t ∣ X).V.
We do not pursue this approach here.

Remark
Our model can be applied to an alternative setup, in which individual spells have
the same starting point 0 in calendar time, but the agents receive the treatment
at different points in time. Here, a cohort {Z = t} consist of all individuals who
are assigned to receive the treatment at calendar time t.

5In fact, they coincide under the assumptions introduced in the next subsection, see proposi-
tion 2.1.
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2.2. Identification of dynamic treatment effects. In this section, we show that
there exists a function that links the joint distribution of the observables with
the treatment effect. As a result, the treatment effect is identified. We derive this
function explicitly. Thus, our identification strategy is constructive in the sense
that it provide a guidance for estimation. We adopt the following assumptions:

A1 (Single treatment) : for any t it holds either S(t) = t or S(t) = +∞.
A2 (No anticipation) : For each real t′ ≥ t ≥ 0 and each X,V holds

ΘT(t′)(t ∣ X,V,S(t),S(t′)) = ΘT(∞)(t ∣ X,V,S(t),S(t′)),

where ΘT(s) is the integrated hazard of T(s).
A3 (Randomization) : For the instrument Z it holds

i) Z y {T(s),S(t)}t,s∈R+⋃{+∞} ∣ X,V and ii) Z y V ∣ X.

A4 (Consistency) For all t, s ∈ R+⋃{+∞}

i) Z = t⇒ S(t) = S
ii) S = s⇒ T(s) = T

(1) Assumption A1 defines the possible types of noncompliance. Agents are
only allowed to choose between being treated at the assigned point in
time and being never treated. A1 precludes the type of choices S(t) = t′

for some t′ ≠ t with t′ < ∞. A1 is compatible with a setup where the
treatment is administered at a single point in calendar time and agents
have no access to an alternative treatment. This setup corresponds to
a one-sided noncompliance in the static treatment evaluation literature.
One-sided noncompliance precludes the existence of always-takers.6 As
a result, no monotonicity-type assumption (as the one invoked in Imbens
and Angrist (1994)) is needed for identification. Assumptions A1 and A4
imply together that the actual elapsed duration at which the treatment is
received, S, can be either equal to Z or to ∞.

(2) Assumption A2 states basically that future treatments are not allowed to
influence the past. The assumption implies that the individual probabil-
ity of a survival up to t is the same for any two future treatments t′, t′′,
t ≤ t′, t′′. In a model with forward looking agents, A2 requires that agents
either have no knowledge on the point in time of treatment (i.e. they do
not anticipate it) or that they do not act upon that knowledge. Technically,
jointly with assumption A3, the ”no anticipation” assumption is used to
ensure equal pretreatment patterns of dynamic selection in the different
treatment arms, see proposition (2.1) below as well as the discussion in
the paragraphs right before and after proposition (2.1). In the context of

6See Imbens and Angrist (1994) for the definitions of always-takers and never-takers.
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active labor market policies, the ”no anticipation” assumption is plau-
sible in numerous settings (see Abbring and van den Berg (2003) for a
discussion). Often the start of a training program and the assignment to
treatment are dictated by budget and other administrative reasons and
appear to the unemployed as random. Those assigned to the treatment
might be chosen at random from all eligible unemployed. Moreover, the
assignment may occur without a preliminary notice so that the timing
is unexpected to the unemployed. This is almost by definition true for
punitive treatments such as sanctions. Notice also that the exact content
and point in time of implementation of a policy reform are often a subject
to persistent debates. The resulting uncertainty might deter agents from
building an anticipation about start and content of the reform. Most of
the empirical evaluation literature on active labor market policies tacitly
assumes absence of anticipatory effects. In our empirical application, we
argue in detail that this extends to the case of the French policy reform
PARE. Note that conditioning on S(t),S(t′) ensures that we adopt the ”no
anticipation” assumption for all relevant subpopulations, in particular
for the subpopulation of compliers, {S(t) = t}, and for the subpopulation
of noncompliers, {S(t) =∞}.

(3) Assumption A3 is a randomization assumption. A3 i) implies that once
we condition on observables and unobservables, there is no selection into
the different treatment assignments. Taken together, i) and ii) imply the
conditional independence assumption

(2.7) Z y {T(s),S(t)} ∣ X.

In the empirical analysis, A3 requires a stable (macro-) economic envi-
ronment in the period of consideration. Economic structural brakes and
mass layoffs might cause a violation of A3. A version of the implication
(2.7) is testable, see the empirical investigation below for a discussion.

(4) The consistency assumption implies that a potential outcome correspond-
ing to a given treatment is observed if the treatment is actually assigned.
Another way to write it is T = T(S),S = S(Z). A4 provides the link between
potential outcomes and observations and is necessary for identification.

In addition to assumptions A1-A4, we implicitly assume that all expressions
below exist. This amounts to common support assumptions such as 0 < P(S = t ∣
X,V,Z = t). These assumptions imply either that S and Z are discrete or that at
least they have a positive probability mass on t and t′.7 Whether discrete Z and
S impose a restriction on the distribution of T depends on the concrete appli-
cation. In the medical treatment example, a specific therapy might be assigned

7If a = b = 0, then we define the expression a/b to be equal to 0.
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only at predetermined, common for everybody, elapsed time intervals of the
disease, whereas the life or disease duration itself is a continuous variable. In the
labor market example, the administrative duration of unemployment is always
discrete. Nevertheless, it is usually modeled in the literature as a continuous
variable, especially when it is measured on a daily basis. On the other hand,
labor market treatments such as training and counselling measures or financial
penalties might be designed to come into force only at coarser time intervals.
Therefore, it might be practical to model them as discrete variables.

Suppose for the moment that T is observable (the case with right censoring is
considered at the end of this subsection). As a motivation for our identification
strategy, consider first the following naive candidates for a treatment effect:

(2.8) P(T ∈ [t, t + a) ∣ T ≥ t,X,S = t,Z = t) − P(T ∈ [t, t + a) ∣ T ≥ t,X,S =∞,Z = t)

and

(2.9) P(T ∈ [t, t + a) ∣ T ≥ t,X,S = t,Z = t) − P(T ∈ [t, t + a) ∣ T ≥ t,X,S = t′,Z = t′)

for t′ > t. Writing (2.8) in the form

E[P(T ∈ [t, t + a) ∣ T ≥ t,X,S = t,Z = t,V) ∣ T ≥ t,X,S = t,Z = t] −

E[P(T ∈ [t, t + a) ∣ T ≥ t,X,S =∞,Z = t,V) ∣ T ≥ t,X,S =∞,Z = t]

makes it clear that it compares averages over two different subpopulations of the
same cohort: the t-compliers and the t-noncompliers. These two subpopulations
might have different distributions of the unobserved heterogeneity V because
the treatment status S is a choice variable. As a consequence, it would hold that
V á S ∣ T ≥ t,X,Z = t. We will refer to this consequence as static endogeneity or
static selection. The (potential) endogeneity arises immediately with the decision
to accept or refuse the treatment. As a result, (2.8) would capture not only the
treatment effect but also the bias from the static selection. We use the naive
treatment effect (2.8) to analyze the nature of endogeneity. We compare it to our
IV estimator to construct a test for exogeneity, see section 2.5 for details. The
difference between (2.8) and the IV estimator is informative about the selection
process. A better understanding of the selection might be used to impose more
structure on the model. In our empirical application, an estimator of (2.8) is
shown to underestimate the positive treatment effect. Hence, the control group
must contain many quick exits, which sheds light on the reasons for the non-take
up of the reform.

The naive treatment effect (2.9) compares the average outcome of the t-
compliers from the younger cohort {Z = t} with the average outcome of the
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t’-compliers of the older cohort {Z = t′}. Due to dynamic selection, this compari-
son amounts to averaging over two potentially different distributions of V. (2.9)
can be used to shed light on the nature of this dynamic selection process.

Both examples demonstrate the importance and difficulty of the choice of a
treatment and a control groups in a setting with static and dynamic selection. We
propose a strategy that can deal with both types of selection. The intuition for
this strategy is as follows. An appealing choice for a treatment group is the set
of compliers from the cohort {Z = t}: consistency links observed outcomes of the
treated compliers with the potential outcomes. Suppose for the moment that we
observe the potential compliance status at any point in time. Then, one possible
control group for the treated t-compliers from cohort {Z = t} would be the not
yet treated group of t-compliers from the older cohort who survive at least t
time units. The intuition behind this choice is the following. If the unobserved
heterogeneity V has the same distribution in the two cohorts at the point in time
of inflow, and if these distributions evolve over time in the same way, then V
will have the same distribution in the two cohorts at a later pretreatment elapsed
duration t > 0. The equality of the distributions of V at t = 0 is ensured by the
randomization assumptions A3 i) and ii). The dynamics is controlled by the ”no
anticipation” assumption A2. This idea is first developed in Van den Berg et al.
(2014) for the case of perfect compliance. It amounts to a direct comparison of
the average outcomes of two cohorts. In a first step, we generalize the result of
Van den Berg et al. (2014) to a setting with endogenous compliance.

Proposition 2.1. Let F be a cdf. Under assumptions A1 to A4, it holds for all ∞ ≥ t′ ≥
t ≥ 0

FV∣T(t)≥t,X,S(t)=t = FV∣T(t′)≥t,X,S(t)=t = FV∣T≥t,X,S=t,Z=t.

Proposition 2.1 states that the unobservables have the same dynamics for two
potential treatments on the set of t-compliers. It also links the distribution of
V given a potential treatment to the distribution of V in the subpopulation of
observed t-compliers, {S = t,Z = t}. There are two immediate consequences
of proposition 2.1. First, the treatment effects on the treated survivors, on the
nontreated survivors and on all survivors, respectively, coincide. Second, the
following result holds:

Corollary 2.1. Let a ≤ t′ − t. Under Assumptions A1-A4, it holds for all ∞ ≥ t′ ≥ t ≥ 0

TE(t, t′, a) = P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,X,S(t) = t)

−P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,S(t) = t).

The following proposition provides the key identification result:

12



Proposition 2.2. Let a ≤ t′ − t. Under Assumptions A1-A4, TE(t, t′, a) is nonparamet-
rically identified for all ∞ ≥ t′ ≥ t ≥ 0 and it holds

(2.10)

TE(t, t′, a) =
P(T ∈ [t, t + a) ∣ T ≥ t,X,Z = t) − P(T ∈ [t, t + a) ∣ T ≥ t,X,Z = t′)

P(S = t ∣ T ≥ t,X,Z = t)

The intuition for identification is the following. Corollary 2.1 provides a direct
hint on how to choose the treatment group. t-compliers from the cohort {Z = t}
reveal their preferences at the point in time of treatment. We can therefore link
potential and observed outcomes using A4, proposition 2.1 and corollary 2.1.
The main obstacle for constructing a control group is that we do not observe the
compliance status of individuals in the older cohort {Z = t′} at elapsed duration
t. Agents reveal their preferences at the time of treatment. In line with the argu-
mentation above, due to dynamic selection, the subpopulation of t’-compliers
differs from the subpopulation of t-compliers in terms of the distribution of V.
The key to identification is the observation, that the potential outcome corre-
sponding to a certain treatment is the sum of potential outcomes of compliers
and noncompliers, weighted by their proportions. Written in a simplified nota-
tion, we have

(2.11) F0 = FC,0PC + FN,0PN,

where the zero indicates the no-treatment case8, and, with a temporary abuse
of notation, C and N denote compliers and noncompliers, respectively. In order
to link FC,0 = (F0 − FN,0PN)/PC to observables, it is sufficient to express F0,PC,PN

and FN,0 in terms of observables. Due to assumptions A1-A4 (in particular to no
anticipation), the average outcome FN,0 of the noncompliers of the older cohort
{Z = t′} is equal to the average outcome of the noncompliers from the treatment
group {Z = t}, see Lemma A.1, part 2. Both subgroups do not anticipate and
do not receive the treatment. The average outcome of the noncompliers from
{Z = t} is identified, see Lemma A.1, part 1. Note that an important implication
of randomisation, no anticipation and consistency is that the actual assignment
of the treatment does not change the behaviour of noncompliers. The proportions
PC and PC are identified in an analogous way, see lemma A.2. Finally, F0 can be
linked directly to the outcomes of cohort {Z = t′} and is also identified.

Expression (2.10) has an intuitive interpretation. It adjusts the difference be-
tween the average observed outcomes in the two cohorts by the probability to be
a complier. The adjustment takes account of the fact, that any difference between
the two cohorts can be caused only by the compliers. Our result is in the spirit

8The correct expression should be ”not yet treated-case”. Under the ”no anticipation” as-
sumption, however, this distinction does not matter in the interval [t, t + a).
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of the static one-sided noncompliance result of Bloom (1984). This resemblance
seems natural in a setting where agents are allowed to refuse an assigned treat-
ment but are not able to select into an alternative treatment arm (i.e. choose a
different point in time of treatment).

Unlike in the static treatment evaluation models, randomization alone is not
enough to ensure identification. An experiment might be randomized at t = 0 but
due to dynamic selection endogeneity arises over time. The ”no anticipation”
assumption precludes this possibility.

Remark
A special case of proposition 2.2 is the limit case a → 0. We devote a sepa-

rate section on its identification and estimation because of the importance and
specifics of hazards.

Remark
Under A1-A4, we have P(T ∈ [t, t + a) ∣ T ≥ t,X,Z = t′) = P(T ∈ [t, t + a) ∣ T ≥

t,X,Z = t′′) for all t′, t′′ ≥ t + a (in the limit case a → 0 simply for t′, t′′ > t). To
see this, note that under A2, it holds P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X) = P(T(t′′) ∈
[t, t+a) ∣ T(t′′) ≥ t,X) for all t′, t′′ ≥ t+a. On the other hand, the treatment effect TE
(HTE) is identified only for t′ that fulfils t′ ≥ t+a (or t′, t′′ > t). As a consequence, it
follows that the treatment effects do not depend on the choice of the nontreated
cohort t′ as long as t′ ≥ t + a (or t′ > t). Therefore, we omit the dependence on t′

and write TE(t, a) and HTE(t).

Thus far, we have assumed we can observe the whole length of spells in the
state of interest, T. A typical feature of duration data is that observations might
be censored. In this paper, we consider right censoring.9 In labor market studies,
right censoring typically arises when at the end of the study the individuals
are still unemployed, so the unemployment spell has an unknown length. The
unemployed might also simply stop attending the training and drop out of the
study (sample attrition). In addition, the job search might be interrupted by a
transition out of the labor force due to maternity, sickness, military service or
other reasons. In biomedical studies, and particularly in clinical trials, spells are
right-censored when patients die from another cause (competing risks) or with-
draw from treatment. We introduce formally right censoring in the following
way: let C be a real nonnegative random variable. We observe (T̃, δ) and not di-
rectly (T,C). It is not possible to recover nonparametrically the joint distribution
of T and C from the distribution of (T̃, δ) without additional assumptions. The
reason for this impossibility is a nonidentification result that goes back to Cox

9Extensions to left or interval censoring are straightforward.
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(1962) and Tsiatis (1975), namely that to each pair of latent variables (Td,Cd) there
exists an independent pair of variables (Ti,Ci) that is observationally equivalent
to (Td,Cd). To achieve identification, we adopt the following additional standard
assumption:

A5) (Random censoring)

C y (T,S) ∣ X,Z.

Assumption A5 is nontestable due to the nonidentification result of Tsiatis (1975).
In the context of our empirical application, we show with a Monte Carlo sim-
ulation that plausible violations of A5 offset each other. Thus, our estimation
results are likely to be robust against violations of A5. With A5, we can prove
the following proposition:

Proposition 2.3. Under assumptions A1 - A5 TE(t,a) is identified.

The proof of proposition 2.3 is straightforward. The probabilities P(T ∈ [t, t+a) ∣

T ≥ t,X,Z = j) for j ∈ {t, t′} can be written as differences of survival functions
and be estimated consistently with a Kaplan-Meier estimator, see section 2.3 for
details. Note also that for the cohort {Z = t}, S is observed whenever T̃ ≥ t,10 so
that due to A5
(2.12)

P(S = t ∣ T ≥ t,X,Z = t) = P(S = t ∣ T ≥ t,C ≥ t,X,Z = t) = P(S = t ∣ T̃ ≥ t,X,Z = t).

The last probability in (2.12) contains only observables and can be consistently
estimated from the data.

2.3. IV estimation of dynamic treatment effects. To ease notation, probability
and survival functions concerning the cohorts {Z = t} and {Z = t′} are denoted
with an index 1 and 2, respectively. For example, we write P1(T ∈ [t, t+ a) ∣ T ≥ t)
instead of P(T ∈ [t, t + a) ∣ T ≥ t,Z = t). Furthermore, we ignore the dependence
on observed covariates X.11 Assumptions A2 and A3 are adapted accordingly.
The generalization to the case with covariates is straightforward. Denote with F̄1

and F̄2 the survival functions of T in the two cohorts, F̄i(t) ∶= Pi(T > t). A starting
point for our estimation procedure is the equality

(2.13) TE(t, a) =
1

P1(S = t ∣ T ≥ t)
(

F̄2(t + a)
F̄2(t)

−
F̄1(t + a)

F̄1(t)
),

10This follows from assumptions A1 and A4.
11There are four cases of interest: estimation of TE with/without covariates and estimation

of HTE with/without covariates. We consider two complementary cases, namely TE without
covariates and HTE with covariates. The case TE with covariates follows in a straightforward
way when one uses the estimator of Gonzalez-Manteiga and Cadarso-Suarez (2007) instead of
the unconditional Kaplan-Meier estimator.
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which holds under assumptions A1-A4. It follows from the result in proposition
2.2 together with Pi(T ∈ [t, t + a) ∣ T ≥ t) = 1 − F̄i(t + a)/F̄i(t). T might be censored
so that we only observe (T̃, δ). F̄i(t) can be consistently estimated with the
Kaplan-Meier estimator. Under the independent censoring assumption A5 and
additional mild regularity conditions, it holds

̂̄
iF(t) = F̄i(t) + op(1) and(2.14)

√
n ( ̂̄

iF(t) − F̄i(t)) d
→ N(0, σ2

i (t)) as n→∞,(2.15)

where σ2
i (t) is the asymptotic variance of the Kaplan-Meier estimator, t ∈ [0,∞),

see e.g. page 18 ff. Kalbfleisch and Prentice (2002).12 The additional regularity
conditions can be found in standard references for survival analysis, see e.g.
Andersen et al. (1997), chapter IV.3 or Kalbfleisch and Prentice (2002), chapter
5.6. We do not state them explicitly. All results hold for continuous as well as
discrete time.

Next, under the independent right-censoring assumption, it holds

(2.16) P1(S = t ∣ T ≥ t) = P(S = t ∣ T ≥ t,Z = t,C ≥ t) = P1(S = t ∣ T̃ ≥ t) =∶ p > 0.

p contains only observables and is nonparametrically identified. Let p̂ ∶= P̂1(S =

t ∣ T̃ ≥ t) be a consistent nonparametric estimator of p. We define the IV-estimator
T̂E(t, a) of TE(t, a) as

(2.17) T̂E(t, a) =
1
p̂
(
̂̄

2F(t + a)
̂̄

2F(t)
−

̂̄
1F(t + a)
̂̄

1F(t)
).

Its asymptotic properties are similar to those derived in Abbring and van den
Berg (2005) for the case where both the instrument and the treatment status
are realized upon inflow into the state of interest (i.e., t = 0). Here we allow for
conditioning on survival up to t and we only consider one-sided noncompliance.
The following proposition states the consistency of (2.17).

Proposition 2.4. Suppose (2.14) holds. Then, under assumptions A1-A5, it holds

T̂E(t, a) − TE(t, a) = op(1)

for each admissible pair (t, a).

This result follows directly from the continuity of the function G(a, b, c,d, e) =
1
e(

a
b −

c
d), the Continuous Mapping Theorem and the consistency of F̄i(t) and p̂.

Consider the Null hypothesis

(2.18) H0 ∶ (Ineffective treatment)
F̄2(t + a)

F̄2(t)
−

F̄1(t + a)
F̄1(t)

= 0.

12Equation (2.14) follows from equation (2.15).
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Under (2.18), it holds

√
nT̂E(t, a) =

√
n

p̂
(
̂̄

2F(t + a)
̂̄

2F(t)
−

̂̄
1F(t + a)
̂̄

1F(t)
) =

=

√
n

p̂
(
̂̄

2F(t + a)
̂̄

2F(t)
−

F̄2(t + a)
F̄2(t)

) −

√
n

p̂
(
̂̄

1F(t + a)
̂̄

1F(t)
−

F̄1(t + a)
F̄1(t)

)

For i = 1,2 the Taylor expansion of
̂̄

iF(t+a)
̂̄

iF(t)
around F̄i(t+a)

F̄i(t)
can be written as

̂̄
iF(t + a)
̂̄

iF(t)
=

F̄i(t + a)
F̄i(t)

+
1

F̄i(t)
( ̂̄iF(t + a) − F̄i(t + a)) −

F̄i(t + a)
F̄2

i (t)
( ̂̄iF(t) − F̄i(t))

+O[( ̂̄iF(t + a) − F̄i(t + a))( ̂̄iF(t) − F̄i(t)) + ( ̂̄iF(t) − F̄i(t))2],

and therefore

√
n(

̂̄
iF(t + a)
̂̄

iF(t)
−

F̄i(t + a)
F̄i(t)

) =

√
n

F̄i(t)
( ̂̄iF(t + a) − F̄i(t + a)) −

F̄i(t + a)
√

n
F̄2

i (t)
( ̂̄iF(t)

−F̄i(t)) +O[
√

n( ̂̄iF(t + a) − F̄i(t + a))( ̂̄iF(t) − F̄i(t)) +
√

n( ̂̄iF(t) − F̄i(t))2].

The last term converges to zero in probability.

With (2.15), the terms
√

n
F̄i(t)

( ̂̄iF(t+a)−F̄i(t+a)) and
F̄i(t + a)

√
n

F̄2
i (t)

( ̂̄iF(t)−F̄i(t))

are asymptotically normally distributed with mean 0 and variances

1
F̄2

i (t)
σi(t + a) and

F̄2
i (t + a)
F̄4

i (t)
σi(t), respectively.

With the independence of the random variables D1 and D2, where Di =
̂̄

iF(t+a)
̂̄

iF(t)
,

i = 1,2, we can now state the following proposition.

Proposition 2.5. Let assumptions A1-A5 and condition (2.15) hold. Then, under the
null (2.18), it holds
(2.19)

√
nT̂E(t, a) d

→ N(0,
1
p2

2

∑
i=1

(
1

F̄2
i (t)

σi(t + a) +
F̄2

i (t + a)
F̄4

i (t)
σi(t) +

F̄i(t + a)
F̄3

i (t)
σi(t, t + a))),

where σi(t, t + a) is the covariance of ̂̄
iF(t) and ̂̄

iF(t + a).

Confidence bands can be constructed by replacing the unknown terms in the
variance with consistent estimates, for example using the Greenwood’s formula,
see Andersen et al. (1997). It follows from (2.19) that the precision of the esti-
mator is inversely related to p. The bigger the compliance probability p, i.e. the
stronger the instrument Z for the endogenous S, the smaller the variance of the
IV-estimator. This intuitive result is in line with the standard static IV literature.
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(2.17) can be interpreted as a dynamic version of the Wald estimator. A general-
ization to the case of covariates can be achieved by replacing the unconditional
Kaplan-Meier estimator with the conditional estimator of Gonzalez-Manteiga
and Cadarso-Suarez (2007), following the same steps as here.

2.4. Identification and estimation of additive treatment effects on the hazard.
In this subsection, we state conditions under which the treatment effect on the
hazard, (2.6), is identified and develop the estimation theory. The HTE deserves
a special attention for two reasons. First, the hazard of the duration variable rep-
resents the most interesting feature of its distribution in multiple applications,
see Van den Berg (2001) for various examples and a discussion. Second, estima-
tion of hazard effects in a treatment evaluation framework involves estimation
at the boundary of the admissible domain. We develop an estimator that takes
into account the region of estimation and does not lead to an increased bias.

2.4.1. Identification. Write W = (X,V) and let ΩW be the set of possible values
for W. Further, write Ψ(t ∣ X) ∶= HTE(t,X) (we stress explicitly the dependence
on X) and define θ(t ∣ X) ∶= limdt→0 P(T ∈ [t, t + dt ∣ T ≥ t,X))/dt (all expressions
are assumed to exist). The rest of the notation is the same as in the last sections.
Again we assume access to an i.i.d. sample

(T̃1,S1,Z1,X1, δ1), . . . , (T̃n,Sn,Zn,Xn, δn).

Our first result is the following

Proposition 2.6. Let the measurable function g ∶ R+×ΩW → R+ fulfillE[g(t,W)] <∞

and ∣ θ(t ∣ W = w) ∣≤ g(t,w) for each (t,w) ∈ R+ ×ΩW. Then, under assumptions A1-
A5, Ψ(t ∣ X) is identified and it holds

(2.20) Ψ(t ∣ X) ∶=
θ(t ∣ X,Z = t) − θ(t ∣ X,Z = t′)

P(S = t ∣ T ≥ t,X,Z = t)
.

Under the Lebesque dominated convergence theorem,

θ(t ∣ X) = lim
dt→0
E[P(T ∈ [t, t + dt) ∣ T ≥ t,X,V)/dt ∣ T ≥ t,X] = E[θ(t ∣ X,V)],

and the proof follows directly from proposition 2.2. Thus, as expected, the
HTE is revealed to be the limit case of the general treatment effect TE, HTE =

limdt→0TE/dt. In the case of a full compliance, that is P(S = t ∣ T ≤ t,X,Z = t) = 1,
HTE reduces to θ(t ∣ X,Z = t)−θ(t ∣ X,Z = t′) which is the result of Van den Berg
et al. (2014).

2.4.2. Estimation. Henceforth, we denote with θ1(t ∣ X) the hazard θ(t ∣ X,Z = t)
of the younger cohort , {Z = t}, and with θ2(t ∣ X) the hazard θ(t ∣ X,Z = t′) of the
older cohort. If the treatment is effective, then there will be a jump in the hazard
function at the moment of treatment (per definition). Hence, when estimating
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Ψ(t ∣ X), only the observations T̃ that are bigger than or equal to t are informative
about θ1(t ∣ X).13This leads to estimating a hazard at the left boundary of the
interval [t, T̄) where T̄ is some maximum duration, possibly ∞. Smooth hazard
estimators that use a symmetric kernel would have a large bias at t, a problem
called boundary effect in the literature, Müller and Wang (1994). Without loss
of generality, let [0,1] be the set of possible values of the duration variable and
b = b(n) a bandwidth of a kernel estimator, b < 0.5. The set BL ∶= {t ∶ 0 ≤ t < b}
is called a left boundary region (we do not discuss problems arising at the right
boundary here). Employing a symmetric kernel to estimate the hazard at a point
from that region could lead to a high bias, because the support of the kernel
exceeds the range of the data. In the interior (0,1), this is only a finite sample
problem. At the boundary t = 0, the problem persists with increasing sample
size n. Boundary problems are not endemic to hazards, they arise also in the
estimation of a density function, see Karunamuni and Alberts (2005). Müller
and Wang (1994) develop a class of asymmetric kernels and use them to adapt
the unconditional Ramlau-Hansen estimator to the boundary case. The kernels
vary with the point of estimation and have a support that does not exceed the
range of the duration variable. These kernels are referred to as boundary kernels.
Following this approach, we adapt the conditional kernel hazard estimator of
Nielsen and Linton (1995) to the case of estimation at the boundary by using
boundary kernels. For simplicity, we assume that we estimate Ψ(t ∣ x) at an
interior point x of ΩX. Let k be a symmetric one-dimensional continuous density
function with support [−1,1], that is

∫
1

−1
k(y)dy = 1 and ∫

1

−1
yk(y)dy = 0

and define k1 and k2 as

k1 = ∫
1

−1
y2k(y)dy and k2 = ∫

1

−1
k2(y)dy.

Define the q-dimensional product kernel K(x) = Π
q
i=1k(x(i)), where x = (x(1), . . . ,x(q)).

Next, let k+ denote the asymmetric kernel function

k+ ∶ [0,1] × [−1,1]→ R

(h, y)→
12

(1 + h)4 (y + 1)[y(1 − 2h) + (3h2 − 2h + 1)/2].

This is a boundary kernel function as defined in Müller and Wang (1994). The
support of k+(h, .) is [−1,h]. In analogy to the symmetric kernel k, we define the
second moments of k+(0, .) as

k+1 = ∫
0

−1
y2k+(0, y)dy and k+2 = ∫

0

−1
k2
+(0, y)dy.

13This does not apply to θ2(t ∣ X).
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Using standard counting processes notation, define for i = 1, . . . ,n the observed
failure process of the ith individual at time t, Ni(t) ∶= 1{T̃i ≤ t,Ti ≤ Ci} and the
individual process at risk, Yi(t) ∶= 1{T̃i ≥ t}. To differentiate between observations
from the cohorts 1, that is {Z = t}, and 2, that is {Z = t′}, we add a subscript 1 or
2, respectively. For example, X1,i denotes an observation of X that comes from
the cohort {Z = t}. Then our estimator Ψ̂(t ∣ x) of Ψ(t ∣ x) is defined as

Ψ̂(t ∣ x) ∶=
1

p̂1(t ∣ x)
(
∑

n
i=1 K(

x−X1,i
b ) ∫ k+(t, t−s

b )dN1,i(s)

∑
n
i=1 K(

x−X1,i
b ) ∫ k+(t, t−s

b )Y1,i(s)ds
(2.21)

−
∑

n
i=1 K(

x−X2,i
b ) ∫ k+(t, t−s

b )dN2,i(s)

∑
n
i=1 K(

x−X2,i
b ) ∫ k+(t, t−s

b )Y2,i(s)ds
),

where p̂1(t ∣ x) is a nonparametric estimator for p1(t ∣ x) ∶= P(S = t ∣ T ≥ t,X =

x,Z = t). We assume that p̂1(t ∣ x) is consistent. In addition, for proposition 2.7 ii)
we assume that b−2(p̂1(t ∣ x)−p1(t ∣ x)) = op(1), which can be assured by assuming
that p1(t ∣ x) is sufficiently smooth in x. The term

θ̂ j(t ∣ x) ∶=
∑

n
i=1 K(

x−X j,i

b ) ∫ k+(t, t−s
b )dN j,i(s)

∑
n
i=1 K(

x−X j,i

b ) ∫ k+(t, t−s
b )Y j,i(s)ds

for j = 1,2 is a conditional smooth hazard estimator for θ j(t ∣ x) developed in
Nielsen and Linton (1995) and adapted to the boundary case. Define

(2.22) θ∗j (t ∣ x) ∶=
∑

n
i=1 K(

x−X j,i

b ) ∫ k+(t, t−s
b )θ j(s ∣ X j,i)Y j,i(s)ds

∑
n
i=1 K(

x−X j,i

b ) ∫ k+(t, t−s
b )Y j,i(s)ds

j = 1,2

and

(2.23) Ψ∗(t ∣ x) =
1

p̂1(t ∣ x)
(θ∗1(t ∣ x) − θ∗2(t ∣ x)).

We need the following assumptions.

H1 E[Yi(s)] = u(s) and u(.) is continuous
H2 i) f (x)u(t) is positive on a neighbourhood U of (0,x0) ∈ R+ ×ΩX, where

x0 is an interior point of ΩX and f is the density of X. ii) θ j is twice
continuously differentiable on U. iii) f u is continuously differentiable on
U.

H3 nbq+1 →∞ and b = b(n)→ 0 as n→∞.

The following proposition states the pointwise asymptotic properties of Ψ̂(0 ∣

x0).

Proposition 2.7. Define

σ2
Ψ ∶= k+2 kq

2
1

p2
1(0 ∣ x0)

(θ1(0 ∣ x0)/ f1(x0) + θ2(0 ∣ x0)/ f2(x0)).
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Under assumptions H1-H3, the following results hold:

i)
√

nbq+1(Ψ̂(0 ∣ x0) −Ψ∗(0 ∣ x0))
d
→ N[0, σ2

Ψ].
ii) If in addition b−2(p̂1(t ∣ x) − p1(t ∣ x)) = op(1), then

b−2(Ψ∗(0 ∣ x0) −Ψ(0 ∣ x0))
p
→

2

∑
i=1

(−1)i+1k+1
fi(x0)ui(0)p1(0 ∣ x0)

[
∂θi(0 ∣ x0)

∂t
∂( fi(x0)ui(0))

∂t
+

1
2
∂2θi(0 ∣ x0)

∂t2 fi(x0)ui(0) +

q

∑
j=1

(
∂θi(0 ∣ x0)

∂x( j)
∂( fi(x0)ui(0))

∂x( j)
+

1
2
∂2θi(0 ∣ x0)

∂x( j)2 fi(x0)ui(0))]

iii) Finally, it also holds

σ̂2
Ψ ∶=

nbq+1

p̂1(0 ∣ x0)

2 2

∑
j=1

∑
n
i=1 K2(

x0−X j,i

b ) ∫ k2
+(

−s
b )dN j,i(s)

(∑
n
i=1 K(

x0−X j,i

b ) ∫ k+(−s
b )Y j,i(s)ds)2

p
→

σ2
Ψ

Result i) gives the asymptotic distribution of the estimator, ii) characterizes the
bias and iii) provides the standard errors for confidence bounds around Ψ∗. If the
bandwidth is chosen to be of o(n−1/(q+5)), then the asymptotic bias is negligible
and proposition 2.7 can be used to construct confidence bands for Ψ.

2.5. Framework for the analysis of endogeneity. Understanding the nature
of selection is important for setting up and evaluating a policy reform. Often
a comprehensive policy reform is preceded by a small scale pilot study that
allows for noncompliance. Understanding the non-take up of the pilot study
might help better design the reform and derive bounds for its effect under
perfect compliance. Better understanding of the endogeneity reasons can be
used to model explicitly the selection process in more complex (e.g. general
equilibrium) models. We develop a framework for answering the following two
questions:

i) Is there endogenous selection caused by the decision of the agents to
accept or refuse the treatment?

ii) If yes, in which direction would be the bias caused by the endogenous
selection?

Answering the first question requires a specification of the possible channels
of (static) endogeneity. In our framework, there are two potential endogeneity
channels. First, unobserved characteristics of the agents determine both potential
outcomes and the potential compliance decision. Second, the potential outcome
itself (that is, after ”controlling” for observed and unobserved individual char-
acteristics) might influence the potential compliance status. The first channel
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amounts to a violation of

(2.24) S(t) y {T(s)} ∣ X

and the second of

(2.25) S(t) y {T(s)} ∣ X,V

We preclude the possibility of a violation of (2.25): we assume that the only way
the potential outcome might influence the decision S(t) is that the agent might
have a knowledge of T(s) and use it in the decision process. This individual
knowledge of the potential outcome (or its distribution) is unobserved by the
econometrician. It is therefore included in V.14 With these considerations, we
define the following null hypothesis:

(2.26) H0 ∶ S(t) y {T(s)} ∣ X

For B ∶= [t, t + a), (2.26) implies the following relation:
(2.27)
H̃0 ∶ P(T(∞) ∈ B ∣ T(∞) ≥ t,X,S(t) = t) − P(T(∞) ∈ B ∣ T(∞) ≥ t,X,S(t) =∞) = 0.

Using A1-A4 and following the steps in proof of proposition 2.2, we obtain the
equivalent to (2.27) relation

(2.28) H̃0 ∶ P(T ∈ B ∣ T ≥ t,X,Z = t′) − P(T ∈ B ∣ T ≥ t,X,S =∞,Z = t) = 0.

Intuitively, if there is no selection, then the average observed outcomes of non-
treated compliers and noncompliers should be the same. As a result, the average
observed outcome of the whole cohort {Z = t′} under no treatment (the left-
hand side of (2.28)) should be equal to the average observed outcome of the
noncompliers from the cohort {Z = t} (the right-hand side of (2.28)). Equation
(2.28) contains only observables. Deriving the distribution of the test statistics for
(2.28) follows precisely the same steps as for the null hypothesis (2.18). We omit
it here. A simplified testing procedure would induce a comparison of survival
functions. The corresponding null hypothesis is

(2.29) H̃0 ∶ P(T ≥ t ∣ X,Z = t′) − P(T ≥ t ∣ X,S =∞,Z = t) = 0.

A test statistics is constructed by replacing the theoretical probabilities with their
Kaplan-Meier estimators.

To answer question ii), we can compare the (theoretical proper) treatment
effect (2.18) to the naive treatment effect (2.8). Written in the simplified notation
of section 2.2, this is a comparison of a) FC,1 − FC,0 and b) FC,1 − FN,0. This ad

14We have to assume that the agent does not learn about the potential outcomes over time.
With a time-varying V, we would lose identification.
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hoc approach can be justified with (2.27). Recall that FC,0 = (F0 − FN,0PN)/PC.
Subtracting b) from a), we obtain

(FC,1 − (F0 − FN,0PN)/PC) − (FC,1 − FN,0) =

(FN,0PC + F0,NPN − F0)/PC = (FN,0 − F0)/PC.

The nominator (FN,0 − F0) of the last expression is precisely the left-hand side of
(2.27).

3. Empirical Application: the French PARE labor market reform in 2001

3.1. The reform. We combine the IV method we developed in section 2 with a
unique empirical strategy to analyze the effect of a reform in the French unem-
ployment insurance system on the duration of unemployment. The new system,
called Plan d’Aide au Retour á l’Emploi (PARE hereafter), brings about two main
changes. First, the decline of the insurance benefits is abolished. Under the old
system, called Allocation Unique Degressive (AUD), the size of the payments
depends on the elapsed duration of unemployment and declines stepwise at the
end of predefined intervals. Under the new system, benefits remain at a fixed
level for the whole payment period. Second, the new system introduces a range
of active labor market policy measures. This includes compulsory meetings on
a regular basis with a caseworker. At the first meeting, a personal plan called
Plan d’Action Personalisé (PAP) is established. This captures in a contract the
details about the degree of assistance provided by the caseworker to the unem-
ployed as well as the targeted job type and the region of search. This contract
is updated periodically if the individual remains unemployed, typically every
six months. During the first meeting the unemployed is also assigned to one of
different types of services such as counseling and training, see Freyssinet (2002)
for a detailed description of the reform.

The PARE reform has two distinguishing features. First, individuals whose
unemployment spells started before the implementation of the reform and were
still unemployed during its commencement were given the option to choose
whether they want to stay in the AUD regime or switch to PARE. If an unem-
ployed decides to stay in AUD, his benefits payments continue to follow the
decline scheme and no further changes of the status quo take place. If an unem-
ployed individual decides to switch to PARE, his benefit payments are fixed at
the latest level paid and no further decline occurs until the end of the payment
period (or unemployment exit). The individuals indicate their decision per mail.
The choice option does not apply to spells starting after the 1st of July 2001,
the day of coming into force of PARE. All new unemployed are automatically
assigned to the new system.
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The second distinguishing feature of the new system is that although the
meetings with the case worker were mandatory, there was no actual monitoring
of the job search efforts. Furthermore, the individuals could generally refuse to
take part in assigned training or counseling measures without incurring any
sanctions. Thus, a relative attractiveness of the benefits level in PARE is not
counterbalanced by an increase in monitoring.

Ex ante it is not clear what the overall effect of the reform is. On the one hand,
abolishing the benefits decline removes an incentive for a high search effort.
Therefore it can be expected that the exit rate from unemployment to employ-
ment will decrease. This intuition is incorporated in theoretical models on opti-
mal unemployment insurance design, see e. g. Pavoni and Violante (2007). There
is also some empirical evidence for this in the French context, for example in Pri-
eto (2000) and Dormont et al. (2001). These papers use a parametric specification
(of PH and MPH models, respectively) to compare the French unemployment
insurance system from 1986-1992, which is characterized by a single drop in
benefits, with its successor, the AUD system with stepwise declines. However,
Le Barbanchon (2012) finds no effect of a prolonged potential duration of the
unemployment payments on exit out of unemployment. He uses15 a regression
discontinuity design, with past employment duration as a forcing variable.

On the other hand, increased usage of active labor market policy measures
is supposed to increase the exit rate to employment. A vast body of empirical
literature investigates the effects of training, counseling and subsidized wages
on the employment dynamics; see e.g. Heckman et al. (1999) and Kluve (2010)
for overviews. Job search assistance often has a small to modest positive impact
on the exit rate to work. Crépon et al. (2005) find a significantly positive impact
of counseling on the exit rate to unemployment in France.

3.2. The data. The data sample we use is taken from a matching of two adminis-
trative data sets: the Fichier Historique (FH) data set, which contains information
about the unemployment spells and is issued by the French public employment
agency (Agence nationale pour l’emploi, ANPE), and the Déclaration Anuelle de
Données Sociales (DADS) data set, which contains the employment information
of all individuals employed in the private sector and is issued by the French
Statistical Institute (INSEE). We extract a set of variables, rich enough to account
for the socio-economic status of the individuals ,namely age, gender, marital sta-
tus, number of children, educational level, professional experience, description
of the job position/type in the last employment spell, reason for entering un-
employment, exit direction (out of unemployment), and unemployment history.
Details about the construction and content of the variables are in Appendix A.2.

15The data set we use in this paper is a subset of the data used in Le Barbanchon (2012).
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To preclude geographical heterogeneity we restrict our sample to the admin-
istrative region Île de France, which contains Paris and consists of the admin-
istrative departments 75, 77, 78, 91, 92, 93, 94 and 95. Because of its size and
specific infrastructure, this region might differ from the rest of France in terms of
labor market dynamics (mobility, unemployment structure, wages) and in terms
of the implementation of the reform. Moreover, the macroeconomic conditions
in this region are stable over the period of consideration, which ensures the
comparability of the cohorts, see subsection 3.4.

The choice of the cohorts is restricted by the available data. There is no ad-
ministrative variable that captures the compliance status of the unemployed.
Moreover, for budgetary reasons and due to capacity constraints, there was time
variation in the elapsed duration at which the caseworker interview and other
job search assistance measures took place for those exposed to the new regime.
Thus, some individuals might have exited the state of unemployment before
those events. We develop a novel approach to deal with this problem, which so
far has not been adopted in other PARE evaluation studies with register data.
Specifically, we choose the younger (i.e., treated) cohort {Z = t} such that its
first due benefits reduction under AUD coincides with the start of the reform
exposure. This enables us to observe the compliance status.16 Its inflow is six
months before the start of PARE.17 The choice of the comparison cohort (the
untreated) is more flexible as we do not need to observe the compliance. The
main concerns are macroeconomic: a good choice of a cohort does not violate
the randomization assumption. Business cycles or mass layoffs due to bankrupt-
cies of large firms are examples for possible causes for structural changes in the
distribution of heterogeneity in the unemployment inflow over time. We choose
the comparison cohort to have entered unemployment 3 months earlier than the
treated cohort because then both cohorts begin their unemployment spells in a
fairly economically stable time interval; see subsection 3.4 for a discussion. This
choice has an implication for the time interval of comparison. Conditional on
survival up to 6 months, one can compare the two cohorts only in an interval of
3 months. After the 3rd month, the older cohort will also receive the treatment,
and one would no longer compare treated with untreated.

16One may also consider subsequent elapsed durations at which declines take place, but this
would be at the cost of having fewer observations.

17The time length from inflow until the day of the first decline can vary somewhat, depending
on characteristics of the unemployed, such as number of working days in the last twelve months
and age; see Freyssinet (2002) for details. We stop the duration clock on days on which the
individual worked part-time during their unemployment spell. Excluding them instead does
not affect the results. We exclude elderly unemployed for whom the time length differs from 6
months.
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With these choices we end up with 537 (311) spells in the treated (comparison)
cohort. From these, 116 (76) are censored. In the treated cohort there are 250
compliers.

3.3. Estimation results. We now turn to our main results. With the choice of
cohorts described in section 3.2, the treatment effect which we estimate is equal
to

(3.1) TE(6, a) = P(T(6) ∈ [6,6 + a) ∣ T(6) ≥ 6) − P(T(9) ∈ [6,6 + a) ∣ T(9) ≥ 6),

where a varies between 0 and 3 months. The upper limit three months follows
from the time difference of the inflows of the two cohorts. Any comparison
beyond this interval would involve two treated groups. The treatment effect
gives thus the difference in the probabilities to find a job in the interval [6,6+ a),
conditionally on surviving up to the 6th month, between the old and the new
system. Letting a go to 0 gives the average causal effect on the hazard rate.

Figure 1. An IV estimator of the treatment effect. Time measured
in days.

The result is shown on figure 1. On the x-axis time is measured in days. Each
(x, y)-point represents a pair (a,ATE(a)). The estimated treatment effect is pos-
itive and increasing which indicates that the program was effective. The results
are similar for different subpopulations, see figures 2a and 2b. Overall, our re-
sults are compatible with the findings in the existing literature on the effect of
the PARE reform. Fougère et al. (2010) find a positive and significant effect of
the reform on the return to employment. They specify the assignment of indi-
viduals to treatment types (conditional on being in the new reform) as a discrete
choice, and the duration of unemployment as a MPH model. In their analysis,
they use spells beginning before and after the day of the reform. Debauche and
Jugnot (2007) does not find any evidence that the PARE program accelerates the
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(a) White vs Blue col-
lar (dashed)

(b) Low vs High edu-
cated (dashed)

Figure 2. Estimates conditional on qualification and education

return to employment. Similarly to Fougère et al. (2010), they use both spells
beginning before and after the begin of the reform. For their analysis, they use
a nonparametric Kaplan-Meier estimator and simulated Cox-Model, and point
out that the effect of the reform on the unemployment hazard cannot be clearly
separated from changes in the macroeconomic conditions. Further, Crépon et al.
(2012) find that training does not accelerate exit out of unemployment but in-
creases the length of the subsequent employment spell. They utilise the (semi-)
parametric framework of the timing-of-event method. They use all spells with
inflow between 2001 and 2005.The authors’ finding is related to the idea that
training increases human capital and improves matching process between firms
and unemployed. Next, Crépon et al. (2005) find that three out four counselling
schemes have a positive effect on the unemployment hazard.18 One possibility is
that jointly these two types of services offset the negative impact of the generous
benefit system. Another possibility is that the financial side of the reform has little
or no stimulus on the behaviour of the individuals. Evidence for this possibility
is provided by the study of the French unemployment system in Le Barbanchon
(2012). He finds no negative effect of the longer potential duration of benefits on
the exit out of unemployment using data for the period 2000-2002.

Remark: it must be noted that our evaluation subsumes several different treat-
ments into one single treatment. We interpret our evaluation as averaging over
the different treatment schemes. Furthermore, even if there was no real monitor-
ing, it is likely that the regular meetings with the caseworker were perceived as

18Similarly to the other related papers, this study estimates a MPH model for the hazard of
unemployment. Only spells that begin after the reform are taken into consideration.
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monitoring. Averaging over different treatment types is not uncommon in the
literature, see for example Blundell et al. (2004) and Van den Berg et al. (2014)
for evaluations of the New Deal for Young People program in the UK.

3.4. The validity of the assumptions. We start with the randomization assump-
tion A3. Since T(s),S(t) and V are in general unobserved, A3 cannot be tested
directly. However, we may verify that the cohorts are similar at their inflows in
terms of

(1) the distributions of the individual observed characteristics,
(2) the layoff reasons and
(3) the macroeconomic conditions

These comparisons provide indirect evidence for A3. We first perform a chi-
square test for equality of distributions of level of education, years of experience,
number of children and gender. The corresponding p-values are 0.6037, 0.98,
0.5112 and 0.581, which indicates that the differences between these distributions
are statistically insignificant. This is reflected in their histograms, see figures 3a
- 6b. Second, the same test is performed also for the layoff reasons. The null
(equality of distributions) is rejected, but in this case this could be due to the
large number of categories and small number of observations in each category. A
histogram of aggregated categories indicates that the cohorts are indeed similar,
see figure 7a-7b. Third, the next we show the average level of unemployment
in the administrative region Îll de France in the first three quarters of 2001 is
constant and equal to 6.4%, which is evidence for a fairly stable macroeconomic
environment19.

(a) Treated (b) Untreated

Figure 3. Histograms level of education

19Source: http://www.insee.fr/en/bases-de-donnees/bsweb
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(a) Treated (b) Untreated

Figure 4. Histograms level of qualification

(a) Treated (b) Untreated

Figure 5. Histograms of years of experience

Next, the “no anticipation” assumption is fulfilled when individuals do not
anticipate the moment in time of treatment or do not act upon this information,
see for a discussion Abbring and van den Berg (2003). Although it was known
that a reform is going to take place, there was a lot of debate and uncertainty
over its content. Unemployed were informed about the exact content and launch
date on the 18th of June 2001, that is, less than two weeks before the start of the
program, so they had practically no time to react upon this information, see
Freyssinet (2002). Further, when an individual decides to switch to the new
system, the assignment to a specific treatment depends mostly on the social
worker in charge and on the slots available, so that the unemployed has no
knowledge of it in advance, see also Crépon et al. (2005). Combined with a very
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(a) Treated (b) Untreated

Figure 6. Histograms of number of children

(a) Treated (b) Untreated

Figure 7. Histograms of layoff reasons

short time span between assignment and launch of a treatment is very short,
which precludes acting upon the anticipation.

The last important assumption is that of independent censoring. It cannot
be tested directly, as revealed by a nonidentification result of Tsiatis (1975).
Over 70% of all censored spells are attributed to the censoring categories “no
control”, “other cases” and “other termination of search”. There is no further
information for these cases. In subsection 3.6, we conduct a simulation study, in
which plausible deviations from the independence assumptions are generated.
It turns out that the estimator is robust towards such violations.

Remark: one implicit implication of the assumptions A2 and A4 is that non-
compliers who refuse the treatment behave in the same way as if they were not
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assigned to the treatment. It is plausible, particularly in the cases in which indi-
viduals do not comply in order not to change their behavior. In the PARE reform,
it is plausible to assume that individuals do not comply because they anticipate
a fast exit and because they want to avoid higher search effort or other related
participation costs; see the next subsection for an analysis of noncompliance. In
both cases, assignment to the treatment together with a selection out of it is not
likely to change their behavior.

In sum, the assumptions adopted for identification and estimation of the
treatment effect of the PARE reform can be considered as plausible.

3.5. Analysis of endogeneity. In this subsection we tackle the static endogene-
ity issue arising from noncompliance. Noncompliance is important not only for
the evaluation of a program but also in the light of its effectiveness. The non
take-up of a policy often reduces the effectiveness of a program, see e. g. Blasco
(2009). It is therefore important to understand what drives noncompliance.

We start with an estimation of the naive treatment effect (2.8). The correspond-
ing estimator is defined as

(3.2) N̂E(t, a) ∶= P̂(T ∈ [t, t + a) ∣ S = t,Z = t) − P̂(T ∈ [t, t + a) ∣ S =∞,Z = t),

where t is equal to 6 months and a varies between 1 day and 3 months and
the separate probabilities are estimated with a Kaplan-Meier estimator. (3.2)
amounts to a direct comparison of the average outcome of compliers and non-
compliers from the cohort {Z = 6}. The estimate is shown in figure 8. It is positive

Figure 8. A naive estimator: noncompliers as control group. Time
measured in days.

and increasing until the 80th day after treatment (which is the 260th day of un-
employment), and then slightly decreasing. At the first 40 days after treatment
the effect is practically zero, at its maximum it is around 0.08, and at day 60 after
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treatment (that is, after 8 months of unemployment) around 0.025. This implies
that the probability for a complier to find a job before the end of the first month
after treatment, conditional on having been unemployed for 6 months, is almost
the same as for a noncomplier, before the end of the second month it is with
2.5 percentage points higher, and at its peak it is 8 pp. higher.20 As a result, if
we evaluate PARE using the naive estimator (3.2), we would conclude that the
reform was beneficial for the duration of unemployment but that the effect is
rather modest.

Using the methods developed in section 2.5, we answer now the following
questions:

● Is the non take-up of PARE driven by an endogenous selection?
● If yes, in which direction is the bias of the naive estimator caused by this

endogenous selection?

To answer the first question, we perform the simplified test for exogeneity from
section 2.5. The null hypothesis is

(3.3) H0 ∶ F̄1(6 ∣ S =∞) − F̄2(6).

It amounts to comparing the survival function at t = 6 of the noncompliers from
cohort {Z = 6} with the survival function at t = 6 of the whole cohort {Z = 9}.
The test statistics is defined as T = ̂̄F1(T > 6 ∣ S =∞) − ̂̄F2(6), where ̂̄Fi, i = 1,2 are
the Kaplan-Meier estimators of F̄i.

The test rejects the null at 5 % level. As a result, untreated compliers and
noncompliers are significantly different in terms of potential outcomes, which
induces a static selection bias in the naive estimator. To evaluate the bias of (3.2),
we plot T̂E(6, a) and N̂E(6, a) for a varying between 0 and 3 months. The result
is shown in figure 9. N̂E(6, a) has a negative bias for all a. To find the reason
for this negative bias, it is helpful to interpret it in the frame of existing studies
on policy take-up, see e.g. Moffit (1983), Currie (2004) and Blasco (2009). An
empirical analysis of the take-up of the PARE reform is done by Blasco (2009),
who also uses a theoretical model. She finds stigma, informational issues and
the expectation of a soon exit to be the main reasons for noncompliance. One
explanation for the negative bias in line with Blasco (2009) would be therefore
the expectation of a short spell among noncompliers. Individuals who anticipate
to find quickly a job or who have even already signed a contract at the time of the
reform start would be reluctant to comply since they wouldn’t benefit from the
generosity of the new program. Thus, there is a selection of quick exits into the
group of noncompliers which leads to the negative bias of the naive estimator.

20Controlling for observed covariates such as gender, education and type of job (white vs.
blue collar) yields similar results, see figures 14, 16a and 16b in appendix A.3. Due to the small
sample size available, we conduct the study mainly unconditionally.
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Figure 9. Comparison of the IV estimator (red line) and the naive
estimator (black line). Time measured in days

3.6. Dependent Censoring: a Simulation Study. To assess the impact of the
assumption of independent censoring, a small simulation study is conducted.
Deviations from C ⊥ S and C ⊥ T are constructed, where C again is a censoring
random variable. The first one influences the estimator of the probability to be a
complier,

P(S = t ∣ T ≥ t,X,Z = t),

while the second one influences the estimator of the difference

P(T ∈ [t, t + a) ∣ T ≥ t,X,Z = t) − P(T ∈ [t, t + a) ∣ T ≥ t,X,Z = t′).

We are interested in their marginal impacts as well as in the influence of their
interplay. Two cohorts are simulated, the treated and the nontreated, each with
10000 individuals. Both cohorts consist of compliers and noncompliers and in
each cohort the probability to be a complier is 80%. Noncompliers dominate
stochastically the compliers when both groups have not received the treatment.
This reflects our finding in section 3.5 that noncompliance might occur due to
the expectation of a short spell. The treatment is obtained by the compliers of
the first cohort on the 20th day after inflow and it shifts their duration distribu-
tion from N(60,15) to N(30,10) in line with the estimation results from section
3.321. The noncompliers are not influenced by the treatment and have a duration
distribution N(45,15). The compliers from the second cohort do not receive the
treatment too. Their duration distribution is equal to the duration distribution
of the compliers of cohort 1 before treatment, N(60,15). Figure 10 shows the
theoretical treatment effect, depicted by the thick black line. The dashed red line

21Negative values are replaced by their absolute values.
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Figure 10. An IV estimator of the treatment effect. Time measured
in days. Day 0 corresponds to the day of treatment (day 20).

represents the IV estimator in a case with independent censoring with a distri-
bution N(40,10) (the second argument is henceforth the standard deviation) .
This is the benchmark estimator.

Next, a dependence of the censoring on the compliance is introduced. The
different choices of distributions are described in table 1.

Table 1. Simulation of dependences between censoring and compliance

Line description Censoring distribu-
tion compliers

Censoring distribu-
tion noncompliers

Green dashed line N(30,15) N(50,15)
Red dotted line N(30,15) N(40,15)
Blue long dashed line N(40,15) N(30,15)
Grey two dashed line N(50,15) N(30,15)

Notes: The second argument of the normal distribution is its standard deviation

The resulting estimators are shown in figure 11. The solid black line is theoret-
ical effect. The figure reveals the relationship between bias of the treatment effect
and dependence of censoring and compliance. When the compliers are at higher
risk of censoring, the treatment effect is (a. e.) underestimated. The higher this
discrepancy in the risk exposure, the bigger the bias. Similarly, when the non-
compliers are at higher risk of censoring, the treatment effect is overestimated.

Next, the relationship between bias and time dependence of the censoring is
exploited. We simulate three different levels of dependence. In all three cases
long spells have a higher risk of being censored than short spells. This is in
line with typical situations in applied survival analysis. For example, long term
unemployed might have smaller incentives to meet criteria (e. g. administrative
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Figure 11. An IV estimator of the treatment effect. Time measured
in days. Day 0 corresponds to the day of treatment (day 20). The
black solid line is the theoretical treatment effect. Different curves
correspond to different dependences of censoring and compliance,
see table 1. The solid black line is theoretical effect.

control of search, regular visits at the agency, etc.) to stay on an unemployment
insurance list. The three specifications are defined in table 2. Each row represents
one specification.

Table 2. Simulation of dependences between censoring and time

Line description Censoring distribu-
tion T ≤ 40

Censoring distribu-
tion T > 40

Green dashed line N(40,20) N(30,20)
Red dotted line N(40,20) N(25,20)
Blue long dashed line N(40,20) N(20,20)

Notes: The second argument of the normal distribution is its standard deviation

The corresponding estimators are depicted in figure 12. Approximately until
day 15 the IV estimator performs fairly well in all three cases. Afterwards it
underestimates the treatment effect. The bias increases in absolute value with
increasing time dependence (defined as the difference in the means in the two
groups of spells).

It is interesting to simulate and analyze a combination of these two types
dependences. We simulate four patterns of such an interplay. The concrete dis-
tributions are described in table 3. The results are shown in figure 13. The blue
and the grey lines are closer to the theoretical effect than the other two estima-
tors. This indicates, that a violation in the censoring assumption C ⊥ S might
partially offset a violation in the assumption C ⊥ T. This is a novel result.
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Figure 12. An IV estimator of the treatment effect. Time measured
in days. Day 0 corresponds to the day of treatment (day 20).The
black solid line is the theoretical treatment effect. Different curves
correspond to different dependences of censoring and time, see
table 2. The solid black line is theoretical effect.

Table 3. Simulation of dependences between censoring and com-
pliance and time

Line description K, T ≤ 30 K, T > 30 N, T ≤ 30 N, T ≤ 30
Green dashed line N(50,20) N(30,20) N(30,20) N(20,20)
Red dotted line N(40,20) N(30,20) N(30,20) N(20,20)
Blue two dashed line N(30,20) N(20,20) N(40,20) N(30,20)
Grey long dashed line N(30,20) N(20,20) N(50,20) N(30,20)

Notes: K stays for compliers, N for noncompliers.

In the French labor market reform it is difficult to argue which type of de-
pendence there is likely to be. Noncompliers contain many quick exits, and if
longer spells have a higher censoring risk than shorter spells, than noncompliers
should be less exposed to censoring than compliers. This would correspond to
the fourth case of table 3. Thus the simulation results provide evidence, that the
IV estimator is robust to a violation in the independent censoring assumption.
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Figure 13. An IV estimator of the treatment effect. Time measured
in days. Day 0 corresponds to the day of treatment (day 20). The
black solid line is the theoretical effect in the absence of censoring.
Different curves correspond to different dependences of censoring
and time, see table 2. The solid black line is theoretical effect.

4. Summary and Discussion

In this paper we developed a nonparametric IV framework for the evaluation
of dynamic treatment effects. Our methods solve the problems of dynamic and
static endogeneity and allow for censoring. The corresponding estimators have a
natural interpretation and are related to the Wald-type statistics. We also suggest
a framework for analysis of noncompliance. We used our methods to evaluate
the French labor market reform PARE. The estimated effect of the reform on the
conditional survival function of the unemployment variable is positive, which
is in line with the findings in the existing literature. In an exhaustive study, we
showed that the assumptions for our approach are valid. Our results reveal that
neglecting of endogeneity would lead to a negative bias. An interesting question
for future research would be to incorporate equilibrium effects. Comprehensive
policy reforms are likely to induce equilibrium effects through positive or nega-
tive externalities. It is often desirable to distinguish between the direct effects of
a reform and the equilibrium effects. More work on this topic has to be done.

37



Appendix A. Appendix

A.1. Proofs of propositions. Proof of Proposition 2.1
First we show that from the no anticipation assumption the following result
holds:

(A.1) P(T(t) ≥ t ∣ X,S(t) = t) = P(T(t′) ≥ t ∣ X,S(t) = t).

This is so because

P(T(t) ≥ t ∣ X,S(t) = t,V) = exp(−ΘT(t)(t ∣ X,S(t) = t,V))

No anticipation
= exp(−ΘT(t′)(t ∣ X,S(t) = t,V)) = P(T(t′) ≥ t ∣ X,S(t) = t,V),

so that we obtain

P(T(t) ≥ t ∣ X,S(t) = t) = IE [I{T(t)≥t} ∣ X,S(t) = t]

= IE [IE [I{T(t)≥t} ∣ X,S(t) = t,V] ∣ X,S(t) = t]

= IE [P(T(t) ≥ t ∣ X,S(t) = t,V) ∣ X,S(t) = t]

= IE [P(T(t′) ≥ t ∣ X,S(t) = t,V) ∣ X,S(t) = t]

= IE [IE [I{T(t′)≥t} ∣ X,S(t) = t,V] ∣ X,S(t) = t] = P(T(t′) ≥ t ∣ X,S(t) = t)

where I{T(s)∈B} is an indicator function equal to 1 when T(s) ∈ B (of course from
these steps we also see that P(T(t) ≥ t ∣ X,S(t) = t,V) = P(T(t′) ≥ t ∣ X,S(t) = t,V)).

Next, using result (A.1), we show FV∣T(t)≥t,X,S(t)=t = FV∣T(t′)≥t,X,S(t)=t. Let B be a
Borel set. With result (A.1), it holds

P(V ∈ B ∣ T(t′) ≥ t,X,S(t) = t) = P(V ∈ B ∣ T(t) ≥ t,X,S(t) = t).

Now we show FV∣T(t)≥t,X,S(t)=t = FV∣T≥t,X,S=t,Z=t. First we observe that Z y {T(s),S(z)} ∣

X,V and Z y V ∣ X together imply Z y {T(s),S(z)} ∣ X (Weak Union, see Pearl
(2000)). Then, we have

P(V ∈ B ∣ T(t) ≥ t,X,S(t) = t) =
P(V ∈ B ∣ X,S(t) = t)P(T(t) ≥ t ∣ X,S(t) = t,V ∈ B)

P(T(t) ≥ t ∣ X,S(t) = t)
.

We study the separate components of the right-hand side of the last expression.

(1) With assumptions A3 and A4, it holds

P(V ∈ B ∣ X,S(t) = t) = P(V ∈ B ∣ X,S = t,Z = t).

(2) Further,

P(T(t) ≥ t ∣ X,S(t) = t,V ∈ B) = P(T ≥ t ∣ X,S = t,V ∈ B,Z = t).

(3) Using Z y {T(s),S(z)} ∣ X instead of Z y {T(s),S(z)} ∣ X,V, we obtain

P(T(t) ≥ t ∣ X,S(t) = t) = P(T ≥ t ∣ X,S = t,Z = t)
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So finally we get the equality

P(V ∈ B ∣ T(t) ≥ t,X,S(t) = t)

=
P(V ∈ B ∣ X,S = t,Z = t)P(T ≥ t ∣ X,S = t,V ∈ B,Z = t)

P(T ≥ t ∣ X,S = t,Z = t)
= P(V ∈ B ∣ T ≥ t,X,S = t,Z = t)

◻

Proof of corollary 2.1
With proposition 2.1,

TE(t, t′, a) = IE[P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,X,V,S(t) = t) ∣ T(t) ≥ t,X,S(t) = t]

− IE[P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,V,S(t) = t) ∣ T(t′) ≥ t,X,S(t) = t]

= P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,X,S(t) = t) − P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,S(t) = t).

Lemma A.1. Set B = [t, t + a) where a ≤ t′ − t. Under Assumptions A1-A4, it holds for
all ∞ ≥ t′ ≥ t ≥ 0 that

(A.2)

P(T(t) ∈ B ∣ T(t) ≥ t,X,S(t) = t) = P(T ∈ B ∣ T ≥ t,X,S = t,Z = t),

(A.3)

P(T(t′) ∈ B ∣ T(t′) ≥ t,X,S(t) =∞) = P(T ∈ B ∣ T ≥ t,X,S =∞,Z = t) and

(A.4)

P(T(t′) ∈ B ∣ T(t′) ≥ t,X) = P(T ∈ B ∣ T ≥ t,X,Z = t′).

Proof
First, observe that with randomization and consistency, it holds

P(T(t) ∈ B ∣ X,S(t) = t) = P(T ∈ B ∣ X,S = t,Z = t),

P(T(t) ≥ t ∣ X,S(t) = t) = P(T ≥ t ∣ X,S = t,Z = t),

so that

P(T(t) ∈ B ∣ T(t) ≥ t,X,S(t) = t) = P(T ∈ B ∣ T ≥ t,X,S = t,Z = t)

where the r.h.s of the equality consists only of observables.
Next, we have

P(T ∈ B ∣ X,S =∞,Z = t) = P(T(∞) ∈ B ∣ X,S =∞,Z = t)

= P(T(∞) ∈ B ∣ X,S(t) =∞,Z = t) = P(T(∞) ∈ B ∣ X,S(t) =∞)

= P(T(t′) ∈ B ∣ X,S(t) =∞),
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where the first and the second equalities follow due to consistency, the third due
to randomisation and the fourth due to no anticipation. Equality (A.4) follows
analogically.

Lemma A.2. Under Assumptions A1-A4, it holds for all ∞ ≥ t′ ≥ t ≥ 0 that

P(S(t) = t ∣ T(t) ≥ t,X) = P(S = t ∣ T ≥ t,X,Z = t),(A.5)

P(S(t) = t ∣ T(t′) ≥ t,X) = P(S(t) = t ∣ T(t) ≥ t,X).(A.6)

Proof
First, it holds

P(S = t ∣ T ≥ t,X,Z = t) =
P(T ≥ t ∣ S = t,X,Z = t)P(S = t ∣ X,Z = t)

P(T ≥ t ∣ X,Z = t)

=
P(T(t) ≥ t ∣ S(t) = t,X)P(S(t) = t ∣ X)

P(T(t) ≥ t ∣ X)
= P(S(t) = t ∣ T(t) ≥ t,X),

where the second equality follows with assumptions A1-A4.
Next,

P(S(t) = t ∣ T(t′) ≥ t,X) =
P(S(t) = t,T(t′) ≥ t ∣ X)

P(T(t′) ≥ t ∣ X)

=
P(T(t′) ≥ t ∣ S(t) = t,X)P(S(t) = t ∣ X)

P(T(t) ≥ t ∣ X)
=

P(T(t) ≥ t ∣ S(t) = t,X)P(S(t) = t ∣ X)

P(T(t) ≥ t ∣ X)

= P(S(t) = t ∣ T(t) ≥ t,X),

where the second equality holds due to no anticipation.

Proof of proposition 2.2
First, write

P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X)(A.7)

= P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,S(t) = t)P(S(t) = t ∣ T(t′) ≥ t,X)

+ P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,S(t) =∞)P(S(t) =∞ ∣ T(t′) ≥ t,X),

and then express P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,S(t) = t) in terms of the other
three components of equality (A.7). Plugging in the results of lemma A.1 and
lemma A.2, we obtain for FC,0 ∶= P(T(t′) ∈ B ∣ T(t′) ≥ t,X,S(t) = t)

P(T(t′) ∈ B ∣ T(t′) ≥ t,X,S(t) = t)

=
P(T ∈ B ∣ T ≥ t,X,Z = t′) − P(T ∈ B ∣ T ≥ t,X,Z = t,S =∞)P(S =∞ ∣ T ≥ t,X,Z = t)

P(S = t ∣ T ≥ t,X,Z = t)
.

Finally, with FC,1 ∶= P(T(t) ∈ B ∣ T(t) ≥ t,X,S(t) = t), the treatment effect is equal
to FC,1 − FC,0 which after simplification is equal to

P(T ∈ B ∣ T ≥ t,X,Z = t) − P(T ∈ B ∣ T ≥ t,X,Z = t′)
P(S = t ∣ T ≥ t,X,Z = t)

.
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◻

Proof of proposition 2.7
For notational simplicity we drop the dependence on 0 and x0. First note, that

the results of Theorem 1 Nielsen and Linton (1995) remain valid at the boundary
when we replace the symmetric kernel k with its boundary counterpart k+ and
adapt the constants. The validity of proposition 2.7 i) follows from

√
nbq+1((Ψ̂−

Ψ∗) =
√

nbq+1

p̂1
((θ̂1 − θ∗1) − (θ̂2 − θ∗2)), the independence of (θ̂1 − θ∗1) and (θ̂2 − θ∗2),

and the adapted proof of Theorem 1 i) in Nielsen and Linton (1995). Next, it
holds

(A.8) b−2(Ψ∗ −Ψ) =
b−2

p̂1
((θ∗1 − θ1) − (θ∗2 − θ2)) + b−2(θ1 − θ2)(

1
p̂1
−

1
p1

).

The second term on the right-hand side of (A.8) is equal to op(1) when b is of
order O(n−1/(q+5)) or o(n−1/(q+5)). Proposition 2.7 ii) follows with Theorem 1 b) in
Nielsen and Linton (1995). Finally, proposition 2.7 iii) follows directly from the
adapted proof of Theorem 1 c) Nielsen and Linton (1995) and the continuous
mapping theorem.

A.2. Description of variables. The variables used in our application have been
constructed in the following way:

● The variable age gives the age at the begin of the unemployment spell
and is defined as the year in which the spells begins minus the year of
birth.

● Marital status consists of four categories: single, married, divorced and
widowed.

● the variable for educational level summarizes the 31 categories used in
the administrative data set into 6 categories according to the highest de-
gree attained. The correspondence is roughly as follows: value 1 if the
degree is in niveau I and II (university degree, maı̂trise and licence),
value 2 if the degree is in niveau III - BTS and DUT (brevet de tech-
nicier supérieur and diplôme univeritaire de technologie, respectively,
both technical degrees obtained in 2 years after high school), value 3 for
all Baccalauréat (high school degree, the general part of lycée) diplomas
and for all dropouts from niveau III, 4 for all BEP ,CEP (professional Bac-
calauréat, specialised part of lycée) and all dropouts from Baccalauréat,
5 for BEPC (brevet d’études du premier cycle, junior high school), and 6
for below.

● The variable experience states the number of years of experience in the
job (type and position), which the individual is looking for. The types of
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jobs are specified in an administrative nomenclature table (ROME table).
There are several hundred different types.

● The job type variable contains general information about the type of the
activity in the job preceding the current unemployment spell. It summa-
rizes the 9 administrative categories into 6 categories: white collar skilled,
white collar unskilled, technical, supervisor (a production team leader)
and manager. This summarized categorization is in line with existing lit-
erature, see for example Crépon et al. (2010). The initial administrative
variable is contained in the FH data set. This holds also for the variable,
which states which job is the unemployed looking for, while the following
employment type and position is contained in the DADS data set. Unfor-
tunately, there is no clear matching between the variables from the two
different data sets, which leads to some unclarity regarding the question
whether the unemployed actually found the job he/she was looking for.
This restricts our definition of censoring. Therefore, in this application
each observation with known job destination is considered uncensored.

● Censoring indicator: there are several possibilities, when an observation
is considered as censored. These are:

– when the unemployment spell in the data set is not finished at the
time of the data collection, or

– when the individual exits the labor market. This includes exits to ma-
ternity, accident, illness or invalidity, invalidity pension, military ser-
vice, administrative change of insurance status, attrition because of
insufficient administrative control, dropout because of irregular no-
tifications, and other, unspecified reasons. While reasons such as ma-
ternity, military services and invalidity pension are normally known
well in advance by the unemployed and can therefore be related to
search activity (as well as to compliance behavior), they represent a
small fraction of the observations.

● Unemployment history: it is constructed as a binary variable which
equals 1 if the individual had been already unemployed before the last
employment spell. There are various ways to define unemployment his-
tory. One example is the total length of previous unemployment spells. Al-
ternatively, one could take the number of unemployment spells, or both.
All possibilities suffer from disadvantages. The last possibility seems to
provide the most complete information, but it also demands more data,
since it provides many different categories. The total length of previous
unemployment lacks any information about the lengths of the separate
spells, and the number of spells alone doesn’t give any information about
the length of unemployment. The binary indicator also does not provide
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any information at all about the dispersion of previous unemployment,
but it is easy to understand and requires only two categories, which
makes it computationally attractive. Additional, more serious drawback
for the other two indicators is, that the data set is left censored: the earliest
information about employment is from 1993. This problem is less severe,
if one only looks at the indicator of having been unemployed.

A.3. Analysis of endogeneity.
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Figure 14. A naive estimator. Male vs. Female. Time measured in days.

Figure 15. A naive estimator for subgroups

(a) Education. Low ed-
ucated dashed line

(b) Qualification. Blue
collars dashed line
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l’honneur de Eugène Smolensky.

Debauche, E. and Jugnot, S. (2007). Les effets du projet d’action personalisé sur
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