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Abstract: 

Thermal barrier coatings (TBCs) are now being widely used on gas turbine engines to lower the 

surface temperatures of metallic substrate from extreme hot gas stream in combustor and turbine 

components. The thermally grown oxide (TGO) growth rate plays an important role in the life 

time of TBC systems. The accurate real-time monitoring of bond-coat/ 8YSZ interface 

temperature in thermal barrier coatings (TBCs) in hostile environments opens large benefits to 

efficient and safe operation of gas turbines. A new method for fabricating high temperature 

thermocouple sensors which can be placed close to this interface using laser cladding technology 

has been developed. 

K-type thermocouple powders consisting of alumel (Ni2Al2Mn1Si) and chromel (Ni10Cr) were 

studied as candidate feedstock materials. A thermocouple sensor using these materials was first 

produced by coaxial continuous wave (CW) or pulsed laser cladding process onto the standard 

yttria partially stabilized zirconia (7~8 wt.% YSZ) coated substrate and afterwards embedded 

with a second YSZ layer deposited by the atmospheric plasma spray (APS) process. The process 

parameters of the laser cladding were optimized with respect to the degradation of the substrate, 

dimensions, topography, thermosensitivity and embeddability, respectively. Infrared cameras 

were used to monitor the surface temperature of clads during this process. 

The manufacture of the cladded thermocouple sensors provides minimal intrusive features to the 

substrate. The dimensions were in the range of two hundred microns in thickness and width for 

CW laser cladding and less than 100 microns for pulsed laser cladding. Additionally, continuous 

thermocouple sensors with reliable performance were produced. It is possible to embed sensors 

manufactured by CW laser cladding rather than by pulsed laser cladding due to the limited 

bonding strength between the clads and the substrate. Periodically droplets were formed along 

the clads under improper parameters, the mechanism to this is discussed in terms of particle size 

distribution after interaction with the laser beam, melts duration and Rayleigh’s theory.  

To sum up, laser cladding is a prospective technology for manufacturing microsensors on the 

surface of or even embedded into functional coatings that can survive in operation environments 

for in-situ monitoring. Production of sensors within thermal barrier coatings (TBCs) increases 

the application field of the laser cladding technique.	  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Kurzfassung: 

Wärmedämmschichten (WDS) werden aktuell verbreitet in Gasturbinen genutzt, um die 

Oberflächentemperatur des metallischen Substrates in der Brennkammer und den 

Turbinenkomponenten gegenüber dem extrem heißen Gasstrom zu senken. Die genaue 

Echtzeitmessung von Oberflächentemperaturen oder der Innentemperatur einer 

Wärmedämmschicht in aggressiver Umgebung eröffnet beträchtliche Vorteile für den effizienten 

und sicheren Betrieb von Gasturbinen. Es wurde eine neue Methode zur Herstellung von 

Hochtemperatur-Thermoelementen für Gasturbinen mittels Laser-Auftragsschweißen entwickelt.  

Alumel (Ni2Al2Mn1Si) und Chromel (Ni10Cr) wurden in Pulverform als Ausgangsmaterialien 

für Thermoelemente des K-Typs untersucht. Um einen Thermoelement-Sensor mit diesen 

Materialien herzustellen, wurde zunächst auf ein mit herkömmlichem Yttriumoxid-

teilstabilisiertem Zirkoniumdioxid (7~8 wt.% YSZ) beschichtetes Substrat der Sensor durch 

koaxiales, kontinuierliches oder gepulstes Laser-Auftragsschweißen aufgebracht. Anschließend 

wurde die Einbettung durch atmosphärisches Plasmaspritzen (APS) einer weiteren YSZ-Schicht 

durchgeführt. Die Prozessparameter des Laser-Auftragsschweißens wurden optimiert in Bezug 

auf die Degradation  des Substrats, die Dimensionen, Topographie, Wärmeempfindlichkeit und 

Einbettungsmöglichkeit. Es wurden Infrarotkameras eingesetzt, um die Oberflächentemperatur 

der Aufschweißung während des Prozesses zu verfolgen. 

Die Herstellung des aufgeschweißten Hochtemperatursensors beeinflusst minimal die Funktion 

des Substrates. Die Abmessungen liegen für kontinuierliches Laser-Auftragsschweißen im 

Bereich von 200 µm und für gepulstes Laser-Auftragsschweißen unter 100 µm. Außerdem 

wurden kontinuierliche Thermosensoren mit zuverlässigen Ergebnissen hergestellt. Wegen der 

begrenzten Bindungsstärke zwischen den Aufschweißungen und dem Substrat ist es eher 

möglich, Sensoren durch koaxiales, kontinuierliches Laser-Auftragsschweißen herzustellen, als 

mit gepulstem Laser-Auftragsschweißen. Mit ungeeigneten Prozessparametern wurden 

periodische Tropfen entlang der Aufschweißungen gebildet. Der Mechanismus hierfür wird unter 

den Gesichtspunkten der Partikelgrößenverteilung nach dem Einwirken des Laserstrahls, der 

Schmelzdauer und der Rayleighs Theorie diskutiert.  



Laser-Auftragsschweißen ist eine aussichtsreiche Technologie zur Herstellung von 

Mikrosensoren, die an der Oberfläche oder sogar eingebettet in funktionellen Beschichtungen 

unter Arbeitsbedingungen direkte Messungen ermöglichen. Die Produktion von Sensoren in 

Wärmedämmschichten erweitert den Anwendungsbereich für das Laser-Auftragsschweißen.  
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Abbreviations 
 

CW Continuous wave 
YSZ Yttria partially stabilized zirconia  
APS Atmospheric plasma spraying/ sprayed 
TBCs Thermal barrier coatings 
CSZ Calcia stabilized zirconia 
MSZ Magnesia stabilized zirconia 
EB-PVD Electron beam physical vapor deposition/ deposited 
DC Direct current 
DWTS Direct-write thermal spray 
WH Width of the heat affected zone 
WC Track width  
HC Clad height 
HD Depth of the dilution 
HH Depth of the heat affected zone 
P Laser power 
Db Spot size 
V Scanning velocity  
Vp Shielding gas rate 
Vc Carrier gas rate 
E Energy input per unit length 
G Mass of injected powder per unit length 
E0 Laser pulse energy 
t Laser pulse width 
f Laser pulse frequency 
P0 Average power 
C Duty cycle 
TC Thermocouple 
VPS Vacuum plasma spraying 
MSM Micro-spot Monitor 
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IR Infrared camera 
R Resistance 
A Cross-sectional area 
L Length of a track 
ρ Resistivity 
S Stand-off distance 
t Cladding time 
cp Specific heat capacity 
Tm Melting point 
RT Room temperature 
Hfusion Latent heat of fusion 
2D Two dimensional 
HAZ Heat affected zone 
EMF Electromotive force  
LC Laser cladding 
TBC Top barrier coating 
BC Bond coat 
CTE Coefficient of thermal expansion 
σ Surface tension 
τ Break up time 
λ Wavelength of the disturbance 
Rc Radius of an cylinder 
ρc Density 
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1. Introduction and Objectives 
	  

Thermal barrier coatings (TBCs) are now being widely used in gas turbine engines to lower the 

surface temperatures of metallic substrate in an extreme hot gas stream in combustor and turbine 

components. On one hand, life capabilities of engines could be extended. On the other hand, an 

increase of the turbine inlet temperatures could also be allowed, thereby, the operation efficiency 

and performance of turbine engines could be improved [1-8]. 

Higher efficiency demands lead to increased combustion temperatures in gas turbine engines. 

Applying higher engine operating temperature requires accurate knowledge of the turbine blade 

temperature to avoid damage of engine components. Effective monitoring and diagnosis in such 

harsh operating conditions is of critical importance. If critical operating conditions could be 

continuously monitored in real-time, problems can be detected and solved during operation. 

‘Smart’ coatings are generally proposed for the purpose of in-situ monitoring during operation of 

turbine blades in order to better control surrounding environment and design coatings with 

appropriate structures. ‘Smart’ coatings are the coatings integrated with embedded sensors, such 

as thermocouple sensors or strain gauge sensors and so on. This kind of coatings combines the 

function of a thermal barrier coating and a sensor, with which feedback about the functional 

status and operating history of the coatings as well as of the coated structure and surrounding 

environment could be provided. 

In this study, a new method for fabricating high temperature type K thermocouple sensors using 

laser cladding technology has been developed. The desired TC sensors deposited by this process 

should contain certain properties: minimal effect on the substrate; small dimensions (minimal 

intrusion to the substrate); electrical conductivity as well as embedded feature for monitoring the 

internal temperature within a certain depth of the coatings.  

There are a couple of challenges when applying this technique: first of all, a melting pool on the 

substrate surface needs to be formed for the traditional laser cladding, but sensors with little 

impact to the substrate are required to keep the original performance of TBCs; secondly, tracks 

tend to detach due to the low adhesion strength; thirdly, sensors in small dimensions or high 

roughness (discontinuous) tend to lose their electrical conductivity; furthermore, cladded sensors 



1. Introduction and Objectives
 

	  
	  

	  
2 

have the risk to lose the electrical conductivity during embedding within a second YSZ layer 

because of continuous impingement of ceramic particles to the tracks; mismatched Seebeck 

coefficient of cladded type K TC sensors to that of commercial ones would mislead the 

temperature recording during operation, therefore, reliable temperature cannot be captured.  

The aim of this work is to fabricate K-type TC sensors with properties of minimal impact to the 

substrate, small dimension as well as roughness and good electrical conductivity by laser 

cladding technology, moreover, to embed them by a second ceramic layer. The success of this 

work could increase application field of the laser cladding technique. 
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2. Background and Basic Overview 
 

2.1 Introduction of Thermal Barrier Coatings (TBCs) 

Superalloys used in commercial gas turbine engines normally melt in the range of 1230 oC~1315 
oC and the operation temperature in a combustion gas environment typically above 1370 oC. In 

order to avoid failure caused by melting, thermal fatigue or creep, airfoils along with effective 

cooling geometries and hollow structures were designed and the engine efficiency was improved 

considerably. Higher efficiency demands led to innovative technologies that could further reduce 

the surface temperatures of superalloys. One method of protecting gas turbine engine 

components is through the application of thermal barrier coatings [1]. 

Thermal barrier coatings (TBCs) are now being widely used in gas turbine engines to lower the 

surface temperatures of metallic substrate from extreme hot gas stream in combustor and turbine 

components [2-5]. The application of TBCs (100 ~ 500 µm in thickness) along with internal 

cooling systems enables a large temperature drop (several 100 K) across the ceramic layer, hence, 

modern gas turbine engines could be operated well above the melting point of metallic materials 

(~1300 oC) [3, 6, 7]. Extended life capabilities of engines could be achieved by lowering the 

substrate temperatures. On the other hand, an increase of the turbine inlet temperatures could 

also be allowed, thereby, the operation efficiency and performance of turbine engines could be 

improved [3-5, 7-9]. TBCs are also being used in certain diesel engines, where higher operation 

temperatures translate into increased fuel economy and cleaner exhaust [2].  

The TBC components must withstand very harsh environment accompanied by high temperature, 

large temperature gradient, complex stress condition and corrosion atmosphere. No single 

material is satisfied for these multifunctional requirements. As a result, TBC system with duplex-

type consists of a metallic bond coat (75~150 µm thick) and an insulating ceramic topcoat 

(300~600 µm thick) was established. The bond coat protects the underneath substrate from high 

temperature oxidation and corrosion as well as improves the adhesion strength between the 

substrate and the topcoat. The ceramic topcoat that normally has a low thermal conductivity 

could prevent the heat flux into the metallic substrate [2, 3, 5, 7, 9].   
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The earliest ceramic coatings were frit enamels which were applied to aircraft engine 

components in the 1950s. In the 1960s, flame sprayed ceramic coatings with NiAl bond coats 

were developed in commercial aero engines. Among the various early ceramic materials 

evaluated for thermal barrier applications, alumina and zirconia were identified as promising 

candidate materials. The effectiveness of alumina coatings was limited by the relatively high 

thermal conductivity and destabilization upon temperatures above 1100 oC. Pure zirconia is also 

not suitable for the application as it undergoes a different phase transition from martensitic 

monoclinic to tetragonal at about 1000 oC accompanied by a large volume change (3 to 9 %). 

Therefore, different doping additions, such as MgO or CaO, were used with the intent of 

stabilizing the cubic phases [10]. V. S. Stubican [11] reported that the cubic phases were not 

stable below about 1140 oC for calcia stabilized zirconia (CSZ) and 1400 oC for magnesia 

stabilized zirconia (MSZ). Succeeding decades showed continuous improvements in the TBC 

materials and coating technology. It was however in the 1980s when the TBCs were significantly 

improved. During this decade, yttria stabilized zirconia (YSZ) was identified as an exceptional 

ceramic topcoat material due to its high melting point, low thermal conductivity, relatively high 

coefficient of thermal expansion when compared to other oxides and high thermal shock 

resistance [12, 13]. This modification has resulted in a fourfold improvement in durability [14]. 

The initial zirconia-yttria TBCs contained 12-20 % Y2O3 to fully stabilize the cubic phase [10] 

and Stecura proved that lowering the yttria level to 6-8 wt.%, TBC exhibited better performance  

at the end of the 1970s [12] and has been frequently used in aero and stationary gas turbines 

since the beginning of the 1980s [14-15]. Another reason for the frequent use of (6-8 wt.%) YSZ 

is the contributed to relatively good fracture toughness of this material [16]. A higher amount of 

stabilizer would lead to a fully stabilized cubic zirconia with a relatively low toughness. A lower 

amount of stabilizing additive leads to a higher toughness at room temperature, but detrimental 

phase transformations during heating could not be completely prevented [9]. Up to now, a 

candidate ceramic layer that is better than YSZ in all terms of relevant properties has not been 

discovered yet.  
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2.2 Spray Techniques of TBCs 

In terms of preparation techniques, although there are various methods for depositing ceramic 

layers on metal substrates, electron beam physical vapor deposition (EB-PVD) and atmospheric 

plasma spraying (APS) are the most frequently used technologies for the deposition [2, 3, 5, 7, 9].  

 

2.2.1 Electron Beam Physical Vapor Deposition (EB-PVD) 

In the EB-PVD process, vapors are produced by heating the porous ingot of a ceramic material 

with a high energy electron beam in a vacuum chamber, and the evaporated atoms condense on 

the typically preheated substrates. Crystal nuclei form on favored sites, growing laterally and in 

thickness to form individual columns. A rather globular microstructure is initially formed which 

will then transition into a columnar structure due to the selection of a favorable growth direction 

during further deposition [17]. The microstructure of an EB-PVD deposited TBC is shown in 

Figure 2.1. The clearly visible columnar morphology can accommodate stress build-up under 

tensile loading and the spacing between the columns allows a free expansion [18]. The EB-PVD 

produced coatings offer the advantage of superior strain, erosion, and thermal shock tolerant 

behavior as well as retain an aerodynamically favorable smooth surface and usually exhibit long 

lifetime. Nevertheless, these advantages are gained at the expense of rather high-thermal 

conductivity and production cost [5, 19-22, 23]. 

 

 
Figure 2.1 The microstructure of a 7YSZ thermal barrier coating deposited by EB-PVD on NiPtAl bond coat [17].  
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2.2.2 Atmospheric Plasma Spray (APS) 

APS technique has been widely employed for TBC applications. The plasma gun typically 

consists of a tungsten cathode and anode surrounded by a cooling jacket and passages for the 

carrier gas. The plasma is generated by striking an arc between the cathode and anode with a 

high direct current (DC) in the presence of the electrically excitable primary gas in confined 

space. Argon or nitrogen is commonly applied as the primary gas. A high enthalpy secondary gas, 

typically H2 or He, is injected into the established plasma plume to enhance the plasma 

performance. The torch components are water cooled to prevent the cathode and anode from 

degradation and melting by the high temperature plasma.  

During spraying, the spray feedstock, typically in the form of powders but sometimes liquid, 

suspension or wire, is injected into high temperature plasma and accelerated to high velocities, 

impinging upon the substrate, and rapidly solidified to form a “splat” (a flattened particle). The 

coating develops by successive impingement and interlock among the splats, resulting in laminar 

microstructures and microcracks parallel to the metal/ceramic interface which provide low 

thermal conductivity with suitable porosity and superior adhesion. Figure 2.2 presents the cross-

section micrograph of typical APS TBCs. 

 

 
Figure 2.2 The microstructure of an APS produced 7YSZ thermal barrier coating with a NiCoCrAlY bond coat. 

 

topcoat

bond coat
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APS TBCs are attractive for commercial application due to its versatility and low production 

costs. However, APS TBCs generally have shorter thermal-cycling lives than EB-PVD TBCs, 

because the proliferation of microstructural defects parallel to the interface and the roughness of 

the interface. Hence, APS TBCs are typically not applied on the most demanding locations in 

aircraft engines but on combustors, fuel vaporizers, after burner flame holders, and stator vanes. 

APS TBCs have served extremely well in industrial gas turbine engines, including blade and 

vane applications, because of lower operation temperatures, reduced temperature gradients, and 

fewer thermal cycles [2].  

 

2.3 Introduction of ‘Smart’ Coatings 

Higher efficiency demands lead to increased combustion temperatures in gas turbine engines. 

However, achieving higher engine operating temperature requires accurate knowledge of the 

turbine blade temperature. Effective monitoring and diagnosis in such harsh operating conditions 

is of critical importance. If critical operating conditions could be continuously monitored in real-

time, problems can be detected and solved during the operation. ‘Smart’ Coatings are generally 

proposed for the purpose of in-situ monitoring during operation of turbine blades in order to 

better control surrounding environment and design coatings with appropriate structures.  

‘Smart’ coatings are coatings with integrated embedded sensors, such as thermocouple sensors or 

strain gauge sensors and so on. This kind of coatings possesses multiple functions as thermal 

barrier and sensors, with which feedback about the functional status and operating history of the 

coatings as well as of the coated structure and surrounding environment could be provided.  

 

2.4 State of the Art Deposition Methods for Sensors 

2.4.1 Mask-based Twin Wire Arc Deposition 

The embedded sensors within the coatings by thermal spray technology were first addressed by 

Fasching et al. [24]. A mask-based twin wire arc deposition process was used to fabricate 
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thermocouples. In arc spraying, two conductive materials are injected into a direct current arc 

and melted; an atomizing gas breaks up the molten materials into droplets at the wire tips and 

propels it towards the prepared workpiece surface to form the coatings [25].   

For preparing a thermocouple sensor within the coatings, a mask with constructed pattern was 

placed on an insulating substrate and the first thermoleg was sprayed on it, leaving a thin wire 

trace connected to a small pad. The second thermoleg was similarly sprayed by using another 

mask and the junction was formed with connected pads. Additional insulation layers could be 

sprayed onto the sensor to fully embed it. Feature sizes achievable with this approach are in the 

order of 200 µm. The yielded Seebeck coefficients of sprayed thermocouples were reasonably 

approaching bulk values when testing up to 200 °C.  

 

2.4.2 Mask-based Sputtering 

Magnetron sputtering is a plasma vapor deposition process in which plasma is created and 

positively charged ions from the plasma are accelerated by an electrical field superimposed on 

the negatively charged electrode or "target". The positive ions strike the negative electrode with 

sufficient force to dislodge and eject atoms from the target [26]. The fabrication of the thin film 

sensors was performed in a class 1000 cleanroom to minimize possible contamination. The 

thermocouple Pt/ Pt13Rh thin film sensors were patterned with stenciled shadow masks during 

sputter deposition. The PdCr gauge was prepared first by sputtering and then patterned with the 

photolithography technique and chemical etching. These thin film sensors provided minimally 

intrusive features. However, the disadvantages of this technology are quite time-consuming 

because of either the application of masks or strict deposition conditions [27].  

 

2.4.3 Direct-Write Thermal Spray (DWTS) 

Over the past decade, thermal spray has been demonstrated the capability to fabricate a variety of 

sensors that are particularly well suited under harsh environments. Up to now, thermocouple and 

thermistor sensors, heaters, strain sensors, heat flux, and high density thermopile devices for 
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electricity production have been successfully fabricated [26, 28-35]. The typical dimension for 

sensors formed using commercial thermal spray process is several centimeters and far from 

applications. One approach to reduce the linewidth is to use a mask, which is placed over the 

substrate to block a portion of the plume. Linewidths less than 1 mm can be achieved. However, 

this approach restricts to non-conformal geometries. Apart from this, changes in the feature 

geometry require a new mask which also limits its application. Another approach is to place an 

aperture-collimator combined with a robotic motion control close to the torch to block the outer 

portion of the spray plume in flight, resulting in a smaller linewidth. Linewidths in the order of 

100 µm could be produced with this system [36-37]. This provides a variety of vital advantages: 

reliability, robustness and survivability in extremely harsh thermal and chemical environments, 

cost effective implementation, and fabrication onto surfaces that are large, conformal and 

flexible [34].  

Fabrication of finer linewidths is challenged by using thermal spray alone and cannot be reliably 

prepared using this additive process alone. Laser micromachining of thermal spray coatings for 

sensor applications was demonstrated [30] and feature sizes approaching to 15-20 µm could be 

readily achieved [37].  

 

2.5 Introduction of Laser Cladding Technology 

Laser cladding is a well-established industrial technology, which utilizes a focused or defocused 

laser beam as heating source to melt a thin layer of substrate and additive materials to create a 

pore-free and crack-free coating. 

 

2.5.1 Laser Beam Characteristics 

Laser beam characteristics play an important role in laser cladding process. The quality of a laser 

beam is indicated by many parameters. Some of them are beam parameter product (BPP), laser 

beam mode, energy distribution over the beam spot area, polarization and focusability.  
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The BPP provides an indication of the focused beam size and the focal depth which is 

represented by  

BPP=!"
!

 

where r is the beam spot radius in the waist of the laser beam and θ is the far-field full 

divergence angle, as shown in Figure 2. 3. From the above equation, it can be concluded that a 

low divergence angle produces a greater depth of focus and smaller focused spot.  

 

 

Figure 2.3 Laser beam geometry. 

 

It is necessary to resonate the beam in a resonator so as to achieve a good beam quality. Due to 

the repeated reflections between mirrors, the distribution of the amplitude and phases of the 

electromagnetic field can be produced in the resonator [38]. These specific field shapes produced 

in the resonator are known as transverse electromagnetic modes (TEM) of a passive resonator. 

TEMpl demonstrates transverse electromagnetic modes in polar coordinates. The subscript p 

indicates the number of nodes of zero intensity transverse to the beam axis in radial direction and 

the subscript l indicates the number of nodes of zero intensity transverse to the beam axis in 

tangential direction. The intensity distribution Ipl (γ, φ) of a TEMpl mode can be represented by  
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where I0 is the intensity scale factor (W/ m2), rl is the radius of the laser beam profile, M2 is the 

beam quality factor and 𝐿!
! is the generalized Laguerre polynomial of order p and index l [39]. 

The propagation can be illustrated by the quality factor M2, which is related as  

M2=!"!!"  !
!!

 

where λ is the laser wavelength in the used medium (m), n is the index of reflection. The 

propagation factor k is defined as 

k= !
!! −

!!
!"!!"  !

 

If k=M2=1, the laser beam is Gaussian.  

 

2.5.2 Different Methods of Laser Cladding 

Basically, there are two different kinds of techniques for laser cladding: two-step process and 

single-step process. In the two-step process, the coating material in the form of powder is 

preplaced on the substrate and melted with a laser beam to form a coating. In the single-step 

cladding, an additive material is fed into the melting pool created by the laser beam as a powder, 

wire, paste, or melts to form the coating [40-42].  

 

2.5.2.1 Laser Cladding with Pre-placed Powder  

Prior to the laser treatment, the powder particles are pre-placed with a certain thickness on the 

surface of the substrate. Since pre-placed particles do not have enough bonding to the substrate, 

it is necessary to prevent the particles from blowing away due to the gas flow during melting in 

the second step. A chemical binder is usually mixed with particles to ensure its adhesion with the 

substrate during laser treatment. In the second step of the process, a melting pool is created on 

the top surface of pre-placed powders due to the laser radiation. A melt advances from the 

surface towards to the interface due to the heat conduction. If the energy is sufficient, the heat 

will penetrate into the substrate and a fusion bond will be created between the substrate and the 
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coating. Good adhesion and low dilution are obtained when supplying just enough energy. 

Excessive energy leads to excessive dilution while insufficient energy causes incomplete melting 

of particles or poor bonding strength [41, 43]. Results show that this technique works well for 

single track production but is not suitable for multiple ones [44].  

Some drawbacks of this process: it is time consuming due to additional slurry preparation and 

difficult to deposit uniform layers on the surface of complex shaped components, therefore, it is 

hardly used in industrial application. Bad quality clads with porous and high roughness are 

always formed due to the evaporation or decomposition of residual binder. In addition, this 

process usually has a small processing window. Therefore, two step processes always present 

lower productivity and higher costs when comparing to the single step ones.  Generally, injecting 

the feedstock directly into the melting pool is preferred [41-42, 45-46].  

 

2.5.2.2 One-Step Laser Cladding 

Laser Cladding by Wire Feeding 

In this process, wires are fed into the melting pool through a ceramic drum usually to produce a 

layer of clad. Wire feeding is useful in cladding rotationally symmetric components that can be 

rotated such that the surface can be clad in one continuous track [44]. Due to the feeding 

mechanisms, it is essential to use a wire that have been strengthened and stored without plastic 

deformation to guarantee stable feeding [43, 47-48]. This approach seems advantageous because 

it is a single step process and material use efficiency is higher. The wire feeding nozzle must be 

positioned close to the melt pool to ensure accurate feeding of the material to the proposed area. 

Besides, the wire must be carefully controlled so it will not disturb the melting pool. A problem 

with using wire is that the laser beam is partially shielded from the melt pool by the solid wire 

and the laser energy is poorly absorbed by the wire, thus, the results tend to have limited 

reproducibility. In summary, the wire feeding process has some major drawbacks. On one hand, 

both the wire feeding rate and dilution are difficult to be controlled. On the other hand, low 

surface energy and bonding strength, porosity and cracks are easily emerged [41, 44]. 
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Laser Cladding by Paste 

In laser cladding by paste, a stream of additive material in a form of paste is injected on the 

substrate which is normally a little bit ahead of the laser beam [49]. The paste consists of the 

powder particles mixed with a suitable binder. However, the binder must be dried within a short 

time while the powder still keeps compact, otherwise, the particles would be blown away by the 

shrouding gas. Therefore, a special paste feeding system needs to be carefully designed for this 

process. Extreme sensitivity of this process to disturbances, high porosity and difficulties in paste 

feeding mechanism limit its application [43]. 

 

Laser Cladding by Powder Injection 

In laser cladding by powder injection, the clad material is injected as powder instead of wire into 

the melting pool to produce a layer with a laser beam. A powder feeding system must be used. A 

typical powder feeding system involves a powder feeder, powder delivery tubes and a powder 

feed nozzle. Special powder feeders have been designed for laser cladding [50-51], but powder 

feeders for plasma spray are more often applied. The powder feeder can be categorized into 

gravity feed and carrier gas propelled. The carrier gas feeder is most commonly used. Powder 

delivery tubes convey the powder to the nozzle by a carrier gas and the powder feeding nozzle is 

classified as either lateral or coaxial. In lateral powder feeding, particles are injected into 

interaction region from one side without preheating. Different cladding directions lead to 

completely different local cladding conditions while the powder stream is injected off-axis from 

the laser beam. When the powder stream is fed to the molten pool created by the laser beam from 

the front, the powder utilization efficiency is the maximum compared to the other feeding 

locations [45, 52]. Therefore, in terms of this process, such a feeding system has certain 

limitations. First, it is difficult to align the location of the powder delivery with respect to the 

laser beam center. This positioning is very critical, and a small deviation will greatly decrease 

the powder utilization efficiency, and lead to a poor quality of cladding tracks. Moreover, this 

technique does not work well for complex geometric patterns which require multidirectional 

motions [53]. Several designs of coaxial nozzles were reported [54-56]. In a coaxial feeding 

nozzle, the focused laser beam passes through a central cone which is kept unobstructed by a 
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flow of argon, and the powder is transported by a flow of inert gas through an outer cone. A 

concentric powder stream is injected from all radial directions during the coaxial laser cladding 

process. Equivalent tracks are fabricated independent of cladding directions perpendicular to the 

laser beam. Therefore, coaxial laser cladding is more widely used for industrial purposes. This 

advantage of coaxial laser cladding is employed in the formation of metallic parts from 3D 

designs. 

 

2.5.3 Clad Dimensional Characteristics 

Figure 2.4 shows a typical cross section of a clad bead perpendicular to the cladding directions 

and defines the geometrical quantities used for laser track characterization: WH is the width of 

the HAZ, WC is the width of the clad track, HC is the clad height, HD is the depth of the dilution, 

HH is the depth of the HAZ. 

 

 
Figure 2.4 A typical cross section of a clad bead perpendicular to the cladding directions. 

 

2.5.4 Important Parameters in Laser Cladding 

The laser cladding operational window is usually defined as laser power P, scanning speed V and 

powder feeding rate F. Several additional process parameters such as laser beam spot size Db, 

laser beam energy distribution, amount and sort of shielding and carrier gas, size, speed and 

feeding direction of powder particles, etc., play also a role. A complete description of the laser 

clad

heat affected 
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cladding technique with injecting powder into a laser melt pool is rather complex because of 

numerous interactions (laser beam/powder, laser beam/substrate, powder stream/melt pool, 

powder stream/ solid substrate, etc.) with different physical phenomena (mass and heat transfer, 

fluid flow, phase transformations, etc.) involved [45].  

Since there are many parameters involved in LC which are strongly coupled with each other, the 

energy input per unit area (E = P/ VDb) and the mass of injected powder per unit area (G=F/ VDb) 

are considered to be two important combined process parameters for the quality of the clad [57].  

 

Dilution 

The dilution quantifies the relative amount of the substrate that has been molten during the 

cladding process and mixed with an additive material. Although, for successful cladding some 

dilution between the coating and substrate is always required to ensure a good metallurgical bond, 

the fact that the high dilutions may degrade coating properties requires that it stays reasonable 

low. According to the specified parameters in Figure 2.4, the dilution is  

dilution = !!
!!!!!

 

 

Laser Pulse Shaping 

The laser beam can be applied as continuous wave (CW) or as pulsed wave. In the form of pulse 

wave, several parameters associated with the shape of pulses are defined: laser pulse energy E0, 

laser pulse width (laser pulse duration) t, laser pulse frequency f, average power P0 and duty 

cycle C. These parameters which are shown in Figure 2.5 can be expressed by  

                C=ft                         (2.1) 

                P0=E0f                      (2.2) 
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Figure 2.5 Laser pulse shaping. 

 

Due to the numerous parameters involved in the process, two combined parameters, effective 

energy density Eeff (J/ mm2) and effective powder deposition density PDDeff (g/ mm2), are 

introduced [3, 58-59] to simplify this process and expressed by  

    𝐸!"" =
!!
!!""

                                 (2.1) 

    𝑃𝐷𝐷!"" =
!"#
!!""

= !"
!!""

                (2.2) 

where Aeff is the effective area per second which is irradiated by the laser beam and powder 

stream (mm2/ s). E0 is the pulse laser energy (J), F is the powder feeding rate (g/ s), f is the laser 

pulse frequency (Hz) and t is the laser pulse duration (s). The substrate velocity but also the pulse 

characteristics of the laser determine the effective area per second. Providing the percentage 

overlap of the laser spot on the substrate is high (i. e. ≥ 80 %), the irradiated area per second can 

be expressed as    
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𝑦 =
𝜋𝐷!!

4
− (

1 − 𝑓𝑡
2𝑓

𝑉)! 

Db is the spot size of the laser beam on the substrate surface (mm), V is the scanning velocity of 

the laser head (mm/ s) and Ac is the half uncovered area of a rectangle created by two successive 

laser pulses (Figure 2.6).   

 

 
Figure 2.6 A schematic of the affective area of cladding created by successive laser pulses. 

 

The inherent assumption in Eq. (2.2) is that, when the laser is off no powder is deposited on the 

substrate, due to the absence of energy provided by the laser. This assumption is introduced 

through the inclusion of the duty cycle (i.e. ft) in Eq. (2.2). This assumption is not completely 

valid since residual heat from the previous pulse may allow some powder melting and deposition. 

A critical ratio between energy and powder deposition density is required to achieve high quality 

clads [58]. If cladding conditions produce a low ratio, porosity and/ or poor bonding occurs. 

          𝑟 = !!""
!""!""

= !!
!"
= !

!
                 (2.4) 

where r is the ratio between energy and powder deposition density (J/ g). 
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2.5.5 Non-invasive Thermal Imaging Techniques  

A two dimensional (2D) temperature mapping is useful to optimize the cladding parameters. 

Especially if the surface structure is non-uniform, cooling of the tracks could be hindered to 

some extent leading to non-uniform temperature distributions. The non-uniform temperature 

distribution indicates that the injection conditions were not properly adjusted. On the other hand, 

the smooth and regular shape of temperature distribution corresponds to the well-optimized 

cladding [60].  

To date, some research has been done to detect and monitor the temperature by applying non-

contact thermal imaging techniques during the laser processing. Thermocouple and imaging 

techniques were used to monitor the thermal signature during the laser rapid forming process, 

and study the solidification behavior, residual stress, and microstructural evolution which were 

determined by the thermal history [61]. Temperature measurement by a pyrometer was carried 

out and the control of the laser power was realized [62]. The temperature of the formed layer by 

an IR pyrometer was measured and the powder efficiency through an inverse calculation of the 

boundary temperature obtained from observed surface temperature was estimated [63]. The 

temperature of the molten pool in the process of the laser rapid forming with a two-color infrared 

thermometer and the influences of the laser processing parameters on the temperature of molten 

pool was investigated [64].  

 

Black-Body Radiation 

Each body with a temperature above the absolute zero (0 Kelvin) emits an electromagnetic 

radiation from its surface, which arises from the motion of atoms which make up the body. In 

1879, Stefan proposed a law that related the total energy radiated from a body to its temperature 

which can be expressed by means of the following equation: 

R=σεT4 
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where R is the total thermal radiation per unit surface area of the body, σ is the Stefan’s constant, 

ε is the emissivity which depends on the nature of the emitting surface and T is the absolute 

temperature.  

A black body is a radiator, which absorbs all incoming radiation and shows neither reflection nor 

transmissivity. 

α= ε = 1  

where α is called absorptivity. 

The total radiation emitted by a black-body according to Stefan’s law is: 

R=σT4 

The entire emitted radiation of a black body within the overall wavelength range increases 

proportional to the fourth power of its absolute temperature. 

 

Real Body Radiation 

The intensity of infrared radiation depends on the temperature as well as on the radiation features 

of the surface material of the measuring object. The emissivity is used as a material constant 

factor to describe the ability of the body to emit infrared energy. The emissivity depends on the 

material, its surface, temperature and wavelength. Many objects consisting of nonmetallic 

material show a high and relatively constant emissivity independent from their surface 

consistency, at least in longwave ranges. If the emissivity chosen is too high, the infrared 

thermometer displays a temperature value much lower than the real temperature of the measuring 

object. A low emissivity carries the risk of inaccurate measuring results due to interference of 

infrared radiation emitted by background objects. 
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2.5.6 Traditional Applications 

Current trends of laser cladding are to produce multifunctional protective coatings for the 

modification of surface properties, such as, wear and corrosion resistance, abrasion and thermal 

resistance, or the repair of critical components with a laser beam [65-68]. The majority of work 

is the metallic coating production by laser cladding process for aerospace, medical and 

automotive industrial applications. Nickel-based superalloys [69-74], titanium-based alloys [75-

78] and cobalt-based alloys [79-81] are some of the popular alloys that are deposited on different 

substrates to improve the substrate capability as wear and high temperature resistance. With high 

speed cladding and the characteristic of rapid solidification processes, extremely homogeneous 

structures could be obtained on the surface of work pieces [82-83]. Recently, production of 

glassy metallic layers which provide superior resistance against wear and corrosion by laser 

cladding was reported [84]. Bioceramics coating on titanium alloys applied in orthopedic 

implants was also conducted by laser cladding [85].  

A new and increasingly important application of laser cladding is rapid fabrication of complex 

components and tools in additive manufacturing. With this technology, high value tools and 

components can be produced with low manufacturing cost, good surface quality and a short 

manufacturing time [86]. Additive manufacturing technologies allow an accurate model of a 

previously designed in a computer without the need for conventional manufacturing techniques, 

and the production time is significant reduced by 40 percent with laser cladding process [87-88].    

 

2.5.7 New Applications 

Contrary to the traditional laser cladding process, type K thermocouple (TC) sensors fabricated 

with this technique without altering the surface structures of the substrate is described in this 

work. Several advantages are possessed by the produced TC sensors, such as neither vacuum 

processing nor application of masks as well as short-time processing. Feature sizes achievable 

with this approach are in the range of several ten microns. The resistivity values of the cladded 

TCs are estimated and compared to that of the commercial standard K-type TC. The thermal and 
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electrical performance of manufactured TC sensors is also evaluated and characterized at high 

temperatures. 
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3. Experimental Methods 
 

3.1 Concept of Embedded Thermocouple (TC) Sensors 

The aim is to fabricate functional electrical structures within layered TBC systems: electric 

conductive structures need isolation otherwise a short circuit will occur; sensor structures have to 

be isolated against the metallic substrate by at least a thin ceramic layer. Therefore, a thin layer 

of a TBC ceramic material is used as the substrate. Another ceramic layer (again TBC utilized) 

to protect sensor structures from harsh environment is applied (not strictly necessary); if 

insulation against each other by ceramic in between is possible, several sensors in different 

locations and/or height within the same ceramic coating layer of the same component could be 

implemented. Thereby, sensors monitoring surface temperature distribution or the heat flux 

through a coating can be realized. Typically such embedded thermocouple sensors will be 

located close to the ceramic top coat/ bond coat interface, the interface temperature which 

determines the thermally grown oxides (TGO) growth rate can be approximately measured. 

Hence, the life time of TBC system would be further evaluated. Figure 3.1 displays the 

framework of one embedded thermocouple sensor. 
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Figure 3.1 Concept of one embedded thermocouple sensor. 

 

3.2 Substrate Materials 

Since Ni-based superalloys possess excellent high temperature corrosion resistance and 

mechanical properties, they were widely used on gas turbine engines. Inconel 738 LC was 

studied as the initial metallic substrate. Much cheaper stainless steel was employed as the 

candidate substrate material for those experiments aimed for process optimization and where no 

subsequent heat treatment has been planned.  

 

3.3 Feedstock Selection 

For the thermal spray and the laser cladding processes, powderous feedstocks have been used. 

Amdry 386 (Oerlikon Metco, Wohlen, Switzerland), composed of Ni-21Co-17Cr-12Al-1Y, was 

selected as the bond coat material which was manufactured by vacuum plasma spraying.  

Both insulation layers made of ZrO2-8Y2O3 (Oerlikon Metco 204NS, Wohlen, Switzerland) were 

produced by APS process with standard spraying parameters.  

metallic substrate
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Nitrogen gas atomized type-K thermocouple powders provided by Sandvik Osprey company 

(Sandvik Osprey, United Kingdom) were chosen as the candidate thermocouple sensor materials 

due to its high output voltage and a wide working range of temperatures. Alumel (Ni-2Al-2Mn-

1Si) and chromel (Ni-10Cr) create a circuit with negative and positive polarities for the K type 

thermocouple.  

 

3.4 Thermal Spray Processes 

3.4.1 Vacuum Plasma Spraying (VPS) 

Vacuum plasma spraying with a F4 plasma torch (Oerlikon Metco, Wohlen, Switzerland) was 

applied to deposit a 150 µm NiCoCrAlY bond coat, which is directly coated on the metallic 

substrate. Figure 3.2 shows the VPS device (Oerlikon Metco, Wohlen, Switzerland).  

 

 
Figure 3.2 VPS facility. 
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3.4.2 Atmospheric Plasma Spray (APS) 

Both insulation layers with 17 % ~ 18 % porosity were produced from a commercially available 

YSZ powder (Oerlikon Metco 204NS) and these layers were deposited by APS process	   in a 

Multicoat facility (Oerlikon Metco, Wohlen, Switzerland) with a three-cathode TriplexProTM 210 

gun, as shown in Figure 3.3. The bottom YSZ layer was deposited with a thickness of about 200 

µm and the top YSZ layer with variable thicknesses. Before coating, the metallic substrate was 

previously sand-blasted with alumina particles with an average size of 0.71 µm and 

ultrasonically cleaned in an ethanol bath. The stainless steel plate coated with 200 µm thickness 

thermally sprayed yttria partially stabilized zirconia (8YSZ, ZrO2-8Y2O3) coatings was used as 

the substrate for the subsequent laser cladding, the dimension of which was about 50 mm (length) 

× 50 mm (width) × 3 mm (thickness). The substrate was cleaned in an ethanol bath and dried 

with compressed air before deposition of the sensor structures. 

 

 
Figure 3.3 A Oerlikon Metco TriplexPro 210 APS plasma gun in operation 
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3.5 Laser Cladding Technology 

The deposition of type K thermocouple sensors was performed by coaxial laser cladding 

technique. The experiments were conducted with a 400 W Nd: YAG laser system TruLaser Cell 

3008 (Trumpf, Germany) combined with a fiber laser TruFiber 400 (Trumpf, Germany) as the 

power source. A three-axis CNC (computerized-numerical-control) table was employed to move 

the laser beam and the powder feeding system over the substrate with a controlled scanning 

speed. A coaxial powder nozzle Coax 8 (ILT, Aachen, Germany) and a powder hopper (TWIN-

10-2, Oerlikon Metco, Wohlen, Switzerland) as a powder feeder were used. Argon was used on 

one hand as carrier gas to deliver both thermocouple powders respectively from the powder 

hopper and on the other hand as shielding gas to protect the process from oxidation while the 

laser beam scans the surface of the substrate. Figure 3.4 shows the laser cladding device and the 

coaxial jet nozzle with injected powder.  

 

 
Figure 3.4 Experimental setup: (a) laser system TruLaser Cell 3008 and (b) coaxial jet-nozzle with injected powder. 

 

The spot size was varied by adjusting the position of internal lens of the laser beam. The 

variation of the stand-off distance S, shown in Figure 3.5 changes with the different focus 

position of the laser beam while the divergence angle of the laser beam keeps constant. The 

(a) (b)
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focus position was 9.0 mm when the laser beam was focused 7.0 mm below the laser nozzle 

(S=0). With the increase/ decrease of stand-off distance, the focus position was increased/ 

decreased correspondingly.  

 

 
Figure 3.5 Schematic of laser cladding process. 

 

The powder feeding rate is varied by controlling the disk rotation speed of the rotating disk. A 

disk with a notch of 5 mm × 0.6 mm for the powder hopper (Figure 3.6) was applied. A funnel-

shaped powder feed geometry was obtained as seen in Figure 3.4b. The powder focus position 

was 7 mm underneath the coaxial jet nozzle and the minimum powder focus size was about 0.2 

mm. 

 
Figure 3.6 Disk for the powder hopper.	  

5 mm

0.6 mm
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3.6 Characterization Techniques 

3.6.1 Particle Size Distribution 

The particle size distribution of both feedstock powders was characterized by Particle Analyzer 

Horiba LA-950V2 (Horiba Europe GmbH, Germany). The LA-950 measures light scattering 

patterns of the particle sizes with the interaction of the laser light. The scattering-degree 

increases with decreasing particle size and vice versa. The number of particles is represented by 

the intensity of the scattered light. It is able to measure the particle size over a range of 0.01 µm-

3000 µm. 

 

3.6.2 Micro-spot Monitor (MSM) 

The spatial power density distribution of the laser beam which is one of the important factors to 

affect the track geometry was measured by a Micro-spot Monitor (MSM, Primes, Germany). The 

MSM is a camera-based, beam diagnostic system capable of measuring wavelengths from 248 

nm to 1100 nm. The device is used for the analysis of focused laser beams. It measures the 

spatial power density distribution within the focus range of the processing optics. The 

measurement is done using a diffraction limited objective projecting the image of the power 

density distribution onto a CCD-sensor. 

This device was set right beneath the laser head nozzle with a certain distance. By varying the 

position of the lens within its focus range, the spatial power density distribution could be 

characterized. The spot size and center as well as the focus position of the laser beam could be 

further derived.  

 

3.6.3 Infrared (IR) Camera 

An infrared camera Optris PI200 (Optris GmbH, Germany) equipped by an ZnSe sensor with 7.5 

to 13 µm band pass arranged on 160 × 120 pixel array with up to 128 Hz, was applied to monitor 

the surface temperature for a travelling speed up to 400 mm/ min. The measuring range is up to 
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1500 oC with an accuracy of ± 2 oC. This IR camera was positioned 50 mm from the deposition 

area with an integration time of 20 ms and a single pixel size of 0.13 mm. 

An infrared camera (FLIR SC655, Germany) equipped by a FOL25SF10 lens with 640 ×  120 

pixels was applied to monitor the surface temperature at higher travelling speeds up to 1500 mm/ 

min. The measurable temperature range is up to 2000 oC. The integration time and single pixel 

size are 5 ms and 0.18 mm, respectively. 

 

3.6.4 Cyberscan Topographer 

Surface topography, dimensions, cross-sectional area and roughness measurement of cladded 

tracks were carried out with a Cyber Scan CT200 (Technologies GmbH, Ingolstadt, Germany) 

non-contact laser scanning inspection system equipped with a confocal laser sensor LT-9010M 

(Keyence Deutschland GmbH, Neu-Isenburg, Germany) and a laser Triangulations sensor DRS 

8000 (Cyber Optics Ltd., North Yorkshire, UK).   

 

3.6.5 Light Microscopy and Confocal Laser Microscopy 

For the investigation of macroscopic and cross sectional structures of tracks after laser cladding, 

a stereo-microscope SZX12 (Olympus, Japan) and a laser microscope VK-9710K (Keyence, 

Japan) were used, respectively. By illuminating the sample at an angle from the side under the 

stereo microscope, shadows of cladded tracks could be observed which implied whether 

homogeneous and well-bonded tracks could be obtained or not. A HAZ can be analyzed with the 

laser microscope on cross-sections of deposited clads. 

 

3.6.6 Ohmmeter and Four Probe Tester 

The electrical conductivity properties of cladded tracks were first roughly estimated with an 

Ohmmeter (Meterman, Germany), if conductive, a self-assembled direct-current Four Probe 
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Tester was utilized to further examine the resistance (Figure 3.7). The resistivity of cladded 

tracks could be calculated with the following equation:  

𝜌 =
𝑅 ∙ 𝐴
𝐿  

where R is resistance (Ω), A is the cross-sectional area (m2) and L is the length (m). The cross-

sectional area is estimated under the Cyberscan topographer and the length is the distance 

between voltage sense connections.  

 

 
Figure 3.7 Schematic of four point resistance measurement of one clad. 

 

3.6.7 Measurement of the Seebeck Coefficient 

The change in material electromotive force (EMF) with respect to temperature is called Seebeck 

coefficient or thermoelectric sensitivity. Slight variations will cause large deviations in reading. 

The thermal sensitivity (Seebeck coefficient) of cladded thermocouples before and after 

embedding into the second YSZ layer was measured in a furnace at temperatures up to 500 oC. A 

data acquisition system ALMEMO (AHLBORN, Germany) accompanied by a transducer was 

applied and attached to the tips of cladded thermocouples by applying commercial type K 

thermocouple wires. The measuring point temperatures at the junctions should be kept the same 

metallic substrate

YSZ

clad
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to have the reliable temperature reading.  Figure 3.8 illustrates the setup for the Seebeck 

coefficient measurement.  

 

 
Figure 3.8 Seebeck coefficient measurement setup. 

 

3.6.8 Shear Force Measurements 

The bonding strength between cladded tracks and the substrate plays also an important role for 

the following embedding with a second ceramic layer. Therefore, the adhesion strength between 

cladded tracks and substrate was evaluated with a shear force device (ATP Messtechnik GmbH, 

Germany) in Figure 3.9 at ZEA-1, Forschungszentrum Jülich. The tip of the shearing knife 

should be positioned just contact with the substrate surface without any load. A certain load is 

applied until the tracks are able to be removed. 
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Figure 3.9 Shear force measurement device. 
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4. Experimental Results and Discussion 
 

4.1 Feedstock Characterization 

The particle size distribution for both bond-coat and YSZ insulation layer was measured by static 

laser scattering. The average diameter for the bond coat is 24 µm (d10=15 µm, d90=36 µm) and 

for the YSZ layer is 54 µm (d10=28 µm, d90=85 µm), respectively.  

The particle size of the type-K TC powder is very significant for the laser cladding process 

because the fluidity of the powder influences the quality of the clad. Therefore, the particle size 

distribution for the two powders was also analyzed by static laser scattering which is shown in	  

Figure 4.1. The diameter for the alumel powder is in the range of 2.6-20 µm with a mean 

particle size of 7.4 µm and for chromel powder it is in the range of 3.5-35 µm with a mean 

particle size of 12.1 µm, respectively. Considering the flowability of the powders, first 

experiments showed that chromel powder worked very well, but alumel powder had quite poor 

fluidity. This problem was solved after drying in a furnace at 150 oC for 24 h.   

 

	  

Figure 4.1 Particle size distribution of alumel powder (left) and chromel powder (right). 
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4.2 Laser Beam Characterization  

4.2.1 Spatial Distribution of the Laser Beam 

The spatial power distribution of the laser beam was measured by a MSM. The results show that 

the laser beam intensity follows a Gaussian distribution with a Gaussian mode TEM00 when 

applying the focus position from -4 mm to 16 mm. Figure 4.2 shows one example of the spatial 

distribution of the laser beam at 9.0 mm focus position. Detailed laser beam parameters are 

displayed in Table 4.1.  

 

  
Figure 4.2 Laser beam analysis: (a) focalization plane determination and divergence of the laser beam, (b) spatial 
distribution of irradiance. 

 

Table 4.1 Laser beam parameters. 

laser beam mode TEM00 propagation factor k 0.90 

spot sizemin 17 µm divergence angle θ 4.96° 

quality factor M2 1.11   

 

 

 

(a) (b)
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4.2.2 Spot Size Determination 

Since the track width is strongly dependent on the spot size on the substrate [62], the relationship 

of the spot size and the focus position measured by the MSM is given in	  Figure 4.3. It can be 

seen that the minimum laser beam diameter is about 17 µm at 9.0 mm focus position and the spot 

size is linearly increasing accordingly when decreasing or increasing the focus position. 

 

	  

Figure 4.3 The relationship between the spot size and focus position. 

 

4.3 Powder Feeding Rate 

The powder feeding rate for both powders under the different disk rotation speed was separately 

measured by collecting powders at the nozzle exit for 5 minutes feeding into a clean bottle 

without activating the laser. The results are displayed in Figure 4.4.  
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Figure 4.4 The relationship of powder feeding rate and the disk rotation speed of the powder feeder.	  

 

4.4 Deposition of K-type TCs with a continuous wave (CW) Laser  

4.4.1 Deposition of Alumel Tracks 

By limitations of the powder hopper, the minimum continuous and stable feeding rate is 5.0 % 

(F=1.68 g/ min) for the alumel powder. The necessary power to melt such an amount of powders 

was roughly estimated to be 29 W according to the following equation: 

𝑃×𝑡 = 𝐹×𝑡  [𝑐!×(𝑇! − 𝑅𝑇)+ 𝐻!"#$%&] 

where P is the necessary power, t is the cladding time, F is the powder feeding rate, cp is the 

specific heat capacity of alumel, Tm is the melting point of alumel, RT is the room temperature 

and Hfusion is the latent heat of fusion for alumel powder. Since not all of the power would be 

absorbed by the powders, part of which is lost by the reflection by the metallic particles in-flight 

or by transmission, so the starting input power was 50 W. Laser cladding experiments were first 

carried out by varying the laser power from 50 W to 110 W while keeping the spot size, the 

scanning speed, the powder feeding rate, the carrier gas rate and the protective gas rate constant 

which were 984 µm (focus position=-3 mm), 400 mm/ min, 1.68 g/ min, 10 l/ min and 10 l/ min, 
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respectively. The surface morphologies of the clads are displayed in Figure 4.5. From the top 

view, it can be seen that big beads much larger than the original particles were observed with 

powers at 50 W to 100 W what is supposed to be the low specific energy (energy per unit area) 

input. The laser heating of the substrate and the interaction between the molten powder and the 

substrate are restricted [89]. The size of the beads had the tendency to become smaller when 

increasing the laser power and the clad became quite smooth and continuous when increasing the 

power to 110 W.  

 

 
Figure 4.5 Surface morphologies of clads at different parameters from the top view. V=400 mm/ min, Db=0.984 mm, 
F=1.68 g/ min, Vp=Vc=10 l/ min. (a) P=50 W, (b) P=80 W, (c) P=100 W, (d) P=110 W. 

 

Figure 4.6 illustrates the behavior of the laser clad width as a function of the laser power. The 

track width displayed a strong dependence on the laser power and increased with increasing the 

laser power as a result of increased energy input per unit length. More particles were melted at 

the border of the laser spot. The track widths were in the range of 1.0 mm to 1.7 mm, a 

premature failure of TBCs would be caused because of intensive thermal expansion mismatch 

between metallic thermocouples and ceramic YSZ layer. 
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Figure 4.6 Laser clad width as a function of the laser power. V=400 mm/ min, Db=0.984 mm, F=1.68 g/ min, 
Vp=Vc=10 l/ min.  

 

4.4.1.1 Resistivity Analysis and Cross Sections of Cladded Alumel Tracks 

Since one of the important characteristics for thermocouples is its electrical conductivity, the 

resistivity of cladded alumel tracks was roughly estimated. Results showed that only the 

thermoleg produced with 50 W power was conductive even though the surface morphology was 

wavy. The resistivity of the track in Figure 4.5a was estimated to be about 1.752 µΩ · m. This is 

much larger than reported value 0.294 µΩ · m [90] which indicated that the track was 

inhomogeneous probably due to the defects and impurities at the grain boundaries of the bulk 

material. 

In order to identify the mechanisms which lead to conductive or non-conductive, cross sections 

of the above deposited tracks along the cladding directions were prepared and investigated by a 

laser microscope. The micrographs are given in Figure 4.7. With the increase of the laser power, 

the influence to the substrate increased correspondingly. The tracks started to penetrate into the 

insulating YSZ coatings and were even buried in the YSZ coatings. The higher the laser power 

was, the deeper the tracks penetrated and more cracks emerged within the YSZ layers. It can be 

clearly seen that the upper part of YSZ coatings became dense (Figure 4.7b-c) which implied 

that remelting and resolidification of YSZ layers took place due to excessive energy input per 
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unit length. This amount of energy was not only absorbed by the injected particles but also by the 

substrate. The reason that the first track was conductive is the slight contact of the big beads. The 

beads in Figure 4.7b-c were intermittently and the track in Figure 4.7c started to be buried by 

the YSZ coating leading to these two tracks non-conductive. The last track in Figure 4.7d was 

totally buried and discontinuous that made this track non-conductive. The dense YSZ layer was 

transparent [91], so the deposited track in Figure 4.7d could still be recognized.  

Figure 4.8 displays the depth of the HAZ plotted against the laser power. It can be seen that the 

dimension of the HAZ was highly related to the input laser power. When given a low laser power 

of 50 W, there was no obvious effect on the substrate. However, the HAZ was increased 

dramatically when increasing the laser power and spread the entire ceramic layer when 

increasing the laser power up to 110 W.  
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Figure 4.7 Cross sections of tracks produced with different process parameters under a laser microscope. V=400 
mm/ min, Db=0.984 mm, F=1.7 g/ min, Vp=Vc=10 l/ min. (a) P=50 W, (b) P=80 W, (b) P=100 W, (c) P=110 W. 
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Figure 4.8 Influence of the laser power on the depth of the HAZ. V=400 mm/ min, Db=0.984 mm, F=1.68 g/ min, 
Vp=Vc=10 l/ min.  

 

4.4.1.2 Optical Diagnostics  

An IR camera was applied during the laser cladding of the alumel powder. In order to get the 

correct temperature reading (the temperature should not change within the integration time of 

one pixel), the maximum scanning speed should not exceed 400 mm/ min defined as one single 

pixel size divided by the integration time. In addition, to make sure that temperature could be 

accurately recorded, the area of homogeneous temperature should include at least three pixels, 

that is to say, the spot size of the laser beam should be larger than 0.39 mm in diameter. Based 

on the curve displayed in Figure 4.3, the focus position should be set from -4 mm to 4 mm or 

from 14 mm to 16 mm. Due to the limitation of this IR camera, the upper temperature is 1500 oC. 

If the brightness temperature (the brightness temperature of a non-blackbody target is defined as 

the temperature that would be measured from a blackbody having the same monochromatic 

luminance) exceeded 1500 oC under a given power, the power would be stopped to be increased. 

2D temperature fields under the different laser power are shown in Figure 4.9, each image was 

chosen by taking a random snapshot. It can be seen that a better homogeneous temperature 

profile could be achieved with increasing the laser power.  
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Figure 4.9 Two-dimensional temperature fields in coaxial laser cladding of alumel on substrate; V=400 mm/min, 
Db=0.984 mm, F=1.68 g/min, Vp=Vc=10 l/min, (a) P=50 W; (b) P=80 W; (c) P=100 W; (d) P=110 W. 

 

In conclusion, critical defects like severe HAZ and cracks emerged after the first laser cladding 

experiments which destroyed the original microstructures of the TBCs, thus, the life time 

performance of TBCs would be degraded. Discontinuous clads were generated which need to be 

avoided to ensure the electrical conductivity of the cladded tracks. Furthermore, tracks in small 

dimensions are more suitable for the following embedding to create an in-situ temperature 

monitoring system in TBCs. Therefore, homogeneous tracks with little impact to the substrate 

and in small dimensions are desired to be deposited. It confirms that the application of IR camera 

is one of the useful tools to optimize the cladding process parameters. However, higher travelling 

speed than 400 mm/ min cannot be applied due to the limitation of this IR camera, the following 

work was done without using it.    
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4.4.1.3 Optimization of Alumel Tracks 

According to reported papers [46, 92], there are three different ways to reduce a deep substrate 

melting during the laser cladding process, by reducing the laser beam power, increasing the 

traveling speed or by displacing the irradiated surface from the focal plane of the laser beam. The 

main point for these three methods is to reduce the energy input per unit area at the substrate 

surface. Due to the limitation of this facility, the minimum power that can be achieved is 12 W. 

Increasing the scanning velocity increases the risk related to a loss of the electrical conductivity 

of cladded tracks of morphological discontinuities. The third method was supposed to be the 

most effective way but undesired larger structures can be expected due to the defocused laser. 

Usually the reflectivity of a ceramic in a laser beam is lower and the absorptivity is higher than 

that of metallic materials, which might be one of the reasons for the large dimensions of the HAZ.  

During the interaction between laser beam and powder, a part of the laser energy is absorbed, 

another part is reflected or scattered by the powder particles. If the size of a particle is 

sufficiently close to the laser wavelength, there exists apparently diffraction. Most of the energy 

reflected or scattered from the particles leaves to the ambient, while a small amount irradiates the 

work-piece or other particles. Some of the energy absorbed by the particles could also be lost by 

convection or irradiation from these particles to the surroundings [93-96]. When the laser beam 

passes through the clouds of powder particles, some laser energy is absorbed and reflected, 

reducing its intensity and changing its distribution. Thus, increasing the powder feeding rate is an 

alternative way to reduce the laser intensity at the substrate level and might be helpful to 

decrease the dimension of the HAZ. The larger the amount of particles above the substrate 

surface, the higher the possibility to reduce the dimension of the HAZ. 

In order to make sure whether it is possible to decrease the dimension of HAZ or avoid the 

melting of the substrate by increasing the powder feeding rate, experiments were first conducted 

with a relatively low energy input per unit area of 2.1 J/ mm2. A defocused laser beam of 16.0 

mm focus position was applied and the laser beam was focused 7.0 mm above the substrate. 

Table 4.2 gives the corresponding process parameters during laser cladding alumel powder. The 

laser power, travelling speed, laser beam spot size, protective and carrier gas rate were kept 

constant while the powder feeding rate was varied. When setting the feeding rate to 25.0 %, no 
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track was formed on the substrate surface after deposition, which meant the remaining laser 

energy after attenuation was insufficient to melt a certain amount of particles. The track with 

20.0 % feeding rate was washed away by the cooling water during cutting with the cutting 

machine which indicated that the bonding strength between cladded alumel track and YSZ 

coating was very poor. Therefore, the powder feeding rate was further reduced to 14.0 % (F= 

4.30 g/ min). The track was sticking to the substrate and had a better bonding strength than the 

former tracks indicated by surviving the subsequent processing, like cleaning in the ultrasonic 

bath and eroding by cooling water during cutting.   

 

Table 4.2 Laser cladding parameters for alumel powder. 

 P (W) V (mm/ min) Db (µm) E (J/ mm2) F (%) 

a 20 1000 572 

2.1 

14.0 

b 20 1000	   572 25.0 

c 20 1000	   572 20.0 

            * Protective gas and carrier gas rate: 10 l/ min. 

 

A cross section of the first track along the cladding direction was prepared to make sure whether 

the dimension of the HAZ was reduced or not, as shown in Figure 4.10. It can be clearly seen 

that there was nearly no effect on the ceramic substrate after this process, in other words, 

increasing the powder feeding rate is beneficial to reduce the dimension of the HAZ. 

 

 
Figure 4.10 Cross section of the track with 14.0 % powder feeding rate for alumel powder. P=20 W, V=1000 mm/ 
min, Db=572 µm, Vp=Vc=10 l/ min. 
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4.4.2 Deposition of Chromel Tracks 

Similar experiments were also performed with chromel powder. Corresponding parameters are 

given in Table 4.3. Only a low amount of chromel particles was bonded to the substrate when 

using with the same optimized parameters as above for the alumel clad. This might be caused by 

the higher reflectivity and larger average particles required more energy for melting the same 

amount of chromel powder than that of alumel powder. Therefore, the laser power was increased 

to 30 W. Parts of the tracks were detached when the feeding rate was higher than 14.0 % and the 

powder feeding rate was finally optimized to 13.5 %. Figure 4.11 shows the cross section along 

the cladding direction of optimized chromel track. This track was unfortunately over-polished 

from the center, nevertheless, it is obvious that there was also no apparent effect to the substrate 

after laser cladding.  

 

  Table 4.3 Laser cladding parameters for the chromel powder. 

 P (W) V (mm/min) Db (µm) F (%) Vp (l/ min) Vc (l/ min) 
a 20 1000 572 14.0 10 10 

b 30 1000 572 15.0 10 10 

c 30 1000	   572 13.0 10	   10	  
d 30 1000	   572 14.0 10	   10	  
e 30 1000 572 13.5 10 10 

 

 
Figure 4.11 Cross section of cladded track for chromel powder under parameters of P=30 W, V=1000 mm/ min, 
Db=572 µm, F=13.5 %, Vp=Vc=10 l/ min. 
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4.4.3 Preparation of K-type TC with Relatively Optimized Parameters 

Sensors with smaller dimensions with low impact to the structural preference of the coatings are 

more desired. Since the bead width is determined by the spot size on the substrate [56], the beam 

diameter was decreased by decreasing the focus position of the laser beam.  The spot size of a 

diameter of 156 µm was applied by setting the focus position to 11.0 mm and the laser beam was 

focused 2 mm above the substrate. In addition, the laser track width was also strongly dependent   

on the initial laser power [46]. Therefore, the input laser power was also reduced to 15 W. In this 

case, the energy per unit area is nearly three times larger than before. Hence, the powder feeding 

rate should be higher in order to reduce the HAZ. Table 4.4 shows the used parameters for both 

powders. The other parameters were kept constants apart from the feeding rate. When the 

chromel powder feeding rate was higher than 21.5 %, detached tracks could be recognized by 

shadows observed in Figure 4.12a-b. Similarly, the alumel powder feeding rate was optimized 

to 30.0 % to prevent bonding problems (Figure 4.12c-d). However, the height with about 184 

µm of track (6) in Table 4.4 was much larger than that of the optimized track in Table 4.3 of 96 

µm. Taking into account this issue, parameters of the optimized track in Table 4.3 were 

reconsidered as the optimized clad.  

 

  Table 4.4 Laser cladding parameters for both powders. 

powder track P (W) V (mm/min) Db (µm) F (%) E (J/ mm2) 

chromel 

(1) 15 1000 156 25.0 

5.8 

(2) 15 1000 156 23.0 

(3) 15 1000 156 20.0 

(4) 15 1000 156	   21.5 

(5) 15 1000	   156	   22.5 

alumel 

(6) 15 1000	   156	   30.0 

(7) 15 1000 156	   40.0 

(8) 15 1000 156 35.0 

         * Protective gas and carrier gas rate: 10 l/ min. 
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Figure 4.12 Stereo micrograph of cladded tracks. (a-b) chromel powder; (c-d) alumel powder. P=15 W, V=1000 
mm/ min, Db=156 μm, Vp=Vc=10 l/ min. (1) F=25.0 %, (2) F=23.0 %, (3) F=20.0 %, (4) F=21.5 %, (5) F=22.5 %, (6) 
F=30.0 %, (7) F=40.0 %, (8) F=35.0 %. 

 

Figure 4.13 displays the influence of the powder feeding rate on the track height for both 

powders. It can be seen that the track height increased from about 210 µm to 240 µm with the 

powder feeding rate from 30.0 % to 40.0 % for alumel powder. This might due to that more 

alumel particles were melted when increasing the mass of the powder per unit length input. But 

for chromel powder, the track height decreased from 230 µm to 190 µm with the powder feeding 

rate from 20.0 % to 25.0 %. The might related to the fact that more laser energy were lost by the 

flying particles when increasing the powder feeding rate. Less energy was remained after 

attenuation, therefore the height of the tracks decreased.  
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Figure 4.13 Influence of the powder feeding rate on the height of the tracks. P=15 W, V=1000 mm/ min, Db=156 µm, 
Vp=Vc=10 l/ min. (a) alumel and (b) chromel. 

 

The above two optimized thermolegs (alumel: P=20 W, V=1000 mm/ min, Db=572 µm, 

F=14.0 %, Vp=Vc=10 l/ min; chromel: P=15 W, V=1000 mm/ min, Db=156 µm, F=22.5 %, 

Vp=Vc=10 l/ min) were analyzed by the Cyberscan topographer in Figure 4.14. The surface 

morphology of alumel was not even what might be related to the poor wetting of the powder 

particles. Unlike the cladded alumel track, a chromel track with very homogeneous morphology 

was gained. Good wetting behavior was supposed to be the reason due to the chromium. During 

the process, chromium has the tendency to segregate at the interface and form Cr-O clusters, 

which are beneficial for the improvement of the wetting behavior [97]. Besides, it can be seen 

from the cross-sectional microstructure in Figure 4.15 that no additional influence on the 

substrate was visible.    
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Figure 4.14 Micrographs of cladded tracks with optimized parameters under a laser microscope. (a) alumel, P=20 W, 
V=1000 mm/ min, Db=572 µm, F=14.0 %, Vp=Vc=10 l/ min; (b) chromel, P=15 W, V=1000 mm/ min, Db=156 µm, 
F=22.5 %, Vp=Vc=10 l/ min. 
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Figure 4.15 Cross section of the cladded chromel track with optimized parameters under a laser microscope. P=15 
W, V=1000 mm/ min, Db=156 µm, F=22.5 %, Vp=Vc=10 l/ min. 

 

Figure 4.16 shows a cladded K-type thermocouple with optimized parameters. The dimensions 

of two thermolegs were measured and results are shown in Table 4.5. For the chromel thermoleg, 

the dimension was about 211 ± 3 µm in height and 191 ± 5 µm in width. The dimension of the 

alumel thermoleg was about 96 ± 1 µm in height and 338 ± 20 µm in width.  

 

 
Figure 4.16 Cyberscan micrograph of cladded K-type thermocouple. 
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Table 4.5 Dimension of cladded thermolegs with optimized parameters. 

track height (µm) width (µm) 

alumel 96 ± 1 338 ± 20 

chromel 211 ± 3 191 ± 5 

 

4.4.4 Thermosensitivity Characterization of the Cladded TC 

For the purpose of evaluation of the cladded thermocouple, the thermal and electrical response of 

the cladded thermocouple was measured over temperatures ranging from ambient up to 500 oC. 

Figure 4.17 shows the set-up for determination of the Seebeck coefficient. As shown, each 

cladded thermoleg was bonded with its corresponding compensation wire. One piece of glass 

was applied to press both lead wires onto the thermolegs and fixed by a metallic clip. The other 

sides of compensation wires were connected to the data acquisition system. For comparison, a 

commercial K-type thermocouple was also mounted on top of the cladded thermocouple junction 

area to monitor the true sample temperature during the oven test and also connected to the data 

acquisition system. The sample was inserted into the furnace and heated at 5 K/ min heating rate 

with flowing Ar protective gas and the voltage and temperatures across the junction were 

recorded.  
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The thermocouple voltage versus temperature data is shown in Figure 4.18. The blue curve and 

the black curve correspond to the temperature signal of the reference TC and cladded TC, 

respectively. The lack of data above 480 oC is due to the bad connection between cladded 

thermolegs and lead wires, at the elevated temperature where the metallic clip failed and the 

signals could not be recorded any more. Results indicated that the cladded thermocouple had a 

nearly linear relationship between thermoelectric output voltage and temperature at the 

experimental temperature range. Its Seebeck coefficient is estimated as 40.9 µV/ K with a 

regression factor of 0.9996 by a linear fit. A commercial K-type thermocouple typically has a 

sensitivity of 41.1 µV/ K [98]. So the measured values by the cladded thermocouple were quite 

reliable and it implied that the cladded thermocouple worked very well as a thermocouple. The 

difference of the intercept values between the theoretical data of the commercial thermocouple 

and that of the cladded thermocouple is due to delayed temperature equilibrium during the 

heating period due to a naturally limited heat transfer/ conduction because the heat element of 

the furnace was indirect contact to the specimen.  
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Figure 4.17 Schematic of the set-up 
for collecting temperature signals. 
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Figure 4.18 K-type thermocouple response from ambient to 500 oC. 

 

4.4.5 Characterization of the Cladded TC Sensor 

The electrical resistance of both tracks was examined by a self-assembled DC Four Probe Tester. 

A value of about 0.03 ± 0.0004 Ω was measured when the track length was about 2.3 ± 0.05 mm 

for the alumel track and 0.08 ± 0.004 Ω when the track length was about 3.6 ± 0.03 mm for the 

chromel track. The cross-sectional area was estimated from the profile of a Cyberscan 

topographer to be about 0.0506 mm2 for alumel and 0.0377 mm2 for chromel. Thus, the 

resistivity for both thermolegs could be calculated and are given in Table 4.6. It can be seen that 

the calculated values are larger than the reported values [90]. In particular for the alumel track, 

the resistivity is two times bigger than its nominal value. This may be due to the easy oxidation 

of aluminum which can be found especially at the grain boundaries of alumel. The alumina scale 

formed during the process is non-conductive and can block the electrical current, so the electrical 

resistivity is higher than the commercial value. The chromium oxide scale in the chromel tracks 

is conductive and probably this is why there is no big difference to the reported value. 
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Table 4.6 Experimental and nominal resistivity of the thermocouple materials. 

 
resistivity  (µΩ·m) 

alumel chromel 

experiment 0.638 0.776 

reported [94] 0.29-0.33 0.706 

 

4.4.6 Embedding of Cladded Type-K TC 

Before embedding of thermocouples, the embedding of individual tracks has been tried. In order 

to evaluate the statistical scatter of the results, several tracks under the same parameters were 

prepared onto the surface of YSZ-based substrate and embedded into YSZ coatings with 

standard spraying parameters. Contact areas of the tracks were kept accessible by applying a 

metallic mask (Figure 4.19a) in front of the substrate during spraying. Figure 4.19b-c shows 

embedded alumel and chromel tracks, the thickness of top YSZ layer is about 200 µm. Table 4.7 

presents the detailed cladding parameters for both powders. The results represent that 80% of the 

alumel tracks and 100% of the chromel tracks kept their electrical conductivity after embedding 

with a second ceramic layer. This means it is possible to embed these cladded thermolegs under 

the above parameters within functional TBCs. 
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Figure 4.19 The mask used during spraying (a); negative (b) and positive (c) conductor of type K thermocouple with 
YSZ overcoated. 

 

 Table 4.7 Laser cladding parameters for the type K thermocouple deposition. 

 
P (W) V (mm/min) Db (µm) F (%) Vp (l/ min) Vc (l/ min) 

alumel 15 1000 156 30.0 10 10 

chromel 15 1000 156 22.5 10 10 

 

Laser cladded K-type thermocouples consisting of Ni2Al2Mn1Si and Ni10Cr were fabricated in 

the shape of a cross by cladding conductor tracks of alumel and chromel on top of a 30 mm × 40 

mm × 3.5 mm aluminum substrate that had been previously coated with 200 µm of APS sprayed 

(a)

(b) (c)
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TBC (8YSZ). Figure 4.20 gives a top view of a bared laser cladded thermocouple (left) as well 

as a thermocouple that has been overcoated with YSZ coatings (right) of 50 µm thickness to 

demonstrate the ability to embed such sensors underneath functional coatings. The topographies 

of the coatings were analyzed under the Cyberscan topographer. It is worth mentioning that the 

scanning area was only the area where tracks were deposited. The scales on the right side reveal 

the height information of the layers. The dimensions were measured which were 184 ± 5 µm in 

height and 305 ± 2 µm in width for alumel and 211 ± 3 µm in height and 191 ± 5 µm in width for 

chromel, respectively. The average roughness was also measured for the cladded alumel which 

was 10 ± 2 µm and for the chromel was 9 ± 2 µm.  

 

 
Figure 4.20 Cyberscan micrograph of the cladded K-type thermocouple before (left) and after embedding (right). 

 

Hereafter, the cladded thermocouple was embedded with a YSZ layer of increasing thickness as 

shown in Figure 4.21a-c to investigate whether this thermocouple would lose its electrical 

conductivity or not. A steel sheet (Figure 4.21d) was applied as a mask when spraying the 

second layer leaving two bared tips for the junction. The cladded thermocouple kept its 

conductive property after spraying ~200 µm thick YSZ coatings.  
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Figure 4.21 The embedded type K thermocouple by YSZ coatings with different thickness: (a) ~50 µm; (b) ~100 µm; 
(c) ~200 µm. (d) mask. 

 

For the evaluation of the cladded thermocouple before and after embedding with a second 

ceramic layer, the thermal and electrical response was measured over temperature ranging from 

ambient up to 450 oC, and the results were compared with an industrial standard K-type 

thermocouple. Figure 4.22 shows a photo and a set-up for the measurement. The sample was put 

into the furnace with 5 K/ min heating rate under argon protective gas atmosphere that could be 

able to reduce the oxidation of the produced thermocouple. The voltage and temperatures across 

the junction were recorded.  
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The thermocouple voltage versus temperature data before and after embedding was analyzed as 

shown in Figure 4.23. The Seebeck coefficient of cladded thermocouple before embedding is 

estimated as 41.2 µV/ K with a regression factor of 0.9999 by a linear fit. Similarly, the Seebeck 

coefficient of this thermocouple after embedding is about 40.9 µV/ K within the measurement 

error with a regression factor of 0.99 by a linear fit. There is a delayed response with the 

embedded thermocouple at the beginning in Figure 4.23b which is caused by the much lower 

thermal conductivity of the YSZ layer. In both cases, the produced thermocouple yielded a 

response comparable to the commercial type-K thermocouple and similar with the results 

reported in [76]. That is to say, the fabricated thermocouple possesses high reproducibility 

during operation before and after embedding. 

2nd YSZ layer

1st YSZ layer

+

-‐

data 
collection 
system

NiAl

NiCr

Figure 4.22 A photo of one embedded 
thermocouple and a set-up for collecting 
temperature signals. 
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Figure 4.23 K-type thermocouple response from ambient to 450 oC before (a) and after embedding (b). 

 

4.4.7 Deposition of TCs in Small Dimensions 

4.4.7.1 Optimization 

Since the dimension of tracks is highly related to the spot size on the substrate, thinner tracks 

were manufactured by reducing the beam diameter on the substrate. The laser power, spot size, 

carrier and protective gas were kept constant were 15 W, 92 µm, 10 l/ min and 10 l/ min, 

respectively. The scanning speed and powder feeding rate were optimized to achieve 

homogeneous clads while preserving a low heat impact to the substrate (Table 4.8). For chromel 

powder, when the travelling speed and powder feeding rate were 2000 mm/ min and 25.0 %, 

both ceramic substrate and metallic particles melted (Figure 4.24a). Convection emerged before 

molten that formed the big droplet within the ceramic substrate which was not desired. Therefore, 

powder feeding rate was increased to 30.0 % (Figure 4.24b). Under this condition, the substrate 

was not affected but the dimensions especially the height was not effectively reduced, so the 

travelling speed and the powder feeding rate was further increased to 3000 mm/ min and 32.0 % 

(Figure 4.24d) finally. The reason why increasing the scanning speed is beneficial to reduce the 

track height is that the amount of particles delivered per unit length of laser track is reduced. For 

the alumel powder, when the powder feeding rate was higher than 35.0 %, the track detached 

(F=50.0 %) or had poor bonding (F=35.0 %) to substrate. So the powder feeding rate was 

reduced to 32.0 % (Figure 4.24e). The dimensions displayed in Table 4.9 for alumel were 61 ± 
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5 µm in height and 175 ± 5 µm in width and for chromel 96 ± 5 µm in height and 150 ± 5 µm in 

width, respectively.    

 

Table 4.8 Laser cladding parameters for both powders. 

powder track V (mm/min) E (J/ mm2) F (%) 

chromel 

(1) 2000 4.9 25.0 
(2) 2000 30.0 
(3) 3000 3.3 30.0 
(4) 3000 32.0 

alumel 
(5) 4000 

2.4 
50.0 

(6) 4000 35.0 
(7) 4000 32.0 

         * Laser power: 15 W; spot size: 92 µm; protective gas and carrier gas rate: 10 l/ min. 
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Figure 4.24 Cross-sectional micrographs for both powders under different parameters. P=15 W, Db=92 µm, 
Vp=Vc=10 l/ min. (a-d) chromel powder, (e) alumel powder. 
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Table 4.9 Dimension of cladded thermolegs with optimized parameters. 

track height (µm) width (µm) 

alumel 61 ± 5 175 ± 5 

chromel 96 ± 5 150 ± 5 

 

Figure 4.25 shows the influence of the powder feeding rate and the travelling speed to the height 

of the cladded tracks. The track height was increased from about 115 µm to 170 µm by 

increasing the powder feeding rate from 25.0 % to 30.0 % and decreased by increasing the 

travelling speed from 2000 mm/ min to 3000 mm/ min. As mentioned before, the input powder 

mass per unit length was increased by increasing the powder feeding rate. More particles could 

be melted if the laser input energy is sufficient. And the input powder mass per unit length was 

decreased by increasing the travelling speed.  

 

  
Figure 4.25 Influence of the powder feeding rate (a) and the travelling speed (b) on the height of the chromel tracks 
by fixing the spot size. P=15 W, Db=92 µm, Vp=Vc=10 l/ min. 

 

4.4.7.2 Depositing and Embedding K-type TC  

K-type thermocouple were cladded in a crosswise geometry with the above optimized parameters 

(alumel: P=15 W, V=4000 mm/ min, Db=92 µm, F=32.0 %, Vp=Vc=10 l/ min; chromel: P=15 W, 

V=3000 mm/ min, Db=92 µm, F=32.0 %, Vp=Vc=10 l/ min) as shown in Figure 4.26a. 
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Afterwards, it was embedded by a second ceramic layer with a thickness of about 200 µm 

(Figure 4.26b). A steel sheet was used as a mask when spraying the second layer leaving two 

bared tips for the junction. However, after spraying the second layer, the cladded thermocouple 

did not work due to a non-sufficient electrical conductivity. In order to find out the reason for 

this, cross sections of embedded specimen were prepared. Figure 4.27a shows deposited alumel 

along the cladding direction and Figure 4.27b shows deposited chromel perpendicular to the 

cladding direction. Holes indicating removed alumel particles happened during metallographic 

preparation can be observed at the interface between cladded alumel and ceramic substrate after 

embedding the second layer. It implied that the mechanical bonding strength between were very 

poor when compared to the metallurgical adhesion. From this point of view, more stable tracks 

need to be produced and better balance between good bonding and little HAZ should be figured 

out.  
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Figure 4.26 Cladded thermocouple (a) before embedding (b) after embedding. 

 

 

 

Figure 4.27 Cross sections of embedded 
thermolegs. (a) alumel along cladding 
direction, (b) chromel perpendicular to 
cladding direction. 
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In conclusion, increasing the powder feeding rate is an effective method to avoid melting of 

ceramic substrate because of the attenuation of laser beam energy by particle clouds above the 

substrate. Laser cladding parameters were optimized and a cladded thermocouple with desired 

properties like no impact to the substrate, relatively small dimensions, and good electrical and 

thermal response was possible to be deposited. A thinner thermocouple with optimized 

parameters was also produced, however, the first attempt to embed it failed. Poor mechanical 

bonding and alumel clad quality might be the main reason leading to this problem. Therefore, a 

balance of mechanical bonding and minimal disturbance to the substrate needs to be adjusted 

according to the dimensions of the tracks and the substrate roughness.  

 

4.5 Deposition of K-type TC with a Pulsed Laser 

4.5.1 Optimization of Alumel Tracks 

As a result of the bad wetting behavior of NiAl (alumel) powder on the YSZ ceramic substrate, 

inhomogeneous tracks with large droplets were formed with the continuous wave laser cladding 

process. As a result, the following embedding with a second ceramic layer was more difficult 

and complicated. The dimension of the HAZ was effectively diminished by increasing the 

powder feeding rate to increase the reflection of the laser beam by the metallic powder and the 

shadowing effect. Contrary to the continuous wave laser cladding, the pulsed laser cladding 

offers a number of advantages [99]: lower heat build-up in the workpiece and therefore lower 

HAZ and dilution. Meanwhile, the laser power-off period between two pulses allows the melt 

pool to cool down, therefore, the melts duration is shorter in pulsed laser cladding than in 

continuous wave laser cladding. This might be helpful to avoid the formation of large droplets. 

Taking into consideration these issues, pulsed laser was applied to deposit tracks. 

In order to optimize the process parameters, a number of tracks were deposited at different 

parameters. The detailed cladding parameters are given in Table 4.10. The experiments for 

alumel powder were performed with fixed spot size on the ceramic surface, powder feeding rate, 

pulse duration, frequency, protective and carrier gas rate which were 92 µm, 30.0 %, 0.5 ms, 250 

Hz, 10 l/ min and 10 l/ min, respectively. As mentioned before, the dimension of the HAZ could 
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be reduced by increasing the powder feeding rate or by reduction of the energy input per unit 

area at the substrate surface. The continuous wave laser power could not be further reduced 

lower than 12 W because of the limitation of the laser facility. However, the laser power could 

be diminished with a large extent by using a pulsed laser mode. Therefore, the average laser 

power was decreased to 2.5 W by applying 20 W peak power of the pulsed laser. The cladded 

tracks were first examined visually. For the purpose of better comparison with the continuous 

wave laser cladding, a similar energy per unit area of 2.5 J/ mm2 was selected. In this case, the 

laser power and travelling speed for pulse laser and continuous wave laser were 100 W and 3000 

mm/ min (Table 4.10a), 15 W and 4000 mm/ min (Table 4.10g), respectively. In Figure 4.28a, 

it can be seen from the surface that very few particles were attached to the substrate after pulsed 

laser cladding and the track area became dark. The same energy input per unit area of two tracks 

with different parameters (Table 4.10b and e) was also picked up to see whether there was any 

difference of the dimension of the HAZ. The variables were the laser power and scanning 

velocity and the other parameters were kept constant. More particles stuck to the surface (Figure 

4.28b) than the track displayed in Figure 4.28a because the scanning velocity was reduced, the 

number of particles delivered per unit length were increased and therefore more particles could 

be melted by the laser beam source for the supplied energy being sufficient. Even more molten 

particles were achieved and sticking to the substrate by diminishing the travelling speed from 

1000 mm/ min (Figure 4.28c) to 200 mm/ min (Figure 4.28e). Furthermore, tracks became more 

and more homogeneous by reducing the scanning speed. The parameters for alumel powder were 

further improved to 20 W laser power, 100 mm/ min scanning velocity, 30.0 % powder feeding 

rate, 0.5 ms pulse duration, 250 Hz pulse frequency, 10 l/ min carrier and protective gas rate 

(Figure 4.28e). The decrease of the pulsed duration to 0.4 ms was also attempted and Figure 

4.28f gives the top view of this alumel track. No big droplets occurred along the deposited tracks 

(Figure 4.28e-f) and the wetting behavior of the NiAl alloy against the YSZ coating was no 

longer a problem by applying a pulsed laser which could not be solved with a CW laser.      
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Table 4.10 Laser cladding parameters for the alumel powder. 

 P 
(W) V (mm/ min) t (ms) f (Hz) E (J/ 

mm2) 

a 100 3000 0.5 250 2.45 

b 100 1000 0.5 250 8.15 

c 20 1000 0.5 250 1.63 

d 20 500 0.5 250 3.26 

e 20 200 0.5 250 8.15 

f 20 100 0.4 250 13.04 

g 15 4000 - - 2.72 
                       * Spot size: 92 µm; feeding rate: 30.0 %; protective gas and carrier gas rate: 10 l/ min. 

 

 

 

 

 

 

 

 



4. Experimental Results and Discussion
 

	  
	  

	  
70 

 

 

 
Figure 4.28 Stereo micrographs of cladded tracks for alumel powder. Db=92 µm, F=30.0 %, f=250 Hz, Vp=Vc=10 l/ 
min. (a) P=100 W, V=3000 mm/ min, t=0.5 ms; (b) P=100 W, V=1000 mm/ min, t=0.5 ms; (c) P=20 W, V=1000 
mm/ min, t=0.5 ms; (d) P=20 W, V=500 mm/ min, t=0.5 ms; (e) P=20 W, V=200 mm/ min, t=0.5 ms ; (f) P=20 W, 
V=100 mm/ min, t=0.4 ms. 
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Figure 4.29 shows the cross sections of some cladded tracks perpendicular to the cladding 

directions. Even though similar energy per unit area was applied for both pulsed and CW laser 

cladding, the dimensions of the HAZ were completely different (Figure 4.29a and e). The HAZ 

for pulsed laser cladding was much more severe and affected the entire YSZ coatings underneath 

the clad (Figure 4.29a). However, little effect to the YSZ coating was observed in Figure 4.29e. 

Therefore, it can be concluded that under similar energy per unit area, a higher peak power leads 

to a larger HAZ. The dimension of the HAZ in Figure 4.29b was more serious than that in 

Figure 4.29a and more particles were penetrated into the ceramic coating which maybe induced 

by the higher energy input per unit length. Likewise, with the same energy per unit area but 

different peak power (Figure 4.29b-c), the HAZ was also quite different. When the laser peak 

power was decreased to 20 W, there was little influence to the YSZ substrate due to the laser 

cladding as can be seen in Figure 4.29c. With optimized parameters, there was no obvious 

impact of the clad to the substrate as can be seen from the cross section in Figure 4.29d.     
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Figure 4.29 Cross-sectional microstructure of the cladded alumel tracks with different parameters. Db=92 µm, 
F=30.0 %, Vp=Vc=10 l/ min. Pulse mode: (a) P=100 W, V=3000 mm/ min, t=0.5 ms, f=250 Hz, (b) P=100 W, 
V=1000 mm/ min, t=0.5 ms, f=250 Hz, (c) P=20 W, V=200 mm/ min, t=0.5 ms, f=250 Hz, (d) P=20 W, V=100 mm/ 
min, t=0.4 ms, f=250 Hz, cw mode: (e) P=15 W, V=4000 mm/ min. 
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According to the above results, the following conclusions are obtained: once there are too less 

powder particles sticking to the substrate, two cases maybe involved. One is that the remaining 

energy after attenuation by in-flight particles is insufficient to melt a certain amount of powder 

and the ceramic surface keeps nearly intact. The other is that the remaining energy after 

attenuation is so high that the ceramic layer and injected particles are both melted and most 

powder particles are buried by or penetrated into the ceramic substrate (Figure 4.28a and 

Figure 4.29a). The ceramic surface becomes dark which is probably induced by the loss of 

oxygen atoms during laser cladding operation and/ or the color from the buried cladding layer 

because of the transparency of the ceramic coatings. 

The above optimized alumel track (P=20 W, V=100 mm/ min, Db=92 µm, F=30.0 %, Vp=Vc=10 

l/ min, t=0.4 ms, f=250 Hz) was further analyzed by the Cyberscan topographer as given in 

Figure 4.30. Obviously, this deposited clad was very smooth as desired. The dimension for this 

cladded layer was about 95 ± 20 µm in height and 119 ± 13 µm in width. 

	  

 
Figure 4.30 Cyberscan micrograph of the cladded alumel track. P=20 W, V=100 mm/ min, Db=92 µm, F=30.0 %, 
Vp=Vc=10 l/ min, t=0.4 ms, f=250 Hz. 
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4.5.2 Optimization of Chromel Tracks 

Also for the chromel powder, which composes the type-K thermocouple together with the alumel 

thermoleg, similar parameters were first attempted (Table 4.11) as optimized for the alumel. The 

laser power, spot size, pulse duration, pulse frequency, carrier and protective gas rate were kept 

constant, and the powder feeding rate of 15.0 % and 17.5 % were applied with 100 mm/ min and 

150 mm/ min travelling speed, respectively. The reason for using 150 mm/ min is to further 

reduce the width of the tracks [45]. When the feeding rate was more than 20.0 %, detached tracks 

were obtained (Figure 4.31a) or even no tracks formed on the substrate as a result of the 

insufficient energy of the laser beam after attenuation by the particle cloud. Macroscopic 

morphologies were displayed in Figure 4.31b-d. It turned out that all tracks were bonded to the 

substrate, but the electrical continuity was unstable with 150 mm/ min scanning velocity. This 

might be attributed to the decrease of delivered particle numbers, thereby, the melted particles 

became less and were insufficient to ensure its conductivity.  

 

Table 4.11 Laser cladding parameters for the chromel powder. 

 V (mm/ min) F (%) t (ms) E0 (J) P0 (W) 

(1) 100 26.0 0.4	   0.008 2 

(2)	   100 20.0 0.4	   0.008	   2	  

(3)	   100 15.0 0.4	   0.008	   2	  

(4)	   100 17.5 0.4	   0.008	   2	  

(5)	   150 15.0 0.4	   0.008	   2	  

(6)	   150 17.5 0.4 0.008	   2	  

* Spot size: 92 µm; power: 20 W; laser pulse frequency: 250 Hz; protective gas and carrier gas rate: 10 l/ min. 
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Figure 4.31 Stereo micrographs of cladded tracks for the chromel powder. P=20 W, Db=92 µm, f=250 Hz, t=0.4 ms, 
Vp=Vc=10 l/ min. (1) V=100 mm/ min, F=26.0 %; (2) V=100 mm/ min, F=20.0 %; (3) V=100 mm/ min, F=15.0 %; 
(4) V=100 mm/ min, F=17.5 %; (5) V=150 mm/ min, F=15.0 %; (6) V=150 mm/ min, F=17.5 %. 

 

The cross sections of deposited tracks perpendicular to the cladding directions for chromel 

powder were given in Figure 4.32 from track 3 to track 6 (Figure 4.31). It can be seen that the 

YSZ substrate was not seriously influenced by the laser cladding process. In addition, the 

morphologies in Figure 4.32a and c were with more regular structures with 15.0 % powder 

feeding rate. Instead, the morphologies of cladded tracks (Figure 4.32b and d) were irregular if 

the remaining energy was insufficient to totally melt the injected particles with 17.5 % powder 

feeding rate. Thus, the chromel track with the parameters of P=20 W, Db=92 µm, V=100 mm/ 

min, F=15.0 %, t=0.4 ms, f=250 Hz, Vp=Vc=10 l/ min was taken as the optimized clad. 

Considering to obtain smaller dimension chromel thermoleg, the laser peak power of 15 W was 

adopted and the process parameters were eventually optimized to P=15 W, V=80 mm/ min, 
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Db=92 µm, F=16.0 %, Vp=Vc=10 l/ min, t=0.5 ms, f=250 Hz with a similar optimization 

procedure. 

 

 

 

Figure 4.32 Cross-sectional microstructure of the cladded chromel tracks with different parameters. P=20 W, Db=92 
µm, t=0.4 ms, f=250 Hz, Vp=Vc=10 l/ min. (a) V=100 mm/ min, F=15.0 %; (b) V=100 mm/ min, F=17.5 %; (c) 
V=150 mm/ min, F=15.0 %; (d) V=150 mm/ min, F=17.5 %. 

 

Figure 4.33 displays the behavior of the clad height as a function of the powder feeding rate and 

the travelling speed for chromel powder. Similarly, the track height increased with the powder 

feeding rate and decreased with the travelling speed. The track height was about 90 µm with 

15.0 % powder feeding rate and increased to about 135 µm by applying 17.5 % powder feeding 
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rate. When increasing the travelling speed from 100 mm/ min to 150 mm/ min, the track height 

was decreased from about 92 µm to 88 µm. 

 

  
Figure 4.33 Influence of the powder feeding rate (a) and the travelling speed (b) on the height of the cladded 
chromel tracks. P=20 W, Db=92 µm, t=0.4 ms, f=250 Hz, Vp=Vc=10 l/ min. 

 

4.5.3 Preparation of K-type TCs  

The K-type thermocouples were cladded in an arrow layout with the above optimized parameters 

(alumel: P=20 W, V=100 mm/ min, Db=92 µm, F=30.0 %, Vp=Vc=10 l/ min, t=0.4 ms, f=250 Hz; 

chromel: P=20 W, V=100 mm/ min, Db=92 µm, F=15.0 %, Vp=Vc=10 l/ min, t=0.4 ms, f=250 

Hz) shown in Figure 4.34a. For this cladded thermocouple, the dimensions for alumel were 82 ± 

3 µm in height and 113 ± 16 µm in width and 114 ± 10 µm in height and 81 ± 18 µm in width for 

chromel, respectively. The average roughness for the clad alumel was 13 ± 3 µm and for chromel 

13 ± 3 µm. The thermocouple was also deposited with slightly varied parameters (alumel: P=20 

W, V=100 mm/ min, Db=92 µm, F=30.0 %, Vp=Vc=10 l/ min, t=0.4 ms, f=250 Hz; chromel: 

P=15 W, V=80 mm/ min, Db=92 µm, F=16.0 %, Vp=Vc=10 l/ min, t=0.5 ms, f=250 Hz) and the 

microstructure is shown in Figure 4.34b. Part of the alumel track was missing after cleaning in 

the ethanol bath and it can be clearly seen that YSZ substrate was not obviously affected by this 

process. In addition, it implies that the adhesion between alumel track and YSZ substrate was 

poor. For the chromel thermoleg, the dimension was about 124 ± 9 µm in height and 90 ± 3 µm 
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in width. The dimension of alumel thermoleg was about 94 ± 3 µm in height and 125 ± 4 µm in 

width. The average roughness was about 9 ± 3 µm and 13 ± 3 µm for alumel and chromel. Since 

the track quality is very sensitive to these above mentioned issues, specimens with flat surface 

should be carefully processed.  

 

  

Figure 4.34 Micrographs of cladded TCs with optimized parameters. (a) alumel: P=20 W, V=100 mm/ min, Db=92 
µm, F=30.0 %, Vp=Vc=10 l/ min, t=0.4 ms, f=250 Hz; chromel: P=20 W, V=100 mm/ min, Db=92 µm, F=15.0 %, 
Vp=Vc=10 l/ min, t=0.4 ms, f=250 Hz; (b) alumel: P=20 W, V=100 mm/ min, Db=92 µm, F=30.0 %, Vp=Vc=10 l/ 
min, t=0.4 ms, f=250 Hz; chromel: P=15 W, V=80 mm/ min, Db=92 µm, F=16.0 %, Vp=Vc=10 l/ min, t=0.5 ms, 
f=250 Hz. 

 

4.5.4 Embedding of the Cladded TCs  

A steel sheet was used as a mask when spraying a second YSZ layer, leaving two bared tips for 

the junctions. When trying to place the mask, segmental spalling of the TC legs could be 

observed during preparation (Figures 4.34b, Figure 4.35). The second YSZ layer was sprayed 

only for one pass to easier find out the reasons causing the problem of non-conductivity. 

Apparently, width and height of clads were reduced at some locations of the tracks which are 

marked in Figure 4.35b-c. The potential reason might be due to ruptures taking place due to the 

impingement of the ceramic particles on the tracks. Certainly, parameters need to be further 

optimized with pulsed laser cladding. 
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Figure 4.35 Microstructures of embedded thermocouple with the second YSZ layer under the stereo microscope. (a) 
low magnification, (b) high magnification for the alumel track, (c) high magnification for the chromel track. 

 

To sum up, both the energy input per unit area and pulsed energy played an important role for 

the dimension of the HAZ, reducing the laser peak power or increasing the powder feeding rate 

is helpful to diminish the influence of cladding process to the ceramic substrate significantly. K-

type thermocouples in the range of 100 µm were possible to be fabricated with the desired 

properties like no impact to substrate, conductive and low roughness by applying pulsed laser 

with optimizing the process parameters. Unfortunately, the cladded thermocouple produced with 

a pulsed laser was failed to work after embedding. There might be two reasons for the 

degradation. One might be the quality of the cladded thermocouple which was not perfect, so 

interruptions took place after spraying. A second factor might be the shear force. The 

measurements of the adhesion strength showed that it plays an important role but not the most 

significant factor for the successful embedding. 
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4.6 Shear Force Measurements 

From the experience of the previous experiments, it is clear that the bonding strength between 

cladded tracks and the substrate plays also an important role for the following embedding with 

the second ceramic layer. Therefore, the shear force measurement was carried out with all the 

optimized parameters for both kind of clads to evaluate the adhesion strength. The results are 

shown in Figure 4.36. A big scattering is observed for chromel tracks. There is not much 

difference of the mean shear force per unit area for these three different cladding parameters. For 

tracks made of alumel powder, there is no big scattering of the shear force except the third 

deposited clad. From the aforementioned results, it is already known that it is possible to embed 

the produced thermocouples with parameters of P=15 W, V=1000 mm/ min, Db=156 µm, 

F=30.0 %, Vp=Vc=10 l/ min for alumel powder and P=15 W, V=1000 mm/ min, Db=156 µm, 

F=22.5 %, Vp=Vc=10 l/ min for chromel powder while clads with other parameters were still 

unable to be which possess similar adhesion strength. In other words, the bonding plays an 

important role but not the most significant factor for the successful embedding. 
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Figure 4.36 Shear force measurement of relatively optimized cladding parameters, the carrier and shielding gas rate 
are 10 l/ min. 

 

4.7 Summary of Optimized Tracks 

Table 4.12 summarizes the optimized parameters for both type-K TC tracks. The cladded tracks 

can be successfully embedded or not are also described.  
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Table 4.12 Optimized parameters for both tracks. 

 P (W) V (mm/ min) Db (µm) F (%) t (ms) f (Hz) successful embedding? 

chromel 

15 1000 156 22.5 - - √ 

15 3000 92 32 - - × 

15 80 92 16 0.5 250 × 

alumel 

20 1000 572 14 - - × 

15 1000 156 30 - - √ 

15 4000 92 32 - - × 

20 100 92 30 0.4 250 × 
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5. Droplets Formation Mechanism 
 

The laser cladding process depends on a number of variables: laser power, scanning speed, 

powder feeding rate, duration of particle interaction with the laser beam, relative positions of the 

laser beam waist, substrate and nozzle outlet, respectively. Droplets were observed from time to 

time during cladding. This phenomenon is determined by the temperature-dependent rheological 

properties of the melt (viscosity, surface tension, wettability, etc.) and the amount of melt 

produced during laser heating [100]. The relation between travelling velocity, power density and 

powder feeding rate determines whether a deposited layer is smooth and continuous or it is 

divided into separate segments. So a series of experiments have been made to analyze the 

influence of the above mentioned parameters on the surface of the stainless steel coated with 

YSZ layers to better understand the mechanisms controlling this phenomenon. Corresponding 

parameters are given in Table 5.1.  

 

Table 5.1 Laser cladding parameters for different tracks. 

	  
chromel alumel 

a b c d e f g h 
P (W) 15 15 22 15 15 15 25 15 

V (mm/min) 1000 1500 1500 1000 1000 2500 2500 1000 
F (%) 22.5 22.5 22.5 17.5 29 29 29 20 

* Spot size: 156 µm; protective gas and carrier gas rate: 10 l/ min. 

 

It can be clearly seen in Figure 5.1 that droplets occurred periodically along the clads. Compared 

to a homogenous clad (Figure 5.1a), the droplets that are much larger than its original particle 

sizes are induced to be formed by reducing the powder feeding rate (Figure 5.1d) or increasing 

the laser power (Figure 5.1c) for chromel powder. Similar results were also observed with 

alumel powder (Figure 5.1e-h). Both reduction of powder feeding rate (the remaining energy 

after attenuation by the particle clouds is higher with reduced powder feeding rate due to less 

reflection by sparser powder density) and increase of power will lead an increase of the peak 

temperatures during this process. The higher the temperature is, the smaller the viscosity and 
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surface tension are [101]. In accordance with this, the melts should be prone for spreading or 

have better wettability on the substrate, thus, clads with smoother morphology should be 

acquired. However, the experimental results were contrary to this hypothesis. Therefore, the 

droplets formation should be related to some other factors.  

Table 5.2 shows two combined parameters during laser cladding process: energy input per unit 

mass of the powder (P/ F, J/ g) and injected powder per unit length (F/ V, g/ m). For chromel, it 

can be clearly seen that droplets have the less tendency to be formed by reducing the energy 

input per unit mass of the powder (Figure 5.1a-c). The injected powder per unit length plays an 

important role under the same energy input per unit mass of the powder as well. By increasing 

the injected powder per unit length, droplets have the less tendency to be formed (Figure 5.1c-d). 

In another words, duration of melt is obviously critical for the droplets formation. Similar 

phenomena were also observed for alumel powder. Fewer droplets formed by reducing the 

energy input per unit mass of the powder or by increasing the injected powder per unit length 

under the same energy input per unit mass of the powder (Figure 5.1e-h). By proper controlling 

both combined parameters, it is beneficial to obtain continuous and smooth tracks.  
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Figure 5.1 Topography images of tracks prepared with different parameters: (a-d) chromel clads; (e-h) alumel tracks.  
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Table 5.2 Two combined parameters under different cladding parameters for chromel and alumel. 

powder parameters morphology P/ F (J/ g) F/ V (g/ m) 

chromel 

22 W_1500 mm/ min_7.3 g/ min droplets 181 4.9 
15 W_1000 mm/ min_5.7 g/ min some droplets 158 5.7 
15 W_1500 mm/ min_7.3 g/ min almost no droplets 123 4.9 
15 W_1000 mm/ min_7.3 g/ min no droplets 123 7.3 

alumel 

15 W_2500 mm/ min_8.6 g/ min droplets 105 3.4 
25 W_2500 mm/ min_8.6 g/ min some droplets 174 3.4 
15 W_1000 mm/ min_6.3 g/ min almost no droplets 143 6.3 
15 W_1000 mm/ min_8.6 g/ min no droplets 105 8.6 

 

The surface temperature profile of one pixel size during deposition was captured by the FLIR IR 

camera. Due to the limitation of this camera, less than one pixel was involved within one spot 

size. Therefore, the temperature evolution displayed cannot be compared quantitatively but more 

qualitatively. Figure 5.2 shows only the temperature evolution of chromel clads under process 

parameters of P=15 W, V=1000 mm/ min, F=7.3 g/ min using 0.09 as emissivity. When the laser 

beam came close to the chosen pixel area, the temperature increased noticeably, and when the 

laser beam moved further, the temperature decreased. Platforms displayed on the curve during 

heating and cooling period were the melting and solidification points of melt. The duration of 

melt were calculated by taking both values at the platforms. Table 5.3 gives the duration of melt 

under different cladding parameters for chromel powder. It is obvious that the duration of melt is 

the shortest than that under the other three parameters. Therefore, no droplets along the track 

were obtained under the parameters of P=15 W, V=1000 mm/ min, F=7.3 g/ min. It verifies the 

point that the duration of melt determines whether the droplets would be formed or not after 

cladding. 
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Figure 5.2 Temperature evolution of one pixel for chromel powder under parameters of P=15 W, V=1000 mm/ min, 
F=7.3 g/ min (emissivity=0.09). 

 

Table 5.3 The duration of melt under different parameters for chromel powder. 

parameters morphology duration of melt (ms) 
22 W_1500 mm/ min_7.3 g/ min droplets 75 
15 W_1000 mm/ min_5.7 g/ min some droplets 81 
15 W_1500 mm/ min_7.3 g/ min almost no droplets 85 
15 W_1000 mm/ min_7.3 g/ min no droplets 56 

 

With respect to the droplets/ undulation formation mechanism in terms of continuous deposition, 

limited publications were reported. Tracks with periodic undulation were observed when the 

process parameters were not properly optimized by laser cladding process [24, 44, 102-103]. It 

was reported that when the energy per unit length of Inox 904L on stainless steel 304L was 

insufficient, surface tension would dominant the whole process and broke the molten clads into 

individual droplets. Melts hydrodynamics (driven by Marangoni effect) became more important 

when excessive energy per unit length were afforded accompanied by an increase of the melt 

volume and a decrease of the melt viscosity. The HAZ became larger with the decrease of the 

scanning speed. More powder from the track boundaries were melted and the molten clads 

become irregular [103].  
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In order to obtain continuous clads, Steen et al [104] reported that the average energy per unit 

area must exceed the threshold value to guarantee good wetting of the Nimonic 75 by the Stellite 

12. Mazumder et al [89] reported that minimum average energy per unit area of WC-12 wt.% Co 

against low carbon steel was required to form a continuous track during the process.  

The humping phenomenon was more observed and reported by arc welding process [105-109]. 

The backward flow of molten weld metal was proved to be responsible for the initial formation 

and the growth of a hump correlated to the high surface tension confirmed by a LaserStrober 

video imaging system [109]. The strong momentum of the backward flow of molten metal inside 

the weld pool prevents backfilling of the front portion of the weld pool. When increasing the 

power or the welding speed, the velocity and momentum of the flow of molten metal towards the 

tail of the weld pool must also be higher. Therefore, the droplets on the surface would have 

higher tendency to be formed. Different models have also been proposed [110-111] and can 

provide plausible explanations of the periodic behavior of the humping phenomenon. Rayleigh’s 

theory of the instability of a free liquid cylinder due to surface tension to the humping 

phenomenon was applied during the welding process. This is also reasonable to apply this theory 

to the laser cladding process because both processes are quite similar.  

Consider an infinite cylinder of radius Rc of an ideal fluid which is maintained by surface tension 

only [112] and is assumed to be freely suspended in space. A small amplitude perturbation 

analysis shows that all disturbances end up in stable vibrations. If the wavelength of the 

disturbance exceeds the circumference of the cylinder: 

λ > 2πRc 

instability starts and the perturbation begins to grow. Eventually the cylinder will break up into 

droplets. Furthermore, the analysis provides a break up time τ of that disturbance which grows 

fastest where  

τ=3 !!
!
𝑅!! 

where ρ c denotes the density, σ the surface tension. So if the solidification time of the droplet 

exceeds the break up time, the clad may break into droplets. 
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Table 5.4 gives the radius of the cylinder and break up time under different parameters for 

chromel powder. The diameters of the cylinder were defined as the widths of cladded tracks. The 

radiuses for the parameters of P=15 W, V=1000 mm/ min, F=7.3 g/ min and P=15 W, V=1500 

mm/ min, F=7.3 g/ min were about 0.103 mm and 0.085 mm, respectively. The break up time 

was calculated according to the above formula which was below 170 µs. With higher power or 

lower powder feeding rate, the radius became larger which were 0.139 mm and 0.114 mm, 

respectively. The break up time took longer and was about 263 µs and 192 µs under higher laser 

power and lower powder feeding rate. Since the break up time is in the order of µs rather than ms, 

this result is not able to interpret the droplets phenomenon quantitatively either.   

 

Table 5.4 The radiuses and break up time of clads under different parameters for chromel powder. 

parameters morphology Rc (mm) τ (µs) 
P=22 W, V=1500 mm/ min, F=7.3 g/ min droplets 0.139 263 
P=15 W, V=1000 mm/ min, F=5.7 g/ min some droplets 0.114 192 
P=15 W, V=1500 mm/ min, F=7.3 g/ min almost no droplets 0.085 127 
P=15 W, V=1000 mm/ min, F=7.3 g/ min no droplets 0.103 167 

* ρ=8.91 g/ cm3, σ=1.76 N/ m @ 1450 oC [113] 

 

In general, the wetting behavior for alumel is more difficult than chromel. It is reported that the 

addition of Cr (or Cr-O clusters) can significantly improve the wettability of liquid Cu on ZrO2 

substrate [114]. According to this, the presence of Cr element in chromel makes the big 

difference in the wetting behavior between alumel (Ni-2Al2Mn1Si) and chromel (Ni-10Cr).  
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6. Summary and Outlook 
 

In this work, a new method for fabricating high temperature type K thermocouple (TC) sensors 

using laser cladding technology has been developed.  

The first experiment showed that the heat affected zone (HAZ) was significantly influenced by 

the energy per unit area and the powder feeding rate as well as the peak power. Reducing the 

energy per unit area, the peak power or increasing the powder feeding rate was beneficial to 

reduce the dimension of the HAZ.   

The dimensions of produced type K TC sensors by continuous wave (CW) laser cladding were in 

the range of two hundred microns in thickness and width. The average roughness was for the 

cladded alumel was 10 ± 2 µm and for the chromel was 9 ± 2 µm. The resistivity of cladded 

alumel (0.638 µΩ·m) is two times larger than its nominal value (0.29-0.33 µΩ·m) after 

optimization. This may be due to the easy oxidation of aluminum formed especially at the alumel 

grain boundaries. The non-conductive alumina can block the electrical current. The resistivity of 

cladded chromel (0.776 µΩ·m) is close to its nominal value (0.706 µΩ·m) after optimization. 

This may be due to the conductive chromium oxide scale formed in the chromel tracks. It is 

possible to embed sensors manufactured by CW laser cladding and reliable performance was 

confirmed with the thermosensitivity measurement. The Seebeck coefficients of cladded 

thermocouple are estimated as 41.2 µV/ K before embedding and 40.9 µV/ K after embedding 

which are close to the reported value 41.1 µV/ K.  

The dimensions of cladded TC sensors by pulsed laser cladding were less than 100 microns by 

pulsed laser cladding. It has been not achieved to embed such sensors due to the poor bonding 

strength between the clads and the substrate up to now.  

The shear force measurements were carried out with all the optimized parameters for both kind 

of alumel and chromel clads to evaluate the adhesion strength. Results show that a big scattering 

was obtained due to the roughness substrate surface and the tip of the shearing tool was difficult 

to be placed. The adhesion strength between the cladded tracks and the substrate plays an 

important role but not the most significant factor for the subsequent successful embedding. 
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Reducing the powder feeding rate, increasing the travelling speed or the laser power leads to the 

formation of periodically droplets along the clads. Regarding to its formation mechanism, the 

duration of melt which determined by two important combined parameters (P/ F and F/ V) is 

critical for the droplets formation. Smooth tracks can be obtained by reducing the duration of 

melt. Rayleigh’s theory could be applied to explain the periodically formed droplets along the 

clads. If the wavelength of the disturbance exceeds the circumference of the cylinder, instability 

starts and the cylinder will break up into droplets eventually. The presence of Cr in chromel 

makes the big difference in the wetting behavior between alumel (Ni-2Al2Mn1Si) and chromel 

(Ni-10Cr).  

In summary, the manufactured TC sensors by the laser cladding technique provide minimal 

intrusion to the substrate, small feature sizes (100~200 µm), low roughness (~10 µm) and 

electrical conductivity. Several advantages are possessed by this technique when fabricating TC 

sensors, such as neither vacuum processing nor application of masks during cladding as well as 

less time-consuming.  

This technology is still in its infancy, and there are many opportunities and challenges both in 

terms of the process itself and potential applications. However, the microstructure improvement 

of laser cladded thermocouple sensors is a topic to be continually focused on. Future work how 

the embedded sensors affect the lifetime of TBCs in terms of degradation needs to be studied. 

Application and system level issues associated with sensor placement have to be further 

addressed. In addition, the different sensors, like strain gauge sensors, flow sensors, piezoelectric 

sensors, accelerometers et al need be adopted for different purposes. 	  
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