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Abstract

We introduce intention-based social preferences into mechanism design. We explore infor-

mation structures that di�er with respect to what is commonly known about the weight that

agents attach to reciprocal kindness. When the designer has no information on reciprocity

types, implementability of an incentive-compatible social choice function is guaranteed if it

satis�es an additional insurance property. By contrast, precise information on reciprocity

types may imply that all e�cient social choice functions are implementable. We show how

these results extend to a two-dimensional mechanism design setting where the agents have

private information about their material payo� types and their reciprocity types. We also

provide a systematic account of the welfare implications of intentionality.

Keywords: Mechanism Design, Psychological Games, Social Preferences, Reciprocity.

JEL Classi�cation: C70, C72, D02, D03, D82, D86.

∗Email: bierbrauer@wiso.uni-koeln.de and nick.netzer@econ.uzh.ch. We thank Tomer Blumkin, Stefan
Buehler, Antonio Cabrales, Juan Carlos Carbajal, Martin Dufwenberg, K�r Eliaz, Florian Englmaier, Ernst
Fehr, Alexander Frankel, Silvia Grätz, Hans Peter Grüner, Paul Heidhues, Martin Hellwig, Holger Herz, Benny
Moldovanu, Johannes Münster, Roger Myerson, Zvika Neeman, Axel Ockenfels, Marco Ottaviani, Ariel Rubin-
stein, Désirée Rückert, Larry Samuelson, Klaus Schmidt, Armin Schmutzler, Alexander Sebald, Joel Sobel, Ran
Spiegler, Balázs Szentes, André Volk, Roberto Weber, Philipp Weinschenk, David Wettstein, Philipp Wichardt,
and seminar participants at the CESifo Area Conference on Behavioural Economics 2011, the MPI Conference on
Private Information, Interdependent Preferences and Robustness 2013, ESSET 2013, Ben-Gurion University of
the Negev, CERGE-EI Prague, HU and FU Berlin, ULB Brussels, MPI Bonn, LMU Munich, Tel Aviv University
and the Universities of Basel, Bern, Chicago, Cologne, Heidelberg, Mannheim, St. Gallen and Zurich. Financial
support by the Swiss National Science Foundation (Grant No. 100018_126603 �Reciprocity and the Design of
Institutions�) is gratefully acknowledged. All errors are our own.



1 Introduction

Agents with intention-based social preferences are willing to give up own material payo�s in

order to either reward behavior by others that they attribute to good intentions, or to punish

behavior that they attribute to bad intentions (Rabin, 1993; Dufwenberg and Kirchsteiger, 2004).

The behavioral relevance of such preferences is well established (e.g. Andreoni et al., 2002; Falk

et al., 2003, 2008). In this paper, we explore their implications for the theory of mechanism

design. Speci�cally, we provide answers to the following questions:

There is a rich literature on mechanism design that has proceeded under the assumption

that agents are sel�sh. To what extent are these mechanisms robust to the possibility that

the participants may be motivated by intention-based social preferences?

How do intention-based social preferences a�ect the set of implementable social choice

functions relative to a benchmark with sel�sh agents? In particular, does intentionality

make it easier or more di�cult to implement good outcomes?

Suppose that the designer seeks not only good material outcomes but also good attitudes

among the participants of the mechanism. Is there a trade-o� between these objectives?

Do we have to sacri�ce e�ciency if we want kindness among the agents, or are sensations

of kindness helpful for the implementation of e�cient outcomes?

For clarity of exposition, our analysis is based on one particular model of intention-based

social preferences. Speci�cally, we adapt the model by Rabin (1993) to games of incomplete

information and work with the solution concept of a Bayes-Nash fairness equilibrium, in the

context of an otherwise conventional independent private values model of mechanism design.

We approach the questions above in three di�erent ways. We �rst characterize social choice

functions that are strongly implementable. Our notion of strong implementability is attractive

from the perspective of a mechanism designer who acknowledges the possibility that the agents

may be motivated by intention-based social preferences, but who wishes to remain agnostic

about the intensity of these preferences. A strongly implementable social choice function is

implementable irrespective of the mixture between sel�sh and reciprocal individuals among the

participants of a mechanism. We then consider social choice functions that are weakly imple-

mentable, i.e., which are implementable if the mechanism designer has precise information on

the strength of intention-based social preferences. This concept is of interest for two di�erent

reasons. First, it allows for a clear exposition of the conceptual issues that arise due to the

procedural nature of intention-based preferences. For instance, we show that the revelation

principle does not hold. We also discuss alternative notions of welfare and the modelling of par-

ticipation constraints in a model with intentions. Second, looking �rst at weakly implementable

social choice functions sets the stage for our analysis of the two-dimensional mechanism design

problem that emerges if the agents have private information both about their material payo�s

and about the weight that kindness sensations have in their utility function.

Strongly Implementable Social Choice Functions. Our �rst main result (Theorem 1)

states that a social choice function is strongly implementable if it is implementable in a model
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with sel�sh agents and, moreover, is such that the agents cannot a�ect each other's payo� by

unilateral deviations from truth-telling. We refer to the latter property as the insurance property,

since it implies that the expected payo� of agent i does not depend on the type of agent j, i.e.,

each agent is insured against the randomness of the other agent's type. The insurance property

shuts down the transmission channel for reciprocal behavior. If agent i cannot in�uence the

payo� of agent j, then j has no reason to interpret i's behavior as kind or as unkind. Agent

j thus neither has a reason nor an opportunity to reward or punish agent i, so she focusses on

her own expected payo� and acts as if she was sel�sh. Incentive-compatibility implies that this

sel�sh behavior implements the given social choice function.

We then turn to a characterization of social choice functions that are incentive-compatible

and have the insurance property. Proposition 1 establishes that the set of e�cient social choice

functions contains functions which have these two properties. Proposition 2 provides a tool

for the construction of social choice functions with the insurance property. As an input it

requires a social choice function that is implementable if everybody is sel�sh. It then modi�es

the monetary transfers in such a way that the insurance property holds and key properties of

the initial social choice function (expected payments, expected payo�s, incentive-compatibility)

remain unchanged.

Theorem 1 and Propositions 1 and 2 are reassuring from the perspective of the established

theory in mechanism design, which is based on the assumption that individuals are sel�sh. Even

if individuals are inclined to respond to the behavior of others in a reciprocal way, this will

in many cases not upset implementability of the outcomes that have been the focus of this

literature. For many applications of interest, there is a way to design robust mechanisms in

which the transmission channel for reciprocal behavior is simply shut down. If it is shut down,

then individuals are, by design, acting as sel�sh payo� maximizers, and incentive-compatibility

in the traditional sense is all that is necessary to ensure implementability.

Weakly Implementable Social Choice Functions. Our analysis of weakly implementable

social choice functions proceeds under the assumption that, while agents have private information

about their material payo�s, the weight of kindness in their overall utility function is commonly

known. This information structure makes it possible to highlight the issues that arise if one

seeks to exploit intention-based social preferences for mechanism design.

With intention-based preferences, whether agent i interprets agent j as kind or as unkind

depends not only on what j does, but also on what j could have done instead. Hence our analysis

begins with the observation that the speci�cation of message sets a�ects the set of achievable

outcomes. For instance, the designer can augment a direct mechanism with additional actions

that give each agent a possibility to enrich himself at the expense of the other agents. If all

agents refrain from using these actions, they will interpret each other as kind. These kindness

sensations then make it possible to implement social choice functions that are out of reach if

everybody is sel�sh.1

1The empirical relevance of unchosen actions for kindness judgements has been illustrated by Andreoni et al.
(2002) and Falk and Fischbacher (2006), among others. For instance, Falk and Fischbacher (2006) report on how
individuals assess the kindness of proposals for the division of a cake of �xed size. They show that this assessment
depends on the choice set that is available to the proposer. An o�er of 20 percent of the cake, for instance, is
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Theorem 2 uses this insight to provide conditions under which indeed any e�cient social

choice function can be implemented. The mechanism that we construct in order to prove Theo-

rem 2 also satis�es participation constraints and hence eliminates any tension between e�ciency,

incentive-compatibility and voluntary participation. This implies that famous impossibility re-

sults such as the one by Myerson and Satterthwaite (1983) are turned into possibility results.

Proposition 3 addresses the question whether Pareto-e�ciency and kindness are competing

objectives. It shows that, under the conditions of either Theorem 1 or 2, materially surplus-

maximizing outcomes can be implemented with maximal kindness levels. Thus, one can have

maximal material payo�s and at the same time reach a maximal level of kindness.

Two-Dimensional Mechanism Design. We then turn to an information structure where

the agents have private information both on their material payo�s and on the weight of kindness

sensations in their utility function. Both dimensions may be elicited by a mechanism. Clearly,

our results on strong implementability provide a lower bound on what can be achieved in this

setting, while our results on weak implementability provide an upper bound.

We start by considering the class of social choice functions that map material payo� types

into economic outcomes. This class includes materially Pareto-e�cient social choice functions,

because reciprocity types have no direct impact on material payo�s. It does not include social

choice functions under which the �nal allocation varies with the weight that the agents attach

to sensations of kindness. Proposition 4 shows that incentive-compatibility remains a necessary

condition for implementability of such social choice functions if there is a positive probability

that the agents are sel�sh. Hence, a mere possibility of reciprocal behavior does not enlarge the

set of implementable social choice functions relative to a benchmark model with sel�sh agents.

Incentive-compatibility is not su�cient, though. Agents with strong reciprocal inclinations may

be ready to deviate from truthful behavior to a�ect other agents. We already know from Theorem

1 that the insurance property is a su�cient condition to rule out this possibility. Proposition 5

clari�es the conditions under which the insurance property is also necessary for implementability.

In particular, there must be a positive probability that agents attach a su�ciently large weight to

sensations of kindness. Under these assumptions, Theorem 1 and Propositions 4 and 5 together

imply that a social choice function is implementable if and only if it is incentive-compatible and

has the insurance property. We also show that the resulting equilibrium kindness of zero is the

highest level of kindness one can hope for when sel�sh types are around.

How do these �ndings change if we know for sure that the agents are not sel�sh? Under

the assumption that reciprocity weights are bounded away from zero, Proposition 6 provides an

extension of Theorem 2 and Proposition 3. Thus, our results reveal that the issue is not really

whether reciprocity types are taken to be observable. A more important distinction is whether

sel�sh types are possible. If they are not, our results on weakly implementable social choice

functions extend to a model with private information on reciprocity types. If sel�sh types are

possible, one has to live with incentive-compatibility and, under plausible conditions, also the

insurance property. It is therefore appropriate to focus on strongly implementable social choice

functions in this case.

considered very unfair if better o�ers such as 50 percent or 80 percent were also possible. It is considered less
unfair if it was the only admissible o�er, and even less unfair if only worse o�ers were possible otherwise.
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Finally, we study social choice functions under which the allocation depends not only on the

agents' material payo�s but also on their reciprocity types. The dependence of outcomes on

reciprocity types typically implies a loss of material e�ciency, but it may generate additional

degrees of freedom in incentive provision. Speci�cally, we consider a bilateral trade example

where both agents are either sel�sh or attach a positive weight to sensations of kindness. We

study a social choice function under which sel�sh types choose to enrich themselves at the

expense of the other agent, while reciprocal types refrain from doing so. Equilibrium kindness

becomes positive if the sel�sh types are su�ciently rare, and we can reach an e�cient outcome

with a probability close to one. Importantly, as the probability of sel�sh types goes to zero, we

approximate a mechanism that relies on unused actions and induces e�cient outcomes under

the assumption of known reciprocity types, i.e., the type of mechanism that enabled us to prove

Theorem 2. Hence we can interpret unused actions as the limit of actions which are rarely used,

namely in the small probability event that an agent is entirely sel�sh.

The remainder is organized as follows. The next section contains a more detailed discussion

of the related literature. Section 3 states the mechanism design problem and introduces the

solution concept of a Bayes-Nash fairness equilibrium. Section 4 deals with the analysis of

strongly implementable social choice functions, and Section 5 covers weakly implementable social

choice functions. Our analysis of the two-dimensional mechanism design problem can be found

in Section 6. Throughout, we illustrate our results using a simpli�ed version of the bilateral

trade problem due to Myerson and Satterthwaite (1983). As an extension, Section 7 discusses

the possibility that the agents do not perceive the mechanism as exogenous but have intention-

based preferences also towards the mechanism designer. Concluding remarks which discuss the

applicability of our results can be found in Section 8. All proofs and some supplementary

materials are relegated to the appendix.

2 Literature

Models of social preferences are usually distinguished according to whether they are outcome-

based or intention-based. Prominent examples for outcome-based models are Fehr and Schmidt

(1999) and Bolton and Ockenfels (2000), while Rabin (1993) and Dufwenberg and Kirchsteiger

(2004) are intention-based. An extensive experimental literature (e.g. Andreoni et al., 2002;

Falk et al., 2003, 2008) has concluded that behavior is most likely in�uenced by both types of

considerations. The theoretical models proposed by Levine (1998), Charness and Rabin (2002),

Falk and Fischbacher (2006) and Cox et al. (2007) combine outcomes and intentions as joint

motivations for social behavior. In this paper, we consider intention-based social preferences only.

We do this for a methodological reason. The distinguishing feature of intention-based preferences

is their procedural nature, i.e., sensations of kindness are endogenous to the game form. This is

a challenge for mechanism design theory, which is concerned with �nding optimal game forms.

With outcome-based social preferences, this methodological issue would not arise. The formal

framework for modelling intentions is provided by psychological game theory (Geanakoplos et al.,

1989; Battigalli and Dufwenberg, 2009), which allows payo�s to depend on higher-order beliefs.

The literature does not yet contain a general treatment of intention-based social preferences for
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games of incomplete information.2 Our mechanism design approach requires a general theory of

intentions for Bayesian games, and we will outline such a theory in Section 3.3.

Several authors have investigated mechanism design problems with outcome-based social

preferences.3 Jehiel and Moldovanu (2006) provide a survey of papers that deal with a general

structure of externalities, some of which might be viewed as resulting from interdependent or

social preferences. Desiraju and Sappington (2007) study a one-principal-multiple-agents-model

with inequality-averse agents. They show that, if the agents' types are independently drawn,

then payment schemes can be constructed so that inequality-aversion does not interfere with

incentive provision by the principal. Our results on strong implementability can be viewed as a

generalization of this observation that also covers models with intention-based social preferences.

By contrast, von Siemens (2011) studies a model in which inequality-aversion among the em-

ployees of a �rm cannot be neutralized. As a consequence, the �rm deviates from the incentive

scheme that would be optimal if all agents were sel�sh. Tang and Sandholm (2012) characterize

optimal auctions in the presence of spiteful agents, who attach an exogenous negative weight

to the utility of others, and Kucuksenel (2012) investigates an optimal design problem with

altruistic agents, who attach an exogenous positive weight to the utility of others.

Experimental and theoretical studies have shown that the design of incentive contracts can

be facilitated in environments with reciprocal agents (e.g. Fehr et al., 1997; Fehr and Falk, 2002;

Englmaier and Leider, 2012; Hoppe and Schmitz, 2013; Benjamin, 2014). However, reciprocity is

not necessarily a bene�cial force. In Hart and Moore (2008) and Netzer and Schmutzler (2014),

for instance, negative reciprocal reactions can be inevitable and generate ine�cient contract

outcomes. Our mechanism design approach clari�es the conditions under which reciprocity

among the agents either hampers or helps in achieving good outcomes.

Several papers are related in that they study problems of mechanism design with a focus

on procedural questions.4 One of the �rst contributions is Glazer and Rubinstein (1998), who

study the problem of aggregating information across experts. Experts may not only care about

consequences, but might want their own recommendation to be accepted. As in our model, this

introduces procedural aspects into the mechanism design problem. Gradwohl (2014) studies

implementation with agents who do not only care about the outcome of a mechanism but also

about the extent of information revelation in equilibrium. The possibility that institutions

2Rabin (1993) and Dufwenberg and Kirchsteiger (2004) assume complete information. Segal and Sobel (2007)
generalize the model of Rabin (1993) and provide an axiomatic foundation. They also illustrate that deleting
unused actions can a�ect the equilibrium structure. Some contributions (e.g. Sebald, 2010; Aldashev et al., 2015)
introduce randomization devices into psychological games, but still under the assumption of perfect observability.
von Siemens (2009, 2013) contain models of intentions for two-stage games with incomplete information about
the second-mover's social type.

3There also exist applications of outcome-based social preferences to moral hazard problems (e.g. Englmaier
and Wambach, 2010; Bartling, 2011) and to labor market sceening problems (e.g. Cabrales et al., 2007; Cabrales
and Calvó-Armengol, 2008; Kosfeld and von Siemens, 2011). Reciprocity is introduced into moral hazard problems
by De Marco and Immordino (2014, 2013) and into a screening problem by Bassi et al. (2014). These contributions
work with adaptations of the models by Rabin (1993) and Levine (1998), respectively, which e�ectively transform
them into outcome-based models.

4Frey et al. (2004) provide a general discussion of procedural preferences and their role for the design of
institutions. Gaspart (2003) follows an axiomatic approach to procedural fairness in implementation problems.
Aside from procedural issues, the literature has investigated a range of other behavioral phenomena in mechanism
design problems, among them error-prone behavior (Eliaz, 2002), emotions like fear (Caplin and Eliaz, 2003),
and myopic learning (Cabrales and Serrano, 2011).
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a�ect preferences has received some attention in general (see e.g. Bowles and Polanía-Reyes,

2012). In Alger and Renault (2006), the mechanism and its equilibrium in�uence the agents'

intrinsic propensity to lie. This can sometimes make non-direct mechanisms optimal. de Clippel

(2014) studies the problem of full implementation under complete information with agents whose

behavior is described by arbitrary choice functions instead of preferences. Indirect mechanisms

play a role also in this context, due to the possibility of menu-dependence. Saran (2011), in

contrast, provides conditions for the revelation principle to hold in a Bayesian framework even

in such cases. Antler (2015) investigates a matching problem where the agents' preferences are

directly a�ected by the stated preferences of their potential partners.

3 The Model

3.1 Environment and Mechanisms

We focus on the conventional textbook environment with quasi-linear payo�s and independent

private values (see Mas-Colell et al., 1995, ch. 23). For simplicity we consider the case of only

two agents, but we deal with extensions to an arbitrary �nite number of agents in Section B of

the appendix.

The environment is described by E = [A,Θ1,Θ2, p1, p2, π1, π2]. The set of feasible allocations

is denoted by A, where a typical element is a list a = (q1, q2, t1, t2). Depending on the application,

qi may stand for agent i's consumption of a public or private good, or it may denote her e�ort or

output. We will simply refer to qi as agent i's consumption level. The monetary transfer to agent

i is denoted by ti. Formally, the set of allocations is given by A = Q × R2 for some Q ⊆ R2.

We assume that pairs of consumption levels (q1, q2) do not come with an explicit resource

requirement. Resource costs can be captured in the payo� functions for most applications of

interest. An allocation is said to achieve budget-balance if t1 + t2 = 0.

The type of agent i is the realization θi of a random variable θ̃i that takes values in a

�nite set Θi. The realized type is privately observed by the agent. Types are independently

distributed and pi denotes the probability distribution of θ̃i. We also write θ̃ = (θ̃1, θ̃2) and

denote realizations of θ̃ by θ = (θ1, θ2) ∈ Θ = Θ1 ×Θ2. We write E[·] for the expectation with

respect to all random variables within the squared brackets.5

Finally, πi : A×Θi → R is the material payo� function of agent i. If allocation a is selected

and type θi has realized, then agent i obtains the material payo� πi(a, θi) = vi(qi, θi) + ti.
6

The material surplus that is generated by consumption levels (q1, q2) if types are given

by θ = (θ1, θ2) equals v1(q1, θ1) + v2(q2, θ2). An allocation a = (q1, q2, t1, t2) is said to be

materially surplus-maximizing for type pro�le θ if v1(q1, θ1) + v2(q2, θ2) ≥ v1(q′1, θ1) + v2(q′2, θ2),

for all (q′1, q
′
2) ∈ Q. An allocation a is said to be materially Pareto-e�cient for type pro�le

θ if it is materially surplus-maximizing and achieves budget-balance. A social choice function

5Throughout, possible realizations of a random variable x̃ are denoted by x, x′ or x̂. For instance, if x̃1 and x̃2
are random variables and g is an arbitrary function, then E[g(x̃1, x̃2)] indicates that an expectation is computed
based on the joint distribution of the random variables x̃1 and x̃2, and E[g(x̃1, x

′
2)] indicates that an expectation

is computed based on the distribution of x̃1 conditional on the event x̃2 = x′2.
6The type θi a�ects only agent i's material payo�. In Section 6 we will analyse a two-dimensional mechanism

design problem where an agent is characterized by a material payo� type and a reciprocity type, both of which
are private information.
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(SCF) f : Θ → A speci�es an allocation as a function of both agents' types. We also write

f = (qf1 , q
f
2 , t

f
1 , t

f
2). A social choice function f is said to be materially Pareto-e�cient if the

allocation f(θ) is materially Pareto-e�cient for every type pro�le θ ∈ Θ.

A mechanism Φ = [M1,M2, g] contains a �nite message setMi for each agent and an outcome

function g : M → A, which speci�es an allocation for each pro�lem = (m1,m2) ∈M = M1×M2.

We also write g = (qg1 , q
g
2 , t

g
1, t

g
2). A pure strategy for agent i in mechanism Φ is a function

si : Θi →Mi. The set of all such strategies of agent i is denoted Si, and we write S = S1 × S2.

We denote by g(s(θ)) the allocation that is induced if types are given by θ and individuals follow

the strategies s = (s1, s2). For later reference, we also introduce notation for �rst- and second-

order beliefs about strategies. Since we will focus on pure strategy equilibria in which beliefs are

correct, we can without loss of generality assume that agent i's belief about j's strategy puts

unit mass on one particular element of Sj , which we will denote by sbi (we assume j 6= i here

and throughout the paper). Analogously, we denote by sbbi ∈ Si agent i's (second-order) belief
about j's belief about i's own strategy.

3.2 Bayes-Nash Equilibrium

Before turning to the model of intention-based social preferences, we remind ourselves of the

solution concept of a Bayes-Nash equilibrium (BNE). Given an environment E and a mechanism

Φ, agent i's ex ante expected material payo� from following strategy si, given her belief sbi about

the other agent's strategy, is given by

Πi(si, s
b
i) = E[vi(q

g
i (si(θ̃i), s

b
i(θ̃j)), θ̃i) + tgi (si(θ̃i), s

b
i(θ̃j))].

De�nition 1. A BNE is a strategy pro�le s∗ = (s∗1, s
∗
2) such that, for both i = 1, 2,

(a) s∗i ∈ arg maxsi∈Si Πi(si, s
b
i), and

(b) sbi = s∗j .

We say that a social choice function f can be implemented in BNE if there exists a mechanism

Φ that has a BNE s∗ so that, for all θ ∈ Θ, g(s∗(θ)) = f(θ). The characterization of social choice

functions that are implementable in BNE is facilitated by the well-known revelation principle.

To state this principle, we consider the direct mechanism for a given social choice function f , i.e.,

the mechanism with M1 = Θ1, M2 = Θ2, and g = f . Given such a mechanism, truth-telling for

agent i is the strategy sTi that prescribes sTi (θi) = θi, for all θi ∈ Θi. According to the revelation

principle, a social choice function f is implementable in BNE if and only if truth-telling by all

agents is a BNE in the corresponding direct mechanism. Equivalently, a social choice function

is implementable in BNE if and only if it satis�es the following inequalities, which are known as

Bayesian incentive-compatibility (BIC) constraints:

E[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)] ≥ E[vi(q

f
i (θ̂i, θ̃j), θi) + tfi (θ̂i, θ̃j)], (1)

for both i = 1, 2 and all θi, θ̂i ∈ Θi. In many applications, in addition to the requirement of

7



BIC, participation constraints (PC) have to be respected:

E[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)] ≥ 0, (2)

for both i = 1, 2 and all θi ∈ Θi. The interpretation is that participation in the mechanism is

voluntary and that agents take their participation decision after having learned their own type,

but prior to learning the other agent's type. They will participate only if the payo� they expect

from participation in the mechanism is non-negative.

3.3 Bayes-Nash Fairness Equilibrium

We now adapt the model of intention-based social preferences due to Rabin (1993) to normal

form games of incomplete information. The resulting solution concept will be referred to as a

Bayes-Nash fairness equilibrium (BNFE). Speci�cally, we follow the literature on intention-based

social preferences and assume that the agents have a utility function of the form

Ui(si, s
b
i , s

bb
i ) = Πi(si, s

b
i) + yi κi(si, s

b
i)κj(s

b
i , s

bb
i ). (3)

The �rst source of utility is the expected material payo� Πi(si, s
b
i). The second source of utility

is a psychological payo� κi(si, s
b
i)κj(s

b
i , s

bb
i ), which is added with an exogenous weight of yi ≥ 0.

The term κi(si, s
b
i) captures the kindness that agent i intends to achieve toward agent j by

choosing strategy si, given her belief s
b
i about j's strategy. The term κj(s

b
i , s

bb
i ) captures the belief

of agent i about the analogously de�ned kindness κj(sj , s
b
j) intended by j toward i. Forming this

belief requires agent i to reason about agent j's �rst-order belief, which explains why second-

order beliefs become relevant. The sign of κj is important for i's attitude towards j. If i expects

to be treated kindly, κj > 0, then her utility is increasing in her own kindness. The opposite

holds if i expects to be treated unkindly, κj < 0, in which case she wants to be unkind in return.

Kindness is determined as follows. There is an equitable reference payo� Πe
j(s

b
i) for agent j,

which describes what agent i considers as the payo� that j deserves. If i's strategy choice yields

a payo� for j that exceeds this norm, then i is kind, otherwise she is unkind. Speci�cally, we

postulate that

κi(si, s
b
i) = h(Πj(si, s

b
i)−Πe

j(s
b
i)),

where

h(x) =


κ̄ if κ̄ < x,

x if −κ̄ ≤ x ≤ κ̄,
−κ̄ if x < −κ̄.

The kindness bound κ̄ > 0 allows us to restrict the importance of psychological payo�s relative

to material payo�s, but it can also be set to κ̄ = ∞. Having a bound on kindness sensations

will be of particular importance for our analysis of the problem to implement an SCF with

maximal kindness among the agents. This problem would not be well-de�ned in the absence of
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a kindness bound.7 The crucial feature of models with intention-based social preferences is that

equitable payo�s are menu-dependent. Following Rabin (1993), we assume that, from agent

i's perspective, the relevant menu is the set of Pareto-e�cient own strategies, conditional on

the other agent choosing strategy sbi . This set is henceforth denoted Ei(s
b
i).

8 To be speci�c,

we assume that the payo� deserved by j is the average of the payo� she would get if i was

completely sel�sh and the payo� she would get if i cared exclusively for j:

Πe
j(s

b
i) =

1

2

[
max

si∈Ei(sbi )
Πj(si, s

b
i) + min

si∈Ei(sbi )
Πj(si, s

b
i)

]
.

The restriction of the relevant menu to e�cient strategies ensures that kindness is generated only

by choices that involve a non-trivial trade-o� between the agents. This property is important

for mechanism design, as it implies that kindness cannot be manipulated by merely adding

non-tempting punishment options to a mechanism.9 Di�erent speci�cations of the reference

point have been explored in the literature (e.g. Dufwenberg and Kirchsteiger, 2004; Falk and

Fischbacher, 2006). We do not wish to argue that our assumptions are the only reasonable ones.

What is crucial for the analysis that follows is the menu-dependence of the equitable reference

payo�. The menus that are made available by the mechanism designer a�ect the interpretation

of behavior. This feature of the model makes our analysis conceptually di�erent from one in

which preferences are purely outcome-based.10

De�nition 2. A BNFE is a strategy pro�le s∗ = (s∗1, s
∗
2) such that, for both i = 1, 2,

(a) s∗i ∈ arg maxsi∈Si Ui(si, s
b
i , s

bb
i ),

(b) sbi = s∗j , and

(c) sbbi = s∗i .

The de�nition of BNFE becomes equivalent to the de�nition of BNE whenever y1 = y2 = 0,

so that concerns for reciprocity are absent. Our de�nitions of both BNE and BNFE are based

on the ex ante perspective, that is, on the perspective of agents who have not yet discovered

their types but plan to behave in a type-contingent way. As is well-known, for the case of BNE

there is an equivalent de�nition which evaluates actions from an ex interim perspective, where

7Dufwenberg and Kirchsteiger (2004) do not have a bound on kindness, which corresponds to κ̄ =∞. Rabin
(1993) adopts a normalization that implies that kindness lies in the interval [−1, 1/2]. Still, kindness is strictly
increasing in the opponent's payo�. In our model, it is increasing only as long as the kindness bound is not binding.
Whenever our bound is not binding, we can rewrite utility as Ui(si, s

b
i , s

bb
i ) = Πi(si, s

b
i ) + yiκj(s

b
i , s

bb
i )Πj(si, s

b
i )−

yiκj(s
b
i , s

bb
i )Πe

j(sbi ), which shows that agent i maximizes a weighted sum of both agents' material payo�s. The
weight on the other agent's payo� is endogenously determined by her kindness toward i and can be negative.

8Conditional on sbi , a strategy si ∈ Si is Pareto-dominated by a strategy s′i ∈ Si if Πk(s′i, s
b
i ) ≥ Πk(si, s

b
i )

for both k = 1, 2, with strict inequality for at least one k. A strategy is Pareto-e�cient and hence contained in
Ei(s

b
i ) if it is not Pareto-dominated by any other strategy in Si.

9For an assessment of i's kindness, however, it does not matter how costly it is to generate the best outcome
for j, nor does it matter how much i would gain from generating the worst outcome for j. To avoid implausible
implications of this property, we will, for most of our results, impose the additional requirement of budget-balance
on and o� the equilibrium path, which makes it impossible to take a lot from one agent without giving it to the
other agent.

10In Appendix E, we go through several examples to demonstrate that the logic of our analysis does not depend
upon whether we model equitable payo�s as in Rabin (1993) or as in Dufwenberg and Kirchsteiger (2004).
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agents have learned their own type but lack information about the types of the other agents. In

Appendix C, we develop an analogous ex interim version of BNFE and provide conditions on the

relation between ex ante and ex interim kindness under which the two versions are equivalent.

The solution concept of a BNFE relies on two sources of utility, material payo�s and kindness

sensations. This raises the question how to treat them from a welfare perspective. The question

can be formulated using the notions of decision utility and experienced utility (Kahneman et al.,

1997). Our analysis is based on the assumption that behavior is as if individuals were maximizing

the decision utility function Ui, but it leaves open the question whether sensations of kindness

should be counted as an own source of experienced well-being.11 We will investigate welfare based

on the entire utility function (3) in Section 5. First, however, we work with the conventional

notion of material Pareto-e�ciency introduced above, i.e., we investigate how the behavioral

implications of reciprocity a�ect the possibility to achieve materially e�ciency outcomes.

Our de�nition of a BNFE presumes common knowledge of the reciprocity weights y = (y1, y2)

among the agents. Consequently, expectations have to be taken only with respect to the types

θi and θj . We relax this assumption in Section 6, where we clarify the conditions under which

our results extend to a setting with private information on reciprocity types. Even with the

assumption of common knowledge of reciprocity types among the agents, we can still make a

distinction whether or not the information about y is available also to the mechanism designer.

Our notion of strong implementability assumes that the designer neither knows y nor attempts to

elicit these parameters. Instead, he attempts to come up with a mechanism that reaches a given

social choice function for all y ∈ Y , where Y is some pre-speci�ed set of possible values. With

weak implementability, by contrast, the designer is assumed to know y and can thus calibrate

the mechanism accordingly.

De�nition 3.

(a) An SCF f is strongly implementable in BNFE on Y ⊆ R2
+ if there exists a mechanism Φ

and a pro�le s∗ such that s∗ is a BNFE for all y ∈ Y and g(s∗(θ)) = f(θ) for all θ ∈ Θ.

(b) An SCF f is weakly implementable in BNFE on Y ⊆ R2
+ if, for every y ∈ Y , there exists

a mechanism Φ and a pro�le s∗ such that s∗ is a BNFE and g(s∗(θ)) = f(θ) for all θ ∈ Θ.

In the following, we will simply use the term �strong implementability� when referring to

strong implementability on the complete set Y = R2
+.

3.4 The Bilateral Trade Problem

A simpli�ed version of the classical bilateral trade problem due to Myerson and Satterthwaite

(1983) will be used repeatedly to illustrate key concepts and our main results. There is a buyer b

and a seller s. The seller produces q ∈ [0, 1] units of a good that the buyer consumes. The buyer's

material payo� is given by vb(q, θb) = θbq, so that θb is her marginal valuation of the good. The

seller's material payo� is given by vs(q, θs) = −θsq, so that θs is her marginal cost of production.

Each agent's type takes one of two values from Θi = {θi, θ̄i} with equal probability. We assume

0 ≤ θs < θb < θ̄s < θ̄b, so that (maximal) production is optimal except if the valuation is low

11See Benjamin (2014) for a similar distinction in a model of outcome-based social preferences.
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and the cost is high. An SCF f speci�es the amount of the good to be traded qf (θb, θs) and the

accompanying payments tfb (θb, θs) and t
f
s (θb, θs). It is materially Pareto-e�cient if and only if

qf (θb, θs) =

{
0 if (θb, θs) = (θb, θ̄s),

1 if (θb, θs) 6= (θb, θ̄s),
(4)

and tfs (θb, θs) = −tfb (θb, θs) for all (θb, θs) ∈ Θ. For particular parameter constellations, e.g.

θs = 0, θb = 20, θ̄s = 80, θ̄b = 100, (5)

this setup gives rise to a discrete-type version of the famous impossibility result by Myerson and

Satterthwaite (1983): There is no SCF which is materially Pareto-e�cient and satis�es both

BIC and PC.

In this case, a mechanism design problem of interest is to choose an SCF f that minimizes

E[tfb (θ̃) + tfs (θ̃)] subject to the constraints that f has to satisfy BIC, PC, and trade has to

be surplus-maximizing, i.e., qf has to satisfy (4), but the transfers do not have to be budget-

balanced. Myerson and Satterthwaite (1983) study this problem under the assumption that

types are drawn from compact intervals. The solution to the problem provides a measure of how

severe the impossibility result is: It gives the minimal subsidy that is required in order to make

e�cient trade compatible with the BIC and PC constraints. For our parameter constellation in

(5), a solution f∗ is given in Table 1, which provides the triple (qf
∗
, tf
∗
s , t

f∗

b ) for each possible

type pro�le. Trade takes place whenever e�cient, at prices 75, 50, or 25, depending on marginal

cost and marginal valuation. These prices are chosen so as to guarantee BIC. The incentive-

compatibility constraint (1) is binding for type θ̄b of the buyer and for type θs of the seller.

Respecting PC now requires a lump sum subsidy of 5/2 to be paid to each agent. Below, we will

use f∗ to illustrate that an SCF may be BIC but fail to be (strongly) implementable in BNFE,

i.e., to show that mechanisms which are designed for sel�sh agents may fail to be robust to the

introduction of (arbitrarily small) intention-based concerns.

θs θ̄s

θb (1, 5/2 + 25, 5/2− 25) (0, 5/2, 5/2)

θ̄b (1, 5/2 + 50, 5/2− 50) (1, 5/2 + 75, 5/2− 75)

Table 1: Minimal Subsidy SCF f∗

Another SCF of interest is the one which is materially Pareto-e�cient and splits the gains

from trade equally between the buyer and the seller. It is denoted f∗∗ and given in Table 2

for general parameter con�gurations. Since the transfers of f∗∗ are budget-balanced, Table 2

provides only the pair (qf
∗∗
, tf
∗∗
s ) for each type pro�le. The resulting payo�s

πb(f
∗∗(θb, θs), θb) = πs(f

∗∗(θb, θs), θs) =

(
θb − θs

2

)
qf
∗∗

(θb, θs)

are always non-negative, so that PC is satis�ed. It is easily veri�ed, however, that f∗∗ is not

BIC: It gives a high type buyer an incentive to understate her willingness to pay, and a low type
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seller an incentive to exaggerate her cost. Below, we will use f∗∗ to illustrate that an SCF may

fail to be BIC but still be (weakly) implementable in BNFE.

θs θ̄s

θb (1, (θb + θs)/2) (0, 0)

θ̄b (1, (θ̄b + θs)/2) (1, (θ̄b + θ̄s)/2)

Table 2: Equal Split SCF f∗∗

4 Strongly Implementable Social Choice Functions

4.1 Example

To motivate our analysis of strongly implementable social choice functions, we begin with the

example of an SCF that can be implemented if agents are sel�sh but not if there are arbitrarily

small concerns for reciprocity (provided that the kindness bound κ̄ is not too stringent). Consider

the bilateral trade example with parameters as given in (5). We know that the SCF f∗ solves

the minimal subsidy problem, so truth-telling sT = (sTb , s
T
s ) is a BNE in the direct mechanism.

The following observation asserts that truth-telling is not a BNFE as soon as at least one agent

puts a positive weight on kindness.

Observation 1. Consider the direct mechanism for f∗ in the bilateral trade example, assuming

(5) and κ̄ > 5/2. For every y with yb > 0 and/or ys > 0, the strategy pro�le sT is not a BNFE.

The proof of this observation (and of all other observations) can be found in Appendix D.

It rests on two arguments. First, the structure of binding incentive constraints in f∗ implies

that the buyer obtains the same material payo� from truth-telling as from always declaring a

low willingness to pay. This understatement reduces the seller's material payo�, however, and

thus gives the buyer a costless option to punish the seller. Second, the seller's kindness in a

hypothetical truth-telling equilibrium is negative: truth-telling maximizes her own payo�, while

she could make the buyer better o� by always announcing a low cost. The buyer therefore

bene�ts from reducing the seller's payo� and deviates from truth-telling whenever yb > 0 (and

κ̄ is large enough for her to still experience this payo� reduction). The symmetric reasoning

applies to the seller.

The example illustrates a more general insight. The combination of two properties, both

of which are satis�ed by many optimal mechanisms for sel�sh agents, can make a mechanism

vulnerable to intention-based reciprocity. First, binding incentive constraints provide costless

opportunities to manipulate the other agents' payo�s. Second, BIC implies that truthful agents

act sel�sh and therefore unkind. As a consequence, a reciprocal agent wants to use the manip-

ulation opportunities to retaliate the other agents' unkindness.12 The results that follow show

that these situations can be avoided if an appropriate mechanism is chosen.

12Bierbrauer et al. (2015) generalize this argument to an even larger class of social preference models, and
they discuss bilateral trade mechanisms and optimal taxation mechanisms. Their theoretical and experimental
�ndings con�rm the conjecture by Baliga and Sjöström (2011) that mechanisms in which agents can in�uence
their opponents' payo�s without own sacri�ce �may have little hope of practical success if agents are inclined to
manipulate each others' payo�s due to feelings of spite or kindness.�
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4.2 Possibility Results

We will provide su�cient conditions for the strong implementability of social choice functions in

BNFE. Our analysis makes use of a measure of payo� interdependence among the agents. Given

an SCF f , we de�ne

∆i = max
θj∈Θj

E[vi(q
f
i (θ̃i, θj), θ̃i) + tfi (θ̃i, θj)]− min

θj∈Θj

E[vi(q
f
i (θ̃i, θj), θ̃i) + tfi (θ̃i, θj)], (6)

so that ∆i measures the maximal impact that varying j's type has on i's expected payo�. If

∆i = 0, then the SCF f insures agent i against the randomness in agent j's type. Accordingly,

we will say that f has the insurance property in the particular case where ∆1 = ∆2 = 0.13

Theorem 1. If f is BIC and has the insurance property, it is strongly implementable in BNFE.

In the proof, we consider the direct mechanism and verify that truth-telling is a BNFE for

all y ∈ R2
+. We �rst show that the insurance property is equivalent to the following property:

no agent can a�ect the other agent's expected material payo� by a unilateral deviation from

truth-telling. In the hypothetical truth-telling equilibrium, kindness is therefore equal to zero,

so that the agents focus only on their own material payo�s. If the given SCF is BIC, then the

own payo� is maximized if the agents behave truthfully. Hence, truth-telling is in fact a BNFE.

The theorem raises the question how restrictive the insurance property is. Proposition 1

below shows that there exist materially Pareto-e�cient SCFs that are both BIC and have the

insurance property. Proposition 2 provides an extension to environments in which, in addition,

participation constraints have to be respected, but budget-balance can be dispensed with.

We �rst consider a class of direct mechanisms which are known as expected externality

mechanisms or AGV mechanisms, and which have been introduced by d'Aspremont and Gerard-

Varet (1979) and Arrow (1979). An AGV mechanism is an SCF f with surplus-maximizing

consumption levels (qf1 , q
f
2 ) and transfers that are given by

tfi (θi, θj) = E[vj(q
f
j (θi, θ̃j), θ̃j)]− E[vi(q

f
i (θ̃i, θj), θ̃i)]

for all (θi, θj). These transfers achieve budget-balance and hence guarantee Pareto-e�ciency.

They also ensure that the AGV mechanism is BIC (see e.g. Mas-Colell et al., 1995, for a proof).

Proposition 1. The AGV mechanism has the insurance property.

The expected externality mechanism derives its name from the fact that each agent pays for

the expected impact that her strategy choice has on the other agents' payo�s, assuming that

the other agents tell the truth. If there are only two agents, each of them obtains the payment

made by the other, which implies that a truth-telling agent is protected against changes of the

other agent's strategy.14 With more than two agents, the AGV satis�es the insurance property

only under an additional symmetry condition, which we introduce and discuss in Appendix B.

13The literature on mechanism design with risk-averse or ambiguity-averse agents (e.g. Maskin and Riley, 1984;
Bose et al., 2006; Bodoh-Creed, 2012) has explored various di�erent insurance properties. As the following result
shows, an insurance property is also useful for a characterization of economic outcomes that can be implemented
if agents care about intentions.

14Mathevet (2010) states that the AGV �has no interdependencies between agents� (p. 414).
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It is well-known that AGV mechanisms may not be admissible if participation constraints

have to be respected. More generally, in many situations there does not exist any SCF which is

Pareto-e�cient and satis�es both BIC and PC. This generates an interest in second-best social

choice functions, which satisfy BIC and PC but give up on the goal of achieving full Pareto-

e�ciency. They specify consumption levels that are not surplus-maximizing and/or abandon

the requirement of budget-balance (as e.g. the SCF f∗ in our bilateral trade example). An

implication of the following proposition is that any such SCF can be modi�ed so as to make sure

that the insurance property holds.

Proposition 2. Let f be an SCF that is BIC. Then there exists an SCF f̄ with the following

properties:

(a) The consumption levels are the same as under f : qf̄i (θ) = qfi (θ) for i = 1, 2 and all θ ∈ Θ.

(b) The expected revenue is the same as under f : E[tf̄1(θ̃) + tf̄2(θ̃)] = E[tf1(θ̃) + tf2(θ̃)].

(c) The interim payo� of every agent i = 1, 2 and type θi ∈ Θi is the same as under f :

E[vi(q
f̄
i (θi, θ̃j), θi) + tf̄i (θi, θ̃j)] = E[vi(q

f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)].

(d) f̄ is BIC and has the insurance property.

The proof is constructive and shows that the following new transfer scheme guarantees the

properties stated in the proposition:

tf̄i (θi, θj) = E[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)]− vi(qfi (θi, θj), θi), (7)

for all (θi, θj) ∈ Θ. As has been shown by Bose et al. (2006) and Bodoh-Creed (2012), using

transformation (7) is also useful in a model with ambiguity-averse agents. If the agents compute

expected payo�s based on the �worst� prior, insurance provision can even increase expected

revenues without a�ecting the agents' expected payo�s.

Proposition 2 can be viewed as a tool that transforms any SCF that is implementable under

the assumption that all agents are sel�sh, into one that is behaviorally robust. It is particularly

useful for problems with participation constraints, because all interim expected payo�s remain

unchanged by property (c). Applications include the problem of partnership dissolution (Cram-

ton et al., 1987), public-goods provision (Güth and Hellwig, 1986; Hellwig, 2003; Norman, 2004),

the control of externalities (Rob, 1989), or auctions (Myerson, 1981; Bartling and Netzer, 2015).

That said, there are certain properties of the initial SCF that will not be preserved if this con-

struction is applied. First, if the initial SCF f satis�es ex post budget balance, in the sense that

tf1(θ)+tf2(θ) = 0 for all θ, we will typically not also have tf̄1(θ)+tf̄2(θ) = 0 for all θ. The two SCFs

f and f̄ have the same budgetary implications only in expectation. This may be a problem if

the mechanism designer is unable to cover ex post de�cits. Second, the transfers of f̄ can depend

on the type distribution p even though this was not the case for f . Relatedly, f̄ is only Bayesian

incentive-compatible even though f may have been incentive-compatible in dominant strategies.

Bartling and Netzer (2015) apply Proposition 2 to a second-price auction. The second-price

auction has a dominant strategy equilibrium but is not strongly implementable in our sense. By
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contrast, the modi�ed version of the second-price auction is strongly implementable but does

not have dominant strategies. Dominant strategies ensure that a sel�sh agent's incentives to

tell the truth are robust with respect to the agent's probabilistic beliefs about the types of the

other agents. The insurance property ensures that an agent's incentives to tell the truth are

robust with respect to the intensity of the agent's social preferences. Bartling and Netzer (2015)

show experimentally that both auction formats achieve the same level of e�ciency. This �nding

indicates that the two dimensions of robustness may be of equal importance for the performance

of a mechanism.

4.3 Example Continued

We have shown in Section 4.1 that the SCF f∗, which minimizes the subsidy that is needed to

achieve e�cient trade, cannot be implemented in BNFE of the direct mechanism. We can now

use Proposition 2 to construct an SCF f̄∗ which is similar to f∗ but can be strongly implemented

in BNFE. Applying formula (7) we obtain f̄∗ as given in Table 3. Trade takes place whenever

e�cient, at prices 60, 40, or 20, depending on marginal cost and marginal valuation. The subsidy

now depends on the types and di�ers between the agents. The seller obtains a subsidy of 20

if both types are high or if both types are low, and a tax of 20 is collected from the buyer if

costs are low and valuation is high. The expected net subsidy amounts to 5, exactly as for f∗.

Proposition 2 in fact implies that f̄∗ is an alternative solution to the second-best problem from

Section 3.4, which additionally satis�es the insurance property.

θs θ̄s

θb (1, 20 + 20,−20) (0, 0, 0)

θ̄b (1,+40,−20− 40) (1, 20 + 60,−60)

Table 3: Robust Minimal Subsidy SCF f̄∗

4.4 Discussion

The proof of Theorem 1 exploits only one feature of Rabin (1993)'s model of social preferences:

the agents are sel�sh when they lack the ability to in�uence the other's payo�s. This property

of �sel�shness in the absence of externalities� also holds in many models with outcome-based

social preferences, such as altruism, spitefulness, or inequality aversion.15 Thus, Theorem 1

provides a robust su�cient condition: The combination of Bayesian incentive-compatibility and

the insurance property ensures implementability for a wide class of social preferences models

that have been explored in the literature. This robustness property is particularly attractive for

applications of mechanism design. Confronted with the empirically well-documented individual

15See Bierbrauer et al. (2015) for a formal de�nition of sel�shness in the absence of externalities and for an
investigation of the social preference models by Fehr and Schmidt (1999) and Falk and Fischbacher (2006).
Similar observations, albeit not in mechanism design frameworks, have been made by Levine (1998), Fehr and
Schmidt (1999), Bolton and Ockenfels (2000) or Segal and Sobel (2007). Dufwenberg et al. (2011) demonstrate
the behavioral irrelevance of interdependent preferences in general equilibrium under a separability condition
that is essentially equivalent to sel�shness in the absence of externalities.
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heterogeneity in social preferences (Fehr and Schmidt, 1999; Engelmann and Strobel, 2004;

Falk et al., 2008; Dohmen et al., 2009), a designer will typically be uncertain about the most

appropriate speci�cation of preferences. The insurance property o�ers a way out of this problem.

5 Weakly Implementable Social Choice Functions

5.1 Example

We begin with an example that illustrates several conceptual issues that arise when the designer

has precise information on the weights that kindness has in the agents' utility functions. Similar

issues will reappear in the context of two-dimensional design in Section 6.

Consider again the bilateral trade example, for general parameters, not necessarily those

given in (5). We argued before that the SCF f∗∗, which stipulates e�cient trade and splits the

gains from trade equally, is not BIC and hence not implementable in BNE. We �rst show that it

is also not implementable in BNFE when the designer is restricted to using a direct mechanism.

Observation 2. Consider the direct mechanism for f∗∗ in the bilateral trade example. For every

yb and ys, the truth-telling strategy pro�le sT is not a BNFE.

The logic is as follows: One can show that in a hypothetical truth-telling equilibrium both

the buyer and the seller realize their equitable payo�s. This implies that all kindness terms

are zero and the agents focus solely on their material payo�s. Lack of BIC then implies that

truth-telling is not a BNFE. E�cient trade with an equal sharing of the surplus is thus out of

reach in the direct mechanism, with or without intention-based social preferences.

Now consider a non-direct mechanism Φ′ = [M ′b,M
′
s, g
′] in which the buyer has the extended

message setM ′b = {θ
b
, θb, θ̄b} and the seller has the extended message setM ′s = {θs, θ̄s, ¯̄θs}. The

outcome of the mechanism is, for every pair of messages (mb,ms) ∈ M ′b ×M ′s, a decision on

trade qg
′
(mb,ms) and budget-balanced transfers tg

′
s (mb,ms) = −tg

′

b (mb,ms), i.e., the price to

be paid by the buyer. Table 4 gives the pair (qg
′
, tg
′
s ) for every possible pro�le of messages.

ms

mb

θs θ̄s
¯̄θs

θ
b

(1, (θb + θs)/2− δb) (0, 0) (0, 0)

θb (1, (θb + θs)/2) (0, 0) (0, 0)

θ̄b (1, (θ̄b + θs)/2) (1, (θ̄b + θ̄s)/2) (1, (θ̄b + θ̄s)/2 + δs)

Table 4: Non-Direct Mechanism Φ′

The mechanism works like a direct mechanism for f∗∗ as long as the message pro�le is in

{θb, θ̄b} × {θs, θ̄s}. If the buyer chooses the message θ
b
, the consequence is the same as when

announcing a low valuation θb, except that she gets an additional discount of δb whenever there

is trade. Intuitively, announcing θ
b
amounts to the claim that the valuation is even lower than

θb. If the seller chooses the message ¯̄θs, the consequence is the same as when announcing a high

cost θ̄s, except that the price she receives is increased by δs whenever there is trade. Intuitively,

announcing ¯̄θs amounts to the claim that the cost is even higher than θ̄s.
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Agent i's set of strategies in mechanism Φ′ is S′i = M ′i ×M ′i . A generic element s′i of S
′
i

is a pair in which the �rst entry is the message chosen in case of having a low type, and the

second entry is the message chosen in case of having a high type. For both agents, the strategy

set of the direct mechanism, Si = Θi × Θi, is a subset of the extended strategy set S′i. The

outcome of Φ′ under the truth-telling strategy pro�le sT is still the outcome stipulated by the

SCF f∗∗. The following observation asserts that truth-telling is a BNFE for particular parameter

constellations.

Observation 3. Consider the non-direct mechanism Φ′ for f∗∗ in the bilateral trade example.

Suppose κ̄ is large and yb, ys > 0. Then, there exist numbers δb, δs > 0 so that sT is a BNFE.

To understand the logic of the argument, assume that κ̄ = ∞, so that the kindness bound

can be safely ignored (the statement that κ̄ must be large is made precise in Theorem 2 below).

In the hypothetical truth-telling equilibrium, the buyer then chooses sb in order to maximize

Πb(sb, s
T
s ) + ybκs(s

T )Πs(sb, s
T
s ).

Truth-telling means that the seller did not insist on the very high price, i.e., she did not use an

opportunity to enrich herself at the buyer's expense. Thus, in contrast to the direct mechanism

where the kindness of truth-telling is zero, we now have κs(s
T ) = δs/4. If we set δs = 4/yb then

we obtain κs(s
T ) = 1/yb, and the buyer's problem becomes to maximize the sum of material

payo�s Πb(sb, s
T
s ) + Πs(sb, s

T
s ). Strategy sTb is a solution to this problem, because the outcome

under truth-telling is the e�cient SCF f∗∗ which maximizes the sum of material payo�s for

every θ ∈ Θ. Similarly, truth-telling is also a best response for the seller when δb = 4/ys.

Our construction is akin to a Vickrey-Clarke-Groves mechanism (Vickrey, 1961; Clarke, 1971;

Groves, 1973) in that it aligns private and social interests. The key di�erence is that it is not

based on a suitable choice of payments that the agents have to make in equilibrium, but on a

suitable choice of payments that the agents refuse to make in equilibrium.

Observations 2 and 3 raise various conceptual issues. First, they show that the revelation

principle does not hold. The social choice function f∗∗ is not implementable in BNFE with a

direct mechanism, but it is implementable with a speci�c indirect mechanism. Second, since

f∗∗ ensures non-negative material payo�s for both agents and types, in the equilibrium of the

indirect mechanism the material participation constraints are satis�ed. This raises the question

to what extent it is possible to overcome the impossibility results for e�cient outcomes that

are obtained in models with sel�sh agents and participation constraints. Finally, the indirect

mechanism implements f∗∗ with speci�c levels of kindness. Is it possible to generate even larger

levels of kindness while still implementing f∗∗? Can we even reach the upper bound κ̄, which

would imply that we achieve a maximum of material surplus and at the same time a maximum

of kindness? The analysis that follows addresses these questions.

5.2 An Augmented Revelation Principle

The non-direct mechanism Φ′ that is used to implement f∗∗ in the previous section resembles a

truthful direct mechanism. The set of messages includes the set of types and truth-telling is an

equilibrium. This is not a coincidence. The following lemma shows that if implementation of
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an SCF in BNFE is possible at all, then it is also possible truthfully in the class of augmented

revelation mechanisms. A mechanism is called an augmented revelation mechanism for f when-

ever Θi ⊆ Mi for i = 1, 2 and g(m) = f(m) for all m ∈ Θ, i.e., whenever the message sets

include the type sets and the SCF f is realized in the event that all messages are possible types.

An augmented revelation mechanism Φ truthfully implements f in BNFE if the truth-telling

pro�le sT is a BNFE of Φ. The di�erence between truthful direct and augmented revelation

mechanisms is the existence of unused actions in the latter.

Lemma 1. Suppose a mechanism Φ implements an SCF f in BNFE. Then there exists an

augmented revelation mechanism Φ′ that truthfully implements f in BNFE.

Augmented revelation mechanisms have �rst been introduced by Mookherjee and Reichelstein

(1990), albeit for a di�erent purpose. They characterize SCFs that can be implemented as the

unique equilibrium outcome of some mechanism. Our proof of Lemma 1 in the appendix builds

on their analysis.

5.3 A Possibility Result for E�cient SCFs

The following theorem is a generalization of Observation 3. It provides su�cient conditions for

the weak implementability of materially Pareto-e�cient social choice functions in BNFE. The

following notation will make it possible to state the theorem in a concise way. For a given SCF

f , de�ne

Y f = {(y1, y2) ∈ R2
+ | yi > 0 and 1/yi ≤ κ̄−∆i for both i = 1, 2},

where ∆i is given by (6). The set Y f of reciprocity weights is non-empty if and only if κ̄ > ∆i

for both agents, i.e., the kindness bound κ̄ has to be large enough compared to the measure of

payo� interdependence ∆i. If κ̄ = ∞, then Y f contains all pairs of strictly positive reciprocity

weights.

Theorem 2. If f is materially Pareto-e�cient, it is weakly implementable in BNFE on Y f .

In the proof, we start from a direct mechanism for f and introduce additional messages.

Speci�cally, we work with a mechanism in which agent i's message set is Mi = Θi × {0, 1},
so that a message consists of a type report and a decision whether or not to �press a button�

(see also Netzer and Volk, 2014, for an application of such mechanisms). The outcome of the

mechanism is the one stipulated by f . In addition, if agent i presses the button, this triggers

an additional (possibly negative) payment from agent i to agent j. These payments are used to

manipulate the kindness associated to truth-telling, and we calibrate them to generate a degree

of kindness that e�ectively turns each agent's best-response problem into a problem of surplus-

maximization, as already illustrated by Observation 3. This can require increasing or decreasing

the kindness of truth-telling in the direct mechanism, so that the redistribution triggered by i's

button might have to go in either direction. Ultimately, since the SCF to be implemented is

materially Pareto-e�cient, truth-telling is a solution to the surplus-maximization problem, and

the buttons remain unpressed.
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A di�culty in the proof of Theorem 2 arises from the kindness bound κ̄. The crucial step for

the alignment of individual incentives with the objective of surplus-maxmization is that we can

generate kindness equal to κj(s
T ) = 1/yi. The requirement 1/yi ≤ κ̄ is a necessary condition for

this to be possible. The condition 1/yi ≤ κ̄−∆i in the de�nition of Y f is even more stringent.

The larger is ∆i, the larger need to be the kindness bound κ̄ and/or the reciprocity weight

yi in order to guarantee implementability of f . Intuitively, while no deviation of agent j can

increase the sum of payo�s over and above truth-telling, some strategy of j might increase j's

own payo� and decrease i's payo� into the region where κj = −κ̄ holds. Agent j no longer

internalizes all payo� consequences of such a deviation. If ∆i is su�ciently small relative to κ̄,

this possibility can be excluded. If κ̄ =∞, i.e., if there is no a priori bound on the intensity of

kindness sensations, then every materially Pareto-e�cient SCF can be implemented as soon as

y1 and y2 are strictly positive, i.e., as soon as both agents show some concern for reciprocity.

Theorem 2 also enables us to address the question whether participation constraints are an

impediment for the implementation of materially e�cient SCFs in BNFE. With intention-based

social preferences, participation constraints could be formulated in two di�erent ways. First,

we may impose non-negativity constraints on ex interim material payo�s, i.e., we may require

that PC holds. This approach allows for a clean comparison with the impossibility results in

the existing literature. Second, we may model participation as a decision that must be optimal

based on the entire utility function, including psychological payo�s. This can be captured by

equipping the agents with veto rights, i.e., with the opportunity to opt out of the mechanism ex

interim, and by studying the conditions under which they would make use of this option. We

will show in the following that voluntary participation can be assured for either criterion.

Classical papers such as Myerson and Satterthwaite (1983) and Mailath and Postlewaite

(1990) have noted that, when we consider an SCF that is materially Pareto-e�cient and BIC,

then PC must be violated for some types of some agents. By Theorem 2, however, BIC is

no longer a constraint. For instance, with su�ciently strong concerns for reciprocity, we can

implement e�cient SCFs that give both agents an equal share of the material surplus. More

generally, with the solution concept of weak implementability in BNFE, we are able to achieve

SCFs that violate BIC but are surplus-maximizing and satisfy PC.

Now consider the possibility to capture voluntary participation by means of veto rights.

Consider a direct mechanism with veto rights, where Mv
i = Θi ∪ {v} is the message set. The

mechanism stipulates some status quo allocation av ∈ A if any one agent sends the veto v.

We can now add buttons to Mv
i in exactly the same way as in the proof of Theorem 2 and

align individual interests with the objective of surplus-maximization. Since the social choice

function under consideration is a surplus-maximizing one, the veto rights and the buttons remain

unused in equilibrium. Hence, all types of both agents voluntarily decide to participate in the

mechanism. The only modi�cation required to extend the proof of Theorem 2 is that the measure

of payo� interdependence ∆i needs to be replaced by the (weakly larger) measure ∆v
i that also

takes account of the payo� interdependence due to the veto rights:

∆v
i = max

mj∈Mv
j

E[vi(q
g
i (θ̃i,mj), θ̃i) + tgi (θ̃i,mj)]− min

mj∈Mv
j

E[vi(q
g
i (θ̃i,mj), θ̃i) + tgi (θ̃i,mj)].
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5.4 Implementation with Maximal Kindness

When Rabin (1993) introduced his model of intention-based social preferences, he argued that

�welfare economics should be concerned not only with the e�cient allocation of material goods,

but also with designing institutions such that people are happy about the way they interact

with others� (p. 1283). In the following, we provide a formalization of this idea. We �x an

SCF f that is implementable in BNFE and look for a mechanism that implements f with

maximal psychological utility. The following proposition asserts that any SCF which satis�es

the prerequisites of either Theorem 1 or 2 can in fact be implemented so that both agents'

kindness reaches the upper bound κ̄.

Proposition 3. Suppose κ̄ <∞ and yi > 0 for both i = 1, 2. Let f be an SCF for which one of

the following two conditions holds:

(a) f is BIC and has the insurance property, or

(b) f is materially Pareto-e�cient and y ∈ Y f .

Then, there exists a mechanism that implements f in a BNFE s with κ1(s) = κ2(s) = κ̄.

The proof of Proposition 3 again uses mechanisms with a button for each agent. The pay-

ments that are triggered if a button is pressed now have to be calibrated such that the resulting

kindness equals the upper bound κ̄. Showing that no agent wants to deviate from truth-telling

is then more intricate than in the proof of Theorem 2. In particular, we need to allow for the

possibility that the payment made by j is larger than the payment received by i, i.e., we have

to allow for free disposal o� the equilibrium. To see this, consider case (a) of Proposition 3 and

suppose that yiκ̄ < 1. Then, even with maximal kindness, agent i still places a larger weight on

the own than on j's payo�, and therefore would press a button that triggers a budget-balanced

transfer from j to i. Agent i will refrain from pressing the button only if the payment he receives

is su�ciently smaller than the loss in�icted on j. Similar issues arise in case (b), where the loss

that i can impose on j by pressing the button may have to be very large. A double-deviation,

where agent i presses the button and announces the type non-truthfully, may then reduce j's

payo� into the region where the lower kindness bound binds. Again, i will refrain from doing so

only if the own gain is smaller than the loss to j.

Proposition 3 implies that the objectives of generating kindness and material e�ciency are

not in con�ict with each other. It allows us to �rst �x an SCF f that is materially Pareto-e�cient

and for which (a) or (b) in Proposition 3 holds. We can then implement f in a BNFE s∗ of a

mechanism Φ such that κ1(s∗) = κ2(s∗) = κ̄ holds. Such a mechanism-equilibrium pair is in fact

utility Pareto-e�cient, in the sense that there cannot be any other mechanism-equilibrium pair

(Φ′, s′) that yields a strictly larger utility for one agent without giving a strictly smaller utility

to the other agent.16

16With procedural preferences as in our analysis, utility e�ciency is a property of mechanism-equilibrium pairs
rather than social choice functions, because the e�ciency of an SCF is not independent from the mechanism that
implements it. The observation that the e�ciency of an outcome is not separable from the game form has also
been made by Ru�e (1999) in the context of psychological gift-giving games.
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5.5 Discussion

The arguments that we used in order to prove Theorem 2 and Proposition 3 exploit the menu-

dependence of the agents' preferences. Whether agent i interprets the behavior of agent j as kind

or as unkind depends not only on what j does in equilibrium, but also on what she could have

done instead. A mechanism designer can take advantage of this by a speci�cation of message sets

that lets the desired behavior appear well-intentioned. While the details of our constructions

are calibrated to the speci�c features of the model of intention-based social preferences by Rabin

(1993), alternative formulations of menu-dependent preferences would not upset the basic logic

of this argument.

Our proofs rely on mechanisms with a button, which are of course an arti�cial construction.

A �rst issue with such mechanisms is that kindness is generated by actions which are used with

probability zero in equilibrium. On the one hand, one may wonder whether kindness can really

be generated by a mere possibility of behavior that is literally never observed. On the other

hand, these mechanisms may appear vulnerable to the existence of sel�sh agents who would

prefer to enrich themselves by pressing the buttons. We deal with this issue in the following

Section 6. There we allow for the possibility that agents are sel�sh and, moreover, we assume

that they privately observe whether they are sel�sh or not. We will show by means of an example

that if these sel�sh types occur not too often � so that unused actions become rarely used actions

� augmented mechanisms can still achieve approximately e�cient outcomes.

A second issue is the plausibility of button mechanisms for real-world applications. First

and foremost, they should be interpreted as a tool for the characterization of incentive-feasible

outcomes, in the same way in which direct or augmented mechanisms are typically interpreted

in the literature: They provide an upper bound for the outcomes that are achievable. That

said, their basic logic has a broader appeal. These mechanisms give agents additional degrees

of freedom and thereby generate additional opportunities to express kindness. This logic can be

related to mechanisms which are empirically plausible. For instance, Herold (2010) considers an

incomplete contracting relationship where one party refrains from including provisions against

misbehavior of the other party into the contract, for fear of signalling a lack of trust. Once such

an incomplete contract is given and a situation arises in which the contract makes no provisions,

not exploiting the incompleteness by taking an opportunistic action is akin to not pressing the

button in our augmented mechanism. As another example, consider the augmented mechanism

for our bilateral trade application in Table 4. Here, the designer allows for announcements of

types that could be proven to be impossible. By not using all available information to convict

an agent of lying, the mechanism gives every party the chance to show that she makes an e�ort

in order to meet the needs of the other party, and this makes it possible to reach a mutually

bene�cial outcome. As yet another example, consider a committee that has to decide whether

or not to replace a status quo by some alternative a. Suppose that two di�erent mechanisms

may be used, simple majority voting or majority voting with veto rights. Under simple majority

voting, the outcome is a if and only if a majority votes for a. By contrast, under majority voting

with veto rights, every committee member has the right to insist on the status quo, so that the

outcome is a if and only if a majority votes for a and if no committee member exercises his

veto power. At �rst glance, one might think that the mechanism with veto rights makes it more
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di�cult to move away from the status quo, which is a problem if a is the e�cient outcome.17

However, majority voting with veto rights gives each committee member the possibility to say:

�I don't like a, but I refrain from imposing my preferences on the whole group. So, if a majority

is in favor of a, I am willing to accept this outcome.� If every member acts in this way, then the

outcome will be the same as under simple majority voting, and, in addition, the unused veto

rights will generate a level of kindness that could not be reached if simple majority voting was

applied.18

6 Two-Dimensional Private Information

6.1 The Model

We now consider an information structure where the agents do not only have private information

about their material payo�s, but also about the weight yi that kindness sensations have in their

utility function. This creates a problem of multi-dimensional mechanism design, because we

neither assume that preferences are partially known (as in our treatment of weakly implementable

social choice functions) nor forgo the possibility to elicit the intensity of social preferences (as in

our analysis of strongly implementable social choice functions). As will become clear, however,

our previous treatment of weak and strong implementability proves very helpful for the more

demanding problem with private information on both yi and θi.

We assume that each agent i's reciprocity type yi is the privately observed realization of a

random variable ỹi that takes values in a �nite set Yi ⊆ R+. We also write ỹ = (ỹ1, ỹ2) and

denote its realizations by y = (y1, y2) ∈ Y = Y1 × Y2. We assume that each ỹi is distributed

independently from the material payo� variable θ̃i and independently across agents, following a

probability distribution ρi. We let y
i

= minYi and ȳi = maxYi denote agent i's smallest and

largest possible reciprocity type, and we also write y = (y
1
, y

2
) and ȳ = (ȳ1, ȳ2). If y

i
= 0 then

agent i might be sel�sh.

Consider a mechanism Φ = [M1,M2, g]. A strategy for agent i in this mechanism is a

function from types Yi × Θi to messages Mi. For ease of comparison to our earlier analysis,

we �nd it useful to represent such a strategy by a collection of functions si = (si,yi)yi∈Yi , with

si,yi : Θi → Mi for each yi ∈ Yi. Thus, we think of each reciprocity type as having a separate

strategy that maps payo� types into messages. We continue to denote by Si the set of these

functions from Θi to Mi. As before, upper indices b and bb indicate �rst- and second-order

beliefs. For instance, sbi = (sbi,yj )yj∈Yj is agent i's belief about j's strategy sj , where s
b
i,yj
∈ Sj

denotes i's belief about the behavior of reciprocity type yj . To interpret our results, we will often

�nd it helpful to assume that agent i �rst observes her reciprocity type yi and then chooses a

strategy in Si. We can then compute expected payo�s and expected utility conditional on yi.

These conditional expectations resemble the expressions in the preceding sections.

Conditional on yi, agent i's strategy si,yi yields expected material payo�s for agent k = 1, 2

17This is an important theme of the literature on mechanism design that employs the solution concept of BNE
as opposed to BNFE. According to the view of this literature, insisting on voluntary participation is, if anything,
bad, because it may render the achievement of e�cient allocations impossible.

18A detailed formal analysis of this example can be found in an earlier version of this paper that is available
upon request.
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given by

Π̄k(si,yi , s
b
i) = E[Πk(si,yi , s

b
i,ỹj )] = E[vk(q

g
k(si,yi(θ̃i), s

b
i,ỹj (θ̃j)), θ̃k) + tgk(si,yi(θ̃i), s

b
i,ỹj (θ̃j))],

where Πk is the expected material payo� as de�ned before, and the expression Π̄k re�ects that

agent i now also averages over the reciprocity types of j. Observe that reciprocity a�ects material

payo�s only to the extent that di�erent reciprocity types behave di�erently. This implies that

the Pareto-e�cient subset Ei(s
b
i) ⊆ Si and the equitable payo� Πe

j(s
b
i), now de�ned based on

the payo�s Π̄k, are independent of yi. The kindness of reciprocity type yi of agent i is given by

κi(si,yi , s
b
i) = h(Π̄j(si,yi , s

b
i)−Πe

j(s
b
i)).

When forming a belief about the kindness intended by j, agent i again averages over the di�erent

realizations of ỹj . Formally, i's belief about j's kindness is

κ̄j(s
b
i , s

bb
i ) = E[κj(s

b
i,ỹj , s

bb
i )].

The expected utility of agent i with reciprocity type yi is then given by

Ui,yi(si,yi , s
b
i , s

bb
i ) = Π̄i(si,yi , s

b
i) + yi κi(si,yi , s

b
i) κ̄j(s

b
i , s

bb
i ).

De�nition 4. A BNFE is a strategy pro�le s∗ = (s∗1, s
∗
2) such that, for both i = 1, 2,

(a) s∗i,yi ∈ arg maxsi,yi∈Si Ui,yi(si,yi , s
b
i , s

bb
i ), for all yi ∈ Yi,

(b) sbi = s∗j , and

(c) sbbi = s∗i .

An SCF f : Y ×Θ→ A assigns an allocation to each type pro�le (y, θ). We will be interested

in SCFs that are implementable in BNFE, i.e., for which there exists a mechanism with a BNFE

s∗ such that g(s∗1,y1(θ1), s∗2,y2(θ2)) = f(y, θ) for all (y, θ) ∈ Y ×Θ. We distinguish SCFs according

to whether or not they actually condition on the pro�le of reciprocity types y. We say that f

is y-independent if f(y, θ) = f(y′, θ) for all y, y′ ∈ Y and θ ∈ Θ. Since the reciprocity types

y are not materially payo�-relevant, Pareto-e�ciency can be achieved within the class of y-

independent SCFs. We investigate y-independent SCFs in Sections 6.2 and 6.3, and we discuss

y-dependent SCFs in Section 6.4.

6.2 The Insurance Property Revisited

We �rst adapt the de�nitions of BIC and the insurance property to the setting with two-

dimensional private information. Let f be a y-independent SCF. We can then de�ne an SCF

f̂ : Θ→ A as before, by f̂(θ) = f(y, θ) for an arbitrary y ∈ Y . In the following we will say that

f is BIC if f̂ is BIC. We also de�ne the payo� interdependence ∆i, the insurance property, and

material Pareto-e�ciency of a y-independent SCF f based on the respective properties of f̂ .

Theorem 1 has established that BIC and the insurance property are jointly su�cient for

strong implementability. We have argued before that a virtue of the insurance property is its
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applicability to situations with multi-dimensional private information. It is straightforward to

verify this claim in the present setting, i.e., a y-independent SCF f that is BIC and has the

insurance property is implementable in BNFE with private information about y.19

The following proposition establishes that BIC is also necessary for implementability, pro-

vided that there is a positive probability that the agents are sel�sh. Thus, a mere possibility

of reciprocal behavior does not enlarge the set of implementable SCFs relative to a model in

which all agents are sel�sh with probability one. In the context of the bilateral trade example,

for instance, the proposition implies that the SCF f∗∗ which splits the gains from trade equally

cannot be implemented in the given setting.

Proposition 4. If y = (0, 0), a y-independent SCF is implementable in BNFE only if it is BIC.

The next result reveals that the insurance property is also necessary for implementability,

provided that both sel�sh types and types with a su�ciently strong weight on kindness sensations

are possible.

Proposition 5. Suppose y = (0, 0), and let f be a y-independent SCF with ∆i > 0 for both

i = 1, 2. Then there exist numbers k, x1, x2 so that f is not implementable in BNFE when κ̄ ≥ k
and ȳi ≥ xi for at least one i = 1, 2.

The proof of the proposition involves various observations. First, if f is implementable at

all, then it is also implementable as the truth-telling equilibrium of the direct mechanism, i.e.,

unused actions do not help in the presence of sel�sh types. In fact, if implementation is possible,

then it is also possible in the �very direct� mechanism, where the agents communicate only

their material payo� type. Second, implementation in the very direct mechanism requires that,

for a given material payo� type θi, all reciprocity types of agent i behave in the same way.

Moreover, since the sel�sh type is among them, all reciprocity types choose to behave in a sel�sh

way. Equilibrium kindness is therefore negative. Third, with negative kindness, agents with

su�ciently large values of yi are willing to deviate from truth-telling to make the other agent

worse o�. Since the insurance property is violated, such a deviation is indeed available. As a

consequence, f can only be implemented if it has the insurance property.20

The observation that equilibrium kindness cannot be positive if sel�sh types are around

implies that the insurance property is also desirable from a welfare perspective. Given that

zero is an upper bound on equilibrium kindness, if the insurance property holds then this upper

bound is actually reached.

19Consider the �very direct� mechanism Φ = [Θ1,Θ2, f̂ ] for f , where the agents are asked about their material
payo� type only. It is easy to see that there is a BNFE s∗ with s∗i,yi(θi) = θi for i = 1, 2 and all (yi, θi) ∈ Yi×Θi.
This follows because all kindness terms take a value of 0, so the agents are left with the problem to maximize
their own expected payo�. BIC ensures that this problem is solved by revealing the payo� type truthfully.

20To be precise, Proposition 5 shows that implementation of f is impossible if ∆i > 0 holds for both agents.
Hence a necessary condition for implementability is that ∆i = 0 for at least one agent, while the insurance
property is slightly stronger and requires ∆i = 0 for both i = 1, 2. This obviously makes no di�erence with a
symmetric social choice function. Moreover, the su�cient condition in Theorem 1 could also be weakened so that
it requires ∆i = 0 only for at least one agent. Since the two agents' kindness terms enter the utility functions
multiplicatively, if kindness is zero for one agent, kindness disappears from both agents' utility functions and
both agents' equilibrium behavior is sel�sh. We use the slightly stronger notion of the insurance property mainly
because it implies robustness beyond the intention-based model, as discussed in Section 4.4.
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6.3 Theorem 2 Revisited

After dealing with the case in which sel�sh types are possible (y
i

= 0), we now address the

complementary case in which the agents are known to put strictly positive weight on reciprocal

kindness (y
i
> 0). In this case, Theorem 2 can be extended to the environment with two-

dimensional private information.

Proposition 6. Suppose κ̄ < ∞, and let f be a y-independent and materially Pareto-e�cient

SCF. If y ∈ Y f , then f is implementable in BNFE.

Theorem 2 was based on the construction of an augmented mechanism so that, in equilibrium,

yi κj(s
T ) = 1 for all i, i.e., the agents assign equal weights to their own and the other agent's

material payo�. This approach is no longer feasible if yi is not a known parameter. Therefore, to

prove Proposition 6, we use a similar approach as for the proof of Proposition 3. Speci�cally, we

construct an augmented mechanism in which every reciprocity type yi of every agent i exhibits

the maximum level of kindness κ̄. Then, since y ∈ Y f , we know that every reciprocity type

of every agent assigns at least a weight of yiκ̄ ≥ y
i
κ̄ ≥ 1 to the other agent's material payo�.

As in the proof of Proposition 3, all deviations from truth-telling can then be shown to become

unattractive.21 The construction not only ensures the implementability of the given SCF, but

also that it is implemented with maximal kindness. Again, this demonstrates that the objectives

of material e�ciency and of kindness among the participants of a mechanism are not in con�ict

with each.

6.4 Unused Actions Revisited

We �nally investigate the case of y-dependent social choice functions. Why would a mechanism

designer be interested in implementing a y-dependent SCF? In terms of material e�ciency, there

is nothing to gain by conditioning on y. We will show in the following, however, that a designer

may favor the implementation of a, possibly ine�cient, y-dependent SCF because this gives her

additional degrees of freedom for incentive provision. In particular, the example below shows

how an SCF that satis�es the conditions of Theorem 2 can be approximated by a y-dependent

SCF in the environment with private information on reciprocity types and the possibility of

sel�sh behavior.

Speci�cally, consider once more the bilateral trade problem and assume that Yi = {0, ȳ}
with ȳ > 0 and ρi(0) = ε > 0 for both i = b, s. We start from the y-independent SCF f∗∗ that

is materially e�cient and splits the gains from trade equally. As we have observed previously,

f∗∗ is not implementable due to the possibility of sel�sh types. On the other hand, according

to Theorem 2 we could implement f∗∗ in an augmented mechanism with unused actions if

it was common knowledge that yb = ys = ȳ. Now consider instead the budget-balanced y-

dependent SCF f∗∗∗ for which (qf
∗∗∗
, tf
∗∗∗
s ) is given in Table 5. Whenever both agents have

the positive reciprocity type, then f∗∗∗ coincides with f∗∗. When at least one agent is sel�sh,

21As for Proposition 3, o�-equilibrium buget-balance cannot generally be guaranteed with this construction.
The di�culty is due to the kindness bound: �pressing the button� of the augmented mechanism might decrease
j's payo� into a region where the lower bound becomes binding, so that i no longer internalizes all consequences
of this behavior. This problem can be avoided when i's own bene�t from pressing the button is su�ciently small
(yet positive).
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then f∗∗∗ prescribes the allocations that were associated to the unused actions in the augmented

mechanism Φ′ in Table 4. Hence the direct mechanism (with Mi = Yi×Θi) for the y-dependent

SCF f∗∗∗ is an analog to the previous non-direct mechanism Φ′, when sel�sh agents are expected

to make use of the previously unused actions.

(ys, θs)

(yb, θb)
(ȳ, θs) (ȳ, θ̄s) (0, θs) (0, θ̄s)

(0, θb) (1, (θb + θs)/2− δb) (0, 0) (0, 0) (0, 0)

(0, θ̄b) (1, (θb + θs)/2− δb) (0, 0) (0, 0) (0, 0)

(ȳ, θb) (1, (θb + θs)/2) (0, 0) (0, 0) (0, 0)

(ȳ, θ̄b) (1, (θ̄b + θs)/2) (1, (θ̄b + θ̄s)/2) (1, (θ̄b + θ̄s)/2 + δs) (1, (θ̄b + θ̄s)/2 + δs)

Table 5: y-dependent SCF f∗∗∗

Observation 4. Consider the direct mechanism for f∗∗∗ in the bilateral trade example. Suppose

κ̄ is large. Then, for ε small enough, there exist numbers δb, δs > 0 so that sT is a BNFE.

If the probability ε that agents are sel�sh is small, then the actions which remained unused

under the assumptions of Theorem 2 now become actions that are �rarely used.� On the upside,

kindness among reciprocal agents is generated by the fact that they refrain from claiming the

allocations that the egoists obtain. The allocation of the truthful direct mechanism for f∗∗∗

converges to the y-independent e�cient allocation f∗∗ as ε → 0 (it is also shown in the proof

that the rarely triggered redistributive payments δb and δs converge to the values derived in the

proof of Observation 3). We can thus approximate our weak implementability result as the limit

case of an environment with privately observed reciprocity types by letting the probability that

agents are sel�sh go to zero.

6.5 Discussion

A �rst main insight from the model with two-dimensional private information concerns the

scope of achievable outcomes. If the designer thinks that both sel�sh agents and strongly

reciprocal agents possible, then the combination of BIC and the insurance property is necessary

and su�cient for implementability. This accentuates the importance of strongly implementable

SCFs as introduced in Section 4. By contrast, if the designer can be sure that the agents are not

sel�sh, then our analysis of weakly implementable SCFs from Section 5 has a natural extension

to the case with two-dimensional private information. Hence what we have shown is that the

distinction between the strong and the weak notion of implementability can be traced back

to the question whether or not there is a possibility that the participants of a mechanism act

sel�shly.

A second main insight concerns the interpretation of unused actions. We have shown in our

bilateral trade application that unused actions can be thought of as the limit of rarely used

actions. As long as the �buttons� of the augmented mechanism are not pressed too often, or,
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equivalently, as long as sel�sh behavior is observed only rarely, our possibility result for weak

implementation can still be achieved approximately.

7 Extension: The Designer as a Player

So far we have assumed that the agents treat the mechanism as exogenous. However, they may

think of the mechanism designer as a player, and their behavior may be a�ected by the intentions

that they attribute to the designer's choice of the mechanism. For instance, they may have a

desire to sabotage the mechanism if they believe that it was chosen with the intention to extract

an excessive share of their rents. As an extension, we brie�y explore this idea in a simpli�ed

framework. We show that the perception of the designer as a player may drastically reduce the

set of implementable outcomes, even though the designer has a direct concern for the agents'

well-being.

For any SCF f , denote by Πi(f) = E[vi(q
f
i (θ̃), θ̃i) + tfi (θ̃)] the expected material payo� of

agent i, and let R(f) = E[−(tf1(θ̃) + tf2(θ̃))] denote the expected budget surplus. We will assume

that the mechanism designer maximizes

W (f) = H(Π1(f),Π2(f), R(f)),

where the welfare function H is strictly increasing in all three arguments. Hence the designer

cares about the agents' material payo�s and about the revenue she can extract from the agents.

For instance, we could think of two �rms (the agents) that have been merged and are now

governed by a common headquarter (the designer).22 The task to be implemented could be a

transfer of goods or services from one pro�t center of the integrated �rm to another, just like in

our bilateral trade example.

To keep the analysis tractable, we impose a constraint on the designer's strategy set, i.e., on

the set of available mechanisms. We assume that the mechanism has to be an AGV mechanism

as described in Section 4.2, with an additional (possibly negative) upfront transfer t̄i from the

designer to agent i. The insurance property and BIC are una�ected by t̄ = (t̄1, t̄2), so that

we can safely ignore intention-based social preferences between the two agents: By Theorem 1,

any such mechanism is strongly implementable in BNFE when the agents treat it as exogenous.

Hence the endogeneity of the mechanism is the only conceivable impediment for implementation.

Formally, the designer's problem reduces to the choice of t̄. We write Πi(t̄) = ΠAGV
i + t̄i, where

ΠAGV
i = E[vj(q

∗
j (θ̃), θ̃j)] is agent i's expected payo� in the AGV mechanism with surplus-

maximizing consumption levels (q∗1, q
∗
2) and no upfront payment. We require t̄i ≥ −ΠAGV

i to

guarantee that no agent's payo� becomes negative. We write R(t̄) = −(t̄1 + t̄2) for the expected

revenue and we require R(t̄) ≥ R̄, where R̄ is exogenously given and could be positive or negative.

We assume R̄ ≤ ΠAGV
1 + ΠAGV

2 to guarantee that there exist upfront transfers which satisfy all

constraints.

We now introduce an equitable reference payo� for each agent i. If, for a proposed mechanism-

equilibrium-pair, agent i's expected payo� fell short of this reference, this would indicate that

the mechanism designer has treated i in an unfair way. In the spirit of our earlier assumptions,

22We are grateful to a referee for suggesting this application.
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let agent i's equitable payo� be de�ned as the average between her best and her worst payo� on

the material payo� frontier. The best outcome for i is achieved if the designer extracts all rents

from j and pays (or obtains) the di�erence to the revenue requirement R̄ to (from) i, so that

t̄j = −ΠAGV
j and t̄i = ΠAGV

j − R̄. The worst outcome for i arises when the designer extracts all

rents from i, so that t̄i = −ΠAGV
i . This yields the equitable payo�

Πe
i =

1

2
(ΠAGV

i + ΠAGV
j − R̄).

In words, the agents consider as equitable an equal split of the expected surplus that remains

after satisfying the resource requirement R̄. Assuming κ̄ = ∞ for simplicity, the kindness of a

designer who proposes t̄ to agent i then is

κdi(t̄) = Πi(t̄)−Πe
1 =

1

2
(ΠAGV

i −ΠAGV
j + R̄) + t̄i.

Agent i's best-response problem, given truth-telling of agent j, becomes to maximize

Πi(si, s
T
j ) + yi κdi(t̄)H(Πi(si, s

T
j ),Πj(si, s

T
j ), R(t̄)),

where we omitted some additive constants that do not a�ect the solution to this optimization

problem.

Suppose that the o�ered mechanism yields less than half of the surplus for agent i, i.e.,

t̄i < −(ΠAGV
i − ΠAGV

j + R̄)/2. In the �rm organization example, this would arise if the head-

quarter favors unit j and/or tries to extract more than R̄. We obtain κdi(t̄) < 0, because

agent i is disappointed by a designer who does not come up with a mechanism that generates

an appropriate payo� for herself. Hence, she would like to sabotage the designer. Since the

proposed mechanism has the insurance property, Πj(si, s
T
j ) is independent of si and agent i can

in�uence the designer's objective only through the own payo� Πi(si, s
T
j ).23 Since truth-telling

maximizes Πi(si, s
T
j ) by BIC, for a su�ciently large value of yi agent i will bene�t from a de-

viation that reduces Πi(si, s
T
j ). In the �rm organization example, this may capture a situation

in which performance su�ers due to aggravation in one of the merged �rms. In the opposite

case, when t̄i > −(ΠAGV
i −ΠAGV

j + R̄)/2, the constraints on feasible transfers immediately yield

t̄j < −(ΠAGV
j −ΠAGV

i + R̄)/2, and the same logic implies that agent j will deviate from truth-

telling when yj is large enough. The only AGV mechanism that remains strongly implementable

in BNFE is the one with t̄i = −(ΠAGV
i −ΠAGV

j + R̄)/2 for both i = 1, 2. In this case we obtain

κdi(t̄) = 0 for both i = 1, 2, such that truth-telling is an equilibrium for all y ∈ R2
+.

This simple example demonstrates that reciprocity towards the designer can have a substan-

tial impact on the set of implementable outcomes. While the AGV mechanism with any upfront

transfers (that respect non-negativity constraints) is strongly implementable in BNFE if the

agents treat the mechanism as exogenous, only an equal sharing of the revenue requirement R̄

can be strongly implemented when the mechanism is treated as endogenous, and thus conveys

the designer's intentions. In particular, the designer is unable to extract any surplus beyond R̄

from the agents.

23We rule out the degenerate case where agent i's strategy has no impact on the payo�s at all.
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8 Conclusion

Economists have become increasingly aware of the fact that preferences are often context-

dependent. A mechanism designer who creates the rules of a game is thus confronted with

the possibility that the game has an impact on behavior beyond the usually considered incentive

e�ects, by in�uencing preferences through context. The theory of intention-based social prefer-

ences is one of the few well-established models that admit context-dependence, which makes it

an ideal starting point for the investigation of the problem.

To ensure a broad applicability of our results, our analysis has employed a workhorse model

in mechanism design theory, the independent private values model. This model has been used

to study a wide range of problems, such as the allocation of indivisible private goods (Myerson,

1981), trade between privately informed parties (Myerson and Satterthwaite, 1983), the disso-

lution of partnerships (Cramton et al., 1987), the regulation of externalities (Rob, 1989), the

provision of pure public goods (Mailath and Postlewaite, 1990), or the provision of excludable

public goods (Hellwig, 2003). The virtue of working with a generic version of the independent

private values model is that our theorems and propositions cover all these applications.

Our analysis provides a strong foundation for the consideration of social choice functions that

are incentive-compatible and have the insurance property. According to Theorem 1, these con-

ditions are su�cient for implementability in the absence of any knowledge about the intensity of

intention-based social preferences. Moreover, as we argued in Section 4, this �nding is not tied to

the model of intention-based preferences but extends to a large class of interdependent preference

models. According to Propositions 4 and 5, the requirements of incentive-compatibility and in-

surance are also necessary for the implementability of a social choice function, whenever there is

two-dimensional private information and both sel�sh and strongly reciprocal agents are possible.

Thus, for applications of mechanism design with a concern that not only monetary incentives

but also social preferences are a driving force of behavior, our theoretical analysis gives rise to

a �rm recommendation: Use an incentive-compatible mechanism with the insurance property.

This will make sure that the intended outcome is reached and, moreover, under the assumptions

of Propositions 4 and 5 there is also no hope of increasing the set of implementable outcomes

by a weakening of either requirement.

Whether interdependent preferences are relevant in a given application of mechanism de-

sign is ultimately an empirical question that we do not investigate in this paper. However, our

emphasis of mechanisms that are robust with respect to interdependent preferences is backed

by a recent experimental literature which documents that violations of the insurance property

indeed trigger deviations from the intended behavior. Fehr et al. (2015) show that mechanisms

for subgame-perfect implementation, which rely crucially on endowing the agents with mutual

retaliation opportunities, do not reach the desired outcome. The violation of the insurance

property puts at risk the promise of these mechanisms to solve all problems that arise from non-

veri�ability of information. Bartling and Netzer (2015) compare a conventional second-price

auction, which does not have the insurance property, to its counterpart with the insurance prop-

erty. The latter is obtained by applying our Proposition 2. The second-price auction gives rise

to signi�cant overbidding, while overbidding disappears in the strongly implementable mecha-

nism with the insurance property. They attribute this �nding to the robustness of the latter
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mechanism to spiteful preferences. Bierbrauer et al. (2015) study a bilateral trade problem and

a problem of redistributive income taxation. They compare ex post incentive-compatible social

choice functions (Bergemann and Morris, 2005) with and without the insurance property. Again,

they �nd signi�cant deviations from truthful behavior only in situations where the insurance

property is violated.

Our analysis also alerts the applied mechanism designer to the fact that di�erent outcome-

equivalent mechanisms can and should be compared according to the attitudes that they induce

among the agents. Unused or rarely used actions are one tool for engineering good attitudes.

As we argued in Section 5, these actions may take the form of loopholes in incomplete contracts

or of veto rights in real-world mechanisms.

Finally, our analysis raises a couple of questions for future research. First, the focus on normal

form mechanisms is typically justi�ed by the argument that any equilibrium in an extensive

form mechanism remains an equilibrium in the corresponding normal form, so that moving from

normal to extensive form mechanisms can only reduce the set of implementable social choice

functions. It is unclear whether this is also true with intention-based social preferences. It is

also unclear which social choice functions can be implemented as a unique fairness equilibrium

outcome of some extensive form mechanism. A major obstacle to answering these questions is

the lack of a general theory of intentions for extensive form games with incomplete information.
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A Proofs of General Results

A.1 Proof of Theorem 1

Step 1. Consider the direct mechanism for a given SCF f . As a �rst step, we show that ∆i = 0

if and only if Πi(s
T
i , s
′
j) = Πi(s

T
i , s
′′
j ) for any two strategies s′j , s

′′
j ∈ Sj of agent j.

Suppose Πi(s
T
i , s
′
j) = Πi(s

T
i , s
′′
j ) for any s

′
j , s
′′
j ∈ Sj . We show that this implies ∆i = 0. For

arbitrary types θ′j , θ
′′
j ∈ Θj , let s̄

′
j be the strategy to always announce θ′j and s̄′′j the strategy

to always announce θ′′j , whatever agent j's true type. Then Πi(s
T
i , s̄
′
j) = Πi(s

T
i , s̄
′′
j ) holds.

Equivalently,

E[vi(q
f
i (θ̃i, θ

′
j), θ̃i) + tfi (θ̃i, θ

′
j)] = E[vi(q

f
i (θ̃i, θ

′′
j ), θ̃i) + tfi (θ̃i, θ

′′
j )] .

Since our choice of θ′j , θ
′′
j ∈ Θj was arbitrary, this implies that ∆i = 0.

Now suppose that ∆i = 0. For all strategies sj ∈ Sj and all types θj ∈ Θj , de�ne

Λ(θj |sj) = {θ′j ∈ Θj | sj(θ′j) = θj}.

For any sj ∈ Sj , observe that

Πi(s
T
i , sj) = E[vi(q

f
i (θ̃i, sj(θ̃j)), θ̃i) + tfi (θ̃i, sj(θ̃j))]

= Ej [Ei[vi(qfi (θ̃i, sj(θ̃j)), θ̃i) + tfi (θ̃i, sj(θ̃j))]]

= Êj [Ei[vi(qfi (θ̃i, θ̃j), θ̃i) + tfi (θ̃i, θ̃j)]],

where Ei and Ej denote the expectations operator with respect to only θ̃i and θ̃j , respectively, and
Êj is the expectations operator with respect to θ̃j based on the modi�ed probability distribution

p̂j given by

p̂j(θj) =
∑

θ′j∈Λ(θj |sj)

pj(θ
′
j)

for all θj ∈ Θj . From ∆i = 0 it follows that there exists a number ρ so that Ei[vi(qfi (θ̃i, θj), θ̃i)+

tfi (θ̃i, θj)] = ρ for all θj ∈ Θj , and hence Πi(s
T
i , sj) = Êj [ρ] = ρ. Since our choice of sj was

arbitrary, this implies Πi(s
T
i , s
′
j) = ρ = Πi(s

T
i , s
′′
j ) for any two s′j , s

′′
j ∈ Sj .

Step 2. Now assume that f is BIC and satis�es ∆1 = ∆2 = 0. Consider the truthful strategy

pro�le sT = (sT1 , s
T
2 ) in the direct mechanism, and suppose all �rst- and second-order beliefs are
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correct. For both i = 1, 2 we then obtain Πe
i (s

b
j) = Πe

i (s
T
i ) = Πi(s

T ) according to step 1, which

implies that κj(s
b
i , s

bb
i ) = κj(s

T ) = 0. Hence agent i's problem maxsi∈Si Ui(si, s
b
i , s

bb
i ) becomes

maxsi∈Si Πi(si, s
T
j ). Truth-telling sTi is a solution to this problem by BIC, so sT is a BNFE.

A.2 Proof of Proposition 1

Consider any AGV f . For both i = 1, 2 and any type realization θj ∈ Θj it holds that

E[vi(q
f
i (θ̃i, θj), θ̃i) + tfi (θ̃i, θj)]

= E[vi(q
f
i (θ̃i, θj), θ̃i)] + E[Ej [vj(qfj (θ̃i, θ̃j), θ̃j)]]− E[vi(q

f
i (θ̃i, θj), θ̃i)0]

= E[vj(q
f
j (θ̃i, θ̃j), θ̃j)],

which is independent of θj . Therefore ∆i = 0.

A.3 Proof of Proposition 2

Let f = (qf1 , q
f
2 , t

f
1 , t

f
2) be an SCF that is BIC. We construct a new payment rule (tf̄1 , t

f̄
2) as

follows. For every i = 1, 2 and (θi, θj) ∈ Θ, let

tf̄i (θi, θj) = E[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)]− vi(qfi (θi, θj), θi). (8)

We verify that f̄ = (qf̄1 , q
f̄
2 , t

f̄
1 , t

f̄
2), with qf̄i = qfi for both i = 1, 2, satis�es properties (a) - (d).

Property (a). This property is satis�ed by construction.

Property (b). This property follows after an application of the law of iterated expectations:∑
i=1,2

E[tf̄i (θ̃)] =
∑
i=1,2

E[Ej [vi(qfi (θ̃i, θ̃j), θ̃i) + tfi (θ̃i, θ̃j)]− vi(qfi (θ̃i, θ̃j), θ̃i)]

=
∑
i=1,2

E[vi(q
f
i (θ̃i, θ̃j), θ̃i) + tfi (θ̃i, θ̃j)− vi(qfi (θ̃i, θ̃j), θ̃i)]

=
∑
i=1,2

E[tfi (θ̃)].

Property (c). This property follows since

E[vi(q
f̄
i (θi, θ̃j), θi) + tf̄i (θi, θ̃j)] = E[vi(q

f
i (θi, θ̃j), θi) + tf̄i (θi, θ̃j)]

= E[E[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)]]

= E[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)].

Property (d). We �rst show that f̄ has the insurance property. From (8) it follows that for

any (θi, θj) ∈ Θ we have that

vi(q
f̄
i (θi, θj), θi) + tf̄i (θi, θj) = E[vi(q

f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)],

which is independent of θj . Hence the ex post payo� of any type θi of agent i does not depend

on agent j's type, which implies that the insurance property holds. It remains to be shown that
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f̄ is BIC. Since f is BIC, it holds that

E[vi(q
f
i (θi, θ̃j), θi)] + E[tfi (θi, θ̃j)] ≥ E[vi(q

f
i (θ̂i, θ̃j), θi)] + E[tfi (θ̂i, θ̃j)]

for i = 1, 2 and all θi, θ̂i ∈ Θi. Since q
f
i = qf̄i and

E[tfi (θi, θ̃j)] = E[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)− vi(qfi (θi, θ̃j), θi)]

= E[E[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)]− vi(qfi (θi, θ̃j), θi)]

= E[tf̄i (θi, θ̃j)]

for i = 1, 2 and all θi ∈ Θi, this implies

E[vi(q
f̄
i (θi, θ̃j), θi)] + E[tf̄i (θi, θ̃j)] ≥ E[vi(q

f̄
i (θ̂i, θ̃j), θi)] + E[tf̄i (θ̂i, θ̃j)],

for all θi, θ̂i ∈ Θi, so that f̄ is also BIC.

A.4 Proof of Lemma 1

We �rst state explicitly the property of strategic equivalence of arbitrary and augmented revela-

tion mechanisms. We start from an arbitrary mechanism Φ = (M1,M2, g) and a strategy pro�le

s̃ = (s̃1, s̃2), interpreted as an equilibrium of some type. We then construct an augmented rev-

elation mechanism Φ′(Φ, s̃) based on Φ and s̃, with the property that the outcome of Φ′ under

truth-telling is the same as the outcome of Φ under s̃. We then establish that Φ and Φ′ are

strategically equivalent, in the sense that any outcome that can be induced by some action under

Φ can be induced by some action under Φ′ and vice versa.

Formally, consider an arbitrary pair (Φ, s̃) and let f be the social choice function induced

by s̃ in Φ, i.e., f(θ) = g(s̃(θ)) for all θ ∈ Θ. We now construct new message sets M ′i for every

agent. Any action from Mi that is used by s̃i is relabelled according to the type θi that uses

it, and any unused action from Mi is kept unchanged: M
′
i = Θi ∪ (Mi\s̃i(Θi)) . To de�ne the

outcome function g′ of Φ′, we �rst construct for every agent a surjective function ηi : M ′i →Mi

that maps actions from M ′i back into Mi:

ηi(m
′
i) =

{
s̃i(m

′
i) if m′i ∈ Θi ,

m′i if m′i ∈Mi \ s̃i(Θi) .

For all message pro�les m′ = (m′1,m
′
2) we then de�ne

g′(m′) = g(η1(m′1), η2(m′2)). (9)

In words, announcing a type θi ∈ Θi in Φ′ has the same consequences as choosing the action

s̃i(θi) in Φ, and choosing an action from Mi\s̃i(Θi) in Φ′ has the same consequences as choosing

that same action in Φ. Observe that Φ′ is in fact an augmented revelation mechanism for f ,

because g′(sT (θ)) = g′(θ) = g(s̃(θ)) = f(θ) for all θ ∈ Θ.

Lemma 2. The mechanisms Φ and Φ′(Φ, s̃) are strategically equivalent, in the sense that, for
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i = 1, 2 and any mj ∈ Mj and m′j ∈ M ′j with mj = ηj(m
′
j), it holds that Gi(mj) = G′i(m

′
j),

where

Gi(mj) = {a ∈ A | ∃mi ∈Mi so that g(mi,mj) = a}

and

G′i(m
′
j) = {a ∈ A | ∃m′i ∈M ′i so that g′(m′i,m

′
j) = a}.

Proof. We �rst show that G′i(m
′
j) ⊆ Gi(ηj(m

′
j)). Let a ∈ G′i(m′j), so that there exists m′i so

that g′(m′i,m
′
j) = a. By (9), this implies that g(ηi(m

′
i), ηj(m

′
j)) = a, and hence a ∈ Gi(ηj(m′j)).

We now show that Gi(ηj(m
′
j)) ⊆ G′i(m′j). Let a ∈ Gi(ηj(m′j)), so that there exists mi ∈Mi

so that g(mi, ηj(m
′
j)) = a. Since ηi is surjective, there exists m′i with ηi(m

′
i) = mi. Then (9)

implies that g′(m′i,m
′
j) = a. Hence, a ∈ G′i(m′j).

The sets Gi(mj) and G
′
i(m

′
j) contain all allocations that agent i can induce by varying her

message, holding �xed agent j's message. According to Lemma 2, these sets are the same in both

mechanisms, for any pair of messages with mj = ηj(m
′
j). This has the following implication: If

we start from an arbitrary mechanism Φ with BNFE s∗ that implements an SCF f , the above

construction yields an augmented revelation mechanism Φ′ in which truth-telling induces f and

is a BNFE as well. This conclusion follows from the observation that unilateral deviations from

sT in Φ′ can achieve exactly the same outcomes as unilateral deviations from s∗ in Φ. The

equivalence of achievable outcomes implies, in particular, that the kindness terms associated to

s∗ and all unilateral deviations in Φ are identical to those of sT and all corresponding deviations

in Φ′. This proves Lemma 1.

A.5 Proof of Theorem 2

We prove the theorem in two steps. First, we augment the direct mechanism for any SCF f

by additional actions and show that the equitable payo�s associated to truth-telling can be

increased or decreased to arbitrary values. Second, we use the result of the �rst step to show

that an SCF f can be implemented in BNFE when the conditions in the theorem are satis�ed,

i.e., when f is materially Pareto-e�cient and yi > 0 and 1/yi ≤ κ̄−∆i holds for both i = 1, 2.

Step 1. Fix any SCF f and consider a mechanism Φ(δ) for f that is parameterized by

δ = (δ11, δ12, δ21, δ22) ∈ R4. The message sets are Mi = Θi × {0, 1} for both i = 1, 2, so that a

message mi = (m1
i ,m

2
i ) ∈ Mi of agent i consists of a type m1

i ∈ Θi and a number m2
i ∈ {0, 1}.

The outcome function g = (qg1 , q
g
2 , t

g
1, t

g
2) of Φ(δ) is de�ned by

qgi (m) = qfi (m1
1,m

1
2)

and

tgi (m) = tfi (m1
1,m

1
2) +m2

i δii −m2
jδji

for both i = 1, 2 and all m = (m1,m2) ∈ M1 × M2. Parameter δik, which can be positive

or negative, describes the e�ect that agent i = 1, 2 has on the transfer of agent k = 1, 2

through the second message component. We require δii ≤ δij to ensure that the transfers are
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always admissible. Mechanism Φ(δ) becomes equivalent to the direct mechanism for f when

δ = (0, 0, 0, 0), or δ = 0 in short, because the second message components are payo� irrelevant

in this case. Let sTi be agent i's strategy that announces sTi (θi) = (θi, 0) for all types θi ∈ Θi.

The outcome of strategy pro�le sT = (sT1 , s
T
2 ) is the SCF f , independent of δ.

We use the expressions Πi(si, s
b
i |δ), Ei(sbi |δ), and Πe

i (s
b
j |δ) to denote expected payo�s, e�cient

strategies, and equitable payo�s in Φ(δ). We also write si = (s1
i , s

2
i ) ∈ Si for strategies, so that

s1
i (θi) ∈ Θi and s

2
i (θi) ∈ {0, 1} are the two message components announced by type θi under

strategy si. Let

xi(si) = E[s2
i (θ̃i)]

be the probability with which a strategy si announces m
2
i = 1, for both i = 1, 2. Then we obtain

Πi(si, s
b
i |δ) = Πi(si, s

b
i |0) + xi(si)δii − xj(sbi)δji. (10)

Lemma 3. If sgn δjj = sgn δji, then

max
sj∈Ej(sTi |δ)

Πi(s
T
i , sj |δ) = max

sj∈Ej(sTi |0)
Πi(s

T
i , sj |0)−min{δji, 0} (11)

and

min
sj∈Ej(sTi |δ)

Πi(s
T
i , sj |δ) = min

sj∈Ej(sTi |0)
Πi(s

T
i , sj |0)−max{δji, 0}. (12)

Proof. We �rst claim that Ej(s
T
i |δ) ⊆ Ej(s

T
i |0) holds. If sj /∈ Ej(s

T
i |0), then there exists a

strategy ŝj such that

Πi(s
T
i , ŝj |0) ≥ Πi(s

T
i , sj |0),

Πj(s
T
i , ŝj |0) ≥ Πj(s

T
i , sj |0),

with at least one inequality being strict. Now consider strategy s̃j constructed by

s̃1
j (θj) = ŝ1

j (θj) and s̃
2
j (θj) = s2

j (θj)

for all θj ∈ Θj . Using (10) and the above inequalities, we obtain

Πi(s
T
i , s̃j |δ) = Πi(s

T
i , s̃j |0)− xj(s̃j)δji

= Πi(s
T
i , ŝj |0)− xj(sj)δji

≥ Πi(s
T
i , sj |0)− xj(sj)δji

= Πi(s
T
i , sj |δ),

and analogously for agent j (with at least one strict inequality). Hence sj /∈ Ej(sTi |δ), which
establishes the claim.

We now go through the three possible cases in which sgn δjj = sgn δji holds (given δjj ≤ δji).
Case (a): δjj = δji = 0. The statement in the lemma follows immediately in this case.
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Case (b): 0 < δjj ≤ δji. Observe that Ej(s
T
i |δ) and Ej(s

T
i |0) can be replaced by Sj in the

maximization problems in (11), because at least one of j's strategies that maximize i's expected

payo� on the (�nite) set Sj must be Pareto-e�cient. Using (10), statement (11) then follows

because any strategy sj that maximizes Πi(s
T
i , sj |δ) on the set Sj must clearly satisfy xj(sj) = 0.

To establish statement (12), consider a minimizing strategy sminj ∈ arg minsj∈Ej(sTi |0) Πi(s
T
i , sj |0)

that satis�es xj(s
min
j ) = 1, which exists because m2

j is payo� irrelevant in Φ(0). We claim that

sminj ∈ Ej(sTi |δ), which then implies, again using (10), that

min
sj∈Ej(sTi |δ)

Πi(s
T
i , sj |δ) ≤ Πi(s

T
i , s

min
j |δ) = Πi(s

T
i , s

min
j |0)− δji, (13)

and hence a weak inequality version of (12). To establish the claim, suppose to the contrary

that there exists s′j ∈ Ej(sTi |δ) such that

Πi(s
T
i , s
′
j |δ) ≥ Πi(s

T
i , s

min
j |δ),

Πj(s
T
i , s
′
j |δ) ≥ Πj(s

T
i , s

min
j |δ),

with a least one inequality being strict. Assuming s′j ∈ Ej(sTi |δ) is w.l.o.g. because Sj is �nite,
so that at least one strategy that Pareto-dominates sminj must itself be Pareto-e�cient. Using

(10), these inequalities can be rearranged to

Πi(s
T
i , s
′
j |0) + [1− xj(s′j)]δji ≥ Πi(s

T
i , s

min
j |0),

Πj(s
T
i , s
′
j |0)− [1− xj(s′j)]δjj ≥ Πj(s

T
i , s

min
j |0).

If xj(s
′
j) = 1 this contradicts sminj ∈ Ej(sTi |0). Hence xj(s

′
j) < 1 must hold, which implies

Πi(s
T
i , s
′
j |0) < Πi(s

T
i , s

min
j |0),

Πj(s
T
i , s
′
j |0) > Πj(s

T
i , s

min
j |0),

where the �rst inequality follows from the second one due to sminj ∈ Ej(s
T
i |0). But now we

must have s′j /∈ Ej(sTi |0), as otherwise sminj would not minimize i's payo� on Ej(s
T
i |0). This

contradicts s′j ∈ Ej(sTi |δ) because Ej(s
T
i |δ) ⊆ Ej(s

T
i |0), and hence establishes the claim. The

opposite weak inequality of (13) follows from

min
sj∈Ej(sTi |δ)

Πi(s
T
i , sj |δ) ≥ min

sj∈Ej(sTi |0)
Πi(s

T
i , sj |δ)

= min
sj∈Ej(sTi |0)

[
Πi(s

T
i , sj |0)− xj(sj)δji

]
≥ min

sj∈Ej(sTi |0)

[
Πi(s

T
i , sj |0)

]
− δji

= Πi(s
T
i , s

min
j |0)− δji,

where the �rst inequality is again due to Ej(s
T
i |δ) ⊆ Ej(sTi |0).

Case (c): δjj ≤ δji < 0. Statement (11) again follows after replacing Ej(s
T
i |δ) and Ej(sTi |0)

by Sj , observing that any sj that maximizes Πi(s
T
i , sj |δ) on Sj must satisfy xj(sj) = 1. To
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establish statement (12), consider a strategy sminj ∈ arg minsj∈Ej(sTi |0) Πi(s
T
i , sj |0) that satis�es

xj(s
min
j ) = 0. We claim that sminj ∈ Ej(sTi |δ), which implies the weak inequality

min
sj∈Ej(sTi |δ)

Πi(s
T
i , sj |δ) ≤ Πi(s

T
i , s

min
j |δ) = Πi(s

T
i , s

min
j |0). (14)

Suppose to the contrary that there exists s′j ∈ Ej(sTi |δ) such that

Πi(s
T
i , s
′
j |δ) ≥ Πi(s

T
i , s

min
j |δ),

Πj(s
T
i , s
′
j |δ) ≥ Πj(s

T
i , s

min
j |δ),

with a least one inequality being strict, which can be rearranged to

Πi(s
T
i , s
′
j |0)− xj(s′j)δji ≥ Πi(s

T
i , s

min
j |0),

Πj(s
T
i , s
′
j |0) + xj(s

′
j)δjj ≥ Πj(s

T
i , s

min
j |0).

If xj(s
′
j) = 0 this contradicts sminj ∈ Ej(sTi |0). Hence xj(s

′
j) > 0 must hold, which implies

Πi(s
T
i , s
′
j |0) < Πi(s

T
i , s

min
j |0),

Πj(s
T
i , s
′
j |0) > Πj(s

T
i , s

min
j |0),

where the �rst inequality follows from the second one due to sminj ∈ Ej(sTi |0). Now we obtain

the same contradiction as for case (b) above. The opposite weak inequality of (14) follows from

min
sj∈Ej(sTi |δ)

Πi(s
T
i , sj |δ) ≥ min

sj∈Ej(sTi |0)
Πi(s

T
i , sj |δ)

= min
sj∈Ej(sTi |0)

[
Πi(s

T
i , sj |0)− xj(sj)δji

]
≥ min

sj∈Ej(sTi |0)

[
Πi(s

T
i , sj |0)

]
= Πi(s

T
i , s

min
j |0).

This completes the proof of the lemma.

The following statement is an immediate corollary of Lemma 3.

Corollary 1. If sgn δjj = sgn δji, then Πe
i (s

T
i |δ) = Πe

i (s
T
i |0)− δji/2.

Step 2. Fix a materially Pareto-e�cient SCF f and assume yi > 0 and 1/yi ≤ κ̄ − ∆i for

both i = 1, 2. Consider the BNFE candidate sT in mechanism Φ(δ∗), where δ∗ is given by

δ∗ii = δ∗ij = 2

[
1

yj
−Πj(s

T |0) + Πe
j(s

T
j |0)

]
(15)

for both i = 1, 2. Agent i's correct belief about j's kindness is then given by

κj(s
T |δ∗) = h(Πi(s

T |δ∗)−Πe
i (s

T
i |δ∗))

= h(Πi(s
T |0)−Πe

i (s
T
i |δ∗))
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= h(Πi(s
T |0)−Πe

i (s
T
i |0) + δ∗ji/2)

= h(1/yi)

= 1/yi,

where the third equality follows from Corollary 1 and the last equality holds due to 1/yi ≤ κ̄.

In the equilibrium candidate, agent i = 1, 2 therefore chooses si so as to maximize

Πi(si, s
T
j |δ∗) + h(Πj(si, s

T
j |δ∗)−Πe

j(s
T
j |δ∗)).

For si = sTi , this term becomes Πi(s
T
i , s

T
j |δ∗)+Πj(s

T
i , s

T
j |δ∗)−Πe

j(s
T
j |δ∗), because Πj(s

T
i , s

T
j |δ∗)−

Πe
j(s

T
j |δ∗) = 1/yj ≤ κ̄ by our construction. To exclude that there are any pro�table deviations

from sTi , we can restrict attention to conditionally e�cient strategies s′i ∈ Ei(sTj |δ∗). We consider

three possible cases.

Case (a). A strategy s′i ∈ Ei(s
T
j |δ∗) with −κ̄ ≤ Πj(s

′
i, s

T
j |δ∗) − Πe

j(s
T
j |δ∗) ≤ κ̄ cannot be

pro�table, because in that case

Πi(s
′
i, s

T
j |δ∗) + h(Πj(s

′
i, s

T
j |δ∗)−Πe

j(s
T
j |δ∗)) = Πi(s

′
i, s

T
j |δ∗) + Πj(s

′
i, s

T
j |δ∗)−Πe

j(s
T
j |δ∗)

≤ Πi(s
T
i , s

T
j |δ∗) + Πj(s

T
i , s

T
j |δ∗)−Πe

j(s
T
j |δ∗),

where the inequality follows from material Pareto-e�ciency of f (and δ∗ii = δ∗ij).

Case (b). A strategy s′i ∈ Ei(sTj |δ∗) with κ̄ < Πj(s
′
i, s

T
j |δ∗)−Πe

j(s
T
j |δ∗) cannot be pro�table,

because in that case

Πi(s
′
i, s

T
j |δ∗) + h(Πj(s

′
i, s

T
j |δ∗)−Πe

j(s
T
j |δ∗)) = Πi(s

′
i, s

T
j |δ∗) + κ̄

< Πi(s
′
i, s

T
j |δ∗) + Πj(s

′
i, s

T
j |δ∗)−Πe

j(s
T
j |δ∗)

≤ Πi(s
T
i , s

T
j |δ∗) + Πj(s

T
i , s

T
j |δ∗)−Πe

j(s
T
j |δ∗).

Case (c). We �nally show that a strategy s′i ∈ Ei(sTj |δ∗) with Πj(s
′
i, s

T
j |δ∗)−Πe

j(s
T
j |δ∗) < −κ̄

does not exist. By contradiction, if such a strategy existed, then

min
si∈Ei(sTj |δ∗)

Πj(si, s
T
j |δ∗)−Πe

j(s
T
j |δ∗) < −κ̄

would have to hold as well. Using the de�nition of Πe
j(s

T
j |δ∗), this can be rearranged to

1

2

[
max

si∈Ei(sTj |δ∗)
Πj(si, s

T
j |δ∗)− min

si∈Ei(sTj |δ∗)
Πj(si, s

T
j |δ∗)

]
> κ̄,

and, using Lemma 3, can be rewritten as

1

2

[
max

si∈Ei(sTj |0)
Πj(si, s

T
j |0)− min

si∈Ei(sTj |0)
Πj(si, s

T
j |0)

]
+

1

2
|δ∗ij | > κ̄. (16)
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If δ∗ij ≥ 0, using (15) and the de�nition of Πe
j(s

T
j |0), inequality (16) can be rewritten as

max
si∈Ei(sTj |0)

Πj(si, s
T
j |0)−Πj(s

T
i , s

T
j |0) +

1

yj
> κ̄.

Since ∆j ≥ maxsi∈Ei(sTj |0) Πj(si, s
T
j |0) − Πj(s

T
i , s

T
j |0), this further implies 1/yj > κ̄ − ∆j and

contradicts 1/yj ≤ κ̄−∆j . If δ
∗
ij < 0, using (15) and the de�nition of Πe

j(s
T
j |0), inequality (16)

can be rewritten as

Πj(s
T
i , s

T
j |0)− min

si∈Ei(sTj |0)
Πj(si, s

T
j |0)− 1

yj
> κ̄.

Since ∆j ≥ Πj(s
T
i , s

T
j |0)−minsi∈Ei(sTj |0) Πj(si, s

T
j |0), this further implies −1/yj > κ̄−∆j and,

by yj > 0, again contradicts 1/yj ≤ κ̄−∆j .

A.6 Proof of Proposition 3

Let Φ = [M1,M2, g] be an arbitrary mechanism with a BNFE s that results in an SCF f . We

can then construct a mechanism Φ′(δ) based on Φ in the same way as we did in the proof of

Theorem 2 based on the direct mechanism (see Step 1 in Appendix A.5 for the details). In short,

Φ′(δ) has message sets M ′i = Mi × {0, 1}, so any mi = (m1
i ,m

2
i ) ∈ M ′i consists of a message

m1
i ∈Mi from Φ and a number m2

i ∈ {0, 1}. The outcome function g′ of Φ′(δ) is

qg
′

i (m) = qgi (m1
1,m

1
2)

and

tg
′

i (m) = tgi (m
1
1,m

1
2) +m2

i δii −m2
jδji.

Mechanism Φ′(0) is equivalent to Φ. Observe, however, that Φ might already be an augmented

revelation mechanism, possibly constructed from a direct mechanism in the exact same manner.

We denote by sTi agent i's strategy in Φ′(δ) given by sTi (θi) = (si(θi), 0) for all θi ∈ Θi. The truth-

telling interpretation becomes apparent if Φ is a (possibly augmented) revelation mechanism and

s is the truth-telling strategy pro�le in Φ. Pro�le sT = (sT1 , s
T
2 ) is a BNFE of Φ′(0) because s is

a BNFE of Φ. The outcome of sT in Φ′(δ) is SCF f . Proceeding as in the proof of Theorem 2,

we obtain

Πi(si, s
b
i |δ) = Πi(si, s

b
i |0) + xi(si)δii − xj(sbi)δji (17)

and

Πe
i (s

T
i |δ) = Πe

i (s
T
i |0)− δji/2 (18)

for both i = 1, 2, provided that sgn δjj = sgn δji.
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From now on suppose, for both i = 1, 2, that

0 ≤ Πi(s
T |0)−Πe

i (s
T
i |0) < κ̄, (19)

which will be veri�ed later, and let

δ∗ij = 2
(
κ̄−Πj(s

T |0) + Πe
j(s

T
j |0)

)
, (20)

such that 0 < δ∗ij ≤ 2κ̄. Let δ∗ii by any value that satis�es 0 < δ∗ii ≤ δ∗ij , and consider the BNFE

candidate sT in Φ′(δ∗). Agent i's correct belief about j's kindness is then

κj(s
T |δ∗) = h(Πi(s

T |δ∗)−Πe
i (s

T
i |δ∗)) = h(Πi(s

T |0)−Πe
i (s

T
i |0) + δ∗ji/2) = κ̄,

where (17), (18) and (20) have been used. Agent i therefore chooses si so as to maximize

Πi(si, s
T
j |δ∗) + yi κ̄ h(Πj(si, s

T
j |δ∗)−Πe

j(s
T
j |δ∗)).

Based on (17) and (18) this can be rewritten as

Πi(si, s
T
j |0) + xi(si)δ

∗
ii + yi κ̄ h(Πj(si, s

T
j |0)− xi(si)δ∗ij −Πe

j(s
T
j |0) + δ∗ij/2). (21)

We now show that, for the two di�erent cases in the proposition and appropriate choices of Φ

and s, strategy si = sTi maximizes (21) and thus sT is a BNFE of Φ′(δ∗) that implements f

with mutual kindness of κ̄.

Case (a). Suppose f is BIC and satis�es ∆1 = ∆2 = 0. Let Φ from above be the direct

mechanism and s the truth-telling strategy pro�le, which is a BNFE of Φ as shown in the proof

of Theorem 1. Also, Πi(s
T |0)−Πe

i (s
T
i |0) = 0 holds, which veri�es (19) and implies δ∗ij = 2κ̄, for

both i = 1, 2. Then (21) can be further simpli�ed to

Πi(si, s
T
j |0) + xi(si)δ

∗
ii + yi κ̄ (κ̄− xi(si)2κ̄), (22)

because Πj(si, s
T
j |0) = Πe

j(s
T
j |0) for all si ∈ Si due to ∆j = 0 as shown in the proof of Theorem

1, and the bounding function h can be omitted because xi(si) ∈ [0, 1]. The �rst term in (22) is

maximized by si = sTi since f is BIC. The remainder of (22) is non-increasing in xi(si) whenever

δ∗ii ≤ 2yiκ̄
2. (23)

Strategy si = sTi , for which xi(s
T
i ) = 0, therefore maximizes (22) whenever δ∗ii is chosen to also

satisfy (23). O�-equilibrium budget balance δ∗ii = δ∗ij = 2κ̄ is possible if and only if κ̄ ≥ 1/yi.

Case (b). Suppose f is materially Pareto-e�cient and y ∈ Y f . Let Φ from above be the

augmented revelation mechanism constructed in the proof of Theorem 2 and s the truth-telling

strategy pro�le, which is a BNFE of Φ as shown in the proof of Theorem 2 (to avoid confusion,

observe that δ now describes the additional redistribution in the twice augmented mechanism

Φ′(δ), not the redistribution already possible in the once augmented mechanism Φ). Also,

Πi(s
T |0) − Πe

i (s
T
i |0) = 1/yi holds. From y ∈ Y f it follows that 1/yi ≤ κ̄. Assume that in fact
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1/yi < κ̄ for both i = 1, 2, since otherwise Φ does not have to be further augmented for the

respective agent to achieve the desired kindness κ̄. This veri�es (19) and implies δ∗ij = 2(κ̄−1/yj),

for both i = 1, 2.

For strategy si = sTi , (21) becomes

Πi(s
T |0) + yi κ̄ κ̄.

To exclude pro�table deviations, we can restrict attention to conditionally e�cient strategies

s′i ∈ Ei(sTj |δ∗). Note that Ei(s
T
j |δ∗) ⊆ Ei(s

T
j |0), as shown in the proof of Theorem 2. We will

verify that there are no pro�table deviations in Ei(s
T
j |0). Any s′i ∈ Ei(sTj |0) satis�es

−κ̄ < Πj(s
′
i, s

T
j |0)−Πe

j(s
T
j |0) + δ∗ij/2 (24)

for the given value of δ∗ij > 0, because −κ̄ ≤ Πj(s
′
i, s

T
j |0)−Πe

j(s
T
j |0) according to Case (c) in the

proof of Theorem 2. Deviations s′i ∈ Ei(sTj |0) such that Πi(s
′
i, s

T
j |0) + xi(s

′
i)δ
∗
ii ≤ Πi(s

T |0) can

clearly never be pro�table. Deviations s′i ∈ Ei(sTj |0) with

Πi(s
′
i, s

T
j |0) + xi(s

′
i)δ
∗
ii > Πi(s

T |0),

Πj(s
′
i, s

T
j |0)− xi(s′i)δ∗ij ≥ Πj(s

T |0),

do not exist by e�ciency of f . Hence denote by Σi(δ
∗) the remaining set of s′i ∈ Ei(sTj |0) with

Πi(s
′
i, s

T
j |0) + xi(s

′
i)δ
∗
ii > Πi(s

T |0),

Πj(s
′
i, s

T
j |0)− xi(s′i)δ∗ij < Πj(s

T |0).

Any s′i ∈ Σi(δ
∗) satis�es

Πj(s
′
i, s

T
j |0)− xi(s′i)δ∗ij −Πe

j(s
T
j |0) + δ∗ij/2 < κ̄ (25)

for the given value of δ∗ij , because Πj(s
′
i, s

T
j |0)−xi(s′i)δ∗ij−Πe

j(s
T
j |0) < Πj(s

T |0)−Πe
j(s

T
j |0) = 1/yj

by de�nition, so that the upper kindness bound can henceforth be ignored. We now treat the

subsets Σ0
i (δ
∗) = {si ∈ Σi(δ

∗) | xi(si) = 0} and Σ+
i (δ∗) = {si ∈ Σi(δ

∗) | xi(si) > 0} separately.
For any s′i ∈ Σ0

i (δ
∗), the lower kindness bound can also be ignored by (24). We claim that a

deviation to any s′i ∈ Σ0
i (δ
∗) cannot make agent i better o�. By contradiction, assume that

Πi(s
′
i, s

T
j |0) + yi κ̄ (Πj(s

′
i, s

T
j |0)−Πe

j(s
T
j |0) + δ∗ij/2) > Πi(s

T |0) + yi κ̄ κ̄.

This can be rearranged to

Πi(s
′
i, s

T
j |0)−Πi(s

T |0) + yi κ̄ (Πj(s
′
i, s

T
j |0)−Πe

j(s
T
j |0)− 1/yj) > 0.

The last term in brackets is negative, as argued before. Hence yi κ̄ > 1 implies

Πi(s
′
i, s

T
j |0)−Πi(s

T |0) + (Πj(s
′
i, s

T
j |0)−Πe

j(s
T
j |0)− 1/yj) > 0.
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Substituting 1/yj by Πj(s
T |0)−Πe

j(s
T
j |0) and rearranging yields

Πi(s
′
i, s

T
j |0) + Πj(s

′
i, s

T
j |0) > Πi(s

T |0) + Πj(s
T |0),

which is a contradiction to e�ciency of f .

For any s′i ∈ Σ+
i (δ∗), so that xi(s

′
i) > 0, observe that

h(Πj(s
′
i, s

T
j |0)− xi(s′i)δ∗ij −Πe

j(s
T
j |0) + δ∗ij/2) < h(Πj(s

′
i, s

T
j |0)−Πe

j(s
T
j |0) + δ∗ij/2),

because the upper bound κ̄ is not binding on the LHS by (25), and the lower bound −κ̄ is not

binding on the RHS by (24). Let s̄i be the strategy with s̄1
i (θi) = s′i(θi) and s̄2

i (θi) = 0 for all

θi ∈ Θi. For su�ciently small but strictly positive values of δ∗ii it then follows that

Πi(s
′
i, s

T
j |0) + xi(s

′
i)δ
∗
ii + yi κ̄ h(Πj(s

′
i, s

T
j |0)− xi(s′i)δ∗ij −Πe

j(s
T
j |0) + δ∗ij/2)

≤ Πi(s
′
i, s

T
j |0) + yi κ̄ h(Πj(s

′
i, s

T
j |0)−Πe

j(s
T
j |0) + δ∗ij/2)

= Πi(s̄i, s
T
j |0) + yi κ̄ h(Πj(s̄i, s

T
j |0)−Πe

j(s
T
j |0) + δ∗ij/2).

Observe that s̄i ∈ Ei(sTj |0), because s̄i and s
′
i are payo� equivalent in Φ′(0) and s′i ∈ Ei(sTj |0).

Observe also that s̄i /∈ Σ+
i (δ∗), because xi(s̄i) > 0. Hence s̄i cannot be a pro�table deviation

by our previous arguments, so that s′i cannot be a pro�table deviation either. Since Σ+
i (δ∗) is

�nite and weakly shrinking (in the set inclusion sense) as δ∗ii comes smaller, δ∗ii can be chosen

small enough to render all deviations unpro�table.

A.7 Proof of Proposition 4

Let f be a y-independent SCF and let Φ = [M1,M2, g] be a mechanism that implements f in a

BNFE s∗ = (s∗1, s
∗
2). The best-response condition for agent i of reciprocity type y

i
= 0 can be

rewritten as

s∗i,y
i
∈ arg max

si,yi∈Si

Π̄i(si,yi , s
∗
j ).

In particular, standard arguments imply that

E[vi(q
g
i (s∗i,y

i
(θi), s

∗
j,ỹj

(θ̃j)), θi) + tgi (s
∗
i,y

i
(θi), s

∗
j,ỹj

(θ̃j))]

≥ E[vi(q
g
i (s∗i,y′i

(θ′i), s
∗
j,ỹj

(θ̃j)), θi) + tgi (s
∗
i,y′i

(θ′i), s
∗
j,ỹj

(θ̃j))]

must hold for all θi, θ
′
i ∈ Θ and all y′i ∈ Yi. Since s∗ implements f in mechanism Φ, we have

g(s∗1,y1(θ1), s∗2,y2(θ2)) = f̂(θ)

for all (y, θ). The above inequality can therefore be rewritten as

E[vi(q
f̂
i (θi, θ̃j)), θi) + tf̂i (θi, θ̃j)]

≥ E[vi(q
f̂
i (θ′i, θ̃j)), θi) + tf̂i (θ′i, θ̃j)]
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for all θi, θ
′
i ∈ Θ. Thus f̂ is BIC, which implies that f is BIC.

A.8 Proof of Proposition 5

We �rst establish two lemmas, which we will use subsequently to prove the proposition. We

�rst show that, when implementing a y-independent social choice function in a situation with

y = (0, 0), all reciprocity types behave like the sel�sh type and choose a strategy that maximizes

their expected material payo�. As a consequence, equilibrium kindness cannot be positive.

Lemma 4. Suppose y = (0, 0), and let Φ = [M1,M2, g] be a mechanism that implements a

y-independent SCF f in a BNFE s∗ = (s∗1, s
∗
2). Then, for both i = 1, 2 and all yi ∈ Yi,

(i) s∗i,yi ∈ arg maxsi,yi∈Si Π̄i(si,yi , s
∗
j ), and

(ii) κi(s
∗
i,yi
, s∗j ) ≤ 0.

Proof. Property (i). Suppose by contradiction that there exists an agent i and a type yi such

that s∗i,yi /∈ arg maxsi,yi∈Si Π̄i(si,yi , s
∗
j ), which implies that

E[vi(q
g
i (s∗i,yi(θi), s

∗
j,ỹj

(θ̃j)), θi) + tgi (s
∗
i,yi

(θi), s
∗
j,ỹj

(θ̃j))]

< E[vi(q
g
i (mi, s

∗
j,ỹj

(θ̃j)), θi) + tgi (mi, s
∗
j,ỹj

(θ̃j))]

for some θi and mi. Since Φ implements the y-independent SCF f we know that

g(s∗i,yi(θi), s
∗
j,yj (θj)) = f̂(θ) = g(s∗i,0(θi), s

∗
j,yj (θj))

for all (y, θ). Hence the above inequality can be written as

E[vi(q
g
i (s∗i,0(θi), s

∗
j,ỹj

(θ̃j)), θi) + tgi (s
∗
i,0(θi), s

∗
j,ỹj

(θ̃j))]

< E[vi(q
g
i (mi, s

∗
j,ỹj

(θ̃j)), θi) + tgi (mi, s
∗
j,ỹj

(θ̃j))],

which contradicts the best-response condition for reciprocity type y
i

= 0 of agent i, and hence

contradicts the assumption that s∗ is a BNFE.

Property (ii). Consider any i = 1, 2 and any yi ∈ Yi. From property (i) it follows that

Π̄i(s
∗
i,yi
, s∗j ) ≥ Π̄i(si,yi , s

∗
j ) for all si,yi ∈ Ei(s∗j ). Pareto-e�ciency then implies that Π̄j(s

∗
i,yi
, s∗j ) ≤

Π̄j(si,yi , s
∗
j ) for all si,yi ∈ Ei(s∗j ). This implies Π̄j(s

∗
i,yi
, s∗j ) ≤ Πe

j(s
∗
j ), from which property (ii)

follows.

The fact that all types behave in a sel�sh way can be used to show that there is no longer a

role for unused actions. Put di�erently, the revelation principle holds. In the direct mechanism

Φd = [Y1×Θ1, Y2×Θ2, f ], revealing one's type now involves to reveal both the reciprocity type

yi and the payo� type θi.

Lemma 5. Suppose y = (0, 0), and suppose that a mechanism Φ implements a y-independent

SCF f in BNFE. Then f is truthfully implementable in BNFE in the direct mechanism.

Proof. Step 1. From the arguments in Section 5 it follows that an augmented revelation principle

applies, i.e., it is without loss of generality to consider a mechanism Φ = [M1,M2, g] where
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Mi ⊇ Yi×Θi for both i = 1, 2 and g(m) = f(m) whenever m ∈ Y ×Θ, and in which the truthful

strategy pro�le sT is a BNFE. It remains to be shown that sT is still a BNFE even when we

eliminate all unused actions from Φ.

Step 2. Consider agent i = 1 (the argument for i = 2 is identical). Construct a mechanism

Φ′ = [M ′1,M
′
2, g
′] from Φ by letting M ′1 = Y1 ×Θ1, keeping M

′
2 = M2 unchanged, and letting g′

be the restriction of g to M ′1×M ′2. We have only (if at all) removed unused actions for agent 1,

so that sT is still an admissible strategy pro�le and the kindness of agent 2 is unchanged, i.e.,

κ′2(sT2,y2 , s
T
1 ) = κ2(sT2,y2 , s

T
1 ) for all y2 ∈ Y2 (where the prime ′ indicates terms in mechanism Φ′).

We claim that κ′1(sT1,y1 , s
T
2 ) ≥ κ1(sT1,y1 , s

T
2 ) for all y1 ∈ Y1, i.e., agent 1's kindness has weakly

increased. To prove the claim we show that Πe′
2 (sT2 ) ≤ Πe

2(sT2 ). Consider �rst the minimization

part in the de�nition of equitable payo�s. To obtain a contradiction, assume that

min
s1,y1∈E

′
1(sT2 )

Π̄2(s1,y1 , s
T
2 ) > min

s1,y1∈E1(sT2 )
Π̄2(s1,y1 , s

T
2 ).

Let ŝ1,y1 be a strategy in E1(sT2 ) that achieves the minimum in Φ, and analogously let ŝ′1,y1 be

a strategy in E′1(sT2 ) that achieves the minimum in Φ′. From the de�nition of Pareto-e�ciency

it then follows that ŝ1,y1 maximizes Π̄1(s1,y1 , s
T
2 ) on S1, and ŝ

′
1,y1

maximizes Π̄1(s1,y1 , s
T
2 ) on S′1.

Observe that sT1,y1 ∈ arg maxs1,y1∈S1 Π̄1(s1,y1 , s
T
2 ) also holds, by Lemma 4 and the fact that sT

is a BNFE that implements f in Φ. This implies

Π̄1(ŝ1,y1 , s
T
2 ) = Π̄1(sT1,y1 , s

T
2 ) = Π̄1(ŝ′1,y1 , s

T
2 ),

where the second equality follows from sT1,y1 ∈ S
′
1 ⊆ S1. Thus ŝ

′
1,y1
∈ S′1 ⊆ S1 Pareto-dominates

ŝ1,y1 ∈ S1, contradicting that ŝ1,y1 ∈ E1(sT2 ). Hence

min
s1,y1∈E

′
1(sT2 )

Π̄2(s1,y1 , s
T
2 ) ≤ min

s1,y1∈E1(sT2 )
Π̄2(s1,y1 , s

T
2 )

must hold. Consider now the maximization part. The fact that

max
s1,y1∈E

′
1(sT2 )

Π̄2(s1,y1 , s
T
2 ) ≤ max

s1,y1∈E1(sT2 )
Π̄2(s1,y1 , s

T
2 )

follows immediately because in these problems we can replace the Pareto-e�cient sets E1(sT2 )

and E′1(sT2 ) by S1 and S′1, respectively, and S
′
1 ⊆ S1 holds. This establishes our claim. It also

follows from these arguments that κ′1(sT1,y1 , s
T
2 ) ≤ 0 must still be true in Φ′.

Step 3. From the previous step (applied to both agents) we know that the direct mechanism

Φd for f generates kindness κdi that satis�es κi(s
T
i,yi
, sTj ) ≤ κdi (sTi,yi , s

T
j ) ≤ 0 for both i = 1, 2 and

all yi ∈ Yi, and hence κ̄j(s
T ) ≤ κ̄dj (sT ) ≤ 0 for both j = 1, 2. To show that sT is indeed a BNFE

in Φd, as it is in Φ, we show that

sTi,yi ∈ arg max
si,yi∈Si

Π̄i(si,yi , s
T
j ) + κ̂ yi h(Π̄j(si,yi , s

T
j )−Πe

j(s
T
j )) (26)
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for some κ̂ ≤ 0 implies that

sTi,yi ∈ arg max
si,yi∈Si

Π̄i(si,yi , s
T
j ) + κ̃ yi h(Π̄j(si,yi , s

T
j )−Πe

j(s
T
j ))

for all κ̃ ∈ [κ̂, 0]. Condition (26) can be equivalently stated as follows: for all s′i,yi in Si,

Π̄i(s
T
i,yi , s

T
j )− Π̄i(s

′
i,yi , s

T
j ) ≥ κ̂ yi

[
h(Π̄j(s

′
i,yi , s

T
j )−Πe

j(s
T
j ))− h(Π̄j(s

T
i,yi , s

T
j )−Πe

j(s
T
j ))
]
.

It follows from Lemma 4 that the LHS of this inequality is non-negative. If the term in squared

brackets on the RHS is also non-negative, then the RHS is non-positive and we have

Π̄i(s
T
i,yi , s

T
j )− Π̄i(s

′
i,yi , s

T
j ) ≥ κ̃ yi

[
h(Π̄j(s

′
i,yi , s

T
j )−Πe

j(s
T
j ))− h(Π̄j(s

T
i,yi , s

T
j )−Πe

j(s
T
j ))
]

for all κ̃ ≤ 0. If instead the term in squared brackets on the RHS is negative, then

Π̄i(s
T
i,yi
, sTj )− Π̄i(s

′
i,yi
, sTj ) ≥ κ̂ yi

[
h(Π̄j(s

′
i,yi
, sTj )−Πe

j(s
T
j ))− h(Π̄j(s

T
i,yi
, sTj )−Πe

j(s
T
j ))
]

≥ κ̃ yi

[
h(Π̄j(s

′
i,yi
, sTj )−Πe

j(s
T
j ))− h(Π̄j(s

T
i,yi
, sTj )−Πe

j(s
T
j ))
]

for all κ̃ ∈ [κ̂, 0].

We are now in the position to prove Proposition 5. Suppose y = (0, 0), and let f be a

y-independent SCF with ∆i > 0 for both i = 1, 2. By Lemma 5 it is without loss of generality

to consider the direct mechanism Φd for f . Suppose that the truth-telling strategy pro�le sT

is indeed a BNFE. By Lemma 4 we then know that sTi,yi ∈ arg maxsi,yi∈Si Π̄i(si,yi , s
T
j ) for both

i = 1, 2 and all yi ∈ Yi. As argued in the proof of Lemma 4 this implies Π̄j(s
T
i,yi
, sTj ) ≤

minsi,yi∈Ei(sTj ) Π̄j(si,yi , s
T
j ). The fact that ∆j > 0 implies

Π̄j(s
T
i,yi , s

T
j ) < max

si,yi∈Si

Π̄j(si,yi , s
T
j ) = max

si,yi∈Ei(sTj )
Π̄j(si,yi , s

T
j ),

and hence Π̄j(s
T
i,yi
, sTj ) < Πe

j(s
T
j ) and κi(s

T
i,yi
, sTj ) < 0 for both i = 1, 2 and all yi ∈ Yi.

For each i = 1, 2, choose a number ki > maxyi∈Yi |Π̄j(s
T
i,yi
, sTj ) − Πe

j(s
T
j )|, and then choose

k ≥ max{k1, k2}. Whenever κ̄ ≥ k, the kindness bound is not reached in the hypothetical BNFE

by any agent of any type. Consider now the best-response problem of type yi of agent i. She

chooses si,yi so as to maximize

Π̄i(si,yi , s
T
j ) + yi κ̄j(s

T )h(Π̄j(si,yi , s
T
j )−Πe

j(s
T
j )), (27)

where κ̄j(s
T ) = E[κj(s

T
j,ỹj

, sTi )] < 0 is treated as �xed. Let

θmini = arg min
θ′i∈Θi

E[vj(q
f̂
j (θ′i, θ̃j), θ̃j) + tf̂j (θ′i, θ̃j)],

and denote by smini,yi
the strategy that announces smini,yi

(θi) = (yi, θ
min
i ) for all θi ∈ Θi. From

∆j > 0 it follows that Π̄j(s
min
i,yi

, sTj ) < Π̄j(s
T
i,yi
, sTj ). This implies that there exists a number xi

so that the value of (27) is strictly larger for si,yi = smini,yi
than for si,yi = sTi,yi whenever yi ≥ xi
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(given that κ̄ ≥ k), contradicting that sT is a BNFE. Hence f is not implementable in BNFE

when ȳi ≥ xi.

A.9 Proof of Proposition 6

Note that the assumptions of the proposition imply ∆i < κ̄ and y
i
κ̄ ≥ 1. Now consider the

one-dimensional SCF f̂ that is induced by f , as described before. We �rst follow step 1 in the

proof of Theorem 2 to construct an augmented direct mechanism Φ(δ) for f̂ . We will engineer

the parameter vector δ in a way so that truth-telling (sTi,yi(θi) = θi) becomes a BNFE. Since this

behavior is y-independent, we skip all yi-related notation and use precisely the notation from the

proof of Theorem 2. The only di�erence is that, here, we will have to check the best-response

conditions for all types yi ∈ Yi.
From the arguments in the proof of Theorem 2 it follows that the (yi-independent) kindness

of agent i = 1, 2 in the hypothetical truth-telling equilibrium is given by

κi(s
T
i , s

T
j |δ) = h(Πj(s

T
i , s

T
j |0)−Πe

j(s
T
j |0) + δij/2).

As in the proof of Proposition 3, let

δ∗ij = 2(κ̄−Πj(s
T |0) + Πe

j(s
T
j |0)),

where ∆i < κ̄ implies δ∗ij > 0. Let δ∗ii be any value that satis�es 0 < δ∗ii ≤ δ∗ij . We now obtain

that κi(s
T
i , s

T
j |δ∗) = κ̄ holds. In the hypothetical BNFE, type yi of agent i therefore maximizes

Πi(si, s
T
j |0) + xi(si)δ

∗
ii + yi κ̄ h(Πj(si, s

T
j |0)−Πj(s

T
i , s

T
j |0) + κ̄− xi(si)δ∗ij), (28)

where the de�nition of δ∗ij has been substituted once. For strategy si = sTi this expression

becomes Πi(s
T
i , s

T
j |0) + yi κ̄ h(κ̄). We now show that there are no strategies s′i ∈ Si which yield

a strictly larger value of (28) than this.

For any s′i ∈ Si, de�ne

Ci(s
′
i) = Πi(s

′
i, s

T
j |0)−Πi(s

T
i , s

T
j |0) + xi(s

′
i)δ
∗
ii,

which captures the change in agent i's material payo� when switching from sTi to s′i. Similarly,

Cj(s
′
i) = Πj(s

′
i, s

T
j |0)−Πj(s

T
i , s

T
j |0)− xi(s′i)δ∗ij

is the corresponding change of the argument of function h in (28). Material Pareto-e�ciency of

f̂ and δ∗ii ≤ δ∗ij imply that Ci(s
′
i) + Cj(s

′
i) ≤ 0. Observe �rst that a strategy s′i with Ci(s

′
i) ≤ 0

can never be a pro�table deviation from sTi , as it decreases i's own payo� in (28) and cannot

increase psychological payo�s due to the binding upper bound κ̄. We therefore need to consider

only strategies with Ci(s
′
i) > 0 and thus Cj(s

′
i) < 0 (so that the upper kindness bound κ̄ is

always slack).

Among such strategies, consider �rst those which additionally satisfy xi(s
′
i) = 0. From

−κ̄ < −∆i ≤ Πj(s
′
i, s

T
j |0) − Πj(s

T
i , s

T
j |0) it follows that the argument of function h in (28) is
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strictly bounded away from the lower bound −κ̄ across all those (�nitely many) strategies. The

bounding function h can therefore be omitted, and from Ci(s
′
i)+Cj(s

′
i) ≤ 0 and yiκ̄ ≥ yiκ̄ ≥ 1 it

follows that no such strategy can be a pro�table deviation from sTi . Now consider the strategies

which satisfy xi(s
′
i) > 0. The additional gain in own material payo�, compared to the otherwise

identical strategy s′′i with xi(s
′′
i ) = 0, is of size xi(s

′
i)δ
∗
ii. From the above argument about strict

slackness of the lower bound, it follows that there exists a number k > 0 such that the additional

loss in psychological payo� is of size yi κ̄ min{xi(s′i)δ∗ij , k}. Setting δ∗ii small enough so that it

also satis�es δ∗ii ≤ k, in addition to δ∗ii ≤ δ∗ij , ensures that none of these strategies can be a

pro�table deviation from sTi either.

B Many Agents

Extending the basic mechanism design framework to an arbitrary number n of agents is straight-

forward. We can then denote by sbij agent i's belief about j's strategy, and write sbi = (sbij)j 6=i.

Analogously, sbbijk is agent i's belief about j's belief about k's strategy, and we also write

sbbij = (sbbijk)k 6=j and s
bb
i = (sbbij )j 6=i. The psychological externalities between n agents could po-

tentially be multilateral, but we follow the literature (e.g. Dufwenberg and Kirchsteiger, 2004)

and assume for simplicity that kindness sensations arise only bilaterally. Hence the kindness

that agent i experiences in her relation with agent j does not depend on the implications of j's

behavior for some third agent k. Agent i's expected utility can then be stated as

Ui(si, s
b
i , s

bb
i ) = Πi(si, s

b
i) +

∑
j 6=i

yij κij(si, s
b
i)κji(s

b
i , s

bb
i ).

Here, yij are (possibly relation-speci�c) kindness weights, κij(si, s
b
i) = h(Πj(si, s

b
i) − Πe

j(s
b
i))

measures how kind i intends to be to j, and κji(s
b
ij , s

bb
ij ) = h(Πi(s

b
ij , s

bb
ij ) − Πe

i (s
bb
ij )) is i's belief

about the kindness intended by j. Equitable payo�s are determined according to

Πe
j(s

b
i) =

1

2

[
max

si∈Eij(sbi )
Πj(si, s

b
i) + min

si∈Eij(sbi )
Πj(si, s

b
i)

]
,

where Eij(s
b
i) is the set of bilaterally Pareto-e�cient strategies of agent i. We de�ne a BNFE

as a strategy pro�le s∗ so that, for all agents i, (a) s∗i ∈ argmaxsi∈Si
U(si, s

b
i , s

bb
i ), (b) sbi = s∗−i,

and (c) sbbi = (s∗−j)j 6=i.

We �rst discuss how our results on strong implementability (Section 4) extend to this setting.

Given an SCF f , let

∆ij = max
θj∈Θj

E[vi(q
f
i (θ̃−j , θj), θ̃i) + tfi (θ̃−j , θj)]− min

θj∈Θj

E[vi(q
f
i (θ̃−j , θj), θ̃i) + tfi (θ̃−j , θj)]

be a measure of the maximal impact that j's type has on i's expected payo�. If the insurance

property holds, which now requires ∆ij = 0 for all i and j, then no agent can unilaterally a�ect

the expected payo� of any other agent in the direct mechanism. From the arguments developed

earlier, it then follows that Theorem 1 can be extended: If f is BIC and satis�es the insurance

property, then f is strongly implementable in BNFE.
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For the case of two agents, Proposition 1 shows that the AGV mechanism satis�es the

insurance property. This result does not generally extend to the case of n agents. It extends,

however, under symmetry of expected externalities, which requires that, for each i and θi,

E[vj(q
f
j (θi, θ̃−i), θ̃j)] = E[vk(q

f
k (θi, θ̃−i), θ̃k)]

holds for all j, k 6= i. If all agents' expected consumption utilities are a�ected equally by agent

i's type, so that the expected externalities are evenly distributed, then the AGV transfers once

more guarantee the insurance property. Symmetry arises naturally if the environment is such

that all agents have identical payo� functions, their types are identically distributed, and the

consumption rule (qf1 , ..., q
f
n) treats them all equally. Proposition 2, by contrast, extends to the

n agent setting with no further quali�cation. The construction of the strongly implementable

version f̄ of f is given by

tf̄i (θi, θ−i) = E[vi(q
f
i (θi, θ̃−i), θi) + tfi (θi, θ̃−i)]− vi(qfi (θi, θ−i), θi).

Some of our results on weak implementability (Section 5) carry over to the n agent case in

a straightforward way, others would require a more elaborate analysis that is beyond the scope

of this paper. Our proof of the augmented revelation principle did not make use of arguments

that are speci�c to the case of two agents, and hence continues to apply. Theorem 2 provides

the su�cient condition y ∈ Y f for implementability of a materially Pareto-e�cient SCF f in

BNFE, where

Y f = {(y1, y2) ∈ R2
+ | yi > 0 and 1/yi ≤ κ̄−∆i for both i = 1, 2}.

If κ̄ = ∞, so that there are no exogenous bounds on the intensity of kindness sensations, the

su�cient condition reduces to the requirement that both y1 and y2 are strictly positive. This

statement continues to hold in the setting with n agents. If all kindness weights yij are strictly

positive, then the proof of Theorem 2 can be generalized by introducing bilateral redistribution

possibilities and calibrating them to support a truth-telling equilibrium. We conjecture that this

logic extends to the case in which κ̄ <∞, but we have to leave this question for future research.

An extension would require a general characterization of the set Y f for an environment with n

agents. For this paper, this would lead us astray.

Proposition 3 provides two su�cient conditions for the possibility to implement an SCF f

so that both agents experience a maximal kindness of κ̄. The �rst one is that f is BIC and

has the insurance property. This �nding extends to the n agent case without complications.

If ∆ij = 0 for all i and j, then we can, as in case (a) of the proof of Proposition 3, engineer

kindness sensations of κ̄ by means of side-transfers that will not take place in equilibrium. The

second su�cient condition is that f is materially Pareto-e�cient and y ∈ Y f . An extension of

this condition is more involved, because it would, again, require a general characterization of

the set Y f for an environment with n agents.
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C Interim Fairness Equilibrium

Consider an environment E and a mechanism Φ. In this appendix, we develop the notion of an

interim fairness equilibrium (IFE) and provide conditions under which a strategy pro�le s∗ is

an IFE if and only if it is a BNFE. We assume throughout that �rst- and second-order beliefs

about strategies are not type-dependent. Since we require that beliefs are correct in IFE, this

assumption is without loss of generality.

If type θi of agent i has belief s
b
i and chooses message mi, this yields an expected material

payo� which we denote by

Πint
i (mi, s

b
i |θi) = E[vi(q

g
i (mi, s

b
i(θ̃j)), θi) + tgi (mi, s

b
i(θ̃j))].

We denote by κinti (mi, s
b
i |θi) the kindness intended by type θi of agent i ex interim. Also, agent

i forms a belief κintj (sbi(θj), s
bb
i |θj) about the interim kindness of any one type θj of the other

agent. However, the type θj is privately observed by agent j. We therefore assume that i assesses

the kindness intended by j according to the expected value of κintj (sbi(θj), s
bb
i |θj),

κ̄intj (sbi , s
bb
i ) = E[κintj (sbi(θ̃j), s

bb
i |θ̃j)].

Interim utility of type θi of agent i is then given by

U inti (mi, s
b
i , s

bb
i |θi) = Πint

i (mi, s
b
i |θi) + yi κ

int
i (mi, s

b
i |θi) κ̄intj (sbi , s

bb
i ).

De�nition 5. An IFE is a strategy pro�le s∗ = (s∗1, s
∗
2) such that, for both i = 1, 2,

(a) s∗i (θi) ∈ arg maxmi∈Mi U
int
i (mi, s

b
i , s

bb
i |θi) for all θi ∈ Θi,

(b) sbi = s∗j , and

(c) sbbi = s∗i .

The following proposition states that, if kindness at the ex ante stage is equal to the expected

value of kindness at the ex interim stage, then the concepts of IFE and BNFE are equivalent.

Proposition 7. Suppose that, for both i = 1, 2, all si ∈ Si, and all sbi ∈ Sj,

κi(si, s
b
i) = E[κinti (si(θ̃i), s

b
i |θ̃i)]. (29)

Then, s∗ is an IFE if and only if it is a BNFE.

Proof. (29) implies that κ̄intj (sbi , s
bb
i ) = E[κintj (sbi(θ̃j), s

bb
i |θ̃j)] = κj(s

b
i , s

bb
i ) and hence

U inti (mi, s
b
i , s

bb
i |θi) = Πint

i (mi, s
b
i |θi) + yi κ

int
i (mi, s

b
i |θi)κj(sbi , sbbi ).

Thus,

E[U inti (si(θ̃i), s
b
i , s

bb
i |θ̃i)] = E[Πint

i (si(θ̃i), s
b
i |θ̃i)] + yi E[κinti (si(θ̃i), s

b
i |θ̃i)]κj(sbi , sbbi )

= Πi(si, s
b
i) + yi κi(si, s

b
i)κj(s

b
i , s

bb
i ),
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and hence Ui(si, s
b
i , s

bb
i ) = E[U inti (si(θ̃i), s

b
i , s

bb
i |θ̃i)]. By standard arguments, since all types of

agent i occur with positive probability, it then follows that s∗i ∈ arg maxsi∈Si Ui(si, s
b
i , s

bb
i ) if and

only if s∗i (θi) ∈ arg maxmi∈Mi U
int
i (mi, s

b
i , s

bb
i |θi) for all θi ∈ Θi.

We have not made assumptions on how the interim kindness intentions are determined. A

conceivable way of modeling them is to proceed as in the body of the text, replacing all ex

ante notions by their ex interim analogues. Then, there are two potential obstacles to verifying

condition (29), i.e., to expressing κi as an expectation over the terms κinti . First, the ex ante

equitable payo� might not correspond to an expectation over the ex interim equitable payo�s, for

instance because they are de�ned based on di�erent sets of Pareto-e�cient strategies/messages.

Second, a tight kindness bound κ̄ might become binding for some ex interim but not for the ex

ante kindness term. In any case, the condition in Proposition 7 allows us to verify whether or

not IFE and BNFE are equivalent.

D Proofs of Observations

D.1 Proof of Observation 1

Consider the bilateral trade example with parameters (5) and 5/2 < κ̄. In the direct mechanism

for f∗, the set of strategies for agent i is Si = {sTi , sHi , sLi , s
−T
i }, where sTi is truth-telling, sHi

prescribes to announce the high type θ̄i whatever the true type, s
L
i prescribes to always announce

the low type θi, and s
−T
i is the strategy of always lying, i.e., s−Ti (θi) = θ̄i and s

−T
i (θ̄i) = θi. We

seek to show that (sTb , s
T
s ) is not a BNFE, for any y with yb > 0 and/or ys > 0. We proceed by

contradiction and suppose that (sTb , s
T
s ) is a BNFE for some such y. Beliefs are correct in the

hypothetical equilibrium, which implies that sbb = sbbs = sTs and sbs = sbbb = sTb .

The seller's equitable payo�. Given sTs , varying the buyer's strategies yields payo�s

Πb(s
T
b , s

T
s ) = 20, Πs(s

T
b , s

T
s ) = 20,

Πb(s
L
b , s

T
s ) = 20, Πs(s

L
b , s

T
s ) = 15,

Πb(s
H
b , s

T
s ) = 0, Πs(s

H
b , s

T
s ) = 25,

Πb(s
−T
b , sTs ) = 0, Πs(s

−T
b , sTs ) = 20.

Inspection of these expressions reveals that s−Tb is not conditionally Pareto-e�cient, because a

switch to sTb makes the buyer better o� and leaves the seller una�ected. Similarly, sLb is not

e�cient, because a switch to sTb makes the seller better o� and leaves the buyer una�ected. The

remaining two strategies are e�cient, so that the equitable payo� for the seller from the buyer's

perspective is Πe
s(s

T
s ) = 45/2.

The buyer's equitable payo�. Given sTb , varying the seller's strategies yields

Πb(s
T
b , s

T
s ) = 20, Πs(s

T
b , s

T
s ) = 20,

Πb(s
T
b , s

L
s ) = 25, Πs(s

T
b , s

L
s ) = 0,

Πb(s
T
b , s

H
s ) = 15, Πs(s

T
b , s

H
s ) = 20,

Πb(s
T
b , s
−T
s ) = 20, Πs(s

T
b , s
−T
s ) = 0.

54



Both s−Ts and sHs are Pareto-dominated by sTs , while the other strategies are e�cient. The

equitable payo� for the buyer is therefore also Πe
b(s

T
b ) = 45/2.

Truth-telling is not a BNFE. In the hypothetical BNFE (sTb , s
T
s ), we have κb(s

b
s, s

bb
s ) =

κs(s
b
b, s

bb
b ) = h(−5/2) = −5/2. The buyer then prefers a deviation from sTb to sLb if and only if

Πb(s
L
b , s

T
s )−

(
5yb
2

)
h

(
Πs(s

L
b , s

T
s )− 45

2

)
> Πb(s

T
b , s

T
s )−

(
5yb
2

)
h

(
Πs(s

T
b , s

T
s )− 45

2

)
.

If yb > 0, this can be simpli�ed to h(−15/2) < h(−5/2), which is satis�ed because 5/2 < κ̄.

Hence (sTb , s
T
s ) is not a BNFE. The analogous argument applies to the seller if ys > 0.

D.2 Proof of Observation 2

We seek to show that (sTb , s
T
s ) is not a BNFE in the direct mechanism for f∗∗. We again proceed

by contradiction. Fix (yb, ys) ∈ [0,∞[2 and suppose that (sTb , s
T
s ) is a BNFE. Beliefs are correct

in the hypothetical equilibrium, which implies that sbb = sbbs = sTs and sbs = sbbb = sTb .

The seller's equitable payo�. Given sTs , varying the buyer's strategies yields

Πb(s
T
b , s

T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s),

Πs(s
T
b , s

T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s),

Πb(s
L
b , s

T
s ) =

1

4
(θ̄b − θs),

Πs(s
L
b , s

T
s ) =

1

4
(θb − θs),

Πb(s
H
b , s

T
s ) =

1

4
(θb − θs) +

1

4
(θb − θ̄s),

Πs(s
H
b , s

T
s ) =

1

4
(θ̄b − θs) +

1

4
(θ̄b − θ̄s),

Πb(s
−T
b , sTs ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s)−

1

4
(θ̄b − θb),

Πs(s
−T
b , sTs ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s).

Inspection of these expressions reveals that s−Tb is not conditionally Pareto-e�cient, because a

switch to sTb makes the buyer better o� and leaves the seller una�ected. All other strategies are

e�cient since

Πb(s
L
b , s

T
s ) > Πb(s

T
b , s

T
s ) > Πb(s

H
b , s

T
s ),

Πs(s
L
b , s

T
s ) < Πs(s

T
b , s

T
s ) < Πs(s

H
b , s

T
s ).

Now we can easily compute that, from the buyer's perspective, the equitable payo� for the seller

is her payo� under truth-telling: Πe
s(s

T
s ) = Πs(s

T
b , s

T
s ).

The buyer's equitable payo�. Given sTb , varying the seller's strategies yields

Πb(s
T
b , s

T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s),

Πs(s
T
b , s

T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s),

55



Πb(s
T
b , s

L
s ) =

1

4
(θb − θs) +

1

4
(θ̄b − θs),

Πs(s
T
b , s

L
s ) =

1

4
(θ̄b − θ̄s) +

1

4
(θb − θ̄s),

Πb(s
T
b , s

H
s ) =

1

4
(θ̄b − θ̄s),

Πs(s
T
b , s

H
s ) =

1

4
(θ̄b − θs),

Πb(s
T
b , s
−T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s),

Πs(s
T
b , s
−T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s)−

1

4
(θ̄s − θs).

Again, s−Ts is Pareto-dominated by sTs , while all other strategies are e�cient due to

Πb(s
T
b , s

L
s ) > Πb(s

T
b , s

T
s ) > Πb(s

T
b , s

H
s ),

Πs(s
T
b , s

L
s ) < Πs(s

T
b , s

T
s ) < Πs(s

T
b , s

H
s ).

The equitable payo� for the buyer is then also Πe
b(s

T
b ) = Πb(s

T
b , s

T
s ).

Truth-telling is not a BNFE. In the hypothetical BNFE (sTb , s
T
s ) we have κb(s

b
s, s

bb
s ) = 0.

This implies that the seller chooses ss ∈ Ss in order to maximize Πs(s
T
b , ss). But sTs is not a

solution to this problem, since sHs yields a strictly larger payo� as shown above. Hence (sTb , s
T
s )

is not a BNFE.

D.3 Proof of Observation 3

Consider the hypothetical truth-telling BNFE sT = (sTb , s
T
s ) of Φ′, in which beliefs are correct.

Equitable payo�s. Given sTs , any strategy sb that announces θb yields the same payo� pairs as

the strategy that announces θb instead, except for the additional redistribution from the seller to

the buyer. Since sLb maximizes Πb(sb, s
T
s ) and minimizes Πs(sb, s

T
s ) in the direct mechanism (see

Appendix D.2), strategy s
b
with s

b
(θb) = θ

b
for all θb now maximizes Πb(sb, s

T
s ) and minimizes

Πs(sb, s
T
s ) in Φ′, and hence is e�cient. It yields the payo�s

Πb(sb, s
T
s ) =

1

4
(θ̄b − θs) +

1

2
δb,

Πs(sb, s
T
s ) =

1

4
(θb − θs)−

1

2
δb.

The e�cient strategy which yields the highest payo� for the seller remains sHb . We can now

immediately compute the equitable payo� Πe
s(s

T
s ) = Πs(s

T
b , s

T
s )− δb/4. A symmetric argument

implies Πe
b(s

T
b ) = Πb(s

T
b , s

T
s )− δs/4.

Truth-telling becomes a BNFE. We now have κb(s
b
s, s

bb
s ) = h(δb/4) and κs(s

b
b, s

bb
b ) = h(δs/4)

in the hypothetical truth-telling equilibrium. Suppose κ̄ ≥ max{1/yb, 1/ys}, and note that

yb, ys > 0. Setting δb = 4/ys and δs = 4/yb then yields κb(s
b
s, s

bb
s ) = 1/ys and κs(s

b
b, s

bb
b ) = 1/yb,

so that the buyer maximizes

Πb(sb, s
T
s ) + h(Πs(sb, s

T
s )−Πe

s(s
T
s ))
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and the seller maximizes

Πs(s
T
b , ss) + h(Πb(s

T
b , ss)−Πe

b(s
T
b )).

Suppose furthermore that

κ̄ ≥ max

{
max
sb∈S′b

|Πs(sb, s
T
s )−Πe

s(s
T
s )|, max

ss∈S′s
|Πb(s

T
b , ss)−Πe

b(s
T
b )|

}
.

Then the bound κ̄ can be ignored in these problems, and both agents are maximizing the sum of

expected material payo�s (given truth-telling of the other agent). Own truth-telling is a solution

to these problems, because the SCF f∗∗ that is realized in this case is e�cient, i.e., it maximizes

the sum of material payo�s for any (θb, θs). Hence s
T is a BNFE.

D.4 Proof of Observation 4

We assume κ̄ =∞ throughout the proof, but it is straightforward to verify that the arguments

continue to hold when κ̄ <∞ is large enough. For agent i, denote by σTi ∈ Si (and analogously

σHi , σ
L
i , and σ

−T
i ) the yi-type's strategy si,yi that announces the material payo� type θi truthfully

(and analogously always high, low, and falsely), but always announces the high reciprocity type

ȳ. Consider the hypothetical truth-telling BNFE sT of the direct mechanism for f∗∗∗, in which

beliefs are correct.

The seller's equitable payo�. Given sTs , varying among the above strategies of the buyer

yields the payo�s

Π̄b(σ
T
b , s

T
s ) = (1− ε)Πb(σ

T
b , s

T
s,ȳ) + ε

[
1

4
(θ̄b − θ̄s)−

1

2
δs

]
,

Π̄s(σ
T
b , s

T
s ) = (1− ε)Πs(σ

T
b , s

T
s,ȳ) + ε

[
1

4
(θ̄b − θs) +

1

2
δs

]
,

Π̄b(σ
L
b , s

T
s ) = (1− ε)Πb(σ

L
b , s

T
s,ȳ),

Π̄s(σ
L
b , s

T
s ) = (1− ε)Πs(σ

L
b , s

T
s,ȳ),

Π̄b(σ
H
b , s

T
s ) = (1− ε)Πb(σ

H
b , s

T
s,ȳ) + ε

[
1

2
(θb − θ̄s)− δs

]
,

Π̄s(σ
H
b , s

T
s ) = (1− ε)Πs(σ

H
b , s

T
s,ȳ) + ε

[
1

2
(θ̄b − θs) + δs

]
,

Π̄b(σ
−T
b , sTs ) = (1− ε)Πb(σ

−T
b , sTs,ȳ) + ε

[
1

4
(θb − θ̄b) +

1

4
(θb − θ̄s)−

1

2
δs

]
,

Π̄s(σ
−T
b , sTs ) = (1− ε)Πs(σ

−T
b , sTs,ȳ) + ε

[
1

4
(θ̄b − θs) +

1

2
δs

]
.

The expressions on the RHS that are weighted by (1 − ε) correspond exactly to the payo�s

derived in the proof of Observation 2. The additional terms that are weighted by ε arise because

the seller sometimes announces (truthfully) to be sel�sh, i.e., they correspond to the payo�s

from playing against sTs,0. Inspection of these payo�s, using the values derived in the proof of

Observation 2, reveals that σ−Tb is not conditionally Pareto-e�cient, because a switch to σTb
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makes the buyer better o� and leaves the seller una�ected, irrespective of the values of ε, δs > 0.

For the remaining three strategies, there exists a critical value ε̄b > 0 such that

Π̄b(σ
L
b , s

T
s ) > Π̄b(σ

T
b , s

T
s ) > Π̄b(σ

H
b , s

T
s ),

Π̄s(σ
L
b , s

T
s ) < Π̄s(σ

T
b , s

T
s ) < Π̄s(σ

H
b , s

T
s ),

whenever ε < ε̄b, irrespective of the value of δs > 0 (this critical value arises for the comparison

of Π̄b(σ
L
b , s

T
s ) and Π̄b(σ

T
b , s

T
s ); all other comparisons are unambiguous). The strategies not yet

considered sometimes announce the low reciprocity type yb = 0. They yield the same payo�

pairs as the (above considered) strategy that announces (ȳ, θb) instead, except for the additional

redistribution from the seller to the buyer. Since σLb maximizes Π̄b(sb,yb , s
T
s ) and minimizes

Π̄s(sb,yb , s
T
s ) on {σTb , σLb , σHb }, provided ε < ε̄b, the strategy σ

LL
b with σLLb (θb) = (0, θb) maximizes

Π̄b(sb,yb , s
T
s ) and minimizes Π̄s(sb,yb , s

T
s ) on Sb and hence is e�cient. It yields

Π̄s(σ
LL
b , sTs ) = (1− ε)

[
1

4
(θb − θs)−

1

2
δb

]
.

The e�cient strategy which yields the highest payo� for the seller remains σHb . We can now

compute the equitable payo� for the case when ε < ε̄b:

Πe
s(s

T
s ) = Π̄s(σ

T
b , s

T
s )− (1− ε)1

4
δb.

The buyer's equitable payo�. Given sTb , varying the seller's strategies yields

Π̄b(s
T
b , σ

T
s ) = (1− ε)Πb(s

T
b,ȳ, σ

T
s ) + ε

[
1

4
(θ̄b − θs) +

1

2
δb

]
,

Π̄s(s
T
b , σ

T
s ) = (1− ε)Πs(s

T
b,ȳ, σ

T
s ) + ε

[
1

4
(θb − θs)−

1

2
δb

]
,

Π̄b(s
T
b , σ

L
s ) = (1− ε)Πb(s

T
b,ȳ, σ

L
s ) + ε

[
1

2
(θ̄b − θs) + δb

]
,

Π̄s(s
T
b , σ

L
s ) = (1− ε)Πs(s

T
b,ȳ, σ

L
s ) + ε

[
1

2
(θb − θ̄s)− δb

]
,

Π̄b(s
T
b , σ

H
s ) = (1− ε)Πb(s

T
b,ȳ, σ

H
s ),

Π̄s(s
T
b , σ

H
s ) = (1− ε)Πs(s

T
b,ȳ, σ

H
s ),

Π̄b(s
T
b , σ

−T
s ) = (1− ε)Πb(s

T
b,ȳ, σ

−T
s ) + ε

[
1

4
(θ̄b − θs) +

1

2
δb

]
,

Π̄s(s
T
b , σ

−T
s ) = (1− ε)Πs(s

T
b,ȳ, σ

−T
s ) + ε

[
1

4
(θs − θ̄s) +

1

4
(θb − θ̄s)−

1

2
δb

]
,

where the expressions weighted by (1 − ε) are again those from the proof of Observation 2.

Proceeding as before we can show that σ−Ts is not conditionally Pareto-e�cient, while there

exists a critical value ε̄s > 0 such that

Π̄b(s
T
b , σ

L
s ) > Π̄b(s

T
b , σ

T
s ) > Π̄b(s

T
b , σ

H
s ),
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Π̄s(s
T
b , σ

L
s ) < Π̄s(s

T
b , σ

T
s ) < Π̄s(s

T
b , σ

H
s ),

whenever ε < ε̄s, irrespective of the value of δb > 0. The payo�s from the not yet considered

strategies can again be derived from these expressions with an additional redistribution from

the buyer to the seller. It follows that σLHs with σLHs (θs) = (0, θ̄s) maximizes Π̄s(s
T
b , ss,ys) and

minimizes Π̄b(s
T
b , ss,ys) on Ss and hence is e�cient, provided ε < ε̄s. It yields

Π̄b(s
T
b , σ

LH
s ) = (1− ε)

[
1

4
(θ̄b − θ̄s)−

1

2
δs

]
.

The e�cient strategy which yields the highest payo� for the buyer remains σLb . We can now

compute the equitable payo� for the case when ε < ε̄s:

Πe
b(s

T
b ) = Π̄b(s

T
b , σ

T
s )− (1− ε)1

4
δs.

The buyer's equilibrium kindness. In the hypothetical BNFE sT when ε < ε̄b, we obtain for

the buyer with reciprocity type yb = ȳ a kindness of

κb(s
T
b,ȳ, s

T
s ) = Π̄s(s

T
b,ȳ, s

T
s )−Πe

s(s
T
s ) = Π̄s(σ

T
b , s

T
s )−Πe

s(s
T
s ) = (1− ε)1

4
δb.

For the buyer with reciprocity type yb = 0 we obtain

κb(s
T
b,0, s

T
s ) = Π̄s(s

T
b,0, s

T
s )−Πe

s(s
T
s )

= Π̄s(σ
L
b , s

T
s )− (1− ε)1

2
δb −Πe

s(s
T
s )

= (1− ε)
[

1

8
(θb − θs)−

1

8
(θ̄b − θs)−

1

8
(θ̄b − θ̄s)−

1

4
δb

]
− ε
[

1

4
(θ̄b − θs) +

1

2
δs

]
.

The seller's equilibrium expectation about these terms then becomes

κb(s
b
s, s

bb
s ) = (1− ε)κb(sTb,ȳ, sTs ) + ε κb(s

T
b,0, s

T
s )

= (1− ε)(1− 2ε)
1

4
δb − ε2

1

2
δs + Λb(ε),

where

Λb(ε) = (1− ε)ε
[

1

8
(θb − θs)−

1

8
(θ̄b − θs)−

1

8
(θ̄b − θ̄s)

]
− ε2

[
1

4
(θ̄b − θs)

]
collects terms that do not depend on δb or δs. Λb(ε) is continuous in ε and limε→0 Λb(ε) = 0.

The seller's equilibrium kindness. Proceeding analogously for the seller, for ε < ε̄s we obtain

κs(s
T
s,ȳ, s

T
b ) = (1− ε)1

4
δs

and

κs(s
T
s,0, s

T
b ) = (1− ε)

[
1

8
(θ̄b − θ̄s)−

1

8
(θb − θs)−

1

8
(θ̄b − θs)−

1

4
δs

]
− ε
[

1

4
(θ̄b − θs) +

1

2
δb

]
,
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about which the buyer forms the expectation

κs(s
b
b, s

bb
b ) = (1− ε)κs(sTs,ȳ, sTb ) + ε κs(s

T
s,0, s

T
b )

= (1− ε)(1− 2ε)
1

4
δs − ε2

1

2
δb + Λs(ε),

where

Λs(ε) = (1− ε)ε
[

1

8
(θ̄b − θ̄s)−

1

8
(θb − θs)−

1

8
(θ̄b − θs)

]
− ε2

[
1

4
(θ̄b − θs)

]
.

Note again that Λs(ε) is continuous and that limε→0 Λs(ε) = 0.

Truth-telling becomes a BNFE. We now assume that ε < min{ε̄b, ε̄s}. We then want to

choose δb and δs such that κb(s
b
s, s

bb
s ) = 1/ȳ and κs(s

b
b, s

bb
b ) = 1/ȳ in the hypothetical truth-

telling equilibrium. This system of equations can be written in matrix form as Aδ = z, where

A =

(
(1− ε)(1− 2ε)/4 −ε2/2

−ε2/2 (1− ε)(1− 2ε)/4

)
δ =

(
δb

δs

)
z =

(
1/ȳ − Λb(ε)

1/ȳ − Λs(ε)

)
.

We have detA = (1 − ε)2(1 − 2ε)2/16 − ε4/4, which is continuous and strictly decreasing in ε,

takes the value zero for ε = 1/3, and satis�es limε→0 detA = 1/16. In particular, the system

has a unique solution whenever ε < 1/3, which we also assume from now on. To apply Cramer's

rule, de�ne

Ab =

(
1/ȳ − Λb(ε) −ε2/2
1/ȳ − Λs(ε) (1− ε)(1− 2ε)/4

)
As =

(
(1− ε)(1− 2ε)/4 1/ȳ − Λb(ε)

−ε2/2 1/ȳ − Λs(ε)

)
,

from which we can obtain detAb = (1 − ε)(1 − 2ε) [1/ȳ − Λb(ε)] /4 + ε2 [1/ȳ − Λs(ε)] /2 and

detAs = (1 − ε)(1 − 2ε) [1/ȳ − Λs(ε)] /4 + ε2 [1/ȳ − Λb(ε)] /2. These terms are continuous in ε

and satisfy limε→0 detAb = limε→0 detAs = 1/4ȳ. Hence, for ε small, enough we obtain well-

de�ned solutions δb = detAb/ detA > 0 and δs = detAs/ detA > 0 (which satisfy limε→0 δb =

limε→0 δs = 4/ȳ). Given these transfers, the buyer with reciprocity type yb = 0 maximizes

Π̄b(sb,0, s
T
s ), for which sb,0 = sTb,0 is indeed a solution, because it yields the same payo�s as

σLLb discussed earlier. The buyer with reciprocity type yb = ȳ now maximizes Π̄b(sb,ȳ, s
T
s ) +

Π̄s(sb,ȳ, s
T
s ). A solution must be contained in the subset {σTb , σLb , σHb } ⊂ Sb, as σ

−T
b is Pareto-

dominated and the remaining strategies only induce additional sum-neutral redistribution. Using

the payo�s derived at the beginning of the proof, it follows that sb,ȳ = sTb,ȳ = σTb is indeed a

solution whenever ε is small enough. Analogous arguments show that truth-telling is also a best

response for the seller when ε is small enough, which completes the proof.

E Unconditional E�ciency

E.1 The Unconditional E�ciency Concept

In the body of the text we de�ne equitable payo�s as in Rabin (1993). Dufwenberg and Kirch-

steiger (2004) have proposed an alternative de�nition. For the Dufwenberg-Kirchsteiger equi-
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table payo�, we replace the set of conditionally Pareto-e�cient strategies Ei(s
b
i) ⊆ Si by a set of

unconditionally Pareto-e�cient strategies Ei ⊆ Si. Strategy si belongs to Ei unless there exists
s′i ∈ Si such that Πi(s

′
i, s

b
i) ≥ Πi(si, s

b
i) and Πj(s

′
i, s

b
i) ≥ Πj(si, s

b
i) for all s

b
i ∈ Sj , with strict in-

equality for at least one agent and belief sbi . Note that the maximization part in the de�nition of

equitable payo�s does not depend on whether we use Rabin's or Dufwenberg-Kirchsteiger's def-

inition, as the maximum of Πj(si, s
b
i) on both Ei(s

b
i) and Ei always coincides with its maximum

on the whole strategy set Si.

E.2 Observation 1

We �rst show that Eb = {sTb , sHb , sLb } and Es = {sTs , sHs , sLs }. Consider the buyer (the case for

the seller is analogous). The fact that sTb and sHb belong to Eb follows because both strategies

are e�cient conditional on sbb = sTs , as shown in Appendix D.1. Clearly, strategy sLb uniquely

maximizes the buyer's payo� conditional on sbb = sLs , hence s
L
b belongs to Eb as well. Finally,

one can easily verify that strategy s−Tb does not belong to Eb: For any belief sbb of the buyer,

strategy s−Tb yields the same payo� as sTb for the seller, while it always yields a weakly lower

payo� than sTb for the buyer, and a strictly lower payo� if sbb = sTs , as shown in Appendix D.1.

The equitable payo� for the seller from the buyer's perspective is therefore Πe
s(s

T
s ) = 20. By an

analogous argument we also obtain Πe
b(s

T
b ) = 20. We therefore have κb(s

b
s, s

bb
s ) = κs(s

b
b, s

bb
b ) = 0

in the hypothetical BNFE (sTb , s
T
s ). Hence both agents focus on their own material payo�s,

and truth-telling is indeed a BNFE because f∗ is BIC. Observation 1 thus does not hold with

Dufwenberg-Kirchsteiger equitable payo�s.

However, this is in some sense a knife-edge case. If we choose parameters di�erently, then we

can again show that the minimal subsidy SCF f∗ is not strongly implementable in BNFE. For

ease of exposition, we assume again that κ̄ is su�ciently large, so that it can be ignored. We also

retain all other assumptions, except that now the buyer has a low valuation with probability

0.6 and a high valuation with probability 0.4. In this case, one can compute that the minimal

subsidy takes a value of 1 and that trade takes place at prices of 22, 44.5, or 77.5, depending on

marginal cost and marginal valuation, as illustrated in Table 6. After computing Πb(sb, ss) and

Πs(sb, ss) for all strategy pro�les of the direct mechanism, we �nd that Eb = {sTb , sHb , sLb , s
−T
b }

and Es = {sTs , sHs , sLs }. Moreover, we �nd that both agents' kindness would be negative in a

hypothetical truth-telling equilibrium. Speci�cally, the buyer's kindness would be equal to −1

and the seller's kindness would be equal to −0.3. Now, as soon as the weights yb and/or ys are

positive, the agents want to deviate from truth-telling because of the desire to generate a lower

payo� for the other agent. Speci�cally, the buyer would prefer to understate her valuation and

to choose sb = sLb , whereas the seller would prefer to exaggerate her costs and to choose ss = sHs .

θs θ̄s

θb (1, 1 + 22, 1− 22) (0, 1, 1)

θ̄b (1, 1 + 44.5, 1− 44, 5) (1, 1 + 77.5, 1− 77.5)

Table 6: Minimal Subsidy SCF f∗ under Asymmetry
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E.3 Observation 2

One can easily verify that for both i = b, s the strategy s−Ti does not belong to Ei. For any

strategy sj of agent j, strategy s
−T
i yields the same payo� as sTi for j. It always yields a weakly

lower payo� than sTi for agent i, and a strictly lower payo� if agent j chooses sTj (see the payo�s

derived in Appendix D.2). It is also shown in Appendix D.2 that all other strategies from Si are

e�cient conditional on sTj . Consequently, Eb = Eb(s
T
s ) and Es = Es(s

T
b ), so that the remaining

analysis is exactly as in the proof of Observation 2 in Appendix D.2.

E.4 Observation 3

As argued in the proof of Observation 3 in Appendix D.3, strategy s
b
uniquely minimizes the

seller's and maximizes the buyer's expected material payo�, conditional on the seller playing sTs .

Hence s
b
∈ Eb. Likewise, ¯̄ss uniquely minimizes the buyer's and maximizes the seller's expected

material payo�, conditional on the buyer playing sTb . Hence ¯̄ss ∈ Es. The remaining analysis is

thus exactly as in the proof of Observation 3 in Appendix D.3.
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