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Abstract

In a large economy, a first-best provison rule for a public good is robustly implementable with

budget balance because no one individual alone can affect the aggregate outcome. First-best

outcomes can, however, be blocked by coalitions of agents acting in concert. With a requirement

of immunity against robustly blocking coalitions, we find that, for a public good that comes as

a single indivisible unit, a monotonic social choice function cannot condition on preference in-

tensities but only on the population shares of people favoring one outcome over another. Any

such social choice function can be implemented by a simple voting mechanism. With more

public-good provision levels, more complicated mechanisms are required, but they still involve

the counting of votes rather than an assessment of benefits. Monotonicity and immunity against

robust blocking thus provide a foundation for the use of voting mechanisms.
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1 Introduction

Large Economies. We study public-good provision in an economy with many participants

where each individual participant is too insignificant to have a noticeable influence on aggregate

outcomes. In other parts of economic theory and political economy, such large economies play

a central role. For private goods, the large-economy paradigm is deemed to provide the proper

framework for studying what happens when there are millions of people and none of them has

the power to affect market prices. In public economics, the large-economy paradigm is used

to study people’s responses to taxation when each person individually is too insignificant to

have a noticeable impact on the government’s budget. In political economy, the large-economy

paradigm is used to study voting when no individual expects to be pivotal for the outcome.

By contrast, most analyses of public-good provision involve small-economy models in which

each individual can have a noticeable impact on aggregate outcomes.1 This approach reflects the

theory’s focus on individual incentive compatibility. The key question is how to calibrate people’s

payments to their expressions of preferences so that they have no wish either to understate

their preferences for the public good (so as to reduce their payments) or to overstate their

preferences (so as to get a greater provision level at other people’s expense).2 For this question

to be nontrivial, each person must have a distinct chance of being “pivotal”, i.e., of having a

noticeable effect on the level of public-good provision through the expression of her preferences.

This requires a small-economy approach.

This small-economy approach may be appropriate for studying how people in a condominium

might decide on how much to spend on maintenance and gardening, it is inappropriate for

studying how a society with millions of people decides on how much to spend on national defense

or on the judicial system. A large-economy model, in which no one person individually is able

to affect the level of public-good provision precisely captures the notion that, as individuals,

people do not expect to have any influence over such collective decisions.

The notion that individual agents are too insignificant to have a noticeable influence on

aggregate outcomes is as relevant for certain problems of public-good provision as it is for

competitive markets or for elections. Limiting the theory of public-good provision to models

in which each agent has a noticeable influence on aggregate outcomes is akin to limiting the

analysis of markets to models of bargaining and oligopoly without ever talking about perfect

competition.

What are the issues? In a large economy, the problem of finding an individually incentive-

compatible mechanism for public-good provision is trivial. Because no one person individually is

able to affect the level of public-good provision, no one person is ever “pivotal”. For individual

incentive compatibility, it therefore suffi ces to have payments that are independent of what

people say. If the preferences that a person expresses neither have an effect on the public-good

1See, for instance, Fudenberg and Tirole (1991), Mas-Colell et al. (1995), or Hindriks and Myles (2006).
2For implementation in dominant strategies, see Clarke (1971), Groves (1973); Green and Laffont (1979 a),

for (interim) Bayes-Nash implementation, see d’Aspremont and Gérard-Varet (1979). More recently, Bergemann

and Morris (2005) have studied interim implementation with a requirement of robustness with respect to the

specification of agents’beliefs about the other participants.

1



provision level nor on the payments that the person has to make, she may as well report her

preferences truthfully.

If preferences are reported truthfully, there is no problem about implementing an effi cient

provision rule for the public good. For example, one can ask people what the public good is

worth to them. If the cross-section average of the reports exceeds the per-capita cost of provision,

the public good is provided, and the cost is evenly shared in the population. If the cross-section

average of the reports falls short of the per-capita cost, the public good is not provided, and no

payments are made. Participation in this scheme may not be voluntary, but there is no problem

of incentive compatibility.3 Truthtelling is actually a (weakly) dominant strategy.

There is also no problem with budget balance. For finite economies, it is well known that

dominant-strategy or robust Bayes-Nash implementation of effi cient public-good provision rules

are incompatible with budget balance. 4 The payments needed to provide appropriate incentives

do not match the costs in all states of the world. In large economies, this is not a problem because

individual incentive provision is trivial.

However, we see another problem. In our view, the theory of public-good provision should be

concerned about groups of people as well as individuals. In collective decision making, we usually

observe interest groups and political parties that contribute to the coordination of individuals

with similar interests and similar views. In relations with their members, these groups may be

hampered by information and incentive problems of their own, but in their relations with the

overall system, they often are able to affect aggregate outcomes.

To take account of group concerns, we impose a condition of coalition proofness. Under

this condition, there must not be any group of participants that is able to affect the aggregate

outcome by coordinating its members’ reports so as to make a significant set of its members

better off without making any other member worse off. We are not trying to analyse real-world

organizations, such as political parties or industry lobbies, that influence public decisions. Our

purpose is, rather, to investigate in abstract terms, based on the values that different people

attach to a public good, what potential there is for coalitions to form and what constraints such

coalition formation imposes on public-good provision.

In the following section, we use an example to explain why a requirement of coalition proof-

ness is called for and why it makes a difference. We show that first-best implementation may

need to rely on information from people who are actually harmed by the use that is made of their

information. Because none of these people expects to affect the aggregate outcome, individually,

there is no conflict with individual incentive compatibility, but as a group, these people can gain

if they coordinate on falsifying their reports. A requirement of coalition proofness takes such

group interests into account. When this is done, an effi cient public-good provision rule may not

be implementable.

We also use the example to show that the failure of coalition proofness in the large economy

has a counterpart in small economies, i.e. in economies with finitely many participants. For

3We do not insist on voluntary participation. Participation constraints are irrelevant if the state has powers

of coercion and these powers can be used to make people contribute to financing a public good even when it does

not benefit them.
4See Green and Laffont (1979 a).
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small economies, we actually identify two types of failure of coalition proofness. One type of

failure, which has been observed in the literature, is related to incentive payments for individuals

who are pivotal and to the associated lack of budget balance; this failure of coalition proofness

is only relevant in small economies.5 A second type of failure involves the ability of potentially

large groups with common interests to manipulate information so as to to change the overall

outcome. This failure is relevant in large economies and in small economies.

Our analysis. In the body of the paper, we develop these insights formally. We use a Bayesian

approach to implementation but require robustness of the social choice function. Neither the

public-good provision rule, nor the participants’payments are allowed to depend on the specifi-

cation of beliefs that people have about each other. We also impose a such robustness condition

on the design of deviating coalitions.

We focus on social choice functions that are monotonic in the sense that, if the distribution of

public-good valuations in the population is shifted “upwards”in the sense of first-order stochastic

dominance, then the level of public-good provision is not lowered.6 We show that, if a monotonic

social choice function is immune to robust coalition formation, as well as anonymous and robustly

implementable, then it can be implemented by a voting mechanism, i.e., a mechanism under

which the level of the public-good that is provided depends on the number of people preferring

the chosen level over the different alternatives, without regard to the intensities of people’s

preferences. Conversely, any anonymous and robustly implementable social choice function that

is immune to robust coalition formation can be implemented by a voting mechanism.

For a public good that comes as a single indivisible unit, it suffi ces to ask people who is for

and who is against the provision of the public good and to condition the outcome on the shares of

votes for the two alternatives. This conclusion remains true if the public good comes in multiple

units, and per-unit costs are constant. With multiple units and increasing per-unit costs, more

complicated procedures can be used, but it remains true that, if the social choice function is

to be immune against robust blocking, as well as monotonic, then it cannot take account of

preference intensities and a generalized voting procedure can be used to implement it. For an

important class of social choice functions, we find that it suffi ces to ask, for each potential level

of public good how many people are for and how many people are against an additional one-unit

increase in the provision level and to proceed with the increase if the population share of the

proponents exceeds a specified threshold.

Our results thus provide a link between mechanism design and political economy approaches

to public-goods provision. In practice, how much we spend on public-goods such as highways,

national defense, or the judicial system is determined in the political system. In democratic

societies, public decision making depends on voting with a “one-person-one-vote-principle”. In

most countries voting is about the people who will become members of parliaments and gov-

ernments, but in some countries also have popular votes on substantive questions. Switzerland,

5See Bennett and Conn (1977), Green and Laffont (1979 b).
6The focus on monotonic provision rules is not restrictive if we think of an economy with a continuum of

individuals as an idealization of a large, but finite economy. In an economy with finitely many individuals,

monotonicity is an implication of individual incentive compatibility.
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for example, has public referenda on such issues, from the installation of a municipal swimming

pool to the new transalpine tunnels and even on whether to abolish the army.

Economists have traditionally been critical of voting because voting does not take account of

preference intensities and therefore can lead to ineffi cient outcomes.7 If there are many people

opposing the provision of the public good and few people promoting it, a voting mechanism will

stipulate non-provision, which might be sub-optimal because the benefits for the proponents

might be large while the opponents do not feel very strongly about the matter. Our analysis

shows that this criticism is irrelevant if public-good provision mechanisms must be robustly

incentive-compatible and coalition-proof as well as anonymous. Mechanisms that take account

of preference intensities necessarily violate one of these conditions.8

Related work. The large-economy approach to mechanism design has been pioneered by

Hammond (1979, 1987), Mas-Colell and Vives (1993) and Guesnerie (1995). We extend their

framework so as to allow for aggregate uncertainty, i.e. for uncertainty about the cross-section

distribution of preferences in the economy as a whole.9

Coalition-proofness in public-good provision has been studied by Bennett and Conn (1977),

Green and Laffont (1979 a), and Crémer (1996), who showed that Groves mechanisms, which

implement effi cient allocations in dominant strategies, are typically not coalition-proof. As we

explain in the next section, their arguments involve failures of coalition proofness that arise

when some agents are pivotal. By contrast, we focus on failures of coalition proofness that arise

when no individual agent is pivotal but a significant set of agents can benefit by coordinating

reports so that the overall outcome is changed.

Whereas Bennett and Conn (1977), Green and Laffont (1979 a), and Crémer (1996) relied on

a concept of coalition proofness ex post, i.e., after the state of the world has been revealed, we

consider coalition proofness ex interim, i.e., at a time when each agent knows his or her individual

valuation but is uncertain about the overall state of the economy. Like Laffont and Martimort

(1997, 2000), we impose incentive constraints on coalition formation that take account of the

fact that each agent’s valuation is known to that agent only and not to whoever organizes the

coalition. Whereas Laffont and Martimort focus on deviations by the grand coalition of all

agents, we allow for deviations by coalitions of arbitrary size. If a coalition comprises a subset of

agents, the coalition organizer can use an incentive mechanism to learn the coalition members’

valuations for the public good but he cannot learn the valuations of people outside the coalition.

To take account of this lack of information, we require failures of coalition proofness to be robust,

7Thus, Buchanan and Tullock (1962) argue that vote-trading would be desirable because it provides a way to

overcome this problem. Similarly, Casella (2005) argues that intensities could be taken into account if voters had

an endowment of votes and could assign more votes to issues that are of greater importance to them. Goeree and

Zhang (2013) propose to replace votes by monetary bids.
8When we refer to voting mechanisms, we do not necessarily mean majority rule. A mechanism involving

majority voting can be but need not be optimal. If, at the stage of mechanism design, there is prior information

that beneficiaries of the public good feel strongly about it and opponents do not, it may be desirable to have a

rule by which the public good is already provided if a suffi ciently large minority votes in favor. Majority voting

is likely to be desirable if there is no such prior information about potential biases in voting.
9The combination of aggregate uncertainty with private values at the individual level gives rise to some measure-

theoretic issues, for which we refer the reader to Qiao et al. (forthcoming).
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i.e. the collective deviation that is implemented by a coalition must make the coalition members

better off no matter what the situation of the rest of the economy may be.

In Bierbrauer and Hellwig (2015), we study the implications of coalition proofness for public-

good provision in a setting with finitely many participants and show that any robustly imple-

mentable and coalition-proof social choice function must be implementable by a voting mecha-

nism. However, in that paper we allow coalitions to condition their behaviours on the beliefs that

participants have about each other and we require coalition proofness for each specification of

the agents’belief systems. Coalition organizers are thus assumed to know more than the overall

mechanism designer. For belief systems that are degenerate in the sense that all participants

“know”what the state of the economy is, the problem of what a coalition organizer knows about

about people outside the coalition is therefore moot. In Bierbrauer and Hellwig (2015), the

proof that every robust and coalition-proof social choice function is a voting mechanism makes

essential use of these “complete information belief systems.”This proof strategy is not available

here because we do not allow collective deviations to be conditioned on belief systems, let alone

the situation of people outside coalition. We now require collective deviations by coalitions to be

robustly designed and to be robustly advantageous to coalition members. With this robustness

requirement, we also show that in a large economy, there is no room for side payments between

coalition members; in contrast, in Bierbrauer and Hellwig (2015), absence of side payments was

imposed as an assumption.

Bierbrauer (2009a,b, 2012, 2014); Bierbrauer and Sahm (2010) explore the interaction of

optimal taxation and public-goods provision in large economies. These papers involve envi-

ronments in which individuals differ not only in their preferences for public goods, but also

in their productive abilities, as in the theory of optimal income taxation in the tradition of

Mirrlees (1971). The resulting two-dimensional heterogeneity among agents introduces issues of

multi-dimensional mechanism design, which are the focus of those papers. Bierbrauer (2009b),

Bierbrauer (2012) and Bierbrauer (2014) also invoke a requirement of coalition proofness, which

arises naturally because, under the assumption that there are just two “classes”in terms of

productive abilities and only two possible valuations for a public good, it is easy to see which

coalitions might benefit from manipulating a mechanism for income taxation and public-goods

provision. In contrast, this paper looks at public-good provision in isolation, and develops a

concept of coalition proofness without taking recourse to any natural “class distinctions”.

In the following, Section 2 uses an example to explain in more detail why individual in-

centive compatibility conditions ought to be supplemented by conditions of coalition proofness

and robustness. We also use the example to relate our analysis of public-good provision in a

large economy to the traditional analyses of dominant-strategy implementation or Bayes-Nash

implementation in finite economies. Subsequently, Section 3 presents our formal model and

introduces the requirement of robust implementability. The requirement of coalition proofness

is formally introduced in Section 4. Section 5 gives our main result, i.e., the characterization

of robust and coalition-proof public-goods provision in a large economy. Section 6 discusses

the welfare implications of our characterization, and Section 7 extends the analysis to allow for

multiple provision levels of the public good. The last section contains concluding remarks.

5



2 Why Coalition Proofness? Why Robustness?

In this section, we explain why public-goods analysis should not only involve a requirement of

individual incentive compatibility but also a requirement of coalition proofness. We use a simple

example to illustrate our concerns.

In the example, the public good comes as a single indivisible unit. The per-capita cost of

providing this unit is equal to 4. The benefit an agent draws from the public good if provided

is either 0, or 3, or 10. The shares of agents with valuations 0, 3, and 10 in the population are

denoted as s0, s3, and s10, respectively. An effi cient provision rule stipulates that the public good

should be provided if 3s3 + 10s10 > 4 and that it should not be provided if 3s3 + 10s10 < 4. To

implement this decision rule, one needs to know the values of s3 and s10. If agents’public-good

valuations are their own private information, the needed information about s3 and s10 can only

be obtained if agents can be made to communicate their valuations. This is where individual

incentive compatibility comes in.

To impose some more structure, we assume that there is some number α between zero and

.7 such that the different agents’valuations are the realizations of independent and identically

distributed random variables with probabilities .7−α for the valuation 0, α for the valuation 3,

and .3 for the valuation 10. For a large economy with a continuum of agents, this assumption

implies that the shares s0, s3, s10 of agents with valuations 0, 3, and 10 in the population are

nonrandom and equal to .7− α, α, and .3.10 The public good should then be provided if α > 1
3

and should not be provided if α < 1
3 . The requisite resources can be obtained by a payment rule

under which everybody pays 4 if the public good is provided and 0 if it is not provided. Because

no one agent is ever pivotal for the provision of the public good, a mechanism implementing this

rule for effi cient public-good provision with equal cost sharing is incentive-compatible.

If α is common knowledge, this reasoning is unproblematic. By contrast, if α is the realization

of a nondegenerate random variable α̃, there is a problem because it is not a priori clear whether

the public good should be provided or not. In this case, the information whether the public

good should be provided or not must be inferred from the participants’ reports about their

preferences. If the fraction of people reporting a valuation of 3 exceeds 1
3 , one infers that α̃ >

1
3

and that the public good should be provided.

At this point, however, we are bothered by the notion that effi cient provision can be imple-

mented with a payment rule under which everybody pays 4 if the public good is provided and

0 if it is not provided. Why should people with a valuation of 3 report this valuation honestly?

Reporting a valuation of 3 contributes to making provision of the public good more likely, if

only infinitesimally. If the public good is provided, these people enjoy a benefit of 3 and have

to pay 4 for a net payoff equal to −1. Each one of them would be better off if the public good

was not provided. Moreover, the public good would indeed not be provided if each one of these

people reported a valuation of 0. Why, then, should they report honestly, rather than claiming

that the public good is worth nothing to them?

If individual incentive compatibility is the only requirement for the public-good provision

10For a formal treatment of the law of large numbers in a model with a continuum of agents, see Sun (2006)

and Qiao et al. (forthcoming).
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mechanism, the answer to this question is that nobody minds reporting his or her valuation

honestly because nobody feels that his or her report will make a difference to anything anyway.

We find this answer unconvincing.

What precisely is amiss? Two objections come naturally. First, there is something arbitrary

about the assumption that, if agents are indifferent between the different messages at their

disposal, they resolve this indifference in favour of truthtelling. In our example, an agent who

values the public good at 3 might consider that, even though, with probability one, her report

does not make a difference, yet in the probability-zero event where she might make a difference,

reporting the valuation 0 would lead to a preferred outcome, with non-provision of the public

good and no payment. Such considerations underlie the assumption of sincere voting in political

economy. Under this assumption, people vote their preferences even though, as individuals, they

do not expect their votes to have an effect on aggregate outcomes.11 Conceptually, this involves

what we may call a super-dominance criterion, i.e. a criterion of robustness to the elimination of

strategies that are undominated in the usual sense, but dominated in fictitious probability-zero

events. In our example, the effi cient provision rule with equal cost sharing does not satisfy this

criterion.

Second, in our example, a coalition of people who value the public good at either 0 or 3 could

prevent the implementation of the effi cient provision rule with equal cost sharing by coordinating

their reports so that the fraction of people reporting 3 is always less than 1
3 . The public good

would not be provided at all, and all coalition members would be better off. The reports that

such a coalition would recommend to its members would all be individually incentive-compatible.

Since no one person can affect the aggregate outcome, no coalition member has anything to gain

by deviating from the manipulation. In contrast to a cartel that tries to eliminate competition

among its members, such a coalition would not have an incentive compatibility problem of its

own.

Which of these observations provides the “right”way for dealing with the issue? In address-

ing this question, it is important to keep in mind that the notion of a large economy with a

continuum of agents is an idealization, which is not to be taken literally. No economy actually

has a continuum of agents but the continuum model is useful because it puts the focus on cer-

tain features of strategic interaction that are essential in large finite economies as well as the

continuum model, but are more diffi cult to analyse in the finite models where the analyst must

keep track of exactly how many agents there are and how insignificant each agent is relative to

the aggregate.12

Given this interpretation of the continuum economy as an idealization that captures essential

features of large finite economies, any condition that is imposed in the continuum model should

have a natural analogue in the large finite model. In the following, we therefore reconsider our

example with finitely many agents. We will see that, in the finite setting, a super-dominance

criterion has no bite, but coalition proofness does.

11See, for example, Austen-Smith and Banks (1996).
12 In this context, it is worth recalling that, in experimental studies of double oral auctions with, say, twenty

participants, outcomes tend to be indistinguishable from the Walrasian, competitive equilibrium outcome, even

though the market power of any one particpant is, strictly speaking, not zero.

7



Dominant-Strategy Implementation and Coalition-Proofness in Finite Economies.
Consider an economy with n agents. As before, we assume that the public good comes as a

single indivisible unit, with a per-capita provision cost equal to 4, so with n agents the costs are

equal to 4n. The agents’valuations for the public good are again 0, 3, or 10. Thus, if S3 and

S10 are the numbers of agents with valuations 3 and 10, a first-best provision rule requires that

the public good be provided if 3S3 + 10S10 > 4n and not be provided if 3S3 + 10S10 < 4n. For

specificity, we assume that the public good is also provided if 3S3 + 10S10 = 4n.

With finitely many participants, strategic interdependence of the participants is important.

In the literature on public-good provision, this is usually taken into account by considering

implementation through dominant-strategy equilibria or implementation through Bayes-Nash

equilibria. We first consider dominant-strategy implementation.

Dominant-strategy implementation of first-best provision rules is obtained by Groves mech-

anisms, which induce agents to take account of the externalities that their choices may impose

on others.13 In our example, a Groves mechanism calls for public-good provision according to

the first-best provision rule and specifies the payment of any agent i as a function of the agent’s

reported valuation v̂i and the numbers Ŝ3 and Ŝ10 of other agents reporting 3 and 10, so that

pi(v̂i, Ŝ3, Ŝ10) = hi(Ŝ3, Ŝ10) + 4n− 3Ŝ3 − 10Ŝ10 if 4n ≤ v̂i + 3Ŝ3 + 10Ŝ10 , (1)

and

pi(v̂i, Ŝ3, Ŝ10) = hi(Ŝ3, Ŝ10) if 4n > θ̂i + 3Ŝ3 + 10Ŝ10 , (2)

for some arbitrary function hi. Given this form of payment rule and given the first-best provision

rule, one easily verifies that truthtelling is a dominant strategy for each agent.

We further specialize the analysis by assuming that, for any i, the function hi takes the form

hi(Ŝ3, Ŝ10) = max[0, 3Ŝ3 + 10Ŝ10 − 4(n− 1)]. (3)

We thus obtain the special case of a Clarke-Groves mechanism.14 From (1) - (3), one easily sees

that this mechanism never runs a deficit. Table 1 below describes a Clarke-Groves mechanism

for an arbitrary but finite number n of individuals. By way of normalization, we replace the

aggregate valuation V̄ by the average valuation v̄ = V̄
n . Thus, the public good is provided if

v̄ ≥ 4 and is not provided if v̄ < 4.

Table 1.

vi = 0 vi = 3 vi = 10

v̄ ≤ 4(1− 1
n) pi = 0 pi = 0 pi = 0

4(1− 1
n) < v̄ < 4 pi = nv̄ − 4(n− 1) pi = 0 pi = 0

4 ≤ v̄ < 4 + 6
n pi = 4 pi = 4 pi = 4n− (v̄n− 10)

v̄ ≥ 4 + 6
n pi = 4 pi = 4 pi = 4

13See Groves (1973).
14See Clarke (1971).
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The table exhibits four cases, no payments and no provision if v̄ is very low; payments by

agents with valuation zero and no provision if v̄ is close to but less than 4; provision with equal

cost sharing if v̄ is very high; finally, provision with extra payments by agents with valuation 10

if v̄ is close to but not less than 4.

Truth-telling is a dominant strategy, and moreover, whenever an individual is pivotal for

public-goods provision, truthtelling is the unique best response. Thus, truth-telling is perfectly

in line with a super-dominance criterion.

There is, however, a problem with coalition proofness. Coalition-proofness can fail in two

ways. First, if 4(1− 1
n) < v̄ < 4 and for 4 ≤ v̄ < 4 + 6

n , the grand coalition of all agents might

reduce payments by reporting that all have the valuation zero (if 4(1− 1
n) < v̄ < 4) or that all

have the valuation 10 (if 4 ≤ v̄ < 4+ 6
n). Second, if v̄ > 4+ 6

n and S10 < 4n, a coalition of agents

with valuation 3 would wish to forestall the provision of the public good by reporting that their

valuation is actually 0. The first type of failure of coalition proofness has previously been noted

by Bennett and Conn (1977) and Green and Laffont (1979 b). The second type of failure is an

exact analogue of the failure of coalition proofness in the continuum model.

If the number of participants is large, the first type of failure of coalition proofness is not

very important. To see this, recall the assumption that, for some α ∈ (0, .7), the different agents’

valuations are independent and identically distributed with probabilities .7−α for the valuation
0, α for the valuation 3, and .3 for the valuation 10. If n is large, then, by the law of large

numbers, with a probability close to one, the shares of agents with valuations 0, 3, and 10 will

be close to .7 − α, α, and .3. If α > 1
3 , it follows that, with a probability close to one, the

per-capita aggregate valuation v̄ will be greater than 4 + 6
n , and, similarly, if α < 1

3 , v̄ will be

less than 4(1 − 1
n) with a probability close to one. In both cases, if α > 1

3 and if α < 1
3 , the

events 4(1 − 1
n) < v̄ < 4 and 4 ≤ v̄ < 4 + 6

n become unlikely if n becomes large. So does the

coalition proofness problem (and the budget balance problem) associated with these events.

If we think about α itself as the realization of a random variable which has probability zero

of taking the value 1
3 , it follows that for large n, the events 4(1− 1

n) < v̄ < 4 and 4 ≤ v̄ < 4 + 6
n

are unlikely. The continuum model in which no one agent is ever pivotal reflects this finding.

With large n, the question whether the public good should be provided or not depends much

more on whether α is greater or less than 1
3 than on whether the deviations of the individual

vis from their means are positive or negative. However, for any α, both with finitely many

individuals and with a continuum of individuals, first-best implementation is incompatible with

the condition that a coalition of agents with valuations of 3 should not find it more attractive

to jointly report valuations of 0 instead.

Bayes-Nash Implementation, Coalition-Proofness, and Robustness. For Bayes-Nash

implementation, as usual, it makes a big difference whether agents’valuations are treated as

mutually independent or as correlated. In our example, we have independent private values if

the parameter α is taken to be fixed and commonly known; we have correlated values if α is

taken to be the realization of a nondegenerate random variable α̃. In the latter case, each agent’s

valuation is correlated with α̃, and therefore the different agents’valuations are correlated with

each other.
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The literature on public-good provision in Bayesian models with finitely many agents usually

assumes independent, rather than correlated, private values.15 From the perspective of a large

economy, this case is not very interesting because, if α is known, it is also clear whether it is

effi cient for the public good to be provided or not. In a large economy with independent private

values, the implementation of an effi cient rule for public-good provision does not require any

information from participants. If the question whether the public good should be provided or

not is to be nontrivial, α must be the realization of a nondegenerate random variable α̃ that is

not directly observed.16

If α̃ is a nondegenerate random variable, each agent’s beliefs about α̃ will vary with his own

valuation for the public good. A high value of α̃ makes the valuation 0 less likely and a valuation

of 3 more likely. Observation of the valuation 0 therefore induces a downward adjustment and of

the valuation 3 an upward adjustment in the probability that an agent assigns to a high value of

α̃. Because the probability of the valuation 10 is independent of α, agents’beliefs after observing

the valuation 10 are the same as their prior beliefs.

As was first pointed out by Crémer and McLean (1985,1988), differences in beliefs induce

differences in preferences over lotteries whose outcomes depend on the value of α̃, and these

differences in preferences over lotteries can be exploited for mechanism design. Such valuation-

and-outcome-dependent payment schemes can actually provide for a coalition-proof, Bayesian-

incentive-compatible implementation of first-best provision rules.

As an example, consider the payment scheme in Table 2 where, as in Table 1, v̄ is the

aggregate per-capita valuation of the public good. In the continuum model, of course, v̄ = 3α+3,

where α is the realization of α̃. As before, assume that the public good is provided if and only

if v̄ ≥ 4.

Table 2.

vi = 0 vi = 3 vi = 10

v̄ < 4 pi = −2.1 pi = 8.4 pi = −2.1

4 ≤ v̄ pi = 10 pi = 0 pi = 10

For vi ∈ {0, 3, 10}, let βL(vi) and βH(vi) = 1−βL(vi) be the probabilities that an agent with

public-good valuation vi assigns to the events {α̃ < 1
3} and {α̃ ≥

1
3} or, equivalently, the events

{v̄ < 4} and {v̄ ≥ 4}. Given that individuals cannot influence the level of public-good provision,
one easily verifies that the payment scheme in Table 2 is strictly Bayesian incentive-compatible

if

βL(0) =
5

6
, βH(0) =

1

6
, βL(3) =

1

4
, βH(3) =

3

4
, βL(10) =

1

2
, βH(10) =

1

2
. (4)

These values of βL(vi) and βH(vi) for vi ∈ {0, 3, 10} can actually be derived from a common
prior that assigns a probability of one half each to the two possible values .2 and .6 of the random

variable α̃. For this specification of α̃, the given mechanism is also feasible in the large economy:

15The seminal paper is d’Aspremont and Gérard-Varet (1979). Subsequent papers include Güth and Hellwig

(1986), Mailath and Postlewaite (1990), Hellwig (2003) and Norman (2004).
16For a general discussion of this point, see Bierbrauer and Hellwig (in preparation).
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If α̃ = .2, the aggregate per-capita payment is equal to .2 · 8.4 − .8 · 2.1 = 0; if α̃ = .6, the

aggregate per-capita payment is equal to .6 · 0 + .4 · 10 = 4, which is just the per-capita cost of

providing the public good, as stipulated for this event.17

The given incentive mechanism is also coalition-proof. Under the payment scheme in Table

3, as opposed to equal cost sharing, people who value the public good at 3 are no longer averse

to having the public good provided. They get a net payoff of 3 when the public good is provided

and a net payoff of −8 when it is not provided. They are therefore unwilling to join any coalition

that would reduce the incidence of public-good provision. Without their cooperation, however,

a coalition that would reduce the incidence of public-good provision cannot form. By a similar

argument, people who value the public good at 0 would not join any coalition that would increase

the incidence of public-good provision, and, therefore, such a coalition cannot form.

Straightforward continuity considerations imply that coalition-proof Bayesian-Nash imple-

mentation of first-best provision rules is also obtained for the n-agent version of the example,

provided that n is large. To see this, observe that the type-dependent posterior probabilities (4)

for the events α̃ = .2 and α̃ = .6 have nothing to do with the number of agents in the economy.

Observe also that, if n is large, then, by the law of large numbers, the type-dependent posterior

probabilities of the events {v̄ < 4} and {v̄ ≥ 4} are close to the type-dependent posterior prob-
abilities of the events α̃ = .2 and α̃ = .6 in (4). For the posterior probabilities given by (4), the

conditions for Bayesian incentive-compatibility hold with strict inequality in the large economy.

Therefore, the mechanism given by a first-best provision rule and the payment scheme in Table

3 is also Bayesian-incentive-compatibility in an n -agent version of the example with very large

n, and so is a mechanism that results from taking a small perturbation of the payment scheme

in Table 3 as may be required to ensure that expected payments are equal to expected costs.

With a continuum as well as a finite number of participants, Crémer-McLean-type mecha-

nisms can be used for coalition-proof, Bayesian incentive-compatible implementation of first-best

public-good provision rules. However, these mechanisms are not robust. The payment scheme

given in Table 3 works for a prior that assigns probabilities 1
2 each to the outcomes .2 and .6

but does not work for some other priors. For example, if the prior assigns probability 1
3 to the

outcome .2 and 2
3 to the outcome .6, a person with the valuation vi = 10 has posterior probabil-

ities βL(10) = 1
3 , βH(10) = 2

3 ; with these probabilities, this person expects to pay
1
3 · 8.4 = 2.8

if he or she claims to have the valuation 3 and to pay 1
3 · (−2.1) + 2

3 · 10 = 5.9 if he or she is

honest. Bayesian incentive compatibility is violated.

Like Ledyard (1978) and Bergemann and Morris (2005), we consider it unreasonable to sup-

pose that a mechanism designer has the information about the type dependence of participants’

beliefs that he would need to implement the appropriate Crémer-McLean payment scheme. We

will therefore impose a requirement of robustness, i.e., the mechanism that is used to deter-

mine the level of public-good provision and the different agents’payments must not depend on

the details of the stochastic specification of the model. Individual incentive compatibility must

be robust to changes in the specification of individuals’ probabilistic beliefs.18 This require-

17The given mechanism is also individually rational: Interim expected payoffs are 5
6
· 2.1− 1

6
· 10 = .5

6
for agents

with vi = 0, − 1
4
· 8.4 + 3

4
· 3 = .6

4
for agents with vi = 3, and 1

2
· 2.1 for agents with vi = 10.

18See Bergemann and Morris (2005). Börgers and Smith (2014) suggest that robustness may be too strong a
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ment eliminates the possibility of using Crémer-McLean-type mechanisms to achieve coalition

proofness as well as individual incentive compatibility.

For models with private information, it is well known that robust Bayes-Nash and dominant-

strategy implementability requirements are equivalent in the sense that they impose the same

restrictions on the design of incentive mechanisms. Coalition-proofness therefore restricts the

scope for robust Bayes-Nash implementation just as it restricts the scope for dominant-strategy

implementation. Our previous discussion carries right over.

In the following, we study the implications of coalition proofness for robust Bayes-Nash

implementation. By comparison to the dominant-strategy approach, the Bayes-Nash approach

has the advantage that it is explicit about the decision problems participants face, including a full

specification of their beliefs about other agents’types and their expectations about other agents’

behaviors. It also allows for a richer discussion of coalition proofness. As far as we know, the

notion of robustly blocking coalitions that we propose has no counterpart in a dominant-strategy

framework.19

3 Robust Implementation in a Large Economy

Payoffs and Social Choice Functions. We consider an economy with a continuum of agents

of measure 1. There is one private good and one public good. The public good comes as a single

indivisible unit.20 Its installation requires aggregate resources (per-capita) equal to k units of

the private good. Given a public-good provision level Q ∈ {0, 1}, the utility of any agent i is
given as viQ−Pi, where vi is the agent’s valuation of the public good and Pi is his contribution
to the cost of public-good provision. The valuation vi belongs to a set V of possible valuations,

which is the same for all i. We assume that V is a compact interval, V = [vmin, vmax] ⊂ R+, and

that k is in the interior of V.

A social choice function determines under what conditions the public good is to be provided

and what contributions are to be made by the different individuals. Following Guesnerie (1995),

we impose an anonymity requirement by which the level of public-good provision as well as

the payments of individuals with a given valuation v are unchanged under any permutation

of individual characteristics that leaves the cross-section distribution of preferences unaffected.

Thus, an anonymous social function determines how public-good provision levels and payment

rules depend on the cross-section distribution of preferences. We refer to the latter as the

state of the economy. Formally, the state of the economy is an element s of the set M(V ) of

condition. They give examples in which outcomes depend on the participants’beliefs about each other, but this

dependence is due to people’s behaviors rather than the incentive mechanism. Unfortunately, we do not as yet

have a simple characterization of the requirements that their approach would impose on mechanism design.
19As developed by Bennett and Conn (1977), Green and Laffont (1979 b), and Moulin (1999), the requirement of

coalition proofness in a dominant-strategy setting requires that, regardless of what the reports of the other agents

may be, a coalition of agents cannot benefit from a coordinated false communication of types. In the terminology

of Bergemann and Morris (2005), this is a condition of ex post coalition proofness. This condition presumes that

coalition behaviour can be conditioned on the valuations of all participants, including the non-members of the

coalition.
20 In Section 7 we show that our results extend to a setting with a compact set of possible public-good provision

levels and a linear cost function.
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probability measures on V . An anonymous social choice function is a pair F = (QF , PF ) of

functions QF : s 7→ QF (s) and PF : (s, v) 7→ PF (s, v) such that, for any state of the economy s,

QF (s) ∈ {0, 1} is the level of public-good provision, and PF (s, ·) is a function indicating how, in
state s, an agent’s payment depends on the agent’s valuation.

Anonymity is a requirement of equal treatment. Two individuals with the same character-

istics have to make the same contribution to the cost of public-goods provision. In addition,

the decision whether to provide the public good does not depend on the identity of the agents

with certain preferences, but only on the cross-section distribution of those preferences in the

economy as a whole.21

For any s ∈ M(V ), the payment rule PF (s, ·) is taken to be integrable with respect to v.
The integral

∫
PF (s, v)ds(v) corresponds to the aggregate revenue that is collected in state s.

We say that the anonymous social choice function F = (QF , PF ) yields feasible outcomes if and

only if, in any state of the economy, the aggregate revenue is suffi cient to cover the public-good

provision cost kQF (s), i.e., if and only if the inequality∫
V
PF (s, v)ds(v) ≥ kQF (s) (5)

is satisfied for all s ∈M(V ).

A social choice function is said to be monotonic if QF (s) ≥ QF (s′) whenever s dominates

s′ in the sense of first-order stochastic dominance, i.e. whenever
∫
g(v)ds(v) ≥

∫
g(v)ds′(v) for

every nondecrasing function g. Monotonicity reflects the notion that, if public-good valuations

go up, the level of public-good provision should not go down.

Types and Beliefs. Information about types is assumed to be private. As usual, we model

information by means of an abstract type space. Let (T, T ) be a measurable space, τ a mea-

surable map from T into V , and β a measurable map from T into the space M(M(T )) of

probability distributions over measures on T . We interpret ti ∈ T as the abstract “type” of

agent i, vi = τ(ti) as the payoff type, i.e., the public-good valuation of agent i and β(ti) as the

belief type of agent i.

The belief type β(ti) indicates the agent’s beliefs about the other agents. We specify these

beliefs in terms of cross-section distributions of types in the economy. Thus, β(ti) is a probability

measure on the space M(T ) of these cross-section distributions. For any event X ⊂ M(T ),

β(X | ti) is the probability that type ti of agent i assigns to the event that the cross-section
distribution of types δ belongs to the set X. We refer to the map β : T → M(M(T )) as the

belief system of the economy.22

21Anonymity is a substantive constraint. Using the idea of sampling, that has been developed by Green and

Laffont (1979 a), Bierbrauer and Sahm (2010) show that first-best outcomes can be implemented by a procedure

where public-good preferences are elicited from a representative sample of the population only. If payment rules

differ between the members of the sample and the rest of the population, the payment rule for the sample can be

used to provide proper incentives and the payment rule for the rest can be used to finance public-good provision.

By contrast, first-best is out of reach if all individuals have the same influence on public-good provision and the

payment rule is the same for all.
22We do not assume that the belief system is compatible with a common prior. As shown in Bierbrauer and
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A typical element ofM(T ) will be denoted by δ. The cross-section distribution δ of abstract

types induces the cross-section distribution s(δ) = δ ◦ τ−1 of payoff types, or public-good valua-

tions. For any subset V ′ of V we write s(V ′ | δ) for the mass of individuals that the distribution
s(δ) assigns to payoff types in V ′. A generic element ofM(V ) will be denoted by s.

We will mostly consider payoff type distributions that do not have mass points and beliefs

that assign probability zero to payoff type distributions with mass points. We say that a belief

system β : T → (M(T )) is admissible if and only if for all t ∈ T , the induced belief function
β(s−1(Mna(V ))| t) = 1, where Mna(V ) is the set of measures on V that do not have atoms.

This restriction will allow us to neglect agents who are indifferent between different alternatives

because the set of such agents has measure zero.

In addition to the general notion of an abstract type space [(T, T ), τ , β], we shall also make

use of the special notion of a naive type space [(V,V), βs], where V is the set of possible valuations

and V is the Borel σ-algebra on V . This is the special case of an abstract type space in which
agents’ types are given by their public-good valuations so that (T, T ) = (V,V) and τ is the

identity mapping.

Robust Incentive Compatibility. We focus on social choice functions that can be imple-

mented as the truth-telling equilibrium of a direct mechanism. Such social choice functions will

be called incentive-compatible. Formally, a social choice function F = (QF , PF ) is said to be

incentive-compatible on a given type space [(T, T ), τ , β], if, for all t, t′ ∈ T

U(t | t) ≥ U(t | t′) , (6)

where

U(t | t′) :=

∫
M(T )

{τ(t)QF (s(δ))− PF (τ(t′), s(δ))}dβ(δ | t)

is the interim expected utility of an individual with type t that reports type t′ under a direct

mechanism for the given social choice function F .

An anonymous social choice function F is said to be robustly incentive-compatible or robustly

implementable if, for every (T, T ), and τ : T → V, the inequalities in (6) hold for every admissible

belief system β.

Equivalence of Robust and Ex post Incentive Compatibility. The following Proposi-

tion asserts that robust incentive compatibility is equivalent to ex post incentive compatibility :

once s has become known, no individual regrets having revealed his type to the mechanism.

Ex post incentive compatibility of course is in turn equivalent to dominant-strategy incentive

compatibility. The Proposition 1 adapts an argument of Bergemann and Morris (2005) to the

given setup.23

Hellwig (2010), however, our analysis would be unchanged if we restricted ourselves to belief systems that are

compatible with common priors. The existence and uniqueness of common priors for the given setup is discussed

in Hellwig (2011).
23A proof can be found in Bierbrauer and Hellwig (2010).
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Proposition 1 An anonymous social choice function F = (QF , PF ) is robustly incentive-compatible

if and only if it is ex post incentive compatible in the sense that, for all v and and v′ in V and

all s ∈M(V ),

vQF (s)− PF (v, s) ≥ vQF (s)− PF (v′, s) . (7)

By inspection of (7), in our setting, ex post incentive compatibility is equivalent to the

requirement that PF (v, s) = PF (v′, s) for all v, v′ and s. If the payment of some agent was, for

some s, smaller than the payment of some other agent, the latter would like to imitate the agent

with the small payment. This would contradict ex post incentive compatibility. This observation

yields the following corollary to Proposition 1.

Corollary 1 An anonymous social choice function F = (QF , PF ) is robustly incentive-compatible

if and only if payments are independent of individual payoff types, i.e., there is a function

P̄F :M(V )→ R such that PF takes the form PF (v, s) = P̄F (s) for all v ∈ V and all s ∈M(V ).

Given Corollary 1, we will represent a robustly incentive-compatible social choice function as

a pair (QF , P̄F ), where P̄F (s) is the lump-sum contribution to the cost of public-good provision

if the cross-section distribution of payoff types equals s ∈M(V ).

Robust Incentive Compatibility of a First-best Provision Rule with Equal Cost
Sharing. An anonymous social choice function F = (QF , PF ) yields first-best outcomes if, for

all s ∈M(V ), the pair (QF (s), PF (s, ·)) maximizes the aggregate surplus∫
V
{vQF (s)− PF (s, v)}ds(v)

subject to the feasibility condition (5). By standard arguments, this requires that the public

good should be provided if the aggregate valuation v̄(s) :=
∫
V v ds(v) exceeds the cost k and

should not be provided if v̄(s) is less than k. Moreover, there should be no slack in the feasibility

constraint, i.e., aggregate payments should exactly cover the cost of public-good provision. Upon

combining these observations with Corollary 1, we obtain:

Theorem 1 A first-best anonymous social choice function F = (QF , PF ) is robustly incentive-

compatible if and only if, for all s ∈M(V ),

QF (s) =

{
0, if v̄(s) < k,

1, if v̄(s) > k,
and PF (v, s) = k QF (s), for all v ∈ V .

Theorem 1 provides a general possibility result for robust first-best implementation in a large

economy. People are asked for their payoff types. The public good is provided if and only if

the reported average per-capita valuation exceeds k. Required contributions are set so that the

costs of public-good provision are equally shared; this ensures budget balance, as well as robust

incentive compatibility.
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This conclusion stands in marked contrast to the findings of the literature for economies with

finitely many participants. For example, Green and Laffont (1979 a) showed that dominant-

strategy implementation of first-best social choice rules is not compatible with budget balance.

The reason is apparent from Table 1: Incentive provision to agents who may be pivotal requires

payments that have nothing to do with the real costs that must be covered, whether the public

good is provided or not.

In the large economy these concerns are moot because no agent is ever pivotal. Thus,

in the absence of participation constraints, Theorem 1 suggests that in large economies robust

incentive compatibility of first-best public-good provision rules does not involve any fundamental

diffi culties.

Nevertheless, we do not regard Theorem 1 as a satisfactory basis for the normative theory

of public-good provision in a large economy. As we discussed in the introductory sections we

consider the requirements of robust incentive compatibility to be too weak to do full justice

to the information and incentive problems of public-good provision in such an economy. In

the following section, we therefore introduce the analysis of coalition proofness as an additional

restriction on social choice functions.

4 Coalition Proofness

To implement a first-best outcome, one must know the aggregate public-good valuation v̄(s).

This information is derived from people’s reports about their individual valuations. With the

social choice function in Theorem 1, people are willing to provide this information because

they see themselves as being unable to influence the outcome at all. Being unable to influence

anything, they are indifferent as to what they report. Given this indifference, truthtelling is an

interim Bayes-Nash equilibrium.

However, people with similar valuations have similar interests. Collectively, they might upset

the truthtelling equilibrium, for example by manipulating the social outcome by coordinating

on exaggerated reports. If all agents with payoff types τ(t) > k were to report the type t′ so

that τ(t′) = vmax, they would raise the mechanism’s assessment of the aggregate public-good

valuation from its true level v̄(s) to the level v̄(s) +
∫
{τ(t)>k}[vmax − τ(t)]dδ(t). This collective

exaggeration of enthusiasm for the public good might cause the public good to be provided even

though the aggregate valuation v̄(s) lies below the per-capita cost k. From the perspective of

types with τ(t) > k, this outcome would dominate the truthtelling equilibrium. It is also worth

observing that, because people are indifferent as to what they report, this collective deviation

by agents with payoff types above k, in combination with truth-telling by everybody else, is also

an interim Bayes-Nash equilibrium of the game induced by the overall mechanism.

To eliminate the possibility of such a manipulation, we impose a requirement of coalition

proofness in addition to anonymity and robust incentive compatibility.
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Modelling coalition proofness. There are many ways to formalize a notion of coalition

proofness.24 One can study an extensive form game of coalition formation, or one can use a

normal-form specification. One can assume that coalitions are able to use side-payments between

coalition members, or one can disallow side payments. One can allow for indirect mechanisms,

or focus on the truth-telling equilibria of direct mechanisms.25 Finally, one may or may not

impose additional requirements such as the condition that any use of a participant’s private

information by a coalition must respect incentive-compatibility constraints or the condition that

any deviating coalition must itself be robust to the formation of subcoalitions, which in turn

might have to be robust to the formation of subsubcoalitions, and so on, see Bernheim et al.

(1986).

In a previous version of this paper, we modelled coalition formation by an extensive-form

game as in Laffont and Martimort (1997, 2000).26 The extensive-form approach has the advan-

tage of showing precisely how a deviating coalition gets the information that it uses to block

the implementation of the social choice function. However, it is cumbersome to work with, so

we use a short-cut that yields essentially the same results in a much simpler manner.

The shortcut that we use was introduced by Bennett and Conn (1977) and Green and Laffont

(1979 b) and has been used, among others, by Moulin (1999) and Mehta et al. (2009). Given

our focus on the implementation of a social choice function as the truth-telling equilibrium

of a direct mechanism,27 we represent coalition proofness by the requirement that there must

not exist a group of agents who would all benefit from a false communication of preferences.

Whereas Bennett and Conn (1977) and Green and Laffont (1979 b) applied the concept ex

post, we apply it ex interim, with agents evaluating coalition outcomes in terms of their type-

dependent beliefs. Moreover, we impose a robustness requirement on the collective deviations

that block the implementation of a social choice function.

Apart from this robustness requirement, our notion of coalition proofness is very rudimen-

tary. No account is given of extensive-form considerations, individual incentive compatibility

in coalitions, or the potential susceptibility of coalitions to further deviations by sub-coalitions.

In principle, it would be desirable to take all these restrictions into account. However, in a

continuum economy and with a requirement of robustness in coalition design, some of these

24 Important references include Green and Laffont (1979 b), Bernheim et al. (1986), Crémer (1996), Laffont and

Martimort (1997, 2000), Moulin (1999), Che and Kim (2006).
25With a requirement of coalition proofness, the validity of the revelation principle cannot be taken for granted,

see Boylan (1998) or Bierbrauer (2014).
26See Bierbrauer and Hellwig (2010). In that game, an overall mechanism is announced at stage 0. At stage 1,

a coalition organizer may propose a manipulative side-mechanism. At stage 2, individuals would decide whether

or not to participate in this coalition. At stage 3, agents who have chosen to participate would send messages to

the coalition organizer. At stage 4, the coalition organizer would use the information provided by these messages

in order to choose recommendations to coalition members about the messages ("lies") they should send to the

overall mechanism. Finally, at stage 5, individuals would send messages to the overall mechanism. On the basis

of these messages, the overall mechanism would determine the level of public-good provision and the different

agents’payments. Sequential equilibrium conditions ensure that individual incentive constraints are satisfied and

that no one relies on information that has not previously been provided in the course of play in the game.
27This approach simplifies the exposition considerably. However, it raises thequestion whether the set of imple-

mentable social choice functions can be enlarged by allowing for non-direct mechanisms. In a previous discussion

paper we have shown that the answer is “no”, see Bierbrauer and Hellwig (2011).
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concerns are moot. As mentioned, extensive-form considerations do not make a difference at all.

Nor do concerns for individual incentive-compatibility in coalitions. 28 Concerns about further

deviations by sub-coalitions are also moot because the coalitions that matter for our analysis

are all homogeneous and there is no point in forming sub-coalitions.29 We will discuss some of

these concerns as we go along.

Robustly Blocking Coalitions. We continue to impose anonymity and robust incentive

compatibility of the social function. Thus, by Corollary 1, payments as well as public-good

provision levels are independent of individual announcements. We think of a coalition as being

run by a coalition organizer, who proposes the collective deviation, collects reports from coalition

members and then chooses a profile of reports that coalition members are to make to the overall

mechanism. Because individuals expect their announcements to have no effects on outcomes,

any announcement is individually a best response. Individual incentive compatibility of the

reports suggested by the coalition organizer is thus automatically given.

Consider an abstract type space (T, T ), a payoff type function τ : T → V and a robustly

implementable social choice function F = (QF , P̄F ). For the moment, we neglect the possibility

of side payments in a coalition. A collective deviation for a set T ′ ⊂ T is specified as a strategy (a
“lie”) `T ′ : M̂(T ′)→M(T ), where M̂(T ′) is the set of measures on T ′ that have total measure

less than or equal to one. We think of `T ′(δT ′) as a probability distribution over reports or “lies"

for individuals with types in T ′. One may think of `T ′(δT ′) as a lottery determining the report

that any one individual with a type in T ′ sends to the overall mechanism when the distribution

of types in T ′ is δT ′ . For any measurable set T̃ ⊂ T , `T ′(T̃ | δT ′) is then the probability that
the report will be in the set T̃ .30 In this interpretation, a law of large numbers would imply

that `T ′(T̃ | δT ′) is also the share of reports from coalition members that lie in T̃ . The lies are

a function of δT ′ , as opposed to δ = (δT ′ , δT\T ′) ∈ M̂(T ′) × M̂(T \ T ′), because the coalition
organizer observes only the types in the set of participating individuals and remains ignorant

about the distribution of types in the complimentary set of agents, if he attracts agents with

types in T ′, he knows δT ′ but not δT\T ′ .

We write δ̂(`T ′ , δ) for the overall cross-section distribution of reports that is generated by

`T ′ if the true cross-section distribution of types is δ. Thus we have

δ̂(`T ′ , δ) = δ(T ′) · `T ′(δT ′) + δT\T ′ , (8)

where δT\T ′ ∈ M̂(T\T ′) is the (non-normalized) cross-section distribution of types in T\T ′. The
implied payoff type distribution is s(δ̂(`T ′ , δ)). If (T, T ) is actually the naive type space (V,V),

28As discussed in Bierbrauer and Hellwig (2015), with finitely many participants, individual incentive compati-

bility concerns do impose restrictions on coalition formation, but for robust coalition proofness, these restrictions

do not affect the analysis.
29 In Bierbrauer and Hellwig (2015), we do impose the requirement that deviating coalitions have to be

subcoaliton-proof, subcoalitions have to be subsubcoalition-proof, and so on. With a requirement of robust

coalition proofness, in Bierbrauer and Hellwig (2015), this requirement plays a role in proving the analogue of

Theorem 3 below because it eliminates coalitions involving agents with heterogeneous interests.
30The report `T ′(·) of any one member of the coalition might also be made to depend on the person’s type.

This would not make a difference, however, because individual incentive compatibility holds anyway and only the

aggregate “lie”matters.
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we write ŝ(`V ′ , s)) for the cross-section distribution of reported (payoff) types that is implied by

the collective deviation (V ′, `V ′) when the true cross-section distribution is s.

Given a type space [(T, T ), τ , β], we say that a collective deviation (T ′, `T ′) blocks the anony-

mous and robustly implementable social choice function F on [(T, T ), τ , β] if∫
M(T ){τ(t)QF (s(δ̂(`T ′ , δ)))− P̄F (s(δ̂(`T ′ , δ)))}dβ(δ | t)
≥
∫
M(T ){τ(t)QF (s(δ))− P̄F (s(δ))}dβ(δ | t)

(9)

for all t′ ∈ T ′, with a strict inequality for a non-negligible set of t′ ∈ T ′. Given an abstract

type space (T, T ) and a payoff type function τ : T → V , we say that a collective deviation

(T ′, `T ′) blocks the anonymous and robustly implementable social choice function F robustly

on [(T, T ), τ ] if it blocks F on [(T, T ), τ , β] for every admissible belief system β such that for

t ∈ T ′, the belief β(t) assigns positive probability to the event that the deviation (T ′, `T ′) departs

from truthtelling. The social choice function F is immune against robust blocking, if there is

no abstract type space [(T, T ), τ ] and no collective deviation (T ′, `T ′) that blocks F robustly on

[(T, T ), τ ].

Immunity against robust blocking is weaker than the condition of robust coalition proofness

that we used in Bierbrauer and Hellwig (2015). A social choice function F is robustly coalition

proof if there is no type space [(T, T ), τ , β] and no collective deviation (T ′, `T ′) that blocks F

on [(T, T ), τ , β]. This condition allows the collective deviation (T ′, `T ′) to be adapted to the

particular type space on which it is used. Coalition organizers are thus presumed to have more

information than the overall mechanism designer who wants to implement the social choice

function. Immunity against robust blocking involves no such presumption.31

Irrelevance of Side Payments in Robust Coalition Design. What would happen if we

allowed for side payments between coalition members? In principle, side payments enlarge

the scope for coalition formation, so one might expect the set of coalition-proof social choice

functions to become smaller if side payments are allowed.

If coalitions can condition their behaviors on belief systems, allowing for side payments may

imply that no social choice function is robustly coalition-proof. The reason is that side payments

introduce a possibility for agents to trade on differences in their beliefs. With quasi-linear utility

functions, the gains from such trades can be arbitrarily large and can outweigh any concerns

about public-good provision. However, such gambles depend on the specification of beliefs. They
31The requirement of robust coalition proofness also makes it possible to fudge the issue of incomplete infor-

mation about the distribution of types among non-members of a coalition. Robust coalition proofness implies,

in particular, that there are no blocking coalitions under complete information. Thus, if F is robustly coalition-

proof, there is no type space [(T, T ), τ , βδ] with a belief system βδ under which all agents “know” the state of

the economy to be δ ∈Mna(T ) such that some collective deviation (T ′, `T ′) blocks F on [(T, T ), τ , βδ]. For every

δ ∈Mna(T ) and every collective deviation (T ′, `T ′), there exists a non-negligible set of types t ∈ T ′ such that

τ(t)QF (s(δ̂(`T ′ , δ)))− P̄F (s(δ̂(`T ′ , δ))) < τ(t)QF (s(δ))− P̄F (s(δ)),

which is a condition of coalition proofness ex post, when δ is common knowledge among the participants. In

Bierbrauer and Hellwig (2015), we use these constraints to show that every robust and coalition-proof social

choice function is a voting mechanism. Here, this proof strategy is not available because collective deviations have

to be attractive to the participants for every admissible belief systems.
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disappear if we require the collective deviations themselves to be robust. We briefly show that

there is no role for side payments in robust coalition design.

To see this, consider an extended notion (T ′, `T ′ , zT ′) of a collective deviation, where T ′ is

the set of deviating types, `T ′ is the coalition’s reporting strategy, and zT ′ is a function that

indicates the side payments to coalition members. Reports and side payments depend on the

set T ′ and the cross-section distribution δT ′ or types in T ′ but not on the belief system β or on

the distribution of types in T\T ′. Given a belief system β, an individual of type t′ ∈ T ′ who
participates in this coalition receives the expected side payment

∫
M(T ′) zT ′(t

′, δT ′) d β(δT ′ | t′)
and achieves the expected utility∫

M(T )
{τ(t)QF (ŝ(`T ′ , δ))− P̄F (ŝ(`T ′ , δ))}dβ(δ | t′) +

∫
M(T ′)

zT ′(t
′, δT ′) d β(δT ′ | t′) .

Individuals realize that their behavior has no effect on public-good provision but might affect

the side payments they receive. Side payment functions must therefore satisfy the following

incentive, participation and feasibility constraints:

Incentive compatibility. Because individuals are free to misreport their types, the side pay-

ment function must satisfy,∫
M(T ′)

zT ′(t
′, δT ′) d β(δT ′ | t′) ≥

∫
M(T ′)

zT ′(t̂
′, δT ′) d β(δT ′ | t′) , (10)

for all t′ and t̂′ ∈ T ′.
Participation constraint. Because individuals are free not to join the coalition, their expected

receipts must be nonnegative, i.e., it must be the case that∫
M(T ′)

zT ′(t
′, δT ′) d β(δT ′ | t′) ≥ 0 , (11)

for all t′ ∈ T ′.
Feasibility Constraint. The coalition organizers must not expect to lose money.32

We require incentive and participation constrains to hold robustly, i.e. for every admissible

belief system.33 Robust incentive compatibility again implies that the side payment an agent

receives must be independent of the agent’s announcement. Thus there is a function z̄T ′ :

M(T ′) → R so that, for all t′ ∈ T ′, zT ′(t′, δT ′) = z̄T ′(δT ′), and the participation constraint

implies that∫
M(T ′)

z̄T ′(δT ′) d β(δT ′ | t′) ≥ 0 .

32Our formulation of this constraint is deliberately vague because we have not said anything about the coalition

organizer’s beliefs. One way to make the feasibility constraint precise is to impose it ex post, i.e. to postulate it

separately for every δT ′ . A weaker version would allow for averaging on the basis of some specific beliefs that the

coalition organizer might have. As we explain below, if the incentive and participation constraints are robustly

satisfied, this modelling choice is inconsequential for the conclusion that there is no role for side payments.
33The arguments of Crémer and McLean (1988) imply that, for any fixed, belief function β, generically, there

is a nontrivial side payment function that satisfies incentive and participation constraints and in addition, for any

δ, the inequality∫
T ′
zT ′(t

′, δT ′)d δ(t
′) ≤ 0 ,

so that the coalition organizer does not have to contribute any money of his own.
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For this inequality to hold regardless of the belief system β, it must be the case that z̄T ′(δT ′) ≥ 0

and hence∫
T ′
zT ′(t

′, δT ′)d δ(t
′) = z̄T ′(δT ′) ≥ 0 ,

for all δT ′ . At any δT ′ with z̄T ′(δT ′) > 0, the coalition organizer then makes a loss. Thus, either

z̄T ′(δT ′) = 0 for all δT ′ , or the payment scheme zT ′ violates the feasibility constraint.

Thus, contrary to what one might have expected, in our large-economy model with robust

incentive, participation, and feasibility constraints, side payments do not actually enlarge the

scope for coalition formation.

5 Monotonic Social Choice Functions and Voting Mechanisms

In this section, we show that social choice function that is robustly implementable and immune

against robust blocking can be implemented by a voting mechanism.

Voting mechanisms. A simple voting mechanism Φ is defined as a mechanism with the

following properties:

• People are presented with two alternatives and can vote for one or the other, or abstain.
The message set is therefore the triple {alternative 0, alternative 1, abstain}.

• Alternative 1 stipulates that the public good should be provided and that each participant
should make a payment P 1

Φ ≥ k. Alternative 0 stipulates that the public good should not
be provided and that each participant should make a payment P 0

Φ ≥ 0.

• The outcome that is implemented depends monotonically on the shares of people voting
for the different alternatives. For example, there might be a threshold m1

Φ ∈ [0, 1] such

that alternative 1 is implemented if and only if the share of people voting for it exceeds

m1
Φ.

The classical effi ciency conditions for public goods due to ? and ? emphasize preference

intensities, i.e., the average of the individuals’willingness to pay for public goods is the major

determinant of the desirability of public-goods provision. From this perspective, the use of

voting mechanisms cannot be justified. The neglect of preference intensities in voting appears

as a major source of distortions.

In the following, we will however show that such a neglect of preference intensities is ac-

tually implied by monotonicity, robust implementability and immunity to robust blocking. If

a monotonic, anonymous and robustly implementable social choice function were to condition

the provision of the public good on preference intensities, it would be robustly blocked by some

coalition. With robust incentive-compatibility and coalition proofness, the provision of the pub-

lic good can only be conditioned on the size of the set of people who benefit from public-good

provision and the size of the set of people who are hurt by public-good provision.
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Outcome Dependent Payment Schemes. We begin by showing that, under robust im-

plementability and immunity to robust blocking, payments are a function of the public-goods

provision level: If two states s and s′ are such that QF (s) = QF (s′), then it must also be true

that P̄F (s) = P̄F (s′). The logic is very simple: If payments were high in one state and low in

another when both states involve the same level of public-good provision, then the grand coali-

tion of all participants could use a collective deviation to induce the outcome with low payments

when the actual state would call for the outcome with high payments.

Proposition 2 If an anonymous and robustly implementable social choice function F is immune
to robust blocking, then there exist numbers P 0

F and P
1
F so that, for all v ∈ V and all s ∈Mna(V ),

PF (v, s) =

{
P 0
F , if QF (s) = 0 ,

P 1
F , if QF (s) = 1 .

(12)

Proof. Let F = (QF , P̄F ) be an anonymous and robustly implementable social choice function.

For q ∈ {0, 1}, let P̂ qF be the infimum of P̄F (s) over the set {s | QF (s) = q}. Given an abstract
type space (T, T ), and a payoff type function τ : T → V , for any ε > 0, let δqε be such that

QF (s(δqε)) = q and P̄F (s(δqε)) ∈ [P̂ qF , P̂
q
F + ε) .

Consider a collective deviation `T such that, for all q ∈ {0, 1},

`T (δ) = δqε if QF (s(δ)) = q and P̄F (s(δ)) > P̂ qF + ε, and

`T (δ) = δ otherwise.

One easily verifies that the collective deviation `T blocks F on all type spaces [(T, T ), τ , β] with

belief systems that assign positive probability to events {QF (s(δ)) = q , P̄F (s(δ)) > P̂ qF + ε}, for
q ∈ {0, 1}. If the social choice function F is immune to robust coalitions, it follows that all belief
systems must assign zero probability to the events {s | QF (s(δ)) = q , P̄F (s(δ)) > P̂ qF + ε}, for
q ∈ {0, 1}. Since ε can be arbitrarily small, it follows that all belief systems must assign zero
probability to the events {s | QF (s(δ)) = q , P̄F (s(δ)) > P̂ qF }, for q ∈ {0, 1}. The proposition
follows immediately.

5.1 Robust Implementability, Monotonicity, and Immunity to Robust Block-
ing Imply Voting

Given Proposition 2, we restrict our attention to social choice functions with payments that

depend only on whether the public good is provided or not. For such social choice functions,

we find it convenient to write F = (QF , P
0
F , P

1
F ) rather than F = (QF , P̄F ). Given such a social

choice function, we denote by

V1(P 1
F − P 0

F ) := {v ∈ V | v > P 1
F − P 0

F } and V0(P 1
F − P 0

F ) := {v ∈ V | v < P 1
F − P 0

F }

the sets of payoff types of net gainers and net losers from public-good provision, respectively.

These two sets will play a key role in our analysis. For ease of exposition, we will drop the

argument P 1
F − P 0

F whenever this can be done without creating confusion.
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If s ∈Mna(V ), then almost all people have payoff types in V1 or V0, i.e.,

s(V1) + s(V0) = 1. (13)

Because the distribution s has no mass points, the set of people who are indifferent between

the two alternatives can be neglected because it has measure zero. These people have the

public-good valuation v = P 1
F − P 0

F , and s ∈Mna(V ) implies s({P 1
F − P 0

F }) = 0.

Theorem 2 If a monotonic, anonymous and robustly implementable social choice function F
is immune to robust blocking, then for all s and s′ inMna(V ),

s(V1) ≥ s′(V1) implies QF (s) ≥ QF (s′). (14)

Proof. Let F satisfy the conditions of the theorem. For any σ ∈ [0, 1], define

Q∗F (σ) := QF (σ svmax + (1− σ) svmin), (15)

where svmax and svmin are the measures on V that assign all probability mass to the extreme

points vmax and vmin. We claim that, for any s ∈Mna(V ), it must be the case that

QF (s) = Q∗F (s(V1)). (16)

By (15) and the monotonicity of QF , Q∗F (·) is a nondecreasing function, so the conclusion of the
theorem follows immediately from (16).

It remains to prove (16). Suppose that QF (s) < Q∗F (s(V1)) for some s ∈ Mna(V ). Then

QF (s) = 0 and Q∗F (s(V1)) = 1. We claim that, in this case, F can be robustly blocked on the

naive type space (V,V). To see this, consider the collective deviation (V1, `V1) such that, for any

s′ ∈M(V ) with s′(V1) > 0,

`V1(s
′
V1) =

1

s′(V1)
· s′V1 if Q∗F (s′(V1)) = 0, (17)

and

`V1(s
′
V1) = svmax if Q∗F (s′(V1)) = 1 , (18)

where s′V1 is the restriction of s
′ to V1. The report `V1(s

′
V1

) is in fact the truth if Q∗F (s′(V1)) = 0,

but, if Q∗F (s′(V1)) = 1, all coalition members lie by saying that their public-good valuation is

vmax.

By the definition of Q∗F and the monotonicity of QF , we have

Q∗F (s′(V1)) ≤ QF (ŝ(`V1 , s
′)) (19)

for all s′. Hence Q∗F (s′(V1)) = 1 implies QF (ŝ(`V1 , s
′)) = 1 for all s′. Therefore, the collective

deviation (V1, `V1) blocks F on the type space [(V,V), β] for any β such that, for any t ∈ V1,

β(t) ∈M(Mna(V )) assigns positive probability to the set

{s′ ∈Mna(V ) | QF (s′) = 0 and Q∗F (s′(V1)) = 1} . (20)
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If QF (s) < Q∗F (s(V1)) for some s ∈ Mna(V ), the set (20) is nonempty, and the collective

deviation (V1, `V1) blocks F robustly on (V,V). Conversely, immunity to robust blocking implies

that the set (20) is empty and hence that there is no s ∈Mna(V ) such that QF (s) < Q∗F (s(V1)).

Alternatively, if QF (s) > Q∗F (s(V1)) for some s ∈ Mna(V ), a similar argument shows that

F is robustly blocked by the collective deviation (V0, `V0) such that, for any s
′ ∈ Mna(V ) with

s′(V0) > 0,

`V0(s
′
V0) =

1

s′(V0)
· s′V0 if Q∗F (1− s′(V0)) = 1, (21)

and

`V0(s
′
V0) = svmin if Q∗F (1− s′(V0)) = 0. (22)

For any s′ ∈Mna(V ), (13) implies

s′(V0) + s′(V1) = 1,

so conditioning on 1 − s′(V0) in (21) and (22) is equivalent to conditioning on s′(V1). By the

same argument as before, the collective deviation (V0, `V0) blocks F on [(V,V), β] for any β such

that, for any t ∈ V1, β(t) ∈M(Mna(V )) assigns positive probability to the set

{s′ ∈Mna(V ) | QF (s′) = 1 and Q∗F (s′(V1)) = 0} . (23)

If QF (s) > Q∗F (s(V1)) for some s ∈ Mna(V ), the set (23) is nonempty, and the collective

deviation (V0, `V0) blocks F robustly on (V,V).

Immunity against robust blocking thus yields (16) for any s ∈Mna(V ).

The underlying argument is very simple: If the social choice function is monotonic, people

with payoff types in V1 cannot lose by claiming that their valuations are at the very top, at

vmax, and people with payoff types cannot lose by claiming that their valuations are at the

very bottom, at vmin. Moreover, coalitions of such people can win by such claims, unless the

social choice function abstracts from intensities of preferences altogether. Indeed, they can do

so robustly, i.e. the strategies of claiming extreme valuations can be used for blocking no matter

what the specification of beliefs may be. To be immune against robust blocking, the social choice

function must therefore take the form (16).

Monotonicity of the social choice function is not a very restrictive condition. The first-best

public-good provision rule in Theorem 1 is monotonic. Moreover, in models with finitely many

participants, monotonicity is implied by (robust) incentive compatibility. Monotonicity therefore

is a natural condition to impose if we think of the continuum model as an idealization of models

with finitely many participants.

The proof of Theorem 2 does not actually use the full strength of the assumption that QF
is monotonic. All that is used is the assumption that, for any σ, the function

(s0, s1)→ QF (σs1 + (1− σ)s0) (24)
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fromM(V )×M(V ) into {0, 1} has a saddle-point, i.e. that there exists a pair (s∗0, s
∗
1) ∈M(V )2

such that, for all (s0, s1) ∈M(V )2,

QF (σs∗1 + (1− σ)s0) ≥ QF (σs∗1 + (1− σ)s∗0) ≥ QF (σs1 + (1− σ)s∗0).

Monotonicity of QF ensures that the pair (svmin , svmax) is a saddle-point of (24). This property

is crucial for the proof of Theorem 2.34

Monotonicity, or the existence of a saddle-point for (24), would not be needed for Theorem

2 if the social choice function were required to satisfy robust coalition proofness rather than

immunity to robust blocking.35 If collective deviations can be conditioned on belief systems, then

for complete-information belief systems, they can actually be conditioned on the distribution

of types among people who are not coalition members. This conditioning allows a coalition to

avoid the risk that, for some constellation of reports of the non-members, the collective deviation

might move the level of public-good provision in the wrong direction. The analysis here shows

that this risk is irrelevant if the social choice function is monotonic. In this case, collective

deviations in the direction of exaggerating preferences, upwards for people with payoff types

in V1, downwards for people with payoff types in V0, will never mover the level of public-good

provision in a direction that coalition members dislike.

Theorem 2 implies that, for any monotonic, anonymous and robustly implementable social

choice function F that is immune to robust blocking, there exists a threshold level s̄1 such that

QF (s) = 1 implies s(V1) > s̄1 (25)

and

QF (s) = 0 implies s(V1) < s̄1. (26)

To implement such F, it suffi ces to ask who is in favour of having the public good provided and

to condition the outcome on whether or not the population share of the people in favour exceeds

the given threshold s̄1. As an immediate corollary to Theorem 2, we therefore obtain:

Corollary 2 If an anonymous and robustly implementable monotonic social choice function F
is immune to robust blocking, then it can be implemented by a simple voting mechanism.

In view of (13), the implication (14) in Theorem 2 is equivalent to

s(V0) ≥ s′(V0) implies QF (s) ≤ QF (s′), (27)

and the public-good provision rule in (25) and (26) is equivalent to the rule

QF (s) = 1 implies s(V0) < 1− s̄1, (28)

34The saddle-point condition can be interpreted as a Nash equilibrium condition for a strictly competitive

game between the coalition organizers for people with payoff types in V0 and for people with payoff types in V1,

respectively, when the population shares of the two coalitions are 1− σ and σ.
35For economies with finitely many agents, this is the main result in Bierbrauer and Hellwig (2015). The

argument given there applies in the continuum model as well.
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QF (s) = 0 implies s(V0) > 1− s̄1. (29)

Thus the voting mechanism might also ask who opposes the provision of the public good, stip-

ulating provision if and only if the vote share of the opponents is suffi ciently small.

What about people who are indifferent? The preceding analysis has relied on the assumption

that almost nobody is indifferent. If this assumption is violated, i.e. if we allow for cross-section

payoff type distributions with mass points at v = P 1
F −P 0

F , we would actually get a nonexistence

result. In this case, suitable adaptations of the arguments in the proof of Theorem 2 would lead

to the conclusion that the social choice function must satisfy both implications, (14) and (27).36

Then there exist thresholds s̄1 and s̄0 (not necessarily equal to 1− s̄1) such that the public-good

provision rule satisfies (25), (26) as well as (28), (29) with 1− s̄1 replaced by s̄0. However, this

is only possible if s̄1 = 0 or s̄0 = 1, i.e. if QF (s) = 1 for all s or QF (s) = 0 for all s. If we allow

for payoff type distributions with mass points at v = P 1
F − P 0

F , a monotonic, anonymous, and

robustly incentive-compatible social choice function that is immune to robust blocking cannot

have a nontrivial rule for public-good provision.37

In Theorem 2, the set of individuals who are indifferent between the two alternatives has

measure zero because the analysis is restricted to admissible belief systems, i.e. belief systems

that assign probability zero to payoff type distributions with mass points. Any other restriction

that serves the same purpose will yield the same conclusion. Thus, we obtain:

Remark 1 The conclusion of Theorem 2 holds for any payoff type space V and any social choice
function F with outcome-dependent payments P 0

F and P
1
F such that P

1
F − P 0

F /∈ V.

This extension of Theorem 2 is important for model specifications with discrete payoff types.

With discrete payoff types, the assumption that the payoff type distribution has no mass points

does not make much sense. Remark 1 shows that the conclusion of Theorem 2 holds anyway

unless the difference P 1
F−P 0

F is an element of V . In the example of Section 2, with V = {0, 3, 10},
this requirement is satisfied if the social choice function stipulates equal cost sharing, i.e., P 0

F = 0,

and P 1
F = k = 4.

5.2 Voting Mechanisms are Immune to Robust Blocking

The following result provides a converse to Theorem 2 and its corollary.

Theorem 3 If an anonymous, robustly implementable social choice function F = (QF , P
0
F , P

1
F )

satisfies condition (14) for all s and s′ inMna(V ), then F is immune to robust blocking.

36 In the argument used to establish (14), group people who are indifferent with people who have payoff types

in V0(P 1
F −P 0

F ). To establish (27), use a symmetric argument, where people who are indifferent are grouped with

people who have payoff types in V1(P 1
F − P 0

F ).
37This destructive conclusion is avoided if, somewhat arbitrarily, we assume that people with payoff type

v = P 1
F −P 0

F never join a coalition with people whose payoff types are in V0 (or never join a coalition with people

whose payoff types are in V1). Equivalently, in the definition of blocking, we might have a weak Pareto criterion

for coalitions that intend to raise the level of public-good provision and a strict Pareto criterion for coalitions that

intend to lower the level of public-good provision.

26



Proof. Let F = (QF , P
1
F , P

0
F ) be a robustly incentive compatible anonymous social choice

function that satisfies condition (14). We will show that F is also immune to robust blocking.

For suppose that the social choice function F is blocked on some type space [(T, T ), τ , β] with

an admissible belief system β. Let T̂ be the blocking coalition, and let V̂ = τ(T̂ ) be the set of

associated payoff types. Depending on how V̂ relates to the sets V0 and V1, we distinguish three

cases.

Case 1: V̂ ∩ V1 = ∅.
In this case, obviously, V̂ ∩V0 6= ∅, and there is no loss of generality in assuming that V̂ = V0

and T̂ = T0 := τ−1(V0). For a collective deviation `T0 by people with payoff types in V0 to block

F, there must exist some cross-section type distribution δ such that

QF (s(δ)) = 1

and

QF (s(δ̂(`T0 , δ))) = 0.

By condition (14), it follows that the set of agents whose reports suggest that they have valua-

tions in V1 must be strictly greater at δ than at δ̂(`T0 , δ)), i.e.

δ(T1) > δ̂(T1 | `T0 , δ)). (30)

However, the definition (8) of δ̂(`T0 , δ) implies

δ̂(T1 | `T̂ , δ)) ≥ δ(T1), (31)

which is incompatible with (30). The assumption that there is a blocking coalition T̂ with

τ(T̂ ) ∩ V1 = ∅ has thus led to a contradiction and must be false.
Case 2: V̂ ∩ V0 = ∅.
The argument is precisely symmetric to the one given for Case 1 and is left to the reader.

Case 3: V̂ ∩ V0 6= ∅ and V̂ ∩ V1 6= ∅.
For a collective deviation `T̂ by a coalition of people with payoff types in V0 and people with

payoff types in V1 to block F at [(T, T ), τ , β], there must exist nonempty sets D10 and D01 of

type distributions inM(T ) such that, for δ0 ∈ D10,

QF (s(δ0)) = 1 and QF (s(δ̂(`T̂ , δ0))) = 0,

and for δ1 ∈ D01,

QF (s(δ1)) = 0 and QF (s(δ̂(`T̂ , δ1))) = 1.

Moreover, the different participants’ beliefs must be such that the different participants

attach more weight to the gains from the changes they like than to the losses from the changes

they dislike. Thus, for an agent with type t0 ∈ T0, it must be the case that

β(D10 | t0)

β(D01 | t0)
≥ 1,
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and for an agent with type t1 ∈ T1,

β(D10 | t1)

β(D01 | t1)
≤ 1,

and at least one of the inequalities must be strict for a nonnegligible set of agents in T̂ . However,
not all belief systems that assing positive probability to δ0 and δ1 satisfy these inequalities.

Blocking of F by the coalition T̂ therefore cannot be robust.

Without any additional conditions, Theorem 3 would not be true if we replaced the require-

ment of immunity to robust coalitions by a requirement of coalition-proofness which allows for

belief-dependent coalition formation: Collective deviations by individuals with payoff types in

both V0 and V1 would block F if beliefs were such that the “trade” involved in raising public-

good provision in some states while lowering it in other states would seem mutually beneficial.

In the proof of Theorem 3 the requirement that blocking by a collective deviation should be

robust is used to eliminate this possibility. If belief-dependent coalitions are allowed for, such

“trades” can also be eliminated by requiring coalitions themselves to be immune to the for-

mation of subcoalitions. A coalition of people with payoff types in both V0 and V1 that tries

to implement such a “trade” is it itself vulnerable to the possibility that one of the subgroups

might use an additional collective deviation of its own in order to manipulate reports to the

primary coalition organizer so that those states in which the original coalition would provide for

a manipulation that people in the subgroup dislike would never be “observed”. In Bierbrauer

and Hellwig (2015), we use a version of this argument to prove an analogue of Theorem 3 for

robust coalition-proofness in finite economies.38

6 Welfare Implications

Limits to First-Best Implementation. From Theorems 1 and 2, we immediately obtain:

Corollary 3 If there exist s and s′ inMna(V ) , such that s(V0(k)) ≤ s′(V0(k)) and v̄(s) < k <

v̄(s′), then there is no anonymous social choice function that yields first best outcomes and that

is robustly implementable and immune to robust blocking.

Whereas the literature on public-goods provision in small economies has mainly developed

impossibility theorems on the basis of participation constraints and budget balance, Theorem

1 shows that, in the large economy, those concerns are moot, but first-best implementation

may be vulnerable to manipulation by groups with common interest. We saw this already in the

example in Section 2, where the size of the group of net beneficiaries was always 0.3 and the first-

best provision rule depended on the population shares of people with valuation 0 and people

with valuation 3, all of whom would be harmed by public-good provision. In that example,

38 In Bierbrauer and Hellwig (2015), we actually use the Bernheim et al. (1986) approach in which subcoalitions

themselves must again be immune to blocking by admissible subsubcoalitions, etc. In the continuum model,

this concept involves the diffi culty that there is no minimal coalition on which to build a hierarchy of admissible

coalitions of increasing size.
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obviously the conditions of Corollary 3 are satisfied, for example, with s0 = 0.7, s3 = 0, s10 = 0.3

ands′0 = 0, s′3 = 0.7, s10 = 0.3.

The following table provides another example, which will be useful for discussing second-best

considerations. In this example, there are three possible payoff types V = {0, 5, 10}. The per-
capita cost of public-good provision is k = 4.5. There are two possible cross-section distributions

sj , j = 1, 2 of payoff types. The population shares sjv of the different payoff types under these

two cross-section distributions are given in the following table.39

Table 3.

j sj0 sj5 sj10 v̄(sj)

1 0.3 0.7 0 3.5

2 0.4 0.1 0.5 5.5

(32)

The last column in the table indicates the cross-section average valuation v̄(sj) of the public

good for each distribution.

For the example in Table 3, first-best implementation requires that the public good should

not be provided in state 1 and that the public good should be provided in state 2. With equal

cost sharing, the associated payment outcomes would be P 0
F = 0 and P 1

F = 4.5. Given these pay-

ments, the set of opponents of public-good provision consists of all types with valuations 0 and

the set of net beneficiaries of public-good provision consists of all types with valuations 5 and

10. From Table 3, one immediately sees that the set of net beneficiaries has a population share

of 0.7 in state 1 and of 0.6 in state 2. Because the population share of the set of net beneficiaries

is larger in state 1 than in state 2, first-best implementation runs afoul of the monotonicity re-

quirement in Theorem 1. In more concrete terms, any mechanism that would implement a social

choice function with first-best outcomes would be robustly blocked by a coalition of people with

valuations 5 and 10. The coalition would use a collective deviation that involves truthtelling

if the coalition’s population share is 0.6. If the population share of the cooalition is 0.7, the

collective deviation involves reporting the valuation 10 with probability 5/7, and the valuations

0 and 5 with probability 1/7 each. The overall mechanism is thus made to believe that the state

is 2, even when the true state is 1.

Second-Best Considerations. If first-best is out of reach, the overall mechanism designer

faces a second-best problem. Given the impossibility of achieving effi cient outcomes in every

state s, he must choose between different deviations from effi ciency that are compatible with the

requirement of immunity against robust blocking. For instance, with the example in Table 3, he

can decide whether it is better to forego the net benefits from public-good provision in state 2

or to incur the net losses from public-good provision in state 1. He might also want to change

the boundary between yes-sayers and no-sayers by imposing a payment scheme that raises more

39The payoff type distributions in Table 3 obviously have mass points. However, with equal cost sharing the

assumption of Remark 1 is satisfied so the conclusion of Theorem 2 holds.
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funds than he needs, e.g., by asking for a payment P 1
F = 5.1 if the public good is provided,

rather than P 1
F = k = 4.5, in order to turn people with valuations 5 from net beneficiaries into

opponents of public-good provision. This would allow him to implement a first-best public-good

provision rule, but there would be a waste of resources in state 2, when the public good is

provided.

Any assessment of tradeoffs between the different kinds of ineffi ciency must rely on a system

of weights that the mechanism designer assigns to the different states. For specificity, we assume

that the mechanism designer has his own prior beliefs and chooses a social choice function in order

to maximize expected aggregate surplus according to these beliefs, subject to the requirements

of feasibility, robust implementability and immunity against robust blocking. This is equivalent

to the problem of choosing P 0
F , P

1
F and QF : M(V ) → {0, 1} so as to maximize the expected

aggregate surplus

EM [(v̄(s)− P 1
F )QF (s)− P 0

F (1−QF (s))] (33)

subject to the feasibility constraints that P 0
F ≥ 0, P 1

F ≥ k, and the condition that for every

pair s and s′, s(V1) ≥ s′(V1) implies QF (s) ≥ QF (s′). The expectations operator EM in (33)

indicates that expectations over s are taken with respect to the mechanism designer’s subjective

beliefs.

With Table 3, the solution to this second-best problem depend on the probabilities ρM1 and

ρM2 that the mechanism designer assigns to the different states. If the benefits of public-good

provision are foregone in state 2, then, relative to first-best, there is a net per capita welfare loss

of 5.5− 4.5 = 1.0 in this state. If the public good is provided in state 1, when it should not be,

the per-capita welfare loss is 4.5− 3.5 = 1.0. If the mechanism designer deems the two states to

be equiprobable, he will be indifferent between excessive provision in state 1 and non-provision

in state 2. If he deems state 2 to be more likely than state 1, he will prefer excessive provision

in state 1 to non-provision in state 2; the reverse is true if he deems state 1 to be more likely.

In any case, though, non-provision in state 2 is dominated by a scheme involving non-

provision in state 1 and provision with a payment P 1
F = 5.1 > k in state 2. This scheme involves

a per-capita welfare loss, relative to first-best, that is equal to 5.1 − 4.5 = 0.6 in state 2. If

the mechanism designer deems the two states to be equiprobable, he will prefer this scheme

even to an arrangement involving excessive provision of the public good in state 1. Excessive

provision of the public good in state 1, i.e., provision of the public good in both states, with

non-wasteful payments P 0
F = 0 and P 1

F = k = 4.5 is only preferred if the probability assigned

to state 1 is less than 3/8. If the probability assigned to state 1 exceeds 3/8, the second-best

social welfare function stipulates (the effi cient) non-provision of the public good in state 1 and

provision with an excessive payment in state 2. A wilful waste of resources may thus be part

of a second-best solution when first-best solutions are ruled out by robustness and immunity to

robust coalitions.40

40Similarly, in the example of Section 2, the mechanism designer might want to impose a payment of 1 whenever

the public good is not provided and a payment of 4 whenever the public good is provided.

30



7 Multiple Provision Levels

To what extent does our analysis depend on the assumption that the public goods comes in

a single indivisible unit so that there are only two alternatives, provision and non-provision?

Extending Theorem 1 to allow for multiple provision levels is obviously unproblematic. The

finding that, in a large economy, first-best public-good provision with equal cost sharing is

robustly implementable holds quite generally.

The question is whether Theorems 2 and 3 also hold for the general case of multiple provision

levels. In the following, we provide an answer to this question.

Multiple provision levels with a linear cost function. Extending our previous analysis

is easy if the provision cost function is linear (up to some upper bound Q̄) and the payment

rule provides for equal cost sharing. In this case, if the provision cost per capita is kQ, there

are again two sets of payoff types, V0 = {v|v < k} and V1 = {v|v > k} so that, for any two
provision levels Q0 and Q1 with Q1 > Q0 agents with payoff types in V0 prefer Q0 and agents

with payoff types in V1 prefer Q1. An easy adaptation of the proof of Theorem 2 then shows

that, if a monotonic, anonymous and robustly implementable social choice function is immune

to robust coalitions, the public-good provision rule must take the form

QF (s) = Q∗(s(V1)),

where Q∗ is a nondecreasing function. Such a social choice function can again be implemented

by a voting mechanism, though this time, the votes would not be about the alternatives that

are to be chosen. The vote might be about whether to have zero public-good provision or not,

and the level would depend on the population share of the people in favour of some public-good

provision. (With utility taking the form vQ, of course, effi ciency would mandate that Q∗ should

take the values 0 and Q̄ so the linear-cost case is similar to the binary case anyway.)

Multiple provision levels with increasing marginal costs. Extending our analysis to

multiple provision levels is nontrivial, however, if the cost of an additional unit of the public-

good is increasing or decreasing in Q. The case of increasing marginal costs is particularly

interesting. In the following, we show how our approach works when there are n + 1 provision

levels 0, 1, ..., n and the provision cost is k1 for Q = 1, k1 + k2 for Q = 2, and, more generally,∑j
i=1 ki for K = j, where

vmin < k1 < k2 < ... < kn < vmax. (34)

Depending on the distribution of payoff types, any one of the provision levels 0, 1, ..., n can be

effi cient. Specifically, a first-best provision rule requires that

QFBF (s) =


0, if v̄(s) < k1,

j, if v̄(s) ∈ (kj−1, kj), j = 1, ..., n− 1,

n, if v̄(s) > kn.

Figure 1 below illustrates the first-best provision rule for the case n = 2, when there are three

provision levels. On the axes, we have the population shares s(V0) and s(V2) of the sets V0 =
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{v|v < k1} and V2 = {v|v > k2}. For s ∈ Mna(V ), the population share s(V1) of the set V1 =

{v|k1 < v < k2} of people who prefer the intermediate provision level Q = 1 is 1− s(V0)− s(V2).

The figure represents the set

{(s(V0), s(V2)) | 0 ≤ s(V0) ≤ 1 , 0 ≤ s(V2) ≤ 1 and s(V0) + s(V2) ≤ 1} . (35)

of possible constellations of s(V0) and s(V2) with the understanding that s(V1) = 1−s(V0)−s(V2).

Under the assumption that the conditional means of v on the sets V0, V1, V2 are fixed and do

not change as s(V1) changes,41 the figure shows how the first-best provision rule depends on the

population shares of the three groups.

Figure 1: First-best in a setup with three provision levels
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However, the first-best provision rule is again not immune to robust blocking. The see this,

consider the points A = (s(V0)A, s(V2)A) and B = (s(V0)B, s(V2)B) in Figure 1. These point have

been chosen so that s(V2)A = s(V2)B, QFBF (sA) = 2, and QFBF (sB) = 1. Consider the naive type

space (V,V) and a collective deviation (V0∪V1, `V0∪V1) by agents with payoff types in V0∪V1 such

that, whenever, the population share of this coalition is 1−s(V2)A and whenever the population

share of agents with payoff types in V0 is s(V0)A, the reporting strategy `V0∪V1 has a share
s(V0)B

1−s(V2)A
of coalition members report that their payoff types are in V0 and a share 1− s(V0)B

1−s(V2)A

of coalition members report that their payoff types are in V1. As a result of this manipulation,

the overall mechanism realizes QFBF (sB) even though the actual state of the economy is sA. All

coalition members benefit from this manipulation and, from an interim perspective, all coalition

41This assumption is only made in Figure 1. Our subsequent analysis does without it.
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members expect to benefit from the collective deviation (V0 ∪ V1, `V0∪V1) whenever they have

beliefs that assign positive probability to state sA. Thus the collective deviation (V0∪V1, `V0∪V1)

blocks the first-best provision rule robustly on (V,V).

What can we say in general about the implications of requiring social choice functions to

be immune to robust blocking, as well as anonymous and robustly incentive-compatible? The

following result answers this question for a particular class of social choice functions, whose

range includes all possible provision levels.

Theorem 4 Consider a monotonic, anonymous and robustly implementable social choice func-
tion F for the model with n + 1 public-good provision levels with increasing marginal provision

costs and suppose that the payment rule provides for equal cost sharing. Assume that there exist

numbers σi, i = 0, ..., n, in [0, 1] such that, for any i,

QF (σisvmax + (1− σi)svmin) = i, (36)

where svmin and svmax are the degenerate measures that assign probability one to the minimum

vmin and the maximum vmax of V . If F is immune to robust blocking, then there exist numbers

s̄1, s̄2, ..., s̄n such that

0 < s̄1 < ... < s̄n < 1 (37)

and, moreover, for any s ∈Mna(V ) and j = 0, ..., n,

QF (s) = i, if s(W+
i−1) > s̄i and s(W+

i ) < s̄i+1, , (38)

where, for notational convenience, we write s̄0 = 0 and s̄n+1 = 1, and where, for i = 0, 1, ....n,

W+
i = (ki+1, vmax] is the set of payoff types for whom an increase in the provision level from

Q = i to Q = i+ 1 is desirable. Moreover, for j = 1, ..., n, QF (s) is constant on each of the sets

{s|
∑n

i=j s(Vi) = s̄j}, taking either the value QF (s) = j or the value QF (s) = j − 1.

Corollary 4 If a social choice function satisfies the assumptions of Theorem 4, then it can be

implemented by a sequence of votes on the question whether people want to raise the public good

by one unit, first from zero to one, then from one to two, ... finally from n-1 to n. Thresholds

for proceeding to the next stage are given by s̄1, s̄2, ..., s̄n. If stage j is reached but the threshold

for stage j + 1 is not met, the public-good provision level is QF (s) = j.

For the case n = 2, Theorem 4 is illustrated in Figure 2, which again shows the set (35).

The set V2 of payoff types that prefer the provision level Q = 2 is equal to the set W+
1 of payoff

types for whom an increase from Q = 1 to Q = 2 is desirable. If s is atomless, the set V1 ∪ V2

of payoff types that prefer the provision level Q = 1 or the provision level Q = 2 has the same

measure as the set W+
0 of payoff types for whom an increase from Q=0 to Q=1 is desirable, i.e.

s(W+
0 ) = s(V1 ∪ V2) = s(V1) + s(V2). According to the theorem, the public good is provided at
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the maximum level Q = 2 if s(W+
1 ) > s̄2, which corresponds the case s(V2) > s̄2 in the figure.

It is provided at the level Q = 1 if s(W+
1 ) < s̄2 and s(W+

0 ) > s̄1, which corresponds to the case

s(V2) < s̄2 and s(V0) = 1 − s(V1) − s(V2) < 1 − s̄1 in the figure. It is not provided at all if

s(W+
0 ) < s̄1, which corresponds to the case s(V0) > 1− s̄1 in the figure.

Figure 2: Immunity to robust blocking: The case of three provision levels
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Figure 2 also illustrates the condition that there exist numbers σi, i = 0, ..., n, in [0, 1] such

that, for any i, the public-good provision level at σisvmax + (1 − σi)svmin satisfies (36). For

any σ ∈ [0, 1], the payoff type distribution σsvmax + (1 − σ)svmin corresponds to a point on the

boundary of the set (35). The condition requires that, as one moves along this boundary from

the point (1,0) to the point (0,1), QF takes all possible values, from 0 to n, in the figure the

values 0, 1, 2; without ever jumping, e.g. from 0 to 2. Below, we discuss this assumption further.

7.1 Proof of Theorem 4

To prove Theorem 4, we first specify the thresholds s̄1, s̄2, ..., s̄n.

Lemma 1 Under the assumptions of Theorem 4, there exist thresholds s̄1, s̄2, ..., s̄n satisfying

(37) such that

QF (σsvmax + (1− σ)svmin) = j, if σ ∈ (s̄j , s̄j+1), (39)

where again s̄0 = 0 and s̄n+1 = 1.
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Proof. By the monotonicity of QF , the function

σ → Q̂F (σ) := QF (σsvmax + (1− σ)svmin) (40)

is nondecreasing. Under the assumptions of Theorem 4, for each j, the set {σ ∈ [0, 1]|Q̂F (σ) = j}
is nonempty. For j ≥ 1, let s̄j be the infimum of this set. (39) and (37) follow by the monotonicity

of the function (40).

We next proceed by induction. We first show that, for any s ∈ Mna(V ), the claims of

the Theorem are true if s(W+
n−1) > s̄n. Then we show that, if they are true for s satisfying

s(W+
j ) > s̄j+1, then they must also be true for any s satisfying s(W+

j−1) > s̄j . Throughout the

analysis, we make repeated use of the fact that, if s ∈Mna(V ),then for any j < n,

s(W+
j ) =

n∑
i=j+1

s(Vi). (41)

We also introduce the notation W−j for the set of payoff types for whom a decrease of the

provision level from Q = j to Q = j − 1 would be desirable, and we note that, if s ∈ Mna(V ),

then for any j > 0,

s(W−j ) =

j−1∑
i=0

s(Vi). (42)

Lemma 2 Under the assumptions of Theorem 4,

QF (s) = n

for any s ∈Mna(V ) such that s(Vn) > s̄n.

Proof. We show that if the lemma is false, then F can be robustly blocked on the naive

type space (V,V). If the lemma is false, there exists s ∈ Mna(V ) such that s(Vn) > s̄n and

QF (s) < n. Consider the collective deviation (Vn, `Vn) where `Vn takes the constant value svmax .

By monotonicity, we have

QF (ŝ(`Vn , s
′)) ≥ QF (s′) (43)

for all s′ ∈Mna(V ). By monotonicity, we also have

QF (ŝ(`Vn , s
′)) ≥ Q̂F (s′(Vn)). (44)

By Lemma 1 and monotonicity, it follows that

QF (ŝ(`Vn , s
′)) = n (45)

whenever s′(Vn) > s̄n. For any s ∈Mna(V ), therefore, s(Vn) > s̄n and QF (s) < n together imply

that QF (ŝ(`Vn , s)) > QF (s). The collective deviation (Vn, `Vn) blocks F on the naive type space
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[(V,V), β] for any belief system that has people with payoff types in Vn give positive probability

to the set of states s with s(Vn) > s̄n and QF (s) < n.

In the induction argument, we repeatedly refer to Figure 3. This figure is similar to Figure 2,

except that now, for some fixed j, the axes show the population shares s(W−j ) and s(W+
j ) of the

set of people who want the public-good provision level to be lower and the set of people who want

the public-good provision level to be higher than j. We assume that (38) is true for all s such that

s(W+
j ) > s̄j+1 and proceed to show that (38) is also true for all s such that s(W+

j ) < s̄j+1 and

s(W+
j−1) > s̄j or, equivalently, s(W−j ) < 1 − s̄j . The induction assumption corresponds to the

statement that (38) is true and QF (s) > j for all s corresponding to points above the horizontal

line s(W+
j ) = s̄j+1 in the figure. The induction argument will show that (38) is also true and

QF (s) = j for all s corresponding to points in the intermediate area between the horizontal line

s(W+
j ) = s̄j+1 and the vertical line s(W−j ) = 1 − s̄j in the figure. (The theorem also implies

that QF (s) < j for all s corresponding to points to the right of the vertical line s(W−j ) = 1− s̄j
in the figure, but this is not part of the induction argument.)

The different parts of the proof correspond to different sets of points in the figure. In the

first step, we verify our claim for distributions s ∈ Mna(V ) for which s(W+
j ) < s̄j+1 and

s(W+
j−1) > s̄j and, in addition, s(Vj) = 0, or, equivalently, s(W−j ) + s(W+

j ) = 1. This is the set

of payoff type distributions that correspond to points on the outer boundary of the triangle in the

figure, between the vertical lines s(W−j ) = 1− s̄j+1 and s(W−j ) = 1− s̄j . In the second step, we
verify our claim for all remaining distributions s ∈Mna(V ) for which s(W−j ) ∈ (1− s̄j+1, 1− s̄j);
these distributions correspond to points on the vertical strip underneath the boundary points

considered in the first step. In the third step, finally we establish our claim for all distributions

s ∈Mna(V ) for which s(W−j ) ≤ 1− s̄j+1 and s(W+
j ) < s̄j+1. This corresponds to the rectangle

between the axes, the vertical line s(W−j ) = 1− s̄j+1 and the horizontal line s(W+
j ) = s̄j+1.

The following lemma establishes our claim for distributions that correspond to points on the

outer boundary of the triangle in Figure 3.

Lemma 3 Fix j < n. Under the assumptions of Theorem 4, if (38) holds for all s ∈ Mna(V )

with s(W+
j ) > s̄j+1, then (38) also holds for any s ∈ Mna(V ) with s(Vj) = 0, and s(W+

j ) ∈
(s̄j , s̄j+1).

Proof. The proof proceeds in three steps. In the first step, we show that, under the induction

hypothesis, for s ∈ Mna(V ) satisfying s(Vj) = 0, and s(W+
j ) ∈ (s̄j , s̄j+1), QF (s) cannot exceed

j + 1. To see this, consider the payoff type distribution

s′ = α sW+
j

+ (1− α)sW−j
,

where sW+
j
and sW−j

are the restrictions of s to the sets W+
j = (kj , vmax] and W−j = [vmin, kj)

and

α :=
s̄j+1 + s̄j+2

2
· 1

s(W+
j )
.
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Figure 3: Immunity to robust blocking: The intermediate provision level
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(This is well defined because s satisfies s(W+
j ) > s̄j .) The distribution s′ satisfies

s(W+
j ) = s′(W+

j ) = α s(W+
j ) =

s̄j+1 + s̄j+2

2

and hence s′(W+
j ) ∈ (s̄j+1, s̄j+2). By the induction hypothesis, it follows that QF (s′) = j + 1.

Since, by construction, s′ dominates s in the sense of first-order stochastic dominance, we also

have QF (s) ≤ QF (s′) and therefore QF (s) ≤ j + 1.

In the second step, we show that, for s ∈ Mna(V ) satisfying s(Vj) = 0, and s(W+
j ) ∈

(s̄j , s̄j+1), QF (s) cannot be less than j. If this claim were false, then F would be robustly blocked

on the naive type space (V,V). To see this, consider the collective deviation (W+
j ∪Vj , `W+

j ∪Vj
)

where `W+
j ∪Vj

is a reporting strategy that asks coalition members to report svmax whenever

s(Vj) = 0, and s(W+
j ) ∈ (s̄j , s̄j+1), and to report the truth in all other circumstances. For

any s′ ∈ Mna(V ) such that s′(Vj) = 0, and s′(W+
j ) ∈ (s̄j , s̄j+1), this reporting strategy gener-

ates a cross-section distribution of reports ŝ(`W+
j ∪Vj

, s′) that weakly dominates the distribution

σsvmax + (1− σ)svmin for σ = s′(W+
j ). By the monotonicity of F, it follows that, for such s′,

QF

(
ŝ(`W+

j ∪Vj
, s′)
)
≥ Q̂F

(
s(W+

j )
)

= j.

By the first step of the argument, we also have QF (ŝ(`W+
j ∪Vj

, s′)) ≤ j + 1. If s′(Vj) = 0, it

follows that almost all members of the coalition W+
j ∪ Vj prefer the public-good provision level

QF (ŝ(`W+
j ∪Vj

, s′)) to any level below j. Thus, if QF (s) were less than j for some s ∈ Mna(V )
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satisfying s(Vj) = 0, and s(W+
j ) ∈ (s̄j , s̄j+1), the collective deviation (W+

j ∪ Vj , `W+
j ∪Vj

) would

robustly block F on the naive type space (V,V).

In the third step, we show that, for s ∈Mna(V ) satisfying s(Vj) = 0, and s(W+
j ) ∈ (s̄j , s̄j+1)

we must have QF (s) = j. If this claim were false, then F would be robustly blocked on (V,V).

To see this, consider the collective deviation (W−j ∪ Vj , `W−j ∪Vj ) where `W−j ∪Vj is a reporting
strategy that asks coalition members to report svmin whenever s(Vj) = 0 and s(W−j ) ∈ (1 −
s̄j+1, 1− s̄j) and to report the truth in all other circumstances. For any s′ ∈Mna(V ) such that

s′(Vj) = 0 and s′(W+
j ) ∈ (s̄j , s̄j+1), this reporting strategy generates a cross-section distribution

of reports ŝ(`W−j ∪Vj
, s′) that is weakly dominated by the distribution σsvmax + (1 − σ)svmin for

σ = 1− s(W−j ) = s(W+
j ). By the monotonicity of F , it follows that, for such s′,

QF

(
ŝ(`W−j ∪Vj

, s′)
)
≤ Q̂F

(
s(W+

j )
)

= j.

By the second step of the argument, therefore, QF (ŝ(`W−j ∪Vj
, s′)) = j, which all coalition mem-

bers prefer to any higher level. Thus if QF (s) were equal to j+1 for some s ∈ Mna(V ) satisfying

s(Vj) = 0 and s(W+
j ) ∈ (s̄j , s̄j+1), the collective deviation (W−j ∪ Vj , `W−j ∪Vj ) would robustly

block F on the naive type space (V,V). The lemma follows immediately.

The following lemma establishes our claim for distributions corresponding to points in Figure

3 that lie on the vertical strip below the boundary points considered in Lemma 3.

Lemma 4 Fix j < n. Under the assumptions of Theorem 4, if (38) holds for all s ∈ Mna(V )

with s(W+
j ) > s̄j+1, then (38) also holds for all s ∈Mna(V ) with s(W+

j−1) ∈ (s̄j , s̄j+1).

Proof. We first note that any s ∈ Mna(V ) with s(W+
j−1) ∈ (s̄j , s̄j+1) is dominated by the

distribution

s′ = s+ s(Vj)svmax − sVi (46)

which is obtained from s by shifting all mass from the set Vj to the singleton {vmax}. By
construction, s′(W+

j ) = s′(W+
j−1) = s(W+

j−1) ∈ (s̄j , s̄j+1) and s′(Vj) = 0. Hence, by Lemma 3,

QF (s′) = j. By the monotonicity of F , therefore, QF (s) ≤ j.
To prove the lemma, it therefore suffi ces to show that, for any s ∈ Mna(V ) such that

s(W+
j−1) ∈ (s̄j , s̄j+1), we cannot have QF (s) < j. For this purpose, we show that, if we had

QF (s) < j for some such s, then F could be robustly blocked on the naive type space (V,V).

To see this, consider the collective deviation (W+
j−1, `W+

j−1
) where `W+

j−1
is a reporting strategy

that asks coalition members to report

`W+
j−1

(sW+
j−1

) =
1

s(W+
j−1)

· sW+
j

+
s(Vj)

s(W+
j−1)

svmax (47)

whenever s(W+
j−1) ∈ (s̄j , s̄j+1) and to report the truth in all other circumstances. For any s ∈

Mna(V ) such that s(W+
j−1) ∈ (s̄j , s̄j+1), the distribution of reports ŝ(`W+

j−1
, s) that is generated

by this reporting strategy satisfies the conditions of Lemma 3 so we have QF (ŝ(`W+
j−1
, s)) = j.
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Since all coalition members prefer the provision level j to any lower level, it follows that, if

there were a distribution s ∈ Mna(V ) such that s(W+
j−1) ∈ (s̄j , s̄j+1) and QF (s) < j, then

the collective deviation (W+
j−1, `W+

j−1
) would block F robustly on (V,V). The lemma follows

immediately.

Finally, we consider distributions corresponding to points in Figure 3 that lie to the left of

the vertical line s(W−j ) = 1− s̄j+1and below the horizontal line s(W+
j ) = s̄j+1.

Lemma 5 Fix j < n. Under the assumptions of Theorem 4, if (38) holds for all s ∈ Mna(V )

with s(W+
j ) > s̄j+1, then (38) also holds for all s ∈Mna(V ) with s(W+

j−1) > s̄j .

Proof. Since all other cases are covered by Lemma 4 or by the induction hypothesis, it suffi ces

to prove that (38) holds for all s ∈ Mna(V ) with s(W+
j ) < s̄j+1 and s(W+

j−1) > s̄j . For any

such s, obviously, there exists s′ ∈Mna(V ) such that s dominates s′ and, moreover, s′(W+
j−1) ∈

(s̄j , s̄j+1). (To obtain s′ from s, shift an appropriate amount of mass from Vj to the singleton

{vmin}.) For such s′, Lemma 4 implies QF (s′) = j. For any s ∈Mna(V ) such that s(W+
j ) < s̄j+1

and s(W+
j−1) > s̄j , we therefore have QF (s) ≥ j.

To complete the proof it now suffi ces to show that, for any s ∈Mna(V ) such that s(W+
j ) <

s̄j+1 and s(W+
j−1) > s̄j , we cannot have QF (s) > j. We give separate arguments for the case

s(W+
j ) > s̄j and for the case s(W+

j ) ≤ s̄j .
Case 1. For the case s(W+

j ) > s̄j , we show that, if we had QF (s) > j for some such s, then

F could be robustly blocked on the naive type space (V,V). To see this, consider the collective

deviation (W−j+1, `W−j+1
) where `W−j+1

is a reporting strategy that asks coalition members to

report

`W−j+1
(sW−j+1

) =
1

s(W−j+1)
· sW−j+1 +

s(Vj)

s(W−j+1)
svmin −

sVj
s(W−j+1)

(48)

if s(W−j+1) ∈ (1 − s̄j+1, 1 − s̄j), or equivalently, if s(W+
j ) ∈ (s̄j , s̄j+1), and to report the truth

in all other circumstances. Heuristically, the strategy `W−j+1
asks all people with payoff types in

Vj to report vmin, leaving everything else unchanged. For any s ∈ Mna(V ) such that s(W+
j ) ∈

(s̄j , s̄j+1), the distribution of reports ŝ(`W−j+1
, s) that is generated by this reporting strategy

satisfies the conditions of Lemma 3, so we have QF (ŝ(`W−j+1
, s)) = j. Since all coalition members

prefer the provision level j to any higher level, it follows that, if there were a distribution s ∈
Mna(V ) such that s(W+

j ) ∈ (s̄j , s̄j+1) andQF (s) > j, then the collective deviation (W−j+1, `W−j+1
)

would block F robustly on (V,V). Hence we must have QF (s) = j for any such j.

Case 2. For the case s(W+
j ) ≤ s̄j and s(W+

j−1) > s̄j , it suffi ces to note that any such s is

dominated by a distribution s′ satisfying s′(W+
j ) ∈ (s̄j , s̄j+1) and itself dominates a distribution

s′′ satisfying s′′(W+
j−1) ∈ (s̄j , s̄j+1). By Case 1, QF (s′) = j. By Lemma 4, QF (s′′) = j. By the

monotonicity of F , QF (s′) ≥ QF (s) ≥ QF (s′′) and hence QF (s) = j. This completes the proof

of the lemma.

Lemma 6 Under the assumptions of Theorem 4, (38) holds for all s ∈Mna(V ).
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Proof. Given Lemmas 2 and 5, the lemma follows by induction on j.

Lemma 7 Under the assumptions of Theorem 4, QF (s) = Q̂F (s̄j) for any s with s(W+
j−1) = s̄j.

Proof. By monotonicity, Q̂F (s̄j) = j or Q̂F (s̄j) = j − 1. Whenever there exists a distribution

s with s(W+
j−1) = s̄j and QF (s) 6= Q̂F (s̄j), one can use the arguments in the proofs of Lemmas

3, 4 and 5 to construct a robustly blocking coalition. Thus, if Q̂F (s̄j) = j, the coalitions

considered in the proofs of Lemmas 3 and 4 could be used to construct a collective deviation

that would block F robustly on (V, V ) if there existed any s with s(W+
j−1) = s̄j and QF (s) 6= j.

Alternatively, if Q̂F (s̄j) = j − 1, the arguments in the proofs of Lemmas 3 and 5 could be used

to construct a collective deviation that would block F robustly on (V, V ) if there existed any s

with s(W+
j−1) = s̄j and QF (s) > j − 1. We leave the details to the reader.

7.2 Discussion

Theorem 4 and Corollary 4 show that the basic conclusions of Theorem 2 and Corollary 2

remain valid when there are multiple public-good provision levels with increasing marginal pro-

vision costs and if all provision levels appear in the range of the social choice function when

there are only people with extreme payoff types. If the social choice function is required to

be immune to robust blocking as well as monotonic, anonymous and robustly implementable,

the provision decision can only be conditioned on the population shares of the different interest

groups. Implementation can use a set of simple voting mechanisms where, in any one vote,

participants are asked whether or not they want the public-good provision level to be increased

from j to j + 1.

The additional assumption that all provision levels appear in the range of the social choice

function when there are only people with extreme payoff types is special but not unreasonable.

Social choice functions that condition on a comparison of the aggregate (expected) benefits

with the costs of an additional unit of the public good will satisfy the assumption because,

as population mass is shifted from the lower end of the payoff type set to the upper end, the

aggregate (expected) benefits of an additional unit of the public good move continuously from

vmin to vmax.

If the additional assumption about the social choice function is not satisfied, we lose the

simple characterization of social choice functions as being implementable by a collection of

simple votes on unit increases in the level of public-good provision. However, we do not lose

the property that, with a requirement of immunity to robust blocking, as well as monotonicity,

public-good provision can only be conditioned on the population shares of the different groups.

Rather than stating and proving this claim formally, we illustrate the argument by means of

Figure 4, which deals with the case n = 2. We now assume that the function

σ → Q̂F (σ) := QF (σsvmax + (1− σ)svmin)
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does not take the value one, and that there exists s̄2 ∈ (0, 1) such that Q̂F (σ) = 0 if σ < s̄2 and

Q̂F (σ) = 2 if σ > s̄2. For specificity, we also assume that Q̂F (s̄2) = 2.42 By arguments similar to

those given in the proof of Lemmas 2 and 6 it follows that, if the social choice function is immune

to robust blocking as well as monotonic, we must have QF (s) = 2 whenever s(W+
1 ) = s(V2) ≥ s̄2

and QF (s) = 0 whenever s(W−1 ) = s(V0) > s̄0, where, with an abuse of notation, we now define

s̄0 := 1 − s̄2. By arguments similar to those given in the proofs of Lemmas 3 - 5, we also find

that, if QF (s) = 1 for some s ∈ Mna(V ), then we must also have QF (s′) for all s′ ∈ Mna(V )

such that s′(V2) ≤ s(V2) and s′(V0) ≤ s(V0). Hence, the (closure of the) set of s ∈Mna(V ) such

that QF (s) = 1 must correspond to a rectangle in Figure 4. If no such point exists, we are back

in the world of Theorem 2 and Corollary 2. If such a point exists and the “northeast”vertex of

the rectangle corresponds to the point (s̄0, s̄2) in the figure, we are back in the world of Theorem

4 and Corollary 4. However, we cannot rule out the possibility that, as shown in the figure,

the “northeast”vertex (ŝ0, ŝ2) of the rectangle might lie in the interior of the set (35). In this

case, the monotonicity of F implies that QF (s) = 2 if s(V2) ∈ (ŝ2, s̄2] and s(V0) < ŝ0 and that

QF (s) = 0 if s(V2) < ŝ2 and s(V0) ∈ (ŝ0, s̄0].43

This leaves the rectangle with “southwest” vertex (ŝ0, ŝ2) and “northeast” vertex (s̄0, s̄2).

Immunity to robust blocking implies that, in this rectangle, the choice between the provision

levels zero and two can only depend on whether or not the population share s(V2 ∪ V12) of

the set of people who prefer Q = 2 over Q = 0 meets (or exceeds) a certain threshold or not,

or equivalently, on whether the population share s(V0 ∪ V10) of the set of people who prefer

Q = 0 over Q = 2 meets (or exceeds) a certain threshold or not. Any reliance on intensities

of preferences is ruled out by the requirement of immunity to robust blocking because, with

a monotonic social choice function, people with payoff types in V0 and V2 can never lose and

possibly gain by reporting extreme valuations, vmin or vmax, whereas people with payoff types

in V12 who prefer Q = 1 over Q = 2 and Q = 2 over Q = 0 cannot lose but possibly gain by

reporting the highest possible valuation in V1.44

To conclude this section, we note that, if a monotonic and anonymous social choice function

with equal cost sharing can be implemented by a voting mechanism, then it is also immune to

42 If Q̂F (s̄2) were equal to one, we would be back in the setting of Theorem 4. If Q̂F (s̄2) were equal to zero, the

analysis would be similar to the one we give.
43Figure 4 illustrates the difference between the requirements of immunity to robust blocking, and ex post

coalition proofness (or robust coalition proofness). The outcomes for s(V2) ∈ (ŝ2, s̄2] and s(V0) < ŝ0, on the one

hand, and for s(V2) < ŝ2 and s(V0) ∈ (ŝ0, s̄0], on the other hand, violate ex post coalition-proofness. For example,

if QF (s) = 2 for s(V2) ∈ (ŝ2, s̄2] and s(V0) < ŝ0 and the set of of people with payoff types in V10, i.e. the set of

people who prefer Q = 1 over Q = 0 and Q = 0 over Q = 2 is suffi ciently large, a coalition of people with payoff

types in V0∪V10 can induce Q = 0 rather than Q = 2 by reporting that all coalition members have payoff types in

V0. Thus, if all coalition members know that s(V2) ∈ (ŝ2, s̄2] and s(V0) < ŝ0, as they do ex post, or in the case of

a complete-information belief system with degenerate beliefs concentrated at s, this coalition can block the social

choice function. Our concept of robust blocking,however, requires coalitions to do without such information. If

people with payoff types in V10 do not know s(V2) (or are unable to infer s(V2) from the information available to

the coalition V0 ∪ V10), they must be afraid that s(V2) < ŝ2, in which case the coalition members’all reporting

payoff types in V0 would move the provision level from Q = 1 to Q = 0 and make the agents with payoff types in

V10 worse off.
44The words “highest”and “lowest” in this sentence are not to be taken literally but to be read as shorthand

for suitable approximations of suprema and infima.
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Figure 4: Three provision levels: Q̂F (σ) 6= 1, for all σ.
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robust blocking. The proof is similar to the proof of Theorem 3 and is left to the reader.

8 Concluding Remarks

Our paper has four messages. First, it is important to study public-good provision in large

economies where any one individual in isolation is too insignificant to affect the level of public-

good provision. In societies with millions of participants, important public-good provision prob-

lems are best understood from a large-economy perspective. The large-economy paradigm pro-

vides for important simplifications. In particular, individuals do not ever see themselves as

being pivotal, and therefore considerations of individual incentive compatibility are trivial. In a

society with a million people, the view that individuals are never pivotal is not quite correct, but

the probability of being pivotal is on the order of 10−4, an order of magnitude that is unlikely

to make much of a difference to people’s behaviors.45

In a large economy, most of the issues that have been studied in the context of finite economies

are moot. Effi cient provision of a public good is obtained by asking people how much the public

good is worth to them, providing it if the aggregate benefits exceed the costs and sharing the

costs equally among the participants. In the absence of participation constraints, this mechanism

45As is well known, in a system with n participants, the probability of being pivotal is on the order of n−
1
2 . See

the discussion in Hellwig (2003) and the references given there.
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implements first-best outcomes robustly. It also satisfies budget balance, i.e. the mechanism

designer does not run a surplus or a deficit.

Second, whereas most of the theoretical literature on public-good provision has focused on

individual incentives, we argue that coalition proofness should also be a major concern. The

scheme that is used for first-best implementation may rely on information from people who

are hurt by the use that is made of it. These people provide this information because, as

individuals, they feel that their reports do not make a difference to the outcome. A requirement

of coalition proofness takes account of their collective interest (without violating individual

incentive compatibility).

Coalition proofness matters in large economies as well as small. In the literature, issues

of coalition proofness in public-good provision have mainly been tied to the failure of budget

balance in dominant-strategy or robust Bayesian implementation. In large economies, these

concerns are moot, like the concerns about individual incentive compatibility and about budget

balance. However, concerns about collective misrepresentations of preference intensities matter

all along and impose significant constraints on mechanism design. In large economies, these

concerns matter even if the coalitions themselves must satisfy a robustness condition, which

prevents them from conditioning on people’s beliefs about each other.

Third, it is desirable to impose a robustness reqirement on blocking coalitions as well as the

social choioce functions. Organizers of deviating coalitions cannot be presumed to know the

participants’s beliefs. Nor can they be presumed to know the characteristics of non-members of

their coalitions. Requirements of robust coalition proofness or ex post coalition proofness are

therefore too strong. We replace them with a requirement of immunity to robust blocking.

Fourth, if social choice functions are monotonic and if they must be immune to robust

blocking , then mechanism design is confined to the use of voting mechanisms, i.e. public-good

provision can only be conditioned on the population shares of people favouring the different

alternatives. Economists tend to criticize the use of voting mechanisms because they fail to

take account of the intensities of preferences. Our analysis shows that such neglect of pref-

erence intensities is unavoidable if coalitions of participants can collectively misrepresent their

preferences. For example, a coalition of people for whom the benefits from the public good are

smaller than the costs per person could prevent the implementation of first-best outcomes by

having all coalition members report that the public good is worth nothing to them, perhaps

even that they are harmed by it. Or a coalition of people for whom the benefits exceed the costs

might coordinate on exaggerating the beneftis they report. Haven’t we all heard or seen such

cheap-talk exaggerations in media discussion? Given the scope for collective misrepresentations

of preference, the only source of information about preferences that can be reliably used is in

fact in the numbers of votes for and against the installation of the public good.

The focus on numbers of votes for the different alternatives entails a loss of information

and a loss of effi ciency. These losses are an unavoidable consequence of the fact that first-best

implementation is vulnerable to collective misreporting. The challenge now is to obtain a better

understanding of the tradeoffs involved in designing second-best mechanisms.

43



References

Austen-Smith, D. and Banks, J. (1996). Information Aggregation, Rationality and the Condorcet

Jury Theorem. American Political Science Review, 90:34—45.

Bennett, E. and Conn, D. (2010). The Group Incentive Properties of Mechanisms for the

Provision of Public Goods. Public Choice, 29: 95-102.

Bergemann, D. and Morris, S. (2005). Robust Mechanism Design. Econometrica, 73:1771—1813.

Bernheim, B., Peleg, B., and Whinston, M. (1986). Coalition-proof Nash equilibria I. Concepts.

Journal of Economic Theory, 42:1—12.

Bierbrauer, F. (2009a). A note on Optimal Income Taxation, Public-Goods provision and Robust

Mechanism Design. Journal of Public Economics, 93:667—670.

Bierbrauer, F. (2009b). Optimal Income Taxation and Public-Good Provision with Endogenous

Interest Groups. Journal of Public Economic Theory, 11:311—342.

Bierbrauer, F. and Hellwig, M. (2010). Public-Good Provision in a Large Economy. Preprint

2010/02, Max Planck Institute for Research on Collective Goods.

Bierbrauer, F. and Hellwig, M. (2011). Mechanism Design and Voting for Public-Good Provision.

Preprint 2011/31, Max Planck Institute for Research on Collective Goods.

Bierbrauer, F. and Hellwig, M. (2015). Public Goods, Mechanism Design and Voting. Working

Paper, Max Planck Institute for Research on Collective Goods.

Bierbrauer, F. and Hellwig, M. (in preparation). Mechanism Design and the Difference between

Public and Private Goods. Max Planck Institute for Research on Collective Goods.

Bierbrauer, F. and Sahm, M. (2010). Optimal Democratic Mechanisms for Income Taxation and

Public-Goods Provision. Journal of Public Economics, 94:453-466.

Bierbrauer, F. (2012). Distortionary Taxation and the Free-Rider Problem. International Tax

and Public Finance, 19:732—752.

Bierbrauer, F. (2014). Optimal Tax and Expenditure Policy with Aggregate Uncertainty.Amer-

ican Economic Journal: Microeconomics, 6:205—257.

Buchanan, J. and Tullock, G. (1962). The Calculus of Consent.Univerysity of Michigan Press,

Ann Arbor.

Boylan, R. (1998). Coalition-Proof Implementation. Journal of Economic Theory, 82:132—143.

Börgers, T. and Smith, D. (2014). Robust Mechanism Design and Dominant Strategy Voting

Rules. Theoretical Economics, 9: 339—360.

Casella, A. (2005). Storable Votes. Games and Economic Behavior, 51: 391—419.

44



Che, Y. and Kim, J. (2006). Robustly Collusion-Proof Implementation. Econometrica, 74:1063—

1107.

Clarke, E. (1971). Multipart Pricing of Public Goods. Public Choice, 11:17—33.

Crémer, J. and McLean, R. (1985). Optimal Selling Strategies under Uncertainty for a Discrim-

inating Monopolist when Demands are Interdependent. Econometrica, 53:345—361.

Crémer, J. and McLean, R. (1988). Full Extraction of the Surplus in Bayesian and Dominant

Strategy Auctions. Econometrica, 56:1247—1257.

Crémer, J. (1996). Manipulation by Coalition Under Asymmetric Information: The Case of

Groves Mechanisms. Games and Economic Behavior, 13:39—73.

d’Aspremont, C. and Gérard-Varet, L. (1979). Incentives and Incomplete Information. Journal

of Public Economics, 11:25—45.

Fudenberg, D., and Tirole, J. (1991). Game Theory. MIT Press, Cambridge, MA.

Goeree, J. and Zhang, J. (1979). Electoral Engineering: One Man, One Bid. Discussion Paper,

University of Zurich.

Green, J. and Laffont, J.-J. (1979 a). Incentives in Public Decision-Making. North-Holland

Publishing Company.

Green, J. and Laffont, J.-J. (1979 b). On Coalition Incentive Compatibility. Review of Economic

Studies, 46: 243-254.

Groves, T. (1973). Incentives in Teams. Econometrica, 41:617—663.

Guesnerie, R. (1995). A Contribution to the Pure Theory of Taxation. Cambridge University

Press.

Hammond, P. (1979). Straightforward Individual Incentive Compatibility in Large Economies.

Review of Economic Studies, 46:263—282.

Hammond, P. (1987). Markets as Constraints: Multilateral Incentive Compatibility in Contin-

uum Economies. Review of Economic Studies, 54:399—412.

Güth, W. and Hellwig, M. (1986). The Private Supply of a Public Good. Journal of Economics,

Supplement 5:121—159.

Hellwig, M. (2003). Public-good Provision with Many Participants. Review of Economic Studies,

70:589—614.

Hellwig, M. (2011). Incomplete-Information Models of Large Economies with Anonymity: Exis-

tence and Uniqueness of Common Priors. Preprint 2011/08, Max Planck Institute for Research

on Collective Goods.

45



Hindriks, J., and Myles, G. (2006). Intermediate Public Economics. MIT Press, Cambridge,

MA.

Laffont, J. and Martimort, D. (1997). Collusion under Asymmetric Information. Econometrica,

65:875—911.

Laffont, J. and Martimort, D. (2000). Mechanism Design with Collusion and Correlation. Econo-

metrica, 68:309—342.

Ledyard, J. (1978). Incentive Compatibility and Incomplete Information. Journal of Economic

Theory, 18:171—189.

Mailath, G. and Postlewaite, A. (1990). Asymmetric Information Bargaining Problems with

Many Agents. Review of Economic Studies, 57:351—367.

Mas-Colell, A., Whinston, M., and Green, J. (1995). Microeconomic Theory. Oxford University

Press, New York.

Mas-Colell, A. and Vives, X. (1993). Implementation in Economies with a Continuum of Agents

Review of Economic Studies, 60:613—629.

Mirrlees, J. (1971). An Exploration in the Theory of Optimum Income Taxation. Review of

Economic Studies, 38:175—208.

Moulin, H. (1999). Incremental Cost Sharing: Characterization by Coalition Strategy-Proofness.

Social Choice and Welfare, 16:175—208.

Mehta, A. and Roughgarden, T. and Sundarajan, M. (2009). Beyond Moulin Mechanisms.

Games and Economic Behavior, 67:125—155.

Norman, P. (2004). Effi cient Mechanisms for Public Goods with Use Exclusion. Review of

Economic Studies, 71:1163—1188.

Qiao, L., Sun, Y., and Zhang, Z. (forthcoming). Conditional exact law of large numbers

and asymmetric information economies with aggregate uncertainty. Economic Theory, DOI

10.1007/s00199-014-0855-6.

Sun, Y. (2006). The Exact Law of Large Numbers via Fubini extension and Characterization of

Insurable Risks. Journal of Economic Theory, 126:31—69.

46


