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Abstract

McAfee and Reny (1992) have given a necessary and sufficient condition for full
surplus extraction in models with a continuum of types. We interpret their condition
as significantly stronger version of the requirement of injectiveness of the function
mapping abstract types into beliefs and prove that their condition is satisfied by a
generic set of model specifications. Our analysis involves an extension of the classi-
cal embedding theorem for continuous functions. Our proof does not rely on finite
approximations and the topology on beliefs that we use is compatible with strategic
continuity.

JEL Classification: D40, D44, D80, D82

Keywords: surplus extraction, mechanism design, BDP, correlated information, strate-
gic continuity

1 Introduction

A central theme of the economics of information concerns the ability of agents to earn
rents because they have private information. For example, the buyer of a good may be
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able to obtain a surplus because the seller does not know how much the good is worth to
the buyer.

However, Crémer and McLean (1988) have shown that, when there are multiple po-
tential buyers for a good and these buyers have correlated private values, then, under
certain conditions, in a Bayesian setting, a seller can extract all the surplus from the sale
of his good, i.e. all information rents can be made to disappear. Specifically, if the poten-
tial buyers have only finitely many types, a Bayesian incentive mechanism that extracts
all the potentially available surplus from buyers can be designed if and only if, for each
agent i and each type ti of this agent, the vector of beliefs that agent i has about the other
agents’ types when his own type is ti cannot be represented as a convex combination of
the vectors of beliefs about the other agents’ types that he has at types other than ti.

McAfee and Reny (1992) have extended the analysis of Crémer and McLean (1988)
to the case where each agent’s type set is the unit interval and where each agent’s beliefs
about other agents’ types are given by a probability distribution with a continuous density
function. They showed that (approximately) full surplus extraction can be obtained if
and only if the density functions that represent agents’ beliefs satisfy a function space
analogue of the Crémer-McLean condition.

With finitely many types, the Crémer-McLean condition for full surplus extraction is
necessarily fulfilled if the belief vectors that are associated with the different types of an
agent are linearly independent. If there are at least as many constellations of other agents’
types as there are possible types of agent i, linear independence of belief vectors holds for
an open and dense set of specifications of beliefs in the Crémer-McLean model. For any
given finite type space, therefore, the Crémer-McLean condition for full surplus extraction
is generic.1

This paper establishes an analogous result for the McAfee-Reny condition for full sur-
plus extraction in models with a continuum of types. Specifically, we will show that if the
different agents’ type spaces are compact metric spaces, then, for any agent i, the McAfee-
Reny condition for full surplus extraction holds for a residual set of belief mappings of
this agent, i.e., for a countable intersection of open and dense sets of functions mapping
the agent’s types to his beliefs about the other agents’ types. With finitely many agents,

1Throughout the paper we use the word ”model” in a wide sense, like Bergemann and Morris (2005) or
Heifetz and Neeman (2006). In contrast, Barelli (2009), as well as Chen and Xiong (2011), Chen and Xiong
(2013) use the word more specifically for a common prior model with a minimal consistent belief subspace of
the universal type space.
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the vectors of belief mappings of the different agents that all satisfy the McAfee-Reny
condition form a residual set in the set of all vectors of belief mappings for the different
agents. Moreover, this latter statement remains valid if attention is restricted to those vec-
tors of belief mappings that are consistent with the existence of a common prior on the
space of vectors of the different agents’ types.

The McAfee-Reny condition requires that, for each agent i and each type ti of this
agent, the density function that indicates the agent’s beliefs when his type is ti cannot
be represented as a convex combination of the beliefs that he has at types other than
ti. Formally, for any ti and any measure µ on the agent’s type space Ti, unless µ is the
degenerate measure that assigns all mass to the singleton {ti}, it must be the case that∫

fi(·|t′i)dµ(t′i) 6= fi(·|ti). (1)

The right-hand side of (1) represents the density function fi(·|ti) of agent i’s beliefs about
the other agents’ types when his own type is ti. The left-hand side represents an average
with respect to µ of the density functions fi(·|t′i) of the beliefs that the agent has about the
other agents’ types when his own type is t′i.

For an interpretation of this condition, observe that the average on the left-hand side
corresponds to the beliefs that agent i would have about the other agents’ types if he
thought that his own type was distributed as µ. For example, if the agent believes that
his type is t′i 6= ti, µ is the degenerate measure concentrated at t′i and the left-hand side is
just fi(·|t′i). More generally, the measure µ in (2) might be nondegenerate, reflecting un-
certainty of the agent about his own type. The McAfee-Reny condition requires that, in
either case, if µ is a degenerate measure concentrated at some t′i 6= ti and if µ is nondegen-
erate, the agent’s beliefs when he thinks that his own type is distributed as µ must differ
from the beliefs that the agent forms when he knows that his own type is ti.

The notion of agent i’s forming beliefs about the other agents’ types on the basis that
his own type is distributed as µ is at odds with the standard assumption that each agent
knows his own type. This notion is natural though if we replace the type space Ti by the
spaceM(Ti) of probability measures on Ti and if we think about an extended type of agent
i as measure µ on Ti. If the measure µ is nondegenerate, the agent knows his extended
type but has only probabilistic beliefs about his own type (and by implication, his payoff
type and his belief type). In this formulation, the McAfee-Reny condition is equivalent
to the requirement that the beliefs that are associated with any degenerate extended type,
i.e. any measure on Ti that is concentrated at a singleton, must be distinguishable from
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the beliefs that are associated with any other extended type. This requirement is stronger
than injectiveness of the belief function on the original type space Ti but weaker than
injectiveness of the belief function on the extended type spaceM(Ti); it does not exclude
the possibility that the beliefs that are associated with any two nondegenerate extended
types might be the same.2

The McAfee-Reny condition for full surplus extraction can thus be interpreted as a
much stronger version of the requirement that agents’ belief mappings should be injective.
If an agent’s belief function is injective, a mechanism designer who knows the agent’s
beliefs can infer his type. Moreover, regardless of how the agent’s payoff parameters
depend on his type, the mechanism designer can also infer the agent’s payoff parameters
from his beliefs. This latter property is sometimes referred to as the BDP property (short
for beliefs determine preferences). Neeman (2004) and Heifetz and Neeman (2006) showed
that this property is necessary for full surplus extraction, and they suggested that, with
arbitrary non-finite type spaces, this property is only obtained in exceptional cases.3 In
their view, the genericity of full surplus extraction in Crémer and McLean (1988) is due to
their assumption of fixed finite type spaces.

Our analysis contradicts this suggestion. In Gizatulina and Hellwig (2014), we had
already shown that the BDP property is generic in the space of continuous functions from
agents’ types to their beliefs. Our proof of this result relied on the classical embedding the-
orem for continuous functions. This theorem asserts that, if X is a compact n-dimensional
metric space and Y is a metric space with dimension at least 2n + 1, then the set of embed-
dings, i.e., of continuous injective functions, is residual in the space of continuous func-
tions from X to Y, endowed with the uniform topology. Thus, if the range of the functions
is much richer than the domain, injectiveness is the rule and a failure of injectiveness the

2McAfee and Reny (1992) themselves give an interpretation of (1) that is based on the notion that µ can be
thought of as a prior on Ti. In this case, a violation of (1) would indicate that, relative to the prior µ, agent
i’s learning that his own type is ti does not provide him with any new information about the other agents’
types. This explanation however is problematic if the measure µ does not have ti in its support, for example,
if µ is a degenerate measure that assigns all mass to t′i 6= ti. Moreover, the interpretation of µ as a prior raises
the question of how to interpret the requirement that condition (1) hold for all measures µ on Ti except for
the degenerate measure with unit mass at ti.

3Their formal analysis showed that, if a family of common priors on a given type space is convex, and if
this family contains at least one non-BDP prior (and hence at least one non-FSE prior), then, in a geometric
and a measure theoretic sense, the set of BDP priors is sparse in the given convex family. Their analysis does
not consider the genericity properties of the set convex families of common priors that contain at least one
non-BDP prior in the set of all convex families of common priors on the given type space.
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exception. Genericity of the BDP property follows directly because any injective belief
function has this property, regardless of how payoff characteristics depend on types.

However, because the BDP property is only necessary and not sufficient for full surplus
extraction, that result does not permit any inference about the genericity of the latter. As
explained above, the McAfee-Reny condition, which is sufficient as well as necessary for
full surplus extraction, is much stronger than the BDP property or injectivity. Therefore,
we cannot rely on the classical embedding theorem for continuous functions. Indeed,
if the range of an agent’s belief functions were finite-dimensional, the set of belief func-
tions satisfying the McAfee-Reny condition would not be dense no matter how large the
dimension of the range might be relative to the dimension of the domain.

To establish the genericity of the McAfee-Reny condition, we actually need a new
mathematical result, which makes use of the fact that beliefs are given by probability
measures and that the space of probability measures on any set with more than finitely
many elements is an infinite-dimensional space. The arguments we use involve similar
ideas as the proof of the classical embedding theorem. However, whereas the classical
embedding theorem involves functions whose range and domain have finitely many di-
mensions, our theorem involves functions whose range is infinite-dimensional (while the
domain can be an arbitrary finite- or infinite-dimensional compact metric space).

In the context of belief mappings, the dimensionality requirement on the range is un-
problematic. If each agent has more than finitely many types, beliefs, i.e. probability
measures on type spaces, are necessarily infinite-dimensional. For example, in McAfee
and Reny (1992), where each agent’s type space is the unit interval, an agent’s belief func-
tion maps the unit interval into the space of continuous density functions on the product
of the other agents’ type spaces, an infinite-dimensional space.

Genericity of full surplus extraction has also been studied in Chen and Xiong (2013).
They also suggest that full surplus extraction is generically possible. However, their ap-
proach and their result are very different from ours. Most importantly, Chen and Xiong
(2013) focus on beliefs that are derived from common priors and they treat the surplus
extraction property as a property of these priors.4 By contrast, we treat the McAfee-Reny
condition as a property of each individual agent’s belief function. We also have a generic-
ity result for common priors under which all agents’ belief functions satisfy the McAfee-
Reny condition, but this result is derived from our genericity result for belief functions,

4More precisely, they treat agents’ types as elements of the universal type space and consider belief-closed
subsets of this space in which the different agents’ belief functions admit common priors.
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which does not require the existence of a common prior.
The McAfee-Reny condition itself is a condition on a belief function of each single

agent which does not presume the existence of a common prior. For the analysis of Chen
and Xiong (2013), however, the common-prior assumption is essential because they treat
agents’ types as elements of the universal type space. In the universal type space it does
not even make sense to ask for which belief functions the McAfee-Reny condition is sat-
isfied. In this space, there is single belief function, each ”type” is defined by a vector
consisting of the agent’s payoff parameters and the agent’s beliefs about the other agents’
payoff parameters, the agent’s beliefs about the other agents’ beliefs about other agents’
payoff parameters, etc. The belief function is given by the projection from the space of
universal types to the space of belief hierarchies and by the observation that each belief
hierarchy defines a unique measure on the space of the other agents’ universal types.
Because the universal type space approach has no room for considering different belief
functions, Chen and Xiong (2013) do not look at the scope for full surplus extraction as a
property of belief functions but as a property of belief-closed subsets of the universal type
space and of common priors on such subsets. The fact that the McAfee-Reny condition
for surplus extraction refers to each individual agent’s belief function, without reference
to mutually consistent belief hierarchies, is thereby lost.5

For models with continuous type spaces, Chen and Xiong (2013) do not actually con-
sider the feasibility of surplus extraction, or the McAfee-Reny condition, directly. In-
stead they rely on approximations of such models by sequences of models with finite
type spaces. For their denseness result, they observe that, if the space of common priors is
given the topology of weak convergence, i.e., the weak* topology, then the set of common
priors with finite supports is dense in the set of all common priors and that, as mentioned
above, the set of priors for which full surplus extraction is possible is itself dense in the set
of priors with finite supports. This argument is unsatisfactory because, as is well known,
the weak* topology on priors is not well suited to capture the continuity properties of
strategic behaviour under incomplete information.6

Any genericity result depends on the chosen topology. In a context involving strategic
behaviour, the topology on the space of exogenous data should be chosen in such a way
that, with this topology, the map from exogenous data to strategic behaviour exhibits nat-

5This comments also apply to the analysis of the BDP property in Chen and Xiong (2011). For an extensive
discussion, see Gizatulina and Hellwig (2014).

6See Dekel, Fudenberg, and Morris (2006), Chen, DiTillio, Faingold, and Xiong (2010).
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ural continuity properties. For type spaces and belief functions in incomplete-information
models, this requirement is met if ”similar” types and ”similar” belief functions - in the
sense of the given topology - induce similar behaviours in strategic games. Along the lines
of Kajii and Morris (1994) or Dekel, Fudenberg, and Morris (2006), we interpret ”similar
behaviours” in terms of what Kajii and Morris (1994) refer to as Approximate Lower Hemi-
continuity of Actions: In any strategic game, for any ε > 0 and any type of an agent, an
action that is optimal for the agent with this type under some belief function, when the
other agents’ strategies are taken as given, will also be ε-optimal under other belief func-
tion that is sufficiently close. We obtain this property by modelling beliefs as measures
with continuous density functions and specifying belief functions as continuous func-
tions from types to beliefs, where the space of beliefs is given the topology of uniform
convergence of density functions and the space of belief functions is given the topology
of uniform convergence.

The assumption that beliefs have continuous density functions and that the topology
on beliefs is given by the uniform topology on density functions is not actually necessary
for our analysis. To be sure, McAfee and Reny (1992) assumed that beliefs have continu-
ous density functions. However, if beliefs are specified as arbitrary measures and belief
functions as continuous functions from types to measures, a suitable generalization of
the McAfee-Reny condition can still be shown to be necessary and sufficient for full sur-
plus extraction. Moreover, our genericity result can be extended to this setting. However,
we suspect that, in this more general setting, Approximate Lower Hemicontinuity of Actions
would fail.

Our analysis should not be interpreted as saying that full surplus extraction is to be
considered very likely. One may have serious doubts whether, in any concrete situation, a
mechanism designer may be presumed to know enough to implement the mechanism that
is needed to fully exploit the dependence of beliefs on types for surplus extraction. How-
ever, our result suggests that such doubts ought to be articulated by explicitly modelling
the mechanism designer’s lack of information about the environment or by imposing a
requirement of robustness along the lines of Bergemann and Morris (2005). The notion
that ”beliefs determine preferences” may seem implausible, and one may be tempted to
formalize this implausibility at the level of incomplete-information models, but our anal-
ysis shows that in settings with infinite type spaces, and therefore infinite-dimensional
belief spaces, such notions of plausibility must be treated with caution. In such settings,
neither the McAfee-Reny condition for full surplus extraction nor the weaker condition of
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injectiveness, is very special.
In the following, Section 2 lays out the basic model and reviews the result of McAfee

and Reny (1992). Section 3 states our main theorem on the genericity of belief functions
satisfying the McAfee-Reny condition and compares it to the result of Gizatulina and
Hellwig (2014) on the genericity of the BDP property. In particular, this section provides
some geometric intuition for the similarities and differences between the McAfee-Reny
condition and injectiveness and for the difference between our theorem and the classical
embedding theorem for continuous functions. The proof of our main theorem is given in
Section 4. In Section 5, we use our main theorem to provide a genericity result for common
priors under which the belief functions, i.e., the regular conditional distributions of all
agents, satisfy the McAfee-Reny condition. In the concluding discussion in Section 6, we
relate our analysis to the work of Heifetz and Neeman (2006), Gizatulina and Hellwig
(2014) and Chen and Xiong (2013). In that section, we also discuss the role of the topology
we use, as well as the relation between the abstract type space approach, which we use,
and the universal type space approach. A generalization of our analysis to the case where
belief functions do not have continuous densities is discussed in the appendix.

2 The McAfee-Reny Result

McAfee and Reny (1992) consider the following problem: Suppose that a game of incom-
plete information between agents i = 1, ..., I had an equilibrium in dominant strategies
and that the equilibrium payoff of agent i is

πi(t1, ..., tI), (2)

where t1, ..., tI are the different agents’ types. Is it possible to design incentive-compatible
systems of participation fees that extract this surplus from the agents? For example, we
may think of the incomplete-information game as a second-price auction for a given object
and of the payoff πi(t1, ..., tI) as the surplus that agent i obtains if he has the highest
valuation for the object and pays a price equal to the second-highest valuation, i.e.,

πi(t1, ..., tI) = θi(ti)−max
j 6=i

θj(tj)

if θi(ti) ≥ maxj 6=i θj(tj) and
πi(t1, ..., tI) = 0
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if θi(ti) ≤ maxj 6=i θj(tj), where, for j = 1, ..., I, θj(tj) is the value that agent j with type tj

assigns to the object. Instead of a second-price auction, one might also have the message
game that is induced by a Groves mechanism for public-good provision, or any other
game with a dominant-strategy equilibrium.

For i = 1, ..., I, let Ti be the set of possible types of agent i, and let T−i := ∏
j 6=i

Tj be

the set of vectors of the other agents’ types. The type ti of agent i determines not only
the agent’s payoff characteristics but also his beliefs bi(ti) about the other agents’ types;
formally, bi(ti) is a probability measure on T−i.

Given the belief bi(ti) and given the equilibrium function πi determined by (2), the
agent’s expected payoff from participating in the game is given as

π̄i(ti) :=
∫

T−i

πi(t1, ..., tI) bi(dt−i|ti). (3)

The question is whether there exists an incentive-compatible system of participation fees
that make the agent pay (approximately) π̄i(ti), for each ti ∈ Ti, to the mechanism de-
signer/organizer of the game.

McAfee and Reny (1992) consider a system of participation fees with the following
structure. Knowing his type ti, agent i can choose one out of Ni schedules zi

1, ..., zi
Ni

where
each schedule zi

n, n = 1, ...Ni makes the actual fee depend on the other agents’ types. Thus,
if agent i chooses the schedule zi

n, his payment will be zi
n(t−i). Given his belief bi(ti), his

expected payment under the fee schedule zn is

z̄i
n(ti) :=

∫
T−i

zi
n(t−i) bi(dt−i|ti). (4)

The dependence of agent i’ payment on the other agents’ types obviously does not give
rise to any incentive concerns. If agent i can choose one out of the Ni schedules zi

1, ..., zi
Ni

,
agent i will choose the one that entails the smallest expected payment z̄n(ti). Given this
choice, his expected payment is equal to

Z̄i(ti) := min(z̄i
1(ti), ..., z̄i

Ni
(ti)). (5)

Let bi : Ti → M(T−i) be a belief function of agent i where M(T−i) is the space of
probability measures over T−i. The belief function bi is said to admit full surplus extraction
if and only if, for every continuous function π̄i : Ti → R+ and every ε > 0, there exists a
system zi

1, ..., zi
Ni

of participation fee schedules for agent i such that the induced expected
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payment Z̄i(ti) as given by (4) and (5) satisfies

π̄i(ti)− ε ≤ Z̄i(ti) ≤ π̄i(ti) (6)

for all ti ∈ [0, 1]. Whereas the ability to extract the surplus of agent i depends on the
belief function bi and the expected-payoff function π̄i jointly, McAfee and Reny (1992)
ask which belief functions admit full surplus extraction for all expected-payoff function
π̄i within the class of continuous functions. For brevity, belief functions admitting full
surplus extraction will sometimes be referred to as FSE belief functions.

Condition (6) provides for approximate rather than full surplus extraction. As ex-
plained by McAfee and Reny, exact surplus extraction is not to be expected. For example,
if the belief function bi has a continuous density, one can find an expected-payoff function
π̄i for which exact surplus extraction is not possible, i.e. there is no system of fee sched-
ules zi

1, ..., zi
Ni

such that min(z̄i
1(ti), ..., z̄i

Ni
(ti)) = π̄i(ti) for all ti. However, since the choice

of ε in (6) is arbitrary, the divergence from full surplus extractions can be made arbitrarily
small.

In their formal analysis, McAfee and Reny (1992) equate the type spaces Ti, i = 1, ..., I,
with the unit interval and restrict the analysis to belief functions bi such that, for each
ti ∈ [0, 1], the measure bi(ti) has a density function fbi(·|ti) and, moreover, fbi(t−i, ti) is
jointly continuous in t−i and ti: For this specification, they establish

THEOREM 2.1 (MCAFEE AND RENY) A belief function bi : Ti → M(T−i) with a density
function fbi : Ti×T−i → R+ that is jointly continuous in ti and t−i admits full surplus extraction
if and only if, for every t̄i ∈ Ti and every probability measure µ on Ti,

µ({t̄i}) 6= 1 implies fbi(·|t̄i) 6=
∫
Ti

fbi(·|ti)µ(dti). (*)

In other words, there must not exist any type t̄i such that the density function fbi(.|t̄i)

associated with the belief bi(t̄i) belongs to the convex hull of the density functions fbi(.|ti)

associated with the beliefs bi(ti), ti ∈ [0, 1]\{t̄i}. This is the condition we discussed in the
introduction. To interpret it, McAfee and Reny (1992) point to the fact that, if the map ti →
fbi(·|ti) is a conditional density induced by some prior on Ti × T−i, then

∫
Ti

fbi(.|ti)µ(dti)

is a conditional density for agent i’s beliefs about the other agents’ types following the
observation of a possibly noisy signal that induces µ as the agent’s conditional distribution
of his own type. Condition (*) requires that there must not exist any signal about the
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agent’s own type such that, given the observation of this signal, his conditional beliefs
about the other agents’ types are the same as when he knows that his type is t̄i.

3 Genericity of FSE Belief Functions

As noted by McAfee and Reny (1992), Theorem 2.1 can be extended to the case where the
type spaces are compact metric spaces. We therefore assume that, for i = 1, ..., I the type
set Ti is a compact metric space. For any ti ∈ Ti, the belief bi(ti) is an element of the space
M(T−i) of probability measures on T−i. In fact, we impose the stronger assumption that
there exists some arbitrary, but fixed measure λ on T−i, such that, for any ti ∈ Ti, bi(ti)

belongs to the subsetMλ(T−i) of those measures inM(T−i) that have continuous den-
sities with respect to λ. An example would be the case where, for some natural number
n, each of the sets Ti is a compact subset of Rn and, for each ti ∈ Ti, the measure bi(ti)

that is induced by the belief function bi has a continuous density function fbi(.|ti) with
respect to Lebesgue measure on R(I−1)n. However, we are not assuming that type spaces
are finite-dimensional.7

In this setting, the assumption that fbi(t−i|ti) be continuous in t−i and ti translates into
the requirement that the belief function bi map the type space Ti continuously into the
spaceMλ(T−i), whereMλ(T−i) has the topology that is induced by the uniform topology
on the space of density functions. In other words, bi belongs to the space C(Ti,Mλ(T−i))

of continuous functions from Ti toMλ(T−i).8

7The assumption that bi(ti) belongs to Mλ(T−i) is not actually necessary for our analysis. In the Ap-
pendix, we show that the result of McAfee and Reny (1992), i.e., Theorem 2.1, as well as our own result,
Theorem 3.1, can be extended to the case where belief functions are simply continuous functions from Ti

to the space M(T−i) of probability measures on T−i, when this latter space has the topology of weak con-
vergence, i.e. the weak* topology. In the text, we focus on the case where beliefs functions take values in
Mλ(T−i) because, as we discuss in Section 6, this specification automatically generates natural continuity
properties of strategic behaviour.

8The joint continuity assumption on fbi
(t−i|ti) is equivalent to the assumption that bi ∈ C(Ti,Mλ(T−i)).

To see this, suppose first that bi /∈ C(Ti,Mλ(T−i)). Then there exists ε > 0, and there exist sequences
{tk
−i}, {t

k
i } such that {tk

i } converges to a limit t∞
i and | fbi

(tk
−i|t

k
i ) − fbi

(tk
−i|t

∞
i )| ≥ ε for all k. Since T−i is

compact, we may assume without loss of generality that {tk
−i} converges to a limit t∞

−i. By the triangle in-
equality it follows that either | fbi

(tk
−i|t

k
i ) − fbi

(t∞
−i|t

∞
i )| ≥ ε

2 for all k, or | fbi
(t∞
−i|t

∞
i ) − fbi

(tk
−i|t

∞
i )| ≥ ε

2 for
all k. In either case, continuity of fbi

is violated. Hence, if fbi
is continuous, bi ∈ C(Ti,Mλ(T−i)). Con-

versely, if fbi
is not continuous, there exists ε > 0 and there exist sequences {tk

−i}, {t
k
i } converging to t∞

−i, t∞
i
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If the set T−i is finite, but T−i has at least as many elements as Ti, the analysis of
Crémer and McLean (1988) implies that the set E∗(Ti,Mλ(T−i)) is actually an open and
dense subset of C(Ti,Mλ(T−i)).9 10 With infinite type spaces, we only obtain the weaker
property of residualness and denseness. Formally, we obtain:

THEOREM 3.1 Let E∗(Ti,Mλ(T−i)) be the set of continuous functions from Ti to Mλ(T−i)

that satisfy condition (*). If T−i has more than finitely many elements, then E∗(Ti,Mλ(T−i)) is a
residual and dense subset of the space C(Ti,Mλ(T−i)) with the uniform topology, i.e., E∗(Ti,Mλ(T−i))

contains a countable intersection of open and dense subsets of C(Ti,Mλ(T−i)) and is itself dense.

Theorem 3.1 is the main result of this paper. We prove this result in the next section.
Before going there, we explain the relation between Theorem 3.1 and the result in Gizat-
ulina and Hellwig (2014) on the genericity of injective belief function. For this purpose,
we discuss the relation between condition (*) and injectiveness and we give some geomet-
ric intuition for the genericity of these properties, showing in particular, why the classical
embedding theorem, on which we relied in Gizatulina and Hellwig (2014), cannot be used
to prove Theorem 3.1.

We begin our discussion with a reformulation of condition (*). With any bi ∈ C(Ti,Mλ(T−i)),
we can associate a map ϕbi from the space M(Ti) of probability measures on Ti into

such that | fbi
(tk
−i|t

k
i ) − fbi

(t∞
−i|t

∞
i )| ≥ ε for all k. Then either, | fbi

(tk
−i|t

k
i ) − fbi

(tk
−i|t

∞
i )| ≥ ε

2 for all k or
| fbi

(tk
−i|t

∞
i )− fbi

(t∞
−i|t

∞
i )| ≥ ε

2 for all k. The second inequality contradicts the assumption that the measure
bi(t∞

i ) has a continuous density, i.e. that bi(t∞
i ) ∈ Mλ(T−i). The first inequality contradicts the assumption

that the map ti → fbi
(·|ti) is continuous when the range of this map has the uniform topology. In either case,

it follows that bi /∈ C(Ti,Mλ(T−i)).
9Proof. If Ti is a finite set, with ni elements, any measure µ ∈ M(Ti) is represented by an ni-dimensional

vector (µ1, ..., µni ); the density of the measure ϕbi
(·|µ) takes the form

fbi
(t−i|µ) = ∑

i′∈Ti

fbi
(t−i|t′i)µt′i

.

Condition (**) takes the form

fbi
(t−i|ti) = ∑

i′∈Ti

fbi
(t−i|t′i)µt′i

implies µti = 1 and µt′i
= 0 for t′i 6= ti.

This condition is satisfied whenever the vectors ( fbi
(t−i|ti))t−i∈T−i , ti ∈ Ti, are linearly independent. If the

cardinality N−i of T−i is no less than that of Ti, the result follows because, with N−i ≥ ni, generic n-tuples of
N−i-vectors are linearly independent.

10For the case of finite type sets, Crémer and McLean also showed that full surplus extraction through a
dominant-strategy mechanism can be achieved if and only if the matrix of posterior beliefs of all types of
each agent has the rank ni where ni is the cardinality of the type space of agent i .
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Mλ(T−i) by setting

ϕbi(B|µ) : =
∫

Ti

bi(B|ti)dµ(ti) =
∫

Ti

∫
B

fbi(t−i|ti)dt−idµ(ti)

=
∫

B

∫
Ti

fbi(t−i|ti)dµ(ti)dt−i (7)

for any µ ∈ M(Ti) and any measurable B ⊂ T−i. By inspection of (7), for any µ ∈ M(Ti),
the measure ϕbi(·|µ) has the density function

fbi(·|µ) :=
∫

Ti

fbi(·|ti)dµ(ti). (8)

With this notation, condition (*) can be reformulated as

fbi(·|µ) = fbi(·|t̄i) implies µ = δt̄i
,

or
ϕbi(µ) = ϕbi(δt̄i

) implies µ = δt̄i
, (**)

where δt̄i
is the degenerate measure which assigns unit mass to the singleton t̄i.

If the measure µ itself is degenerate, i.e., if µ = δti for some ti ∈ Ti, condition (**)
specializes to the requirement that

ϕbi(δti) = ϕbi(δt̄i
) implies δti = δt̄i

,

or
fbi(·|ti) = fbi(·|t̄i) implies ti = t̄i, (9)

which means that the belief mapping bi is injective.
The set of continuous injective functions, i.e. the set of embeddings, from Ti toMλ(T−i)

is thus a subset of the set E∗(Ti,Mλ(T−i)) of continuous functions from Ti to Mλ(T−i)

that satisfy condition (*). From Theorem 3.1, therefore, one immediately obtains:

COROLLARY 3.2 Let E(Ti,Mλ(T−i)) be the set of embeddings from Ti to Mλ(T−i). If T−i

has more than finitely many elements, then E(Ti,Mλ(T−i)) is a residual and dense subset of
the space C(Ti,Mλ(T−i)) with the uniform topology, i.e., E(Ti,Mλ(T−i)) contains a countable
intersection of open and dense subsets of C(Ti,Mλ(T−i)) and is itself dense.
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Corollary 3.2 is closely related to the condition that Neeman (2004) and Heifetz and
Neeman (2006) refer to as the BDP property - ”beliefs determine preferences”. If the belief
mapping is injective, no type t̄i 6= ti has the belief bi(ti), so a mechanism designer who
knows that agent i has the belief bi(ti) can infer that the agent’s type is ti, rather than some
t̄i 6= ti. As a result, he can also infer the agent’s payoff characteristics - his preferences
- no matter how these characteristics may depend on the agent’s type. As discussed by
Neeman (2004) and Heifetz and Neeman (2006), the ability to infer the agent’s preferences
from his beliefs, the BDP property, is necessary for full surplus extraction.

However, neither the BDP property nor the injectiveness of an agent’s belief mapping
are sufficient for full surplus extraction. A necessary and sufficient condition is given by
McAfee and Reny’s condition (*) or our equivalent reformulation (**). From (**) and (9),
it is obvious that (**) is much stronger than merely injectiveness or the BDP property.

In Gizatulina and Hellwig (2014), we proved a weaker version of Corollary 3.2 in order
to show that belief functions exhibiting the BDP property are generic. The proof made
use of the classical embedding theorem for continuous functions. For finite-dimensional
compact metric spaces X and Y, this theorem asserts that, if the dimension of Y is strictly
greater than twice the dimension of X, then the set of embeddings, i.e. of continuous
injective functions, is a residual subset of the set of continuous functions from X to Y when
the space of these functions has the topology of uniform convergence.11 Relying on this
theorem, the result in Gizatulina and Hellwig (2014) shows that, if the type sets T1, ..., TI

are finite-dimensional compact metric spaces, the set E(Ti,Mλ(T−i)) of embeddings of Ti

intoMλ(T−i) is a residual subset of the set C(Ti,Mλ(T−i)) of continuous functions from
Ti intoMλ(T−i) where C(Ti,Mλ(T−i)) is endowed with the uniform topology. Because
Mλ(T−i) is an infinite-dimensional space, the dimensionality condition of the embedding
theorem is automatically fulfilled whenever the dimension of Ti is finite.

By contrast, the McAfee-Reny condition for full surplus extraction is much stronger
than injectivity. Therefore, the proof of Theorem 3.1 cannot just cite the embedding the-
orem but needs a new argument. The arguments involve similar ideas as the proof of
the embedding theorem, but the analysis makes essential use of the fact that the space
Mλ(T−i) is infinite-dimensional. Even if the domain Ti of the belief functions of agent i is
a finite-dimensional set, the conclusion of the theorem can only be obtained if the range is
infinite-dimensional.

We illustrate the distinction between injectivity and (**) by means of some diagrams.

11See, e.g., Hurewicz and Wallman (1941)
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(a) Image of [0, 1] in R2 (b) Image of [0, 1] in R3

Figure 1: Denseness of injectivity

The functions in these diagrams should be interpreted as abstract examples for the two
properties, without reference to any belief functions. Each diagram shows the image
of some function that has domain [0, 1] and either a two- or a three-dimensional range.
Because the unit interval has dimension one, the embedding theorem asserts that any
continuous function from the unit interval to R3 can be approximated by a sequence of
continuous injective functions from the unit interval to R3. Thus, the function which gen-
erates the solid blue loop in the plane in Figure 1 is not injective because the point of
self-intersection corresponds to the value of the function under two distinct points in its
domain. However, as indicated by the red ”detour”, the third dimension provides ample
room for perturbations of this function that are injective.

A

C

B

(a) Image of [0, 1] in R2 (b) Image of [0, 1] in R3

Figure 2: Denseness of (**) ?

In Figure 2, the solid blue line in the left half of the figure is the image of a sinusoid
function taking values in a plane. The sinusoid is injective, but fails to satisfy condition
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(**) because its value at point B is a convex combination of points A and C on the red
dashed line (and of course any other point on the crossing of the red line and blue line is
a convex combination of ”extreme” points A and C). The right half of the figure shows
that, in this case, too, an additional dimension can provide room for perturbations of the
sinusoid that satisfy condition (**). The ”curved” sinusoid in part (b) of Figure 2 can
be seen as an element of a sequence of functions approximating the ”flat” sinusoid” in
part (a). Each element of the sequence of ”curved” sinusoids satisfies condition (**) even
though the ”flat” sinusoid does not.

However, there is a difference. In Figure 1, approximation of the non-injective function
by injective functions is obtained by local perturbations. In Figure 2, the approximation by
functions satisfying condition (**) is based on global perturbations. Condition (**) hinges
on comparing the value of ϕbi(δt̄i

) with the value of ϕbi(µ) for any µ, a comparison which
depends on types t̂i with ϕbi(δt̂i

) far away from ϕbi(δt̄i
).

For injectivity, the local nature of the required perturbations explains why embeddings
are dense if the dimension of the range is greater than twice the dimension of the domain.
If the domain is the unit interval, as was assumed for Figure 1, then at any point of self-
intersection, the range behaves locally like a plane, which leaves another dimension to
provide room for perturbations that are injections.

For condition (**), this kind of reasoning is unavailable. Figure 3 gives an example
with a function on [0, 1] whose image is the union of a vertical line and an expanding
spiral around the vertical line so that the vertical line belongs to the convex hull of the

Figure 3: Image of [0, 1] in R3: Failure of denseness of (**)

16



expanding spiral, which is a non-negligible subset of R3. In this case there is no sequence
of functions from [0, 1] to R3 that satisfy condition (**) and approximate the given function
– for any such function, the part that approximates the vertical line inside the spiral must
belong to the convex hull of the part that approximates the spiral.

In Appendix A, we show more generally that, for any n, there is a function from [0, 1]
to Rn that violates condition (**) and that cannot be approximated by functions from [0, 1]
to Rn that satisfy condition (**). If the convex hull of the range of a function from [0, 1]
to Rn is a non-negligible subset of Rn, one needs yet another dimension (at least) for
the perturbations that satisfy condition (**) and approximate the given function. This is
why the proof of Theorem 3.1 makes essential use of the fact that Mλ(T−i) is infinite-
dimensional. By contrast, in the argument of Gizatulina and Hellwig (2014), this fact
matters only because, with an infinite-dimensional range, the dimensionality condition of
the embedding theorem is satisfied no matter what the (finite) dimension of the domain
may be.

4 Proof of the Main Theorem

The argument is closely related to that given by Hurewicz and Wallman (1941) for the
classical embedding theorem for continuous functions. Let d be the metric on Ti. Given
this metric, let M(Ti), the space of probability measures on Ti, be endowed with the
associated Prohorov metric; this metric induces the topology of weak convergence, or
weak* topology, onM(Ti). In an abuse of notation, we write d(·, ·) for this metric as well.
We also endowMλ(T−i) with the metric ρ such that, for any β and β̂ inMλ(T−i),

ρ(β, β̂) = max
t−i∈T−i

| fβ(t−i)− f β̂(t−i)|; (10)

the maximum in (10) is well defined for all β and β̂ because T−i is compact and the density
functions fβ and f β̂ that are associated with β and β̂ inMλ(T−i) are continuous.
Proof. For any ε > 0, we now define Gε as the subset of C(Ti,Mλ(T−i)) that contains all
mappings bi with the property that, for any ti ∈ Ti and all µ ∈ M(Ti),

ϕbi(δti) = ϕbi(µ) (11)

implies
d(µ, δti) < ε (12)
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where d(µ, δti) is the Prohorov distance between the measures µ and δti .
Claim 1: E∗(Ti,Mλ(T−i)) = ∩∞

k=1G1/k.
Proof: If bi ∈ G1/k for all k, then for any ti ∈ Ti and all µ ∈ M(Ti), ϕbi(δti) = ϕbi(µ)

implies 0 ≤ d(µ, δti) ≤ 1/k, hence d(µ, δti) = 0. Conversely, if bi ∈ E∗(Ti,Mλ(T−i)), then,
by (**), ϕbi(δti) = ϕbi(µ) implies d(µ, δti) = 0 < 1/k for all ti ∈ Ti, all µ ∈ M(Ti), and all
k.

Claim 2: For any ε > 0, the set Gε is an open subset of C(Ti,Mλ(T−i)).
Proof: Fix any bi ∈ Gε, and let

Γ := {(ti, µ) ∈ Ti ×M(Ti)|d(µ, δti) ≥ ε}

and let
η = min

(ti ,µ)∈Γ
ρ(ϕbi(δti), ϕbi(µ)). (13)

Because Ti and therefore alsoM(Ti) are compact, the minimum in (13) is well defined, i.e.,
there exists (ti, µ) ∈ Γ such that ρ(ϕbi(δti), ϕbi(µ)) = η. Since bi ∈ Gε and, for (ti, µ) ∈ Γ,
d(µ, δti) ≥ ε, it follows that η > 0.

Now let b̄i be any mapping in C(Ti,Mλ(T−i)) such that

ρ(b̄i(ti), bi(ti)) <
η

2
(14)

for all ti ∈ Ti. Since

ρ(ϕb̄i
(µ), ϕbi(µ)) = max

t−i∈T−i
| fb̄i

(t−i|µ)− fbi(t−i|µ)|

= max
t−i∈T−i

∣∣∣∣∫Ti

fb̄i
(t−i|ti)dµ(ti)−

∫
Ti

fbi(t−i|ti)dµ(ti)

∣∣∣∣
≤

∫
Ti

max
t−i∈T−i

∣∣∣ fb̄i
(t−i|ti)− fbi(t−i|ti)

∣∣∣ dµ(ti)

=
∫

Ti

ρ(b̄i(ti), bi(ti))dµ(ti),

by (10) and (8), we infer that
ρ(ϕb̄i

(µ), ϕbi(µ)) <
η

2
(15)

for all µ ∈ M(Ti). Thus, if ti and µ are such that ϕb̄i
(δti) = ϕb̄i

(µ), it must be the case that
ρ(ϕbi(δti), ϕbi(µ)) < η. By the definition of η, it follows that d(µ, δti) < ε, which proves
that b̄i is also an element of Gε. Thus, along with bi, any element of the open η

2 –ball around
bi is an element of Gε. The claim follows immediately.
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Claim 3: For any ε > 0, the set Gε is a dense subset of C(Ti,Mλ(T−i)).
Proof: Fix any bi ∈ C(Ti,Mλ(T−i)) and any η > 0. We will show that there exists a

function b̄i ∈ Gε such that
ρ(b̄i(ti), bi(ti)) < η (16)

for all ti ∈ Ti.
Relying on the fact that the continuous function bi is uniformly continuous on the

compact set Ti, let ζ ∈ (0, ε) be such that, for any ti and t̄i in Ti, d(δti , δt̄i
) < ζ implies

ρ(bi(ti), bi(t′i)) < η
2 . Because Ti is a metric space, there exists a covering U1, U2, ... of Ti

such that
d(Uk) < ζ (17)

and
ρ(bi(Uk)) <

η

2
(18)

for all k. where d(Uk) and ρ(bi(Uk)) are defined as the suprema of d(ti, t̄i) and of ρ(bi(ti), bi(t̄i)),
respectively, over ti, t̄i in Uki.

Because Ti is compact, the covering U1, U2, ... of Ti has a finite subcovering, which
we denote as U1, U2, ..UK. Given the sets U1, U2, ..UK, we may select measures β1, ..., βK

in Mλ(T−i) such that, for k = 1, ..., K, ρ(βk, bi(t̄i)) < η
2 for some t̄i ∈ Uk and, more-

over, the associated density functions fβ1 , ..., fβK are linearly independent; linear indepen-
dence of the density functions fβ1 , ..., fβK may be assumed because T−i has infinitely many
elements.

For each ti ∈ Ti and k = 1, 2, ..., K, set

wk(ti) = min
t̄′i∈Ti\Uk

d(ti, t̄i)

and
αk(ti) =

wk(ti)

∑K
`=1 w`(ti)

.

This is well defined because for each ti ∈ Ti, there exists at least one ` such that ti ∈ U`

and therefore w`(ti) > 0 and ∑K
`=1 w`(ti) > 0.

We now define b̄i : Ti →Mλ(T−i) by setting

b̄i(ti) =
K

∑
k=1

αk(ti)βk. (19)

19



Because the functions wk and αk are obviously continuous, b̄i ∈ C(Ti,Mλ(T−i)). More-
over, for any ti ∈ Ti and k = 1, ..., K, αk(ti) > 0 implies ti ∈ Uk and therefore, ρ(βk, bi(ti)) <
η
2 . Therefore

ρ(b̄i(ti), bi(ti)) = max
t−i∈T−i

∣∣∣ fb̄i
(t−i|ti)− fbi(t−i|ti)

∣∣∣
= max

t−i∈T−i

∣∣∣∣∣ K

∑
k=1

αk(ti) fβk(t−i)− fbi(t−i|ti)

∣∣∣∣∣
≤

K

∑
k=1

αk(ti) max
t−i∈T−i

∣∣ fβk(t−i)− fbi(t−i|ti)
∣∣

=
K

∑
k=1

αk(ti)ρ(βk, bi(ti))

<
K

∑
k=1

αk(ti)

[
inf

t̄i∈Uk

ρ(βk, bi(t̄i)) +
η

2

]
< η, (20)

which establishes (16). In the derivation for (20), the last inequality follows because βk

had been chosen so that ρ(βk, bi(t̄i)) < η
2 for some t̄i ∈ Uk; the last inequality but one

follows from (18) and the triangle inequality.
It remains to be shown that b̄i ∈ Gε. For this purpose, consider any ti ∈ Ti and µ ∈

M(Ti), and suppose that
ϕb̄i

(δti) = ϕb̄i
(µ).

By construction,

ϕb̄i
(δti) = b̄i(ti) =

K

∑
k=1

αk(ti) βk

and

ϕb̄i
(µ) =

∫
b̄i(t̄i)dµ(t̄i) =

K

∑
k=1

∫
αk(t̄i)dµ(t̄i) βk.

Thus, ϕb̄i
(δti) = ϕb̄i

(µ) implies

K

∑
k=1

αk(ti) βk =
K

∑
k=1

∫
αk(t̄i)dµ(t̄i) βk.

The associated densities satisfy

K

∑
k=1

αk(ti) fβk =
K

∑
k=1

∫
αk(t̄i)dµ(t̄i) fβk ,
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or
K

∑
k=1

[
αk(ti)−

∫
αk(t̄i)dµ(t̄i)

]
fβk = 0. (21)

Because the densities fβ1 , ..., fβK are linearly independent, equation (21) implies that

αk(ti)−
∫

αk(t̄i)dµ(t̄i) = 0 (22)

for all k. For any k, therefore, αk(ti) = 0 implies
∫

αk(t̄i)dµ(t̄i) = 0. Since αk(ti) = 0
if ti /∈ Uk and αk(t̄i) > 0 if t̄i ∈ Uk, it follows that, if ti /∈ Uk, then µ(Uk) = 0. The
measure µ is concentrated on the union of the sets Uk that contain ti. By (17), any one of
these sets, and therefore their union, is contained in the open ζ-ball Bζ(ti) around ti. Thus,
µ(Bζ(ti)) = 1, and therefore d(δti , µ) < ζ. Since ζ < ε, it follows that b̄i ∈ Gε. Claim 3 is
thereby established.

To complete the proof of Theorem 3.1, we note that C(Ti,Mλ(T−i)) is a complete met-
ric space12 and therefore a Baire space. The residual set E∗(Ti,Mλ(T−i))⊂ C(Ti,Mλ(T−i))

is therefore itself dense in C(Ti,Mλ(T−i)).

5 Common Priors With the FSE Property

Whereas the preceding analysis has focussed on a single agent, we now consider the scope
for surplus extraction from all participants together. We restrict our analysis to the case
where the belief functions bi, i = 1, ..., I, can be interpreted as regular conditional distri-

butions, derived from a common prior on the space T :=
I

∏
i=1

Ti of vectors of all agents’

types. We continue to assume that, for i = 1, ...I, Ti is a compact metric space. For some
fixed measure λ on T, letMλ(T) be the space of probability measures on T that have con-
tinuous density functions with respect to λ. For simplicity, we assume that λ is a product

measure, i.e., λ =
I

∏
i=1

λi, where, for i = 1, ..., I, λi is a measure on Ti.13 (Again, the leading

example would be the case Ti ⊂ Rn, with λ as Lebesgue measure on RIn.) We restrict our

12Completeness follows from the fact that T−i is compact and hence the space of densities over T−i is the
space of bounded functions. So isMλ(T−i). Finally as Ti is compact as well, the same argument implies that
C(Ti,Mλ(T−i)), with uniform metric, is complete as well.

13This assumption means, roughly, that, if agent i′s observation of his type ti contains any information
about the other agents’ types, this is captured by the density of the prior, rather than the reference measure λ.
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analysis to the subspaceMλ
+(T) ⊂Mλ(T) consisting of those measures ν for which the

marginal densities

f̄ ν
i (ti) :=

∫
T−i

f ν(ti, t−i)dλ−i(t−i) (23)

are everywhere strictly positive, where λ−i := ∏
j 6=i

λj is the marginal distribution on T−i

that is induced by λ.14 The strict positivity of f̄ ν
i (ti) implies that the expression

f ν
i (t−i|ti) =

f ν(ti, t−i)

f̄ ν
i (ti)

(24)

is well defined for all t−i ∈ T−i, and so is the expression

bi(B|ti, ν) =
∫

B
f ν
i (t−i|ti)dλ−i(t−i), (25)

for any measurable set B ⊂ T−i. The function ti → bi(ti, ν) is a regular conditional distri-
bution for t−i given ti under the measure ν.

For ν ∈ Mλ
+(T), Lebesgue’s bounded-convergence theorem implies that the marginal

density function f̄ ν
i that is defined by (23) is continuous. Because Ti is compact, it follows

that f̄ ν
i (ti) is actually bounded away from zero. By inspection of (24), therefore, one sees

that the conditional density f ν
i (t−i|ti) is jointly continuous in ti and t−i. Thus, bi(·, ν) is

an element of the space C(Ti,Mλ−i(T−i)) of continuous functions from Ti to the space
Mλ−i(T−i) of measures on T−i that have continuous density functions with respect to λ−i,
where the topology onMλ−i(T−i) is induced by the uniform topology on the space of the
associated density functions.

We will say that the prior ν admits full surplus extraction if and only if each of the belief
functions b1(·, ν), ..., bI(·, ν) admits full surplus extraction in the sense of the definition of
McAfee and Reny (1992). We denote the set of priors admitting full surplus extraction as
N ∗∗. We will sometimes refer to the priors in N ∗∗ as FSE priors.

In the remainder of this section, we will use the genericity property of FSE belief func-
tions that was established in Theorem 3.1 in order to establish an analogous genericity
property for FSE priors. We begin with a lemma on the topological properties of the map-
ping relating belief functions to priors.

LEMMA 5.1 LetMλ
+(T) have the topology that is induced by the uniform topology on the space

of density functions on T. For any i, let C(Ti,Mλ−i(T−i)) have the uniform topology. Then the
mapping ν→ bi(·, ν) fromMλ

+(T) into C(Ti,Mλ−i(T−i)) is continuous and open.

14Because f ν is continuous and the set T−i is compact, the integral in (23) is well defined for all ti ∈ Ti.
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Proof. We first prove continuity. If {νk} is a sequence inMλ
+(T) that converges to a limit

ν ∈ Mλ
+(T), the associated densities satisfy

lim
k→∞

f νk
(ti, t−i) = f ν(ti, t−i), (26)

uniformly on T (by the definition of the topology onMλ
+(T)) By (26), it follows that the

densities f νk
are uniformly bounded. For any i, therefore, Lebesgue’s bounded conver-

gence theorem implies that

lim
k→∞

f̄ νk

i (ti) = lim
k→∞

∫
T−i

f νk
(ti, t−i)dλ−i(t−i) =

∫
T−i

f ν(ti, t−i)dλ−i(t−i) = f̄ ν
i (ti), (27)

uniformly on Ti.
Because ν ∈ Mλ

+(T), we have f̄ ν
i (ti) > 0 for all ti ∈ Ti; indeed, because f̄ ν

i (·) is
continuous, f̄ ν

i (ti) is bounded away from zero on Ti. Because the marginal densities f νk

i

converge uniformly to f̄ ν
i , it follows that they are uniformly bounded away from zero. If

we combine (26) and (27) with (24), we obtain

lim
k→∞

f νk

i (t−i|ti) = f ν
i (t−i|ti), (28)

uniformly on T. For any ti ∈ Ti, therefore, the sequence {bi(·|ti, νk)} converges to bi(·|ti, ν),
uniformly on Ti. Continuity of the map ν→ bi(·, ν)) follows immediately.

We next prove openness. For this purpose, we show that the mapping ν→ (ν̄i(ν), bi(·, ν)),
which assigns to each ν ∈ Mλ

+(T) the marginal distribution ν̄i(ν) on Ti and the belief
function, bi(·, ν), is open, where ν̄i(ν) is an element of the space Mλi

+ (Ti) of measures
on Ti that have continuous densities, with the topology that is induced by the uniform
topology for density functions. The mapping ν → bi(·, ν)) is the composition of the
mapping ν → (ν̄i(ν), bi(·, ν)) with the projection from Mλi

+ (Ti) × C(Ti,Mλ−i(T−i)) to
C(Ti,Mλ−i(T−i)). Because the projection mapping is open and the composition of open
mappings is open, openness of the mapping ν → (ν̄i(ν), bi(·, ν)) automatically yields
openness of the mapping ν→ bi(·, ν)).

To prove that the mapping ν → (ν̄i(ν), bi(·, ν)) is open, consider any ν ∈ Mλ
+(T) and

any sequence {νk} such that

lim
k
(ν̄i(ν

k), bi(·, νk)) = (ν̄i(ν), bi(·, ν)) (29)

(29) implies
lim
k→∞

f̄ νk

i (ti) = f̄ ν
i (ti) (30)
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and
lim
k→∞

f νk

i (t−i|ti) = f ν
i (t−i|ti), (31)

uniformly, for all ti ∈ Ti and all t−i ∈ T−i. From (24), (30), and (31), we therefore obtain

lim
k→∞

f νk
(ti, t−i) = lim

k→∞
f̄ νk

i (ti) lim
k→∞

f νk

i (t−i|ti)

= f̄ ν
i (ti) f ν

i (t−i|ti) = f ν(ti, t−i), (32)

uniformly, for all ti ∈ Ti and all t−i ∈ T−i. Thus (29) implies limk∞ νk = ν, which proves
that the mapping ν→ (ν̄i(ν), bi(·, ν)) is open. This completes the proof of Lemma 5.1.

Because continuous and open mappings preserve open and dense sets, we immedi-
ately obtain:

THEOREM 5.2 The set N ∗∗ of FSE priors is a residual subset of the setMλ
+(T) of priors under

consideration, i.e., N ∗∗ contains a countable intersection of open and dense subsets ofMλ
+(T).

Proof. For i = 1, ..., I, let N ∗i ⊂Mλ
+(T) be the set of priors ν for which the belief function

bi(·, ν) belongs to the set E∗(Ti,Mλ(T−i)) of functions in C(Ti,Mλ−i(T−i) that satisfy
condition (*). By the extension of Theorem 3.1,

N ∗∗ =
I⋂

i=1

N ∗i . (33)

To prove the theorem, it is therefore enough to show that each of the sets N ∗i , i = 1, ..., I,
contains a countable intersection of open and dense subsets ofMλ

+(T).
For any i, Theorem 3.1 implies that the set E∗(Ti,Mλ(T−i)) contains a sequence {Vi

k}∞
k=1

of open and dense subsets of C(Ti,Mλ−i(T−i). For any i and k, define

Ui
k := {ν ∈ Mλ

+(T)|bi(·, ν) ∈ Vi
k}. (34)

By the definition of N ∗i , Ui
k ⊂ N ∗i for all k. Hence, ∩∞

k=1Ui
k ⊂ N ∗i . Because Vi

k is open and
the function ν → bi(·, ν) is continuous, Ui

k is also open for each k. Because the function
ν→ bi(·, ν) is continuous, the set

{bi(·, ν) ∈ C(Ti,Mλ−i(T−i)|ν ∈ U∗}

is open whenever U∗ is an open subset of Mλ
+(T). Since Vi

k is dense, it follows that the
intersection

Vi
k ∩ {bi(·, ν) ∈ C(Ti,Mλ−i(T−i)|ν ∈ U∗}
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is nonempty, and therefore also the intersection Ui
k ∩ U∗ is nonempty whenever U∗ is

open. Thus Ui
k is dense as well as open. N ∗i contains a countable intersection of open and

dense subsets ofMλ
+(T). This completes the proof of Theorem 5.2.

As in the case of Theorem 3.1, the Baire property of the spaceMλ
+(T) implies thatN ∗∗

itself is dense inMλ
+(T).

6 Discussion

6.1 Relation to the Literature

The thrust of our results runs counter to that of Heifetz and Neeman (2006) and paral-
lels Chen and Xiong (2013). Heifetz and Neeman (2006) consider families {T k}k∈K of
incomplete-information models of the form

T k = {Tk
i , θ̂k

i , bk
i }I

i=1,

where, for each i, Tk
i is a type space for agent i, and θ̂k

i and bk
i are functions indicating how

agent i’s payoff parameters and beliefs depend on his type. Restricting their attention to
a family of models consistent with common priors, they study the genericity of the full
surplus extraction property within the set P of common priors for the models Tk in a
given family, which is taken to be fixed. Under the additional assumption that the family
{T k}k∈K is what they call ”closed under finite unions”, they show that P is a convex set
and that any prior of the form F = ∑J

j=1 αjFj with αj > 0 and Fj ∈ P for all j has the BDP
property if and only if each of the distributions Fj has the BDP property. Because the BDP
property is necessary for full surplus extraction, they conclude that, unless all incomplete-
information models T k, k ∈ K, have BDP priors, the set of priors that do not admit full
surplus extraction is geometrically and measure-theoretically generic in P .

The difference between our results and those of Heifetz and Neeman (2006) is not only
a matter of topological versus geometric or measure-theoretic genericity but also one of
genericity in the full space versus genericity in the given set P of priors for the models in
a given family. For a fixed family {Tk}k∈K of incomplete-information models that is closed
under finite unions, Heifetz and Neeman (2006) compare the set of priors for models in
this family that admit full surplus extraction to the set of all priors for models in this
family. Their procedure begs the question what can be said about the set of families for
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which they obtain non-genericity of full surplus extraction relative to the set of all families
of incomplete-information models that are closed under finite unions.

The requirement that the family {T k}k∈K be closed under finite unions can actually be
quite restrictive. In related work (Gizatulina and Hellwig (in progress)), we show that, if,
for any i, the type spaces Tk

i , k ∈ K, are subsets of a complete separable metric space and
if they have non-empty interiors, then the family {T k}k∈K cannot be closed under finite
unions unless it is at most countable. As a consequence of Theorem 5.2, we then find that,
for a given sequence {Tk}k∈K, of such type spaces, full surplus extraction can be obtained
for all models in a residual set of families. The set of families with at least one member
for which full surplus extraction cannot be obtained, i.e., the set of families to which the
Heifetz and Neeman (2006) analysis applies, is itself sparse in the set of all families of
models with the given family of type spaces.

Topological genericity of models allowing full surplus extraction is also studied by

Chen and Xiong (2013). They specify the type space T =
I

∏
i=1

Ti as the Θ-based universal

type space, i.e., the space of payoff parameters and belief hierarchies that is generated by

the payoff type space Θ =
I

∏
i=1

Θi. Chen and Xiong (2013) endow the universal type space

with the product topology and the set of common priors on this space with the associ-
ated weak* topology. For this topology, they show that priors allowing for full surplus
extraction form a residual set in the set of all common priors. Their analysis relies on a
result of Mertens, Sorin, and Zamir (1994), which implies that, with this topology, the set
of common priors with finite supports is dense in the set of all common priors. Because
the Crémer-McLean condition for full surplus extraction holds for an open and dense set
of models with finitely many types for each agent and a dense subset of a dense set is itself
dense in the ambient space, Chen and Xiong (2013) conclude that the set of priors admit-
ting full surplus extraction is dense in the space of all priors endowed with the weak*
topology.

6.2 The Choice of Topology

The use of finite approximations and of the weak* topology on the space of priors asso-
ciated with the product topology on the universal type space is problematic. The prod-
uct topology on the universal type space has been criticized on the grounds that, in this
topology, the correspondence of strictly interim ε-rationalizable strategies is not generally
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lower hemi-continuous.15 Dekel, Fudenberg, and Morris (2006), as well as Chen, DiTillio,
Faingold, and Xiong (2010) have therefore suggested that a stronger topology should be
imposed, under which the correspondence of strictly interim ε-rationalizable strategies
would be lower hemi-continuous for any ε ≥ 0. In such a stronger topology, however,
models with finitely many types need not be dense, in which case the argument of Chen
and Xiong (2013) is not available.16

Our approach is immune to this criticism. To see this, consider the set of incomplete-
information models {Ti, θ̂i, bi}I

i=1 such that, for each i, the type space Ti is a compact met-
ric space, the payoff function θ̂i maps Ti continuously into some topological space Θi of
payoff parameters, and, for some measure λ−i ∈ M(T−i), the belief function bi maps Ti

into the spaceMλ(T−i) of measures that have continuous densities with respect to λ. As
before, endowMλ(T−i) with the topology of uniform convergence of density functions,
and let bi be an element of the space C(Ti,Mλ(T−i)) of continuous functions from Ti to
Mλ(T−i), endowed with the uniform topology. Define a game of incomplete information
by specifying finite action sets S1, ..., SI and continuous and bounded payoff functions ui :

Θi ×
I

∏
j=1

Sj → R, i = 1, ..., I so that, for each i, ui(θ̂i(ti), si, s−i) is the payoff that agent i

receives if his own type is ti, he chooses the action si ∈ Si, and the other agents’ actions
are given by s−i ∈ S−i := ∏

j 6=i
Sj. A strategy for agent i is a map σi : Ti → Si that indicates

how the action chosen by the agent depends on his type. Given the vector σ−i := {σj}j 6=i

of strategies of the other agents, the strategy σi is said to be strictly interim ε-optimal for
agent i, if it satisfies∫

T−i

[ui(θ̂i(ti), σi(ti), σ−i(t−i))− ui(θ̂i(ti), si, σ−i(t−i))] fbi(t−i|ti)dλ−i(t−i) > −ε (35)

for all si ∈ Si and all ti ∈ Ti. By adapting an argument from Kajii and Morris (1994) and
Engl (1995) we obtain the following lower hemi-continuity result:

PROPOSITION 6.1 Let {Ti, θ̂i, bi}I
i=1 be an incomplete-information model such that, for any i,

bi ∈ C(Ti,Mλ(T−i)) for some λ−i ∈ M(T−i). Let σ1, ..., σI be strategies for agents 1, ..., I in
the game with finite action sets S1, ..., SI and continuous and bounded payoff functions u1, ..., uI

15See, e.g., Dekel, Fudenberg, and Morris (2006).
16In particular, finite models are not dense in the uniform strategic topology proposed by Dekel, Fuden-

berg, and Morris (2006) and the uniform weak topology proposed by Chen, DiTillio, Faingold, and Xiong
(2010). Chen, DiTillio, Faingold, and Xiong (2010) provide an extensive discussion of the conceptual issues
involved in choosing between the different topologies.
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in the incomplete-information model {Ti, θ̂i, bi}I
i=1. If σi is strictly interim ε-optimal for agent

i in this game when the other agents choose σ−i, then there exists δ > 0 such that, if the belief
function b̄i ∈ C(Ti,Mλ(T−i)) is δ-close to the belief function bi, then σi is also strictly interim
ε-optimal for agent i in the game with action sets S1, ..., SI and payoff functions u1, ..., uI in the
incomplete-information model {Ti, θ̂i, b̄i}I

i=1 when the other agents choose σ−i.

Proof. Consider any game with action sets S1, ..., SI and payoff functions u1, ..., uI in the
incomplete-information model {Ti, θ̂i, bi}I

i=1 and let Ui be a bound such that |ui(θi, si, s−i)| ≤
Ui for all θi, si, s−i. Fix strategies σi, σ−i and suppose that σi is strictly interim ε-optimal
for agent i in the game with action sets S1, ..., SI and payoff functions u1, ..., uI in the
incomplete-information model {Ti, θ̂i, bi}I

i=1 when the other agents choose σ−i. Then, for
any ti ∈ Ti and si ∈ Si,

ηi(ti, si) > 0,

where
ηi(ti, si) :=

∫
T−i

∆i(ti, t−i, si) fbi(t−i|ti)dλ−i(t−i) + ε, (36)

with
∆i(ti, t−i, si) := ui(θ̂i(ti), σi(ti), σ−i(t−i))− ui(θ̂i(ti), si, σ−i(t−i)). (37)

for any t−i. The mapping (ti, si) → ηi(ti, si) is obviously continuous. Since Ti is compact
and Si is finite, it follows that there exists some η̂ > 0 such that, for all ti,

ηi(ti, si) > η̂

for all si ∈ Si. From (36), we then obtain∫
T−i

∆i(ti, t−i, si) fbi(t−i|ti)dλ−i(t−i) > −(ε− η̂), (38)

implying that σi is actually strictly interim (ε− η̂)-optimal for agent i.
For any other belief function b̄i ∈ C(Ti,Mλ(T−i)), we have∫

T−i

∆i(ti, t−i, si) fb̄i
(t−i|ti)dλ−i(t−i)

≥
∫

T−i

∆i(ti, t−i, si) fbi(t−i|ti)dλ−i(t−i) (39)

−
∫

T−i

|∆i(ti, t−i, si)| | fbi(t−i|ti)− fb̄i
(t−i|ti)|dλ−i(t−i),
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By (36), the first term on the right-hand side of (39) is nonnegative. Because |ui(θi, si, s−i)| ≤
U i for all i, we also have

|∆i(ti, t−i, si)| ≤ 2Ui (40)

for all ti, t−i, and si. Thus, (39) and (38) imply∫
T−i

∆i(ti, t−i, si) fb̄i
(t−i|ti)dλ−i(t−i) > −ε + η̂ − 2Ui sup

(ti ,t−i)∈T
| fbi(t−i|ti)− fb̄i

(t−i|ti)|

and hence ∫
T−i

∆i(ti, t−i, si) fb̄i
(t−i|ti)dλ−i(t−i) > −ε (41)

whenever sup(ti ,t−i)∈T | fbi(t−i|ti)− fb̄i
(t−i|ti)| ≤ η̂

2Ui
. Upon setting δ = ε

2Ui
, we see that, if

b̄i is δ-close to bi, then σi is strictly interim ε-optimal for agent i in the game with action sets
S1, ..., SI and payoff functions u1, ..., uI in the incomplete-information model {Ti, θ̂i, b̄i}I

i=1

when the other agents choose σ−i.

Using Proposition 6.1, one can easily show that, in our abstract type space setting,
the correspondence of interim ε-rationalizable strategies as well as the correspondence of
interim ε-Nash equilibria are lower hemi-continuous in types. The key to these results
lies in the assumption that all beliefs of agent i are absolutely continuous with respect
to some fixed measure λ−i, and that their density functions are continuous and depend
continuously on belief functions and types.17 This assumption eliminates examples like
Rubinstein’s e-mail game, where lower hemi-continuity of strictly interim rationalizable
strategies is known to fail.18

In the appendix, we show that suitably modified versions of Theorems 2.1 and 3.1
hold even if we drop the assumptions that the beliefs of agent i are absolutely continuous

17Engl (1995) uses setwise convergence of the measures that represent beliefs. Convergence of density
functions of course implies setwise convergence; see, e.g. Royden (1988).

18To put Rubinstein’s e-mail into an abstract type space setting of the kind we use in this paper, let I = 2,
and set T1 = T2 = {0, 1

2 , 2
3 , ..., 1}. Specify a belief function b1 for agent 1 so that, for some α ∈ (0, 1) and

n = 1, 2, ..., b1(
n

n+1 ) = αδ(n−1)/n +(1− α)δn/(n+1) and b1(1) = δ1, where for any t ∈ [0, 1], δt is the degenerate
measure that assigns all probability mass to the singleton {t}. Similarly, specify a belief function b2 for agent
2 so that, for some β ∈ (0, 1) and n = 1, 2, ..., b2(

n
n+1 ) = βδn/(n+1) + (1− β)δ(n+1)/(n+2) and b2(1) = δ1.

If the measures b1(t1), t1 ∈ T1, are absolutely continuous with respect to some fixed measure λ on T2, then,
for n = 1, 2, ..., the density of b1(

n
n+1 ) with respect to λ satisfies fb1

( n
n+1 |

n
n+1 ) = (1− α)/λ({ n

n+t}). Because
λ is a probability measure, it must be the case that λ({ n

n+t}) goes to zero as n goes out of bounds. Hence
fb1

( n
n+1 |

n
n+1 ) fails to converge to fb1

(1|1) = 1/λ({1}) as n goes out of bounds and n
n+t converges to one.
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with respect to some fixed measure λ−i. In particular, if belief functions are treated as
continuous functions from Ti to the spaceM(T−i) of probability measures on T−i, where
M(T−i) has the weak* topology, full surplus extraction is still possible for a residual set
of belief functions. However, we do not have an analogue of Proposition 6.1 for this
specification of belief functions.

6.3 Universal versus Abstract Type Spaces

There is also a deeper issue with the universal type space approach to studying the gener-
icity of the McAfee-Reny condition for surplus extraction. Like the BDP property, the
McAfee-Reny condition is a condition on the belief function of an individual agent which
is given without reference to any notion to cross-agent consistency of beliefs, such as
belief-closed subsets of the universal type space or to a common prior. In the univer-
sal type space, however, it does not even make sense to ask for which belief functions the
McAfee-Reny condition is satisfied. In this space, there is single belief function, which is
fixed and given by the formalism. Each ”type” is defined by a vector consisting of the
agent’s payoff parameters and the agent’s beliefs about the other agents’ payoff parame-
ters, the agent’s beliefs about the other agents’ beliefs about other agents’ payoff param-
eters, et... The belief function is given by the projection from the space of universal types
to the space of belief hierarchies, in combination with the observation that each belief
hierarchy defines a unique measure on the space of the other agents’ universal types.

Because the universal type space approach has no room for considering different belief
functions, Chen and Xiong (2011) and Chen and Xiong (2013) do not actually look at the
BDP property or the possibility of full surplus extraction as properties of belief functions
but as properties of interactive belief systems, more precisely, as properties of belief-closed
subsets of the universal type space and of common priors on such subsets. The fact that
these properties refer to belief functions without any reference to interactive belief systems
is thereby lost.19

The notion of an abstract type space approach is sometimes criticized for its lack of
economic or game theoretic meaning.20 This criticism is akin to criticizing the notion of a

19For a more extensive discussion of these issues in the context of the BDP property, see Gizatulina and
Hellwig (2014).

20In this context, we have encountered the objection that, in view of the arbitrariness of the specification
abstract types, our genericity result might be due to a double counting of belief functions that allow full
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probability space on the grounds that it has no meaning in terms of observables. The no-
tion of a probability space provides the grammatical infrastructure for thinking and talk-
ing sensibly about random variables, which then leads to statements about observables.
In the same vein, Harsanyi’s notion of an abstract type space provides the grammatical
infrastructure for thinking and talking about incomplete information in a multi-agent set-
ting, which then leads to statements about strategic behaviour in such situations.

From this perspective, it is important to note that the McAfee-Reny condition for full
surplus extraction, as well as the weaker condition of injectiveness, appear as conditions
on belief functions whose validity does not depend on the specification of the functions
that determine payoffs, beliefs about payoffs, beliefs about beliefs about payoff, and so
on. This observation is at odds with the Heifetz-Neeman phrase ”beliefs determine pref-
erences”, which suggests that the scope for surplus extraction depends on how beliefs
co-vary with payoff parameters.

Our genericity result suggests that, as a feature of an incomplete-information model,
validity of the McAfee-Reny condition is to be expected because the space of beliefs is
very rich. In models with infinite type spaces, beliefs are typically infinite-dimensional.
The mathematical reasoning is similar to that given for the classical embedding theorem
used in Gizatulina and Hellwig (2014), but in contrast to the embedding theorem, the fact
that beliefs are infinite-dimensional plays an essential role in the argument establishing
the genericity of the McAfee-Reny condition.

surplus extraction. Specifically, if a belief function bi : Ti → Mλ(T−i) satisfies the McAfee-Reny condition,
then for any two homeomorphisms hi : Ti → Ti and h−i : T−i → T−i, a new belief function b̄i that also
satisfies the McAfee-Reny condition is obtained by setting

b̄i(ti) = bi(hi(ti)) ◦ h−1
−i . (42)

From a mechanism design perspective, the belief functions bi and b̄i are equivalent but in the context
of Theorem 3.1, they are treated as distinct. Such ”double counting”, however, applies to belief func-
tions violating the McAfee-Reny condition as well as those that satisfy it. To make this point formally,
let Q(Ti,Mλ(T−i)) be the quotient space of C(Ti,Mλ(T−i)) that is defined by treating belief functions
bi and b̄i as equivalent if they satisfy (42) for some homeomorphisms hi on Ti and h−i on T−i. For each
bi ∈ C(Ti,Mλ(T−i)), let ω(bi) be the element of Q(Ti,Mλ(T−i)) to which bi belongs. One easily veri-
fies that bi ∈ E∗(Ti,Mλ(T−i)) if and only if b̄i ∈ E∗(Ti,Mλ(T−i)) for all b̄i ∈ ω(bi). Hence we can write
E∗Q(Ti,Mλ(T−i)) for the subset ofQ(Ti,Mλ(T−i)) consisting of those equivalence classes of functions whose
elements belong to E∗(Ti,Mλ(T−i)). It is also easy to verify that, if Q(Ti,Mλ(T−i)) has the quotient topol-
ogy, then the mapping bi → ω(bi) is open as well as continuous. By Theorem 3.1, it follows that the set
E∗Q(Ti,Mλ(T−i)) is residual in Q(Ti,Mλ(T−i)).
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As mentioned in the introduction, we do not interpret our result as saying that full
surplus extraction is to be considered very likely. Indeed it seems unlikely that, in a given
situation a mechanism designer should know the participants’ belief functions as well as
he needs to in order to exploit the dependence of beliefs on types for surplus extraction.
However, this concern is not properly addressed by genericity considerations in terms
of the space of incomplete-information models {Ti, θ̂i, bi}I

i=1. The McAfee-Reny condition
or even the BDP property may seem implausibly strong, but our analysis shows that, if
beliefs are infinite-dimensional, such notions of plausibility must be treated with caution.
In settings with infinite type spaces, and therefore infinite-dimensional spaces of beliefs,
neither the McAfee-Reny condition for full surplus extraction nor the weaker condition of
injectiveness, is very special. To deal with concerns about the mechanism designer’s lack
of information, one needs either an explicit model of the information available to him or
a robustness requirement along the lines of Bergemann and Morris (2005), which would
preclude his using very specific information about about beliefs and belief functions.
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A Necessity of infinite-dimensionality of the range

In Section 3, we asserted that the genericity claim made in Theorem 3.1 is false if the
functions under considerations have a finite-dimensional range. This contrasts with the
genericity of embeddings, which by the classical embedding theorem holds whenever the
dimension of the range is more than twice the dimension of the domain of the functions
under consideration. The following result provides a formal statement.

PROPOSITION A.1 Let X be a metric space with |X| ≥ N, and let Y be an N-dimensional,
compact, convex, metric space. Let C(X, Y) be the space of continuous functions from X to Y,
endowed with the uniform topology. There exists an open subset U of C(X, Y) such that, for every
f ∈ U , there exists x ∈ X such that

f (x) ∈ co{ f (X\{x})}, (43)

i.e., the value of the function at x belongs to the convex hull of its values at points other than x.

COROLLARY A.2 For X and Y as specified in Proposition A.1, let E∗(X, Y) be the subset of
those functions f ∈ C(X, Y) for which there exists no x ∈ X for which (43) holds. Then the set
E∗(X, Y) is not dense in C(X, Y).

Proof of Proposition A.1. Using the fact that Y is N-dimensional and has a non-empty
interior, choose p1, ..., pN+2 in Y so that p1, ..., pN+1 are in general position and

pN+2 =
N+1

∑
i=1

αi pi, (44)

where ∑N+1
i=1 αi = 1 and αi > 0 for all i.

Fix a function g ∈ C(X, Y) such that, for i = 1, ..., N + 2,

g(xi) = pi. (45)

Then, obviously,
g(xN+2) ∈ co{g(x1), ..., g(xN+1)}; (46)

In fact, since αi > 0 for all i, g(xN+2) = pN+2 belongs to the interior of co{g(x1), ..., g(xN+1)},
i.e., there exists ε > 0 such that the ε-ball Bε(pN+2) around g(xN+2) = pN+2 is fully con-
tained in the convex hull of g(x1) = p1, ..., g(xN+1) = pN+1.
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Now, fix η = ε
2 and let U be the open η-neighbourhood of g, i.e. the set of all functions

f such that d( f (x), g(x)) < η for all x ∈ X, where d is the metric on Y. We claim that, for
any f ∈ U ,

f (xN+2) ∈ co{ f (x1), ..., f (xN+1)}. (47)

To prove this claim, we will show that the ε
2 -ball B

ε
2 (pN+2) around g(xN+2) = pN+2 is a

subset of the convex hull of f (x1), ..., f (xN+1), i.e., that

B
ε
2 (pN+2) ⊂ co{ f (x1), ..., f (xN+1)}. (48)

(48) implies (47) because, for f ∈ U , d( f (xN+2), g(xN+2)) < η = ε
2 , and therefore,

f (xN+2) ∈ B
ε
2 (pN+2).

To prove (48), we first note that

co{p1, ..., pN+1} ⊂ Bη(co{ f (x1), ..., f (xN+1)}). (49)

To see this, observe that, for any q ∈ co{p1, ..., pN+1}, there exist α
q
i , i = 1, ..., N + 1, such

that

q =
N+1

∑
i=1

α
q
i pi.

For f ∈ U , the distance between q and the element ∑N+1
i=1 α

q
i f (xi) of co{ f (x1), ..., f (xN+1)}

is less than η, i.e. q ∈ Bη({co{ f (x1), ..., f (xN+1)}).
Since Bε(pN+2) ⊂ co{p1, ..., pN+1}, it follows that

Bε(pN+2) ⊂ Bη(co{ f (x1), ..., f (xN+1)}). (50)

Now (48) follows because η = ε
2 . For suppose that (48) fails so that there exists some

v ∈ B
ε
2 (pN+2)\co{ f (x1), ..., f (xN+1)}. Let y be the element of co{ f (x1), ..., f (xN+1)} that

is closest to v, and let
z = v + δ(v− y) (51)

where δ is chosen so that d(z, v), the distance between z and v, is exactly η. By the triangle
inequality,

d(pN+2, z) ≤ d(pN+2, v) + d(v, z).

By construction, d(v, z) = η = ε
2 and d(pN+2, v) ≤ ε

2 . Thus, z ∈ Bε(pN+2). By (50), it
follows that there exists u ∈ co{ f (x1), ..., f xN+1)} such that

d(z, u) ≤ η. (52)
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Using (51), we obtain

d(z, u) = d(v + δ(v− y), u) = (1 + δ)d(v, λu + (1− λ)y),

where λ := 1
1+δ . By the definition of y and another application of (51), it follows that

d(z, u) ≥ (1 + δ)d(v, y) > δd(v, y) = d(z, v) (53)

Upon combining (52) and (53), we find that d(z, v) < η, contrary to the assumption that
d(z, v) = η. The assumption that (48) fails has thus led to a contradiction and must be
false.

B Belief Functions in C(Ti,M(T−i))

In this appendix, we extend Theorems 2.1 and 3.1 to the case where the belief function
bi is treated as an element of C(Ti,M(T−i)), where measures in M(T−i) need not have
densities and the topology onM(T−i) is the topology of weak convergence of probabil-
ity measures, i.e. the weak’ topology. As in the main text, the type spaces T1, ..., TI are
assumed to be compact metric spaces with more than finitely many elements.

B.1 Generalizing the McAfee-Reny Result

From the main text, we recall that a belief function bi : Ti → M(T−i) is said to admit
full surplus extraction if and only if, for every continuous function π̄i : Ti → R and every
ε > 0, there exists a system zi

1, ..., zi
Ni

of participation fee schedules for agent i such that
the induced expected payment Z̄i(ti) as given by equations

Z̄i(ti) := min(z̄i
1(ti), ..., z̄i

Ni
(ti)). (54)

and
z̄i

n(ti) :=
∫

T−i

zi
n(t−i) bi(dt−i|ti). (55)

(4) and (5) satisfies
π̄i(ti)− ε ≤ Z̄i(ti) ≤ π̄i(ti) (56)

for all ti ∈ [0, 1]. Following McAfee and Reny (1992), we reformulate this condition as
follows. Let C(Ti) be the set of continuous functions from Ti to R, endowed with the
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topology of uniform convergence. For any bi ∈ C(Ti,M(T−i)), let R(bi) be the set of
functions z̄ ∈ C(Ti) such that, for some continuous function z : T−i → R,

z̄(ti) :=
∫

T−i

z(t−i) bi(dt−i|ti)

for all ti ∈ Ti; further let r(bi) be the set of functions Z̄ ∈ C(Ti) such that, for some N and
some functions z̄1, ..., z̄N in R(bi),

Z̄(ti) = min(z̄i
1(ti), ..., z̄i

Ni
(ti))

for all ti ∈ [0, 1]. Then bi admits full surplus extraction if and only if

r̄(bi) = C(Ti), (57)

where r̄(bi) is the closure of r(bi) in C(Ti).
We also extend the map ϕbi that was defined in Section 3 by setting

ϕbi(B|µ) :=
∫

Ti

bi(B|ti)dµ(ti) (58)

for any measurable B ⊂ T−i and any µ ∈ M(Ti). In this setting, we obtain the following
generalization of the result of McAfee and Reny (1992).

THEOREM B.1 A belief function bi : Ti →M(T−i) admits full surplus extraction if and only if,
for all t̄i ∈ Ti and all µ ∈ M(Ti),

ϕbi(µ) = ϕbi(δt̄i
) implies µ = δt̄i

, (59)

where ϕbi :M(Ti)→M(T−i) is the map that is defined by (58).

The proof of Theorem B.1 is by and large the same as the proof of Theorem 2 in McAfee
and Reny (1992), with due changes to account for the fact that Ti is an arbitrary compact
metric space, rather than the unit interval, and for the fact that beliefs need not have
densities. Therefore we will not go into all the details but merely indicate where and how
the argument must be adapted.

In the analysis of McAfee and Reny (1992), a special role is played by what they call
the set of ”(ε, δ)-u-shaped functions at ti0”. In the present, more general setting, an (ε, δ)-
u-shaped function at ti0 is a function u ∈ C(Ti) such that

(i) u(ti) ≥ 0 for all ti ∈ Ti,
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(ii) u(ti0) ≤ ε, and
(iii) u(ti) ≥ 1 for all ti ∈ Ti\Bδ(ti0), where Bδ(ti0) is the closed δ-ball around ti0.
The set of such (ε, δ)-u-shaped function at ti0 is denoted as U(ε, δ, ti0). This set plays a

key role in the following auxiliary result, which extends Theorem 1 of McAfee and Reny
(1992).

PROPOSITION B.2 Suppose that a set A ⊂ C(Ti) satisfies:
(i) A is closed under addition and under multiplication by a positive scalar.
(ii) For any N, x1, ..., xN ∈ A implies y ∈ A, where y is defined by setting y(ti) = min(x1(ti), ..., xN(ti))

for any ti ∈ Ti.
(iii) 1, −1 ∈ A
(iv) For all ε > 0, δ > 0, and every ti0 ∈ Ti, U(ε, δ, ti0) ∩ Ā 6= ∅.
Then Ā = C(Ti).

The proof of Proposition B.2 is step by step the same as the proof of Theorem 1 in
McAfee and Reny (1992), except that the unit interval as the domain of functions must be
replaced by Ti and intervals of the form [ti0 − δ, ti0 + δ] must be replaced by the closed
δ-balls Bδ(ti0) around ti0.

Similarly, the proof of the necessity of condition (59) for full surplus extraction is step
by step the same as the proof of the necessity statement in Theorem 2 of McAfee and Reny,
again with the proviso that [0, 1] be replaced by Ti and intervals of the form [ti0− δ, ti0 + δ]

by the closed δ-balls Bδ(ti0) around ti0.

Proof of the sufficiency statement in Theorem B.1. As in McAfee and Reny (1992), the
proof is indirect. Suppose condition (59) is not sufficient for full surplus extraction. Then
there exists bi ∈ C(Ti,M(T−i)) such that (59) holds for all t̄i ∈ Ti and all µ ∈ M(Ti) and
C(Ti)\r̄(bi) 6= ∅. By Proposition B.2, C(Ti)\r̄(bi) 6= ∅ implies that the set r(bi) violates
one of the conditions in that proposition; the only candidate is condition (iv). Thus there
exist ε0 > 0, δ0 > 0, and ti0 ∈ Ti such that U(ε0, δ0, ti0) ∩ r̄(bi) = ∅. Since R(bi) ⊂ r(bi), it
follows that U(ε0, δ0, ti0) ∩ R̄(bi) = ∅.

As discussed by McAfee and Reny (1992), one can now use the separating hyperplane
theorem and the Riesz representation theorem to assert the existence of a constant c and a
regular, countably additive, signed measure µ 6= 0 on Ti such that∫

Ti

x(ti)dµ(ti) ≤ c for all x ∈ R̄(bi), and (60)
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∫
Ti

x(ti)dµ(ti) ≥ c for all x ∈ U(ε0, δ0, ti0). (61)

Moreover, since R̄(bi) is a linear subspace of C(Ti), it must be the case that∫
Ti

x(ti)dµ(ti) = 0 for all x ∈ R̄(bi), (62)

and the constant c can be taken to be zero. By the definition of R(bi), it follows that∫
Ti

∫
T−i

z(t−i)dbi(t−i|ti)dµ(ti) = 0 (63)

for all z ∈ C(T−i).
By the Jordan decomposition theorem, we may write µ as the difference between two

positive measures µ+ and µ−, at least one of which is finite. Thus, (63) can be rewritten in
the form ∫

Ti

∫
T−i

z(t−i)dbi(t−i|ti)dµ+(ti) =
∫

Ti

∫
T−i

z(t−i)dbi(t−i|ti)dµ−(ti). (64)

If z ∈ C(T−i) is the constant function with value one, (64) specializes to the equation

µ+(Ti) = µ−(Ti),

so µ+ and µ− are both finite. Moreover, there is no loss of generality in setting µ+(Ti) =

µ−(Ti) = 1, so both µ+ and µ− belong to M(Ti). (64) can therefore be rewritten in the
form ∫

T−i

z(t−i)dϕbi(t−i|µ+) =
∫

T−i

z(t−i)dϕbi(t−i|µ−). (65)

If (65) is to hold for all z ∈ C(T−i), it must be the case that

ϕbi(µ
+) = ϕbi(µ

−). (66)

By (59), it follows that neither µ+ nor µ− can be the point measure δti0 at ti0. For sup-
pose that µ+ = δti0 . Then (66) implies ϕbi(µ

−) = ϕbi(δti0) and, by (59), µ− = δti0 , which is
incompatible with µ = µ+ − µ− 6= 0. By a precisely symmetric argument, µ− = δti0 is also
impossible.

Since µ− is regular, it follows that there exists a closed set A ⊂ Ti, such that µ−(A) >

0, µ+(A) = 0, and for some δ ∈ (0, δ0], the intersection of A with the δ-ball Bδ(ti0) around
ti0 is empty. Fixing K > 1/µ−(A), we can define a step function xK by setting

xK(ti) = 0 if ti ∈ Bδ(ti0),

xK(ti) = K if ti ∈ A,

xK(ti) = 1 otherwise.
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For this step function, we find
∫

xK(ti)dµ(ti) ≤ 1− Kµ−(A) < 0. Now xK itself is not
continuous, but can be approximated by a sequence {xn}∞

n=1 of continuous functions so
that the integrals

∫
xn(ti)dµ(ti) converge to

∫
xK(ti)dµ(ti) as n becomes large. For any

sufficiently large n, therefore,
∫

xn(ti)dµ(ti) < 0.
However, as discussed by McAfee and Reny (1992), the sequence {xn}∞

n=1 can be cho-
sen so that xn ∈ U(ε0, δ0, ti0). By (61) and the fact that c = 0, it follows that

∫
xn(ti)dµ(ti) ≥

0 for all n. The assumption that condition (59) is not sufficient for full surplus extraction
has thus led to a contradiction and must be false.

B.2 A Version of Theorem 3.1 for Belief Functions in C(Ti,M(T−i))

We next provide a version of Theorem 3.1 for belief functions in C(Ti,M(T−i)).

THEOREM B.3 Let E∗∗(Ti,M(T−i)) be the set of continuous functions from Ti toM(T−i) that
satisfy the condition for full surplus extraction. If T−i has more than finitely many elements, then
E∗∗(Ti,M(T−i)) is a residual and dense subset of the space C(Ti,M(T−i)) with the uniform
topology, i.e., E∗∗(Ti,M(T−i)) contains a countable intersection of open and dense subsets of
C(Ti,Mλ(T−i)) and is itself dense.

Proof Sketch. As before, we only indicate how the proof in the main text must be
changed to accommodate the change in the range of the belief functions under consid-
eration. The main change concerns the metric on the range. Whereas equation (10) in the
main text provided for a metric in terms of density functions, this metric now is not avail-
able. Following Parthasarathy (1967), we fix a countable dense set of continuous functions
gn : T−i → [0, 1] and define the distance between two measures β and β̂ inM(T−i) to be
given as

ρ∗(β, β̂) =
∞

∑
k=1

ξn
∣∣∣∣∫T−i

gn(t−i)dβ(t−i)−
∫

T−i

gn(t−i)dβ̂(t−i)

∣∣∣∣ , (67)

where ξ ∈ (0, 1) is arbitrary but fixed. By Theorem 6.6 , p. 47, in Parthasarathy (1967), the
metric ρ∗ induces the topology of weak convergence of probability measures on T−i.

In going through the proof of Theorem 3.1 in the main text, one observes that the ar-
gument for Claim 1 does not refer to the range of the belief functions at all. The argument
for Claim 2 does refer to the range, but one easily verifies that every step remains valid if
the metric ρ from equation (10) is replaced by the metric ρ∗ that is defined by (67).
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In the proof of Claim 3, we can proceed similarly, replacing ρ by ρ∗ throughout. When
it comes to selecting measures β1, ..., βK such that, for k = 1, ..., K, the distance (now un-
der ρ∗, rather than µ) between βk and bi(t̄i) for some t̄i in the open set Uk in the finite
subcovering of Ti is less than η

2 , we now replace the requirement that the associated den-
sity function be linearly independent by the requirement that the associated sequences
{
∫

T−i
gn(t−i)dβk(t−i)}∞

n=1, k = 1, ..., K, be linearly independent. Given the definition (19)
of the belief mapping b̄i, the distance between b̄i and the originally given belief mapping
bi now given by the metric ρ∗ is again found to be no greater than η, as in (23) in the
previous analysis.

The key step in the proof of Claim 3 concerns the assertion that b̄i ∈ Gε. By construc-
tion,

ϕb̄i
(δti) = b̄i(ti) =

K

∑
k=1

αk(ti)βk

and

ϕb̄,(µ) =
∫

b̄i(t̄i)dµ(t̄i) =
K

∑
k=1

∫
αk(t̄i)dµ(t̄i) βk,

so, for any ti ∈ Ti and µ ∈ M(Ti), ϕb̄i
(δti) = ϕb̄,(µ) implies

K

∑
k=1

αk(ti)βk =
K

∑
k=1

∫
αk(t̄i)dµ(t̄i) βk.

For any n, therefore,

K

∑
k=1

αk(ti)
∫

gn(t−i)dβk(t−i) =
K

∑
k=1

∫
αk(t̄i)

∫
gn(t̄−i)dβk(t̄−i)dµ(t̄i).

Equivalently,
K

∑
k=1

[
αk(ti)−

∫
αk(t̄i)dµ(t̄i)

] ∫
gn(t−i)dβk(t−i) = 0. (68)

Because the sequences {
∫

T−i
gn(t−i)dβk(t−i)}∞

n=1, k = 1, ..., K, are linearly independent,
equation (68) implies that

αk(ti)−
∫

αk(t̄i)dµ(t̄i) = 0 (69)

for all k. By the same argument as in the main text, it follows that the measure µ is con-
centrated on the union of the sets Uk that contain ti. Claim 3 then follows by the same
argument as in the proof of Theorem 3.1.
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Finally, by Theorem 6.5 in Parthasarathy (1967)M(T−i) is a complete metric space (as
T−i is complete). Therefore, C(Ti,M(T−i)) is also a complete metric space and hence a
Baire space. The residual set E∗∗(Ti,M(T−i)) is therefore itself dense in C(Ti,M(T−i)).

In contrast to Theorem B.1 above, which generalizes Theorem 2.1, i.e., the result of
McAfee and Reny (1992), strictly speaking, Theorem B.3 is not simply a generalization of
Theorem 3.1. Besides enlarging the range of the belief functions under consideration, from
Mλ(T−i) toM(T−i), we are also endowing this range with a different topology. In The-
orem 3.1, Mλ(T−i) was endowed with the topology of uniform convergence of density
functions, but now we endow the larger space M(T−i) with the topology of weak con-
vergence of probability measures. The induced subspace topology onMλ(T−i) is weaker
than the topology of uniform convergence of density functions, so the range of belief
functions has fewer open sets, and the set of continuous functions from Ti toMλ(T−i) is
larger.
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