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The Expected Externality Mechanism in a
Level-k Environment∗

Olga Gorelkina†

Abstract

Mechanism design theory strongly relies on the concept of Nash equilib-
rium. However, studies of experimental games show that Nash equilibria
are rarely played and that subjects may be thinking only a finite number of
iterations. We study one of the most influential benchmarks of mechanism
design theory, the expected externality mechanism (D’Aspremont, Gerard-
Varet, 1979) in a finite-depth environment described by the Lk model. While
efficient implementation fails under certain conditions, our results provide a
vindication of the mechanism in the convex quasi-linear environment with
finitely-rational agents.

1 Introduction

Mechanism design theory studies institutions with privately informed agents.
Using the tools of game theory, it proposes rules of interactions such that the
participants’ strategic behavior complies with the designer’s objective. In a lead-
ing example, the designer’s purpose is to implement the socially efficient out-
come, that is, to find the allocation that maximizes total welfare. The major
∗I am grateful to Vincent Crawford, Francoise Forges, Ioanna Grypari, Rida Laraki, Thomas

Mariotti, David Martimort, Benny Moldovanu, Thomas Rieck, Nicolas Roux for their helpful
comments.
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challenge to efficient implementation is the fact that information about individ-
ual preferences is private.1 In a setting with quasi-linear utilities, d’Aspremont
and Gerard-Varet (AGV, 1979) construct an ingenious mechanism that aligns
the agents’ individual incentives with total welfare maximization. In a Bayes-
Nash equilibrium, the agents’ then reveal their types truthfully and efficiency is
achieved. The AGV mechanism has become an essential building block for the
mechanism design theory (Athey and Segal, 2013).

Since the AGV mechanism is tailored to the concept of Bayes-Nash equilibrium,
its success in inducing truth-telling and, therefore, efficiency in practice depends
on (i) whether the participants’ behavioral response to the mechanism coincides
with the Bayes-Nash prediction and, if it does not, (ii) whether efficiency still
obtains under the possible deviations. While the first question has not been
addressed directly in the literature, the experimental results in (simpler) com-
plete information games suggest that the answer is negative. As to the second
question, little is known as to the loss of efficiency if the participants do not
play equilibrium.2 This paper tries to fill this gap by studying how the mecha-
nism performs in a behavioral framework where, contrary to the requirement of
Bayes-Nash equilibrium, the agents conduct only a limited number of iterations
of reasoning.

The choice of behavioral setting follows a large body of evidence from experimen-
tal games. Recent surveys by Crawford, Costa-Gomez, and Iriberri (2013) and
Camerer and Ho (2015) show that non-equilibrium models with finite depth of
reasoning, such as the Level-k model (Lk; Nagel 1995; Stahl and Wilson 1994;
Costa-Gomes, Crawford, and Broseta 2001; Costa-Gomes and Crawford 2006)
and the cognitive hierarchy model (CH; Camerer, Ho, and Chong 2004), sys-
tematically outperform equilibrium in predicting human behavior. Along with
closely fitting the lab data, these models are able to predict some frequently ob-
served field phenomena such as the winner’s curse in common-value auctions:
see Crawford and Iriberri, 2007. We choose the Lk model due to its tractability,
but most of our results also hold in the CH model.3

Lk is a model of reasoning prior to a game, where the player maximizes his pay-
off against a non-equilibrium belief about other players’ strategies. The belief

1In this literature, all private information is summarized in a type: a parameter that enters
the player’s utility function (and has to be elicited by the mechanism).

2See Crawford, Costa-Gomez, and Iriberri (2013).
3Propositions 1, 2, 4, and 5 hold in the cognitive hierarchy model.
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is constructed in the following iterative process. A player of level k = 1 (“L1
player") believes that his opponents (“L0”) behave non-strategically. In incom-
plete information games, such as the AGV mechanism, L0’s can be modeled in
two distinct ways: either they truthfully reveal their type (”truthful L0") or draw
their actions (type reports) from a random distribution (“random L0”). An L2
player best replies to the profile of L1 strategies, L3 best replies to L2, and so
on. In general, an Lk strategy is best reply to the profile of Lk-1, suggesting the
interpretation that players try to “outguess" their opponents.4 As an illustration,
think of a game, where the players pick a number between 0 and 100 and the one
whose number is closest to some fraction, say one half, of the average wins the
game. In this guessing game, if L0s randomize uniformly between 0 and 100, L1s
will choose 50/2=25, L2s will choose 25/2, etc. As Lk increases, the best response
approaches 0, the only Nash equilibrium of the game.

We apply the Lk model to the AGV mechanism in a setting with independent
private valuations and utilities that are strictly concave with respect to the allo-
cation.5 First, we observe that in the truthful-L0 specification of the Lk model the
mechanism never produces a loss in efficiency. In that specification, the L1 best
reply is given by the equilibrium condition of AGV which implies truth-telling.
By induction, this result extends to any higher level k, therefore the mechanism
chooses the efficient allocation irrespectively the levels prevailing in the popula-
tion.

Further, in the random-L0 specification of Lk, we show that if the distribution of
random moves (L0) coincides with the distribution of payoff types, then the par-
ticipants at any level larger than zero report truthfully to the mechanism. Next,
we analyze the more challenging setup where the type distribution used by the
planner to assign transfers differs from L1s’ perception of the opponents’ moves.
In this case, the externality payment generally fails to align the agent’s incen-
tives with total expected welfare maximization. As a result, the AGV mechanism
does not induce truth-telling and produce a suboptimal allocation. Denoting the
distribution of random L0 strategies by Φ and the distribution of types by F , we
study how the stochastic properties of Φ and F affect the Lk strategies in the
mechanism.

4The cognitive hierarchy model features ‘smoother’ beliefs: a positive probability is assigned
to all levels lower than one’s own.

5We use the assumption of strict concavity to assure that the equilibrium of the AGV mecha-
nism is unique. For an account of the problem of non-uniqueness, see Mathevet (2010).
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We start with a simple environment where utilities are quadratic. In this setting,
a difference in the mean values of Φ and F creates distortions at level 1. For
instance, if the mean type is greater than the mean L0 report, then all types
of an L1 player will over-report their types to the mechanism. Misreporting
carries over to higher levels, but the expected absolute value of the distortion of
type decreases exponentially as level k goes up. Moreover, the direction of bias
(i.e., whether the agents over-report or under-report their types) alternates at
each iteration from k to k+1. This result has two interesting implications for
the outcome of the mechanism. First, if the pool of agents is a mixture of two
subsequent levels (e.g., L2 and L3), the distortion of efficiency is lower than in
a group where only one of these levels is present. Second, as Lk goes up, the
outcome approaches efficiency.

Similar results are obtained in a more general setting, where the efficient rule is
essentially linear in types.6 In this neutral environment types are neither substi-
tutes nor complements with respect to the optimal allocation. A simple example
of a neutral environment is the one where the optimal allocation is a linear com-
bination, for instance, the average, of types. In this environment, whenever Φ

(F ) dominates F (Φ) in the sense of first-order stochastic dominance then types
are going to be systematically misreported.7 We find that if the distribution of
types F dominates the distribution of random moves Φ, then L1s always over-
report their types. Thus they compensate the downward bias of L0s distorting
their own reports in the opposite direction. This is due to the incentive scheme
induced by the mechanism: it punishes for the expected, as opposed to the real-
ized, negative externality.

As an extension, we study the case where type reports are complements or sub-
stitutes with respect to the optimal allocation. The direction of bias in reports
can be predicted, similarly to the neutral case, but only for a subset of types. For
instance, one of the results states that if the distribution of types F dominates
the distribution of random moves Φ and type reports are complements with re-
spect to the social choice function, then low-type L1s over-report their types. The
reason that high-type L0s will not necessarily do so is that over-reporting leads,
in expectation, to an excessively high allocation due to the complementarity in

6By ‘essentially linear in types’ I mean linear in some strictly monotone functions of types.
7The stochastic dominance relation corresponds to a biased perception of opponents’ behavior,

which can be caused by previous experience of play or probability weighting. See Kahneman and
Tversky, 1981.
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agents’ reports.

In the neutral case, we also obtain the following convergence result: as level k
increases, the players’ strategies in the AGV mechanism tend to truth-telling.
Since in most experiments the estimated values of k rarely exceed 3 (Crawford,
Costa-Gomez, and Iriberri, 2013; Camerer, Ho, 2015), the convergence result
bears little importance for one-shot mechanisms. However, with the interpreta-
tion of Lk model as a learning algorithm, this result has an important implication
for mechanisms that are played repeatedly.8 We describe a learning algorithm in
the game of incomplete information with a large number of players that is equiv-
alent to the Lk model. If learning follows that algorithm, then our convergence
result for Lk implies that the players will gradually learn to report types truth-
fully. We can interpret the results as a vindication of the AGV mechanism in a
convex quasi-linear environment with independent private values. The analysis
shows that even if agents are finitely-rational, their behavior in the mechanism
is centered around truth-telling.9

The rest of this paper is organized as follows. Section 2 presents the key assump-
tions, the Lk model in incomplete information games and in the AGV mechanism
in particular. Section 3 describes the properties of Lk strategies in the AGV
mechanism: equivalence of Lk and equilibrium models in the AGV mechanism,
the biases due to first order stochastic dominance and convergence in the neu-
tral environment. Section 4 partially extends the results to the case when types
are substitutes or complements with respect to the efficient allocation. Section
5 explains how the results can be understood in the context of a learning model,
and finally, Section 6 discuses the implications for the practical implementation
of the AGV mechanism.

2 The Model

Preferences The preference environment is characterized by the following as-
sumptions:

A1. Utilities are linear in money.
8This follows the paradigm of evolutionary game theory that suggests a different view, relative

to the models of reasoning, on learning to play a game. See Sandholm (2010), Hofbauer and
Sandholm (2002), Dekel, Fudenberg, Levine (2004).

9This is not the case, for example, in first price auctions. See Crawford, Iriberri (2007).
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A2. Values are private.

A3. Values are independent and identically distributed.

Assumptions A1 and A2 imply that the utility function of a given agent i ∈ I can
be represented as:

vi (x, θi) +mi, (1)

where vi (x, θi) is the utility derived from allocation x ∈ X, θi ∈ Θ ⊆ R is the pri-
vately known preference parameter that we refer to as the player’s type, andmi is
the monetary transfer to player i. We assume that vi (x, θi) is strictly concave in x
and continuously differentiable with respect to both arguments. A3 implies that
the values θi are drawn independently across i ∈ I. We denote the respective
cumulative function F and assume that F is common knowledge. We require
that the preferences satisfy a single crossing (Spence-Mirrlees) condition. The
condition postulates that function vi (x, θi) has a cross-derivative with respect to
allocation x and type θi with a sign that is constant over the function’s domain:

A4. vi (x, θi) satisfies the Spence-Mirrlees condition, i.e., either A4.1 or A4.2
holds:

A4.1 ∂2vi
∂x∂θi

(x, θi) > 0, for all i and (x, θi) ∈ (X,Θ),

A4.2 ∂2vi
∂x∂θi

(x, θi) < 0, for all i and (x, θi) ∈ (X,Θ).

A1-A4 are the basic assumptions of mechanism design. A further standard as-
sumption is the common knowledge of rationality: the knowledge that the op-
ponent is rational, the knowledge that the opponent knows that his opponent
is rational, and so on ad infinitum. In this paper, we consider the case with a
finite number of rationality iterations. This frame of reasoning is described by
the following model (Nagel, 1995; Crawford and Iriberri, 2007).

Level-k Consider a game of incomplete information where the payoffs are given
by ui (s; θi), for each player i ∈ I of type θi and strategy profile s =

(
s1, s2, ..s|I|

)
,

where si ∈ S. (We use si and si (θi) interchangeably.) We look at players who
engage in iterations of best reply, following Nagel (1995). The Lk strategy s(k)

i (θi)

is recursively defined as the function of the player’s type θi that maximizes his
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expected payoff against level-(k − 1) profile s(k−1)
−i (θ−i).10 As the starting point of

recursion, the model features nonstrategic L0 players, that can be modeled in
two alternative ways (see Crawford, Costa-Gomez, and Iriberri, 2013). In one
specification, the L0’s always reveal their type truthfully; in the other, L0’s ac-
tions are drawn from a random distribution. In the version with random L0’s,
we denote the associated cumulative distribution function by Φ and assume, as
it is standard in the Lk model, that Φ is known.11 The formal definition is then
the following.

Definition For k ≥ 1 the optimal strategy s(k)
i maximizes the expected payoff of

player i against s(k−1)
−i :12

s
(k)
i (θi) = arg max

si∈S
E
[
ui

(
si, s

(k−1)
−i (θ−i) ; θi

)]
, (2)

where θ−i is the residual profile of types. For k = 0, action s
(0)
i (θi) = s

(0)
i ∈ S is a

random draw from Φ.

The following simple lemma establishes the connection between the Lk and equi-
librium strategy profiles.

Lemma 1 If s(k) (θ) = s(k+1) (θ) for all k ≥ 1 and θ ∈ Θ, then s(k) is a Bayes-Nash
equilibrium.

The lemma follows immediately from Equation (2) and the Bayes-Nash equilib-
rium conditions: The strategy profile s(k) (θ) that satisfies the condition of Lemma
1 is a fixed point of best-reply correspondence (2).

Choice Rules and Mechanisms For a quasilinear utility representation (1),
we define a choice rule x∗ (θ) as efficient if it maximizes the total welfare for every
profile of agents’ types θ =

(
θ1, θ2, ..θ|I|

)
:13

10In other words, the player believes with certainty that the opponents make exactly k − 1
iterations of best reply. In contrast, the cognitive hierarchy model assumes that an Lk player
attributes strictly positive probabilities to all the levels of rationality lower than k.

11Otherwise the optimal Lk strategies are not well-defined.
12Assuming strict concavity of the payoff functions.
13We restrict the attention to strictly convex problems, such that for all θ ∈ Θ|I| the solution

x∗ (θ) to the welfare maximization problem is unique.
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x∗ (θ) = arg max
x∈X

∑
i

vi (x; θi) (3)

A (direct) mechanism is a system of communication and decision-making, where
the privately informed agents report their payoff types and the central authority
assigns the allocation and transfers based on the submitted reports. Formally, it
is a tuple

(
x (s) , T1 (s) , T2 (s) , ..T|I| (s)

)
of allocation and transfers, such that the

payoffs in the mechanism are given by:

ui = vi (x (s) , θi) + Ti (s) . (4)

A mechanism implements choice rule x (s) if the profile of truth-telling strategies,
si = θi, ∀i, is an equilibrium.

Expected Externality Mechanism The expected externality mechanism in-
troduced in d’Aspremont and Gerard-Varet (AGV, 1979) implements the efficient
allocation in a Bayes-Nash equilibrium. In this mechanism, the center chooses
the allocation x∗ (s) defined in (3) and assigns the following monetary transfers
to the participants:

Ti (s) = ti (si)−
1

|I| − 1

∑
l 6=i

tl (sl) , (5)

where
ti (si) = E

∑
j 6=i

vj (x∗ (si, θ−i) ; θj) . (6)

The transfer Ti is constructed such that agent i internalizes the expected effect
of his report on others. The incentive part of ti represents the monetary value
of externality imposed by the agent’s report si on others’ welfare; the external-
ity is evaluated under the assumption that the other agents report their types
truthfully. Therefore, if the agent also expects others to report truthfully (the
equilibrium assumption), then his incentives are aligned with total welfare max-
imization, and there is no benefit in misrepresenting his own true preferences.
Thus, in the Bayesian setting, the transfer induces truth-telling in equilibrium
(d’Aspremont and Gerard-Varet, 1979). Their result immediately implies that in
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the truthful-L0 specification of the Lk model efficient implementation obtains for
any k.

The second part of the transfer, 1
|I|−1

∑
l 6=i
tl (sl), guarantees that mechanism sat-

isfies ex post budget balance, i.e., its transfers sum up to zero for any profile
of reports s (and, in particular, in the level-k model.)14 Observe that the budget-
balancing term 1

|I|−1

∑
l 6=i
tl (sl) does not depend on agent i’s own report si. Therefore

this term does not affect best replies and can be omitted in the Lk analysis.

Level-k in the Mechanism In the expected externality mechanism, a Lk player,
k ≥ 1, maximizes the expected gain in the mechanism:

E
[
vi

(
x∗
(
si, s

(k−1)
−i (θ−i)

)
; θi

)
+ ti (si)

]
(7)

Given the incentive transfer (6), the optimal Lk strategy in the mechanism is
defined by the following:15

s
(k)
i (θi) = arg max

si∈Θ
E

[
vi

(
x∗
(
si, s

(k−1)
−i (θ−i)

)
; θi

)
+
∑
j 6=i

vj (x∗ (si, θ−i) ; θj)

]
(8)

By Lemma 1, a strategy profile that satisfies s(k) (θ) = s(k−1) (θ) for all k and θ is
a Bayes-Nash equilibrium. In particular, if truth-telling obtains at all levels up
to k − 1, for all i and θi, then we can substitute s(k−1)

i (θi) = θi in Equation (8) and
obtain the equilibrium condition:

s
(k)
i (θi) = arg max

si∈Θ
E

[∑
j

vj (x∗ (si, θ−i) ; θj)

]
. (9)

Since x∗ maximizes the sum of utilities, it must be the case that s(k)
i (θi) = θi.

However, if an agent does not expect his opponents to report their types truth-
fully, he will not reveal his true type either. We start the following section de-
scribes with the respective example.

14In this respect, the AGV mechanism improves over the VCG mechanism (Vickrey, Clarke,
and Groves), that does not achieve budget balance (Green and Laffont 1979, Walker 1980).

15Recall that we assume strict concavity of vi (x, θi) in x.
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3 Results

Example Consider a setting with n players and a quadratic utility represen-
tation vi (x, θi) = θix − x2

2
, i ∈ I. In this setup, agent i has a bliss point at θi and

incurs quadratic loss as the allocation departs from it. It is easy to verify that the
socially efficient allocation (that maximizes the sum of utilities) is the average of
individual bliss points: x∗ (θ1) =

∑
i θi
n

.16 In the appendix, we prove the following
simple lemma:

Lemma 2 In the quadratic case, the optimal Lk strategy, k ≥ 1, for player i is
given by the following:

s
(k)
i (θi) = θi + ∆×

(
−n− 1

n

)k+1

, (10)

where ∆ =
´
θdF (θ) −

´
sdΦ(s) denotes the difference between the average

type and the average random move of an L0 player.

The Lk strategy (10) has several interesting properties. First, the size of dis-
tortion diminishes as the level of rationality k increases. As k goes to infin-
ity, the optimal strategies converge to truth-telling. This holds for any finite-
moments distributions F and Φ. Second, if the distributions have equal means,´
θdF (θ) =

´
sdΦ(s), then truth-telling obtains at every level of rationality, start-

ing from k = 1. Third, the absolute size of the discrepancy ∆×
(
n−1
n

)k+1 between
the true type θ and the Lk report s(k)

i (θi) increases in the number of players n.

Next we study these properties in a more general setup. We maintain, however,
that the efficient rule is linear in (a function of) the reported types. Formally, we
make the following assumption:

A5. For all i ∈ I, si ∂2x∗

∂si∂sj
(si, s−i) = 0.

Henceforth, we refer to A5 as the ‘neutrality condition’. It implies that the
marginal effect of an agent’s report on the efficient allocation is not influenced
by the report of another agent. The condition is satisfied whenever the efficient
allocation x∗ is a linear combination of types, in particular if it is the average

16n = |I|.
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of types.17 For instance, an environment with vi (x, θi) = − (x− θi)2p, for some
p ∈ N , n = 2 satisfies A5. Neutrality is a necessary condition for the proof of our
main result: Proposition 2. In section 4, we discuss the case when neutrality is
violated.

Observe that the first level, L1, is central to the analysis. As we will see next, if
no distortion of truth-telling appears at L1, then no distortion will be observed
at any subsequent level. Therefore we focus on the behavior of L1’s in the mech-
anism. Once we identify the departures from truth-telling at the first level, we
study whether it dissipates at higher levels and what the implications for the
AGV mechanism are.

Recall that an L1 maximizes his expected payoff under the belief that his oppo-
nent makes a random report. The L1 optimal strategy (best reply) in the mecha-
nism is given by:

s
(1)
i (θi) = arg max

si∈Si
E
s
(0)
−i

[
vi

(
x∗
(
si, s

(0)
−i

)
; θi

)
+ E

θ−i
[
∑
j 6=i

vj (x∗ (si, θ−i) ; θj)]

]
(11)

where x∗ (si, s−i) is the efficient social choice rule defined in Equation (3). The
analysis of the optimal strategy yields the following simple result.

Proposition 1 Under assumptions A1-A3, truth-telling is optimal at all levels
of rationality if the distribution of random strategies Φ and the distribution of
types F coincide.

Proposition 1 establishes the equivalence between the equilibrium and Lk pre-
dictions of the mechanism’s outcome. It implies that whether the agents stop at
a finite level of reasoning or engage in equilibrium thinking is irrelevant as long
as the perceived distribution of random strategy coincides with the distribution
of type. Proposition 1 trivially extends to the cognitive hierarchy (CH) model,
because both Lk and CH models define L1 equivalently. Overall, the AGV mech-
anism achieves efficient implementation in four models of reasoning: Lk and CH
with truth-telling L0s; Lk and CH with random L0s and F = Φ.

17Condition A5 could also be called ‘linearity’. Although A5 does not imply that the social
choice function is linear in types, it does imply linearity in some monotone functions of types.
Both problems are equivalent.
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If distributions F and Φ do not coincide, Lk agents do not report truthfully. Next
we show that systematic biases in reports (under- or over-reporting for all real-
izations of type) occur if F and Φ are ordered in the sense of first-order stochastic
dominance. F dominates Φ means that the probability that a type exceeds a
given threshold is always higher than the probability that a random move ex-
ceeds the same threshold. For instance, if Φ represents a distribution of val-
ues obtained from a prior survey, and F represents the true distribution, then a
dominance relation between the distributions may arise if the survey sample is
biased.

Denote the first-order stochastic dominance relation by �FOSD.18 The following
proposition states in which direction a level-1 player’s report is going to be dis-
torted.

Proposition 2 Under assumptions A1-A5, the L1s distort their type reports
upwards if F �FOSD Φ, and downwards if Φ �FOSD F .

The proof of the proposition is given in the Appendix. We start with the obser-
vation that any n-player problem can be reduced to a problem with 2 players
due to the fact that the stochastic dominance relation is preserved under mono-
tone transformations an summation of random variables. This is the content of
Lemma A in the Appendix. Then, in the framework with 2 players, we analyze
the first-order condition that corresponds to the payoff-maximization problem
(11) to obtain the result.

The proposition states that level-1 players systematically (that is, for every real-
ization of type) misreport their types, if the distributions of types and of random
strategies are ordered in the sense of first-order stochastic dominance. In par-
ticular, if player i expects player j to report a higher type than j has on average,
then i will report a lower type than he actually has (and vice versa), even if this
induces a less preferred allocation. What is the intuition behind that? In the
AGV mechanism, agent i gets utility from the social choice based on his and j’s
reported preferences, plus the expected payoff of agent j had he told the truth
to the principal. Suppose first that a high type values the size of the alterna-
tive more than a low type (‘positive SMC’, as in A4.1). If agent i knows that
agent j tends to over-report his preferred allocation, then – since i benefits from

18For instance, F �FOSD Φ reads: F dominates Φ in the sense of first-order stochastic domi-
nance.
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satisfying j’s true preferences in expectation – he would adjust the social choice
downward by under-reporting himself. If higher types prefer lower alternatives,
then j’s over-reporting makes the chosen alternative lower and i over-reports to
shift it back up. In either case, the level-1 player compensates the counterpart’s
random behavior by misreporting their types in the opposite direction.

Recall from the example of the previous section that the distortion of reports by
level-1 players feeds into the optimal strategies of level-2 players, level-3 and so
on, whereas the size of distortion decreases and the limiting optimal strategy is
truth-telling. The following proposition states a similar result for a more general
setting of an arbitrary social choice rule that satisfies neutrality.

Proposition 3 Suppose that A1-A5 hold, and F �FOSD Φ or Φ �FOSD F . Then
for all i, limEθi

∣∣∣s(k)
i (θi)− θi

∣∣∣ = 0 and sgn
(
s

(k)
i (θi)− θi

)
= −sgn

(
s

(k−1)
i (θi)− θi

)
.

The expected absolute deviation of reported from true types decreases with the
level of rationality. The sign of the expected deviation alternates as the level of
rationality increases by one. Thus the optimal level-k strategies follow a similar
pattern as the example of Section 2. If level-2 players overstate their type in the
game, then level-3 players will understate them. Note that this is good news for
the AGV mechanism: if the group of agents is a mix of, say, level-2 and level-3
players, then the expected chosen alternative will be closer to the one maximizing
the true welfare.

4 Extension

The assumption of neutrality implies that the marginal effect of an agent’s re-
port on the allocation choice is unaffected by another agents’ report. However,
in certain preference environments, this assumption may be violated. For in-
stance, if agent i of an extreme type knows that his biased report affects the
mechanism’s reaction to j’s report in such a way that the total distortion becomes
even stronger, he may prefer not to misreport in the direction that Proposition 2
suggests.

This can be demonstrated by the following example. Suppose that the agents’
preferences are given by vi = θix, where the allocation x takes values 0 or 1
(whether or not to build an airport), and types range between -10 and 10. This
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implies that, when there are two agents in the mechanism, the optimal decision
is to undertake the project, x∗ = 1, if θ1 + θ2 > 0 and decline, x∗ = 0, otherwise.
Suppose that F dominates Φ, and it holds for both distributions that the mass
on the negative side of the support (−10, 0) is very small, and the mass on the
positive side (0, 10) is very large (a small minority suffers from having the airport
around, while a large majority benefits).

F (x) =

ε x ∈ (−10, 0) ,

1/10− ε x ∈ (0, 10) ,
Φ (x) =

2ε x ∈ (−10, 0) ,

1/10− 2ε x ∈ (0, 10) .

Proposition 2 says that due to the dominance relation between F and Φ L1 play-
ers will tend to over-report their types. Consider however an agent of type −10,
who overstates his type and reports −9. This raises the probability of project
implementation from 0 to 1/10 − 2ε ≡ π. The expected externality equals 9.5π

while i’s expected utility is −10π such that his total payoff in the mechanism is
negative.19 Thus, contrary to what Proposition 2 suggests, the agent is strictly
better off by reporting his type truthfully (in which case he gets the zero pay-
off). By over-reporting his type he will increase the probability that the project
is undertaken.

The result of Proposition 2 does not apply in this example since the agents’ re-
ports are perfect substitutes when one agent’s type is the negative of the other:
θ1 = −θ2. Similar problem arises when types are complements. The formal defi-
nitions are as follows.

Agents’ types are complements20 with respect to the efficient allocation, if:

∂2x∗

∂si∂sj
(si, sj) > 0.

19Recall that we omit the budget-balancing term of the AGV transfer, since it does not af-
fect strategy choice. The agent’s payoff in the mechanism is given by ui = θi (1− Φ (−si)) +´ 10

−si θjdF (θj).
20E.g.:vi (x, θi) = θix− 1

x , x > 0, θ < 0.
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Agents’ types are substitutes21 with respect to the efficient allocation, if:

∂2x∗

∂si∂sj
(si, sj) < 0.

If types are substitutes, a higher report by agent i lowers the marginal effect of
the opponent’s report. If types are complements, the interaction is the opposite:
the marginal effect of j’s report increases with the report of agent i.

The following propositions state results that parallel Proposition 2 in the mech-
anism with two players. In this part of the analysis, we distinguish between pos-
itive (A4.1) and negative (A4.2) single crossing. Recall that, in the positive case,
higher types receive higher marginal utility from allocation. In the negative case,
the marginal utility diminishes with type. We separate the environments into
four groups according to two criteria: first, whether the single-crossing holds as
positive or as negative, and, second, whether the chosen alternative’s increment
due to an increase in one agent’s report increases or decreases with the other
agent’s report (types are complements or substitutes). In these propositions, we
additionally assume the monotone likelihood ratio property (MLRP).

Proposition 4 Under assumptions A1-A4.1, MLRP and complements (substi-
tutes) environment, the agents with sufficiently low (high) types distort
their reports downwards, if Φ �FOSD F , and upwards, if F �FOSD Φ.

Proposition 5 Under assumptions A1-A4.2, MLRP and complements (substi-
tutes) environment, the agents with sufficiently high (low) types distort
their reports downwards, if Φ �FOSD F , and upwards, if F �FOSD Φ.

Propositions 4 and 5 make four distinct claims. Let us consider, for example,
the first claim: if high types tend to have high valuations (A4.1: positive single-
crossing) and the efficient social choice rule is more sensitive to i’s type if j’s
type is high (i.e., types are complements), then low-valuation players will tend
to misreport their type so as to compensate the bias in the other player’s report.
This claim is the same as Proposition 2, except that high-valuation agents are
excluded. If there is first-order stochastic dominance in distributions, in the
neutral case, agent i displays compensating behavior: i systematically under-
or over-reports, regardless of whether his true type is high or low. However, in a

21E.g.: vi (x, θi) = θix+ 1
x , x < 0, θ > 0.
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non-neutral case this is different. Continuing with the first claim for illustration,
we observe that under its conditions the mechanism becomes more sensitive to
j’s misreporting in the range where i’s type is high. Therefore i’s compensating
reporting strategy has an additional indirect effect on the allocation choice (see
proof in the Appendix). For this reason, both propositions 4 and 5 include only the
type ranges that correspond to sufficiently weak sensitivity of the social choice
rule to the other agent’s report. Types in the weak-sensitivity regions display
compensating behavior.

5 Lk as a Learning Algorithm

Observe that the Lk model can be thought of a model of learning. Suppose that a
symmetric incomplete information game is played repeatedly by a large number
of players. There is a common prior over types and types are independent. At
the end of each repetition, the players observe each others’ actions and types. At
date 0, each player chooses a random action. At date 1, each player best-replies
to the profile of actions played at date 0. At every subsequent date k, each player
best-replies to his opponents’ strategies at k-1.22 Note that this implies that all
the players play the same strategy as function of type (not the same action).
Observe that the strategy played at a given date k (by all players) corresponds to
an Lk strategy.23 Therefore, Proposition 3 implies that such learning procedure
converges to truth-telling in the AGV mechanism.

Does truth-telling convergence obtain with other learning procedures? For com-
plete information games, Monderer and Shapley (1996) described a learning al-
gorithm that is similar to the above interpretation of the Lk model. In their
learning algorithm, called improvement path, one player improves his payoff at
a given date k, while the rest play as in k-1. In the appendix, we extend the im-
provement path algorithm to games of incomplete information and show that the
game induced by the AGV mechanism with quadratic utility vi (x, θi) = θix − x2

2

is a potential game for any type profile θ. Applying the result of Monderer and
Shapley we conclude that in the quadratic case the improvement path leads to

22If the number of players is large and the game is symmetric, strategies can be inferred from
the observed actions and types.

23Note that the learning interpretation of the cognitive hierarchy model is closer to fictitious
play, since it takes into account the weighted average of the whole past, and not just the last
period.
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truth-telling in the AGV mechanism. This, however, is not true in general: even
in neutral concave environments that are not quadratic the AGV does not induce
a potential game for all type profiles θ.24 This latter finding relates to Sandholm
(2005) who designs an indirect mechanism with the potential game property and
shows that convergence to efficiency obtains in a very large class of learning dy-
namics. Lifting the concavity assumption made in this paper, Mathevet (2010)
designs supermodular mechanisms with good learning properties. When a game
is potential or supermodular, then a large class of learning algorithms converge
to equilibrium.

6 Conclusion

The idea of relaxing the pervasive common knowledge assumption, often referred
to as the Wilson doctrine, has motivated recent research in mechanism design.
Significant progress was made in studying implementation in frameworks ap-
proaching the universal type space, where higher-order beliefs are virtually un-
restricted.25 Kets (2012) extends the notion of type space further to allow finite
depths of reasoning, as in the level-k model. The next natural step for mecha-
nism design is to accommodate the extended notion and search for mechanisms
that are robust with respect to changes not only in the structure of beliefs, but
also in the depth of reasoning (as mentioned in the discussion, learning to play
the mechanism is a related issue). This paper first studies one of the most influ-
ential of existing mechanisms, d’Aspremont and Gerard-Varet (1979), in the Lk
environment.

The AGV mechanism implements the efficient choice rule under the common
prior and common knowledge assumptions. It is conceptually similar to the
Vickrey-Clarke-Groves (VCG) mechanism that taxes the agents with the amount
of negative externality their preference report exerts on the welfare of other
agents. The VCG mechanism implements the efficient social choice rule in dom-
inant strategies, and hence is independent of the beliefs.26 On the downside, the

24Observe that this implies that our result of convergence to truthtelling in the Lk model is not
due to the potential game property.

25This literature stems from Bergemann and Morris (2005).
26Dominant-strategy implementation guarantees that the VCG mechanism achieves truthful

revelation and efficiency, for any k > 0 in the Lk model.

17



VCG mechanism fails to satisfy the overall budget constraint. The expected ex-
ternality mechanism has the advantage of being exactly budget balanced, but it
comes at the cost of achieving Bayesian, as opposed to dominant-strategy imple-
mentation. In the light of the Lk model, this is not entirely innocuous.

We show that if there is a systematic difference in the perceptions of random-L0
moves and the true types the agents will distort their types at the first level and,
by extension, also at the higher levels of rationality. We observe compensating
behavior of finite-level players in an AGV mechanism, that is, distorting one’s
report in the opposite direction to the anticipated bias of the opponents. This is
due to the fact that the AGV mechanism rewards for the expected externality,
where the expectation is measured with respect to the true types. A simple im-
plication of this result is that the AGV mechanism could use the distribution of
random moves, as opposed to types, to achieve truthtelling among Lk agents.

Nevertheless our results, put together, vindicate the AGV mechanism in con-
vex environments. First, in the truthful-L0 specification there is no distortion
of truthtelling and efficiency. Second, if there is distortion of truth-telling, its
sign alternates and its absolute value decreases with k. Therefore, in mixed
groups of agents with various levels k the biases cancel out and the mechanism’s
outcome is close to efficiency. This also implies that starting from L2 in the cog-
nitive hierarchy model best replies are located within a smaller neighborhood
of truth-telling. Third, our convergence result suggest that, in repeated inter-
actions where the agents can observe others’ strategies, equilibrium becomes
an increasingly better approximation and the expected externality mechanism
achieves efficiency.

A Appendix

Lemma 2

Statement s
(k)
i (θi) = θi + ∆×

(
−n−1

n

)k+1
, k ≥ 1, where ∆ =

´
θdF (θ)−

´
sdΦ(s).

Proof We proceed by induction. Suppose that for k − 1 it holds that:

s(k−1) (θj) = θi +

(
−n− 1

n

)k
∆ (12)
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Level-k optimal strategy is best reply to the profile of strategies s(k−1) (θj), where
the expectation is taken with respect to the opponents’ types θ−i.

s
(k)
i (θi) = arg max

si∈Si
Eθ−i

θi(si +
∑

j 6=i s
(k−1) (θj)

n

)
− 1

2

(
si +

∑
j 6=i s

(k−1) (θj)

n

)2

+

+
∑
j 6=i

E
θ−i

[
θ−i

(
si +

∑
j 6=i θ−i

n

)
− 1

2

(
si +

∑
j 6=i θ−i

n

)2
]]

= θi+
n− 1

n

(
Eθj − Es(k−1) (θj)

)

= θi +
n− 1

n

(
Eθj − E

[
θj +

(
−n− 1

n

)k
∆

])
= θi +

(
−n− 1

n

)k+1

∆

Thus, if (12) holds on level k − 1 it also holds on level k. Level-1 strategy is best
reply to the profile of random moves:

s
(1)
i (θi) = arg max

si∈Si
E
s
(0)
−i

θi(si +
∑

j 6=i s
(0)
j

n

)
− 1

2

(
si +

∑
j 6=i s

(0)
j

n

)2

+

+
∑
j 6=i

Eθ−i

[
θj

(
si +

∑
j 6=i θj

n

)
− 1

2

(
si +

∑
j 6=i θj

n

)2
]]

= θi −
n− 1

n
∆,

Thus for L1 the induction formula (12) applies. (Lemma 2)�

Proposition 1

Statement Under assumptions A1-A3, if F ≡ Φ then s
(k)
i (θi) = θi for all k, i ∈ I.

Proof The first-order condition (henceforth f.o.c.) for the maximization prob-
lem (11) is the following:

E
s
(0)
−i

[
∂vi
∂x

(x∗(si, s
(0)
−i ); θi)

∂x∗

∂si
(si, s

(0)
−i )

]
+
∑
j 6=i

Eθ−i
[
∂vj
∂x

(x∗(si, θ−i); θj)
∂x∗

∂si
(si, θ−i)

]
= 0

(13)
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Given that x∗(si, s−i) is the efficient choice rule, it must hold that

∑
j 6=i

∂vj
∂x

(x∗(si, θ−i); θj) +
∂vi
∂x

(x∗(si, θ−i); si) = 0.

Then the second term of (13) can be rewritten, such that the f.o.c. becomes:27

E
s
(0)
−i

[
∂vi
∂x

(
x∗
(
si, s

(0)
−i

)
; θi

) ∂x∗
∂si

(
si, s

(0)
−i

)]
−Eθ−i

[
∂vi
∂x

(x (si, θ−i) ; si)
∂x∗

∂si
(si, θ−i)

]
= 0

(14)

Therefore, if F (t) = Φ(t) (i.e. s
(0)
−i and θ−i is the same random variable), then

si = θi satisfies the first order condition (14) and thus s(1)
i (θi) = θi. (P1)�

Lemma A

Statement Suppose A1-A5 hold. Consider an L1 problem Pn with n players and
F ≺FOSD Φ (Φ ≺FOSD F ). There exists an L1 problem P2 with 2 players and
a pair of distribution functions FΣ, ΦΣ satisfying FΣ ≺FOSD ΦΣ (ΦΣ ≺ FΣ)
such that the solution to P2 is also a solution to Pn.

Proof First, we observe that ∂2x∗

∂si∂sj
= 0 (A5) implies that x∗ (s1, ..sn) =

∑
i λisi

for some scalars λi, λi > 0.28 Condition (14) can be rewritten as follows:

E
s
(0)
−i

[
∂vi
∂x

(∑
j 6=i

λjs
(0)
j + λisi; θi

)
∂x∗

∂si

(
si, s

(0)
−i

)]

= Eθ−i

[
∂vi
∂x

(∑
j 6=i

λjθj + λisi; si

)
∂x∗

∂si
(si, θ−i)

]
.

27The second order condition (s.o.c.) E
s
(0)
−i

[∂
2vi
∂x2 (x∗(si, s

(0)
−i ); θi)[

∂x∗

∂si
(si, s

(0)
−i )]

2 +

∂vi
∂x (x∗(si, s

(0)
−i ); θi)

∂2x∗

∂s2i
(si, s

(0)
−i )]−

−E
θ−i

[∂
2vi
∂x2 (x∗(si, θ−i); si)[

∂x∗

∂si
(si, θ−i)]

2 + ∂vi
∂x (x∗(si, θ−i); si)

∂2x∗

∂s2i
(si, θ−i) +

∂2vi
∂x∂θi

(x∗(si, θ−i); si)
∂x∗

∂si
(si, θ−i)]| si=θi

F (·)=Φ(·)
=

= −E
θ−i

[ ∂
2vi

∂x∂θi
(x∗(si, θ−i); si)

∂x∗

∂si
(si, θ−i)] < 0 (see Lemma C).

28This assumes that types are relabeled: if vi (x, θi) ≡ ṽi (x, h (θi)), then we consider ṽi
(
x, θ̃i

)
with type θ̃i = h (θi). If A4.2 holds, (“negative" SMC), let θ̃i = −h (θi).

20



si that satisfies this condition is a solution to Pn. From Theorem 1.A.3 in Shaked
and Shanthikumar (2007): if distribution Φ of s(0)

j dominates distribution F of
θj, then distribution ΦΣ of s(0)

Σ ≡
∑

j 6=i λjs
(0)
j dominates distribution FΣ of θΣ ≡∑

j 6=i λjθj, and vice versa. s(0)
Σ and θΣ correspond to the random action and type of

a fictitious second player in P2. In this problem P2 the first order condition writes
as follows:

E
s
(0)
Σ

[
∂vi
∂x

(
s

(0)
Σ + λisi; θi

) ∂x∗
∂si

(
si, s

(0)
Σ

)]

= EθΣ
[
∂vi
∂x

(θΣ + λisi; si)
∂x∗

∂si
(si, θΣ)

]
.

It is then clear that the solutions to problems Pn and P2 coincide.

(LemmaA)�

Lemma B.

Statement. The L1 strategy in the AGV mechanism is given by (n = 2):

s
(1)
i (θi) = θi +

´
(F (t)− Φ(t)) d∂vi

∂x
(x∗(s

(1)
i (θi), t); s

(1)
i (θi))

∂x∗

∂si
(s

(1)
i (θi), t)´

∂2vi
∂x∂θi

(x∗(s
(1)
i (θi), s

(0)
−i ); θ̂i)

∂x∗

∂si
(s

(1)
i (θi), s

(0)
−i )dΦ(s

(0)
−i )

(15)

Proof. Rewrite (14) as follows:

0 = E
s
(0)
−i

[
∂vi
∂x

(x∗(si, s
(0)
−i ); θi)

∂x∗

∂si
(si, s

(0)
−i )

]
− E

θ−i

[
∂vi
∂x

(x∗(si, θ−i); si)
∂x∗

∂si
(si, θ−i)

]

=

ˆ
∂vi
∂x

(x∗(si, s
(0)
−i ); θi)

∂x∗

∂si
(si, s

(0)
−i )dΦ(s

(0)
−i )−

ˆ
∂vi
∂x

(x∗(si, θ−i); si)
∂x∗

∂si
(si, θ−i)dF (θ−i)

(16)

Integrate the second term of Equation (16) by parts:

ˆ
∂vi
∂x

(x∗(si, θ−i); si)
∂x∗

∂si
(si, θ−i)dF (θ−i) =

=
∂vi
∂x

(x∗(si, θ−i); si)
∂x∗

∂si
(si, θ−i)F (θ−i)

∣∣∣∣
Θ

−
ˆ
F (θ−i)d

∂vi
∂x

(x∗(si, θ−i); si)
∂x∗

∂si
(si, θ−i)
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Modify the first term of Equation (16) by taking Taylor expansion under the
integral: ˆ

∂vi
∂x

(x∗(si, s
(0)
−i ); θi)

∂x∗

∂si
(si, s

(0)
−i )dΦ(s

(0)
−i ) =

=

ˆ
[
∂vi
∂x

(x∗(si, s
(0)
−i ); si) +

∂2vi
∂x∂θi

(x∗(si, s
(0)
−i ); θ̂i)(θi − si)]

∂x∗

∂si
(si, s

(0)
−i )dΦ(s

(0)
−i )

where θ̂i is between si and θi,

=

ˆ
∂vi
∂x

(x∗(si, s
(0)
−i ); si)

∂x∗

∂si
(si, s

(0)
−i )dΦ(s

(0)
−i )+

+

ˆ
∂2vi
∂x∂θi

(x∗(si, s
(0)
−i ); θ̂i)(θi − si)

∂x∗

∂si
(si, s

(0)
−i )dΦ(s

(0)
−i ) =

and integrate by parts:

=
∂vi
∂x

(x∗(si, s
(0)
−i ); θi)

∂x∗

∂si
(si, s

(0)
−i )Φ(s

(0)
−i )

∣∣∣∣
Θ

−
ˆ

Φ(t)d
∂vi
∂x

(x∗(si, t); si)
∂x∗

∂si
(si, t)+

+

ˆ
∂2vi
∂x∂θi

(x∗(si, s
(0)
−i ); θ̂i)(θi − si)

∂x∗

∂si
(si, s

(0)
−i )dΦ(s

(0)
−i )

Observe that due to the equal support of the two distribution functions F and Φ:

∂vi
∂x

(x∗(si, s
(0)
−i ); θi)

∂x∗

∂si
(si, s

(0)
−i )Φ(s

(0)
−i )

∣∣∣∣
Θ

=
∂vi
∂x

(x∗(si, θ−i); si)
∂x∗

∂si
(si, θ−i)F (θ−i)

∣∣∣∣
Θ

Thus, the f.o.c. becomes:ˆ
(F (t)− Φ(t)) d

∂vi
∂x

(x∗(si, t); si)
∂x∗

∂si
(si, t)+

+(θi − si)
ˆ

∂2vi
∂x∂θi

(x∗(si, s
(0)
−i ); θ̂i)

∂x∗

∂si
(si, s

(0)
−i )dΦ(s

(0)
−i ) = 0

We can rewrite the solution as follows:

s
(1)
i (θi)− θi ≡

´
(F (t)− Φ(t)) d∂vi

∂x
(x∗(s

(1)
i (θi), t); s

(1)
i (θi))

∂x∗

∂si
(s

(1)
i (θi), t)´

∂2vi
∂x∂θi

(x∗(s
(1)
i (θi), s

(0)
−i ); θ̂i)

∂x∗

∂si
(s

(1)
i (θi), s

(0)
−i )dΦ(s

(0)
−i )

(17)

If F (t)− Φ(t) ≡ 0, then s
(1)
i (θi) = θi, hence the lemma. (LemmaB)�
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Lemma C

Statement The Spence-Mirrlees condition (A4) implies the following, for all
θi, θ̂i, s

(0)
−i :

∂2vi
∂x∂θi

(x∗(s
(1)
i (θi), s

(0)
−i ); θ̂i)

∂x∗

∂si
(s

(1)
i (θi), s

(0)
−i ) > 0.

Proof The efficiency of the social choice rule x∗ implies that for all ti, t−i:

∂vi
∂x

(x∗(ti, t−i), ti) +
∂v−i
∂x

(x∗(ti, t−i), t−i) ≡ 0

Differentiate with respect to θi:

∂x∗

∂si
(ti, t−i)[

∂2vi
∂x2

(x∗(ti, t−i), ti) +
∂2v−i
∂x2

(x∗(ti, t−i), t−i] +
∂2vi
∂x∂θi

(x∗(ti, t−i), ti) = 0

From the s.o.c. of the same problem,

∂2vi
∂x2

(x∗(ti, t−i), ti) +
∂2v−i
∂x2

(x∗(ti, t−i), t−i) < 0

Thus, sgn(∂x
∗

∂si
(ti, t−i)) = sgn( ∂2vi

∂x∂θi
(x∗(ti, t−i), ti). Substitute ti by s(1)

i (θi), t−i by s(0)
−i

and obtain:

sgn(
∂x∗

∂si
(s

(1)
i (θi), s

(0)
−i )) = sgn(

∂2vi
∂x∂θi

(x∗(s
(1)
i (θi), s

(0)
−i ), s

(1)
i (θi))).

Given A4 (i.e., sign of ∂2vi
∂x∂θi

(x, θi) is the same for all (x, θi)) the result is proven.
(LemmaC)�

Proposition 2.

Statement Suppose A1-A5 hold. If F �FOSD Φ then s
(1)
i (θi) > θi, and if

Φ �FOSD F then s
(1)
i (θi) < θi.

Proof From Lemma B, the first-order condition for the L1 maximization prob-
lem when n = 2 is given by Equation (17). Lemma C (p. 23) shows that the
denominator of the expression is positive. Let us transform the nominator as
follows:
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ˆ
(F (t)− Φ(t)) d

∂vi
∂x

(x∗(si, t); si)
∂x∗

∂si
(si, t) =

=

ˆ
(F (t)− Φ(t)) [

∂2vi
∂x2

(x∗(si, t); si)︸ ︷︷ ︸
−(1)

∂x∗

∂s−i
(si, t)

∂x∗

∂si
(si, t)︸ ︷︷ ︸

+(2)

+

+
∂vi
∂x

(x∗(si, t); si)
∂2x∗

∂si∂s−i
(si, t)︸ ︷︷ ︸

=0(3)

]dt

The signs marked above are determined by the following.

(1) ∂2vi
∂x2 (x∗(si, t); si) < 0 by the concavity of preferences;

(2) By Lemma C (p. 23), ∂2vi
∂x∂θi

(x∗; θi)
∂x∗

∂si
> 0 for all i, θi, si, s−i; by A4, the

signs of ∂2vi
∂x∂θi

(x∗; θi) and ∂2v−i
∂x∂θ−i

(x∗; θ−i) are invariant for all θi, si, s−i;

(3) ∂2x∗

∂si∂s−i
(si, t) = 0 by neutrality.

Therefore, the term

[
∂2vi
∂x2

(x∗(si, t); si)
∂x∗

∂s−i
(si, t)

∂x∗

∂si
(si, t) +

∂vi
∂x

(x∗(si, t); si)
∂2x∗

∂si∂s−i
(si, t)]

is negative. Given that Φ � F implies F (t)− Φ(t) > 0 for all t and Φ ≺ F implies
F (t)− Φ(t) < 0 Proposition 2 follows immediately. (P2)�

Proposition 3.

Statement Suppose that A1-A5 hold, and F �FOSD Φ or Φ �FOSD F . Then for
all i, limEθi

[∣∣∣s(k)
i (θi)− θi

∣∣∣] = 0 and sgn
(
s

(k)
i (θi)− θi

)
= −sgn

(
s

(k−1)
i (θi)− θi

)
.

Proof Recall that by definition:

s
(k)
i (θi) = arg max

si∈Si
Eθ−i [vi(x∗(si, s

(k−1)
−i (θ−i)); θi) + v−i(x

∗(si, θ−i); θ−i)]
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The first-order condition for level-k strategy s(k)
i (θi) is as follows (s(k)

i (θi) = si):29

0 = Eθ−i [
∂vi
∂x

(x∗(si, s
(k−1)
−i (θ−i)); θi)

∂x∗

∂si
(si, s

(k−1)
−i (θ−i)) +

+
∂v−i
∂x

(x∗(si, θ−i); θ−i)
∂x∗

∂si
(si, θ−i)]

= Eθ−i
[[
∂vi
∂x

(x∗(si, s
(k−1)
−i (θ−i)); θi)

∂x∗

∂si
(si, s

(k−1)
−i (θ−i))

]
+

−∂vi
∂x

(x∗(si, θ−i); si)
∂x∗

∂si
(si, θ−i)

]
(∗)
= Eθ−i

[
(
∂vi
∂x

(x∗(si, s
(k−1)
−i (θ−i)); θi)−

∂vi
∂x

(x∗(si, θ−i); si))
∂x∗

∂si
(si, s

(k−1)
−i (θ−i))+

+
∂vi
∂x

(x∗(si, θ−i); si)(
∂x∗

∂si
(si, s

(k−1)
−i (θ−i))−

∂x∗

∂si
(si, θ−i))

]
︸ ︷︷ ︸

=0

.

∂x∗

∂si
(si, s

(k−1)
−i (θ−i))− ∂x∗

∂si
(si, θ−i) = 0 since by neutrality assumption ∂2x∗

∂si∂s−i
(si, t) = 0

and x∗(·, ·) is continuously differentiable.

Apply the Taylor expansion to the first term:

0 = Eθ−i
[(

∂vi
∂x

(x∗(si, s
(k−1)
−i (θ−i)); θi)−

∂vi
∂x

(x∗(si, θ−i); si)

)
∂x∗

∂si
(si, s

(k−1)
−i (θ−i))

]
= Eθ−i

[
∂2vi
∂x2

(x∗(si, ŝ−i); θ̂i)
∂x∗

∂si
(si, ŝ−i)(s

(k−1)
−i (θ−i)− θ−i)+

+
∂2vi
∂x∂θi

(x∗(si, ŝ−i); θ̂i)(θi − si)
]
∂x∗

∂si
(si, s

(k−1)
−i (θ−i))

where θ̂i ∈ [min(θi, si); max(θi, si)] , and ŝ−i ∈
[
min(s

(k−1)
−i (θ−i), θ−i); max(s

(k−1)
−i (θ−i), θ−i)

]
Since ∂x∗

∂si
(si, s

(k−1)
−i (θ−i)) 6= 0 we get:

si − θi = Eθ−i


∂2vi
∂x2 (x∗(si, ŝ−i); θ̂i)

∂x∗

∂si
(si, ŝ−i)

∂2vi
∂x∂θi

(x∗(si, ŝ−i); θ̂i)︸ ︷︷ ︸
<0

(s
(k−1)
−i (θ−i)− θ−i)

 ,
Recall that si = s

(k)
i (θi); the distortion of type changes sign as k increases by 1.

29To perform transition (∗) we add and subtract ∂vi
∂x (x∗(si, θ−i); si)

∂x∗

∂si
(si, s

(k−1)
−i (θ−i)).
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Remark Recall from Proposition 2 that either s(1)
i (θi) ≥ θi ∀θi, or s(1)

i (θi) ≤ θi ∀θi.
By induction, the equation above implies that the same is true for all levels
k: either s(k)

i (θi) ≥ θi ∀θi, or s(k)
i (θi) ≤ θi ∀θi.

Moreover, from the proof of Lemma C we know that

−∂2vi
∂x2 (x∗(si, ŝ−i); si)

∂x∗

∂si
(si, ŝ−i)− ∂2v−i

∂x2 (x∗(si, ŝ−i); s−i)
∂x∗

∂si
(si, ŝ−i)

∂2vi
∂x∂θi

(x∗(si, ŝ−i); si)
= 1,

thus
− ∂

2vi
∂x2 (x∗(si,ŝ−i);si)

∂x∗
∂si

(si,ŝ−i)

∂2vi
∂x∂θi

(x∗(si,ŝ−i);si)
< 1.30

For θ̂i we have, by continuity,

−∂2vi
∂x2 (x∗(si, ŝ−i); θ̂i)

∂x∗

∂si
(si, ŝ−i)

∂2vi
∂x∂θi

(x∗(si, ŝ−i); θ̂i)
< 1

as well. Take the expectation of both sides:

Eθi
[
s

(k)
i (θi)− θi

]
= EθiEθ−i

[
∂2vi
∂x2 (x∗(si, ŝ−i); θ̂i)

∂x∗

∂si
(si, ŝ−i)

∂2vi
∂x∂θi

(x∗(si, ŝ−i); θ̂i)
(s

(k−1)
−i (θ−i)− θ−i)

]

as types are independent and the distributions of types coincide,

Eθi
[
s

(k)
i (θi)− θi

]
= Eθ−i

[
(s

(k−1)
−i (θ−i)− θ−i)Eθi

∂2vi
∂x2 (x∗(si, ŝ−i); θ̂i)

∂x∗

∂si
(si, ŝ−i)

∂2vi
∂x∂θi

(x∗(si, ŝ−i); θ̂i)

]
Eθi
∣∣∣s(k)
i (θi)− θi

∣∣∣ < Eθi
∣∣∣s(k−1)
i (θi)− θi

∣∣∣ (18)

Consider the sequence
{
Eθi
∣∣∣s(k)
i (θi)− θi

∣∣∣}
k
. Since Eθi

∣∣∣s(k)
i (θi)− θi

∣∣∣ ≥ 0, inequality

18 implies that the sequence converges. The proof is by contradiction. Let L
denote the limit of the sequence, and suppose slimsupi (·) > sliminfi (·) are such that
Eθi
(
slimsupi (θi)− θi

)
= −Eθi

(
sliminfi (θi)− θi

)
= L (take note of our remark on page

26). By the continuity of the best reply correspondence, strategy slimsupi (θi) is
best reply to sliminfi (θi) and vice versa. Therefore, inequality 18 should apply to
these strategies as well. But this generates a contradiction – thus slimsupi (θi) =

sliminfi (θi) = θi (and L = 0).

30−
∂2v−i
∂x2

(x∗(si,ŝ−i);s−i)
∂x∗
∂si

(si,ŝ−i)

∂2vi
∂x∂θi

(x∗(si,ŝ−i);si)
∈]0, 1[.
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This concludes the proof of Proposition 3. (P3)�

Proposition 4. Let us separate the statements of Proposition 4 and refer to
them as Proposition 4a and Proposition 4b respectively. Bold face is used to
emphasize the differences in the two statements:

Proposition 4a: Under A1-A4.1, MLRP and complements environment, ∃t∗

such that for all θi < t∗ if Φ � F then s
(1)
i (θi) < θi, and if F � Φ then

s
(1)
i (θi) > θi.

Proposition 4b: Under A1-A4.1, MLRP and substitutes environment, ∃t∗ such
that for all θi > t∗ if Φ � F then s

(1)
i (θi) < θi, and if F � Φ then s

(1)
i (θi) > θi.

Proof Given the non-neutrality, ∂2x∗

∂si∂s−i
(si, t), we need to decompose the denom-

inator of Equation 17. Start with the case of Proposition 4a:
∂2vi
∂x∂θi

(x, θi) > 0, ∂2x∗

∂si∂s−i
(si, t) ≥ 0. The nominator:

´ +∞
t

(F (t)− Φ(t)) d∂vi
∂x

(x∗(si, t); si)
∂x∗

∂si
(si, t) =

ˆ +∞

si

(F (t)− Φ(t))

∂2vi
∂x2

(x∗(si, t); si)︸ ︷︷ ︸
−(1)

∂x∗

∂s−i
(si, t)︸ ︷︷ ︸

+(2)

∂x∗

∂si
(si, t)︸ ︷︷ ︸

+(2)

+
∂vi
∂x

(x∗(si, t); si)︸ ︷︷ ︸
−(3)

∂2x∗

∂si∂s−i
(si, t)︸ ︷︷ ︸

+(4)

 dt
︸ ︷︷ ︸

"first term"

+

+

ˆ si

t

(F (t)− Φ(t)) d
∂vi
∂x

(x∗(si, t); si)
∂x∗

∂si
(si, t)︸ ︷︷ ︸

"second term"

It is convenient to separate the integral into two parts since ∂vi
∂x

(x∗(si, t); si) de-
creases in t31 and ∂vi

∂x
(x∗(si, si); si) = 0. Consider the first term in brackets:

(1) ∂2vi
∂x2 (x∗(si, t); si) < 0 by the concavity assumption

(2) ∂x∗

∂s−i
(si, t) > 0, ∂x∗

∂si
(si, t) > 0 from A4.1 and Lemma C

(3) ∂vi
∂x

(x∗(si, t); si) < 0 for t ≤ si

(4) ∂2x∗

∂si∂s−i
(si, t) > 0 by the complementarity.

31 ∂2vi
∂x2 (x∗(si, t); si)

∂x∗

∂t (si, t) < 0.
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Thus we obtain that

∂2vi
∂x2

(x∗(si, t); si)︸ ︷︷ ︸
−

∂x∗

∂s−i
(si, t)︸ ︷︷ ︸
+

∂x∗

∂si
(si, t)︸ ︷︷ ︸
+

+
∂vi
∂x

(x∗(si, t); si)︸ ︷︷ ︸
−

∂2x∗

∂si∂s−i
(si, t)︸ ︷︷ ︸

+


is negative. The second term can be rewritten as follows:
´ si
t

(F (t)− Φ(t)) d∂vi
∂x

(x∗(si, t); si)
∂x∗

∂si
(si, t) =

=
∂vi
∂x

(x∗(si, t); si)︸ ︷︷ ︸
=0

∂x∗

∂si
(si, si) (F (si)− Φ(si)) + ∂vi

∂x
(x∗(si, t); si)

∂x∗

∂si
(si, t)(F (t)− Φ(t))︸ ︷︷ ︸

=0

−
´ si
t

(F (t)− Φ(t)) ∂vi
∂x

(x∗(si, t); si)
∂x∗

∂si
(si, t)d (F (t)− Φ(t))

= −
´ si
t

(F (t)− Φ(t)) ∂vi
∂x

(x∗(si, t); si)
∂x∗

∂si
(si, t) (f(t)− ϕ(t)) dt,

where
∂vi
∂x

(x∗(si, t); si) ≥ 0,

for t ≤ si
∂x∗

∂si
(si, t) > 0.

First, suppose Φ �FOSD F : F (t) − Φ(t) > 0 ∀t ⇒ the first term is negative. If
f(si) − ϕ(si) > 0, then the second term is negative, too: By the MLRP assump-
tion, f(t)

ϕ(t)
decreases in t; thus, there exists a t∗ such that f(t∗) − ϕ(t∗) = 0. This

implies that, for θi such that s(1)
i (θi) ≤ t∗, the result is established: the L1s with

sufficiently low types distort there reports downwards.

Now suppose that F �FOSD Φ. Then, the first term is positive. By MLRP, ϕ(t)
f(t)

decreases in t and by the same reasoning for θi low enough the second term is
positive, too, hence type reports are distorted upwards.

Proposition 4a is now proven. (P4a)�

To prove Proposition 4b ( ∂2x∗

∂si∂s−i
(si, t) ≤ 0), we change the decomposition of the

nominator as follows:
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´ +∞
t

(F (t)− Φ(t)) d∂vi
∂x

(x∗(si, t); si)
∂x∗

∂si
(si, t) =

´ si
t

(F (t)− Φ(t)) [
∂2vi
∂x2

(x∗(si, t); si)︸ ︷︷ ︸
−

∂x∗

∂s−i
(si, t)︸ ︷︷ ︸
+

∂x∗

∂si
(si, t)︸ ︷︷ ︸
+

+
∂vi
∂x

(x∗(si, t); si)︸ ︷︷ ︸
+

∂2x∗

∂si∂s−i
(si, t)︸ ︷︷ ︸

−

]dt

+
´ +∞
si

(F (t)− Φ(t)) d∂vi
∂x

(x∗(si, t); si)
∂x∗

∂si
(si, t) (19)

Given that ∂vi
∂x

(x∗(si, t); si) decreases in t, we have that for t ≤ si, ∂vi
∂x

(x∗(si, t); si) ≥
0 and thus the term in brackets is negative. Integrating the second term by part,
we obtain:

−
ˆ +∞

si

∂vi
∂x

(x∗(si, t); si)︸ ︷︷ ︸
−

∂x∗

∂si
(si, t)︸ ︷︷ ︸
+

(f(t)− ϕ(t)) dt.

Similarly to the argument in 4a, we identify the condition under which both
parts of the nominator have the same sign. Given the decomposition (19), we can
see that for this to hold si has to be sufficiently high (or θi such that s(1)

i (θi) ≥ t∗).
Proposition 4b proven. (P4b)�

(P4)�

Proof of Proposition 5. The statement and proof are symmetric to Proposi-
tion 4.

Lk as a Learning Algorithm Recall that in AGV, the payoff of player i with
type θi is the following:

ui (s, θi) = vi (x
∗ (s) , θi) + Eθ−i

∑
j 6=i

vj (x∗ (si, θ−i) ; θj)

− 1

n− 1

∑
l 6=i

Eθ−l
∑
j 6=l

vj (x∗ (sl, θ−l) ; θj) . (20)

The marginal payoff as function of own type report si equals:
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∂ui
∂si

(s, θi) =
∂vi
∂x

(x∗(s); θi)
∂x∗

∂si
(s)

+
∑
j 6=i

Eθ−i
[
∂vj
∂x

(x∗(si, θ−i); θj)
∂x∗

∂si
(si, θ−i)

]
. (21)

Taking the derivative of (21) with respect to sj we obtain:

∂2ui
∂si∂sj

(s, θi) =
∂2vi
∂x2

(x∗(s); θi)
∂x∗

∂sj
(s)

∂x∗

∂si
(s) +

∂vi
∂x

(x∗(s); θi)
∂2x∗

∂si∂sj
(s)

+
∑
j 6=i

Eθ−i
∂2vj
∂x2

(x∗(si, θ−i); θj)
∂x∗

∂si
(si, θ−i)

∂x∗

∂sj
(si, θ−i)

+
∑
j 6=i

Eθ−i
∂vj
∂x

(x∗(si, θ−i); θj)
∂2x∗

∂si∂sj
(si, θ−i). (22)

From Monderer, Shapley (1996) we know that a complete information game with
payoffs (ui)i∈I is an (exact) potential game if and only if ∂2ui

∂si∂sj
=

∂2uj
∂si∂sj

for every i
and j (Theorem 4.5). We assume that the utility functions vi (·) and type distri-
butions are the same for all i, and denote Γ (θ) the game with payoffs given by
(20).

It follows immediately from equation (22) that game Γ
(
θ
)

where θi = θj for all i
and j is then a potential game. However, naturally, we are not interested in the
particular realization θ of type profile, but rather in all possible type profiles –
that is, in the family of games {Γ (θ) : θ ∈ Θn}. Let us call an incomplete informa-
tion game an ex post potential game if it is a potential game for all realizations
of types. Formally, Γ =

{
I, (Si,Θi, Fi, ui)i∈I

}
is an ex post potential game if for all

θi ∈ supp (Fi), game Γ (θ) =
{
I, (Si, ui (·, θi))i∈I

}
has a potential.

If payoffs in game Γ (θ) are given by (20) where vi (x, θi) = θix − x2

2
(as in the

example of Section 2) then, by Theorem 4.5, Γ (θ) is a potential game, since
∂2ui
∂si∂sj

(s, θi) = 1
n

for all i, j. Thus, under such preferences, the AGV mechanism is
an ex post potential game. Interestingly, the linearity of the choice rule x∗ is not
sufficient for AGV to be an ex post potential game. In the case of linearity and
symmetry, equation (22) becomes:

∂2ui
∂si∂sj

(s, θi) =
∂2v

∂x2
(x∗(s); θi)

1

n2
+ Eθ̃−i

∂2v

∂x2

(
x∗(si, θ̃−i); θ̃j

) 1

n
(23)
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Clearly, if ∂2v
∂x2 (x∗(s); θi) varies with θi then so does ∂2ui

∂si∂sj
(s, θi); therefore, the con-

ditions of Theorem 4.5 are not satisfied.
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