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ABSTRACT 

 
Time Aggregation and State Dependence in Welfare Receipt* 
 
Dynamic discrete-choice models are an important tool in studies of state dependence in 
benefit receipt. A common assumption of such models is that benefit receipt sequences 
follow a conditional Markov process. This property has implications for how estimated period-
to-period benefit transition probabilities should relate when receipt processes are aggregated 
over time. This paper assesses whether the conditional Markov property holds in welfare 
benefit receipt dynamics in Norway using high-quality monthly data from administrative 
records. We find that the standard conditional Markov model is seriously misspecified. 
Estimated state dependence is affected substantially by the chosen time unit of analysis, with 
the average treatment effect of past benefit receipt increasing with the level of aggregation. 
The model can be improved considerably by permitting richer types of benefit dynamics: We 
find strong evidence for both duration and occurrence dependence in benefit receipt. 
Allowing for heterogeneity in the entry and persistence processes, we find important 
disparities in the effects of observed and persistent unobserved characteristics. Based on our 
preferred model, the month-to-month persistence probability in benefit receipt for a first-time 
entrant is 37 percentage points higher than the entry rate of an individual without previous 
benefit receipt. Over a 12-month period, this corresponds to an average treatment effect of 5 
percentage points. 
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1 Introduction

An established finding in the literature on welfare benefit dynamics is that rates of persistence

in individuals’ benefit receipt from one period to the next are very high. Given typically low

entry rates into benefit receipt, a main focus of recent studies has therefore been to assess the

driving forces of this ‘state dependence’.1 Heckman (1978, 1981a) distinguishes two sources of

state dependence. First, individuals differ in terms of their personal characteristics. Persistent

individual characteristics such as low education or health problems that raise the probability of

benefit receipt will induce persistence in welfare. A failure to appropriately control for persistent

heterogeneity in such characteristics across individuals will lead to spurious state dependence.

Second, past benefit receipt might itself affect the probability of receiving benefits today. For

instance, previous receipt of welfare benefit payments might reduce information costs or the

perceived stigma from receiving benefit payments and thus make future benefit receipt more

likely. Alternatively, potential employers might interpret past benefit receipt as a negative

signal about an applicant’s unobserved labour productivity, which would make self-sufficiency

less likely. This direct effect of past benefit receipt on the probability of future benefit receipt

is referred to as true, genuine or structural state dependence.

Two related approaches have been employed in the empirical literature to study the sources

of persistence in labour market histories. Duration models analyse the processes leading up to

an exit from a labour market state, for instance welfare benefit receipt. Persistence is typically

introduced by allowing the exit rate from the labour market state to depend not only on indi-

vidual characteristics but also on the length of current or past spells in that state. Applications

of such models in labour economics typically use data collected at short, discrete time inter-

vals such as weeks or months and thus require access to detailed event-history data. Dynamic

discrete-choice models have been a popular alternative in cases where weekly or even monthly

data on benefit receipt are not available. These models are based on a single specification for

both entry and persistence in the labour market state, where the probability of being in that

state is allowed to depend on the individual’s state in the previous period. Estimation of such

models requires data to also extend to periods in which the individual is outside the state being

modelled. The presence of unobserved heterogeneity poses a formidable threat to identification

in both duration models and dynamic discrete-choice models. For both types of models, econo-

metric methods however exist to account for persistent unobserved heterogeneity and thereby

obtain consistent estimates of structural state dependence (Van den Berg, 2001; Heckman &

Navarro, 2007).

The recent work on welfare benefit dynamics has primarily relied on estimation of dynamic

discrete-choice models to study state dependence in benefit receipt.2 Due to the limited avail-

ability of individual-level data on welfare benefit receipt at shorter observation intervals much

1Our calculations for Norway for instance show that month-to-month entry rates of working-age individuals
to means-tested Social Economic Assistance were around or below 0.5% for most of the last two decades whereas
persistence rates in benefit receipt averaged around 75% (see Figure 1).

2Similar models have also been estimated to study the dynamics of employment (Heckman, 1981a; Hyslop,
1999), unemployment (Arulampalam, Booth & Taylor, 2000; Gregg, 2001; Biewen & Steffes, 2010), or low-income
or poverty (Stewart & Swaffield, 1999; Cappellari & Jenkins, 2004; Stewart, 2007; Cappellari & Jenkins, 2008b;
Biewen, 2009). More recent studies analyse transitions between multiple labour market states using dynamic
multinomial-choice models (Uhlendorff, 2006; Prowse, 2012).
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of the evidence on state dependence in welfare benefit receipt is based on annual data that come

either from administrative sources (see Hansen & Lofstrom (2008, 2011) or Andrén & Andrén

(2013) for Sweden) or from household survey data (Cappellari & Jenkins (2009) for Britain,

Riphahn & Wunder (2013), Wunder & Riphahn (2014) and Königs (2014) for Germany, and

Hansen, Lofstrom, Liu & Zhang (2014) for Canada). Notable exceptions are two U.S. stud-

ies based on monthly administrative data from California (Chay, Hoynes & Hyslop, 1999) and

four-monthly survey data (Chay & Hyslop, 2014), and a study of transitions between Australian

benefit programmes based on quarterly data (Gong, 2004). A small number of studies have

moreover used monthly data and an event-history framework to analyse welfare spell durations

for the U.S. (Blank, 1989; Sandefur & Cook, 1998), Norway (Dahl & Lorentzen, 2003b), Sweden

(Bäckman & Bergmark, 2011; Mood, 2013), and Germany (Schels, 2013), each finding evidence

for duration dependence in welfare benefit receipt.

A key assumption made in dynamic discrete-choice models is that benefit dynamics follow

a Markov process: conditional on observed and unobserved individual characteristics the first

lag of the dependent variable is sufficient for predicting the outcome. Higher-order lags are

assumed not to add any predictive power to the model.3 This conditional Markov property has

important implications for the aggregation of dynamic processes over time. If a model exhibits

the Markov property at the monthly level, this property carries through to the annual level when

the dynamic process is aggregated over time. There will hence be a one-to-one correspondence

between the benefit transition probabilities in these two specifications. If the assumed Markov

property does not hold, the results obtained from such an analysis – notably the estimated degree

of state dependence – will be affected by the choice of the observation interval. As indicated

above, the choice of the level of aggregation in previous analyses of welfare benefit dynamics

appears in practice to be determined primarily by the availability of suitable micro-level panel

data rather than to be justified by theoretical considerations. To our knowledge, there exists no

study however that systematically tests the validity of the Markov assumption in an analysis of

benefit receipt dynamics and that assesses the implications of a violation of this assumption on

the level of estimated structural state dependence.4

In this paper, we develop a framework for evaluating whether the conditional Markov as-

sumption is reasonable in such models of labour market dynamics. We exploit the property

that if a model satisfies the conditional Markov assumption at a given level of time aggrega-

tion this characteristic will hold also at higher levels of aggregation. A well-specified model of

monthly labour market dynamics for instance should thus give 12-month-ahead predictions that

3Two exceptions are the studies by Chay et al. (1999), who specify a second-order Markov process using
monthly administrative data for California, and Andrén & Andrén (2013), who specify a third-order Markov
process using annual administrative data for Sweden.

4The only analysis of time aggregation problems in dynamic discrete-choice models that we are aware of
is provided by Chay et al. (1999). They estimate dynamic conditional logit models at the monthly, quarterly
and biennial level to study welfare receipt dynamics in the U.S. Comparing the size of coefficient estimates and
the implied predicted shares of receipt sequences with state dependence across specifications they conclude that
aggregating data leads to an attenuation in the estimated level of state dependence. It is not obvious however
whether estimates of state dependence from such models can be expected to be the same in receipt sequences
measured at different observation intervals (see discussion in Section 3). A related literature discusses problems
of time aggregation in dynamic time-series models (see e.g. Engle & Liu (1972); Tiao & Wei (1976); Mercenier &
Michel (1994)) or the estimation of continuous time event-history models with discrete data (see e.g. Petersen &
Koput (1992); Røed & Zhang (2002) for Monte Carlo evidence and Bergström & Edin (1992) using actual data.)

2



are comparable to the year-to-year predictions derived from a corresponding model of annual

labour market dynamics. The virtue of this exercise is that it provides a test of substance rather

than of statistical significance as it could easily be obtained by including higher-order lags in a

Markov model. Any failure of the test indicates a non-robustness of results to the choice of time

unit and is therefore evidence of model misspecification.

We apply this test to assess the validity of the conditional Markov assumption for a standard

dynamic random-effects probit model of welfare benefit receipt in Norway. Using administrative

data for six cohorts of young adults over the years 1993-2008, we find that estimates of state de-

pendence derived from a standard first-order Markov model at the monthly, annual and biennial

level fail to relate the way that we should expect if the model were well-specified. The degree of

estimated state dependence is found to increase with the level of time aggregation. This is the

case irrespective of whether we measure annual benefit receipt once during the calendar year

(‘point-in-time’ definition) or whether we account for benefit receipt at any time during the year

(‘benefit year’ definition). Both approaches have been frequently used in the existing work on

welfare benefit dynamics. The magnitude of estimated state dependence at the annual level

moreover differs substantially between these two approaches.

In the second part of our analysis, we extend the dynamic random-effects probit model to

permit richer types of benefit dynamics. We specify a more general dynamic random-coefficients

probit model that allows the processes driving entries into and persistence in benefit receipt

to vary with observable and unobservable characteristics. Moreover, we abandon the first-order

Markov assumption by allowing for duration and occurrence dependence along the lines proposed

by Heckman & Borjas (1980). We find evidence of sizeable duration dependence in both entries

into and persistence in benefit receipt as well as a significant effect of previous episodes of benefit

receipt on welfare entry rates. Predicted persistence rates for individuals who first entered benefit

receipt in the last period are 37 percentage points higher than entry rates for individuals who

never touched benefits. This translates into a predicted average treatment effect of benefit

receipt 12 months ago on the likelihood of benefit receipt today of 5 percentage points. A simple

specification test indicates that the model provides a substantial improvement over the Markov

models in terms of its time aggregation properties. However, even our most complex model of

benefit dynamics does not fully succeed at replicating the true data-generating process.

The remainder of this paper is structured as follows: In the next section, we provide a short

introduction to the welfare benefit system in Norway and present the data used in our study.

Section 3 gives a brief outline of the standard Markov models employed in the existing literature

and relates the implied transition probabilities for different levels of time aggregation. Section 4

provides empirical evidence on the performance of a first-order Markov model of welfare benefit

dynamics in Norway. In Section 5, we present results from the dynamic random-coefficient probit

model that allows for heterogeneity in entries and persistence in benefit receipt and duration and

occurrence dependence and examine the time aggregation properties of this model. Section 6

concludes.
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2 Institutional Background and Data

The primary welfare benefit in Norway is Social Economic Assistance (SEA, Økonomisk sosial-

hjelp), which is regulated by the Social Services Act (Loven om sosiale tjenester).5 It guarantees

a minimum income to all individuals who are unable to fully cover living expenses through own

means, for instance through earnings, savings, social insurance benefits or payments from other

minimum-income benefit programmes. SEA is means-tested and total household income is con-

sidered in the eligibility test.6 SEA benefits are explicitly designed to provide temporary income

support, however the maximum possible duration of benefit payments is in principle unlimited.

The minimum period of benefit receipt is typically one calendar month.
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benefit recipients in t-1. Source: FD-Trygd, January 1993 to December 2008.

Figure 1: Rate of benefit receipt and benefit transition rates

Figure 1 presents first descriptive evidence on the dynamics of SEA benefit receipt in Norway

for the period from January 1993 to December 2008. The left panel plots the development of the

monthly rate of welfare benefit receipt over the observation period. We see that the frequency

of benefit receipt in Norway is low and declines from around 2.5% in 1993 to just above 1.5% in

2008. The right panel of Figure 1 shows that this fall results primarily from a slight decline in

entry rates into benefit receipt from just above 0.5% in the mid-1990s to below 0.5% in the 2000s.

Month-to-month exit rates from benefit receipt are relatively stable over time around 20-30%.

5Other means-tested income-support programmes in Norway are the Transitional Allowance (Overgangsstønad
for enslige forsørgere) paid to needy single parents and the Housing Allowance (Bostøtte) for low-income house-
holds. We restrict our attention to the dynamics of SEA benefit receipt. For earlier analyses of welfare benefit
dynamics in Norway, see Dahl & Lorentzen (2003a,b), Lorentzen & Dahl (2005), Hansen (2009) and Lorentzen
(2010).

6Generosity of SEA benefits as well as the administration of payments is largely left to the discretion of the
430 Norwegian municipalities. The municipal governments determine so-called social assistance benefit norms as
guidelines for the level of monthly payments to be made to a ‘standard’ recipient. In practice, actual payments then
depend on the caseworker’s assessment of the applicant’s needs. Since 2001, the central government additionally
provides national social assistance norms that are updated annually and aim at equalizing benefit payments
across municipalities. These norms are however not binding. The municipal benefit administration may impose
behavioural conditions on the claimant.
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At an implied persistence rate in benefit receipt from one month to the next of about 70-80%,

‘raw’ state dependence in benefit receipt – i.e. the difference between observed persistence and

entry rates – is substantial.

For our analysis we use data from a range of administrative registers maintained by Statistics

Norway that are matched to form a monthly panel for the years 1993 to 2008. The primary

source of data is the social security event-history database FD-Trygd (ForløpsDatabasen-Trygd).

It is a collection of longitudinal data sets that provide detailed information on spells of employ-

ment and benefit receipt from unemployment insurance and income-support programmes for

the entire Norwegian population. These data were drawn from various registers maintained by

the Norwegian Labour and Welfare Service (NAV, Nye Arbeids- og Velferdsetaten) and the Nor-

wegian Tax Authority (Skatteetaten). We match these data with socio-demographic data from

separate administrative registers maintained by Statistics Norway that provide information on

sex, age, marital status, immigrant status, and the municipality of residence. Data on house-

hold composition come from the Central Population Register, data on educational attainment

are taken from the Norwegian National Education Database.

The resulting panel data set has a few distinct advantages: First, the number of observations

is extremely large. The data pertain to all legal residents in Norway irrespective of their em-

ployment or social security status. Every child born in Norway during the observation period is

automatically added to the register and becomes part of the data set. The same applies to every

individual that migrates to Norway to live or work in the country. Individuals only disappear

from the data in case of emigration or death. Second, the length of our panel is exceptional.

Records are updated monthly, such that we can observe individuals for up to 192 monthly waves

(16 years). Third, the quality of the data is high. For every individual, a large number of per-

sonal characteristics are observed on a monthly basis. Personal and household identifiers allow

us to link children to their parents to construct household-level variables. Being register-based,

the data set moreover does not suffer from any unnatural attrition or non-response.

We construct the sample for our analysis by restricting the population data set to individuals

who match a certain set of selection criteria: We limit our sample to individuals who turn 18

years of age in the month of January of the years 1993 to 1998. All individuals belonging to

one of these six cohorts are then followed from the month in which they turn 18 for a period

of up to eleven years. After those eleven years, they are dropped from the sample. Individuals

may leave the sample before through emigration or death. We use the first twelve months

of an individual’s 132-month observation period to construct a benefit receipt history that we

condition on in the more complex models presented in Section 5. The estimation sample hence

follows each individuals for up to 10 years (120 months) from January in the year when an

individual turns 19 to the December just before the 29’s birthday.

The main motivation for using these non-standard sample selection criteria is to guarantee

that we observe all individuals from the beginning of their ‘welfare careers’. This will be the case

as individuals in Norway are generally not entitled to receive welfare benefits before reaching

the age of 18 years. From that age, needy individuals claim benefits for themselves even if they

continue to live with their parents. By restricting the sample to individuals who turn 18 years

in January during the first six years of our observation period, we make sure that we observe
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the first period of potential benefit receipt for each individual.7 By dropping individuals after

10 years we make sure that the resulting sample is weakly balanced.8 The population that

results from these selection criteria consists of 30,899 individuals and 3,279,708 person-month

observations. All estimation results presented in this paper were obtained from this population.9

An analysis of welfare benefit dynamics requires choices about the appropriate period and

unit of observation. As outlined, existing analyses have typically been carried out based on

annual data. Depending on the nature of these data, the approach typically used for defining

the annual welfare benefit variable differed. Survey data usually provide information on benefit

receipt at the time of interview. Where this is the case, researchers have usually opted for a

‘point-in-time’ approach by modelling benefit transitions from one annual interview to the next,

implicitly assuming that the transition probabilities remain unaffected by whether an individual

received any payments in between those dates (see Cappellari & Jenkins (2009), Riphahn &

Wunder (2013), Königs (2014) and Wunder & Riphahn (2014)).10 Administrative records by

contrast often contain data on the total amount of benefits received during the calendar year

but no information on the timing of receipt. Researchers working with such data have usually

employed a ‘benefit year’ approach classifying an individual as recipient if a positive amount of

benefits was received over the entire year (Hansen & Lofstrom, 2008, 2011; Andrén & Andrén,

2013; Hansen et al., 2014). We test both of these approaches and compare the results. Finally,

as in other countries, welfare benefits in Norway are paid at the family level. We therefore

follow the standard approach of setting the binary benefit receipt variable equal to one for an

individual if any member living in the same household in the given period receives benefits, to

then model benefit receipt dynamics at the individual level.

3 Time aggregation in a conditional Markov model

The standard tool in the empirical literature on the dynamics of welfare benefit receipt are

dynamic discrete-choice models, which rely on the assumption that benefit receipt dynamics

follow a conditional Markov process. An important implication of this Markov property is that

for a monthly model that satisfies this property the property carries through to the annual level

if the process is aggregated over time. If the assumed Markov property is not valid, estimation

7This is important because to test for occurrence dependence in benefit receipt in Section 5, we need to be
able to count the total number of benefit spells an individual has had. Since we lack information about any
benefit receipt an individual might have had prior to the year 1993, we restrict the sample to individuals whom
we observe since the beginning of their welfare careers.

8Consistency of our estimations – in particular of the approach we use to control for the endogeneity of initial
conditions – requires that an individual’s participation in the sample be unrelated to the outcome variable. This
is arguably unproblematic in the case of administrative data. By dropping individuals after 10 years, we however
avoid that earlier cohorts are observed for a longer period and thus at higher ages than the following cohorts. In
constructing our weakly balanced panel we follow an approach used by Prowse (2012).

9The disadvantage of our selection procedure is that the resulting sample is no longer representative of the
Norwegian working-age population. To illustrate that our main results hold for a more standard sample, we have
replicated the most important parts of our analysis using a 5% random sample of all 25-59 year-olds. The results
from this robustness check are presented in an earlier working paper (Bhuller, Brinch & Königs, 2014, Appendix
A.3, pp. 55-61) but are omitted from this article for the sake of brevity. Our main conclusions are not driven by
the non-standard sample design.

10In an earlier version of their paper, Cappellari & Jenkins (2008a) show that the estimated level of state
dependence falls substantially once individuals with one continuous spell across both interview dates are dropped
from the sample.
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results and in particular the degree of estimated state dependence will depend on the choice

of time unit. This section introduces the dynamic random-effects probit (DREP) model, the

standard model used for the analysis of welfare benefit dynamics, and shows how conditional

transition probabilities derived from such a model can be aggregated over time.

3.1 The dynamic random-effects probit model

Let us define a binary outcome variable yit such that for yit = 1 individual i is in welfare receipt

in period t. We specify the model

yit = 1
{
λyit−1 + x′it−1β + αi + εit > 0

}
for i = 1, ..., N ; t = 1, ..., Ti, (1)

where individual i’s benefit receipt status in period t depends on the benefit receipt status

in the previous period yit−1, a vector of k observable characteristics xit−1, a time-invariant

individual-specific error component αi and a transitory shock εit.
11 Observables xit−1 may

include individual and household characteristics, such as sex, age, education, family composition,

and possibly partner characteristics. The individual-specific error term αi enters additively in

the indicator function and captures all unobserved determinants of welfare benefit receipt that

are time-invariant for an individual over the observation period. Such factors may for instance

include persistent unobserved labour market ability or an individual’s attitudes towards receiving

welfare benefits. Distributional assumptions for αi are discussed further below. The transitory

error term εit is assumed to be distributed standard normal, to be uncorrelated with both αi

and the regressors yit−1 and xit−1, and to be serially uncorrelated.12

We write the conditional probability of welfare benefit receipt as

P (yit = 1|yi0, ..., yit−1, xi, αi) = Φ(λyit−1 + x′it−1β + αi), (2)

where xi = (x′i0 ... x
′
iTi

)′ is a k× (Ti + 1) vector of all k covariates over the Ti time periods plus

the initial period and Φ(·) is the standard normal cumulative distribution function.

The model described by Equations (1) and (2) rests on two crucial assumptions. First,

we assume that the welfare dynamics are correctly described by a first-order Markov model.

Thus, conditional on observed and unobserved characteristics and the first lag of the outcome

variable yit−1, higher-order lags do not provide any additional explanatory power. Second, we

require that the observed characteristics xi be strictly exogenous. Once we condition on the

individual-specific unobserved effect αi only the observable characteristics in period t−1 matter

for determining yit. An impact of earlier values of xi on the dependent variable or feedback

effects between the dependent variable and current or future values of xi are ruled out.13 Under

11Following Cappellari & Jenkins (2009), we measure all time-varying observable characteristics in period t-
1 such that period-t predictions of the outcome variable are based on period-t-1 values of the observables. A
robustness check indicates that using current rather than lagged values of all observable characteristics matters
little for the estimation results in both the monthly and the annual model.

12The inter-temporal correlation of the composite error αi + εit is thus assumed to be constant at ρ =
σ2
α

1+σ2
α

for

any two periods.
13Biewen (2009) provides evidence on such feedback effects in a joint model of poverty, employment, and

household composition for Germany, where future employment status and household composition are allowed to
depend on past poverty status. In our analysis we follow the standard approach in the literature on welfare benefit
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these conditions, we can interpret the coefficient of the lagged dependent variable λ as measuring

structural state dependence. The spurious state dependence induced by persistent unobserved

heterogeneity is captured by the individual-specific effect αi.

A well-known difficulty with the model described in Equations (1) and (2) is that it suffers

from an initial conditions problem. To construct a likelihood function, we need to integrate out

the unobserved individual-specific error component αi. This requires specifying the relationship

between αi and the benefit receipt status in the initial period yi0, which cannot be assumed to

be exogenous.

To address this problem, we follow the approach developed by Wooldridge (2005). He pro-

poses specifying the density of αi conditional on yi0 and xi as αi = γ0 + γ1yi0 + x′iγ2 + ai,

where the residual error term (ai|yi0, xi) ∼ N (0, σ2a).14 This allows rewriting the joint density

of (yi1 ... yiT )|yi0, xi as

f(yi1, ..., yiT |yi0, xi; θ, γ) =

∫ T∏
t=1

f(yit|yit−1, xit−1, αi; θ)g(αi|yi0, xi; γ)dαi, (3)

where the coefficient vector θ = (λ β′)′. Note that this approach also allows for a correlation of

the individual-specific component αi with the explanatory variables along the lines proposed by

Chamberlain (1980). The residual error term ai is uncorrelated with the regressors xi, yi0 and

the transitory shock εit. The joint density used for estimation can then be written as

∫ T∏
t=1

{[
Φ(λyit−1 + x′it−1β + γ1yi0 + x′iγ2 + ai)

]yit
[
1− Φ(λyit−1 + x′it−1β + γ1yi0 + x′iγ2 + ai)

](1−yit)}( 1

σa

)
φ

(
a

σa

)
da. (4)

This density is identical to the one of the standard random-effects probit model with the

additional explanatory variables yi0 and xi added in each period. Parameter estimates for this

model can thus be obtained through maximum likelihood estimation. In empirical practice, the

vector of past and future values of all covariates xi is typically substituted for by the individual

longitudinal averages of all time-varying observables x̄i as in the correlated random-effects model

introduced by Mundlak (1978). This is also what we do in our analysis.15

We estimate all specifications in the free software package GNU Octave using a mean- and

variance-adaptive Gauss-Hermite quadrature approximation routine for likelihood evaluation

and use a Newton-Raphson algorithm for maximization (Butler & Moffitt, 1982; Rabe-Hesketh,

Skrondal & Pickles, 2005).16

receipt dynamics and assume no such feedback effects exist.
14An alternative, widely-used approach due to Heckman (1981b) accounts for the correlation between the initial

condition yi0 and the individual-specific effect by specifying a distribution of yi0|xi, αi and by then estimating the
joint distribution of f(yi0, ..., yiT |xi, αi; θ). The two approaches have been shown to differ little in performance for
panels of appropriate length (Arulampalam & Stewart, 2009; Akay, 2012). The Wooldridge approach however has
the advantage of being computationally simpler and of extending in a relatively straightforward way to settings
with richer state dependence (see further discussion by Stewart (2007, p. 527)) and in Appendix A.1.

15As suggested by Rabe-Hesketh & Skrondal (2013), we tested an alternative specification that controls for the
initial values of the observable characteristics xi0 in addition to x̄i. We however find that this model extension
gives nearly identical results.

16As a robustness check, we re-estimated the model using a Monte Carlo Expectation Maximization (MCEM)

8



3.2 Time aggregation in a dynamic random-effects probit model

The type of conditional Markov model presented in the previous subsection has clear implications

for how period-to-period benefit transition probabilities should aggregate over time. For a

Markov process with

P (yt = 1|y0, . . . , yt−1) = P (yt = 1|yt−1) (5)

it must also hold that

P (yt+k = 1|y0, . . . , yt−1) = P (yt+k = 1|yt−1) (6)

for any positive integer k (see for instance Taylor & Karlin (1998, Section 3.1)). This implies

that for a monthly observation interval, only the outcome in the current period is relevant

for making 12-month-ahead predictions. A month-to-month Markov process can be re-written

as a year-to-year Markov process where benefit receipt is measured every 12 months. Benefit

transitions can be aggregated up from the monthly to the annual level, and there will be a one-

to-one correspondence between the transition probabilities at the two levels of time aggregation.

If, by contrast, monthly benefit dynamics follow a more complex pattern it is unlikely that the

Markov property would hold once the data are aggregated to the annual level.

In empirical practice, the DREP model just presented is typically estimated based on annual

data. Neither for the ‘point-in-time’ approach nor for the ‘benefit year’ approach mentioned in

Section 2 it is however obvious from a theoretical point of view why the conditional Markov

property should be satisfied at the annual level. While the minimum period of welfare benefit

receipt varies between countries, it is usually much shorter than a year. One sufficient (though

not necessary) condition for why the conditional Markov property may hold at the annual level

is that benefit dynamics follow a conditional Markov process at the monthly level. Regardless of

the underlying dynamic process at the monthly level, the Markov assumption at the annual level

moreover implies that benefit receipt dynamics should continue to satisfy the Markov property

if we further aggregate up the data to the biennial level.

The Markov assumption thus has testable implications for the relationship between the

predicted transition probabilities at the monthly, annual and biennial level that allow us to

empirically validate the standard model of benefit receipt dynamics at both the monthly and

the annual level.

3.2.1 Aggregating transition probabilities over time

In a DREP model, there is a relatively easy analytical solution for how transition probabilities

aggregate up over time. Using the results from Section 3.1, we define the conditional probability

of entry into benefit receipt in a Wooldridge-type version of the model as

p01it (yit−1, yi0, xi, ai) = P (yit = 1|yit−1 = 0, yi0, xi, ai) = Φ(x′it−1β + γ1yi0 + x̄′iγ2 + ai) (7)

algorithm that gives simulation-based maximum likelihood estimates (Wei & Tanner, 1990). The two routines
gave nearly identical results.
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and the corresponding persistence probability as

p11it (yit−1, yi0, xi, ai) = P (yit = 1|yit−1 = 1, yi0, xi, ai) = Φ(λ+ x′it−1β + γ1yi0 + x̄′iγ2 + ai). (8)

We construct a transition matrix based on these expressions as

Ait(yit−1, yi0, xi, ai) =

[
1− p01it p01it
1− p11it p11it

]
, (9)

where the dependence on covariates and the random effect of the four transition probabilities

is suppressed for notational ease. For a column vector of possible states in the previous period

zit−1, we can write

E

[
1− yit
yit

]
︸ ︷︷ ︸

E(zit|zit−1,yi0,xi,ai)

=

[
1− p01it 1− p11it
p01it p11it

]
︸ ︷︷ ︸
A′it(yit−1,yi0,xi,ai)

[
1− yit−1
yit−1

]
︸ ︷︷ ︸

zit−1

, (10)

where the vector of expected outcomes in the current period E(zit|zit−1, yi0, xi, ai) contains

the conditional probabilities of benefit non-receipt E(1− yit|yit−1, yi0, xi, ai) and benefit receipt

E(yit|yit−1, yi0, xi, ai). At any time t, only one of the two potential outcomes in each of these

two vectors is realized for a given individual i. Similarly, iterating Equation (10), we can write

the vector of expected outcomes s periods ahead as

E(zit|zit−s, yi0, xi, ai) =

s−1∏
j=0

A′it−j

 zit−s. (11)

These derivations illustrate how we are able to simply derive annual transition probabilities from

their monthly counterparts if benefit receipt dynamics from period t to t+1 follow a Markov

process.

As noted, the dynamic random-effects probit model is only assumed to satisfy the Markov

property conditional on the covariates and the individual-specific effect. The transition probab-

ilities that we would predict directly based alone on the coefficient estimates and the values of

the covariates however are population-averaged, because we have integrated out the individual-

specific effect for the construction of the likelihood function. To be able to assess the validity of

the Markov assumption and aggregate up estimated transition matrices over time we thus need

to reconstruct individual-specific transition matrices from our unconditional predictions.

Denoting the ‘unconditional’ transition probability matrix as Ait ≡ Ait(yit−1, yi0, xi) and the

conditional transition probability matrix as Ait ≡ Ait(yit−1, yi0, xi, ai), we can relate transition

probabilities at the monthly level by integrating over the random effect as

Am
it =

∫
Am

it

1

σa
φ

(
a

σa

)
da, (12)

where we use the superscript m to denote the monthly transition matrix. Similarly, we can write
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the unconditional transition probabilities at the annual level using the superscript y as

Ay
it =

∫ ( 11∏
s=0

Am
it−s

)
1

σa
φ

(
a

σa

)
da. (13)

Under the assumption of a Markov process at the monthly level, there is thus a one-to-one

mapping of monthly into annual transition probabilities.

From a computational point of view, it is easier to generate predictions of the conditional

probabilities by sampling from the estimated distribution of the random effect N (0, σ̂2a) rather

than by integrating over this distribution. To produce precise estimates of individual-specific

transition rates, we would in this case need multiple simulations for each individual. Since

however we are not interested in precise estimates of individual-specific transition rates but

only in the population averages, the large size of our sample imply that a single simulation per

individual is sufficient.

To assess the degree of state dependence in our model, we can construct predicted conditional

transition probabilities Âm
it from our estimated unconditional probabilities Âm

it using random

draws of ai. Specifically, we can predict the entry probability into benefits for an individual in

a given period as

P̂ (yit = 1|yit−1 = 0, xi, yi0, ãi) = Φ
(
x′it−1β̂ + γ̂1yi0 + x̄′iγ̂2 + ãi

)
, (14)

and the corresponding persistence probability for the same individual as

P̂ (yit = 1|yit−1 = 1, xi, yi0, ãi) = Φ
(
λ̂+ x′it−1β̂ + γ̂1yi0 + x̄′iγ̂2 + ãi

)
. (15)

where ãi is a random draw from the estimated distribution of the random effect. One of these

two predicted transition probabilities will always describe the counterfactual.

The difference between the average predicted transition probabilities over all individuals and

time periods gives us the estimated average treatment effect (ATE)17 as

ATE =
1

NT

N∑
i=1

T∑
t=1

[
P̂ (yit = 1|yit−1 = 1, xi, yi0, ãi)− P̂ (yit = 1|yit−1 = 0, xi, yi0, ãi)

]
. (16)

This ATE describes the estimated average effect of benefit receipt last month on the probability

of welfare benefit receipt in the current month.

The two monthly transition probabilities for each individual and period given by Equa-

tions (14) and (15) can also be aggregated up to the annual level as described. During this

aggregation process, we keep all observable characteristics fixed at their values in period t− 12,

which corresponds to the period in which they are measured in the annual model. Taking the

difference between the two aggregated counterfactual probabilities averaged over individuals and

years we consequently obtain the annual average treatment effect implied by the estimates from

the monthly model. This effect can be readily compared to the average treatment effect derived

17The term typically used in studies of benefit dynamics is that of the average partial effect (APE), see for
instance Wooldridge (2005) and Stewart (2007). We follow Wooldridge (2001, p. 68) in using the term ATE for
a discrete variable.
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from the transition matrix constructed directly from the estimates of the annual model.

As for the monthly-to-annual aggregation, we can also aggregate the annual transition prob-

abilities to the biennial level using an expression analogue to that in Equation (13) and compare

these to the transition probabilities estimated directly from a biennial model. This allows us

to test the assumption commonly made in the literature that welfare benefit receipt dynamics

follow the conditional Markov property at the annual level. Note that the validity of this time

aggregation exercise does not depend on whether we use the ‘point-in-time’ approach or the

‘benefit year’ approach to define the annual benefit receipt variable.

In practice, a simpler alternative to this analytical time aggregation of transition probabil-

ities is to directly simulate each individual’s benefit receipt path over the twelve-month period.

Specifically, we predict an individual’s benefit receipt status one period ahead as

ŷit+1 = 1
{
λ̂yit + x′itβ̂ + γ̂1yi0 + x̄′iγ̂2 + ãi + ẽit+1 > 0

}
. (17)

where now both ãi and ẽit+1 are random draws from the respective estimated error distributions.

We then use the value for ŷit+1 to again predict the outcome in period t+2 and so forth. By

iterating this process twelve times, we can construct an individual’s predicted benefit receipt

path over an entire year. The result of this aggregation exercise will be the predicted value of

the binary outcome variable ŷi12 rather than a predicted transition rate from period t to t+12.

To calculate the degree of annual state dependence implied by the monthly model, we simply

compare the simulated rate of benefit receipt across individuals twelve periods ahead obtained

by setting the current benefit receipt variable yit equal to zero and equal to one, respectively,

for all individuals and years. Again, we fix the covariates during this process at their values at

time t.

The advantage of making period-by-period predictions of a benefit receipt path over aggreg-

ating transition matrices is that the approach just described extends easily to the more complex

models with duration and occurrence dependence discussed in Section 5.

3.2.2 Comparing transition probabilities at different levels of time aggregation

We have illustrated that if monthly benefit dynamics follow a Markov process, there exists a

model describing the annualized data that also satisfies the conditional Markov property, with

the transition probabilities from that model being known functions of the monthly transition

probabilities. Our conjecture is now that for a monthly process that can be adequately described

by a dynamic random-effects probit model at the monthly level, the process observed in the

annualized data can also be approximated by a random-effects probit structure at the annual

level. We hence test the monthly model by comparing predictions obtained from the same

dynamic random-effects probit model estimated on monthly and annualized data, aggregating

the predictions from the monthly to the annual level as explained above.

This approach comes with a subtle qualification: Unlike for a linear autoregressive model,

for which the time aggregation is exact, a dynamic random-effects probit model at the monthly

level does not aggregate exactly to a dynamic random-effects probit model at the annual level.

While the aggregated annual conditional transition probabilities will be functions of the same

covariates and random effects that enter the baseline monthly model, they cannot necessarily
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be approximated by the same probit functional form.

Fortunately, there is an easy way of testing the validity of our approach. If the probit

approximation is appropriate, an annual dynamic random-effects probit model should give results

identical to those aggregated from a monthly dynamic probit model if the annual model is

estimated on data that have been generated by this monthly model. As a robustness check for

our time aggregation exercise, we therefore (i) simulate data based on each monthly model

we estimate, (ii) estimate the corresponding annual model on an annualized version of these

simulated data, and (iii) compare the predictions from the annual model estimated on simulated

data with the aggregated predictions from the monthly model that was used to construct the

simulated data. Any substantial difference between the two predictions will indicate that the

dynamic probit structure does not carry over to higher levels of time aggregation. The simulation

exercise thus provides a safeguard against falsely rejecting the conditional Markov property

only because the probit structure we assume is a bad approximation at higher levels of time

aggregation.

4 An empirical test of the Markov model for welfare transitions

To test the assumption that the dynamics of welfare entry and persistence can be jointly de-

scribed by a dynamic random-effects probit model, we estimate the model on monthly, annual

and biennial data and calculate the degree of estimated state dependence at each level of ag-

gregation. We then use the model estimates to simulate benefit transitions from the monthly

to the annual level and from the annual to the biennial level. The comparison of estimated

and aggregated transition matrices at the annual and biennial level serves as our test of the

Markov property. We also compare results based on the ‘point-in-time’ approach and the ‘bene-

fit year’ approach for defining the annual benefit receipt variable and assess the time aggregation

properties of these two approaches.

In all our models, we control for the usual set of individual characteristics (sex, age, years

of education, and immigrant status), household characteristics (family type, household size,

and having a child aged 0-5 years), and partner’s characteristics (age, years of education, and

immigrant status) for married or co-habiting individuals. All our specifications moreover include

year dummies and a control for the municipal unemployment rate. Since the focus of our paper

is on the analysis of state dependence in welfare benefit receipt, we limit ourselves to reporting

average predicted transition rates and the corresponding average treatment effect of past benefit

receipt for each specification. Coefficient estimates for the various specifications are reported in

the Appendix, Section A.2.

4.1 Time aggregation for the ‘point-in-time’ benefit variable

We begin our empirical analysis by looking at the standard dynamic random-effects probit

specification with an outcome variable that measures benefit receipt at one point in time. Using

the monthly data on benefit receipt described in Section 2, we estimate the DREP model at

the monthly level. To construct a corresponding data set of annual ‘point-in-time’ observations,

we discard eleven of the twelve monthly observations for an individual in each year and only
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keep the benefit receipt status in December.18 We then compare the effect of benefit receipt in

December of year t on the probability of benefit receipt in year t + 1 implied by the monthly

and the annual specification.

Table 1: Time aggregation: Monthly to Annual (‘point-in-time’)

(1) (2) (3) (4)

Monthly Annual Monthly-to-annual Simulation-based

model model time aggregation specification check

Avg. predicted persistence rate (in %) 14.0 (0.2) 7.0 (0.2) 3.1 (0.1) 2.9 (0.0)

– Avg. predicted entry rate (in %) 1.4 (0.0) 2.1 (0.1) 3.1 (0.1) 2.9 (0.0)

= Average treatment effect (in ppts) 12.6 (0.1) 4.9 (0.2) 0.0 (0.0) 0.0 (0.0)

Note: The monthly model in column (1) and annual model in column (2) refer to the dynamic random-effects
probit specifications estimated on monthly and annualized data, respectively. The annualized data for model
(2) were obtained by keeping the observations for December of each year only. The monthly-to-annual time
aggregation results presented in column (3) were obtained by aggregating the transitions of the monthly model to
the annual level using the simulation-based approach described in Section 3.2. Column (4) gives the results from a
dynamic random-effects probit model estimated on annualized data simulated from a monthly dynamic random-
effects probit model. Standard errors in parentheses of columns (1) to (3) were calculated using 10 bootstrap
replications; predicted transition rates and standard errors in parentheses of columns (4) were calculated based
on running the annual model on 10 simulated data sets. Coefficient estimates for the two specifications presented
in columns (1) and (2) are reported in Table A.1 in the Appendix.

Table 1 provides evidence on the time aggregation properties of the monthly model. In

columns (1) and (2), we report the average predicted transition rates and the resulting average

treatment effect of the lagged dependent variable obtained directly from estimating our model

using monthly and annualized data, respectively. In column (3), we then give the benefit trans-

ition rates and ATE implied by our monthly model when aggregated to the annual level. The

results in column (4) finally were obtained by estimating the annual model on data simulated

from the monthly model as a robustness check of our functional-form assumption in the annual

model.

The results presented in columns (1) and (2) suggest that benefit dynamics are characterized

by a considerable degree of state dependence both at the monthly and at the annual level. From

our monthly model, we estimate that on average, sample members have a 14.0% probability of

receiving welfare benefits this period if they already received benefits last month. This compares

to a probability of entering benefits from last month to the current month of only 1.4%. The

resulting average treatment effect, i.e. the effect of benefit receipt last month on the probability

of benefit receipt this month, is 12.6 percentage points. Estimates from the annual model imply

18The advantage of using December as the month for our annual observation is that we observe individuals for
an entire year after they enter the sample in January. The approach thus resembles the one used for the ‘benefit
year’ definition, where benefit receipt is recorded over the entire year but household composition and observable
characteristics are measured in December. For reasons that will become clearer later, our approach is advantageous
moreover for the models of duration and occurrence dependence that we present in Section 5. Immervoll, Jenkins
& Königs (2014) show that there is some seasonality in benefit receipt for individuals in their low 20s, who are
more likely to access welfare benefits during the summer months to bridge gaps in their educational schedules.
When including calendar-month dummies in our standard specification, we however find that in spite of the large
sample size, only two of the eleven dummies are estimated to have a coefficients statistically different from zero.
The ATEs of these two calendar month dummies on benefit receipt are just above 0.1 percentage points. We
therefore conclude that the choice of December as the month for annual observations is unlikely to affect our
results.
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a somewhat lower average treatment effect at the annual level. Conditional on benefit receipt

in December of last year, the probability of benefit receipt in December of this year is 7.0%,

compared to a 2.1% probability of receiving benefits today conditional on non-receipt twelve

months ago. The resulting average treatment effect is 4.9 percentage points.

Of largest interest are the results presented in column (3), which gives the annual transition

probabilities implied by the predicted monthly transition probabilities. Based on the estimates

of the monthly model, the probability of benefit receipt in the current period is virtually inde-

pendent of whether an individual did or did not receive welfare benefits twelve months ago. The

simulation-based results give an annual average treatment effect of zero that is moreover very

precisely estimated. Intuitively, the relatively low average predicted month-to-month persistence

probability of 14% implies that very few individuals remain on welfare for the entire year. The

predicted probability of benefit receipt thus quickly converges to the equilibrium rate of 3.1%

even for those individuals who received benefits twelve months ago.

As discussed, transition probabilities aggregated up from the monthly to the annual level

should be comparable to those estimated from an annual model directly if the conditional Markov

property is satisfied. Our dynamic random-effects probit model estimated at the monthly level

predicts that benefit receipt twelve months ago does not have an impact on the probability of

benefit receipt today once we control for observed and unobserved heterogeneity. This finding of

no year-to-year state dependence in benefits based on the monthly model clearly differs from the

one obtained from our annual model directly, where we estimated an average treatment effect

of 4.9 percentage points. This leads us to conclude that the Markov assumption is not satisfied

at the monthly level.

As pointed out in Section 3.2, this time aggregation exercise is valid only if the benefit receipt

process observed in the annualized data can be approximated by a similar type of dynamic

random-effects probit model as the probit model we estimated at the monthly level. To check

the validity of this assumption, we report results from a simulation exercise in column (4) of

Table 1. We constructed ten data sets based on the estimates from the monthly model, each of

which we used to extract annual data, estimate an annual dynamic random-effects probit model

on these data, and calculate predicted transition rates and average treatment effects. Column

(4) presents the mean and standard deviation of these transition rates and average treatment

effects over the ten replications.

We find that the results obtained from estimating the annual model based on simulated

data are nearly identical to those derived from aggregating monthly predicted transition rates

to the annual level as presented in column (3). This suggests that it is indeed reasonable to

assume that our dynamic random-effects probit assumption carries through as transition rates

are aggregated from the monthly to the annual level. The large difference in results between

the two annual models when estimated on the true data (column (2)) and the simulated data

(column (4)) moreover highlight again that the true data-generating process is very different

from the monthly dynamic random-effects probit model that we have used for simulation.

The same exercise shows that the time aggregation properties implied by the Markov as-

sumption also fail to hold at the annual level. This time, we aggregate up results from an annual

model to the biennial level and compare the level of state dependence with that obtained from
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a specification estimated on biennial data directly. These biennial data were constructed by

keeping the observation for December of every second year only while dropping all remaining 23

months.

Table 2: Time aggregation: Annual to Biennial (‘point-in-time’)

(1) (2) (3)

Annual Biennial Annual-to-biennial

model model time aggregation

Avg. predicted persistence rate (in %) 7.3 (0.3) 5.7 (0.3) 3.9 (0.1)

– Avg. predicted entry rate (in %) 2.0 (0.1) 2.2 (0.1) 2.5 (0.1)

= Average treatment effect (in ppts) 5.2 (0.3) 3.5 (0.3) 1.5 (0.1)

Note: The annual model in column (1) and biennial model in column (2) refer to the dynamic random-effects
probit specifications estimated on annualized and biennialized data, respectively. The annualized data for model
(1) were obtained by keeping the observations for December of each year only, while in the biennialized data for
model (2) we keep observations for December of every second year only. The annual-to-biennial time aggregation
results presented in column (3) were obtained by aggregating the transitions of the annual model to the biennial
level using the simulation-based approach described in Section 3.2. Standard errors in parentheses were calculated
using 10 bootstrap replications. Coefficient estimates of the two specifications presented in columns (1) and (2)
are reported in Table A.2 in the Appendix.

In analogy to above, we report in columns (1) and (2) of Table 2 the estimates obtained

directly from the annual and biennial models, while column (3) gives the average predicted

transition probabilities and ATEs obtained from aggregating annual benefit transitions to the

biennial level. As before, we find significant state dependence both in the annual and biennial

model of welfare dynamics with ATEs of 5.2 and 3.5 percentage points, respectively. Aggregated

to the biennial level, the transition probabilities from the annual model however imply an average

treatment effect of 1.5 percentage points. The state dependence over two years implied by a

Markov model at the annual level is thus substantially lower than the ATE we obtain from

estimating the model directly with biennial data. For a point-in-time measure of benefit receipt,

the assumption that benefit dynamics follow a Markov process must thus be rejected also at the

annual level.

4.2 Time aggregation for the ‘benefit year’ variable

As discussed in Section 3.2, the second widely-used approach for defining an annual welfare

benefit receipt variable has been to look at receipt at any time during the calendar year. Argu-

ably, the time aggregation problem for such a variable is even more severe because this approach

makes no assumption on the timing of benefit receipt during the year. For instance, we might

think of a case in which a single spell of benefit receipt extends from December of one year

to January of the next, and a second case with two separate spells in January and December

of two subsequent years separated by 22 months without benefit receipt. These two cases are

observationally equivalent under the ‘benefit year’ approach, whereas we would expect them to

have very different implications for the degree of annual state dependence.19

19For a discussion of the ‘benefit year’ approach and the advantages of point-in-time sampling see Ellwood
(1982).
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Using an approach similar to the one employed in the previous subsection, we assess the

validity of the Markov assumption for a model of benefit dynamics in which annual benefit

variable is defined using the ‘benefit year’ approach. We construct an annual data set of benefit

receipt coding an individual as a benefit recipient if any benefit payments were recorded during

the calendar year. In the corresponding data set of biennial observations, we only keep the

observations for odd calendar years. All observable characteristics are recorded in December of

the respective year. The results of this analysis are presented in Table 3.

Table 3: Time aggregation: Annual to Biennial (‘benefit year’)

(1) (2) (3)

Annual Biennial Annual-to-biennial

model model time aggregation

Average persistence rate (in %) 20.1 (0.4) 12.0 (0.5) 10.6 (0.2)

– Average entry rate (in %) 4.4 (0.1) 5.1 (0.1) 6.2 (0.1)

= Average treatment effect (in ppts) 15.7 (0.4) 6.8 (0.6) 4.5 (0.2)

Note: The annual model (1) and biennial model (2) refer to the dynamic random-effects probit specifications
estimated on annualized and biennialized data, respectively. The annualized data for model (1) measure benefit
receipt at any time during the calendar year, while in the biennialized data for model (2) we measure benefit
receipt at any time during every second calender year. The annual-to-biennial time aggregation results presented
in column (3) were obtained by aggregating the transitions of the annual model to the biennial level using
the simulation-based approach described in Section 3.2. Standard errors in parentheses were calculated using
10 bootstrap replications. Coefficient estimates of the two specifications presented in columns (1) and (2) are
reported in Table A.3 in the Appendix.

Benefit receipt rates and the level of state dependence are substantially higher for the ‘benefit

year’ approach than for the ‘point-in-time’ approach presented in Table 2. We calculate a

predicted persistence rate into benefit receipt of 20.1% and an entry rate of 4.4%, which translates

into an ATE of benefit receipt in the past year on benefit receipt this year of 15.7 percentage

points. This effect is more than three times as large as the one for the point-in-time measure of

benefit receipt reported in column (1) of Table 2.

Again, we find that the model fails our time aggregation test: When estimating our model

on biennial data, we obtain an ATE of 6.8 percentage points; once we aggregate the results from

the annual model to the biennial level, the ATE drops to only 4.5 percentage points.

The Markov assumption thus seems to be violated at the annual level also when we define

the benefit variable using the ‘benefit year’ approach. The two approaches to defining the

benefit variable moreover yield very different estimates of predicted transition rates and state

dependence at the annual level.

4.3 A model with higher-order lags

Our findings thus far show that standard models of welfare benefit dynamics do not aggregate

over time as one should expect if the Markov assumption were true either at the monthly or at

the annual level. An alternative, more illustrative test of the Markov specification at the monthly

level is to add higher-order lags to the standard specification and check for their significance.

Consistent estimation of such a higher-order dynamic probit model however is a little more
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complicated than it may appear at first, because like the first lag, also the higher-order lags will

be endogenous due to their positive correlation with the unobserved individual-specific random

effect αi. Unless this endogeneity problem is appropriately addressed, one should expect to

obtain non-zero coefficients for the higher-order terms even if these terms do not indeed matter

for determining benefit transition rates.

To allow for higher-order state dependence, we modify the standard model presented in

Equation (1) as

yit = 1

{
12∑
s=1

λsyit−s + x′it−1β + αi + εit > 0

}
for i = 1, ..., N ; t = 12, ..., Ti, (18)

where we have included twelve lags of the dependent variable with the coefficients λ1 to λ12. We

extend our controls for the initial conditions by now including the values of the outcome variable

in the initial twelve periods of the panel in addition to the individual longitudinal averages of

the covariates x̄i, writing

αi = γ0 +

11∑
s=0

γ1,syis + x̄′iγ2 + ai. (19)

Under distributional assumptions similar to those discussed in Section 3.1, we can then integrate

out αi and estimate this model using conditional maximum likelihood methods (see Appendix,

Section A.1).20

Figure 2 plots the estimated average treatment effects of the first twelve lags and their 95%

confidence intervals. We find that all of these ATEs are significantly different from zero, which

means that we can reject the Markov model also on purely statistical grounds. Economically-

speaking however, only the second and possibly the third lag are of a meaningful magnitude

with estimated ATEs of 1.8 and 0.6 percentage points, respectively. Even for those two lags, the

estimated effect is already much smaller than the ATE of 8.1 percentage points for the first lag.

The low importance that our model attributes to the higher-order lags implies that it provides

little guidance as to why the first-order Markov specification fails as dramatically in terms of its

time aggregation properties as observed in Table 1. Indeed, based on the results of the higher-

order specification alone, we might have concluded that a first-order Markov model is a relatively

good approximation to the underlying benefit dynamics. This underlines the importance of the

time-aggregation test we performed in this section and which demonstrated that first-order

Markov models do not provide robust estimates of the level of state dependence in benefit

receipt.

A drawback of the higher-order Markov specification in our view is moreover that it is

difficult to give higher-order lags a meaningful economic interpretation. In the following section,

we therefore generalize and extend the models just presented by allowing for different processes

20Stewart (2007, Section 4.4) estimates a second-order dynamic random-effects probit model in his study of
unemployment and low pay. He uses an extension of the Wooldridge approach similar to ours although for a more
complex state space and additionally includes interactions of the two initial lags of the outcome variable with
the longitudinal averages of the covariates. Andrén & Andrén (2013) estimate a similar model, also including
third-order lags, in their study of social assistance dynamics in Sweden. Both of these studies are based on annual
data.
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Figure 2: Average treatment effects in the higher-order Markov model

to determine entries into and persistence in benefit receipt and by accounting explicitly for

duration and occurrence dependence in each of these processes.

5 A general dynamic model of welfare entry and persistence

A restriction of the models discussed thus far is that they treat entries into benefit receipt

and persistence in benefit receipt symmetrically in a single, joint specification. In the standard

Markov model, the effect of lagged benefit receipt yit−1 on the probability of benefit receipt

in the current period yit is fully captured by the state dependence parameter λ. All other

parameters of the model, notably the vector of coefficients β and the individual-specific effect

αi, are assumed not to depend on lagged benefit receipt status. The model thus constrains

observed and unobserved characteristics to have the same effect on the probability of entries

into and persistence in benefit receipt.

A second limitation is the way we have modelled the relationship between past and present

benefit receipt. The standard conditional Markov model assumes that only the benefit receipt

status in the last period affects the likelihood of benefit receipt today conditional on yit−1, x
′
it−1

and αi. When relaxing this assumption in Section 4.3 by including higher-order lags, we however

found at least some evidence that the fit of the monthly DREP model could be improved by

accounting for an individual’s earlier benefit receipt history.

In this section, we extend the standard Markov model in two steps to permit more complex

benefit dynamics. First, we introduce a more flexible random-coefficient specification that allows

capturing differential effects of observed individual characteristics and unobserved individual-

specific heterogeneity on entries and persistence. Second, we allow for duration and occurrence

dependence in benefit receipt, two channels through which the earlier benefit history can impact

the probability of benefit receipt and that might explain the observed pattern of significant

higher-order lags. For brevity, we refer to this extended specification as a dynamic random-

coefficients probit (DRCP) model with duration and occurrence dependence. As for the standard

model, we estimate the DRCP specification at the monthly level before we move on to examine

the time-aggregation properties of this model.

19



5.1 The DRCP model with duration and occurrence dependence

To extend the standard dynamic random-effects probit model, we first abandon the assumption

of a symmetric process for both entries and persistence probabilities. Using the notation from

Equation (1), we write

yit = 1
{

(λ̄+ λi)yit−1 + x′it−1(β + yit−1η) + αi + εit > 0
}

(20)

for i = 1, ..., N ; t = 12, ..., Ti.

There are two important differences between this model and the standard specification de-

scribed in Equation (1). First, we have added a vector of interaction terms between the lagged

dependent variable yit−1 and the covariates xit−1 with an associated coefficient vector η. These

interactions allow the effects of covariates like age, sex, or family status to differ for the processes

that determine entry into benefit receipt (as measured by β) and persistence in benefit receipt

(measured by β + η). Second, we include a random coefficient λi for the lagged dependent

variable that can be correlated with the random effect αi. This random coefficient captures the

individual-specific effect of past benefit receipt yit−1 on the probability of current benefit receipt

yit in terms of the deviation from the average effect measured by λ̄. An equivalent but for our

purposes more convenient interpretation of λi is as a second random effect that is interacted

with the lagged dependent variable and therefore allows persistent unobserved heterogeneity to

differ for the entry and persistence processes.21 Note that this random-coefficients framework

generalizes the standard Markov model, as the DRCP model in Equation (20) collapses to the

DREP model in Equation (1) for η = 0 and λi = 0 ∀ i.22

Assuming εit ∼ N (0, 1) as before, we can express the probability of entry into benefit receipt

as

P (yit = 1|yit−1 = 0, xi, αi, λi) = Φ(x′it−1β
0 + α0

i ), (21)

where β0 = β and α0
i = αi. Similarly, the probability of persistence in benefit receipt is given as

P (yit = 1|yit−1 = 1, xi, αi, λi) = Φ(λ̄+ x′it−1β
1 + α1

i ), (22)

where β1 = (β + η) and α1
i = (αi + λi). Entry and persistence probabilities in our DRCP

model can thus be thought of as coming from two separate equations with different coefficient

vectors β0 and β1 and two distinct random effects α0
i and α1

i , which however are allowed to be

correlated.

We further extend this model by abandoning the first-order Markov assumption in the above

21Stewart (2007, Section 3.7) also introduces heterogeneity in state dependence in a model of unemployment and
low pay dynamics by specifying a random coefficient for the lagged dependent variable without however allowing
the effects of the covariates to vary by lagged benefit receipt status. Meanwhile, Cappellari & Jenkins (2009)
introduce interaction terms between the explanatory variables and the lagged dependent variable in a model of
welfare benefit receipt yet restrict unobserved heterogeneity to have the same effect on entries and persistence.
Our specification thus combines these two approaches, moreover using monthly rather than annual data.

22We estimate the described model over the periods t = 12, ..., T only. This is not a feature of the DRCP
model, but a restriction we impose in order to be able to account for endogeneity of the additional duration and
occurrence dependence variables to be added below based on an extension of the Wooldridge approach. For the
remaining analysis, we therefore write yi11 rather than yi0 when referring to the outcome in the initial period.
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specification and allow for more sophisticated ways in which past benefit receipt can impact

the likelihood of benefit receipt in the current period. Specifically, we implement some of the

theoretical concepts introduced by Heckman & Borjas (1980) to extend our DRCP model to

account for duration and occurrence dependence in welfare benefit receipt.

A standard assumptions made in event-history models of benefit persistence is that a recip-

ient’s probability of leaving benefits depends on the length of the ongoing spell. In the case of

unemployment, persistent joblessness might lead to a deterioration of labour market skills and

networks over time thereby reducing an individual’s probability of finding new employment. In

the case of welfare benefits, a recipient might grow disillusioned or frustrated with increased

duration of benefit receipt and reduce efforts to become self-sufficient. Similarly, there might be

duration dependence outside of benefit receipt if job security or the level of pay rise over time

makes an individual less likely to enter welfare as the time spent off benefits rises. Each of these

are theoretical justifications for negative duration dependence in the probability of exits from

welfare benefit receipt and self-sufficiency, respectively. Also, the number of previous benefit

spells an individual has had might matter for the risk of future benefit receipt. Intuitively, in-

dividuals without a previous welfare history might worry about a potential stigma from benefit

receipt that makes them more reluctant to claim benefits. Persons who previously received be-

nefits might be less susceptible to this type of stigma. There might also be information or time

costs to claiming benefits that decline if the individual has submitted a claim before. In such

cases, the probability of benefit receipt is positively related to the incidence (or the number) of

previous benefit spell(s), which Heckman & Borjas (1980) refer to as occurrence dependence.

To incorporate duration and occurrence dependence into our DRCP model, we allow the

probability of benefit receipt to depend on a series of dummy variables that describe the dur-

ation of the ongoing spell on or off welfare and the number of previous spells since the start

of an individual’s welfare career.23 Further extending Equations (21) and (22), we write the

probability of entry into welfare as

P (yit = 1|yit−1 = 0, xi, d
0
i , d

1
i , oi, αi, λi) = Φ(x′it−1β

0 +

12∑
k=2

φ0kd
0
ikt−1 +

11∑
k=1

ψ0
koikt−1 + α0

i ), (23)

and the probability of persistence in welfare as

P (yit = 1|yit−1 = 1, xi, d
0
i , d

1
i , oi, αi, λi) = Φ(λ̄+ x′it−1β

1 +

12∑
k=2

φ1kd
1
ikt−1 +

11∑
k=1

ψ1
koikt−1 + α1

i ).(24)

The 2 × 11 dummy variables d0ikt−1 and d1ikt−1 indicate whether, in period t-1, the ongoing spell

off or on welfare, respectively, had lasted for exactly k periods. The reference case is the first

month of a spell on or off welfare. We restrict the effect of ongoing spells with a duration of

more than eleven months to be constant adding single dummies (d0i12t−1, d
1
i12t−1) for durations

of twelve months and longer. Similarly, the set of dummy variables oikt−1 indicate whether

until period t-1 the individual had terminated exactly k previous benefit spells, the reference

23Heckman & Borjas also suggest that there might be lagged duration dependence, i.e. a dependence of the
probability of benefit receipt of the duration of past benefit spells. Since modelling lagged duration dependence
would have further increased the complexity of our specification, we ignore it in our analysis.
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case being no previous benefit spells. Again, we specify separate dummies only for the first

ten occurrences of benefit receipt and capture the effects of having eleven or more previous

welfare spells through a single dummy oi11t−1. Note that the processes we model start in period

t = 12, i.e. the month of an individual’s 19th birthday. Dummies (d0ik, d
1
ik, oik) can therefore be

measured for each individual in our sample from the beginning of the individual’s welfare career.

The specification is very flexible in its treatment of duration and occurrence dependence:

The effect of spell durations is allowed to differ across the processes of entries and persistence

as captured by the two separate sets of dummy variables d0ik and d1ik with coefficients φ0k and

φ1k. The number of previous spells enters through a single set of dummies oik with separate

sets of coefficients ψ0
k and ψ1

k for the entry and persistence process, respectively. As before, the

model allows the effects of observable individual characteristics xit−1 and persistent unobserved

heterogeneity (α0
i , α

1
i ) to differ between entries and persistence in benefit receipt. This model is a

generalization of the specification in Equation (20) without duration and occurrence dependence

and hence of the standard DREP model.24

A challenge for estimation of the above specification is that the DRCP model with duration

and occurrence dependence is likely to suffer from a much more serious endogeneity problem

than the specifications discussed earlier. In particular, the unobserved heterogeneity terms α0
i

and α1
i are no longer correlated only with the lagged dependent variable but now also with each

of the duration and occurrence dummies that are functions of past benefit receipt. To be able

to integrate out the individual-specific error components for consistent estimation, we therefore

need to also extend our set of controls for initial conditions.

To account for the endogeneity of initial conditions, we again follow the approach by

Wooldridge (2005), which now translates into expressing the two individual-specific ‘random

effects’ α0
i and α1

i as linear functions of the receipt status in the initial period yi11 and a vector

of individual longitudinal averages of time-varying covariates x̄i. Unlike previously, we now how-

ever add also both sets of duration dummies (on and off welfare) and the occurrence dummies,

all measured in the initial period. We thus do not only control for the benefit receipt status in

the initial period but also for how long the individual had been in this state at that point in

time and for how many previous spells the individual has had. The resulting expression for the

individual-specific effects α0
i and α1

i can be written as

αj
i = γj0 + γj1yi11 + x̄′iγ

j
2 +

12∑
k=2

γj3,kd
0
ik11 +

12∑
k=2

γj4,kd
1
ik11 +

5∑
k=1

γj5,koik11 + aji , (25)

for j = 0, 1.25 Note that depending on whether the individual is on or off welfare in the initial

period yi11, either of the two sets of duration variables in the initial period d0i11 and d1i11 will be

24We could again have written this DRCP model with duration and occurrence dependence in form of a single
equation analogous to Equation (20), where each coefficient in the persistence process would be written as the
sum of the corresponding coefficient for the entry process and the coefficient of an interaction term with the
lagged dependent variable. An exception are the coefficients of the duration dummies, as these dummies are by
construction coded as being equal to zero if the individual is not in the respective state. For φ0

k = ψ0
k = φ1

k =
ψ1
k = 0 ∀ k, the model in Equations (23)-(24) reduces to the simpler specification in Equations (21)-(22) without

duration and occurrence dependence.
25The index k of the sum over the occurrence dummies for the initial spell only runs up to five as this is the

maximum number of previous spells that can be observed in the data in the twelve months leading up to the
initial period.
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all zero.

We require the residual unobserved heterogeneity terms a0i and a1i to follow a bivariate nor-

mal distribution with zero means, variances (σ2a0 , σ
2
a1) and a correlation τ . As in the standard

case, they are moreover uncorrelated with the covariates in the model (xit−1, x̄i, yi11) and the

transitory shock εit. Under these distributional assumptions, we can integrate out (a0i , a
1
i ) to

estimate the model parameters on monthly data using conditional maximum likelihood meth-

ods. For a further discussion of this ‘extended’ Wooldridge approach, see Section A.1 of the

Appendix.26 In the special case where a0i and a1i are uncorrelated, our approach is equivalent to

estimating two separate equations for entries and persistence in benefit receipt.

By allowing for essentially separate processes for entries into and persistence in benefit receipt

and by explicitly modelling duration dependence in benefit receipt we transform our DRCP

model into a quite general two-state discrete-time event-history model. One main difference from

standard applications of event-history models is that as a way to handle the initial conditions

problem, data used for such models typically come from flow sampling, that is, a sample from

the population of e.g. those who enter welfare receipt in given period. Our modelling framework

instead uses data from population sampling including both recipients and non-recipients, and

we explicitly account for the endogeneity of initial conditions employing the approach proposed

by Wooldridge (2005).27 Our random-coefficients modelling framework can thus be viewed

as a synthesis of dynamic discrete-choice modelling and event-history modelling, in essence

proposing a dynamic discrete-choice model that nests a discrete-time event-history model. It

thus facilitates the application of recent solutions to the initial conditions problem developed for

dynamic discrete-choice models to event-history analysis. Like certain event-history models, our

framework moreover exploits the availability of data on multiple spells in panel data sets as a

source of identifying variation that allows us to distinguish duration dependence and unobserved

heterogeneity in each state (Honoré, 1993; Van den Berg, 2001).

5.2 Duration and occurrence dependence in welfare transitions

There are two main difficulties for an empirical assessment of duration and occurrence depend-

ence in benefit receipt. First, the measurement of precise spell durations and spell numbers

requires data on benefit receipt with short observation intervals, which, as discussed, are rarely

available for research purposes. Second, even in such data, information on an individual’s be-

nefit receipt prior to the start of the observation period will be missing. The number of benefit

spells counted for an individual in the data will therefore typically not adequately reflect the

individual’s entire ‘welfare career’. The administrative data that we use allow us to address

both of these issues. Since the data set provides high-quality information on benefit receipt at

the monthly level, we can construct exact measures of the number and duration of individu-

als’ benefit spells. Even short spells or temporary departures from welfare are reflected in the

26An alternative approach to the initial conditions problem would have been to estimate the model over the
entire period t = 1, ..., T rather than t = 12, ..., T , and to assume that we truly observe the start of the process
we are modelling on each individual’s 18th birthday by setting yi0 = 0 ∀ i. We believe that the approach we use
is preferable, because it does not impose exogeneity of the initial conditions.

27Bratsberg, Raaum & Røed (2010) estimate a model for migrants’ transitions between employment and non-
employment with duration dependence in each state comparable to our model. They avoid the initial conditions
problem by working with a sample of individuals who start with an initial employment spell of three years.
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Figure 3: Duration dependence in entry and persistence rates

analysis. The large size of the data set moreover allows us to restrict our sample to individuals

whom we observe from the moment they become entitled to claim welfare benefits on their 18th

birthday. This means that we can indeed count the number of spells each individual has had

since the beginning of the welfare career for a sample of sufficient size.

To illustrate the importance of duration and occurrence dependence in welfare benefit receipt

dynamics, we start by presenting ATEs of spell durations and occurrences on the probability

of benefit receipt. Figure 3 plots the average treatment effect of the time spent on and off

welfare on the probability of welfare persistence and welfare entry, respectively. We obtain

these ATEs by predicting the probability of benefit receipt in the next month while varying

the time on or off benefits for each individual for the respective values of the lagged receipt

status. ATEs are expressed in reference to a spell in its initial month either on or off welfare.

All other characteristics of the individual, including the occurrence variables, are kept fixed at

their observed values.28

We find substantial duration dependence both on and off welfare. In the left panel, we give

the average treatment effect of the duration off benefits on the rate of welfare entry. We find a

strongly declining pattern from the first to the second period of benefit receipt. The probability

of entering benefits is about 5 percentage points lower for an individual who has been off benefits

for two periods compared to the initial period off benefits. The ATE becomes more negative

as the time off benefits rises, however at a strongly declining rate approaching a negative 7

percentage points for spells of length 6 months or longer. An individual who has not received

benefits for the last 12 months is thus ceteris paribus about 7-8 percentage points less likely to

enter benefits the next month than if he were in his first month off benefits.

The right panel shows very strong duration dependence also for persistence in benefit receipt.

Individuals in the second month of their welfare spell are about 5 percentage points more likely

to stay on benefits than if they were in their initial month on benefits. The effect further

28Since occurrence variables are defined as the number of completed welfare spells, neither being on or off
welfare is inconsistent with any value for the occurrence variable.
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Figure 4: Occurrence dependence in entry and persistence rates

increases strongly with additional time on benefits reaching 15 percentage points or more for

benefit spells of duration 5 months or longer.

We produce similar calculations for the set of occurrence dummies included in our model

and present the average treatment effects of previous spell occurrences on welfare entry and

persistence rates in Figure 4. Again, these ATEs are obtained by varying only the number of

previous benefit spells an individual has had and the lagged benefit receipt status while keeping

the individual’s current spell duration on or off benefits, respectively, fixed at the observed value.

Results suggest that a history of previous welfare benefit receipt substantially increases the

likelihood of entry into benefits, but that the number of previous benefit spells matters little

beyond the first spell. As shown in the left panel of Figure 4, we find a significantly positive

average treatment effect of having had previous spells in benefit receipt; the size of this effect is

relatively stable across spell numbers at around 0.8-1 percentage points.

We do not find a comparable effect of the number of previous benefit spells on the probability

of persistence in benefit receipt. While we calculate a mildly positive average treatment effect

of previous benefit spells on benefit persistence, five of the eleven occurrence dummies reported

in Table A.5 are not significant at the 5% level. ATEs plotted in the right panel of Figure 4 give

a similar result.

Overall, the finding of substantial duration dependence in the processes leading up to entries

and persistence in benefit receipt and of occurrence dependence in entry rates into benefit receipt

suggests that the extended DRCP model might indeed provide a substantial improvement over

our simpler specifications. The pattern of the occurrence dependence we find may be consistent

with a theory of stigma or information costs: Experiencing benefit receipt today leads to a

permanent rise in the likelihood of re-entry into benefits in the future, but any later spells do

not further raise the benefit entry rate.
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5.3 Time aggregation in a DRCP model for welfare transitions

To assess the performance of our DRCP model, we again use model estimates to predict welfare

entry and persistence rates for each individual and compute the degree of implied state depend-

ence in benefit receipt. We allocate to each individual in the sample a counterfactual benefit

receipt status, which now comes with a spell duration and number of potential previous spell.

The degree of measured state dependence therefore depends on the assumptions we make about

how long each individual has been on or off benefits and on how many previous benefit spells she

has had. To get estimates comparable to those for the standard Markov model in Section 4.1,

we assume that individuals are as close as possible to a ‘clean’ benefit receipt history: Average

predicted entry rates are constructed under the assumption that an individual had no previous

benefit receipt and spent the maximum duration off benefits in the current spell. Similarly,

average predicted persistence rates are calculated assuming that the individual entered welfare

in the last period and has no previous benefit receipt history. The assumptions we make are

thus favourable to finding both low predicted entry and persistence rates. All covariates are

again kept fixed at their observed values.

The degree of state dependence in monthly benefit receipt rises substantially compared to

that estimated for the standard Markov model in Table 1. The average predicted rate of entry

into benefits drops from 1.4% to 0.3% as shown in column (1) of Table 4. This likely reflects

the favourable assumptions of no previous benefit spells and a maximum duration off benefits

made when calculating predicted entry rates. The persistence rate rises from 14.0% to 37.3%.

The resulting ATE of benefit receipt in the previous period on the likelihood of benefit receipt

in the current period rises from 12.6 percentage points in the standard Markov model to 37.0

percentage points in the DRCP with duration and occurrence dependence.

To illustrate the impact of unobserved heterogeneity on welfare entry and persistence, we

report some additional parameters from our DRCP model in the bottom part of Table 4. As

summarized in column (1), unobserved heterogeneity in the monthly model is nearly equally

important for the process driving entries as for the process driving benefit persistence as implied

by the estimates of σa0 and σa1 , the standard deviations of the two individual-specific error

components a0i and a1i . The estimated correlation between the two error components, given

by τ = 0.78, indicates that the two persistent components of the error term in the monthly

model are highly but imperfectly correlated. Intuitively, we may thus think of each individual

as having some unobserved ability or preferences a1i related to (avoiding) persistence in welfare

and an ability a0i related to entries to welfare. Ignoring these differences leads to a downward

bias in the estimated degree of state dependence in welfare benefit receipt.

Compared to the predicted transition rates presented in Table 4, the magnitude of estimated

duration and occurrence dependence illustrated in Figures 3-4 is indeed substantial. While the

average predicted entry rate for individuals with the maximum duration off benefits is only

0.3%, it is about 7 percentage points higher for individuals in their first month off benefits

as shown in Figure 3. Also the seemingly-modest occurrence-dependence effect of around 0.8

percentage points after a single previous spell shown in Figure 4 is sizeable if we consider that

it permanently raises an individual’s predicted entry rate into benefits from 0.3% to 1.1%. For

individuals on benefits, the 20 percentage-point drop in exit rates after ten months of benefit
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Table 4: Time aggregation in the DRCP model: Monthly to Annual

(1) (2)

Monthly Monthly-to-annual
model time aggregations

State dependence
Average predicted persistence rate (in %) 37.3 (0.5) 6.3 (0.2)
- Average predicted entry rate (in %) 0.3 (0.0) 1.3 (0.1)
= Average treatment effect (in ppts) 37.0 (0.5) 5.0 (0.2)

Unobserved heterogeneity
σa1

0.32 (0.01)
σa0

0.35 (0.01)
τ 0.78 (0.03)

Note: The monthly model in column (1) refers to the dynamic random-coefficients probit specifications in Equa-
tions (23)-(25) with occurrence and duration dependence estimated on monthly data. The monthly-to-annual time
aggregation results presented in column (2) were obtained by aggregating the transitions of the monthly model
to the annual level using the approach described in Section 3.2. Standard errors in parentheses of columns (1)
to (3) were calculated using 10 bootstrap replications. Coefficient estimates for the two specifications presented
in columns (1) and (2) are reported in Table A.5 of the Appendix. Parameters σa0 and σa1 are the standard
deviations of a0i and a1i , respectively, while τ is their correlation.

receipt implied by Figure 3 compares to an average predicted exit rate from benefits of 37% for

an individual in the first month of the benefit spell.29

A consequence of the significant duration and occurrence dependence estimated for the

DRCP model at the monthly level is moreover that unlike the standard Markov model, some

state dependence persists if we use the estimation results to simulate benefit transitions over an

entire year. In column (2) of Table 4, we report December-to-December transition probabilities

obtained from aggregating up the monthly transition probabilities to the annual level: In the

case of benefit receipt 12 months ago the likelihood of benefit receipt today is 6.3% compared to

1.3% conditional on non-receipt 12 months ago. The average treatment effect of benefit receipt

12 months ago on benefit receipt today is hence estimated at 5.0 percentage points.

To evaluate the time aggregation properties of the DRCP model, we would again like to

test how these aggregated results from our model of monthly benefit dynamics compare to a

corresponding model estimated on annualized data. The appropriate benchmark in this case

would be an annual DRCP specification that includes the complete vector of duration and

occurrence variables measured at the monthly level. Consistent estimation of such a model

however is not straightforward. The endogenous duration and occurrence variables are no longer

deterministic functions of the current and past values of the dependent variable, because the

latter is now measured at the annual level. Even the extended Wooldridge approach proposed

for the monthly model in Equation (25) will therefore no longer give consistent estimates at

the annual level (see the discussion in the Appendix, Section A.1).30 The evaluation procedure

29Note that a comparison of ATEs for the occurrence and duration dummies with average predicted transition
rates is only approximate: For calculating the ATEs of duration dummies we kept the values of all occurrence
dummies fixed at their observed values (and vice versa). By contrast, when predicting entry and persistence rates,
we assume a ‘clean’ benefit receipt history. The two calculations thus do not make identical assumptions on an
individual’s benefit receipt history, an aspect that might have an impact due to the non-linearity of the model.

30We have estimated annual models that include monthly measures of spell durations and occurrences with
simulated data and find that they give heavily-biased predictions. This confirms that the inconsistency is not
merely a theoretical concern.
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used previously for the simpler annual Markov models therefore does not readily extend to a

specification with duration and occurrence variables measured at the monthly level.

We propose an alternative evaluation method as a specification check for our DRCP model

with duration and occurrence dependence. The test builds on the idea that if the model does well

at describing the true benefit receipt dynamics at the monthly level, benefit receipt sequences

simulated from the model should be ‘similar’ to those produced by the true data-generating

process. Indeed, the required ‘similarity’ of the simulated and the true data must hold for all

characteristics of the two data sets. For instance, we should expect any other model – also one

that is misspecified – to provide similar results when estimated on the two data sets provided

that the model used to construct the simulated data is well-specified. Larger disparities in

results between the two by contrast should be seen as evidence that the model does not well at

replicating the true benefit dynamics.

Table 5: Specification tests of the monthly DRCP model on annual data

Annual DRCP Simulation-based

in Eqs (20)-(22) specification check

(1) (2) (3)

Annualized Annualized data, Annualized data,

true data monthly DRCP monthly DRCP

in Eqs (23)-(25) in Eqs (20)-(22)

Average predicted persistence rate (in %) 12.6 (1.0) 6.4 (0.6) 3.2 (0.2)

- Average predicted entry rate (in %) 2.1 (0.1) 2.2 (0.1) 2.6 (0.1)

= Average treatment effect (in ppts) 10.5 (1.1) 4.1 (0.6) 0.5 (0.2)

Note: The annual model in column (1) refers to the dynamic random-coefficients probit (DRCP) specifications
in Equations (20)-(22) estimated on annualized data. The estimates presented in column (2) were obtained by
estimating the DRCP specification in Equations (20)-(22) using annualized data that were simulated based on the
monthly DRCP model in Equations (23)-(25) with duration and occurrence dependence. The estimates presented
in column (3) were obtained by estimating the DRCP specification in Equations (20)-(22) using annualized data
that were simulated based on the monthly DRCP model in Equations (20)-(22). Standard errors in parentheses
of column (1) were calculated using 10 bootstrap replications; predicted transition rates and standard errors in
parentheses of columns (2)-(3) were calculated based on running the annual model on 10 simulated data sets.

As a specification test, we thus run a different model on the true data and the data simulated

from the DRCP model with duration and occurrence dependence and compare the results.

Specifically, we use the simpler annual first-order DRCP model without duration and occurrence

dependence described in Equations (20)-(22) for this exercise.31 This allows us to produce

results comparable to those obtained in the time aggregation tests carried out in earlier parts

of our analysis. We start by simulating benefit receipt dynamics for each individual over a

12-month period based on the estimates from the monthly DRCP model with duration and

occurrence dependence. This step is identical to the one employed in the simulation-based

specification checks for the simpler models. We then estimate the first-order DRCP model on

the annualized simulated data and compare estimates to those we got from running the same

model on annualized true data. The results of the specification test are presented in Table 5.

The monthly DRCP model with duration and occurrence dependence only partially succeeds

31Complete estimation results for this model are presented in the working paper version of this article (Bhuller
et al., 2014).
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at predicting the monthly welfare benefit dynamics in Norway. The annual first-order DRCP

model estimated on annualized true data predicts an average treatment effect of benefit receipt

12 months ago of 10.5 percentage points (column (1)). Estimating the same model on data

simulated from the monthly DRCP model with duration and occurrence dependence, we obtain

average predicted entry rates that are nearly 50% lower (column (2)). For an essentially un-

changed average predicted entry rate, this implies a decline in the ATE to only 4.1 percentage

points. Note that we are not very much interested here in the estimated level of state dependence

per se, because we already know that the model without duration and occurrence dependence

is misspecified. The difference between the levels of state dependence estimated from the first-

order DRCP model when run on true data and on data simulated from the model with duration

and occurrence dependence however indicates that also our most complex model does not do

very well at reproducing the true month-to-month benefit dynamics.

The DRCP model with duration and occurrence dependence nonetheless represents a sub-

stantial improvement over models without duration and occurrence dependence. Column (3)

presents results obtained from estimating the annual first-order DRCP Markov model on data

simulated from the monthly first-order DRCP model. The average predicted persistence rate

is lower still, making the estimated ATE drop to 0.5 percentage points. While our preferred

monthly DRCP model thus does not succeed at replicating the same level of estimated state

dependence that is observed in the true data, it gets much closer to the benchmark result than

the simpler model.

6 Conclusion

Dynamic discrete-choice models have been an important tool for the analysis of labour market

dynamics and in particular the study of state dependence in benefit receipt. One central as-

sumption of such models is that sequences of benefit receipt follow a standard Markov process:

Conditional on the observed and unobserved characteristics of an individual the first lag of the

dependent variable is sufficient for predicting the outcome. Such models are usually estimated

on data with annual observations from administrative records or household surveys due to a

lack of data with shorter observation intervals. The main parameter of interest is the average

treatment effect of the lagged dependent variable, which is interpreted as capturing structural

state dependence in benefit receipt.

In this paper, we showed that a standard Markov model gives highly inconsistent estimates

of the degree of structural state dependence in welfare benefit dynamics in Norway. Based

on monthly administrative data over the 16-year period 1993-2008, we estimated the same

specification at the monthly, annual and biennial level and used the results to predict individuals’

implied period-to-period transition matrices. Due to the Markov property of the model, these

transition matrices can be aggregated up over time and thus be compared across specifications.

Results indicate that the magnitude of estimated state dependence rises strongly with the level

of time aggregation. The annual model grossly overestimates the degree of state dependence

predicted by a corresponding model at the monthly level; state dependence estimated by a

biennial model is even higher. This finding is robust to employing the ‘benefit year’ approach

rather than the ‘point-in-time’ approach for defining the annual benefit receipt variable.
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We conclude that the standard dynamic random-effects probit model is misspecified and not

suited for an analysis of structural state dependence in welfare benefit receipt in Norway. Our

results might moreover be evidence that, more generally, the Markov assumption commonly

made in studies of labour market dynamics is too crude a simplification. Estimates of structural

state dependence derived from such models are likely to be driven by the choice of the observation

interval. The results from such analyses should therefore be interpreted with caution.

In the second part of the paper, we illustrated that benefit dynamics in Norway are indeed

much more complex than it is commonly allowed for in econometric modelling. We presen-

ted a generalization of the standard model along two important dimensions in the form of a

more flexible dynamic random-coefficients probit (DRCP) model. First, this model allows the

processes driving entries into benefits and persistence in benefit receipt to differ with an in-

dividual’s observable and unobservable characteristics. Second, it accounts for duration and

occurrence dependence in benefit receipt. We found that an individual’s two individual-specific

error components for the welfare entry and persistence process are positively but imperfectly

correlated. The length of the current spell and the number of previous spells have a sizeable

effect on the probability of benefit receipt. While there is substantial duration dependence in

both entries and persistence in benefit receipt, the number of previous benefit spells affects only

entry rates. The average predicted month-to-month persistence rate for first-time entrants is 37

percentage points higher than the average predicted entry rate for individuals who have never

received benefits. Aggregated to the annual level, this corresponds to an average treatment

effect of 5 percentage points. A simple simulation-based specification test shows that benefit

receipt sequences produced by this model are still clearly distinguishable from those of the true

data-generating process. The model however represents a notable improvement over the simpler

models without duration and occurrence dependence.

Our findings suggest that much more complex models of benefit receipt dynamics may be

needed for reliable estimates of state dependence in benefit receipt. We have shown that in

Norwegian welfare benefit dynamics ‘state dependence’ arises from a combination of the simple

intercept shift induced by the standard lagged dependent variable, disparities in the impact

of observable and unobservable characteristics on entry and persistence probabilities, and the

effect of time spent in the current state on the probability of future benefit receipt. Future

work will have to seek ways of better describing these different dynamics possibly by combining

and extending some of the approaches we have used. The existence of duration and occurrence

dependence however implies that such work will likely have to be based on data with comparably

short observation intervals that permit identification of individuals’ benefit spells.

A methodological contribution of this article is finally that it offers an intuitive and simple

test of the validity of the Markov assumption for cases where no data with short observation

intervals are available. By aggregating up the predicted transition matrices obtained from first-

order Markov models for instance at the annual level and comparing them to the predictions of

the corresponding benchmark model at the biennial level, authors will be able to quickly evaluate

the reliability of their estimates of the level of structural state dependence. This specification

test shall be useful for assessing the robustness of the results obtained from simple models of

welfare benefit receipt dynamics or labour-market-state dynamics more broadly.
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Appendix

A.1 An extension of the standard Wooldridge approach

The dynamic random-effects probit model with persistent unobserved heterogeneity suffers from

an endogeneity problem due to the correlation of the lagged dependent variable with the time-

invariant individual-specific error component αi, as discussed in Section 3. This initial conditions

problem is even more severe in the specifications estimated in Sections 4.3 and 5 that additionally

include either higher-order lags or measures of spell duration and the number of previous benefit

spells. These variables are all functions of past realizations of the dependent variable and

therefore by construction do not satisfy the strict exogeneity assumption made for the covariates.

In the standard model, we use the approach introduced by Wooldridge (2005) to address

the initial conditions problem by specifying a relationship between αi and the outcome in the

initial period yi0, which the model conditions on. We can extend this method to allow for

feedback effects from yit to the endogenous covariates (duration and occurrence variables or the

higher-order lags) that we call wit, by employing an approach developed by Wooldridge (2000)

for dealing more broadly with endogenous regressors in dynamic unobserved-effects models.

Using the product law for conditional densities, we decompose the joint density of (yit, wit)

as

f(yit, wit|yit−1, wit−1, xit−1, αi; ζ) = f(yit|yit−1, wit−1, xit−1, αi; θ)×

f(wit|yit, yit−1, wit−1, xit−1, αi;ω). (A.1)

As in Section 3.1, the joint likelihood of the benefit receipt status and the set of endogenous

covariates over all time periods follows as

f(yi, wi|yi0, wi0, xi; ζ) =

∫ T∏
t=1

f(yit|yit−1, wit−1, xit−1, αi; θ)×

f(wit|yit, yit−1, wit−1, xit−1, αi;ω)g(αi|yi0, wi0, xi; γ)dαi, (A.2)

where (yi0, wi0) are the initial-period values of the benefit receipt status and the endogenous

covariates, respectively. This expression is the analogue of Equation (3) in the standard model.

Since in our monthly models, the endogenous covariates wit are deterministic functions of yit,

yit−1, and wit−1, this joint distribution simplifies to

f(yi, wi|yi0, wi0, xi; ζ) =

∫ T∏
t=1

f(yit|yit−1, wit−1, xit−1, αi; θ)g(αi|yi0, wi0, xi; γ)dαi. (A.3)

As in the simple case, we can use this joint density to consistently estimate the model under

the assumption that the distribution αi|yi0, wi0, xi is conditionally normal with expectation linear

in all arguments and constant variance. The likelihood function of our monthly specification

with higher-order lags or duration and occurrence variables is hence similar to that of the

standard random-effects probit model, where the initial values of the benefit variable yi0 and

of the duration and occurrence variables wi0 and again a vector of the lags and leads of all
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time-varying exogenous covariates xi are included as additional regressors. As in the standard

case, we replace xi by the vector of longitudinal averages x̄i.

Note however that this approach does not easily extend to the annual model counterpart

to the monthly models in Section 5 that we might have wanted to use as a benchmark for the

predictions of our monthly specifications. Here, wit is no longer a deterministic function of

(yit, yit−1, wit−1), because our measures of spell durations and occurrences are based on monthly

information whereas the the outcome variable yit is now measured at the annual level. In the

annual case, Equation (A.2) therefore cannot be simplified to give Equation (A.3) and the

outlined approach does not lead to consistent estimates.

37



A.2 Detailed estimation results

monthly model annual model

y(t−1) 1.845*** (0.006) 0.824*** (0.022)

individual characteristics

female -0.179*** (0.018) -0.125*** (0.023)

immigrant 0.376*** (0.038) 0.271*** (0.044)

age -0.051** (0.023) 0.188*** (0.065)

age2 0.077 (0.048) -0.390*** (0.140)

years of education 0.011 (0.007) 0.121*** (0.012)

years of education2 -0.003*** (0.000) -0.013*** (0.001)

household characteristics

single, with children -0.066*** (0.011) 0.088*** (0.033)

couple, no children -0.192*** (0.032) -0.177* (0.106)

couple, with children -0.213*** (0.014) -0.055 (0.045)

child aged 0-5 years -0.114*** (0.010) -0.154*** (0.030)

household size 0.042*** (0.004) 0.048*** (0.013)

spouse characteristics

immigrant 0.014 (0.051) -0.049 (0.128)

age -0.005 (0.005) -0.006 (0.012)

age2 0.003 (0.011) 0.010 (0.030)

years of education 0.052*** (0.013) 0.048 (0.033)

years of education2 -0.005*** (0.001) -0.005** (0.002)

year dummies

1995 0.174*** (0.061) 0.015 (0.106)

1996 0.192*** (0.057) 0.085 (0.099)

1997 0.187*** (0.054) 0.059 (0.095)

1998 0.148*** (0.050) -0.055 (0.092)

1999 0.079* (0.047) -0.057 (0.090)

2000 0.075* (0.044) -0.038 (0.087)

2001 0.070* (0.041) -0.031 (0.083)

2002 0.084** (0.038) -0.007 (0.081)

2003 0.087** (0.035) 0.043 (0.078)

2004 0.101*** (0.032) 0.074 (0.076)

2005 0.079*** (0.030) 0.037 (0.076)

2006 0.081*** (0.029) 0.070 (0.075)

2007 0.067** (0.028) 0.001 (0.076)

2008 -0.013 (0.028) -0.113 (0.081)

Wooldridge controls

y0 1.451*** (0.034) 0.995*** (0.037)

single, with children -0.206*** (0.044) -0.407*** (0.060)

couple, no children -0.941*** (0.117) -1.206*** (0.192)

couple, with children -0.977*** (0.054) -1.007*** (0.078)

child aged 0-5 years 1.161*** (0.039) 0.783*** (0.054)

household size -0.042*** (0.014) -0.036* (0.021)

local unemployment rate 4.456*** (0.770) 3.203*** (1.200)

local unemployment rate 2.272*** (0.263) 2.772*** (0.812)

constant -2.101*** (0.279) -4.244*** (0.737)

σa 0.999*** (0.010) 0.782*** (0.016)

ρ 0.499*** (0.005) 0.379*** (0.010)

log Likelihood -173,477.470 -23,624.319

– continued on next page –
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Table A.1 – continued from previous page –

# of observations 3,279,708 272,878

# of individuals 30,899 30,899

* p<0.10, ** p<0.05, *** p<0.01
Note: standard errors in parentheses. The dependent variable measures
receipt of welfare benefits in a given month for the monthly model and in
December of the given year for the annual model. ‘Wooldridge controls’
include the outcome variable in the initial period y0 and longitudinal av-
erages of the remaining variables listed. age2 has been divided by 100 to
produce suitably-sized coefficient estimates. The relevant base categor-
ies are males, natives, singles without children, and households without a
child aged below 5 years.

Table A.1: The standard Markov specification, ‘point-in-time’ definition:
Monthly and Annual model
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annual model biennial model

y(t−1) 0.854*** (0.022) 0.617 (0.041)

individual characteristics

female -0.119*** (0.022) -0.148 (0.028)

immigrant 0.266*** (0.042) 0.310 (0.053)

age 0.199*** (0.064) 0.375 (0.115)

age2 -0.412*** (0.140) -0.797 (0.256)

years of education 0.120*** (0.011) 0.153 (0.015)

years of education2 -0.013*** (0.001) -0.016 (0.001)

household characteristics

single, with children 0.090*** (0.033) 0.195*** (0.052)

couple, no children -0.176* (0.106) -0.132 (0.160)

couple, with children -0.052 (0.045) 0.071 (0.071)

child aged 0-5 years -0.158*** (0.030) 0.029 (0.047)

household size 0.047*** (0.013) 0.018 (0.020)

spouse characteristics

immigrant -0.040 (0.126) -0.369* (0.190)

age -0.006 (0.012) 0.013 (0.018)

age2 0.011 (0.029) -0.014 (0.044)

years of education 0.052 (0.032) 0.031 (0.048)

years of education2 -0.005** (0.002) -0.004 (0.003)

year dummies

1995 0.066 (0.052)

1996 0.043 (0.052)

1997 -0.075 (0.055) -0.108* (0.056)

1998 -0.079 (0.059)

1999 -0.061 (0.062) -0.151** (0.067)

2000 -0.052 (0.061)

2001 -0.027 (0.063) -0.097 (0.069)

2002 0.020 (0.068)

2003 0.051 (0.069) 0.003 (0.080)

2004 0.017 (0.072)

2005 0.050 (0.076) -0.012 (0.082)

2006 -0.021 (0.082)

2007 -0.131 (0.092) -0.214** (0.098)

2008 0.135 (0.101)

Wooldridge controls

y0 0.949*** (0.036) 0.891*** (0.051)

single, with children -0.409*** (0.059) -0.550*** (0.079)

couple, no children -1.200*** (0.189) -1.017*** (0.247)

couple, with children -1.001*** (0.077) -1.098*** (0.104)

child aged 0-5 years 0.764*** (0.053) 0.488*** (0.072)

household size -0.031 (0.021) 0.008 (0.028)

local unempl. rate 3.265*** (1.187) 3.402** (1.546)

local unempl. rate 2.664*** (0.810) 1.884 (1.234)

constant -4.331*** (0.726) -6.181*** (1.268)

σa 0.759*** (0.016) 0.757*** (0.030)

ρ 0.366*** (0.010) 0.364*** (0.018)

log Likelihood -23,648.885 -11,295.134

# of observations 272,641 121,027

# of individuals 30,719 30,719

– continued on next page –
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* p<0.10, ** p<0.05, *** p<0.01
Note: standard errors in parentheses. The dependent variable measures
receipt of welfare benefits in December of the given year for both the
annual and biennial model. ‘Wooldridge controls’ include the outcome
variable in the initial period y0 and longitudinal averages of the remain-
ing variables listed. age2 has been divided by 100 to produce suitably-
sized coefficient estimates. The relevant base categories are males, nat-
ives, singles without children, and households without a child aged below
5 years.

Table A.2: The standard Markov specification, ‘point-in-time’ definition:
Annual and Biennial model
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annual model biennial model

y(t−1) 1.226*** (0.016) 0.689*** (0.030)

individual characteristics

female -0.085*** (0.017) -0.065*** (0.023)

immigrant 0.227*** (0.035) 0.205*** (0.048)

age 0.103** (0.058) -0.107 (0.120)

age2 -0.237** (0.126) 0.221 (0.262)

years of education 0.085*** (0.010) 0.135*** (0.013)

years of education2 -0.010*** (0.001) -0.015*** (0.001)

household characteristics

single, with children 0.129*** (0.027) 0.104** (0.045)

couple, no children -0.080 (0.076) 0.057 (0.120)

couple, with children 0.018 (0.037) 0.012 (0.060)

child aged 0-5 years -0.110*** (0.024) -0.001 (0.040)

household size 0.031*** (0.011) 0.045** (0.017)

spouse characteristics

immigrant -0.161 (0.100) -0.148 (0.146)

age -0.000 (0.010) 0.002 (0.014)

age2 0.003 (0.024) 0.003 (0.035)

years of education 0.073*** (0.026) 0.093** (0.038)

years of education2 -0.007*** (0.002) -0.009*** (0.002)

year dummies

1995 0.041 (0.046)

1996 0.051 (0.040)

1997 0.033 (0.044) -0.151*** (0.045)

1998 -0.081* (0.046)

1999 -0.032 (0.050) -0.131** (0.054)

2000 -0.044 (0.047)

2001 -0.023 (0.049) -0.122** (0.053)

2002 -0.002 (0.053)

2003 0.047 (0.054) -0.079 (0.059)

2004 -0.035 (0.056)

2005 -0.028 (0.060) -0.146** (0.066)

2006 -0.046 (0.063)

2007 -0.099 (0.078) -0.195** (0.085)

2008 0.140* (0.078)

Wooldridge controls

y0 0.896*** (0.024) 1.010*** (0.040)

single, with children -0.340*** (0.047) -0.151** (0.066)

couple, no children -0.977*** (0.136) -1.023*** (0.190)

couple, with children -0.866*** (0.060) -0.661*** (0.087)

child aged 0-5 years 0.659*** (0.041) 0.423*** (0.059)

household size -0.008 (0.016) -0.021 (0.024)

local unempl. rate 2.475*** (0.920) 2.886** (1.297)

local unempl. rate 3.474*** (0.645) 1.699* (1.005)

constant -2.749*** (0.650) -0.285 (1.355)

σa 0.691*** (0.013) 0.793*** (0.024)

ρ 0.323*** (0.008) 0.386*** (0.014)

log Likelihood -38,376.555 -18,199.340

# of observations 246,753 108,089

# of individuals 30,576 30,576

– continued on next page –
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* p<0.10, ** p<0.05, *** p<0.01
Note: standard errors in parentheses. The dependent variable measures
receipt of welfare benefits at any time during the given one-year / two-year
period for the annual and biennial model, respectively. ‘Wooldridge con-
trols’ include the outcome variable in the initial period y0 and longitudinal
averages of the remaining variables listed. age2 has been divided by 100
to produce suitably-sized coefficient estimates. The relevant base categor-
ies are males, natives, singles without children, and households without a
child aged below 5 years.

Table A.3: The standard Markov specification, ‘benefit year’ definition:
Annual and Biennial model
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monthly model with

higher-order lags

y(t−1) 1.402*** (0.007)

higher-order lags

y(t−2) 0.562*** (0.008)

y(t−3) 0.247*** (0.008)

y(t−4) 0.157*** (0.008)

y(t−5) 0.082*** (0.009)

y(t−6) 0.090*** (0.009)

y(t−7) 0.047*** (0.009)

y(t−8) 0.035*** (0.009)

y(t−9) 0.035*** (0.009)

y(t−10) 0.024*** (0.009)

y(t−11) 0.069*** (0.009)

y(t−12) 0.106*** (0.008)

individual characteristics

female -0.110*** (0.014)

immigrant 0.183*** (0.029)

age -0.046** (0.023)

age2 0.079 (0.049)

years of education 0.041*** (0.006)

years of education2 -0.005*** (0.000)

household characteristics

single, with children -0.025** (0.011)

couple, no children -0.140*** (0.033)

couple, with children -0.165*** (0.015)

child aged 0-5 years -0.075*** (0.011)

household size 0.048*** (0.004)

spouse characteristics

immigrant 0.040 (0.051)

age -0.006 (0.005)

age2 0.011 (0.011)

years of education 0.052*** (0.013)

years of education2 -0.005*** (0.001)

year dummies

1995 0.107** (0.052)

1996 0.119** (0.048)

1997 0.115** (0.046)

1998 0.088** (0.043)

1999 0.051 (0.041)

2000 0.063 (0.039)

2001 0.056 (0.037)

2002 0.069** (0.035)

2003 0.071** (0.032)

2004 0.079** (0.031)

2005 0.060** (0.030)

2006 0.058** (0.029)

2007 0.041 (0.028)

2008 -0.022 (0.029)

Wooldridge controls

y0 0.275*** (0.036)

– continued on next page –
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monthly model with

higher-order lags

y1 0.229*** (0.039)

y2 0.108*** (0.040)

y3 0.087** (0.038)

y4 0.158*** (0.036)

y5 0.220*** (0.037)

y6 0.133*** (0.039)

y7 0.006 (0.042)

y8 0.099** (0.044)

y9 0.177*** (0.045)

y10 -0.016 (0.048)

y11 -0.048 (0.047)

single, with children -0.137*** (0.034)

couple, no children -0.689*** (0.092)

couple, with children -0.641*** (0.043)

child aged 0-5 years 0.760*** (0.030)

household size -0.042*** (0.011)

local unemployment rate 3.098*** (0.616)

local unemployment rate 2.241*** (0.266)

constant -2.208*** (0.275)

σa 0.702*** (0.008)

ρ 0.330*** (0.005)

log Likelihood -163,515.291

# of observations 3,279,708

# of individuals 30,899

* p<0.10, ** p<0.05, *** p<0.01
Note: standard errors in parentheses. The dependent
variable measures receipt of welfare benefits in a given
month for the monthly model and in December of the
given year for the annual model. ‘Wooldridge controls’
include the outcome variable in the initial twelve peri-
ods y0 to y11 and longitudinal averages of the remaining
variables listed. age2 has been divided by 100 to pro-
duce suitably-sized coefficient estimates. The relevant
base categories are males, natives, singles without chil-
dren, and households without a child aged below 5 years.

Table A.4: The higher-order Markov specification: Monthly model
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monthly model

entry persistence

equation equation

individual characteristics

female -0.058*** (0.010) 0.000 (0.015)

immigrant 0.084*** (0.019) 0.096*** (0.025)

age -0.055** (0.028) -0.350*** (0.046)

age2 0.058 (0.059) 0.732*** (0.097)

years of education 0.046*** (0.005) 0.012* (0.007)

years of education2 -0.005*** (0.000) -0.002*** (0.000)

duration variables

dur2 -0.528*** (0.014) 0.188*** (0.013)

dur3 -0.700*** (0.016) 0.284*** (0.016)

dur4 -0.803*** (0.017) 0.396*** (0.019)

dur5 -0.889*** (0.018) 0.459*** (0.022)

dur6 -0.980*** (0.020) 0.502*** (0.024)

dur7 -1.030*** (0.021) 0.527*** (0.027)

dur8 -1.051*** (0.022) 0.575*** (0.031)

dur9 -1.006*** (0.023) 0.604*** (0.034)

dur10 -1.050*** (0.024) 0.656*** (0.037)

dur11 -1.061*** (0.025) 0.583*** (0.039)

dur12+ -1.429*** (0.011) 0.789*** (0.020)

occurrence variables

occ1 0.368*** (0.014) 0.051*** (0.017)

occ2 0.418*** (0.018) 0.033* (0.019)

occ3 0.419*** (0.020) 0.041* (0.022)

occ4 0.453*** (0.023) 0.046* (0.024)

occ5 0.448*** (0.025) 0.079*** (0.026)

occ6 0.442*** (0.028) 0.059** (0.029)

occ7 0.452*** (0.030) 0.096*** (0.031)

occ8 0.444*** (0.033) 0.070** (0.034)

occ9 0.477*** (0.036) 0.054 (0.037)

occ10 0.456*** (0.038) 0.066 (0.041)

occ11+ 0.489*** (0.037) 0.083** (0.036)

household characteristics

single, with children -0.059*** (0.013) -0.037* (0.020)

couple, no children -0.134*** (0.038) -0.022 (0.063)

couple, with children -0.186*** (0.017) -0.027 (0.027)

child aged 0-5 years -0.078*** (0.013) -0.092*** (0.020)

household size 0.062*** (0.005) 0.005 (0.008)

spouse characteristics

immigrant 0.025 (0.050) 0.055 (0.075)

age -0.004 (0.005) -0.006 (0.007)

age2 0.010 (0.011) 0.010 (0.017)

years of education 0.043*** (0.013) 0.027 (0.020)

years of education2 -0.004*** (0.001) -0.003** (0.001)

year dummies

1995 0.071 (0.045) 0.016 (0.070)

1996 0.065 (0.042) 0.042 (0.065)

1997 0.074* (0.041) 0.031 (0.062)

1998 0.046 (0.039) 0.011 (0.061)

– continued on next page –
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monthly model

entry persistence

equation equation

1999 0.011 (0.039) -0.007 (0.060)

2000 0.030 (0.038) 0.000 (0.058)

2001 0.027 (0.036) 0.016 (0.056)

2002 0.059* (0.035) 0.005 (0.055)

2003 0.060* (0.034) 0.015 (0.053)

2004 0.086** (0.034) -0.007 (0.053)

2005 0.072** (0.033) -0.022 (0.052)

2006 0.058* (0.033) 0.020 (0.052)

2007 0.028 (0.034) 0.040 (0.052)

2008 -0.039 (0.036) 0.003 (0.055)

Wooldridge controls

y11 0.010 (0.039) -0.015 (0.042)

single, with children -0.017 (0.026) -0.069* (0.037)

couple, no children -0.454*** (0.070) -0.152 (0.108)

couple, with children -0.277*** (0.033) -0.199*** (0.051)

child, aged 0-5 years 0.382*** (0.024) 0.141*** (0.035)

household size -0.057*** (0.009) -0.008 (0.014)

local unempl. rate 1.391*** (0.503) -1.677** (0.797)

dur211 -0.011 (0.043) -0.047 (0.048)

dur211 * y11 0.055 (0.060) 0.088 (0.065)

dur311 -0.075* (0.041) -0.058 (0.047)

dur311 * y11 0.209*** (0.064) 0.075 (0.069)

dur411 -0.116*** (0.039) -0.108** (0.045)

dur411 * y11 0.289*** (0.064) 0.293*** (0.067)

dur511 -0.048 (0.043) -0.083* (0.050)

dur511 * y11 0.117 (0.077) 0.263*** (0.081)

dur611 -0.154*** (0.052) -0.221*** (0.066)

dur611 * y11 0.234*** (0.082) 0.327*** (0.092)

dur711 -0.172*** (0.066) -0.216*** (0.084)

dur711 * y11 0.185* (0.098) 0.329*** (0.110)

dur811 -0.113* (0.066) -0.016 (0.079)

dur811 * y11 0.330*** (0.108) 0.219* (0.115)

dur911 -0.085 (0.071) -0.285*** (0.092)

dur911 * y11 0.360*** (0.119) 0.546*** (0.129)

dur1011 -0.128 (0.093) -0.224* (0.126)

dur1011 * y11 0.267** (0.125) 0.519*** (0.151)

dur1111 -0.311*** (0.111) -0.087 (0.156)

dur1111 * y11 0.553*** (0.138) 0.239 (0.176)

dur12+11 -0.268*** (0.043) -0.227*** (0.045)

dur12+11 * y11 0.523*** (0.059) 0.579*** (0.058)

occ111 0.022 (0.031) 0.021 (0.032)

occ211 0.089** (0.036) 0.061 (0.038)

occ311 0.161*** (0.050) 0.054 (0.052)

occ411 0.185* (0.097) 0.003 (0.102)

local unempl. rate 1.613*** (0.311) 2.694*** (0.501)

constant -0.114 (0.324) 4.283*** (0.531)

σa 0.354*** (0.010) 0.319*** (0.009)

– continued on next page –

47



Table A.5 – continued from previous page –

monthly model

entry persistence

equation equation

ρ 0.111*** (0.006) 0.092*** (0.005)

τ 0.784*** (0.026)

log Likelihood -158,370.707

# of observations 3,279,708

# of individuals 30,899

* p<0.10, ** p<0.05, *** p<0.01
Note: standard errors in parentheses. The dependent variable measures
receipt of SEA benefits in a given month for the monthly model and in
December of the given year for the annual model. The variables labelled
dur∗ and occ∗ are dummy variables measuring the duration of the ongoing
spell and the number of previous spells, respectively. ‘Wooldridge controls’
include the outcome variable in the initial period y11 and longitudinal
averages of the time-varying variables, as well as the values of the duration
and occurrence dummies in the initial period and their interactions with
outcome variable in the initial period. age2 has been divided by 100 to
produce suitably-sized coefficient estimates. The relevant base categories
are males, natives, singles without children, and households without a
child aged below 5 years. Parameters σa in the entry and the persistence
equation are the standard deviations of the individual-specific random
effects α0

i and α1
i as specified in Equations (23)-(24), respectively, while τ

is their correlation.

Table A.5: The DRCP specification with duration and occurrence
dependence: Monthly model
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