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Zusammenfassung

Das erweiterte Kagomesystem in der hexagonalen Schwedenborgitstruktur zeigt ähnlich zu den
Pyrochloren ein hochfrustriertes Netzwerk von tetraedrisch koordinierten magnetischen Ionen.
Diese formen geschichtete Kagome- und Dreiecksgitter, was wiederum Doppeltetraedersäu-
len senkrecht zu eben diesen Schichten ergibt. Die gebrochene Inversionssymmetrie erhöht
die Komplexität der magnetischen Ordnung durch die nicht verschwindende Dzyaloshinskii-
Moriya Wechselwirkung. Kürzlich untersuchte Materialien dieser Klasse zeigen mannigfalti-
ge Zeichen von ungewöhnlicher geometrischer Frustration und ungeordneten Grundzuständen
trotz der typischerweise starken antiferromagnetischen Wechselwirkung. In der vorliegenden
Arbeit wird die magnetische Ordnung und Spindynamik im antiferromagnetisch gekoppelten
Material CaBaCo2Fe2O7, eine Verbindung dieser Materialklasse, im Detail untersucht.
Als primäre experimentelle Methode werden verschiedene Arten von Neutronenstreuinstru-
menten eingesetzt. Diese Experimente werden von der theoretischen Seite mit Monte Carlo
Simulationen für die Modellierung der magnetischen Ordnung und Simulationen der Spindy-
namik zur Bestimmung der Anregungen ergänzt. Beide Methoden basieren auf dem gleichen
Nächste-Nachbar Heisenberg-Modell. In diesem Model wird zwischen der Wechselwirkung in-
nerhalb der Gitter Jin und zwischen den Gittern Jout unterschieden. In dem Phasendiagramm
basierend auf diesem Model wurde eine antiferromagnetisch geordnete Phase für Verhältnis-
se τ = Jout/Jin ≥ 1.5 und eine 3D Spinflüssigkeit für kleinere Verhältnisse gefunden. Der
Doppeltetraeder ist aus dem Dreieck des Kagomegitters und zwei Plätzen von verschiedenen
Dreiecksgittern aufgebaut und bildet den grundlegenden Baustein der magnetischen Struktur.
Aus der Energieminimierung des Doppeltetraeders ergibt sich eine sogenannte Summenregel,
die besagt, dass die Spins auf den trigonalen Plätzen parallel orientiert sind und die Summe
über die Kagomespins die mit dem Verhältnis τ gewichteten trigonalen Spins kompensiert. In-
nerhalb der Spinflüssigkeitsphase folgt daraus für die Kagomespins eine Verkippung gegenüber
der antiferromagnetisch geordneten Spinstruktur abhängig vom Verhältnis der Austauschwech-
selwirkungen. In den meisten Materialien dieser Klasse ist die Abweichung so hoch, dass nur
eine kurzreichweitige Ordnung vorhanden ist. Bisher ist CaBaCo2Fe2O7 das einzige bekannte
Material mit einer langreichweitige dreidimensionale Ordnung ohne einen strukturellen Pha-
senübergang zur orthorhombischen Symmetrie. Das macht das vorliegende Material einzigartig
und interessant als Modelsystem für die Untersuchung der Wechselwirkungen im Zusammen-
spiel mit der geometrischen Frustration. Es wurde zuvor berichtet, dass unterhalb von 160 K ei-
ne kommensurable magnetische Ordnung mit einer

√
3×
√

3 mal größeren Einheitszelle auftritt.
In der vorliegenden Arbeit wurde mit hochauflösenden Pulver- und Einkristalldiffraktometern
eine langperiodische Ordnung zusätzlich zur kommensurablen Ordnung beobachtet. Die lang-
periodische Modulation ist nur entlang den Kagome- und Dreiecksschichten vorhanden und die
Ordnung entlang der senkrechten Richtung bleibt kommensurabel. Es wurde festgestellt, dass
die Periode der Modulation temperaturunabhängig ist und die Größe der Aufspaltung einer Pe-
riode von 370 Å, bzw. 58 kristallographischen Einheitszellen und einem Ausbreitungsvektor
k ≈ (0.342, 0.342, 0) entspricht. Das mit Einkristallneutronenstreuung beobachtete Streumus-
ter deckt sich mit einer antiferromagnetischen multi-q Ordnung mit dem Propagationsvektor k
und den dazugehörigen symmetrisch äquivalenten. Um die Spinstruktur der langperiodischen
Ordnung zu untersuchen, wurden Neutronenstreuexperimente mit Polarisationsanalyse durch-
geführt. Von den Polarisationkanälen können die Streubeiträge von Momenten parallel und
senkrecht zur Streuebene und die chirale magnetische Streuung, ein Streubeitrag sensitiv für die
vektorielle Chiralität, separiert werden. Diese offenbaren, dass die lang periodische Spinstruk-
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tur (bezüglich der Intensität dominant unterhalb von 20 K) stärker gekantet ist im Vergleich
zu der eher koplanaren Spinstruktur der kommensurablen Ordnung (bezüglich der Intensität
dominant oberhalb von 80 K). Zwischen den beiden Temperaturen zeigen die Ergebnisse der
Neutronenstreuung und Messungen der Magnetisierung eine kontinuierliche Umorientierung
der Spins. Durch die gebrochene Inversionssymmetrie können Dzyaloshinskii-Moriya (DM)
Wechselwirkungen vorhanden sein. Es konnte gezeigt werden, dass, wenn man die Energie der
Spinkonfiguration gegen den reziproken Raum aufträgt, eine geschickte Wahl von DM Vek-
toren Energieminima an den Positionen der Satellitenpeaks erzeugen kann. Diese DM Vekto-
ren bevorzugen gekantete Kagomespins in Übereinstimmung mit den Streubeiträgen. Somit ist
dies ein geeigneter Mechanismus verantwortlich für die Umorientierung und die Erzeugung ei-
ner langperiodischen Ordnung. Bei einem System innerhalb der Spinflüssigkeitsphase können
die Kagomespins innerhalb bestimmter Grenzen frei variieren, deshalb sind schon kleine DM
Wechselwirkungen ausreichend. Des Weiteren weist die Symmetrie der chiralen magnetischen
Streuung daraufhin, dass die langperiodische Spinstruktur aus zykloidal angeordneten Spins be-
steht. Die Vorschrift zur Erzeugung einer passenden Struktur basierend auf den experimentel-
len Ergebnissen kann die gemessenen Streubeiträge angemessen gut beschreiben. Zudem ähnelt
die berechnete Spinstruktur der in der Skyrmionphase in MnSi beobachteten Struktur mit der
Ausnahme, dass es sich hier um eine Art von Skyrmiongitter mit einer antiferromagnetischen
Modulation handelt.
Darüber hinaus lassen sich noch weitere Erkenntnisse aus der Spindynamik ableiten. Da jedoch
die Auflösung der verfügbaren inelastischen Instrumente unzureichend ist, um die langperiodi-
sche Ordnung aufzulösen, wurde das kommensurable Model für die theoretische Beschreibung
verwendet. Ein deutlicher Unterschied wurde zwischen den Spinwellen, die sich parallel zu
den Kagome- und Dreiecksgittern, und denen, die sich entlang der Doppeltetraedersäulen aus-
breiten, sowohl in der linearen Spinwellenrechnung (LSWT) als auch in den Neutronenstreu-
experimenten gefunden. Experimentelle Beobachtungen und theoretische Modellierung zeigen
eher flache Dispersionen in den Schichten aber steile entlang der c-Achse und linear Steigung
entlang allen Richtungen nahe des Γ-Punktes. Da die LSWT auf die antiferromagnetisch geord-
nete Phase limitiert ist, werden in der vorliegenden Arbeit die Anregungen mit Spindynamik-
simulationen bei endlichen Temperaturen und innerhalb der Spinflüssigkeitsphase bestimmt.
Die gemessenen Anregungen entlang Richtung [0 0 1] lassen sich erfolgreich mit den aus den
Simulationen abgeleiteten Dispersionen beschreiben. Die daraus hergeleiteten Spinlängen und
Wechselwirkungen sind vergleichbar mit den Werten, die in anderen Experimenten bestimmt
wurden.
Die experimentellen Methoden, im Besonderen die für die Untersuchung der langperiodischen
Ordnung verwendeten, sind an der Grenze der heutigen Möglichkeit. Um die Auflösung der
Neutronen-Einkristalldiffraktometer BioDiff und MIRA optimal ausnutzen zu können, mussten
neue Auswerteroutinen entwickelt werden. Außerdem mussten die Instrumente Morpheus und
MIRA um die XYZ-Polarisationsanalyse erweitert werden, die die notwendigen Einblicke in
die Spinstruktur ermöglicht. Trotz der beobachteten Komplexität konnte sowohl die kommen-
surable magnetische Ordnung als auch die Spindynamik in CaBaCo2Fe2O7 mit dem Nächste-
Nachbar Heisenberg-Modell konsistent erklärt werden. Es wurde gezeigt, dass die DM Wech-
selwirkung ein geeigneter Mechanismus für die Etablierung der langperiodischen Ordnung ist
und die dazugehörige Spinstruktur dem Skyrmiongitter ähnelt. Die dargelegte Theorie ist über
die Auswertung zu CaBaCo2Fe2O7 hinaus für die gesamte Materialklasse gültig.
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Abstract

The extended kagome system in the hexagonal Swedenborgite structure displays similarly to
the pyrochlores a highly frustrated network of tetrahedrally coordinated magnetic ions. These
ions form stacked kagome and triangular layers resulting in double tetrahedra columns perpen-
dicular to said layers. However, its broken inversion symmetry raises further the complexity
of ordering due to non-vanishing Dzyaloshinskii-Moriya interactions. Recently investigated
compounds of this family show various signs for unusual geometric frustration and disordered
ground states despite of the typically strong antiferromagnetic exchange. In the present thesis,
the magnetic order and the spin dynamics observed on the antiferromagnetically coupled mate-
rial CaBaCo2Fe2O7 a Swedenborgite are studied in detail.
As a primary tool for the experimental investigation, different types of neutron scattering in-
struments have been used. The experiments are complemented from the theoretical side with
Monte Carlo simulations for the modelling of the magnetic order and spin dynamics simula-
tions for the determination of the excitations. Both methods are based on the same Heisenberg
nearest neighbour model, in which the in-plane Jin and out-of-plane Jout exchange interactions
are distinguished. In the phase diagram determined using this model an antiferromagnetically
ordered phase was found for ratios τ = Jout/Jin ≥ 1.5 and a 3D spin liquid at lower ratios.
The double tetrahedron formed by a triangle of the kagome and two sites of different triangu-
lar lattices was found to be the essential building block for the magnetic structure. From the
so-called sum rule for the building block derived from the energy minimization follows, that
the triangular spins align parallel and the sum of the kagome spins compensates the triangular
spins weighted with ratio τ . Thus, in the spin liquid phase the kagome spins tilt with regard to
the antiferromagnetically ordered spin structure depending on the ratio of the interactions. In
most materials of this compound family, the deviation is so high that only short range order is
present. So far, CaBaCo2Fe2O7 is the only known compound of this family, which exhibits a
long-range three dimensional order, without a structural transition to an orthorhombic symme-
try. This alone already makes the present material unique and interesting as a model system
for understanding the interactions and the influence of geometric frustration. A commensu-
rate magnetic order with a

√
3 ×
√

3 larger unit cell was reported to arise below 160 K. Using
high-resolution powder as well as single crystal diffractometers, a long-periodic modulation
was observed in addition to the commensurate magnetic order. The long periodic modulation is
only present within the kagome and triangular layers, with the order remaining commensurate
perpendicular to the layers. The period of the modulation found to be temperature-independent
corresponds to a periodicity of about 370 Å or 58 crystallographic unit cells and a propaga-
tion vector k ≈ (0.342, 0.342, 0). The scattering pattern observed in neutron single crystal
measurements is related to a multi-q antiferromagnetic structure with k and its symmetrically
equivalents. In order to investigate the spin structure related to the long periodic order, neu-
tron scattering experiments with polarization analysis were performed. From the polarization
channels, the scattering contributions from moments parallel and perpendicular to the scattering
plane as well as the chiral magnetic scattering, a scattering contribution sensitive to vectorial
chirality, have been separated. These reveal that the long periodic spin structure (prominent in
intensity below 20 K) is canted more strongly in comparison to the more coplanar spin structure
in the case of the commensurate order (prominent in intensity above 80 K). A continuous reori-
entation between the two spin structures is visible in neutron scattering as well as magnetisation
data. With the broken inversion symmetry the Dzyaloshinskii-Moriya (DM) interactions can be
present. A suitable choice of DM vectors was shown to create energy minima in the energy-vs-
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reciprocal space landscape at the satellite peak positions. These DM vectors favour a canting
of the kagome spins, which is therefore a suitable mechanism to cause this reorientation and
to establish the long-periodic order. In the spin liquid phase the kagome spins are able to tilt
freely within a certain range, thus even a small DM interaction is sufficient. Furthermore, the
symmetry of the chiral magnetic scattering indicates that the long periodic spin structure con-
sists solely of spin cycloids. The instruction to create an appropriate spin structure derived from
this information describes the measured scattering contributions reasonably well. The resulting
spin structure is similar to the one observed in the skyrmion phase of MnSi. The only exception
in this case is, this is a skyrmion-like lattice with an antiferromagnetic modulation.
Further insight has been gained from the spin dynamics, yet the available resolution of current
inelastic instruments is insufficient to resolve the long periodic order. Therefore in this case,
the commensurate model was used for a theoretical description. A distinct deviation had been
found for the spin waves propagating parallel to the kagome and triangular layers and those
propagating along the double tetrahedra columns or rather the c-axis in both linear spin wave
theory (LSWT) and neutron scattering experiments. Both experimental observation and theo-
retical modelling reveal rather flat dispersions within the layers, steep ones along the c-axis and
a linear slope along all directions close to the Γ-point. Since LSWT is limited to the antifer-
romagnetically ordered phase, in the present thesis the excitations have been determined using
spin dynamics calculations at finite temperatures and in the spin liquid phase. With the disper-
sions derived from the simulation results, the excitations measured along [0 0 1]-direction have
been described successfully. The extracted moment lengths and interactions are comparable
with those determined from magnetometry and spin structure refinement.
The experimental methods, especially those used for the investigation of the long periodic order,
have been at the boundary of the feasibility of current instrumentation. In order to make opti-
mal use of the instrumental resolution of the neutron single crystal diffractometers BioDiff and
MIRA, new evaluation methods had to be developed. Furthermore, the instruments Morpheus
and MIRA had to be expanded in order to allow for XYZ-polarization analysis providing neces-
sary insight to the spin structure. Despite the observed complexity a consistent explanation has
been found describing the commensurate magnetic order and spin dynamics of CaBaCo2Fe2O7

with the Heisenberg nearest neighbour model. The introduction of the DM interaction was
shown to be a suitable mechanism for establishing a long periodic order, with the correspond-
ing spin structure resembling a skyrmion lattice. Beyond the evaluation on CaBaCo2Fe2O7, the
theoretical arguments are relevant for the whole compound family.
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1
Introduction

The research on strongly correlated electron systems covers unusual electronic and magnetic
properties, e.g. metal-insulator transition, superconductivity, orbital as well as charge ordering
or mixed valence states. Possible materials include the d-electron based transition metal oxides
and f-electron based heavy fermion intermetallics. To understand the rich physical phenomena,
new theoretical models had to be derived. Though investigations on such compounds have been
conducted since early 1960s until today, the understanding is still incomplete [ABY11]. Of all
these within in present thesis, geometric frustration and complex ordering phenomena are of
major relevance. The corresponding research is introduced shortly.
There is a strong and growing research interest in geometrically frustrated spin systems [Ram94,
MR06]. Geometric frustration is defined as a phenomenon, where not all interactions can be
fulfilled at the same time due to the lattice geometry (cf. Fig. 2.6). Especially, the triangular
and kagome lattices have been studied in the context of geometric frustration [Sac92, CHS92,
MGN+06, CZ09]. In frustrated systems, the macroscopic manifold of competing ground states
may lead to the emergence of new, sometimes exotic phenomena, such as topological magnetic
monopoles, and in view of applications to a functional link for multiferroic behaviour, which
can be exploited in spintronics. As a result of frustrated interactions, a long periodic structure
was found in the antiferromagnetically coupled compound BiFeO3 [LCF+08], which has been
of notable interest, since it is a magnetic ferroelectric at room-temperature. The small splitting
of the commensurate magnetic peaks observed in neutron scattering corresponds to a periodicity
of 64 nm. From the structure refinement the structure was determined to be a circular cycloid.
Recently, the concept of topologically protected spin textures was introduced and has been met
with great interest in condensed matter physics. The stability of such structures can be derived
from topological arguments. One such texture is the magnetic skyrmion, which is a non-trivial
swirling spin structure carrying a topological quantum number [NT12] and results in a long
periodic magnetic structure. The finite scalar spin chirality generates a fictitious magnetic field
giving rise to the non-trivial topological Hall effect in electron transport phenomena [KOA+11].
Skyrmions have attracted interest because of their possible application in new technologies such
as magnetic information storage and processing devices. Detailed investigations have already
been performed, exploring the H-T phase diagram of promising compounds. The skyrmion
lattice has been found in several materials in a small phase pocket at low magnetic fields. The
skyrmion lattice is a large scale structure of spins observed by neutron scattering in recipro-
cal space and microscopy techniques in real space. Such triangular lattices of skyrmions have
been observed in small-q helimagnets, for example MnSi [MBJ+09], (Fe,Co)Si [YOK+10] and
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Chapter 1 Introduction

Cu2OSeO3 [SKI+12, ACW+12], upon application of a weak external magnetic field.
The investigation of strongly correlated electron systems requires various experimental meth-
ods to reveal the complex nature. Aside from the macroscopic methods e.g. measuring the
specific heat, conductivity or magnetic moment, microscopic methods, in particular scattering
experiments have been very insightful. Different types of scattering methods exist using probes
like photons, electrons or neutrons. Each probe has certain advantages and the suitable probe
has to be chosen adopted to the study. Within the present thesis X-ray diffraction experiments
have been used to determine the crystal structure of the material and neutron scattering for the
investigation of the magnetic order and spin wave excitations. Long periodic magnetic order
or skyrmions may emerge in ferromagnetically coupled spin structures, therefore small-angle
neutron scattering is the adequate choice as it provides sufficient resolution for the small split-
ting of the commensurate magnetic peaks. Yet this is only true for ferromagnetically coupled
systems, where the split peaks can be observed close to the origin of the reciprocal lattice. In
antiferromagnetically coupled systems like BiFeO3 [LCF+08] the peaks arise far away from the
origin, which requires a more careful instrumentation. Furthermore, polarization analysis is an
established method in neutron scattering, which is mainly used to separate the magnetic from
the nuclear scattering. Here a more advanced XYZ-difference method [SC93, Sch10] is used.
This method allows to obtain a more comprehensive picture of complex spin structure, since it
reveals the vector properties of spin correlations, in addition to the separation of magnetic from
nuclear scattering (cf. Sec. 2.3).

In the present thesis the compound CaBaCo2Fe2O7 is investigated, which belongs to the class of
strongly correlated materials. CaBaCo2Fe2O7 is part of a family of compounds called Sweden-
borgites [Val04b]. The Swedenborgite structure derived from the original mineral NaBe4SbO7

(cf. Fig. 4.1) features a hexagonal symmetry, space group P63mc, and stacked triangular and
kagome layers resulting in double tetrahedra columns of beryllium ions [PKW35]. Recently
compounds have been synthesized replacing the beryllium ions on these sites with magnetic
ones [VA02], which has attracted interest due to the possibility to study the phenomenon of
geometric frustration. The magnetic pyrochlore oxides, another type of structure with magnetic
triangular and kagome lattices, are studied extensively [GGG10]. However, in the case of the
pyrochlores this results in a network of corner-sharing tetrahedra. Here, the broken inversion
symmetry in the Swedenborgites allows for Dzyaloshinskii-Moriya interaction to be present,
which can add an interesting complexity to the magnetic order and is prohibited for the undis-
torted structure of the pyrochlores. The present compound exhibits strong antiferromagnetic
exchange interactions and shows an antiferromagnetic order below TN ≈ 160 K [Ros11] with-
out a distortion of the lattice [RRS+14], thus it is an ideal system to study. In neutron scattering
experiments polarization analysis was used to separate different scattering contributions like
the scattering from moments out-of plane and in plane as well as chiral magnetic scattering.
This allowed for a deeper insight into the magnetic order and revealed a spin reorientation be-
tween 80 and 4 K [Ros11], which would have been invisible otherwise. Despite the additional
complexity the magnetic order has been modelled to some extend using a Heisenberg near-
est neighbour model distinguishing between the intra- and inter-lattice interactions proposed in
[MCR+09, KMMC10]. This model was used to investigate the magnetic order depending on
both the ratio of exchange interactions and temperature and also to calculate the dispersions of
magnetic excitations using linear spin wave theory (LSWT) [Rei11].
Still, in the previous investigations important questions like the magnetic structure have re-
mained unsolved, thus, here the magnetic order is studied in further detail using high resolution
neutron diffraction and the spin dynamics using a multi-incident time-of-flight spectrometer.
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Since polarization analysis was proven to be quite useful, it will be applied extensively in the
study of the magnetic order. Furthermore, the observed spin wave excitations and the spin
reorientation could not be explained with the Heisenberg model. For an improved agreement
the introduction of Dzyaloshinskii-Moriya interactions will be discussed. Since the Heisenberg
model allows for a huge variety of energetically equivalent ground states, LSWT is rather lim-
ited. Thus, here a numerical simulation is used to simulate the spin wave excitations. These
results are not limited to the case of CaBaCo2Fe2O7, but are relevant for the whole compound
family, as both the structure of the magnetic order as well as the excitations can be related back
to the frustrated building blocks of the extended kagome lattice.
In Chapter 2 the relevant theory is discussed based around the relevant neutron scattering meth-
ods covering magnetic order, the according space groups and spin wave dispersions for simple
spin structures. With the need to conduct specific experiments necessary for the investigation
of CaBaCo2Fe2O7, e.g. polarisation analysis, additional experimental methods have been intro-
duced to existing instruments during this thesis, in these cases the modifications are described in
Chapter 3. Following, in Chapter 4 the compound family Swedenborgites is introduced together
with the relevant previous results and our spin dynamics simulations, which apply to the whole
family. Then we will focus on the material of interest CaBaCo2Fe2O7 in Chapter 5. Initially the
results from previous studies are stated and followed by the new ones discovered in the present
thesis. All results will be combined in the discussions in Chapter 6, where we will elaborate
on the main findings in CaBaCo2Fe2O7: the commensurate magnetic spin structure, the mech-
anism leading to the formation of the long periodic order, the corresponding spin structure and
modelling the spin dynamics. In Chapter 7 the results are summarised including an outlook
covering possible future investigations.
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2
Neutron scattering principles

The main experimental method of investigation used in the present thesis is neutron scatter-
ing. In contrast to other particle or scattering methods, neutrons have significant advantages in
regards to the investigation of magnetism, as they have a spin, are heavier than electrons and
electrically neutral. As a result they are not diffracted by the charge of the electrons and protons
of the investigated material. This leads to a higher penetration depth. The incident neutrons can
only interact with the material’s magnetic moments or the nuclear potential. Both possibilities
are comparable in regards to their scattering probability. The de Broglie wavelength λ of a
neutron with wave number k, mass mn and velocity v can be calculated using

λ(Å) =
2π

k
=

h

mnv
=

0.286√
E(eV)

. (2.1)

Here h = 2π~ denotes the Planck constant. With typical wavelengths between 40 Å and 0.9 Å
the energy E of the neutron can be tuned to the energy for the excitation of magnons. There-
fore, neutron scattering is the preferred method of investigation for spin wave excitations. Two
different sources for neutrons are mainly used, fission reactors or spallation sources. The first
one is a continuous source and the latter one a pulsed source, both of them have their individual
advantages and instruments located at each of these sources are used in the present study.

2.1 Scattering from crystal structure

The elastic scattering is defined as a scattering without a change in energy between the incident
and scattered neutron. If a change in energy is present this is called inelastic scattering (cf. Sub-
section 2.4). The sample size can be assumed as small in regards to the distance between source
and sample as well as sample and detector. Thus the Fraunhofer approximation can be applied,
which allows us to consider both the incident (i) neutron radiation as well as the scattered (f )
radiation as planar waves with wavevectors ki and kf . In the following, the scattering will be
calculated for monochromatic neutrons for simplicity, but scattering with a white1 neutron beam
also follows the same principles.

1Contains a wide range of wavelengths.
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Chapter 2 Neutron scattering principles

In the case of elastic scattering there is no change in energy of the neutrons. Thus, for the wave
vectors it follows:

ki = |ki| = |kf | = kf =
2π

λ
(2.2)

with λ as the corresponding wave length. Then the scattering vector Q is defined as:

Q = kf − ki V Q = |Q| = 4π

λ
sin θ, (2.3)

with the scattering angle θ. Since the momentum p is conserved according to Eq. 2.1 it follows:

~Q = ~(kf − ki) = pf − pi. (2.4)

In a scattering experiment the intensity I is measured in dependence of the scattering vector.

This is proportional to the scattering cross section
dσ

dΩ
, which is defined as the number of par-

ticles scattered into the solid angle dΩ. For its determination the Born approximation is used,
which states that an incident planar wave will yield a spherical wave upon scattering with a
point-sized target. The intensity of the scattered wave at point r′ is proportional to the interac-

tion potential V (r′). For an incident wave function ψ0 and the Green functionG(r, r′) = e
ik|r−r′|

4π|r−r′|
this can be written as:

Ψ(r) = ψ0(r) +
2mn

~2

∫
G(r, r′)V (r′)Ψ(r′) d3r′ = ψ0 + GV ψ. (2.5)

If the interaction potential is neglected, the scattered wave and the incident wave are the same.
But if the potential is approximated regarding its strength, in a way that for a weaker potential
it is scattered once and for a stronger potential it is scattered twice, this results in the so called
Born series:

Ψ0 = ψ0 no scattering (2.6)

Ψ1 = ψ0 + GV ψ0 scattered once (2.7)

Ψ2 = ψ0 + GV ψ0 + GVGV ψ0 scattered twice (2.8)
...

In the case of neutron scattering the potential can be described as a weak potential in a first
approximation. This leads to the differential scattering cross section, which is defined as an
element of a transition matrix for the interaction potential from the state of the incident wave to
the one of a scattered wave:

dσ

dΩ
=

(
mn

2π~2

)2

| 〈kf |V |ki〉 |2. (2.9)

Considering the scattering by an atom located at R the interaction potential can modelled with
a Fermi pseudo potential:

V (r) =
2π~2

mn

b · δ(r− R). (2.10)

The scattering length b is a measure for the scattering intensity and varies for different elements
as well as their isotopes. For this potential the scattering cross section is calculated to

dσ

dΩ
=

∣∣∣∣∣∑
j

∑
i

σibie
iQ·Rj

∣∣∣∣∣
2

, (2.11)
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2.1 Scattering from crystal structure

with σi denoting the share of an ion in the compound and bi the scattering length of this ion. In
this context it is to be mentioned, that the scattering can be differentiated into two kinds: coher-
ent (coh) and incoherent (incoh) scattering. Thus the scattering cross section can be written as:

dσ

dΩ
=

(
dσ

dΩ

)
coh

+

(
dσ

dΩ

)
incoh

. (2.12)

The incoherent scattering stems from the deviations in the regularity of the lattice and is inde-
pendent from the scattering vector or the structure of the investigated compound. Incoherent
scattering results in an increased scattering background. The coherent scattering describes the
interference of the scattering of the system’s periodic lattice with an average scattering length.
The coherent scattering is the one relevant for the study of the material structure and the inco-
herent scattering will be disregarded in the following.
The scattering intensity for a scattering vector Q depends on its relation to the lattice in real
space. The relation is defined by a discrete Fourier transformation, which creates a reciprocal
lattice from the periodic lattice in real space. The scattering triangle defined in Equation 2.3
allows for a very helpful geometric construction called the Ewald sphere (cf. Fig. 2.1). The
vector ki points from the origin of the real space to the origin of the reciprocal space. A sphere
with a radius of ki is drawn around the origin of the real space and accordingly the position of
the sample. The vector kf is of the same length as ki and is starting at the origin of the real
space as well. The scattering triangle is closed by the vector Q with both the starting and the
end point limited to the surface of the sphere. Considering the underlying reciprocal space, only
the points on the surface of the Ewald sphere can be measured for the specified incident wave
vector ki. In real space this sphere is located at the position of the sample and is projected to
the detector.

O

ki

kf

Q

Figure 2.1: Construction of the Ewald sphere in two dimensions. Bragg reflections are marked in red.

Considering the construction of the Ewald sphere and the differential cross-section for the nu-
clear coherent scattering it is apparent that the positions of atoms Rj and also their periodicity
play an important role for the nuclear scattering. In order to describe the periodicity of a crystal
lattice the idea of a unit cell was introduced as a volume consisting of atoms from which the
whole crystal lattice can be created through translation symmetry. Then, 14 different types of
unit cells have been identified which are called the Bravais lattices. Furthermore, the lattice
symmetry can be described using the 32 point groups. As groups these are closed under their
symmetry operations and keep at least one point invariant, this is why e.g. translation symmetry
is excluded. Combining both and additionally the symmetry operations of screw axes and glide

7



Chapter 2 Neutron scattering principles

planes a more comprehensive description of the symmetry has been derived in the form of 230
space groups, which are listed in the International Tables for Crystallography [Hah06]. In this
thesis, the space groups will be noted with their international symbol also known as Hermann-
Mauguin notation. These are based on the centering of the Bravais lattice and the symmetry
operations along the high symmetry directions. In the case of CaBaCo2Fe2O7 the space group
is P63mc, which means it is a primitive unit cell, along the highest symmetry direction there is
a six-fold screw axis (here the c-axis), along the a + b direction there is a mirror plane with a
normal vector parallel to a + b and, along the a or b-axis, there is a glide plane with a normal
vector parallel to c-axis.

2.2 Scattering from magnetic order

The magnetic scattering is based on the interaction between the spin of the neutron with mag-
netic field created by the unpaired electrons of the scattering atoms. In contrast to the nuclear
scattering the spin of the neutron µN as well as the magnetic field exhibited by the moment of
the electrons B = Bspin + Borbit has a direction, where the scattering depends on the orientation
to one another. This is described by the Zeeman potential:

Vm = −µN · B = −γnµNσ · B, (2.13)

with γn the gyromagnetic factor of the neutrons, µN the nuclear magneton and σ its spin oper-
ator. Assuming the quantization axis along z without loss of generality and scattering changes
the state of the neutron spin, the differential cross section can be calculated by:

dσ

dΩ
=

(
mn

2π~2

)2 ∣∣〈kfσzf |Vm|kiσzi 〉
∣∣2 (2.14)

= (γnr0)
2

∣∣∣∣− 1

2µB

〈
σzf |σ ·M⊥(Q)|σzi

〉∣∣∣∣2 . (2.15)

The detailed calculation can be found in [Squ78]. M(Q) is the Fourier transformed magnetiza-
tion of the sample

M(Q) =

∫
M(r)eiQ·r d3r, (2.16)

but here only the part of the magnetization, which is perpendicular to Q can be observed. The
parallel term of the magnetic dipole field cancel out due to destructive interference and only the
perpendicular term remains, which is defined as

M⊥(Q) = êQ ×M(Q)× êQ, (2.17)

with the unit vector êQ = Q
Q . Two important results can be derived from Equation 2.15. On

the one hand only the magnetisation perpendicular to the scattering vector contributes to the
scattering and on the other hand the scattering depends on the orientation of the neutron spin.
The latter one allows for a method called polarization analysis, which uses the orientation of
the neutron spin to be sensitive to specific scattering contributions (cf. Section 2.3).
In contrast to the nuclear scattering the magnetic scattering takes place at the free electrons of
an atom, which as a whole cannot be considered as a point scatterer. This leads to a magnetic
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2.2 Scattering from magnetic order

form factor fm(Q) of radial symmetry. It describes the decrease in intensity for a deviation
from the forward scattering and is material specific, as it is determined by the Fourier transform
of the atomic spin density. This reduces the intensity of the magnetic scattering observed at Q
with increasing Q. The differential cross section for the magnetic scattering is then given by:

dσ

dΩmag
= (γnr0)

2

∣∣∣∣∣fm(Q)
∑
i

〈Si⊥〉 eiQ·Ri
∣∣∣∣∣
2

, (2.18)

with 〈Si⊥〉 denoting the expectation value of the perpendicular component of the spin moment
Si of atom i. The relevant part for the magnetic order is just the sum and is also known as
the structure factor S(Q). The total scattering FQ is combined from the crystal structure factor
(NQ) and the magnetic contribution:

FQ = NQ + σ ·M⊥(Q) (2.19)

with a differential cross section of
dσ

dΩ
= |FQ|2. (2.20)

In contrast to the nuclear scattering here apart from their positions and periodicity also the di-
rection of the spins is relevant, which is basically described by the magnetic order. The order
arises based on the exchange interaction Jex between two spins, which is defined by the energy
difference between the antisymmetric and symmetric case Jex = E− − E+. These energies are
in turn defined via the overlap integrals of the orbitals. Among the materials with a magnetic
feature different kinds of interactions have been discovered. They have been categorized into
paramagnetic, ferromagnetic, antiferromagnetic and ferrimagnetic ones. Macroscopically the
categorization depends on the materials behaviour under varying an external field and tempera-
ture. However, specifying each material’s category is more difficult as materials undergo transi-
tions with temperature which changes its characteristics from one kind to another. Furthermore,
materials usually exhibit contributions from several kinds at the same temperature. These tran-
sitions can lead to the arise of a magnetic order, which depends on the interplay of interactions
minimizing the energy. Considering a linear chain of ions and spins, here four different kinds
of order relevant for this thesis will be discussed shortly regarding their spin structure as well as
the resulting neutron scattering. As the exchange interaction decreases with distance between
the spins, in many cases considering only the interactions between nearest neighbours is already
sufficient. In the following a Heisenberg nearest neighbour model H = −Jex

∑
i Si · Si+1 is as-

sumed. In the corresponding figures the crystal structure contributions are marked in red and
the magnetic ones in blue. The upper row displays the ions and spins and in the lower row the
resulting scattering.

Ferromagnetic order In a ferromagnetic or-
der the exchange interaction between neighbouring
spins is positive Jex > 0, which means a paral-
lel alignment of the spins is favoured. The lattice
parameter, for both the magnetic order and crystal
structure, is equal. Thus in the scattering the peaks
from the nuclear and the ones from the magnetic
scattering are superimposed.

a∗m = 2π
aa = am

R

Q

Figure 2.2: Illustration of a ferromagnetic
order on a linear chain of ions.
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Chapter 2 Neutron scattering principles

Antiferromagnetic order In case of an antifer-
romagnetic order the exchange interaction between
neighbouring spins is negative Jex < 0 favouring
an antiparallel alignment of the spins. Here the lat-
tice parameter for the magnetic order is doubled in
regards to the lattice parameter of the crystal struc-
ture. Due to the structure factor the intensity at the
crystal Bragg peaks vanishes. This leads to sep-
arated magnetic and crystal structure peaks in the
scattering.

a∗m = π
aam

R

Q

Figure 2.3: Illustration of an antiferromag-
netic order on a linear chain of ions.

Ferrimagnetic order In principle the antiferro-
magnetic order is a special case of the ferrimagnetic
one. Here the exchange interaction between neigh-
bouring spins is negative Jex < 0 as well, but every
second spin has a different length e.g. due to mixed
valence states or ions. Still an antiparallel align-
ment of the spins is favoured. The lattice parameter
for the magnetic order remains doubled. But here
magnetic peaks arise at the crystal Bragg peak po-
sitions in addition to the peaks from antiferromag-
netic order.

a∗mam

R

Q

Figure 2.4: Illustration of an ferrimagnetic
order on a linear chain of ions.

Long-periodic order The previous cases have
been commensurate magnetic orders as the mag-
netic lattice parameters deviates from the crystal
one only by a small integer. However, if more
complex interactions are present a magnetic order
can arise with a long periodicity and several times
larger lattice parameter. Such a long-periodic order
can arise from additional interactions aside from the
main coupling. The scattering peaks corresponding
to the long-periodic order are located close to the
original peaks considering the magnetic order for
the main coupling alone.

a∗m = 2π
na

am = n · a

R

Q

Figure 2.5: Illustration of a long periodic
order with a period of n unit cells for a
prominent ferromagnetic coupling on a lin-

ear chain of ions .

In the context of magnetic order another concept is relevant for the present thesis called frus-
tration [Wan50, Tou77], which describes the fact that not all interactions can be fulfilled at the
same time. This occurs due to competing interactions or geometric frustration [Ram94] and typ-
ically leads to complex and canted spin structures. Such a spin structure is displayed in Fig. 2.5
as an example for the long periodic order, which can for example arise from a Dzyaloshinskii-
Moriya-vector D oriented along the viewing direction. The Dzyaloshinskii-Moriya exchange
interaction introduces the additional term HDM = Dij · (Si × Sj) to the energy minimization.
Since the rotation vector is perpendicular to the propagation vector, the resulting spin structure
is of cycloidal type. Up to now only the interactions have been considered as relevant for the
magnetic order, but depending on its geometry the arrangement of spins in two or three dimen-
sions can have a significant impact as well. The arrangement of antiferromagnetically coupled
spins on the corner of an equilateral triangle is geometrically frustrated as not all couplings
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2.2 Scattering from magnetic order

(a) (b)

Jin

Jout

Jex

Figure 2.6: Cases of frustration in two and three dimensions relevant for the present study, with exchange
interactions Jex, Jin, Jout < 0.

(a) Antiferromagnetically coupled spins order in a 120° structure due to geometric frustration. (b) The
interaction Jin connecting neighbouring blue spins and Jout connecting blue and green spins compete
with each other. For a ratio of Jout/Jin ≥ 1.5 the interaction Jout forces the blue spins to align parallel.

For lower ratios the order on the double tetrahedron becomes more complex.

can be fulfilled at the same time (cf. Fig. 2.6a). Thus, the spins make a compromise, which
in the case of the triangle results in the spins to be rotated 120° to one another. There is no
unique best solution in energy, but a manifold of solutions with the same energy. This is why
such states are called degenerate. Geometries or rather lattices, which are prone to geometric
frustration are ones which consist of triangles, like the triangular or kagome lattice and in three
dimensions a tetrahedron. Here, the double tetrahedron is an important building block (cf. Fig.
2.6b). Depending on the ratio of the exchange interactions, this results in a rather complex
order (cf. Section 4.1 and [MCR+09, KMMC10]). If the structure is incompletely ordered, the
degeneracy provides a lot of freedom to the order of the magnetic structure and interesting types
of order have been found in materials featuring these structures.

Of course this is only a very simplified description of possible spin structures. For a comprehen-
sive categorization the so-called magnetic space groups have been derived from the crystal space
groups using the concept of magnetic superfamily resulting in 1651 different types [Ope86]. A
complete list can be found in [Lit13] with a short introduction found in [Lit08]. As the spins are
axial vectors this usually reduces the symmetry, when changing from the crystal to magnetic
structure. The other important characteristic, which follows from the axial vector, is that the
spin direction is inverted under a mirror symmetry operation. Furthermore, every symmetry op-
eration can be subsequently inverted in time, which is indicated by the notation of the operator
with ′. This leads to the significant increase in possible magnetic space groups. Still the basic
concepts of the crystal space groups remain the same.
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Chapter 2 Neutron scattering principles

2.3 Polarisation analysis

Polarization is defined as the average of the neutron spin operator over the whole beam P = σ.
The first comprehensive study of polarized neutron scattering for simple magnetic structures
was published by Halpern and Johnson in 1939 [HJ39]. In 1963 the formalism was extended
in order to allow the investigation of more complex magnetic structures containing for example
spin spirals by Blume [Blu63] and Maleev [MBS63]. In contrast to the previously discussed
type of neutron scattering, which is called unpolarised P = 0 accordingly, here the orientation
of the incoming neutrons is aligned using a polariser. There are different methods used for
polarization, but basically the dependence of the scattering or absorption length on the spin ori-
entation is used to get rid of the neutrons with undesired orientation. Additional devices called
flipper are used to change the orientation of the neutrons. They basically consist of two coils
creating a crossed magnetic field, which can be tuned to apply a field inside the flipper which
rotates the neutron spins through the Larmor precession. In order to maintain the polarization
throughout the instrument an external guide field is applied along the polarization axis. If a
polarization setup contains only these components it is called half-polarized as the scattered
neutrons are summed regarding their final state. For a full-polarized setup an analyser is added
between sample and detector, which works in the same manner as the polariser. Assuming a
guide field along the z-direction four different scattering combinations exist: up-up, up-down,
down-up and down-down. The first denotes the orientation of the incoming neutrons regarding
êz and second of the scattered neutrons. In this sense the up-up and down-down channels are
called the non spin-flip and the up-down and down-up channels the spin-flip ones. A spin-flip
process takes place if a neutron is scattered by the magnetic field of a spin of the sample and the
neutron spin is not collinear with the magnetic field. In general the nuclear scattering is always
measured in the non spin-flip channels and depending on the orientation of the moments in the
material magnetic scattering is observed in the spin-flip and non spin-flip channel. Until 1969,
when Moon, Riste and Koehler published their work on polarized neutron scattering [MRK69],
the method of polarization analysis referred to measurements of the difference in the polariza-
tion between the polarization of the incoming Pi and scattered beam and Pf , which occurs due
to spin-flip scattering. Here, the different polarization channels allow access to measure the
different cross sections, which in turn are used for further evaluation via a difference method in
order to extract specific scattering contributions. They already noted a special case where the
neutron polarization at the sample is parallel to the scattering vector Q. Since only the mag-
netic scattering contribution from moments perpendicular to Q can be measured (cf. Eq. 2.15)
and in this case the neutron spin is perpendicular to these moments, the magnetic scattering is
just observed in the spin-flip channel. This offers a nice separation between the nuclear and
magnetic scattering. But in order to change the orientation of polarization the orientation of
the guide field must vary smoothly in order to allow for an adiabatic spin rotation, otherwise
this leads to a depolarisation of the neutron beam. The idea (using polarizations along Q and
êz) was extended by Schärpf and Capellmann in 1993 introducing the XYZ-difference method
[SC93], which makes use of different neutron polarizations at the sample position specifically
along êx, êy and êz. The coordinate system is defined as follows. In general the polarization of
the incident neutrons is perpendicular to the instrument floor, which is êz. Then the direction of
the scattering vector is defined as êx and êy for an orthogonal right-handed coordinate system.
In this publication they addressed the problem, that in this coordinate system the polarization
is only valid for specific lines in Q. This prevented effective use of detector arrays, which
would allow for higher intensity. They successfully derived the equations for powder and sin-
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gle crystal diffraction experiments, which allow for a correction of the polarization in detector
arrays located in the êx-êy plane using a parameter called Schärpf angle α. In the work from
Schweika [Sch10] this was elaborated further. Based on the 12 polarization channels available
from positive and negative fields along êx, êy and êz as well as distinguishing the spin-flip and
non-spin-flip scattering it was shown that some major scattering contributions can be separated
for single crystals using a difference method. In the present thesis, the polarization analysis is
used only in combination with point detectors or in the case of area detectors the corrections
can be neglected due to the distance between sample and detector in comparison to the area of
the detector. In [Blu63, MBS63] formula for the intensity I and the intensity of the final polar-
isation PfI were derived. With the reduced formalism introduced in [Mal02] and the notation
from [Sch10] (N(Q) = N and M⊥(Q) = M⊥) this can be written as

I = N †N + M†⊥M⊥ + Pi ∗M†⊥N + Pi ∗M⊥N
† + iPi(M†⊥ ×M⊥) (2.21)

and

PfI = PiN
†N + (Pi ∗M†⊥)M⊥ + (Pi ∗M⊥)M⊥ − Pi(M†⊥M⊥)

+ iN(Pi ×M†⊥)− iN †(Pi ×M⊥) +NM†⊥ +N †M⊥ − i(M†⊥ ×M⊥).
(2.22)

With ν ∈ x, y, z and ν ∈ x, y, z, Iνν denotes the measured intensity for a non spin-flip channel
and Iνν the measured intensity for a spin-flip channel. Here the entries on the diagonal of the
matrix are sufficient for the scattering contributions of interest. For these channels the spin-flip
and the non spin-flip scattering intensity adds up to the scattering intensity without polarization:

I = Iνν + Iνν (2.23)

and the final polarization decreases by the amount of the spin-flip scattering:

PfI = Iνν − Iνν . (2.24)

From the Equations 2.23 and 2.24 it follows

Iνν =
1

2
(I + PfI) and Iνν =

1

2
(I − PfI). (2.25)

With the polarization along ν this results in

Iνν = N †N +NM†⊥,ν +N †M⊥,ν + M†⊥,νM⊥,ν (2.26)

and
Iνν = M†⊥M⊥ −M†⊥,νM⊥,ν + i(M†⊥ ×M⊥)ν . (2.27)

Analogue also the scattering channels

Iνν = N †N −NM⊥,ν −N †M⊥,ν + M†⊥,νM⊥,ν (2.28)

and
Iνν = M†⊥M⊥ −M†⊥,νM⊥,ν − i(M†⊥ ×M⊥)ν (2.29)

can be calculated. Using the Equations (2.26–2.29) the scattering contributions can be sep-
arated from the polarization channels. Since only the magnetic moment perpendicular to Q
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Chapter 2 Neutron scattering principles

is contributing in neutron scattering and êx is along Q, the total magnetic scattering can be
determined using

|M⊥|2 =
1

2
(Ixx + Ixx) = M†⊥,yM⊥,y + M†⊥,zM⊥,z. (2.30)

On the other hand, subtracting these channels leads to the chiral magnetic scattering

Ichiral = Ixx − Ixx = 2i(M†⊥ ×M⊥)x. (2.31)

In order to determine the scattering contributions from moments parallel to êy e.g. the spin-flip
channels of the polarization along êz can be used

M †
⊥,yM⊥,y =

1

2
(Izz + Izz) = (My)

2. (2.32)

and for the scattering contribution from moments parallel to êz the non spin-flip channels

M †
⊥,zM⊥,z ≈

1

2
(Izz + Izz) = M †

⊥,zM⊥,z +N †N ≈ (Mz)
2. (2.33)

under the assumption of vanishing nuclear scattering at the same Q-vector. In the case of an
antiferromagnetically ordered compound this can be valid. The polarization channels along
êz are experimentally advantageous as they usually can be set up the most easiest. There are
other interesting scattering contributions, which can be separated [Sch10], however only the
presented ones are used in the present study.

2.4 Inelastic scattering

Up to now it was assumed, that the energy of the neutron is conserved under scattering. In
the case of inelastic scattering this constraint is removed. Therefore not only the momentum
conservation but also the energy conservation has to be considered:

~2

2mn

(k2i − k2f ) = ~ωq (2.34)

ki − kf = τ ± q = Q, (2.35)

with the energy for exciting a spin wave or rather a magnon ~ωq, a reciprocal lattice vector τ
and the reduced wave vector q. In general this is worked out considering the spin states of the
neutron σ and using the double differential cross section:

d2σ

dΩdEf
=
kf
ki

(
mn

2π~2

)2 ∣∣〈kf , σf , λf |V |ki, σi, λi〉∣∣2 δ(~ω + Eλi − Eλf ). (2.36)

For single magnon processes the linear spin wave theory can be applied. Then this can be further
evaluated using the formula for energy (Eq. 2.34) and momentum conservation (Eq. 2.35) and
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the scattering cross section of a magnon is derived as (an extensive derivation can be found in
[Squ78]):

d2σ

dΩdEf
= (γr0)

2kf
ki

1

2π~
1

2
S(1 + Q̂

2

z)(
1

2
gfm(Q))2e−2W (2.37)

×
∑
τ ,q

(δ(Q− q− τ )δ(~ωq − ~ω) 〈nq + 1〉

+δ(Q + q− τ )δ(~ωq + ~ω) 〈nq〉),

with the g-factor g and Debye-Waller factor e−W . The thermal average of the number of
magnons is given at q by the Bose-Einstein statistics:

〈nq〉 =
1

e
~ωq
kBT − 1

(2.38)

with the Boltzmann constant kB and at a temperature T . In the double differential cross section
the sum is calculated over two different summands. The first one describes the creation and
second the annihilation of a magnon. In the inelastic experiments conducted in the present
study, only the excitation of magnons was investigated. Then it follows for the momentum
conservation:

ki − kf = τ + q = Q. (2.39)

For an experiment this has the following consequences. The energy of the incident neutrons
Ei is selected, which also defines the incident wave vector ki. With fixed ki the energy of the
excited magnon ~ωq only depends on the wave vector of the scattered neutron kf . At the same
time the scattering vector Q depends solely on kf for constant ki. Combining both functions
this results in a paraboloid in energy with its maximum at Ei > 0 and ki. Only the points on its
surface can be measured for a fixed parameter set. Depending on the flexibility of an instrument
this directly limits the accessible points in Q and energy.
The elastic structure factor S(Q) can be generalized to the dynamic structure factor [Hov54],
defined as:

S(Q, ω) =
N

2π

∫∫
ei(Q∗r−ωt) ·G(r, t) drdt, (2.40)

which is basically the Fourier transformation of the pair distribution function G(r, t) of the
system’s spins in time and space.

Dispersions of linear spin chains In Subsection 2.2 the magnetic order for different
coupling types on a linear spin chain was discussed. Exemplary the spin dispersions for the
commensurate ordered spin structures can be calculated semi classically (see [Hel88] for the
calculations). The possible number of dispersions depends on the spins per unit cell, which is
a single one in the case of the ferromagnetic spin chain and two in the antiferromagnetic and
ferrimagnetic case (considering only magnon excitations). With spin lengths S, SA and SB, and
the reciprocal lattice parameter a∗m, the dispersions are defined as follows:
Ferromagnetic spin chain

~ω(q) = 4|Jex|S
(

1− cos
2πq

a∗m

)
, (2.41)
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antiferromagnetic spin chain

~ω(q) = 4S

∣∣∣∣Jex · sin
(
πq

a∗m

)∣∣∣∣ (2.42)

and ferrimagnetic spin chain assuming SA ≥ SB > 0 for the two different spins

~ω(q) = 2|Jex|

[√
(SA − SB)2 + 4SASB sin2

(
πq

a∗m

)
± (SA − SB)

]
. (2.43)

The resulting dispersion are displayed in Figure 2.7. Comparing the dispersions for the ferro-
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Figure 2.7: Dispersions calculated for linear spin chains, for ferromagnetically (left), antiferromagnet-
ically (middle) and ferrimagnetically coupled spins (right). In the case of the ferrimagnetic spin chain

SB = 1/3 · S and SA = S.

magnetic and antiferromagnetic spin chain, both are basically trigonometric functions, but in the
first case close to q = 0 there is a continuous quadratic dependence of energy on q, while in the
antiferromagnetic case there is a linear dependence. Despite the same absolute spin length and
exchange interaction the dispersions for the antiferromagnetic chain stretch only half the range
in energy. Even with the close connection between the antiferromagnetic and the ferrimagnetic
spin chain their dispersions are quite different. Of course a lower and upper excitation band
exists in the ferrimagnetic case, which are separated for SA > 2SB, but also the dependence of
dispersions close to q = 0 is quadratic instead of linear. Yet the energy dependence close to the
respective maxima is the same as for the antiferromagnetic chain.
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3
Methodology for neutron scattering

experiments

The goal of the present study is to understand the magnetic order and spin dynamics exhibited
by CaBaCo2Fe2O7 and how this relates to the other isostructural compounds of the Swedenbor-
gite family. The crystal structure of CaBaCo2Fe2O7 has already been solved using X-ray scat-
tering [Val04b] and refined using neutron scattering [RRS+14]. Its magnetic properties have
been investigated in magnetization measurements and single crystal neutron diffraction exper-
iments [Ros11]. However, a determination of the magnetic structure has yet to be performed
and some results especially a spin reorientation (cf. Fig. 5.3) cannot be explained with a simple
Heisenberg nearest neighbour model (cf. Section 4.1). This will be discussed in Subsection
5.1.2. In order to address these open questions, instruments with high resolution are necessary.
At the same time in the case of CaBaCo2Fe2O7 the use of XYZ-polarization analysis gave a
better insight to the magnetic ordering amongst others revealing a spin reorientation not visible
in the total magnetic scattering [Ros11]. Therefore, the usage of instruments providing both
polarization analysis as well as high resolution is advised. Yet both methods come along with a
significant decrease in neutron flux. That is why they are not widely available and experiments
will take more time for the same statistics compared to experiments, which do not use these op-
tions. In this study we have been challenged to add new methods to existing instruments to suit
our needs or use suitable ones in new ways if they are designed for different tasks. If the way,
a specific instrument is usually used, was not sufficient for our studies, a detailed description
is presented in the following. However, it is also important to back the new methods up with
established ones, so the results can be cross-checked with tested setups. Where the instrument
has been used in its usual way and comprehensive descriptions are available they will be refer-
enced where used in Chapter 5.
The strategy we have utilized in the course of the study was to start with a widespread inves-
tigation of the compound and then to focus on specific observations of interest. Therefore, we
have started with the investigation of the magnetic order using a neutron powder diffractometer
with a high resolution, POWGEN at SNS, Oak Ridge (USA). This way it was assured, that no
magnetic features were missed. However, in powder diffractograms the actual peak structure
is not visible due to the powder average. Previously the magnetic structure has been refined
successfully for similar compounds from powder data [SYM+06, CRZM06, CPH+10]. Yet, in
the case of a more complex type of magnetic order, powder diffraction might be insufficient.
In order to solve this issue a four-circle single crystal diffractometer was used next, Morpheus
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(PSI, Villigen, Switzerland). With the help of a four-circle setup a larger set of peaks distinct
from the background can be measured separately (cf. Tables D.1 and D.3). Here, the integrated
intensities have been determined to solve the magnetic structure. These first measurements al-
ready indicate a more complex magnetic structure, which in order to understand required to
resolve the peaks in Q as well as a large coverage in reciprocal space to ascertain that this
structure is repeated regularly. The ideal instrument of choice has been the single crystal neu-
tron diffractometer BioDiff (MLZ, Garching, Germany) [SOL+11] (cf. Section 3.2). Following
this, the structure of the magnetic ordering is investigated by mapping few peaks in Q. For
this purpose experiments have been conducted on two different single crystal diffractometers,
Morpheus and MIRA (MLZ, Garching, Germany), mapping a smaller set of magnetic Bragg
peaks. In order to investigate the underlying spin structure in detail, polarization analysis has
been applied, which allows to measure the vector properties of the scattering, distinguishing
in-plane and out-of plane moments as well as chiral properties (cf. Section 3.3). Combining the
results from the different experiments allowed for a reliable solution. Still, further insight can
be gained from the spin dynamics present in the compound. Previous studies already revealed
a rather complex structure [Rei11]. Therefore an adopted resolution is required to resolve the
excitations in Q and energy. A good resolution is provided at triple axis spectrometers, but such
instruments only allow for measuring the excitations along certain axes and is either suited for
excitations at low energies (can reach only up to 15 to 20 meV with cold neutrons depending on
instrument and Q) or at higher energies with hot neutrons, again at the drawback of decreased
resolution. Thus different instruments have to be used to cover the whole range in excitations.
A new instrument type has been developed recently, which is a time-of-flight spectrometer us-
ing several incident energies simultaneously. Depending on which part in Q and energy is of
interest the data set from the incident energy providing the best resolution still reaching this part
can be used.

3.1 Sample description

In total three different single crystals and a powder sample grounded from a single crystal
of CaBaCo2Fe2O7 have been used for the experiments. All single crystals have been synthe-
sized using the same floating zone method (M. Valldor). The synthesis is described in detail in
[RRS+14]. Two large single crystals have been grown from a preoriented seed (cf. Fig. 3.1a).
The orientations have been chosen in a way, that if the crystal is mounted with the main rotation
axis parallel to the growth direction, the horizontal scattering plane corresponds to the (h k 0)
(∼ 3 cm3 and ∼ 5 g) and (hh l) (∼ 2 cm3 and ∼ 3 g) scattering planes, respectively, to about
2°. These scattering planes have been chosen as they are the most interesting in hexagonal
symmetry in combination with antiferromagnetic order. A crystal with a (h 0 l) orientation was
available as well, but not used in the thesis at hand. The third single crystal is of smaller size
(2 · 2 · 2 mm3 and 37.5 mg) with its top and bottom planes perpendicular to the c-axis (cf. Fig.
3.1b).
At the start of the study mainly the larger single crystals have been used as they offer a higher
flux of scattered neutrons. On the one hand this allows for better statistics or shorter mea-
surement times, on the other hand some experiments are not reasonable on small crystals due
to insufficient statistics e.g. inelastic neutron scattering experiments. After determining the
general magnetic order using the larger crystals and figuring out what might be of specific in-
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(a) (b)

Figure 3.1: Shape and size differences of the single crystals used in the experiments relevant for the
present thesis.

(a) Large single crystals with (hh l)- and (h k 0)-orientation and aluminium sample holders. (b) Small
crystal with its c-axis oriented parallel to the normal vector of the paper.

terest the smaller crystal was used because of the enhanced resolution. This way the magnetic
structure can be investigated in detail.

3.2 Exploring the Q-space with high resolution

The single-crystal neutron diffractometer BioDiff is situated at the FRM II in Garching (Ger-
many). It is designed with a high resolution intended for resolving structures of large biological
macromolecules. In contrast to most single crystal diffractometers, which use small area detec-
tors or even point detectors, here a large cylindrical shaped area detector is used covering about
3.02π sr [SOL+11]. The small sample was mounted on a aluminium rod and covered with the
aluminium container of the cryostat (cf. Fig. 3.2). Then the sample position is adjusted in x, y
and z regarding the incident beam. Instead of the image detector a CCD camera was used as a
detector, which allows for a faster recording and reading. In fact this measurement was the first
one of a solid state crystal with a small (relative to the usually measured protein crystals) unit
cell and at temperatures down to 4 K. Due to the antiferromagnetic order, the magnetic unit cell
of CaBaCo2Fe2O7 is enlarged, but still only up to eight peaks are visible on the same detector
image instead of a several hundred peaks. This renders the usual methods to determine the ori-
entation and structure from a single frame impossible and the development of a new software,
which uses the whole set of measurements for the evaluation, was required. As discussed in
Section 2.1 the Ewald sphere is projected onto the area detector. Due to the cylindrical shape of
the detector only the top and bottom part of the Ewald sphere are not covered (see Fig. 3.3a).
Knowing the dimensions of the area detector each pixel position p is calculated to spherical
coordinates of the Ewald sphere, with the incoming beam at ϕp = 0, θp = 0. Then the sam-
ple rotation ωn for each step n and the incoming wavelength λi = 2π

ki
are used to convert the
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Figure 3.2: Instrumental setup at Biodiff. Sample is mounted inside an aluminium can. The cylindrical
image plate was moved to the bottom for mounting the can. The CCD camera is to the back and the

incident beam to the right.

detector pixel positions into Q-space:

Qp = ki ·

 cosωn − sinωn 0
sinωn cosωn 0

0 0 1

 ·
 cos θp · cosϕp + 1
− cos θp · sinϕp

sin θp

 . (3.1)

It is preferable to determine the orientation matrix of the crystal, which can be used to correct
for a misalignment. Yet this was not possible using the available software. In case of the inves-
tigated single crystal this is a few degrees only, which will not yield huge deviations for single
scattering planes. After the conversion the detector images can be sorted in a three dimensional
rectangular regular grid, while normalizing by the amount of pixels per volume element. After-
wards a volume of the grid can be selected and summed up along one of the directions, which
will yield a two dimensional image with the colour code related to the measured intensity. In
the specific case of this experiment the step width for the sample rotation has been chosen in
relation to the instrument resolution, meaning the addition of intermediate steps will not result
in additional information. Still the shape of the Ewald sphere yields a non-regular grid with a
lower density in certain volumes. In order to prevent empty elements in these volumes of the
measured Q-space, while keeping a high resolution of the regular grid, the detector images have
been interpolated. Let the geometry of two Ewald spheres related to two detector imagesDn and
Dn+1 of neighbouring sample rotation steps n and n+ 1 differ in rotation by ∆n = ωn+1 − ωn
(cf. Fig. 3.3b). Then the intensity In,i,p for pixel p of each interpolated detector image will be
calculated weighing the pixels’ intensity of the neighbouring detector images according to its
intermediate rotation ωi, with ωn < ωi < ωn+1:

In,ωi,p = In,ωn+1,p
· ωi − ωn

∆n

+ In,ωn,p ·
ωn+1 − ωi

∆n

. (3.2)

The resulting detector images will be sorted into the regular grid in the same manner. The
interpolation takes place along the segment of a circle, which is physically questionable. But
considering the already small rotation steps, this is a justifiable approximation and allows for a
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significantly faster computation.
Lastly, it is important to mention, that all detector images feature a similar periodic intensity
pattern as systematic background, which stems from the photoelectric reading mechanism. This
results in a relatively high uniform background in the extracted cuts. That is why scattering of
lower intensity might not be observable.
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Figure 3.3: Schematics regarding the evaluation of the detector images taken at BioDiff.
(a) The Ewald sphere of the scattered beam is projected onto the cylindrically shaped detector plate. (b)
Horizontal cut through the Ewald sphere displaying the method of interpolation between two detector

images of neighbouring rotation steps.

3.3 Combining polarisation analysis with four-circle ge-
ometry

The combination of a polarization analysis with a four-circle geometry is very helpful as it
combines two advantages. On the one hand a four-circle diffractometer provides the versatil-
ity to access a lot of peaks of different scattering planes using the same sample. Therefore,
this geometry is not only used for neutron scattering experiments but also widely spread for
X-ray scattering experiments as well. On the other hand the polarization analysis offers a more
comprehensive insight into the spin structure of the material’s magnetic order. Still this com-
bination especially considering the more advanced XYZ-polarization analysis is quite unusual
and, to our knowledge, there are no experiments providing it. Therefore, it was necessary to
construct additional parts, which allow the magnetic field at the sample position to be tuned,
in order to complete the setup. In the following, two different approaches will be presented,
first using a cage of permanent magnets at Morpheus and second using hand-wound coils at
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MIRA. However it is essential to provide a short introduction in to the geometry of the four-
circle diffractometer.
The name of the geometry stems from the four different angles which are used to rotate the
crystal as well as the detector to measure at each desired point in Q-space. Theoretically, three
angles should be sufficient, namely an angle χ to cant the horizontal scattering plane, an angle
φ, which is on the circle of χ, to rotate the sample round itself and an angle 2θ for the rotation of
the detector arm along the instrument floor. However, in regards of the actual instrumentation
the dimensions of a setup put constraints on the range of these angles. In order to compensate
for that four angles have been found to be ideal. The additional angle ω is used to rotate the
sample around the normal vector of the horizontal scattering plane. This also allows access to
the same points in Q-space using different combinations of angles, which is helpful in the case
of further equipment being introduced to the setup. Apart from the polarisation analysis also
the cryostat, required for temperature dependent measurements, puts additional constraints on
the movability.

The neutron scattering instrument Morpheus is located at the spallation source of the Paul Scher-
rer institute in Villigen (Switzerland) and is a multi-purpose instrument as the single parts can
be interchanged according to the specific needs. Thus for every new experiment the user can
and has to adjust the instrument. This allows for a wide range of possibilities covering elas-
tic diffraction as well as reflectometer geometry. Here two different setups have been used.
The first one was optimized in order to measure the integrated intensities on as many magnetic
Bragg peaks as possible on the large crystal with hhl-orientation, whereas the other setup is in-
tended to map several magnetic Bragg peaks with polarization analysis on the large crystal with
hk0-orientation. In both cases we are interested in accessing the magnetic scattering of different
scattering planes, which is why the instrument was setup consistently as a single crystal four-
circle diffractometer. The first three circles are provided by mounting the sample in a Eulerian
cradle and the last one is the detector arm. At the end of the detector arm a point detector is
mounted. For the first experiment this is already sufficient and provides the widest possible
range for the angles. But for the second one the setup was extended to provide polarization
analysis (cf. Fig. 3.4). The necessary parts have been described in Section 2.3. Here polar-
izing supermirrors and a Mezei-type flipper have been used. The guide field has been created
using permanent magnets. The polarization was setup in a so-called crossed way. Such that the
analyser scatters the neutrons which have not been flipped by the scattering with the sample.
The spin flipped neutrons are measured by a point detector. Using the flipper both channels are
accessible. The magnetic field responsible for the neutron orientation at the sample position is
created with a small cage built from permanent magnets and metal plates (cf. inset of Fig. 3.4).
Thus, a manual reassembling of the cage is necessary for the measurement of polarization chan-
nels with a different magnetic field. Due to the construction with metal plates and permanent
magnets this was most practical for magnetic fields parallel to êx direction. The metal plates
normal vector points perpendicular to the area normal vector of the Eulerian cradle and parallel
to Q. Yet, keeping the magnetic field (anti)parallel to the scattering vector as desired for the
polarization analysis requires a fixed relation between the ω and 2θ angles, which reduces the
accessible Q-space. Introducing the magnetic cage into the Eulerian cradle strongly restricts the
accessible angle range on the one hand due to the cryostat hitting the cage or the cage blocking
the incident and scattered neutron beam.

The neutron scattering instrument MIRA located at the FRM II in Garching (Germany) is an-
other multi-purpose instrument, which has been used successfully among others as a reflectome-
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Figure 3.4: Schematic drawing of the polarization analysis setup at the neutron diffractometer Morpheus

for the polarization channel H parallel to Q. The inset shows the Eulerian cradle and inside the metal

plates held together with the permanent magnets, as well as in the middle the permanent magnets for the

guide field and to the right the analyser.

ter or even a triple axis spectrometer [GBJ+07]. Similar to the setup for Morpheus a four-circle

geometry is used together with a full polarization option including a flipper and an analyser. But

here a 20 × 20 cm2 position sensitive detector (PSD) with a 1 × 2mm2 resolution is available,

which allows one to resolve the magnetic peaks along the horizontal and vertical direction at

the same time. The large crystal with (h k 0)-orientation and the small crystal have been mea-

sured. Both crystals have been oriented with their c-axis parallel to the rotation axis for angle

ω. This allows for measurements in the (h k 0)-scattering plane without rotating around other

angles. From the experiment at BioDiff it has been found, that the magnetic peaks are broad

within the scattering plane but sharp along the perpendicular direction. Thus the supermirror

was mounted with the mirrors horizontal to prevent discontinuity in the magnetic peaks’ de-

tector image stemming from the wedge formed by two mirrors. Provided by the instrument a

fully polarized option was available [GBP03], consisting of polariser, analyser and guide fields

(see Figs. 3.5a and 3.6). But the XYZ-polarization analysis has been found necessary in our

case. Thus around the sample position a cage formed by electromagnetic coils has been created

(see Fig. 3.5b), allowing for a tuning of the magnetic field at the sample position along ±x
and +z direction. In comparison to the setup at Morpheus this one allows for easier change of

the magnetic field, reproducibility and even wider rotations of the Eulerian cradle. Also, using

a combination of coil currents other field contributions at the sample position can be compen-

sated. The circle of the detector arm has been linked to the ω-angle in a way that the conditions

for XYZ-polarization analysis are fulfilled (H±x ‖ Q). The general setup of the magnetic guide

fields was optimized to allow for an adiabatic spin reorientation in combination with the hand-

wound coils using a magnetic probe. Then the coil currents were calibrated using the spin-flip

ratio observed on a crystal structure peak. As the flipper is far away from the sample, its mag-

netic field has only a minor influence compared to the coils for the neutron spin orientation at
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the sample position and also vice-versa. Thus, the flipper currents were optimized indepen-
dently.
From previous experiments using the instrument as a triple axis spectrometer (TAS) the meth-
ods for evaluating the detector images for measurements, which keep to TAS geometry, have
been readily available and the equations for the XYZ-polarization analysis could be added to
the evaluation. In this geometry the measured detector images are summed perpendicular to
the horizontal scattering plane increasing the statistics, which is a valid simplification consider-
ing the distance between sample and detector. Yet here the magnetic peaks in other scattering
planes ((h k 1) and (h k 2)) were measured as well, at this point the vertical arrays of the de-
tector plate are no longer perpendicular to these scattering planes. In this case, summing the
detector vertically contributes intensities to the false positions. Thus, the evaluation methods
had to be improved by converting each detector pixel into three dimensional Q-space based on
the instrument geometry. Afterwards the points in Q of each set of detector images are sorted
into a regular rectangular grid, similar to the method used for BioDiff. The density of the mea-
sured pixels is increased using the same interpolation between neighbouring detector images as
described for BioDiff (cf. Section 3.2). Due to the size of the analyser and its distance to the
detector, only part of the area detector is effectively covered by the analyser. Also the casing of
the analyser is visible as a significant drop in intensity on the detector images, obstructing the
scattered neutrons. For each sample and experimental setup, the pixel array detecting neutrons,
which have passed through the analyser, is selected and the rest is masked in the software in
order to decrease the background and contributions from other channels. In cases where no
analyser was installed the whole detector image is used in the software.

(a) (b)

Figure 3.5: Polarization setup on the neutron diffractometer MIRA.
(a) Overall setup with the incoming beam from the right. (b) Close up of the cage of hand-wound coils

at the sample position.

In both cases the polarization setups allow to measure the polarization channels Ixx and Ixx,
because the crystal and magnetic Bragg peaks are separated in Q for K-type antiferromagnetic
ordered compounds like CaBaCo2Fe2O7. Thus the Equations 2.30 and 2.31 can be used to
calculate the scattering contributions total magnetic scattering and chiral magnetic scattering.
The two other polarization channels give insight into the orientation of the moments regarding
the scattering plane. The channel Izz is proportional to the scattering from moments parallel
to the scattering plane (cf. Eq. 2.32) and Izz is proportional to the scattering from moments
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Figure 3.6: Schematic of the configuration for the polarization channel H parallel to Q setup at the

neutron diffractometer MIRA (cf. Fig. 3.5).

perpendicular to the scattering plane (cf. Eq. 2.33).

3.4 Time-of-flight spectroscopy and data preparation

4Seasons is one of two neutron time-of-flight spectrometers found at the spallation source of the

MLF facility of J-Parc in Tokai (Japan) [KNN+09, KNI+13]. It provides an angular detector

coverage of 90° of position sensitive He3 coils along the horizontal plane, and also a vertical

angular coverage of 52°. The incoming neutron flux is highest in the thermal regime at up

to 300 meV. It stands out from other experiments like e.g. ARCS at the SNS in Oak Ridge

(USA), because it supports multi-incident-energy measurements. The unused detector time in

the distance vs. time diagram stemming from the time between two pulses can be filled with the

scattering from neutrons of different incident energies [LSM08]. At 4Seasons one can measure

the excitations with up to four different incident energies at the same time. This allows for

adopted resolution in energy and Q-space at the different energy levels as well as measuring

different parts of the Q-space at the same time. As the inelastic scattering usually suffers from

the low statistics or longer measurement times, this is a significant improvement. Depending on

the choice of energies this comes at the drawback of the higher energies in spin wave excitation

being contaminated from the excited neutrons scattered at an earlier time in the distance vs.

time diagram.

As this kind of instruments covers a huge part of Q-space, in principle, only a rough orientation

of the sample is necessary, which is done beforehand. Here the instrument itself did not offer a

possibility to improve the orientation. The data is collected in coordinates of scattering angles

and time-of-flight, and need to be transformed to Q and energy-space. The transformed data as
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received shows a small misalignment of the sample (cf. Fig. 3.7a) and a correction was needed
to make best use of the data. In order to correct the remaining misalignment by software the
orientation of the crystal has to be determined during the experiment. This can be achieved by
performing a so-called Laue diffraction using a white neutron beam with dephasing the chopper.
Due to the band of wavelengths the Bragg condition is fulfilled for a huge set of Bragg peaks at
the same time, which can be in turn used to determine the crystal orientation. Such a method is
applied at ARCS, but was not available here. Thus, the orientation has to be determined from
the measured data set. One possibility is to use the regular grid of the Bragg reflections. If one
can rotate the data set in a way that the Bragg reflections are superimposed along different view-
ing directions, the orientation of the crystal can be easily extract. Technically the reorientation
is trivial, but these data sets can become quite large (≈ 100 GB), which is computational chal-
lenging. Together with the IT department of the JCNS/PGI of the Forschungszentrum Jülich
a new software was developed which allows for displaying these huge datasets and real-time
rotation at the same time [Rhi14]. The determined orientation will be used for the data eval-
uation in Subsection 5.6.2. The benefit of a corrected sample misalignment, even if it is only
slightly (here about 2°), is, that the reciprocal lattice is set up for the evaluation allowing for
cuts based on this lattice. Also integration along the axes of this lattice will add up the measured
excitations without blurring these further. Otherwise hardly any evaluation can be performed.
Here the large single crystal with (hh l)-orientation has been measured. The impact of the mis-
alignment can be seen in Figure 3.7a especially in comparison with the reoriented dataset (see
Fig. 3.7b).

(a) (b)

Figure 3.7: Correction of the misalignment present in the hhl-oriented single crystal measured at
4Seasons. Here the measurement at 4 K with an incident energy of 90 meV is shown.

(a) In case of the misaligned crystal the {hh l}-scattering planes show a doubling of peaks. (b) After
applying a slight reorientation the magnetic and crystal structure peaks of the {hh l}-scattering planes

superimpose perfectly.
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4
Magnetic frustration in the layered

kagome system of the Swedenborgite
structure

During the last few years, the study of compounds exhibiting unusual magnetic order due to
geometric frustration has attracted major interest. They offer opportunities to observe novel or-
dering phenomena. Some material classes such as the pyrochlores have been investigated quite
intensively. Another class, the Swedenborgites, have been discovered just recently. The com-
pound family is named after the original mineral NaBe4SbO7 [AB33]. The hexagonal structure
was determined to be of the P63mc crystallographic space group. This material features trian-
gular and kagome layers of Beryllium ions stacked along the c-direction parallel to the six fold
screw axis (cf. Fig. 4.1).

a b

c

Figure 4.1: Crystal structure of the mineral NaBe4SbO7 called Swedenborgite [PKW35].

These two dimensional lattices are of great interest, because they are prone to geometric frustra-
tion. If the lattices are formed by magnetic ions and antiferromagnetic interactions are present,
it can result in a huge manifold of spin states equivalent in energy. In [VA02] it was shown,
that the Beryllium ions can be substituted with magnetic ions by synthesizing the compound
YBaCo4O7. Here the cobalt ions form magnetic triangular and kagome layers, which results
in columns of double tetrahedra along the c-axis on a triangular layer [VSS09]. In the follow-
ing years various other isostructural compounds have been successfully synthesized with purely
magnetic ions on the Beryllium sites like YBaCo3FeO7, CaBaCo3FeO7 and CaBaCo2Fe2O7 and
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also with partially non magnetic ions like CaBaCo3AlO7 and YBaCoZn4O7 [Val04b]. Already
in magnetisation and susceptibility measurements they displayed complex magnetic proper-
ties, e.g. spin-glass-like in YBaCo4−xZnxO7 [Val04a] and (Ca,Y)Ba(Co,Fe,Al,Zn)4O7 [Val05a]
or disordered antiferromagnets for CaBaCo4−x−yZnxAlyO7 [Val05b]. Further studies reveal a
large variety of ordering phenomena in various experiments as well, e.g. short-range order, 1d
order, 2d order, spin glass or spin liquids [SYM+06, SVL07, MCR+09, CRZM06, RPCM11,
HMZ+06]. Up to now the only materials observed to exhibit a 3D magnetic order undergo a
structural transition from the hexagonal space group to an orthorhombic one, which takes place
at a higher temperature [HMZ+06, KCR+09, VSS09]. Therefore, these compounds are not
suitable for the study of the magnetic order in the Swedenborgite structure.

4.1 Model description of the magnetic order

In [MCR+09, KMMC10] a Heisenberg nearest neighbour model has been developed to model
the scattering observed in YBaCo4O7 belonging to the Swedenborgites. But as all Swedenbor-
gites share the same magnetic structure the model is useful for other compounds as well. The
magnetic ions form both kagome and triangular layers, which are stacked along the c-direction.
While the triangular layer can be mirrored at the kagome layers, the latter are rotated by 60°
against each other. Regarding a- and b-axes the triangular sites are located in the centre of
kagome triangles. This leads to columns of double tetrahedra along the c-axis. Four bonds
can be distinguished: 1. inter-column kagome-kagome, 2. intra-column kagome-kagome, 3.
kagome to upper triangular site, 4. kagome to lower triangular site. Thus, four different ex-
change interactions can exist. In [KMMC10] the reduction to two interactions has been dis-
cussed. It has been found, that with small deviations one interaction for the in-plane bonds
Jin and one for the out-of-plane bonds Jout is sufficient. This results in the Heisenberg nearest
neighbour model:

H = −
∑

i,j ∈ same layer

Jin · Si · Sj −
∑

i,j ∈ diff. layer

Jout · Si · Sj. (4.1)

with Jin, Jout < 0 and spins Si of unity length. The double tetrahedron is the essential building
block for the whole spin structure, where the model for each one can be written as:

HDT = −Jin

2

[
(S1 + S2 + S3 + τS4 + τS5)

2 − 2τ 2S4 · S5 − C
]

(4.2)

with ratio τ = Jout/Jin, kagome spins S1,S2,S3, triangular spins S4,S5 and constant C =
S2
1 + S2

2 + S2
3 + JoutS

2
4 + JoutS

2
5. Minimizing the energy for the double tetrahedron results in two

constraints
max(S4 · S5) (4.3)

and the so-called sum rule:

min(S1 + S2 + S3 + τS4 + τS5)
2. (4.4)

The constraint 4.3 can only be maximized by orienting the triangular spins parallel, which is
independent from the interactions or kagome spins. The minimization of Equation 4.4 includes
both triangular and kagome spins. It also depends on a weighing factor τ , which is the ratio
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4.1 Model description of the magnetic order

between the exchange interactions Jout and Jin. Taking the constraint 4.3 into account, this can
only be minimized if the triangular spins Stri are compensated by the kagome spins Skag:

2τStri = −
∑
i∈ kag

Si = −Skag, eff. (4.5)

The three kagome spins add up to the effective spin Skag, eff antiparallel to Stri. For τ ≥ 1.5 the
best solution is to orient each kagome spin antiparallel. For τ < 1.5 the kagome spins must not
align parallel and thus a manifold of best solutions exists. In this sense the frustration inher-
ent to the system increases the number of possible states and the entropy. Using Monte Carlo
simulations (MCS) a ratio close to τ = 1.0 was found to best model the observed scattering in
YBaCo4O7 [MCR+09].
Calculating the specific heat from MCS, a phase diagram for temperature T/Jin versus ratio
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Figure 4.2: Results from Monte Carlo simulation based on the Heisenberg nearest neighbour model.
(a) Phase diagram with T/Jin vs. ratio τ = Jout/Jin. Figure adapted from [BF14]. (b) Ground state in the
antiferromagnetically ordered phase [KMMC10, Ros11, BF14], view along c-axis. Triangular spins in
green and kagome spins in red/blue. Figure adapted from [Rei11]. Kagome spins with the same colour

are of the same layer.

τ has been determined in cooperation with our group [BF14] (cf. Fig. 4.2a). It displays a
disordered regime at T & 0.5 ·Jin. Depending on τ a phase transition to either an antiferromag-
netically ordered state (τ ≥ 1.5) or a 3D spin liquid regime exists. For ratios 0.9 < τ < 1.5 a
nematic phase has been found at even lower temperatures and was postulated for ratios down to
τ = 0. According to the the sum rule in the antiferromagnetically ordered phase for τ ≥ 1.5 a
unique solution exists for each double tetrahedra. Thus a unique solution follows for the whole
spin structure (cf. Fig. 4.2b) as no freedom is left for the spins to vary. Decreasing the ratio
below τ = 1.5 a manifold of solutions exist for each double tetrahedra, but the triangular spins
of the same column stay parallel due to Eq. 4.3. In MCS, periodic boundary conditions are
used, as these spin structures become unstable without. But this also leads to neighbouring
columns following the periodicity, which results in a spin structure similar to the unique ground
state with canted kagome spins. The strength of canting depends on the freedom provided by
the sum rule. Within this state the energy can be minimized for each kagome layer separately.
Thus this ordering can be considered a 3D spin liquid. With decreasing ratio τ the exchange
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Chapter 4 Magnetic frustration in the Swedenborgite structure

interaction Jout becomes of less importance and the spin structure deviates more strongly from

the unique ground state, which ultimately resolves in the kagome limit for Jout = 0.

4.2 Spin wave dispersions with LSWT

Using MCS a unique ground state has been found for τ ≥ 1.5. This enabled us to calculate the

spin wave dispersions based on the Heisenberg nearest neighbour model using linear spin wave

theory [Rei11]. For ratios τ < 1.5, the system is in the spin liquid phase, which does not order

in a specific ground state. Therefore, only the dispersions for ratios τ ≥ 1.5 can be calculated

with LSWT based on this ground state.

The dispersions strongly vary for the different symmetry directions within the magnetic Bril-
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Figure 4.3: Spin wave dispersions determined with LSWT for Jout/Jin = 1.5, based on the Heisenberg

nearest neighbour model [Rei11]. The inset shows the high symmetry points of the hexagonal Brillouin

zone. The dispersion in {h k 0}-scattering planes are rather flat, compared to the steep dispersions along

〈0 0 1〉-directions. Furthermore, a large gap in energy is present.

louin zone (BZ). Along the directions within the {h k 0}-scattering planes the dispersions are

rather flat or even constant in energy, while the dispersions along 〈0 0 1〉 show a steep slope

from the high symmetry point Γ to A and M to L. This means the spin wave propagates at a

higher velocity along the c-axis direction compared to the spin waves in the ab-plane. The dis-

persions appear to be folded back at the BZ boundary to the next magnetic BZ in c∗-direction.

This means that the magnetic unit cell could be viewed as half its size. This would resolve in the

upper limit of the dispersions to be at the A-point. Furthermore, it is apparent that two different

excitation bands exist, which are separated in energy. The lower one goes from the elastic line

up to E ≈ 2 · Jin, where the upper one spans from E ≈ 3.2 · Jin to E ≈ 4.5 · Jin leaving an

excitation gap of about ΔE � 1·Jin. In this sense the dispersions are similar to the ones of ferri-

magnetic linear spin chain (cf. Fig. 2.7), but there are also very distinct deviations. For instance

here the lower dispersions show a linear energy dependence close to the Γ-point and therefore,

more closely related to the dispersions of an antiferromagnetic spin chain. Only at the M-point

a quadratic energy dependence is present with an energy gap of E = 0.2Jin. Furthermore, the

lower and upper excitation band span over a different range in energy. These deviations stem
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4.3 Beyond the harmonic approximation using spin dynamics simulation

from the difference between a simple spin chain and the coupled double tetrahedra columns. In
both cases all spins are assumed to be of the same length, still an upper band is present. Similar
dispersions are found considering just the double tetrahedra, which is why the influence of the
coupling is relative small. This leads to the conclusion of two different spin wave types. For the
lower excitation band the antiferromagnetic spin chain spanned by the single kagome and tri-
angular spins is relevant, but in the case of the upper excitation band a ferrimagnetic spin chain
formed by the triangular spins and the effective spin of the kagome spins has to be considered
(cf. Eq. 4.5).

4.3 Beyond the harmonic approximation using spin dy-
namics simulation

The spin wave dispersions determined using linear spin wave theory (cf. Section 4.2) are limited
to ratios τ ≥ 1.5 and the linear terms. But especially for ratios τ < 1.5, rich physical observa-
tions can be expected according to the phase diagram (cf. Fig. 4.2a). Furthermore, since strong
frustration is present in the Swedenborgite compounds, the higher order terms might play an
important role in the excitations. In order to calculate the spin wave excitations for models
without a unique or even unknown ground state, other methods have been developed. For ex-
ample Monte Carlo simulation can be used to relax the spin system into a local ground state,
which does not have to be the global energy minimum. Then linear spin wave calculations can
be used to determine the dispersions based on this ground state. Averaging of the dispersions
from several local ground states will yield the excitation spectrum. This is a useful method, but
as linear spin wave theory is limited to the linear term, the excitation spectrum will not contain
higher order contributions, which can be significant especially in frustrated systems.
In the present thesis, a completely numerical approach is taken, which has been developed by
Julien Robert [Rob07]. Monte Carlo simulation is used to anneal the spin system at a specific
temperature. Starting in this state, the equations of motion are used to change the direction of
each spin within a mean field of the neighbouring spins in time:

dSi
dt

= Si ×
∑
j

Sj = Si ×HMF,i. (4.6)

After the desired number of steps in time MCS is used again exploring the phase space and de-
termining a new starting state for the development in time. This will be repeated several times.
The time development of all these states are attached and convoluted with a Gaussian window
function [PTVF92] for continuous spin change. Using a Fourier transform in space and time,
the dynamic structure factor S(Q, ω) (cf. Eq. 2.40) is calculated. A detailed description can
be found in [Rob07, RCSB08, TRH+14]. The magnetic form factor according to the magnetic
ions present in the compound is not applied, because this study is not intended to describe the
measurements in detail. But it should give insight to the structure of excitations yielded by the
model. The radial decrease in intensity by the magnetic form factor would not help in this task.
Thus, instead of actual scattering the intensity maps are cuts taken from the dynamic struc-
ture factor S(Q, ω) (cf. Eq. 2.40). The width of the cuts are defined by the resolution of the
perpendicular directions and thus depends on the simulated range of the real-space dimension.
Consequently, the width in Q is given by the Fourier transform of the dimensions of the simu-
lated lattice and the width in energy by the Fourier transform of the range in time. In Section
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Chapter 4 Magnetic frustration in the Swedenborgite structure

6.4 the results will be compared to the experimental data.
In [Rei11] I have developed a similar algorithm based on the information found in [Rob07].
But in this thesis the simulations have been performed in cooperation with Julien Robert, as his
program was already tested thoroughly and readily available. For every parameter set 500 dif-
ferent spin states have been used as starting configurations for the development in time. Using
the software Mathematica [Wol14] the set of dynamic structure factors has been evaluated on
a local server. The parameters like the ratio of Jout/Jin have been selected based on previous
studies and the phase diagram on temperature vs. ratio (cf. Fig. 4.2a). In [RRS+14] we have
already reported that a magnetic order arises in the compound CaBaCo2Fe2O7, which is partic-
ularly studied in the present thesis. The magnetic peaks visible in powder data clearly deviate
from the diffuse scattering observed for YBaCo4O7 [MCR+09]. Thus, a ratio τ > 1.0 is ex-
pected to describe the magnetic order in CaBaCo2Fe2O7 best. Furthermore, the phase diagram
shows an additional nematic phase at low temperatures for 1.0 < Jout/Jin < 1.5, which is of
peculiar interest in understanding the complexity of the model. Moreover, the phase diagram
has been explored at ratios ranging from τ = 0.5 to 1.6. As temperatures T/Jin = 0.5, 0.1, 0.01
and T/Jin = 0.001 have been chosen, as they give insight into the excitations for all different
phases. At T/Jin = 0.5 the system is at the transition to either the spin liquid state, the antifer-
romagnetically ordered phase or slightly above the respective phase, while T/Jin = 0.01 is far
away from any boundary. For a ratio of Jout/Jin = 1.3 the system is within the nematic phase
for T/Jin = 0.001. All simulations have been performed for a time period of t ≈ 150J−1in re-
sulting in an energy resolution of δE ≈ 0.021Jin. The size of the spin structure has been varied
between 12 and 24 unit cells along all three directions, which results in a reciprocal spatial reso-
lution between δQ ≈ 0.083 [rlu] and δQ ≈ 0.042 [rlu] (reciprocal lattice unit). In the following
(δQ)3 denotes the volume in Q-space defined by the resolution along all three reciprocal lattice
vectors.

4.3.1 Elastic scattering

In principle the simulation is performed to explore the spin wave excitations, but of course the
elastic structure factor is part of the data as well, allowing for investigation of the magnetic
order. The displayed scattering maps show a clear dependence on ratio τ and temperature. At
T/Jin = 0.5 even for the ratio τ = 0.5, an arising structure can be observed (cf. Fig. 4.4 top
row). For ratios τ > 1.3, intensity is strongest at the K-points of the crystal structure Brillouin
zone (BZ)1 indicating an order close to a

√
3×
√

3 antiferromagnetic one in the ab-plane. The
possible peaks are surrounded by diffuse scattering of triangular shape, where the corners point
along the BZ boundary forming a bow tie shaped pattern. Apart from the high intensity on the
BZ boundary low intensity can be found at some of the crystal Bragg peak positions, which is
related to a small antiferromagnetic contribution from so called q = 0 structures. This means
that the magnetic unit cell for these contributions is the same as the crystal unit cell.
With decreasing temperature the intensity at the K-points increases, accompanied by the trian-
gular shaped diffuse scattering for all ratios (cf. Fig. 4.4 middle row). Between T/Jin = 0.5
and 0.1 the overall diffuse scattering decreases for ratios τ ≥ 1.3. This trend is even more
pronounced for the higher ratios. In addition, the diffuse scattering forms structures simi-
lar to pinch-points at some crystal Bragg Peak positions (e.g. (1 1 0)), best visible for ratios
1.0 ≤ τ ≤ 1.4 at T/Jin = 0.01. Pinch point singularities seen in spin-ices are also found in

1In the following the abbreviation BZ will always refer to the Brillouin zone of the crystal structure.
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Figure 4.4: Extracted (h k 0) scattering plane from the dynamic structure factor for −0.021Jin < E <
0.021Jin, calculated using the spin dynamics simulation. The magnetic order increases with increas-
ing ratio and decreasing temperature, while the diffuse scattering is mostly localized along the crystal

stucture Brillouin zone boundary. The colour scale denotes the value of S(Q, ω) per (δQ)3 · δE.
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Chapter 4 Magnetic frustration in the Swedenborgite structure

the 2D kagome antiferromagnet at the same positions [Zhi08], which corresponds to the case
Jout/Jin = 0. The pinch points denote a long correlation length along one and a short one
along the other direction, compared to the 2d kagome antiferromagnet here these directions are
switched. With finite Jout such features tend to smear out, however, relics can still be seen. Still
the diffuse scattering remains strongest along the BZ boundary.
Cooling down to T/Jin = 0.01, the intensity of the diffuse scattering is significantly increased
for ratios below τ = 1.5 (cf. Fig. 4.4 bottom row). For τ ≥ 1.5, where the diffuse scattering
vanishes almost completely at the benefit of the intensity at the K-points. At the same time the
intensity at the crystal Bragg peak positions also decreases. For the ratios τ ≤ 1.45 the pinch
points become more distinct. The intensity of the structure factor along and close to the BZ
increases for ratios τ ≤ 1.3. Since the total intensity is conserved as Itotal =

∫∫
S(Q, ω) dQdω,

this overall increase has to lead to a decrease of spectral weight on the excitations (cf. Fig. 4.5).
In general, the structure factor for ratios 1.0 ≤ τ < 1.5 reveals prominent peaks at the K-points
of the BZ, related to an antiferromagnetic order despite being in the spin liquid regime. Addi-
tionally, two different kinds of diffuse scattering are visible. The first one is of triangular shape
around the K-point also spread along the BZ boundary and the other one is covering most of the
inner BZ at two orders of magnitude lower intensity. For the ratios τ ≥ 1.5 the ratio between the
Bragg peaks at the K-point and the surrounding diffuse scattering is more pronounced, but the
latter one is still not negligible and shows the same triangular shape. The overall background
intensity drops about several magnitudes.

Cuts along the other high symmetry directions (hh l) (cf. Fig. B.6) and (h 0 l) (cf. Fig. B.7)
were taken. The cuts of the (hh l) scattering planes show magnetic Bragg peaks at the (1/3 1/3 l)
positions. For all ratios except τ = 1.0, only peaks with {l = 2n |n ∈ Z} are visible, indicating
that the magnetic unit cell could be reduced to its half along the c-direction. Offside this sym-
metry plane magnetic Bragg peaks are also present for {l = 2n+ 1 |n ∈ Z}. The ratio τ = 1.0
appears to be a special case, where magnetic peaks are present for all {l = n |n ∈ Z}. Bragg
peaks at these positions despite being very low in intensity are already visible for τ = 1.1. Apart
from the Bragg peaks, diffuse scattering connecting the {h k 0}-scattering planes is prominent
for all ratios and temperatures, but its intensity relative to the intensity of the Bragg peaks di-
minishes with decreasing temperature and increasing ratio and almost vanishes for τ = 1.5
and T/Jin = 0.01. Since the kagome layers along the c-axis are only loosely coupled with
each other for τ < 1.5, the spin configuration of different kagome layers can vary basically
freely from each other within a certain range. This range of variation decreases with decreasing
temperature fluctuations and with increasing ratio, therefore this observation is to be expected.
Due to the symmetry of the magnetic order, no magnetic Bragg peaks are visible in the (h 0 l)
scattering plane. The remaining diffuse scattering is also of low intensity but of rather complex
structure. Here the {h k 0} scattering planes are connected by lines of diffuse scattering most
prominent at {h = 2n+1 |n ∈ Z}. This shows that the variation of spin configurations between
the kagome layers is far from arbitrary but allowed only within a certain range provided by the
sum rule (Eq. 4.4) around the antiferromagnetically ordered spin structure.
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4.3 Beyond the harmonic approximation using spin dynamics simulation

4.3.2 Inelastic scattering

In frustrated systems a broad excitation response is typically expected, which is why the spin
dynamics simulation is better suited than linear spin wave theory. Upon cooling, the broad
response develops continuously towards clearer defined spin wave dispersions. From the sim-
ulated dynamic structure factor, cuts along the energy axis and an axis in Q can be extracted.
The most interesting axes in Q are the high symmetry directions of the magnetic Brillouin zone.
In measurements the most distinct excitations have been observed along the 〈0 0 1〉-directions
[Rei11], and will therefore be of main focus here. The results for the directions [1 1 0] and [1 0 0]
are shown in the Appendix (cf. Figs. B.8 and B.9).
At the temperature T/Jin = 0.5, dispersions along [0 0 1]-direction are visible for ratios τ ≥ 1.1
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Figure 4.5: Excitations along [0 0 1]-direction. Cuts are taken from the dynamic structure factor of the
spin dynamics calculations. Two excitation bands are present. The lower excitation band appears to be
only loosely related with the ratio of the exchange interactions and temperature, while the upper one
raises significantly with decreasing temperature and increasing ratio. The colour scale denotes the value

of S(Q, ω) per (δQ)3 · δE.

within the excitation spectrum (cf. Fig. 4.5 top row). These dispersions correspond to the
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dispersion of a linear antiferromagnetic spin chain

D(qz) ∝ τ · sin
(
πl

2

)
. (4.7)

Along the [0 0 1]-direction a Goldstone mode exists only at {(0 0 l) | l = 2n, n ∈ Z}, which
indicates that the magnetic unit cell can be reduced to its half regarding the interactions in the
model without loss of generality. At this temperature the dispersions are filled to the elastic
line with an excitation continuum. In addition, between two dispersions further v-shaped broad
excitations arise, which shift to higher energies with increasing ratio τ . At ratios below τ ≤ 1.0
only a very broad excitation spectrum is visible, which appears to scale with ratio τ . Along
the other symmetry directions the excitation spectra are similarly broad for all ratios (cf. Figs.
B.6 and B.7 top row). This means that at this temperature the spins are best ordered along
the c-direction. However, peaks have still been observed in the (h k 0) scattering plane of the
elastic partition of the structure factor (cf. Fig. 4.4 top row), which shows that the order along
the c-axis induces also an order in the ab-plane. From Monte Carlo simulation it is known
that the triangular spins order first upon decreasing temperature and the kagome spins will
follow. Taking the rules derived from energy minimization into account, these dispersions along
[0 0 1] direction must be related to the triangular spins aligning parallel forming a linear chain.
Yet, as the observed dispersions are similar to dispersions of an antiferromagnetic chain, the
intermediate kagome spins have to form an effective spin of similar length antiparallel to the
triangular spin (cf. Eq. 4.5). As all spins are of unity length, this is only possible due to higher
disorder for the kagome sites at this temperature.

Upon cooling the spin system to T/Jin = 0.1 for ratios τ ≥ 1.1, the excitation continuum
beneath the dispersions decreases in intensity, with a horizontal soft-mode at one third of the
maximum energy of the dispersions (cf. Fig. 4.5 middle row). Furthermore, instead of one here
two distinct dispersions are visible with slightly different slopes at Γ and different maximal
energies. The area between these two dispersions is filled with an excitation continuum of
similar intensity as the horizontal mode. The previous v-shaped excitations have risen in energy
and are separated from the dispersions at lower energy. At the Γ-points {(0 , 0 , 4n + 2) |n ∈
Z} with spectral weight on these excitations, two dispersions can be told apart as the upper and
lower limits of the upper excitation band. The area between these two dispersions is also filled
with an excitation continuum. At the Q-positions of the upper band’s minimum the excitations
of the lower band go down to the elastic line. Still with some simplifications the spectrum
resembles one of a linear ferrimagnetically coupled spin chain (cf. Fig. 2.7), featuring an
acoustic and optical excitation band. At T/Jin = 0.1 the fluctuations due to temperature are
mostly suppressed due to the magnetic order. Thus, the effective spin of the three kagome spins
of a double tetrahedron can be calculated according to the sum rule (cf. Eq. 4.4), which is
larger than the triangular spin for ratios τ > 0.5. Analogue to the discussion for the results from
LSWT, along the c-axis the double tetrahedra columns can be viewed as two effective spins of
different length, which is basically a linear ferrimagnetic coupled spin chain. This also explains
the reason for the upper band shifting more strongly to higher energies than at T/Jin = 0.5 for
the same increase in ratio, because the effective kagome spin increases proportionally to ratio
τ . As the optical excitation band rises proportional to the ratio, for τ = 1.0, its lower dispersion
overlaps with the acoustic branch at its maximum.
As discussed previously the four stacked layers along c-axis can be reduced to two, considering
just the magnetic interactions. Viewing the three kagome spins as an effective spin would yield
two spins per unit cell. This would allow for two magnon dispersions. However, apparently
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4.3 Beyond the harmonic approximation using spin dynamics simulation

this assumption is only correct in a first approximation, because the acoustic and optical branch
display a splitting into two separate dispersions. The complexity added by viewing the three
kagome spins independently and the resulting four spins per unit cell is in correspondence with
the four dispersions along [0 0 1].

Further cooling does not change the general structure of the excitations (cf. Fig. 4.5 bottom
row). The upper band raises stronger in energy than the lower band due the decreased tem-
perature fluctuations of the kagome spins. The intensities for the dispersions mostly decrease
according to the Bose-Einstein statistics. Nevertheless, they become more pronounced, as the
background of the excitation spectrum decrease by an additional magnitude. The area between
the dispersion duads for the acoustic and optical excitation spectrum is still filled with an exci-
tation continuum, but its intensity decreases with increasing ratio and is hardly observable for
τ = 1.6. In addition, the non-zero energy soft-mode recedes to lower energies. Surprisingly,
for the ratio τ = 0.5, a case characterised by highest disorder and entropy, the dispersions of
the linear antiferromagnetic chain are rather thin and exhibit high intensities. They are clearly
distinguishable from a broad magnetic response in the background with the highest intensity at
(0 0 2).

4.3.3 Nematic phase

For ratios of 1.0 ≤ τ < 1.5, a second ordered phase has been observed at T < 0.005 [BF14]
(cf. Fig. 4.2a). The spins have been found to favour a coplanar state and the phase is therefore
called nematic. Apart from the decrease in diffuse scattering, additional peaks have been found
at the former pinch points, indicating a significant share in q = 0 structure.
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Figure 4.6: Cuts of the high symmetry scattering planes for −0.021Jin < E < 0.021Jin through the
dynamic structure factor simulated at T/Jin = 0.001 for a ratio of Jout/Jin = 1.3. In the nematic phase
the diffuse scattering is located close to the K-points in the (h k 0) scattering plane. The scattering planes
(hh l) and (h 0 l) show a significant decrease of the intensity variation along 〈0 0 1〉 indicating a shorter

correlation length along c. The colour scale denotes the value of S(Q, ω) per (δQ)3 · δE.

The same pattern is visible here as well (cf. Fig. 4.6 left). Furthermore, the shape of the
diffuse scattering surrounding the peaks at the K-points changed to a hexagon with a slightly
stronger intensity towards the BZ centre. Overall, the diffuse scattering in the (h k 0) scattering
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plane is enhanced near the K-point extending further in ridges along the BZ boundary. In the
perpendicular scattering planes, (hh l) as well as (h 0 l), the diffuse scattering becomes much
more pronounced and exhibits only little intensity variation along the [0 0 1] direction indicating
a shorter correlation length along the c-axis. At the same time the intensity variation in the
diffuse scattering increases along the directions [1 1 0] and [1 0 0]. This is in vast difference
to the scattering observed in the 3D spin liquid state at T/Jin = 0.01 both within this study
(cf. Figs. B.6 and B.7) and in [KMMC10], where the lowest variation in scattering intensity
is observed along the direction [1 1 0]. Assuming a mostly coplanar spin state, which at the
same time has a symmetry similar to the spin structure of the antiferromagnetic ground state, a
freedom for the spins on the kagome layers opens up, resulting in a spin structure less coupled
along c-direction. This effectively yields a short-range order along this direction evidenced in
the increased diffuse scattering. Here the triangular spins have been found to vary from the
antiferromagnetic ground state by only±3°. Whereas the kagome spins vary in the ab-plane by
∼ ±45° and out of plane by ±10° from the antiferromagnetic ground state. The distribution of
the kagome spins’ orientation shows maxima close to the aforementioned limits of the angular
variation in the ab-plane. Still this is in correspondence with the sum rule, as the kagome spins

(a) (b)

36.9° 43.8°

Figure 4.7: Possible spin configurations on a double tetrahedron for Jout/Jin = 1.3 in the nematic phase
with kagome spins in blue and triangular spins in green. View is along c-axis. Due to the coplanarity, the
kagome spins deviate more strongly from the antiferromagnetic ground state according to the sum rule.

(a) Symmetrically tilted kagome spins. (b) Antisymmetrically tilted kagome spins.

have to vary by a higher angle if being confined to the ab-plane in order to fulfil the rule (cf.
Fig. 4.7). Assuming coplanar spins with one kagome spin oriented antiparallel to the triangular
spins, the other two kagome spins will tilt antisymmetrically compensating the perpendicular
component. Using the sum rule (cf. Eq. 4.4) the tilting angle is 36.9°. The highest tilting
angle for a single spin takes place if two kagome spins tilt parallel away from the collinear
orientation, at which point the third spin tilts by an angle of 43.8°. These angles fit very nicely
with the maxima observed in the distribution. This strong deviation from the antiferromagnetic
ground state results in the share in q = 0 structure and thus the peaks at the crystal Bragg peak
positions.

Not only does the spin structure within this phase differ from the one in the others phases, but
the excitation spectrum changes as well. The excitations become more distinct and similar to
the ones observed for a ratio of τ = 1.5 at T/Jin = 0.01. Along the direction [0 0 1] the upper
excitation band still ranges from E/Jin = 2.5 to 3.5 while the soft-mode at non-zero energy
vanishes completely. More significant changes can be observed along the other directions [1 1 0]
and [1 0 0]. At the low energies, instead of a broad response in energy, clear dispersions are
visible, which indicates clearly that the spin system in the nematic phase is better ordered,
allowing for better defined spin waves.
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4.3 Beyond the harmonic approximation using spin dynamics simulation
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Figure 4.8: Cuts in energy and along the high symmetry directions through the dynamic structure factor
simulated at T/Jin = 0.001 for a ratio of Jout/Jin = 1.3. In the nematic phase the dispersions become

more distinct along all directions. The colour scale denotes the value of S(Q, ω) per (δQ)3 · δE.
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5
Structural and magnetic properties of

CaBaCo2Fe2O7

In the previous chapter the results, which apply to the whole Swedenborgite compound family,
have been presented. The following chapter focuses on the specific properties of CaBaCo2Fe2O7

and why this compound is of particular interest.

5.1 Relevant results from previous studies

The thesis at hand is based on the studies from other groups presented in Chapter 4, which are
necessary for an understanding of the observations. The compound CaBaCo2Fe2O7 has already
been investigated in the Diploma thesis of Erik Rosén [Ros11] as well as my own [Rei11]. Our
findings regarding the crystal structure and macroscopic measurements have been published in
[RRS+14]. In order to paint a complete picture, the most relevant findings will be introduced
shortly.

5.1.1 Crystal structure

The crystal structure of CaBaCo2Fe2O7 has been previously investigated using powder X-ray
diffraction, reporting a P63mc space group symmetry [Val04b]. Recent measurements con-
firmed the same symmetry, but with slightly different cell parameters of a = b ≈ 6.360 Å and
c ≈ 10.276 Å [RRS+14]. The internal structure has been refined using the powder diffraction
data, but in X-ray scattering the scattering length density for Co and Fe is too similar to dis-
tinguish these. Therefore, single crystal neutron scattering has been performed at 190 K and
2.5 K, which could be refined using the P63mc space group. Here, the scattering length den-
sity is significantly different for Co and Fe, which allows a refinement of their site distribution.
Within the crystallographic unit cell the magnetic sites contain two triangular and two kagome
lattice planes. It was found, that the sites are statistically occupied by Co and Fe ions, whereby
mostly Fe (85%) on the triangular sites and mostly Co (60%) on the kagome sites. The oxi-
dation states of Co2+ and Fe3+ have been determined from the X-ray absorption spectrum. In
the refinement of the crystal structure model the atomic displacement factor was enlarged for
oxygen ions on two of the three symmetrical positions. Introducing split positions for both of
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Chapter 5 Structural and magnetic properties of CaBaCo2Fe2O7

these greatly improved the refinement. The resulting crystal structure is displayed in Figure
5.1. Descending to a lower symmetry (P31c) was tested but could not improve the structural
description [RRS+14]. The same model has been applied to the data at 2.5 K. No movement
of the ions could be determined within the resolution limit. As a result the positions of the
oxygen ions regarding the bonds between nearest neighbour magnetic sites break the inversion
symmetry, which allows for the presence of Dzyaloshinskii-Moriya interactions.

a b

c

Figure 5.1: Crystal structure of CaBaCo2Fe2O7 [RRS+14]. The statistical distribution of Co and Fe over
the magnetic sites is displayed as pie charts. The bonds show nearest neighbour connections between

magnetic sites. The double tetrahedra forming columns along c are highlighted in cyan.

5.1.2 Magnetic order

In [Ros11], the specific heat and magnetisation have been measured on single crystal samples
of CaBaCo2Fe2O7 both showing an anomaly at around 160 K. From the temperature depen-
dence in the magnetometry data an antiferromagnetically ordered phase is evidenced below the
transition temperature TN . A Weiss temperature of θW ≈ −1500 K was extracted from the gra-
dient of the reciprocal specific heat in the paramagnetic regime above 760 K, according to the
Curie-Weiss-law. This results in a ratio of −θ

TN
≈ 10, which characterizes a strongly frustrated

magnetic structure [FTS+06]. The diffuse neutron scattering diffractometer DNS has been used
to investigate the magnetic ordering in the (h k 0) and (hh l) scattering plane at 4 K [Ros11].
DNS offers an XYZ-polarization analysis option for separation of the different scattering con-
tributions in combination with an array of detectors according to [Sch10]. Separating the total
magnetic scattering, both individual scattering planes show Bragg peaks at the K-points of the
BZ (cf. Fig. 5.2), which indicates a long-range

√
3 ×
√

3 antiferromagnetic order along all
directions with the propagation vector (1/3 1/3 0). Diffuse scattering of low intensity is visible
close to the magnetic peaks, slightly elongated along the BZ boundary. At the crystal Bragg
peak positions, magnetic peaks of low intensity can be observed, which can either be related
to a small ferromagnetic contribution or a remaining intensity from the separation. The other
separated scattering contributions namely the spin-incoherent scattering, nuclear magnetic scat-
tering from moments parallel to y and nuclear magnetic scattering from moments parallel to
z do not exhibit significant intensity in comparison to the intensity of the total magnetic scat-
tering. The absence of nuclear magnetic scattering indicates the atomic occupation and spin
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orientation to be uncorrelated.

(h k 0) (hh l)

a∗

b∗

101

102

103

104

105

a∗+ b∗
c∗

Figure 5.2: The (h k 0) and (hh l) scattering plane measured at DNS at 4 K on the large single crystals,
from [Ros11]. The BZ is marked in grey. Only at the K-points magnetic peaks are observed indicating a
commensurate antiferromagnetic order. The corresponding spin structure is similar to the antiferromag-

netic ground state (cf. Fig. 4.2b).

Furthermore, four selected peaks have been measured with temperature dependence [Ros11].
The measurement for the magnetic peak (4/3 1/3 0) is displayed in Fig. 5.3. Calculating the
integrated intensities for the separation channels allows for further insight in the temperature
development of the magnetic ordering. The integrated intensity for the chiral scattering has
been calculated taking the absolute value. While all scattering contributions show a phase
transition around TN ≈ 160K, two different trends in temperature are visible within the anti-
ferromagnetic phase. The magnitude of the scattering intensity from moments parallel to the
ab-plane (My)

2 increases faster than the intensity from other scattering contributions until it
reaches a maximum at around 80 K, and then drops upon cooling further. At this temperature
the scattering intensity from moments parallel to the c-axis (Mz)

2 as well as the chiral mag-
netic scattering increases. At around 20 K the variation in intensity converges to a saddle point
for all contributions, with (My)

2 still slightly higher in intensity than the others. Overall, the
temperature trend of the chiral scattering is similar to (Mz)

2, indicating a strong correlation.
Considering the direction of the spins contributing the respective scattering (My)

2 and (Mz)
2,

a spin reorientation exists from a more coplanar spin structure in ab-plane at 80 K to a spin
structure canted more strongly out of this plane at 4 K. Such a behaviour is not expected from
the simple Heisenberg nearest neighbour model (cf. Eq. 4.1). Furthermore, the reorientation
appears to be continuous without an intermediate phase transition. It has to be noted, that the
temperature dependence of the total magnetic scattering is somewhat unusual. Down to 80 K it
resembles the power law of a second order magnetic phase transition, but the drop below 80 K
implies that the magnetic order decreases or changes into a significantly different structure. On
the other hand this could be due to an error in the integration itself.
Based on the model introduced in Section 4.1, Monte Carlo simulations (MCS) have been per-
formed. In [KMMC10] the scattering intensities are calculated for the (h k 0) and (hh l) scat-
tering plane. The comparison between these results and the measurements performed at DNS
requires a ratio of τ > 1.0. In the measurement no diffuse scattering has been observed close
to the magnetic Bragg peaks, which might even indicate a ratio close to τ = 1.5 or higher.
The triangular spins of the corresponding spin structure are almost collinearly aligned, while
the kagome spins display a higher disorder. This is a direct result from the constraints in the

43



Chapter 5 Structural and magnetic properties of CaBaCo2Fe2O7

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180

In
te

ns
ity

T [K]

|M⊥|
2

(My)2

(Mz)2

Ichiral

Figure 5.3: Temperature dependence of the different scattering contributions for the magnetic peak
(4/3 1/3 0) measured at DNS and normalized to the total magnetic scattering at 80 K, from [Ros11].
Integrated intensity was calculated from the absolute of the intensity map at the peak position. Below

the phase transition at 160 K, between 80 K and 4 K a spin reorientation is visible.

Equations 4.3 and 4.4. In [Rei11], the exchange interactions have been calculated by linking the
transition temperature observed in measurements with the one determined by MCS, based on
the assumption of a ratio τ = 1.5 to be Jin ≈ −28 meV and Jout ≈ −41 meV. This also fits to the
effective exchange interaction Jeff ≈ −35 meV determined from the Curie-Weiss temperature.

5.2 Transitions in magnetometry

A physcial property measurement system (PPMS) named Dynacool from Quantum Design
[Qua] has been used to measure the magnetisation with the vibrating sample magnetometer
option depending on temperature and externally applied magnetic field. Both field cooled (FC)
and zero field curves (ZFC) have been measured. For the FC curve the field was applied at
350 K then the sample was cooled down. Upon heating the magnetic moment has been mea-
sured. The observed magnetic moment m(emu) has been calculated to the magnetic moment
(µB) per magnetic ion using:

µion(µB) =
m(emu)

m(g)
· MR

N
· 1

NA · µB
. (5.1)

with the Avogadro constant NA, the molecular weight MR and divided by the N = 4 magnetic
ions per chemical formula. Similar measurements have been performed before on a different
crystal of the same compound [Ros11], but here the small crystal (cf. Section 3.1) is investi-
gated, which has also been measured with neutron scattering. This allows for a direct correlation
between the two methods.

Orienting the c-axis perpendicular to the applied field, a clear antiferromagnetic transition can
be observed near 160 K (cf. Fig. 5.4). In addition, this transition exhibits an increase of the mag-
netic moment with decreasing temperature above the transition followed by a decrease below
the transition. In the paramagnetic regime the external field can rotate the spins more parallel
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Figure 5.4: Magnetic moment from FC (red curves) and ZFC (blue curves) measurements converted to
moment in µB per ion (cf. Eq. 5.1). For easier viewing each curve is divided by the external field. Below

the phase transition a reorientation is visible between the states at 80 K and 10 K.

for decreasing temperature fluctuations. But when an antiferromagnetic order arises this works
against the external field, which results in a decrease in the magnetisation. Here the order in
the ab-plane is known to have a 120° character (cf. Fig. 4.2b), which is expected to cancel any
magnetic moment with strengthening order. This also explains the very small overall magneti-
sation per ion. Furthermore, the transition temperature appears to be field independent within
the accessible range. Before the paramagnetic contribution, not stemming from the sample, is
dominant below 10 K, already at 80 K the magnetic moment increases upon cooling again. This
increase is visible down to the paramagnetic contribution. From this it follows that the spin
structure changes again starting at 80 K in a way that the spins can be aligned to the magnetic
field more easily. This change continues till 10 K.
The Néel transition is visible only slightly in the FC/ZFC curves with the magnetic field paral-
lel to the c-axis. This is the easy axis, as the magnetic order results only in a small increase in
energy for the spins to vary along this direction. That is why the magnetisation increases further
after a small kink. Around 80 K it reaches a broad maximum. At this temperature the magnetic
order overcomes the temperature fluctuations and the spins can follow the external field less and
less. This trend continues until the paramagnetic contribution arises at around 10 K.
Especially when both field directions are considered at the same time the magnetometry data
paints a very intriguing picture of two competing contributions. The first one arises upon cool-
ing below the Néel temperature, which is clearly visible for the magnetic field perpendicular
to c. While the magnetic order develops in the ab-plane the component of the moments along
c-axis still exhibits a behaviour similar to a paramagnet. Slightly below 100 K where this com-
ponent is finally constrained by the magnetic order, the component in ab-plane is able to vary
more freely. The overall degeneracy present in the system cannot be removed upon cooling,
only the component of the moments, which is more constrained, changes.
In principle the results are similar to the ones obtained in [Ros11]. The general dependence on
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Chapter 5 Structural and magnetic properties of CaBaCo2Fe2O7

the direction of the external field as well as the main transition at 160 K are the same in both.
But in contrast to the previous measurement, no additional peaks are visible here, but continu-
ous spin structure reorientations within the antiferromagnetic phase. One takes place between
160 till 80 K and the other between 80 and 4 K.

5.3 Magnetic structure determination

In order to determine the spin structure in a magnetic compound, usually two different experi-
ments are possible. In both cases a model is applied for refinement to the measured data. The
first one is to measure the magnetic order using neutron powder diffraction, which allows for
faster measuring times and therefore to measure at several temperatures. This way the change
of the spin structure with temperature can be followed. But usually this only allows for a refine-
ment of simpler structures, as information is lost due to the powder average. The other option
is to measure the integrated intensities on a single crystal, which takes several times longer,
but each peak can be measured separately. The gain in information allows for a more precise
refinement or a refinement of a more complex spin structure. Here, both methods have been
applied.

5.3.1 Commensurate and long-periodic order distinguished by pow-
der diffraction

The powder diffractometer POWGEN [HHGH11] at the spallation source SNS in Oak Ridge
(USA) uses a double chopper setup to select a wavelength band from the incoming neutron
pulse. Here two different wavelength bands have been used to cover the Q-ranges from 2.04
to 9.54 Å−1 and 0.61 to 2.73 Å−1. The diffractograms at lower Q features a higher resolution.
Powder diffractograms have been taken at several temperatures between 190 and 12 K1. Due to
the available time the measurement of the lower-Q wavelength band has been prioritized over
the other. As a polarization option is not available, the powder diffractograms show the tem-
perature dependence of the superposition of the crystal and magnetic structure (cf. Fig. 5.5).
However, no magnetic peaks are observed in the data at 190 K, above the Néel-transition at
around 160 K. The crystal structure for CaBaCo2Fe2O7 has been already solved from single
crystal data and published in [RRS+14]. Using this structural model in the software FullProf
[RC93] the diffractogram can be fitted convincingly, just refining the lattice parameters (cf. Fig.
5.6). Furthermore, the crystal structure peaks do not change upon the magnetic phase transition
(cf. Fig. 5.5) revealing a structural invariance. Below 160 K the diffractograms show addi-
tional peaks, which can be attributed to the magnetic order. Due to the magnetic form factor,
the magnetic peaks are most prominent in the lower-Q diffractograms. The model for the crys-
tal structure has been applied to all diffractograms refining just the lattice parameters. Since
the magnetic peaks are of similar intensity to the crystal structure peaks, the goodness of the
fit decreases significantly. As the crystal and magnetic peaks are overlapping in Q, excluding
the latter will not be sufficient for a good refinement. Still, an assessment by eye proves the
crystallographic model to be valid within this instrumental resolution over the whole temper-
ature range (cf. Fig. 5.6). This is to be stressed as it shows that CaBaCo2Fe2O7 is a system

1Further cooling was time inefficient using the available cryostat.

46



5.3 Magnetic structure determination

0

10

20

In
te

ns
ity

[a
.u

.]

190K

(1 0 0)

(2 2 0)

0
10
20

1 2 3 4 5 6 7 8
Q [Å−1]

150K
AF order

1.12 1.17
Q [Å−1]

(1 0 0)

3.93 3.98
Q [Å−1]

(2 2 0)

Figure 5.5: Powder diffractograms measured above and below the magnetic phase transition at 160 K
at the time-of-flight diffractometer Powgen. The pattern at 190 K is fitted with the structural model (cf.
Fig. 5.1), difference between fit and data as blue line. Indicators for crystal structure peaks in red and
magnetic ones in blue. The shape of the crystal structure peaks does not change upon transitioning,

indicating a structural invariance. Figure adapted from [RRS+14].

of the Swedenborgite compound family, which does not undergo a structural phase transition,
at least not within the instrumental resolution and the accessible temperature range. For the
isostructural compound YBaCo4O7 a structural transition to an orthorhombic phase was found
[HMZ+06].

Looking more closely into the structure of the magnetic peaks, their shape evidences, that the
magnetic order is more complex and the structure changes with temperature. Especially at
4 K the diffractogram reveals additional peaks close to the commensurate peak towards higher
as well as lower Q. Such satellites can arise from a long-periodic or even incommensurate
magnetic order. If such an order exists, it is most likely closely related to the antiferromagnetic
order, since the deviation from the commensurate position is relatively small. If this additional
structure still obeys the symmetry of the commensurate order, the observed peaks are most
likely related to a splitting along the high symmetry directions:

• parallel to (h k 0)-scattering plane on top of on the crystal structure→ three satellites,

• parallel to (h k 0)-scattering plane on top of the antiferromagnetic order→ six satellites,

• parallel to [0 0 1]-direction→ two satellites.

Looking at the powder diffactrograms, the satellite peaks are well pronounced at temperatures
below 80 K (cf. Fig. 5.6), but only two satellite peaks are visible per magnetic Bragg reflection,
as a possible third one overlaps either with another satellite or with the main peak due to the
powder average. There are no indications for more than three peaks, which excludes the splitting
on top of the antiferromagnetic order. The splitting parallel to the [0 0 1]-direction can also be
excluded, as it would result in a single satellite for the magnetic peaks in the (h k 0)-scattering
plane. Judging from the peak shape of the magnetic peak (1/3 1/3 2) at 1.4 Å−1 (cf. Fig. 5.6),
which shows higher intensity to higher Q, the satellite peaks are located on the BZ boundary
instead of being shifted towards the crystal Bragg peaks. In order to extract the intensity for
each satellite, the model displayed in Fig. 5.7a is applied. Fitting the model to the powder data is
most reliable at low temperatures as the intensities of the satellite peaks increase with decreasing
temperature. Assuming the symmetry of commensurate order, there are two different kinds of
satellite triplets. The ones close to magnetic peaks (h k l) with h = k and those with h 6= k. In
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Figure 5.7: Model used for the extraction of the integrated intensities from powder diffraction data.
(a) The three satellites are assumed to be shifted away from the K-point along the BZ boundary by the

distance δ. (b) Visualization of the fit results in two dimensions of the peak (4/3 1/3 0) at 4 K.

the first case the splitting is symmetrical in regards to Q, which constrains the satellites shifted
transverse to Q to exhibit the same intensity. For the latter case all three satellites can exhibit a
different intensity. In this case the fit function for a main peak including its satellites is written
as:

f(Q) = Imain · φ(Q,Q0,main, σmain) +
∑

sat

Isat · φ(Q,Q0,sat, σsat) (5.2)

with the normal function

φ(Q,Q0, σ) =
1√

2π · σ
· e−0.5·(

Q−Q0
σ

)
2

. (5.3)
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The position for the main peaks Q0,main is calculated from the lattice parameters, whereas the
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Figure 5.8: Fit (blue line) of the diffraction pattern around the magnetic peaks {4/3 1/3 0}, {2/3 2/3 2} and
{4/3 1/3 1} with a main and three satellite peaks each (cf. Fig. 5.7a). The splitting δ is kept constant and
was refined initially from the data at 12 K. The contribution from the satellite peaks (green line) includes

the fitted background.

position for each satellite peak Q0,sat is calculated in Q using Q0,main and the parameter of the
shift δ, which is also a parameter of the fit, and then projected to Q. The normal distributions
are used to fit the peak shape using σ and intensity I . The diffractograms will be fit in the range
1.7 Å−1 ≤ Q ≤ 1.9 Å−1, containing three magnetic peaks {4/3 1/3 0}, {2/3 2/3 2} and {4/3 1/3 1}
but no crystal structure peaks. This part of the powder pattern can be fitted convincingly at all
temperatures with the described model (cf. Fig. 5.8). First a linear background was fitted to the
boundaries of the range. Since no indications for a shift of the propagation vector have been ob-
served, the magnitude of the splitting δ ≈ 0.017±0.002 Å−1 was determined from the fit at 4 K
and kept temperature-independent, besides the general temperature expansion. This indicates
that the satellite peaks might relate to a stable long-periodic ordering instead of an incommen-
surate one, yet this cannot be discerned using the data at hand. The determined splitting relates
to a magnetic order with a periodicity of about 370 Å or rather 58 crystallographic unit cells and
a propagation vector of k ≈ (0.342(1), 0.342(1), 0) noted in the crystallographic unit cell. If a
satellite peak overlaps with the main peak, as it does for (4/3 1/3 0), the fit cannot yield a unique
solution for these two peaks as their intensity can be substituted within a wide range. This leads
to relatively large error bars on the intensity of both peaks. In order to compensate for this
effect the intensities of both peaks have been added up, resulting in a continuous temperature
dependence with relative smaller error bars (cf. Fig. 5.9).
On the one hand, a model that assumes one main peak and only the two satellite peaks sat1
and sat2 shows a decrease in the goodness-of-fit for temperatures below 150 K. Therefore, the
intensity of the third satellite peak can be considered significant, which means that the actual
intensity of the main peak plummets further. On the other hand, using a model with three satel-
lite peaks but no main peak will yield a much poorer fit, even at 12 K. From these results the
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existence of a main peak can be presumed down to 12 K and at the same time the existence of
three satellite peaks up to 100 K and thus both types of order.
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Figure 5.9: Temperature dependence of extracted intensities from the magnetic peak {4/3 1/3 0} and its
satellite peaks from powder diffraction data measured at POWGEN. The main peak includes the satellite
peak. Intensities have been normalized to the total magnetic scattering at 80 K. A trade of in intensity

between the main peak and the satellite peaks are visible with the main peak most prominent at 80 K.

Spin reorientation The scattering intensity for all peaks arises between 190 K and 150 K
according to the Néel transition at 160 K (cf. Fig. 5.9). The total magnetic scattering, which
is the sum over the intensities of the main peak as well as the satellite peaks increases consid-
erably until 60 K and then converges to a maximum at around 20 K. The summed intensity of
the main peak and the third satellite increases until 80 K and decreases furtheron. At 12 K their
intensity is reduced to 2/3 of its maximum. The temperature dependence of the intensity of both
satellite peaks sat1 and sat2 show a flattish slope close to the phase transition which increases
more quickly below 80 K. Here the trend appears to converge to an intensity maximum at 12 K,
which is however higher than the one for the intensity of the main peak and the third satellite.
Apparently two different structures exist related to the main and the satellite peaks, which re-
veal a different temperature dependence of opposing trend in some sense. This means that the
structure related to main peak changes continuously into the structure of the satellite peaks with
decreasing temperature without a second phase transition. This reorientation is similar to the
one observed at DNS in the different scattering contributions (cf. Fig. 5.3).

5.3.2 Refinement of the commensurate magnetic structure

As presented in Subsection 2.2 the possibilities of the magnetic structure are resticted to some
degree by the symmetry of the crystal structure, which is recommended to be solved first. At
least the position of the magnetic sites and the crystal space group are essential for the refine-
ment of the magnetic structure using symmetry analysis. The results from the crystal structure
refinement show a hexagonal space group P63mc above and below the magnetic ordering tran-
sition [RRS+14]. A detailed description of the refined crystal structure of CaBaCo2Fe2O7 can
be found in Subsection 5.1.1, which was confirmed to be suitable at all temperatures using the
powder data in the previous subsection. The magnetic sites span two triangular and kagome
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layers stacked along the c-axis. The sites are statistically occupied by Co and Fe ions, whereby
there is mostly Fe (85%) on the triangular sites and mostly Co (60%) on the kagome sites. The
oxidation states Co2+ and Fe3+ have been determined using X-ray spectroscopy. The measure-
ments at DNS have revealed a K-type antiferromagnetic order. The following refinement is
based on this model and the integrated intensities measured at Morpheus using 4-circle geome-
try (cf. Tables D.1 and D.2).
The software MAXMAGN from the Bilbao crystallographic server [APMO+11, TFO+12] uses
the crystal space group, the position of magnetic ions and the propagation vector of the mag-
netic order to calculate possible magnetic space groups (cf. Section 2.2). Within each solution
only a limited list of independent magnetic sites/moments exist (cf. Tables D.6 and D.7), as
the other sites and also corresponding moments are created from symmetry relations. Six dif-
ferent magnetic space groups have been suggested as possible solutions using a large unit cell
(3a, 3b, c): P63c

′m′, P6′3cm
′, P6′3c

′m, P63cm, P31m′ and P31m. In Tables D.8 and D.9 the
resulting independent sites and the free parameters are stated. In the case of the space groups
with hexagonal symmetry P63, a six-fold screw axis exists along the c-axis, where the normal
vector of the mirror planes are in the ab-plane. Descending to the trigonal space groups P3,
relaxes the six-fold screw axis to a three-fold rotation symmetry. A symmetry operation noted
with ′ indicates a time inversion of the spin subsequent to the usual operation. Due to the spin’s
nature as an axial vector applying a mirror operation also inverts the spin. In the following
the different solutions are discussed. The adjacent pictures (view along c-axis) are examples
from the refinement at 80 K, but the general structure applies at other temperatures as well. The
ordered moments of the same kagome layer are displayed in red and blue respectively and the
triangular moments in green.

Solution in space group P63c
′m′ (#185.201)

There are four independent magnetic sites two triangu-
lar and two kagome ones. The moments on the triangular
sites are fixed antiparallel along c-axis due to the six-fold
rotation symmetry with only their spin lengths to be re-
fined. Depending on the symmetry position, there are two
types of columns: triangular moments which are oriented
parallel to the c-axis and triangular moments antiparallel
to c-axis. The kagome moments surrounding the triangu-
lar moments parallel to the c-axis are fixed in regards to
their angle in the ab-plane, pointing radially away. They
are refined to rotate slightly out of plane in a way such
that they compensate the inner triangular spin. The other
kagome moments despite having the freedom to rotate
freely, are refined to a similar structure, with an opposite
canting out of plane.

Figure 5.10: Spin structure refined in
magnetic space group P63c

′m′.
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Solution in space group P6′3cm
′ (#185.200) The

same magnetic sites are linked via symmetry as in the
previous solution. Even the restrictions to the magnetic
moments are kept the same. But as different symmetry
relations are applied, the refinement results in a differ-
ent spin structure. Here triangular moments of the same
column alternate between parallel and antiparallel to the
c-axis. This results in the kagome moments with the fixed
in plane angle to alternate in their orientation as well.
One kagome layer is pointing towards the center at an out
of plane angle and the moments of the other layer point
along the opposite direction. The other kagome moments
are refined to orient circularly around the triangular spin,
while the rotation sense changes between columns.

Figure 5.11: Spin structure refined in
magnetic space group P6′3cm

′.

Solution in space group P6′3c
′m (#185.199) Here

one of the moments on the triangular sites is set to length
zero (indicated by a grey ball in the figure), while the
other is still confined along c-axis and its orientation
alternates between the columns. The moments on the
kagome sites surrounding the triangular site without a
moment are fixed, in a way that the moments are ori-
ented circular in ab-plane around the axis of triangular
moments. The orientation alternates between different
kagome layers. The other kagome moments can rotate
freely, but the refined structure is similar to the fixed
kagome moments.

Figure 5.12: Spin structure refined in
magnetic space group P6′3c

′m.

Solution in space group P63cm (#185.197) The
magnetic sites as well as the restrictions to the magnetic
moment are the same as in the previous solution. How-
ever, since different symmetry relations are applied, the
refined spin structure is different. The orientation of the
non-zero moments on the triangular sites alternate from
one layer to another on the same column, but nonetheless
the effective length of the moment is refined to be close
to zero. Here the moments on the kagome sites orient cir-
cular with the same sense of rotation for both layers of
a column and is opposite between the columns with zero
and non-zero moment on triangular sites.

Figure 5.13: Spin structure refined in
magnetic space group P63cm.
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5.3 Magnetic structure determination

Solution in space group P31m′ (#157.55) The
prior solutions all featured symmetry relations connect-
ing the moments of the two triangular and kagome lay-
ers, respectively. Yet the symmetry relations for the so-
lutions in the triangular symmetry only connect the mo-
ments within the same layer. Therefore, there are now
six independent magnetic sites, two triangular and four
kagome ones for the two solutions with trigonal symme-
try. On the triangular sites the moments may tilt out of
plane, but they are fixed concerning their orientation in
ab-plane. This also applies for the two kagome moments
on the mirror plane, while the other moments can rotate
freely. Due to the symmetry three different columns ex-
ist, which are rotated 120° to one another. The moments
on neighbouring kagome sites of different columns tend
to be rotated by 120° to one another as well.

Figure 5.14: Spin structure refined in
magnetic space group P31m′.

Solution in space group P31m (#157.53) In con-
trast to the previous solution, here the orientation of the
moments on the triangular sites is fixed completely to
the ab-plane. One moment of each kagome layer of the
same column is oriented antiparallel to the triangular mo-
ment. The remaining moments on kagome sites can rotate
freely. From the refinement these moments, also tend to
align antiparallel to the moments on the triangular sites,
which yields an almost 120° rotation between moments
on neighbouring kagome sites of different columns. Of
course the pattern of 120° rotated columns is preserved. Figure 5.15: Spin structure refined in

magnetic space group P31m.

FullProf refinement

Firstly, the crystallographic model (cf. Subsection 5.1.1) has been applied for a refinement
of the integrated crystal structure peaks in order to determine the scale-factor. Only a few
crystal structure peaks unique in the space group P63mc could be measured (cf. Table D.2),
therefore the parameters of the model have been fixed. With the use of this scale-factor, the
length of the moments is defined in µB in the refinement of the magnetic structure. Following
the proposed solutions above, magnetic CIF files were exported as control files for refinements
using the FullProf suite [RC93]. The definition of the magnetic moments has been changed
from Cartesian to spherical coordinates, as these allow for an easier linking of the parameters.
This way the moments’ length can be directly linked for both the triangular and kagome site,
respectively. The scale factor from the crystal refinement has to be adjusted due to the use of
a larger unit cell. The magnetic unit cell is 9 times larger than the structural unit cell, which
leads to a decrease of the scale factor by a factor 81 [RC11]. As described before the Co and Fe
ions are statistically distributed over the magnetic sites, which have been included by adjusting
the occupations according to the percentages. This will change the refinement results because
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of the different magnetic form factors for Co2+ and Fe3+. The aim now, is to determine the
solution, which can best describe the measured set of integrated intensities.
The integrated intensities (cf. Table D.3) have been measured on the single crystal with (hh l)-
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Figure 5.16: Integrated intensities of the scattering planes (h k 0) and (h k 2) measured on Morpheus at
80 K, plotted in the respective scattering plane. Left: Original intensities show a deviation between sym-
metrically equivalent peaks. Right: The deviation has been corrected by applying an angular dependent

factor fangular (cf. Equation 5.4).

orientation, which is quite large for this type of experiment. Usually a smaller more evenly
shaped crystal is used in order to minimize multi-scattering, extinction or shape effects. Plotting
the intensities at their respective positions in Q reveals that an angular dependence is present.
Due to the shape of the crystal the illuminated sample volume varies under the sample rotation.
This can be corrected by applying a factor fangular

fangular = 1− w · cosϕ, (5.4)

where ϕ is the angle in {h k 0} regarding the vector a∗ and the constant w as a weighing factor
of the angular dependence. A good correction was determined for w ≈ 18% (cf. Fig. 5.16).
In preparation for the refinement, the set of all integrated intensities are reduced within each
desired solution (cf. Tables D.4 and D.5), as the condition of peaks being symmetrically equiv-
alent depends on the used magnetic space group. Here, only hexagonal or trigonal space groups
are of interest. In both cases the average over the equivalent peaks will automatically correct
the found angular dependence in intensity while increasing the error in comparison. This is still
reasonable as a bigger error is a natural consequence for a measurement on a larger crystal.
Despite using the symmetry information from the magnetic space group, the parameter phase
space is still too large for an immediate Rietveld refinement. So at first, simulated annealing is
used to determine a starting configuration and if possible decrease the parameters set by linking
more parameters.
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5.3 Magnetic structure determination

Simulated annealing FullProf provides an option to use simulated annealing to refine the
model according to the data. Simulated annealing is a method based on Monte Carlo simulation,
where parameters and therefore the moments are changed at random, and the corresponding
structure factors are compared to the data. If the agreement is decreasing with the change, the
change is only accepted with a specific chance, depending on the temperature. With decreasing
temperature the chance also decreases, which leads the spin structure to anneal [RC93]. How-
ever, due to its structure, the method is not useful to determine the parameter error.
From the temperature dependence observed at DNS (cf. Fig. 5.3) the spin structures at 4 and
80 K are the most interesting, because they are at the extremes of the spin reorientation. Thus the
integrated intensities for the sample have been measured at these temperatures. The temperature
dependence also indicates a more complex structure at low temperatures, as the peak shapes of
the integrated intensities measured at 80 K show a more commensurate order. This results in
overall larger relative errors for the integrated intensities at 4 K (cf. Table D.3). The proposed
commensurate space groups are probably better applicable to the data set at 80 K. Therefore,
this measurement will be refined at first and its result applied to the intensities measured at 4 K.
From the refinement of the crystal structure it was determined, that all triangular and kagome
sites have the same average occupations of ions, respectively (cf. Subsection 5.1.1). Thus the
same is likely for the moments on these sites, which can be realized in the model by linking the
corresponding parameter of the moments on the respective sites. From the results of the refine-
ment using simulated annealing, it can be concluded that two peaks cannot be reproduced well
by any of the space groups. These peaks have been at the limit of the accessible range of the
instrument, which might have led to the intensities not being correctly determined. Calculating
the structure factor for the resulting spin structures reveals that the space groups P63c

′m′ and
P31m′ yield significant intensity at the crystal Bragg peak positions. In this experiment the
four-circle setup could not be combined with polarization analysis without restricting oneself to
a small set of magnetic peaks. Therefore, the magnetic contribution at the crystal Bragg peak
positions could not be separated. However, from polarization analysis at DNS the magnetic
scattering at the crystal Bragg peak position is known to be close to zero. Thus, peaks with
zero intensity can be added at the crystal Bragg peak positions for the refinement. In order to
use these space groups for the Rietveld refinement, the number of parameters must still be de-
creased. From iterations of the refinements and the correlation matrix, one can conclude which
parameters can be linked, without reducing the refinement’s goodness-of-fit (see Table 5.1 and
D.9). This leads to the following 5 different configurations:

A Parameters are only constraint by the definition of the magnetic space group.

B Link the moments length of the kagome and triangular sites, respectively.

C Add peaks with zero intensity at the crystal Bragg peak positions.

D Remove the two magnetic peaks from the refinement.

E Link further parameters (depends on the used space group).

While the latter models always include the constraints of their previous ones. These config-
urations are submodels to the magnetic space groups. The resulting spin configuration will
remain in the superior magnetic space group and thus only change slightly. In addition, the
magnetisation can be calculated, which reveals an important deviation between the magnetic
space groups. The refined spin structures with non-zero intensities at the crystal Bragg peak
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positions also exhibit a non-zero magnetisation along c-direction, which can be used as an in-
dication for the ferromagnetic part. The different models are compared using the agreement
factors calculated by FullProf. Since integrated intensities have been refined the RBragg factor is
a suitable choice, which is defined as

RBragg = 100 ·
∑

hkl |Ihkl,obs − Ihkl,calc|∑
hkl |Ihkl,obs|

(5.5)

with Ihkl,obs the observed intensity for the peak at (h k l) and Ihkl,calc the calculated intensity for
the same peak [RC11].

P63c
′m′ P6′3cm

′ P6′3c
′m P63cm P31m′ P31m

Conf. RBragg M RBragg M RBragg M RBragg M RBragg M RBragg M
A 42.2 -5.25 71.0 0 42.2 0 71.0 0 18.1 5.11 18.5 0
B 42.2 2.26 71.1 0 58.4 0 77.4 0 18.2 4.45 21.2 0
C 46.9 -1.35 74.5 0 71.0 0 77.2 0 22.0 -3.36 22.0 0
D 46.4 -1.11 80.8 0 70.1 0 80.5 0 17.4 0.03 17.2 0
E - - - - - - - - 17.6 0.00 17.3 0

Table 5.1: Goodness-of-fit for the different solutions and configurations (Conf.) from the refinement of
the data at 80 K using simulated annealing. Net magnetisation M per crystallographic unit cell in µB is

oriented along êz .

In the case of the magnetic space groups P63c
′m′, P6′3c

′m and P31m′, the model C leads
to more than a 10% decrease of the refinements’ goodness-of-fit. With the introduction of
model D, the net magnetisation vanishes for the magnetic space group P31m′. Regarding
all different models the goodness-of-fit of the refinement for the solutions in the hexagonal
symmetry are significantly reduced, compared to the solutions in trigonal symmetry. Therefore,
further analysis is only needed for the latter ones.
The same procedure has been applied to the data measured at 4 K. The obvious difference is a
decrease in the goodness-of-fit of the refinement for the trigonal solutions (see table 5.2). Thus
it can be deduced that the spin structure at 4 K is not only more complex, but also differs from
the commensurate model. Still the trigonal solutions give the best refinements.
The results for the refinement of the spin structure at both temperatures and the links between

P63c
′m′ P6′3cm

′ P6′3c
′m P63cm P31m′ P31m

Conf. RBragg M RBragg M RBragg M RBragg M RBragg M RBragg M
A 38.2 -0.21 68.0 0 38.1 0 68.3 0 24.3 16.8 23.0 0
B 38.3 1.83 68.2 0 55.8 0 75.6 0 24.4 15.2 27.0 0
C 43.0 -1.04 71.8 0 69.3 0 75.5 0 28.1 -0.03 28.5 0
D 41.1 -1.04 79.8 0 67.5 0 78.6 0 22.8 0.00 22.7 0
E - - - - - - - - 23.2 0.00 22.9 0

Table 5.2: Goodness-of-fit for the different solutions and configurations (Conf.) from the refinement of
the data at 4 K using simulated annealing. Net magnetisation M per crystallographic unit cell in µB is

oriented along êz .

the parameters are listed for the hexagonal space groups in Table D.8 and for the trigonal space
groups in Table D.9.
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5.3 Magnetic structure determination

Rietveld refinement The refinement using the Rietveld method is based on the configura-
tion E with the peaks of zero intensity added at the crystal Bragg positions, with the two peaks
removed and additional linking between the refinement parameters, which was determined us-
ing simulated annealing. This configuration has the least number of parameters and most con-
straints, while exhibiting still a good refinement in comparison with the other configurations.
The refined spin structure from the simulated annealing is used as a starting configuration. How-
ever, the Rietveld refinement cannot yield a result with a decent goodness-of-fit (cf. Table 5.3).
From the simulated annealing it is known, that a parameter configuration with a better agree-
ment exists. Yet, due to the geometric frustration and the degeneracy found in the model it is
very likely that several configurations of similar goodness-of-fit exist. This is why the Rietveld
refinement is unable to converge to a single solution and results in a worse agreement. Never-
theless the errors determined with this method depict the possible variation of the parameters.
The results of the Rietveld refinement including the linking of parameters and errors are given
in Table D.10.

P31m′ P31m
Temperature RBragg M RBragg M
80 K 67.3 0 91.0 0
4 K 67.9 0 76.6 0

Table 5.3: Results of the refinement of the data at 80 K using Rietveld for the configuration E.

(a) (b)

Figure 5.17: Investigation of the symmetry of the ground state from the Monte Carlo simulation. Sym-
metry operations are marked according to the notation in [Lit08] with time inverted operations in red.

(a) Comparison with magnetic space group P31m′. (b) Spin structure was rotated by 90° around the
c-axis and comparing it with magnetic space group P31m.

The refinement of the spin structure in the magnetic space group P31m yields a better fit to
the measured integrated intensities than the one in P31m′. However, the difference is not that
significant especially compared to the absolute goodness-of-fit of the refinement. Therefore, it
is of interest to compare the solutions to the ground state found using the Heisenberg nearest
neighbour model (cf. Section 4.1 and Fig. 4.2b). The three-fold rotation axes are found to be lo-
cated in between the columns, in the centre of triangles spanned by three red kagome spins (cf.
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Fig. 5.17). In the case of P31m′ the mirror planes, which usually invert the spin, are inverted
in time again, which basically leads to common mirror planes. Thus, the mirror planes can be
located on the spins, if the spin is oriented parallel to the mirror plane. Furthermore, according
to the magnetic group tables (cf. [Lit13] p. 5233), the mirror planes are parallel to the c-axis
and intersect along the three fold rotation axes. Such mirror planes can be found for the spin
structure in Fig. 5.17a. The mirror glide planes are a direct result from the other symmetry
operations. This leads to a construction of symmetry operators which is in correspondence with
the definition of P31m′. This spin structure does not fulfil the symmetry operations defined by
P31m. Yet, in the Heisenberg nearest neighbour model there is no special axis defined in the
ab-plane. Therefore, the selection of the spin structure in Fig. 5.17a is arbitrary and each other
solution created by a rotation of each spin around the c-axis by the same angle also minimizes
the energy. Yet, in regards to the symmetry operators special axes exist. Thus for a rotation
by 90° the resulting spin structure (cf. Fig. 5.17b) shows the symmetry operations required
for the P31m space group (cf. [Lit13] p. 5229). The next step is to compare the results of
the Heisenberg model with the refined spin structure. The two constraints (Eqs. 4.3 and 4.4)
have been found to play a major role in the ordering observed in the model. In the case of the
spin structure in P31m (cf. Fig. 5.15) the triangular spins are confined in ab-plane and thus
parallel to one another fulfilling Equation 4.3. The symmetry operations for the kagome spins
cancel any effective moment along the c-axis and the kagome spins allowed to rotate freely
cant significantly out of the ab-plane. This not only results in the vanishing net magnetisation,
but also matches the influence of the sum rule (Eq. 4.4). The spin structure refined in P31m′

(cf. Fig. 5.14) shows triangular spins, which cant significantly out of the ab-plane in the same
sense, but also canted to one another. Furthermore, the kagome spins of the same layer of each
column cant if allowed out of plane. The symmetry relations allow for the structure to exhibit
an effective moment along the c-axis, which was observed to possibly vanish. This does not
fit with the derived constraints of the Heisenberg nearest neighbour model. Still the model is
only a simple approach to reproduce the observed ordering. The solution in P31m′ cannot be
ruled out from this alone, as other mechanisms can be present leading to a structure like this
one. One such important mechanism could be the Dzyaloshinskii-Moriya interaction, which is
allowed for CaBaCo2Fe2O7, but has not been included to the model due to the huge increase in
parameter space. But an adapt choice can possibly support a canting out of plane and yield a
net magnetisation. This will be discussed further in combination with the complex part of the
structure in Section 6.2.

The spin structures from the refinement can be evaluated further for comparison with results
from other measurements. The solutions in the magnetic space groups P31m′ and P31m have
been most viable and are comparable to the spin structures determined with Monte Carlo sim-
ulation. In Tables 5.4, D.9 and D.10 the results based on the refinements with configuration E
are presented. With changing temperature from 80 to 4 K a decrease in the ordered moment and
an increase of the moments’ angle with regards to the a-b plane is present. The moment as a
parameter itself is a direct result from the refinement, while the average angle out-of-plane is
calculated averaging over all spins in the large unit cell.

This is actually opposite to what is observed usually in a magnetic order. It is expected, that
with decreasing temperature the fluctuations decrease, which then leads to higher ordered mo-
ments and less canted spins. Here this indicates an unusual behaviour related to the temperature
dependence observed on DNS (cf. Fig. 5.3). Regarding the refinements, it has to be noted
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5.4 Resolving the magnetic order in Q-space

P31m′ P31m
moment [µB] oop a. [°] moment [µB] oop a. [°]

tri kag tri kag tri kag tri kag
SA 80 K 2.73 2.23 0.36 22.7 2.95 2.41 0.00 20.2
Ri 80 K 2.15 ±0.44 1.18 ±0.34 0.00 16.5 1.96 ±0.76 1.37 ±0.65 0.00 20.7

SA 4 K 2.57 2.24 0.03 23.4 2.88 2.39 0.00 21.0
Ri 4 K 2.11 ±0.28 1.11 ±0.20 0.08 21.9 1.85 ±0.38 0.91 ±0.21 0.00 23.4

Table 5.4: Spin structure evaluation of the refinement with the final model using both methods simulated
annealing (SA) as well as Rietveld (Ri). The average of the absolute angle between the respective spins

and the a-b plane is noted as out-of-plane angle (oop a.).

that the results from simulated annealing and Rietveld are, even though they show a similar
behaviour, inconsistent. The reduced ordered moments for the kagome and triangular sites in
both solutions and at each of the two temperatures indicates that the method did not converge
to a reliable spin structure, in conjunction with the decreased goodness-of-fit for the Rietveld
refinements. Still the determined errors appear to be reasonable. Assuming that the phase space
in the simulated annealing is ergodic, the results are actually quite reliable. From the oxidation
states for Co and Fe and the tetrahedral coordination [RRS+14] in the high spin state this yields
spins SCo = 3/2 and SFe = 5/2. This results in total ordered moments of mS,Co ≈ 3µB and
mS,Fe ≈ 5µB. From the refinement of the crystal structure (cf. Subsection 5.1.1) considering
the distribution of magnetic ions the average spin magnetic moment on the triangular sites for
fully ordered spins is mtri ≈ 4.7µB and on the kagome sites mkag ≈ 3.78µB. This shows that
the moments are not that strongly ordered. The lower spin state only exists for the Fe-ions,
due to the tetrahedral coordination. But the refined ordered moment is higher than the result-
ing ordered spin moment even considering the occupations and thus the low spin state can be
excluded for both ions.

5.4 Resolving the magnetic order in Q-space

From the temperature dependence observed on DNS and Powgen the magnetic structure at two
different temperatures is most interesting: 80 and 4 K. These were selected for the experiment
conducted at BioDiff. The wavelength for the incoming neutrons was set to λn = 4.4 Å, which
allows for measuring up to Q = 2.7 Å−1. In order to make use of the good resolution of the
detector in the horizontal and vertical direction, the small crystal was used. The sample has
been pre-oriented to about 2° with its c-axis parallel to the rotation axis of the sample table
(cf. Fig. 3.3a). At both temperatures an angular segment of around 60° has been measured in
0.5° steps and an intermediate segment of around 20° in 0.25° steps, covering the high intense
magnetic peak (4/3, 1/3, 0). With these segments at least two of each magnetic equivalent peaks
have been measured, which were accessible with the selected wavelength. At each rotation step
the sample was measured for two minutes. After each measurement the image plate was read at
the medium resolution setting. For the evaluation, the method described in Section 3.3 has been
used. Due to the slight misalignment of the sample, the range for integration has been increased
up to 0.2 Å−1 along the perpendicular direction in order to integrate over all peaks of the same
scattering plane. This also enhances the background of the scattering.
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Figure 5.18: Extracted cuts of the hk0 scattering plane from the measurements at Biodiff at 4 K (left) and
80 K (right). The BZ boundary is marked in grey. The magnetic Bragg peaks (5/3, 4/3, 0) and (4/3, 5/3, 0)
(symmetrical equivalents to (4/3, 1/3, 0)) are highlighted in insets. The commensurate magnetic peaks at
80 K vanish upon cooling to 4 K with only split peaks remaining. The splitting corresponds to the model

in Fig. 5.7 for δ ≈ 0.017 Å−1.

From the measurements, the (h k 0), (h k 1) and (h k 1) scattering planes could be extracted
for both temperatures. The peaks with the highest intensities belong to the crystal structure.
They feature a very sharp structure, which demonstrates the high resolution of the instrument
in combination with the used sample. As expected these do not change with temperature. The
remaining peaks can be attributed to the magnetic structure. It is also important to note, that
apart from these expected peaks, no further Bragg intensities or diffuse scattering has been
observed at neither temperature within the explored Q-space. This excludes the existence of
further structures exhibiting scattering above the background limit (cf. Section 3.2).
At 80 K the magnetic peaks in all scattering planes can be found at the K-points of the BZ (cf.
Figs. 5.18 and B.2 right), which fits with the data observed at DNS (cf. Fig. 5.2). Here these
peaks of high intensity appear to be slightly smeared (∆Q ≈ 0.015 Å−1) along the BZ bound-
ary to the M-points of the BZ, forming a somewhat triangular shape. This means, that the spin
structure in the ab-plane is in principle long-range ordered commensurably, with a

√
3×
√

3 unit
cell. Additionally, structures of shorter range order are present, yielding the diffuse scattering
observed close to the commensurate peaks. Cuts perpendicular to (h k 0) reveal a smaller peak
width along [0 0 1], which means that the spin structure has a longer correlation length along the
c-axis.
Decreasing the temperature to 4 K, a significant change can be observed (cf. Figs. 5.18 and B.2
left). Instead of the previous smearing, three peaks with decreased intensity have been measured
at the corners of the previous triangle. At the same time the peak at the K-point has vanished
completely. Furthermore, some of the triplet peaks show a variation in intensity within each
triplet. Comparing the satellite peaks of symmetrical equivalent magnetic peaks, the variation
obeys the six-fold symmetry around [0 0 1] as well as the mirror planes spanned by [0 1 0] and
[0 0 1]. This means the intensity variation over all three is only allowed for satellite triplets,
where the magnetic peak can be written as (h k l), with h 6= k. For triplets with h = k the
satellite peaks next to the mirror plane exhibit the same intensity. The width of each satellite
peak appears to be resolution limited, which is true along 〈0 0 1〉 as well (cf. Fig. 5.19). Thus,
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5.5 Magnetic peak structure at the resolution limit

the associated magnetic structure is of a long-range order type.
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Figure 5.19: A cut through the magnetic peak (4/3 5/3 0) along êx as defined in Fig. 5.18, extracted
from the data set measured on BiodDiff at 80 K. Shift in Qz stems from a misalignment of the sample.

Judging from the peak width the spin structure has a long correlation length along 〈0 0 1〉-direction.

5.5 Magnetic peak structure at the resolution limit

The structure of the magnetic peaks could be resolved using powder diffraction as well as single
crystal diffractometer, but as the revealed structure is rather complex and further information is
needed to determine the spin structure which the observed scattering is related to. Here polar-
ization analysis is used to distinguish the scattering contributions (cf. Section 2.3). Therefore,
selected magnetic peaks are mapped with high resolution. The setups have been described in
Section 3.3.

Apart from the integrated intensities, which have been determined on the neutron scattering
instrument Morpheus, some of the magnetic peaks have been mapped in the (h k 0)-scattering
plane on the large crystal. This has been done using polarization analysis allowing for the cal-
culation of the total and chiral magnetic scattering from the polarization channels Ixx and Ixx.
At 4 K in the total magnetic scattering the highest intensity is observed at the K-point of the BZ
for all magnetic peaks (cf. Fig. 5.20 upper row). But significant scattering is visible close by
the K-point as well. This diffuse scattering is shaped like triangles with corners oriented along
the BZ boundary. In the case of the magnetic peak (1/3 1/3 0), the scattering maps show an
additional structure. On the one hand, the central peak appears to be slightly split transverse to
the Q-vector and on the other hand the diffuse scattering does not continuously decrease with
increasing distance from the K-point, but local maxima are present at the corners (cf. Fig. 5.20
upper row left). This structure is not so obvious for the other peaks. The chiral scattering is
anti-symmetrical transverse to the Q-vector with the same direction for all peaks (cf. Fig 5.20
lower row). Heating the sample to 80 K results in the diffuse scattering to be localized closer to
the K-point showing no additional structure.
For the peak (4/3 1/3 0) the polarization channels Izz and Izz have been measured at 4 K. The
scattering map for Izz shows higher intensity close to the K-point with a slight elongation to-
wards the magnetic peak (2/3 2/3 0), while the scattering for Izz shows no specific maximum but
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Figure 5.20: Structure of selected magnetic peaks calculated from polarization channels measured at 4 K
on Morpheus. In the total magnetic scattering (upper row) the peaks reveal additional structure along the
Brillouin zone boundary (grey). The chiral scattering (lower row) is anti-symmetrical transverse to the

Q-vector for all peaks.

is of the same intensity at the corners as well as the centre (cf. Fig. B.1). The change between
80 and 4 K is not that prominent compared to the one observed at BioDiff, even considering
the difference in resolution. This can be attributed to a slight material variation between the
different measured crystals which leads to a difference of the magnetic order.

Similar measurements have been performed on the neutron scattering instrument MIRA. The
setup for this instrument was specially created for this experiment and described in Section
3.3. Both the small crystal and the large crystal with (h k 0) orientation were measured. The
polarization analysis option has been installed allowing further insight into the complex mag-
netic order observed in the previously presented experiment on BioDiff. MIRA features a high
resolution while allowing the mapping of small volumes of Q-space, using a position sensitive
detector performing rocking scans. As the general structure has been investigated on the in-
struments Powgen and BioDiff, in this experiment we focus on the specific magnetic peaks and
their development under temperature. Again at 80 and 4 K larger sets of peaks have been mea-
sured, as these temperatures proved to be most interesting. Using a setup with electromagnetic
coils and setting the wavelength of the incoming neutrons to 4.75 Å, we were able to measure
peaks in the (h k 0), (h k 1) and (h k 2) scattering plane. From the sets, three peaks featuring
comparably higher intensity have been selected and measured at several temperatures between
150 and 4 K. Depending on the measured polarization channels, different scattering contribu-
tions can be separated.
For every peak the polarization channels with H parallel and antiparallel to Q in the spin-flip
configuration have been measured, allowing us calculate the total magnetic scattering as well
as the chiral magnetic scattering. The additional polarization channels, which have been mea-
sured, are H parallel z with spin-flip and non spin-flip configuration, related to the scattering
from moments both in-plane and out-of-plane (cf. Section 2.3). In order to access the (h k 2)
scattering plane the φ angle of the four-circle geometry is used to rotate the crystal around the
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5.5 Magnetic peak structure at the resolution limit

normal vector of the Eulerian cradle. This effectively tilts the before mentioned scattering plane
against the instrument floor. Thus, the performed rocking scans cut through the (h k 2) plane
instead of measuring along it, which results in scattering intensity to be blocked by the analyser
cavity. Due to the K-type antiferromagnetic order only negligible nuclear scattering intensity
has been observed at the magnetic Bragg peak positions. Thus removing the cavity still allows
for measuring the two channels Ixx and Ixx. From these channels the total magnetic scattering
and the chiral magnetic scattering can still be calculated.
Judging from the shape of the crystal Bragg peaks, the resolution ellipsoid is primarily elon-
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Figure 5.21: Selected crystal peak structure measured at MIRA on the small crystal show structural
invariance between 80 and 4 K and an elongation of the resolution ellipsoid along Q. Black dots mark
the BZ centre, which was defined during the experiment to a precision of ∆Q ≈ 0.012 Å−1 · (|h|+ |k|),

indicated by the black circle.

gated along Q and in the case of the small crystal, sharp along the perpendicular directions. This
means the same elongation observed for the magnetic peaks can be attributed to the instrument
and therefore not inherent to the structure. The elongation of the peaks can lead to an overlap-
ping of the main peak and its satellite peaks, which depends on their arrangement relative to Q
and complicates the evaluation.

Since the two different crystals of CaBaCo2Fe2O7 differ in the observed magnetic order, where
the effect is more pronounced in the smaller one, this will be discussed first. Additional to the
magnetic peaks a few crystal structure peaks have also been measured at both temperatures,
which show no variation under temperature apart from the expected thermal expansion. Thus,
the crystal structure remains the same within the temperature range. At 80 K in the total mag-
netic scattering, the main peak is the most prominent one for each magnetic peak, but noticeable
intensity has been measured at the satellite peak positions as well (cf. Fig. 5.22 upper row).
Furthermore, the main peak appears to hold some structure aside from the elongation due to
the resolution ellipsoid, but this cannot be resolved clearly with the resolution and statistics
at hand. Looking into the chiral magnetic scattering it is anti-symmetrical transverse to the
Q-vector, while it is more pronounced at the satellite peak positions, it extends close to the K-
points of the BZ (cf. Fig. B.3 upper row). If one of the satellite peaks is located on the Q-vector
to the K-point, the chiral scattering vanishes for this satellite peak.
The total magnetic scattering extracted from the measurements at 4 K show the disappearing of
the main peak and an increase of the satellites’ intensity at the same time (cf. Fig. 5.22 lower
row), as observed on BioDiff. Also, the intensity variation is present for the satellite triplets,
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Figure 5.22: Peak structure close to the K-point of the BZ in the total magnetic scattering measured at
MIRA on the small crystal. Satellite peaks with the same splitting are observable at 80 and 4 K, while

the intensity at the K-point vanishes completely at 4 K.

where it is not prohibited by symmetry. Accordingly, the chiral scattering is only present at
satellite positions, anti-symmetrical transverse to Q and vanishing for satellites on the Q-vector
(cf. Fig. B.3 lower row). In the case of the magnetic peaks in the (h k 2) scattering plane, only 2
satellite peaks have been observed due to the third one being obstructed by the analyser cavity.
Thus, the maps of peak (2/3 1/3 2) in Fig. 5.22 have been measured without a cavity at a later
time.
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30 K 40 K 50 K 60 K 80 K 100 K 120 K
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Figure 5.23: Temperature dependence observed on the magnetic peak (2/3 2/3 0) in the total magnetic
scattering measured at MIRA (sorted by the order of each measurement). The small crystal reveals a

continuous change between two spin structures with different propagation vectors.

For the investigation of the temperature dependence the magnetic peaks (2/3 2/3 0), (4/3 1/3 0)
and (2/3 1/3 2) have been selected, as they provide the highest intensity and differ regarding
their symmetry relation. The magnetic peak (2/3 2/3 0) is symmetrical transverse to Q in the
total magnetic scattering, while the peak (4/3 1/3 0) allows for intensity variation over all three
satellite peaks and the (2/3 1/3 2) peak is of a different scattering plane. Still all peaks show
a similar temperature dependence. Figure 5.23 displays exemplarily the variation of the total
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5.5 Magnetic peak structure at the resolution limit

magnetic scattering with temperature for the magnetic peak (2/3 2/3 0). Upon cooling from 150
to 80 K, the overall scattering increases while the main peak is significantly stronger, compared
to the satellite peaks. Below 80 K the main peak’s intensity decreases with the satellite peaks
increasing in intensity. Between 40 and 20 K the intensity at the K-point vanishes below the
measurable statistics. The peaks have been mapped along heating as well. Here the main peak
reappears between 40 and 50 K. The slight hysteresis can be attributed to phase stability of
the magnetic structure related to the satellite peaks against temperature. The chiral scattering
is calculated using the same channels and exhibits a transverse asymmetry regarding to Q for
all peaks and temperatures (cf. Fig. B.5 top row). Due to its definition the background is
subtracted, therefore the structure is visible more clearly. It is only along two arms of the BZ
boundary, that peaks are visible in the chiral scattering. At each of them two peaks can be
observed, shifted by the same distance to the K-point, respectively. The two peaks further away
are at the position of the satellite peaks, whereas the others are even closer to the K-point.
The latter ones vanish below 60 K, while chiral scattering is observed at the satellite peaks
position for all temperatures, yet is most prominent below 20 K. Comparing the scattering for
the channels z spin-flip Izz (cf. Fig. B.5 middle row) and z non spin-flip Izz (cf. Fig. B.5 bottom
row), at the K-point higher intensity is observed in Izz at all temperatures. This means that the
moments of the spin structure related to the main peak have a smaller component parallel to
the c-axis than to the ab-plane. At the same temperature, where the intensity in the z spin-flip
channel vanishes at the K-point, intensity arises at the satellite positions, where chiral scattering
is observed. The intensity in the non-spin flip z channel increases together with the satellite
peaks at all three positions, but is most prominent on the satellite peak, which does not exhibit
chiral scattering. On the hand this indicates a structure with moments more strongly canted out
of ab-plane, but on the other hand the variation in intensity in both scattering contributions is
intriguing and will be discussed further in Section 6.3.
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Figure 5.24: Selected crystal structure peaks measured at MIRA on the large crystal, structural invariance
between 80 and 4 K is seen as well as an elongation of the resolution ellipsoid along Q. Black dots mark
the BZ centre, which was defined during the experiment to a precision of ∆Q ≈ 0.012 Å−1 · (|h|+ |k|),

indicated by the black circle.

In order to compare the magnetic order observed on the small crystal and the large crystal with
(h k 0) orientation, the large one has also been measured at MIRA. The measurement times
have been reduced to 10 seconds per detector image, as the large crystal holds around 100 times
the volume of the smaller one. The measurement plan had to be shortened due to a lack of
beamtime. At the same time by increasing the sample volume, the achievable resolution of the
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data is expected to decrease. Looking at single detector images, the crystal length determines
obviously the resolution along this direction projected on the detector. Comparing the crystal
structure peaks in the (h k 0) scattering plane measured on both crystals, the ones taken from
the large crystal feature a larger half-width half-maximum, which implies a resolution ellipsoid
with greater semi-axis along these directions as well. Like for the small crystal, the crystal
Bragg peaks do no change between 4 and 80 K (cf. Fig. 5.24).
The observed magnetic peaks at 80 K appear rather broad without the detailed structure ob-
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Figure 5.25: Peak structure close to the K-point of the BZ in the total magnetic scattering measured at
MIRA on the large crystal shows relatively high diffuse scattering and a structured peak at the K-point

at 80 K. At 4 K a slight additional structure is visible at the satellite peak positions.

served on the small crystal (cf. Fig. 5.25 upper row). Each peak seems to be split at the
K-point, transverse to the Q vector, which is most likely related to two peaks very close to the
K-point convoluted with the resolution ellipsoid. However, the peaks are not symmetric radially
along the Q vector. Taking the crystal symmetry as well as the resolution ellipsoid into account,
it can be assumed, that the elongation from the K-point to the origin or radially away from it
stems from a third magnetic peak positioned along this direction. The observation indicates,
that the slight structuring of the main peak observed on the small crystal is actually inherent to
the compound. Additionally, diffuse scattering is more pronounced close to the BZ boundary,
however, without specific structure in comparison to the small crystal.
Cooling the crystal down to 4 K, the diffuse scattering increases strongly and spreads further
away from the K-point, while the intensity at the K-point itself decreases. In principle, this is
a similar behaviour to the one observed on the small crystal, however, a distinct splitting could
not be observed and the main peak remains more intense compared to what is related to the pre-
viously observed satellite peaks (cf. Fig. 5.25 lower row). Still, an additional structure arises at
the same position in Q as observed on the small crystal (cf. Fig. 5.26). Due to the resolution
ellipsoid’s shape, this is visible best for peaks symmetric to Q, on [hh l] or its equivalents, e.g.
(1/3 2/3 0) and (2/3 2/3 0).
Thus, the temperature dependence of the side structure is best visible on these peaks. In Fig.
5.27 the decrease of the diffuse scattering upon heating from 20 to 80 K is clearly visible and
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Figure 5.26: The magnetic scattering close to the magnetic peak (1/3 2/3 0) measured on the large crystal
at 4 K. Here satellite peaks are visible with the scattering at the K-point being still prominent.

at the same time the increase in intensity at the K-point. Also the slight indications of satel-
lite peaks vanish between 60 and 80 K. The temperature dependence for the other scattering
contributions is in regards to their structure similar to the ones observed on the small crystal.
Of course, these are only similar under the premise of the intensity close to the K-point, being
dominant in all contributions and at all temperatures.
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Figure 5.27: Magnetic peak structure of the peak (2/3 2/3 0) measured at MIRA at several temperatures
on the large crystal, sorted by the order of each measurement. These maps have been measured in-
between the measurements of the large peak sets at 4 and 80 K, whereas the maps at 4 and 80 K are from

the respective set.

In order to compare the temperature dependence of the scattering intensity measured on both
crystals with the observations made on DNS, the integrated scattering of the Q-space mapped
for a single magnetic peak was determined for each different channel. The scattering back-
ground can assumed to be temperature independent, judging from the scattering maps. Then
the background can been corrected under the assumption of constant background for all chan-
nels and using the fact that the total magnetic scattering can be calculated in two different ways:

Ixx + Ixx = |M⊥|
2 ≈ Izz + Izz. (5.6)

The part of the resulting temperature dependence measured on the large crystal is similar to one
observed at DNS. However, here no decrease in the total magnetic scattering is present below
80 K (cf. Fig. 5.28 right), which was already questioned in Subsection 5.1.2. The temperature
dependence for the small crystal reveals an even higher intensity of the scattering from moments
parallel to c-axis and chiral scattering compared to the scattering from moments parallel to ab-
plane (cf. Fig. 5.28 left). The intensity of the magnetic scattering from moments parallel to the
ab-plane reaches its maximum again at around 80 K, but the intensity of the chiral scattering is
already higher at 60 K. As in the scattering maps the small crystal, a faster reorientation to the
structure related to the satellite peaks is observed. The hysteresis visible for the scattering maps
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is absent from the total magnetic scattering and only slightly apparent in the chiral scattering,
as well as the scattering from moments parallel to the c-axis. The temperature dependence for
the other two peaks shows a similar behaviour.
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Figure 5.28: Temperature dependence of integrated intensities for the (4/3 1/3 0) peak, which resembles
the one measured at DNS (cf. Fig. 5.3). Comparing both crystals, in the case of the small one, the
scattering from moments out of plane and chiral scattering is even more pronounced. The background

was subtracted using Equation 5.6.

5.6 Spin dynamics

The results on the magnetic order have revealed a quite complex structure, but using polarization
analysis some of its complexity has been elucidated. The investigation of the spin dynamics can
even go beyond that. Even though the excitations are measured, important conclusions can also
be drawn for the magnetic order. Furthermore, the dynamics are a very useful tool to study
the interactions of a system. With only the elastic scattering at hand the possible insight would
be rather limited. The spin dynamics in CaBaCo2Fe2O7 have been previously investigated in
[Rei11] using a triple-axis and a time-of-flight spectrometer. Still two major questions remained
open. Especially the lower part of the excitations in energy could not be explored sufficiently
and the comparison to the dispersions from LSWT (cf. Section 4.2) was inconclusive.

5.6.1 The overall spin wave excitation spectrum

The experiment itself has been performed prior to this thesis and has been described in [Rei11].
The combined data sets measured at ARCS (SNS, Oak Ridge, USA) cover a huge part in Q-
space and energy, from which one can extract approximately the excitation spectra along certain
directions, by integrating over the perpendicular directions. The measurement was conducted
on the two large crystals with (h k 0) and (hh l) orientation. In the case of the (hh l)-orientated
sample, the excitations are integrated along a rectangular grid. As the excitations follow the
same symmetry, the integration enhances the statistics. But in the case of the crystal with
(h k 0) orientation, an integration over the hexagonal symmetry will blur the excitations and
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Figure 5.29: Extracting cuts along symmetry directions from the measurement taken at 4 K on the crys-
tal with (h k 0)-orientation on ARCS. Possible cuts along directions symmetrically equivalent to [1 1 0]

(left). The resulting E versus Q-cuts after adding the extracted cuts (right).

cuts with a small integration volume do not provide enough statistics.

During this thesis the evaluation of the data has been pushed further, aiming to enable explo-
ration of the excitations along the high symmetry directions in the {h k 0} scattering planes.
The measured Q-space spans over a huge number of magnetic Brillouin zones. In theory the
dispersions within each BZ are the same, but their spectral weight will differ. Superimposing
the excitations of all BZs can increase the statistics by several magnitudes, but the software
Horace [Hor] used for the evaluation does not allow for such a method. Another possibility is to
sum up symmetrically equivalent cuts. The single data sets add up to a 60° angular segment of
the Q-space. This allows for cuts with three different yet symmetrically equivalent directions,
for each high symmetry direction (cf. Figure 5.29 left). The cuts from all {h k 0}-scattering
planes and their translations along the direction of the cuts have been superimposed. For the
used incident energy this method increases the statistics by a factor of 1000 on average. In the
resulting cuts spin wave dispersions are visible up to 18 meV in energy (cf. Fig. 5.29 right).
At around 22 meV a sudden drop in intensity is present, which can be assumed to be the limit
in energy of the excitation in the (h k 0)-scattering plane. In-between the excitation branches,
lower intensity is observed, which shows that the excitation cones do not exhibit an excitation
continuum. Two-magnon processes apparently do not play a major role. Even though the statis-
tics have been increased, the limited resolution in energy and Q cannot be overcome. Within
this resolution the excitations do not show a gap in energy close to the elastic line.

Integrating the combined data sets, measured on the crystal with (hh l)-orientation, perpendic-
ular to the [0 0 1] direction, an excitation spectrum has been observed, which reveals dispersions
along 〈0 0 1〉 to be present up to 68 meV [Rei11]. However, in contrast to the dispersions cal-
culated with LSWT (cf. Fig. 4.3) no gap in energy is observed. Instead the observed excitation
appear more closely related to the dispersions of a linear antiferromagnetically coupled spin
chain (cf. Fig. 5.30 left) with half its period stretching over 4 · c∗. This implies that the mag-
netic unit cell along the c-axis for these dispersions is a quarter of the structural unit cell, which
is a single kagome or triangular layer. This is a contradiction in itself, as an antiferromagnetic
linear spin chain has a unit cell consisting of two spins of opposite orientation. In correspon-
dence with the results from the LSWT (Subsection 4.2) a better approximation is a combination
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Figure 5.30: Excitations along [0 0 1] measured on ARCS at 4 K. Dispersions for a linear antiferromag-
netic (left) and pseudo-ferrimagnetic (middle) spin chain (gray line) are added for comparison. Full
integration along the spatial directions close to the origin (±5 Å

−1
) reveals intensity levels (right), cor-

responding to the dispersions of a pseudo-ferrimagnetic chain.

of an antiferromagnetic linear spin chain for the lower band and a ferrimagnetic linear spin
chain for the upper band. In this model dispersions of both the lower and upper band span with
half its period over 2 · c∗ (cf. Fig. 5.30 middle). In contrast to the dispersions of a linear an-
tiferromagnetically coupled spin chain, the slopes of the observed excitations can be modelled
while remaining physically meaningful. In this model the unit cell along c holds an effective
spin of the triangular layer as well as that of the kagome layer. The plotted dispersions for the
lower band reach up to 43 meV and for the upper band from 47 meV up to 66 meV. The ap-
proximation of the excitations along [0 0 1]-direction with a linear antiferro-ferrimagnetic spin
chain is not only in correspondence with the model, but can also be supported by levels in in-
tensity visible when all directions except the one along energy are integrated (cf. Fig 5.30). At
very low energies up to 3 meV the intensity is overshadowed by the resolution in energy, but
apart from that the first level is visible up to 25 meV. This level relates to the numerous disper-
sions in the (h k 0)-scattering plane, which only span up to 25 meV in energy (cf. Figure 5.29).
Following, the next level is visible up to 42 meV, which stems from the excitations along the
〈0 0 1〉-directions belonging to the lower band. The level at energies up to 68 meV consists of
the excitations of the upper band. Dispersions like the ones of the linear antiferromagnetic spin
chain, which span continuously up to the highest energies, cannot explain the different slopes
in intensity from 30 to 60 meV.
In contrast to the Heisenberg nearest neighbour model, the actual compound CaBaCo2Fe2O7

features Co2+ and Fe3+ ions with different spins statistically distributed over the magnetic sites,
which cannot be implemented in a simple model. Analogue to the gap in the dispersions of a
ferrimagnetic chain it can be assumed, that in present model a decrease of the effective kagome
spin will also decrease the gap between the upper and lower band. The comparison with the
measurement shows that the disorder due to the statistically distributed spins and due to finite
temperature can lead to a decrease in the difference between the effective kagome spin and tri-
angular spin. This reveals the influence of the actual compound in contrast to the model and the
amount of disorder still present at 4 K.
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5.6 Spin dynamics

5.6.2 Investigating spin wave excitations with resolution adapted
cuts

The time-of-flight spectrometer 4Seasons offers the use of four different incident energies at the
same time. Apart from that it is similar in design to the time-of-flight spectrometer ARCS. Since
the same crystal was used for the measurement (large crystal with (hh l) orientation) the overall
results for the high incident energies (Ei = 90 meV) are comparable. But the smaller incident
energies (Ei = 10 and 17 meV) provide a significantly better resolution in Q and energy, which
allows one to resolve the dispersions at lower energies.
As discussed in Section 2.4, for a given incident energy the scattering can be measured at the
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Figure 5.31: Slim cuts of the elastic part of the scattering planes (hh l) (upper row) and (h+1/6, −h+1/6, l)
(lower row) extracted from the combined data sets measured with several incident energies at 4 K. Reg-

ular pattern of the magnetic and crystal structure peaks are visible.

same time only at specific points in Q and energy, but using several different incident energies
the covered volume increases and the resulting data sets complement each other in Q and energy.
This allows one to to cover a larger part of the Q and energy space at the same time. In this
experiment we have measured the excitations using two sets of incident energies at 4 K and
one set at 80 K. In Figure 5.31 the coverage of the Q-space using one set of incident energies
(Ei = 10, 17, 33 and 90 meV) is displayed. Since these are slim cuts along the respective
scattering planes, rings of zero intensity are visible, which stem from small gaps between two
detector banks. The shape of the covered Q-space is the same for all energies, yet according
to the incident wave vector ki this results in different parts, which can be combined to a total
coverage. The displayed scattering planes clearly show a regular Bragg peak pattern, which
is a combination of the magnetic and crystal structure peaks. Additional diffuse scattering or
even low intense peaks are most likely to be attributed to a textured powder scattering from the
aluminium components in the neutron beam. An elongation of the magnetic peaks has been
observed in the (hh l)-scattering plane on DNS as well (cf. Fig. 5.2 right), but here especially
at incident energies Ei ≥ 33 meV this is due to the orientation of the resolution ellipsoid (long
semi-axis along the direction of the sample rotation).
With the different incident energies at hand and the coverage of a huge part of the space in
Q and energy the excitations can be investigated along various directions. Yet for a K-type
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Chapter 5 Structural and magnetic properties of CaBaCo2Fe2O7

antiferromagnetic order, as discussed in 5.1.2, only a few directions are actually necessary for
the comprehension of the overall excitations. Here, we focus on a few important results, which
have been gained thanks to the increased resolution and statistics. This allows for slimmer cuts
reducing the effects from integration. In the following, two dimensional cuts are considered,
which means there are two directions spanning the cut and the other two being integrated over.
From the orientation of the crystal, four perpendicular directions are defined: [1 1 0], [0 0 1],
[1 1 0] and E. The widths of a cut or rather the integration ranges in the spatial directions are
determined from the full width half maxima of the crystal Bragg peaks along these directions.
The resolution along the remaining direction is set to half the width. The cut’s width along the
energy dimension is selected by the instrumental resolution (about 5% of the incident energy)
and the resolution for the cut as half the width.
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Figure 5.32: Combined extracted cuts along the [0 0 1]-direction through (2/3, 1/3, 0) from the data sets
measured using different incident energiesEi (A: 10 meV, B: 14 meV, C: 17 meV, D: 24 meV, E: 33 meV,
F: 53 meV and G: 90 meV). No excitation continuum is present in between the excitation branches. At

4 K an anisotropy gap is indicated by a local intensity minimum below 2 meV.

Such cuts are extracted from the excitations along different directions through the Γ-point of
the magnetic Brillouin zone (cf. inset of Fig. 4.3), which is the K-point in the BZ. In Figure
5.32 the spatial direction of the cut ([0 0 1]) corresponds to Γ ↔ A and in Figure 5.33 ([1 1 0])
to Γ ↔ M . The latter ones are similar to the excitations along [1 1 0] and accordingly Γ ↔ K,
but due to the orientation of the crystal these are covered incompletely within a single cut. The
cuts along both directions are taken from the data sets of the different incident energies and
combined in such a way, that the cut with the best resolution is used where available. This
reveals the huge benefit of a multi-incident energy time-of-flight spectrometer, allowing one to
follow the excitations in energy with adapted resolution. In the resulting figures the observed
excitations show a linear dependence close to the Γ-point which descend to the elastic line.
Especially at 80 K there is a significant increase in intensity around 2 meV. The same is also
true at 4 K, but according to the Bose-Einstein statistics (cf. Eq. 2.38) the intensity is reduced.
As the cuts are quite slim, the excitation cone arising from the Γ-point is sliced. Especially
along the direction [0 0 1] (cf. Fig. 5.32) the borders of the cone are visible as maxima in
intensity, which means no excitation continuum is prominent down to at least 5 meV. Below
5 meV the excitation branches are not distinguishable any more with the available resolution.
Along the [1 1 0]-direction (cf. Fig. 5.33) the intensity on the branches decreases faster and
is more blurred. This observation can be confirmed with the constant energy cuts in {hh l}-
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Figure 5.33: Combined extracted cuts along the [1 1 0]-direction through (1/6, 1/6, 2) from the data sets
measured using different incident energiesEi (A: 10 meV, B: 14 meV, C: 17 meV, D: 24 meV, E: 33 meV,
F: 53 meV and G: 90 meV). No excitation continuum is present inbetween the excitation branches. At

4 K an anisotropy gap is indicated by a local intensity minimum below 2 meV.

scattering planes (cf. Fig. 5.34). When cut at a specific energy the surface of the excitation cone
becomes a circle or in this case, where the directions are not symmetrically equivalent, an ellipse
elongated along [1 1 0]. Such an ellipse is adumbrated already at 5 meV, but clearly visible at
higher energies in both planes and at both temperatures. Furthermore, a directional dependence
can be observed in the intensity on the ellipse. Similar to the branches along [1 1 0] (cf. Fig.
5.33), here the intensity is decreased along [1 1 0], which is in correspondence with previous
measurements on ARCS [Rei11] (also cf. Subsection 5.6.1). Only along the 〈0 0 1〉-directions,
distinct excitations have been found. The absence of an excitation continuum implies that two
magnon processes, which are also neglected in the linear spin wave theory, are less relevant.
For a geometrically frustrated compound, which also does not exhibit a unique ground state,
two magnon processes are usually expected. In addition, another observation can be made at
low energies. Even though the excitations exhibit no distinct gap, still at 4 K a maximum in
intensity is present at around 2 meV along both directions. The drop in intensity between this
maximum and the intensity at the elastic line indicates the existence of an anisotropy gap. The
gap is small compared to the total width of the inelastic spectrum and hence small compared to
Jin and Jout, which relates to a similarly small anisotropy.
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Figure 5.34: Constant energy cuts at 5 and 9 meV taken at two different planes from data sets with
incident energy Ei = 17 meV. At both temperatures the ellipse of the excitation cone is unfilled above
5 meV. In addition the intensity on the ellipse is lower from the centre along the [1 1 0]-direction. The x
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6
Discussion

In Chapter 4 the results on the compound family Swedenborgites in general have been pre-
sented, together with the new spin dynamics simulations. In the following Chapter 5 the results
on CaBaCo2Fe2O7 from several methods have been discussed. In order to understand the full
scope of the observed phenomena the results will be combined in the following sections. In
Section 6.1 the results on the average magnetic order are collected for a conclusion on its spin
structure. Followingly, the long-periodic order is discussed in Section 6.2 regarding its char-
acteristics and how such an order can arise. The other interesting problem regarding the long-
periodic order is its spin structure, which will be answered in Section 6.3. Finally in Section
6.4, the question is approached how the measured spin wave excitations relate to the results
from LSWT (cf. Section 4.2) and the numerical spin dynamics (cf. Section 4.3).

6.1 Average and commensurate magnetic order

From the experimental results two different structures have been distinguished; a commensurate
and a long-periodic structure. However, the additional structure observed close to the K-point
of the BZ is shifted only slightly in the {h k 0}-scattering planes by δ ≈ 0.017 Å−1. Therefore,
the neutron scattering instruments without the necessary resolution are unable to resolve it. On
these experiments only the average magnetic order is observed. This obviously also applies for
macroscopic experiments. Still, these results give insight to the general spin structure. As the
structure of the long-periodic order is related to the average order it is also very interesting to
study.
From the measurements of the (h k 0)- and (hh l)-scattering plane conducted at DNS (cf. Fig.
5.2), the correlation length along all three axes for the magnetic peaks can be observed. From
this, it is apparent that the spin system exhibits a three dimensional order at 4 K. Using polar-
ization analysis the total magnetic scattering has been extracted. Apart from the peaks located
at the K-points of the BZ no further magnetic scattering has been observed. Therefore, the
scattering is related to a

√
3×
√

3 antiferromagnetic order and a propagation vector (1/3 1/3 0).
The temperature dependence of the integrated intensities reveals a phase transition at around
160 K, which is consistent with magnetization and specific heat measurements [RRS+14]. In
magnetization measurements a second yet broad local extremum is visible at around 80 K (cf.
Fig. 5.4). In conjunction with the observations in Monte Carlo simulations, at this temperature
the component of the moments on the kagome sites parallel to the c-axis start to align more
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strongly. This is followed by a continuous spin reorientation between 80 and 4 K, visible in the
magnetometry (cf. Fig. 5.4) as well as in the different scattering contributions (cf. Fig. 5.3).
Thus, two spin structures are discernible. At 80 K, the spins are primarily oriented parallel to
the ab-plane. At around 4 K the spin structure converges into a state with the spins canted more
out of the ab-plane. Concerning the results from magnetometry the out-of-plane component is
fixed, whereas the in-plane component is now able to vary.
In order to determine these spin structures integrated intensities of a set of magnetic peaks
has been measured at both temperatures on Morpheus (cf. Section 5.3.2). Refinements of the
intensities for the possible magnetic space groups have been most conclusive within the trigo-
nal magnetic space groups. Both space groups are in agreement with the spin structure of the
ground state from Monte Carlo simulation, which is of the same space groups. The solution
in magnetic space group P31m′ (cf. Table. D.9) can exhibit a net magnetization along the
c-direction. Such a net magnetization cannot be excluded, since a slight loop is present in field
dependent hysteresis measurements [RRS+14] and small peaks are visible at the crystal Bragg
peak positions in the total magnetic scattering (cf. Fig. 5.2). The solution in P31m is in better
agreement with constraints calculated using the proposed model. Surprisingly, the goodness
for the refinement at 4 K is worse compared to the one at 80 K. This means that the magnetic
ordering at 80 K can be described better with a commensurate model, while the spin structure
at 4 K deviates stronger from the commensurate order. The model within both magnetic space
groups P31m′ and P31m can be used to refine the powder diffractograms measured at POW-
GEN. By design, this is only successful for the peaks at the commensurate positions and due
to the overlap between satellite and central peaks, the quantitative results are not reliable. Still,
the commensurate part of the magnetic scattering is in correspondence with the model at all
temperatures.
At 80 K the scattering maps measured at Morpheus, Biodiff and MIRA all show peaks at the K-
point of the BZ, but also diffuse scattering in a triangular shape elongated along the BZ bound-
ary. The distinct peaks at the K-points correspond to the commensurate order, but the diffuse
scattering indicates disorder present in the spin structure. As the diffuse scattering is confined
close to the K-points, the deviations from the commensurate structure are small, which is why
the refinement of an average order at 80 K is reasonable. The elastic part of the dynamic struc-
ture factor from the spin dynamics simulation shows similar shaped diffuse scattering, which
depends strongly on temperature and ratio Jout/Jin (cf. Fig. 4.4). Increasing temperature in-
creases the disorder in the structure and thus the diffuse scattering becomes more pronounced.
However, increasing the ratio decreases the diffuse scattering, which is related to the decrease
in freedom provided by the sum rule. As the measured diffuse scattering is present down to 4 K
(cf. Fig. 5.2), it can be concluded that the ratio modelling the observed order in CaBaCo2Fe2O7

best is below τ = 1.5. The resulting freedom allows for the long-periodic structure to establish
with a period length so constituted that its satellite peaks arise within the triangular shaped dif-
fuse scattering.
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6.2 Long-periodic order due to a spin spiral state

6.2 Long-periodic order due to a spin spiral state

Comparing the measurements, the deviations from the average magnetic order differ for the
various experiments. Some of the difference can be attributed to material variations between
samples despite using the same recipe, which apparently influences the arising magnetic or-
der. Furthermore, the resolution ellipsoid of the measurements depends not only on the instru-
mentation, but also on the investigated crystal. This determines if said magnetic order can be
discerned. Here measurements on the large crystal with (h k 0)-orientation and the small one
(8mm3) are of major interest. The latter one offers a better resolution at the disadvantage of a
significant drop in intensity.
At DNS only the average magnetic order has been observed, still two different spin structures
have been identified from the scattering contributions. Using other instruments with higher res-
olution a more complex structure has been resolved. The resolution limited magnetic peaks at
the K-point of the BZ at DNS have been resolved to feature a smaller peak at the centre, but ad-
ditionally structured scattering close by (cf. Fig. 5.7). The structure of the additional scattering
intensity varies from diffuse scattering to specific peaks depending on instrument, tempera-
ture and sample. Yet, in all cases additional scattering structure was observed in the {h k 0}-
scattering planes only. Along 〈0 0 1〉 the magnetic peaks are not elongated. Thus the structure
stems from a variation parallel to the ab-plane of the spin structure. The peaks at the K-points
relate to a commensurate magnetic order, similar to the average order discussed in Section 6.1.
The temperature dependence of the integrated intensity extracted from the diffractograms mea-
sured at POWGEN shows, that the commensurate peaks exhibit the highest intensity at 80 K
and decreases at low temperature below the intensity of the satellite peaks, while the intensity
of the latter ones increase. Comparing these gradients with the ones observed on DNS, a similar
trend has been observed for the intensity of the main peak and the scattering from moments in
the plane and accordingly, a similar trend for the intensity of the satellite peaks and the chiral
scattering as well as the scattering from moments parallel to the c-axis. Thus the scattering con-
tribution from moments in the plane can be attributed mainly to the commensurate order and
the scattering from moments parallel to the c-axis mainly to the long-periodic order, which indi-
cates a more canted spin structure in case of the long-periodic order. As the peak pattern could
be fit using a temperature independent peak splitting, this is a transition between two distinct
types of ordering. However, the temperature dependent measurements of the integrated inten-
sities at DNS (cf. Fig. 5.3), the magnetometry (cf. Fig. 5.4) and the extracted intensities from
the powder diffractograms at POWGEN (cf. Fig. 5.9), all evidence a distinct Néel-transition
at 160 K, but instead of an additional phase transition a continuous spin reorientation. The fit
of different models to the powder diffraction data (cf. Subsection 5.3.1) and also the structure
of the magnetic observed at MIRA (cf. Fig. 5.23) reveals the commensurate and long-periodic
order to exist combined over a large range in temperature and to arise simultaneously at 160 K,
which explains the absence of a second phase transition. In the measurements of the magnetic
peak structure at 80 K also the commensurate peaks show a slight splitting at the limit of the
instrumental resolution (cf. Figs. 5.22 and 5.25). If this observation is to be trusted, the spin
reorientation takes place between a long-periodic order with a significantly longer period length
of about 150 nm and the long-periodic order discussed here.
The measurement at Biodiff has been performed on the small single crystal and shows a clear
splitting of three satellite peaks along the BZ boundary for each magnetic peak at 4 K (cf. Fig.
5.18). The observed splitting corresponds to the assumed model used for fitting the powder data
(cf. Fig. 5.7). The commensurate peaks, which are present at 80 K, vanish completely. Com-
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paring the intensity variation over each triplet, the satellite of {4/3 1/3 0} and {4/3 1/3 1}, which
overlaps with the main peak in the measurement at POWGEN, is actually the most intense one.
Thus the integrated intensity of the commensurate peak might decrease in the powder data even
stronger. Changing from the commensurate order to a long-periodic one is similar to the change
between the crystal structure and the antiferromagnetic order (cf. Section 2.2). In both cases
the new unit cell increases by the periodicity and the reciprocal cell decreases, but the shape
of both cells is derived from the commensurate or rather the crystallographic one, which is
determined by the symmetry. This is naturally only valid if the crystal structure symmetry is
maintained upon the phase transition, as it is the case for CaBaCo2Fe2O7. Thus, according to
the magnetic space group determined for the average magnetic order, a splitting in the {h k 0}-
scattering planes on top of the antiferromagnetic order would result in six satellite peaks close
to the K-point, but only three have been observed. Therefore the splitting has to stem from a
long-periodic magnetic structure on top of the crystal structure and consequently a completely
independent structure with a propagation vector

k1 = (1/3 + δ, 1/3 + δ, 0) with δ ≈ 0.009 (6.1)

noted in the crystallographic unit cell and its symmetrically equivalents

k2 = (2/3 + 2δ, −1/3− δ, 0) = −k5,

k3 = (1/3 + δ, −2/3− 2δ, 0) = −k6,

k4 = −k1,

resulting in a multi-q structure. The parameter δ is defined as the distance between the K-
point and a satellite peak (cf. Fig. 5.7). Within the mapped Q-space the scattering pattern
observed in total magnetic scattering (cf. Figs. 5.18 and B.2) still fulfils the symmetry of the
same magnetic space group, e.g. the six-fold rotation symmetry around c∗ and mirror planes
symmetrically equivalents of (hh l). In this sense the long-periodic order is related to the com-
mensurate order. The usage of the polarization analysis at MIRA clearly proves the conclusion
the long-periodic order to be stronger canted out of the ab-plane as correct, since the connection
between the satellite peaks and scattering from moments parallel to the c-axis is directly visible
(cf. Fig. B.5).
Still such a transition remains unusual, as this is not a slight reorientation, but a complete change
of the whole structure. Apparently, this transition can be partly suppressed due to slight mate-
rial variations. Only the small crystal exhibits a complete transition, where the commensurate
magnetic peaks completely vanish at 4 K. The theoretical possibility of the transition from a
long-range antiferromagnetic order to a long-range long-periodic order can be understood with
the help of the Heisenberg nearest neighbour model. The rules derived from minimizing the
energy for each double tetrahedron result in a unique solution for the triangular spins while
the solution for the kagome spins is degenerate for ratios τ < 1.5. This leads to the kagome
layers to vary from each other within ranges determined by the ratio, which is the so-called
spin liquid phase. The elastic part of the dynamic structure factor calculated from such a spin
structure shows diffuse scattering close to the peak at the K-point of the BZ (cf. Fig. 4.4). The
diffuse scattering is elongated along the same direction as the satellite peak positions. Thus the
long-periodic order is part of the spin system’s phase space, and the disorder plays an important
role if a system can manage to undergo the transition. In a system with a unique solution for
all kagome layers already at the Néel transition, all spins start to anneal to this solution and a
transition to a different long-range order will be suppressed. However, in a spin liquid struc-
ture the energy barrier for this transition is smaller. This is the same reason why the nematic
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6.2 Long-periodic order due to a spin spiral state

phase exists for very small temperature fluctuations at T/Jin � 0.01. Yet the transition as it

was observed in the measurements has not been found in the simulation. On the one hand,

the transition might be suppressed by the periodic boundary conditions, which do not fit to the

period of the order, on the other hand the necessary mechanism is missing from the model. The

broken inversion symmetry on the bonds between nearest neighbour magnetic sites allows for

the Dzyaloshinskii-Moriya (DM) interactions to be present. Based on the crystal structure the

allowed DM vectors can be determined using the Moriya rules [Mor60]. As discussed in Sec-

tion 4.1 four different bonds exist, with Oxygen ions shifted away from the bond breaking the

inversion symmetry (first rule). In the case of the bonds connecting kagome and kagome sites

a mirror plane of the structural symmetry is located on the middle of the bond perpendicular to

this bond, the DM vectors (D and D′′′) are therefore constraint to be perpendicular to the bond

(second rule). On the bonds between kagome and triangular site, there a mirror plane exists

spanned by the bond and the Oxygen ion, which constraints the DM vector (D′ and D′′) on

these bond perpendicular to this mirror plane (third rule). The fourth and fifth Moriya rule are

not fulfilled as no rotation axis exist neither perpendicular nor parallel to the bond. This results

in the allowed DM vectors depicted in Figure 6.1. The DM interaction for two spins Si, Sj is

D’ || AB

D”’ ⊥ AB

D” || AB’

D ⊥ AB

A

B’

B

A’

Figure 6.1: Possible Dzyaloshinskii-Moriya interactions determined from the crystal structure using the

Moriya rules [Mor60]. From symmetry the DM vectors on the bonds between a kagome and triangular

are fixed parallel to the opposite bond of the tetrahedron, while the vectors on kagome-kagome bonds

can vary in the plane perpendicular to the bond.

defined as

HDM = Dij · (Si × Sj) (6.2)

with Dij as the vectors noted in Fig. 6.1. As the crossproduct is maximal for perpendicular spins

the energy can be minimized for the crossproduct antiparallel to the Dzyaloshinskii-Moriya vec-

tor. Depending on the orientation of the DM vector in regards to the bond this either leads to a

helical (parallel) or cycloidal (perpendicular) spin structure. As determined by the Moriya rules

the DM vectors allowed by the structure are perpendicular to the bond and, thus, induces a cy-

cloidal spin structure. However the combination of all possible DM vectors is still vast. In the

conducted experiments the long-periodic order is only observed in the {h k 0}-planes, which

indicates that the DM vectors D′ and D′′ must compensate each other to suppress a cycloidal

structure along c-direction. In addition, the part of the DM vectors D and D′′′ parallel to the

c-axis just leads to a canting of the kagome spins parallel to the ab-plane. As a simplification,

we just consider DM vectors D and D′′′ parallel to ab-plane. Introducing such DM vectors on

79



Chapter 6 Discussion

the nearest neighbour bonds (as allowed in Fig. 6.1) favours a canting of the spins out of the
ab-plane. Already a weak interaction can have a significant impact on the ordering due to the
high degeneracy. Considering the experimental results the DM interaction has to be weak re-
garding temperature fluctuations above 80 K leading to the magnetic order closer related to the
commensurate ordering. But upon cooling the interaction is strong enough to select a solution
of the phase space and followingly initiate a spin reorientation.
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Figure 6.2: Configurational energy close to the magnetic peak (1/3, 1/3, 0). The BZ boundary is indi-
cated as grey lines. (Left) calculation is based on the Heisenberg nearest neighbour model for a ratio
of Jout/Jin = 1.45 and Dij = 0 resulting in a region flat in energy close to the K-point (marked by the
red circle). (Right) Dzyaloshinskii-Moriya exchange interaction (D||ab = 0.02 and D′′′||ab = 0.01 ) is
introduced making the commensurate order energeticly less favourable. The new minima in energy are

marked as red dots. The source code used for the calculation is courtesy of Maxim Mostovoy.

In cooperation with Maxim Mostovoy the energy landscape close to the K-point has been ex-
plored using spin structures with different propagation vectors. Here preliminary results are
presented, which are courtesy of Maxim Mostovoy. He has developed an algorithm, which de-
termines a spin configuration on a double tetrahedron minimizing the energy for Heisenberg
nearest neighbour model including HDM and propagation vector. Subsequently, the whole lat-
tice is created from this double tetrahedra and the configurational energy is calculated using the
respective model. This is repeated for many propagation vectors covering the (h k 0)-scattering
plane of the reciprocal space in the vicinity of the magnetic peak (1/3, 1/3, 0), where the satellite
peaks have been observed experimentally. For the Heisenberg nearest neighbour model without
DM terms the energy close to the K-point is flat or rather varies by less than 10−6Jin from the
absolute minimum in energy E = −14.41Jin. This corresponds to the observation of the diffuse
scattering enhanced close to the K-point in MCS even at very low temperatures (cf. Fig. 4.4).
The size of the flat area decreases with increasing ratio Jout/Jin and vanishes for Jout/Jin ≥ 1.5,
similarly to the diffuse scattering. But introducing a DM exchange interaction (D||ab = 0.02
and D′′′||ab = 0.01 ) to the Heisenberg model creates a local maximum in the configurational
energy at the K-point, the commensurate spin structure with the propagation vector (1/3, 1/3, 0)
becomes unfavourable. At the same time a ring flat in energy develops just outside the previ-
ously flat area with an even lowered energy. The radius of the ring increases with decreasing
ratio. The absolute minima in energy are situated in the ring along the BZ boundary, which
vary by less than 10−6Jin from the absolute minimum in energy E ≈ −14.45Jin. While the
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shift is larger than the one observed for the satellites in measurements, the direction of the shift
corresponds exactly to the observed splitting. As a specific spin structure is selected due to the
DM exchange interactions, the overall diffuse scattering is expected to decrease compared to
previous results from Monte Carlo simulations (cf. Fig. 4.4). The investigation will be pursued
further in order to determine the combination of exchange interactions Jin, Jout and DM vectors,
where the resulting model yields energy minima in Q-space at the observed satellite positions.
From the results up to now, it can be concluded that the introduction of DM interaction has
proven to result in a mechanism, which can change the spin structure from a commensurate
to a long-periodic order for sufficiently low temperature fluctuations and most likely a ratio of
Jout/Jin slightly smaller than 1.5 with appropriate DM terms is suitable to model the magnetic
order in CaBaCo2Fe2O7. The addition of the DM terms also suppresses the transition to the
nematic phase, which explains why the nematic phase (cf. Fig. 4.2a) is not expected to be
observed in magnetometry (cf. Fig. 5.4) and the integrated intensities at DNS (cf. Fig. 5.3).
Since the long-periodic order is closely connected with the DM interaction, small changes in
the DM terms can have a significant impact. The DM terms again are related to the position
of the oxygen ions breaking the inversion symmetry on the bonds between the magnetic ions.
There have been several studies on the oxygen stoichiometry in compounds of the Swedenbor-
gite family and it was shown that deviations in the stoichiometry influence the magnetic order
[SDP+11, ACZ+13]. Thus, it can be assumed that the difference observed in the magnetic order
at 4 K on the small crystal (cf. Fig. 5.22 lower row) and the large crystal with (h k 0)-orientation
(cf. Fig. 5.25 lower row) stems from a variation in the oxygen stoichiometry, the position of the
oxygen ions, or both.

6.3 Cycloidal spin structure and skyrmion lattice

The spin structure for the long-periodic order cannot be determined using Monte Carlo simula-
tion, even if the appropriate Dzyaloshinskii-Moriya exchange interactions are included, because
the periodic boundary conditions most likely suppress any transition to this order. Therefore, the
results of the various scattering experiments have to be used to determine a spin structure, which
exhibits a similar structure factor. The spin structure must fulfil the following observations:

• A splitting of each magnetic peak into three satellite peaks within the respective (h k 0)-
scattering plane (cf. Figs. 5.8, 5.18 left and 5.22 lower row).

• The satellite peaks exhibit similar scattering intensity for the contribution from moments
parallel to the c-axis as well as the contribution from moments parallel to the ab-plane
(cf. Figs. B.5).

• An anti-symmetrical chiral scattering transverse with regards to the Q-vector of the com-
mensurate magnetic Bragg peak position.

• Each scattering contribution has to obey the symmetry relations of the trigonal magnetic
space groups.

A long-periodic order, which also exhibits chiral magnetic scattering, relates to a spin structure
with a handedness. Such a handedness exists in helical (spiral with constant diameter, also
known as proper screw) or cycloidal structures. They can be discerned by the difference in
chiral scattering Ichiral (cf. Eq. 2.31). As the splitting only occurs within the {h k 0} planes,
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the propagation vector has to be in ab-plane. In the case of the peaks in (h k 0)-scattering plane
the Q-vector has a component only in x and y. In case of a helical structure there is always an
effective contribution perpendicular to Q, which means for each Q with non vanishing magnetic
scattering the chiral scattering is non zero as well. As satellite peaks, which are along the Q-
vector to the commensurate peak position, vanish in the chiral scattering a helical spin structure
can be excluded. This is different for cycloidal spin structures. If the propagation vector of the
cycloid is parallel to the Q-vector there is no effective contribution from perpendicular spins
perpendicular to Q. Thus the chiral scattering as it was observed, is only possible to model using
cycloidal spin structures. The same peak vanishes also in the scattering from moments parallel
to ab-plane (cf. Fig. B.5 middle), which leads to the same conclusion. In cycloidal structures
the rotation vector is perpendicular to the propagation vector. It has been discussed already that
the observed splitting can only arise for a propagation vector (0.342, 0.342, 0) in the notation
of the crystallographic unit cell. This translates to the real space in the sense that the same
spin in neighbouring columns is rotated by less than 120°. The starting configuration in itself
has to fulfil the space group symmetries, otherwise the created structure cannot satisfy it either.
Therefore a collinear spin configuration along the c-axis is used as the starting configuration,
S0
i ∈ {Stri = ez , Skag = −ez}. Since the scattering contributions from moments in the ab-

plane and parallel to c-axis are similar in intensity the rotation vector for the cycloids can be
chosen to be in ab-plane as well. From the rotation, both scattering contributions will arise. In
order to obtain the 120° rotation symmetry around the c-axis, three planar waves j are created
with appropriate propagation vectors in the ab-plane pj = p · p̂j at 120° to one another and
rotation vectors Rj , where pj ∗ Rj = 0 and p being the period of the planar waves. In order
to keep the antiferromagnetic order, the three different columns have a different phase φi ∈
{0°, 120°, 240°}. The spins Si,j for each of the planar waves j are determined by

Si,j = MRj ,φi−α · S
0
i , with α =

ri · Rj

2π · p
, (6.3)

where MR,α is the rotation matrix for a rotation axis Rj and an angle α and ri is the position of
the spin Si. Adding up the planar waves results in a spin structures like the ones displayed in
Figures 6.4a and B.10. The actual source code is provided in Appendix Chapter E.
This method is not the only one to create such a spin structure. A similar one has also been
tested, which uses a collinear spin configuration along the y-axis as the starting configuration.
However, since the y-axis is special, this has to be compensated using two additional starting
configurations rotated by 120° for three planar waves each. Furthermore, the rotation vectors
for the planar waves can be rotated out of plane, which results in a different ratio between the
scattering contributions from moments in-plane and those out-of-plane. This can be used to
optimize the agreement between the model and the measured data.
The period length can be calculated for the measured splitting of δ ≈ 0.017 Å−1 and a lattice
parameter a = 6.36 Å with

p =

⌊
2π

δ
· 1√

3a

⌋
= 33 [mag. u.c.]. (6.4)

The resulting spin structure is displayed for a decreased period of 6 magnetic unit cells in Fig.
6.4a and for the correct period of 33 magnetic unit cells (mag. u.c.) in Fig. B.10. The start-
ing configuration is repeated according to the period with a three-fold symmetry. In between
considering only the spins with the same offset in their phase, these rotate continuously. At spe-
cific symmetry positions of the periodic spin structure the ground state of the antiferromagnetic
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6.3 Cycloidal spin structure and skyrmion lattice
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Figure 6.3: Structure factor calculated from the long-periodic spin structure. Background has been
removed. (a) Scattering from moments in the ab-plane. (b) Scattering from moments parallel to the
c-axis. (c) Total magnetic scattering. Insets display intensity distribution over satellite peaks similar to
data measured at 4 K (cf. Fig. 5.18a). (d) Chiral magnetic scattering, shows the same antisymmetry as

data from Morpheus (cf. Fig. 5.20 lower row) and MIRA (cf. Fig. B.3).

order can be recognized. By design the conditions to the scattering are fulfilled successfully,
moreover the intensity variation from one triplet to another is similar to the observed scattering.
The intensity for the satellites close to the magnetic peak (1/3 1/3 0) or its equivalent peaks is
the lowest. The satellites’ intensity close to around (2/3 2/3 0) is slightly higher and the satel-
lites close to (4/3 1/3 0) exhibit the highest intensity. The intensity for the satellites of magnetic
peak (5/3 2/3 0) is slightly lower compared to (4/3 1/3 0). This corresponds to measurements on
Biodiff (cf. Fig. 5.18 left) and results from using the antiferromagnetic ground state as a refer-
ence, which featured the same intensity variation. It is even more intriguing, that the variation
in intensity over the satellite peaks for each triplet observed on Biodiff (cf. insets of Fig. 5.18
left) are reproduced, which probably results from the symmetry imposed on the created spin
structure.

Yet, deviations between the model and measurement are present as well. In both scattering
contributions from moments in ab-plane and parallel to the c-axis a variation in intensity over
the three satellites is visible in the experimental data (cf. Figs. B.4 and B.5), at least where
allowed by symmetry. The model spin structure exhibits such a variation for the contribution
from moments in the ab-plane but it is missing in the contribution from moments parallel to
the c-axis. Furthermore the scattering intensity of the latter contribution is smaller than the
one from moments in the ab-plane for all triplets. In the measurements at MIRA the intensity
of both contributions is similar below 20 K though the respective intensity for each satellite is
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(a) (b)

Figure 6.4: Long-periodic spin structure created with cycloids propagating in ab-plane viewed along the
c-axis. The rotation angle has been increased or rather the length of the period length has been decreased
to 6 magnetic unit cells in order to highlight the symmetry of the arising spin structure. Compare Figure
B.10 for the spin structure with the correct period length of 33 magnetic unit cells. The unit cell of the

long-periodic order is marked with black lines.
(a) Spin structure is related by its creation principle to the scattering in Fig. 6.3. (b) During the cre-
ation the antiferromagnetic modulation was removed for comparison. The spin structure shows a clear

translation symmetry and link to the hedgehog type skyrmion.

different. This can be corrected by tilting the rotation vectors Rj of the planar waves against the
ab-plane.
The starting configuration is repeated on a triangular lattice throughout the spin structure.
A similar pattern is observed in the skyrmion lattices of MnSi [MBJ+09] and Cu2OSeO3

[SKI+12], where the skyrmion is repeated on a triangular lattice. In [BF13] the skyrmion phase
was successfully modelled with a spin structure created in a similar way like here superimpos-
ing three helical waves. However in contrast to these lattices here the spin structure is created
from cycloids. From these analogues, we assume this spin structure to be a skyrmion lattice
as well, which is called a hedgehog in the case of cycloids. Neglecting the antiferromagnetic
modulation (cf. Fig 6.4b), the triangular lattice becomes even more obvious. Furthermore, the
resulting structure resembles the planar projection of said hedgehog illustrating the connection
to this skyrmion type. The winding number (cf. e.g. [Bra12]) generally defined as

w =
1

4π

∫∫
dx dy m ∗ (∂xm× ∂ym) (6.5)

denotes if a spin structure is topological protected. In the case of a skyrmion lattice the winding
number counts the number of skyrmions in the lattice. Here we are dealing with stacked dis-
crete and limited lattices. Therefore an approximation valid for large lattices is better suited to
calculate the winding number for each sublattice l of the spin structure separately via the solid
angle [VS83, Buh15] using:

wl =
1

A

∑
ijk

Ŝl,i ∗ (Ŝl,j × Ŝl,k). (6.6)

Here ijk denotes a triangle of three neighboured spins i, j, k sorted anticlockwise belonging to
the same sublattice l. The result is normed depending on the coverage with triangles, triangular
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6.3 Cycloidal spin structure and skyrmion lattice

layer A = 8π and kagome layer A = 2π. The spin structure was created in the way that along
both directions a and b it holds two periods of the order, which results in four unit cells of
the long-periodic order independent from the period length. Thus a winding number of ±4 is
expected for the whole lattice with one skyrmion per unit cell [MBJ+09, ACW+12]. The wind-
ing number was calculated for several spin structures different in their period length denoted
in commensurate magnetic unit cells, both with and without the antiferromagnetic modulation
(cf. Fig. 6.5). The winding number varies with the period, since the size of the triangles has
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Figure 6.5: Winding number per unit cell of the long-periodic order calculated for a triangular layer of
the spin structure, which was created with (red) and without (blue) the antiferromagnetic modulation

using a period length of p commensurate magnetic unit cells (mag. u.c.).

to be small compared to the size of the skyrmion for Equation 6.6. However, as required the
winding number per long-periodic unit cell is independent from the number of this unit cell per
spin structure. For the triangular layer the winding number per unit cell of the long-periodic
order converges towtri, ferro = 1 without the antiferromagnetic modulation. For the long-periodic
order including the antiferromagnetic modulation the winding number does not converge to −1
within the performed computational effort. Yet, the winding number is expected to converge to
wtri, af ≈ −1 for sufficiently large periods. The additional modulation requires an even larger
skyrmion for the winding number to converge. Nevertheless, as expected each unit cell of the
long-periodic order holds a single topological charge.
Furthermore the length of the spins has been checked (cf. Fig. 6.6), whether they vary down
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Figure 6.6: Spin length distribution of the calculated spin structure with the periodicity p =
33 [mag. u.c.]. Apparently the spins can vary within a certain range, but all spins have a non zero

length required for a valid spin structure.

to a spin length of zero, which would indicate the calculated spin structure to be invalid. Here
all spins have a non-zero length. It might be possible to reduce the variation of the spin length
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without changing the scattering pattern. By design the spin structure does not properly fulfil the
sum rule (cf. Eq. 4.4). For a ratio of τ = 1.45 the sum rule offers some freedom for the spins on
double tetrahedra or rather requires those spins to cant. Through the canting not only the 120°
between the columns can be complied and the spin length can be increased while maintaining
the effective spin length.
In the ferromagnetic compounds, where the skyrmion lattice was observed, the phase was sta-
bilized using an external magnetic field. However in an antiferromagnetically coupled mate-
rial this is not that obvious. In the refinement of the magnetic structure the solution within
the P31m′ allows for a net magnetisation along the c-direction (cf. Subsection 5.3.2), so this
mechanism is not excluded just from to the coupling. Yet, in the experiments at POWGEN
and BioDiff a splitting was observed, although no external magnetic field was applied at all.
Whether a different stabilizing mechanism plays an important role or no external stabilization
is necessary, this is under ongoing research.

6.4 Spin dynamics under strong frustration

The magnetic order revealed a quite complex nature, which of course also influences the spin
dynamics. Yet, the neutron scattering instruments used for investigation do not offer sufficient
resolution as they are not designed that way. On the other hand combining the inelastic neutron
scattering with a polarization option could allow for separating some contributions but also
reduces the low statistics in the inelastic scattering even further, which is why only unpolarised
neutrons are used here. In [Rei11] the excitations of CaBaCo2Fe2O7 have been measured at
low energies using the triple-axis spectrometer PANDA and at high energies the time-of-flight
spectrometer ARCS. Here, the multi incident energy time-of-flight spectrometer 4Seasons was
used to investigate the excitations with an adapted resolution (cf. Subsection 5.6.2). For a
theoretical comparison dispersions have been calculated using linear spin wave theory for ratios
Jout/Jin ≥ 1.5 in [Rei11]. Additionally within this study, the dynamic structure factor has been
determined also for ratios Jout/Jin < 1.5 using spin dynamics simulations, which can be used
to study the magnetic order as well as the magnetic excitations (cf. Section 4.3).

The results from linear spin wave theory and the spin dynamics simulations at T = 0.01Jin

do correspond perfectly for Jout/Jin = 1.5, but in the latter case the spectral weight as well as
the dispersions width could be determined in addition. In both cases the dispersions along the
〈0 0 1〉-directions stick out most as they are linear at the Γ-point and stretch over a large range
in energy, while the dispersions along the other directions are comparably flat. Furthermore
these dispersions are gapped at non zero energy split in an acoustic and optical excitation band.
The direction [0 0 1] corresponds to the c-direction in real space, thus the spins along the double
tetrahedra column are relevant. Based on a single double tetrahedra column the dispersions
have been calculated using LSWT, which are similar to the ones observed for the whole struc-
ture (cf. Fig. 6.7). Therefore we limit the discussion of the dispersions to the spin waves along
the double tetrahedra column.
Then the energy dependency can be described by assuming two kinds of spin chains. In the
case of the lower band the interactions between single spins along the directions are considered,
which results in an antiferromagnetic coupled linear spin chain along the c-axis. The disper-
sion of such a spin chain is in accordance with the lower band. However if one regards the
effective spin of each layer this results in a linear ferrimagnetic spin chain, whose upper band
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Figure 6.7: Dispersions along [0 0 1]-direction calculated with LSWT for a single double tetrahedra
column along c-direction. Note, that here the energy scale is divided by Jout. Based on the Heisenberg
nearest neighbour model two situations are compared: decoupled kagome spins for exchange interactions
Jout = 1.5 and Jin = 0.0 (left) and coupled kagome spins for Jout = 1.5 and Jin = 1.0 (middle). The
dispersions along [0 0 1]-direction for the whole structure with Jout = 1.5 and Jin = 1.0 are displayed for
comparison (right), here the magnetic unit cell was reduced to two layers, one kagome and one triangular.

corresponds to the upper band of the calculated dispersions. In the spin dynamics simulations
the dependence on the ratio Jin/Jout is investigated, which is different for the lower and upper
excitation band. The upper one increases faster in energy with the ratio, because additionally to
the usual ratio dependence of the upper band of a ferrimagnetic spin chain, the effective moment
of the kagome spins increases with ratio according to the sum rule (cf. Eq. 4.5). Combining
these results the dynamics along the c-direction can be described by a pseudo-ferrimagnetic
spin chain. In Subsection 4.3.2 the ratio dependence of the upper and lower excitation band was
discussed qualitatively. Here, a more quantitative approach is taken determining the limits of
the excitation bands depending on the ratio.

τ = Jout/Jin

1.0 1.1 1.2 1.3 1.4 1.5 mean
lower
band

upper 1.46(8) 1.62(5) 1.76(2) 1.89(2) 2.01(2) 2.13(2) -
upper/τ 1.46(8) 1.48(4) 1.47(2) 1.45(1) 1.44(1) 1.42(1) 1.44(1)

upper
band

upper 2.00(7) 2.41(2) 2.88(2) 3.38(3) 3.93(3) 4.39(2) -
upper/τ 2 2.00(7) 2.00(2) 2.00(1) 2.01(1) 1.98(1) 1.95(1) 1.99(1)
width 0.55(8) 0.74(7) 0.92(4) 1.07(4) 1.21(4) 1.32(3) -
width/τ 2 0.55(8) 0.61(6) 0.64(3) 0.63(2) 0.62(2) 0.59(1) 0.61(1)

Table 6.1: Limits of the excitation bands in energy noted in units of Jin. In the lower band a linear
dependence on τ is present and in the upper band a quadratic one.

Taking constant Q-scans from the excitations along [0 0 1]-direction at T/Jin = 0.01 (cf. Fig.
4.5 bottom row) the limits of the observed dispersions have been extracted using Gaussian fits
(cf. Table 6.1). From these results it follows for the ratio τ = Jout/Jin that the upper limit of
the upper band and its width both scale with τ 2, but the upper limit of the lower band scales
with τ confirming the qualitative discussion. Using error weighted means the excitations can
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be approximated for the ratios 1.0 ≤ τ ≤ 1.5 with the following dispersions:

~ω(k)

Jin
=

1.44τ · sin
(
πl
2

)
lower band

1.99τ 2(1− 0.61
4
· (1 + cos(πl))) upper band,

(6.7)

with l being the reciprocal lattice unit along c∗. The goodness of this approximation decreases
for the ratios τ ≤ 1.0 and the sum rule holds only for ratios up to τ = 1.5. Similar to the
ferrimagnetic chain two separated excitation bands exist and the limit of the lower one scales
with the exchange interaction. For the discussed reasons the upper limit of the upper band scales
with the square of τ instead linearly with τ . However, in contrast both excitation bands of the
ferrimagnetic dispersions have the same width, and they are proportional to the smaller spin
length (cf. Fig. 2.7), which is not the case here. It is quite intriguing that the width of the upper
band scales with the square of τ and it is smaller than the lower band’s width. Thus the spins
responsible for the lower and upper band are are different one. While the spin for the lower
band has constant length, the length of the spin for the upper band scales with τ .

In order to understand the origin of these excitations the dispersions have been calculated for
a single double tetrahedra column using LSWT considering two different cases (cf. Fig. 6.7).
Of course these calculations are only valid within the restrictions of LSWT as discussed before.
Calculating the dispersions for a single double tetrahedra allows us to distinguish between the
influence of the columns and the interaction between those. In the first case (cf. Fig. 6.7 left)
Jout = 1.5 and Jin = 0 were chosen in order to study the influence of the in-plane exchange
interaction on the dispersions, propagating out of plane. Yet, in the second case the exchange
interactions have been set to Jout = 1.5 and Jin = 1.0, according to the previous studies. Both
cases consist of four different spins, which results in four dispersions each, and here the non-
dispersive modes are actually degenerate. Apart from these modes the dispersions for the first
case are exactly those of a linear ferrimagnetic spin chain, with a small spin SB = 1 and a large
spin SA = 3 (cf. Fig. 2.7 right). Increasing Jin continuously results in dispersions with the
dispersive modes rising in energy and at the same time the flat modes being lowered in energy
until Jin = 1.0 ( cf. Fig. 6.7 middle). This leads to an excitation gap in energy, which has to
be overcome for any spin wave to occur. Additionally, the lower limit of both bands appears
to shift slightly to higher energies and simultaneously decreasing both bands’ width. Those
calculated with LSWT for the whole structure are additionally split, but aside from that the
limits nicely coincide. Therefore we can deduce the following indications. The upper limit of
the upper band definitely scales with the effective kagome spin independent from Jin. The width
of the upper band is slightly influenced by the ratio, which is beyond the assumption of a linear
chain. Finally comparing the dispersion for the full structure with the latter case shows, that the
coupling of the double tetrahedra columns leads to the linear dispersions close to Γ-point.

In the experimental data the excitations along the 〈0 0 1〉 are also the most distinct and span
continuously from the elastic line to 66 meV. In the case of the model, the gap between the
bands vanishes for ratios Jout/Jin ≤ 1.1. Taking into account the width of the dispersions a
ratio slightly above 1.1 is still possible. However in the elastic structure factor simulated for
this ratio the diffuse scattering is of higher intensity compared to the experimental data. In
the model all spins are set to unity length, which is in strong difference to the actual material
CaBaCo2Fe2O7. From the oxidation states Co2+ and Fe3+, spins of lengths SCo = 3/2 and
SFe = 5/2 exist. In principle the model is not restricted to unity spin lengths. Because if all
kagome spins and and triangular spins have the same length respectively, their length can be
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absorbed into the exchange interaction (J ′in = S2
kag · Jin and J ′out = SkagStri · Jout). However here

the ions are statistically distributed over the magnetic sites favouring Fe on the triangular and
Co on the kagome sites. Considering this distribution this results in an average spin of length
of Skag ≈ 1.89 on the kagome sites and Stri ≈ 2.35 on the triangular sites, which reduces the
effective spin of the kagome triangle (cf. Eq. 4.5). Though in order to explain the observed
gapless excitations within the model the effective spin has to be even smaller, which means that
there is still considerable disorder present on the kagome sites. This corresponds very nicely
with results from Monte Carlo simulation and spin structure refinement. Still within the model
of a pseudo-ferrimagnetic chain relations can be extracted based on the comparison between the
dispersions and the measured excitation spectrum along the 〈0 0 1〉-directions (cf. Fig. 5.30).

Using the transition temperature TN determined experimentally and those in simulations as a
fixed-point, than the temperature at which the excitations have been measured (4 K) is similar
to T/Jin = 0.01 for ratios close to τ = 1.5 [Rei11]. Comparing the results from the model
to the experimental results, it can be assumed that the upper limit of the excitations observed
in CaBaCo2Fe2O7 scales with the effective kagome spin, as the largest spin matters, and the
ratio τ . In order to compare to the model of the linear spin chain only the effective component
parallel to the quantization axis is considered, thus Skag and Stri are expected to be decreased.
This also simplifies the equation of the sum rule (cf. Eq. 4.5) to

2τStri =
∑
i

Skag,i = Skag, eff. (6.8)

Here, the limits determined from the dispersions of the antiferro-ferrimagnetic spin chain (cf.
Fig. 5.30 middle) are used here, since these are only estimations this also applies to the follow-
ing calculations. Then the relation can be derived from the previously determined dispersions
(cf. Eq. 6.7):

66 meV = E = Jin · 2τ 2Stri
Eq. 6.8−−−→ = Jin · τSkag, eff

= JoutSkag, eff. (6.9)

Since the width of the upper band is related to the length of the triangular spin Stri and varies
only slightly taking the whole spin structure into account (cf. Fig. 6.7), the observed width can
be approximated with

(66− 47) meV = Jin · 0.61τ 2Stri
Eq. 6.8−−−→ 19 meV = Jin · 0.3τSkag, eff

63 meV ≈ JoutSkag, eff,

which corresponds relatively well to the previous result. This agreement shows, that the appli-
cation of the model is apparently suited for the measured excitations. The upper limit of the
lower band is defined as

43 meV = Jin · 1.44τStri

30 meV = JoutStri. (6.10)
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Furthermore, the whole range of the dispersions can be defined via the upper limit of the lower
band, the gap of 4 meV and the width of the upper band:

66 meV = Jin · 1.44τStri + 4 meV + 0.3 · 66 meV
42 meV ≈ 1.44JoutStri

29 meV ≈ JoutStri,

which again nicely corresponds to the previous result. From the Equations 6.9 and 6.10 the ratio
between effective kagome spin and the triangular spin can be calculated:

Skag, eff

Stri
≈ 66 meV

30 meV
= 2.2, (6.11)

which is definitely plausible especially considering Skag < Stri. With the sum rule (cf. Eq. 6.8)
the ratio τ can be calculated from the same Equations:

τ =
1

2

Skag, eff

Stri
≈ 1.1, (6.12)

which is exactly, what was expected from the comparison to the spin dynamics simulation
results (cf. Fig. 4.5). However, for the calculation of the ratio also the highest possible ratio has
to be considered:

τmax =
3Skag

2Stri
≈ 1.21. (6.13)

Therefore, the corrected ratio is actually

τcor =
τ

τmax
· 1.5 ≈ 1.37. (6.14)

This means, that the observed excitations along the [0 0 1]-direction can be described with a
model considering spins of non unity length, which closes the gap visible in the spin dynamics
simulations. However, regarding the resulting order and the dispersions’ full width half maxi-
mum, the ratio is related more closely to the ratio τcor ≈ 1.37. Furthermore, the result for the
out-of plane exchange interaction in combination with the spin lengths JoutStri (cf. Eq. 6.10)
is in agreement with previous results (J ′out ≈ 41 meV for τ = 1.5 calculated in [Rei11]). Fol-
lowing the same calculation for the determined ratio of τcor ≈ 1.37, the exchange interaction is
J ′out ≈ 44 meV, which allows to estimate the spin length on the kagome sites:

44 meV ≈ J ′out = JoutStriSkag = 30 meV · Skag

⇒ Skag ≈ 1.46. (6.15)

Since the component along the quantization axis is considered, the length of the moments on
triangular sites and the interaction can be calculated with Equations 6.8 and 6.11:

Stri ≈
3Skag

2.2
≈ 2.00⇒ Jout ≈ 15 meV ∧ Jin ≈ 11 meV. (6.16)

As expected both spin lengths along the quantization axis are decreased with the one for the
kagome sites even further and the value for the exchange interaction Jout matches with the
transition temperature TN ≈ 160 K. Despite the strong simplification of the excitations, the
derived conclusion are self-contained and consistent with observations from other experiments,
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which confirms the simple Heisenberg nearest neighbour model to be valid also for the spin
wave excitations in CaBaCo2Fe2O7 and probably other Swedenborgites as well.

Within this discussion additional small anisotropies can be disregarded, since they have only a
influence at low energy. Here, the anisotropy gap observed below 2 meV at 4 K on 4Seasons
(cf. Fig. 5.33), which is only a very slight shift δE compared to Jin and Jout. Observation
from polarization analysis suggest that the spin orientation is not isotropic but a preference is
seen for spin components in ab-plane. The magnetic structure refinement suggests a solution
in magnetic space groups P31m′ or P31m both feature a preferred in-plane anisotropy. In
Section 6.3 the DM exchange interactions have been discussed as a mechanism leading to the
formation of the long-periodic order. The DM interactions arise by their nature from spin-orbit
coupling (and coupling of space and spin space causes anisotropy). Their contribution to a gap
depends on the specific model and is quantitatively less obvious related to δE than a simple
single site anisotropy term. When the exact DM terms have been determined from the study of
the magnetic order, they can be added to the Heisenberg nearest neighbour model, which can
be used for a more detailed spin wave modelling.

91





7
Summary and Outlook

In the present thesis we have presented the conducted research on the magnetic order and spin
dynamics in the extended kagome structure, which has been observed in Swedenborgite com-
pounds. One family member, the compound CaBaCo2Fe2O7, was investigated in further detail
using primarily neutron scattering and spin dynamics calculations. The findings from both
approaches have been compared for a deeper understanding. The observations have been dif-
ferentiated into main topics: commensurate and long-periodic magnetic order, spin structure of
the long-periodic order and spin dynamics.
The Heisenberg nearest neighbour model discerning only between the in-plane Jin and out-
of-plane Jout exchange interactions was already shown to model the scattering observed on
YBaCo4O7 successfully in [MCR+09] and further elaborated in [KMMC10]. Studying the
magnetic order using numerical methods namely Monte Carlo simulations, the calculated scat-
tering from the model is comparable to the scattering measured using neutron scattering (cf.
Fig. 5.2) for a ratio of τ = Jout/Jin ≈ 1.5. However, since the periodic boundary conditions are
used to stabilize the magnetic order, the simulation is generally limited to the commensurate
order. Still in the 3d spin liquid phase (cf. Fig. 4.2a), the influence of the sum rule for the dou-
ble tetrahedra (cf. Eq. 4.4) is visible in the shape and dependence on the ratio τ of the diffuse
scattering, which is enhanced close to the commensurate peaks, elongated along the BZ and
becomes broader for lower ratios. With increasing temperature the diffuse scattering increases
as well. Therefore the diffuse scattering basically describes the possible variation between the
spin structures of different kagome lattices.
In the macroscopic data a Néel transition was found at 160 K. This transition was also observed
in neutron powder as well as single crystal data. Separating the scattering contributions for the
single crystal data reveals a more complex temperature dependence. A spin reorientation is
present between 80 K and 4 K from a more coplanar to a more canted structure regarding the
ab-plane, also visible in magnetometry (cf. Fig. 5.4). The extracted intensities from the neutron
powder diffractograms show two different structures to exist, a commensurate one prominent at
80 K and a long-periodic one, at 4 K. Comparing the temperature dependences of the integrated
intensities to the scattering contributions, the commensurate order relates to the coplanar struc-
ture and the long-periodic order to the canted structure.
In the neutron scattering experiments conducted on instruments with limited resolution the ob-
served magnetic peaks relate to the average over the commensurate and long-periodic peaks.
Based on the crystal structure and the commensurate antiferromagnetic order with a

√
3 ×
√

3
larger unit cell, the possible magnetic space groups have been determined. Then the data set
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of integrated intensities has been refined within these space groups. The best agreement has
been found for descending to the trigonal space groups P31m′ and P31m, which are also valid
for the ground state determined with MCS. In correspondence with the sum rule and MCS the
refined ordered-moment on the kagome sites is less then on the triangular sites. Comparing
the refinement at 80 and 4 K the refinement’s goodness-of-fit and the ordered moment lengths
decrease at the lower temperature.
On neutron scattering instruments with sufficient resolution, the commensurate peak can be sep-
arated from the satellite peaks. Fitting the satellite peaks in the powder diffractograms reveals
the splitting of δ ≈ 0.017 Å−1 between satellite peak and K-point to be temperature indepen-
dent and just the fraction of the two structures changes with temperature. On the neutron single
crystal diffractometers a difference has been observed between the two measured single crystals
of CaBaCo2Fe2O7. The overall dependence and the splitting is similar, but only for one of them
the commensurate peaks vanish completely. This indicates that the temperature dependence is
quite sensitive to material variations. From the single crystal data the periodicity is observed in
the ab-plane, while the spin structure remains commensurate along the c-direction. Since only
three satellite peaks are present close the K-point of the BZ along its boundary, the structure
can be described with the propagation vector (0.342, 0.342, 0) and its multi-q equivalents. In
comparison with the model, the peaks arise within the range of variation allowed by the sum
rule. Therefore already small additional Dzyaloshinskii-Moriya terms are suited to select the
specific canted structure. Calculating the energy for spin structures with various propagation
vectors the DM terms change the energy landscape in a way disfavouring the commensurate
order and favouring the long-periodic order.
With the different scattering contributions from the polarization analysis at hand, there have
been relatively strong constraints to the underlying spin structure. Considering the chiral mag-
netic scattering, which is anti-symmetrical with respect to the Q-vector, and scattered intensity
from moments parallel to the ab-plane and parallel to the c-axis, the spins were calculated as
a superposition of three cycloidal waves with the appropriate periodicity and an antiferromag-
netic modulation. The calculated scattering from such a spin structure is comparable with the
measured scattering, as the splitting, the symmetry of the scattering contributions and even a
relative intensity distribution within a satellite triplet are reproduced correctly. Still one cannot
exclude the possibility of another spin structure created using a different construction yielding
the same scattering pattern. But since all the constraints have to be satisfied this is unlikely. In
real space the spin structure can be described as a repetition of the starting configuration, on a
triangular lattice and in between the spins rotate continuously, which also results in intermediate
structures similar to the commensurate antiferromagnetic one. This is similar to the skyrmion-
lattice observed on MnSi. However, whether this spin structure is actually a skyrmion lattice,
has not yet been elucidated.
The spin dynamics has been investigated using both simulations and inelastic neutron scatter-
ing, revealing a strong dependence on the symmetry direction. The spin waves propagating in
the kagome layers are rather flat and broad. This is to be expected, as these spins are coupled
less strongly and suffer from the geometric frustration. But along the c-axis or rather the double
tetrahedra the spins are ordered more strongly, which leads to more distinct excitations also
reaching over a larger range in energy up to 66 meV in the experiment. It was shown, that these
can be described using the Heisenberg nearest neighbour model, if non unity spin lengths are
assumed. The derived moments lengths projected to the quantization axis and also the exchange
interactions agree with the results from other measurements. The spin lengths indicate a spin
structure with imperfectly aligned spins, which fits with the calculated ratio τcor ≈ 1.37. In
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MCS a long-range 3d magnetic order is still observed at this ratio. In the data from a high
resolution time-of-flight spectrometer a small anisotropy of 2 meV is visible, corresponding to
a small anisotropy like the before mentioned DM interaction.

The investigation of the Swedenborgite magnetic structure has unravelled very interesting ob-
servations, which are mostly related to its building block the double tetrahedron and the ratio of
the exchange interactions Jin and Jout. As both interactions cannot be fulfilled at the same time,
for ratios Jout/Jin < 1.5 the resulting freedom and variation due to the geometric frustration
leads to rather complex but intriguing mechanisms.
Nonetheless, some interesting questions remain for further investigations. In the present study
it was shown, that the introduction of DM interactions reduces the degeneracy and selects a spe-
cific spin structure. After determining the exact DM terms suited to establish the observed long-
periodic order, these can be added to Heisenberg model for Monte Carlo simulations. With the
periodic boundary conditions tuned to the periodicity of the long-periodic structure, it should be
possible to model the temperature dependence of the long-periodic structure (cf. Figs. 5.9 and
5.23) and the scattering contributions (cf. Fig. 5.3). In CaBaCo2Fe2O7, a skyrmion-like lattice
has been found at low temperatures, but the additional complexity due to the antiferromagnetic
coupling requires further investigation. In cooperation with Maxim Mostovoy, it is planned to
determine whether antiferromagnetically coupled sykrmions can arise and if the observed order
is related to such a lattice. Furthermore, in future studies it is of interest to compare the results
from spin dynamics simulations to the spin wave excitations measured in other compounds of
the Swedenborgite family. Similarly to the presented evaluation in Section 6.4, moment lengths
and interactions can be deduced from the comparison.
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B
Additional Figures

In this chapters additional figures are displayed, which complete the presented data in the re-
spective chapters.
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Figure B.1: Additional polarization channels measured at 4 K around the magnetic peak (4/3 1/3 0) on
the large crystal on Morpheus, which reveal the spin structure related to the commensurate scattering to

be less canted than the long-periodic spin structure.
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Figure B.2: Extracted cuts of the (h k 1) (upper row) and (h k 1) (lower row) scattering plane from the
measurements at Biodiff at 4 K (left) and 80 K (right). The BZ boundary is marked in grey. The magnetic
Bragg peaks (5/3 4/3 0) and (4/3 5/3 0) (symmetrically equivalents to (4/3 1/3 0)) are highlighted in
insets. The data of (h k 1) was shifted by ∆Qx = −0.025Å−1 and in the case of (h k 1) by ∆Q =
(0.018, 0.005, 0)Å−1 compensating the misalignment of the sample. The commensurate peak shape at
80 K and peak splitting at 4 K observed in (h k 0)-scattering plane (cf. Fig. 5.18) is present in parallel

planes as well. Thus the change in spin structure is restricted to within the ab-plane.
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Figure B.3: Magnetic peak structure in the chiral scattering measured at MIRA on the small crystal. At
both temperatures and all peaks the chiral scattering is anti-symmetric transverse to Q. This scattering

contribution is observed even close to the commensurate magnetic peaks positions.
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by the cavity, which is necessary to separate this channel.
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Figure B.9: Simulated excitations along [1 0 0]-direction. Somewhat similar to the dispersions along
[1 1 0]-direction, but since the absolute length is smaller the dispersions are resolved more clearly. For
T ≤ 0.1 · Jin three excitation bands are visible separated in energy. The colour scale denotes the value
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Figure B.10: Spin structure calculated by the instructions in Section 6.3 and particular in Eq. 6.3 with
a period length of p = 33 corresponding to the splitting observed in measurements. The long-periodic
unit cell is marked by the black lines and the commensurate antiferromagnetic one in red. Picture was

rotated 90° clockwise.
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D
Single crystal refinement results

In Subsection 5.3.2 the magnetic structure has been refined from integrated intensities mea-
sured on the large single crystal with (hh l)-orientation at the 4-circle diffractometer Morpheus
(PSI, Villigen, Switzerland). Assuming a commensurate K-type antiferromagnetic order as ob-
served at DNS (cf. Fig. 5.2) six possible magnetic space groups (P63c

′m′, P6′3cm
′, P6′3c

′m,
P63cm, P31m′ and P31m) have been derived from the crystallographic space group P63mc of
CaBaCo2Fe2O7. The accessible crystal Bragg peaks (cf. Table D.1) have been reduced in the
crystallographic space group resulting in the unique reflections in Table D.2, which will be used
as a intensity reference for the refinement of the magnetic structure. The total set of integrated
magnetic peaks (cf. Table D.3) is reduced within each magnetic space group separately result-
ing in a set of unique reflections for the hexagonal and trigonal space groups each (cf. Tables
D.4 and D.5). In Subsection 5.3.2 five different models for the refinement are discussed. In Ta-
ble D.8 the results from simulated annealing are listed for the model D applied to the magnetic
space groups with hexagonal symmetry. The results for the trigonal space groups are given in
the case of simulated annealing for the models D and E in Table D.9 and in the case of Rietveld
refinement for model E in Table D.10.

80 K 4 K
No. h k l Int. (cts) σ h k l Int. (cts) σ

1 -1 1 0 5319.24 16.82 -1 1 0 5441.46 16.93
2 1 -1 0 6261.70 18.19 1 -1 0 5790.31 17.37
3 -1 0 0 4900.79 16.07 -1 0 0 5047.58 16.26
4 0 -1 0 5537.82 17.14 0 -1 0 5289.18 16.59
5 0 1 0 6210.19 18.08 0 1 0 5984.74 17.71
6 1 0 0 6520.39 18.49 1 0 0 6063.36 17.77
7 -1 1 -1 1640.13 9.76 -1 1 -1 1701.51 9.93
8 -1 1 1 1597.44 9.57 -1 1 1 1676.09 9.81
9 1 -1 -1 1890.33 10.40 1 -1 -1 1644.87 9.71

10 1 -1 1 1823.82 10.22 1 -1 1 1719.92 9.92
11 -1 0 1 1437.11 9.06 -1 0 1 1502.57 9.25
12 0 -1 1 1626.52 9.66 0 -1 1 1609.34 9.59
13 0 1 -1 1885.69 10.44
14 1 0 -1 1714.75 9.91
15 -1 0 -1 1451.40 9.12
16 0 -1 -1 1572.11 9.49
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17 0 1 1 1656.15 9.73
18 1 0 1 1675.10 9.78
19 -1 0 2 2283.58 12.42
20 0 -1 2 2632.67 13.27
21 0 1 -2 2981.96 14.24
22 1 0 -2 2364.77 12.63
23 -1 1 -2 2831.28 13.88
24 -1 1 2 2088.53 11.93
25 1 -1 -2 1770.58 10.96
26 1 -1 2 2746.19 13.56
27 0 -1 -2 2030.45 11.73
28 0 1 2 2227.61 12.30
29 -1 0 -2 2511.04 13.01
30 1 0 2 2546.76 13.11
31 -1 2 0 3375.64 16.58
32 1 -2 0 3289.58 16.43
33 -2 1 0 2723.90 14.95
34 2 -1 0 3694.62 17.38
35 -1 -1 0 2591.58 14.56
36 1 1 0 3635.04 17.23
37 -2 1 1 4.54 5.20
38 -1 2 -1 6.23 6.17
39 1 -2 1 4.87 5.17
40 2 -1 -1 4.55 5.17
41 -1 2 1 7.96 8.25
42 1 -2 -1 5.36 5.53
43 -2 1 -1 6.53 6.63
44 2 -1 1 2.46 3.19
45 -1 -1 1 5.92 6.19
46 1 1 -1 5.31 5.24
47 -1 -1 -1 6.02 6.18
48 1 1 1 5.43 5.22
49 0 1 -3 6182.32 22.98
50 1 0 -3 4617.23 19.64
51 -1 1 -3 7120.65 24.85
52 1 -1 -3 6440.43 23.26
53 -1 0 -3 7350.52 24.92
54 0 -1 -3 7402.26 24.94
55 -2 2 0 6413.95 22.96
56 2 -2 0 7271.40 24.40
57 -2 0 0 5466.01 21.06
58 0 -2 0 6124.00 22.21
59 0 2 0 7220.65 24.28
60 2 0 0 7428.51 24.67

Table D.1: Integrated intensities of crystal structure peaks measured at Morpheus. Notation of (h k l) in
the crystallographic unit cell.

124



80 K 4 K
No. h k l Int. (cts) σ h k l Int. (cts) σ

1 1 0 0 5733.5728 584.5475 1 0 0 5578.2705 372.5243
2 1 0 1 1655.7567 149.4647 1 0 1 1643.5691 106.7580
3 1 0 2 2367.8884 346.1510
4 1 1 0 3160.0854 431.0378
5 1 0 3 6341.7876 1045.2333
6 2 0 0 6570.2788 729.1144

Table D.2: Unique reflections resulting from the reduction of the crystal structure peaks measured at
Morpheus (cf. Table D.1) within crystallographic space group P63mc. Notation of (h k l) in the crystal-

lographic unit cell.

80 K 4 K
No. h k l Int. (cts) σ h k l Int. (cts) σ

1 1/3 1/3 0 381 5 1/3 1/3 0 500 6
2 -1/3 -1/3 0 363 4 -1/3 -1/3 0 469 6
3 -2/3 1/3 0 325 5 -2/3 1/3 0 433 6
4 1/3 -2/3 0 526 5 1/3 -2/3 0 645 6
5 -1/3 2/3 0 533 5 -1/3 2/3 0 667 6
6 2/3 -1/3 0 352 5 2/3 -1/3 0 579 7
7 1/3 1/3 -1 23 2 2/3 -1/3 0 579 7
8 -1/3 -1/3 1 22 2 1/3 1/3 -1 27 2
9 -1/3 -1/3 -1 19 2 -1/3 -1/3 1 37 2

10 1/3 1/3 1 13 2 -1/3 -1/3 -1 21 2
11 -2/3 1/3 1 9 2 1/3 1/3 1 16 2
12 1/3 -2/3 1 38 2 -2/3 1/3 1 19 2
13 -1/3 2/3 -1 47 2 1/3 -2/3 1 40 2
14 2/3 -1/3 -1 9 2 -1/3 2/3 -1 49 2
15 -2/3 1/3 -1 13 2 2/3 -1/3 -1 19 2
16 1/3 -2/3 -1 48 2 1/3 -2/3 -1 45 2
17 -1/3 2/3 1 50 2 -1/3 2/3 1 48 2
18 2/3 -1/3 1 13 2 2/3 -1/3 1 19 2
19 -2/3 4/3 0 1449 9 -2/3 4/3 0 1617 11
20 -4/3 2/3 0 1252 8 -4/3 2/3 0 1314 10
21 4/3 -2/3 0 1646 10 4/3 -2/3 0 1723 12
22 2/3 -4/3 0 1500 9 2/3 -4/3 0 1615 12
23 -2/3 -2/3 0 1267 9 -2/3 -2/3 0 1340 10
24 2/3 2/3 0 1671 10 2/3 2/3 0 1757 12
25 1/3 1/3 -2 7139 21 1/3 1/3 -2 6577 22
26 2/3 -1/3 -2 6229 20 2/3 -1/3 -2 5602 21
27 -2/3 4/3 -1 55 2 -2/3 4/3 -1 62 3
28 -4/3 2/3 1 35 2 -4/3 2/3 1 45 3
29 4/3 -2/3 -1 49 2 4/3 -2/3 -1 61 3
30 2/3 -4/3 1 52 2 2/3 -4/3 1 68 3
31 -4/3 2/3 -1 39 2 -4/3 2/3 -1 44 3
32 -2/3 4/3 1 46 2 -2/3 4/3 1 58 3
33 2/3 -4/3 -1 50 2 2/3 -4/3 -1 59 3
34 4/3 -2/3 1 48 2 4/3 -2/3 1 60 3
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35 -2/3 -2/3 1 40 2 -2/3 -2/3 1 46 3
36 2/3 2/3 -1 52 2 2/3 2/3 -1 62 3
37 -2/3 -2/3 -1 44 2 -2/3 -2/3 -1 49 3
38 2/3 2/3 1 51 2 2/3 2/3 1 55 3
39 -4/3 -1/3 0 2441 12 -4/3 -1/3 0 2616 15
40 -1/3 -4/3 0 2660 12 -1/3 -4/3 0 2844 16
41 1/3 4/3 0 3470 14 1/3 4/3 0 3785 18
42 4/3 1/3 0 3573 14 4/3 1/3 0 3885 18
43 -4/3 5/3 0 2924 13 -4/3 5/3 0 3200 17
44 4/3 -5/3 0 3198 13 4/3 -5/3 0 3479 17
45 -5/3 4/3 0 2675 12 -5/3 4/3 0 2988 16
46 5/3 -4/3 0 3349 14 5/3 -4/3 0 3673 18
47 1/3 -5/3 0 2863 13 -1/3 5/3 0 3582 18
48 -1/3 5/3 0 3269 13 -5/3 1/3 0 2584 15
49 -5/3 1/3 0 2442 12 5/3 -1/3 0 3793 18
50 5/3 -1/3 0 3556 14 -2/3 4/3 -2 953 9
51 -2/3 4/3 -2 1037 8 -4/3 2/3 2 728 8
52 -4/3 2/3 2 655 6 4/3 -2/3 -2 853 8
53 4/3 -2/3 -2 867 7 2/3 -4/3 2 787 8
54 2/3 -4/3 2 732 7 -4/3 2/3 -2 753 8
55 -4/3 2/3 -2 864 7 -2/3 4/3 2 783 8
56 -2/3 4/3 2 730 6 2/3 -4/3 -2 890 8
57 2/3 -4/3 -2 978 7 4/3 -2/3 2 761 8
58 4/3 -2/3 2 768 7 -2/3 -2/3 2 700 8
59 -2/3 -2/3 2 641 6 2/3 2/3 -2 985 9
60 2/3 2/3 -2 1000 8 -2/3 -2/3 -2 753 8
61 -2/3 -2/3 -2 845 7 2/3 2/3 2 801 8
62 2/3 2/3 2 817 7 -4/3 -1/3 1 1579 11
63 -4/3 -1/3 1 1369 9 -1/3 -4/3 1 1827 12
64 -1/3 -4/3 1 1602 10 1/3 4/3 -1 2352 13
65 1/3 4/3 -1 2172 11 4/3 1/3 -1 2292 13
66 4/3 1/3 -1 2044 11 -1/3 -4/3 -1 1822 12
67 -1/3 -4/3 -1 1695 10 1/3 4/3 1 2255 13
68 1/3 4/3 1 1966 10 -4/3 -1/3 -1 1661 11
69 -4/3 -1/3 -1 1576 9 4/3 1/3 1 2291 13
70 4/3 1/3 1 2039 11 -4/3 5/3 -1 2070 13
71 -4/3 5/3 -1 1935 11 4/3 -5/3 1 2328 13
72 4/3 -5/3 1 1999 11 -5/3 4/3 1 1807 12
73 -5/3 4/3 1 1573 10 5/3 -4/3 -1 2332 13
74 5/3 -4/3 -1 2088 11 -4/3 5/3 1 1927 12
75 -4/3 5/3 1 1668 10 4/3 -5/3 -1 2133 13
76 4/3 -5/3 -1 1968 11 -5/3 4/3 -1 1791 12
77 -5/3 4/3 -1 1686 10 5/3 -4/3 1 2275 13
78 5/3 -4/3 1 1939 11 1/3 -5/3 1 1958 12
79 1/3 -5/3 1 1678 10 -1/3 5/3 -1 2182 13
80 -1/3 5/3 -1 2025 11 -5/3 1/3 1 1586 11
81 -5/3 1/3 1 1358 9 5/3 -1/3 -1 229 13
82 5/3 -1/3 -1 1992 11 1/3 -5/3 -1 2048 13
83 1/3 -5/3 -1 1945 11 -1/3 5/3 1 2244 13
84 -1/3 5/3 1 1994 11 -5/3 1/3 -1 1654 11
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85 -5/3 1/3 -1 1519 9 5/3 -1/3 1 2314 13
86 5/3 -1/3 1 2022 11 -1/3 -4/3 2 63 3
87 -1/3 -4/3 2 57 2 1/3 4/3 -2 82 3
88 1/3 4/3 -2 85 2 -4/3 -1/3 2 67 3
89 -4/3 -1/3 2 60 2 4/3 1/3 -2 115 3
90 4/3 1/3 -2 113 3 -1/3 -4/3 -2 71 3
91 -1/3 -4/3 -2 80 2 1/3 4/3 2 70 3
92 1/3 4/3 2 76 2 -4/3 -1/3 -2 80 3
93 -4/3 -1/3 -2 93 3 4/3 1/3 2 113 3
94 4/3 1/3 2 114 3 -4/3 5/3 -2 73 3
95 -4/3 5/3 -2 80 2 4/3 -5/3 2 70 3
96 4/3 -5/3 2 74 2 -5/3 4/3 2 73 3
97 -5/3 4/3 2 65 2 5/3 -4/3 -2 66 3
98 5/3 -4/3 -2 76 2 -4/3 5/3 2 66 3
99 -4/3 5/3 2 74 2 4/3 -5/3 -2 82 3

100 4/3 -5/3 -2 80 2 -5/3 4/3 -2 76 3
101 -5/3 4/3 -2 78 2 5/3 -4/3 2 76 3
102 5/3 -4/3 2 81 2 1/3 -5/3 2 76 3
103 1/3 -5/3 2 79 2 -1/3 5/3 -2 84 3
104 -1/3 5/3 -2 86 3 -5/3 1/3 2 99 3
105 -5/3 1/3 2 95 3 5/3 -1/3 -2 124 4
106 5/3 -1/3 -2 116 3 1/3 -5/3 -2 65 3
107 1/3 -5/3 -2 75 2 -1/3 5/3 2 74 3
108 -1/3 5/3 2 73 2 -5/3 1/3 -2 99 3
109 -5/3 1/3 -2 108 3 5/3 -1/3 2 95 3
110 5/3 -1/3 2 102 3 4/3 -2/3 -3 1355 12
111 -2/3 4/3 -3 1168 8 -4/3 2/3 -3 1519 12
112 4/3 -2/3 -3 1061 8 2/3 -4/3 -3 1789 13
113 -4/3 2/3 -3 1375 9 2/3 2/3 -3 1242 11
114 2/3 -4/3 -3 1368 9 -2/3 -2/3 -3 1479 12
115 2/3 2/3 -3 1133 8
116 -2/3 -2/3 -3 1481 9

Table D.3: Integrated intensities of magnetic peaks measured at Morpheus. Notation of (h k l) in the
crystallographic unit cell.

80 K 4 K
No. h k l Int. (cts) σ Int. (cts) σ

1 -2/3 1/3 0 409.02 83.82 541.97 87.72
2 1/3 -2/3 -1 25.33 15.27 28.41 12.35
3 2/3 -4/3 0 1442.04 163.93 1541.64 173.43
4 2/3 -1/3 -2 6661.82 455.00 6049.76 487.35
5 -2/3 -2/3 1 46.75 5.85 55.20 7.49
6 -1/3 -4/3 0 2987.01 402.77 3245.20 463.64
7 2/3 -4/3 2 807.65 124.60 802.84 85.86
8 1/3 4/3 1 1793.36 233.27 2007.51 261.24
9 -5/3 1/3 2 79.80 16.05 79.71 16.73

10 -2/3 -2/3 -3 1247.49 151.55 1456.24 183.92
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Table D.4: Unique reflections resulting from the reduction of the magnetic peaks measured at Morpheus
(cf. Table D.3) within the hexagonal magnetic space groups. The reduction within the four different

space groups yields the same result. Notation of (h k l) in the crystallographic unit cell.

80 K 4 K
No. h k l Int. (cts) σ Int. (cts) σ

1 -2/3 1/3 0 409.02 83.82 541.97 87.72
2 -2/3 1/3 1 25.33 15.27 28.41 12.35
3 -4/3 2/3 0 1442.04 163.93 1541.64 173.43
4 1/3 1/3 -2 6661.82 455.00 6049.76 487.35
5 -4/3 2/3 1 46.75 5.85 55.20 7.49
6 5/3 -1/3 0 2987.01 402.77 3245.20 463.64
7 -4/3 2/3 -2 807.65 124.60 802.84 85.86
8 -5/3 1/3 1 1791.17 233.86 2009.47 270.22
9 5/3 -1/3 1 1795.52 232.68 2005.55 251.82

10 1/3 -5/3 2 80.19 16.26 80.28 14.06
11 -4/3 5/3 -2 79.45 15.81 79.15 19.03
12 -2/3 -2/3 -3 1247.49 151.55 1456.24 183.92

Table D.5: Unique reflections resulting from the reduction of the magnetic peaks measured at Morpheus
(cf. Table D.3) within the trigonal magnetic space group. The reduction within the two different space

groups yields the same result. Notation of (h k l) in the crystallographic unit cell.

Stri,1 Stri,2 Skag,1 Skag,2
x [3a] 0.0000 0.0000 0.0573 0.0573
y [3b] 0.0000 0.3333 0.9427 0.2760
z [c] 0.5612 0.5612 0.3135 0.3135

Table D.6: Unique magnetic sites of the hexagonal magnetic space groups noted as relative coordinates
in the large unit cell (3a, 3b, c). The other sites are created from the symmetry operations of the respective

space group.

Stri,1 Stri,2 Skag,1 Skag,2 Skag,3 Skag,4
x [3a] 0.0000 0.0000 0.0573 0.8853 0.9427 0.1147
y [3b] 0.0000 0.0000 0.9427 0.9427 0.0573 0.0573
z [c] 0.5612 0.0612 0.3135 0.3135 0.8135 0.8135

Table D.7: Unique magnetic sites of the trigonal magnetic space groups noted as relative coordinates in
the large unit cell (3a, 3b, c). The other sites are created from the symmetry operations of the respective

space group.
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P63c
′m′ P6′3cm

′ P6′3c
′m P63cm

80 K 4 K 80 K 4 K 80 K 4 K 80 K 4 K

Stri,1 r [µB] 2.431 2.481 0.881 0.721 0∗ 0∗ 0∗ 0∗

φ [°] 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

θ [°] 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

Stri,2 r [µB] 2.431 2.481 0.881 0.721 3.43 3.56 0.00 0.00
φ [°] 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

θ [°] 180∗ 180∗ 180∗ 180∗ 180∗ 180∗ 180∗ 180∗

Skag,1 r [µB] 1.502 1.572 1.992 2.042 0.971 0.901 1.211 1.231

φ [°] 330∗ 330∗ 330∗ 330∗ 60∗ 60∗ 60∗ 60∗

θ [°] 155.72 158.37 15.58 166.30 90∗ 90∗ 90∗ 90∗

Skag,2 r [µB] 1.502 1.572 1.992 2.042 0.971 0.901 1.211 1.231

φ [°] 122.64 123.62 221.18 230.54 223.21 206.10 255.60 258.10
θ [°] 28.12 26.59 130.18 53.18 24.48 24.12 95.34 80.37

RBragg 46.4 41.1 80.8 79.8 70.1 67.5 80.5 78.6

Table D.8: Refinement results from simulated annealing applied to the reduced peak set (cf. Table D.4)
for the hexagonal magnetic space groups and model D. Only the independent spins are listed. The others
are calculated from the symmetry operations of the respective magnetic space group. Parameters fixed
by symmetry are marked with ∗ and those linked by the model with same number n. The spins on the

triangular (tri) sites are on the special Wyckoff position 2a and the kagome (kag) sites on 6c.
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P31m′ P31m
model D model E model D model E

80 K 4 K 80 K 4 K 80 K 4 K 80 K 4 K

Stri,1 r [µB] 2.731 2.631 2.731 2.581 3.051 2.971 2.961 2.891

φ [°] 210∗ 210∗ 210∗ 210∗ 300∗ 300∗ 300∗ 300∗

θ [°] 89.82 90.34 90.343 90.333 90∗ 90∗ 90∗ 90∗

Stri,2 r [µB] 2.431 2.631 2.731 2.581 3.051 2.971 2.961 2.891

φ [°] 210∗ 210∗ 210∗ 210∗ 300∗ 300∗ 300∗ 300∗

θ [°] 89.99 89.88 89.663 89.663 90∗ 90∗ 90∗ 90∗

Skag,1 r [µB] 2.192 2.152 2.232 2.232 2.372 2.352 2.402 2.391

φ [°] 30.45 32.01 36.774 38.44 92.23 88.70 103.783 97.483

θ [°] 78.81 74.16 102.125 75.92 96.92 82.64 84.98 82.74

Skag,2 r [µB] 2.192 2.152 2.232 2.232 2.372 2.352 2.402 2.391

φ [°] 30∗ 30∗ 30∗ 30∗ 120∗ 120∗ 120∗ 120∗

θ [°] 128.60 134.50 49.086 137.976 90∗ 90∗ 90∗ 90∗

Skag,3 r [µB] 2.192 2.152 2.232 2.232 2.372 2.352 2.402 2.391

φ [°] 39.73 41.89 36.774 38.44 106.41 100.30 103.783 97.483

θ [°] 102.08 102.01 77.885 104.085 47.97 140.63 132.42 140.79

Skag,4 r [µB] 2.192 2.152 2.232 2.232 2.372 2.352 2.402 2.391

φ [°] 30∗ 30∗ 30∗ 30∗ 120∗ 120∗ 120∗ 120∗

θ [°] 48.54 44.60 130.926 42.036 90∗ 90∗ 90∗ 90∗

RBragg 17.4 22.8 17.6 23.2 17.2 22.7 17.3 22.9

Table D.9: Refinement results from simulated annealing applied to the reduced peak set (cf. Table D.5)
for the trigonal magnetic space groups. Only the independent spins are listed. The others are calculated
from the symmetry operations of the respective magnetic space group. Parameters fixed by symmetry
are marked with ∗ and those linked by the model used in the refinement with same number n, whereas n

denotes an inversely proportional link. The spins on the triangular (tri) sites are on the special Wyckoff
position 2a and the kagome (kag) sites on 6c.
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P31m′ P31m
80 K 4 K 80 K 4 K

p σp p σp p σp p σp

Stri,1 r [µB] 2.151 0.34 2.121 0.28 1.971 0.50 1.851 0.38
φ [°] 210∗ 210∗ 300∗ 300∗

θ [°] 89.583 2.72 90.083 2.74 90∗ 90∗

Stri,2 r [µB] 2.151 0.34 2.121 0.28 1.971 0.50 1.851 0.38
φ [°] 210∗ 210∗ 300∗ 300∗

θ [°] 90.423 2.72 89.913 2.74 90∗ 90∗

Skag,1 r [µB] 1.182 0.25 1.112 0.20 1.372 0.51 0.912 0.32
φ [°] 26.564 5.02 29.364 4.97 93.893 51.47 78.163 22.52
θ [°] 105.515 7.01 72.485 6.97 82.13 34.63 77.28 47.22

Skag,2 r [µB] 1.182 0.25 1.112 0.20 1.372 0.51 0.912 0.32
φ [°] 30∗ 30∗ 120∗ 120∗

θ [°] 65.126 9.66 120.536 8.94 90∗ 90∗

Skag,3 r [µB] 1.182 0.25 1.112 0.20 1.372 0.51 0.912 0.32
φ [°] 26.564 5.02 29.364 4.97 93.893 51.47 78.163 22.52
θ [°] 74.495 7.01 102.015 6.97 144.02 9.03 147.36 11.05

Skag,4 r [µB] 1.182 0.25 1.112 0.20 1.372 0.51 0.912 0.32
φ [°] 30∗ 30∗ 120∗ 120∗

θ [°] 114.886 9.66 59.476 8.94 90∗ 90∗

RBragg 67.3 67.9 91.0 76.6

Table D.10: Results from Rietveld refinement applied to the reduced peak set (cf. Table D.5) for the
trigonal magnetic space groups. Only the independent spins are listed. The others are calculated from
the symmetry operations of the respective magnetic space group. Parameters fixed by symmetry are
marked with ∗ and those linked by the model E used in the refinement with same number n, whereas n

denotes an inversely proportional link. The spins on the triangular (tri) sites are on the special Wyckoff
position 2a and the kagome (kag) sites on 6c.
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E
Source code for creating a

skyrmion-like lattice
The following source code is written in the programming language Python [Pyt, MA11]. In order to
speed up the calculation the module NumPy [WCV11] was used extensively. It creates a skyrmion-like
lattice using three cycloidal spin structures, whose propagation directions are rotated 120° against each
other. The mathematical formula and the evaluation of the structure has been described in Section 6.3.

1 # −*− c o d i n g : u t f−8 −*−
2 """
3 Created on Thu Nov 7 12:44:13 2013
4
5 @author: reim
6 """
7
8 import spin_gui as sg
9 import numpy as np

10 import math
11 import time
12 import sys
13 import periodictable
14 import collections as col
15
16 from mpl_toolkits.mplot3d import Axes3D
17 import matplotlib.pyplot as plt
18 from itertools import product, combinations
19
20
21 triSites = [4,8]
22 kagSites = [1,2,3,5,6,7]
23
24
25 def rotation_matrix(axis,theta):
26 axis = axis/np.sqrt(np.dot(axis,axis))
27 a = np.cos(theta/2)
28 b,c,d = -axis*np.sin(theta/2)
29 return np.array([[a*a+b*b-c*c-d*d, 2*(b*c-a*d), 2*(b*d+a*c)],
30 [2*(b*c+a*d), a*a+c*c-b*b-d*d, 2*(c*d-a*b)],
31 [2*(b*d-a*c), 2*(c*d+a*b), a*a+d*d-b*b-c*c]])
32
33
34 # P r o p a g a t i o n v e c t o r s
35 R1 = np.array([1.,0.,0.])
36 R1 = R1/np.linalg.norm(R1)
37 R2 = np.array([-1.,np.sqrt(3.),0.])
38 R2 = R2/np.linalg.norm(R2)
39 R3 = np.array([-1.,-np.sqrt(3.),0.])
40 R3 = R3/np.linalg.norm(R3)
41
42 # R o t a t i o n v e c t o r s
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43 # c y c l o i d a l o u t o f p l a n e
44 rotaxisForR1_ooP = np.dot(rotation_matrix(np.array([0.,0.,1.]),np.pi/2.),R1)
45 rotaxisForR2_ooP = np.dot(rotation_matrix(np.array([0.,0.,1.]),np.pi/2.),R2)
46 rotaxisForR3_ooP = np.dot(rotation_matrix(np.array([0.,0.,1.]),np.pi/2.),R3)
47
48 # c y c l o i d a l i n p l a n e
49 rotaxisForR1_inP = np.array([0.,0.,1.])
50 rotaxisForR2_inP = np.array([0.,0.,1.])
51 rotaxisForR3_inP = np.array([0.,0.,1.])
52
53
54
55
56 class predefinedConfig(object):
57
58 def __init__(self, UnitCellFilename,CellParam,UcR1,UcR2,UcR3,ExportType,NumberCells):
59 self.unitCellFilename = UnitCellFilename
60 self.cellParam = CellParam
61 self.a = UcR1
62 self.b = UcR2
63 self.c = UcR3
64
65 if self.a[1] == -1.73205:
66 self.a[1] = -np.sqrt(3)
67 if self.b[1] == -1.73205:
68 self.b[1] = -np.sqrt(3)
69
70 self.aStar = 2*np.pi *np.cross(self.b,self.c)/(np.dot(self.a,np.cross(self.b,self.c)))
71 self.bStar = 2*np.pi *np.cross(self.c,self.a)/(np.dot(self.a,np.cross(self.b,self.c)))
72 self.cStar = 2*np.pi *np.cross(self.a,self.b)/(np.dot(self.a,np.cross(self.b,self.c)))
73
74 self.exportType = ExportType
75 self.numberCells = NumberCells
76
77 self.aStarRed = self.aStar/self.numberCells[’R1’]
78 self.bStarRed = self.bStar/self.numberCells[’R2’]
79 self.cStarRed = self.cStar/self.numberCells[’R3’]
80
81 self.unitCell = sg.InputFile(UnitCellFilename).get_data()
82 print ’Unit cell loaded with %i spins.’ %len(self.unitCell)
83
84 # check i f u n i t c e l l has t o be s c a l e d
85 if np.linalg.norm(self.a) != self.cellParam[0] or np.linalg.norm(self.b) != self.

cellParam[1] or np.linalg.norm(self.c) != self.cellParam[2]:
86
87 self.ratioR1 = self.cellParam[0]/np.linalg.norm(self.a)
88 self.ratioR2 = self.cellParam[1]/np.linalg.norm(self.b)
89 self.ratioR3 = self.cellParam[2]/np.linalg.norm(self.c)
90 print ’Cell parameter do not fit with vectors,\n unitCell will be scaled

appropriately! %f %f %f’ %(self.ratioR1,self.ratioR2,self.ratioR3)
91 self.scaleUnitCell(self.ratioR1,self.ratioR2,self.ratioR3)
92
93 else:
94 self.ratioR1 = 1.
95 self.ratioR2 = 1.
96 self.ratioR3 = 1.
97
98 self.aNucStar = 2*self.aStar - self.bStar
99 self.bNucStar = self.aStar + self.bStar

100 self.cNucStar = self.cStar
101
102
103 def scaleUnitCell(self,ratioR1,ratioR2,ratioR3):
104
105 self.a = self.a*ratioR1
106 self.b = self.b*ratioR2
107 self.c = self.c*ratioR3
108 self.aStar = 2*np.pi *np.cross(self.b,self.c)/(np.dot(self.a,np.cross(self.b,self.c)))
109 self.bStar = 2*np.pi *np.cross(self.c,self.a)/(np.dot(self.a,np.cross(self.b,self.c)))
110 self.cStar = 2*np.pi *np.cross(self.a,self.b)/(np.dot(self.a,np.cross(self.b,self.c)))
111 print ’ReciCell’,np.linalg.norm(self.aStar),np.linalg.norm(self.bStar),np.linalg.norm(

self.cStar)
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112 self.aStarRed = self.aStar/self.numberCells[’R1’]
113 self.bStarRed = self.bStar/self.numberCells[’R2’]
114 self.cStarRed = self.cStar/self.numberCells[’R3’]
115
116 newCell = []
117 for spin in self.unitCell:
118 newCell.append([spin[0]*ratioR1,spin[1]*ratioR2,spin[2]*ratioR3,spin[3],spin[4],spin

[5],spin[6]])
119
120 self.unitCell = newCell
121
122 def getUnitCell(self):
123 return self.unitCell
124
125 def getCellParam(self):
126 return self.cellParam
127
128 def getExportType(self):
129 return self.exportType
130
131 def getReciCell(self):
132 return [self.aStar,self.bStar,self.cStar]
133
134 def getRedReciCell(self):
135 return [self.aStarRed,self.bStarRed,self.cStarRed]
136
137
138 def __str__(self):
139 return ’Config:\n\tfilename: %s\n\tcellParam: %s\n\ta: %s\n\tb: %s\n\tc: %s\n\

tnumberCells: %i,%i,%i\n\texportType: %s’ %(
140 self.unitCellFilename,toStr(self.cellParam),toStr(self.a),toStr(self.b),toStr(self

.c),self.numberCells[’R1’],self.numberCells[’R2’],self.numberCells[’R3’],self

.exportType)
141
142
143 class Spin():
144
145 def __init__(self,Coord,Direc,Num,CellNum):
146 self.coord = Coord
147 self.direc = Direc
148 self.num = Num
149 self.cellNum = CellNum
150
151 def getDis(self,otherSpin):
152 return np.linalg.norm(self.coord - otherSpin.coord)
153
154 def getWriteString(self):
155 return ’ %f %f %f %f %f %f %i’ %(self.coord[0],self.coord[1],self.coord[2],self

.direc[0],self.direc[1],self.direc[2],self.num)
156
157
158
159 def readConfigFile(filename = ’config.txt’):
160 ’’’
161
162 reads predefined configuration from file
163
164 ’’’
165 # Tags
166 tagUnitCellFile = ’@UnitCellFile’
167 tagCellParam = ’@CellParam’
168 tagVectorR1 = ’@R1’
169 tagVectorR2 = ’@R2’
170 tagVectorR3 = ’@R3’
171 tagNumberCells = ’@NumberCells’
172 tagType = ’@Type’
173
174 unitCellFilename = ’standardSmall.uc’
175 angle = 0.
176
177 numberCells = None
178 propVec = None
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179 precision = None
180
181 configFile = open(filename,’r’)
182 for line in configFile.readlines():
183 lineStrip = line.strip()
184 if len(lineStrip)==0:
185 pass
186 elif lineStrip.startswith(’#’):
187 pass
188 elif lineStrip.startswith(tagUnitCellFile):
189 unitCellFilename = lineStrip.split(’:’)[1].strip()
190 elif lineStrip.startswith(tagCellParam):
191 cellParam = np.array(lineStrip.split(’:’)[1].strip().split(’,’),dtype =float)
192 elif lineStrip.startswith(tagVectorR1):
193 ucR1 = np.array(lineStrip.split(’:’)[1].strip().split(’,’),dtype =float)
194 elif lineStrip.startswith(tagVectorR2):
195 ucR2 = np.array(lineStrip.split(’:’)[1].strip().split(’,’),dtype =float)
196 elif lineStrip.startswith(tagVectorR3):
197 ucR3 = np.array(lineStrip.split(’:’)[1].strip().split(’,’),dtype =float)
198 elif lineStrip.startswith(tagNumberCells):
199 temp = lineStrip.split(’:’)[1].strip().split(’,’)
200 numberCells = {’R1’: int(temp[0]), ’R2’: int(temp[1]), ’R3’: int(temp[2])}
201 elif lineStrip.startswith(tagType):
202 exportType = lineStrip.split(’:’)[1].strip()
203
204 return predefinedConfig(unitCellFilename,cellParam,ucR1,ucR2,ucR3,exportType,numberCells

)
205
206
207
208 def createSpinlattice(Config):
209 ’’’
210 from the read configfile the skyrmions along R1 and R2 are created
211 first create the necessary number of cells along R2 and then at all places along R1
212 ’’’
213 numberCellInR1=Config.numberCells[’R1’]
214 numberCellInR2=Config.numberCells[’R2’]
215 numberCellInR3=Config.numberCells[’R3’]
216
217 Spins = []
218
219 numberCells = numberCellInR1 * numberCellInR2 * numberCellInR3
220 print ’Due to the propagation vector %i cells get calculated’ %numberCells
221 cellNum = 0
222 # c r e a t e m a g n e t i c u n i t c e l l s f o r two p e r i o d s a l o n g a and b
223 rangeR1 = np.arange(-int(numberCellInR1),int(numberCellInR1))
224 rangeR2 = np.arange(-int(numberCellInR2),int(numberCellInR2))
225 rangeR3 = np.arange(1)
226
227 for i in rangeR1:
228 for j in rangeR2:
229 for k in rangeR3:
230 for ucNum,spin in enumerate(Config.getUnitCell()):
231 koord = np.array(spin[0:3]) + i*Config.a + j*Config.b + k*Config.c
232 direc = np.array(spin[3:6])
233 num = int(spin[6])
234 if ucNum in range(0,8):
235 towerNum = cellNum*3+0
236 elif ucNum in range(8,16):
237 towerNum = cellNum*3+1
238 elif ucNum in range(16,24):
239 towerNum = cellNum*3+2
240 Spins.append(Spin(np.array([koord[0],koord[1],koord[2]]),np.array([direc[0],

direc[1],direc[2]]),num,towerNum))
241
242 cellNum +=1
243
244 # add a d d i t i o n a l s p i n s t o c r e a t e p e r i o d i c boundary o r r a t h e r c o m p l e t e a l l t r i a n g l e s
245 fullTriangleSpins = []
246 xmax = ((rangeR1.max())*Config.a + (rangeR2.min()+1)*Config.b)[0]
247 xmin = ((rangeR1.min()+1)*Config.a + (rangeR2.max())*Config.b)[0]
248 ymax = ((rangeR1.max())*Config.a + (rangeR2.max())*Config.b)[1]
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249 ymin = ((rangeR1.min()+1)*Config.a + (rangeR2.min()+1)*Config.b)[1]
250
251 addedSpins = 0
252 triSpins = 0
253 for spin in Spins:
254 fullTriangleSpins.append(spin)
255 if (spin.num == 1 or spin.num == 2 or spin.num == 3 or spin.num == 5 or spin.num == 6

or spin.num == 7):
256 if spin.coord[0]<xmin-spin.coord[1]/ymax*xmin+0.1:
257 fullTriangleSpins.append(Spin(spin.coord-Config.b*len(rangeR2),spin.direc,spin.num

,spin.cellNum))
258 addedSpins +=1
259 if spin.coord[0]<xmin-spin.coord[1]/ymin*xmin-35:
260 fullTriangleSpins.append(Spin(spin.coord+Config.a*len(rangeR2),spin.direc,spin.num

,spin.cellNum))
261 addedSpins +=1
262 if spin.coord[0]>xmax-spin.coord[1]/ymax*xmax-0.1:
263 fullTriangleSpins.append(Spin(spin.coord-Config.a*len(rangeR2),spin.direc,spin.num

,spin.cellNum))
264 addedSpins +=1
265 if spin.coord[0]>xmax-spin.coord[1]/ymin*xmax+35:
266 fullTriangleSpins.append(Spin(spin.coord+Config.b*len(rangeR2),spin.direc,spin.num

,spin.cellNum))
267 addedSpins +=1
268 if spin.coord[0]<0.01 and spin.coord[0]>-0.01 and spin.coord[1] > ymax-0.1:
269 fullTriangleSpins.append(Spin(spin.coord-Config.a*len(rangeR1)-Config.b*len(

rangeR2),spin.direc,spin.num,spin.cellNum))
270 addedSpins +=1
271 elif (spin.num == 4 or spin.num == 8):
272 triSpins +=1
273 if spin.coord[0]<xmin-spin.coord[1]/ymax*xmin+5.0:
274 fullTriangleSpins.append(Spin(spin.coord-Config.b*len(rangeR2),spin.direc,spin.num

,spin.cellNum))
275 addedSpins +=1
276 if spin.coord[0]<xmin-spin.coord[1]/ymin*xmin-30:
277 fullTriangleSpins.append(Spin(spin.coord+Config.a*len(rangeR2),spin.direc,spin.num

,spin.cellNum))
278 addedSpins +=1
279 if spin.coord[0]>xmax-spin.coord[1]/ymax*xmax-5.0:
280 fullTriangleSpins.append(Spin(spin.coord-Config.a*len(rangeR2),spin.direc,spin.num

,spin.cellNum))
281 addedSpins +=1
282 if spin.coord[0]>xmax-spin.coord[1]/ymin*xmax+30:
283 fullTriangleSpins.append(Spin(spin.coord+Config.b*len(rangeR2),spin.direc,spin.num

,spin.cellNum))
284 addedSpins +=1
285 if spin.coord[0]<0.01 and spin.coord[0]>-0.01 and spin.coord[1] > ymax-5.1:
286 fullTriangleSpins.append(Spin(spin.coord-Config.a*len(rangeR1)-Config.b*len(

rangeR2),spin.direc,spin.num,spin.cellNum))
287 addedSpins +=1
288 return fullTriangleSpins
289
290 def getRotMatrix(i,Angle):
291 if i == ’R1’:
292 return rotation_matrix(rotaxisForR1,Angle)
293 elif i == ’R2’:
294 return rotation_matrix(rotaxisForR2,Angle)
295 elif i == ’R3’:
296 return rotation_matrix(rotaxisForR3,Angle)
297
298
299 ’’’
300 creating a Skyrmion lattice starting in a state with spins (anti-)parallel to z-axis
301 triSpins +z, kagSpins-z, rotationAxis is in xy-plane
302 still compare 0,1,0 vector to commensurate order for additional angle for af order
303 ’’’
304 def createCycloidsWithThreeWaves(Spins,Config):
305 ’’’
306 rotation axes: rotated by °+-120 around z-axis
307 create a spin wave for each rotation axis
308 angle: component perpendicular to rotation axis of the distance to origin + af angle
309 ’’’
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310 lengthOfCycloidal = np.sqrt(3)/2.*np.linalg.norm(Config.a)*Config.numberCells[’R1’]
311 cycloidalSpins = []
312 R1Spins = []
313 R2Spins = []
314 R3Spins = []
315 triSpins = []
316
317 initialVec = np.array([0.,1.,0.]) # f o r compar i son wi t h a f s p i n s t r u c t u r e
318 norm = 3.0
319
320 for i,spin in enumerate(Spins):
321 offsetAngle = inPlaneAngle(spin.direc,initialVec)
322 # o f f s e t A n g l e = 0 # i f a n t i f e r r o m o d u l a t i o n s h a l l be s u p p r e s s e d
323 xyCoord = np.array([spin.coord[0],spin.coord[1],0.])
324 newSpinDirec = np.array([0.,0.,0.], float)
325
326 if spin.num in triSites:
327 startSpin = np.array([0.,0.,1.])
328 elif spin.num in kagSites:
329 startSpin = np.array([0.,0.,-1.])
330 else:
331 print ’Spin site %s undefined’ %str(spin.num)
332
333 startSpin = np.array([0.,0.,1.])
334
335 # f i r s t c y c l o i d a l a l o n g x
336 angle = (spin.coord * R1).sum()/lengthOfCycloidal*2*np.pi
337 newDirec = np.dot(rotation_matrix(rotaxisForR1_ooP,-offsetAngle+angle),startSpin)
338 R1Spins.append(Spin(spin.coord,newDirec,spin.num,spin.cellNum))
339 newSpinDirec += newDirec/norm
340
341
342 # second c y c l o i d a l a l o n g −x s q r t ( 3 ) y
343 angle = (spin.coord * R2).sum()/lengthOfCycloidal*2*np.pi
344 newDirec = np.dot(rotation_matrix(rotaxisForR2_ooP,-offsetAngle+angle),startSpin)
345 R2Spins.append(Spin(spin.coord,newDirec,spin.num,spin.cellNum))
346 newSpinDirec += newDirec/norm
347
348
349 # t h i r d c y c l o i d a l a l o n g −x −s q r t ( 3 ) y
350 angle = (spin.coord * R3).sum()/lengthOfCycloidal*2*np.pi
351 newDirec = np.dot(rotation_matrix(rotaxisForR3_ooP,-offsetAngle+angle),startSpin)
352 R3Spins.append(Spin(spin.coord,newDirec,spin.num,spin.cellNum))
353 newSpinDirec += newDirec/norm
354
355 cycloidalSpins.append(Spin(spin.coord,newSpinDirec,spin.num,spin.cellNum))
356
357 return cycloidalSpins
358
359 def writeSpinState(filename,Spins):
360 fortFile = open(filename,’w’)
361 fortFile.write("\t%i\n" %(len(Spins)))
362 sep = ’ ’
363 for i,spin in enumerate(Spins):
364 fortFile.write("%s\n" %spin.getWriteString())
365
366 fortFile.close()
367
368
369 def dft_to_SofQ(SpinKonf, Config):
370 global qWerte
371
372 N = len(SpinKonf) #Number o f S p i n s
373 scalingFactor = 1000.0
374
375 firstPeakQ = np.sqrt(4.0/np.power(Config.cellParam[0],2))
376 reciResR1 = firstPeakQ/Config.numberCells[’R1’]
377 reciResR2 = firstPeakQ/Config.numberCells[’R2’]
378
379 stepsizeX=reciResR1
380 stepsizeY=reciResR2*np.cos(np.pi/6.0)
381 stepsizeZ=0.02

138



382
383
384 if Config.exportType == ’map’:
385 # bounds a r e i n Q
386 lowerboundX=-3
387 upperboundX=+3
388 lowerboundY=-3
389 upperboundY=+3
390 lowerboundZ=+0
391 upperboundZ=+0
392 tempListe = fill_qmatrix(lowerboundX, lowerboundY, lowerboundZ, stepsizeZ, stepsizeX,

stepsizeY, upperboundZ, upperboundY, upperboundX,Config)
393
394 elif Config.exportType == ’peak’:
395 tempListe = createPeaks(Config)
396
397 SofQ=np.zeros((3, len(tempListe)), dtype=np.complex)
398 QMatrix = np.mat(tempListe)
399
400 qWerte=np.array(np.mat(tempListe).T)
401
402 for i,spin in enumerate(SpinKonf):
403 SkalarQR = QMatrix*np.mat(spin.coord).T
404
405 SofQ -= np.multiply(np.dot(np.mat(spin.direc).T , np.exp(1j * SkalarQR).T))
406
407 return (SofQ/np.sqrt(N),qWerte)
408
409 def fill_qmatrix(lowerboundX, lowerboundY, lowerboundZ, stepsizeZ, stepsizeX, stepsizeY,

upperboundZ, upperboundY, upperboundX, Config = None):
410 tempListe=[]
411
412 if Config is None:
413 for x in range(int(lowerboundX/stepsizeX),int((upperboundX+stepsizeX)/stepsizeX+

stepsizeX),1):
414 for y in range(int(lowerboundY/stepsizeY),int((upperboundY+stepsizeY)/stepsizeY+

stepsizeY),1):
415 for z in range(int(lowerboundZ/stepsizeZ),int((upperboundZ+stepsizeZ)/stepsizeZ+

stepsizeZ),1):
416 tempListe.append([x*stepsizeX,y*stepsizeY,z*stepsizeZ])
417 else:
418 lbZ = int(lowerboundZ)
419 ubZ = int(upperboundZ)
420
421 for l in range(-1000,1001,1):
422 for m in range(-1000,1001,1):
423 for n in range(lbZ,ubZ+1,1):
424 qPos = l*Config.aStarRed + m*Config.bStarRed + n*Config.cStarRed
425 if qPos[0]>=lowerboundX and qPos[0]<=upperboundX and qPos[1]>=lowerboundY and

qPos[1]<=upperboundY:
426 tempListe.append(qPos)
427
428
429 return tempListe
430
431 def write_SofQT(filename,numberSpins,SofQ,qWerte,Config):
432 separations = [’chiral’,’inplane’,’ooplane’,’total’]
433
434 files = {}
435 intensList = {}
436 qPosLists = {}
437
438 for separation in separations:
439 files[separation] = open(’%s_%s.map’ %(filename,separation),’w’)
440 intensList[separation] = []
441
442
443 qxlast=qWerte[0][0]
444
445 qPosList = []
446
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447 for i,(qx,qy,qz,SofQx,SofQy,SofQz) in enumerate(zip(qWerte[0],qWerte[1],qWerte[2],SofQ
[0],SofQ[1],SofQ[2])):

448
449
450 intens = {}
451 sofQ = np.array([SofQx,SofQy,SofQz])
452
453 # c a l c u l a t e c o o r d i n a t e sys tem
454 if np.linalg.norm([qx,qy,qz])!=0:
455 eQ = np.array([qx,qy,qz])/np.linalg.norm([qx,qy,qz])
456 else:
457 eQ = np.array([0.,0.,0.])
458 eQy = np.dot(rotation_matrix(np.array([0.,0.,1.]),np.pi/2.),eQ)
459 eQz = np.array([0.,0.,1.])
460
461
462 # c h i r a l m a g n e t i c s c a t t e r i n g − c o r r e c t
463 Mperp = np.cross(eQ,np.cross(sofQ,eQ))
464 chiralSofQperpQ = np.dot(2j * (np.cross(Mperp.conj(),Mperp)),eQ).real
465 intens[’chiral’] = chiralSofQperpQ/numberSpins
466
467 # m a g n e t i c s c a t t e r i n g i n p l a n e
468 Mperp_y = np.dot(Mperp,eQy)
469 inplaneScattering = (Mperp_y.conj()*Mperp_y).real
470 intens[’inplane’] = inplaneScattering/numberSpins
471
472 # m a g n e t i c s c a t t e r i n g o u t o f p l a n e
473 Mperp_z = np.dot(Mperp,eQz)
474 outofplaneScattering = (Mperp_z.conj()*Mperp_z).real
475 intens[’ooplane’] = outofplaneScattering/numberSpins
476
477 # t o t a l m a g n e t i c s c a t t e r i n g
478 totalScattering = np.dot(Mperp.conj(),Mperp).real
479 intens[’total’] = (inplaneScattering+outofplaneScattering)/numberSpins
480
481
482 qPosList.append([qx,qy,qz])
483
484 for separation in separations:
485 intensList[separation].append(intens[separation])
486
487
488 qxlast=qx
489
490 sys.stdout.write(’\r’)
491 sys.stdout.write("calculate maps: \t[%-20s] %3d%%" % (’=’*int((i+1.0)/len(qWerte[0])

*20), int((i+1.0)/len(qWerte[0])*100)))
492 sys.stdout.flush()
493 sys.stdout.write(’\n’)
494
495 for separation in separations:
496 qPosLists[separation] = np.array(qPosList)
497
498 if Config.exportType == ’map’:
499 for separation in separations:
500 idx = np.argsort(np.abs(np.array(intensList[separation])))
501 qPosLists[separation] = qPosLists[separation][idx]
502 intensList[separation] = np.array(intensList[separation])[idx]
503
504 if Config.exportType == ’peak’:
505 for separation in separations:
506 qPosLists[separation],intensList[separation] = joinPeaks(qPosLists[separation],

intensList[separation])
507
508 for separation in separations:
509 for (qx,qy,qz),intens in zip(qPosLists[separation],intensList[separation]):
510
511 files[separation].write("%10f %10f %10f %10f %10f\n" %(qx, qy, qz, np.linalg.norm([

qx,qy,qz]),intens*100))
512
513 for separation in separations:
514 files[separation].close()
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515
516 return
517
518
519 def createPeaks(Config):
520 nucPeaks = []
521 satPeaks = []
522
523 propVec = (Config.propVec/3.*np.array([Config.aNucStar,Config.bNucStar,Config.cNucStar])

).sum(axis=0)
524
525 propVecStar = [ +propVec,
526 -propVec,
527 np.dot(rotation_matrix(np.array([0.,0.,1.]),+1*np.pi/3.),propVec),
528 np.dot(rotation_matrix(np.array([0.,0.,1.]),+2*np.pi/3.),propVec),
529 np.dot(rotation_matrix(np.array([0.,0.,1.]),-1*np.pi/3.),propVec),
530 np.dot(rotation_matrix(np.array([0.,0.,1.]),-2*np.pi/3.),propVec)]
531
532 for l in range(-20,21):
533 for m in range(-20,21):
534 for n in range(-20,21):
535 nucQPos = np.array(l*Config.aNucStar + m*Config.bNucStar + n*Config.cNucStar)
536 nucPeaks.append(nucQPos)
537 for propVec in propVecStar:
538 satQPos = nucQPos + propVec
539 if np.linalg.norm(satQPos)<3.0:
540 satPeaks.append(satQPos)
541
542 return sortPeaks(satPeaks)
543
544 def sortPeaks(PeakList):
545 Qabs = []
546 for peak in PeakList:
547 Qabs.append(np.linalg.norm(peak))
548
549 idx = np.argsort(Qabs)
550 return np.array(PeakList)[idx]
551
552
553 def joinPeaks(PeakList,IntensList):
554 joinedPeakList = []
555 joinedIntensList = []
556 oldQAbs = round(np.linalg.norm(PeakList[0]),4)
557 joinedIntens = 0.
558 for i,(peak,intens) in enumerate(zip(PeakList,IntensList)):
559 qAbs = round(np.linalg.norm(peak),4)
560 if qAbs == oldQAbs:
561 joinedIntens += intens
562 else:
563 joinedPeakList.append(PeakList[i-1])
564 joinedIntensList.append(joinedIntens)
565 joinedIntens = intens
566 oldQAbs = qAbs
567
568 joinedPeakList.append(PeakList[-1])
569 joinedIntensList.append(joinedIntens)
570
571 return joinedPeakList,joinedIntensList
572
573
574
575 def angleVecs(vec1,vec2):
576 return np.arccos(np.dot(vec1,vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)))
577
578 def inPlaneAngle(vec1,vec2):
579 s1 = np.arctan2(*vec1[0:2])
580 s2 = np.arctan2(*vec2[0:2])
581 if s1 < 0:
582 s1 += 2*np.pi
583 if s2 < 0:
584 s2 += 2*np.pi
585 return s2-s1
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586
587
588
589 def calcCommensuratePos(filename,Config):
590 outputFile = open(filename,’w’)
591 print Config.aStar,Config.bStar
592 for l in range(0,21):
593 for m in range(0,21):
594 for n in range(0,21):
595 magQPos = np.array(l*Config.aStar + m*Config.bStar + n*Config.cStar)
596 if np.linalg.norm(magQPos)<2.8:
597 outputFile.write(’%i\t%i\t%i\t%f\n’ %(l,m,n,np.linalg.norm(magQPos)))
598 outputFile.close()
599
600
601
602
603 # E v a l u a t e t h e Spin s t r u c t u r e
604 def evaluateSpinLengths(SpinState,Config):
605
606 spinLengths = []
607 for i,Spin in enumerate(SpinState):
608 spinLengths.append(np.linalg.norm(Spin.direc))
609
610 hist, bins = np.histogram(spinLengths,bins=300,range=(0,3))
611 width = 0.7 * (bins[1] - bins[0])
612 center = (bins[:-1] + bins[1:]) / 2
613 output = open(’histo.txt’,’w’)
614 for x,y in zip(center,hist):
615 output.write(’%.3f\t%i\n’%(x,y))
616 output.close()
617
618 plt.bar(center, hist, align=’center’, width=width)
619 plt.show()
620
621
622 def seperateTriSpins(TriSpins):
623 triASpins = []
624 triBSpins = []
625 triCSpins = []
626 triANetMag = np.zeros((1,3))
627 triBNetMag = np.zeros((1,3))
628 triCNetMag = np.zeros((1,3))
629
630 for spin in TriSpins:
631 if spin.cellNum%3 ==0:
632 triASpins.append(spin)
633 triANetMag += spin.direc
634 elif spin.cellNum%3==1:
635 triBSpins.append(spin)
636 triBNetMag += spin.direc
637 elif spin.cellNum%3==2:
638 triCSpins.append(spin)
639 triCNetMag += spin.direc
640
641 writeSpinState(’triASpins.txt’,triASpins)
642 writeSpinState(’triBSpins.txt’,triBSpins)
643 writeSpinState(’triCSpins.txt’,triCSpins)
644
645 print ’\tNetMag’
646 print ’triA’,triANetMag
647 print ’triB’,triBNetMag
648 print ’triC’,triCNetMag
649 return triASpins,triBSpins,triCSpins
650
651 def calcNetMag(Spins):
652 absMag = np.zeros((1,3))
653 netMag = np.zeros((1,3))
654 for i,spin in enumerate(Spins):
655 absMag += abs(spin.direc)
656 netMag += spin.direc
657 print ’NetMag:’, netMag
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658 print ’AbsMag:’, absMag
659
660
661 # Winding Number
662 def calculateWindingNumberTri(NewSpins,Config):
663 triSpins = []
664 for spinA in NewSpins:
665 if spinA.num == 4:
666 triSpins.append(spinA)
667
668 greenTriangles=[]
669 for spinA in triSpins:
670 for spinB in triSpins:
671 if spinA.getDis(spinB)<6.6 and not spinA is spinB:
672 for spinC in triSpins:
673 if spinA.getDis(spinC)<6.6 and spinB.getDis(spinC)<6.6 and not spinA is spinC

and not spinB is spinC:
674 triangleNew = True
675 for triangle in greenTriangles:
676 if spinA in triangle and spinB in triangle and spinC in triangle:
677 triangleNew = False
678 break
679 if triangleNew:
680 greenTriangles.append([spinA,spinB,spinC])
681
682
683 print ’triSpins’,len(triSpins),’, greenTriangles’,len(greenTriangles)
684 greenWinding = 0
685 oosterom = 0
686 for triangle in greenTriangles:
687 middle = (triangle[0].coord + triangle[1].coord + triangle[2].coord)/3.
688 higher = 0
689 for spin in triangle:
690 if spin.coord[1]>middle[1]+0.1:
691 higher +=1
692
693 # s o r t c l o c k w i s e
694 # upward t r i a n g l e
695 if higher == 1:
696 sortedTriangle = [None,None,None]
697 for spin in triangle:
698 if spin.coord[0] < middle[0]-0.1:
699 sortedTriangle[0] = spin
700 if spin.coord[0] > middle[0]+0.1:
701 sortedTriangle[1] = spin
702 if spin.coord[0] > middle[0]-0.1 and spin.coord[0] < middle[0]+0.1:
703 sortedTriangle[2] = spin
704 #downward t r i a n g l e
705 elif higher == 2:
706 sortedTriangle = [None,None,None]
707 for spin in triangle:
708 if spin.coord[0] < middle[0]-0.1:
709 sortedTriangle[0] = spin
710 if spin.coord[0] > middle[0]+0.1:
711 sortedTriangle[2] = spin
712 if spin.coord[0] > middle[0]-0.1 and spin.coord[0] < middle[0]+0.1:
713 sortedTriangle[1] = spin
714
715 spin1 = sortedTriangle[0].direc/np.linalg.norm(sortedTriangle[0].direc)
716 spin2 = sortedTriangle[1].direc/np.linalg.norm(sortedTriangle[1].direc)
717 spin3 = sortedTriangle[2].direc/np.linalg.norm(sortedTriangle[2].direc)
718 greenWinding+= np.dot(spin1,np.cross(spin2,spin3))
719
720 print ’gw’, greenWinding/(8 *np.pi)/4.
721 return greenTriangles
722
723
724 def toStr(Array):
725 return ’[%f,%f,%f]’ %(Array[0],Array[1],Array[2])
726
727
728 def angleVecs(vec1,vec2):
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729 angle = np.arccos(np.dot(vec1,vec2))*180./np.pi
730 if angle<0.:
731 angle += 360.
732 return angle
733
734
735 if __name__ == ’__main__’:
736 config = readConfigFile(’skyrmion.txt’)
737
738 # d e f i n e Spin p o s i t i o n s f o r u n i t c e l l s i n ab d i r e c t i o n from c o n f i g u r a t i o n
739 spins = createSpinlattice(config)
740
741 # c a l c u l a t e t h e s p i n o r i e n t a t i o n change from t h e " d i s t a n c e " t o t h e o r i g i n :
742 newSpins = createCycloidsWithThreeWaves(spins,config)
743 writeSpinState(’test.txt’,newSpins)
744
745 # His togram f o r s p i n l e n g t h s
746 evaluateSpinLengths(newSpins,config)
747
748 # Net m a g n e t i c moment
749 calcNetMag(newSpins)
750
751 # C a l c u l a t e d s c a t t e r i n g
752 SofQ,qWerte = dft_to_SofQ(newSpins,config)
753 write_SofQT(’test’,len(newSpins),SofQ,qWerte,config)
754 calcCommensuratePos(’commensuratePos.txt’,config)
755
756 # Winding number f o r t r i a n g u l a r s i t e s
757 greenTriangles = calculateWindingNumberTri(newSpins,config)

Control file for the previous python script
1 # Config file for the python script: createSkyrmion.py
2 # from a predefined unit cell Skyrmions are created along 3 directions
3 #
4 # picture rotate 90 degrees clockwise
5 #
6 # /\ R2
7 # / \
8 # / \
9 # \ UC /

10 # \ / R1
11 # \/
12
13 @UnitCellFile: standardSmallAntiferroEdit.uc
14 @CellParam: 11.00315, 11.00315, 10.264092,90.0,90.0,120.0
15 @R1: +3.000000,+1.73205,0.000000
16 @R2: -3.000000,+1.73205,0.000000
17 @R3: +0.000000,+0.000000,3.2659818
18 @NumberCells: 33,33,1
19 @Type: map
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