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Abstract

Plasma edge particle and energy transport perpendicular to the magnetic field plays
a decisive role for the performance and lifetime of a magnetic fusion reactor. For
the particles, classical and neoclassical theories underestimate the associated radial
transport by at least an order of magnitude. Drift fluid models, including mesoscale
processes on scales down to tenths of millimeters and microseconds, account for the
experimentally found level of radial transport; however, numerical simulations for
typical reactor scales (of the order of seconds and centimeters) are computationally
very expensive. Large scale code simulations are less costly but usually lack an
adequate model for the radial transport.

The multiscale model presented in this work aims at improving the description of
radial particle transport in large scale codes by including the effects of averaged
local drift fluid dynamics on the macroscale profiles. The multiscale balances are
derived from a generic multiscale model for a fluid, using the Braginskii closure
for a collisional, magnetized plasma, and the assumptions of the B2 code model
(macroscale balances) and the model of the local version of the drift fluid code AT-
TEMPT (mesoscale balances). A combined concurrent—-sequential coupling procedure
is developed for the implementation of the multiscale model within a coupled code
system. An algorithm for the determination of statistically stationary states and
adequate averaging intervals for the mesoscale data is outlined and tested, proving
that it works consistently and efficiently.

The general relation between mesoscale and macroscale dynamics is investigated
exemplarily by means of a passive scalar system. While mesoscale processes are
convective in this system, earlier studies for small Kubo numbers K < 1 have
shown that the macroscale behavior is diffusive. In this work it is demonstrated
by numerical experiments that also in the regime of large Kubo numbers K > 1
the macroscale transport remains diffusive. An analytic expression for the diffusion
coefficient D is found, being consistent with results from percolation theory.

The multiscale model and the coupling procedure are benchmarked with a one-
dimensional test problem which consists of coupling the local version of the drift
fluid code ATTEMPT to a 1D macroscale code to determine the time-dependent
evolution of the flux surface averaged density in radial direction in the tokamak edge
region. The reference simulation is given by a simulation of the non-local version



of ATTEMPT, accounting for both the mesoscale and the macroscale evolution.
Results of the coupled code simulations show that the macroscale evolution of the
density and the radial particle flux can be reproduced with typical uncertainties of 6
and 22%, respectively. Time savings with respect to the non-local simulations are
of a factor of ten for a typical macroscale evolution time of 10 milliseconds while a
speedup factor of the order of 50 is achievable for an edge region with a radial extent
of ~ 30 cm and typical radial profile lengths of ~ 5 cm.

The multiscale model for two-dimensional, stationary problems is realized by cou-
pling of the B2 code and the local version of the ATTEMPT code. The results of
the corresponding coupled code simulations for experiments at the tokamak TEX-
TOR provide plasma profiles in agreement with experimental measurements with
uncertainties regarding the electron density and electron temperature measured at
the outer midplane around 10 to 25%. Poloidally and radially dependent profiles
of the radial particle diffusion coefficients D, self-consistently determined by B2-
ATTEMPT, have typical values of 0.3 to 0.9 m? s~! and are within a 10 to 30%
range of effective diffusion coefficients employed in B2-EIRENE simulations to fit
simulation results to measured density profiles. The poloidal dependence of D as
given by the B2-ATTEMPT simulations accounts for the experimentally confirmed
ballooning character of radial transport with D at the low field side, being up to a
factor two larger than on the high field side.
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1. Introduction

The aim of a scientist is, generally speaking, to formulate descriptions of nature
which are as universal as possible and therefore valid on all temporal and spatial
scales. It quickly becomes obvious that by using the finest, most detailed models
for an arbitrary system of interest, the effort that has to be invested into a solution
may become enormous — imagine, for example, the attempt to describe the motion
of billiard balls using quantum mechanics. Often, the next logical step is therefore
to move to a coarser model, i.e. to neglect processes which take place on scales
smaller or larger than the scales of interest. In the example of billiard balls this
coarse graining could be the step from quantum mechanics to Newtonian mechanics.
However, one might find that in some cases the simplifications lead to erroneous
results, meaning that the interplay of the processes taking place on disparate scales
cannot be neglected.

The objective of multiscale models is to include the most important aspects of the
interdependency between the dynamics of different scales and to provide solutions
which are both accurate and can be obtained efficiently. Multiscale models play
a crucial role in many fields of physics and range from the Born-Oppenheimer
approximation [1], where the electron motion is separated from motion of the (much
heavier) nucleus, to the Reynolds decomposition and large-eddy simulations [2] to
describe turbulent fluid dynamics. These approaches are usually based on separate
models for the dynamics on the disparate scales whose interplay is then described by
a number of coupling mechanisms responsible for interchanging information. In this
work a multiscale model for the plasma in the edge region of a tokamak device is
presented and evaluated.

Tokamaks represent a concept of a fusion reactor, aiming at the production of
electrical energy, which is based on the fusion of the hydrogen isotopes deuterium
and tritium within a plasma confined by a magnetic field. The edge region of these
devices next to the vessel wall is of special importance for the tokamak’s design since
it is the region where the power exhaust of the plasma takes place. The interaction
of the plasma with the vessel wall greatly influences the tokamak’s performance and
its lifetime. For more than 30 years, plasma models and the computer codes used
to solve the corresponding equations have played a crucial role in complementing
experimental investigations, in improving the design of new devices and components,
and in increasing the physical understanding of the plasma dynamics. Depending
on the topic of interest, these codes focus on the description of neutrals [3, 4], the
small scale, turbulent plasma dynamics, using either gyrokinetic approaches [5, 6, 7]
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or drift fluid approaches [8, 9, 10, 11, 12], on the two-dimensional plasma profiles
on the reactor scale [13, 14, 15] or on three-dimensional configurations [16]. While
turbulence models describe the complex transport processes of the plasma in detail on
typical time scales on the order of microseconds and typical spatial scales on the order
of millimeters, corresponding simulations on the characteristic tokamak scales of one
meter and one second become computationally very expensive. Two-dimensional
large scale codes have usually much shorter runtimes and the ability to include
more complex geometrical aspects of the machine, while on the other hand partly
employ reduced models for transport processes. One important example is the radial
transport of particles, being crucial for the plasma confinement. In the large scale
codes, it is usually modeled by an ad-hoc diffusion-convection model with transport
coefficients prescribed by the modeler which are then used to fit the simulation
results to experimentally determined profiles, see for example [17]. Classical and
neoclassical transport theories based on a diffusion description underestimate it by
at least one order of magnitude [18]. It is well accepted nowadays that for its correct
description plasma turbulence models, such as drift fluid models, are required.
Combining models of microscale and mesoscale dynamics with macroscale models to
account for the experimentally found level of radial transport has been a research
topic for many years, with various theoretical studies [19, 20, 21] and numerical
simulations [22, 23, 24, 25] having been performed in this context. The specific
multiscale model for the plasma edge and its realization in form of coupled code
system developed in this thesis complement and extend the previous analyses by
investigating several aspects of this research field in detail: the concrete requirements
for the implementation of an efficient multiscale system and its technical challenges,
including the development of an adapted procedure to determine the statistically
stationary state of a given time series and the corresponding averaged mesoscale terms,
the modeling of time-dependent problems and the comparison of two-dimensional
multiscale simulation results to experimentally found profiles.

The chapters of this thesis are structured as follows:

e The basis for the specific multiscale model for the plasma edge is given by a
generic multiscale model for a fluid, which is derived in chapter 2 from the
famous Boltzmann equation [26]. Since the fluid characteristics are being
kept as general as possible, the structure of the particle, momentum and
energy balances illustrates the general mechanisms governing the interplay
between mesoscale and macroscale dynamics. With the objective of performing
multiscale simulations to numerically calculate the evolution of the fluid, such
as a fusion plasma, in mind, a possible realization of a corresponding coupled
code system is described and the required nomenclature and input parameters
are introduced.

e In chapter 3, the tokamak device and the concept of magnetic confinement
is presented. Subsequently, the Braginskii closure of the fluid equations for a
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collisional, magnetized plasma [27] is outlined to specify the fluid considered
here, a plasma. With this information at hand, the physical system of interest is
defined. Next, the large scale model equations are derived from the macroscale
part of the generic multiscale model. The derivation is based on the assumptions
of the model of the large scale code B2 [28, 29]. Two versions of these equations
are presented: one which still contains averaged mesoscale terms and which
will be related to the macroscale part of the specific multiscale model for the
plasma edge, and one which uses a macroscale transport model to replace the
averaged mesoscale terms and is therefore self-contained.

To complete the specific multiscale model for the plasma edge, a model for the
mesoscale processes is needed. For this purpose, a drift fluid model is derived
in chapter 4 along the lines of the work of B. Scott [30]. Its global version can
be seen as an extension of the self-contained large scale model, additionally
including the fluctuations of the magnetic field, the electric potential, and the
detailed plasma dynamics perpendicular to the magnetic field. It evolves the
plasma both on the mesoscale and macroscale. The respective local version
only accounts for the fast, small-scale mesoscale dynamics, assuming constant
macroscale profiles. It is related to the mesoscale part of the specific multiscale
model presented in chapter 5.

The large scale model for the macroscale and the local drift fluid model for the
mesoscale are merged in chapter 5 to yield the specific multiscale model for
the plasma edge. A survey on comparable projects that have been realized in
the past is given to identify open questions and challenges.

The self-contained large scale model uses a diffusion-convection macroscale
transport model to represent averaged mesoscale terms which are, in the
specific multiscale model, determined by mesoscale simulations. In chapter
6, the relation between mesoscale dynamics and the macroscale evolution of
profiles is analyzed by means of a passive scalar system [31, 32, 33|, serving
as a model for synthetic turbulence. This passive scalar system is also used
for an example of a coupled code system as a realization of a multiscale model
for a first assessment of the influence of the coupling input parameters on the
coupled code results.

In chapter 7, the specific multiscale model is implemented into an one-dimensional
coupled code system to reproduce the evolution of the flux surface averaged
density profiles in radial direction in the edge of a tokamak device. It consists
of a one-dimensional code to solve the density continuity equation on the
macroscale and the local version of the drift fluid code ATTEMPT [11] to
determine the mesoscale dynamics, corresponding to the model derived in
chapter 4. On the basis of this reduced system, the technical details of the
coupling procedure can be assessed and its performance can be evaluated by

13
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comparing the coupled code results to a sophisticated mesoscale simulation
with the non-local version of ATTEMPT.

e With the results of chapter 7, the two-dimensional coupled code system, based
on the full specific multiscale model, is set up in chapter 8. While the macroscale
evolution is determined by the two-dimensional large scale code B2 [28], the
drift fluid code ATTEMPT code is employed for the mesoscale simulations.
Simulations of the plasma edge of the TEXTOR tokamak [34] are investigated
and compared to previously obtained modeling results where the radial trans-
port coefficients were fitted to reproduce experimentally observed profiles of
the density [17].

e A summary of the results and an outlook is given in chapter 9.
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2. Generic multiscale model for a
fluid

In this chapter, a generic multiscale model to describe the temporal and spatial
evolution of a fluid is derived. Basis for this derivation are the well-known fluid
balance equations for the particle density, the momentum, and the energy, see
for instance [35]. A fluid is, referring to the definition of the New Encyclopzaedia
Britannica [36],

[...] any liquid or gas or generally any material that cannot sustain a
tangential, or shearing, force when at rest and that undergoes a continuous
change in shape when subjected to such a stress. [...]

The term multiscale relates to the fact that the model comprises dynamical processes
on disparate scales: the physical quantity o (« being for example the particle density
or temperature) can then be decomposed into two parts:

a=aqy+a. (2.1)

The macroscale part ag of o evolves on characteristic spatial and temporal scales large
compared to those of the mesoscale part &, while & accounts for the comparably fast
evolution on small spatial scales. On the characteristic scales of the mesoscale system
the macroscale quantities can then assumed to be constant. Processes on both the
mesoscale and macroscale interact with each other by a number of mechanisms which
will be specified below. The adjective generic refers to the fact that the specifications
of the model regarding the characteristics of the fluid, the forces acting on the fluid,
and the sources of particles, momentum, and energy, are kept at a minimum. Thus,
the resulting multiscale equations can be applied to describe a stream of water in
a river bed or the dynamics of a magnetized, collisional plasma as it is found in a
tokamak device. The applications regarding the latter, resulting in the multiscale
simulations for the plasma edge, will be the focus of the following chapters. However,
the generic form of the multiscale equations outlined here provides a fundamental
picture of the interactions of mesoscale and macroscale dynamics.

The structure of this chapter is as follows. The well-known transition from the kinetic
Boltzmann equation to a fluid model! (e.g. see [35]) is presented in paragraph 2.1 for

'In this context, the term fluid is not used to describe the character of the material as above, but
the mathematical approach to obtain the evolution equations of the system.
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completeness. On its basis, the new generic multiscale model is derived in paragraph
2.2. In paragraph 2.3, the implementation of the multiscale model into a coupled
code system (which aims at solving the equations numerically) is outlined. It serves
as a blueprint for the concrete design of the coupled code systems in chapters 7 and
8. The basic concepts and nomenclature for the coupling of codes are presented and
related to common multiscale approaches [37]. Also, the benefits of a multiscale
system compared to solving the full system on the mesoscale are discussed.

Note that above it is spoken of the interaction between mesoscale and macroscale
processes while one would probably think of a microscale and a macroscale as the
‘natural’ scales of a multiscale model. However, in this work, the term microscale is
reserved for a kinetic description of processes on the atomic level which happen on
scales below the mesoscale fluid model considered here for the small scale dynamics.

2.1. From a kinetic to a fluid description

A fundamental way to describe a physical system consisting of many particles is to
use the single particle probability distribution function f,(r, V',t). The probability
P,(r,V,t) to find a particle of species a with velocity V' at position r at time ¢ is
given by

Py(r,V.,t) = f(r, V. t) dPrd®V . (2.2)

The evolution equation of f, is the Boltzmann equation [38]:

Ofa
ot

F,
VeV Ve = G (2.3)

where Vy is the nabla operator with respect to the particle velocities, F', the force
acting on the particles, m, the particle mass, and C, the so-called collision term.
Note that the lhs of eq. (2.3) is the total time derivative df /dt of the probability
distribution function. The characteristic physics of the system due to collisions are
described by C,,.

For many particle systems it can be advantageous to move from a kinetic to a fluid
description to simplify the corresponding evolution equations. Instead of a particle
distribution function f, one considers quantities like the density n,, the fluid velocity
v,, and the temperature T,, which are defined as moments of f,. Thus, the transition
from a kinetic to a fluid model involves an averaging (or coarse graining) procedure.

16



2.1. FROM A KINETIC TO A FLUID DESCRIPTION

The density n (zeroth moment) is given by
Ng = / fa(r, V., 1) &V | (2.4)
the fluid velocity v, (first moment) by
nva = [ V5V PV (2.5)
and the temperature T, (second moment) by
3n,T, = ma/ (V —0,)? fulr, V1) &V . (2.6)

The integrals are carried out over the whole velocity space. By defining the random

velocity V.,
Vi =V — v, (2.7)

the particle velocity V' can be understood as sum of the fluid velocity v, and the
random velocity V.. Therefore, the temperature T, measures the energy contained
in the random motion of the particles.

The balance equations for n,, v,, and T}, are obtained by integrating the Boltzmann
equation (2.3) over the particle velocity space with weighting factors m,, m,V', and
maV?/2, respectively. Note that the coordinates 7, V', and ¢ are independent of each
other so that Or;/0V; = 0V i, j, and 0V;/0V; = d;;, 0;; being the Kronecker Delta. It
is additionally assumed that f, vanishes at the boundaries of the integration domain
(V = —oc0 and V = +o0). The particle balance reads:

ony
ot

The momentum balance is given by

+ V- (nw,) = / C, &V . (2.8)

g(manava) + V- (mana<VV>V>

ot
- /V(Fa~va) AV = ma/VCa &PV, (2.9)
where the averaging operator (...)y with respect to the particle velocity,
_ 1 3
(.), = 77/ fum V1) PV (2.10)

has been introduced. The product V'V is the dyadic product which is given for two
arbitrary vectors a and b by

ab = aqbe’e’ = d'blee; , (2.11)

17
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where e’ and e; are the contravariant and covariant basis vectors, and a?, a;, b*, and
b; are the respective components of the vectors a and b [39]. The evolution of the
temperature T, is determined by the energy balance:

o(3 1 MM,
Il T - 2 A a'ta 2
at<2”“ “+2m“”“”“> v < 5 (Vv >v>

1 A
- 5/vz(lrra.vvfa) PV = % /vzca PV (2.12)

Eqgs. (2.8), (2.9) and (2.12) determine the dynamics of the fluid considered. Note
that knowledge of f,, is still needed for calculating the terms (V'V)y and (VV?)y in
eqs. (2.9) and (2.12). This so-called closure problem can be solved by setting these
higher order moments in relation with gradients of the lower order moments n,, v,,
and T,, as it is outlined in paragraph 3.2. To simplify the notation, the quantities
scalar pressure p,, viscosity tensor I, and heat flux density g, are introduced:

Pa = m(éna<‘/rz2r>v = ngdy , (2'13)
I, = men, {<VMVM>V - ;<V£>VI} ; (2.14)
G = "5 (VaV2), - (2.15)

I is the unit tensor. The pressure tensor P, is given by
P, = p,JI + 11, . (2.16)

The higher order moments (VV)y and (VV?2)y can now be written as

MgNg <VV>V = P, + myngv.v, , (2.17)
MeNg 2 o ) MaNa o
: (Vv?) =g, + v, T, + galava + —o- v, (2.18)
The source terms due to the forces F', are defined as
r _ N\ 3 Fo_ 1[0 -\ 3
Sty = [V(F-Vvf) @V,  sh = 5/v (Fo-Vvf) &V . (219)

The collision term C, can be split into a part C¢°, including all processes due to
elastic collisions of particles of the species a with particles of the same species, and a
part C¥, including all processes due to elastic collisions of particles of species a with

particles of different species and due to inelastic collisions:

C, = C* + Ci. (2.20)

18
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One can define the source terms

se. = [crav, (2.21)
St = m [VCEV,  Shy =m [VOEdv, (22
o o= [vierav, sy o=t [vierav. )

With definitions (2.17) to (2.19b) and (2.21) to (2.23b), the evolution equations for
Na, Vo, and Ty, eqs. (2.8), (2.9) and (2.12), can be rewritten in compact form. The
particle balance reads

(2.24)

the momentum balance is given by

%(manava) + V- (Manavava + Po) = Shy + Sio + Sk, (225)

and for the energy balance one has

d(3 1 5 1 .
a <2naTa + Zmanavz> + V . <2naTa'va + gmanavjfua + qa + Vg - Ha)

= Sfp + 5% + S (2.26)

Eqgs. (2.24) to (2.26) are the evolution equations for n,, v,, and T, in conservative
form. Their non-conservative form can be obtained by using the particle balance
(2.24) in the momentum balance (2.25) and the particle and momentum balances
(2.24) and (2.25) in the energy balance (2.26). For the particle balance this yields

dn, -
a — Szc
dt an

A T (2.27)

19



CHAPTER 2. GENERIC MULTISCALE MODEL FOR A FLUID

for the momentum balance one has

manaﬁ =88, + 8¢, + S° . — mw,Sc — V-P,, (2.28)
and for the energy balance

3 dTa ec ic ec ic

Qnaﬂ = 5E + aFE + a — Va- (Sme + SamV + SamV)

mev? 3 ic
* ( 2 B 2Ta> San —pV-v,—1II,: Vy, -V q, - (2'29)

The total time derivative is to be understood as the so-called advective or convective
derivative [2]:

d 0

- = 2 .V . 2.30

a o " (2:30)
The double dot product A : B appearing in the energy balance (2.29) for two
arbitrary tensors A and B is defined as

where Einstein’s summation convention is used.

Eqgs. (2.24) to (2.26) or egs. (2.27) to (2.28) constitute a generic model for a fluid.
Which form of the equations is preferred (conservative or non-conservative) can
depend, for instance, on the method employed for solving them numerically. Finding
expressions for the viscosity tensor II,, the heat flux density g,, and the source
terms S, is required for the closure of the system of equations and further specifies
the physical system under consideration. An example for a collisional, magnetized
plasma, the Braginskii closure [27], is presented in paragraph 3.2.

2.2. Generic multiscale model equations

With the fluid balances at hand, one might question the necessity to derive a multiscale
model since a comprehensive description of the system of interest is already available.
To motivate the use of a multiscale model, it is helpful to consider a computer code
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which solves eqs. (2.24) to (2.26) numerically, since analytical solutions for n,, v,
and T, are available only for selected cases. Fast processes on small spatial scales
(the mesoscale) typically will require time steps so small and a spatial grid so fine
that simulations to capture also the macroscale evolution are very costly regarding
the computational resources. In contrast, the use of a multiscale model enables
one to analyze the macroscale evolution with reasonable computational times while
still taking into account effects of the mesoscale dynamics. Like it was stated in
the introduction of this thesis, multiscale models play an important role in many
fields of science, see for instance [1, 2, 23, 24, 37, 40, 41] for examples from the fields
of solid matter physics, atomic physics, fluid turbulence, and plasma physics. The
generic multiscale model for a fluid derived below serves as the theoretical basis for
the specific multiscale model for the plasma edge which is then outlined in chapter 5.
In paragraph 2.2.1, the assumption of a scale separation and the method of a Reynolds
decomposition is presented. The multiscale equations for the density, momentum
and energy are derived in paragraphs 2.2.2 to 2.2.4, followed by a discussion of the
generic multiscale model in paragraph 2.2.5.

2.2.1. Scale separation assumption and Reynolds decomposition

As stated in the introduction of this chapter, in the multiscale model the fluid
quantities o are split into a macroscale part ag and a mesoscale part a. This
procedure is analogous to the so-called Reynolds decomposition where the fluid
quantities « are decomposed into their mean and their fluctuating part [2]. The
averaging operator (...) is

t

_ 1 1 ’oyl 3.0 340
(1) = 55 / / a(r' ') &' dt’ . (2.32)

t—8tay 6V ()

The time interval for averaging is given by 0t,,. The integration limit 0V, (r)
expresses that the spatial average is taken over a volume §V,, around the point r.
One can now define the macroscale and mesoscale part of a by

ap = (o), (2.33)

a = a—{a), (2.34)
so that any fluid quantity can be written as

a = a + a. (2.35)

The decisive point which gives this decomposition a deeper purpose is the assumption
of a scale separation: the characteristic dynamics of oy and & are assumed to take
place on disparate temporal and spatial scales. This should be further specified here.
For this purpose, the characteristic time 7,(«) and length Ap(a) of the dynamics
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of a quantity « are introduced. There are different ways to determine 7,(«) and
length Ap (). One possibility is to use the limit parameters d, and d; which denote
a 100 - d,, 100 - d; percentage change of a. With {...)., being the average over the
simulation domain and evolution time for which A, («) and 7, («) should be valid,
they can be defined by

An(a) = <min(Ar)> with la(r + Ar,t) — a(r,t)]

= d,, 2.36
v max{|a(7", t)|,aR} ( )

(min(at))  wien [2nftad—alnh

= d . 2.37
ev max {|a(’r', t)], aR} ' (257)

()

Here, only one spatial coordinate r is considered, but the estimate of Ap(a) can
easily be generalized to the three-dimensional case. The max functions in eqs. (2.36)
and (2.37), employing a reference value «y, characteristic for the evolution of « (e.g.
ar = {a)ey), are used to prevent division by zero®. The scale separation can now be
expressed by

Ap(@) < Ap(ap) , (@) < 7p(ap) . (2.38)
With these relations, the averaging intervals ér,, and dt,, can be estimated by
Ap(@) < dray < Ap(ap) (@) < Otay < () - (2.39)

The choice of ér,, and dt,, is a very important point for setting up the multiscale
model: if dr,, and dt,, are chosen too large, the characteristic dynamics of the
macroscale are averaged out and therefore lost. On the other hand, if the intervals
are chosen too small, the characteristic scales of oy and & might coincide and one
can no longer speak of a scale separation. As explained in the next paragraph 2.2.2,
this leads to a problem of causality regarding the coupled macroscale and mesoscale
systems. A scale separation also means that the profile of ag(r,t) can be sufficiently
well approximated by a Taylor expansion up to first order on temporal and spatial
scales on the order of dt,, and dr,,. This leads to the conclusion that («g) = ap and
that (@) = 0 which is crucial for the derivation of the multiscale equations. The
justification is as follows: focusing on the time dependency of g, a Taylor expansion
of oy around the time ¢y is considered:

3&0

ap(to + At) = ap(te) + e

182060
At ——
T e

to

(At + O[(Ar)?*] . (2.40)

to

2In some cases, the correlation length A.(a) and time 7.(a) (see [42] for the definition of correlation
quantities of times series) might be good estimates for the characteristic scales of the dynamics
of a. However, for an approximately linear decay, \.(a) and time 7.(a) can be significantly
larger than Ap(«) and 7p(a) and it is then more useful to employ a definition as given by egs.
(2.36) and (2.37) for an estimate of Ap(a) and 7 (c).
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It is now assumed that At is of the order of §t,,. The characteristic evolution time
of ag is 7 () so that Dy /Ot is of the order ag /7, (g) and 9%y /Ot? is of the order
ap/ ()] Thus

82a0 (5th

At ~ ape, —or| (A1)? ~ ape®, e = . (2.41)
to 8t2 to TD(Oéo)

60{0

ot

Since the scale hierarchy according to eq. (2.39b) holds, £ can be considered as a
small parameter, ¢ < 1. This justifies truncation of the expansion (2.40) after the
first order term in €. By then applying the averaging operator (...) to ag(to + At)

one gets:
At>
to
8@0

to

(aoto+ At)) = (aolto)) + <88020

Generalizing eq. (2.42) means that for At < dt,, one has (a(t)) = ap(t). The same
reasoning can be applied regarding the spatial dimensions and the averaging interval
0r4y. Therefore

(ap) =~ g and (@y ~ 0. (2.43)

For some systems also the amplitudes of the macroscale and mesoscale part are
characterized by a scale separation, where it can then be assumed that || < |-
Even though this relation of magnitudes will play an important role for the drift fluid
model presented in chapter 4, it is not important for the generic multiscale model.

2.2.2. Particle balance

The derivation of the macroscale and mesoscale particle balances starts with the
particle balance given by eq. (2.27):

dn ;
— = S5° —nV.v. 2.44
" = s (244)
The subscripts a to denote the particle species are omitted in the following derivations

for clarity. The density n and velocity v are split into their macroscale and mesoscale
part:

n=mny + n, v =v)+ V. (2.45)
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Eq. (2.44) can then be transformed into

% n %:f Y ve-Ving + ©-Ving +vy-Vii + © - Vi

=S¥ — ngV-wg — AV-vy — ngV -0 — aV-o.  (2.46)

Now the averaging operator (...) given by eq. (2.32) is applied to eq. (2.46) to obtain
the macroscale particle balance. All terms which are first order in the mesoscale
quantities become zero due to eq. (2.43). The evaluation of (91/0t) yields:

<?:> = 0. (2.47)

This result, which is true for the time derivative of any mesoscale variable, is explained
in detail in paragraph 2.3.2. The macroscale particle balance is given by

% + vo-Vng = —ngV-vy + <Sff> _ <V~(ﬁf7)>. (2.48)

The evolution equation for the mesoscale density 7 is obtained by taking the full
particle balance (2.46) (‘full’ in the sense that it describes the evolution of n and
therefore both ng and 7) and subtracting the macroscale equation (2.48). This yields
the mesoscale particle balance:

% + <v0+6>'Vﬁ + v-Vng

= —AV-(vo+®) — V- + Si — (S) + (V- (7)) . (249)

Alternatively, the multiscale balances can also be written in conservative form which
is presented here for the macroscale balances only, being used for the derivation of
the large scale model in chapter 3. For the macroscale particle balance it yields

==+ V- (ngwo) = (i) - (V- (7)) . (2.50)

The coupled macroscale and mesoscale particle balances (2.48) and (2.49) are now
used to discuss causality in the context of the multiscale system. For this purpose, it
is helpful to depart from the viewpoint where ny and 7 can both be obtained from the
profile of n and consider the macroscale and mesoscale balances, egs. (2.48) and (2.49),
as descriptions of two different systems which interact with each other. The evolution
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i ﬁ(rb tl) i
tl N i [
slope o 1/vin¢
ty — Oty : :
| AN
r1— Oray/2 1+ 0Ty /2 T

Figure 2.1.: Determining the averaged term (V - (nv)) for the the calculation of 72(r1,¢1).
The dotted lines denote the limits of the averaging intervals for the operator
(...), the typical velocity of the transport of information in the system is
given by viyg.

of the mesoscale density 7 depends also on the term (V - (nv)), where the averaging
area in time and space for 71(ry, t1) for a one-dimensional case is limited by the dotted
lines in fig. 2.1. This means that 7i(r1, 1) is also a function of n(ty, 1 — dray/2) and
n(ty, r1 4 6ray/2) which are included in the average (V - (no)). If information within
the system is transported with a finite velocity vi,g, this dependency is unphysical: a
quantity cannot depend on something of which it does not ‘know’. The data points
which actually could influence n(rq,¢;) are within the light green triangle, limited by
the continuous black lines whose inclination is given by 1/vs.

However, including the dark green areas in the average for the determination of
n(r1,t1) does not lead to spurious results due to the assumption of a scale separation,
see eq. (2.38): as expressed by eqgs. (2.39a) and (2.39b), the macroscale density ny
varies little on lengths and times on the order of dr,, and dt,,, respectively, since
they are below the typical lengths and times of the macroscale dynamics, Ap(ng)
and 75 (ng). If the source term (Si¢) also varies slowly on lengths dr,, and times .y
(which is assumed here), this applies equally to the averaged mesoscale terms like
(V - (nw)). Therefore it holds:

(V- (710))(ra, ta) = (V- (79))(ry, 1) (2.51)
with
ra =1l < 0ray s ta—t] < Otay (2.52)

Otherwise, if (V - (n0)) varied significantly on the mesoscale, this would have a
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similar effect on ny and there would no longer be a scale separation. Eq. (2.51)
expresses that the relevant statistics of points in the domain limited by the dotted
lines are similar. Because of this similarity including points outside of the light green
triangle in the average (V - (7v)) does not lead to a false evolution of 7(ry, ;).

2.2.3. Momentum balance

The derivation of the macroscale and mesoscale momentum balances is done analo-
gously to the derivation of the particle balances. Starting point is the momentum
balance (2.28). By defining the momentum density source M,

M = Sﬂv + Sr, + Sfflv — mvSff - V-P, (2.53)
the momentum balance can be written as
ov M
— . = — . 2.54
5 + v-Vov . (2.54)

By decomposing the velocity into its macroscale and mesoscale part and applying
the averaging operator one obtains the macroscale momentum balance:

P 4 -y = <M> ~ (v Vo). (2.55)

ot mn

The mesoscale momentum balance is obtained by subtracting the macroscale
balance from the full equation (2.28):

ov

o+ (vo+9) Vo + v Vo, = % - <xl> + (v-VD) . (2.56)

The equivalent conservative form of the macroscale momentum balance is given by

%(mno’ljo) + V- <mn0'00’00) = Ny <J:L4> — Mmny <f7 . V{}>

+ mug (Si¢) — moy (V- (D)), (257)

which is obtained by using the macroscale particle balance (2.48) for transformation
of the macroscale momentum balance (2.55).
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2.2.4. Energy balance

With the definition of the energy density source W,

W = S5+ S+ Si — v (Shy+ 85+ Siey)
mv? 3 i
+ T_ET S —pV-v —II:Vv — V.q, (2.58)
the energy balance (2.29) can be rewritten as
3 (0T w
—| = VT | = —. 2.
2<8t +v-V > . (2.59)

Splitting velocity and temperature into their macroscale and mesoscale parts and
applying the averaging operator yields the macroscale energy balance:

2(85?+”°'VT°> _ <W> . g<a.vf>. (2.60)

The mesoscale energy balance is obtained in the same way as the mesoscale
balances for particles and momentum and is given by

oT

E+(vo+ﬁ>~vf+f)-VTo

3
2

v

For the conservative form of the macroscale energy balance one has:

0 (3 1 3 1
BN <2n0T0 + 5 mmﬂ)é) + V. (277,0710110 + 2””’0”3”0)

W M 3. ~ SO
= Mo <n> + novy <n> — §no <v . VT> — Mnovg - <v - Vv>
3 1 " 3 1 _
+ <2 0o+ 2m1)0> <Sn> - (2 0+ 2mU0> <V . (nv)> . (2.62)
For the transition from eq. (2.60) to eq. (2.62) the macroscale particle and momentum

balances (2.48) and (2.55) were used. It holds:

1 o 1
§mn% = mnov - 3—1; , Fmnv - Vo? = mn(’u . V'v) ‘v . (2.63)
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2.2.5. Discussion of the generic multiscale model

The particle balances (2.48) and (2.49), the momentum balances (2.55) and (2.56),
and the energy balances (2.60) and (2.61) constitute the generic multiscale model for
a fluid whose dynamics exhibit a scale separation. The evolution equations hold for
all particle species a separately. The general structure of all balances is similar: in the
macroscale balances (2.48), (2.55), and (2.60) the macroscale part of the considered
quantity (ng, v or Tp) is advected only by the macroscale velocity vg. The effect
of the averaged mesoscale dynamics is represented by a term of the form (v - Va),
where @ is the mesoscale part of the considered macroscale variable (7, @, or T).
In the mesoscale balances (2.49), (2.56) and (2.61), the mesoscale quantities are
advected by the full velocity v = vo+v. Additionally, the advection of the macroscale
quantity by o is taken into account. The averaged terms like (V - (70)), present in
the mesoscale balances, guarantee that any macroscale evolution of the mesoscale
quantity is canceled out, thus ensure that (&) = 0 and therefore an enduring scale
separation. Note that the full balance equations (2.27), (2.28), and (2.29) can be
recovered by adding the associated macroscale and mesoscale balances, illustrating
the completeness of the multiscale model.

The term (¥ - V), appearing in the momentum balance (2.55), and the conservative
form of the energy balance (2.62) can be rewritten as

(v-Vo) = V-(08) - ((V-0)v), (2.64)

where it has been assumed that the averaging operator and spatial derivative are
commutable (see paragraph 2.3.2 for a detailed investigation of this property on
a discretized grid). The tensor (D) is the so-called Reynolds stress, commonly
used in fluid mechanics. It is usually introduced in the context of the Reynolds-
averaged Navier-Stokes equations (or short RANS equations) whose derivation bears
a strong resemblance to the procedure used here to deduce the multiscale model
[2]. By defining the Reynolds decomposition of fluid quantities into a macroscale
and mesoscale part according to eq. (2.35), the Reynolds stress appears in the
momentum balance of the RANS equations. To close the equation, an expression
for (v0) is needed. Different approaches to determine (¥@) in fluid mechanics via
reduced mesoscale models are for example presented in chapters 10 and 11 of [2].

2.3. Outline of a coupled code system

Analytical solutions for the coupled partial differential equations that constitute
the generic multiscale model, i.e. eqs. (2.48), (2.49), (2.55), (2.56), (2.60), and

?

(2.61), are difficult to find. Hence, these equations are typically solved numerically
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by specialized computer codes. In this paragraph, the generic multiscale model is
analyzed with the objective of setting up a coupled code system where the macroscale
and mesoscale balances are solved by two independent codes which are linked together.
Via a coupling procedure these codes exchange the necessary information so that the
dynamics of the complete system can be determined, the focus lying on its macroscale
evolution. Outlining the coupling procedure also serves for further elucidating the
advantage of the coupled code system compared to solving the full fluid balances
numerically: a significantly diminished need for computational resources.

This section is subdivided as follows. The structure of a coupling procedure that
was developed for this thesis is described in paragraph 2.3.1 and related to the
so-called heterogeneous multiscale method [37, 43, 44]. The question in how far the
averaging operator (2.32) and the temporal and spatial derivatives are commutable
is investigated in paragraph 2.3.2. The concept of macroscale transport models
to describe averaged mesoscale terms like (V - (710)) in the macroscale balances is
introduced in paragraph 2.3.3. Finally, the challenge to find (statistically) stationary
solutions of the system is discussed in paragraph 2.3.4.

2.3.1. Structure of the coupling procedure

The setup of the coupled code system to solve the multiscale model equations should
be illustrated with the help of the macroscale and mesoscale particle balances (2.48)
and (2.49) which are given by

% + wo- Vg = —noV vy + (SF) — (V- (@0))
and
%? + (v0+ﬁ)-Vﬁ + v Vng

= —AV-(vo+®) — V.o + S — (Si) + (V- (7)) .

It is assumed that both a macroscale and mesoscale code are at hand for solving
these equations numerically on their characteristic temporal and spatial scales. For
illustrative purposes, a one-dimensional problem in space is considered here but the
relations and concepts obtained below are easily generalizable to the three-dimensional
case.

A sketch of the general structure of the coupled code system is given in fig. 2.2,
with a summary of the employed quantities and parameters shown in table 2.1. The
green grid of continuous lines represents the macroscale grid on which the discretized
macroscale particle balance (2.48) is solved, the total simulated time being tgm,. The
spatial distance between two grid points, the cell length, is given by Ar,, while the
time step size of the macroscale code is At,. The points marked with a green dot are
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the points for which a mesoscale simulation is carried out to determine the averaged
mesoscale terms (V- (nv)), i.e. for which these terms are ‘updated’ during the course

of the simulation. The updating points have a distance of Ar,, in space and At,, in
time.

T'sim
< /f >
A
t ors A
ﬂ Oy Ary Aryp
- > >
1 Otst + Otay
B 4 4 . oo
X tsirn
i 4 L 2 L 4 @ ! Aty
Aty
o >t
1 T 7T ,,
— grid of the macroscale code T

@® point where a mesoscale sim. is carried out
----- grid of the mesoscale code

simulation domain of the mesoscale code
in time and space

Figure 2.2.: Sketch of the spatial and temporal structure of the coupling procedure.

The mesoscale simulation domains in time and space are highlighted in violet.
Each mesoscale simulation has a spatial extent dr,, and simulates a total time
Otsy + Otay, where Oty is the time needed for the mesoscale system to reach a
statistically stationary state. Statistical stationarity of a quantity «(r,t) means that
its expectation value and its autocovariance (and therefore also its variance) are
constant in time and space:

E[a(’r,t)] = u, (2.65)
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Var[oz('r,t)] = 0%, (2.66)

Cov[a(rl, t1), a('r'Z,tQ)] = Cov[a(rl + Ar,t + At), a(ry + Ar, to + At)] . (2.67)

If a(r,t) is a stochastic processes, egs. (2.65) to (2.67) correspond to the definition
of so-called weak stationarity [45]. Note that statistical stationarity does not mean
that da/0t. The mesoscale grid, given by the dotted gray lines, has a cell length of
or, the time step is denoted dt. Note that the mesoscale grid is usually much finer
compared to the macroscale grid than it is shown in fig. 2.2. This fact is ignored
here for a better illustration of the coupled code system. Important for its proper
working is that the following relations regarding the spatial and temporal parameters
and quantities are fulfilled:

0ty € Tp(Q) <K Otay (2.68)
and
Aty < 7p(ap) (@) € Aty ~ mp(ap) , Oty < () . (2.69)
For the spatial quantities one has analogously:
0rs € Ap(@) < 0Tay (2.70)
and
Ars < Ap(ap) Ap(@) < dray ~ Ap(ap) . (2.71)

These relations should be elucidated for the temporal quantities, with similar consid-
erations holding also for the spatial quantities:

e eq. (2.68): the time step dt, of the mesoscale code has to be significantly smaller
than the characteristic time 7, (&) of the mesoscale dynamics to ensure that
the mesoscale dynamics are captured by the numerical scheme. The averaging
time 0t,, has to be chosen larger than 7,(&@) to ensure that the averages are
statistically meaningful, i.e. do not change significantly for variations of the
averaging intervals’ position and extent once the statistically stationary state
has been reached. This ensures that the averaged terms are representative for
the set of macroscale variables used in the mesoscale simulation.

e cq. (2.69a): the time step At, of the macroscale code has to be chosen much
smaller than 75, () to capture the macroscale dynamics.

e cq. (2.69b): a reasonable estimate for the time At,, to update the mesoscale
information in the macroscale code is given by the characteristic time 7, ()
of the macroscale profile change. In the sense of the scale separation 7, (&)
then has to be much smaller than At,,. If At,, is much shorter than (ay),
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the set of macroscale variables used in the mesoscale simulation will not differ
significantly from the set used for the previous mesoscale simulation. The
resulting averaged mesoscale terms (V - (n@)) can be expected to be rather
similar to that of the previous iteration. This does not lead to erroneous results
— it will rather improve the accuracy of the macroscale evolution — but will
increase the need for computational resources since more mesoscale simulations
have to be carried out. If, on the other hand, At,, is much longer than ()
the macroscale quantities used to determine (V - (n0)) might differ significantly
from the macroscale profiles which are calculated using (V - (70)). This means
an inconsistency in the model and leads to incorrect results. The choice of
Aty therefore is crucial regarding the outcome of the coupled code system,
accuracy-wise as well as computational time savings-wise.

e e¢q. (2.69c): the time 0ty for the mesoscale system to reach a statistically
stationary state has to be much smaller than 7,(ag) to ensure that the scale
separation hypothesis is fulfilled, expressing that the mesoscale system adjusts
quickly from its previous state to the new macroscale variables.

advance by time 7 ()

macroscale
code

no, V’flo
Vo, V - vg

mesoscale
code

advance by time 0ty + 0ty

Figure 2.3.: Coupling procedure for one updating point of the macroscale grid for which
the averaged mesoscale fluxes are updated after a time interval At,.

The coupling procedure that is carried out at each of the green updating points in
fig. 2.2 (after a time At,, and for macroscale cells separated by a length Ar,,) is
sketched in fig. 2.3. It is assumed here that for the averaged term (V - (7)) it holds:

(V- (1)) ~ V- (D) . (2.72)

This relation is justified and explained in detail in the next paragraph 2.3.2. At time
t, a mesoscale simulation is started for all updating points in the spatial simulation
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variable | description

Ot time step of the mesoscale code

Ot simulated time of the mesoscale code to reach statistical stationarity
Otay averaging time for mesoscale quantities

At, time step of the macroscale code

Atyp updating time/time between two mesoscale simulations

T () characteristic time of the dynamics of «

To() correlation time of «

te(a) computing time needed to determine the evolution of o

tsim total simulated time

a desired ratio of dt,, /7o (&), used for choosing dtay

ors cell length of the mesoscale code

OTay spatial averaging interval for mesoscale quantities

Arg cell length of the macroscale code

Aryp spatial updating interval/‘distance’ between two mesoscale simulations
Ap (@) characteristic length of the dynamics of «

Ae(@) correlation length of «

T'sim extent of the simulation domain

a, desired ratio 07,y /Ap (@), used for choosing 07y

Table 2.1.: Variables used for the description of the coupling process and the mesoscale
and macroscale codes.

domain, using the respective set of macroscale quantities (ng, Vng, vg, V - vg). Once
the statistically stationary state is reached after a time dty, the mesoscale simulation
is continued for a time d0t,, after which the average (nv) is calculated and handed to
the macroscale code. Values of (7o) for points of the macroscale grid for which no
mesoscale simulation is carried out can be calculated via interpolation, for instance.
The divergence of the averaged particle flux, V - (nv), needed to advance the
macroscale system, is determined by the difference quotient

1
207,

V- (nv)(r,t) = (M0)(r — Aryp, t) — (RO)(r + Aryp, t) | - (2.73)
The macroscale code then advances the macroscale system by a time At,, after
which the procedure is repeated.

As already mentioned, the generic multiscale system is, under the assumption of a
scale separation, equivalent to the full system, given by the fluid balances (2.24) to
(2.26). The advantage of a coupled code system,, solving the multiscale equations as
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compared to a code determining the evolution of the full quantities a directly are
the possibilities for saving computational resources or computing time. This should
be explained here. Consider the speedup factor e(¢.),

te()

)= e @

(2.74)
which is given by the computing time ¢.(a) to determine the evolution for a given
time tg, and a simulation domain 74, by using the full balances, divided by the
sum of the computational times t.(cap) and t.(&) that are needed by a coupled code
system for the same task. The cell length and time step length of the code solving
the full balances are about the same as those of the mesoscale code to be able to
resolve the fast and small scale dynamics. With the computational time taken to
be proportional to the number of grid points in time and space, one can state that
(referring to fig. 2.2):

number of gray grid points needed to fill the
total simulation area in time and space
number of gray grid  number of green
points of violet areas +  grid points

e(te) o (2.75)

If it is assumed that the computing time of the macroscale code is negligible compared
to that of the mesoscale code, t.(ap) < t.(@) (i.e. the green grid points do not count
in eq. (2.75)), it holds:

Aryy Aty

e(te) b S

(2.76)

Having relations (2.68) and (2.70) to be fulfilled, the averaging intervals are set to
Oray & a;Ap(@),  Otay & @7H(0) (2.77)

with a, and a; being at least on the order of ten. By setting Ary, = Ap(ap) and
Aty = () one finds that

To(ag) Ap(ap)

(&) Ap(@)

c(t) o (2.78)

This means that the more disparate the mesoscale and the macroscale are, i.e. the
larger the ratios 7 (ap)/mp (&) and Ap(ap)/Ap(&) are, the larger the possible benefits
of the coupled code system.

The mesoscale code of the coupled code system in the above example is called a local
mesoscale code if the set of macroscale quantities (ng, Vng, ug, V - ) is taken to be
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constant for the mesoscale simulation of extent 0ty + 0t and d7,,. Due to the scale
separation, the variation of the macroscale quantities on the averaging intervals is
small so that the errors introduced by neglecting it are assumed to be small, too. A
code which takes these variations (partly) into account and solves the full balances
for the variables n, v and T is called a global (non-local) mesoscale code. Usually,
the cell length and the time step length are of the same order for all three types
of codes (local, non-local and global) since the mesoscale processes to be captured,
denoting the smallest scale to be resolved, are basically the same. In this context
it should be highlighted that, even though the macroscale quantities like ng and v
are assumed to be constant, their gradients and divergences are kept, like Vng in
the local mesoscale model for the mesoscale particle balance (2.49). The differences
between a local and a non-local model are further investigated in chapter 7.

Before elucidating further details of the multiscale approach presented here, it should
be classified regarding the different types of multiscale problems and models that
are discussed in the literature. For this purpose it is referred to the comprehensive
overview given in [37].

The coupled code system to solve the generic multiscale model as outlined in this
paragraph makes use of heterogeneous multiscale method (HMM) [43, 44, 37] which
belongs to the class of multigrid methods to tackle a type B multiscale problem.
Multigrid simply refers to the fact that both the mesoscale and macroscale system are
using grids of different dimensions and resolutions (see fig. 2.2). Type A multiscale
problems rely on a microscale or mesoscale model only for a number of selected
spatial positions and/or instances, e.g. near defects or heterogeneities, while the
major part of the evolution of the system is captured by the macroscale model. Type
B multiscale problems resort on the microscale/mesoscale model basically at all
positions of the computational domain.

The HMM has the following defining elements, as given in [37], pages 249 to 250,
with the counterpart of the coupled code system presented here highlighted in blue:

e ‘A macroscopic solver: on the basis of whatever knowledge is available
about the macroscale behavior of the system, we make an assumption about
the form of the macroscale model from which we select a suitable macroscale
solver.”

Solve
80[0
ot

where C' denotes the data needed for the macroscale model to be complete.

= L(ag:C) , (2.79)

Eq. (2.79) corresponds to the macroscale particle balance (2.48) with ap = ng
The data C to complete the macroscale model is contained in the terms (S%)

and (V - (nv)).
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e ‘A procedure for estimating the missing macroscale data C using
the microscale model.

1. Constrained microscale simulation: at each point where some macroscale
data is needed, perform a series of microscopic simulations which are con-
strained to be consistent with the local value of the macro variable.’

Solve
oa
ot
Eq. (2.80) corresponds to the mesoscale particle balance (2.49) with
@ = n. The identification as ‘constrained simulation’ refers to the fact
that the macroscale quantities g appearing in £ are taken to be constant
during the mesoscale simulation.

= L(a;ap) . (2.80)

2. ‘Data processing: use the results from the microscopic simulations to
extract the macroscale data needed in the macroscale solver.’

The extraction of the data needed for our model is carried out by applying
the averaging operator (...) as given by eq. (2.32) on the mesoscale terms.

The HMM has a similar structure as the extended multigrid method [46] and the
equation-free approach [47]. All three models have in common that their focus lies
on the reproduction of the macroscale evolution and that they use a concurrent
coupling procedure, i.e. obtain the microscale/mesoscale information ‘on the fly’
In contrast, sequential coupling procedures first create a database containing the
required microscale/mesoscale data and then carry out the macroscale simulation.
An example for a multiscale model using this approach is given in the survey of
comparable projects in paragraph 5.3.

The considerations following in paragraphs 2.3.2, 2.3.3 and 2.3.4 are oriented towards

the generic multiscale model and do not longer refer explicitly to the simplified
multiscale model of the balance equations.

2.3.2. Averages of temporal and spatial derivatives

For the derivation of the generic multiscale model it was used that

<%§:‘> = 0. (2.81)
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This can be justified by considering a discretized mesoscale grid. For an arbitrary
mesoscale variable & one has:

(28 = 388 1t ) - 3

- %&Ka(w ot.)) — (a(t - 5ts)>} : (2.82)

where N; is the number of time steps used for the temporal averaging (so that
(Ny — 1)dts = dtay), and (...), is the averaging operator regarding only the spatial
coordinate. Note the transition from the average in space only in the first line of
eq. (2.82) to the average in space and time in the second line. Since the average of
the mesoscale variables is zero, (@) = 0, both (&(t + dt,)) and (a(t — 0ts)) are zero.
Thus, eq. (2.81) holds.

For the averaged spatial derivatives of second order in the mesoscale quantities of
the form (V - (a®)) one obtains a different result. Analogously to eq. (2.82), they
are given by

(V- (@9))(r) =

! (@) + ) — (@)~ or,)] (2.83)
207,
It is important to recall that terms of the form (&®)(r) are not necessarily zero —
this only holds for terms first order in the mesoscale quantities. Therefore, due to
the (small) variation of (&®)(r) on the mesoscale, (V - (a®))(r) does not equal zero
neither.
A problem arises if (a®)(r+0r) and (av)(r—or) are determined by the local mesoscale
simulation carried out at point r. For a local mesoscale code, the macroscale values
will be constant over its entire simulation domain, meaning that also the statistics
of the mesoscale dynamics are homogeneous, too. This results in that the averaged
divergence (V - (&0))(r) becomes zero. If not, this is due to an insufficient amount
of data available for evaluating the averages (av)(r + dr;) and {(av)(r — dr,) and
does not reflect any physical effect. A constant divergence of zero for all times is in
contradiction to the reasoning presented above and therefore an erroneous result.
This issue can be overcome by assuming that for spatial distances Ar up to the order
of Ar,, the macroscale quantities ap and the mesoscale averages of the type (av)
can be sufficiently approximated by a Taylor expansion up to first order:

ao(ri +Ar) = ag(ri) + % Ar, (2.84)
(av)(r + Ar) = {(av)(r;) + 8((;);1)) Ar (2.85)
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with 0 < Ar < Ary,. Eq. (2.83) can be transformed to yield

(V- (@0))(r) ~ QAITUP {(am(wmup)m)(ramp) , (2.86)
which can be written as
(V- (av))(r) ~ V- (@v)(r) . (2.87)

Eq. (2.87) is the generalization of eq. (2.72) for any given mesoscale quantity &. Note
that the rhs of eq. (2.87) has to be understood in such a way that the divergence is
evaluated on the macroscale grid.

2.3.3. Macroscale transport models for averaged mesoscale terms

One way of transferring mesoscale information to the macroscale code is the evaluation
of the terms (@) and (v - V&) for each time step and spatial grid point of the
macroscale code by separate local mesoscale simulations. With such a procedure
even the mesoscale evolution of the averaged mesoscale terms can be captured. The
drawback of this approach is that the computational cost increases and the speedup
factor (t.) decreases (due to small At,, and Ary, are, see eq. (2.76)). On the
other hand, by updating the averaged mesoscale terms using larger temporal and
spatial intervals At,, > (o) and Ary, > Ap(ap), the need for computational
resources is decreased and e(t.) therefore increased. However, this usually means
that the accuracy regarding the reproduction of the macroscale dynamics worsens
since (@v) and (v - V@), determined with a certain set of macroscale quantities
ap(r', 1), are used at points where ag(r,t) deviates significantly from ag(r’,¢). It
can be assumed that also the associated averaged mesoscale terms vary significantly.
The two ‘antagonistic’ factors — accuracy and saving of computational resources —
have to be balanced when setting up a coupled code system.

Using a macroscale transport model aims at increasing the savings of computational
time of the coupled code system (which is used synonymously with savings in
computational resources) while at the same time ensuring a high accuracy of its
results. For a basic example one can look at the gradient-diffusion hypothesis [2]
for modeling averaged mesoscale fluxes of the form (). For a three-dimensional
problem with isotropic transport, one has

(@o)(r,t) = —D(r',t") Vag(r,t) (2.88)
for the intervals

<t < 4 Aty, r—Ary, < r < P4+ Ary,. (2.89)
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D(r',t") is given by

I <alﬁ>(a0(r/at/))

D(r',t") Van(r 1) (2.90)
The vector ag refers to all macroscale quantities relevant for the local mesoscale
simulations, while oy is the specific macroscale quantity considered here. Eqs. (2.88)
and (2.90) are to be read in the following manner. The averaged mesoscale flux
(av)(r,t) (as used in the macroscale code) is given by a diffusive model. The diffusion
coefficient D(7',t) used at position r and time ¢ on the macroscale is determined
with the averaged mesoscale flux obtained with the macroscale input parameters oy
of position r’ and at time t'.

In general, the generalized macroscale transport model M and its transport coef-
ficients like D, used on the macroscale to represent the averaged mesoscale term
(f(&)), have to fulfill at spatial position ' and time ¢:

M((f@));r',t) = (f@)( 1) . (2.91)

Also, employing M should lead to more accurate results than using constant averaged
mesoscale terms for the intervals given by egs. (2.89a) and (2.89b)):

!
<

‘Mo(<f(5£)>;r’-,t’) —(f(@)(r,1)

(r@)et) - {st@)r0| . 292)

where it is assumed that the exact value of (f(é)) is known for all spatial positions
and times. For the diffusive transport model eq. (2.92) reads:

‘D(r’,t’)Vozo(r,t) + (&?})(r,t)‘ ¢ ‘(df:)(r’,t’)—(&ﬁ)(r,t)’. (2.93)

In some cases, relation (2.92) might hold for temporal and spatial intervals much
larger than 7,(cp) and Ap(ap). A classical example are the diffusive dynamics of
a system whose microscale dynamics are governed by Brownian motion [48]. In
chapter 6, a passive scalar model with similar properties is presented and analyzed in
detail. Such phenomena - microscale and mesoscale processes which can be described
accurately by macroscale laws — are embraced by the term emergence and play
important roles in different branches of the natural sciences [49].

2.3.4. Stationary states in the generic multiscale model

The evolution equations of the generic multiscale model are time-dependent. Here,
it is outlined what considerations have to be made if one is interested only in
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(statistically) stationary solutions of these equations. Two cases are distinguished:
case one, where both the macroscale and mesoscale system have reached a stationary
state,
00[0 oa Oa
+ = = = =09 2.94

ot ot ot ’ (2.94)
and case two, where the macroscale system is in a stationary state and the mesoscale
system is in a statistically stationary state:

6@0 oo
py . o 70 (2.95)
Consider the case one. Eq. (2.94) is fulfilled for
80[0 oo
= — . 2.
ot ot (2.96)
If
aOéo da
— — 2.
5% 70 a5 7~ 0 (2.97)

the derivatives can be estimated using the characteristic times m,(ap) and (&) of
the macroscale and mesoscale processes, assuming that the characteristic changes of
«p are on the order of oy and that the characteristic changes of @ are on the order
of a:

80[0 (&) 85& a
ot () ot 7o (@) (2.98)
Using the estimates (2.98) in eq. (2.96) leads to the approximation
@ @ (2.99)
To(ap) Qg

Since a scale separation regarding the macroscale and mesoscale dynamics with
To(@) <K Tp(ap) is assumed, eq. (2.99) can only hold for & < ap, i.e. if the
magnitude of the mesoscale variable is significantly smaller than its macroscale
counterpart. This assumption has not been made yet for the generic multiscale
model. Even if it were included in its requisites and eq. (2.96) were fulfilled, this
would correspond to a somewhat particular situation for a multiscale system: at
all points in space and time the time derivative of & would have to balance exactly
the time derivative of g so that da/0t = 0. In how far such a system can be
modeled efficiently by a multiscale approach will not be investigated here. Therefore,
stationarity of o as expressed by eq. (2.94) can only be reached if

(90(0 - oa
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Eq. (2.100) means that both the macroscale and mesoscale dynamics are stationary.
The associated multiscale model is obtained by setting the time derivatives in the
balance equations (2.48), (2.49), (2.55), (2.56), (2.60), and (2.61) to zero and adapt
the averaging operator (...) to include only the spatial average.

However, it is unclear in how far stationary solutions for « exist. For the following
coupled code studies the focus is therefore on case two, meaning that the macroscale
system reaches a state of stationarity while the mesoscale system is in a statistically
stationary state, i.e. still exhibits temporal fluctuations of its quantities a. For the
macroscale particle balance this means for instance

V- (nove) = —V - (7d) , (2.101)

assuming that the source term (S¥) is negligible. Eq. (2.101) expresses that the
divergence of the macroscale particle flux is balanced by the averaged divergence of
the mesoscale particle flux. Note that relation (2.101) is less restrictive regarding
the mesoscale dynamics than eq. (2.96) since it only affects the average of mesoscale
quantities. The complete macroscale model is given by eqs. (2.48), (2.55), and (2.60)
with the time derivatives Oy /0t set to zero. The mesoscale model is described by
egs. (2.49), (2.56), and (2.61) where the time derivatives of the mesoscale quantities
are kept. A self-consistent solution for the considered system is found by iterating
both the macroscale and mesoscale part until the macroscale quantities and the
averaged mesoscale terms like (n®) stay constant. This approach is used for the
two-dimensional coupled code system presented in chapter 8.
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3. Large scale model for the plasma
edge

The main objectives of this thesis is to develop a specific multiscale model for
describing the plasma in the edge region of a tokamak device, i.e. a future fusion
reactor. In the former chapter 2, a generic multiscale model for a fluid has been
presented and a coupled code system to solve the set of partial differential equations
has been outlined. With this model as a basis, the next logical step towards a
specific multiscale model is to characterize the fluid as a plasma (which is the state
of matter present within a tokamak) and to apply the corresponding specifications
to the mesoscale and macroscale parts of the generic multiscale model. Additional
assumptions regarding the mesoscale and macroscale systems, e.g. regarding the
geometry of the magnetic field and the relevant forces and sources, adapt the models
to the dynamics they should capture: either the fast dynamics on comparably small
spatial scales with times down to 7, (@) ~ 1077 s and lengths down to Ap(@) ~ 107
m or the transport on the large scales of the tokamak device with 7,(ag) ~ 1 s and
)\D(Oéo) ~1m.

In this chapter, the focus lies on the derivation of a macroscale model which will
form the macroscale part of the specific multiscale model in chapter 5, and an
corresponding self-contained large scale model for the plasma edge. Self-contained
refers to the fact that for solving the model equations, a mesoscale model is no longer
needed — the averaged mesoscale terms, present in the macroscale model, are replaced
by an ad-hoc macroscale transport model with transport coefficients prescribed by
the modeler. The assumptions of both models are basically those of the B2 model
used for description of the plasma edge in a tokamak device [28, 14, 29] to which
also the self-contained large scale model bears a strong resemblance. The aspect that
should be highlighted here is the macroscale models’ relation to the macroscale part
of a multiscale model, its equations depending explicitly on the averaged mesoscale
terms.

The chapter is structured as follows. The tokamak device and the basics of its design,
defining the area of application for the models, are outlined in paragraph 3.1. In
paragraph 3.2, a summary of the widely used Braginskii closure [27] to specify the
fluid as a magnetized, collisional plasma is given. It provides explicit expressions for
the viscosity tensor I, the heat flux density g, the force F', and the source terms
S appearing in the fluid balances of chapter 2. With this closure and the outline
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of the tokamak, the fundamental columns of the physical system that is investigated
in the following chapters are established.

The Braginskii closure is applied to the macroscale balances (2.48), (2.55), and (2.60)
of the generic multiscale model. In paragraph 3.3, the resulting equations are further
specified by a number of additional assumptions regarding the large scale transport
which coincide with those of the B2 model outlined in [29], leading to the macroscale
part of the specific multiscale model. To make the macroscale model self-contained,
the averaged mesoscale terms are replaced by the widely used diffusive macroscale
transport model for the perpendicular transport [15, 16, 29]. The large scale model
is discussed in paragraph 3.4.

3.1. The tokamak device

The tokamak is a device to achieve nuclear fusion reactions by magnetic confinement
of an extremely hot plasma. Extensive literature is available on this topic [50, 51, 52]
so that here only the basic principles needed for the further understanding of the
modeling challenges and the model assumptions should be given.

Fusion reactions, like the Deuterium-Tritium reaction
H +%H — *He +n + 17.6 MeV (3.1)

can only take place if the reactants have a high enough energy so that the repulsive
Coulomb force between the ions is overcome and the strong interaction triggers
the fusion between the nuclei. One concept is to heat the hydrogen isotopes and
thereby increase their kinetic energy. For the required energies, the resulting state
of matter is a plasma, i.e. a state where the electrons can no longer be assigned to
specific atomic nuclei. Tons and electrons interact with each other mainly via the
electromagnetic force and collisions. With plasma temperatures reaching up to 100
million Kelvin for the ITER tokamak currently built as in international undertaking
in the South of France [53], one can easily imagine that the extremely hot plasma is
to be prevented to be in contact with the vessel’s wall.

The concept of magnetic confinement has been developed for this purpose since the
1950s. It is based on the use of magnetic fields to confine the plasma within a certain
volume. The Lorentz force forces charged particles to gyrate around the magnetic
field lines; the particles therefore have limited mobility in direction perpendicular to
the field lines. With an adequate configuration of the magnetic field, a high rate of
fusion reactions should be achievable while the plasma-wall interaction is kept at a
minimum.

A sketch of a tokamak device is shown in fig. 3.1. The underlying shape of the plasma
vessel is a torus, the plasma within being depicted in light pink. The magnetic field
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Inner Poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer Poloidal field coils
(for plasma positioning and shaping)

Resulting Helical Magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

Figure 3.1.: Sketch of a tokamak device [54].

B used for confinement consists of two main components: a toroidal one, B, whose
orientation is given by the thick blue arrow, generated by a set of toroidal field
coils depicted in blue, and a poloidal one, By, whose orientation is indicated by the
flat green arrows. By is generated by a toroidal plasma current I, whose direction
is denoted by the thick green arrow. I, is induced into the plasma by a changing
magnetic field created by a set of inner poloidal field coils which are depicted in
green. These coils can be understood as a primary transformer circuit while the
plasma is the secondary transformer circuit. An additional set of outer poloidal field
coils, depicted in gray, is used for plasma positioning and shaping. The field lines
of the resulting magnetic field B = B, 4+ By wind themselves helically around the
torus (black line). These field lines represent the trajectories of charged particles in
first order when gyration is neglected. The safety factor ¢ is the number of toroidal
turns a field line has to make to complete one poloidal turn. It can be defined as the
poloidal angel A¢ covered by the field line per toroidal turn:
AN

¢ =5 (3.2)
The direction of B and the field lines, respectively, provides the so-called parallel
direction. Together with two vectors perpendicular to B, an orthogonal trihedron
can be constructed within the vessel. Transport of particles, energy, etc. in parallel
direction is typically assumed to be much faster than in the perpendicular directions.
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toroidal direction ¢  poloidal direction 6
minor radius ag
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edge region

- radial

w direction x

major radius Ry
0=0°

- flux surface

last closed flux surface (LCFS)

vessel wall

scrape-off layer (SOL)
limiter

Figure 3.2.: Sketch of a poloidal cut of a tokamak device.

A poloidal cut through the toroidal vessel of a tokamak with a limiter is sketched in
fig. 3.2. Here, the toroidal coordinate system, consisting of the radial coordinate x,
the poloidal angle ¢, and the toroidal angle 0, is presented. Details regarding this
toroidal coordinate system can be found in [39]. For the further discussions it is
convenient to introduce the poloidal magnetic flux function W [50] which satisfies

B-VU = 0. (3.3)

A flux surface is given by the three-dimensional shape on which W takes a constant
value. The contours of the nested flux surfaces are given by the concentric circles in
fig. 3.2. In the case of concentric flux surfaces centered within the vessel the radial
direction and the direction normal to the flux surfaces coincide.

The volume in the plasma vessel is radially divided into two regions: the core region
with the highest occurring temperatures and densities (typically 7" ~ 10%® K and
n ~ 102 m=3 for ITER) and the edge region where 7' < 10° K and n < 102 m=3.
The latter can be subdivided into a region of closed flux surfaces (which are not
‘broken’ by solid obstacles) and a region of open flux surfaces, the scrape-off layer
(SOL). Responsible for the SOL is a solid structure protruding from the wall into the
vessel, a so-called limiter, which typically exhibits toroidal symmetry. The density
and temperature profiles typically decay exponentially in radial direction in the
SOL. The major radius Ry, measuring the distance between the symmetry axis going
through the torus’ center and the center of the vessel, and the minor radius aq are
important design parameters of the tokamak.

The configuration shown in fig. 3.2 is an idealization: in most modern day tokamaks
the poloidal cut of the vessel usually has the shape of a D, with the contours of
the flux surfaces being adapted to this profile. Also, the flux surfaces are typically
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shifted against each other by the Grad-Shafranov shift [50]. However, the geometry
assumed here allows for a significantly simplified numerically treatment of the models
presented in chapters 3, 4, and 5. It still captures the strong anisotropy regarding
the direction parallel and perpendicular to the field lines which is exploited in most
of the existent models for the edge plasma in a tokamak [8, 11, 15, 16, 29].
Describing transport in direction normal to the flux surfaces (here coinciding with
the radial direction) is crucial since this is the only way that particles, energy, etc.
will reach the SOL and the vessel wall and thus the only way that the confinement
of the plasma is lost. During the course of fusion research it was quickly found out
that the reduction of mobility of the charged particles perpendicular to the field
lines due to the Lorentz force is far from perfect: turbulent processes emerge which
increase transport from the core outwards. These dynamics will strongly influence
the characteristics of the plasma core where most of the fusion reactions take place.
They also determine the heat and particle loads reaching the materials present in
the outer region of the vessel and therefore set the requirements for their properties
and design. For these reasons, one of the focus of the multiscale model derived here
lies on a sophisticated description of this transport component, as it will be further
elucidated below.

3.2. Braginskii closure for a collisional, magnetized plasma

For the transition from a generic fluid model to a specific model for the plasma
dynamics the decisive step is to characterize the fluid as a plasma. This is done
mainly through the choice of transport models and coefficients used for the viscosity
tensor II, and the heat flux density g,, to name two examples. The approach
employed here was first derived by Braginskii [27]. The presentation of its basic
results is kept close to the discussion in [35].

A plasma consists of ions (subscript 7) and electrons (subscript €). Typical quantities
used for its characterization are the collision times 7, and 7;, which are
31267 5% mi/Q TS/Q 31267 6(2) mgﬂ T3?

e — ) P = : s 3.4
K etneIn A k Ztetn;In A (3.4)

with ¢y being the vacuum permittivity and Z; the ion atomic number. For the
Coulomb logarithm In A [35] one has

12med/? T8/
InA ~ In <e30 7 (3.5)
Ne

The gyration frequencies of ions and electrons, €2; and €., denoting the frequency
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with which particles gyrate around the magnetic field lines, are given by

o _ ZeB o B

3.6
m . (3.6)

The plasma of interest, i.e. in the edge region of the tokamak, is considered to be
strongly magnetized and collisional so that

TSl > 1, (3.7)

where a again denotes the particle species.

If the plasma is in a state close to an equilibrium as it is assumed in the following
models, the distribution function f,, solving the Boltzmann equation (2.3), can be
decomposed into an equilibrium part fy, which is given by a Maxwellian distribution,
and a small perturbation f; so that f, = foa + fa with fa < foa- This allows to
express the viscosity tensor Il,, the heat flux density q,, and the source terms S5¢
appearing in the momentum and energy balance equations, such as egs. (2.55),
(2.56), (2.60), and (2.61) (where they are contained in the generalized sources M,
and W,), as a linear combination of gradients of the moments n,, v,, and T,, and
transport coefficients.

First, IT, is specified by using the rate of strain tensor W,
1 1 T 1
W, = Vo, + 5(Vva) - g(V ‘v, )T (3.8)

The components of Il,;; = &; - I1, - &; are given for an orthogonal coordinate system
where &) is the unit vector pointing in direction parallel to the magnetic field
(éy = B/B) and é,, and &, are two unit vectors determining the two perpendicular
directions:

Hotysr = 28 (Warisy + Warasa) = 25 (Wariny = Watara) = MW, sa
Hat,1, = *%(Wulll +Waj_gj_2> + %(Wulh *Wahlz) + Na3sWal,ts
oy = —naoWay

Hary1, = Waip, = —0aaWar,1, + %(WallLl _Walgig)y

oy = gy, = —na2Waiy) — 1aaWaiy

M, = o, = —1e2eWais + MesWayy - (3.9)
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The ion viscosity coefficients 7, are given by

T
o = 0.96n,Ti7; | n1 = 0.3 n; :, iz = 4ma,
Q,L-Tq;
L
miz = 0.5 nQ M4 = 203 , (3.10)
the electron viscosity coefficients 7. by
ETE
Neo = 0.73n1.7, , Nel = 0.51” , Nez = 4Ne1
Q27
nele
TNe3 = -0.5 QO P Tes = 27763~ (311)
e

For the ion and electron heat flux densities g; and q., the following expressions are
derived:

q, = —/{HiVH’IIL- — /‘?JJ_iVJ_E - HAiéH XVLE, (3.12)
q. = —IiHcV”Te — fiLeVLTe — "f/\eéﬂ ><VLTe — Cl\ch — C/\eéH Xj. (313)

The subscript A denotes the so-called diamagnetic components. Here, j is the electric
current density:

j = Zien;u — enyv . (3.14)

The vector u = v; denotes the ion velocity and v = v, is the electron velocity. The
parallel gradient V) and its perpendicular counterpart V , are defined as

V| = ¢¢ -V, VvV, =V-V,. (3.15)

Both g, and g, describe heat conduction due to temperature gradients. The electron
heat flux density g, additionally includes heat transport due to particle flow, being
determined by the terms proportional to j in eq. (3.13). The transport coefficients
are given by

zT; i eTe e
Klji = 3.97n T , Kle = S.QL T ,
m; Me
TLZE nemeTe
;= 2.0 , .= 47 ,
L leYQTZ = 62327}3
5 nzﬂ 5 ﬂ,eTe
Kpnig = —— = —
n 2mQ T 2B
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T.
e,

T 3
. = 0.71 ’ . = — 3.16
q . @) 5 (3.16)

Next, the force F, and the source term SI” are evaluated. For charged particles
moving in an electric and magnetic field F', is determined by the Lorentz force:

F, = q {E + (Vv xB)] . (3.17)

The gravitational force is neglected since it is small compared to the electromagnetic
forces. The source terms S% . and SI};, defined by eqs. (2.19a) and (2.19b), yield:

Sme = Qana|:E + ('va XB):l 5 (318)
SE = qunJE - v, . (3.19)

As described in paragraph 2.1, the collision term C,, (which is needed for the evaluation
of the source terms S and S) can be divided into two parts, C, = C« + C'e.
While the terms S which are related to C by egs. (2.21), (2.22b) and (2.23b) are
kept here as unknowns (for a comprehensive investigation see [55]), the terms 5S¢,
defined by eqgs. (2.22a) and (2.23a), are further evaluated. S¢ . from the rhs of
the fluid momentum balance (2.25) consists of two parts: a friction force R! due to
differences in the fluid velocities of ions and electrons, and a thermal force R! due
to temperature gradients. One can define:

S<., =R, = Rl + R, (3.20)
For electrons it holds
R/ = en, el + IL , (3.21)
i} a| o
T ene .
R = - (GeVITe + Crely x VUT,) - (3.22)

The specific conductivities o and ¢, in parallel and perpendicular direction, respec-
tively, are
2n.€2T, nee’r,
o= —=, o= —"—"=. (3.23)

Me Me

For a hydrogen plasma one has:
R, = —-R.. (3.24)

C

The source term S, of the energy balance (2.26) is defined as
SZCE = Q(L + Vg R{L (325)
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with

STC_E

Q; = PR Qe = —Q; — R.(v—1u). (3.26)

ei

The form of @; and Q. corresponds to the fact that a temperature difference between
ions and electrons will lead to an equilibration process between both species, with
the characteristic time scale determined by the electron-ion temperature relaxation
time 75 _ .

e ¢ (2m)Y/2 3rmym V2T5/?

& . 3.27
Tei Z2e*n;In A (3:27)

With egs. (3.18) and (3.20) the generalized momentum density source M, given by
eq. (2.53), becomes
Ma = Qana|:E+ (va X B):| =+ Ra - V'Ha

— Vpa + 8% — maw,Se | (3.28)

amV

and the generalized energy density source W, see eq. (2.58), yields with egs. (3.12),
(3.13), and (3.25):
Wa = Qa - pav'vu - HaZV'Ua - V'qa

2
+ <m‘;“a - ;)T> S~ va- Sy + S (3.29)
Expressions (3.28) and (3.29) are now used for the macroscale part of the generic
multiscale model, represented in its conservative form by the balance eqs. (2.50),
(2.57) and (2.62). The averaged terms (M ,/n,) and (W, /n,) are evaluated using
the macroscale quantities only (« & «p), the species index a is omitted for clarity.
The resulting macroscale model for a collisional, strongly magnetized plasma consists
of a particle balance,

(?no ic ~~
ot + V-<n0v0> = Sp, — V- (o), (3.30)

a momentum balance,

%(mnovo) + V- (mnovovo) = qno [EO + (v X BO)] + R,

~ V-II, — Vpo + Sk, — mng (8- Vo) — mug V- (Aw) , (3.31)
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and an energy balance,

1 1
;(§n0To +5 mmﬂ)é) + V- (;TLOTOUO + 2mn0v300>

:qnovo-Eo+UO'Ro—V'(U0'H) + Qo — V-qy + S

3, o (3.1, .
— 50 <'v . VT> — mnyvg - <'v : V'v> - <2T0 + 2mv0> V(o). (3.32)

Note that egs. (3.30) to (3.32) still contain averaged mesoscale terms for whose
evaluation a local mesoscale system is needed.

3.3. The large scale model

In this paragraph, the large scale model for the plasma edge is outlined. It differs
from eqgs. (3.30) to (3.32) on the one hand by a number of additional assumptions
regarding the geometry and the magnetic field which are introduced in paragraph
3.3.1 and are based on those of the B2 model [29]. On the other hand, it employs a
macroscale transport model, presented in paragraph 3.3.2, to represent the averaged
mesoscale terms. The large scale model equations are outlined in paragraph 3.3.3
and discussed in paragraph 3.4. An intermediate form of them, still including the
averaged mesoscale terms in their original form, is given in paragraph 3.3.1. These
equations will be related to the macroscale part of the specific multiscale model in
chapter 5.

3.3.1. Assumptions of the large scale edge model

The main assumptions included in the large scale edge model comprise the following
points:

e The plasma is taken to be quasineutral: a plasma volume of dimensions
above the Debye length Ap [35], i.e. the length above which an electrostatic
perturbation is effectively shielded, is assumed to have only small net charge.
Therefore ¢;n; =~ —q.n.. For a hydrogen plasma this yields:

n; ~ Ne . (3.33)

The assumption of quasineutrality reduces the number of model equations by
one because it is not necessary to consider separate ion and electron particle
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balances anymore. In the following derivations, both densities are denoted by
Nng.

e The ambipolarity condition implies that no currents are present in the edge
plasma:

=0 =  v=u. (3.34)

This assumption also means that the induced plasma current I, becomes zero
in the edge region. The ambipolarity condition reduces the set of equations by
one since one of the momentum balances becomes redundant. For the large
scale edge model the ion momentum balance for u will be used.

e The macroscale velocity is assumed to have only a parallel part:
Uy = U , (3.35)

so that w o = 0. It is based on the idea that the mobility of charged particles
in directions perpendicular to the magnetic field lines is efficiently reduced due
to the Lorentz force.

e The tokamak vessel, the magnetic field B, and the profiles of the macroscale
plasma quantities ag are assumed to be toroidally symmetric. Even though this
symmetry can, for example, be broken by block limiters [56], resonant magnetic
perturbation fields [57], or plasma turbulence [11], it serves as a first order
approximation regarding the macroscale dynamics. The plasma quantities then
no longer depend on the toroidal angle ¢:

60{0

dg
The problem of describing the plasma in the edge region is therefore reduced
from three to two dimensions.

=0. (3.36)

e The magnetic field B does not depend explicitly on time:
oB
ot

Spatial derivatives of B are only partly evaluated.

- 0. (3.37)

The above assumptions are used to further transform the macroscale balances (3.30)
to (3.32) to yield equations for the density ng, the ion parallel velocity wo, and the
ion and electron temperature Ty; and Tp.. To determine ng the ion particle balance
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(3.30) is employed:

% + V- (nouy) = S, — V- (i) . (3.38)

The macroscale parallel ion velocity w o is determined by the total parallel momentum
balance. The latter is obtained by taking a reduced electron momentum balance,
consisting of the electron version of eq. (3.31), and neglecting all terms proportional
to m, due to its smallness:

VpOe = _eTLoEO — RO@' . (339)
Adding the corresponding ion version of eq. (3.31) yields:

%(mmouo) +V. (mmououo> = —V Iy — V(poi + oc) + Sty

— ming (- V@) —myug V- (7iG) . (3.40)
The parallel component of eq. (3.40) is given by
0
7(mmou“o) + {V' <min0u0u0)]

5 = - {V . HOi] | V1(poi + poe) + Sﬁ%imv

Il

—mio (- Vﬁ>” —mauy V- (). (3.41)
With the tensor and vector identities

V-(ab) = a-Vb + (V-a)b, (3.42)

V(a-b) = (Va)-b + (Vb)-a, (3.43)

the terms [V - (m;nououo)]) and m;ne(a - Va) are evaluated:

|:V . (minououo)} = [minouo . V'LL()} + mlUHOV . (nouo)

AV <m2~n0u“0u0) 5 (344)
= ming (- Vi) . (3.45)

mino <ﬁ : Vﬁ>H

The total parallel momentum balance becomes

%(mmouuo) +V- (minounou\m) = *{V ' HOi]H = V) (poi + Poe) + Sjimyv

—ming (- Vi) —maye V - (i) . (3.46)
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The energy balance (3.32) for the ions with the assumptions listed above is

d (3 1 5 1
B <2n0T0i + 5 minoztﬁ0> + V. <2noT01;u|o + 2mmouzou|o>

—upoVpoe — V- (Uuo : Hm) + Qo — V-qy
+ S — mMiNoUjjo <ﬁ . Vﬂ‘|> - gno <17,~Vfi>

3 1

2

where the reduced electron momentum balance (3.39) was used. For the electron
energy balance one has analogously

0/(3 5 )

8t<2nOTOe> + V. <2nOTOeu|O> = u”ovaOE + Qo — V- o T+ (Z)CEE
3 _ 3 .

— 5o (w-VT,) - 5Toe V- () . (3.48)

3.3.2. Specification of the macroscale transport model

To solve the macroscale balance equations (3.38), (3.46), (3.47) and (3.48) without
having a mesoscale model at hand to evaluate the averaged mesoscale terms like
(nw) a macroscale transport model is required. Here, it is resorted to the diffusion
hypothesis introduced in paragraph 2.3.3, see eq. (2.88), to find expressions for the
terms of the form (awu) and (@ - Va). M is given by

M((@-Va)ag) = M((V-(@w));a0) = =V (DLViag), (3.49)

with D, being an arbitrary diffusion coefficient which can be chosen by the modeler
according to experimental measurements or theoretical considerations, for example.
In chapter 6 it is shown that for certain properties of the velocity field w and the
quantity @ being a passive scalar regarding the advection by @, eq. (3.49) becomes
exact, with D depending only on the statistical properties of @!. ‘Passive’ refers to
the fact that the dynamics of the mesoscale quantities & have no influence on @. For

IThe requirements are that the velocity field w(r,t) is isotropic, divergence-free, has a Gaussian
PDF, a correlation length A\.(w), a correlation time 7.(u) and a root mean square velocity Urms
with UrnsTe(w)/Ac(B) < 1.
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the macroscale transport model here it is additionally assumed that
(w-Va) < (@, -Va), (3.50)

so that only the perpendicular transport is considered in the evaluation of the
averaged mesoscale terms. Also,

(@-Viy) = =V - (DLV ) , (3.51)

which, in the picture of the passive scalar model of chapter 6, means that 2 is taken
to act like a passive scalar regarding the advection via @ .

Together with the diffusion hypothesis, a perpendicular viscosity coefficient 7, and a
thermal conductivity #, can be introduced to describe averaged mesoscale momentum
and energy transport in perpendicular direction:

nL = mmoDl, K| = ’IL()DL . (352)

3.3.3. Model equations of the self-contained large scale edge model

The large scale model for the plasma edge is obtained by applying the diffusion
hypothesis, represented by egs. (3.49) to (3.52), to the macroscale balances (3.38),
(3.46), (3.47) and (3.48). The ion particle balance becomes:

8“’0 * ic
W + V. <TL0’UIL + nOUHO) = S()in , (353)

where an effective perpendicular velocity w’ has been introduced:

D
ul = —n—:VLnO. (3.54)

For the total momentum balance one has

5} .
&(mm@um) + V. (m,;nouuouL + mmounouuo)

v

, PV (1Y 1up0) = Vy(poi + poc)
+ |i((:)imV + 2mynou’ - Vi - (3.55)
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The ion energy balance yields

9 (3 1 3 .5
& (2 nOTOi + 5 minouf()) + V- <2TL0T01'UL + 2n0TOZ‘U|0>

1 L 1 3 1
+ V- <2mm0u|20uj_ + Qminou%um) - V- <2/£LVLT0¢ + QULVLUﬁ())

X 2
= —upVpe — V- (uuo ‘ Hm) + Qoi — V- qq; + Siip + "IL(VLUHO)

+ 3nou’ - V Ty + mingu’) - VLuﬁo , (3.56)

and the electron energy balance gives

d (3 3 . 5 3
at<2n0Toe> + V- <27LOT06'U/L + 2nOTOeU|o> - V- <2"‘€LVLT06>

= uVipoe + Qoe — V - qo. + Si. + 3nou’ - Vi Tp.. (3.57)

3.4. Discussion of the large scale model

The particle balance (3.53), the total parallel momentum balance (3.55) and the ion
and electron energy balances, eqs. (3.56) and (3.57), are the evolution equations for
the variables ng, w0, To; and Ty, of the large scale model for the plasma edge. Due to
the quasineutrality and ambipolarity condition, the original number of ten equations
of the fluid model with the Braginskii closure, given by eqs. (3.30), (3.31), and (3.32),
is reduced to four. The assumption of toroidal symmetry allows for a reduction of
the problem from three to two spatial dimensions. Using the diffusion hypothesis
of paragraph 3.3.2, the averaged mesoscale terms of the form (nw) and (@ - V&)
are described by a linear combination of the transport coefficients D, , n,, x,, and
macroscale radial gradients of the related macroscale quantities. Transport in radial
direction in this model is purely due to averaged mesoscale processes modeled by a
diffusion. The final large scale model equations bear a strong resemblance to the
model of the B2 simulation code [28, 29] which is presented in chapter 8, the main
difference being that in the B2 model, the perpendicular transport is restricted to
its radial component.
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The terms missing to solve the large scale model equations are the source terms
Sie ﬁ%imw Siep, and S, which also include effects due to interactions between
charged particles and neutrals. The description of the latter is not included in the
model presented here. The respective processes and their effects on the charged
particles can be evaluated by resorting to the linear transport solver EIRENE [3, 4],
for instance. The intermediate form of the model equations, given by egs. (3.38),
(3.46), (3.47), and (3.48), which still contain the averaged mesoscale terms in their
original form, is related to the macroscale part of the specific multiscale model in
chapter 5.
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4. Drift fluid models for the plasma
edge

In the previous chapter 3, the macroscale part of a multiscale model for the plasma
edge in a tokamak device has been derived, given by eqgs. (3.38), (3.46), (3.47), and
(3.48). It determines the evolution of the macroscale quantities . To complete
the multiscale model, a local mesoscale model for the quantities & is needed which
can be used to calculate the averaged mesoscale terms of the form (- Va) and
(&), appearing in the macroscale balances. One option for such a model, a so-called
local drift fluid model, is presented in this chapter, which can be understood as
an extension of the Hasegawa-Wakatani model [58] and is based the work of B.
Scott [59, 30]. The new feature of the equations shown here is that they contain
averaged mesoscale terms, which effectively ‘filter out’ any macroscale evolution
of the quantities so that the scale separation between mesoscale and macroscale
dynamics is ensured. The local drift fluid model will be related to the mesoscale
part of the specific multiscale model in chapter 5. The latter provides the basis for
the coupled code simulations of chapters 7 and 8, with the local drift fluid model
accounting for the determination of the perpendicular transport coefficients.

The main differences between the local drift fluid model outlined in this chapter
and the large scale model presented in chapter 3 lie in the fact that the former
includes detailed treatment of the perpendicular velocity components, also called
perpendicular fluid drifts, and the dynamics of the electric potential ¢ and the
perturbations of the magnetic field. For the local drift fluid model, the assumption of
a scale separation not only regarding the temporal and spatial scales of the dynamics,
but also regarding the amplitudes is made: the mesoscale quantities & are considered
to be small compared to macroscale quantities «g, @ < g . If no scale separation
neither for the scales of the typical dynamics nor for the amplitudes is assumed, one
obtains a self-contained global drift fluid model which accounts for both the evolution
on the mesoscale and on the macroscale. It can be understood as an extended version
of the self-contained large scale model of the former chapter 3 and can be used to
benchmark the specific multiscale model since it evolves the full quantities & = &+ «y
on the mesoscale and macroscale.

As the first point in this chapter, the perpendicular fluid drifts are introduced in
paragraph 4.1, with detailed descriptions of their derivation and physical effect being
given in [35, 60], for instance. In paragraph 4.2, the global drift fluid model is derived



CHAPTER 4. DRIFT FLUID MODELS FOR THE PLASMA EDGE

from the general fluid balances (2.27), (2.28) and (2.29) of paragraph 2.1 with the
Braginskii closure outlined in paragraph 3.2 and the assumptions given in [30]. The
local drift fluid model is introduced and discussed in paragraph 4.3.

4.1. Perpendicular fluid drifts

In contrast to the large scale models of chapter 3, where the macroscale ion velocity
uy was assumed to have only a parallel component, uy = o, the perpendicular
components of the velocities are explicitly taken into account in the drift fluid models.
The equation for both the ion and electron perpendicular velocity v, is obtained by
using the so-called drift operator (B/B?x) in the momentum balance (2.28) under
the Braginskii closure and division by m,n,. This yields:

B ><VL¢+B><VLpa maBXd'um n BxV:I1I, BxR,
B? GaaB? qB? dt qanaB? qanaB?

Vig — (41)

where ¢ is the electric potential. Eq. (4.1) is only a formal solution for v, and can
be understood as an iteration equation for the perpendicular velocity v .

The acceleration of charged particles by an electric field leads to a varying gyroradius
and a motion perpendicular to both the electric field and the magnetic field (see fig.
4.1, left). The EXB drift vy,

o B x VL(b
Ve T T
does not depend on the particle charge and is therefore denoted by vy for both
electrons and ions.

(4.2)

The diamagnetic drifts u, and v, for ions and electrons, respectively, are given by

B x V p; _BxV.ip.

u, = ———+ v, =
' en.B?

A pressure gradient Vp corresponds to a variation of the gyroradius and/or the
particle density which, in the fluid picture, leads to a drift perpendicular to both
Vp and B. This effect is visualized in fig. 4.1, right.

The polarization drifts u, and v, are

_ m;B ><duL B mEBdel
W= g a0 T T et i

They are responsible for the nonlinear character of eq. (4.1).
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B
Vp; &

Figure 4.1.: Left: The ExB drift vg. Right: The diamagnetic drift w, for the ions.
Integration over the fluid parcel given by the dotted red line yields a net
flow velocity perpendicular to Vp; and B. For electrons which are rotating
in opposite direction the drift is also in opposite direction. Note that the
diamagnetic drift only exists in the fluid picture; the gyrocenters themselves
are not moving.

The viscosity drifts uy and v are given by

B x V -1I; B x V -II, (4.5)
g = ———— vy = ————— )
. Zen; B2 1 en.B? '’
and for the friction drifts ug and vg one has
B x R; B x R,
- _ ) - -~ 4.6
UrR ZiemB? ’ UR eneBZ ( )

4.2. Global drift fluid model

In this paragraph, the global drift fluid model is presented. Before coming to an
outline of the model assumptions in paragraph 4.2.1 and the derivation of the balance
equations in paragraphs 4.2.2 to 4.2.6 the development of a drift fluid model is
motivated.

In the classical picture with a homogeneous B-field, mobility in direction perpendicular
to the field lines is assumed to be strongly suppressed due to the Lorentz force and the
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subsequent gyration of charged particles around the magnetic field lines. Referring
to paragraph 3.1, where the tokamak device was presented, this is one of the main
objectives of the magnetic configuration employed: to limit the transport of particles
and energy from the core region to the vessel wall. From the classical point of view
the existing perpendicular transport is mainly collisional. The assumption that
the perpendicular velocity components can be neglected compared to the parallel
component (see the assumptions of the large scale model in paragraph 3.3.1) is based
on this reasoning. Neoclassical theories also account for the inhomogeneities in the
magnetic field of a tokamak, e.g. due to its toroidal shape and thus a non-uniform
magnetic field. This leads to additional fluid drifts, longer mean free paths of particles,
and an increased cross-field transport as in the classical picture. Neither classical
nor neoclassical theories succeed in fully describing the experimentally observed
processes and the magnitude of perpendicular transport, being significantly higher
than predicted by those theories. To understand the perpendicular dynamics it is
necessary to investigate the complex interactions of magnetic and electric fields and
charged particles which requires inclusion of the perpendicular drifts of paragraph 4.1
in the model equations. Transport due to the mesoscale dynamics, as it is described
by the drift fluid models of this chapter, is usually referred to as anomalous in contrast
to classical and neoclassical transport [18]. A number of fluid models exists to capture
the respective processes in the plasma edge, see for example [59, 30, 11, 10, 8, 12] to
name only a few. They are, for instance, discussed under the name of drift-Alfvén
turbulence, shear-Alfvén turbulence, or reduced magnetohydrodynamics (MHD).
Here, they are more generally called drift fluid models.

4.2.1. Model assumptions

Starting point for the global drift fluid model are the full fluid balances of paragraph
2.1, eqs. (2.27) to (2.29), which are applied to a hydrogen plasma (Z; = 1) under the
Braginskii closure introduced in paragraph 3.2. The additional assumptions comprise
the following points:

e As for the large scale model the quasineutrality condition is used. For a
hydrogen plasma this means

Ne = Ny . (4.7)

Hence, n refers both to the ion and electron density. From condition (4.7)
and the condition of continuity in charge it follows that the current density is
divergence-free:

V.j=0. (4.8)

e The total time derivative d/dt is given by the advective derivative as defined
in eq. (2.30). Advection in parallel direction is neglected, advection in per-

62



4.2. GLOBAL DRIFT FLUID MODEL

pendicular direction is governed by the ExB velocity v, and the diamagnetic
velocity v, of the corresponding species a:

da 7]
E = <m+vEVl>OZ + va*'VLa' (49)

The first term on the rhs of eq. (4.9) is also called the ExB advective derivative.

e Perturbations of the equilibrium magnetic field By (referring to the magnetic
field created only by the tokamak coils and the induced plasma current I,,) are
only allowed for its perpendicular component B, . Hence, it can be concluded
that

0B 0A,
— =0 - =0 4.10
ot ot ’ (4.10)
where A is the vector potential with B = V x A. Therefore, E | is electrostatic
and Ej is electrodynamic:

0A
E, = -Vo¢p, EH = — WH - VH¢ . (4.11)
For the vector potential, the Lorentz gauge is used [61]:
9¢
-A — = 0. 4.12
V-A+ o =0 (4.12)

e The source terms S due to inelastic Coulomb collisions and reactions with
neutrals are neglected.

In comparison with the large scale model and its assumptions (see paragraph 3.3.1)
the drift fluid model includes electrical currents in the plasma and thereby can
account for a complex interaction between the charged particles, constituting the
plasma, and the extrinsic and intrinsic magnetic and electric fields.

Next, the global drift fluid balances for the density n, the ion parallel velocity w, the
ion and electron temperatures 7; and T¢, the vector potential A, and the electric
potential ¢ are derived.

4.2.2. Particle balance

The particle balance of the global drift fluid model is based on the fluid particle
balance (2.27) for the electrons. Applying the Braginskii closure and the assumptions
listed above yields:

0 B
<at+vE‘VL+v*~Vl>n = TLV-<UB+’0E+’U*> , (4.13)
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neglecting the divergence of the electron polarization drift v, due to its proportionality
to m.. One can use that

B o
| = = BV,—= 4.14
v ( B 04) Vig (4.14)
and express the terms V - v, and V - (nw,) via the curvature operator K(«):
B x Vu B

The parallel electron velocity v can be rewritten using the parallel current density
Jy and the parallel ion velocity w:

. J
g = en(u) —vy) = v = u— i . (4.16)

The electron particle balance of the model then reads:

) : 1
((%ME.VL)TL — 1BV, (Q%B—%) — nK(9) + K(p) . (417)

4.2.3. Total parallel momentum balance

With the Braginskii closure and the above assumptions the fluid momentum balance
(2.28) yields the ion and electron momentum balances

mma = en(E—l—uxB) - R. — V-P;, (4.18)
dv
mena = —en(E—l—va) + R, — V-P,. (4.19)

By summation of the parallel part of eqs. (4.18) and (4.19) and neglect of all terms
proportional to m, and the total time derivative dB/dt one gets the total parallel
momentum balance:

0
m;n (é)t + vy - VL>U| = =V (pe +pi) — ”Hivﬁ“\\ , (4.20)
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with the approximation

[VTIi]l = Vi . (4.21)

\
The parallel ion viscosity is denoted by p;, the parallel Laplace operator Vﬁ is defined
as Vﬁ = V - V). The so-called gyroviscous cancellation prevents the velocities from
being directly advected by the diamagnetic velocities u, and v, [62].

4.2.4. lon and electron energy balance

The fluid energy balance (2.29) with the Braginskii closure and the drift fluid model
assumptions becomes

3 dT,
-n

2 dt
The terms @, and IT, : Vv, are neglected compared to the divergence of the heat
flux gq,. For the ions eq. (4.22) is transformed into

= Qu — p.V-vy, —1II,: Vv, — V.q,. (4.22)

3 (0

En <8t+ [vE—i—v*] -VL>Ti = —in-<uH +vE+u*+up) —-V.q,. (4.23)
Due to the strong magnetization of the plasma the perpendicular heat flux g, can
be neglected compared to its diamagnetic component g,;. The so-called diamagnetic
cancellation prevents the temperatures from being advected by the diamagnetic
velocities. One finds that

3 T S
g VAT + pVou + Vg = K@) + 5%1@‘@)7 (4.24)
where for the diamagnetic heat fluxes g,; and g,, the expressions
5p; Bx VT 5p.BxV T,
P A ) — e 2 Yioe 4.9
Dni 2e B2 ' Ine 2e B2 ’ (4.25)

have been used. Note that the curvature terms IC(a) on the rhs of eq. (4.24) vanish
for a homogeneous magnetic field. One can then recover the result given in [63].
To obtain an expression for the divergence of the polarization drift u, of the ions
condition (4.8) of a divergence-free current density is employed:

. epi . . J
Vi, = Vi = Ve -V = fBVH%fIC(pZ-)fIC(pe). (4.26)
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The ion energy balance becomes:

3 (0 q|ii | TiB_ Jjj
<6t+vE Vl> = —BV‘— — szV”* + TVHE
T; 5 D
- pK(9) + K(p) - SEKT) . (427)

The derivation of the electron energy balance is carried out in an analogous way.
The diamagnetic cancellation for the electrons is expressed via

TC 5 €
gnv*-VlTe + p.V-v. + V.-q, = —?K(pe) —fp—lC(T) . (4.28)
The electron energy balance has the form:
O v, )|T, = —BV‘q”E = perH“ BVH Ji
ot nB
1. 5pe
= K@) + Kpe) + 5K (4.29)

4.2.5. Ohm'’s law

The derivation of Ohm’s law is based on the parallel momentum balances (4.18)
and (4.19). By multiplication with &/(m.n) and &;/(m;n), respectively, subtracting
eq. (4.19) from eq. (4.18), and neglecting the term including the parallel electron
viscosity . and all terms proportional to 1/m; one obtains:

duy _dy e

1 1
7E o e e 4
dt dt me VT me nR” menv“p (4.30)

The terms on the lhs of eq. (4.30) can be expressed via the parallel current density jj,
seeeq. (4.16). Eq. (4.11b) is used to replace the parallel electric field £ by the electric
potential ¢ and the parallel vector potential Aj. Due to the gyroviscous cancellation,
Ji is only advected by wvy. It is also assumed that d(u — vy)/dt = 1/(en)dj/dt.
Multiplication of eq. (4.30) with m.n leads to Ohm’s law:

me [ , 94
6<at+vE-VL>J = —enpr — enVio — R + Vype . (431)
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4.2.6. Vorticity equation

The vorticity equation is obtained from condition (4.8) of a divergence-free current
density. The vorticity is given by V2 ¢, where the perpendicular Laplace operator

V2 is defined as V2 = V- V,. For the diamagnetic current density j, one has
. = enfu.—v.) = %&pﬁpe) , (4.32)
while the polarization current density j,, is given by
. m;n du |
I = 3 B x o (4.33)

The electron polarization velocity v, is neglected in eq. (4.33) since m, < m;. With
eqs. (4.32) and (4.33), eq. (4.8), stating that V - 7 = 0, can be transformed into

min g Jn | _
v <B2 B x p > + BVHB + K(p:)) + K(pe) = 0. (4.34)

By neglecting spatial and temporal dependencies of n and B and using that in lowest
order u; = vy + u, one gets the vorticity equation:

myn [ 0 V2 p; .
B? (m*”E'Vi> (Vi‘H ;np> = BVH% + K(pi) + K(pe) - (4.35)

The gyroviscous cancellation prevents any advection by the diamagnetic velocity.

4.2.7. Discussion of the global drift fluid model

The particle balance (4.17), the total parallel momentum balance (4.20), the ion
and electron energy balances (4.27) and (4.29), Ohm’s law (4.31), and the vorticity
equation (4.35) form a closed system of partial differential equations for the scalar
fields n,w, T;, 1¢, ¢ and Aj. The Maxwell equation

. OF
VxB = Mol + /110505 (436)
is used to relate the parallel current density to the parallel vector potential,

1 1
gl = ——e - (V2A) =~ ——V2%4,, 4.37
J 1<l (v*A) o VLA (4.37)

with the vector Laplace operator V? being defined as V?a = V(V-a) -V x (V x a).
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To investigate the relation between the global drift fluid model and the large scale
model presented in paragraph 3.3.3, the balance equations of the former can be
rewritten into conservative form. Also, the current density 7 is set to zero (as in the
large scale model). The ion counterpart to the electron particle balance, the total
parallel momentum balance, and the energy balances of the modified global drift
fluid model are then given by:

0

(’TZL + V. (n[uH + vg +u*]) = u-Vn, (4.38)
0

oy () + V- (man [ + v+ w.))

= —,LL”z-VﬁUH - Vi +pe) + (uH +u*) -V(mmu”> , (4.39)

0 (3 1 5 1
En <2nTi + 2minu2|> + V. <2nTi [u) +ve +u.] + §minuﬁ[uu + v + u*]>

= —uVipe — mViug — V- (q +qy) + (vs+u.)-Vip

3 1
+ iuH -Vp; + uH(uH +u,)- V(minuu) + émiuHuH -Vn , (4.40)

0 (3 5
3
=~ Vipe = V(e +qne) + (s +0.) Vipi + cuy- Vipi. (4.41)

Terms like w - Vn on the rhs of eq. (4.38) cancel out the parallel advection which
is here included in the divergence V - (nw) for better comparability with the large
scale model equation, but is neglected in the drift fluid model.

Comparing eqs. (4.38) to (4.41) with the large scale model equations (3.53), (3.55),
(3.56), and (3.57) shows that the global drift fluid model includes the advection by
the perpendicular velocities and their divergences due to the compressible velocity
fields vy, u,, and v,: instead of using a macroscale transport model to account for
the effect of mesoscale processes on the macroscale, it includes the evolution of the
plasma on both the mesoscale and macroscale.

4.3. Local drift fluid model

The equations (4.17), (4.20), (4.27), (4.29), (4.31), and (4.35) of the global drift fluid
model account for the evolution of the full plasma quantities « on the mesoscale
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and macroscale. Within the specific multiscale model for the plasma edge the
macroscale evolution on the largest occurring scales of today’s tokamak experiments
(with 7 (cg) ~ 1 s and Ap(ag) ~ 1 m) is accounted for by the macroscale model
presented in paragraph 3.3.1. For the completion of the specific multiscale model a
local mesoscale model is needed to determine the averaged mesoscale terms of the
macroscale equations in agreement with the large scale plasma profiles.

The local drift fluid model which is derived in this paragraph fulfills this purpose.
It is derived from the mesoscale balances (2.49), (2.56), and (2.61) of the generic
multiscale model with the Braginskii closure of paragraph 3.2 and uses information of
the macroscale profiles such as the perpendicular density gradient as input parameters.
The model assumptions are given by those of the global drift fluid model (paragraph
4.2.1) and a number of additional assumptions outlined in paragraph 4.3.1 which are
based on [30]. The model equations are presented and discussed in paragraph 4.3.2.

4.3.1. Assumptions of the local drift fluid model

The following assumptions, adding to those of the global drift fluid model outlined
in paragraph 4.2.1, are made for the local drift fluid model:

e The characteristic macroscale gradient length L, of the dynamics in perpen-
dicular direction is estimated by the typical macroscale perpendicular density

gradient:
o

L ~ (4.42)

Ving

With L, being usually of the order of centimeters and the ion Larmor radius
ps of the order of tenths of millimeters in the edge region of a tokamak, the
small quantity 6 can be introduced:

§~ <, (4.43)

2 2
HP % e (4.44)

ﬁp:

The plasma beta f, is the ratio of the plasma pressure p to the magnetic
pressure B2/(2u0), where i is the electromagnetic permeability of free space.
A small 5, means in this context that perturbations of the plasma pressure
result only in minimal deformation of the magnetic field lines.

The so-called drift ordering is carried out for the local drift fluid model with the
small parameters 3, and ¢ (for details see [30]). It results in a scale separation
regarding the amplitudes of oy and & with @ < «gy. The scale separation is
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expressed using the small parameter §:

n BJ_ u| €¢
~N — o~ — o~ =

No BO Cs TOe

~ 6. (4.45)

Additionally, the perpendicular dynamics of & are assumed to take place on
temporal and spatial scales much smaller than those associated to the changes
of . This is expressed by

ApL(@) < Api(ag) Too(@) < Tpo(ap) . (4.46)

Thus, the local drift fluid model assumes a scale separation regarding the
temporal and spatial scales, expressed by eqs. (4.46a) and (4.46b), and regarding
the amplitudes of plasma quantities, expressed by eq. (4.45).

The parallel gradient V| is split into a macroscale part and a mesoscale part
(sometimes also called perturbed or fluctuating part), V| = Vo + V|, with

B
Vio = FO'V (4.47)
and
= EJ_ 1 —~ —
. B, B . B .
~ <A|V><B° + BOXVA|)-V ~ F“xVAH-V. (4.48)

The term V x A | appearing in the first line of eq. (4.48) is neglected since it
corresponds to a perturbation of the magnetic field in parallel direction which
is not taken into account here. Also, the rotation of the equilibrium magnetic
field By is assumed to be small compared to By/B x V;lH,

The only gradients of macroscale quantities taken into account are the perpen-
dicular and perturbed parallel gradients of ng, w0, To; and Top.. The equilibrium
parallel gradients of these quantities are set to zero as well as their curvature
terms:

IC(OZ()) = VHQOZQ = 0. (449)

The macroscale electric potential and the parallel current density are set to
ZEro:

®o = Jjo = 0. (4.50)
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4.3.2. Local drift fluid model equations

The balances of the local drift fluid model are obtained by taking the mesoscale
balances for the particle density (2.49), momentum (2.56), and energy (2.61) of the
generic multiscale model and apply the Braginskii closure and the assumptions of
the global and local drift fluid model, outlined in paragraphs 4.2.1 and 4.3.1. The
generalized sources M, and W, see eqs. (2.53) and (2.58), are evaluated here with
both the macroscale and mesoscale quantities. As the global drift fluid model, the
local drift fluid model consists of an electron particle balance,

Toe . - ~ ~
on + 0, Vil + 9, Vny = 2 K(n) + %K(Te) — nok(9)

ot

— nOB(V\\o—i—%H) (Bl - eTLL]()B> + TLOB$H% + <ﬁEVﬁ> + <ﬁ/€(¢7)> , (4.51)

a total parallel momentum balance,

ming—- 4 + mngvs - VI = —VH [no(Tm + TOe)] — (Thi + T08)<VHO + $\|>”~L

ot
= no(Vip + Vi) (T + T.) — Vi + <§\|[(no +7)(T; +ﬁ)]>

+ <'va [(Thi + TOC)D + <VH0 [A(T; + T)D +mng (B Vi), (452)

an ion energy balance,

3

oT; | = SAY
ETLO (at-’-’UFVTZ +UFVT0L> = —B(VHQ—FVH)?

Ujjo
— nolp; B

(Vuo + VH) ] +§|

B = ~

n TOiTOeIC(ﬁ) ~ noToy FIC(ﬁ)IC(ﬁ)} n B<V|qz>

€ (&

=@ Ty /< ] 3 o
+ noToB <V|B|> ~ €°<v|;3'> + 5o (.- VT;) (4.53)
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an electron energy balance,

T,
3 (aat +, Vg - VT + vy - VT06>

Z noToe

TOe =~

K(T.) — noTock() — B<VH0+VH)

UHO

+ — To.B (VHO +VH)

. T [~ 5 3 _ -
+ B <Vq| > + noTo.B <V| u> ?0 <Vg> + 50 <UE : VTe>7 (4.54)

—noTp.B

(VHO + VH> H +/€

Ohm’s law,

me 19} OA o\~
<8f+vE VL)]” = — 67106—15” — en()(V”oJrV“)gb — Ry

+ nyg <V”0 + VH>T€ + Toe (vHO + $|l)ﬁ , (4.55)

and the vorticity equation:

my; TLO

9 ~ 1 ~ N

_ BVH% + nok(T+T2) + (Toi + Toe) K(7) - (4.56)

Egs. (4.51) to (4.56) of the local drift fluid model correspond to egs. (4.17), (4.20),
(4.27), (4.29), (4.31), and (4.35) of the global drift fluid model. They do not longer
account for the evolution of the full quantltles n, u|, T, T“ Ay, and ¢, but only
determine the mesoscale dynamics of 7, @, 1., T, A” and (;3 on top’ of a macroscale
background which is assumed to be constant. The nonlinearities in the local model
are restricted to the advection by the ExB velocity vy and the perturbed parallel
gradient fVVH Averaged mesoscale terms like (U, - V1), appearing in the particle,
momentum and energy balances (4.51) to (4.54), ensure an enduring scale separation
between the mesoscale and macroscale evolution. The perpendicular macroscale
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gradients V ng, V Ty, and V| Ti, are important driving terms for the fast, small
scale dynamics captured by the local model. They are input parameters for the
local simulations and, within a multiscale model, determined by the macroscale
simulations. In the next chapter, the relation between the local drift fluid model
presented here and the mesoscale part of the specific multiscale model for the plasma
edge is established.

Both the local and the global model comprise a large number of different phenomena,
such as shear-Alfvén waves and sound waves affecting the parallel dynamics, and
resistive drift waves and instabilities due to the curvature of the magnetic field
affecting transport perpendicular to the flux surfaces. These processes are analyzed
in detail for comparable models in [64], [9], and [10] and references therein. Further
work regarding the characteristics of drift fluid models can for example be found in
[8], [65], [12], and [66]. In the following, the focus is on high-m dynamics, where m
refers to the Fourier mode number in poloidal direction, and on the particle transport
due to advection by the ExB velocity vy.
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5. Specific multiscale model for the
plasma edge

The macroscale model from chapter 3 and the local drift fluid model from chapter 4
are brought together in this chapter to form a specific multiscale model for the edge
region of a tokamak. It represents the basis of the coupled code systems investigated
in chapters 7 and 8. Its aim is to efficiently compute the dynamics of a tokamak
plasma on scales several orders of magnitudes larger than the smallest scales of the
drift fluid processes. At the same time it includes the effects that these small scale
dynamics have on the large scale dynamics. The mesoscale and macroscale balances
are presented in a consistent form, allowing for a clear identification of the terms
through which the processes on both scales interact.

The equations of the specific multiscale model are outlined in paragraph 5.1 and
discussed in paragraph 5.2. In paragraph 5.3, a short survey on comparable multiscale
models for the tokamak plasma edge is given and open questions and challenges are
identified.

5.1. Model equations

A general multiscale model for the plasma edge can be directly obtained by taking egs.
(3.38), (3.46), (3.47), and (3.48) of chapter 3 for the macroscale part and the local drift
fluid equations (4.51) to (4.56) for the microscale part. The specific multiscale model
presented in this thesis is further specified by neglecting the mesoscale temperature
dynamics (Tl =T, = 0), assuming that the ion temperature Tp; is zero and that
the macroscale electron temperature Tg. is constant. This means that the model is
isothermal for the mesoscale dynamics like those presented in [9] and [10] while the
temperature evolution is fully kept on the macroscale.

5.1.1. Macroscale part

For the macroscale part the above assumptions mean the omission of the terms
(u-VT;) and (@ - VT,) in the macroscale energy balances (3.47) and (3.48) while
the ion particle balance (3.38) and the total parallel momentum balance (3.46)
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remain unchanged. For completeness they are presented here again together with
the modified energy balances, the averaged mesoscale terms being highlighted in
blue. The particle balance is given by

the total parallel momentum balance by

%(Tnﬂlo?t”o) +V- <mm0uHOuHO) = [V Hol} -V [ﬂo(Tm + TOP)} + S”Ozmv

—m;ng <11 . V'ﬁH> —mguyp V - (nu) . (5.2)

For the ion energy balance one has

d(3 1 5
g <2n0To¢ + 3 mmouzo> <2n0T02u0 + mmoulou0>
V.

= —uoV)(noToe) — (Uno HOZ) + Qo — V-qy

, ~ N 3 1 _
+ S — Manouo <u : VUH> — <2T0i + Qmiu2|0>V ~(nu) , (5.3)

and for electron energy balance

o(3 5 )
8t<2n0T06> + V < TloTOCUQ) = UH()VH(noToe) + QO& - V . qoe + S(Z]CEC

TgeV (nu) . (5.4)
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5.1.2. Mesoscale part

Neglecting the dynamics of T; and T, on the mesoscale reduces the number of local
drift fluid equations, given by eqs. (4.51) to (4.56), from six to four since the
temperature balances (4.53) and (4.54) can be neglected. With the macroscale
quantities highlighted in green the mesoscale part of the specific multiscale model

then comprises the particle balance,

on Toe ~

- + ’EE . Vﬁ + 'le . V/)() = e/C(ﬁ) - II,()IC((/))

ot )
S\ (U J N
— nB(Vjo + V) (B - en(']B> + y(@), (5.5)

the total parallel momentum balance,

ou _ _ = =\~ _
Tn,ill,oa%t‘l + m;ngvyg - V”LL” = —]1)(4VHII,() — 1"0( (VHO + vH)n + ’Y(UH), (56)

Ohm’s law,

me( 0 ~ aA’H ~\~
e(@t + Vy * V)]l = —ell()ﬁ - 61[()(VHO + V”)(b - RHS
+ EJ&(VHO + ﬁ‘)ﬁ ; (5.7)
and the vorticity equation:
m;ng 0 ~ = 5“ ~ =
5 <0t + v - V> Vi = B(Vuo + VH)E + To. K(7) (5.8)

The damping terms (%) and (%) are given by

v(@) = (v Vi) + (AK(9)) (5.9)
V(@) = TOe</VVHﬁ> + ming <17E'Vﬂu>- (5.10)
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5.2. Discussion of the multiscale model

The specific multiscale model for the plasma edge consists of egs. (5.1) to (5.4)
to describe the macroscale evolution via the quantities ng, wjo, To;, and Tpe. The
mesoscale part, given by eqs. (5.5) to (5.8) for 7, 7, /Nlu, and ¢, provides the
averaged terms (na), corresponding to a particle flux, and (@ - Vi), a part of the
divergence of a momentum flux, for the macroscale evolution. The terms of the
form 3/2T,V - (Rw) present in the macroscale temperature balances (5.3) and (5.4)
illustrate the fact that the mesoscale dynamics still influence the energy balances on
the macroscale, even though the dynamics of T} and 7. are neglected in the model.
The large scale profile provides a driving term of the local mesoscale dynamics in form
of the perpendicular density gradient V ng as well as the parameters ny and Tp,
which influence the ion Larmor radius p,, the plasma beta 3,, and the collisionality
v, of the plasma. While the interaction of the plasma with neutrals is not directly
considered on the mesoscale level corresponding effects can be partly incorporated
due to their impact on the large scale profiles via the source terms S%. Numerically
solving the mesoscale system with the damping terms (%) and v(%)) as given by eqs.
(5.9) and (5.10) is complicated and time consuming due to the involved averaging
procedure. Therefore, one might choose another form of y(72) and (%)) to ensure
that (@) = 0, for which an example is given in chapter 7.

5.3. Survey on comparable models

A number of coupled code systems, combining microscale and mesoscale plasma
turbulence/drift fluid codes with large scale codes, has been set up to study the
plasma profiles of a tokamak device for stationary cases. A survey is given in table
5.1, including information about the codes that have been used, the tokamak region
for which the coupled code system applies, and the basic characteristics of the
investigated cases. They are presented here to classify the multiscale model and
coupled code system developed in this thesis and identify unsolved questions. The
list in table 5.1 is incomplete — other examples of how to incorporate the effects of
the microscale and mesoscale dynamics into large scale models are for example given
in [67], [68], and [69], with a mean field model for transport dominated by the ExB
turbulence described in [70]. The choice of systems summarized here was made with
regard to their relative similarity to the multiscale approach outlined here.

All coupled code systems are based on the scale separation hypothesis regarding
disparate temporal and spatial scales and the amplitudes of the respective dynamics.
They use multigrid methods for a type B multiscale problem, determining the mi-
croscale/mesoscale quantities for the whole simulation domain, and belong, as the
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specific multiscale model derived here, to the class of heterogeneous multiscale meth-
ods [37] (see the classification of multiscale methods in paragraph 2.3.1). Regarding
these aspects they are similar to the multiscale model and the coupled code system
presented here.

For the gyrokinetic approaches, the TGYRO and TRINITY code systems, the scale
separation applies to the probability distribution function f = fy + f; for the fluid
approaches B2-DALF /B2-DW2D and UEDGE-BOUT it affects the plasma quantities
a = ag + a. The TRINITY and TGYRO systems, which both use local gyrokinetic
simulations to determine the averaged fluxes, consider the core region. Neither of
them uses a macroscale transport model but finds the macroscale state associated to
the microscale fluxes via application of the Newton-Raphson method [71].

The B2-DALF/B2-DW2D and UEDGE-BOUT systems are utilized to examine
the plasma edge and SOL region. In both cases, the large scale code assumes
toroidal symmetry, with the focus being on radial plasma profiles and studying only
statistically stationary cases. The B2-DALF/B2-DW2D system does not employ a
direct coupling procedure but relies on a matrix of pre-calculated transport coefficients
for particle and energy transport. From this database the large scale code B2 obtains
the required transport coefficients via an interpolation procedure. The coupling
method is therefore a sequential one while the other systems use a concurrent
procedure. Because the used averaged mesoscale fluxes are volume averaged, their
poloidal variation, e.g. due to the curvature of the magnetic field, is neglected.

Various open questions and challenges regarding a multiscale modeling approach
for the plasma edge are investigated in the following chapters 6, 7 and 8. The
reproduction of time-dependent profiles is investigated with a simplified coupled code
system in chapter 7. The poloidal dependence of mesoscale transport and its effect
on the large scale profiles is assessed in form of an outlook in chapter 8. Besides
these physical questions also technical issues are to be discussed, e.g. regarding the
detection of a statistically stationary state of the local drift fluid simulation and the
influence of the chosen macroscale transport model on the results. The latter topic
is also discussed on the basis of a passive scalar model in the following chapter.
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code system large-scale microscale/mesoscale region | cases
TRINITY [72, 23] | TRINITY [72, 23] GENE [5]/GS2 [73] core radial dep. of transport coeff.
4D phase space 5D phase space gyrokinetic stationary cases on large scale
gyrokinetic (averaged) | flux tube approximation coupling: particle, mom., energy
no M used
TGYRO [22] NEO[74] GYRO [6] core radial dep. of transport coeff.
1D kinetic 5D phase space gyrokinetic stationary cases on large scale
flux tube approximation coupling: energy
no M used
B2-DALF [75] B2 [76, 77] DALF [78, 79]/DW2D [78] | edge radial dep. of transport coeff.
B2-DW2D [41, 25] | 2D fluid 2D fluid SOL stationary cases on large scale
Noi, Wjos Do, Lois Toe i, ¢, Ti, T, coupling: particle, energy
M : diffusion
UEDGE-BOUT UEDGE [13] BOUT [82] edge radial and poloidal dep. of
(80, 24, 81] 2D fluid 3D fluid SOL transport coeff.

Nois Ujos Toi, Toe

ng, ay, v, Ti, Te, ¢

stationary cases on large scale
coupling: particle, energy
M : diffusion + convection

Table 5.1.: Survey of coupled code systems to simulate a tokamak plasma. M denotes the macroscale transport model used.
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6. Macroscale transport models for
averaged mesoscale dynamics

The specific multiscale model of the previous chapter 5 describes the dynamics of the
plasma in the edge region of a tokamak device. Both its mesoscale and macroscale
part contain averaged mesoscale terms of the form (@®) and (¥ - V&) which represent
the effect of the mesoscale processes on the macroscale evolution of profiles. As it
was outlined in chapter 2, paragraph 2.3.3, macroscale transport models can be used
to represent these terms in the macroscale equations and thereby increase the time
savings of the coupled code system. As an example, a diffusive macroscale transport
model has been used in the derivation of the self-contained large scale model of
chapter 3.

The present chapter focuses on these macroscale transport models. It is divided
into two parts. In paragraph 6.1, a short overview on the widely used diffusion-
convection scheme is given. The main objective is to provide information about the
statistical elements governing transport which, on the macroscale, can be described
by a diffusive scheme. This includes the important relation (Ar?) = DAt which
relates the mean squared displacement (Ar?) and the diffusion coefficient and is
used for the analysis of the passive scalar model in paragraph 6.2. Also, a method
to decompose a given (averaged microscale/mesoscale) flux into a diffusive and a
convective part is presented in paragraph 6.1.2 which can be applied to formulate
macroscale transport models for coupled code systems.

In paragraph 6.2, a passive scalar model is presented in which a scalar quantity is
advected by a given velocity field. It serves as a more realistic extension of the basic
examples of diffusive transport outlined in paragraph 6.1 and motivates the choice of
the diffusive macroscale transport model of the large scale transport model (chapter
3). Additionally, it provides an exemplary insight into the interaction between
averaged mesoscale dynamics and macroscale processes as it is analyzed in detail
for a magnetized, collisional plasma in the following chapters. The existing studies
[31, 32, 33], which were carried out for small Kubo number regimes (see paragraph
6.2.1) are extended to dynamical regimes with large Kubo numbers. An analytical
description for the macroscale transport behavior of these regimes is determined and
related to percolation theory [83]. In paragraph 6.2.3, a first test with a simplified
coupled code system, using the passive scalar model, is carried out to study the
interplay between the macroscale transport model and the accuracy of the macroscale
results with respect to a benchmark case.



CHAPTER 6. MACROSCALE TRANSPORT MODELS FOR AVERAGED
MESOSCALE DYNAMICS

6.1. Representation of transport via a diffusion-convection scheme

Diffusion is a well-known phenomenon in physics [84, 85], chemistry [84, 86], and
biology [87] to describe transport on a macroscale due to a specific statistical character
of motion of particles or fluid parcels on the microscale/mesoscale. To provide a
basic understanding of diffusive processes, a straightforward derivation of Fick’s first
and second law using a simple random walk is given in paragraph 6.1.1.

6.1.1. Fick's laws and drift-diffusion equations

Fick’s first law [88] states that a particle flux T' is proportional to the density gradient
Vn and directed in opposite direction:

I = —DVn. (6.1)

D is the diffusion coefficient. Eq. (6.1) can for instance be applied to an ensemble of
particles, performing a discrete random walk. The example presented here is taken
from [89].

Consider an one-dimensional system with a large number N of particles and an
inhomogeneous initial distribution. After a time interval At, each particle makes a
step of length Az either to the left (-) or to the right (+), the probabilities p_ and
py for both directions being equal, p_ = p, = 0.5. The point z; is crossed by N~
particles from the left and N T particles from the right during the time interval At:

1 x0 11:0+Aa;
N() = 5 / n(@)de,  N*(w) = / n() de . (62)
xo—Ax o

Approximating the density n(x) by a Taylor expansion up to first order yields

n(z) = n(xe) + (xfxo)%(xo) + O([xfx0]2> ) (6.3)

Eq. (6.3) can be used for the determination of N~ and N*:

1 Az?on 1 Ax? On
N~ = ZneA _ _ N+ = —na\ _ 4
(z0) = gmede = =5, L (z0) = gmede + =5, (6.4)
The particle flux I'(zo) at position g is then determined by
1o n on
[(z) = E[N (w0) = N*(x0)] = =D 5 (x0) (6.5)
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where for D one has

B (Az)?
D= S5 (6.6)

The relation (6.6), connecting D to the squared displacement (Az)? and the respective
time At, can be interpreted as the signature of a diffusive process. With the
generalized mean squared displacement (Ar?) for a continuous, three-dimensional
case,

(A & A* with  (Ar?) = <‘rp(to+At)frp(t0))2>, (6.7)

r, denoting the position of a given particle and (...) being the ensemble average, the
following regimes are defined:

a = 2: convection,
2> a > 1: superdiffusion,
a = 1: diffusion,
1>a > 0: subdiffusion. (6.8)

The statistical character of transport mentioned above refers to the fact that eq.
(6.7) only holds for the ensemble average, but may differ for individual particles.

Eq. (6.5) can be easily generalized for three dimensions to yield Fick’s first law (6.1).
Fick’s second law is the obtained by using Fick’s first law in the particle balance
equation (2.27) with S = 0 and assuming a constant diffusion coefficient, which gives:

o = bvn. (6.9)

The operator V2 is the Laplace operator, V2=V - V.

The characteristics of this simple many-particle system can be generalized further to
arrive at a transport description including diffusion and convection. For this purpose
consider that the probability for a particle to make a jump of length 3, Az after a
time interval At to the right is now given by p,, while the probability of making a
jump of length 5_Ax to the left is given by p_ = 1 — p,.. For the number of particles
N~ and N, crossing the point = ¢ from the left and right, respectively, one gets:

z0 z0+B-Az

N-(z0) = py / n(z) de, Nt(z) = (1—p,) / n(z) dz . (6.10)

To—, ,2“}+ Ax 0
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The corresponding density continuity equation is given by

on on 9*n

o _ 9 L p9n 11

. ot Y ox + Oz? (6.11)
with

Ax (Az)*

At 2At

For the symmetric case p; = p_ = 0.5 and an equal step length for both directions
(B+ = B- = p) Fick’s first law (6.1) is recovered and D is given by eq. (6.6),
multiplied by 5%. In general, the flux T is purely diffusive if p, 8. — (1 — p;)B5_ =0,
i.e. if the averaged displacement (Az) becomes zero.

v, = <p+ﬁ+ —[1- p+]ﬁ_) D = (p+ﬁi +[1- p+]ﬂ3> (6.12)

Similar examples for higher dimensional problems and a detailed discussion of
diffusion-convection processes in the context of stochastic processes can for instance
be found in [84, 85].

6.1.2. Splitting flux into a diffusive and a convective part

In the multiscale systems discussed in chapters 7 and 8, convective-diffusive macroscale
transport models M are used to represent the averaged mesoscale terms. The ansatz
for the flux (aw) is given by

<5[’?}> = -D- VOéo + apv, . (613)

There is now a priori rule how to divide a given flux appropriately into a convective
and a diffusive part. One approach for such a division based on the characteristics
of the diffusion tensor D is presented below.

The diffusion tensor D has to be symmetric and positive semi-definite by definition
[2]. This information is used for constructing D. With the vectors a and b,

<&6> VO[()
a =—-, b = , (6.14)
|(a)] |V oy
the tensor F' can be defined:
|(aw)|
F = ab . 6.15
|VO[Q| ( )

F has the property that, when multiplied with V«y, it yields the averaged mesoscale
flux, F - Voo = (a0).

Next, F is used to calculate D. For this purpose, F is split into a symmetric part S
and an antisymmetric part A:

|(av)|
2|VO[0|

_ {aw)]
(ab+ba), A = m(ab— ba). (6.16)

F=S+A, S=
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Since D has to be symmetric continue with S for its construction. The positive semi-
definiteness of D is ensured by finding the eigenvalues \; > 0 and the eigenvectors
8;(A; > 0) of S. Then D can be constructed by:

The eigenvalues \; and eigenvectors s;(\;) of S are given by
[{aD)] 1 a+bd
A= 1+a-b), A) = ——m0—, 6.18
1 2|Va0|( a-b) s1(A1) 2Vita b ( )
[{av)] 1 a-b»b
A = — 1—a-b), ) = —(—m——m—— 6.19
2 2‘V0€0|( a ) 32( 2) \/E /1_ab ) ( )
b
1—(a-b)?

It holds that Ay > 0 and Ay < 0. In the case where the flux (av) and the gradient
Vg are antiparallel, \; = 0 and thus D = 0. For all other cases A\; > 0. Hence, the
diffusion tensor D determined via eq. (6.17) is

|[(av)|
D= ——"—— . 21
4‘VOLO‘(aa—O—ab—O—ba—O—bb) (6.21)

The diffusive flux (@)q is then given by
(@)

av i = D. = =
<Oé’0>dff VO(O 4|Va0|

(I1+a-b)(a+bd). (6.22)
Note that (@®)qg points into a direction between (@) and Vay, given by the vector
a+b.

In the above derivation, the part of the flux (a®) contained in A - Vg has been
neglected. This part cannot be modeled by a diffusive model. Here, a convective
velocity v. can be used to account for this component of the flux:

Ve = i[(am ~D-Val , (6.23)

Qo

so that (a0) = (aV)aig + (A0 ) cony With (G0)econy = V..

With egs. (6.21) and (6.23) one has a macroscale transport model for representing
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(&) at hand. For the scalar terms of the form (@-V &) that correspond to a divergence
of a flux and that also appear in the macroscale particle, parallel momentum, and
ion energy balances (5.1), (5.2) and (5.3) of the specific multiscale model one could,
for example, choose the approach

(w-Va) = v:-Vay + GV (6.24)
with
. _ gla-Va) _ (w-va)
v, = f Vool Vag , G = (1-p8) Vi, (6.25)

The parameter § with 0 < 8 < 1 determines the fraction of (@ - V&) which is
modeled by the first and the second term, respectively, of the rhs of eq. (6.24).

In how far macroscale plasma transport due to averaged microscale and mesoscale
dynamics can be represented by a diffusion-convection scheme is subject of ongoing
discussions [90, 91, 92]. Note that in the macroscale transport models outlined here
the idea is that the transport coefficients are updated after time intervals At,, and
spatial intervals Ar,, with the current values of the averaged mesoscale terms and
are therefore functions of space and time. Therefore, using a macroscale model with a
temporally and spatially dependent diffusion tensor D = D(7,t) does not necessarily
mean that the associated averaged mesoscale transport is diffusive, i.e. that the mean
squared displacement (Ar?) is proportional to the corresponding time interval At,
compare eq. (6.7) with a = 1. In that case the choice to model an averaged mesoscale
flux using a diffusive model becomes rather arbitrary and one should reflect upon
employing more suiting approaches. Nonetheless, diffusive models have a widespread
popularity in fluid modeling [2] due to their relatively easy implementation and their
numerically benevolent behavior. An example where an averaged mesoscale flux can
be modeled exactly by a diffusive model is given in the next paragraph 6.2.
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6.2. Passive scalar system

In this paragraph, a passive scalar system based on the work presented in [31, 32, 33]
is investigated to study the relation between mesoscale and macroscale transport
behavior. It serves to motivate the diffusive macroscale transport model used here for
the self-contained large scale model of chapter 3 which is often employed in large scale
plasma edge codes, e.g. see [14, 16, 15]. The passive scalar system is an extension
of the simple random walk examples given in paragraph 6.1.1. Here, instead of
a discrete step process the continuous advection of a scalar a by a velocity field
v(r,t) is considered, the characterizing quantities of the latter being its correlation
time 7.(v), its correlation length A.(v), and its root mean square velocity vgys. The
dynamics of a have no influence on v(r,t); thus the characterization of the system
as ‘passive’.

After an outline of the passive scalar system in paragraph 6.2.1, the numerical
simulations are studied in detail in paragraph 6.2.2. A simple coupled code system
is presented and used for a first assessment of the influence of the input parameters
like Aty and different macroscale transport models on the correct reproduction of
the macroscale evolution of the system.

6.2.1. Outline of the passive scalar system

The underlying equation to be considered for the passive scalar system is the
continuity equation for an arbitrary fluid quantity « and a divergence-free velocity
field v:

Oa

— + v-Va = 0. 6.26

5 (6.26)
The velocity field considered here is isotropic and has a Gaussian PDF p(v) with
Zero mean:

1 2

) =0, 1) = e (- o) (627
Here, the operator (...) denotes the ensemble average, i.e. is given by (...) =
[ ... p(v) d®v. The velocity field is further characterized by its root mean square
velocity vpys = 1/{(v?), its correlation time 7.(v), and its correlation length \.(v).
Analogously to the scale separation introduced for the generic multiscale model in
chapter 2, paragraph 2.2.1, the ensemble average ay = (), and the fluctuation
& = a — o are introduced. By applying (...) to eq. (6.26) one obtains the evolution
equation for the macroscale part ay,

8@0

% 4 (v-va) = 0. (6.28)
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As outlined in [31] eq. (6.28) can be transformed to yield

)
% = DVPag  with D = v{7e(v) - (6.29)

This means that while the evolution of « is determined by advection via the velocity
field v, the evolution of its ensemble average given by eq. (6.29) is given by Fick’s
second law, with D depending only on the characteristic velocity vgys and correlation
time 7.(v) of the velocity field v. The macroscale transport model related to eq.
(6.29) is

(v-Va) = —DVy . (6.30)

Considering the large scale model of chapter 3, eqs. (3.53), (3.55), (3.56), and
(3.57) one therefore finds that the diffusion hypothesis used to represent the terms
of the form (v - Va) and (aw) by a diffusive macroscale transport model becomes
well-founded if « is a passive scalar and v is an incompressible Gaussian velocity
field with zero mean.

As explained in [31], eq. (6.29) only holds if

_ Tc(’U) Urms

K = () <1. (6.31)
The ratio 7.(v) vpus/Ac(v) is identified here with the Kubo number K which was
introduced in [93] and is commonly used to characterize different regimes of turbulent
dynamics, e.g. see. [94], and also applied in the analysis of plasma turbulence, e.g.
see [95, 96]. Typically, the regime with K < 1 is characterized as ‘weak turbulence’
while K > 1 corresponds to the ‘strong turbulence’ regime: eq. (6.31) expresses
that the typical displacement of a fluid parcel during the time 7.(v) has to be much
smaller than the correlation length A.(v) of the velocity field. If eq. (6.31) holds,
the fluid parcel cannot explore different regions of the velocity field (which have a
characteristic extent on the order of A\.(v)) before its convective velocity changes due
to the temporal variation of v. This is called ‘weak turbulence’. If the opposite is
true with K > 1, i.e. the particle is able to explore the velocity field during a time
7.(v), this corresponds to ‘strong turbulence’.
In the following paragraph it is investigated what are the macroscale transport
characteristics for cases where K > 1. This is done by carrying out numerical
simulations of eq. (6.26) and systematically varying 7.(v) (series one), vgys (series
two), and A.(v) (series three). The work complements the results presented in [33]
and [32] where the passive scalar system has been studied for low Kubo numbers
K <1
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6.2.2. Diffusion in passive scalar simulations for high and low Kubo numbers

To solve eq. (6.26) numerically it is discretized in time and space for a two-dimensional
domain with Cartesian coordinates x and y. Advection is modeled by a total variation
diminishing (TVD) MUSCL-Hancock scheme [97]. For the sampling of the velocity
field v a procedure similar to that outlined in [32] and[98] is used. The velocity
components are defined via a potential ¢ to ensure that v is divergence-free:
9¢ 99
Uy = —— v, = — . 6.32
oy’ Y ox ( )
Due to the determination of v via a potential ¢ it bears a certain resemblance to the
ExB velocity (compare eq. (4.2)), even though the latter is usually not divergence-
free. The potential ¢ itself is determined by a stochastic Langevin equation:
0
90— 6+ Qv (6.33)
where 7 is a characteristic time, ¢ an additional parameter to define the velocity
field, and ( is a Gaussian white noise with

(C(ry, t1)C(ra ta)) = 0(ry —12) (1 — ta) - (6.34)

Q[—A2V?] represents an operator responsible for a spatial filtering so that ¢ will
have a predefined correlation length A.(¢). The details how to solve eq. (6.33) and
sample ¢(r,t) are given in appendix A. One finds that the parameters 7, A, and ¢
are closely related to the correlation time 7.(¢) and correlation length A.(¢) of the
potential field ¢ and therefore also to the correlation time 7.(v), correlation length
Ae(v), and root mean square velocity vgys of the velocity field v:

7.(v) = 7 = 7.(9), (6.35)
A(v) = g/\ = Acé@ , (6.36)
Upas = (V%) = \/<U3+U§> = %, (6.37)

where x4, is the extent of the simulation domain in x direction and y, is its extent
in y direction. For the two-dimensional problem, D is determined by

1 TE2TgimYsi
_ 2 _ sim Ysim
D = 7’URMSTC(’U) -

> 256\ (v) (6.38)
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Figure 6.1.: Example of a passive scalar simulation for the parameters given in table 6.1.
Top, left: Analytical solution of eq. (6.40) and the simulation results for
ng = (n)y for times t =0, ¢ =9 and t = 30. Top, right: Snapshot of n at
t = 0. Bottom, left: snapshot of n at t = 9. Bottom, right: Snapshot of
n at t = 30.

The passive scalar simulations are set up as follows. All quantities are chosen to have
dimension one and « is identified with the particle density n. Neumann boundary
conditions are used in x direction with dn/0x = 0, in y direction periodical boundary
conditions are employed. The initial profile of n is given by a Gaussian bell curve,

p {_ ;(‘”_“)2] 7 (6.39)

n(w,t) = —

1
e
V2mo?

with u = 1.5 and 0 = 0.125. The ensemble average (...) is approximated by the
average in y direction, (...),. Both averages coincide for A/L, — 0 if the chosen initial
distribution is symmetric in y direction. The analytical solution of the macroscale
continuity equation for ng,

W = DVQTLO, (640)
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par. value H par. value H par.  value H par.  value
tsim 60 | N; 60000 || At, 0.001 || A\o(v) 0.1
Zsim 31 N 256 || Az, 0.012 || vgus 0.14
Ysim 31 Ny 256 || 7.(v) 0.125 | K 0.3536

Table 6.1.: Parameters used for the passive scalar simulation shown in fig. 6.1. The total
simulation duration is given by tgm, /V; is the number of time steps, IV, and
N, are the numbers of grid points in = and y direction, respectively, At), is
the duration of one time step, and Az, the cell width in « and y direction.
D =0.0013.

with D given by eq. (6.38) is

1 1 (z—p)?
) = S o 6.41
i@ t) = et P { 202+ 2Dt (6.41)

An example for a simulation with K = 0.35 < 1 is shown in fig. 6.1, the simulation
parameters being outlined in table 6.1. The analytical solution for ny with D
determined by eq. (6.38) and the associated y-averaged values of n coincide and show
the diffusive divergency of the density peak on the macroscale. The snapshots of the
two-dimensional density map illustrate the complex structure of n on the mesoscale
and thus the disparate character of dynamics on the mesoscale and macroscale.

First results for the dynamical regime with K > 1 which has not been studied
previously are shown in fig. 6.2, left. K is increased successively from K = 0.71
(black) to K = 5.66 (violet) only by the variation of the correlation length \.(v) of
the velocity field, leaving the analytically determined D =5 - 1073 (see eq. (6.38))
constant. The higher K the slower the divergency of the density peak. The rather
smooth, Gaussian-like shapes of the graphs of ng seem to suggest that macroscale
transport is diffusive also for K > 1, even though with a smaller D than predicted
by eq. (6.38).

The character of the macroscale transport for K > 1 can be classified by resorting
to the displacement-time relation (Az?) oc At?, see eqgs. (6.7) and (6.8). For this
purpose, the exponent a is determined from the simulation data by plotting (Axz?)
against At and a subsequent linear fit. The mean squared displacement (Az?) is
approximated by

% {n)(z,t) dx
J(n)y(z,t) dx

This is a reasonable estimate for (Az?) for a Gaussian initial distribution sharply
located around its mean and symmetric in y direction, as it was used here.

(A?) (1) =~ (6.42)
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Figure 6.2.: Left: Divergency of a Gaussian density peak for different K at ¢t = 20 with
tsim = 20, 7¢(v) = 0.5, vgus = 0.14 and A (v), starting at 0.1 for K = 0.71
and successively divided by two until 1.25-1072 for K = 5.66. For the spatial
extent and time and spatial resolutions see table 6.1. Right: Dependency
of the displacement (Az?) on ¢ for different simulation parameters given
in table 6.2. The dotted black lines represent linear fits carried out with
Gnuplot.

The results of the corresponding simulations are shown in fig. 6.2, right. Three
different cases are investigated. The two cases with K = 28.28 have identical Kubo
numbers but different values for 7.(v), A.(v), and vgys which are listed in table 6.2.
In all three cases the linear dependence between (Az?)(t) and ¢ (i.e. a = 1) which is
characteristic for a diffusive behavior is clearly visible.

To determine the diffusion coefficients from the given data — which is done for the
study of the macroscale transport behavior for K > 1 below — there are basically
two methods available: one can either calculate D by a linear fit of (Az?) versus ¢
or by a linear fit of (nv,) versus the gradient —(9n/dz). In both cases, the slope of
the fitted straight line can be identified with D. Both procedures have been carried
out with the data shown in fig. 6.2, right, the results being given in table 6.2, Dy
corresponding to the first procedure, Dy corresponding to the second one. The fitting
for both cases was carried out with the program Gnuplot 4.4 [99] which uses the
Levenberg-Marquardt algorithm [100] to solve the least squares problems of a linear
fit. The small fitting errors of Dy and Dyy (see table 6.2) confirm that the macroscale
transport is diffusive. Both methods result in different diffusion coefficients, the
maximum deviation of Dy from Dj being around 23% (case B). When comparing
Dy and Dy for case A with the analytically determined D = 5 - 107%, given by eq.
(6.38), one finds that Dy and Dy are about 20% smaller than D. The origin of this
deviation is currently unclear but might be explained by a re-investigation of the
steps outlined in [31] that lead to eq. (6.38). Also, this result does not alter the
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case H K \ 7e(v) \ Ae(v) \ Vnwis \ Dy [1074) \ Dy [1074]
A 0.14 | 0.05]0.025 | 0.14 | 3.96+0.03 | 4.07+0.11
B || 2828 | 0.25|0.025 | 283 | 10.81+£0.03 | 8.32+0.10
C || 28.28 | 10.00 | 0.05 | 0.07 | 472.03 + 1.37 | 438.07 & 5.99

Table 6.2.: Parameters of the passive scalar simulations corresponding to the results
shown in fig. 6.2, right.

observation that the macroscale transport is diffusive. For the analysis below, the
method using a linear fit of (nv,) versus the gradient —(9n/dz) (as used for Dy) is
employed to determine the diffusion coefficient.

While the above results suggest that the macroscale transport behavior is diffusive
also for the cases with K >> 1 there is not yet an equation available for this dynamical
regime as one has with eq. (6.38) for K < 1. It should be established below and is
especially for relevance for fusion plasmas since here, K can also be expected to be
of the order of unity or above [95, 101]. For this purpose some general considerations
regarding transport in the two dynamical regimes, K < 1 and K > 1, are discussed
to elucidate the pattern governing the motion of the fluid parcels which eventually
leads to a diffusive behavior on the macroscale.

For all cases, the density parcels are moving on equipotential lines of the potential ¢,
see fig. 6.3. Thus, the parcels are ‘confined’ to the corresponding structures for a
time of the order of 7.(v) after which the structure of ¢ changes significantly and
a new map of potential ‘hills” and ‘valleys’ has evolved. During this time 7.(v) the
distance a parcel can travel is determined by its velocity and the characteristic extent
of such a ‘hill’ or ‘valley’. Fig. 6.3 illustrates that the structures formed by the
equipotential lines of ¢ have diameters of the order of A.(¢) = 2A.(v).

For K <« 1 the fluid parcels do not have the possibility to explore areas of the velocity
field with an extent larger than A.(v) during the time 7.(v) since vpys7e(v) <K A(v).
Hence, a change in the parcel’s velocity is usually due to the temporal variation
of the potential (and therefore also velocity) field, the characteristic time of this
variation being given by 7.(v). The typical displacement (Ar?) = (Az? + Ay?) of
a fluid parcel for a time interval of length 7.(v) can then be estimated by (Ar?) ~
V2,72 (v). To estimate the diffusion coefficient D(K < 1), relation (6.6), stating

RMS ' ¢

that D = (Ar?)/At, can be used, yielding

2 2
DK <1) o U™ 2 oy (6.43)
7.(v)
Despite of a factor two, this is identical with the analytical result for D given by eq.
(6.38).
In cases where K > 1, the situation changes and fluid parcels are now able to
explore the velocity field before it changes due to its temporal variation since
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Figure 6.3.: Plot of the potential ¢ with equipotential lines and A.(¢) = 0.2 which is
illustrated by the thick white line.

VrnsTe(V) > Ac(v). The maximum distance a parcel can travel during time 7.(v) is
mainly limited by the extent of the related equipotential line, being of the order of
Ae(v). An estimate of the respective diffusion coefficient D; yields

Aa(v)
Di(K>1 . 6.44
(> ) o (644
Eq. (6.44) holds if the potential structure does not change significantly during
time 7.(v), i.e. ¢(r,t) is basically frozen. Even small fluctuations of ¢ due to the
underlying sampling procedure of ¢(r,t) might temporarily break the structures of
¢(r,t) open before a time interval of length 7.(v) has passed. Parcels might then
be able to change from one equipotential line to another. In the most extreme case
parcels would move without any restrictions through the simulation domain due
to this jumping from equipotential line to equipotential line. For this unrestricted
motion one can estimate
(v -t
DK >1) o« M(v)- {()} = VUpusAe(V) (6.45)
Urms
where \.(v) is the typical distance that a particle travels during time A\.(v)/vrys-
Eqgs. (6.44) and (6.45) represent two opposing estimates for D(K >> 1) which can be
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H 7.(v) ‘ Ae(v) ‘ Vrns ‘ exponent y axis interc.

s. 1|/ 0.01-1000 | 0.1 0.14 v =0.261 +0.011 | 0.418 £ 0.014

s. 21 0.1 0.1 0.14 - 282.84 | @ =0.739+0.005 | 0.398 +0.010

s. 3| 10 0.005-25 | 0.14 [1=1.204 +0.048 | 0.387 4+ 0.046
b= 1.205 0.217

Table 6.3.: Simulation parameters of series one, two and three whose results are shown
in figs. 6.4 and 6.5. The initial profile was given by n(z) = ao/(v270) -
exp(—0.5[x — u]?/0?) with ag = 1.17- 1072, 0 = 3\.(v) and p = Tsim/2. The
averaging parameters used were 0tay = tgim/20 and Ny oy = N, /64, where
/Nz av is the number of cells in = direction used for averaging. The averaged
y axis intercept is given by 0.355 + 0.069.

associated either with total confinement or unrestricted motion. They are both of
the form

DK >1) x w

[7e(v)]”

Coming from the picture of free parcel motion related to eq. (6.45), an exponent
a < 1 expresses that possible confinement of the fluid parcels within the potential
structure results in a lower effective velocity than vgys. The case o = 1 corresponds
to free parcel motion with a velocity vgys. Obviously, the effective velocity will not
decrease if the root mean square velocity vgys increases; thus o > 0. The exponent
[ represents the fact that the typical extent of the potential structures might vary
from A.(¢). The extent of the potential ‘hills’ and ‘valleys’ will not decrease with
increasing A.(v), yielding that 8 > 0. The exponent v for 7.(v) relativizes the
idea used for the estimate (6.44) that the potential structure is completely frozen
for a time 7.(v), meaning that the particle is perfectly confined for a time 7.(v).
The effective confinement time will increase with increasing 7.(v), thus v > 0. To
summarize one has

(6.46)

0 < a<l1, 0 < f, 0 <, (6.47)

as initial assumptions for the parameters o, 5 and +.

The parameters «, 8, and v are determined by a least square fit to a series of passive
scalar simulations, systematically varying either 7.(v), A.(v), or vgys, respectively,
while the other two quantities are held constant. The fitted D are plotted against
the ratio R,

/URMS)\(:(/U)

R = ()

(6.48)
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Figure 6.4.: Top: Results of simulation series one and two. For series one (red +)
R < 0.01 corresponds to the case where K > 1 while R > 0.01 corresponds
to the case where K <« 1. Regarding series 2 (blue x) R > 1 means that
K > 1 while K < 1 for R < 1. Bottom: Results of simulation series three.
The simulation parameters for all series are given in table 6.3. The position
K =5 is marked by the gray, dotted line, D determined by eq. (6.38 is given
by the black dotted line.

and the exponents «, § and 7 are obtained by a linear fit of D versus R.

The simulation parameters are given in table 6.3. The time step At, and the grid
resolution Az, = Ay, are chosen so that the Courant condition vgysAts/Azs, < 1
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is fulfilled [71] and A.(v)/Azs > 8. The first 10% of the simulated time tg,, are
neglected for the fitting procedure to let the velocity field ‘mix up’ the smooth initial
profile which is given by a Gaussian bell curve. Also, the first and last 12.5 % of
the cells in = direction are excluded to ensure that no effects due to the boundary
condition are taken into account. In all series both regions with K < 1 and K > 1
are covered to evaluate the transition between the two different dynamical regimes.

The results are shown in in fig. 6.4 and confirm the power law expressed by eq.
(6.46) with adjusted parameters a, 3, and 5. For each simulation series, two different
regions regarding the dependency of D on R can be identified: one referring to the
case K < 1 with D analytically given by eq. (6.38), and one with K > 1 with
D approximated by eq. (6.46). For series three (green X, fig. 6.4, bottom), the
changing dependency of D on R regarding the distinct K regions is well visible. For
K <1 the fitted diffusion coefficients stay basically constant and converge towards
the analytically determined D = 0.1, given by the black dotted line. For series one
(red +) and two (blue x) the dependence of D on K is illustrated separately in fig.
6.5 since it cannot be displayed for both series within the same plot. As for series
three, the fitted diffusion coefficients converge towards the analytical expression
(6.38) for K < 1 while for K >> 1 they follow the behavior given by eq. (6.46).
Between these two regimes a region of transition can be identified (K =~ 1).

For the regions with K > 1 the exponents «, 3, and v have been determined by a
linear fit of D versus R with Gnuplot, including all data points with K > 5. The
results and the fits are shown in figs. 6.4 and 6.5 and in table 6.3. For series three,
two fits have been made since the values of D ‘sag’ around R ~ 1073 but then seem
to follow the same power law as before up to values of R = 0.01 (see fig. 6.4, bottom).
One obtains for D(K > 1):

DK > 1) — 0.35. s De(0)]

(o) (o4

The axis intercept of 0.35 + 0.07 is the average from all four fits. The exponents
a, B, and v fulfill the assumptions expressed by eq. (6.47). Note that the increase
of the diffusion coefficient for the K > 1 region no longer is quadratic with vpys
as for K < 1, but only with an exponent of 0.74 (see fig. 6.5, bottom). Also, the
exponent of 7.(v) changes from v = —1 to v = 0.26. This means that where for
K < 1 increasing 7.(v) increased also the diffusivity, the opposite is true for K > 1.
In the latter regime increasing 7.(v) basically means to further limit the motion of
the fluid parcel by confining it longer to the same equipotential line. Its characteristic
extent shows a proportionality to [A.(v)]? with 8 = 1.2. Note also that for series one
and two D is smaller than the analytical results for K < 1, which coincides with
the former simulation result for log(ugte) = 1 of [33], shown in fig. 6.6 .
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Figure 6.5.: Results of simulation series one (top) and two (bottom). The position
K =5 is marked by the gray dotted line.

The results obtained for the cases K > 1 can be related to theoretical considerations
regarding the diffusion coefficient of a system governed by electrostatic turbulence
and particle motion via a percolation scheme, i.e. the motion of fluids through porous
materials (see [102, 83] and references therein). Here, the fluid is represented by
the quantity « while the porous material can be identified with the potential hills
and valleys. Motion is limited due to confinement to the equipotential lines which
occasionally break open and form new structures. In [83], the diffusion coefficient for
the low-frequency or high-amplitude regime, which corresponds to the case K > 1,
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Figure 6.6.: Graph taken from [33]. The diffusion coefficient AD corresponds to D while
udtp can be associated with v2,7.(v)/2. Moving towards larger values of
u3t means reaching the K > 1 domain.

is estimated by

E 1%
D~ w2 6.50
2(5) (6.50)

where w is the characteristic frequency and E/B is proportional to the magnitude
of the ExB velocity field (compare eq. (4.2)). The percolation critical exponent
v for the low-frequency case is found to be 0.7. By estimating w ~ 1/7.(v) and
E/B ~ vpys one finds that the theoretically predicted v is 5.5 % off of the value of
v = a = 0.74 found here as exponent of vpys. The exponent v = 0.26 of 7.(v) is
about 13 % off from the predicted value of 0.3, but the relation v = 1 — « is exactly
fulfilled. This correspondence leaves an interesting point to be investigated in further
studies of the passive scalar model.

To summarize the above work it should be highlighted that the passive scalar studies
carried out in this paragraph extend the previous work for dynamical regimes with
K <1 to regimes with K > 1, a region which is of relevance also for fusion plasmas.
They show that the macroscale dynamics of the system can still be described by
a diffusive model, even though the dependency of the diffusion coefficient D on
the correlation time 7.(v), the correlation length A.(v), and the root mean square
velocity vgus of the velocity field changes significantly. The general relation between
the mesoscale convective dynamics and the macroscale diffusion can be visualized by
the motion of fluid parcels on equipotential lines. The confirmation of the analytical
formula for D(K > 1) by results of studies on percolation dynamics proves the ideas
leading to eq. (6.46) and the results represented by eq. (6.49) as correct.
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6.2.3. Simple coupled code example for the diffusion of passive scalars

The passive scalar model can be used to set up a simple coupled code system to
study the influence of the macroscale transport model and the coupling parameters
Aty and 6t,, on the macroscale simulation and its agreement with a benchmark run.
The example presented here is used primarily to investigate two ideas introduced
in paragraph 2.3: Firstly, that with an adequate macroscale transport model the
updating intervals At,, for transport coefficients can be increased while the dynamics
on the macroscale are still reproduced correctly. Secondly, that for some cases, even
by resorting to an inadequate macroscale transport model, the macroscale evolution of
the system can be approximately reproduced if At,, is chosen sufficiently short. The
advantage of the passive scalar system for this study is that the correct macroscale
transport model is known to be diffusive whereas for the multiscale problems presented
in chapters 7 and 8 it is not known.

advance by time At

(M) yt

D - 7(nvx>y,t
(Oam)y e t
o <”Uac>y,t
Ve = passive scalar \&~
code

advance by time At,,,
determine (nvz)y ¢

Figure 6.7.: Sketch of the spatial and temporal structure of the coupling procedure.

The coupling procedure is sketched in fig. 6.7. The coupled code system consists of
a 1D code for solving the density continuity equation for ny,
n, N

% + %(nvﬁy,t = % + % =0, (6.51)
and the two-dimensional passive scalar code as described in the previous paragraph
6.2.2. The objective is that by evolving ny with the averaged mesoscale flux I'g =
(nv,)y,: one is able to reproduce the macroscale evolution of (n), as given by a
reference passive scalar simulation (thus, that ny can be identified with (n),). For
all cases K < 1 so that eq. (6.29) with D given by eq. (6.38) holds. The 1D code
solves eq. (6.51) via a finite difference scheme. An explicit fourth-order Runge-
Kutta method is used for time stepping [71]. To model convection a total variation
diminishing (TVD) MUSCL-Hancock scheme is employed [97].
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Both codes are started with identical initial profiles. At times t = 0, Atyp, 2A%yp, ...,
the 1D code receives a new set of transport coefficients which depend on the averaged
flux (nwv,), of the passive scalar code. The time interval for averaging the passive
scalar data at instant ¢ is given by t — dt,, <t < t with 0t,, = 107.(v). The updating
time At,, for the transport coefficients as well as the averaging interval dy,, in y
direction are varied for the different runs. The averaging interval dy,, can be related
to the averaging time dt,, of the coupled code system outlined in paragraph 2.3.
The longer 0y,,, the better the quality of statistics for determining the transport
coefficients of the macroscale transport model.

The reference profile for comparison with the 1D results is given by (n),(z,t) with
0Yav = Ysim = 120 A\.(v). Note that in contrast to the coupled code example discussed
in paragraph 2.3, the mesoscale part of the coupled code system does not depend
on results of the macroscale part, given by the 1D code. The coupling procedure
depicted in fig. 6.7 therefore is a one-way loop in the sense that information is
only handed from the passive scalar code to the 1D code and not the other way
around. However, this simplified example can be employed for a first assessment of
the influence of Atyp,, 0yay (i-€. 0tay), and the macroscale transport model on the
macroscale results.

Three different macroscale models for the flux 'y are tested here — a diffusive and a
convective model,

(nvs)y,
F? = _Dazn(]v D = - 8Z7’l0yt ) (652)
Y = nov., Ve = M7 (6.53)
No

and a mix of both approaches,

;0o +306 if D > 0,
ry = (6.54)
0

re if D<0,

D and v, being given by egs. (6.52) and (6.53). The notation 9,n¢ is employed to
abbreviate the derivative dng/0z. Eq. (6.54) is to be understood as follows: for
some points in space and time, the local value of D might become negative. In this
case, a purely convective macroscale transport model is chosen for T'§. Otherwise,
transport is split equally into a diffusive and a convective part. By determining the

erTor nys(n),

Mps(n) = 1oo-<|”°(' |<)> (:Zﬁ( £) >H7 (6.55)

x,t

measured in percent, one can evaluate the quality of agreement of the coupled code
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system with the reference passive scalar simulation, depending on the chosen model
for I'y and the input parameters At,, and dy,y. The simulation parameters are given
in table 6.4. As initial profile, a Gaussian bell curve as given by eq. (6.39) is used
with ag = 2.34-1072, p =3, and o = 0.6.

The results for the simulations are shown in fig. 6.8. The deviation 7,s(n) has been
calculated for 100 profiles, always 300 time steps apart from each other. The first
and last 25% of the simulation domain in x direction have been neglected to avoid
division by zero in the summands of 7p5(n) due to very small values of (n),.

Two general trends are found for all three macroscale transport models. Firstly, a
large error n,s(n) due to transport coefficients determined with insufficient statis-
tics, meaning that 0y.,/A.(v) is small, can partly be compensated by decreasing
the updating time, i.e. reducing At,,/7.(v). Secondly, even for good statistics
(0Yav/Ac(v) = 96,120), the error n,s(n) increases the larger At,,/7.(v), i.e. the
longer the updating time. These observations correspond to the theoretical reasoning
of paragraph 2.3: the shorter At,,, the more often the macroscale transport coef-
ficients are updated and the better is the agreement between the macroscale flux
and the respective averaged mesoscale flux. However, the variation of 7,(n) with
Aty /Te(v) differs significantly for the different macroscale transport models.

The results regarding the diffusive model I'}' are presented in fig. 6.8, top left and right.
They illustrate the already mentioned restrictions of a purely diffusive macroscale
model: the diffusion coefficients are required to be positive. If the statistical data
is insufficient, e.g. for the cases with 0yav/Ac(v) < 72, the identification of (...),
with the ensemble average no longer holds and the diffusion coefficients occasionally
become negative. Negative D occurred in all simulations: for 0y.,/A.(v) = 72, the
percentage of values of D < 0 was about 18%, for 0y.,/A.(v) = 96 about 14% and
for 0y /Ac(v) = 120 below 5%. In those cases D(z;) was set to the value of D of the
closest cell k with 2, < x; and D(z) > 0. The diffusive model was only employed if
the percentage of negative D was smaller than 20%. Therefore, no results are shown
for T4 and 6ya,/A.(v) < 60.

'}t leads to the best agreement of the 1D code results with the reference simulation.
Even for the longest At,, and the shortest 6t,, nps(n) is below 10%. This underlines
that by using the adequate macroscale transport model the updating interval can be
significantly reduced while the accuracy of the coupled code results stays high.

For the convective model T§ (fig. 6.8, bottom left) one only obtains values of 7,s(n)
below 20% for updating times with At,,/7.(v) < 100. Nevertheless, for the shortest
Aty and the largest 0tay, 7ps(n) equals 2.7% and is of the same order as nps(n) = 1.5%
of the respective case using I'4. Hence, the inadequate macroscale transport model
can be balanced by frequently updating the transport coefficients. The time savings
of such a multiscale model compared to the full simulation are, of course, rather
limited due to the need for frequent updates.

The mixed model T'§ (fig. 6.8, bottom, right) shows a significantly better agreement
with the reference case than I'§. Especially for 0y, /A.(v) = 120 the deviation is
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Figure 6.8.: Results for coupling the passive scalar code to the 1D code. The simulation
parameters are given in table 6.1. Top left: Diffusive macroscale transport
model T8, see eq. (6.52). Top right: Same as top, left, but different scaling
of 7ps(n). Bottom left: Convective macroscale transport model T'§, see
eq. (6.53). Bottom right: Mixed macroscale transport model Fg, see eq.

(6.54).

par. value H par. value H par. value H par.  value
tsim 300 || Ny 30000 || At, 0.01 Ae(v)  0.05
Zgim 6| N 256 || Az, 0.023 || vpys  0.14
Ysim 6| Ny 256 || 7.(v) 0.1 K 0.28

Table 6.4.: Parameters used for coupling the passive scalar code to the 1D code whose
results are shown in fig. 6.8.

below 10% for all updating intervals, with the minimal value of 1.6% being almost as
good as for the associated I'}' case with nps(n) = 1.5%. Even for an average value of
av/Ac(v) = 72 and Aty,/7.(v) = 100, 7p5(n) is only 14.8% while for corresponding
case of the purely convective model one has n,s(n) = 56.7%. Since for negative D
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the transport is locally described by a purely convective model one circumvents the
issues coming with a purely diffusive description.

In the next two chapters 7 and 8, the influence of At,y, dtay, and the choice of the
macroscale transport model will be assessed with more sophisticated coupled code
systems to describe the evolution of the plasma in the tokamak edge region.
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7. Example of a 1D coupled code
system

In this chapter, the structure and results of a coupled code system based on a
reduced version of the specific multiscale model for the plasma edge (see chapter
5) are presented. It combines the theory of the macroscale and mesoscale models
(chapters 3 and 4) and the resulting specific multiscale model (chapter 5) with the
considerations regarding the structure of a coupled code system (chapter 2) and the
macroscale transport models (chapter 6).

The objective set for the coupled code system is to determine the macroscale time
evolution of the flux surface averaged radial density profile in the edge region of
a tokamak where flux surfaces are closed. Investigating this simplified problem
case, being one-dimensional and focusing on the particle density and temporal scale
separation only, instead of directly realizing a coupled code system based on the
complete multiscale model of chapter 5 serves different purposes. By reducing the
complexity of the problem and therefore also the runtime of the coupled code system
the technical aspects can be tackled more efficiently, including the technical develop-
ment of a coupling script needed for the communication between the macroscale and
mesoscale code, and the design of the procedure to find the statistically stationary
state and the corresponding averaged mesoscale terms of the local mesoscale simu-
lations. Also, the results of the coupled code system can be easily compared to a
benchmark simulation, realized by a non-local mesoscale code which captures both
the mesoscale and macroscale evolution of the plasma. This allows for evaluating the
general performance of the coupled code system regarding stability, time savings and
different macroscale transport models. The results of these investigations can then
be transferred to a coupled code system representing a more complete multiscale
model.

The structure of this chapter is as follows. The coupled code system and the code
used for the benchmark simulations are described in paragraph 7.1. The procedure
to determine the statistically stationary state of a local mesoscale simulation and
to extract the respective data for the macroscale transport model are outlined in
paragraph 7.1.4. A comparison between local and non-local mesoscale simulations for
statistically stationary cases is presented in paragraph 7.2, giving some qualitative
guidelines for the benchmark of the coupled code simulations analyzed in detail in
paragraph 7.3.
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7.1. Setup of the coupled code system

The general structure of the coupled code system analyzed in this chapter is shown in
fig. 7.1, right. The one dimensional code described in paragraph 6.2.3 for the coupling
example with the passive scalar system solves the density continuity equation in radial
direction z for the macroscale density no(z,t). At the beginning of a coupled code
simulation, at each of the NP cells of the 1D code (with cell indices [ € [1, N1P]),
a local mesoscale simulation using the local version of the ATTEMPT code [11] is
started. The local ATTEMPT code employs a local drift fluid model like that of
the specific multiscale model (see paragraph 5.1.2). It uses the macroscale radial
density gradient d,ng as input parameter and determines the average of the radial
mesoscale particle flux (f) which is assumed to be dominated by the flux due to the
ExB velocity vg,

() = (nug,) , (7.1)

where vy, is the radial part of v,. Subsequently, (f) is translated into the transport
coefficients of the macroscale transport model, a convective velocity v, and/or a
diffusion coefficient D. They are used by the macroscale transport model of the
1D code to determine the macroscale radial particle flux I'g(z, ). One execution of
this coupling loop as illustrated in fig. 7.1 refers to one global iteration which are
referred to using the index i. After the 1D code has simulated the evolution of the
macroscale system for a time At,,(¢) the coupling loop is repeated.

The benchmark simulation, shown in fig. 7.1, left, is carried out by the non-local
version of the ATTEMPT code. It solves similar equations as the local ATTEMPT
code, but accounts for the evolution of the full density n = 7 + ng. To simplify the
notation, the quantities (n) and (I') are defined:

n)(z,t) = (n(r,t))s(z,t) , (MY (z,t) = (n(r,t) ve (7, t)) e, t) ., (7.2)

with (...)gs+ being the average over the flux surface and the averaging time interval
Otay. Thus, within the framework of this chapter the quantities ng and I'g refer to
the density and flux as given by the 1D code of the coupled code system while the
quantities (n) and (') are determined by the non-local ATTEMPT simulations.

The 1D code used for the macroscale is described in paragraph 7.1.1, the ATTEMPT
code used for the (local and non-local) drift fluid simulations is outlined in paragraph
7.1.2. In paragraph 7.1.3, the coupling procedure is explained in detail.

7.1.1. Macroscale part: 1D code

The 1D code that is employed to determine the evolution of ng is the same used for
the passive scalar coupling example in paragraph 6.2.3. Here, it solves the density
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macroscale
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local
ATTEMPT

ax no

non-local
Ve, D
ATTEMPT

mesoscale and macroscale
n=ng+n

mesoscale
evolution (1)

Figure 7.1.: Sketch of a coupled code simulation (right) and the benchmark case (left).
A detailed chart of the coupling procedure is shown in fig. 7.2.

continuity equation in radial direction x with a source term Sy:

8n0 8F0 -
W + % = S(), (73)

The macroscale transport model for the macroscale radial particle flux I'y uses a
convection-diffusion representation,

Lo = nove — Daz”Ov (74)
with
)it
Ve = Uc(-rlzti) = (1_6D)7<7/z'7>1,l P (75)
0
)it
D = D(xhtl) = 76D%7 (76)
Ozng
and
0 <fB <1. (7.7)

The flux (T')*! is to be understood as the averaged flux that was obtained by a
local mesoscale simulation using the gradient &Cnffl’l of macroscale cell [ and global
iteration ¢ — 1 as input parameters. The associated density is given by nffl"l. It
is not used as an input parameter of the local ATTEMPT simulations but only
to determine v.(z,t). The parameter 3, divides the flux into a convective and a
diffusive part. Note that for a proper working of the splitting as given by eqs. (7.5)
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and (7.6) it is required that d,ng - and (I')* have opposite signs; otherwise D(z, t)

would become negative. Negative D are an exceptional case of diffusive transport,
usually only appearing for multi-species systems, and are excluded from the analysis
here.

7.1.2. Mesoscale part: drift fluid code ATTEMPT

The drift fluid code ATTEMPT, used for the local and non-local mesoscale simula-
tions, is briefly described. Further details regarding the numerical algorithm, the
discretization grid, and the boundary conditions can be found in [11].

The non-local version of ATTEMPT solves the following equations:

(6 + vy - VL)” = Tze’C(”) — noK(9)

ot
S\ (U JI
— noBy(Vjo + V) (B - enoBO> : (7.8)
8 —
m;ng En +ve- V1 |u = 7T05<V”0 + VH)TL , (7.9)
me (O . 94 i
e((%—i- Vg 'VL>] = TCoTa T 8”0(VH0+VH)¢
— RHQ + T06<VH0 + /Vv”)n, (7.10)
ming [ O < jH
B (615 + vg - VL>VQL¢ = Bo(V||o+V\|)§O + Toe K(n) . (7.11)

Here, By denotes the equilibrium magnetic field. Eqgs. (7.8) to (7.11) correspond
to the electron particle balance (4.17), the total parallel momentum balance (4.20),
Ohm’s law (4.31) and the vorticity equation (4.35) of the global drift fluid model
outlined in paragraph 4.2. The only differences are that the magnetic field B is taken
to be the equilibrium magnetic field B, except for the gradients ,VVH, and that the
density is at some points approximated by its macroscale part ng. Sometimes, this
non-local system is also called a fluz driven system which means that the drift fluid
dynamics are driven by a particle influx and not by an equilibrium perpendicular
density gradient V ng, as it is the case for a local or gradient driven system.
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The local or gradient driven version of the ATTEMPT code solves

Toe . -
(8 + vy - VL>7L =—v,-Viny+ %K(n) — noK(9)

ot
o\ [ Ji -
_ TLOBO(VHO + VH) (Bo — 611030) + (), (7.12)
0 =\
m;ng En +vs- Vo |y = 7T0€<V”o + V”)n , (7.13)

me [ O . 0A —
( + vg -VL)] = — eno—u - en(](V”o + VH)(Zﬁ— RHe

e \Ot ot

+ TOE(VHO + rVVH>T~l., (7.14)
m;no 0 = 3 ~
B (815 + vg - VL>V2L¢ = BO(V||O+VH)§HO + Toe K(12) (7.15)

Eqgs. (7.12) to (7.15) are similar to the flux driven model given by egs. (7.8) to
(7.11), except that only the mesoscale part 72 of the density is evolved. The damping
term (7)) appearing in eq. (7.12) is explained further down.

The code details outlined below are valid for both ATTEMPT versions. The model
equations are solved by a finite difference scheme on a semi-field aligned grid, using
the set of coordinates (o, x, 1), defined by

B

0'207 X =, n:/BGOde—gﬁ, (716)
ao
with basis vectors
@
e, = ey + B—‘;Oe%,, e, = €, e, = —e,. (7.17)
ag

Bf and Bgo denote the covariant components of the magnetic field at the reference
flux surface with minor radius ag, and e, ey and e, are the basis vectors of the
toroidal coordinate system [39].

The simulation domain covers a radial region of length xg,, centered around ag, and
is composed out of Ny flux tubes, each of them performing one toroidal turn. The
poloidal extent of one of these flux tubes at minor radius a in radians is 2wa/(q(a)N¢),
where g(a) is the safety factor related to the flux surface with radius a. Boundary
conditions in ¢ and 7 direction have to be chosen so that periodicity of the simulation
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domain in # and ¢ direction is ensured.
The equilibrium magnetic field By is given by

Bag + BaoRO

BO = qR €y R2 ew ;

(7.18)

where Ry is the major radius of the tokamak device, and R = Ry + x cos(f). The
magnetic shear § is taken to be constant so that one obtains for the q(x) profile

a0 = qo(l +3% ) : (7.19)
To

with go = q(ap). Thus, the decisive input parameters for an ATTEMPT simulation are
ag, Ro, Bay, q(ao), 8, no, Toe, and L, (the characteristic macroscale gradient length,
see eq. (4.42)) plus the dissipation coefficients sj(«) and s, (a). The ATTEMPT
scaling (below referred to as AS) is guided by this parameters and given in [11]. Here,
most quantities are given in SI units except for the density gradient 0,ng,which is
given in the ATTEMPT scaling if not mentioned otherwise: 9,ng [AS] = L, /ng-9.ne.
To include dissipation on scales smaller than ps (which is the lower limit regarding
the spatial resolution of the drift fluid models) the rhs of egs. (7.8) to (7.11) and egs.
(7.12) to (7.15), respectively, are complemented by a subscale dissipation term Sp,
depending on the quantity « for which the equation is solved:

Sp = 5 (oz)Vﬁoz + s (@)Via . (7.20)

The coefficients s)(cr) and s, (o) have to be chosen in such a way that they provide
sufficient dissipation but do not damp significantly the characteristic dynamics of the
system. In the simulations discussed below values of s(n) = s(u) = s(V3¢) =
0.002, s(j)) =0, and s, (n) = s (u)) = s (Vi¢) = 0.025, s, (j;) = 0 are used (all
values in the AS).

The damping term +(n) which eliminates any macroscale evolution of 7 in eq. (7.12)
is defined as

~+(7) = 0 .{exp (- {X_O“f;:} 2) +exp (_ [ gl‘x“ﬂ 2)} R{A0, x,0)}, (7.21)

where 7y is typically = 0.1 [AS] in the simulations below and S3{7(0, x, o)} is the
real part of the Fourier coefficient 71(0, x, o), corresponding to the toroidally constant
part of 7.

7.1.3. Coupling procedure

The coupling procedure used for connecting the 1D code and the local ATTEMPT
code is now explained in detail by means of the flow chart shown in fig 7.2. It can
be understood as an in-depth version of the sketch shown in fig. 7.1. The uppercase
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parameter | description

i global iteration index

j internal iteration index of 1D code

k internal iteration index of local ATTEMPT code

l cell index of 1D code

N; number of global iterations

N; (i) number of internal 1D code it. for global it. i

Ni(4,1) number of internal local ATTEMPT it. for global it. ¢ and 1D
code cell [

]\C,/lD’ii number of time steps of one internal 1D code it.

N number of time steps of one internal local ATTEMPT it.

Nppax maximum number of internal local ATTEMPT it.

NIP number of cells in 1D code

Ot simulated time of local ATTEMPT simulation until statistical
stationarity is reached

Otrun simulated time of local ATTEMPT simulation corresponding to
one internal it.

Atrun simulated time of 1D code corresponding to one internal it.

tsim total simulated time of 1D code, tym = 3 N;(i)Atrun

2

amf,’l radial macroscale density gradient for global iteration ¢ and cell [

<f)” statistically stationary flux obtained from ATTEMPT for global
it. 7 and cell [

Table 7.1.: Parameters used for the coupled code system consisting of the 1D code and
ATTEMPT.

letters in parenthesis (X) in the following text refer to the respective position in fig.
7.2. A summary of the coupling parameters is presented in table 7.1. While both
the 1D code and ATTEMPT are written in Fortran [103] the coupling itself, i.e. the
exchange of input parameters and transport coefficients, is managed via a Python
script [104].

A coupled code simulation starts with an initial profile of the macroscale density
no(x,t = 0). The index i of the global iteration is set to one and the first cell of
the 1D code with cell index [ = 1 is considered (S). (Note that since the following
procedure is carried out for all global iterations and 1D code cells, the indices ¢ and
[ are kept undetermined here.)
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Figure 7.2.: Sketch of a coupled code simulation. The procedure used to check for the

averaged mesoscale flux (I') (E) is outlined in fig. 7.4.

A first check is carried out at (I) to determine if the macroscale density gradient 9,n’
is smaller than an arbitrary maximum gradient 0,nm,.x < 0. This comparison is done
to ensure that, on the one hand, aznf)’l is smaller than zero which is a prerequisite
for running a local ATTEMPT simulation. On the other hand one finds that for
local ATTEMPT simulations where d,n{** is less than zero but has a relatively
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max

small absolute value, 0,n§** is not steep enough to drive local mesoscale dynamics
which would result in a ﬂux significantly larger than that represented by the artificial
dissipation with coefficient s, (n), see eq. (7.20). It is then basically superfluous
to carry out a local ATTEMPT simulation; instead, a minimal flux can be used
(A). This minimal flux is also used if azné’l > 0 and is typically determined using a
diffusion coefficient equal to s1(n).

In the case where d,nj < 8, ng'™* a second check is performed (B): that if a local
ATTEMPT simulation with a similar density gradient a%né,"' ~ Oyng ! has already
been carried out during this coupled code simulation. Every successfully determined
flux (T)*1! and its input density gradient 9,n§" are saved to a file (N). Similarity
between the two gradients is determined by the deviation ry: the two gradients are
taken to be similar if d is smaller than the limit parameter dy which is set by the
modeler. If ry < dy, the associated flux ( Yl of the previous local ATTEMPT
simulation is used (C). If 73 > dy, no similar den%lty gradient has been used before
and a local ATTEMPT simulation with d,nj' as input parameter is started (D).
The local ATTEMPT simulations are run until a statistically stationary state has
been reached and enough data for determining a statistically meaningful average
(T')*1! has been obtained. This is checked after each internal iteration k of the local
ATTEMPT simulation (E) which simulates a time interval t,,, = NtA st NtA oA
being the number of time steps used for one internal local ATTEMPT iteration. The
checking procedure executed at (E) is rather complex and elucidated separately in
the next paragraph 7.1.4. Here, it is simply assumed that after a number Ny(i,1) of
internal ATTEMPT iterations the averaged mesoscale flux (T’ >Z+“ can be calculated
and is then translated at (F) into the transport coefficients used by the macroscale
transport model M (e.g. see the eqs. (7.5) and (7.6) for a convection-diffusion
scheme). Also, the flux and the gradient are saved to a separate file (N) for the
comparison at (B).

The check for the macroscale cell index [ at (G) determines if the macroscale transport
coefficients have been updated for the whole macroscale simulation domain (I = N1P)
or if this is not yet the case (I < N!P). In the latter case, the 1D code cell index [
is increased by one (H) and the procedure explained above is repeated for the next
1D code cell | =1 + 1, starting at (I). In the former case where [ = NP all local
ATTEMPT simulations for this global iteration ¢ have been finished. The global
iteration index is increased by one (J) and the 1D code is started to determine the
evolution of ny (K).

The execution of the 1D code is, like the execution of the local ATTEMPT code,
divided into internal iterations with iteration index j. Each internal 1D code iteration
simulates a time interval of length At,,, = NtlD’ﬁAtS. The total simulated time
after global iteration ¢ = m and internal 1D code iteration j is therefore given
by t = X7 N;j(1)Atryn + JAbun where N;(i) is the total number of internal 1D
code 1teratlons carried out for global iteration i. As long as t < tgum, with tgm
being the time the coupled code system should simulate, a check in how far the
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density gradients have changed compared to those of the previous global iteration is
carried out (L). This can be understood as an on-the-fly determination of 7, (), the
characteristic time of the macroscale profile evolution, and therefore At,, = 7, (ap).
Here, the focus is on the macroscale density gradient d,ng since this is the decisive
input parameter for the local ATTEMPT simulations. As long as the deviation r; of
the new gradient from the gradient of the previous global iteration of the respective
cell is below the limit parameter r9 for all macroscale cells, another internal 1D code
iteration is carried out. If r; > di, it is decided that the macroscale profile has
changed significantly. The 1D code cell index [ is set to one (S) and the procedure is
started from the beginning (I) for all 1D code cells. Thus, the updating time At,,
can vary between global iterations and is given by Aty (1) = N;j (i) Atyyn.

The coupled code simulation is finished once the time ¢ simulated in the 1D code is
larger than the predetermined simulated time tgy (M).

The new aspects of the above coupling procedure, compared to the coupling loop
presented in fig. 7.1, right, can be summarized as follows. The limit parameter
dy is used to determine the updating time At (i) which depends on the global
iteration and the macroscale dynamics. The limit parameter d, determines in how
far previously calculated values of (f)” may be reused. Due to the implemented
procedure at (B), the coupling procedure is a mixture of a sequential and concurrent
multiscale approach where the sequential part is introduced to increase the time
savings and is not essential for the coupling (meaning that the steps (B), (C) and
(N) could be eliminated without affecting the accuracy of the multiscale simulations).
The updating time At,,(7) is adjusted to the current temporal scale of macroscale
processes. The dynamic determination of dty and dt,, is explained in the next
paragraph.

7.1.4. Determination of the averaged mesoscale terms

In the coupled code system outlined in the previous paragraph one is interested in
finding the averaged mesoscale flux (f‘)”l of a statistically stationary state which
corresponds to a macroscale gradient d,n{'. To determine <I~‘>i+l knowledge of both
Ots (the time the local mesoscale code needs to reach the statistically stationary
state from its initial profile) and 7,(&) (the characteristic time of the local mesoscale
dynamics from which the averaging interval dt,, is derived) is needed: &ty and (&)
determine the appropriate position and length of the temporal averaging interval
employed to determine (I}, Even though a rough estimate for oty and 7, (@)
might be available beforehand, their exact values most likely vary for different local
mesoscale simulations due to varying input gradients 8mn6’l. Since the choice of dtg
and dt,, affects both the accuracy of the results of the coupled code system as well
as its time savings, it is inevitable to determine these quantities appropriately. This
is illustrated below.
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Figure 7.3.: Time traces of fluxes T’ and the averaging intervals for (I'); and (I')y that
are determined automatically by the procedure illustrated in fig. 7.4 which
is explained in paragraph 7.1.4.

In fig. 7.3, time traces of T'() of local ATTEMPT simulations for different input
gradients d,ny are shown. The light red and blue intervals refer to the averaging
intervals automatically determined by the procedure outlined below. The flux T is
introduced to simplify the notation and is given by

I(t) = (Me)v(t) (7.22)

where the average (...)y corresponds to the entire simulation domain of the local
mesoscale simulation (the averaged mesoscale flux <f) therefore can be written as
(T') = (T'),). Obviously, both dty and 7,(T') vary for the different input gradients:
whereas for d,ng = —1.15 (bottom, left) dts ~ 60 pus, on has 0ty ~= 30 us for
0xnp = —1.86 (bottom, right). These 30 us difference already correspond to roughly
3000 time steps of a local ATTEMPT simulation, the time step size being 6t, ~ 1078

s. Significant differences regarding TD(f‘) and the consequential averaging time
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Otay > 75 (T") can be found for 9,ny = —0.91 (top, left, 0t., ~ 2 ms) and d,ng = —1.86
(bottom, right, dt,, ~ 5 ps).

Various tests that can be used to examine time series for statistical stationarity are
available from the field of time series analysis [42, 105]. The procedure presented
below is adapted to the specific needs of the coupling procedure used here, allowing
for a quick assessment of both the equilibration time 0ty and the characteristic
evolution time 7, (a) of the quantity of interest, here I'. It also includes a decision-
making process to determine if the time trace f(f) is sufficiently long to calculate
a meaningful averaged mesoscale flux (I') or if it has to be extended further. The
procedure is sketched in fig. 7.4 and explained below, with Roman numbers referring
to the related steps in fig. 7.4. Basically it can be applied to any system for which
the statistically stationary state and the corresponding averaged quantities have
to be determined automatically. This allows future use also in other coupled code
systems with mesoscale models different from the local drift fluid model applied here.

Having completed the internal iteration k of the local ATTEMPT simulation to
find the averaged mesoscale flux (I')! for global iteration 7 and 1D code cell [
(position (E) in fig. 7.2), the so-called check for (I') is started (0). It consists of
three main procedures: firstly, determine the characteristic time scale on which
the statistically stationary I' evolves (I - VI). Secondly, check if enough data for
calculating a meaningful value (I') is available (VII). Thirdly, check if a statistically
stationary state of T' is reached. If yes, the averaged mesoscale flux <1~“>i+1’l is
calculated and the local ATTEMPT simulation for this global iteration and 1D code
cell is finished. If not, the next internal ATTEMPT iteration k + 1 is started which
basically extends the time trace of T'(t) with the objective to fulfill the above criteria

after the next internal iteration.

The characteristic time scale 7,,(T') of the dynamics of T'(t) in the statistically
stationary state is approximated by the correlation time 7.(T), 7 (') ~ 7.(I'). To
determine 7.(T) the autocorrelation function p(I'; #;) is needed where t; is the so-called
lag. In general, the autocorrelation function p(c; 1) of a discrete series for the quantity
a with a total number N of data points is given by [42]

plazl) = V(a;,l) . (7.23)

0'047[0'0‘7[

It is to be understood as a function of . The autocovariance function v(«;1) is
defined as

N—I

i) = o 3 (o — {on) (aurs — fah) (724)

=1

<.

116



7.1.

SETUP OF THE COUPLED CODE SYSTEM

check for averaged mesoscale flux for
global iteration i,
internal ATTEMPT iteration k and cell [

II \ I
i myp < a . . . mi > a
determine 7¢ so that L L consider time domain from 1=
pi(T57) = t=0 to t=kétun
calculate ps(T;t;)
for this domain
determine my = min{p¢}
consider time domain from
t = ktran — 7t 10 t = kdtrun
calculate py,(T; ;)
for this domain VI
determine my = min{py,} m2 > a1 VII
calculate mg > a;
my = 7p(I')/ (kdtrun)
mo < ap TD(
v ma < &
determine 7, so that
o(Tim) = a1 ( VIII
calculate
Vv ) kSt run—arTn (F) /2
calculate ma 2 a2 T = = T(t) dt
my =7,/ o (L) P
1=T7p/T¢ . EStrun—aro (1)
ESteun
X 7 2 - 'y IX
)y = —— I(t) dt
statistical stationarity a;75(T) g statistical stationarity
hed and hd f kétrun—arTn () /2
reached and enough data for determine not reached yet
averaging available 7 7 and/or
FyitLl _ 1 i & ms > a3 | ms = M ms > ag not enough data
@ ) << N+ >2) [{T)1] for averaging available

L ppmas
k= Ny

Y

maximum number N of internal
iteration reached
Ktyun
T(t) dt

Ktrun /3

XIII

3
2kot

<f>1+l,l _

k< ;\r}x(llax

XII

\

start next internal
iteration k + 1
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The standard deviations are

Nl N—I
ﬁ, (aj—<oa>)2., Opy = ﬁ (aj+l—(a;>)2. (7.26)

Jj=1 Jj=1

Oal =

It holds that p(c;1) € [—1,1]. If p(a;1) = 1 or p(a;1) = —1 for a certain lag [, then
the values a; and o4, (at times ¢; and ¢;4;) depend linearly on each other (in the
former case, the slopes for o; and o;4; coincide while in the latter case, they have
opposite signs). For [ = 0 the autocorrelation function always equals one, p(a;0) = 1.
Usually, the correlation time 7.(«) is defined as the e-folding length of the function
p(a;t;) with respect to the temporal lag ¢;, assuming that p(a;t;) = exp(—t;/7.(a)),
i.e. the time with p(«; 7.(a))) = 1/e where e is Euler’s number.

A first estimate for 7.(I") (and therefore 7,(T")) is determined as the correlation time
7t of the autocorrelation function pe(T',#;) of the complete time trace of T'(t) from
t =0 tot = kdtu, (I). An example for p(T, ;) is shown in fig. 7.5, red curve, for
the time trace of I'(t) shown in fig. 7.3, bottom, right. Obviously, p¢(L, #;) does not
decay exponentially yet so that an exponential fit to determine ¢ is not reasonable.
However, one would like to have a rough estimate for 7;. It is calculated by setting
7t to min(¢;) with pf(f‘; t;) = ax (II): 7¢ is simply estimated as the smallest lag ¢; for
which pf(f, t;) drops below aq, with 1/e being a typical value for a;. Beforehand, in
the step from (I) to (II), it is simply checked if pr drops to a; at all so that 7t can be
determined.

In the example shown in fig. 7.5, 77 ~ 4.2 -107° s. By comparing it to the
associated time trace in fig. 7.3, bottom, right, it becomes clear that 7y overestimates
the correlation time of f‘(t) in the statistically stationary state, starting around
t~3-107% s, with 7.(T') being of the order of 10-% s. The overestimation of 7,(T')
is basically due to the first increase of I'(t) until the statistically stationary state is
reached, a phase which should be neglected for determining Tc(f). This is realized
automatically via steps (III) to (VI).

Once ¢ is calculated, the time interval from ¢ = kdt,u, — 7 to t = kdt,y, is examined
and the autocorrelation function pb(f‘, t,) using data of only this interval is determined
at (III). If the system has already reached the statistically stationary state than
this will be reflected by the data at the end of the simulated time interval. The
corresponding graph is the green graph in fig. 7.5. The respective correlation time
Ty is determined at (IV) by the same procedure that was used for 7¢. In the example
case one finds that 7, = 7.21 - 10~7. Next, a comparison of 7, with 77 is carried out
at (V) to decide if the structure related to 7, is indeed significantly smaller than
that given by 7. If yes, 7t can be assumed to correspond to the phase during which
the system reaches the statistically stationary state, and 7, is the correlation time of
I'(t) of this statistically stationary state. If not, 7¢ is taken as an estimate for 7, (T).
This decision is made at (VI).
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Figure 7.5.: Determination of the times 7y and 7, for the time trace shown in fig. 7.3,
bottom right.

02 H

Having an estimate for the characteristic time scale 7, (') of the dynamics of T'(t)
in the statistically stationary state, it has to be verified whether enough data for
obtaining a statistically meaningful (I') is available or not (VII). This means to
check if the time trace of T'(t) is long enough so that the averaging interval of length
Stay = ay7p(T) fits’ into it. Since 7,(I') may differ for different global iterations i
and 1D code cells I, dt,, can now also be interpreted as function of i and [ and is
not constant for all local ATTEMPT simulations. With the same reasoning also the
time ty, depends on ¢ and j.

A last check is performed at (VIII) which basically serves to assure that a statistically
stationary state has been reached and also has the role of a control mechanism in
case that one of the checks at steps (0) to (VII) failed, e.g. due to a very unusual
form of the time series of T'(¢). It consists of calculating two averages (I'); and (I'),
from the total averaging interval of length a,7,(I"), and comparing their deviation
ms from each other to a predefined limit parameter as. If ms < as, then (I)H is
calculated as the average of (I'); and (I'), (X) and the local mesoscale simulation is
finished.

At the three points (I), (VII), and (VIII), the check for the averaged mesoscale
flux (') can be aborted: at (I) if p; does not yet fall below the limit value a; and
7¢ therefore cannot be determined, at (VII), if not enough data for averaging has
been collected yet, and at (VIII), if by determination of the deviation of the two
fluxes (I'); and ('), it is decided that the statistically stationary state has not been
reached yet. In all these cases the next internal ATTEMPT iteration k + 1 is started

(IX), (XII). Only exception is if the maximum number N;*** of internal iterations is
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reached. In this case (I')"*! is determined by an average over the last two thirds of
the time trace of I'(¢) (XIII). This step is introduced to prevent disproportionately
long runtimes of local ATTEMPT simulations.

The proper working of the above procedure to determine the averaged flux (I') is
illustrated by fig. 7.3 for different density gradients 0,ny. The light red and light
blue intervals are the automatically determined averaging intervals for <f)1 and <f>2
Their length and position coincide roughly with the intervals’ position and length
one would choose with the naked eye, except for 9,no = —1.10 (top, right) where a
longer time trace of I'(t) would be needed for a correct evaluation. How to develop
this procedure and increase its reliability is one of the tasks for future work. For
further evaluation of the performance of the procedure please refer to paragraph
7.3.3.

7.2. Comparison of local and non-local ATTEMPT simulations

The focus of the benchmark presented in this paragraph is the comparison of the
non-local averaged radial particle flux (I') and the flux of the corresponding local
system (I'). Tt will give an idea about the accessible minimum deviation of the
coupled code results from the reference non-local ATTEMPT simulations for the
benchmark cases presented in the next paragraph 7.3.

The setup of this comparison is as follows: a non-local ATTEMPT simulation is
started for a plasma edge region with closed flux surfaces with a predefined density
gradient 0,n;, at the inner radial boundary. This boundary condition results in a
particle flux in radial direction which, on average, points radially outwards. Once the
statistically stationary state is reached the values of (I') and (9,n¢) are determined,
where the average is carried out over a time interval in the statistically stationary state
and the whole simulation domain. Since the profile of (n(r,t))s(z,t) is basically
linear in radial direction the gradient (0,n¢) can be used as input parameter for a
local ATTEMPT simulation. From its statistically stationary state the averaged
radial local particle flux (T") is calculated. Both flux values are compared with each
other by determining the error ng(I),

ns(l') = 100-M. (7.27)

The smaller 7y, the better is the agreement between the non-local and local AT-
TEMPT simulations. Additionally to 7, also the one-point PDFs of vg,, n, 7, T,
and I' are compared.

The benchmark is carried out for two different tokamak devices: a rather small,
TEXTOR-like device [34] with ay = 0.4 m, By = 1.75 m, Ty, = 50 eV, ng = 2-10'% m—3
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Oxnin  Oxno | non-local (I') local (') | n«(T)
case | [AS]  [AS] | [10%Ym™?s7!] [10¥m™2 s7] (%]
Al —2.5 —=0.61 0.87 4+ 0.23 0.734+0.19 | 16.10
A2 -7.5 -1.17 4.52+0.25 4.00£0.22 | 11.50

A3 || —125 —1.49 | 10.61+0.04 9.00+£0.30 | 15.18

B.1 -25 —0.61 4.52 +£0.50 3.80 £0.48 | 15.86
B.2 —75 —111| 2407+1.13 2734+1.20| 13.74
B3| —-126 =151 | 57.06+2.59 73.41+1.13 | 28.68

Table 7.2.: Results of the ATTEMPT simulations to compare the non-local and corre-
sponding local fluxes (I') and (I').

‘NSA N} N} ‘ oxs  0Ys Ots
cases A | 16 64 128 | 1p, 1.01p, 1.44-107%s

cases B | 16 64 256 | 1p, 1.33p, 1.02-1078%s

Table 7.3.: Parameters for the comparison of local and non-local simulations.

(cases A), and a larger device with ag = 1.5 m, Rp = 3 m, and a hotter and denser
plasma with ng = 4 - 10" m=3, Ty, = 100 eV. The magnetic field B,, = 2T, the
safety factor gy = 3, and the shear § = 2 are kept constant for both cases. Since the
number of flux tubes needed to cover the full torus is chosen to be high, N; = 18, only
dynamics with high poloidal mode numbers m > 54 are considered here'. Further
information on the simulation parameters is given in table 7.3.

Boundary conditions are as follows and apply for both the local and non-local
ATTEMPT simulations if not mentioned otherwise. In o and 7 direction boundary
conditions are chosen so that periodicity in toroidal and poloidal direction is fulfilled.
At both boundaries of the y direction (corresponding to the radial direction), all
quantities, i.e. n, u|, Aj, ¢, and jj, are set to zero. Only exception is the non-local
ATTEMPT version, where at the inner boundary in x direction the radial density
gradient is set to 0,niy.

For each device, three different cases with varying density gradients d,n;, at the inner
boundary for the non-local simulations were carried out, representing varying particle
influx from the core. The different cases are listed in table 7.2. Snapshots from the

!The minimum poloidal mode number that is resolved by the simulations, excluding the constant
mode m = 0, is given by mmin = Niqo
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Figure 7.6.: Snapshots of non-local (left column) and corresponding local (right col-
umn) ATTEMPT simulations for a poloidal region of 66 = 8° at the HFS
(176° < 0 < 184°) and the LFS (356° < # < 4°) for the density, the radial
part vg, of the ExB velocity, and the radial flux.
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simulations of the B.2 case from the statistically stationary state are shown in fig.
7.6 for the densities n and 7, the velocities vy,, and the fluxes I' = nvg, and [ = NUg,.
The plots in the left column correspond to the non-local ATTEMPT simulation while
the plots in the right column belong to the local ATTEMPT simulation. The plots
show the complete radial extent of the simulation domain for a toroidal angle of
¢ = 0° and refer to a poloidal region with an extent of Af = 8° at the HFS (§ = 176°
to § = 184°) and at the LFS (6 = 356° to § = 4°), with 6 = 0 at the HFS (see also
fig. 3.2).

The snapshots in fig. 7.6 illustrate different aspects of the local and non-local drift
fluid dynamics. Firstly, they demonstrate the typical extent of structures for high-m
dynamics in radial direction (down to lengths of one millimeter and below) and in
poloidal direction (of the order of one tenth of degrees and below, corresponding
to a length less or equal to two millimeters). Secondly, the plots of the fluxes I'
and T in the two bottom rows show that locally, particle transport is directed in
both positive and negative radial direction. Only on average flux is directed radially
outwards. Thirdly, the fluctuations of the densities, the velocities vg,, and the fluxes
are more pronounced at the LFS, the region of ‘bad curvature’. This region shows
increased radial transport due to the inertia of particles that counteracts the magnetic
confinement within the torus, and instabilities such as the interchange instability.
Fourthly, the general spatial structures of the velocity and flux are similar for both
the non-local and local simulation, insofar as this can be evaluated by the naked eye.
The velocities vg, are of the same order of magnitude in both cases.

Before having a closer look at the statistical properties of the non-local and local
simulations by comparing the one-point PDFs, the results for (I'), (') and 7(T)
which are shown in table 7.2 should be analyzed. For cases A the averages are carried
out over 50000 profiles, for cases B 30000 profiles are averaged. In all cases the
profiles used for averaging are taken from the statistically stationary state, with 10
time steps between each profile.

The error 74 (I") of the local simulations is between 11.5 and 16.1 for most cases.
Only for B.3, the case with the highest averaged flux of (I') = 57.05 - 10 m=2 s71,
n(T') increases up to 28.68. By doubling the damping term (7)) of the local model,
see eq. (7.21), n(I") can be reduced to 21.97. However, further increasing +(n)
might also damp the characteristic drift fluid dynamics. Therefore, an optimized
choice of v(7) and the corresponding coefficients by means of a benchmark of local
simulation against experimental measurements can be an objective for future work.

The comparison of the non-local and local simulations is concluded by a look at the
one-point PDFs of n, 71, vg,, I, and ' of case A.2 with the lowest error Ns(T) = 11.5,
and the case B.3 with the highest error g (I') = 28.68. The PDFs for the densities
and the velocities are shown in fig. 7.7 and are calculated for a point in the middle
of the simulation domain at position (N2*/2, N2/2, N} /2). For case A.2 the PDFs
are created using 50000 data sets, for case B.3 30000 data sets are analyzed. In
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Figure 7.7.: PDFs of vg, for cases A.2 (left) and B.3 (right) for the LFS (6 = 0°) and
the HFS (0 = 180°).

case A2 (n,(IN) = 11.50%) case A.2 (n.(l) = 11.50%)
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Figure 7.8.: PDFs of the flux nvg, and nug,, respectively, of case A.2 for the non-local
(left) and local (right) simulations. For both the LF'S (0 = 0°) and the HFS
(0 = 180°) the PDFs are shown.
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both cases the data is taken from the statistically stationary case and the data sets
are separated by 10 time steps. Note that for the non-local simulations the values of
n have been normalized to n — (n), the average being carried out over all data sets
included in the analysis, to allow for a better comparison with n.

For A.2 (fig. 7.7, left column), the PDFs of the non-local and the local case almost
perfectly coincide, especially for vg,. Also, they are almost perfectly symmetric with
respect to n = n = v, = 0 and have Gaussian-like shapes. The effect of the ‘bad
curvature’ on the LFS results in broader PDFs than on the HFS.

For the case B.3, in comparison, the PDFs of the local simulation deviate significantly
from those of the non-local simulation except for the density at the HFS. The different
magnitudes of transport at the HFS and LFS are again reflected by the different
shapes of the PDFs, those at the LFS being significantly wider.

The PDFs of the fluxes I' and I' shown in fig. 7.8 are both tilted towards positive
fluxes. However, to achieve a net positive radial flux time averaging is necessary.
This is similar to the passive scalar simulations discussed in chapter 6 where on the
mesoscale no preferential direction existed while on the macroscale transport was
directed in opposite direction of the density gradient.

7.3. Results of the coupled code system

In this paragraph, the time-dependent evolution of the flux surface averaged density
profile in radial direction is modeled with the coupled code system presented in
paragraph 7.1 and benchmarked against non-local drift fluid simulation, carried
out with the non-local ATTEMPT code (paragraph 7.1.2). This comparison for
a transient process is done to evaluate the performance of the coupling procedure
regarding accuracy and potential time savings, its sensitivity to the input parameters
like the number of cells NP used on the macroscale, and the choice of the macroscale
transport model.

The analysis starts with a detailed description of the simulation setup (paragraph
7.3.1) and then examines the agreement of the density ng and flux T'y with the
reference simulation (paragraph 7.3.2), the performance of the procedure to check for
the averaged mesoscale flux (f) (paragraph 7.3.3) and the time savings of the coupled
code system (paragraph 7.3.4). A number of additional studies complementing the
main series of simulations is presented in paragraph 7.3.5. In paragraph 7.3.6, the
results are summarized and discussed.

7.3.1. Setup of the simulations

The general setup of the simulations is sketched in fig. 7.9, an overview of the
simulation parameters is given in tables 7.4 and 7.5.
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toroidal direction ¢  poloidal direction

- source S1=0.85-1022 m—3s~!

(0 <t <2.55ms)

. source Sy = 1.7- 102 m3s~!

(0 <t <2.55ms)

e

radial
direction z

radial extent:

Tsim = 6.5 cm

number of macrogrid cells:

N_” =6 (L cases) or 9 (H cases)

- inner boundary condition (a = 1.4675 m):
O;n =0
outer boundary condition (a = 1.5325 m):

vessel wall n=0.5-10" m™3

Figure 7.9.: Sketch of the simulation domain for the coupled code benchmark.

The tokamak configuration of the simulations is that of the B cases of paragraph 7.2
with a major radius Ry = 3 m and a minor radius ag = 1.5 m. The simulation domain
comprises the volume between the flux surfaces at ag = 1.4675 m (corresponding
to the radial coordinate = 0) and ay = 1.5325 m (z = 6.5 cm). A time interval
of 7 ms is simulated. A particle source Sp(z) for HT ions is switched on for the
time interval 0 < ¢ < 2.55 ms and switched off from 2.55 ms < t < tg4, = 7 ms,
mimicking a gas puff in the plasma edge or a burst of particles coming from the core
region. The profile of Sy(z) is shown in fig. 7.9. Its stepwise form is chosen to obtain
a resulting radial profile (n)(z) which deviates from a simple linear decay during
the phase with the source switched on and therefore ‘challenges’ the coupled code
system. In the following analysis the two time intervals 0 ms < ¢ < 2.55 ms and
2.55 ms < t < tg, = 7 ms are investigated separately since they exhibit different
dynamical characteristics. The initial profiles of ng and (n) are given by a linear
density decay from n = 3.5-10*® m~® at the inner radial boundary to n = 0.5-10*° m~3
at the outer boundary.

Boundary conditions are as follows. In the 1D code simulations and the non-local
ATTEMPT simulations, Neumann boundary conditions are used for the densities
no and (n) at the inner radial boundary (9,n9 = 9,n = 0) which means that there
is no diffusive transport from the core into the edge region and vice versa. At the
outer radial boundary the density is set to a typical value, ng = (n) = 0.5- 10 m=3.
The remaining boundary conditions for both the local and non-local ATTEMPT
simulations are those used for the statistically stationary benchmark cases (paragraph
7.2).

To test the multiscale system thoroughly its coupling input parameters NP, dy, dy,
and 3, are varied systematically. By increasing the number NP of 1D code cells the
updating length Ar,, is decreased. The limit parameter d; is used in the 1D code
simulations to decide if a new set of local ATTEMPT simulations is started, see point
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coupling mesoscale macroscale
parameters local ATTEMPT 1D code
Ry 30m NA 16 NP 6 (L) or 9 (H)
a 15m NA 64 Azg,  1.10 (L) or 0.73 cm (H)
By 3T N} 256 At 1077 s
w 3 N 18 NP 100
§ 2 Ot 1.02-107% s || Atyen 1070 s
Toe 100 eV 0T, 1 ps
no 4.10Y m=3 OYs 1.33 ps
Ps 0.51 mm L, 5 cm
Cs 9.79-10* ms™' || Opnmax 0.5
Teim 0.5 cm Npax 15
tgm 7 ms NM 5000
Otrun 5.1-107% s
ay 0.5
a9 1/7
a; 1/40

Table 7.4.: Parameters of the coupled code cases. A 1D code cell number NP of 6 refers
to the L cases (low resolution), while NP = 9 corresponds to the H cases
(high resolution).

(L) in fig. 7.2. By decreasing it the updating time At,;, is effectively decreased. The
limit parameter dy determines whether a previously determined flux (f‘} is re-used or
not, see point (B) in fig. 7.2. In that way, the coupled code system’s sequential part
can be augmented or reduced. The parameter [, denotes the part of the flux (I")
which is represented by a diffusive model while for the remaining part, a convective
model is used, see the definition of the macroscale transport model in eq. (7.4).
This means that by varying NP, dy, do, and Sy, one can change Ar,,, At,,, the
sequential part of the coupling procedure, and the macroscale transport model.
The case names and the parameter sets are given in table 7.5. The letters L and
H refer to the resolution in x direction (low: NP = 6, and high: N!P = 9), while
the limit parameters d; and dy decrease from case 1 to case 3, the latter being the
‘strictest’ one with lowest d; and d».

As a measure for the accuracy of the multiscale simulations the errors n(n) and n(I")
are introduced which are defined in the same manner as the error 74 (I'), eq. (7.27),
that was used for the statistically stationary cases in paragraph 7.2. The errors are
measured in percent:

To(t) — (T)(#)] > , (7.28)

n(T) = 100 - <max{|<r>(t)|’ (F)utsix,l} tsim
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case \L.l L2 L3 |H1 H2 H.S3
NP (~1/Azy,) 6 6 6 9 9 9
dy (~ Atyp) 0.25 0.10 0.05 |0.25 0.10 0.05

dy (~ sequential part) | 0.1  0.05 0.025 | 0.1 0.05 0.025

Table 7.5.: Parameters of the coupled code cases. For each of the shown cases, 5 takes
the values of 0.25, 0.5, 0.75 and 1.

) nolt) — ()0
n) = 100- . 7.29
n(n) <max {|<n) ()], <n>V,tsim} > | )

The maximum function in the denominator of the ratio in eq. (7.28), employing the
flux average over the whole simulation domain and simulated time, is introduced
to prevent that small deviations of Ty from (I') at small values of (I') have a
disproportionately strong influence on n(I"). The same is true for the maximum
function used for n(n), see eq. (7.29). The time interval used for calculating (n) and
(D) is tr, = 107 s.

tsim

7.3.2. Agreement of the coupled code simulations with the reference simula-
tion

In fig. 7.10, first and second row, radial profiles and time traces of ng, I’y (solid
lines), and (n), (I') (dotted lines) are shown for the case L.1 with 8, = 0.25 and for
case H.3 with g, = 1 for times ¢t = 0.5 ms (black), t = 3.5 ms (red), and ¢t = 6.5
ms (green) to provide a first insight into the results of the coupled code system.
First, consider the density profiles (fig. 7.10, left column). Despite the fact that
for both cases significantly different parameters NP, d,, dy, and 3, were used, the
agreement between the coupled code results and the non-local ATTEMPT simulation
is satisfactory for the density, the general trend of the dynamics being reproduced
in both cases. This is also underlined by the time traces of ng and (n) taken at the
radial position z = 4.4 cm, shown in fig. 7.10, third row, left. Except for the offset
of = 15% of ny from (n), starting from ¢ ~ 1 ms, the time traces have a similar
shape for both multiscale simulations and coincide qualitatively with the traces of
the reference simulation.

Significantly different profiles between the coupled code simulations and the reference
simulation can be detected for the fluxes T’y and (I'), which are shown fig. 7.10,
right column. For the case L.1, 5, = 0.25, 'y has a spatially strongly varying profile,
partially deviating even more than 100% from the reference value (I'). This error is
much smaller for case H.3, 5, = 1, as it can be best seen for the profile for t = 0.5
ms. The disparate performance of the two cases is also reflected by the time traces
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Figure 7.10.: Comparison of the coupled code simulations with the reference simulations.
First and second row: Radial profiles of the densities ng (left column)
and the fluxes I'g (right column) of the coupled code simulations L.1,
Bp = 0.25, and H.3, 8, = 1 (continuous lines with points) and the profiles
of (n) and (T") of the reference simulation (dashed lines). Third row: Time
traces of the densities ng and the fluxes I'y at position x = 4.4 cm and the
time traces of the reference simulation.

of T'y and (I') at the radial position x = 4.4 cm, shown in fig. 7.10, third row, right.
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Whereas for H.3, 5, = 1, fluctuations of T’y around the reference value (gray line)
are small, the flux of the case L.1, 5, = 0.25, generally underestimates the results of
the reference simulation.

This first analysis with the naked eye should be complemented by a closer look at
the errors n(n) and n(T"), shown in fig. 7.11. The differentiation regarding the time
intervals, source on, source off, and the entire simulated time, is chosen since the
evolution time 7,(ap) ~ 1 ms of the macroscale profile while the source is on is
about three times as long as for the time interval where the source is switched off
(To(ap) ~ 3 ms), as it can be observed in the time traces of (n) and (I') shown in
fig. 7.10, third row. This influences how pronounced the scale separation between
the mesoscale and macroscale dynamics is and therefore can be expected to have an
effect on the errors n(n) and n(I).

For n(n), fig. 7.11, left column, three trends can be identified. Firstly, n(n) is lower
while the source is switched on than while it is switched off. This can be accounted for
by the offset of the densities ny and (n) for times ¢ 2 1 ms. However, the difference
regarding n(n) for both phases is with 3 to 4 percentage points rather small. Secondly,
the error for the entire simulated time slightly decreases for decreasing values of
the limit parameters d; and ds, i.e. increasing case number. This means that by
decreasing At,, (decreasing d;) and forcing the coupled code system into a rather
concurrent procedure (decreasing ds), the agreement between ny and (n) is improved.
Thirdly, for the L cases n(n) shows the tendency to decrease the higher fp, i.e. the
higher the diffusive part of the macroscale transport model. However, the overall
agreement of ny with (n) is rather good for all simulations, the error n(n) being in
the range between 4 and 6.5%.

Significantly larger errors and a larger error variation between the different cases are
found for the flux, see fig. 7.11, right column. Here, the values of n(T") for the entire
simulated time vary between n(I") ~ 18.9% (H.3, 8, = 1) which is comparable to the
errors 75, &~ 14% found for the comparison of fluxes in the statistically stationary
state (see paragraph 7.2), and n(T") = 40.7% (H.1, 8, = 0.25).

The first trend that was mentioned above for n(n) — better agreement between ng
and (n) while the source is on — cannot be found for n(I'). It is rather the other way
around, with smaller n(T") for the time interval with the source switched off. This
corresponds to the theoretical considerations that the coupled code system produces
more accurate results the more disparate the dynamics of the mesoscale and the
macroscale are. Assuming that the typical evolution times on the mesoscale are
the same for both time intervals the scale separation is more pronounced while the
source is switched off.

The other two trends that can be deduced for n(n) — decreasing error with decreasing
limit parameters d; and dy and increasing number of NP, and decreasing error with
increasing [, — are even more pronounced for n(T"). The latter is especially visible for
the case H.3 where n(T") for the entire simulated time increases from 18.9% to 34.8%
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Figure 7.11.: Errors n(n) (left column) and 7(I") (right column) for the time interval
with the source switched off (first row, 0 ms < ¢ < 2.55 ms), and switched
off (second row, 2.55 ms < ¢ < tgiy = 7 ms), and for both intervals together
(third row, 0 ms <t < 7 ms).
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while 3, decreases from 1 to 0.25, i.e. the macroscale transport model becomes more
diffusive. Lowering the limit parameters d; and d, and increasing NP, i.e. moving
upwards in y direction in the single plots, also shows the clear tendency to decrease
the n(I"). Take for instance the cases with S, = 1 and the entire simulated time
where 7(I") decreases from 28.9% (L.1) to 18.9% (H.3). In comparison, the associated
n(n) changes only slightly, the maximum n(n) being 5.4% (H.1) and the minimum
4.3% (H.3). The only outlier regarding this trend for n(I") is the case H.1, 8, = 0.25,
where for the interval with the source off n(I") = 44.7%.

The rather good agreement between ng and (n) (n(n) around 5%) for all cases and
all By, while at the same time n(T") varies from n(I") = 18.9% to n(I") = 40.7%
has two explanations. The first one is that temporal fluctuations of I'y around an
average value close to the reference value (I') lead to a high error n(T"). However,
the frequency of these fluctuations is so high that only their time average affects
the density evolution. This time average is close to the correct time average. The
second reason is that the divergence term 0,1y, appearing in the macroscale evolution
equation (7.3), which might be underestimated by the coupled code system at one
spatial position is compensated by an overestimated divergence term at a neighboring
cell and vice versa.

For the highest occurring velocities shown in fig. 7.12, v. &~ 7 ms™!, and a char-
acteristic length Ap of one centimeter, a characteristic transport time 7(v.) can be
determined by 7(v.) = A\p/v. = 1.4 ms. On the other hand, the time intervals where
v, reaches these high values (¢t = 3 ms) have a length of below 0.1 ms, thus are an
order of magnitude smaller than 7(v.). Therefore, they are too short for the high
convective v, to transport a significant amount of particles over typical spatial scales
of the system which are of the order of 1 cm. This consideration also holds if one
considers an average v. ~ 3 m s~ which yields for 7,(v.) ~ 3 ms, still being one
order of magnitude larger than the interval length of the fluctuations which is around
0.3 ms. This difference regarding the transport times and a significantly smaller
interval length of the fluctuations of v, (and also I'y) are responsible for the effect
that a large flux error n(I") is not accompanied by a large error n(n).

The second reason mentioned above can be elucidated by having a look at the
divergence of the flux, 9,1, which acts like a source term in the density continuity
equation (7.3). This term mediates the effect of the averaged mesoscale flux on the
macroscale profile evolution. One notes, looking at fig. 7.12, bottom, that even
though 9,T (see the dashed violet lines) might vary notably from the reference value
at certain radial positions and instances (the reference being here given by the thick
blue line of case H.3, f, = 1, having the minimal flux error n(I")) its spatial and
temporal average does not: both the thick violet line and the thick blue line almost
coincide, especially for t < 4 ms.
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Figure 7.12.: Left: Time traces of the fluxes I'y for two different coupled code simulations

(blue and violet), and the reference flux (I') of the non-local simulation
(gray) at position z = 2.9 cm. Right: Time trace of v, of H.1, fp =
0.25. Bottom: Time averaged time traces of 9,I", corresponding to the
simulations shown in the upper left plot. The thick lines correspond to
the average over both spatial positions x = 2.2 cm and z = 2.9 cm, for
which the time traces are given by the dotted lines. The averaging time
was 1073 s.

7.3.3. Performance of the procedure to check for the average mesoscale flux

Before further analyzing the transport modeling, the performance of the coupling

procedure regarding the determination of the averaged mesoscale fluxes (I') is evalu-
ated. Once it has been decided by the coupling procedure that a new set of transport
coefficients has to be determined for the 1D code (fig. 7.2, (S)), there are four different
possibilities of how (T} for global iteration i and 1D code cell [ is determined. The
choice of these options and the percentage they constitute regarding the total number
of fluxes that have to be determined for the entire simulated time are as follows. The
values below refer to the average over all cases and values 3, since their variations
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for the different multiscale simulations is rather low which is reflected by the small
errors of the values:

e gradient (‘Lné’l above the maximum value (0,19 > 0xNmax), minimal flux used
(fig. 7.2, (A)):
29.8% + 5.8%,

e gradient d,n5' comparable to previous simulation (ry < ds), flux re-used (fig.
7.2, (C)):
67.3% + 6.6%,

e local ATTEMPT simulation started:
2.8% =+ 1.7%, subdivided into:

— statistical stationarity reached (fig. 7.4, (X)):
2.0% + 1.2%.

— statistical stationarity not reached (maximum number N of internal AT-
TEMPT iterations reached), flux determined with data from Auyax0trun/3
10 KmaxOtrun (fig. 7.4, (XIII)):

0.8% + 0.6%,

The largest amount of fluxes, 67.3%, is determined by re-using a previously determined
value of (f‘) from a simulation with a comparable input gradient d,ng; the second
largest amount, 29.8%, by using the predetermined minimal flux for input gradients
Oxng > Oxnmax. Interestingly, these percentages are almost constant for the different
cases and values of (8, as it is reflected by the relatively small errors of 6.6% and
5.8%, respectively. One might expect that the relative percentage of cases where a
previously determined flux is re-used decreases the lower dy which corresponds to
a higher case number. This effect is apparently compensated by the fact that the
number of pairs (9,ng, (T')) that can be used for comparison at (B) in fig. 7.2 also
increases for higher case numbers.

It is noticeable that the percentage of local ATTEMPT simulations being started is
relatively low. Of these runs, roughly one third (around 29.8%, or 0.8% in total) are
stopped because the maximum number of internal ATTEMPT iterations N2 is
reached and the criteria for statistical stationarity and/or sufficient data for averaging
(T'y have not been met yet. It is obviously desirable to reduce this percentage: for the
respective runs <f ) might deviate from the statistically stationary flux associated with
the input value of aznf)’l. A reduction of this percentage can probably be achieved by
increasing the maximum number N of internal ATTEMPT iterations. However,
this also increases the average runtime t.(72) of the local ATTEMPT simulations
and therefore reduces the time savings of the coupled code system. A better way
of improving the performance might therefore be the reassessment of the choice
of the parameters as, az, and a; which are used in the procedure to check for the
averaged mesoscale flux which eventually determine when the averaged mesoscale
flux is calculated (compare fig. 7.4).
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Figure 7.13.: Left: Relation between the input gradient d,n¢ of the local ATTEMPT
simulations and the averaged flux (I') of the statistically stationary state
with the fitted function f(x) given by the black dotted line. Right: Relation
between the input gradient d,n¢ of the local ATTEMPT simulations and
the runtime ¢.(72) of the simulation on one processor.
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Figure 7.14.: Histogram of D (left) and v, (right), compiled with the data from runs
H.X with X = 1,2,3 and fp = 1 for D and 8, = 0.25 for v, respectively.

To complement the performance analysis it is important to check if the procedure to
determine the averaged mesoscale flux (f ) for a given input gradient 9,n¢ produces
consistent results. This means that for slightly varying gradients 0,n¢ a somewhat
similar averaged mesoscale flux is to be expected. In fig. 7.13, left, the flux
(f‘} is plotted against the input gradient J,ng, using the data from all cases and
values of B,. The minimal spreading of the values around the fitted function
f(9emg) = 1.87 - 10% - |9,m0|>?3 illustrates that the procedure to determine the
averaged mesoscale flux works properly. Note that also the data of runs where the
maximum number N of internal ATTEMPT iterations was reached is included in

fig. 7.13, left. It fits to the results of the local ATTEMPT runs which were finished
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before N;"** was reached, confirming that the estimate for the averaged mesoscale
flux, obtained by averaging over two thirds of the time trace of f‘(t)7 is rather good
(see fig. 7.4, (XIII)).

Two additional conclusions can be drawn from the data shown in fig. 7.13, left:
Firstly, the relation between (f) and 0,ny is not linear but approximately cubic with
an exponent of 3.23. This means that even though the diffusive macroscale model
leads to a greater accuracy of the coupled code results than a rather convective
one, the averaged mesoscale flux as given by the employed local drift fluid model
is not diffusive. In future studies it would be interesting to investigate in how far
the exponent of |9,n0| depends on the other input parameters of the local mesoscale
model, such as the electron temperature or the background density, which are kept
constant here.

Secondly, the vanishing gradient of the function (I')(dyng) around dyng ~ —0.6
justifies the use of a constant minimal flux for all input gradients d,n¢ which are
larger than d,nmax. Thus, introduction of an appropriate 0,nm,.x means additional
time savings while having minimal losses in accuracy. The value of 0,nf** = —0.5
chosen for the coupled code simulations here seems adequate.

The relation between 0,n and the runtime ¢.(72) of the local ATTEMPT simulation
is shown in fig. 7.13, right. Even though the relation between the two quantities
is not as clear as for d,n9 and (I') one can find the tendency that the time t,(72)
increases as the gradient O0,ng increases. For large d,ny the characteristic time
75(T') can become significantly longer than for smaller d,n¢. This is also illustrated
by the contrasting time traces of I' shown in fig. 7.3, top left and bottom right.
Larger temporal structures, as reflected by the trace shown in fig. 7.3, top left,
result in longer averaging times dt,, and therefore longer runtimes t.(7). While the
flattening of the function (I')(9,ng) towards larger gradients d,ng allows for using an
appropriate minimal flux without sacrificing the overall accuracy, one can especially
avoid the ATTEMPT simulations which have the longest runtimes by this procedure,
i.e. make the coupled code system more efficient.

Next, the transport as determined by the local mesoscale simulations is discussed.
To give an overview over the transport coefficients used, histograms of the diffusion
coefficient D for the case H.3, f, = 1, and for the convective velocity v, for H.3,
Bp = 0.25, are shown in fig. 7.14. The typical D is around 0.15 m? s~! and of
the same magnitude as for comparable studies [41, 25]. Note that the convective
velocities v, are significantly smaller than the accessible values of v, (compare the
PDF of vy, in fig. 7.7), resulting from the fact that only the averaged transport is
modeled by v..
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Figure 7.15.: Ratio e(7p) = 7p(ayp)/dts; for the two time intervals with the source switched

on (left) and the source switched off (right). The time (7¢)ys = 3.51-107° s
is valid for all cases.

7.3.4. Time savings of the coupled code system

In a first step, the potential time savings of the system can be evaluated by analyzing
the quantity e() [37],

() = ) (730)

which is given by the ratio of the characteristic time 7 () of the macroscale profile
evolution and the time &t the local mesoscale system needs to reach the statistically
stationary state. Note that e(7) is a parameter determined by the underlying
physics of the system. In contrast, the speedup factor (t.) which was introduced in
paragraph 2.3 (compare eq. (2.74)) is a technical parameter, associated to a specific
realization of a coupled code system. It is analyzed further down. If (7y,) is smaller
than one, usually also a speedup factor (t.) smaller than one can be achieved,
meaning that the coupled code system will result in time savings as compared to
simulations of the full system.

To obtain &(7p,) for the different multiscale simulations two approximations are made:
Tp(ayp) is approximated by the updating time At,, used in the 1D code, and dty is
approximated by 7, the estimate of the correlation time which was introduced in

paragraph 7.1.4 to check for the flux (I'). Therefore

o (Atup)e
e(m) =~ e (7.31)
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where the average over the time (...); corresponds to the interval of interest, either
that with the source switched on or that with the source switched off. The average
{...)ms corresponds to the average over all multiscale simulations. Here, it is not
distinguished between the time interval of interest like for (At,,); because of the
re-use of previously determined fluxes: if 7t were to be determined for each interval
separately this re-using (i.e. the sequential part of the coupling model) would have
to be stopped. Hence, 77 = 3.5-107° £ 1.7 - 1075 s for all coupled code simulations
and time intervals.

In fig. (7.15), e(7p) is shown separately both for the time interval with the source
being switched on (left) and off (right). Note that by increasing the case number, e.g.
going from L.1 over L.2 to L.3, At,, and therefore also () is effectively reduced.
This is due to the decrease of the limit parameter d; which accordingly decreases
from 0.25 over 0.1 to 0.05. Eventually, this variation of () can be related to the
question which level of change of the macroscale profiles corresponds best to the
characteristic time of the dynamics: d; = 25, 10 or 5%. This also relates to the fact
that even though at the beginning of this paragraph it was stated that e(7) is a
purely physical quantity which should not be influenced by technical parameters like
Atyp or By, the one finds that the contrary is the case. Ultimately this is due to the
approximations made in eq. (7.31).

As fig. (7.15) illustrates, the equilibration time 0t is smaller than 7,(cy) for almost
all cases, values of f and the two time intervals, meaning that £(7p) is larger than
one except for the cases cases H.2 and H.3 while the source is switched on. However,
e(7p) is significantly larger for the time interval with the source switched off, reaching
values of () of up to 25. For the interval with the source switched on, the maximum
e(mp) is around 5. This coincides with the observation that also the macroscale
evolution of (n) and (I') of the non-local ATTEMPT simulation takes place on a
larger time scale while the source is switched off than while the source is switched on.
Increasing the number of macroscale cells (i.e. the transition from L to H and from
NIP =6 to NP = 9) leads to a decrease of £(7;,). This can be explained by the fact
that the more cells are taken into account on the macroscale, the more possibilities
there are for the deviation 7, to exceed the limit parameter d;.

The investigation of this set of multiscale cases is concluded by an analysis of the
time savings of the multiscale simulations compared to the reference simulation.
Consider the speedup factor €(t.) which is given by eq. (2.74) and approximated
here by neglecting the runtime t.(ng) of the macroscale part:

te(n)
te(i)
Here, t.(n) is the computational time needed by the reference non-local ATTEMPT

simulation to determine the evolution of (n), and ¢.(n) is the corresponding compu-
tational time of the mesoscale part of the multiscale simulation. Both times refer to

e(te) =

(7.32)
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the same interval of simulated time tg,, and are understood as the computing time
on one processor. The quantity £(t.) can be read as ‘the coupled code simulation
is £(t.) times faster than the non-local simulation’. In contrast to e(p), €(t.) takes
into account both the equilibration time dty and the averaging time 0t,,.

While ¢.(n) is easily accessible from the non-local ATTEMPT simulation, an exact
value of ¢.(7) is not yet available from the coupled code simulations. This is due
to the fact that up to now the set of local ATTEMPT simulations is carried out
in sequential order once it is decided that the transport coefficients in the 1D code
have to be updated. Obviously, the time savings of the coupled code system can be
increased if the local ATTEMPT simulations for different 1D code cells are distributed
to different groups of processors and done in parallel. This feature is to be included
in the next version of the coupled code script. However, to estimate the potential
time savings of the coupled code system taking into account this distribution of local
ATTEMPT simulations the quantity t.(7n) is approximated by

number of global iterations
where at least for one
1D code cell a local ATTEMPT

7a{te(T))ms with 7, — simulation is carrie.d out. (733)
(Atyp)e total number of global iterations

te(n) =

The components of ¢.(n) are to be understood as follows. The average runtime of one
local ATTEMPT simulation is given by (t.(%))ms. It is averaged over all multiscale
simulation and is multiplied by the factor r, to obtain the average runtime of one
local ATTEMPT code per global iteration: recall that for some global iterations no
local ATTEMPT simulations are started since previously determined values of (I")
are used, for instance. The factor r, depends on the coupling input parameters and
varies between 0.056 for the case H.1, 3, = 0.25, and 0.299 for L.3, 5, = 0.5, with
an average for all coupled code simulations of (r,)ms = 0.174 £ 0.073.

The simulated time in the 1D code per global iteration, on the other hand, is given
by the updating time (At,,); where the time average refers either to the interval
with the source switched on or off or to the entire simulated time. Thus, on average,
one can simulate a time span of length (At,,); in the 1D code by letting the coupled
code system run for a time r,(t.(77))ms on a computer. Therefore, the ‘unit’ of ¢.(7n)
is computational time per simulated time.

As it was stated in paragraph 2.3, the time savings of the coupled code system are
potentially larger the more disparate the scales of the mesoscale and macroscale
dynamics are. This is confirmed by the values of (t.) which are shown in fig. 7.16,
left column. While for the time interval with the source switched on, the maximum
e(t.) is 1.78 (L.1, Bp = 0.75), the value for the interval with the source switched off
is €(t.) = 5.12, the overall maximum value being e(t.) = 8.42 (H.1, 8, = 1). The
difference of £(t.) between the two time intervals is only due to changes in (Atyp);
which is about four times smaller while the source is switched on than while it is
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Figure 7.16.: Speedup factor €(t.) (left column) and ratio n(I")/e(t.) (right column)
for the time interval with the source switched off (first row, 0 ms < ¢ <
2.55 ms) and switched off (second row, 2.55 ms < ¢ < tgy, = 7 ms) and for
both intervals together (third row, 0 ms < ¢t < 7 ms).

switched off. The minimal value for the entire simulated time is found for case L.1,
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Bp = 0.75, with e(t.) = 3.26, meaning that the coupled code simulation is more than
three times faster than the reference non-local ATTEMPT simulation.

As one would expect from theoretical considerations the time savings augment the
larger the limit parameters d; (less frequent updates of transport coefficients) and
dy (less strict restrictions regarding the re-use previously determined values of (T')).
The factor by which e(t.) increases from case L/H.2 to L/H.1 and from L/H.3 to
L/H.1 (while keeping 3y, constant) is between 1.3 to 2.8 for the entire simulated time.
Increasing the number of macroscale cells from N!P = 6 to NP = 9 affects e(t.)
little except for the cases L/H.1, with a mostly diffusive macroscale transport model
(Bo =1 and B, = 0.75), where £(t.) becomes smaller the larger N.P.

It was stated above that the radial extent of the simulation domain is chosen rather
small with zgm = 6.5 cm, while the characteristic length of the profile of (n) in radial
direction is about one centimeter. Making the transition to an edge region of the
order of x4y, =~ 30 cm, which is realistic for future tokamak devices such as ITER,
and assuming that the characteristic lengths scale correspondingly (Ap(ap) = 5 cm),
it would still suffice to consider a radial resolution of the order of N!P ~ 6 in the 1D
code of the coupled code system, increasing only the step width Axz. Therefore, the
computational time of the multiscale simulation would be of the same order as for the
cases considered here. If the computational time of the non-local simulation increases
linearly with the radial extent xgy,, keeping the same resolution in all directions,
it can be assumed to be about five times higher than the value of ¢.(n) used here.
Thus, the maximum speedup factor £(t.) would be around a factor 15 (instead of 3)
for the whole time interval and about a factor 40 while the source is off?.

Employing a multiscale model and a coupled code system is, to some extent, a
balancing act between accuracy of the results and the possible time savings. To give
an insight into how good this balance is realized here, the ratio n(T")/e(t.) is presented
in fig. 7.16, right column. Obviously, inaccurate results cannot be compensated by
fast simulations, but a comparison between the different cases provides information
about how efficient the coupled code system works with different sets of coupling
input parameters. The focus here is rather on relative than on absolute values of
n(T)/e(t.). The smaller n(T")/e(t.), the better the performance of the coupled code
system.

The coupled code system shows the best performance, i.e. lowest values of (") /e(t.) ~
5, for the time interval with the source switched off. While the flux error n(I") is
only slightly smaller for this interval than for the interval with the source switched
on, the potential time savings, expressed by &(t.), are significantly larger. The
general tendency that the time savings £(t.) decrease with the case number is not
compensated by a decreasing error 7(I'), leading to larger values of n(T')/e(t.) when

2In this calculation it is assumed that the CPU time of both the non-local and local ATTEMPT
simulation per second of simulated time are equal, i.e. that the calculations of both codes are
equally costly.
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moving upwards in y direction. The cases L..3 and H.3 with low limit parameters and
a mostly convective macroscale transport model strike the eye with the highest value
of n(T") /e(t.), lacking accuracy and time savings, while the lowest values of n(T')/e(t,.),
corresponding to the best performance, are found for L.1 and H.1 with g, = 0.75, 1.
Hence, a stepwise diffusive macroscale transport model is suited best for the model
problem considered. The ‘strictness’ of the coupling procedure, determined by the
parameters d; and ds, has to be kept at a rather low level to ensure sufficient time
savings.

7.3.5. Additional studies

To complement the multiscale simulations analyzed in the previous paragraph, four
additional coupled code simulations have been carried out. They are based on
the case L.1, B, = 1, and use the same simulation domain, resolution, and input
parameters (see tables 7.4 and 7.5) except for those that are listed in table 7.6.

The coupled code simulation L.1.01 and L.1.02 are employed to investigate how the
coupled code system performs if poloidal mode numbers with m < 54 are taken into
account in the mesoscale simulations. For L.1.01, the minimal m is 27, for L.1.02 it
is 12 (plus the mode number m = 0, which is present in all cases). The cell width
0y, in the local ATTEMPT code is approximately kept constant so that the number
of cells N} in y direction is increased from 256 to 512 (L.1.01) and 1024 (L.1.02)
cells to cover the entire toroidal domain with less flux tubes, Ny = 9 and N; = 4,
respectively. The reference non-local ATTEMPT simulations to determine the errors
n(n) and n(I") are carried out with corresponding Ny and N;'.

The results for n(n), n(T"), and (t.) are listed in table 7.6. Both n(n) and n(I")
decrease the smaller N¢. Especially eye-catching is the reduction of n(I") from 28.93%
for N; = 18 to 19.51% for Ny = 4. These results show that the coupling is also
successful for simulations including dynamics with smaller poloidal mode numbers,
i.e. larger structures in poloidal direction.

The simulations L.1.03 and L.1.04 focus on a technical detail regarding the check for
the averaged flux (f‘)7 see fig. 7.4: here, once it is determined that enough data for
averaging is available (fig. 7.4, (VII)), the parameter a3 determines the ‘acceptable’
deviation between the two fluxes (I'); and (I')s, being part of the final check if the
statistically stationary state has been reached (fig. 7.4, (VII)). The value a3 was
kept constant at 0.15 in the coupled code simulations above and is reduced to 0.1
and 0.05, respectively, to check on its influence on the errors n(n) and 7n(T"), and the
time savings.

The values listed in table 7.6 show that diminishing az neither changes 7(n) nor n(I")
significantly. The same is true for the speedup factor £(¢.) which slightly increases.
This seems to be counterintuitive: one would rather expect (t.) to decrease with
decreasing ag since the restrictions for the check for (I') become stricter the lower as.
However, the average percentage of local ATTEMPT runs reaching the maximum
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case [ | Ny N} as |n(n) ) e(t)
L.1 18 256  0.15 | 4.80% 28.93% 2.94 (5.95)

1
L1.01 1 |9 512 0.15|4.57% 26.29% 4.57
L.1.02 1 |4 1024 0.15|4.52% 19.51% 6.39
1
1

L.1.03 18 256  0.10 | 4.89% 28.53% 3.46
L.1.04 18 256  0.05|4.78% 27.77% 3.79

Table 7.6.: Parameters of the additional coupled code simulations. The data for the
previously discussed case L.1 is shown here again for the sake of complete-
ness. Note that for both L.1.01 and L.1.02 the average runtime of the local
ATTEMPT simulations t.(7) used for determining (t.) is calculated only
with the data form the corresponding simulations, while the value used for
determining e(t.) of L.1 is the average over all multiscale simulations to obtain
a more meaningful reference value, compare eq. (7.33). The value given in
brackets in table 7.6, first line, is that obtained by using only the data of the
case L.1 to determine &(t.).

internal iteration N;™* increases from 0.9%, ag = 0.15, to 1.1% for a3 = 0.1 and
to 1.7% for a3 = 0.05. Thus, by decreasing a3 one should also consider decreasing
NpP#* go that the local ATTEMPT simulations can run sufficiently long to find the
statistically stationary state.

7.3.6. Summary and discussion of results

The results of the 1D coupled code simulation and its comparison with the benchmark
are summarized below.

e The time evolution of the flux surface averaged radial density profile as given by
a reference simulation with the non-local ATTEMPT code can be reproduced
satisfactorily with an error n(n) regarding the density between 4 to 6.5% and an
error 7)(T") regarding the radial particle flux between 19 to 41%. A reduction of
the limit parameters d; and ds increases the accuracy of the results, especially
regarding the error of the particle flux. A decrease of d; leads to a decrease of
the updating time for renewing the transport coefficients in the macroscale 1D
code. Reduction of dy increases the concurrent part of the multiscale model.
The errors n(n) and 7(I") can be further reduced by increasing the number
of cells NP of the 1D code, being related to decreasing the updating length
Ax,p, and increasing the diffusive part f;, of the macroscale transport model.
The effect of a variation of dy, dy and NjD on the errors follows theoretical
considerations.
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e The discrepancy between the relatively large variation of n(I") and the rather

small effect on 7n(n) has two possible explanations: Firstly, the flux T’y in
the 1D code fluctuates around an average value (I'g); close to the reference
value (I"). This means that while n(I") increases due to the fluctuations, the
particle transport due to an overestimated or underestimated flux is limited:
the typical transport time that can be associated to the transport coefficients
stemming from the local mesoscale simulations is much longer than the time
during which these transport coefficients remain unchanged in the 1D code.
One finds that an disproportionately high or low flux can only change the
profile significantly if it persists for a long enough time. Secondly, while the
divergence 0,1y of the flux may vary significantly for different radial positions
the spatial average of d,n¢ of the order of two 1D code cells does not. This
kind of a self-controlling effect also keeps the density profile ng from deviating
strongly from the reference profile (n).

The choice of a purely diffusive macroscale transport model (8, = 1) leads to
significantly lower errors n(I") than an increasingly convective M. However,
the averaged flux (I') does not show a diffusive behavior with (I') o< |d,7q],
but rather a proportionality of (I') o [@,n0[>2%. The order of magnitude found
for D in the cases with 3, = 1 coincides with the results of previous studies
[41, 25]. The shape of the graph of (I')(8,n0) justifies the use of a minimal flux
if the input gradient 9,n¢ exceeds a maximum value 9,nmayx since in the region
of large 9,n¢ (small absolute values of d,ng) the sensitivity of (I') on d,ng is
relatively low.

The larger the ratio e(7p) of the characteristic time 7, () of the macroscale
dynamics and the equilibration time dty, the larger is the potential for time
savings of the coupled code system as compared to the reference non-local
ATTEMPT simulation. This is reflected by the estimated values for the
speedup factor e(t.) which are given by the ratio of the computational time
of the non-local simulation and the coupled code simulation. For the interval
with the source switched on the maximum £(¢.) equals approximately 1.8 while
for the interval with the source switched off the maximum e(t.) is 8.4, the
maximum of £(t.) for the overall case being 2.8. Making the transition to an
edge region of about 30 cm radial extent and assuming that the typical radial
macroscale lengths are around 5 cm, i.e. considering a large tokamak device
like ITER, this means time savings of the order of a factor 15 (for the entire
time interval) or 40 (for the time interval with the source switched off).

The procedure used to determine the statistically stationary state and the
respective averaged mesoscale flux (I') works properly and leads to a consistent
relation between (I') and the input gradient 9,no. However, for about one
third of the cases where a local ATTEMPT simulation is started, the maximum

144



7.3. RESULTS OF THE COUPLED CODE SYSTEM

number N™* of internal ATTEMPT iterations is reached for this specific
problem. At the same time, the runs with largest input gradient d,ny ~ —0.5
can be related to the longest runtimes ¢.(n) of the local ATTEMPT simulations.

To circumvent this issue, there are basically two possibilities: Firstly, to increase
NP which will increase the accuracy of the simulations but diminish the
time savings. Secondly, to lower the maximum gradient 0,7yax further, in the
present case from -0.5 to -0.75, for instance. By doing this the number of local
ATTEMPT simulations with rather long runtimes can be reduced and the time
savings increased while not affecting the accuracy significantly.

e The overall performance of the different coupled code simulations among each
other can be compared by evaluating the ratio n(T")/e(t.). The cases L.3 and
H.3 with a mainly convective macroscale transport model, 5, = 0.25, and low
limit parameters d; and ds, can be highlighted as rather inefficient (regarding
the time savings) and inaccurate (regarding the comparison with the reference
non-local simulation) while the cases L.1 and H.1 with 5, = 1 exhibit the
smallest values of n(I') /e(¢.). The latter multiscale simulation corresponds to
an error of n(T") & 23 and a speedup of about a factor 2 (potentially 10 for a
larger edge area of gy, &~ 30 cm).

From these results a number of conclusions can be drawn regarding the design of
an efficient two-dimensional coupled code system, as it is investigated in chapter 8.
There, the large scale code B2 evolves the macroscale profiles of ng, uj, To;, and
Thoe, while for previously determined radial regions local ATTEMPT simulations are
started. This means that the averaged mesoscale terms as well as the transport
coefficients have a radial and a poloidal dependence. It is assumed here that the times
0tg, and dt,, will be approximately the same as for the one-dimensional problem,
assuming that the statistically stationary state at one radial and poloidal position is
reached at the same time when the whole system reaches the statistically stationary
state.

The following points should be highlighted regarding a two-dimensional coupled code
system:

e To evaluate the agreement between coupled code simulation and the reference
results several quantities should be compared. As it was shown above the flux
error 7(T") is better suited for the evaluation of the simulations than the error
n(n) of the density due to disparate time scales for the typical transport times
and the fluctuations of the fluxes. Note that while the macroscale transport
model M did not influence 7(n) greatly this might change when it comes to
statistically stationary problems.

e For a good agreement of the coupled code results with experimental measure-
ments and/or global mesoscale simulations, the choice of the damping term
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v(7) and, consequently, that of the dissipation coefficients s(&) and s, (&)
has to be assessed. Part of this analysis should be a comparison of the local
mesoscale simulations with experimental results. A sensitivity study regarding
these parameters should be carried out to determine the magnitude of influence
they have on the simulation results.

The coupling procedure analyzed in this chapter uses a dynamic determination
of At,p so that Aty is chosen corresponding to the macroscale dynamics. This
procedure is advantageous regarding the time savings and the accuracy of the
coupled code simulations and should therefore be kept. However, moving to
two-dimensional simulations, the number of input parameters for the local
mesoscale code increases: not only the gradient d,n¢ may then be used as an
input parameter but also the density ng, the temperatures Ty, and Tg., etc..
Therefore, one can expect that At,;, decreases since there are both more spatial
positions as well as more quantities for which the deviation r; may exceed the
limit parameter d; (compare fig. 7.2, (L)). To prevent that local mesoscale
simulations are started too often without the results changing significantly, the
sensitivity of the local mesoscale system on the macroscale input parameters
should be evaluated. The results can then also be used to determine adequate
limit parameters do for the re-use of previously determined mesoscale results,
see fig. 7.2, (B). In the 1D coupled code simulations in 67.3% of the cases
previously determined fluxes could be re-used, identifying this sequential part
of the coupled code system as crucial to increase time savings significantly.

The time savings can be additionally improved if the adequate limits for the
macroscale input parameters and a minimal flux are set, like it was done here
with 0;Mmax. By this procedure it can be decided in which cases a drift fluid
simulation will provide significantly larger transport than that determined by
the artificial dissipation.

Even though actual simulations are needed to answer the question regarding the
potential time savings of a two-dimensional coupled code system it is most likely
that the lower limits for the characteristic times and lengths of the macroscale
dynamics have to be of the order of milliseconds and centimeters if the coupled code
system should be faster than a non-local ATTEMPT simulation. In this regime, the
speedup factor £(t.) can potentially be of the order of ten. However, if one moves
to significantly longer macroscale profile lengths (= 5 cm) and a typical evolution
time of the order of e(t.) & 7 (ap) ~ 10 ms, a speedup factor (t.) of the order of
100 might become achievable.
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8. Simulations with the
B2-ATTEMPT coupled code
system

The one-dimensional coupled code system discussed in the previous chapter 7 is
extended for the realization of the specific multiscale model outlined in chapter
5 in form of the B2-ATTEMPT coupled code system. The extension basically
consists of replacing the one-dimensional code of the 1D coupled code system by
the B2 large scale code [28, 29, 4]. Instead of evolving only the macroscale density
ng it also determines the profiles of the parallel ion velocity ug), and the ion and
electron temperatures Ty, and Ty.. The local version of the ATTEMPT code is
again employed for the local mesoscale simulations. The coupled code procedure into
which these two codes are embedded is basically the same as the procedure used for
the one-dimensional cases of chapter 7, with slight modifications to adjust it to the
requirements of the two-dimensional configuration.

The main objective of the B2-ATTEMPT system is to provide a coupled code system
in which the arbitrary particle transport coefficients used in B2 are replaced by
profiles of radially and poloidally varying transport coefficients which are based on a
local drift fluid model. These coefficients should provide radial particle fluxes which
are of the order of magnitude as those found experimentally as well as a poloidal
dependence which accounts for the ballooning character of transport, i.e. increased
transport on the low field side of the tokamak device, e.g. see [106].

This chapter is structured as follows. In paragraph 8.1, the straightforward derivation
of the B2 model from the large scale model for the plasma edge of chapter 3 is outlined.
The 2D coupled code system is presented in paragraph 8.2. In paragraph 8.3, the
results of the 2D coupled code system are compared to simulations by D. Gray [17]
and associated experimental results, the focus being on the coupling regarding the
radial particle flux and statistically stationary cases. The use of different macroscale
transport models and the effect of a poloidal dependence of transport coefficients are
discussed in paragraphs 8.3.1 and 8.3.2, respectively. The results of this chapter are
summarized in paragraph 8.3.3.



CHAPTER 8. SIMULATIONS WITH THE B2-ATTEMPT COUPLED CODE
SYSTEM

8.1. Multiscale model of the B2-ATTEMPT system

The B2 model for a toroidal coordinate system is derived from the macroscale part
of the specific multiscale model of chapter 5, consisting of egs. (5.1) to (5.4).

For the derivation the assumptions of the self-contained large scale edge model of
paragraphs 3.3.1 and 3.3.2 are used, adding the assumption that the perpendicular
anomalous transport is dominated by the transport in radial direction so that its
diamagnetic component within the flux surfaces can be neglected. This means that

- - ~ 1 09
V.{Ha) = V- ([u,) = V2T ith VP = ——— ; 8.1
(i) = V- Giag) = VOO w P= pan o 6D
where /g is the Jacobian determinant of the coordinate system used and the h; are
the metric coefficients. If the coordinate system is orthogonal like it is the case for
the toroidal coordinate system employed here VP is related to the divergence of a

vector a by 1
19 (*}{%) _ ;V?W. (8.2)

V-.a = .

2 Jiou
For the terms of the form (@ - V1) which appear in the macroscale part of the
specific multiscale model one has

(- Vi) = =V - (DL Vuy) . (8.3)

Note also that an adjusted version of eq. (3.52) holds:
Naz = manao D1 Koz = NaoD1 , (84)

where the index a refers to the particle species. Even though relation (8.4) is to be
implemented in future to relate the anomalous transport coefficients 7,, and x4, to
D, Nee and kg, are currently arbitrary input parameters chosen by the modeler.
Nevertheless, in the derivation below relation (8.4) is used to replace the terms
maneoD 1 and neD . It is also assumed that the radial direction of the toroidal
coordinate system is always normal to the flux surfaces and that the poloidal direction
always lies within the flux surfaces. This is true for circular (regarding a poloidal
cut) and concentrically nested flux surfaces centered within the tokamak vessel, the
configuration which is assumed here.

With the assumptions outlined above the ion particle balance (5.1) for B2 becomes:

(971/0 =~ By ic
E + VE<F> + VIG? ('UO'LHOB) = SOin' (85)
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Due to the assumption of toroidal symmetry and wo = o the poloidal and toroidal
velocity components are determined by ujo:

B B
Upy = Eeunm Ugp = ﬁuuo. (8-6)

The total parallel momentum balance of B2 is derived from eq. (5.2) and yields:

0 ~ By
a('minouuo) + VP <'m,z-uH0(F) — nmvxuuo> + VP (mmouﬁOB — Th‘gng“))

B
= —ﬁVg(p0i+p0€) + Sofimv (8.7)

where the approximation

[V : HOi] I = —VeD (eruuo) (8.8)

was used. The ion energy balance of B2 is derived from eq. (5.3) and gives:

0 (3 1
& <2n0T0¢ + Zminou%)
3

3 ~ 1 ~ 1

5 B, 1 . B 1
+ Vlo? (277,()T0inBG + gmmouﬁoﬁ — KkigVolp — 277,*9V9’LL|20>

B )
= fu”()ﬁVQ(noTOC) — W Va(noToe) + Qoui + Sk - (8.9)

For the electron energy balance of B2, basing on eq. (5.4), one finds:

0 (3 3 ~ 3 5 B
5 (2 n0T0i> + V2 <2 Toe(T') — 5 "ﬂeszT05> +Vy (2 noTOGUHOEB - ’{59V9T0‘3>
BG * ic
= o Vo (noToe) + w:Va(noToe) + Qo + Sii - (8.10)

The basic input parameters of the B2 model are the ion viscosities 1., 79, the ion
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and electron thermal conductivities iz, Kig, Kez, ke, and the source terms S,
Sjoimv Sier., and Si,.. A couple of terms has been neglected in the derivation for
simplification: The term 2m;nou},V,ujo on the rhs of the momentum balance (8.7),
the terms nim(VmuHO)Q, 3nouiV, Ty, and mmou;Vmuﬁo on the rhs of the ion energy
balance (8.9), and the term 3nou’V, Ty on the rhs of the electron energy balance
(compare the corresponding balances (3.55), (3.56), and (3.57) of the self-contained
large scale model which still contain these terms). The term u%V,(noT.), appearing
on the rhs of the ion and electron energy balances (8.9) and (8.10), respectively,
with alternating sign, is added to account for a radial pressure gradient. Egs.
(8.5), (8.7), (8.9), and (8.10) are solved by the finite-volume spatial discretization
outlined by Patankar in [107] on a non-uniform staggered mesh, using a fully implicit
discretization in time.

For the mesoscale part, the local version of the ATTEMPT code is used, given by
egs. (7.12) to (7.15), as it was the case for the one-dimensional coupled code system
of chapter 7.

8.2. Outline of the 2D coupling procedure

The coupling procedure for the B2-ATTEMPT coupled code system is similar to the
procedure used for the 1D coupled code simulations of chapter 7. An explanatory
flowchart is shown in fig. 8.1. The most significant changes compared to the 1D
coupled code simulations are as follows, the major letters in brackets referring to fig.
8.1:

e On the macroscale, only stationary solutions are considered: dcg/dt = 0.

e The coupling procedure is fully concurrent, i.e. no previously determined fluxes
are re-used. This feature is to be included in the next version of the 2D coupled
code system.

e Not only the macroscale density gradient d,ng but also the macroscale density
ng, the macroscale electron temperature Ty., and the minor radius a are used
as input parameters for the local ATTEMPT runs (B).

e From the local ATTEMPT simulations, a poloidally dependent profile of
macroscale transport coefficients is determined (F).

e A relaxation factor a, to relax the macroscale transport coefficients is used
(©).

e The coupled code simulation is finished when two consecutive profiles of
transport coefficients differ from each other on average less than an arbitrary
limit parameter e; set by the modeler (L), here e; = 0.05.
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Figure 8.1.: Sketch of a coupled code simulation for the B2-ATTEMPT coupled code
system. See paragraph 8.2 for an explanation of the parameters and proce-
dures.

The check for the averaged mesoscale flux (I') at (E) is the same that is used for the
one-dimensional coupled code simulations (see paragraph 7.1.4 for the explanation
of the procedure). For each global iteration i the B2 code runs for a large number
of time steps, which are here to be understood as iterative steps, until the residua
for the separate equations are negligible. The macroscale transport model used to
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represent the averaged mesoscale terms (na,) in the B2 code is a combination of a
diffusive and convective model:

(I'Y = nov. — Doyng , (8.11)

with the transport coefficients being determined by

vi(r,0) = a, (1 — ﬂn)% + (1 —a) v Y, 0) (8.12)

(D)™ (6)

i1
0y

D(z,0) = —a, Bp + (1 —a,) D7z, 0) . (8.13)
The index [ refers to the radial zone of the B2 simulation domain for which the local
ATTEMPT simulation was carried out (see below). For each given radial coordinate
x the corresponding radial zone [ can be unambiguously determined. The parameter
Bp determines the diffusive part of the flux while the remaining part is represented
by the convective velocity v.. The relaxation factor a, chosen for the simulations
presented below is 0.3.

The determination of the averaged mesoscale flux (I')* and the corresponding
transport coefficients of the macroscale transport model is sketched in fig. 8.2 and
carried out as follows. Before starting the coupled code simulation, the B2 simulation
domain is poloidally divided into N§ zones of extent §6,, and radially divided into
N¢ equidistant zones of extent dx,, which are referred to by the index [. Of the
latter N¢ zones NI™ are situated in the edge region of closed magnetic flux surfaces
for which local ATTEMPT simulations are started. For the remaining radial zones
within the SOL the poloidal profile of macroscale transport coefficients of the radial
zone closest to the SOL for which local ATTEMPT simulations are carried out is
used.

For each of the N!™ radial zones in the region of closed flux surfaces a separate local
ATTEMPT simulation is started which can be associated with the differently colored
rings in fig. 8.2. The input parameters (ng) . s, (9270)x 655 (T0e)a ts, and (ao)q s are
the averages of ng, 0,19, Toe, and ag over all flux surfaces within the respective radial
zone of the B2 simulation domain. Once the local ATTEMPT simulation has reached
its statistically stationary state — which is determined via the time trace of T'(t) as
for the 1D coupled code cases — the profile of the poloidally dependent averaged
flux (T')*!(0) is determined. For this purpose first a radial average of the flux from
the local ATTEMPT simulation is carried out. Then for each of the N§ poloidal
zones Ni‘g equidistant interpolation points are chosen in poloidal direction over which
the flux is again averaged. The toroidal angle ¢ is kept fixed for calculating these
averages. The final profile of (I')%() is used to determine the transport coefficients
ve(z,0) and D(z,0) (see eq. (8.12) and (8.13)) for the specific radial zone of the
B2 simulation domain. The procedure is subsequently carried out for all remaining
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poloidal direction
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determining poloidal profile
of transport coefficients from local ATTEMPT simulation
statistically stationary state for all radial region of B2
of local ATTEMPT simulations -~

Figure 8.2.: Sketch of a coupling loop of the B2-ATTEMPT coupled code system.

line limiter

radial zones until the complete profiles of v.(x,#) and D(z,#) are handed back to
B2.

8.3. Results of the 2D coupled code system

The results of the 2D coupled code system are compared here to experimental
measurements and former modeling results with the B2-EIRENE code [14] provided
by D. Gray [17] for the tokamak TEXTOR [108] (see fig. B.2). The advantage of the
study presented in [17] is that the anomalous particle transport coefficients v, and
D were chosen so that the resulting profiles of plasma quantities of the B2-EIRENE
simulations coincided with the measured radial profiles at the outer midplane (6 = 0°).
With the simulated profiles and the employed transport coefficients at hand one can
reconstruct the respective radial particle fluxes and the effective diffusion coefficient
which can then be compared to the results of the B2-ATTEMPT simulations. Hence,
it can be evaluated if the latter coupled code system self-consistently provides
transport coefficients of the order of those being used to fit simulated profiles to
experimental data.

The focus of the comparison presented here is on the cases 3, 4, and 5 shown in [17]
(see fig. B.2). For each of these cases three coupled code simulations with different
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coupling mesoscale macroscale
parameters | local ATTEMPT B2
Ry 175m || NA 16 NB2 32
By 225T | NA 64 NB2 48
Qo 3 Nf 256 Az, 3.125 mm
8 2 N 9 A,  T7.5°
m; 2u Ot 1.63-1078
Nglcim 4 0T 1 ps
Ne s Sy 0.7Lp,
Ng 12 L, 5 cm
0%ay 125 cm || NP 10
80 30° NA 5000
Tsim 10 cm Strun 8.15-107% s
€1 ay 0.5
as 1/7
as 0.15
ay 1/40
Table 8.1.: Parameters of the B2-ATTEMPT coupled code cases.
np T T W N NN
case | [101 m~3] [eV] ms~! || Bo=1 ﬁD—O 7 Br=0.5
3 1.8 130 0. 69 -6.9 5 9
4 1.0 130 0.0 4 8
5 3.8 75 1 51 -7.6 6 1 11

Table 8.2.: Values ni', Ti¥, and Tg2 for Dirichlet boundary conditions at the inner radial

boundary of the B2 domain for the B2-ATTEMPT simulations, transport
coefficients D, v, as used by D. Gray for the B2-EIRENE simulations to
fit the experimental measurements [17], and global iterations N; of the B2-
ATTEMPT system until the convergence criteria of the coupled code system

are met.

macroscale transport models were carried out, employing values of 1, 0.75, and 0.5
for 8. The boundary conditions of the B2 code of the coupled code system were
chosen as similar as possible to those being employed for the B2-EIRENE simulations

outlined in [17]. Not all the necessary data is given in [17] for this purpose; in those

cases, the boundary conditions were chosen with respect to the simulation results

shown in [17].

At the inner simulation boundary in radial direction a constant electron density and
ion and electron temperatures are assumed, with the exact values given in table
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8.2, being reconstructed from [17]. At the outer radial boundary decay lengths
An = A, = Ar, = 2 cm for the radial profiles of the density and the temperatures
are set. The parallel velocity uo is set to zero at the inner radial boundary; at the
outer radial boundary m;noujujo = 0 has to be fulfilled. The coefficients for the
anomalous heat conduction are the same for both electrons and ions, ki, = Keg.

In the edge region with closed flux surfaces periodic boundary conditions are used in
poloidal direction. At the surfaces of the line limiter at § = 315° within the SOL
sheath boundary conditions were prescribed. These are as follows:

dng
-9 = 0 8.14
09 ’ (8.14)
Ti Te
o = 5 = %10 (8.15)
my
2
miNoUjjpUos
G = OinouopTo; + fﬂo, (8.16)
Geo = (8 + 3.1)nguesToe (8.17)

with §; = 2.5, 6. = 1.7, and ¢ and g. being the ion and electron heat fluxes
in poloidal direction, respectively. The minimal neutral particle model of B2 is
employed [29], meaning that the particle influx is sent back into the main plasma
with a recycling rate of 65% and up to a poloidal extent of 90° away from the limiter
plates.

The two main differences of the B2-ATTEMPT from the B2-EIRENE simulations are
(apart from using the ATTEMPT code in the former system to determine the radial
particle transport coefficients): the simplified shape of the toroidal limiter which is
taken to be a line limiter in B2-ATTEMPT system but has a mushroom-like poloidal
cross section in the B2-EIRENE simulations (compare fig. B.1)), and the simplified
neutral model of B2-ATTEMPT which is replaced by EIRENE calculations in the
B2-EIRENE system. The influence of these alterations on the simulation results is
discussed below.

The simulation results of the B2-ATTEMPT system for case 3, f, = 1, are exemplarily
shown in fig. 8.3. The Mach number M,, shown in the right column, top, is given by
the parallel velocity, divided by the local speed of sound, M, (x, 0) = uo(z,0)/cs(x, 0).
The profiles of ng, To;, and Ty, show only a marginal poloidal dependence (except for
To; which drops at the limiter surfaces around § = 315° for = ~ 46 c¢m). This means
that the assumption of constant values of d,ng, ng, and Ty, on the flux surfaces
which is made for the local ATTEMPT simulations is reasonable. This is not the
case for the poloidal and radial fluxes I'gg and I';g. Both are larger in the poloidal
region at the LFS from 6 = 315° to 135°, seen in counterclockwise direction, than
in the region at the HFS from 6 = 135° to # = 315°. The respective profile of D,
shown in fig. 8.5, right column, top, shows a similar dependence, with the highest
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Figure 8.3.: Plasma profiles of the B2-ATTEMPT simulations for case 3 with gy = 1.

values of D at the LFS around # = 0° and thus an increased radial flux. However,
the poloidal asymmetry of 'y, and ['gp regarding the limiter position is also visible if
poloidally homogeneous transport coefficients are used in the B2 simulations. It can
be explained by the fact that the region from 6 = 315° to 8 = 135° corresponds to a
larger volume than the region from 6 = 135° to # = 315° since it is situated at the
outer side of the torus. This means that effectively more particles are accelerated
towards the target plates at the LFS due to the existing pressure drop in front of the
limiter than at the HF'S. This increased poloidal flux I'gy at the LFS subsequently
leads to an increased radial flux 'y, which ensures that the resulting pressure (and
density) profile is homogeneous in poloidal direction.

To compare the results of the B2-ATTEMPT system with the B2-EIRENE simulations
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Figure 8.4.: Profiles of the density (left column) and the electron temperature (right
column) from the B2-ATTEMPT simulations (ccs) and the B2-EIRENE

simulations from the paper by D. Gray [17].
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the radial profiles of ng and Tp. for the outer midplane (6 = 0°) are shown in fig. 8.4.
The black, dotted lines refer to the B2-EIRENE profiles that were obtained by D.
Gray by adjusting the spatially constant transport coefficients D and v, in B2 so
that the simulated profiles coincided with the experimentally measured profiles.
For cases 3 and 4, the values of ny and Tg. predicted by the B2-ATTEMPT coupled
code system are somewhat lower than those given by the B2-EIRENE simulations
with minimum values around 60 to 80% of the B2-EIRENE predictions. For case 5
the density drops to values of around 40% of the B2-EIRENE simulations. The main
qualitative difference between the B2-ATTEMPT and B2-EIRENE simulations is
that in the latter the profiles of ny and T, are roughly linear in radial direction within
the region of closed flux surfaces while the B2-ATTEMPT simulations show a slight
trend towards an exponential decay. This can be explained by the simplified line
limiter model used in the B2-ATTEMPT simulations which leads to zero reflection
of particles in radial direction (compare fig. 8.2). In [17] the limiter has a component
facing the plasma also in radial direction (compare fig. B.1) which results in reflection
of particles into the edge region of closed flux surfaces and thus an increase of density
there. An associated effect can be observed for Ty, which, in the B2-ATTEMPT
simulations, is higher in the region of closed flux surfaces than predicted by the
B2-EIRENE simulations. In the latter simulations the neutral particles which are
reflected from the plasma facing surface of the limiter in radial direction can be
re-ionized in the region of closed flux surfaces and therefore may lead to an energy
loss and a subsequent temperature decrease.

In fig. 8.5, left column, the diffusion coefficient D of the B2-ATTEMPT simulations
with 8, = 1 is shown (continuous, red lines), together with the effective diffusion
coefficients from the B2-EIRENE simulations (black, dotted lines). The latter profiles
were reconstructed from the profiles of ny of the B2-EIRENE simulations (see fig.
B.2) and the transport coefficients D and v, employed in these simulations (see table
8.2). While for case 5 the diffusion coefficient determined by B2-ATTEMPT is up
to 80% smaller than the B2-EIRENE effective D, this deviation is reduced for the
cases 3 and 4: here, the deviation is only around 10 to 30%. In cases 3 and 5, the
trend of an increasing effective diffusion coefficient when moving radially outwards
can also be found in the B2-ATTEMPT simulations.

For a better evaluation of B2-ATTEMPT results regarding D one can compare them
with the predictions of radial transport from the classical and neoclassical transport
theory. For the former one can estimate D as [64]

2
p
Dy ~ =2, 8.18
! . (8.18)
where 7; is the ion-ion collision time as given by eq. (3.4b). With edge conditions
as for the cases 3 and 4 (Tpy; ~ 80 eV, ng ~ 1 - 10'° m~3) one can estimate the ion
Larmor radius with ps ~ 0.5 mm and the ion collision time with 7; = 0.1 ms. One

158



8.3. RESULTS OF THE 2D COUPLED CODE SYSTEM

case 3
0.60 —— 1
ccs, fo=1 —
0.55 | Gray, case 3 w |
050}
T 045 =
[%]
40+ ~
£ 332 £
el Q
Q 030}
0.25 |
0.20 . . . .
40 42 44 46 48 50
x [cm]
case 4
0.9
08
= 0.7
! A 82
| .
o | o 04
1S ccs, By =1 — E 8%
E Gray, case 4 = Q -
a0 4 44 46 48 50
x [cm]
case 5
1.6 : :
1.4 ¢ ™
. 12} e L
‘m 10} ,p"‘, ccs, fp=1,B — ‘—I'<_'
e ccs, fp=1,C — ")
NE 0.8 ¢ ..!. Gray, case 5 v NE
— 06} ¢ £
Q0 04} Q
0.0

40 42 44 46 48 50

x [em]
Figure 8.5.: Left column: Final profiles of the diffusion coefficient from the B2-
ATTEMPT simulations (ccs) and the effective diffusion coefficient from
B2-EIRENE simulations of the paper by D. Gray [17]. The latter values have
been reconstructed from fig. B.2 by calculating the radial flux, employing
the given transport coefficients D and v., and then determining the radially
heterogeneous diffusion coefficient (which is shown in the plots) via division
by the radial density gradient. Right column: Final profiles of the diffusion
coefficients D of the B2-ATTEMPT simulations with S, = 1. The color
coding refers to the value on the z axis.
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obtains

Das =~ 0.0025 m? st . 8.19
cls

For a neoclassical estimate of D one has [64]:

2

Ps

Ti

Dieo ~ (*+1)=> ~ 0.025m*s™". (8.20)
Dyeo and D s underestimate the radial particle diffusion coefficient by one and two
orders of magnitude, respectively. Typical D found by the B2-ATTEMPT simulations
and those used in the B2-EIRENE simulations are of the order of 0.5 m? s~!. This
means that the B2-ATTEMPT systems provides adequate values of D for the radial
particle transport while at the same time also the input values of ng, d,ng and Tp.
are close to experimentally found profiles.

To check for possible reasons for the comparably strong deviation of the diffusion
coefficient by the B2-ATTEMPT system for case 5 from the effective diffusion
coefficient of the B2-EIRENE simulations two additional simulations have been
carried out. For case 5B the ATTEMPT domain in toroidal direction was increased
to N, A = 512 cells instead of 256 (keeping the cell width constant) so that only N; = 4
flux tubeb were needed to cover the whole torus instead of 9 flux tubes. Regarding
the local ATTEMPT simulations this means the inclusion of drift fluid dynamics
with lower poloidal mode numbers down to m = 12, whereas for the previous case
with Ny = 9 the lower limit was m = 27. For case 5C the perpendicular dissipation
coefficients s, (o) (see eq. (7.20)) as well as the damping term -y, of the constant
part of 7 (see eq. (7.21)) were reduced by a factor of two.

As one can see by the violet (case 5B) and gray (case 5C) profiles in fig. 8.5, left
column, bottom, both variations of the input parameters do not affect strongly
the resulting profile of D. Hence, the lower diffusion coefficient associated to the
B2-ATTEMPT simulation most likely has a different reason than the limitation
of the poloidal mode numbers regarding the local mesoscale simulations or too
large dissipation and damping coefficients. One possibility is that inclusion of
the temperature dynamics in the mesoscale simulation could lead to an additional
particle flux (e.g. due to convective energy transport) and thus to an increase in the
particle diffusion coefficient. Also, effects of a radial electric field on the macroscale
have not been included yet. However, there is also the possibility that the density
measurements for case 5 in [17] might be erroneous: the Greenwald density limit [50],
an upper operational density limit above which disruptions become more frequent, is
5.3 -10' m~3 for this TEXTOR experiment. The maximum density measured in
the edge at = 33 cm is already around 5 - 10* m~3 (compare fig. B.2) so that a
further density increase towards the core region (which usually is observed) becomes
almost impossible without exceeding the Greenwald limit.
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Figure 8.6.: Left: Absolute value of the radial density gradient in SI units |0;n¢| [SI]
and in the ATTEMPT scaling |9;n0| [AS]. Right: Corresponding scaled
plasma beta Bp and averaged mesoscale flux (f) The data is obtained from
the local ATTEMPT simulations for case 3, 8, = 1, last iteration of the
coupled simulation.

Next, the characteristics of the transport coefficients as determined with the local
ATTEMPT data are analyzed. For this purpose the final profiles of the diffusion
coefficients are shown in fig. 8.5, right column, for the cases 3, 4, and 5 with g, = 1.
All profiles reflect the poloidal dependence of the averaged mesoscale flux with the
lowest flux (and lowest D) at the HFS (# = 180°) and the highest flux at the LFS
(6 = 0°), the region of ‘bad curvature’ The variation of D with the poloidal angle 6
is largest for case 5 where D varies by a factor two between the HFS and the LFS
for radial positions x &~ 42 cm. The poloidal variation of D is considerably smaller
negligible near the inner simulation boundary (z & 40.5 cm).

Besides the poloidal variation D(z,6) shows the tendency to increase in radial
direction outwards before slightly dropping in the radial domain of closed flux
surfaces closest to the SOL around x = 44 cm. This trend is explained below for
the exemplary case 3. Moving in radial direction outwards the scaled gradient d,ng
[AS] increases: even though the physical gradient d,n [SI] decreases, as it can be
seen from the green graph in fig. 8.6, left, the density ng decreases as well (compare
fig. 8.4, left column, top), effectively leading to an increase of the gradient d,ng [AS]
in the ATTEMPT scaling, given by 9,n9 = L [0.10]%/ng (see fig. 8.6, left, blue
graph). This increases the drive for the drift fluid dynamics.

However, when moving in radial direction outwards one finds that there is an opposing
trend leading to a reduction of the drive of the drift fluid dynamics: the temperature
decreases, resulting in a diminished plasma pressure and therefore a decreasing
plasma beta (3,. This is reflected by the scaled plasma beta Bp, depicted in fig. 8.6,
right, red graph, which is defined as [;p = (qRo/L1)*B,. A decreasing Bp means that
the confinement of the plasma by the external magnetic field increases and transport
in radial direction is diminished. Moving in radial direction outwards this effect
outbalances the increase of d,ng [AS] around x = 44 cm, leading to decrease in the
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averaged mesoscale flux, see fig. 8.6, right, black graph, and subsequently a decreasing
diffusion coefficient. It is also stronger than the effect of a radially decreasing value
of |0zno| [SI] which would normally increase D (since D = T, /|0z10]).

8.3.1. Assessment of different macroscale transport models

For each of the three cases from [17] B2-ATTEMPT simulations with three different
macroscale transport models were carried out. The transport models are specified
by the value of §, which indicates the part of the averaged mesoscale flux which is
represented by a diffusive model while the remaining part is modeled via a convective
velocity v.. Comparing the resulting profiles of these simulations assesses the influence
the choice of the macroscale transport model might have on the simulation results. In
the stationary state the macroscale flux I'p, should match the values of the averaged
mesoscale fluxes (I') and should not differ for different macroscale transport models
as it can be illustrated by the following reasoning. For the stationary case it holds:

Y, = (1-5) [arvi +(1- a,.)vf;_l]nf) - o {a,.Di +(1- aT)Di_l]awnf)

Q

(1= Bp)ving — BoD'nf

(O) (e as) () (g ass) 5
= ny + Bo Dyni 0x1y)

(1= Fo)

~ (D)(ah)es) - (8.21)

The vector (o), s refers to the macroscale input values for the local mesoscale
simulation for global iteration 4, such as (1), (Oxn0)z s, etc.. In the step from
the first to the second line it has been used that the transport coefficients from
iteration ¢ — 1 and ¢ are approximately identical due to the convergence criterion of
the coupled code system. In the step from the third to the fourth line it has been
assumed that the profiles of ng and 0,nq of iterations ¢ — 1 and i are approximately
the same since for both B2 simulations similar macroscale transport coefficients v,
and D were used. Eq. (8.21) therefore states that in the case of convergence of the
coupled code system the flux T'y(x, ) of the final global iteration corresponds to the
averaged mesoscale flux given by the local mesoscale model independently from the
employed macroscale transport model.

In fig. (8.7) the variation n(«) between the simulations with 5, = 0.75 and S, = 0.5,
compared to the simulation with 3, = 1 for a = ng, o, Tos, Toe, T'og, and Iy, is
shown. The value of 7(«) is defined as

_ |ao(Bo=X) — ao(Br=1)|
) <max{<|ao<6n—1>>Tsim,oeo(ﬁf,—1)}>

(8.22)

Tsim
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Figure 8.7.: Averaged variation of the plasma quantities of the B2-ATTEMPT simulations

with G, = 0.75 and Sp = 0.5 from the B2-ATTEMPT simulation with g, = 1
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Figure 8.8.: Absolute variation of the poloidal (left) and radial flux (right) of the simula-
tion with By = 0.5 from the simulation with 8, = 1 for case 3.

where X is either 0.75 or 0.5 and the average (...),  refers to the average over
the whole B2 simulation domain of the final global iteration. For ng, ujo , To;, and
Toe, the average variation is below 5% for all cases, showing a tendency to slightly
increase the smaller 8. A higher average deviation is found for the radial and the
poloidal flux, shown in fig. (8.7), right. Here, 1(I'g;) reaches values of up to 12% for
case 3, B = 0.5.

To examine this variation of the fluxes regarding its spatial dependency the absolute
deviation ag(fp=0.5) — ao(fp =1) of the poloidal and radial fluxes of the simulation
with B, = 0.5 from the simulation with 5, = 1 is plotted in fig. 8.8. For I'gy, fig. 8.8,
left, the flux onto the limiter is higher for the simulation with 8, = 0.5!, reaching an
absolute deviation of up 5- 10 m~2 s~!. Compared to the typical total magnitudes
of the poloidal flux, the maximum value of I'gy being around 80 - 10'® m~2 s for

INote that the flux I'gy onto the limiter changes its sign, depending on which side is looked at.
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Figure 8.9.: Averaged variation of the results of the B2-ATTEMPT simulations with
poloidally varying diffusion coefficient D = D(z,6) from the results of the
simulations with poloidally homogeneous D = D(z) for cases 3, 4, and 5
with G, = 1.

the right side of the limiter and 40 - 101 m=2 s~! for its left side, this is a rather
small variation.

While the poloidal flux to the limiter increases for S, = 0.5 the radial flux changes
significantly only for the flux surfaces close to x = 0.46 cm: I'g, decreases here as
compared to the simulation with 5, = 1, with maximum values of the variations of
around 1.5- 10 m=2 s~!. A typical reference value for the simulation with 3, = 1
is Tg, = 6 - 101 m~2 s~ (compare fig. 8.3, right column, third row). Even though
the relative variation of T'g, is larger than that of T'gg, it is not large enough to alter
the plasma profiles resulting from simulations with different 3, significantly.

8.3.2. Poloidal variation of transport coefficients

To conclude this analysis of the two-dimensional coupled code simulations it is
investigated in how far the poloidal dependence of the diffusion coefficient D = D(z, )
influences the macroscale plasma profile. The focus is on the simulations with a purely
diffusive macroscale transport model (8, = 1). For the purpose of comparison, B2-
ATTEMPT coupled code simulations were carried out where the poloidal dependence
of D has been neglected. D%(x) is then given by

(D)

i~
0

D(z) = D(z;) = —on B + (1-a,) D 2), (8.23)

where the average used for (I')* includes the average over the whole mesoscale
simulation domain (as for the one-dimensional coupled code cases of chapter 7).
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Figure 8.10.: Poloidal profiles of the radial flux of the B2-ATTEMPT simulations at
two radial positions (left column: = = 42.19 cm, right column: x = 47.19
cm) for cases 3, 4 and 5 with 8, = 1. The red graphs correspond to the
simulation where D = D(x) is poloidally homogeneous while for the blue
graph, the poloidal variation of D = D(z,6) was taken into account.
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Figure 8.11.: Left: Poloidal flux from the simulation with poloidally dependent D(z, )
minus the poloidal flux from the simulation with poloidally constant D(x).
Right: Poloidal profiles of the poloidal flux of the B2-ATTEMPT simula-
tions for radial positions x = 45.31 cm for cases 3, 4 and 5 with S, = 1. The
green graphs correspond to the simulation where D = D(x) is poloidally ho-
mogeneous while for the black graph, the poloidal variation of D = D(z, 6)
was taken into account.

The averaged variation n(«) of the simulations with D = D(x,6) from the simulations
with D = D(z) for the whole macroscale simulation domain is shown in fig. 8.9, n(«)
being calculated as given by eq. (8.22), only that not fy, is varied but the form of D.

The variation between the two models for D regarding ng, uo|, To;, and Ty, is below
3% for all cases. Only for the poloidal and radial flux, n(To,;) and n(Tg) reach values
of about 7% for case 5. Here, the poloidal variation of D is most pronounced, D(z, §)
varying up to a factor of two for a constant radial coordinate (compare fig. 8.5 for
the profiles of D(z,0)).

Poloidal profiles of the radial flux 'y, for two radial positions are shown in fig. 8.10.
While the plots in the left column (z = 42.19 cm) are from the region of closed flux
surfaces, those in the right column (z = 47.19 cm) are from the SOL, the limiter
plates being situated at the left border (right side of the limiter) and right border
(left side of the limiter) of the plot. As one can see Iy, shows a stronger poloidal
dependence where the poloidal dependency of radial transport is included, leading
to an increased radial flux at the LFS (6 = 0°, the region of bad curvature) and a
diminished flux at the HFS (# = 180°), the variation being around 10 to 30% for
x =42.19 cm. It corresponds to experimental findings of the ballooning character
of transport at the tokamak Tore Supra [106]. The variation of T'g, with 6 is less
pronounced in the SOL, with a typical variation around 10%.

The fact why the additional ballooning of the radial flux (that appears when taking
into account the poloidally dependent diffusion coefficients) does not influence
significantly the profiles of the plasma parameters can be explained by modified
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poloidal fluxes. In fig. 8.11, left, the poloidal flux from the simulation with poloidally
dependent D(z,#) minus the poloidal flux from the simulation with poloidally
constant D(z) is shown. In the region of closed flux surfaces the poloidal flux towards
the HF'S is increased (positive difference from 6 ~ 315° to 6 ~ 180° — additional
flux in counterclockwise direction, negative difference from 6 = 180° to 6 ~ 315°
additional flux in counterclockwise direction). This balances the diminished radial
flux at the HFS (see fig. 8.10, top, left) via transport from the LFS which sees
increased radial flux. The magnitude of the flux difference in radial and poloidal
direction coincides: while the additional radial flux is around 5 - 10'® m=2 s71 at its
maximum this is also the order of magnitude of the change in the poloidal flux. Note
also that in the region of open flux surfaces the poloidal flux towards the limiter is
slightly increased for poloidally varying D(z, ). However, this variation is negligible
as it is illustrated by fig. 8.11 where the poloidal profiles of the poloidal flux Iy for
the radial position z = 45.31 cm (in the SOL, right behind the limiter which extends
up to x = 45 cm) for the cases 3, 4, and 5 is shown.

8.3.3. Summary and conclusions

In this paragraph, the results of the two-dimensional coupled code simulations with
B2-ATTEMPT are summarized.

e Using the B2-ATTEMPT coupled code system to model the plasma edge for
the simulation of experiments at the tokamak TEXTOR leads to multiscale
simulations which converge after about ten global iterations under the given cri-
teria (variation of the transport coefficient profiles between two global iterations
lower than prescribed limit). Resulting plasma profiles of the density ng and
the electron temperature Ty, are comparable to experimental measurements.
The coupled code system accounts for the effects of varying particle density
gradient drive, collisionality, plasma beta, and minor radius on the local drift
fluid dynamics, resulting in a poloidally and radially inhomogeneous averaged
mesoscale flux and macroscale transport coefficients.

e Comparisons of B2-ATTEMPT simulations with B2-EIRENE simulations
performed by D. Gray [17] for TEXTOR experiments show that the diffusion
coefficients obtained by the local mesoscale simulations of ATTEMPT are
of the same order of magnitude as the effective diffusion coefficients used by
D. Gray to match experimental measurements. Also, profiles of the density
and electron temperature from B2-ATTEMPT simulations are similar to those
experimentally measured, the main differences being accounted for by a reduced
neutral model and a simplified limiter shape employed in the B2-ATTEMPT
simulations. For the cases 3 and 4 presented in [17] the diffusion coefficient
varies around 10 to 30% from the effective diffusion coefficients determined
with the data provided by the B2-EIRENE simulations of D. Gray at the outer
midplane. In contrast, estimates of radial diffusion by classical or neoclassical
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transport theory underestimate the transport by at least one order of magnitude.
For case 5 the significant deviations of the B2-ATTEMPT simulations from
the B2-EIRENE simulations and the extremely high density values close to
the Greenwald density limit given in [17] suggest that the corresponding
measurements presented in [17] might be erroneous.

In addition to the model of poloidally homogeneous transport coefficients
used in [17] the B2-ATTEMPT simulations provide a poloidal dependence of
transport coefficients which is in agreement with the ballooning of particle flux
found in experiments [106]. For the cases considered, the variation of the radial
flux in poloidal direction as compared to B2-ATTEMPT simulations where
no poloidal dependence of the flux was assumed, is around 10 to 30%. The
variation of the respective profiles of ng, u)j, 7o;, and Tp. due to this poloidal
dependence is rather low, showing maximum deviations around 3%. This is due
to balancing processes via poloidal fluxes which ensure homogeneous profiles
within one flux surface.

Employing different macroscale transport models in the B2 code of the B2-
ATTEMPT coupled code system, changing the division of the averaged radial
mesoscale flux into convective and diffusive parts, results in only small variation
in the profiles of ng, w0, To;, and Tp., the total averaged variation being below
5%. This result is in agreement with theoretical considerations stating that in
the stationary case the macroscale transport model should not influence the
plasma profiles obtained on the macroscale. For the radial and poloidal fluxes
Ty and T'gg the variation for different macroscale transport profiles is slightly
larger, however only resulting in a slight increase of the total particle flux to
the limiter plates of locally around 10%.
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9. Conclusions and Outlook

In this chapter, the results of chapters 2 to 8 are summarized and an outlook regarding
future investigations is given.

e Generic multiscale model for a fluid: Based on the hypothesis of a scale
separation and employing the Reynolds decomposition with the respective
averaging operator, the generic fluid balances for particle, momentum, and
energy can be used for the formulation of a multiscale model. The model
formulated here consists of a mesoscale part and a macroscale part and belongs
to the class of heterogeneous multiscale models. The scale separation means
that the typical times (&) and lengths A, (&) of processes on the mesoscale
are significantly smaller than the corresponding quantities 7 () and Ap(cy) of
the characteristic macroscale processes. The resulting balance equations for the
macroscale evolution are characterized by averaged mesoscale terms, describing
the averaged advection of the mesoscale density, velocity, or temperature,
respectively, by the mesoscale velocity. In the mesoscale balances these terms
are present as well with opposite sign to filter out any macroscale evolution
from the mesoscale and thus ensure a clear and enduring scale separation.
The macroscale quantities and their gradients enter the mesoscale balances as
constant parameters.

The objective of a coupled code system is to solve the multiscale fluid equa-
tions numerically. Its efficiency, represented by the savings of computational
resources compared to solving the full equations (including the mesoscale and
macroscale evolution), increases the more pronounced the scale separation is.
Macroscale transport models used in the macroscale part of the multiscale
approach aim at expressing the averaged mesoscale terms in form of macroscale
variables and transport coefficients which are determined with the mesoscale
data.

e Large scale description of the plasma edge: The properties of a tokamak
device and the Braginskii closure are used to specify the fluid of interest of
this thesis as a collisional, magnetized plasma. The large scale model for the
plasma edge, based on the macroscale part of the generic multiscale model and
the assumptions of the B2 model, is characterized by a differentiation between
the dynamics parallel and perpendicular to the magnetic field. It accounts
for the evolution of the density, parallel ion momentum, and ion and electron
temperature on the scale of a tokamak device (typical times around one second,
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typical lengths of the order of centimeters or above). For the self-contained
version of the large scale model, the averaged mesoscale terms are replaced by
a diffusive macroscale transport model with arbitrary transport coefficients
which is motivated by results of passive scalar system.

Drift fluid models for the plasma edge: The perpendicular dynamics
which are treated in an approximate way in the large scale model are accounted
for in detail by the drift fluid models presented in chapter 4. The ExB drift
and the diamagnetic drift are taken as dominant perpendicular velocities. The
corresponding drift fluid equations evolve the density, the ion and electron
momentum, the electric potential, and the perturbations of the equilibrium
magnetic field. The drift fluid models cover processes down to scales of
(@) ~ 1070 s and A\p (@) A ps. Its global version describes the evolution of the
system on both the mesoscale and macroscale. The associated local drift fluid
model which is obtained from the mesoscale part of the generic fluid model
under the assumptions of the global drift fluid model and a scale separation
describes only the mesoscale evolution of the system, taking the macroscale
quantities as constants.

Specific multiscale model: The specific multiscale model for the plasma
edge consists of the large scale model for the macroscale evolution of profiles
and the local drift fluid model for the mesoscale dynamics. The latter model is
simplified in so far as the temperature dynamics on the mesoscale are neglected.

Investigation of the relation between mesoscale and macroscale dy-
namics by means of a passive scalar system: The passive scalar system
investigated in chapter 6 is governed by the advection of a passive quantity by
a velocity field with arbitrary correlation length A.(v), correlation time 7.(v),
and root mean square velocity vgys. Earlier studies for small Kubo numbers
K <« 1 have shown that the macroscale behavior of the system is diffusive. The
corresponding diffusion coefficient is determined by the statistical characteris-
tics of the velocity field, D(K < 1) = vZ,,;7.(v), while on the mesoscale the
system dynamics is convective. In the present work it is shown by numerical
experiments that also in the regime of large Kubo numbers K > 1 (as believed
to be relevant for magnetic fusion edge plasmas) the macroscale transport
remains diffusive. This extends the applicability of the diffusion hypothesis
that is employed for the derivation of the self-contained large scale model. D
is given by a power law, D(K > 1) = 0.35 - 0274\ (v)]*?/[1.(v)]>%6. The
dependence of D on wvgys with an exponent of 0.74 is consistent with theoretical
considerations regarding percolation theory, the motion of particles or fluid
parcels through porous media.

Coupled code system: A combined concurrent-sequential coupling procedure
is developed for the one-dimensional coupled code system. In this context, an

170



algorithm for the determination of the statistically stationary state and the
corresponding averaging intervals for the non-local simulations is presented,
which is a well-known problem in the field of time series analysis. The algorithm
serves the specific needs of the coupling procedure employed here, including
a quick assessment of both the equilibration time 0ty and the characteristic
evolution time 7, () of the quantity of interest as well as a decision-making
process to determine the adequate length for averaging of the time trace
considered. Simulations with the 1D coupled code system proof that the
procedure works efficiently and consistently.

One-dimensional benchmark case: The results of the coupled code simula-
tions for a one-dimensional transient test problem which are performed here for
the first time for a time-dependent evolution of profiles in the tokamak plasma
edge show satisfactory agreement with the reference simulation, carried out
with the non-local version of the drift fluid code ATTEMPT. The test problem
consists of determining the evolution of the flux surface averaged density and
radial flux in the edge region in radial direction. Typical deviation of the
coupled code results regarding the reference simulation are between 4 and 6.5%
for the density and 19 and 41% for the radial particle flux. Further adjustment
of the damping term () employed in the local drift fluid equations might
reduce this uncertainties.

The time savings achievable with the coupled code system depend on the typical
time scale of the macroscale dynamics. For typical macroscale evolution times
of one millisecond the coupled code system is about as fast as the reference
simulation. For macroscale evolution times of the order of ten milliseconds
the time savings of the coupled code system are around a factor ten while the
uncertainties for density and flux are around 6 and 22%, respectively. Time
savings potentially increase up to a factor of 50 for a fusion edge plasma region
with a radial extent of 30 cm and typical radial profile lengths around 5 cm
while preserving the same level of agreement with the fully resolved reference
simulations.

The level of agreement of the density varies little regarding different coupling
input parameters and the choice of the macroscale transport model. In contrast,
the level of agreement of the radial particle flux shows a comparably strong
variation. This observation can be accounted for by two effects: Firstly,
fluctuations of the radial flux around an adequate average value increase the
flux error but have little effect on the density since the transport time associated
with the fluctuating macroscale transport coefficients is shorter than the typical
time of the fluctuations. Secondly, the divergence of the flux V - I'y,, which
acts like a source term in the macroscale density continuity equation, exhibits
self-correcting mechanism: an underestimated divergence at one point in the
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CHAPTER 9. CONCLUSIONS AND OUTLOOK

macroscale simulation domain is compensated by an overestimated divergence
at a neighboring point and vice versa.

e Two-dimensional B2-ATTEMPT coupled code simulations: The real-
ization of the specific multiscale model within the B2-ATTEMPT coupled code
system leads to self consistent solutions for two-dimensional plasma profiles
in the edge region of a tokamak. The local drift fluid simulations take into
account the radial background gradient, the collisionality, and the plasma beta
as determined by the macroscale solution as well as the corresponding minor
radius. They provide a poloidally and radially varying profile of the averaged
mesoscale flux which is translated into radial transport coefficients employed
in the macroscale simulations. The resulting profiles account for the ballooning
character of transport in a torus, leading to increased transport coeflicients at
the low field side up to a factor two larger than those on the high field side.
Representing the averaged mesoscale flux by macroscale transport coefficients
with different diffusive and convective parts leads to negligible variation of
the macroscale profiles of density, parallel ion velocity and ion and energy
temperatures. This confirms theoretical considerations stating that the choice
of the macroscale transport model should not influence the profiles of the
converged stationary macroscale state.

B2-ATTEMPT simulations are compared to B2-EIRENE simulations where
spatially homogeneous transport coefficients were used to adjust the simulation
results to experimentally measured radial profiles on the outer midplane. The
diffusion coefficients determined by the B2-ATTEMPT system are of the order
of 0.3 to 0.9 m? s~! and are of the same magnitude as the effective diffusion
coefficients that can be determined from the B2-EIRENE simulations. The
same is true for the radial profiles of the density and the electron temperature
at the outer midplane. This shows that a coupled drift fluid transport model
self-consistently determines a level of radial particle transport being of the
correct order of magnitude, quite distinct from the 10 to 100 times smaller
radial transport estimates found from neoclassical and classical collision plasma
transport theory.

There are various possibilities for extending the work presented in this thesis. A
major step would be the inclusion of the temperature dynamics in the local mesoscale
model and the associated extension of the coupled code system. The existing B2-
EIRENE simulations could then be used to evaluate in how far the corresponding
transport coefficient coincide with experimental findings. In this context it would
also be advantageous to use the EIRENE code in the B2-ATTEMPT system as an
improved neutral particle model.

Making the ATTEMPT code applicable to different shapes of poloidal cuts of flux
surfaces, e.g. including the more typical vertically elongated (‘D-shaped’) poloidal flux
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surfaces, allows for using it also to investigate transport properties at larger tokamak
devices such as JET and ITER with more detailed magnetic field and machine
designs. Regarding the coupling script it is foreseen to allow the B2-ATTEMPT
system to re-use previously determined transport coefficients, i.e. adding a sequential
(‘learning’) part to the coupling procedure as it was already implemented in the
prototypical 1D coupled code system studies.

Additionally, two further questions remain to be addressed in future. Firstly, in how
far non-local transport effects can be included in the present multiscale model [109]
and secondly, in how far two-dimensional transient events can can be reproduced.
For this purpose it has to be assured that the macroscale part which, in current
applications to fusion edge plasmas, is typically operated in a stationary mode only,
delivers reliable time-dependent simulations. The concepts of the present thesis then
have to be extended towards the area of unsteady Reynolds-averaged simulations

(URANS).
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A. Sampling the velocity field for the
passive scalar system

To sample the potential ¢(r,¢) from which the velocity field v(r, ) for the passive
scalar simulations is derived (see paragraph 6.2.2), the stochastic Langevin equation

Tg—f = —¢ + £Q[-NV(. (A1)
has to be solved. The solution of eq. (A.1) is outlined below.

For periodic boundary conditions, @, {, and ¢ are expanded into a Fourier series
with

¢ _ Z¢m neimkzz+inkyy )

m,n

Q _ Z Qaneikaerrinkyy, C — Z Cmmevlmk’xm+inkyy ) (AQ)
m,n m,n

The extent of the simulation domain being defined by g, and ysm, one has for the
wavenumbers k, and k,

2 2
k‘a: = u ) k.’L’ = Tr . (AB)

Tsim Ysim

The Fourier components ¢,, , have to fulfill the equation

00
ot

The solution of this Ornstein-Uhlenbeck process for ¢y, ,, is

= _qu,n + EQm,nCm,n . (A4)

Gmn(t+1) = Gmn(l)exp ( — Z) + Wit T) (A.5)

where

t+t;

t+t,—t
wm,n = E / eXP < - _H> Qm,n (’m,n dt/ (A6)
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APPENDIX A. SAMPLING THE VELOCITY FIELD FOR THE PASSIVE
SCALAR SYSTEM

is a Gaussian random number with zero mean and variance ¢ [110],

22
O’i = <‘wm,n‘2>e = gcj:wl[leXp<2;l>:| : (A7)

One can then rewrite Wi a8

m.n 2t
wm,n(tlvT) = 63? $ 1- €xXp <_ 7_1) am,n 5 (A8)

the v, , being anti-correlated Gaussian random numbers with zero mean. They
fulfill

<am,n(t) al,k(t)>e = Om,—1 5n,7lc . (A9)

The stationary probability density p(¢.,,) is Gaussian with zero mean and variance
oy, - For the potential ¢(z,y,t +t;) one obtains

d)(a:,y,t—l— 75l) = Z |:¢m,n(t)e_tl/7— + wm,n(thT) eimk1x+inkyy . (AIO)

m,n

Next, the correlation time 7.(¢) and length A.(¢) shall be related to the corresponding
quantities of the velocity field, 7.(v) and A.(v), respectively, to be able to determine
D* via eq. (6.29b). For the former quantities one has

(¢) =

0\8

<P¢>w,y(070,tl) dt; ) )\c((b) = /<p¢>w,y(xl7ylao) dry ) (A'll)
0

where 77 = 27 + y?. The spatially averaged autocorrelation function (py) ., (1, Y1, t1)
for lags z;, y;, and t; is

(DRG]

(0o , (A.12)

<p¢>x,y(wla Y, tl) =

with 7, being the autocovariance of ¢ and (03).,, being its variance. It holds that
<0§>>17y = (74(0,0,0)),,. For the spatial average of the autocovariance 74 one has

(Voday(Tryp, i) = <¢(-T +any+ynt+t) (b*(‘r’y’t»”y

5 (Gmalt 1) G (1)), (it cimbinkny
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_ e*lt/‘r Z O_’,Znynezmkmzl+znkyyl (A].S)

m,n
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with

22
P = (JOnal2) = S (A14)

For the operator Q[—A2V?] different choices are possible [98]. Here, it takes the form
Qmn = exp [f N (m?k2 + n2k;)] . (A.15)
Hence, (7V¢)ay (21, Y1, 1) can be approximated by

2
eftl/‘riz —2X2(m?k2+n?k) 17nkz:cl+mkyyl

wy(@ Y ) =
Cioleale 9/ 1) -

m,n

Q

9 00 00
€ 2(m2k2 1252 ; i
6—tl/‘r7 / / 672/\ (m?k3+n?k;) ezmkmzl+znkyyl dm dn
2T
—00 —00

me? 1P

By converting the sum in the first line of eq. (A.16) into an integral the periodicity in
spatial direction is lost. Therefore, this approximation holds only for A < Zgim, Ysim
and r; < Tgim/2, Ysim/2. For the correlation time 7.(¢) and correlation length A.(¢)
one then has, according to egs. (A.11a), (A.11b), and (A.12):

(@) = 7,  Add) = V2mr. (A.17)

With the definition (6.32) of the velocity components the corresponding averaged
covariances of v, and v, can be calculated:

2 T t (T’)Z
vy ) T Lyt o — r 4N% — (2)? - — — A.18
Oudeal@ ' 0) ~ S P [ = @ e | = D= | (A1
52 T t/ (7")2
o Ve /A t/ ~ 0 4)\2_ N2 _ A.19
I L (20 ] Lt <! B e TS
2 t/ (7”/)2
VgV, T, y\" ! ! t/ ~ _i T v 74 - — - . A20
A A = T Ul e R v (4.20)

The associated correlation time 7.(v) and length A.(v) of the velocity are

T(v) = 7 = 7(9), \[/\ = —. (A.21)

The last input parameter of interest is the root mean square velocity vgys which
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yields:

e
e =00 = o) = YT )
xhvy

i.e. vpus is proportional to the amplitude ¢ of the Gaussian white noise. For the
two-dimensional problem D is determined by

1
D = —vi 1.(v) =

2 RMS'C

2
TE” TsimYsim

T O (A.23)
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B. Reference figures of B2-EIRENE
simulations

Figure B.1.:

B2 geometry EIRENE geometry
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Shape of the toroidal limiter in the B2-EIRENE simulations of [17]. Plots
taken from [17].



APPENDIX B. REFERENCE FIGURES OF B2-EIRENE SIMULATIONS
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Figure B.2.: Radial electron density and electron temperature profiles in TEXTOR at
the outer midplane as measured and simulated by the B2-EIRENE code.
Plots taken from [17].
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