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ABSTRACT 
 

The Finite Sample Performance of Inference Methods for 
Propensity Score Matching and Weighting Estimators 

 
This paper investigates the finite sample properties of a range of inference methods for 
propensity score-based matching and weighting estimators frequently applied to evaluate the 
average treatment effect on the treated. We analyse both asymptotic approximations and 
bootstrap methods for computing variances and confidence intervals in our simulation design, 
which is based on large scale labor market data from Germany and varies w.r.t. treatment 
selectivity, effect heterogeneity, the share of treated, and the sample size. The results 
suggest that in general, the bootstrap procedures dominate the asymptotic ones in terms of 
size and power for both matching and weighting estimators. Furthermore, the results are 
qualitatively quite robust across the various simulation features. 
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1 Introduction

A large body of studies in empirical economics, political sciences, sociology, epidemiology, and

other �elds is devoted to the evaluation of the e�ect of some (binary) treatment (or intervention)

under a `selection-on-observables' or `conditional independence' assumption, see for instance Im-

bens (2004) and Imbens and Wooldridge (2009). Researchers applying treatment e�ect estima-

tors typically aim to assess the average causal e�ect of the intervention (e.g. assignment to a

training program or a medical treatment) on some outcome variable (e.g. employment, earnings,

or health), by controlling for di�erences in observed characteristics across treated and non-

treated subsamples.1 While some treatment e�ect estimators directly control for the observed

covariates, most of them are based on conditioning on the treatment propensity score instead,

i.e. the conditional probability to receive the treatment given the covariates, in order to avoid the

`curse of dimensionality' related to high dimensional covariates. This includes propensity score

matching (see for instance Rosenbaum and Rubin (1985), Heckman, Ichimura, and Todd (1998),

and Dehejia and Wahba (1999)) and inverse probability weighting (henceforth IPW, Horvitz and

Thompson (1952) and Hirano, Imbens, and Ridder (2003)), which belong to the most popular

methods among practitioners.2

Virtually all empirical implementations are semiparametric in the sense that parametric

propensity score estimation (using logit or probit) is combined with nonparametric treatment

e�ect estimation (using matching or weighting). To provide empiricists with some guidance

about which approach may work well in practice, a growing number of simulation studies has

investigated and compared the �nite sample behavior of various point estimators, see Frölich

(2004), Zhao (2004), Lunceford and Davidian (2004), Busso, DiNardo, and McCrary (2014),

Huber, Lechner, and Wunsch (2013), and Frölich, Huber, and Wiesenfarth (2014).3 While the

behavior of the point estimators therefore appears to be comparably well studied, there exists,

to the best of our knowledge, no comparably thorough simulation study on the performance

of variance estimators in the context of treatment e�ect evaluation.4 This is surprising, as the

1In general, treatment e�ect estimators may be applied to any issue in which the mean of some outcome
across two subsamples should be evaluated net of di�erences due to observed variables, including wage gap
decompositions (see for instance Frölich (2007) and Ñopo (2008)).

2However, there exist further classes of treatment e�ect estimators, see for instance Robins, Mark, and Newey
(1992), Robins, Rotnitzky, and Zhao (1995), and Robins and Rotnitzky (1995), and Rothe and Firpo (2013) for
so-called doubly robust estimators. Furthermore, the choice is ever increasing, see for instance Graham, Pinto,
and Egel (2012), Hainmueller (2012), and Imai and Ratkovic (2014) for recent empirical likelihood and weighting
approaches.

3As the studies di�er in terms of model design, treatment selectivity, and comprehensiveness of estimators
investigated, their cumulated results do not yield an unanimous ranking of estimators. They nevertheless give
important insights on the robustness of various methods to problems like insu�cient propensity score overlap
across treatment states and on the e�ectiveness of trimming in�uential observations.

4Pingel (2015), for instance, focusses on the impact of tuning parameters on the accuracy of the variance
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accuracy of inference appears equally important as the accuracy of point estimation.

This paper is the �rst one to provide a comprehensive simulation study on various variance

estimators of point estimators of the average treatment e�ect on the treated (ATET) and there-

fore �lls an important gap in the literature on the �nite sample behavior of treatment e�ect

methods.5 To this end, we focus on four ATET estimators: IPW, which was competitive in

several simulation designs of Busso, DiNardo, and McCrary (2014), the prototypical propensity

score pair matching estimator, and radius matching with and without linear bias adjustment

(see Abadie and Imbens (2011)) as suggested in Lechner, Miquel, and Wunsch (2011) (which

was the best performing estimator in Huber, Lechner, and Wunsch (2013)). Using the same

trimming rule as Huber, Lechner, and Wunsch (2013), we discard observations with (too) large

weights in ATET estimation in order to tackle potential common support problems. Our choice

of IPW and matching is predominantly motivated by the popularity of these estimators in prac-

tice, but in the case of matching also by the theoretical �nding of Abadie and Imbens (2008)

suggesting that standard bootstrap inference is invalid for `non-smooth' implementations of the

estimator (such as pair matching) when there are continuous covariates. As the latter result is

widely ignored by practitioners (who frequently apply the bootstrap in matching estimation),

one interesting question is whether the theoretical inconsistency of the bootstrap entails biases

that are large enough to be practically relevant.

In the light of the unsatisfactory result that the standard bootstrap is inconsistent for some

matching algorithms, recent studies propose modi�ed bootstrap procedures that are consistent

even for non-smooth (pair or one-to-many) matching estimators with continuous covariates. For

instance, Otsu and Rai (2015) introduce and prove the validity of a weighted bootstrap algo-

rithm for particular classes of pair matching estimators that, however, do not include propensity

score matching. Furthermore, Bodory, Camponovo, Huber, and Lechner (2016) generalize the

approach of Otsu and Rai (2015) by introducing a wild bootstrap procedure that can also be

applied to propensity score matching estimators. Unlike the standard bootstrap, this wild boot-

strap algorithm does not construct bootstrap samples by randomly selecting with replacement

from the original sample. Instead, it constructs wild bootstrap approximations based on the

result of Abadie and Imbens (2012a) that matching estimators can be expressed as a sum of

martingale processes. This novel approach is also included in our simulation study.

We investigate the �nite sample performance of the following variance estimators: two-step

estimator of Abadie and Imbens (2012b), but does not compare several classes of variance estimators.
5It would have been interesting to also include estimators of the average treatment e�ect (ATE) in our analysis.

However, due to almost prohibitive computation time, including the ATE would have forced us to investigate
fewer variance estimators, which we would have considered a larger sacri�ce than focussing on the ATET, the
most frequently estimated causal parameter in the program evaluation literature.
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GMM-based variance estimation (for IPW), approximations of the variances based on the weights

nontreated receive in ATET estimation as in Lechner (2002) (for IPW and matching), and the

variance formula of Abadie and Imbens (2006), which is based on the propensity score rather than

estimation weights (for pair matching). As the latter two methods treat the propensity scores as

�xed, they are (for matching only) also implemented with a variance correction that accounts for

the estimation of the propensity score as suggested in Abadie and Imbens (2012b). Furthermore,

we consider various implementations of both the standard bootstrap (considered for IPW and

matching) and the wild bootstrap (considered for pair matching only): (i) bootstrapping the

ATET estimates to compute con�dence intervals and p-values based on either the asymptotic

distribution of the t-statistic or on the quantiles of the e�ects (percentile method), and (ii)

bootstrapping the (asymptotically pivotal) t-statistic and conducting inference based on its

quantiles. For the latter approach we also consider kernel smoothing of the bootstrap distribution

of the t-statistics as suggested by Racine and MacKinnon (2007) to improve accuracy of inference

when the number of bootstrap replications is low.

In the spirit of Huber, Lechner, and Wunsch (2013) and Lechner and Wunsch (2013) (see

also Frölich, Huber, and Wiesenfarth (2014)), we use an`Empirical Monte Carlo Study' (EMCS)

approach to base our simulation design as much as possible on empirical data. Speci�cally, we use

German labour market data for the evaluation of labor market programs to realistically simulate

`placebo treatments' among the non-treated, where the remaining non-treated without placebo

treatment permit estimating the (known) non-treatment outcome of the `placebo-treated'. To

this end, the treatment selection process is estimated from the data and the empirical relation

between the outcome and the covariates is retained, rather than relying on an arbitrarily chosen

model for the data generating process. We vary several empirically relevant design features in

our simulations, namely the sample size, selection into treatment, share of treated, and e�ect

heterogeneity.

The simulation results suggest that inference methods which are based on asymptotic ap-

proximations that ignore the estimation of the propensity score tend to be conservative, while

accounting for propensity score estimation entails excessive size for some procedures applicable

to matching estimators. GMM-based variance estimation of IPW is rather conservative, too,

even though it accounts for the estimation of the propensity score. A further �nding is that in

general, the empirical size of the bootstrap procedures is more accurate than that of the asymp-

totic ones. For matching, the methods based on bootstrapping t-statistics which account for

propensity score estimation generally come closest to the nominal size. For pair matching, the

inconsistency of the standard bootstrap seems to have little practical relevance for most meth-

ods when accounting for propensity score estimation. Nevertheless, the wild bootstrap entails
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a more accurate size for several inference estimators than standard bootstrapping, in particular

when propensity score estimation is ignored. Concerning power, none of the methods have severe

lack-of-power issues, not even the conservative ones. Again, the bootstrap procedures frequently

dominate the asymptotic approximations or are at least comparably powerful. Finally, the size

and power properties of the di�erent inference procedures are rather stable across the di�erent

simulation features like the distribution of the outcome variable, sample size, share of treated,

and treatment selection.

The remainder of this paper is organized as follows. Section 2 introduces the ATET and the

point estimators (IPW, pair matching, radius matching) and a trimming procedure to deal with

problems of common support. Section 3 presents the variance estimators based on asymptotic

approximations or various bootstrap implementations. Section 4 discusses our labor market data

and the simulation design. Section 5 presents the results for various features of the simulations.

Section 6 concludes.

2 Point estimation

We subsequently discuss the (identi�cation of the) parameter of interest (ATET) and present the

point estimators (IPW, matching) as well as the trimming rule for ensuring common support.

2.1 Identi�cation of the ATET

Let D denote the binary treatment indicator (e.g. training participation), Y the outcome (e.g.

earnings in some follow up period), and X a vector of observed covariates. Furthermore, let

Y (1), Y (0) denote the potential outcomes under hypothetical treatment assignment 1 and 0, see

Rubin (1974). The average treatment e�ect on the treated (ATET), denoted by θ, is de�ned as

θ = E[Y (1)− Y (0)|D = 1], (1)

and is identi�ed under two conditions.6 First, the so-called `selection on observables' or `con-

ditional independence' assumption (CIA) (see for instance Imbens (2004) and Imbens and

Wooldridge (2009)) has to be satis�ed:

Y (0)⊥D|X, (2)

6In addition, the `Stable Unit Treatment Value Assumption' (SUTVA) needs to hold, see for instance (Rubin
1990).
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where `⊥' stands for statistical independence. This rules out the existence of (further) con-

founders that jointly in�uence the treatment and the potential outcome under non-treatment

conditional on X. Second, it must hold that the conditional probability to receive the treatment

given X, the so-called propensity score, is smaller than one:

Pr(D = 1|X) < 1, (3)

otherwise for (at least) some of the treated units, there exist no untreated units that are com-

parable in terms X. For ease of notation, let henceforth p(X) = Pr(D = 1|X).

Under (2) and (3), the ATET is identi�ed by

θ = E(Y |D = 1)− E[E(Y |D = 0, X)|D = 1]. (4)

Note that rather than conditioning on X directly as in (4), it follows from Rosenbaum and

Rubin (1983) that one may control for the propensity score, p(X) instead, because it possesses

the so-called `balancing property'. That is, conditioning on the one-dimensional p(X) equalizes

the distribution of the (possibly high dimensional) covariates X across D, such that the ATET

is also identi�ed by

θ = E(Y |D = 1)− E[E[Y |D = 0, p(X)]|D = 1]. (5)

2.2 Estimation

As among others discussed in Smith and Todd (2005), a general representation of all treatment

e�ect estimators adjusting for covariate di�erences is

θ̂ =
1

n1

n∑
i=1

DiŴiYi −
1

n0

n∑
i=1

(1−Di)ŴiYi. (6)

n denotes the size of an i.i.d. sample of realizations of {Yi, Di, Xi} with any observation i ∈
1, ..., n. n1 =

∑n
i=1Di is the size of the treated subsample, n0 = n − n1, and Ŵi are weights

that may depend on p̂(Xi), an estimate of the propensity score p(Xi). We specify the latter as

a probit model. In our simulations, four di�erent point estimators out of this general class of

estimators are included: inverse probability weighting (IPW; an idea going back to Horvitz and

Thompson (1952)), pair matching, and radius matching with and without bias correction.

ATET estimation based on IPW reweighs non-treated outcomes such that the distribution

of the propensity score among the treated is matched, see Hirano, Imbens, and Ridder (2003)
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for a more detailed discussion. We consider the following normalized IPW estimator in our

simulations, which performed well in several simulation designs considered in Busso, DiNardo,

and McCrary (2014):

θ̂IPW =
1

n1

n∑
i=1

DiYi −
n∑
i=1

(1−Di)Yi


p̂(Xi)

1−p̂(Xi)∑n
j=1

(1−Dj)p̂(Xj)
1−p̂(Xj)

 . (7)

The normalization
∑n

j=1
(1−Dj)p̂j

1−p̂j makes the weights sum up to one, see Imbens (2004) for fur-

ther discussion. It is easy to see that (7) corresponds to (6) when setting Ŵi in the latter to

Di + (1−Di)n0

{
p̂(Xi)

1−p̂(Xi)∑n
j=1

(1−Dj)p̂(Xj)

1−p̂(Xj)

}
. IPW possesses the desirable property that it can attain the

semiparametric e�ciency bound derived by Hahn (1998), if the propensity score is estimated

nonparametrically (while this is generally not the case for parametric propensity scores). Fur-

thermore, it is computationally inexpensive and easy to implement. However, IPW also has an

important drawback: if the common support assumption (3) is close to being violated, estima-

tion may be unstable and the variance may explode in �nite samples, see Frölich (2004) and

Khan and Tamer (2010).

Propensity score matching is based on assigning (matching) to each treated observation one

or more non-treated units with comparable propensity scores to estimate the ATET by the

average di�erence in the outcomes of the treated and the (appropriately weighted) non-treated

matches. All matching estimators have the following general form:

θ̂match =
1

n1

∑
i:Di=1

Yi − ∑
j:Dj=0

$i,jYj

 , (8)

where $i,j is the weight of the outcome of non-treated observation j when matched to a treated

unit i. Pair (or one-to-one) matching with replacement,7 see for instance Rubin (1973), matches

to each treated observation exactly the non-treated observation with the most similar propensity

score. This implies the following weights in (8):

$i,j = I
{
|p̂(Xj)− p̂(Xi)| = min

l:Dl=0
|p̂(Xl)− p̂(Xi)|

}
, (9)

where I{·} is the indicator function which is one if its argument is true and zero otherwise.

7`With replacement' means that a non-treated observation may by matched several times, whereas estimation
`without replacement' requires that it is matched at most once. The latter approach is only feasible when there
are substantially more non-treated than treated observations. It is not frequently applied in econometrics.
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Therefore, all weights are zero except for that observation j that has the smallest distance to

i in terms of the estimated propensity score and receives a weight of one. Because only one

non-treated observation is matched to each treated unit irrespective of the sample size and the

potential availability of several `good' matches with similar propensity scores, pair matching is

not e�cient. On the other hand, it is likely more robust to propensity score misspeci�cation than

IPW (in particular if the misspeci�ed propensity score model is only a monotone transformation

of the true model), see for instance Zhao (2008), Millimet and Tchernis (2009), Waernbaum

(2012), and Huber, Lechner, and Wunsch (2013).

Radius matching (see for instance Rosenbaum and Rubin (1985) and Dehejia and Wahba

(1999)) uses all non-treated observations with propensity scores within a prede�ned radius

around that of the treated reference unit, which trades o� some bias in order to increase ef-

�ciency. It is expected to work particularly well if several good potential matches are available.

In the simulations, we consider the radius matching algorithm of Lechner, Miquel, and Wunsch

(2011), which performed well in Huber, Lechner, and Wunsch (2013). The estimator combines

distance-weighted radius matching (i.e. non-treated units within the radius are weighted pro-

portionally to the inverse of their distance to the treated observation) with an OLS regression

adjustment for bias correction (see Rubin (1979) and Abadie and Imbens (2011)) to remove

small and large sample bias due to mismatches. See Huber, Lechner, and Steinmayr (2014) for

a detailed description of the (algorithm of the) estimator. As in Lechner, Miquel, and Wunsch

(2011), the radius size in our simulations is de�ned as a function of the distribution of distances

between treated and matched non-treated observations in pair matching. Namely, it is set to

either 1.5 or 3 times the maximum pair matching distance. Note that we include radius matching

both with and without bias correction in our simulations. All in all, this entails six estimators:

IPW, pair matching, and radius matching with and without bias adjustment, each with two

di�erent radius sizes.8

2.3 Trimming

A practically relevant issue of treatment e�ect methods is thin or lacking common support (or

overlap) in the propensity score across treatment states, which may compromise estimation due

to a non-comparability of treated and non-treated observations, see the discussion in Imbens

(2004), Imbens and Wooldridge (2009), and Lechner and Strittmatter (2014). If speci�c propen-

sity score values among the treated are either very rare (thin common support) or absent (lack

of common support) among the non-treated, as it may occur in particular close to the boundary

8Although it would be interesting to extend our analysis to other estimators as well, computation costs become
prohibitive.
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of 1, non-treated units with such or similar values receive a large weight Ŵi. In the case of

thin common support, these observations could dominate the estimator of the ATET which may

entail a possible explosion of the variance. In the case of lacking common support, this even

introduces asymptotic bias by giving a large weight to non-treated observations that are not

comparable to the treated in terms of the propensity score.

Huber, Lechner, and Wunsch (2013) suggest using a trimming procedure �rst discussed in

Imbens (2004), which is asymptotically unbiased if common support holds asymptotically.9 It

is based on setting the weights of those non-treated observations to zero whose relative share of

all weights in (6) exceeds a particular threshold value in % (denoted by t):

Ŵi|Di=0 = ŴiI

{
Ŵi∑n

j=1(1−Dj)Ŵj

≤ t%

}
(10)

As in Huber, Lechner, and Wunsch (2013), we trim observations based on the weights of nor-

malized IPW, see (7), irrespective of the point estimator considered. In order to not create an

unbalanced sample by trimming the non-treated observations only, any treated with propensity

scores larger than the largest value among the remaining non-treated are discarded, too (if such

observations exist). Strictly speaking, this (in �nite samples) changes the target parameter due

to discarding extreme support areas, but ensures common support prior to estimation. As also

considered in Huber, Lechner, and Wunsch (2013), we set t = 4%. Note that among the variance

estimators discussed in Section 3, only the bootstrap approaches of Sections 3.4 and 3.5 account

for the stochastic nature of trimming, while the other procedures outlined in Sections 3.1, 3.2,

and 3.3 treat trimming as �xed.

3 Inference

This section presents the inference methods considered in the simulations for the IPW and

matching estimators. As in (6), we subsequently denote by θ̂ a general ATET estimator, in-

dicating that the discussion refers to any of the methods, while adding a subscript (like `IPW')

implies that the attention is restricted to a particular method.

For IPW, the following variance estimators are investigated: asymptotic variance approx-

imation based on GMM (Section 3.1), variance estimation conditional on the weights in the

estimation of the counterfactuals (Section 3.3), bootstrapping the ATET estimates to perform

9Other proposals sugested in the literature include Heckman, Ichimura, Smith, and Todd (1998), Dehejia and
Wahba (1999), Ho, Imai, King, and Stuart (2007), and Crump, Hotz, Imbens, and Mitnik (2009). However, they
all introduce asymptotic bias.
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inference based on either the asymptotic distribution of the t-statistic or on the quantiles of

the e�ects (Section 3.4), and bootstrapping the t-statistic, which is computed using either the

analytic variance expressions of Sections 3.1 or 3.3, to perform inference based on its quantiles

(Section 3.4). For the latter approach we also consider kernel smoothing of the bootstrap distri-

bution of the t-statistics as suggested by Racine and MacKinnon (2007) to improve accuracy of

inference when the number of bootstrap replications is low. For pair matching, the asymptotic

variance formula of Abadie and Imbens (2006) as well as the propensity score-adjusted version of

Abadie and Imbens (2012b) (Section 3.2), variance estimation conditional on matching weights

(Section 3.3), and bootstrapping the ATET or the t-statistics with and without kernel smooth-

ing (Section 3.4) are considered. In addition, we also investigate the wild bootstrap procedure

introduced in Bodory, Camponovo, Huber, and Lechner (2016), see Section 3.5. For any (stan-

dard or wild) bootstrap procedure based on the t-statistic, the latter is computed using the

analytic variance expressions of Sections 3.2 or 3.3 and again, the procedures are assessed with

and without kernel smoothing. For radius matching with and without bias adjustment, we assess

inference based on variance estimation conditional on matching weights (Section 3.3), and on

bootstrapping the ATET or the t-statistic (Section 3.4), where the latter is obtained using the

analytic expressions in Section 3.3 and implemented with and without kernel smoothing.

3.1 GMM-based asymptotic approximation of the IPW variance

To derive the asymptotic approximation for the variance of IPW based on GMM, we �rst rewrite

(7) as follows:

θ̂IPW =
1

n

n∑
i=1

ωi(Di, Xi, β̂)Yi, (11)

where the weights ωi for the outcomes Yi depend on the individual treatment state Di, covariates

Xi and the maximum likelihood estimate β̂ of the parameter vector of the probit model for the

propensity score in the following way:

wi = nw̃i(Di, Xi, β̂),

w̃i(Di, Xi, β̂) = Diw̃i(1, Xi, β̂)− (1−Di)w̃i(0, Xi, β̂),

w̃i(1, Xi, β̂) =
1

n1

, w̃i(0, Xi, β̂) =

p̂(Xi)
1−p̂(Xi)∑n
j=1

p̂(Xj)

1−p̂(Xj)

.

Note that by the probit speci�cation of the propensity score, p̂(Xi) = Φ(Xiβ̂) with Φ denoting the

cumulative distribution function (c.d.f.) of the standard normal distribution. Following Newey
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(1984), the estimator in (11) can be considered as a two step (or sequential) GMM estimator.

In the �rst step, the score functions of the propensity score model leads to the following P + 1

moment conditions, where P is the dimension of X:

1

n

n∑
i=1

g(xi, β̂) = 0,

where g is the score function, i.e. the �rst derivative of the log-likelihood of the probit model.

In the second step, the estimation of the ATET yields a further moment condition:

1

n

n∑
i=1

h(Yi, Xi, β̂, θ̂IPW) = 0,

with the moment function h(Yi, Xi, β, θ) = θ−wi(Xi, β)Yi being the di�erence between the true

ATET and the weighted outcomes. If these conditions hold, the resulting GMM estimator is

consistent and asymptotically normal under standard regularity conditions.10

Using the results of Newey (1984), the asymptotic variance of θ̂IPW, denoted by asV
[√

nθ̂IPW

]
,

is given by the following expression:

asV
[√

nθ̂IPW

]
= n2V ar

[
w̃iYi

]
= H−1θIPW(Vhh +HβG

−1
β VggG

−1
β

′
Hβ
′ −HβG

−1
β Vgh − VhgG−1β Hβ

′)H−1θIPW
′
.

This variance formula shows that asV
[√

nθ̂IPW

]
can be expressed as the variance of the weighted

outcomes adjusted by terms that depend on the two sets of moment conditions. The components

are:

HθIPW = E[∂h(.)/∂θIPW] = 1, Vhh = E[h(.)2] = V ar[nw̃iYi], Hβ(d = 1) = E[∂h(.)/∂β] = 0,

Hβ(d = 0) = E[∂h(.)/∂β] = E

[
n

Xiφi
(1−p(Xi))2

∑n
i=1

p(Xi)
1−p(Xi) −

p(Xi)
1−p(Xi)

∑n
i=1

Xiφi
(1−p(Xi))2(∑n

i=1
p(Xi)

1−p(Xi)

)2 Yi

]
,

Gβ = E[∂g(.)/∂β], Vgg = E[g(.)g(.)′], Vgh = E[g(.)h(.)], Vhg = V ′gh.

The functions p(Xi) = Φ(Xiβ) and φi = φ(Xiβ) denote the c.d.f. and the probability density

10In particular, the data must be generated from stationary and ergodic processes, the moment functions and
the respective derivatives must exist and must be measurable and continuous, the parameters must be �nite and
not at the boundary of the parameter space, and the derivatives of the moment conditions w.r.t. the parameters
must have full rank. Furthermore, the sample moments must converge to their population counterparts with
decreasing variances and to uniquely identi�ed values of the unknown parameters.
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function (p.d.f.) of the standard normal distribution, respectively, evaluated at Xiβ. The vari-

ance of θ̂IPW can be consistently estimated by replacing β and θ by their estimates β̂ and θ̂IPW

everywhere.11

3.2 Asymptotic variance approximations of Abadie and Imbens

Abadie and Imbens (2006) derive the large sample variance of pair and one-to-many matching

estimators when matching directly on control variables, based on a decomposition of the total

variance into the expectation of the conditional variance and the variance of the conditional

expectation given the matching variables. To review their results, we introduce some further

notation: let Ki denote the overall number of times a (non-treated) unit i is used as match

for any treated observation and σ2(p(Xi), Di) = V (Yi|p(Xi), Di) the conditional variance of the

outcome given the (true) propensity score and the treatment. Assuming that the true propensity

score is known (rather than estimated), the variance of the pair matching estimator, denoted by

V (θ̂pm, true ps), is given by

V (θ̂pm, true ps) =
1

n1

{
E
[
(θ(Xi)− θ)2 |Di = 1

]
+ E

[
1

n1

n∑
i=1

(Di − (1−Di)Ki)
2 σ2(p(Xi), Di)

]}
.(12)

Furthermore, let σ̂2(p(Xi), Di) = V (Yi|p(Xi), Di) denote an an asymptotically unbiased estima-

tor of σ2(p(Xi), Di) = V (Yi|p(Xi), Di). Abadie and Imbens (2006) show that V (θ̂pm, true ps) can

be consistently estimated by

V̂ (θ̂pm, true ps) =
n

n2
1

n∑
i=1

Di

Yi − ∑
j:Dj=0

$i,jYj − θ̂pm

2

+
n

n2
1

n∑
i=1

(1−Di)Ki(Ki − 1)σ̂2(p(Xi), Di),(13)

where $i,j is de�ned in (9). In applications, the true propensity score is usually unknown and

needs to be estimated, for instance based on the probit model p̂(Xi) = Φ(Xiβ̂), implying that

σ̂2(p(Xi), Di) in (13) is in fact σ̂2(p̂(Xi), Di). As this a�ects the large sample distribution of

matching estimators, the variance is in this case di�erent to (12), a fact frequently ignored

among practitioners. We therefore consider estimator (13) for pair matching inference in our

simulations, to investigate whether its inconsistency is practically relevant.12 For the estimation

11These results are a special case of the variance estimator proposed by Lechner (2009) for the dynamic
treatment model when only the �rst period is considered.

12For the average treatment e�ect (ATE), the asymptotic variance of matching on the known propensity score
is at least as large as that of matching on the estimated propensity score, see Abadie and Imbens (2012b).
Therefore, the variance estimator of Abadie and Imbens (2006) is conservative. An analogous result applies to
IPW, see Hirano, Imbens, and Ridder (2003). For the ATET, however, the ordering of the variances is ambiguous
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of σ2(p(Xi), Di), we use pair matching on the propensity score within the same treatment group

as outlined in Abadie and Imbens (2006), which is unbiased (but not consistent):

σ̂2(p̂(Xi), Di) =

Yi − ∑
j:Dj=Di

I
{
|p̂(Xj)− p̂(Xi)| = min

l:Dl=0
|p̂(Xl)− p̂(Xi)|

}
Yj

2/
2. (14)

In a di�erent paper, Abadie and Imbens (2012b) propose a correction to (12) such that un-

certainty w.r.t. propensity score estimation is accounted for in the variance, now denoted by

V (θ̂pm, est. ps). We therefore also consider corrected variance estimators for all matching proce-

dures with inference either relying on Abadie and Imbens (2006) (pair matching), or the vari-

ance estimator proposed in Section 3.3 (pair matching and radius matching with and without

adjustment). Introducing additional notation, let µ(Xi, Di) = E[Yi|Xi, Di] and µ(p(Xi), Di) =

E[Yi|p(Xi), Di] denote the conditional means of the outcome given Xi, Di and p(Xi), Di, re-

spectively, and cov(Xi, µ(Xi, Di)|p(Xi)) the covariance between Xi and µ(Xi, Di) conditional on

p(Xi). Abadie and Imbens (2012b) show that

V (θ̂pm, est. ps) = V (θ̂pm, true ps)− c′I−1c+
∂θ

∂β

′
I−1

∂θ

∂β
, (15)

with the Fisher information matrix I = −Gβ and

c =
1

E[p(X)]
E[Xφ(Xβ)(µ(p(X), 1)− µ(p(X), 0)− θ)]

+
1

E[p(X)]
E

[(
cov(X,µ(X, 1)|p(X)) +

p(X)

1− p(X)
cov(X,µ(X, 0)|p(X))

)
φ(Xβ)

]
,

∂θ

∂β
=

1

E[p(X)]
E[Xφ(Xβ)(µ(X, 1)− µ(X, 0)− θ)].

cov(X,µ(X,D) (which can be shown to equal cov(X, Y |p(X), D)), µ(p(X), D), and µ(X,D),

which enter the correction terms in (15), may be estimated by pair matching within or across

treatment groups, as we use do in our simulations, see Abadie and Imbens (2012b) for further

details. Note that the adjustment term may increase or decrease the variance estimate of the

ATET.13

and data-dependent.
13In some of the simulation draws (in particular when the sample size is small), it occurs that the estimated

correction terms are larger than the uncorrected variance. In these cases, the correction is omitted.
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3.3 Variance approximation based on weights

Under i.i.d. sampling, the asymptotic variance of the ATET estimator corresponds to the sum

of the variances of the estimators of the treated population's mean potential outcomes under

treatment and non-treatment, denoted by Ê[Yi(1)|Di = 1] and Ê[Yi(0)|Di = 1], respectively

(ignoring any correlation that may occur due to the estimation of the propensity score):

V (θ̂) = V
{
Ê[Yi(1)|Di = 1]

}
+ V

{
Ê[Yi(0)|Di = 1]

}
.

V and V̂ denote the variance and its estimate throughout our discussion. As E[Y (1)|D = 1] =

E(Y |D = 1), it follows that Ê[Yi(1)|Di = 1] = 1
n1

∑n1

i:Di=1 Yi such that the standard variance

estimator for means of random variables can be applied:

V̂
{
Ê[Yi(1)|Di = 1]

}
=

1

n1(n1 − 1)

n∑
i=1

Di

(
Yi −

1

n1

n∑
i=1

DiYi

)2

.

Concerning the variance of the treated population's estimated mean potential outcome under

non-treatment, �rst note that the estimated mean potential outcome under non-treatment of the

treated can be expressed as a weighted sum of non-treated outcomes, with the (normalized) non-

treated weights (W̃i) summing up to one: Ê[Yi(0)|Di = 1] =
∑n

i=1(1 −Di)YiW̃i. For instance,

for the IPW estimator (7) W̃i =

{
p̂(Xi)

1−p̂(Xi)∑n
j=1

(1−Dj)p̂(Xj)

1−p̂(Xj)

}
. One simple approximation to the variance

V
{
Ê[Yi(0)|Di = 1]

}
is the unconditional variance of YiW̃i:

V̂
{
Ê[Yi(0)|Di = 1]

}
=

1

n0 − 1

n∑
i=1

(1−Di)

(
YiW̃i −

1

n0

n∑
i=1

(1−Di)YiW̃i

)2

. (16)

This assumes homoscedasticity in W̃i. To allow for heteroscedasticity in the weights when

estimating the variance, we consider the following variance decomposition into the expectation

of the conditional variance and the variance of the conditional expectation given the weights:

V
{
Ê[Yi(0)|Di = 1]

}
= V

(
n∑
i=1

(1−Di)YiW̃i

)

= E

{
V

[
n∑
i=1

(1−Di)YiW̃i

∣∣∣∣W̃i

]}
︸ ︷︷ ︸

A

+V

{
E

[
n∑
i=1

(1−Di)YiW̃i

∣∣∣∣W̃i

]}
︸ ︷︷ ︸

B

. (17)
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Note that

A = E

{
n∑
i=1

(1−Di)W̃
2
i σ

2(W̃i, Di = 0)

}
, (18)

B = V

{
n∑
i=1

(1−Di)W̃iE[Yi|W̃i]

}
, (19)

with σ2(W̃i, 0) = V (Y |W̃i, Di = 0) being the conditional variance of the outcome given the

weight among the non-treated. Under the assumption that W̃iE[Yi|W̃i] is uncorrelated across

i,14 the variance of the sum equals n0 times the variance:

V

{
n∑
i=1

(1−Di)W̃iE[Yi|W̃i]

}
= n0V

{
W̃iµ(W̃i, Di = 0),

}
, (20)

where µ(W̃i, 0) = E[Yi|W̃i, Di = 0] is the conditional mean of the outcome given the weight

among the non-treated. Basing variance estimation on the decomposition in (17) therefore re-

quires estimates of µ(W̃i, 0) = E[Yi|W̃i, Di = 0] and σ2(W̃i, 0) = E[(Yi−µ(W̃i, Di = 0))2|W̃i, Di =

0], which we denote by µ̂(W̃i, 0) and σ̂2(W̃i, 0) = E[(Yi − µ̂(W̃i, Di = 0))2|W̃i, Di = 0]. To es-

timate either parameter, we apply a particular one-to-many (nearest neighbor) matching algo-

rithm, which computes the conditional mean and variance of some reference observation using

a set of closest units in terms of weight W̃i that are in the same treatment state (Di = 0).

Speci�cally, let SM(i) denote the set of M matches for reference unit i among the units

with the same treatment for an odd integer M ≥ 3. The set includes (i) unit i itself, (ii) the

(M −1)/2 nearest neighbors (in terms of weights) with a weight smaller or equal to W̃i, and (iii)

the (M − 1)/2 nearest neighbors with a weight larger than W̃i:

SM(i) =

j = 1, . . . , n : Dj = Di,

 ∑
k:Dk=Di,W̃i−W̃k≥0

I{W̃i − W̃k ≤ W̃i − W̃j}

 ≤ (M + 1)/2


∪

j = 1, . . . , n : Dj = Di,

 ∑
l:Dl=Di,W̃l−W̃i>0

I{W̃l − W̃i ≤ W̃j − W̃i}

 ≤ (M − 1)/2

 .

(21)

Note, however, that the window of M matches becomes necessarily asymmetric for observations

14Due to i.i.d. sampling, non-correlation across i is satis�ed if (the coe�cients of) the propensity scores (which
ultimately determine the weighting function) are non-stochastic, which holds asymptotically. However, in �nite
samples, units may be correlated through the estimation of the coe�cients of the propensity score.
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at the upper and lower boundaries of the weights. For instance, for the largest W̃i, the set SM(i)

includes (i) unit i itself and (ii) the (M − 1) nearest neighbors with a weight smaller or equal to

W̃i. The conditional mean and variance are then estimated by

µ̂(W̃i, Di) =
1

M

M∑
i∈SM (i)

Yi,

σ̂2(W̃i, Di) =
1

M

M∑
i∈SM (i)

(
Yi − µ̂(W̃i, Di)

)2
.

We may therefore estimate the variance components (18) and (20), respectively, by

Â =
n∑
i=1

(1−Di)W̃
2
i σ̂

2(W̃i, 0), (22)

B̂ =
n0

n0 − 1

n∑
i=1

(1−Di)

(
W̃iµ̂(W̃i, 0)− 1

n0

n∑
i=1

(1−Di)W̃iµ̂(W̃i, 0)

)2

. (23)

We consider variance estimation based on (i) the unconditional variance formula in (16), (ii) the

decomposition based approach with V̂
{
Ê[Yi(0)|Di = 1]

}
= Â+ B̂, and �nally, based on Â only.

Concerning the estimation of the the conditional means and variances required in approaches

(i) and (ii), we use the following sample size-dependent rule for choosing the number of nearest

neighbors: M = 2round(κ
√
n) + 1, `round(·)' means that the argument is rounded to the closest

integer and κ gauges the number of neighbors. In the simulations, we consider 3 choices for κ:

0.2, 0.8, 3.2.

Even though these variance estimators may be reasonable approximations, there are also sev-

eral caveats. First of all, the unconditional variance estimator (i) is only valid under homoscedas-

ticity. In contrast, estimators (ii) and (iii) allow for heteroscedasticity w.r.t. W̃i. Furthermore,

when using matching with bias correction, note that while the appropriate bias corrected weights

enter the variance formulae, uncertainty related to the estimation of bias correction is not ac-

counted for. Finally, any of the variance estimators omits the fact that the propensity scores

entering the weights is itself an estimate rather than known, which in general a�ects the dis-

tribution of the ATET estimators. To tackle the latter issue, we therefore apply the variance

correction of Abadie and Imbens (2012b) to (i), (ii), and (iii) to also account for propensity score

estimation, see the discussion in Section 3.2.
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3.4 Standard bootstrap

Inference in treatment e�ect estimation is frequently based on the (standard) nonparametric

bootstrap (see Efron (1979) or Horowitz (2001), among others). This holds true even for appli-

cations of matching, in spite of the result of Abadie and Imbens (2008) that the nonparametric

bootstrap is inconsistent for pair or one-to-many matching (with a �xed number of matches

and continuous covariates) because of the non-smoothness of the estimator. Note, however,

that several matching algorithms applied in practice (e.g. kernel matching or the radius match-

ing algorithm with regression-based bias correction of Lechner, Miquel, and Wunsch (2011)) are

smoother than the one considered in Abadie and Imbens (2008), so that bootstrap inference may

be valid in such cases. Furthermore, bootstrapping automatically accounts for heteroscedastic-

ity, trimming of in�uential observations, and uncertainty due to propensity score estimation

and bias correction. Even for non-smooth estimators like pair matching, it appears interesting

whether the inconsistency of the bootstrap entails practically relevant biases. For this reason we

apply two nonparametric bootstrap algorithms to all of our estimators.

The �rst algorithm bootstraps the ATET estimator directly. To this end, one randomly draws

B bootstrap samples of size n with replacement out of the initial sample and compute the ATET

estimate in each draw. We denote the latter by θ̂b, where b is the index of the bootstrap sample,

b ∈ {1, 2, ..., B}. We consider two options for computing p-values and con�dence intervals in

our simulations. The �rst one is based on plugging the square root of the bootstrap variance of

the ATET, V̂ (θ̂b) = 1
B−1

∑B
b=1

(
θ̂b − 1

B

∑B
b θ̂

b
)2
, into the t-statistic and evaluating the latter on

its asymptotic normal distribution to obtain the p-value. Con�dence intervals are standardly

obtained by θ̂ + / −
√
V̂ (θ̂b)c, where c denotes the asymptotic critical value for a particular

con�dence level α. The second one computes the p-value directly from the quantiles of the

ATET estimates θ̂b (also known as percentile method), based on how frequently zero is included

in the bootstrap distribution:

p-value = 2 min

(
1

B

B∑
b=1

I{θ̂b ≤ 0}, 1

B

B∑
b=1

I{θ̂b > 0}

)
. (24)

The lower and upper bounds of the 1 − α con�dence interval are computed by the α/2 and

1− α/2 quantiles of the bootstrap distribution, respectively.

The second algorithm accounts for the fact that the bootstrap has better theoretical prop-

erties when using an asymptotically pivotal statistic such as the t-statistic. Therefore, we in a

�rst step compute the t-statistic using the variance estimators outlined in Sections 3.1 to 3.3:

Tn = θ̂/

√
V̂ (θ̂), with V̂ denoting some variance approximation. In the second step, we randomly
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draw B bootstrap samples of size n with replacement. In each draw, we compute the ATET

estimate, denoted by θ̂b, as well as the recentered t-statistic T bn = (θ̂b− θ̂)
/√

V̂ (θ̂b). The p-value

is computed by the quantile or percentile method (see for instance MacKinnon (2006), equation

(5)), i.e., as the share of absolute bootstrap t-statistics that are larger than the absolute value

of the t-statistic in the original sample (as the t-statistic has a symmetric distribution):

p-value = 1− 1

B

B∑
b=1

I{|T bn| ≤ |Tn|} =
1

B

B∑
b=1

I{|T bn| > |Tn|}, (25)

where |·| denotes the absolute value of the argument. As a second option to compute the p-value,
we also consider a smoothed version of (25) as suggested by Racine and MacKinnon (2007), see

their equation (4):

p-value = 1− 1

B

B∑
b=1

K(T bn, Tn, h). (26)

K(T bn, Tn, h) = K

(
|Tn|−|T bn|

h

)
denotes the Gaussian cumulative kernel function for estimating the

c.d.f. of the bootstrapped T bn evaluated at Tn, the t-statistic in the original sample. h denotes the

bandwidth which is set to the optimal value for normally distributed T bn, h = 1.575B−4/9
√
V̂ (T bn),

where V̂ (T bn) is the variance of the bootstrap t-statistic. Racine and MacKinnon (2007) argue

that due to a more e�cient use of the information in the bootstrap statistics, the smoothed

version increases power and can yield quite accurate results even when B is very small.

Concerning con�dence intervals, computation is based on the following formula, see MacK-

innon (2006): [
θ̂ −

√
V̂ (θ̂)T bn(1− α/2), θ̂ −

√
V̂ (θ̂)T bn(α/2)

]
, (27)

where T bn(τ) denotes the τ quantile of T bn and V̂ (θ̂) is an analytical variance estimate. That

is, in contrast to conventional con�dence intervals, the quantiles of the bootstrap distribution

are used instead of the asymptotic critical value c. As discussed in MacKinnon (2006), quantile

(or percentile) t-statistic con�dence intervals have in theory a better higher-order accuracy than

conventional intervals (either based on asymptotic or bootstrap standard errors). In our simu-

lations, the number of bootstrap draws B is set to 199 for any method.15 In addition, smaller

values of B, namely 99 and 49, are also considered, in order to analyse the relationship between

15As discussed in MacKinnon (2006), the accuracy of bootstrap p-values that are based on the quantile method
theoretically improves when choosing B such that (B + 1) times the con�dence level is an integer.
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bootstrap performance and number of bootstrap draws.

3.5 Wild bootstrap

The de�nition of the wild bootstrap procedure introduced in Bodory, Camponovo, Huber,

and Lechner (2016) relies on the martingale representation for matching estimators proposed

in Abadie and Imbens (2012a). Unlike the standard bootstrap, we do not construct boot-

strap samples (Z∗1 , . . . , Z
∗
n) by randomly selecting with replacement from (Z1, . . . , Zn), where

Zi = (Yi, Di, X
′
i)
′. Instead, we �x the covariates and construct the bootstrap approximation by

perturbating the martingale representation for matching estimators.

Consider the matching estimator introduced in (8) with weights de�ned in (9). Then, as

shown in Abadie and Imbens (2012a), we can write the matching estimator as
√
n(θ̂match− θ) =

T1n + T2n + op(1), where

T1n =

√
n

n1

n∑
i=1

Di(µ(Xi, 1)− µ(Xi, 0)− θ),

T2n =

√
n

n1

n∑
i=1

(Di − (1−Di)Ki) (Yi − µ(Xi, Di)) .

The wild bootstrap algorithm uses this representation to reproduce the sampling distribution of
√
n(θ̂match − θ). In particular, we can approximate the sampling distribution of the �rst term

T1n using the wild bootstrap distribution of

T ∗1n =

√
n

n1

n∑
i=1

Diξ̂iui,

where

ξ̂i = Yi −
∑
j:Dj=0

$i,jYj,

and (u1, . . . , un) are iid random variables with E[ui] = 0 and E[u2i ] = 1. Unfortunately, using

similar arguments as in Abadie and Imbens (2008), we can show that this approximation does

not correctly reproduce the variability of T1n. However, to overcome this distortion we can

introduce a correction factor in the approximation of the second term T2n that compensates the

di�erent variability of the �rst term; see, e.g, Theorem 7 in Abadie and Imbens (2008).

The approximation of the sampling distribution of the second term T2n requires some care.

Indeed, besides correcting the di�erent variability of the approximation of the �rst term T1n,

we also need to capture the variability implied by the estimation of the propensity score in the
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de�nition of Ki. To overcome this problem, we apply the following approach. First, we generate

random treatments D∗i using the estimated propensity score p̂(Xi). Then, we re-estimate the

propensity score p̂∗(Xi) using these bootstrap treatments (D∗1, . . . , D
∗
n). Let K∗i denote the

number of times unit i is used as a match. Then, we approximate the sampling distribution of

T2n by the wild bootstrap distribution of

T ∗2n =

√
n

n∗1

n∑
i=1

Ω∗i ε̂i,D∗
i
vi,

where n∗1 =
∑n

i=1D
∗
i , Ω∗i = ((1−D∗i ) (K∗i (K∗i − 1)))1/2, ε̂i,D∗

i
= (σ̂2(p̂(Xi, D

∗
i )))

1/2
de�ned in

(14), and (v1, . . . , vn) are iid random variables with E[vi] = 0 and E[v2i ] = 1. The scaling factor

Ω∗i corrects for the di�erent variability of the approximation of the �rst term T1n. This term

is also used in Theorem 7 in Abadie and Imbens (2008). Finally, we approximate the sampling

distribution of
√
n(θ̂match − θ) with the empirical bootstrap distribution of T ∗1n + T ∗2n.

A similar approach has been previously adopted in Otsu and Rai (2015), who introduce and

prove the consistency of a weighted bootstrap procedure. However, unlike Otsu and Rai (2015),

our bootstrap method can also be applied to propensity score matching. Moreover, our approach

does not require the implementation of kernel estimators. As for the standard bootstrap, B is

set to 199, 99, and 49 bootstrap draws.

3.6 Summary of the inference methods

Table 1 provides a summary of which inference procedures are investigated for which point

estimators in our simulation study.

4 Simulation design

4.1 Data base and sample restrictions

The idea of an Empirical Monte Carlo Study (EMCS) is to base the data generating process

(DGP) at least partially on real world data rather than models that are completely arti�cial

(and arbitrary), see for instance Huber, Lechner, and Wunsch (2013), Lechner and Wunsch

(2013), Huber, Lechner, and Steinmayr (2014), Huber, Lechner, and Mellace (2014), Lechner

and Strittmatter (2014), and Frölich, Huber, and Wiesenfarth (2014). Our simulations exploit

the same administrative data as used in Huber, Lechner, and Wunsch (2013), which comprise a

2 % random sample of employees in Germany who are subject to social insurance from 1990 to
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Table 1: Inference methods and point estimators

variance estimator (row) / ATET estimator (column) IPW PM R1.5 R3 R1.5BC R3BC
asymptotic variance using GMM (Section 3.1) x

percentile bootstrap of t-stat based on GMM variance (Section 3.4) x
smoothed percentile bootstrap of t-stat based on GMM variance (Section 3.4) x

asymptotic variance of Abadie and Imbens (Section 3.2) x
bootstrap of t-stat based on asymptotic variance (Section 3.4) x

smoothed bootstrap of t-stat based on asymptotic variance (Section 3.4) x
wild bootstrap of t-stat based on asymptotic variance (Section 3.5) x

smoothed wild bootstrap of t-stat based on asymptotic variance (Section 3.5) x
asymptotic variance of Abadie and Imbens with p-score correction (Section 3.2) x

bootstrap of t-stat based on asymptotic variance (Section 3.4) x
smoothed bootstrap of t-stat based on asymptotic variance (Section 3.4) x

wild bootstrap of t-stat based on asymptotic variance (Section 3.5) x
smoothed wild bootstrap of t-stat based on asymptotic variance (Section 3.5) x

weights-based variance: unconditional variance (Section 3.3) x x x x x x
bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x x

smoothed bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x x
wild bootstrap of t-stat based on weights-based variance (Section 3.5) x

smoothed wild bootstrap of t-stat based on weights-based variance (Section 3.5) x

weights-based variance: decomposition (Â+ B̂) (Section 3.3) x x x x x x
bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x x

smoothed bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x x
wild bootstrap of t-stat based on weights-based variance (Section 3.5) x

smoothed wild bootstrap of t-stat based on weights-based variance (Section 3.5) x

weights-based variance: Â (Section 3.3) x x x x x x
bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x x

smoothed bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x x
wild bootstrap of t-stat based on weights-based variance (Section 3.5) x

smoothed wild bootstrap of t-stat based on weights-based variance (Section 3.5) x
weights-based var. with p-score correction: unconditional variance (Sections 3.3, 3.2) x x x x x

bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x
smoothed bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x

wild bootstrap of t-stat based on weights-based variance (Section 3.5) x
smoothed wild bootstrap of t-stat based on weights-based variance (Section 3.5) x

weights-based var. with p-score correction: decomposition (Â+ B̂) (Sections 3.3, 3.2) x x x x x
bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x

smoothed bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x
wild bootstrap of t-stat based on weights-based variance (Section 3.5) x

smoothed wild bootstrap of t-stat based on weights-based variance (Section 3.5) x

weights-based var. with p-score correction: Â (Sections 3.3, 3.2) x x x x x
bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x

smoothed bootstrap of t-stat based on weights-based variance (Section 3.4) x x x x x
wild bootstrap of t-stat based on weights-based variance (Section 3.5) x

smoothed wild bootstrap of t-stat based on weights-based variance (Section 3.5) x
bootstrap of ATET to plug bootstrap std. error into t-stat (Section 3.4) x x x x x x

bootstrap of ATET using the quantile method (Section 3.4) x x x x x x
wild bootstrap of ATET to plug bootstrap std. error into t-stat (Section 3.4) x

wild bootstrap of ATET using the quantile method (Section 3.4) x

Note: IPW: inverse probability weighting; PM: pair matching; R1.5, R3: radius matching with a radius size of 1.5

or 3 times the maximum di�erence between matches occurring in pair matching, respectively; R1.5BC, R3BC:

radius matching with bias correction as considered by Lechner, Miquel, and Wunsch (2011). Any of the bootstrap

procedures is based on B = 199, 99, 49 bootstrap replications. The number of observations M (see (21)) used for

the weights-based estimation of Â and B̂ is determined by M = 2 round(κ
√
n) + 1, with κ = 0.2, 0.8, 3.2.

2006. The data set combines information from four di�erent registers: (i) employer-provided em-

ployee records to the social insurance agency (1990-2006), (ii) unemployment insurance records

20



(1990-2006), (iii) the programme participation register of the Public Employment Service (PES,

2000-2006) and (4) the jobseeker register of the PES (2000-2006). This entails a rich set of

individual characteristics like gender, education, nationality, marital status, number of children,

labor market history (since 1990), occupation, earnings, unemployment bene�t claim, participa-

tion in active labor market programs, and others. Furthermore, a range of regional characteristics

was also included, e.g. information about migration and commuting, average earnings, unem-

ployment rate, long-term unemployment, welfare dependency rates, urbanization codes, and

others.

Using the same sample restrictions as in Huber, Lechner, and Wunsch (2013), we consider all

individuals entering unemployment between (and including) April 2000 and December 2003 in

West Germany (without West Berlin) who were aged 20-59, had not been unemployed or in any

labor market program in the 12 months before unemployment, and whose previous employment

was not an internship or of any other non-standard form. Those unemployed individuals who

start training courses that provide job-related vocational classroom training within the �rst 12

months of unemployment are de�ned as treated (3,266 observations), while those not participat-

ing in any active labor market program in the same period (114,349) are de�ned as non-treated.

We consider two outcome variables in our simulations: average monthly earnings over the three

years after entering unemployment (semi-continuous with 50% zeros), and an indicator whether

there has been some form of (unsubsidized) employment in that period (binary).

4.2 Empirical Monte Carlo Study

Based on the sample with the restrictions, henceforth referred to as `full sample', the EMCS

proceeds as follows: (i) estimation of the propensity score (the conditional training probability)

in the full sample which is then considered to be the `true' population propensity score model,

(ii) sampling of non-treated observations and simulation of a treatment (based on the coe�cients

of the `true' propensity score model) for which the treatment e�ect and its variance are estimated

and (iii) repeating the second step many times to assess the performance of the estimators.
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Table 2: Descriptive statistics of the full sample

Variable Treated Non-treated St.di�. in % Probit model
mean std. mean std. m.e�. in % s.e.

Some unsubsidized employment (Y ) 0.63 0.48 0.56 0.5 9 - -
av. monthly earnings (EUR) (Y ) 1193 1115 1041 1152 9 - -

Age / 10 3.67 0.84 3.56 1.11 8 7.3 0.5
Age squared / 1000 1.42 0.63 1.39 0.85 3 -9.1 0.6

20 - 25 years old 0.22 0.41 0.36 0.48 22 0.9 0.2
Women 0.57 0.5 0.46 0.5 15 -5.5 1.5

Not German 0.11 0.31 0.19 0.39 16 -0.5 0.1
Secondary degree 0.32 0.47 0.22 0.42 15 1.1 0.1

University entrance quali�cation 0.29 0.45 0.2 0.4 15 1 0.1
No vocational degree 0.18 0.39 0.34 0.47 26 -0.3 0.1

At least one child in household 0.42 0.49 0.28 0.45 22 -0.2 0.1
Last occupation: Non-skilled worker 0.14 0.35 0.21 0.41 13 0.4 0.2

Last occupation: Salaried worker 0.4 0.49 0.22 0.41 29 1.8 0.2
Last occupation: Part time 0.22 0.42 0.16 0.36 12 2.1 0.4

UI bene�ts: 0 0.33 0.47 0.44 0.5 16 -0.5 0.1
> 650 EUR per month 0.26 0.44 0.22 0.41 7 0.8 0.2

Last 10 years before UE: share empl. 0.49 0.34 0.46 0.35 8 -1.4 0.2
share unemployed 0.06 0.11 0.06 0.11 1 -2.5 0.6

share in programme 0.01 0.04 0.01 0.03 9 5 1.4
share part time 0.16 0.33 0.11 0.29 10 -0.6 0.2

share out-of-the labour force (OLF) 0.28 0.4 0.37 0.44 14 -1.3 0.2
Entering UE in 2000 0.26 0.44 0.19 0.39 13 1.7 0.1

2001 0.29 0.46 0.26 0.44 5 0.9 0.1
2003 0.2 0.4 0.27 0.44 12 0 0.1

Share of pop. living in/ close to big city 0.76 0.35 0.73 0.37 6 0.4 0.1
Health restrictions 0.09 0.29 0.15 0.36 13 -0.6 0.1

Never out of labour force 0.14 0.34 0.11 0.31 6 0.6 0.1
Part time in last 10 years 0.35 0.48 0.29 0.45 9 -0.5 0.1

Never employed 0.11 0.31 0.2 0.4 17 -1.2 0.2
Duration of last employment > 1 year 0.41 0.49 0.43 0.5 4 -0.6 0.1
Av. earn. last 10 yrs when empl./1000 0.59 0.41 0.52 0.4 13 -0.4 0.2

Woman × age / 10 2.13 1.95 1.65 1.94 17 2.7 0.6
× squared / 1000 0.83 0.85 0.65 0.9 15 -2.8 0.7

× no vocational degree 0.09 0.28 0.16 0.36 15 -0.9 0.1
× at least one child in household 0.32 0.47 0.17 0.37 25 1.1 0.2

× share OLF last year 0.19 0.36 0.18 0.35 3 0.8 0.2
× average earnings last 10 y. if empl. 0.26 0.34 0.19 0.3 16 -1.4 0.3

× entering UE in 2003 0.1 0.3 0.13 0.33 6 -0.6 0.1
Xiβ̃ -1.7 0.4 -2.1 0.42 68 - -

Φ(Xiβ̃) 0.06 0.04 0.03 0.03 60 - -
Number of obs., Pseudo-R2 in % 3266 114349 3.3

Note: β̃ denotes the estimated probit coe�cients in the full sample and Φ(Xiβ̃) is the c.d.f. of the standard

normal distribution evaluated at Xiβ̃. Pseudo-R2 is the so-called Efron's R2

{
1−

∑n
i=1[Di−Φ(Xiβ̃)]2∑n

i=1[Di−n−1
∑n

i=1Di]
2

}
.

St.di�. (standardized di�erence) is de�ned as the di�erence of means normalized by the square root of the sum

of estimated variances of the particular variables in both subsamples (see e.g. Imbens and Wooldridge (2009),

p. 24). Mean, std., s.e. stand for mean, standard deviation, and standard error, respectively. M.e�.: Marginal

e�ects evaluated at the mean in the probit model for treatment selection based on discrete changes for binary

variables and derivatives otherwise.

22



Table 2 provides descriptive statistics for the treated and non-treated in the full sample,

which is informative about selection into treatment relevant for step (i).16 While the upper part

presents descriptives for the two outcome variables average monthly earnings and the employ-

ment indicator, the remainder of the table focusses on the 36 confounders (among these seven

interaction terms) that are included in the `true' propensity score model used for the simulation

of the placebo-treatments.17 We also present the normalized di�erences between treated and

non-treated as well as the marginal e�ects of the covariates at the means of all other covariates

according to the `true' propensity score, which point to considerable selection into treatment, as

several variables are not balanced across treatment states.

After the estimation of the `true' propensity score model in the full sample, the actually

treated observations are discarded and no longer play a role in the simulations, leaving us with

a `population' of 114,349 observations. The next step is to randomly draw simulation samples

of size n from the non-treated units with replacement. The sample sizes used in our simulations

are 500 and 2000, in order to investigate the performance of the variance estimators both in

moderate samples and in somewhat larger samples of a few 1000 observations as it frequently

occurs in applied work. The extensive computational burden of some inference procedures

(in particular the bootstrap) prevents us from investigating even larger samples sizes.18 In

each simulation sample, the (pseudo-)treatment is simulated among observations based on the

coe�cient estimates of the `true' propensity score model in the full sample, which we denote by

β̃ (note that a constant is included). To vary the strength of treatment selectivity, we consider

two choices of selection into treatment based on the following equation:

Di = I{λXiβ̃ + δ + Ui > 0}, Ui ∼ N (0, 1), λ ∈ {1, 2.5}, (28)

where Ui denotes a standard normally distributed random variable and λ determines selectivity

(1=normal and 2.5=strong selection). As only a pseudo-treatment is assigned, the true e�ect

on any individual is equal to zero no matter how strong selection is. Finally, δ gauges the shares

of treated and non-treated and is chosen such that the expected number of treated equals 70%

16Note that some descriptives in Table 2 seemingly di�er from those in Table 1 of Huber, Lechner, and Wunsch
(2013), even though they refer to the same data. The reason is that in Huber, Lechner, and Wunsch (2013),
the non-treated covariate means are incorrectly displayed in the column which claims to provide the standard
deviations of the covariates of the treated, while the latter are given in the column which claims to show the
non-treated covariate means. Therefore, Table 2 is correct, while the statistics in Table 1 of Huber, Lechner, and
Wunsch (2013) are partially misplaced.

17We use almost the same covariates as Huber, Lechner, and Wunsch (2013), with the exception that drop the
variable `minor employment with earnings of no more than 400 EUR per month' and its interaction with gender,
as this improves the small sample convergence of probit-based propensity score estimation.

18However, if a variance estimator turns out to already perform well for our n, we expect it to perform at least
as well in larger samples.
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or 30%, respectively.19

Note that in the simulation design outlined so far, e�ects are homogeneous as they are

zero for everyone, because only a pseudo-treatment is considered. In order to investigate the

performance of inference methods under heterogeneous e�ects, we in addition introduce models

for the outcome variables. For the employment outcome, we create a uniformly distributed

random variable εi ∼ U(0, 1.2), which is a function of the linear index of the `true' propensity

score in the full sample. To be speci�c,

f(Xi) = I{|Xiβ̃| ≤ 3}Xiβ̃ + I{|Xiβ̃| > 3}X̄iβ̃ −min(Xiβ̃),

εi = 1.2
1.5f(Xi)/max(f(Xi)) +Wi

max(1.5f(Xi)/max(f(Xi)) +Wi)
.

X̄i denotes the vector of mean covariates in the `population' of 114,349 observations, such that

outliers with |Xiβ̃| > 3 are trimmed to the average index when generating f(Xi). Wi ∼ U(0, 1)

is a uniformly distributed simulated random variable. Then, among observations in the `popu-

lation' with the employment state equal to zero, the employment outcome is switched to one if

εi > 0.7, while among observations with employment equal to one, it is set to zero if εi < 0.15.

This introduces e�ect heterogeneity w.r.t. the index and implies that 69% of the `population'

are employed (vs. just 56% under e�ect homogeneity). Concerning the earnings outcome, e�ect

heterogeneity is based on εi ∼ U(0.994, 1.346) which is generated in the following way:

εi = 0.21[f(Xi)/max(f(Xi)) +Wi] + 0.945.

εi is added to positive earnings outcomes of any individuals in the `population' with employment

equal to one under e�ect homogeneity. For those observations without earnings whose employ-

ment state has been switched to one to introduce e�ect heterogeneity, the average of all positive

earnings (under e�ect homogeneity) multiplied by (3εi − 2.4) is added. This entails average

earnings of 1,247.29 EUR in our `population' of 114,349 observations (vs. 1,040.96 under e�ect

homogeneity).

Table 3 summarizes the 8 scenarios that are considered in the EMCS and gives statistics

about the strength of selection implied by each.20 Combined with two sample sizes, we therefore

19Note that the simulations are not conditional on the treatment. Thus, the share of treated in each simulation
sample is random.

20The standardized di�erences as well as the pseudo-R2s are based on a re-estimated propensity score in the
actually non-treated sample (114,349 obs.), the `population' in which the pseudo-treatment is assigned. However,
when reassigning observations to act as simulated treated, the pool of non-treated is changed. Together with the
fact that the treatment share di�ers from the original share leads to di�erent values of those statistics even in
the case that mimics selection in the full sample.
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run all in all 16 simulations. Similar to Huber, Lechner, and Wunsch (2013), the number of

Monte Carlo replications is proportional to the sample size, consisting of 10,000 replications

for the smaller and 2,500 for the the larger sample size, as the latter is computationally more

expensive, but has less variability in results across simulation samples.

Table 3: Summary statistics (DGPs)

E�ect homogeneity (employment)
Strength of Share of St.di�. of Pseudo-R2 of Y(1) Y(0) ATET Trimming in %
selection treated in % p-score in % probit in % mean std mean std mean std 500 obs 2000 obs
Normal 70 41 8.7 0.6 0.5 0.6 0.5 0 0 5.2 0
Normal 30 42 9.1 0.6 0.5 0.6 0.5 0 0 0.1 0
Strong 70 81 33.8 0.6 0.5 0.6 0.5 0 0 28.6 8.7
Strong 30 89 34.4 0.7 0.5 0.7 0.5 0 0 5.5 0.2

E�ect homogeneity (earnings)
Normal 70 41 8.7 11.0 11.8 11.0 11.8 0 0
Normal 30 42 9.1 11.9 12.2 11.9 12.2 0 0
Strong 70 81 33.8 11.7 11.9 11.7 11.9 0 0
Strong 30 89 34.4 12.9 12.7 12.9 12.7 0 0

E�ect heterogeneity (employment)
Normal 70 42 9.1 0.8 0.4 0.6 0.5 0.2 0.4 5.3 0
Normal 30 42 8.9 0.8 0.4 0.6 0.5 0.2 0.4 0.1 0
Strong 70 81 33.9 0.8 0.4 0.6 0.5 0.2 0.4 29.3 9.1
Strong 30 89 34.2 0.8 0.4 0.7 0.5 0.1 0.4 5.6 0.2

E�ect heterogeneity (earnings)
Normal 70 42 9.1 13.6 11.2 11.1 11.8 2.5 6.6
Normal 30 42 8.9 14.5 11.3 11.8 12.1 2.7 6.8
Strong 70 81 33.9 14.3 11.2 11.7 12.0 2.6 6.7
Strong 30 89 34.2 16.0 11.5 12.9 12.6 3.1 7.2

Note: Pseudo-R2 is the so-called Efron's R2

{
1−

∑n
i=1[Di−Φ(Xiβ̃)]2∑n

i=1[Di−n−1
∑n

i=1Di]
2

}
. St.di�. of p-score (standardized di�erence of the

propensity score) is de�ned as the di�erence of average propensity scores across treatment states normalized by the square root of

the sum of estimated variances of the propensity scores in either state (see e.g. Imbens and Wooldridge (2009), p. 24). Y (1) and Y (0)

denote the potential outcomes for the randomly generated treated observations under treatment and non-treatment, respectively.

The (true) treatment e�ects on the treated (ATETs) are the di�erences between these potential outcomes. The means and standard

deviations (std) are displayed for the potential outcomes and the corresponding ATETs. For earnings only, the values of Y(1), Y(0),

and ATET are shown in hundreds. Mean and std of Y(0) can di�er slightly between homogenous and heterogeneous DGPs because

they are generated with di�erent random number states (GAUSS Version 15.1.3). Trimming in % shows the share of observations

dropped in the respective DGPs due to support problems (Section 2.3). Since trimming does not depend on the outcomes, the shares

are presented in the employment tables only.

Table 4 presents the biases and standard deviations of the e�ect estimators under the di�erent

DGPs. While the upper panels refer to the various cases under homogeneity and zero e�ects,

the lower panels refer to the case of non-zero heterogeneous e�ects.

We �nd that overall, the biases of estimators are small. Concerning their relative performance,

as expected, nearest neighbor matching is the noisiest, while IPW weighting does very well,

since there are no substantial issues of lack of or thin support in these DGPs. The other

matching estimators are somewhat in-between these cases. Comparing the standard errors of

the estimators across DGPs demonstrates that the approximation of
√
n-convergence usually
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appears to be reasonable for the case of normal selection, as the standard errors in larger samples

tend to be half the size of those in the smaller samples. However, for the case of strong selection,

the speed of convergence is clearly much higher which indicates that the asymptotic normal

distribution may not be a good approximation of the distribution of the estimators in these

cases.21

Table 4: Performance of ATET estimators for all DGPs

E�ect homogeneity
500 obs 2000 obs 500 obs 2000 obs

Estimation empl earn empl earn empl earn empl earn
method bias se bias se bias se bias se bias se bias se bias se bias se

Normal selection, 30% treated Normal selection, 70% treated
IPW 0.2 4.7 3.6 117 -0.1 2.3 -1.0 56.5 0.4 5.3 10.7 131 0.0 2.7 1.1 68.8
PM 0.2 6.7 4.8 167 0.0 3.2 -0.3 81.6 0.2 7.8 5.0 196 -0.1 3.5 0.0 87.4
R1.5 0.2 5.6 5.0 140 0.0 2.8 -0.3 69.0 0.1 6.4 4.1 159 0.0 3.1 0.0 75.1
R3 0.3 5.5 6.4 137 0.0 2.8 -0.3 68.9 0.2 6.2 5.5 153 0.1 3.0 0.7 73.9
R1.5BC 0.0 5.6 1.3 133 -0.1 2.7 -1.6 64.3 -0.3 6.5 -4.5 151 -0.1 3.1 -0.9 71.5
R3BC -0.1 5.5 0.7 131 -0.1 2.7 -1.9 64.2 -0.3 6.3 -5.0 147 -0.1 3.0 -1.1 70.7

Strong selection, 30% treated Strong selection, 70% treated
IPW 0.2 6.2 7.7 164 0.2 3.4 -3.2 96.4 0.6 7.0 17.8 160 0.7 4.3 20.1 111
PM 0.0 9.2 -1.5 252 0.2 4.8 -4.2 142 0.3 10.5 7.5 247 0.3 7.4 7.9 189
R1.5 0.0 7.7 -0.2 208 0.2 4.0 -7.2 116 0.3 8.8 8.0 205 0.4 5.8 10.3 146
R3 0.1 7.4 2.0 199 0.2 3.9 -6.4 111 0.3 8.4 9.0 194 0.4 5.3 10.6 135
R1.5BC -0.4 7.7 -5.4 191 0.1 4.0 -2.8 106 -0.4 8.8 -3.4 192 -0.2 5.8 -2.1 135
R3BC -0.3 7.5 -5.2 186 0.1 3.9 -2.9 104 -0.4 8.5 -3.5 185 -0.2 5.5 -2.5 128

E�ect heterogeneity
Normal selection, 30% treated Normal selection, 70% treated

IPW 0.2 4.5 0.5 119 0.1 2.1 -2.0 54.8 0.6 5.3 13.2 130 0.0 2.5 1.0 64.4
PM 0.2 6.6 1.2 170 0.2 3.0 -2.0 79.6 0.2 7.8 4.3 196 0.0 3.4 -3.4 86.9
R1.5 0.2 5.5 1.4 143 0.2 2.6 -1.7 66.8 0.3 6.4 5.6 159 0.1 2.9 -1.2 72.4
R3 0.3 5.4 3.0 140 0.2 2.5 -1.6 66.6 0.3 6.2 6.9 153 0.1 2.9 -0.9 71.3
R1.5BC 0.0 5.5 -2.2 136 0.1 2.5 -2.1 62.2 -0.2 6.5 -1.3 151 0.0 2.9 -2.1 69.6
R3BC 0.0 5.4 -2.7 134 0.1 2.5 -2.3 62.1 -0.2 6.3 -1.9 147 0.0 2.9 -2.5 68.9

Strong selection, 30% treated Strong selection, 70% treated
IPW 0.1 6.0 5.9 161 0.5 3.2 -0.3 92.0 -1.5 7.0 -25.2 160 -0.2 4.2 8.3 111
PM -0.1 9.2 -1.9 251 0.4 4.7 -7.2 137 -1.7 10.7 -35.0 248 -0.7 7.2 -7.3 193
R1.5 0.0 7.6 -0.9 205 0.4 3.9 -6.1 112 -1.8 8.9 -35.5 204 -0.8 5.7 -5.7 152
R3 0.0 7.3 0.9 196 0.5 3.8 -5.9 108 -1.8 8.5 -34.5 193 -0.7 5.3 -4.2 140
R1.5BC -0.4 7.6 -6.5 189 0.4 4.0 -3.1 102 -2.6 8.8 -47.3 191 -1.3 5.8 -16.4 138
R3BC -0.4 7.4 -6.6 183 0.4 3.9 -3.3 100 -2.5 8.5 -47.2 185 -1.3 5.5 -16.6 131

Note: IPW: inverse probability weighting; PM: pair matching; R1.5, R3: radius matching with a radius size of 1.5 or 3 times the

maximum di�erence between matches occurring in pair matching, respectively; R1.5BC, R3BC: radius matching with bias correction

as considered by Lechner, Miquel, and Wunsch (2011). Sample sizes: 500 or 2000 observations (obs). Outcomes: employment (empl)

and earnings (earn). The performance of the estimators is evaluated by their biases and standard errors (se).

5 Results

This section evaluates the performance of the various inference methods for the di�erent point

estimators. For the sake of brevity, we present only a limited amount of evidence in the main

21Table 3 (columns 11 and 12) indicates that sample size reductions due to common support issues are consid-
erably higher in cases of strong selection. However, this should not a�ect the results because inference is based
on samples selected after these reductions.
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body of the paper which conveys the main message of our �ndings, as the latter seem, perhaps

surprisingly, rather unambiguous. An extensive set of further results is presented in Appendix

A.

Table 5 provides the rejection probabilities of the inference procedures by distinct point

estimators and outcomes. The null hypothesis corresponds to classical signi�cance tests, namely

that the respective mean e�ect is zero. The upper panel contains the results for IPW, the

intermediate one for pair matching, and the lower one for radius matching. In the case of radius

matching, the rejection probabilities are averaged over the four estimators investigated (R1.5,

R3, R1.5BC, R3BC), because their inference results are qualitatively very similar, see Table

A.1 in Appendix A for a separate analysis of each radius matching algorithm. Furthermore,

Table 5 aggregates over the di�erent DGP features, with the exception of e�ect homogeneity

(left panel) vs. heterogeneity (right panel). The reason is that under homogeneity, the null

hypothesis is true as any e�ect is equal to zero, while it is violated under heterogeneity. Thus,

the rejection probabilities relating to the former case re�ect the size of the tests, while those

under heterogeneity are informative about the power. As shown in Table A.8 in Appendix A,

the coverage probabilities of the various procedures, i.e. the share of simulations in which the

true value is included in the 95% con�dence interval of the respective method, do not di�er much

for the homogeneous and heterogeneous case.

A �rst observation in Table 5 is that all methods that are based on asymptotic approxi-

mations (i.e. do not rely on bootstrapping) and ignore the estimation of the propensity score

are conservative. This is for instance in line with Abadie and Imbens (2012a), who show that

estimating (rather than knowing) the propensity score changes the variance of the matching

estimator of the ATET (albeit the direction of the change is ambiguous). Interestingly, also the

GMM-based variance estimator for IPW is rather conservative, even though it accounts for the

estimation of the propensity score. As any of these procedures are computationally much less

expensive than the bootstrap, they may provide reasonable approximations in very large data

sets. On the other hand, some procedures, namely weights-based variance estimation using term

A alone and the Abadie and Imbens estimator, have excessive size when adjusted for propensity

score estimation. In conclusion, weights-based estimation using A without propensity score ad-

justment appears to be among the best performing asymptotic methods for any point estimator

in terms of size.
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Table 5: Rejection probabilities

IPW homogeneity heterogeneity
binary continuous binary continuous

as bs as bs as bs as bs
GMM 0.2 3.9 0.6 4.3 55.0 84.9 39.7 63.2

wgt uncond var 1.0 4.3 1.6 4.6 72.6 85.1 51.5 63.3
wgt decomp (0.2) 0.6 4.2 1.0 4.2 72.7 87.1 50.2 64.2
wgt decomp (0.8) 0.6 4.2 1.1 4.1 73.1 87.3 51.0 64.6
wgt decomp (3.2) 0.6 4.3 1.2 4.1 74.9 88.0 54.7 65.3

wgt A (0.2) 3.3 3.7 3.3 3.7 88.5 87.4 64.4 63.2
wgt A (0.8) 3.2 3.8 3.3 3.8 88.5 87.5 64.9 64.0
wgt A (3.2) 2.9 4.0 3.8 4.0 87.8 88.2 66.9 64.7

boot e�ect se 4.1 4.3 87.8 64.7
boot e�ect quant 2.7 2.9 89.0 61.5

pair matching homogeneity heterogeneity
binary continuous binary continuous

as bs wbs as bs wbs as bs wbs as bs wbs
wgt uncond var 2.6 6.1 4.6 3.7 7.4 4.9 50.2 60.2 62.5 36.9 46.9 43.9

wgt decomp (0.2) 0.4 3.1 3.5 1.0 3.2 3.8 46.8 69.7 67.6 30.1 47.3 43.5
wgt decomp (0.8) 0.3 2.9 3.5 0.9 2.9 3.6 47.2 69.9 67.7 30.6 47.2 43.7
wgt decomp (3.2) 0.3 2.6 3.5 1.4 2.1 3.8 49.9 71.0 68.2 34.1 46.3 43.9

wgt A (0.2) 3.3 2.5 3.7 4.3 2.3 3.9 69.2 69.7 67.9 46.5 45.5 43.2
wgt A (0.8) 3.2 2.4 3.7 4.3 2.2 3.8 69.2 70.1 68.1 47.1 45.7 43.5
wgt A (3.2) 2.6 2.2 3.5 5.2 1.9 3.8 68.2 70.6 68.3 49.4 45.2 43.7

Abadie Imbens 7.4 1.5 5.5 6.6 1.3 5.0 71.6 51.4 61.9 48.4 34.2 41.4
wgt uncond var ps 4.6 7.5 4.7 6.6 9.2 5.4 55.1 60.6 60.3 43.9 48.7 44.0

wgt decomp (0.2) ps 1.3 4.6 3.9 3.3 5.2 4.5 53.6 70.8 66.6 38.1 49.6 43.8
wgt decomp (0.8) ps 1.2 4.4 3.7 3.5 4.8 4.5 54.0 71.0 66.5 38.7 49.6 44.0
wgt decomp (3.2) ps 1.5 3.9 3.8 5.3 4.6 4.6 58.0 72.4 66.8 44.2 49.5 44.0

wgt A (0.2) ps 9.7 5.2 4.7 11.6 5.6 5.2 77.2 70.7 63.8 58.0 49.5 43.8
wgt A (0.8) ps 9.5 5.3 4.6 11.8 5.2 5.0 77.2 71.1 64.1 58.9 50.0 44.5
wgt A (3.2) ps 8.3 5.1 4.5 13.6 5.4 5.2 76.1 71.2 64.3 61.8 50.3 45.0

Abadie Imbens ps 14.8 2.9 6.6 15.0 3.0 6.4 82.6 58.7 64.0 61.8 41.1 44.6
boot e�ect se 2.0 3.6 2.3 3.8 60.5 64.6 38.0 41.3

boot e�ect quant 0.1 3.5 0.1 3.6 67.2 62.1 32.5 39.6
radius matching homogeneity heterogeneity

binary continuous binary continuous
as bs as bs as bs as bs

wgt uncond var 0.9 3.3 1.6 3.7 59.2 73.4 42.0 54.3
wgt decomp (0.2) 0.4 2.9 0.9 2.8 58.5 76.8 39.6 54.9
wgt decomp (0.8) 0.4 2.8 0.9 2.7 59.0 77.0 40.4 55.2
wgt decomp (3.2) 0.4 2.8 1.1 2.6 60.8 77.8 43.5 55.8

wgt A (0.2) 3.6 2.6 3.4 2.4 78.4 76.4 54.7 53.6
wgt A (0.8) 3.5 2.6 3.4 2.4 78.2 76.7 55.3 54.2
wgt A (3.2) 3.1 2.5 3.9 2.4 77.6 77.6 57.3 55.0

wgt uncond var ps 2.8 4.8 4.8 5.8 67.5 73.1 53.0 57.0
wgt decomp (0.2) ps 2.0 4.5 3.8 5.1 67.5 76.9 50.9 57.5
wgt decomp (0.8) ps 2.0 4.5 3.9 5.0 68.0 77.1 52.1 57.9
wgt decomp (3.2) ps 2.1 4.6 5.1 5.5 70.0 78.1 56.5 58.9

wgt A (0.2) ps 9.9 4.8 11.3 5.8 84.6 75.0 67.7 56.9
wgt A (0.8) ps 9.7 4.9 11.5 5.8 84.5 75.3 68.3 57.5
wgt A (3.2) ps 9.0 4.9 12.8 6.3 83.8 76.2 69.8 58.4
boot e�ect se 3.3 3.4 74.4 53.8

boot e�ect quant 1.0 1.0 77.3 50.1

Note: `as': the standard error is estimated by the respective method and plugged into the asymptotic approximation for con�dence

intervals; `bs': using 199 (standard) bootstrap replications (without smoothing), the standard error is estimated by the respective

method and plugged into the t-statistic to obtain con�dence intervals based on the quantile method. Exceptions are `boot e�ect

se', which bootstraps the e�ect and plugs its standard error into the asymptotic approximation for con�dence intervals, and `boot

e�ect quant', which obtains con�dence intervals based on the quantile method on the e�ect (rather than the t-statistic); `wbs':

wild bootstrap (without smoothing) rather than the standard bootstrap is used for the respective method. The su�x `ps' stands

for adjustment for propensity score estimation. The results for radius matching are averages over all 4 radius matching algorithms

(R1.5, R3, R1.5BC, R3BC).

28



In general, it appears that the bootstrap procedures dominate the asymptotic ones in that

they are much closer to the nominal size under homogeneity. This holds also true for IPW

estimation, where any bootstrap method performs better than its asymptotic counterpart in

terms of size. For the matching estimators, the methods based on bootstrapping t-statistics

which include the propensity score adjustment generally do best in terms of size, while the ones

without adjustment are conservative, with the exception of the Abadie and Imbens estimator

when using the wild bootstrap. Concerning pair matching, it is interesting to observe that the

inconsistency of the standard bootstrap demonstrated in Abadie and Imbens (2008) seem to

have little practical relevance when using the propensity score adjustment, with the exception of

weights-based estimation using the unconditional variance. Furthermore, the wild bootstrap im-

proves on several inference estimators compared to standard bootstrapping, in particular when

propensity score estimation is ignored. Overall, it appears that with the exception of the uncon-

ditional variance formula, the weights-based estimators with propensity score adjustment (both

based on the standard or wild bootstrap) most accurately estimate the size of pair matching. For

radius matching, bootstrapping t-statistics with propensity score adjustment and weights-based

estimation using A+B appears to overall dominate in terms of empirical size. It is interesting to

note that for each of the point estimators, the best performing methods based on bootstrapping

t-statistics outperform the approaches of directly bootstrapping the ATET (to either plug the

bootstrap standard error into the asymptotic approximation or to apply the quantile method on

the ATET).

The previous discussion exclusively focussed on the empirical size. Concerning the power

of the inference procedures, Table 5 shows that none of the methods have severe lack-of-power

issues, not even the conservative ones. Again, the bootstrap-based procedures often dominate

the asymptotic approximations or are at least comparably powerful, with the exception of those

asymptotic methods that are severely oversized. That is, it frequently appears that some boot-

strap method is superior in terms of size and power at the same time when compared to the

respective asymptotic approximation. The patterns of our results on size and power are quite

similar across outcome variables, although in some cases the asymptotic procedures are less con-

servative for the continuous than for the binary outcome. In Tables A.2 to A.4 in Appendix A

we provide the rejection probabilities of the methods (separately for each point estimator) across

further simulation features like sample size, share of treated, and treatment selection.22 It is a

maybe surprising result that the size and power properties of the di�erent inference procedures

are rather stable across the di�erent features.

22The corresponding coverage probabilities, i.e. the share of simulations in which the true value is included in
the 95% con�dence interval of the respective method, are provided in Tables A.9 to A.11 of Appendix A.
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A further remark concerns the number of bootstrap replications, which we varied between 49

and 199 (even though in any of the tables mentioned so far, only the results for 199 replications

are reported). On average, it seems that reliable inference is obtained already with just 49

bootstraps, no matter whether non-smoothed or smoothed statistics are considered. Even though

increasing the number of replications improves the procedures, the gains appear to be rather

small for any point estimator, see Tables A.6 and A.7 in Appendix A. For the non-smoothed

bootstrap procedures, a larger number of replications generally slightly decreases the standard

deviations of the rejection probabilities (results not reported but available on request), albeit the

e�ect is rather minor. It is furthermore more or less non-existent for the smoothed versions, as

smoothing decreases the standard deviations under a low number of bootstraps somewhat such

that an increase does not entail further reductions. Smoothing has, however, virtually no e�ect

on the coverage probabilities (i.e. on average), see Tables A.6 and A.7. It generally decreases

the size under a small number of replications, but has a negligible to nonexistent impact for 199

replications.

6 Conclusion

In this paper, we investigated the �nite sample properties of various inference methods for

propensity score-based matching and weighting estimators of the average treatment e�ect on the

treated. Using an `Empirical Monte Carlo Study' (EMCS) approach based on large scale labor

market data from Germany, we analysed both asymptotic approximations and several bootstrap

methods for the computation of variances and con�dence intervals. We found that asymptotic

approximations that ignore the estimation of the propensity score tended to be conservative,

while accounting for propensity score estimation led to excessive size for some procedures appli-

cable to matching estimators. In contrast, GMM-based variance estimation of IPW was rather

conservative, even though accounting for the estimation of the propensity score. In general, the

bootstrap procedures dominated the asymptotic ones in terms of size. For matching, the meth-

ods based on bootstrapping t-statistics which account for propensity score estimation generally

came closest to the nominal size. For pair matching, it was interesting to see that the incon-

sistency of the standard bootstrap bore little practical relevance for most methods accounting

for propensity score estimation. Yet, a wild bootstrap algorithm applicable to propensity score

matching led to a more accurate size for several inference estimators than standard bootstrap-

ping, in particular when the estimation of the propensity score was ignored. Concerning power,

none of the methods showed severe lack-of-power issues, but again, the bootstrap procedures

frequently outperformed the asymptotic approximations or were at least comparably powerful.
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Furthermore, the size and power properties of the inference procedures were rather stable across

di�erent simulation features. Finally, for the bootstrap procedures, we found only minor e�ects

of the number of bootstrap replications on their average performance.
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A Appendix

Table A.1: Rejection probabilities for radius matching

homogeneity heterogeneity homogeneity heterogeneity
binary continuous binary continuous binary continuous binary continuous
as bs as bs as bs as bs as bs as bs as bs as bs

radius matching R1.5 radius matching R3

wgt uncond var 1.4 3.5 2.4 4.2 58.4 68.2 42.7 50.8 1.1 3.4 2.0 4.0 60.4 72.4 43.3 52.9
wgt decomp (0.2) 0.4 2.7 1.0 2.5 57.2 74.9 38.8 51.6 0.5 2.8 1.0 2.8 59.7 77.3 40.5 53.7
wgt decomp (0.8) 0.4 2.6 1.0 2.5 57.6 75.2 39.5 51.9 0.4 2.6 1.0 2.6 60.2 77.5 41.2 54.1
wgt decomp (3.2) 0.4 2.5 1.2 2.2 59.6 76.3 42.8 52.2 0.4 2.6 1.2 2.4 62.1 78.6 44.4 54.6

wgt A (0.2) 3.5 2.4 3.8 2.1 78.2 74.3 54.2 49.9 3.6 2.5 3.7 2.3 80.2 77.2 55.7 52.3
wgt A (0.8) 3.4 2.4 3.7 2.0 77.9 74.9 55.0 50.6 3.5 2.5 3.7 2.3 80.0 77.3 56.3 52.9
wgt A (3.2) 2.8 2.3 4.3 2.0 77.2 76.1 56.8 51.3 2.9 2.4 4.2 2.2 79.2 78.5 58.3 53.9

wgt uncond var ps 3.5 4.8 5.8 6.1 66.2 68.2 52.9 53.3 3.2 4.8 5.5 6.0 68.3 71.5 54.1 55.4
wgt decomp (0.2) ps 2.0 4.3 3.9 4.7 66.3 75.2 49.3 54.2 2.2 4.4 4.1 5.0 68.7 76.9 51.7 56.0
wgt decomp (0.8) ps 1.9 4.2 4.1 4.6 67.0 75.5 50.7 54.5 2.1 4.3 4.2 4.9 69.1 77.4 52.9 56.5
wgt decomp (3.2) ps 2.0 4.2 5.4 4.9 69.0 76.7 55.2 55.5 2.2 4.4 5.5 5.2 71.0 78.6 57.7 57.7

wgt A (0.2) ps 9.8 4.4 12.1 5.3 84.4 73.0 67.2 53.6 9.9 4.7 12.0 5.6 86.2 75.2 68.5 55.7
wgt A (0.8) ps 9.6 4.4 12.2 5.3 84.2 73.5 67.8 54.3 9.6 4.8 12.4 5.7 86.0 75.7 69.1 56.4
wgt A (3.2) ps 8.8 4.6 13.5 5.8 83.5 74.7 69.4 55.4 8.9 4.8 13.3 6.0 85.3 76.8 70.7 57.4
boot e�ect se 3.2 3.2 73.8 51.2 3.4 3.5 77.3 54.1

boot e�ect quant 0.8 0.8 78.6 46.1 0.9 1.0 80.9 49.9
radius matching with bias correction R1.5BC radius matching with bias correction R3BC

wgt uncond var 0.7 3.0 1.2 3.1 58.7 75.4 41.0 55.9 0.6 3.2 1.0 3.3 59.3 77.4 41.1 57.7
wgt decomp (0.2) 0.4 3.0 0.8 2.9 58.2 76.6 39.5 56.1 0.4 3.2 0.8 3.0 58.8 78.3 39.7 57.9
wgt decomp (0.8) 0.4 2.9 0.9 2.8 58.7 76.7 40.4 56.5 0.4 3.2 0.8 3.0 59.3 78.5 40.5 58.4
wgt decomp (3.2) 0.4 3.0 1.0 2.9 60.4 77.3 43.3 57.2 0.3 3.1 1.0 3.1 61.0 79.1 43.5 59.0

wgt A (0.2) 3.8 2.6 3.2 2.5 77.4 76.2 54.5 55.1 3.6 2.9 2.9 2.8 78.0 78.1 54.6 57.0
wgt A (0.8) 3.7 2.6 3.2 2.6 77.2 76.4 55.1 55.7 3.5 2.9 2.8 2.8 77.9 78.2 54.9 57.5
wgt A (3.2) 3.4 2.6 3.7 2.6 76.7 76.9 56.9 56.4 3.1 2.8 3.3 2.8 77.4 78.8 57.0 58.3

wgt uncond var ps 2.4 4.6 4.1 5.5 67.5 75.7 52.3 58.9 2.2 5.0 3.9 5.7 68.0 77.1 52.6 60.3
wgt decomp (0.2) ps 2.0 4.4 3.7 5.3 67.2 76.9 51.0 59.1 1.9 4.8 3.5 5.5 67.9 78.5 51.4 60.6
wgt decomp (0.8) ps 2.0 4.5 3.8 5.2 67.7 77.1 52.2 59.4 2.0 4.8 3.6 5.5 68.4 78.6 52.6 61.0
wgt decomp (3.2) ps 2.2 4.7 4.8 5.8 69.7 77.6 56.4 60.5 2.1 4.9 4.7 6.2 70.3 79.2 56.8 62.1

wgt A (0.2) ps 10.3 5.0 10.7 5.9 83.7 75.0 67.6 58.5 9.8 5.2 10.3 6.3 84.2 76.7 67.7 59.9
wgt A (0.8) ps 10.0 5.1 10.8 6.1 83.5 75.2 67.9 58.9 9.6 5.2 10.5 6.2 84.1 76.9 68.3 60.2
wgt A (3.2) ps 9.4 5.0 12.4 6.5 83.0 75.8 69.5 59.7 9.1 5.4 11.9 6.8 83.6 77.4 69.7 61.1
boot e�ect se 3.2 3.3 72.1 54.1 3.4 3.5 74.3 56.0

boot e�ect quant 1.0 1.0 73.8 51.0 1.2 1.2 75.8 53.3

Note: `as': the standard error is estimated by the respective method and plugged into the asymptotic approximation for con�dence

intervals; `bs': using 199 (standard) bootstrap replications, the standard error is estimated by the respective method and plugged

into the t-statistic to obtain con�dence intervals based on the quantile method. Exceptions are `boot e�ect se', which bootstraps the

e�ect and plugs its standard error into the asymptotic approximation for con�dence intervals, and `boot e�ect quant', which obtains

con�dence intervals based on the quantile method on the e�ect (rather than the t-statistic). The su�x `ps' stands for adjustment

for propensity score estimation.
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Table A.2: Rejections across simulation designs for IPW

homogeneity heterogeneity
sample % treated strong sel outcome sample % treated strong sel outcome

500 2000 30 70 no yes bin cont 500 2000 30 70 no yes bin cont
GMM 0.4 0.4 0.1 0.8 0.2 0.7 0.2 0.6 20.2 74.5 50.9 43.9 58.0 36.7 55.0 39.7

wgt uncond var 1.2 1.3 0.9 1.6 1.0 1.5 1.0 1.6 41.6 82.5 69.9 54.2 73.9 50.2 72.6 51.5
wgt decomp (0.2) 0.8 0.8 0.7 1.0 0.9 0.8 0.6 1.0 40.7 82.2 69.5 53.4 73.5 49.4 72.7 50.2
wgt decomp (0.8) 0.8 0.9 0.7 1.0 0.9 0.8 0.6 1.1 40.8 83.3 70.0 54.1 73.7 50.4 73.1 51.0
wgt decomp (3.2) 0.9 0.9 0.8 1.1 1.0 0.8 0.6 1.2 43.7 85.9 72.3 57.3 76.0 53.6 74.9 54.7

wgt A (0.2) 3.1 3.6 2.8 3.9 2.8 3.9 3.3 3.3 59.8 93.1 82.0 71.0 83.5 69.5 88.5 64.4
wgt A (0.8) 3.1 3.5 2.6 3.9 2.8 3.7 3.2 3.3 59.9 93.5 82.3 71.1 83.5 69.9 88.5 64.9
wgt A (3.2) 3.0 3.7 2.8 3.9 2.8 3.8 2.9 3.8 60.4 94.3 83.0 71.7 83.8 70.9 87.8 66.9

s GMM 3.0 5.1 4.0 4.2 4.7 3.4 3.9 4.2 57.3 90.8 81.8 66.4 84.0 64.2 85.0 63.2
s wgt uncond var 3.7 5.2 4.2 4.7 5.0 3.9 4.3 4.6 58.1 90.4 81.7 66.8 84.4 64.1 85.2 63.3

s wgt decomp (0.2) 3.3 5.0 4.2 4.2 5.0 3.4 4.2 4.2 59.6 91.6 82.5 68.8 85.1 66.2 87.1 64.1
s wgt decomp (0.8) 3.3 5.0 4.2 4.1 5.0 3.3 4.2 4.1 59.8 92.2 82.9 69.1 85.1 66.8 87.3 64.6
s wgt decomp (3.2) 3.3 5.0 4.2 4.1 5.1 3.3 4.2 4.1 60.7 92.6 83.3 70.0 85.7 67.6 88.1 65.2

s wgt A (0.2) 2.9 4.6 3.7 3.8 4.5 3.0 3.7 3.8 58.7 91.9 82.2 68.5 84.7 65.9 87.4 63.3
s wgt A (0.8) 2.9 4.7 3.9 3.8 4.6 3.1 3.9 3.8 59.0 92.5 82.6 68.9 84.8 66.6 87.5 63.9
s wgt A (3.2) 3.0 4.9 4.0 3.9 4.7 3.3 4.0 3.9 60.3 92.6 83.0 69.9 85.4 67.5 88.2 64.7
boot e�ect se 3.2 5.2 4.1 4.3 4.4 4.0 4.1 4.3 59.3 93.2 82.6 70.0 84.6 67.9 87.8 64.7

boot e�ect quant 1.5 4.1 3.1 2.5 3.5 2.0 2.7 2.9 57.7 92.8 81.6 68.9 83.8 66.7 89.0 61.5

Note: Pre�x `s' stands for standard bootstrap. All results with pre�x `s' are based on both smoothed and nonsmoothed versions of

the respective bootstrap procedure.
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Table A.3: Rejections across simulation designs for pair matching

homogeneity heterogeneity
sample % treated strong sel outcome sample % treated strong sel outcome

500 2000 30 70 no yes bin cont 500 2000 30 70 no yes bin cont
wgt uncond var 3.3 3.0 1.6 4.7 1.6 4.7 2.6 3.7 24.9 62.1 48.3 38.8 54.2 32.9 50.2 36.9

wgt decomp (0.2) 0.8 0.6 0.6 0.8 0.7 0.7 0.4 1.0 18.2 58.8 45.4 31.5 52.3 24.6 46.8 30.1
wgt decomp (0.8) 0.7 0.5 0.5 0.7 0.7 0.5 0.3 0.9 18.0 59.8 46.1 31.7 52.8 25.0 47.2 30.6
wgt decomp (3.2) 1.1 0.6 0.8 0.9 0.8 0.9 0.3 1.4 21.2 62.8 49.8 34.3 55.5 28.6 49.9 34.1

wgt A (0.2) 3.8 3.8 3.7 3.8 3.6 3.9 3.3 4.3 37.5 78.1 65.6 50.1 68.3 47.3 69.2 46.5
wgt A (0.8) 3.7 3.8 3.7 3.8 3.6 3.9 3.2 4.3 37.6 78.7 66.0 50.3 68.5 47.8 69.2 47.1
wgt A (3.2) 3.7 4.2 3.9 3.9 3.6 4.2 2.6 5.2 38.0 79.6 66.6 51.0 68.9 48.7 68.2 49.4

Abadie Imbens 6.7 7.3 5.1 8.8 4.8 9.2 7.4 6.6 40.0 80.0 66.9 53.1 69.3 50.7 71.6 48.4
wgt uncond var ps 6.8 4.4 3.1 8.1 3.4 7.8 4.6 6.6 33.3 65.7 52.9 46.1 59.9 39.1 55.1 43.9

wgt decomp (0.2) ps 3.5 1.1 1.4 3.2 1.9 2.7 1.3 3.3 28.3 63.4 50.3 41.3 58.7 32.9 53.6 38.1
wgt decomp (0.8) ps 3.4 1.3 1.4 3.3 2.0 2.8 1.2 3.5 28.3 64.4 51.2 41.6 59.2 33.5 54.0 38.7
wgt decomp (3.2) ps 4.9 1.8 2.3 4.4 2.6 4.1 1.5 5.3 34.0 68.3 56.2 46.0 62.9 39.4 58.0 44.2

wgt A (0.2) ps 12.8 8.5 8.8 12.5 9.1 12.2 9.7 11.6 51.9 83.2 73.3 61.9 76.4 58.8 77.2 58.0
wgt A (0.8) ps 12.8 8.5 9.0 12.3 9.1 12.1 9.5 11.8 52.1 84.0 73.8 62.3 76.6 59.5 77.2 58.9
wgt A (3.2) ps 12.8 9.1 9.4 12.5 9.2 12.7 8.3 13.6 52.6 85.3 74.5 63.4 77.2 60.7 76.1 61.8

Abadie Imbens ps 18.6 11.2 10.1 19.8 11.0 18.8 14.8 15.0 58.8 85.5 75.0 69.4 79.0 65.4 82.6 61.8
s wgt uncond var 6.4 7.0 5.1 8.4 5.2 8.3 6.1 7.4 35.7 71.5 62.0 45.2 65.6 41.7 60.3 46.9

s wgt decomp (0.2) 2.4 3.9 3.1 3.3 3.4 2.9 3.1 3.2 40.0 77.1 66.0 51.0 69.3 47.8 69.7 47.3
s wgt decomp (0.8) 2.3 3.6 2.8 3.1 3.2 2.7 2.9 3.0 39.8 77.2 66.1 50.9 69.5 47.5 69.9 47.1
s wgt decomp (3.2) 1.8 2.9 2.4 2.3 2.7 2.0 2.6 2.1 40.0 77.2 66.8 50.3 70.1 47.1 70.9 46.3

s wgt A (0.2) 1.7 3.0 2.1 2.6 2.3 2.4 2.4 2.3 37.5 77.7 65.1 50.1 68.7 46.5 69.7 45.5
s wgt A (0.8) 1.6 2.9 2.0 2.5 2.4 2.1 2.4 2.2 37.8 78.0 65.4 50.4 68.9 46.9 70.1 45.7
s wgt A (3.2) 1.3 2.8 2.0 2.1 2.2 1.9 2.2 1.9 37.7 78.0 65.4 50.3 69.1 46.7 70.6 45.2

s Abadie Imbens 1.0 1.7 1.5 1.3 1.3 1.4 1.5 1.2 21.3 64.5 56.2 29.6 59.1 26.7 51.5 34.3
s wgt uncond var ps 8.2 8.4 6.7 9.9 6.8 9.9 7.5 9.1 37.3 72.2 62.9 46.6 66.6 42.8 60.7 48.7

s wgt decomp (0.2) ps 4.5 5.1 4.4 5.3 5.0 4.7 4.5 5.1 42.3 78.1 67.5 52.9 70.5 49.9 70.7 49.6
s wgt decomp (0.8) ps 4.3 4.8 4.1 5.1 4.7 4.4 4.4 4.8 42.2 78.4 67.7 52.9 70.8 49.8 71.0 49.6
s wgt decomp (3.2) ps 4.4 4.2 3.9 4.6 4.3 4.2 3.9 4.6 43.1 78.8 69.1 52.7 71.7 50.2 72.4 49.5

s wgt A (0.2) ps 5.3 5.4 4.5 6.2 5.0 5.8 5.2 5.5 40.4 79.7 68.2 51.9 70.7 49.4 70.6 49.5
s wgt A (0.8) ps 5.3 5.3 4.5 6.1 5.0 5.6 5.3 5.3 40.7 80.3 68.7 52.3 71.0 50.1 71.1 50.0
s wgt A (3.2) ps 5.1 5.4 4.6 5.9 4.9 5.6 5.0 5.4 40.7 80.7 68.7 52.6 71.2 50.1 71.1 50.2

s Abadie Imbens ps 3.1 2.7 3.0 2.9 2.7 3.2 3.0 2.9 31.2 68.6 62.1 37.7 65.1 34.7 58.8 41.1
s boot e�ect se 1.5 2.8 2.1 2.3 2.2 2.1 2.0 2.3 24.8 73.7 57.4 41.1 61.4 37.1 60.5 38.0

s boot e�ect quant 0.0 0.2 0.1 0.2 0.2 0.1 0.1 0.1 21.0 78.7 56.3 43.3 62.1 37.6 67.2 32.5
w wgt uncond var 4.3 5.2 4.0 5.5 3.9 5.6 4.6 4.9 33.2 73.3 62.3 44.2 65.1 41.4 62.6 43.9

w wgt decomp (0.2) 3.3 4.0 3.8 3.6 3.7 3.7 3.5 3.8 35.0 76.2 64.1 47.1 67.1 44.2 67.7 43.6
w wgt A (0.2) 3.5 4.1 3.9 3.7 3.7 3.9 3.7 3.9 35.0 76.2 63.9 47.3 66.9 44.3 68.0 43.2

w wgt decomp (0.8) 3.3 3.8 3.7 3.4 3.6 3.5 3.5 3.6 35.1 76.4 64.4 47.1 67.1 44.4 67.7 43.7
w wgt A (0.8) 3.4 4.0 3.7 3.7 3.7 3.7 3.7 3.7 35.1 76.6 64.2 47.5 66.9 44.8 68.2 43.5

w wgt decomp (3.2) 3.3 4.1 3.7 3.6 3.7 3.6 3.5 3.8 35.3 76.9 64.6 47.6 67.6 44.6 68.2 43.9
w wgt A (3.2) 3.2 4.1 3.7 3.6 3.6 3.7 3.5 3.8 35.1 77.0 64.3 47.8 67.2 44.9 68.3 43.8

w Abadie Imbens 4.9 5.5 4.3 6.2 4.1 6.3 5.4 5.0 32.1 71.3 62.1 41.4 64.8 38.6 62.0 41.4
w wgt uncond var ps 4.6 5.5 4.5 5.6 4.5 5.6 4.7 5.4 31.1 73.3 61.8 42.7 64.5 40.0 60.4 44.1

w wgt decomp (0.2) ps 3.7 4.6 4.3 4.1 4.2 4.2 3.9 4.5 33.4 76.8 64.4 45.9 66.6 43.7 66.6 43.7
w wgt A (0.2) ps 4.6 5.3 5.0 4.9 4.8 5.1 4.7 5.2 31.1 76.6 63.6 44.1 65.8 41.8 63.9 43.8

w wgt decomp (0.8) ps 3.7 4.5 4.3 3.9 4.1 4.1 3.7 4.5 33.5 77.1 64.7 45.9 66.7 43.9 66.6 44.0
w wgt A (0.8) ps 4.5 5.2 4.8 4.8 4.9 4.8 4.7 5.0 31.1 77.5 63.9 44.7 66.0 42.6 64.1 44.5

w wgt decomp (3.2) ps 3.8 4.6 4.3 4.1 4.2 4.1 3.8 4.6 33.5 77.4 64.9 46.1 67.2 43.7 66.9 44.1
w wgt A (3.2) ps 4.3 5.4 4.9 4.8 4.8 4.9 4.5 5.2 31.2 78.0 64.1 45.1 66.2 43.0 64.3 44.9

w Abadie Imbens ps 6.1 6.9 5.7 7.2 5.4 7.5 6.6 6.4 34.6 74.1 64.1 44.5 67.0 41.7 64.1 44.6
w boot e�ect se 2.9 4.5 3.2 4.2 2.9 4.5 3.6 3.8 30.4 75.5 61.4 44.5 64.0 41.9 64.6 41.3

w boot e�ect quant 2.7 4.3 3.2 3.9 2.7 4.3 3.5 3.6 28.0 73.7 59.8 41.9 62.3 39.4 62.1 39.6

Note: The pre�xes `s' and `w' stand for the standard and wild bootstrap, respectively. All results with pre�xes `s' and `w' are

based on both smoothed and nonsmoothed versions of the respective bootstrap procedure. The su�x `ps' stands for adjustment for

propensity score estimation.
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Table A.4: Rejections across simulation designs for radius matching

homogeneity heterogeneity
sample % treated strong sel outcome sample % treated strong sel outcome

500 2000 30 70 no yes bin cont 500 2000 30 70 no yes bin cont
radius matching R1.5

wgt uncond var 2.0 1.8 1.1 2.7 1.2 2.7 1.4 2.4 29.7 71.4 58.0 43.1 63.5 37.6 58.4 42.7
wgt decomp (0.2) 0.8 0.7 0.6 0.9 0.8 0.7 0.4 1.0 26.2 69.8 56.6 39.5 62.9 33.2 57.2 38.8
wgt decomp (0.8) 0.8 0.6 0.6 0.8 0.8 0.6 0.4 1.0 26.3 70.9 57.4 39.8 63.3 33.9 57.6 39.5
wgt decomp (3.2) 0.8 0.7 0.7 0.8 0.8 0.7 0.4 1.2 28.1 74.2 59.6 42.8 65.4 37.0 59.6 42.8

wgt A (0.2) 3.4 3.8 3.3 4.0 3.3 3.9 3.5 3.8 46.8 85.6 73.6 58.8 76.3 56.1 78.2 54.2
wgt A (0.8) 3.4 3.7 3.2 3.9 3.3 3.8 3.4 3.7 46.8 86.1 73.8 59.1 76.3 56.6 77.9 55.0
wgt A (3.2) 3.3 3.8 3.4 3.8 3.2 4.0 2.8 4.3 47.2 86.8 74.3 59.6 76.7 57.2 77.2 56.8

wgt uncond var ps 6.2 3.1 2.7 6.6 3.3 6.0 3.5 5.8 42.7 76.4 64.8 54.3 71.3 47.8 66.2 52.9
wgt decomp (0.2) ps 4.3 1.6 1.9 4.0 2.7 3.2 2.0 3.9 40.4 75.2 63.7 51.9 71.1 44.5 66.3 49.3
wgt decomp (0.8) ps 4.3 1.7 2.0 4.0 2.7 3.2 1.9 4.1 40.8 76.9 65.1 52.6 71.7 45.9 67.0 50.7
wgt decomp (3.2) ps 5.2 2.2 2.5 4.9 3.3 4.0 2.0 5.4 43.9 80.2 67.7 56.4 74.5 49.7 69.0 55.2

wgt A (0.2) ps 13.3 8.7 9.4 12.5 9.7 12.3 9.8 12.1 61.6 90.0 81.9 69.8 84.6 67.0 84.4 67.2
wgt A (0.8) ps 13.2 8.7 9.5 12.3 9.6 12.2 9.6 12.2 61.6 90.4 82.2 69.9 84.6 67.4 84.2 67.8
wgt A (3.2) ps 13.1 9.2 9.9 12.3 9.7 12.6 8.8 13.5 61.9 91.0 82.8 70.1 84.9 68.1 83.5 69.4

s wgt uncond var 3.4 4.2 2.9 4.7 3.5 4.1 3.4 4.2 40.5 78.8 68.7 50.5 72.5 46.8 68.4 50.9
s wgt decomp (0.2) 1.9 3.2 2.4 2.8 2.9 2.3 2.7 2.5 43.7 82.8 70.9 55.7 74.7 51.9 74.9 51.6
s wgt decomp (0.8) 1.9 3.1 2.3 2.7 3.0 2.1 2.6 2.5 43.8 83.3 71.3 55.8 74.9 52.2 75.3 51.9
s wgt decomp (3.2) 1.6 3.1 2.3 2.4 2.8 1.9 2.5 2.2 44.5 84.1 72.1 56.4 75.9 52.6 76.3 52.2

s wgt A (0.2) 1.5 3.0 2.0 2.5 2.5 2.0 2.4 2.1 41.3 83.0 69.8 54.4 74.2 50.0 74.3 49.9
s wgt A (0.8) 1.5 3.0 1.9 2.5 2.5 1.9 2.4 2.0 41.7 83.8 70.6 54.9 74.5 51.0 74.9 50.6
s wgt A (3.2) 1.3 2.9 1.9 2.3 2.5 1.7 2.3 2.0 43.1 84.4 71.4 56.1 75.2 52.3 76.1 51.4

s wgt uncond var ps 5.5 5.4 4.4 6.5 5.0 5.9 4.8 6.1 41.9 79.7 69.9 51.7 73.1 48.4 68.2 53.3
s wgt decomp (0.2) ps 4.2 4.7 4.0 5.0 4.7 4.2 4.3 4.7 45.7 83.7 72.4 57.0 75.6 53.8 75.2 54.2
s wgt decomp (0.8) ps 4.1 4.6 3.9 4.9 4.7 4.1 4.2 4.5 45.9 84.0 72.9 57.0 75.8 54.1 75.5 54.5
s wgt decomp (3.2) ps 4.1 4.9 4.0 5.0 4.8 4.2 4.1 4.9 46.8 85.4 74.2 58.0 77.1 55.1 76.7 55.5

s wgt A (0.2) ps 4.6 5.2 4.4 5.4 4.9 4.9 4.4 5.3 42.3 84.2 72.3 54.1 75.3 51.2 72.9 53.5
s wgt A (0.8) ps 4.6 5.1 4.5 5.2 4.9 4.8 4.4 5.2 42.7 84.9 73.0 54.6 75.4 52.2 73.4 54.2
s wgt A (3.2) ps 4.8 5.5 4.9 5.4 5.1 5.2 4.5 5.8 44.4 85.6 74.1 55.9 76.3 53.7 74.6 55.4
s boot e�ect se 2.1 4.3 2.9 3.5 3.3 3.1 3.2 3.2 39.3 85.7 70.1 54.9 74.0 50.9 73.8 51.2

s boot e�ect quant 0.2 1.4 0.8 0.9 1.1 0.5 0.8 0.8 37.2 87.5 69.8 54.9 74.2 50.5 78.6 46.1
radius matching R3

wgt uncond var 1.7 1.5 0.9 2.2 1.0 2.1 1.1 2.0 30.9 72.8 59.4 44.3 64.7 39.0 60.4 43.3
wgt decomp (0.2) 0.8 0.7 0.6 0.9 0.7 0.7 0.5 1.0 28.2 72.0 58.5 41.7 64.2 35.9 59.7 40.5
wgt decomp (0.8) 0.8 0.6 0.6 0.8 0.8 0.6 0.4 1.0 28.3 73.2 59.4 42.0 64.6 36.8 60.2 41.2
wgt decomp (3.2) 0.9 0.8 0.7 0.9 0.9 0.7 0.4 1.2 30.2 76.2 61.4 45.1 66.8 39.7 62.1 44.4

wgt A (0.2) 3.4 3.8 3.3 3.9 3.3 3.9 3.6 3.7 48.9 87.0 74.9 61.0 77.3 58.6 80.2 55.7
wgt A (0.8) 3.4 3.8 3.2 3.9 3.3 3.8 3.5 3.7 48.9 87.3 75.2 61.0 77.4 58.9 80.0 56.3
wgt A (3.2) 3.3 3.9 3.3 3.8 3.2 3.9 2.9 4.2 49.3 88.3 75.7 61.9 77.8 59.8 79.2 58.3

wgt uncond var ps 6.0 2.7 2.7 6.0 3.3 5.4 3.2 5.5 44.5 77.9 66.5 55.8 73.0 49.4 68.3 54.1
wgt decomp (0.2) ps 4.5 1.8 2.1 4.2 2.8 3.4 2.2 4.1 42.8 77.6 66.1 54.3 72.6 47.8 68.7 51.7
wgt decomp (0.8) ps 4.5 1.9 2.1 4.2 2.9 3.4 2.1 4.2 43.1 79.0 67.2 54.9 73.2 48.8 69.1 52.9
wgt decomp (3.2) ps 5.4 2.4 2.6 5.2 3.4 4.3 2.2 5.5 46.4 82.3 69.9 58.8 75.9 52.7 71.0 57.7

wgt A (0.2) ps 13.3 8.6 9.6 12.3 9.7 12.2 9.9 12.0 63.5 91.2 83.0 71.7 85.5 69.2 86.2 68.5
wgt A (0.8) ps 13.2 8.8 9.7 12.3 9.7 12.3 9.6 12.4 63.5 91.6 83.4 71.7 85.6 69.5 86.0 69.1
wgt A (3.2) ps 13.1 9.1 10.0 12.2 9.8 12.4 8.9 13.3 63.8 92.2 84.0 72.0 85.7 70.3 85.3 70.7

s wgt uncond var 3.2 4.2 2.8 4.6 3.5 3.9 3.4 4.0 43.6 81.9 70.7 54.7 74.2 51.2 72.5 53.0
s wgt decomp (0.2) 2.1 3.4 2.4 3.1 3.0 2.5 2.8 2.8 46.2 84.7 72.4 58.5 75.9 55.0 77.3 53.7
s wgt decomp (0.8) 2.0 3.3 2.4 2.9 3.1 2.2 2.7 2.6 46.4 85.2 73.0 58.6 76.1 55.5 77.5 54.1
s wgt decomp (3.2) 1.7 3.2 2.3 2.7 2.9 2.1 2.6 2.4 47.1 86.1 73.7 59.6 77.3 56.0 78.7 54.6

s wgt A (0.2) 1.7 3.1 2.0 2.8 2.6 2.2 2.5 2.3 44.1 85.2 71.7 57.7 75.6 53.7 77.1 52.2
s wgt A (0.8) 1.6 3.1 2.0 2.7 2.6 2.1 2.5 2.2 44.5 85.8 72.3 57.9 75.8 54.4 77.3 52.9
s wgt A (3.2) 1.5 3.2 2.0 2.6 2.6 2.0 2.4 2.2 46.0 86.4 73.1 59.3 76.7 55.7 78.5 53.9

s wgt uncond var ps 5.4 5.4 4.3 6.5 5.2 5.6 4.8 6.0 44.5 82.5 71.8 55.1 74.8 52.2 71.6 55.4
s wgt decomp (0.2) ps 4.3 5.0 4.0 5.3 4.7 4.6 4.4 4.9 47.7 85.1 73.7 59.1 76.6 56.2 76.9 55.9
s wgt decomp (0.8) ps 4.3 4.9 4.0 5.2 4.7 4.5 4.3 4.9 47.9 85.9 74.4 59.4 76.9 56.9 77.4 56.5
s wgt decomp (3.2) ps 4.5 5.1 4.2 5.3 4.9 4.6 4.4 5.1 49.0 87.2 75.6 60.6 78.2 58.1 78.6 57.6

s wgt A (0.2) ps 4.8 5.4 4.5 5.7 5.0 5.2 4.7 5.6 44.6 86.2 73.8 56.9 76.6 54.2 75.1 55.6
s wgt A (0.8) ps 4.9 5.5 4.7 5.7 5.1 5.3 4.8 5.6 45.0 87.0 74.6 57.4 76.8 55.2 75.6 56.3
s wgt A (3.2) ps 5.0 5.8 5.1 5.7 5.4 5.4 4.8 6.0 46.6 87.4 75.4 58.6 77.5 56.5 76.8 57.3
s boot e�ect se 2.3 4.5 3.0 3.8 3.4 3.4 3.4 3.5 43.3 88.2 72.4 59.0 76.0 55.4 77.3 54.1

s boot e�ect quant 0.3 1.6 0.9 1.1 1.2 0.8 0.9 1.0 41.4 89.5 72.3 58.5 76.2 54.6 80.9 49.9

Note: Pre�x `s' stands for standard bootstrap. All results with pre�x `s' are based on both smoothed and nonsmoothed versions of

the respective bootstrap procedure.
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Table A.5: Rejections across simulation designs for radius matching with bias correction

homogeneity heterogeneity
sample % treated strong sel outcome sample % treated strong sel outcome

500 2000 30 70 no yes bin cont 500 2000 30 70 no yes bin cont
radius matching R1.5BC

wgt uncond var 0.8 1.0 0.6 1.2 0.8 1.1 0.7 1.2 25.7 74.0 58.3 41.4 63.3 36.5 58.7 41.0
wgt decomp (0.2) 0.6 0.6 0.4 0.8 0.6 0.6 0.4 0.8 24.6 73.1 57.3 40.4 62.6 35.1 58.2 39.5

wgt A (0.2) 3.0 4.0 2.9 4.1 2.9 4.1 3.8 3.2 44.6 87.3 73.5 58.4 75.6 56.3 77.4 54.5
wgt decomp (0.8) 0.6 0.7 0.5 0.8 0.7 0.6 0.4 0.9 24.8 74.3 58.3 40.9 63.2 35.9 58.7 40.4

wgt A (0.8) 2.9 3.9 2.8 4.0 2.9 3.9 3.7 3.2 44.6 87.7 73.8 58.5 75.7 56.6 77.2 55.1
wgt decomp (3.2) 0.7 0.8 0.5 0.9 0.7 0.7 0.4 1.0 26.7 77.1 60.1 43.7 65.2 38.6 60.4 43.3

wgt A (3.2) 3.0 4.1 2.9 4.2 3.0 4.1 3.4 3.7 45.1 88.5 74.5 59.2 76.1 57.6 76.7 56.9
wgt uncond var ps 4.3 2.2 1.9 4.6 2.5 4.0 2.4 4.1 40.0 79.7 65.7 54.1 71.9 47.8 67.5 52.3

wgt decomp (0.2) ps 3.8 1.8 1.7 4.0 2.3 3.4 2.0 3.7 39.1 79.0 65.0 53.2 71.5 46.6 67.2 51.0
wgt A (0.2) ps 12.0 8.9 8.8 12.1 8.7 12.2 10.3 10.7 59.6 91.6 82.1 69.1 84.0 67.2 83.7 67.6

wgt decomp (0.8) ps 3.9 2.0 1.7 4.1 2.4 3.4 2.0 3.8 39.5 80.4 66.1 53.7 72.1 47.8 67.7 52.2
wgt A (0.8) ps 12.0 8.9 8.8 12.0 8.7 12.1 10.0 10.8 59.6 91.8 82.3 69.1 84.0 67.4 83.5 67.9

wgt decomp (3.2) ps 4.7 2.3 2.1 4.9 2.9 4.1 2.2 4.8 42.6 83.5 68.8 57.4 74.5 51.6 69.7 56.4
wgt A (3.2) ps 12.2 9.6 9.2 12.6 9.1 12.7 9.4 12.4 60.1 92.4 83.0 69.5 84.4 68.1 83.0 69.5

s wgt uncond var 2.5 3.6 2.7 3.4 3.3 2.9 3.0 3.1 46.4 85.1 73.1 58.4 76.7 54.8 75.5 56.0
s wgt decomp (0.2) 2.4 3.5 2.6 3.2 3.2 2.6 2.9 2.9 47.0 85.7 73.7 59.0 77.3 55.5 76.6 56.1

s wgt A (0.2) 2.0 3.1 2.2 2.9 2.8 2.3 2.6 2.5 45.2 86.1 72.8 58.5 76.6 54.7 76.2 55.1
s wgt decomp (0.8) 2.4 3.4 2.6 3.1 3.2 2.5 2.9 2.8 47.1 86.1 74.1 59.2 77.4 55.9 76.8 56.5

s wgt A (0.8) 2.0 3.2 2.2 3.0 2.9 2.3 2.6 2.5 45.4 86.7 73.3 58.8 76.7 55.4 76.4 55.7
s wgt decomp (3.2) 2.3 3.5 2.6 3.2 3.3 2.5 2.9 2.9 47.7 86.9 74.5 60.0 78.1 56.4 77.3 57.3

s wgt A (3.2) 2.0 3.2 2.2 2.9 2.8 2.3 2.6 2.6 46.4 87.0 73.8 59.5 77.2 56.2 76.9 56.4
s wgt uncond var ps 5.1 5.1 4.2 5.9 5.0 5.1 4.6 5.5 48.8 85.8 74.7 59.9 77.8 56.7 75.7 58.8

s wgt decomp (0.2) ps 4.9 4.7 4.0 5.6 4.9 4.8 4.4 5.3 49.4 86.5 75.3 60.6 78.4 57.5 76.8 59.1
s wgt A (0.2) ps 5.7 5.3 4.7 6.2 5.3 5.6 5.0 5.9 46.5 86.9 75.0 58.4 77.5 55.9 74.9 58.5

s wgt decomp (0.8) ps 4.9 4.7 4.0 5.7 5.0 4.7 4.5 5.1 49.6 86.8 75.6 60.8 78.5 57.9 77.0 59.4
s wgt A (0.8) ps 5.6 5.5 4.8 6.3 5.5 5.7 5.1 6.1 46.8 87.1 75.4 58.5 77.6 56.3 75.1 58.8

s wgt decomp (3.2) ps 5.2 5.1 4.2 6.1 5.3 5.1 4.6 5.7 50.3 87.7 76.4 61.6 79.4 58.6 77.6 60.4
s wgt A (3.2) ps 5.6 5.9 5.1 6.4 5.7 5.8 5.0 6.5 47.8 87.4 76.0 59.2 78.2 57.0 75.6 59.6
s boot e�ect se 2.1 4.4 2.9 3.6 3.3 3.2 3.2 3.3 38.7 87.5 71.6 54.6 74.6 51.7 72.1 54.1

s boot e�ect quant 0.3 1.7 0.9 1.1 1.2 0.8 1.0 1.0 35.7 89.0 71.5 53.2 74.4 50.4 73.8 51.0
radius matching R3BC

wgt uncond var 0.7 0.9 0.6 1.0 0.7 0.9 0.6 1.0 25.9 74.5 58.7 41.7 63.5 36.9 59.3 41.1
wgt decomp (0.2) 0.5 0.6 0.4 0.7 0.5 0.6 0.4 0.8 24.9 73.7 58.0 40.5 63.0 35.6 58.8 39.7
wgt decomp (0.8) 0.5 0.6 0.5 0.7 0.6 0.5 0.4 0.8 25.1 74.7 58.7 41.1 63.5 36.3 59.3 40.5
wgt decomp (3.2) 0.6 0.7 0.5 0.8 0.7 0.6 0.3 1.0 26.9 77.6 60.6 43.9 65.5 39.0 61.0 43.5

wgt A (0.2) 2.7 3.8 2.8 3.8 2.8 3.7 3.6 2.9 44.9 87.6 73.9 58.6 75.8 56.7 78.0 54.6
wgt A (0.8) 2.7 3.6 2.7 3.6 2.8 3.5 3.5 2.8 44.9 87.8 74.1 58.6 75.8 56.9 77.9 54.9
wgt A (3.2) 2.7 3.6 2.7 3.7 2.8 3.6 3.1 3.3 45.5 88.8 75.0 59.4 76.3 58.1 77.4 57.0

wgt uncond var ps 4.1 2.1 1.9 4.3 2.5 3.7 2.2 3.9 40.5 80.1 66.2 54.4 72.4 48.2 68.0 52.6
wgt decomp (0.2) ps 3.7 1.8 1.6 3.9 2.3 3.2 1.9 3.5 39.7 79.5 65.8 53.4 72.0 47.2 67.8 51.4
wgt decomp (0.8) ps 3.8 1.9 1.7 3.9 2.4 3.2 2.0 3.6 40.0 81.0 66.8 54.1 72.5 48.4 68.4 52.6
wgt decomp (3.2) ps 4.6 2.2 2.1 4.7 2.8 4.0 2.1 4.7 43.1 84.0 69.4 57.7 74.9 52.3 70.3 56.8

wgt A (0.2) ps 11.6 8.5 8.6 11.4 8.5 11.5 9.8 10.3 60.1 91.9 82.6 69.4 84.1 67.8 84.2 67.7
wgt A (0.8) ps 11.6 8.5 8.6 11.4 8.6 11.5 9.6 10.5 60.1 92.3 82.9 69.5 84.3 68.1 84.1 68.3
wgt A (3.2) ps 11.8 9.2 9.0 12.0 8.9 12.1 9.1 11.9 60.7 92.6 83.5 69.8 84.6 68.7 83.6 69.7

s wgt uncond var 2.7 3.8 2.8 3.7 3.4 3.1 3.2 3.3 48.3 86.9 74.4 60.8 77.7 57.5 77.4 57.7
s wgt decomp (0.2) 2.6 3.6 2.7 3.5 3.3 2.9 3.1 3.1 48.9 87.4 74.8 61.5 78.1 58.2 78.3 57.9
s wgt decomp (0.8) 2.6 3.6 2.7 3.5 3.4 2.8 3.1 3.0 49.1 87.8 75.2 61.7 78.3 58.6 78.5 58.4
s wgt decomp (3.2) 2.5 3.7 2.7 3.5 3.4 2.8 3.2 3.1 49.7 88.4 75.6 62.5 79.0 59.1 79.1 59.0

s wgt A (0.2) 2.3 3.4 2.3 3.3 3.0 2.6 2.9 2.7 47.3 87.8 74.0 61.1 77.6 57.6 78.1 57.0
s wgt A (0.8) 2.3 3.4 2.4 3.3 3.0 2.7 2.9 2.8 47.5 88.2 74.4 61.3 77.7 58.1 78.3 57.5
s wgt A (3.2) 2.2 3.4 2.4 3.2 3.0 2.6 2.8 2.8 48.5 88.6 75.0 62.1 78.2 59.0 78.8 58.3

s wgt uncond var ps 5.3 5.4 4.4 6.3 5.2 5.5 4.9 5.7 50.2 87.3 75.7 61.8 78.6 58.9 77.2 60.3
s wgt decomp (0.2) ps 5.2 5.0 4.2 6.0 5.0 5.2 4.8 5.4 51.1 88.1 76.4 62.8 79.2 60.0 78.5 60.7
s wgt decomp (0.8) ps 5.2 5.1 4.1 6.1 5.2 5.1 4.8 5.5 51.2 88.3 76.7 62.8 79.3 60.2 78.6 60.9
s wgt decomp (3.2) ps 5.5 5.5 4.5 6.6 5.5 5.5 4.9 6.1 51.9 89.2 77.4 63.7 80.2 60.9 79.1 62.0

s wgt A (0.2) ps 5.8 5.7 5.0 6.6 5.5 6.0 5.2 6.3 48.2 88.2 76.1 60.3 78.3 58.1 76.6 59.8
s wgt A (0.8) ps 5.8 5.6 5.0 6.5 5.6 5.9 5.2 6.2 48.4 88.7 76.4 60.6 78.5 58.6 76.9 60.2
s wgt A (3.2) ps 5.9 6.2 5.4 6.7 5.8 6.3 5.3 6.8 49.4 89.1 77.1 61.4 79.1 59.4 77.4 61.1
s boot e�ect se 2.3 4.6 3.0 3.9 3.6 3.4 3.4 3.5 41.2 89.1 73.1 57.2 75.8 54.5 74.3 56.0

s boot e�ect quant 0.4 1.9 1.0 1.3 1.3 1.0 1.2 1.2 38.5 90.6 73.2 55.9 75.8 53.4 75.8 53.3

Note: Pre�x `s' stands for standard bootstrap. All results with pre�x `s' are based on both smoothed and nonsmoothed versions of

the respective bootstrap procedure.
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Table A.6: Coverage and rejections of bootstrap methods for IPW and pair matching

coverage (all DGPs) rejection (e�ect homogeneity)

no smoothing smoothing no smoothing smoothing
49 99 199 49 99 199 49 99 199 49 99 199

IPW

GMM 95.8 95.6 95.4 95.8 95.6 95.4 5.0 4.1 4.1 4.1 4.1 4.1
wgt uncond var 95.3 95.0 94.8 95.3 95.0 94.8 5.4 4.6 4.5 4.4 4.5 4.4

wgt decomp (0.2) 95.4 95.2 95.1 95.4 95.2 95.1 5.2 4.3 4.2 4.2 4.2 4.2
wgt decomp (0.8) 95.3 95.3 95.1 95.3 95.3 95.1 5.2 4.2 4.2 4.1 4.2 4.2
wgt decomp (3.2) 95.2 95.1 95.2 95.2 95.1 95.2 5.2 4.3 4.2 4.2 4.2 4.1

wgt A (0.2) 96.0 96.0 95.9 96.0 96.0 95.9 4.7 3.7 3.7 3.7 3.7 3.7
wgt A (0.8) 95.8 95.8 95.8 95.8 95.8 95.8 4.8 3.9 3.8 3.8 3.9 3.8
wgt A (3.2) 95.4 95.4 95.4 95.4 95.4 95.4 5.0 4.1 4.0 4.0 4.0 4.0

boot e�ect se 96.3 96.3 96.4 4.6 4.3 4.2
boot e�ect quant 96.3 96.3 96.3 5.1 3.6 2.8

pair matching

s wgt uncond var 89.8 89.2 88.8 89.8 89.2 88.8 7.5 6.7 6.8 6.6 6.6 6.7
s wgt decomp (0.2) 91.8 91.6 91.5 91.8 91.6 91.5 3.9 3.3 3.2 3.1 3.2 3.2
s wgt decomp (0.8) 91.8 91.6 91.5 91.8 91.6 91.5 3.7 2.9 2.9 2.9 2.9 2.9
s wgt decomp (3.2) 91.7 91.6 91.5 91.7 91.6 91.5 3.1 2.4 2.4 2.4 2.4 2.4

s wgt A (0.2) 92.9 92.8 92.7 92.9 92.8 92.7 3.0 2.4 2.4 2.4 2.4 2.3
s wgt A (0.8) 92.6 92.5 92.4 92.6 92.5 92.4 3.0 2.3 2.3 2.3 2.2 2.2
s wgt A (3.2) 92.1 92.0 92.0 92.1 92.0 92.0 2.7 2.1 2.1 2.0 2.1 2.0

s Abadie Imbens 98.0 97.9 97.9 98.0 97.9 97.9 2.0 1.5 1.4 1.5 1.5 1.4
s wgt uncond var ps 89.1 87.7 87.2 89.1 87.7 87.2 9.0 8.4 8.4 8.0 8.3 8.3

s wgt decomp (0.2) ps 91.7 90.8 90.5 91.7 90.8 90.5 5.6 4.8 4.9 4.5 4.7 4.8
s wgt decomp (0.8) ps 91.7 90.8 90.4 91.7 90.8 90.4 5.4 4.5 4.6 4.5 4.4 4.5
s wgt decomp (3.2) ps 91.5 90.7 90.4 91.5 90.7 90.4 5.2 4.2 4.3 4.1 4.1 4.2

s wgt A (0.2) ps 93.3 92.2 91.6 93.3 92.2 91.6 6.3 5.4 5.4 5.3 5.3 5.4
s wgt A (0.8) ps 92.9 91.8 91.3 92.9 91.8 91.3 6.3 5.2 5.3 5.3 5.2 5.3
s wgt A (3.2) ps 92.4 91.4 90.9 92.4 91.4 90.9 6.2 5.2 5.2 5.2 5.2 5.2

s Abadie Imbens ps 96.6 96.5 96.4 96.6 96.5 96.4 3.7 3.0 3.0 3.1 3.0 2.9
s boot e�ect se 97.6 97.7 97.7 2.5 2.2 2.2

s boot e�ect quant 97.6 97.7 97.7 0.5 0.2 0.1
w wgt uncond var 97.7 97.7 97.6 97.7 97.7 97.6 5.6 4.8 4.7 4.7 4.7 4.8

w wgt decomp (0.2) 96.5 96.5 96.4 96.5 96.5 96.4 4.8 3.7 3.7 3.7 3.7 3.7
w wgt decomp (0.8) 96.4 96.4 96.3 96.4 96.4 96.3 4.7 3.8 3.6 3.7 3.7 3.6
w wgt decomp (3.2) 96.2 96.3 96.2 96.2 96.3 96.2 4.8 3.7 3.7 3.7 3.7 3.6

w wgt A (0.2) 96.4 96.4 96.3 96.4 96.4 96.3 4.8 3.9 3.8 3.9 3.8 3.8
w wgt A (0.8) 96.3 96.3 96.3 96.3 96.3 96.3 4.9 3.9 3.7 3.8 3.8 3.7
w wgt A (3.2) 96.2 96.2 96.1 96.2 96.2 96.1 4.8 3.8 3.6 3.7 3.7 3.7

w Abadie Imbens 97.8 97.8 97.7 97.8 97.8 97.7 6.0 5.2 5.2 5.1 5.2 5.2
w wgt uncond var ps 97.9 97.9 97.8 97.9 97.9 97.8 6.1 5.0 5.1 5.2 5.1 5.0

w wgt decomp (0.2) ps 96.7 96.6 96.5 96.7 96.6 96.5 5.3 4.1 4.2 4.3 4.2 4.2
w wgt decomp (0.8) ps 96.6 96.5 96.5 96.6 96.5 96.5 5.2 4.2 4.1 4.2 4.2 4.1
w wgt decomp (3.2) ps 96.5 96.5 96.4 96.5 96.5 96.4 5.5 4.4 4.2 4.3 4.3 4.2

w wgt A (0.2) ps 97.0 96.9 96.8 97.0 96.9 96.8 6.1 5.0 5.0 5.1 5.0 4.9
w wgt A (0.8) ps 96.9 96.9 96.7 96.9 96.9 96.7 6.0 4.8 4.8 5.0 4.9 4.9
w wgt A (3.2) ps 96.8 96.8 96.6 96.8 96.8 96.6 6.0 4.9 4.9 4.9 4.8 4.9

w Abadie Imbens ps 97.1 97.1 97.1 97.1 97.1 97.1 7.4 6.5 6.5 6.3 6.4 6.5
w boot e�ect se 96.8 96.9 96.9 4.3 3.9 3.7

w boot e�ect quant 96.9 97.0 97.0 6.5 4.5 3.5

Note: The pre�xes `s' and `w' for pair matching stand for the standard and wild bootstrap, respectively. The su�x `ps' stands for

adjustment for propensity score estimation.
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Table A.7: Coverage and rejections of bootstrap methods for radius matching

coverage (all DGPs) rejection (e�ect homogeneity)

no smoothing smoothing no smoothing smoothing
49 99 199 49 99 199 49 99 199 49 99 199

radius matching R1.5

wgt uncond var 94.5 93.9 93.5 94.5 93.9 93.5 4.5 3.8 3.8 3.8 3.7 3.8
wgt decomp (0.2) 95.0 94.8 94.7 95.0 94.8 94.7 3.4 2.6 2.6 2.7 2.6 2.6
wgt decomp (0.8) 94.9 94.7 94.6 94.9 94.7 94.6 3.2 2.5 2.5 2.6 2.5 2.5
wgt decomp (3.2) 94.7 94.6 94.5 94.7 94.6 94.5 3.1 2.4 2.3 2.4 2.5 2.3

wgt A (0.2) 95.7 95.7 95.7 95.7 95.7 95.7 3.0 2.3 2.2 2.3 2.2 2.2
wgt A (0.8) 95.5 95.4 95.4 95.5 95.4 95.4 2.9 2.3 2.2 2.3 2.2 2.2
wgt A (3.2) 95.0 94.9 94.9 95.0 94.9 94.9 2.8 2.1 2.1 2.2 2.1 2.1

wgt uncond var ps 94.5 92.8 92.2 94.5 92.8 92.2 6.3 5.5 5.5 5.4 5.5 5.4
wgt decomp (0.2) ps 95.0 94.1 93.7 95.0 94.1 93.7 5.2 4.5 4.5 4.3 4.3 4.4
wgt decomp (0.8) ps 95.0 94.0 93.7 95.0 94.0 93.7 5.2 4.4 4.4 4.3 4.4 4.3
wgt decomp (3.2) ps 94.4 93.8 93.5 94.4 93.8 93.5 5.4 4.5 4.6 4.4 4.4 4.5

wgt A (0.2) ps 95.8 95.2 94.9 95.8 95.2 94.9 5.9 5.0 4.9 5.0 4.9 4.9
wgt A (0.8) ps 95.4 94.8 94.5 95.4 94.8 94.5 5.9 5.0 4.9 5.1 5.0 4.8
wgt A (3.2) ps 94.9 94.2 94.0 94.9 94.2 94.0 6.2 5.3 5.2 5.3 5.3 5.1
boot e�ect se 96.9 96.9 96.9 3.6 3.3 3.2

boot e�ect quant 96.9 96.9 97.0 2.0 1.3 0.8
radius matching R3

wgt uncond var 94.7 94.2 93.9 94.7 94.2 93.9 4.4 3.7 3.7 3.7 3.7 3.7
wgt decomp (0.2) 95.0 94.8 94.6 95.0 94.8 94.6 3.5 2.8 2.8 2.8 2.7 2.7
wgt decomp (0.8) 94.9 94.7 94.6 94.9 94.7 94.6 3.4 2.7 2.6 2.7 2.7 2.7
wgt decomp (3.2) 94.6 94.6 94.5 94.6 94.6 94.5 3.3 2.6 2.5 2.6 2.6 2.5

wgt A (0.2) 95.7 95.6 95.6 95.7 95.6 95.6 3.1 2.4 2.4 2.5 2.4 2.4
wgt A (0.8) 95.5 95.4 95.3 95.5 95.4 95.3 3.1 2.4 2.4 2.5 2.4 2.3
wgt A (3.2) 95.0 94.9 94.9 95.0 94.9 94.9 3.1 2.3 2.3 2.3 2.3 2.3

wgt uncond var ps 95.0 93.3 92.7 95.0 93.3 92.7 6.3 5.4 5.4 5.3 5.4 5.4
wgt decomp (0.2) ps 95.3 94.2 93.7 95.3 94.2 93.7 5.5 4.6 4.7 4.6 4.5 4.6
wgt decomp (0.8) ps 95.1 94.2 93.7 95.1 94.2 93.7 5.5 4.5 4.6 4.6 4.5 4.6

wgt A (3.2) ps 95.1 94.4 94.0 95.1 94.4 94.0 6.3 5.4 5.4 5.4 5.4 5.4
wgt A (0.2) ps 95.8 95.2 94.9 95.8 95.2 94.9 6.1 5.1 5.1 5.2 5.1 5.1
wgt A (0.8) ps 95.5 94.8 94.6 95.5 94.8 94.6 6.1 5.2 5.2 5.2 5.2 5.2

wgt decomp (3.2) ps 94.6 93.9 93.6 94.6 93.9 93.6 5.6 4.7 4.8 4.8 4.7 4.7
boot e�ect se 96.6 96.6 96.7 3.9 3.6 3.4

boot e�ect quant 96.7 96.7 96.6 2.3 1.4 1.0
radius matching with bias correction R1.5BC

wgt uncond var 94.6 94.4 94.3 94.6 94.4 94.3 3.8 3.2 3.1 3.1 3.1 3.0
wgt decomp (0.2) 94.4 94.4 94.2 94.4 94.4 94.2 3.7 2.9 2.9 3.0 2.9 2.9
wgt decomp (0.8) 94.4 94.3 94.2 94.4 94.3 94.2 3.7 2.9 2.9 3.0 2.9 2.8
wgt decomp (3.2) 94.1 94.0 94.0 94.1 94.0 94.0 3.8 2.9 2.9 3.0 2.9 2.9

wgt A (0.2) 94.9 94.9 94.9 94.9 94.9 94.9 3.4 2.6 2.6 2.7 2.6 2.5
wgt A (0.8) 94.7 94.8 94.7 94.7 94.8 94.7 3.3 2.6 2.6 2.7 2.6 2.6
wgt A (3.2) 94.4 94.4 94.4 94.4 94.4 94.4 3.5 2.6 2.6 2.7 2.6 2.6

wgt uncond var ps 94.8 93.8 93.3 94.8 93.8 93.3 6.1 5.1 5.1 5.1 5.1 5.0
wgt decomp (0.2) ps 94.6 93.6 93.3 94.6 93.6 93.3 6.0 4.9 4.8 4.9 4.9 4.8
wgt decomp (0.8) ps 94.5 93.6 93.2 94.5 93.6 93.2 5.9 4.9 4.9 5.0 4.9 4.8
wgt decomp (3.2) ps 94.1 93.3 93.0 94.1 93.3 93.0 6.4 5.3 5.2 5.3 5.2 5.1

wgt A (0.2) ps 95.1 94.3 94.0 95.1 94.3 94.0 6.5 5.6 5.5 5.7 5.6 5.5
wgt A (0.8) ps 94.9 94.2 93.8 94.9 94.2 93.8 6.7 5.6 5.6 5.7 5.6 5.6
wgt A (3.2) ps 94.6 93.8 93.4 94.6 93.8 93.4 7.0 5.8 5.8 6.0 5.8 5.7
boot e�ect se 96.8 96.9 96.9 3.7 3.4 3.3

boot e�ect quant 96.7 96.8 96.9 2.3 1.5 1.0
radius matching with bias correction R3BC

wgt uncond var 94.5 94.3 94.2 94.5 94.3 94.2 4.0 3.3 3.3 3.4 3.3 3.2
wgt decomp (0.2) 94.3 94.2 94.1 94.3 94.2 94.1 4.0 3.1 3.1 3.2 3.1 3.1
wgt decomp (0.8) 94.2 94.2 94.1 94.2 94.2 94.1 4.0 3.2 3.1 3.2 3.1 3.1
wgt decomp (3.2) 93.9 93.9 93.9 93.9 93.9 93.9 4.0 3.1 3.1 3.2 3.1 3.1

wgt A (0.2) 94.7 94.8 94.7 94.7 94.8 94.7 3.6 2.9 2.8 3.0 2.8 2.8
wgt A (0.8) 94.6 94.6 94.6 94.6 94.6 94.6 3.7 2.9 2.9 2.9 2.9 2.8
wgt A (3.2) 94.2 94.2 94.3 94.2 94.2 94.3 3.7 2.9 2.8 3.0 2.8 2.8

wgt uncond var ps 94.8 93.6 93.2 94.8 93.6 93.2 6.3 5.3 5.4 5.3 5.3 5.3
wgt decomp (0.2) ps 94.6 93.5 93.2 94.6 93.5 93.2 6.2 5.1 5.1 5.3 5.2 5.1
wgt decomp (0.8) ps 94.5 93.5 93.1 94.5 93.5 93.1 6.1 5.1 5.1 5.1 5.1 5.1
wgt decomp (3.2) ps 94.0 93.2 92.8 94.0 93.2 92.8 6.6 5.5 5.6 5.6 5.4 5.5

wgt A (0.2) ps 95.1 94.3 93.9 95.1 94.3 93.9 6.8 5.8 5.7 5.8 5.7 5.8
wgt A (0.8) ps 94.9 94.1 93.7 94.9 94.1 93.7 7.0 5.8 5.7 5.9 5.7 5.7
wgt A (3.2) ps 94.7 93.7 93.3 94.7 93.7 93.3 7.4 6.2 6.1 6.2 6.1 6.1
boot e�ect se 96.6 96.6 96.7 4.0 3.6 3.5

boot e�ect quant 96.5 96.7 96.7 2.5 1.7 1.2

Note: The su�x `ps' stands for adjustment for propensity score estimation.
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Table A.8: Coverage probabilities

IPW homogeneity heterogeneity
binary continuous binary continuous

as bs as bs as bs as bs
GMM 99.9 95.4 95.4 99.7 95.1 95.1 100.0 95.6 95.6 99.8 95.7 95.7

wgt uncond var 99.6 94.8 94.8 99.3 94.5 94.5 99.7 94.9 94.9 99.3 95.0 95.0
wgt decomp (0.2) 99.6 94.8 94.8 99.3 95.1 95.1 99.7 95.1 95.1 99.3 95.6 95.6
wgt decomp (0.8) 99.6 94.8 94.8 99.3 95.1 95.1 99.7 95.1 95.1 99.3 95.6 95.6
wgt decomp (3.2) 99.5 94.9 94.9 98.9 95.1 95.1 99.6 95.1 95.1 98.8 95.6 95.6

wgt A (0.2) 97.0 95.7 95.7 97.0 95.8 95.8 96.8 96.1 96.1 97.1 96.2 96.2
wgt A (0.8) 97.0 95.5 95.5 96.9 95.6 95.6 96.9 95.9 95.9 97.1 96.1 96.1
wgt A (3.2) 97.2 95.2 95.2 96.3 95.2 95.2 97.1 95.5 95.5 96.4 95.6 95.6

boot e�ect se 96.2 96.1 96.6 96.6
boot e�ect quant 96.1 96.1 96.6 96.5

pair matching homogeneity heterogeneity
binary continuous binary continuous

as bs wbs as bs wbs as bs wbs as bs wbs
wgt uncond var 99.8 89.2 97.9 99.0 88.3 97.4 99.7 89.3 97.7 98.7 88.3 97.4

wgt decomp (0.2) 99.8 90.6 96.7 99.1 92.3 96.4 99.8 90.7 96.4 98.8 92.4 96.1
wgt decomp (0.8) 99.8 90.7 96.6 99.0 92.0 96.3 99.7 90.8 96.3 98.7 92.3 96.1
wgt decomp (3.2) 99.7 90.8 96.6 98.2 91.9 96.1 99.6 91.1 96.2 98.0 92.2 95.9

wgt A (0.2) 96.4 92.3 96.6 95.4 92.8 96.4 96.0 92.4 96.3 95.3 93.2 96.1
wgt A (0.8) 96.5 92.0 96.5 95.2 92.7 96.3 96.0 92.0 96.2 95.1 92.9 96.1
wgt A (3.2) 96.8 91.6 96.5 94.2 92.3 96.1 96.3 91.4 96.1 94.1 92.6 95.9

Abadie Imbens 95.5 97.9 97.9 95.2 97.8 97.6 95.1 98.1 97.6 95.2 97.9 97.6
wgt uncond var ps 99.4 87.7 98.1 97.6 86.3 97.5 99.4 88.0 98.1 97.6 86.6 97.5

wgt decomp (0.2) ps 99.4 89.5 96.8 97.7 91.2 96.4 99.4 89.7 96.7 97.6 91.5 96.3
wgt decomp (0.8) ps 99.4 89.6 96.8 97.5 91.0 96.3 99.3 89.7 96.6 97.5 91.3 96.2
wgt decomp (3.2) ps 99.0 89.8 96.7 95.7 90.8 96.2 98.9 90.1 96.5 95.8 91.1 96.1

wgt A (0.2) ps 92.0 91.4 97.0 89.8 91.6 96.5 92.2 91.7 97.2 90.2 91.8 96.5
wgt A (0.8) ps 92.0 90.9 97.0 89.4 91.4 96.4 92.3 91.2 97.1 90.0 91.7 96.4
wgt A (3.2) ps 92.9 90.4 96.9 87.9 91.0 96.2 93.0 90.7 97.1 88.4 91.4 96.3

Abadie Imbens ps 88.2 96.3 97.1 87.3 96.0 96.8 88.5 96.9 97.4 88.1 96.5 96.9
boot e�ect se 97.9 97.2 97.5 96.8 98.0 96.8 97.4 96.8

boot e�ect quant 97.9 97.2 97.5 97.0 98.0 96.9 97.6 96.9
radius matching homogeneity heterogeneity

binary continuous binary continuous
as bs as bs as bs as bs

wgt uncond var 99.7 93.9 99.2 93.9 99.7 94.1 99.2 94.0
wgt decomp (0.2) 99.7 94.1 99.3 94.6 99.7 94.3 99.2 94.7
wgt decomp (0.8) 99.7 94.0 99.2 94.6 99.7 94.3 99.2 94.6
wgt decomp (3.2) 99.6 94.0 98.7 94.3 99.6 94.3 98.7 94.3

wgt A (0.2) 96.5 95.0 96.8 95.2 96.3 95.3 96.6 95.4
wgt A (0.8) 96.5 94.8 96.6 95.1 96.4 95.0 96.5 95.1
wgt A (3.2) 96.7 94.5 96.0 94.6 96.6 94.8 95.9 94.7

wgt uncond var ps 99.0 93.0 97.5 92.5 99.1 93.2 97.7 92.8
wgt decomp (0.2) ps 99.0 93.1 97.6 93.6 99.1 93.4 97.7 93.8
wgt decomp (0.8) ps 99.0 93.0 97.5 93.5 99.0 93.4 97.5 93.7
wgt decomp (3.2) ps 98.6 93.1 96.3 93.0 98.8 93.5 96.4 93.3

wgt A (0.2) ps 91.8 94.2 91.2 94.2 91.9 94.7 91.5 94.4
wgt A (0.8) ps 91.9 94.0 90.9 93.9 92.0 94.5 91.2 94.2
wgt A (3.2) ps 92.3 93.6 89.6 93.3 92.5 94.1 89.8 93.6
boot e�ect se 96.8 96.5 97.0 96.8

boot e�ect quant 96.7 96.6 97.0 96.8

Note: `as': the standard error is estimated by the respective method and plugged into the asymptotic approximation for con�dence

intervals; `bs': using 199 (standard) bootstrap replications (without smoothing), the standard error is estimated by the respective

method and plugged into the t-statistic to obtain con�dence intervals based on the quantile method. Exceptions are `boot e�ect

se', which bootstraps the e�ect and plugs its standard error into the asymptotic approximation for con�dence intervals, and `boot

e�ect quant', which obtains con�dence intervals based on the quantile method on the e�ect (rather than the t-statistic); `wbs':

wild bootstrap (without smoothing) rather than the standard bootstrap is used for the respective method. The su�x `ps' stands

for adjustment for propensity score estimation. The results for radius matching are averages over all 4 radius matching algorithms

(R1.5, R3, R1.5BC, R3BC).
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Table A.9: Coverage across simulation designs for IPW

homogeneity heterogeneity
sample % treated strong sel outcome sample % treated strong sel outcome

500 2000 30 70 no yes bin cont 500 2000 30 70 no yes bin cont
GMM 99.8 99.9 99.9 99.8 99.9 99.8 99.9 99.7 99.9 99.9 99.9 99.8 99.9 99.9 100.0 99.8

wgt uncond var 99.5 99.4 99.4 99.4 99.3 99.6 99.6 99.3 99.4 99.5 99.4 99.5 99.3 99.6 99.7 99.3
wgt decomp (0.2) 99.5 99.5 99.5 99.4 99.3 99.6 99.6 99.3 99.4 99.5 99.4 99.5 99.3 99.6 99.7 99.3
wgt decomp (0.8) 99.4 99.4 99.4 99.4 99.3 99.6 99.6 99.3 99.4 99.5 99.4 99.5 99.3 99.6 99.7 99.2
wgt decomp (3.2) 99.2 99.2 99.2 99.1 99.0 99.4 99.5 98.9 99.1 99.3 99.2 99.2 99.2 99.2 99.6 98.8

wgt A (0.2) 97.3 96.7 97.3 96.7 97.5 96.5 97.0 97.0 96.9 97.0 97.1 96.9 97.4 96.5 96.8 97.1
wgt A (0.8) 97.3 96.7 97.3 96.7 97.5 96.5 97.0 96.9 96.9 97.0 97.1 96.9 97.4 96.5 96.9 97.1
wgt A (3.2) 97.1 96.4 97.2 96.3 97.3 96.2 97.2 96.3 96.7 96.8 96.9 96.6 97.3 96.2 97.1 96.4

s GMM 96.2 94.3 95.5 95.0 94.9 95.6 95.4 95.1 96.2 95.1 95.7 95.6 95.4 95.9 95.6 95.7
s wgt uncond var 95.2 94.0 95.0 94.3 94.3 95.0 94.8 94.5 95.3 94.7 95.0 94.9 94.8 95.2 94.9 95.0

s wgt decomp (0.2) 95.6 94.3 95.0 94.8 94.5 95.4 94.8 95.1 95.5 95.2 95.2 95.5 94.9 95.8 95.1 95.6
s wgt decomp (0.8) 95.5 94.3 95.0 94.9 94.5 95.4 94.8 95.1 95.5 95.1 95.2 95.5 94.9 95.7 95.1 95.6
s wgt decomp (3.2) 95.6 94.4 95.0 95.0 94.5 95.5 94.9 95.1 95.4 95.2 95.1 95.5 94.8 95.8 95.1 95.6

s wgt A (0.2) 96.4 95.1 95.7 95.8 95.3 96.2 95.7 95.8 96.3 96.0 95.9 96.4 95.7 96.6 96.1 96.2
s wgt A (0.8) 96.3 94.8 95.5 95.6 95.1 96.0 95.5 95.6 96.2 95.7 95.7 96.2 95.6 96.4 95.9 96.1
s wgt A (3.2) 95.9 94.5 95.3 95.1 94.8 95.6 95.2 95.2 95.7 95.4 95.4 95.7 95.2 95.9 95.5 95.6
boot e�ect se 97.1 95.2 96.1 96.2 95.9 96.4 96.2 96.1 97.1 96.1 96.4 96.8 96.4 96.7 96.6 96.6

boot e�ect quant 97.1 95.2 96.1 96.2 95.8 96.4 96.1 96.1 97.0 96.1 96.3 96.8 96.4 96.7 96.6 96.5

Note: Pre�x `s' stands for standard bootstrap. All results with pre�x `s' are based on both smoothed and nonsmoothed versions of

the respective bootstrap procedure.
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Table A.10: Coverage across simulation designs for pair matching

homogeneity heterogeneity
sample % treated strong sel outcome sample % treated strong sel outcome

500 2000 30 70 no yes bin cont 500 2000 30 70 no yes bin cont
wgt uncond var 99.3 99.4 99.5 99.2 99.5 99.3 99.8 99.0 99.2 99.2 99.4 99.1 99.4 99.1 99.7 98.7

wgt decomp (0.2) 99.3 99.5 99.5 99.3 99.5 99.3 99.8 99.1 99.2 99.3 99.4 99.1 99.4 99.1 99.8 98.8
wgt decomp (0.8) 99.3 99.4 99.5 99.3 99.5 99.3 99.8 99.0 99.2 99.2 99.4 99.1 99.4 99.1 99.7 98.7
wgt decomp (3.2) 98.8 99.1 99.1 98.8 99.1 98.7 99.7 98.2 98.7 99.0 99.0 98.7 99.0 98.6 99.6 98.0

wgt A (0.2) 96.1 95.8 96.3 95.6 96.5 95.3 96.4 95.4 95.7 95.6 96.0 95.2 96.2 95.1 96.0 95.3
wgt A (0.8) 96.0 95.6 96.2 95.5 96.5 95.2 96.5 95.2 95.6 95.5 96.0 95.2 96.2 95.0 96.0 95.1
wgt A (3.2) 95.7 95.2 95.9 95.1 96.3 94.6 96.8 94.2 95.4 95.1 95.6 94.8 95.9 94.5 96.3 94.1

Abadie Imbens 95.7 95.1 95.9 94.8 96.1 94.6 95.5 95.2 95.1 95.2 95.7 94.6 95.9 94.4 95.1 95.2
wgt uncond var ps 98.1 98.9 99.0 98.1 98.8 98.3 99.4 97.6 98.1 98.9 99.0 98.0 98.7 98.2 99.4 97.6

wgt decomp (0.2) ps 98.1 99.1 99.0 98.1 98.7 98.4 99.4 97.7 98.0 99.0 99.0 98.0 98.7 98.3 99.4 97.6
wgt decomp (0.8) ps 98.0 98.8 98.9 98.0 98.6 98.2 99.4 97.5 98.0 98.8 98.9 97.9 98.6 98.2 99.3 97.5
wgt decomp (3.2) ps 96.4 98.2 97.9 96.8 97.9 96.7 99.0 95.7 96.3 98.4 98.1 96.7 98.0 96.8 98.9 95.8

wgt A (0.2) ps 89.9 91.9 92.1 89.6 92.2 89.6 92.0 89.8 89.5 92.9 92.4 90.0 92.3 90.1 92.2 90.2
wgt A (0.8) ps 89.8 91.7 92.0 89.5 92.1 89.4 92.0 89.4 89.5 92.8 92.3 90.0 92.3 89.9 92.3 90.0
wgt A (3.2) ps 89.5 91.3 91.6 89.2 91.9 88.9 92.9 87.9 89.0 92.3 91.8 89.5 91.9 89.4 93.0 88.4

Abadie Imbens ps 85.1 90.4 91.1 84.3 90.2 85.2 88.2 87.3 84.9 91.7 91.4 85.2 90.7 85.9 88.5 88.1
s wgt uncond var 89.2 88.3 90.7 86.9 90.4 87.2 89.2 88.3 88.9 88.8 90.6 87.0 90.4 87.2 89.3 88.3

s wgt decomp (0.2) 92.6 90.3 92.0 90.9 91.6 91.3 90.6 92.3 92.3 90.8 92.1 90.9 91.7 91.3 90.7 92.4
s wgt decomp (0.8) 92.7 90.0 91.9 90.8 91.6 91.1 90.7 92.0 92.4 90.8 92.2 91.0 91.9 91.3 90.8 92.3
s wgt decomp (3.2) 92.3 90.4 91.7 91.0 91.7 91.1 90.8 91.9 92.0 91.3 92.1 91.2 92.1 91.2 91.1 92.2

s wgt A (0.2) 93.8 91.3 93.4 91.7 93.1 92.0 92.3 92.8 93.4 92.2 93.6 91.9 93.3 92.3 92.4 93.2
s wgt A (0.8) 93.6 91.0 93.1 91.6 93.1 91.6 92.0 92.7 93.2 91.7 93.2 91.7 93.3 91.6 92.0 92.9
s wgt A (3.2) 93.3 90.6 92.7 91.1 92.7 91.1 91.6 92.3 92.7 91.3 92.8 91.2 92.8 91.2 91.4 92.6

s Abadie Imbens 98.5 97.2 96.8 98.9 96.7 99.0 97.9 97.8 98.4 97.5 97.0 98.9 96.9 99.1 98.1 97.9
s wgt uncond var ps 87.2 86.8 88.9 85.1 88.6 85.4 87.7 86.3 87.2 87.5 89.3 85.4 89.0 85.7 88.0 86.6

s wgt decomp (0.2) ps 91.8 88.9 90.6 90.1 90.3 90.5 89.5 91.2 91.5 89.7 91.0 90.2 90.5 90.7 89.7 91.5
s wgt decomp (0.8) ps 91.9 88.8 90.6 90.0 90.3 90.4 89.6 91.0 91.6 89.4 91.0 90.0 90.6 90.4 89.7 91.3
s wgt decomp (3.2) ps 91.4 89.1 90.2 90.4 90.2 90.3 89.8 90.8 91.1 90.1 90.7 90.5 90.6 90.6 90.1 91.1

s wgt A (0.2) ps 93.6 89.4 91.3 91.8 91.4 91.6 91.4 91.6 93.5 90.0 91.8 91.7 91.7 91.8 91.7 91.8
s wgt A (0.8) ps 93.3 89.0 90.9 91.4 91.2 91.1 90.9 91.4 93.2 89.6 91.4 91.5 91.6 91.2 91.2 91.7
s wgt A (3.2) ps 92.9 88.5 90.3 91.0 90.8 90.6 90.4 91.0 92.7 89.4 91.1 91.0 91.2 90.8 90.7 91.4

s Abadie Imbens ps 96.6 95.6 94.4 97.8 94.5 97.7 96.3 96.0 96.9 96.6 95.4 98.0 95.3 98.2 96.9 96.5
s boot e�ect se 98.4 97.0 97.9 97.5 97.8 97.5 97.9 97.5 98.3 97.2 98.1 97.3 97.9 97.5 98.0 97.4

s boot e�ect quant 98.4 97.1 98.0 97.5 97.8 97.6 97.9 97.5 98.2 97.3 98.1 97.4 97.9 97.6 98.0 97.6
w wgt uncond var 98.1 97.2 97.2 98.1 97.2 98.1 97.9 97.4 97.9 97.2 97.1 97.9 97.0 98.0 97.7 97.4

w wgt decomp (0.2) 96.8 96.3 96.6 96.5 96.6 96.5 96.7 96.4 96.5 96.0 96.3 96.2 96.3 96.2 96.4 96.1
w wgt decomp (0.8) 96.8 96.1 96.5 96.5 96.6 96.4 96.6 96.3 96.5 95.9 96.2 96.2 96.3 96.1 96.3 96.1
w wgt decomp (3.2) 96.6 96.1 96.4 96.3 96.4 96.2 96.6 96.1 96.2 95.9 96.1 96.0 96.2 96.0 96.2 95.9

w wgt A (0.2) 96.7 96.3 96.6 96.4 96.6 96.4 96.6 96.4 96.3 96.1 96.3 96.1 96.4 96.0 96.3 96.1
w wgt A (0.8) 96.6 96.2 96.5 96.3 96.6 96.2 96.5 96.3 96.3 96.0 96.2 96.0 96.4 95.9 96.2 96.1
w wgt A (3.2) 96.5 96.0 96.4 96.1 96.5 96.1 96.5 96.1 96.2 95.8 96.2 95.9 96.2 95.8 96.1 95.9

w Abadie Imbens 97.8 97.7 97.3 98.3 97.2 98.3 97.9 97.6 97.6 97.6 97.1 98.1 97.0 98.2 97.6 97.6
w wgt uncond var ps 98.6 97.0 97.2 98.5 97.0 98.6 98.1 97.5 98.5 97.1 97.3 98.3 97.1 98.5 98.1 97.5

w wgt decomp (0.2) ps 97.4 95.8 96.2 97.0 96.4 96.8 96.8 96.4 97.2 95.8 96.2 96.8 96.3 96.6 96.7 96.3
w wgt decomp (0.8) ps 97.4 95.6 96.1 96.9 96.4 96.7 96.8 96.3 97.2 95.6 96.1 96.7 96.3 96.5 96.6 96.2
w wgt decomp (3.2) ps 97.3 95.6 96.0 96.9 96.2 96.7 96.7 96.2 97.1 95.5 96.0 96.6 96.2 96.5 96.5 96.1

w wgt A (0.2) ps 98.0 95.5 96.2 97.3 96.2 97.3 97.0 96.5 97.9 95.7 96.3 97.3 96.4 97.2 97.2 96.5
w wgt A (0.8) ps 98.0 95.4 96.1 97.2 96.2 97.1 97.0 96.4 97.9 95.6 96.3 97.2 96.4 97.0 97.1 96.4
w wgt A (3.2) ps 97.9 95.2 96.0 97.1 96.1 97.1 96.9 96.2 97.8 95.5 96.2 97.2 96.4 97.0 97.0 96.3

w Abadie Imbens ps 97.4 96.5 96.1 97.9 96.2 97.8 97.1 96.8 97.4 96.8 96.4 97.9 96.4 97.9 97.4 96.9
w boot e�ect se 97.5 96.4 97.2 96.8 97.3 96.6 97.2 96.8 97.3 96.3 97.1 96.5 97.2 96.4 96.8 96.8

w boot e�ect quant 97.7 96.5 97.2 97.0 97.3 96.9 97.2 97.0 97.5 96.4 97.1 96.7 97.2 96.6 96.9 96.9

Note: The pre�xes `s' and `w' stand for the standard and wild bootstrap, respectively. All results with pre�xes `s' and `w' are

based on both smoothed and nonsmoothed versions of the respective bootstrap procedure. The su�x `ps' stands for adjustment for

propensity score estimation.
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Table A.11: Coverage across simulation designs for radius matching

homogeneity heterogeneity
sample % treated strong sel outcome sample % treated strong sel outcome

500 2000 30 70 no yes bin cont 500 2000 30 70 no yes bin cont
radius matching R1.5

wgt uncond var 99.4 99.4 99.5 99.4 99.4 99.4 99.7 99.1 99.4 99.5 99.5 99.4 99.4 99.5 99.7 99.2
wgt decomp (0.2) 99.4 99.4 99.5 99.4 99.4 99.5 99.8 99.1 99.4 99.6 99.5 99.4 99.4 99.5 99.7 99.2
wgt decomp (0.8) 99.4 99.4 99.4 99.4 99.4 99.4 99.8 99.1 99.4 99.5 99.5 99.3 99.4 99.4 99.7 99.1
wgt decomp (3.2) 99.1 99.2 99.2 99.0 99.1 99.1 99.6 98.6 99.0 99.2 99.3 99.0 99.2 99.0 99.6 98.6

wgt A (0.2) 96.7 96.2 96.8 96.0 96.9 96.0 96.5 96.3 96.2 96.3 96.5 96.0 96.9 95.7 96.5 96.0
wgt A (0.8) 96.7 96.1 96.7 96.0 96.8 95.9 96.6 96.1 96.2 96.3 96.5 96.0 96.8 95.6 96.5 95.9
wgt A (3.2) 96.5 95.8 96.5 95.8 96.7 95.6 96.9 95.5 96.0 96.0 96.2 95.8 96.7 95.3 96.7 95.3

wgt uncond var ps 97.7 98.7 98.6 97.8 98.2 98.2 99.1 97.3 97.7 98.9 98.8 97.8 98.5 98.1 99.2 97.4
wgt decomp (0.2) ps 97.7 98.8 98.6 97.9 98.2 98.3 99.1 97.4 97.7 99.0 98.9 97.8 98.5 98.2 99.1 97.5
wgt decomp (0.8) ps 97.7 98.6 98.5 97.8 98.2 98.2 99.1 97.3 97.6 98.8 98.7 97.7 98.4 98.1 99.1 97.3
wgt decomp (3.2) ps 96.7 98.0 98.0 96.8 97.6 97.2 98.7 96.0 96.6 98.2 98.1 96.7 97.7 97.1 98.9 96.0

wgt A (0.2) ps 90.2 92.2 91.9 90.5 91.8 90.6 91.9 90.5 90.0 93.0 92.3 90.7 92.4 90.6 92.2 90.8
wgt A (0.8) ps 90.2 92.0 91.8 90.4 91.8 90.4 92.1 90.1 89.9 92.8 92.1 90.7 92.3 90.5 92.3 90.4
wgt A (3.2) ps 89.8 91.3 91.2 90.0 91.5 89.6 92.5 88.6 89.7 92.2 91.6 90.3 91.9 90.0 92.8 89.0

s wgt uncond var 94.0 92.8 94.5 92.3 93.8 93.0 93.6 93.2 93.9 93.5 94.5 92.8 94.3 93.1 93.9 93.4
s wgt decomp (0.2) 95.3 93.9 95.0 94.2 94.2 95.0 94.2 95.0 95.1 94.3 95.1 94.3 94.7 94.7 94.4 95.1
s wgt decomp (0.8) 95.3 93.7 94.9 94.2 94.3 94.7 94.1 94.9 95.1 94.4 95.2 94.3 94.8 94.7 94.5 95.0
s wgt decomp (3.2) 95.2 93.6 94.9 94.0 94.2 94.7 94.2 94.6 94.9 94.2 95.0 94.2 94.7 94.4 94.6 94.6

s wgt A (0.2) 96.4 94.6 96.0 95.0 95.3 95.7 95.4 95.6 96.2 95.4 96.2 95.4 95.8 95.8 95.8 95.8
s wgt A (0.8) 96.3 94.4 95.9 94.8 95.3 95.4 95.2 95.4 96.1 95.0 96.0 95.0 95.7 95.4 95.5 95.5
s wgt A (3.2) 95.6 94.1 95.5 94.2 94.9 94.8 94.8 94.9 95.4 94.6 95.5 94.5 95.3 94.7 95.0 95.0

s wgt uncond var ps 92.7 91.4 92.9 91.2 92.4 91.7 92.5 91.6 92.8 91.9 93.3 91.4 93.1 91.6 92.7 92.0
s wgt decomp (0.2) ps 94.6 92.4 93.7 93.3 93.0 94.0 93.0 94.0 94.5 93.3 94.1 93.6 93.7 94.0 93.5 94.2
s wgt decomp (0.8) ps 94.6 92.5 93.7 93.3 93.0 94.0 93.0 94.1 94.5 93.2 94.0 93.6 93.8 93.9 93.5 94.1
s wgt decomp (3.2) ps 94.5 92.0 93.4 93.2 92.8 93.7 93.2 93.4 94.5 92.9 93.8 93.5 93.7 93.6 93.7 93.6

s wgt A (0.2) ps 96.4 92.9 94.4 94.9 93.9 95.4 94.7 94.6 96.5 93.7 94.9 95.2 94.5 95.6 95.3 94.8
s wgt A (0.8) ps 96.2 92.5 94.1 94.6 93.6 95.1 94.3 94.3 96.3 93.2 94.6 94.9 94.3 95.1 95.0 94.5
s wgt A (3.2) ps 95.5 92.0 93.5 94.0 93.2 94.3 93.9 93.6 95.5 92.8 93.9 94.4 94.0 94.3 94.5 93.8
s boot e�ect se 97.9 95.6 97.1 96.5 96.7 96.8 96.9 96.6 97.8 96.3 97.3 96.8 97.2 96.9 97.3 96.9

s boot e�ect quant 97.9 95.7 97.0 96.5 96.7 96.8 96.8 96.8 97.8 96.4 97.3 96.9 97.3 97.0 97.2 97.1
radius matching R3

wgt uncond var 99.5 99.4 99.5 99.5 99.4 99.5 99.8 99.1 99.4 99.6 99.5 99.4 99.4 99.5 99.7 99.2
wgt decomp (0.2) 99.5 99.5 99.5 99.5 99.4 99.6 99.8 99.2 99.4 99.5 99.5 99.4 99.4 99.5 99.7 99.2
wgt decomp (0.8) 99.4 99.4 99.4 99.4 99.4 99.5 99.8 99.1 99.4 99.5 99.5 99.4 99.4 99.5 99.7 99.2
wgt decomp (3.2) 99.1 99.2 99.2 99.1 99.1 99.2 99.7 98.7 99.0 99.3 99.3 99.1 99.2 99.1 99.6 98.7

wgt A (0.2) 96.8 96.4 96.9 96.2 97.0 96.2 96.6 96.5 96.4 96.5 96.5 96.3 97.0 95.9 96.5 96.3
wgt A (0.8) 96.8 96.3 96.9 96.2 97.0 96.1 96.7 96.4 96.4 96.4 96.5 96.3 96.9 95.8 96.6 96.2
wgt A (3.2) 96.6 96.0 96.6 96.0 96.8 95.7 96.9 95.6 96.1 96.2 96.3 96.0 96.8 95.5 96.7 95.6

wgt uncond var ps 97.7 98.7 98.6 97.9 98.1 98.3 99.1 97.4 97.6 99.1 98.8 97.9 98.4 98.3 99.2 97.6
wgt decomp (0.2) ps 97.7 98.8 98.6 98.0 98.2 98.4 99.1 97.5 97.7 99.1 98.8 98.0 98.4 98.3 99.2 97.6
wgt decomp (0.8) ps 97.7 98.7 98.5 97.9 98.1 98.3 99.0 97.3 97.6 98.9 98.7 97.9 98.3 98.2 99.1 97.4
wgt decomp (3.2) ps 96.7 98.0 97.9 96.8 97.5 97.3 98.7 96.0 96.6 98.4 98.2 96.8 97.7 97.3 98.9 96.1

wgt A (0.2) ps 90.3 92.3 91.8 90.8 91.9 90.7 92.0 90.5 90.1 93.0 92.1 91.0 92.4 90.7 92.3 90.9
wgt A (0.8) ps 90.3 92.0 91.6 90.7 91.8 90.5 92.1 90.2 90.1 92.8 92.1 90.9 92.3 90.6 92.4 90.6
wgt A (3.2) ps 90.0 91.4 91.1 90.3 91.5 89.9 92.5 88.9 89.8 92.1 91.5 90.4 92.0 90.0 92.8 89.1

s wgt uncond var 94.4 93.3 94.6 93.0 94.0 93.7 94.0 93.7 94.2 93.7 94.7 93.2 94.4 93.6 94.2 93.8
s wgt decomp (0.2) 95.3 93.8 95.0 94.1 94.2 94.9 94.3 94.9 95.0 94.3 95.1 94.2 94.6 94.7 94.5 94.8
s wgt decomp (0.8) 95.3 93.7 95.0 94.1 94.2 94.8 94.2 94.8 95.0 94.4 95.1 94.4 94.8 94.7 94.6 94.9
s wgt decomp (3.2) 95.2 93.7 95.0 93.9 94.2 94.7 94.3 94.6 95.0 94.3 95.0 94.3 94.7 94.6 94.7 94.7

s wgt A (0.2) 96.3 94.5 95.9 94.9 95.2 95.6 95.4 95.5 96.2 95.2 96.1 95.3 95.8 95.7 95.7 95.8
s wgt A (0.8) 96.2 94.3 95.8 94.7 95.2 95.3 95.2 95.3 96.1 94.8 95.9 95.0 95.6 95.3 95.4 95.5
s wgt A (3.2) 95.6 94.0 95.5 94.2 94.8 94.9 94.8 94.9 95.4 94.7 95.5 94.6 95.3 94.7 95.0 95.1

s wgt uncond var ps 93.4 91.8 93.2 92.0 92.6 92.6 93.0 92.1 93.4 92.3 93.5 92.2 93.2 92.5 93.2 92.4
s wgt decomp (0.2) ps 94.7 92.5 93.7 93.5 93.0 94.2 93.3 93.9 94.6 93.2 94.1 93.7 93.8 94.0 93.7 94.0
s wgt decomp (0.8) ps 94.7 92.5 93.7 93.4 93.0 94.1 93.2 93.9 94.6 93.2 94.1 93.7 93.7 94.0 93.7 94.0
s wgt decomp (3.2) ps 94.7 92.1 93.4 93.4 92.9 93.9 93.3 93.5 94.6 93.1 93.9 93.8 93.7 94.0 93.9 93.7

s wgt A (0.2) ps 96.4 93.0 94.5 94.9 93.9 95.5 94.7 94.7 96.4 93.6 94.9 95.2 94.5 95.6 95.2 94.9
s wgt A (0.8) ps 96.3 92.6 94.1 94.7 93.7 95.1 94.5 94.3 96.3 93.3 94.5 95.0 94.4 95.2 95.0 94.6
s wgt A (3.2) ps 95.6 91.9 93.5 94.0 93.2 94.3 93.9 93.7 95.6 92.9 94.0 94.5 94.0 94.5 94.5 94.0
s boot e�ect se 97.7 95.3 96.9 96.1 96.5 96.5 96.6 96.4 97.6 96.0 97.1 96.5 97.1 96.5 96.9 96.7

s boot e�ect quant 97.7 95.2 96.9 96.1 96.5 96.5 96.4 96.5 97.6 96.1 97.0 96.6 97.1 96.5 96.9 96.8

Note: Pre�x `s' stands for standard bootstrap. All results with pre�x `s' are based on both smoothed and nonsmoothed versions of

the respective bootstrap procedure.
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Table A.12: Coverage across simulation designs for radius matching with bias correction

homogeneity heterogeneity
sample % treated strong sel outcome sample % treated strong sel outcome

500 2000 30 70 no yes bin cont 500 2000 30 70 no yes bin cont
radius matching R1.5BC

wgt uncond var 99.5 99.4 99.6 99.3 99.5 99.4 99.6 99.3 99.5 99.3 99.5 99.2 99.5 99.3 99.6 99.2
wgt decomp (0.2) 99.5 99.5 99.7 99.3 99.5 99.4 99.6 99.3 99.5 99.3 99.6 99.2 99.5 99.3 99.6 99.2
wgt decomp (0.8) 99.5 99.3 99.6 99.2 99.5 99.3 99.6 99.2 99.4 99.2 99.5 99.2 99.5 99.2 99.6 99.1
wgt decomp (3.2) 99.2 99.0 99.4 98.8 99.3 98.9 99.5 98.7 99.2 99.1 99.4 98.8 99.3 98.9 99.5 98.7

wgt A (0.2) 97.1 96.1 97.2 96.0 97.2 96.0 96.2 97.0 96.7 96.2 96.8 96.1 97.2 95.7 96.0 96.9
wgt A (0.8) 97.0 96.0 97.2 95.9 97.2 95.9 96.2 96.8 96.7 96.1 96.8 96.1 97.1 95.7 96.1 96.8
wgt A (3.2) 96.9 95.8 97.0 95.7 97.1 95.5 96.4 96.3 96.5 96.1 96.7 95.9 97.1 95.5 96.3 96.3

wgt uncond var ps 98.0 98.5 98.8 97.7 98.4 98.1 98.9 97.6 97.9 98.7 98.9 97.7 98.5 98.1 98.9 97.7
wgt decomp (0.2) ps 98.0 98.6 98.8 97.7 98.4 98.1 98.9 97.7 97.9 98.7 98.9 97.7 98.6 98.1 98.9 97.7
wgt decomp (0.8) ps 97.9 98.4 98.7 97.6 98.4 98.0 98.8 97.5 97.9 98.6 98.8 97.7 98.5 98.0 98.9 97.6
wgt decomp (3.2) ps 97.1 97.9 98.3 96.7 97.8 97.2 98.5 96.5 97.0 98.1 98.4 96.7 98.0 97.1 98.6 96.6

wgt A (0.2) ps 91.0 92.0 92.4 90.7 92.6 90.5 91.4 91.6 90.9 92.3 92.4 90.8 92.9 90.3 91.3 91.8
wgt A (0.8) ps 91.0 91.8 92.2 90.6 92.5 90.3 91.5 91.3 90.9 92.2 92.4 90.7 92.8 90.3 91.5 91.6
wgt A (3.2) ps 90.7 91.3 91.8 90.2 92.3 89.7 91.9 90.1 90.5 91.8 92.0 90.3 92.5 89.8 92.0 90.3

s wgt uncond var 94.6 93.9 95.1 93.5 94.2 94.3 94.1 94.4 94.5 94.1 94.9 93.7 94.4 94.1 94.1 94.4
s wgt decomp (0.2) 94.4 94.0 95.0 93.4 94.1 94.3 94.0 94.4 94.2 94.3 95.0 93.6 94.4 94.1 94.0 94.5
s wgt decomp (0.8) 94.4 93.9 94.9 93.4 94.1 94.2 93.9 94.4 94.2 94.2 94.9 93.5 94.3 94.1 94.1 94.4
s wgt decomp (3.2) 94.2 93.7 94.9 93.0 93.9 94.0 93.8 94.1 94.0 94.1 94.8 93.3 94.2 93.9 94.1 94.0

s wgt A (0.2) 95.1 94.6 95.8 93.9 94.9 94.8 94.7 95.0 94.9 95.0 95.8 94.1 95.1 94.8 94.9 95.0
s wgt A (0.8) 95.0 94.3 95.6 93.7 94.8 94.6 94.5 94.8 94.9 94.6 95.6 93.9 95.0 94.5 94.8 94.7
s wgt A (3.2) 94.6 94.1 95.4 93.3 94.6 94.1 94.3 94.4 94.5 94.4 95.3 93.6 94.8 94.1 94.6 94.3

s wgt uncond var ps 93.8 92.7 93.8 92.8 92.9 93.6 93.2 93.3 93.8 93.0 93.9 92.9 93.3 93.5 93.3 93.5
s wgt decomp (0.2) ps 93.6 92.8 93.7 92.6 93.0 93.4 93.0 93.3 93.6 93.1 93.9 92.8 93.3 93.4 93.1 93.5
s wgt decomp (0.8) ps 93.5 92.6 93.5 92.6 92.9 93.3 93.0 93.2 93.5 93.0 93.8 92.7 93.2 93.3 93.1 93.4
s wgt decomp (3.2) ps 93.3 92.4 93.4 92.3 92.6 93.1 93.0 92.7 93.3 92.9 93.7 92.5 93.0 93.2 93.2 93.0

s wgt A (0.2) ps 94.8 92.7 93.9 93.6 93.4 94.1 93.7 93.8 94.9 93.4 94.5 93.9 94.0 94.4 94.3 94.1
s wgt A (0.8) ps 94.7 92.5 93.7 93.5 93.2 93.9 93.6 93.5 94.9 93.2 94.3 93.8 93.8 94.3 94.1 93.9
s wgt A (3.2) ps 94.4 92.1 93.3 93.1 93.0 93.5 93.4 93.1 94.4 92.7 93.8 93.3 93.4 93.7 93.7 93.4
s boot e�ect se 97.8 95.7 97.3 96.3 96.6 97.0 97.0 96.6 97.8 96.2 97.2 96.7 97.1 96.9 97.1 96.9

s boot e�ect quant 97.9 95.8 97.3 96.4 96.6 97.1 97.0 96.7 97.8 96.3 97.2 96.8 97.1 96.9 97.1 96.9
radius matching R3BC

wgt uncond var 99.6 99.5 99.6 99.5 99.5 99.6 99.7 99.4 99.5 99.5 99.6 99.4 99.5 99.5 99.7 99.3
wgt decomp (0.2) 99.6 99.5 99.7 99.5 99.5 99.6 99.7 99.4 99.5 99.5 99.6 99.4 99.5 99.5 99.7 99.3
wgt decomp (0.8) 99.6 99.4 99.6 99.4 99.5 99.5 99.7 99.4 99.5 99.4 99.6 99.4 99.5 99.5 99.7 99.3
wgt decomp (3.2) 99.3 99.1 99.4 99.0 99.3 99.1 99.6 98.9 99.3 99.2 99.4 99.1 99.3 99.2 99.6 98.9

wgt A (0.2) 97.3 96.5 97.4 96.5 97.3 96.5 96.5 97.3 97.0 96.5 97.0 96.5 97.3 96.2 96.3 97.2
wgt A (0.8) 97.3 96.5 97.3 96.5 97.3 96.5 96.6 97.2 97.0 96.5 97.0 96.5 97.3 96.2 96.3 97.1
wgt A (3.2) 97.1 96.3 97.2 96.2 97.2 96.2 96.7 96.7 96.8 96.3 96.8 96.3 97.3 95.9 96.5 96.6

wgt uncond var ps 98.2 98.6 98.8 98.0 98.5 98.3 99.0 97.8 98.1 98.9 99.0 98.0 98.6 98.4 99.1 97.9
wgt decomp (0.2) ps 98.2 98.6 98.9 98.0 98.5 98.3 99.0 97.8 98.1 98.9 99.0 98.0 98.6 98.4 99.1 98.0
wgt decomp (0.8) ps 98.1 98.5 98.8 97.9 98.4 98.2 98.9 97.7 98.1 98.8 98.9 98.0 98.6 98.3 99.1 97.8
wgt decomp (3.2) ps 97.3 98.1 98.4 97.1 97.9 97.5 98.6 96.8 97.3 98.4 98.5 97.1 98.1 97.5 98.8 96.9

wgt A (0.2) ps 91.6 92.4 92.7 91.3 92.7 91.2 91.8 92.1 91.4 92.9 92.8 91.6 93.1 91.2 91.9 92.4
wgt A (0.8) ps 91.5 92.2 92.5 91.2 92.7 91.1 91.9 91.9 91.4 92.7 92.6 91.5 93.0 91.1 92.0 92.1
wgt A (3.2) ps 91.3 91.7 92.1 90.9 92.5 90.4 92.3 90.7 91.0 92.3 92.3 91.0 92.7 90.6 92.5 90.9

s wgt uncond var 94.6 93.7 94.9 93.3 94.0 94.2 94.0 94.2 94.4 94.1 95.0 93.5 94.4 94.1 94.2 94.3
s wgt decomp (0.2) 94.3 93.7 94.8 93.2 94.1 94.0 93.8 94.2 94.2 94.2 94.9 93.5 94.3 94.0 94.1 94.3
s wgt decomp (0.8) 94.3 93.7 94.8 93.2 94.0 94.0 93.8 94.2 94.1 94.1 94.8 93.5 94.3 94.0 94.1 94.2
s wgt decomp (3.2) 94.1 93.6 94.8 92.9 93.9 93.8 93.7 93.9 93.9 94.0 94.8 93.2 94.1 93.8 94.1 93.9

s wgt A (0.2) 95.0 94.3 95.7 93.7 94.8 94.6 94.5 94.8 94.8 94.8 95.6 94.0 95.1 94.5 94.7 94.9
s wgt A (0.8) 95.0 94.1 95.5 93.6 94.7 94.4 94.3 94.7 94.8 94.5 95.4 93.9 94.9 94.3 94.6 94.7
s wgt A (3.2) 94.6 93.9 95.2 93.2 94.5 93.9 94.2 94.2 94.3 94.4 95.2 93.5 94.7 94.0 94.5 94.3

s wgt uncond var ps 93.8 92.4 93.7 92.5 92.8 93.4 93.1 93.1 93.8 92.8 93.9 92.7 93.2 93.4 93.4 93.2
s wgt decomp (0.2) ps 93.6 92.5 93.6 92.5 92.8 93.3 93.0 93.1 93.6 93.0 93.9 92.6 93.2 93.3 93.3 93.2
s wgt decomp (0.8) ps 93.5 92.3 93.5 92.4 92.7 93.1 92.9 92.9 93.5 93.0 93.9 92.6 93.1 93.4 93.2 93.3
s wgt decomp (3.2) ps 93.2 92.0 93.2 92.1 92.5 92.8 92.8 92.5 93.3 92.7 93.7 92.4 92.9 93.1 93.2 92.8

s wgt A (0.2) ps 94.8 92.7 93.8 93.7 93.3 94.2 93.8 93.7 94.9 93.1 94.3 93.8 93.7 94.3 94.1 93.9
s wgt A (0.8) ps 94.8 92.3 93.6 93.5 93.2 93.9 93.6 93.5 94.8 92.9 94.1 93.7 93.6 94.1 94.0 93.7
s wgt A (3.2) ps 94.4 91.9 93.2 93.1 92.9 93.4 93.3 93.0 94.4 92.5 93.7 93.2 93.2 93.7 93.7 93.2
s boot e�ect se 97.7 95.5 97.1 96.1 96.5 96.7 96.7 96.4 97.6 95.9 97.0 96.5 97.0 96.5 96.9 96.6

s boot e�ect quant 97.7 95.4 97.0 96.1 96.4 96.7 96.7 96.4 97.6 95.9 97.0 96.5 97.0 96.5 96.9 96.6

Note: Pre�x `s' stands for standard bootstrap. All results with pre�x `s' are based on both smoothed and nonsmoothed versions of

the respective bootstrap procedure.
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