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ABSTRACT 
 

Something in the Air? 
Pollution, Allergens and Children’s Cognitive Functioning* 

 
Poor air quality has been shown to harm the health and development of children. Research 
on these relationships has focused almost exclusively on the effects of human-made 
pollutants, and has not fully distinguished between contemporaneous and long-run effects. 
This paper contributes on both of these fronts. Merging data on plant pollen, human-made 
pollutants and ECLS-K data on academic skills, I study the relationship between poor air 
quality in the first years of life on school-readiness, and the effects of ambient air quality on 
achievement of young children. I find evidence that exposure in early childhood affects 
school readiness at the start of kindergarten, and that the effects of air quality on the growth 
of cognitive skills in math and reading continue into elementary school. 
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Economists have done a substantial amount of research linking poor air quality to 

health and developmental outcomes for children.  This research has mostly been limited 

to pollution emitted as a consequence of human activity and has focused either on long-

run effects due to pre- and neo-natal exposure, or on the contemporaneous impacts of 

ambient pollution on acute health episodes or cognitive performance.  In this paper, I 

extend this literature in two ways.  First, I incorporate a natural threat to air quality in the 

form of plant pollen.  Pollen is potentially important because it contributes to the level of 

fine particulate matter in the air and unlike other forms of particulate matter, pollen has 

known effects on non-pulmonary aspects of human health including cognitive 

functioning via allergies.  Second, using data on air quality over long periods, I estimate 

effects of exposure to air pollution and pollen early in life on school readiness, and the 

effects of exposure while in school on achievement.  To do so, I make use of child level 

panel data to confront the substantial and well established empirical problems inherent in 

estimating air quality impacts: Tiebout sorting which threatens validity for establishing 

long-term effects and avoidance behavior in the short run is likely related to other factors 

that are beneficial for child development (Neidell, 2009)). 

To estimate effects of poor air quality on children’s cognitive ability I combine 

data on daily ambient pollution and pollen levels in 25 counties throughout the United 

States collected by the U.S. Environmental Protection Agency and the National Allergens 

Bureau.  I merge these data on air quality with rich longitudinal data on young children 

from the restricted-use Early Childhood Longitudinal Survey – Kindergarten (ECLS-K) 

panel data.  In addition to collecting rich data on child, family, and school characteristics, 

the ECLS-K administers batteries of cognitive tests to children.  These batteries provide 
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measures of early childhood problem solving and measures of math and reading skills.  

Further, the date on which ECLS-K students are tested is recorded, so that we can know 

the ambient levels of pollution and pollen when students were tested as well as the period 

leading up to the test. 

In the remainder of this paper I describe recent findings on the impact of air 

quality on child health, and describe the empirical challenges inherent in identifying these 

effects.  I then discuss the impact of plant pollen on health and how these may be related 

to findings on human-made contributors to poor air quality. I then lay out  a basic human 

capital model and some testable hypotheses that derive from it.  I then describe the data 

and empirical models used to address these questions about short and long-run effects of 

exposure to poor quality air.  Because I have panel data and because the relationship 

between air quality and weather is well established, inference principally comes from 

variation within- student in exposure to threats to air quality, and an instrumental 

variables estimator that limits attenuation bias due to measurement error. In the final 

section, I discuss the implications of the current findings along with future directions. 

 

Background 

Research on the human health consequences of poor air quality has paid special 

attention to effects on children.  This attention is warranted because children are at 

elevated risk for harm, and because costs imposed are borne over a long time horizon for 

children relative to adults.  One reason children are more susceptible to harm from air 

pollution is that in utero and in early infancy physiologic development is rapid (U.S. 

EPA, 2013; Gluckman et al., 2008; and Currie et al., 2014).  Further, children are more 
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likely to be exposed to ambient pollutants since they spend more time out of doors than 

adults and are more active (U.S. EPA, 2013; Schwartz, 2004).  

The impact of poor air quality has been found to effect health in utero and in early 

childhood.  Exploiting variation in air pollution due to the implementation of the Clean 

Air Acts and the recession of the early 1980s, Chay and Greenstone (2003a and 2003b, 

respectively) report substantial and significant decreases in child mortality subsequent to 

reductions in airborne particulate matter.  Beyond effects on mortality, there is good 

evidence that ambient pollution affects child health via birth weight.  Currie et al. (2009) 

and Currie and Neidell (2011) illustrate that variation in carbon monoxide levels to which 

pregnant women are exposed affects the birth weight of their children.  Birth weight is a 

well-known indicator of myriad long-term developmental outcomes.  Indeed, using 

administrative data on birth and school records in Florida and identifying off of birth 

weight differences between twins, Figlio et al. (2014) find that birth weight effects on 

cognitive performance in school is “essentially constant through the school career…” of 

children.  Two studies linking exposure to air pollution to lower performance on high 

school tests (Sanders, 2012) and earnings in adulthood (Isen et al., 2013) provide reduced 

form evidence consistent with this long-run, developmental effect of exposure to air 

pollution early in life.  

Research on a contemporaneous link between levels of air pollution and 

children’s health has made clear that poor air quality is a trigger for acute episodes of 

respiratory problems, including asthma.  For example, Ransom and Pope (1995) provide 

early evidence of poor air quality due to industrial activity on hospitalization among 

children for pulmonary conditions, making use of a natural experiment due to the closing 
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and re-opening of a steel mill in Utah.  Similar findings come from studies of oil refinery 

closures in France (Lavaine and Neidell, 2013) and airport traffic in California 

(Schlenker and Walker, 2011).  

The relationship between ambient air quality and cognitive performance is less 

clear.  The impact of air pollution on cognitive ability is mainly thought to operate 

through development in early childhood (e.g. Currie, 2005).  However, pollution can 

affect cognition because small particulate matter can penetrate the lungs and inhibit the 

flow of oxygen into the bloodstream and hence the brain (Lavy et al, 2014). While the 

importance of this link has yet to be established, it is clear that acute respiratory response 

to high levels of pollutants can cause breathing problems and asthma attacks and thereby 

inhibit performance.  For example, Graff Ziven and Neidell (2012) and Chang et al. 

(2014) illustrate that poor air quality lowers productivity of piece rate daily farm workers 

and produce packers, respectively.  Most relevant to this study, Lavy et el. (2014) 

illustrate that high levels of fine particulate pollution have a negative effect on 

performance of Israeli high school students on exams that determine admission to 

selective post-secondary schools. 

There is a clearer link to cognitive functioning from levels of ambient pollen, as 

opposed to air quality more generally.   Pollen induces seasonal allergies in 

approximately 15 to 20 percent of the population (Metzler et al., 2009).1 The allergic 

reaction is due to the combination of antibodies that target allergens with receptor cells, 

releasing chemicals to combat the perceived threat.  These chemicals include histamine 

																																																								
1	Estimating the prevalence seasonal allergies is difficult because many sufferers 

do not seek treatment, and a confirmed diagnosis requires a skin test (NIAID, 2012).  The 
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and cytokines that cause inflammation of tissue and increased secretion of mucus 

membrane (Janeway et al. 2001). These are what generate the symptoms of nasal 

congestion, watery eyes, and irritated throat that are well known to sufferers of allergies 

(clinically, referred to as seasonal allergic rhinitis (SAR)). These chemicals and their 

attendant symptoms can also affect levels of fatigue, cognitive function, and mood.  The 

most obvious mechanism through which an allergic response to allergens affects 

cognitive function is through effects on sleep.  A very common problem suffered by 

allergy sufferers is interrupted sleep and daytime somnolence (Santos et al. (2006)). 

Cytokines as well as histamines are involved in brain function, affecting cognition, and 

memory (McAfoose and Baune (2009) and Tashiro et al. (2002)).  Additionally, 

cytokines appear to affect mood, and have been linked to mood disorders, such as major 

depression (Kronfol and Remick (2000); Dowlati, et al. (2009)).   

There is a sizeable literature in medicine on the effects of SAR on functioning.  

Much of this work is based on clinical lab research, comparing subjects with a history of 

SAR in various settings.   For example, Wilken et al. (2002) randomly divided subjects 

with SAR into a group exposed to pollen and a control group, and found that exposed 

subjects scored lower on measures of computation and reasoning ability, and had longer 

response times and more difficulty with attention. Marshall et al (2000) find similar 

patterns for subjects with SAR when comparing tests administered during allergy season 

to those administered when pollen levels were essentially zero. Regardless of the design 

for establishing the treatment-control comparison, clinical studies overwhelmingly find 

lower measured cognitive processing abilities and speed among symptomatic SAR 

subjects (e.g., Bender, 2005; Druce, 2000; Marshall and Colon, 1993; and Fineman, 
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2002). It also appears that typical medical treatments do not offer much protection from 

fatigue and decrements in cognitive functioning (Bender, 2005, and Kay 2000). 

To date, I am aware of only two papers that exploit natural experiments to 

identify the effects of pollen on cognitive performance in a quasi-experimental 

framework.  Walker et al. (2007) compare students in one region of the UK who had a 

history of SAR with students with no such history as they sat for the General Certificate 

of Secondary Education (GCSE) exams, which are used to determine post-secondary 

placement.  Importantly, practice CGSE exams are administered in winter when pollen 

counts are negligible, and then the actual exams in June, a period of high grass pollen in 

the region.  The authors use a type of difference in difference analysis by comparing 

practice scores to final exam scores, and find that students with SAR are 40 percent more 

likely than comparison students to score one grade lower in one of three core subjects of 

the final than the practice CGSE, and 70 percent more likely to score lower if they 

reported taking antihistamine treatment at the time of the final exam (Walker et al 

(2007)).  Marcotte (2015) studied the effect of ambient pollen levels in school districts 

around the United States.  He found that the percent of students scoring proficient on 

state math and reading assessments were between 3 to 6 percent lower if tests were 

administered on days with high levels of pollen.  The relationship between pollen levels 

and proficiency was more pronounced in math, and for students in elementary school 

grades. 

 

Conceptual Model 
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As is clear from previous work, poor air quality can affect cognitive performance 

of children in two ways:  Prolonged exposure, especially early in life, can harm 

development, and; Exposure to high levels of pollution may have immediate effects on 

health and thereby limit performance on cognitively demanding tasks. The research on 

human made threats to air quality has focused most heavily on the first mechanism, while 

research on the impact of pollen has mainly focused on the second.  To clarify the 

mechanisms though which air quality could affect health and functioning via long-term 

development, consider a simple two-period model of human capital accumulation in the 

spirit of Grossman (1972).   

 

Period 1:  Early childhood   Period 2:  School age 

Hp = f0(Ep,F)     Hs = g0(Hp, Es, F) 

Cp = f1(Hp,F)     Cs = g1(Cp, Hs, F) 

Where: 

- Hp is health in period p and Hs is health in period s. 
 - Ep is exposure to air of poor quality in period p, Es in period s. 

- F is a vector of time invariant family characteristics, including genetic and 
family environment factors. 

- Cp and Cs are cognitive ability in periods p and s, respectively. 
 
 

Poor air quality can have contemporaneous effects for health and cognitive ability 

in both periods.  By the time a child is of school age, poor air quality can also have 

effects that are the consequence of exposure in the early childhood period.2  In this paper, 

																																																								
2	Even in early childhood, poor air quality could have near- and long-term effects.  This 
two-period model abstracts from this.	



	 8	

I focus on the effects of poor air quality on cognitive performance among children once 

they enter school.  So, total differentiation of the outcome of interest, Cs yields: 

1             !!! =  !!!!!!
∙ !!!!!!

∙ !!!!!!
∙ !!! +

!!!
!!!

∙ !!!!!!
∙ !!!!!!

∙ !!! +
!!!
!!!

∙ !!!!!!
∙ !!! 

 

Equation 1 makes clear that air pollution and pollen can affect cognitive functioning of 

school-aged children both through long-term effects and limitations due to ambient 

exposure.  First, in early childhood, exposure to low-quality air can harm health, thereby 

limiting early cognitive development - a determinant of cognitive ability at later ages.  

Poor air quality in early childhood can affect early childhood health, and through that 

channel health later on, which is an input into cognitive skill in school age.  Ambient 

exposure is a second pathway through which air quality air can affect cognitive 

performance for school-aged children, shaping contemporaneous health.  

While the conceptual model helps clarify the pathways through which air quality 

affects cognitive performance, it also highlights the substantial data requirements faced 

by researchers studying this relationship.  Ideally, one would have access to data on a 

random sample of children with measures of ambient air quality throughout childhood 

along with cognitive ability in early childhood and during school ages, as well as data on 

respiratory health and other measures of developmental health impacted by poor 

pulmonary development or health.  Clearly, such data are hard to come by, so researchers 

often focus on one period and/or reduced form approaches. 

In this paper, I employ panel data that offers some hope for providing insight into 

the patterns at play here.  But, the data I employ provides very limited data on child 

health, so I cannot sort out the effects of poor air quality during early childhood on health 
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versus cognitive development.  However, I am able to use data over the course of 

childhood to assess whether poor air quality affects children’s reading and math readiness 

when the show up at kindergarten.   I then use data on ambient air quality during 

kindergarten through second grade to test for contemporaneous effects over and above 

the long-term effects of earlier exposure.   

 

Data and Methods 

To study the relationship between air quality and cognitive performance of 

children, I combine data from a variety of sources.  First, data on child outcomes come 

from the restricted use data from the Early Childhood Longitudinal Surveys (ECLS), 

maintained by the National Center for Education Statistics.  Specifically, I use data from 

the ECLS survey of children starting kindergarten in 2010-11, called the ECLS-K:2011 

cohort.  This survey collects detailed information on children and their families as they 

begin kindergarten, and will follow them through primary school and into middle school.  

In addition to administering regular tests of math and reading skills, the ECLS data also 

provides information on family and school characteristics relevant for modeling cognitive 

outcomes.   

The ECLS data include information on the location of children’s schools, and the 

dates on which students’ math and reading skills were assessed.  Using the schools’ 

locations I merge in data on air pollution levels from the U.S. Environmental Protection 

Agency’s Air Quality System, which regularly collects data on air pollution in sites 

around the country.  I also merge in data on the level of ambient pollen in the atmosphere 

from the National Allergens Bureau. Finally, I merge in data on weather conditions from 
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the National Climatic Data Center. The resultant data set will allows us to observe 

ambient air quality in the county where students were tested in the days leading up to, on 

and then after the ECLS-K:2011 administered math and reading tests to students.   

Further, because the ECLS-K data provides information on location early in childhood, I 

include measures of ambient air quality during early childhood, in addition to 

contemporaneous measures of air quality during cognitive assessments later in childhood.   

The ECLS-K:2011 cohort began kindergarten in the Fall of 2010.  They were 

assessed during that term, in Spring 2011.  They were then assessed again during the 1st 

and 2nd grades.3  Importantly, during the 1st and 2nd grade follow-ups, only a subset of the 

full sample was also surveyed/assessed in Fall, while the full sample was 

surveyed/assessed in Spring.  Consequently, the panel employed here is unbalanced both 

because of survey design as well as attrition.  Figure 1 illustrates the distribution of the 

number of times each unique ECLS-K:2011 student in my analytic sample was 

interviewed and assessed over the three school years from 2010-11 through 2012-13.  

The vast majority was interviewed either four or six times.   

An important limitation of the ECLS-K:2011 is that the exact date on which 

students were given math, reading and other assessments is not available.  Rather, the 

information available on assessment timing includes the year and month of assessment 

along with the day of the month reported in four categories, which approximate weeks4.  

Since these periods are either seven or eight days in length, I refer to them as weeks, 

																																																								
3	The ECLS-K:2011 sample will be interviewed and assessed (not always annually) until 
the typical student is in 8th grade.  The restricted-use 2nd grade follow up dataset is the 
most recent available.			
4	The days of the month are categorized into groups as: 1-7; 8-15; 16-22, and; 23-31.   
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below.  I use the air quality to generate measures of mean levels of ambient pollen counts 

and particulate matter, ozone and sulfur dioxide air quality during these “weeks”.   

An important advantage of the ECLS-K:2011 is that data on ambient pollution 

and pollen is available since birth.  However, since no data are available on a child’s 

residence in years leading up to kindergarten, I am forced to assume that children were 

born in the same county where they reside at the start of kindergarten.  This is surely a 

source of error, despite fact that the 2005-2010 period saw the lowest rate of moving 

(35.4%) in the past 60 years, and nearly two-thirds of moves were within the same county 

(Ihrke and Faber, 2012). Nonetheless, the measurement error that results is a source of 

attenuation bias.  

For the ECLS-K:2011 data I restrict my analyses to children residing in a county 

wherein air quality monitors for pollutants and atmospheric pollen are available.  In each 

of these counties, I am able to measure levels of ozone and airborne particulate matter 

(APM2.5).5  I also use measures of ambient pollen, as grains recorded per cubic meter of 

air in a 24-hour period.  The dependent variables are grade-specific standardized 

measures of performance on math and reading assessments when students are in 

kindergarten, 1st and 2nd grades. The NCES oversaw the development and validation of 

the Item Response Theory procedures used to develop the measures of knowledge and 

skills reported in the ECLS-K (Najarian et al. forthcoming; Tourangeau, K. et al., 2009). 

The control variables available in the ECLS-K include student demographics, family 

income, education and structure, as well as measures of school climate and quality. 

Empirical models 

																																																								
5 APM2.5 is a measure of fine micro particles (less than 2.5 micrometers in diameter).  
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Central to the problem of estimating the relationship between environmental 

exposure and child outcomes is the endogeneity of exposure.  Since exposure cannot be 

randomized, researchers typically exploit natural experiments.  In this context, a common 

strategy is to compare pre- and post-exposure differences in outcomes for one group to 

unexposed comparison groups over the same periods.  This is the spirit of the estimation 

strategy I employ to study the effects of exposure to high levels of pollution and pollen 

among school aged children.  To estimate the relationship between ambient air quality 

and children’s performance in school, I estimate a series of regression models of grade-

specific measures of math and reading performance on measures of exposure to air 

pollution and pollen.  Control variables include measures of the student’s family’s 

composition, income, employment at that time as well as student demographics, and 

measures of his or her school’s socioeconomic and demographic profile.  Because 

students are clustered in schools we can also control for school fixed effects.  To limit 

threats to internal validity that might arise if students living in areas with poor air quality 

also are different in unobservable ways I: 1) control for local economic conditions, and 2) 

estimate models that controls for student fixed effects. The model takes the following 

form: 

 

(1)    ln (!)!"# = ! + !!!! + !!!! + !!ln (!)!"# + !! +  !!  + !!" + !!"# 

 

where yiat is a measure of achievement for student i in assessment/subject a at time t; Xi is 

a vector of family and student characteristics pertinent to test performance for student i; 

Lt is a measure of the characteristics of the county in which the student lived in year t; Piat 
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is a vector of measures of ambient pollution and pollen on the date t when the student 

took the assessment a; si is a student-specific intercept, li is a location/site fixed effect, 

and; gat is a grade-year-subject fixed effect.  Identification of the impact of decrements in 

air quality on test performance comes from changes over time in test scores for exposed 

students, net of average student characteristics that may be correlated with exposure.  The 

identifying assumption is that ex ante test score growth is not correlated with factors that 

shape changes in exposure to pollutants and pollen.  Because air quality is a measure for 

a community not an individual student, standard errors are clustered at the monitoring site 

level. 

 A potential limitation here is the use of community level measures of air quality 

to measure the environment of students sitting in classrooms in the surrounding 

community.  One obvious reason for this is that at least in some schools, children are 

tested in classrooms equipped with air-conditioning, where closed windows and air 

filtration improves air quality.  While air conditioning might exacerbate socio-economic 

disparities, it is not necessarily a limitation here, since human adaptation to air quality is 

relevant for understanding affects on cognitive functioning.6  A different problem is due 

to the fact that air quality varies over time and space, so levels of daily average air quality 

recorded at monitoring site are likely to mis-measure the levels of exposure in the 

community.   

 To address this error-in-variables problem, I estimate the impact of air quality on 

test scores using daily weather data as an instrument for air quality.  Air temperature, 

wind, and precipitation all have well-established affects on air pollution and pollen (Jhun 

																																																								
6	Any attempt to estimate the cost of threats to air quality in this context would 
necessarily need to include the costs of air conditioning.			
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et al., 2015).  For example, sunshine and temperature affect the speed of chemical 

reactions in the air and can lead to inversion, trapping suspended particles near the 

ground.  They also have direct effects on plant pollination.  Wind disperses airborne 

particulate matter, and precipitation washes soluble particles out of the atmosphere and to 

the ground (Peterson et al., 2013).   As I illustrate below, temperature, wind and 

precipitation are highly related to air quality.  Whether each of these passes exclusion 

restrictions is less clear.   

 Estimating the impact of lifetime exposure to pollution and pollen on school 

readiness cannot rely on a similar within-student strategy, since the outcome is a math or 

reading assessment administered once, at the start of kindergarten.   Rather, I estimate the 

impact of early exposure by estimating the relationship between cumulative exposure 

from birth, on math and reading assessments administered to students at the start of 

kindergarten.  The model is: 

 

(2) ln (!)!"# = ! + !!!! + !!!! + !!!!"# +  !! ln (!)!"#!!!
!!! + !! +  !!" + !!"#   

 

Model (2) differs from Model (1) because of the absence of a student fixed-effect, and in 

that the variable of interest is a measure of cumulative pollution and pollen levels during 

each month of student i’s childhood in the county in all months prior to assessment.  As is 

common in the empirical literature, the identification here comes from arguably 

exogenous variation in exposure to threats to air quality.  Variation in air quality is within 

location variation based on students’ birthdays. The identifying variation relied on here 

can be seen by recognizing that sample students are a cohort, all entering kindergarten in 
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the Fall of 2010.  If all children live in the same county from birth to kindergarten entry, 

then the differences in exposure to air pollution and pollen, conditional on age, is due to 

intertemporal variation in air quality in the year when the cohort was born, along with the 

timing of a child’s birth. To see this, note that all children in the same area were exposed 

to the same ambient air in 2010.  This is true for 2009, 2008, and so on.  Only during the 

year when the cohort was born was there variation in levels of exposure, driven by the 

timing of birth.  Since all models control for age (in months), variation is driven by 

patterns of air quality during 2004-2005, when this cohort was born.  So, if an area 

experienced a spring of unusually poor air quality, children born in winter would be 

exposed to different levels of air pollution than the children born in summer.    

Consider an example to help make this more transparent, in Figure 2.  The figure 

graphs average air quality during the first year of life for children who would enroll in 

kindergarten in 2010-11 in Salt Lake City, Utah, by their month of birth.  Children born 

in the fall and winter of 2005 were exposed to higher average pollen levels than children 

born in late spring and summer of 2006.  So, children born in December 2005 were 

exposed to an average pollen count of about 100 g/m3 per month over the first 12 months 

of their lives – a level classified as high in standard air quality ratings – while those born 

after the heavy pollen season of spring 2006 were exposed to about half that much pollen.   

Conversely, children born in the summer of 2006 were exposed to higher levels of ozone 

during their first year, since they experienced portions of two summers by their first 

birthday.  It is this variation, rather than within-student differences I use to identify the 

effects of early/lifetime exposure on math and reading readiness at the start of 



	 16	

kindergarten.  The assumption here is that timing of birth, and the within-county variation 

in air quality in 2005 and 2006 compared to other years have no affect on readiness. 

 

 

Results 

In Table 1, I present descriptive information about the ECLS-K:2011 sample.  

The demographic characteristics for the sample are unremarkable; with the exception that 

a high proportion (30.8%) of sample children is Hispanic children.  This is likely the 

consequence of selecting only ECLS-K:2011 sample members who live in cites where air 

quality data are available. Notably, these cites include areas with disproportionately high 

Hispanic populations, including San Jose, San Diego, Atlanta, Houston and Dallas.  

Nonetheless, the mean rate of FARM eligibility in sample students’ schools is 42.4 

percent, essentially identical to the national average of 42% at the time.7  For the ECLS-

K:2011 sample, the mean percent of minority students in sample members’ schools is 

53.46 percent.  This compares to a rate of 58 percent of all kindergarten students who are 

black and Hispanic in 2013 reported by the NCES.8   

In Table 2, I present descriptive statistics for mean performance on math and 

reading assessments administered during each round of the ECLS-K:2011, along with 

measures of air quality during the week of testing.   The math and reading scores 

summarize performance on assessments designed to measure children’s skills in those 

subjects at a point in time, as well track growth over time.  Hence, mean scores increase 

																																																								
7	Digest of Education Statistics, Table 204.10: 
http://nces.ed.gov/programs/digest/d13/tables/dt13_204.10.asp 
8 Digest of Education Statistics, Table 202.20: 
http://nces.ed.gov/programs/digest/d14/tables/dt14_202.20.asp	
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with age, and changes within assessments are measures of relative growth. 9  There are 

larger increases in scores on assessments between Fall and Spring within a grade 

compared to the change observed from Spring to Fall, especially for math.  This is 

consistent with summer learning loss. 

Table 2 also provides some insight into seasonal variation in air quality.  Most 

notably, Spring is a period with substantially higher levels of ambient pollen.  It is also 

clear that the mean is not fully informative as a measure of pollen levels, as the maxima 

during Spring are quite high.   While pollen is clearly seasonal, other threats to air quality 

are less so.  Only in the case of ozone AQI does it appear that Spring is associated with 

lower air quality.  Ozone levels increase with heat and are especially high in summer.  

The mean air quality indices for fine particulate matter, and ozone are in the 30s and 40s.  

Note that these indices increase as air quality worsens, and measures over 50 are where 

initial warnings for sensitive groups are issues. Importantly, the distributions of ambient 

pollen levels are highly skewed (e.g. skewness = 11.9), and the metrics differ between 

pollen levels and the AQI indices.  Because of both the different metrics and the skewed 

distribution of pollen levels, I transform all measures of air quality into logs for the 

regression analyses, as are the dependent variable. 

Figures 2-4 provide further insight into variation in different threats to air quality 

over time, as well as across cities where the ECLS-K:2011 sample resides.  Figure 3 is a 

scatterplot of mean levels of ambient pollen during the week of the ECLS-K:2011 

assessments.  The y-axis of the figure is logarithmically scaled, because of the substantial 

positive skew.  To help interpret the scatterplot, when pollen counts exceed 90 grains/m3 

																																																								
9	For details , see https://nces.ed.gov/ecls/assessments2011.asp	
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pollen levels are classified as high under the commonly used Padgett rating system (and 

extreme when counts exceed 1,500).  Clearly, pollen levels are typically higher in Spring 

than Fall, and there is substantial variation at the time of testing across cities.  Important 

for the identification strategy is the within-city variation. Because of the density, it can be 

hard to discern levels, but interesting types of cities emerge.  Some cities, such as 

Houston, have high levels of ambient pollen in both Fall and Spring, though both vary.   

Other cities, like the New York City boroughs have trace amounts of pollen (<10) in the 

Fall, but very high levels in some Springs.  Other cities vary at lower levels:  Salt Lake 

City varies from levels that would be rated as moderate to only one year with high levels, 

while San Diego varies from very low to low levels.  

Figures 4 and 5 are plots of the variation in fine particulate matter and ozone 

levels (respectively) during the assessments across the cities where ECLS-K:2011 

children reside.  These differ from Figure 3 only in that the y-axis is not logged.  Both 

figures suggest some seasonality: the variance of particulate matter and the mean of the 

ozone air quality index are higher during Spring.  As in Figure 3, some cities experience 

larger intertemporal changes in levels of air quality. 

 

 

Regression Analyses: 

In Table 3 I present results of a basic model of the relationship between ambient 

air quality during reading and math assessments.  While this model includes basic 

controls for student and school characteristics, variation in air quality over space is 

assumed here to be orthogonal to other factors that could influence student math and 



	 19	

reading achievement. The results in Table 3 suggest a negative relationship between 

ambient levels of pollen and performance on reading and math assessments, but no 

similar relationship for man-made pollutants.  The dependent and key independent 

variables are in log form, so they approximate elasticities.   So each 1 percent increase in 

ambient pollen levels is associated with about a 0.01 percent reduction in performance on 

reading and math assessments. At the mean, 1 percent is about 3.5 to 4 g/m3.  To make 

the magnitude of this effect interpretable, a 100 percent increase in pollen levels (i.e. 

from trace amounts to the mean) would be associated with a decrease in performance on 

math and reading assessments in late elementary and middle school by about 1 percent.  

In Table 4, I present results of models that move beyond controlling for basic 

demographic characteristics.  All models in Table 4 include child, time and location fixed 

effects, as described in model 1, above.  By focusing on within-site variation in air 

quality the results in Table 4 are robust to any metropolitan differences in air quality and 

amenities or infrastructure or parental sorting that might be related to children’s academic 

achievement and confound the estimates in Table 3.  Table 4 also presents results the IV 

estimates.  Because the three measures of air quality are all affected by the same weather 

conditions, these results come from three separate 2SLS estimations.   The IV results of 

the effect of each threat to air quality come from models in which temperature, wind and 

precipitation are used as instruments for that constituent only, while the other (non-

instrumented) measures of air quality are included as controls.    This approach derives 

the errors-in-variables estimates of each threat to air quality separately, and in turn treats 

each of the other two measures as mere controls.   
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The FE results in Table 4 for the effects of air quality on math assessment are 

nearly identical to the naïve estimates from Table 3, providing some evidence that levels 

of ambient pollen are largely exogenous to other determinants of student academic 

performance.  The FE effects of ozone and PM 2.5 AQI are larger than the estimates from 

Table 3, though the negative effects of the air quality index for fine particulate is larger in 

magnitude, it is significant at only the 10% level.  

The results of the FE-IV estimates in the right columns of Table 4 are from two to 

six times larger than the FE estimates, consistent with a substantial attenuation bias due 

to the noise in measuring air quality.  As in previous models, the results are consistent 

with negative impacts of poor air quality on math performance, with smaller and 

insignificant effects on reading.  The F-statistics on the first stage power of the 

instruments are all very high, as expected from what is known about the relationship 

between weather and air quality.  Interestingly, the F-statistic for pollen count is the 

lowest of the three, but still well beyond the rule-of-thumb minimum of 10 for instrument 

strength.   This is likely because pollen is produced by natural reproductive cycles of 

plants, associated with seasonal change.  No amount of change in weather will affect 

pollen levels when plants are not pollinating.  Pollutants from human activity are in the 

atmosphere year round, and weather can always affect these levels.10 

Of course, some students are more affected by changes in air quality, and these 

averages conflate larger effects of vulnerable groups with null or negligible effects for 

others.   While the ECLS-K:2010 has limited information about child health, parents are 

asked if their children have ever been diagnosed with asthma – an obvious marker for 

																																																								
10	The point here is not that levels of human-made pollutants are not cyclical.  Rather, 
pollen can be essentially absent from the atmosphere in some months.  
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sensitivity to changes in air quality.  In Table 5 I present results of Model 1, restricting 

the analysis to children with an asthma diagnosis at the start of kindergarten, as reported 

by their parents.  Table 5 also presents basic demographic characteristics of this subset of 

children. The top panel illustrates that asthma is more common among boys and black 

children.     

The bottom panel (B) of Table 5 presents estimates of the effect of declining air 

quality on reading and math assessment scores for children with a history of asthma.  

Again, we see evidence of effects mainly for performance on math assessments.  These 

effects are larger in magnitude than those estimated on the full sample of students, 

however the standard errors are a good bit larger because of the restricted sample size. 

Importantly there is a relatively large effect of ozone for asthmatic students.  This is 

consistent with the clinical literature, which finds ozone among the most important 

pollution triggers for acute asthma attacks.  For example, in Lancet, McConnell et al. 

(2002) report that in a study of more than 3,500 children ozone was the only air pollutant 

associated with asthma risk.  

Lifetime Exposure: 

 I next turn to operationalizing model 2, which includes measures of lifetime 

exposure to pollen, fine airborne particulate matter, and ozone in Table 6.  Recall that the 

dependent variables are measures of reading and math skills at the start of kindergarten.  

The measure of lifetime exposure is standardized here, since the units of measure of 

pollen and APM2.5 and ozone are different and are summed over multiple periods.   

Consistent with the within-student estimates above, children perform more poorly on 

math and reading assessments at the start of kindergarten when ambient pollen levels are 
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high.   Lifetime exposure to pollen also has significant negative effects on reading and 

math ability at the start of kindergarten: a standard deviation increase in pollen levels 

leads to a decrease of more than 38% in performance on the start-of-kindergarten reading 

assessment, and an even larger, though marginally significant decline on the math 

assessment.   Exposure to ozone over the course of childhood has similarly harmful 

effects on math and reading abilities at the start of kindergarten.   However, there is no 

effect of fine APM on math ability, and positive, though marginally significant effects on 

reading ability.   One explanation for this finding is the high degree of serial correlation 

in the measures of air quality, and potential multicollinearity. 

 
 
Conclusions 
 
 Economists have advanced our understanding of the effects of air quality on 

human health and development.  In this paper I illustrate that like human-made 

pollutants, a naturally occurring threat to air quality from plant pollen has negative effects 

on cognitive performance for children.  Using data on academic skills between the ages 

of 5 to 8 years old, I find the strongest evidence that math achievement is inhibited by 

diminished air quality.  In particular high levels of ambient pollen and ozone AQI limit 

performance and growth on math assessments administered during the first three years of 

elementary school.  I find weaker evidence that threats to air quality due to fine airborne 

particulate matter limits math or reading achievement. 

 The magnitudes of the estimated effects of poor air quality on children’s 

performance on cognitively demanding tasks are substantively important.  Students score 

between 1 and 5 percent lower on math scores on days when pollen levels are high 
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compared to days when they are low.  For ozone, the effect size is almost twice as large.  

I find larger effects of these threats to air quality on students with a reported history of 

asthma. 

 A second objective of the current paper was to distinguish between the impact of 

ambient air quality and long-term exposure.  This distinction matters because it is 

suggestive of mechanisms, and potentially solutions.  If all effects are contemporaneous, 

the impact of diminished air quality is most likely due to impermanent, mild respiratory 

distress or discomfort.  Further, contemporaneous effects can more readily be 

ameliorated, for example by spending less time out of doors in advance of cognitively 

demanding tasks or scheduling those tasks to avoid poor air quality days.  If effects are 

due to extended exposure, this suggests the mechanism could be inhibited development 

or learning, and avoidance is more costly. 

On balance, I have found that in addition to contemporaneous effects, long-term 

exposure to poor quality air has negative effects on children’s math and reading readiness 

at the start of kindergarten.  This finding is not surprising since exposure to air pollution 

is known to have substantial negative consequences for fetal and neo-natal development.  

I find substantial negative effects of lifetime exposure to pollen and ozone on reading 

readiness at kindergarten, and weaker, more limited effects on math readiness. 

 Better understanding the relative importance of long-term and ambient exposure 

is important for determining what to do about threats to air quality as they affect 

children’s academic growth.  Of course, any negative effects are cause to limit exposure.  

An important lesson of the current finding is that limiting exposure in school settings, and 

treating children for the symptoms of exposure are of real importance.  Performance on 
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school-based tests is used to allocate resources to schools and to track students within 

schools.  An obvious implication is that schools can reduce noise in the measures they 

use for these decisions by improving air quality and encouraging inexpensive and 

effective treatment for pollen allergies. 

The implications of these findings raise a more fundamental concern, however.  

Since ambient air quality in school settings is best controlled via air conditioning, and 

diagnosis and treatment for allergies requires access to health care, air quality may serve 

as an additional source of growing disparities in the education.  Schools in low-income 

areas are often relatively old, and less likely to be equipped with air conditioning.  And, 

poor students are less likely to receive diagnosis and treatment for health problems.   
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Figure 2 
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Figure 4 
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Table 1   
   
Descriptive Statistics for ECLS-K 2011 Sample 
   

      
 Mean St. Dev. 

Female (0/1) 0.499 0.5 
Black (0/1) 0.152 0.359 
Hispanic (0/1) 0.32 0.466 
White (0/1) 0.412 0.492 
Age (in months) 81.01 11.57 
Child's Family Poor? (0/1) 0.261 0.44 
# of Siblings 1.53 1.14 
Private School? (0/1) 0.122 0.327 
Live with Two Parents? (0/1) 0.724 0.447 
Age of Primary Household Head 35.75 6.69 
Pct of Students in School FARM eligible 42.4 31.36 
   
N x t 13,282  
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Table 2      
      
Mean Test Scores and Air Quality Measures by Assessment Period 
      
      
Assessment period Variable Mean Std. Dev Min Max 

      
Fall of Kindergarten Math score 32.5 11.81 7.4 77.7 
 Reading score 48.27 12.61 25.5 99.6 
 Pollen count 116.33 236.5 0 1369.5 
 PM 2.5 AQI 9.49 3.65 1.8 30.9 
 Ozone AQI 30.93 9.37 5.6 63.5 
      
Spring of Kindergarten Math score 46.28 12.34 11.1 88.8 
 Reading score 61.98 14.85 26.83 108.4 
 Pollen count 571.63 857.34 0.9 3822 
 PM 2.5 AQI 35.58 11.97 10.5 76.1 
 Ozone AQI 37.93 7.29 18.5 90.5 
      
Fall of 1st Grade Math score 54.53 14.41 17.4 108.7 
 Reading score 71.08 16.66 34.9 113.5 
 Pollen count 104.55 165.17 0 628 
 PM 2.5 AQI 42.24 10.89 8 75.8 
 Ozone AQI 34.58 12.9 13.8 78.7 
      
Spring of 1st Grade Math score 68.07 15.3 16.5 109.5 
 Reading score 85.5 15.91 31.5 115.8 
 Pollen count 451.83 821.57 8.3 5312 
 PM 2.5 AQI 38.97 13.37 11.8 93.5 
 Ozone AQI 40.06 8.48 20.2 77.2 
      
Fall of 2nd Grade Math score 72.41 15.01 19.2 106.3 
 Reading score 88.87 14.16 49.8 116.4 
 Pollen count 130.3 182.11 0 864.2 
 PM 2.5 AQI 38.4 8.42 14.9 74 
 Ozone AQI 32.98 7.81 13.4 54.3 
      
Spring of 2nd Grade Math score 81.71 13.74 14.8 106.6 
 Reading score 96.87 12.6 49.8 116.4 
 Pollen count 701 1226.7 1 7746.2 
 PM 2.5 AQI 36.03 10.79 12 65.8 
 Ozone AQI 38.01 5.29 24 55.9 
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Table 3     
     
OLS Estimates of Air Quality and Test Scores 
     
  Reading  Math   
     
Female (0/1) 0.041 *** 0.004  
 0.008  0.015  
White (0/1) -0.015   -0.032   
 0.015  0.017  
Black (0/1) -0.048 ***  -0.108 ** 
 0.019  0.022  
Hispanic (0/1) -0.090 *** -0.131 *** 
 0.018  0.016  
Age (in months) 0.004 *** 0.011 *** 
 0.001  0.001  
Child Poor  (0/1) -0.081 *** -0.090 *** 
 0.018  0.022  
Two Parents 0.044 ** 0.074 ** 
 0.013  0.029  
Pct. FARM eligible -0.001 *** -0.0019  
 0.0002  0.0004  
Pollen during assessment -0.002  -0.008 ** 
 0.004  0.004  
PM2.5 AQI during assessment -0.021  -0.016  
 0.019  0.013  
Ozone AQI during assessment -0.009  -0.032 * 
 0.018  0.017  
     
R2 0.65  0.66  
         
     
Omitted race category is Asian/other     
     
***  Sign. at 1% level.    
**    Sign. at 5% level.    
*      Sign. at 10% level.     
     
 
 
 
 
     
     
     
     
     
	



Table 4

Reading Math Reading Math

Pollen During Test -0.001  -0.007 *** -0.024  -0.053 ***
0.003 0.002 0.013 0.012

PM 2.5 AQI During Test -0.023 * -0.005 -0.033 -0.042 *
0.012 0.011 0.032 0.021

Ozone AQI During Test -0.021 *** -0.03 ** -0.041  -0.099 ***
0.007 0.014 0.024 0.023

Controls? Yes Yes Yes Yes
Child FE? Yes Yes Yes Yes
School FE? Yes Yes Yes Yes

Tests of 1st stage instrument sign. Pollen F= 58.9

PM2.5 AQI F= 352.9

Ozone AQI F= 859.3

Air quality instruments include: Daily maximum temperature, daily minimum temperature, precipitation,
 and speed of maximum wind gust, over 5-second interval. 

*** siginficant, p < 0.01
**   siginficant, p < 0.05
*     siginficant, p < 0.10

Fixed Effects and IV Estimates of Effects of Air Quality on Test Scores

Fixed-Effect IV-Fixed Effect



Table 5

Variable Mean Std. Dev.

Female (0/1) 0.406 0.491

Black (0/1) 0.173 0.378

Hispanic (0/1) 0.328 0.469

Reading Math Reading Math

Pollen During Test -0.002  -0.004  -0.036  -0.084 *
0.005 0.004 0.028 0.041

PM 2.5 AQI During Test -0.04  -0.02 0.021 -0.043  
0.03 0.02 0.048 0.033

Ozone AQI During Test -0.066 ** -0.126 ** -0.066  -0.229 **
0.025 0.038 0.058 0.089

Controls? Yes Yes Yes Yes
Child FE? Yes Yes Yes Yes
School FE? Yes Yes Yes Yes

Air quality instruments include: Daily maximum temperature, daily minimum temperature, precipitation,
 and speed of maximum wind gust, over 5-second interval. 

*** siginficant, p < 0.01
**   siginficant, p < 0.05
*     siginficant, p < 0.10

Effects of Air Quality on Test Scores: Childen with History of Asthma

Fixed-Effect IV-Fixed Effect

Panel A: Characteristics of Asthmatic Students (n= 691)

Panel B: Fixed Effects Est. of Air Quality on Test Scores



Table 6

Math

Female (0/1) 0.003  -0.038
0.024 0.034

Black (0/1) -0.071  -0.087  
0.035 0.06

Hispanic (0/1) -0.156 ** -0.176 ***
0.04 0.035

Age (in months) 0.013 *** 0.022 ***
0.002 0.005

Child Poor  (0/1) -0.125 *** -0.169 **
0.021 0.041

Two Parents 0.017  0.03  
0.015 0.022

Pct. FARM eligible -0.002 *** -0.004 ***
0.0006 0.0003

Pollen:
     During assessment -0.03 *** -0.035 **

0.004 0.008
     Lifetime exposure  (z-score) 0.387 *** -0.79 *

0.078 0.331
PM2.5 AQI:
     During assessment 0.017  -0.012

0.023 0.3
     Lifetime exposure  (z-score) 0.412 ** 0.513

0.108 0.332
Ozone AQI:  
     During assessment -0.008 -0.005  

0.015 0.049
     Lifetime exposure  (z-score) -0.441 ** -0.398  
 0.118 0.357

  

*** siginficant, p < 0.01
**   siginficant, p < 0.05
*     siginficant, p < 0.10

Test Scores and Air Quality: Contemporaneous and Lifetime Exposure

Reading 




