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Risk Misperception* 

 
This paper considers an economy where individuals differ in productivity and in risk. Rochet 
(1991) has shown that when private insurance markets offer full coverage at fair rates, social 
insurance is desirable if and only if risk and productivity are negatively correlated. This 
condition is usually shown to be satisfied for many health risks, but it appears to be violated 
for the old age dependency risk (mainly because longevity in turn is positively correlated with 
productivity). We examine the role of uniform and nonuniform social insurance to supplement 
a general income tax when neither public nor private insurers can observe individual risk and 
when it is positively correlated with wages. Consequently, a Rothschild and Stiglitz (1971) 
equilibrium emerges in the private insurance market and low-wage/low-risk individuals are 
not fully insured. We show that even when social insurance provided to the poor has a 
negative incentive effect, it also increases their otherwise insufficient insurance coverage. 
Social insurance to the rich produces exactly the opposite effects. Whichever of these effects 
dominates, some social insurance is always desirable. Finally, we introduce risk 
misperception which exacerbates the failure of private markets. The insurance term now 
reflects the combined failure brought about by adverse selection and misperception. Now the 
low-risk individuals are not only underinsured, but also pay a higher than fair rate. However, 
and rather surprisingly, it turns out that this does not necessarily strengthen the case for 
public insurance. 
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1 Introduction

A significant part of government intervention in the economy is, or can be, justified by redis-

tributive considerations. A large variety of instruments is used, including taxation, transfers,

price subsidies, in-kind transfers, pension benefits, and more generally social insurance. The set

of these policies is often referred to as the “welfare state”, a term which is used to characterize

most industrialized countries, albeit to a different degree. From an economic perspective this

raises many questions. For instance, which policies ought to be used or how should they be

designed and financed?

A starting point for addressing these questions is the so-called Atkinson and Stiglitz (AS)

theorem which states, roughly speaking, that when preferences are separable between labor

supply and goods, any (incentive compatible) Pareto-efficient allocation can be implemented

by using only a general income tax; see Atkinson and Stiglitz (1976).1 This theorem has far

reaching implications. In particular, no commodity tax is needed, social insurance, in-kind

transfers and public health insurance are not necessary, capital should not be taxed etc.2 This

result is explained by informational considerations. When the income tax is designed in an

optimal way given the information that is available, an extra instrument is valuable only if it

provides “better” information. In other words, if it improves the screening for variables which are

private information and restrict the set of feasible policies. In the Mirrleesian world considered

by AS, where individuals differ only in productivity, the separability of preferences implies that

all these extra instruments do not provide any additional, pertinent information.

If we take the AS theorem at its face value, the welfare state should be downscaled dramat-

ically and replaced by a “simple” well designed tax and (cash) transfer policy. It is by now well

known that one of the major limitations of this result is that it relies on the assumption that

individuals differ only in a single (non observable) dimension, namely productivity. When there

are other factors of individual heterogeneity, including preferences or “risk”, the result no longer

applies.3 While it is rather simple to show that many of the currently used instruments then

have a potential role to play, the issue of the appropriate design of these policies is much more

complicated.

1As shown by Laroque (2005) and Kaplow (2006) this result holds even when the income tax is not optimal.
Roughly speaking, they show that starting from any tax scheme with income and commodity taxes, one can
achieve a Pareto improvement by moving to a uniform commodity tax, while suitably reforming the income tax.
Observe that this reform does not in general make the income tax optimal.

2See for instance Cremer (2003), Cremer and Gahvari (1997) and Cremer, Gahvari and Ladoux (1998).
3See Cremer et al. (1998) and Cremer, Pestieau and Rochet (2001).
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In this paper we focus on one of the both most prominent and most debated instrument,

namely social insurance. Private insurance redistributes ex post, between states of nature. Pre-

miums reflect individual risk. But only social insurance (or a suitable regulated private system)

can effectively redistribute between ex ante heterogenous risk types. Put differently, social in-

surance can provide insurance against the “risk of being a bad risk”, which private insurance

cannot. This can be achieved through uniform premiums, or more general by a rate schedule

where premium differences do not fully reflect risk differences.

Rochet (1991) and Cremer and Pestieau (1996) have shown that social insurance is desirable

to supplement an optimal income tax, even when private insurance is actuarially fair, as long

as productivity and risk are negatively correlated, i.e., when less productive individuals face

the higher risk. This assumption is empirically supported for many health risks. These results

thus support public health insurance contracts in which individual premiums are independent of

their risk category. However, the assumption of a negative correlation is questionable for some

risks, including the need for long-term care when dependency is due to cognitive affection like

Alzheimer’s disease. The incidence of cognitive disorders increases significantly with age, and

longevity is positively correlated to productivity (as well as education and wealth); see Viscusi

(1994), Gerdtham and Johannesson (2000), Cristia (2009). Not that higher income individuals

are more likely per se to be affected by a cognitive disease, but lower income individuals are

more likely to die of other courses before they reach the relevant age group. This longevity effect

is also illustrated by the fact that 2/3 of Alzheimer patients are women who have a higher life

expectancy (National Academy on an Aging Society, 2000). For these kinds of risks a positive

correlation between risk and productivity can no longer be ruled out.4 As shown by Cremer and

Pestieau (1996), with fair private insurance markets, social insurance is then no longer desirable

at least as long as the incentive constraint binds from high- to low-wage individuals.5 Intuitively,

the willingness to pay for insurance is then higher for the high- than for the low-wage individuals

and providing social insurance further reinforces an already binding incentive constraint.

Rochet’s argument is quite powerful for the negative correlation case. When social insurance

is desirable even with perfect private markets, it will certainly have a role to play when there

are market failures in private markets. With positive correlation this reasoning does not apply

4See Cremer and Roeder (2013) for a detailed discussion of this issue. Observe that the epidemiologic literature
shows that this longevity effect is mitigated by the fact that more educated individuals tend to have a larger
“cognitive reserve” which tends to delay the onset of the cognitive impairment and shorten its duration (Reuser,
Willekens and Bonneux, 2011).

5With a utilitarian social welfare function, this will be true unless the risk differential become so large that it
outweighs the wage differential and the incentive constraint goes in the other direction.
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anymore and one can argue that social insurance does not come out as desirable, because private

insurance is given an “unfair” advantage. More precisely the fair insurance assumption implies

that private insurance has better information on individuals’ risks than the government (or

whatever administration is in charge of taxes and transfers). And the difference is drastic

because private insurers perfectly observe risk, while public authorities do not observe it at all.

This assumption is hard to defend.

In this paper we shall concentrate on the case of a positive correlation between productivity

and risk and revisit the role of social insurance when neither public nor private insurers can

observe the risk type. Instead, the private insurance market suffers from asymmetric information,

and we assume that a Rothschild and Stiglitz (1971) equilibrium emerges. It is well-known that

low-risk individuals will then be only partly insured. Consequently, we have a partial failure of

the private insurance market. While public insurers do not have any superior knowledge of risk,

they do have two advantages. First, they observe income levels and can implement a means-

tested social insurance scheme. Second, they can make insurance mandatory. We examine

whether this is sufficient to make a case for social insurance.

In a second step, we introduce the added feature that some individuals may misperceive

their risk type and be overconfident. One would expect that this exacerbates the failure of the

private markets and makes the role of public insurance even more compelling.

Methodologically this problem is quite challenging, even in an otherwise simple two-type

setting. To keep it tractable we represent individuals’ risk preferences by using Yaari’s (1987)

dual theory.6 On the practical applied policy design side our model is meant to apply in partic-

ular to the dependency risk and the associated market for LTC insurance.7 As explained above,

a positive correlation is likely to apply for old-age dependency. And myopia appears to be a

pervasive phenomenon when it comes to severe forms of dependency; see Zhou-Richter, Browne

and Grndl (2010), and Cremer and Roeder (2013) for a detailed discussion. Furthermore, in

reality private insurance markets fail to a large extent to provide an appropriate coverage for this

risk. Two of the major factors quoted to explain the thinness of private markets are precisely,

adverse selection and myopia (risk misperception); see e.g., Brown and Finkelstein (2009).

We start by revisiting the fair insurance case within our dual theory setting; see Section 3.

While this mainly rediscovers Rochet’s (1991) results, it constitutes an interesting benchmark for

6This allows us to derive a closed-form solution for the RS equilibrium.
7We do admittedly neglect some important features of LTC and particularly the role played by informal care,

which currently represents a significant part of total care.
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the remainder of the analysis. Then, the introduction of adverse selection in the private market

brings us to the RS setting; see Section 4. We consider both uniform and non-uniform (but

self-selecting) social insurance. We show that in either case social insurance coverage provided

to the low-wage (low-risk) individuals has two effects. First, an extra insurance effect because

it increases coverage of otherwise underinsured individuals. Second, there is an incentive effect

which is interpreted as in the fair private insurance case. We show that irrespective of the relative

strength of these effects, some social insurance is always desirable. However, unless insurance is

restricted in an ad hoc way to be uniform, only one of the types needs to receive social coverage.

When the insurance effect outweighs the incentive effect (starting from an equilibrium without

social insurance), the social insurance is designed for the low-wage individuals, who may or may

not end up fully insured. Otherwise, and quite surprisingly, social insurance is targeted toward

the high-wage individuals. Though exacerbating the insufficient coverage of the poor this policy

relaxes an otherwise binding incentive constraint so that redistribution through the income tax

is enhanced.

Finally, in Section 5 we introduce risk misperception, while continuing to consider an RS

equilibrium in the private market. We consider a case where some high-risk individuals are over-

confident and think they have a low risk. In equilibrium low-risk and overconfident individuals

are pooled. Now, the low-risk individuals are not only underinsured, but also pay a higher than

fair rate (effectively paying for the overconfident individuals who buy the same contract). Here

we concentrate for technical reasons on uniform social insurance. Results are to some extent in

line with expectations: there is an insurance term and incentive term. The insurance term now

reflects the combined failure brought about by adverse selection and overconfidence. However,

it also turns out that this does not necessarily strengthen the case for public insurance. Quite

surprising, it turns out that overconfident individuals are of no direct relevance when it comes to

the desirability of uniform social insurance. Overconfidence comes in indirectly though, because

it increases the cost of private insurance which, in turn, affects the insurance term.

This paper builds on and relates to two strands of the literature on optimal (social) insurance.

One theoretical literature that has considered optimal insurance and government redistribution

problems jointly. In addition to Rochet (1991) and Cremer and Pestieau (1996) already men-

tioned, these include Chetty and Saez (2010) who like us have incomplete private insurance,

but consider only one dimension of heterogeneity and restrict instruments to be linear. The

closest predecessor to our paper is Nishimura (2009) who introduces adverse selection in the
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private market and the model used by Cremer and Pestieau (1996). However, they restrict their

attention to uniform social insurance and do not consider misperception. They do show that the

derivative with respect to the share of the risk covered by social insurance in the positive cor-

relation case is ambiguous, with a negative incentive term (which they refer to a redistributive

term) and a positive term which is similar to our additional insurance term.8 Second there are a

few papers who study the effect of misperception in private markets and most notably Sandroni

and Squintani (2007). While these authors look at some policies like mandatory insurance, they

do not allow for income taxation.

2 The model

Individuals supply labor ` which comes with a (monetary) labor disutility v(`). The ability to

generate income differs among individuals, i.e., w ∈ {wr, wp} with 0 < wp < wr. The fraction of

low- and high-productivity individuals is νp and νr respectively. Individuals face a health risk;

the monetary value of the potential loss is L. In addition to labor productivity, agents differ

in their probability of incurring this loss π ∈ {π`, πh} with 0 < π` < πh < 1. Productivity and

risk are perfectly correlated. In other words, each level of w is associated with a unique level

of π. So, we have either πp ≡ π` > πr ≡ πh implying that the correlation between risk and

productivity is negative or πr ≡ π` > πp ≡ πh implying that it is positive. There is a private

insurance market which offers insurance against this health risk. Additionally, a social insurance

scheme which is financed by income taxation may exist.

We model individuals’ risk preferences using Yaari’s (1987) dual theory. Consider an in-

dividual with productivity w incurring a damage L with the probability π, and an insurance

contract (P, I), where P is the premium, while I is the level of coverage. Let T ≶ 0 denote

the income tax and D > 0 the social insurance benefits. This individual faces the lottery

X = (w`− v(`)− P − T, 1− π;w`− v(`)− P − T − L+ I +D,π). The utility associated with

this lottery is given by

V (P, I;w, π) =(1− φ(π))(w`− v(`)− T − P ) + φ(π)(w`− v(`)− T − P − L+ I +D)

=w`− v(`)− T − P + φ(π)(−L+ I +D), (1)

where φ(0) = 0 and φ(1) = 1. Risk aversion is represented by φ(π) > π. Observe that the

dual theory is based on the assumption that lotteries can be ranked, which here means that the

8See expression (27) below.
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individual is not better off when dependent then when in good health. In other words, (1) is

only valid as long as I + D ≤ L, that is as long as there is no overinsurance. Overinsurance

cannot occur in equilibrium in our model. However, it can arise for some individual deviations.

Specifically, we will show that mimicking individuals in the government incentive constraint may

be overinsured. To deal with this in the simplest possible way, we assume that insurers will never

pay out more than the effective loss (L−D) to individuals. Formally, we rewrite (1) as

V (P, I;w, π) = w`− v(`)− T − P + min[φ(π)(−L+ I +D), 0], (2)

but to simplify notation we shall use the minimum operator only where necessary and stick to

(1) otherwise.9

The information structure is in line with Mirrleesian optimal tax models. We assume that

gross income y = w` is publicly observable and can be taxed according to a nonlinear function.

Individual wages, w, labor supply, ` and loss probabilities π are not publicly observable, nor are

private insurance contracts (P, I). However, the realization of an individual’s risk is observable

and social insurance benefits are paid only in that event. Income taxation is optimized, but the

design of the tax schedule is not our main focus. Instead, we are interested in the desirability

and design of social insurance given that income taxation is also optimized. To do so, we study

the implied mechanism design problem where individuals are offered vectors Ωi = (yi, Ti, Di) for

i = p, r specifying the before tax income, the income tax and the social insurance benefits. We

study the optimal feasible (balanced budget) and incentive compatible mechanism.10

2.1 Timing of the game

Let us specify the timing of the mechanism design game. In a first stage, the government

announces a mechanism which consists of two vectors Ωp = (yp, Tp, Dp) and Ωr = (yr, Tr, Dr).

In the second stage, individuals ex ante (before the realization of the health risk) choose one

of these vectors. Finally, in stage 3, individuals buy insurance coverage in the private market.

The operation of this market depends on the information available to insurance companies. We

first assume that they observe an individual’s risk type. In a second step, we consider the

9If insurers would pay out the full claim in case of overinsurance, preferences would be represented by

w`− v(`)− P − T − L+ I + (1− φ(1− π))(−L+ I +D),

given that being in good health is now the “bad” state of nature. Using this specification, rather than (2) would
complicate the expressions, but not change the results. K: Are we sure of this?

10In practice this mechanism would have to be implemented by using tax cum social insurance schedules which
are specified as functions of the observable variable y. We do not examine this problem because we are mainly
interested in the levels of D provided to the different types and this is part of the optimal mechanism.
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Rothschild-Stiglitz (RS) equilibrium of the private insurance market. Then, the insurers know

that there are two types characterized by (Ωp, πp) and (Ωr, πr) respectively (both vectors being

given at this point), but they do not observe who is who. In this scenario two premium-benefit

contracts (πpIp, Ip) and (πrIr, Ir) are offered.

3 Full information in the private insurance market

When insurance companies observe an individual’s risk type, they offer any insurance coverage

at a fair price corresponding to each individual’s health risk. Individuals choose their level of

coverage to achieve full insurance, that is I∗ = L−D; see Mossin’s (1968) Theorem. With the

considered information structure in the private market and the public sector, feasible allocations

must satisfy the following incentive constraint

yr − v
(
yr
wr

)
− Tr − πrI∗r + φ(πr)(−L+ I∗r +Dr) ≥

yp − v
(
yp
wr

)
− Tp − πrI∗rp + φ(πr)(−L+ I∗rp +Dp).

That is the rich must be prevented from mimicking the poor. I∗rp thereby denotes the insurance

coverage of the rich when they mimick the poor. Additionally, the resource constraint must hold.

To incorporate redistributive concerns of the social planner, we study the optimal allocation

that maximizes the sum of a strictly concave transformation of individual utilities Ψ(V ) with

Ψ′(V ) > 0 and Ψ′′(V ) < 0. The government’s problem then amounts to

L = νrΨ

(
yr − v

(
yr
wr

)
− Tr − πrI∗r + φ(πr)(−L+ I∗r +Dr)

)
+ νpΨ

(
yp − v

(
yp
wp

)
− Tp − πpI∗p + φ(πp)(−L+ I∗p +Dp)

)
+ λ

(
yr − v

(
yr
wr

)
− Tr − πrI∗r + φ(πr)(−L+ I∗r +Dr)

−yp + v

(
yp
wr

)
+ Tp + πrI

∗
rp − φ(πr)(−L+ I∗rp +Dp)

)
+ µ

(∑
i

νi(Ti − πiDi)

)
, (3)

where I∗rp = I∗p = L−Dp, while I∗r = L−Dr. The Lagrange multipliers with respect to the gov-

ernment’s incentive constraint and the resource constraint are denoted by λ and µ respectively.

For an interior solution the FOCs for the rich are given by

∂L
∂Dr

=νrΨ
′
r

(
−πr

∂I∗r
∂Dr

+ φ(πr)

(
∂I∗r
∂Dr

+ 1

))
+ λπr − µνrπr = 0, (4)

∂L
∂Tr

=− νrΨ′r − λ+ µνr = 0. (5)
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Inserting (5) in (4) and using I∗r = L−Dr yields

∂L
∂Dr

= νrΨ
′
rπr + λπr − νrΨ′rπr − λπr ≡ 0. (6)

In words, irrespective of the correlation between income and risk, any level of social insurance

for the rich, i.e., Dr ∈ [0, L], yields the same level of welfare. Intuitively, Dr does not allow

to relax the incentive constraint because it is irrelevant for the mimicking individual. Since

individuals are fully insured, Dr is then essentially a redundant instrument as long as Tr is used

in an appropriate way.

Lets turn to the FOCs for the poor. Assuming an interior solution for Tp, we have

∂L
∂Tp

= −νpΨ′p + λ+ µνp = 0. (7)

Differentiating with respect to Dp and using I∗rp = I∗p = L−Dp yields

∂L
∂Dp

= νpΨ
′
pπp − λπr − µνpπp = 0. (8)

Again inserting (7) in (8) amounts to

∂L
∂Dp

=νpΨ
′
pπp − λπr − πpνpΨ′p − λπp

=λ(πp − πr) ≶ 0. (9)

When income and risk are positively correlated, i.e., πp < πr then D∗p = 0. Otherwise, we have

D∗p = L. Note that when social insurance is restricted to be uniform that is Dp = Dr = D, then

we have
∂L
∂D

=
∂L
∂Dr

+
∂L
∂Dp

= 0 + λ(πp − πr), (10)

so that D = L in case of a negative correlation and D = 0 otherwise.

So far, we have been essentially confirming Rochet’s results thereby showing that they con-

tinue to hold when individuals’ risk preferences are represented using Yaari’s (1987) dual theory.

Summing up, equations (6), (9) and (10) imply that when all individuals have the same risk, the

Atkinson and Stiglitz (1976) theorem applies and social insurance is not a useful instrument.

Full social insurance is desirable if and only if loss probabilities differ across individuals and

are negatively correlated. In that case, social insurance provides a larger utility gain to poor

individuals than to (mimicking) rich. Observe that private insurance is then completely crowded

out by social insurance. On the other hand, when there is a positive correlation, social insurance

has an adverse effect on the incentive constraint. Intuitively, this means that it redistributes in
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the wrong direction, namely from the poor low-risk individuals to the rich high-risk ones. The

following proposition summarizes the main results of this section.

Proposition 1 When insurance companies offer coverage at an actuarial fair rate, then

(i) full social insurance coverage for everyone is optimal when risk and productivity are

negatively correlated,

(ii) no social insurance is desirable when risk and productivity are positively correlated.

While these results are interesting, they rely on the rather restrictive assumption that pri-

vate insurers have better information about individuals’ types than the tax or social insurance

administration. This is at best debatable, and it would be more consistent to assume that

private insurers and the administration have the same information concerning individuals char-

acteristics. This is precisely what we’ll do in the remainder of the paper. It is of course plain

that the result for the negative correlation case won’t change. If social insurance is beneficial

when private markets are fair it will certainly continue to be beneficial when private markets

are imperfect. Formally, one can see this by noting that the optimal solution under fair markets

remains available when private markets are also affected by adverse selection. Since full social

insurance crowds out these markets anyway, private market imperfections become irrelevant and

we return to the fair markets case.

The interesting question arises for the case of positive correlation on which we focus in the

remainder of the paper. Specifically, one may expect that the imperfections of private markets

strengthen the case for social insurance and imply that (at least some) of it is desirable even

under positive correlation.

4 Adverse Selection in the private insurance market

Assume from now on that risk and productivity are positively correlated so that πr ≡ πh > πp ≡

π`. To solve our problem we proceed by backward induction and start by characterizing the

last stage, namely the private insurance market RS equilibrium induced by the tax and social

insurance policy. We assume throughout our analysis that a RS equilibrium exists.

4.1 Private market equilibrium

Insurers offer two contracts. One designed for the high risks with full insurance at a fair rate

(πrI
∗
r , I
∗
r ), where I∗r = L − Dr. And one designed for low risks who also pay a fair price, but

9



who may receive only partial insurance. Formally, I∗p is the largest level of Ip which satisfies the

incentive constraint on the private insurance market

yr − v
(
yr
wr

)
− Tr − πrIr + φ(πr)(−L+ Ir +Dr) ≥

yr − v
(
yr
wr

)
− Tr − πpIp + φ(πr)(−L+ Ip +Dr) (11)

and the condition Ip ≤ L−Dp. Remember that at the second stage the rich receive full insurance,

i.e., I∗r = L−Dr. The solution to (11) when it is binding is given by

Ip =
φ(πr)− πr
φ(πr)− πp

(L−Dr), (12)

which defines the insurance coverage for the poor I∗p as long as it Ip ≤ L − Dp; otherwise we

have I∗p = L−Dp. Formally, I∗p is defined by

I∗p = min

[
φ(πr)− πr
φ(πr)− πp

(L−Dr), L−Dp

]
. (13)

Defining the maximum level of Dp for which the incentive constraint in the private market is

binding as

D̃p = L− φ(πr)− πr
φ(πr)− πp

(L−Dr), (14)

and noting that D̃p > 0 for any Dr, because

a ≡ φ(πr)− πr
φ(πr)− πp

< 1,

we can write (14) as

D̃p = L(1− a) + aDr, (15)

which implies D̃p ≥ Dr. When Dp > D̃p, the level of Ip that yields full insurance (for the

low-risk type) is sufficiently small not to be attractive to the high-risk type and equation (11)

is not binding.

Having characterized the insurance market equilibrium, we can now turn to the determination

of the optimal tax and social insurance policy. Formally, we have to determine the “best”

consumption bundles Ωi = (yi, Ti, Di) for i = p, r which satisfy the resource constraint and

are incentive compatible so that all individuals are at least as well off by choosing the bundle

designed for them rather than by mimicking the other individuals. As usual we assume that

only the downward constraint from r to p is binding. Before stating this problem we must

have a closer look at this incentive constraint. The existence of private markets along with the
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assumption that private contracts are not publicly observable brings about one extra difficulty.

The RS equilibrium is by definition incentive compatible so that in equilibrium all individuals

will choose the bundle Ωi = (yi, Ti, Di) and the contract (πiIi, Ii) designed for them. However,

this does not tell us which private contract an individual r mimicking one of type p will choose.

This is the question we examine in the next subsection.

4.2 Incentive constraint of the government

Assume that the incentive constraint in the private market is binding. The mimicking individual

chooses I∗r if (and only if)

yp − v
(
yp
wr

)
− Tp − πrI∗r + min[φ(πr)(−L+ I∗r +Dp), 0] ≥

yp − v
(
yp
wr

)
− Tp − πpI∗p + min[φ(πr)(−L+ I∗p +Dp), 0], (16)

which after simplification is implied by the insurance market incentive constraint (see equation

11) as long as Dp ≤ Dr, so that he is not overinsured in any of the cases. Observe that in

that case the mimicking type-r individual is effectively indifferent between the two contracts

(πrI
∗
r , I
∗
r ) and (πpI

∗
p , I
∗
p ).

Assume now that Dp > Dr. Then, the last term on the LHS of (16) is equal to zero since

I∗r = L − Dr while the last term on the RHS is still negative (if the private market incentive

constraint is binding). Consequently, the condition can be rewritten as

− πrI∗r ≥ −πpI∗p + φ(πr)(−L+ I∗p +Dp), (17)

while the incentive constraint in the private market can be written as

− πrI∗r = −πpI∗p + φ(πr)(−L+ I∗p +Dr). (18)

Combining these two expressions yields

−πrI∗r = −πpI∗p + φ(πr)(−L+ I∗p +Dr).

That is, when Dp > Dr condition (16) is not satisfied and the mimicker prefers I∗p instead of

I∗r . while he is indifferent between the two contracts when Dp ≤ Dr. We can thus write the

government’s problem as if the mimicking individuals would always choose I∗p . The statement

of the problem is then valid for both cases. This is true as long as the incentive constraint in the

private market is binding. If not, that is when Dp > D̃p is sufficiently large, we can no longer

rule out the case where the mimicker chooses his “own” contract (πrI
∗
r , I
∗
r ). We neglect this for

the time being but reintroduce it when it will be relevant.

11



4.3 Optimal policy: problem and first-order conditions

We are now in a position to state the problem determining the optimal allocation. The La-

grangean associated with this problem is

L = νrΨ

(
yr − v

(
yr
wr

)
− Tr − πrI∗r + φ(πr)(−L+ I∗r +Dr)

)
+ νpΨ

(
yp − v

(
yp
wp

)
− Tp − πpI∗p + φ(πp)(−L+ I∗p +Dp)

)
+ λ

(
yr − v

(
yr
wr

)
− Tr − πrI∗r + φ(πr)(−L+ I∗r +Dr)

−yp + v

(
yp
wr

)
+ Tp + πpI

∗
p − φ(πr)(−L+ I∗p +Dp)

)
+ µ

(∑
i

νi(Ti − πiDi)

)
(19)

Differentiating with respect to Dr and Tr, and assuming that there is an interior solution for Tr

yields

∂L
∂Dr

=νrΨ
′
r

(
−πr

∂I∗r
∂Dr

+ φ(πr)

(
∂I∗r
∂Dr

+ 1

))
+ νpΨ

′
p (−πp + φ(πp))

∂I∗p
∂Dr

− λ (φ(πr)− πp)
∂I∗p
∂Dr

− λπr − µνrπr, (20)

∂L
∂Tr

=− νrΨ′r − λ+ µνr = 0. (21)

combining these two conditions and using (12) yields

∂L
∂Dr

= πrνrΨ
′
r +

[
νpΨ

′
p (φ(πp)− πp)− λ (φ(πr)− πp)

] ∂I∗p
∂Dr

+ λπr − µνrπr

=
[
νpΨ

′
p (φ(πp)− πp)− λ (φ(πr)− πp)

] ∂I∗p
∂Dr

,

= −a
[
νpΨ

′
p (φ(πp)− πp)− λ (φ(πr)− πp)

]
. (22)

Before commenting on this expression, let us derive its counterpart for the variables pertaining

to individual p. Differentiating the Lagrangean expression with respect to Dp and Tp yields

∂L
∂Dp

=νpΨ
′
pφ(πp)− λφ(πr)− µνpπp, (23)

∂L
∂Tp

=− νpΨ′p + λ+ µνp = 0. (24)

Combining these expressions, we have

∂L
∂Dp

= νpΨ
′
p (φ(πp)− πp)− λ (φ(πr)− πp) . (25)

The first term in in this expression is positive and shows the benefit of providing more insurance

to individual p; recall that these individuals are only partially insured on the private market.

12



The second term measures the costs in terms of incentive; the benefit of Dp to the mimicker

(type r individuals) is larger than to the mimicked individuals. Since both terms are of opposite

sign the expression evaluated at zero is ambiguous. Whether or not we want Dp > 0 depends

on the relative magnitude of the insurance and incentive terms. Recall that with fair insurance

markets, social insurance was never optimal because it has an adverse incentive effect (favoring

the mimicking rich more than the poor). When there is asymmetric information in the private

market, there continues to be a negative incentive effect. However, there is also a positive effect

because it increases insurance coverage of the poor (who are less than fully insured in the RS

equilibrium). Observe that
∂L
∂Dr

= −a ∂L
∂Dp

. (26)

Consequently, the interpretation of (22) is similar to that of (25) except that the signs of the

two effects are reversed.

Before proceeding with the characterization of Dp and Dr let us consider the case where we

impose the ad hoc assumption that D is required to be uniform so that Dp = Dr = D. We then

have from (26)
∂L
∂D

=
∂L
∂Dp

+
∂L
∂Dr

=
∂L
∂Dp

(1− a).

Substituting from (25) and rearranging successively yields

∂L
∂D

= (1− a)νpΨ
′
p[φ(πp)− πp]− λ[φ(πr)− πp] + aλ[φ(πr)− πp]

= (1− a)νpΨ
′
p[φ(πp)− πp]− λ[πr − πp]. (27)

Interestingly, the incentive term is now exactly the same as in the fair private market case. We

again have an insurance term similar to that in (25) but mitigated by the concomitant increase in

D for the rich. Either way, we obtain that even simple uniform social insurance may be welfare

improving due to private insurance market imperfections. And this is the case even though its

incentive effect is negative.

Let us now return to the case where social insurance is not restricted to be uniform. Expres-

sions (22) and (25) are valid as long as I∗p is given by (12) that is as long as Dp ≤ D̃p; otherwise

we have ∂I∗p/∂Dr = 0 and ∂I∗p/∂Dp = −1 so that equation (22) reduces to

∂L
∂Dr

≡ 0, (28)

while (25) is replaced by

∂L
∂Dp

= νpΨ
′
pπp − λπp − µνpπp = −πp

∂L
∂Tp

, (29)

13



which is equal to zero as long as there is an interior solution for Tp. When both individuals (as

well as the mimicker in the incentive constraint) are fully insured, Dp is equivalent to a transfer

to individual p (a negative tax) and the instrument is redundant. Consequently, nothing can be

gained by setting Dp > D̃p.
11

4.4 Optimal policy: no redistributive concerns

The expressions presented in the previous subsection and their interpretations have shown that

both redistributive and efficiency considerations are relevant. In other words, in addition to

its redistributive role studied in Section 3, social insurance now corrects the partial insurance

market failure brought about by adverse selection. Section 3 has shown that when there is

no market failure so that redistribution is the only relevant concern, social insurance is not

desirable under positive correlation. Before studying the general solution, let us consider the

“opposite” case namely where the government does not care about redistribution, i.e. Ψ′(V ) = 1,

but when there is adverse selection in the private insurance market. Recall that without any

government intervention, the low-risk agents have only partial insurance coverage I∗p < L in

the RS equilibrium. This is, given that individuals are risk averse, i.e. φ(πi) > πi, an inefficient

allocation. Intuitively, one would expect that social insurance at the very least ought to complete

the poor’s coverage to achieve full insurance. To see how this is brought out by the FOCs

observe first that absent of redistributive concern it is plain that the solution implies λ = 0.

Since taxes and transfers have no impact on social welfare, they can always be set so that the

self-selection constraint is satisfied at no welfare cost. In other words, a first-best outcome can

be implemented. For instance, one can set Dr = 0 (the rich are fully insured anyway) and

provide social insurance to the poor of Dp = L− I∗p “financed” by a tax of πrDp levied on the

poor. Then, both individuals are fully insured and the rich individuals’ incentives to mimick are

nil, since they would pay the same price for social insurance as they do for private insurance.

And it is obvious that the poor do not want to mimick the rich for otherwise they would have to

pay πrL to get full insurance. With this policy there is a budgetary surplus of νpDp(πr−πp). It

11As mentioned above, when Dp > D̃p and Dp is sufficiently large, the mimicking individual may prefer to buy
I∗p in the private market. In that case, (28) and (29) are replaced by

∂L
∂Dr

= λ(φ(πr)− πp) > 0,

∂L
∂Dp

= −λ(φ(πr)− πp) < 0.

Consequently, we continue to find that nothing can be gained by setting Dp > D̃p.
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can be redistributed through a uniform transfer which has no impact on the incentive constraint

yielding Tp = πrDp − νpDp(πr − πp) and Tr = −νpDp(πr − πp).

To show that this solution indeed satisfies the FOCs note that with λ = 0 and Ψ′ = 1,

equations (21) and (24) yield µ = 1. It then follows from equations (25), (29) and (28) that

∂L/∂Dp > 0 up to Dp = L − I∗p and equal to zero when Dp = L − I∗p , while ∂L/∂Dp = 0.

Observe that this characterizes the minimal level of Dp which implements a first-best solutions.

Higher levels of social insurance leave welfare unaffected, but the same allocation could also

be implemented in a “trivial” way by providing say uniform full social insurance D = L; see

equation (27).

4.5 Optimal policy: general solution

We are now in a position to characterize the solution. To do this in the simplest possible way, the

graphical illustration provided in Figure 1 is useful. The figure projects our problems into the

pD

B

C

E

F

L

L

rD0

(1 )a L−

d ● 

● 

A

c

Figure 1: Welfare level curves in the (Dr, Dp) space

(Dr, Dp) space. Clearly, neither of these variables will exceed L so we can restrict our attention

to the domain [0, L]× [0, L]. The lines B,C,E, F represent some randomly selected level curves
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of L. To represent them we use (26), which implies that these are all straight lines with slope of

a. In addition, A represents equation (15) defining D̃p as function of Dr. It is also a straight line,

with slope a and thus parallel to the level curves. We can neglect the area above A because we

already know from the previous subsection that nothing can be gained by setting Dp > D̃p. For

instance, point c, with both insurance benefits strictly positive yields the same level of welfare

as d, on the vertical axis so that Dr = 0. Similarly, any point on E can be duplicated by the

intersection of this line with the horizontal axis.

This figure shows that one of the two instruments is always redundant. Nothing can be gained

by choosing a point at the interior of the square. Assuming that redundant instruments are not

used it is plain from the graphical representation that the solution is then given by Dr = 0 and

some D∗p ∈ [0, (1 − a)L], when ∂L(0, 0)/∂Dp > 0 i.e., when (25) evaluated at Dr = Dp = 0 is

strictly positive. Note that from (26) this automatically implies that ∂L(0, 0)/∂Dr < 0. On the

other hand, when ∂L(0, 0)/∂Dr > 0 so that ∂L(0, 0)/∂Dp < 0 we can set Dp = 0 and determine

the best D∗r ∈ [0, L].

Intuitively, when ∂L(0, 0)/∂Dp > 0, we know from the discussion in the previous subsection

that the positive insurance effect of Dp outweighs the negative incentive effect. The opposite is

true for Dr. Consequently, we can set Dr = 0 and the solution of Dp is then either given by

an “interior” solution in the interval D∗p ∈ [0, (1− a)L) such that (25) is zero. Alternatively, if

welfare continues to increase up to (1 − a)L, we obtain D∗p = (1 − a)L, that is D∗p = D̃p and

social insurance for p is increased until the incentive constraint in the private market is no longer

binding so that poor individuals are fully insured. This outcome is very much “as expected”

but one has to keep in mind that it may or may not be the optimal policy.

The opposite case where ∂L(0, 0)/∂Dp < 0 is more surprising. We can then set Dp = 0

and 0 < D∗r ≤ L. This means that while p is already underinsured, while r is fully insured

anyway, it proves beneficial to provide social insurance to the rich. This insurance, in turn will

decrease the private insurance available to the poor, via the private market incentive constraint.

So, even though the policy is aimed at redistributing to p, we give social insurance to r, leaving

p underinsured. This is beneficial here because the incentive effect outweighs the insurance

effect. In words, the policy relaxes the incentive constraint, which in turn makes it possible to

redistribute more via income taxation.

Summing up, it turns out that unless ∂L(0, 0)/∂Dp = 0 which is not generically true, the

solution always implies that some social insurance is provided to one type of individuals. This
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is in sharp contrast with the fair insurance market case where no social insurance was desirable

under positive correlation.

Observe also that in either was the solution is obtained by balancing the positive effect

of correcting a market failure with the adverse redistributive impact that social insurance has

under positive correlation between risk and ability. In that sense the general solution is roughly

speaking a “convex combination” of the outcomes achieved in the two extreme cases presented

in Section 3 (no market failure) and in Subsection 4.4 (no redistribution).

The main results of this section are summarized in the following proposition.

Proposition 2 When the private insurance market is characterized by the Rothschild-Stiglitz

equilibrium and the correlation between income and risk is positive, then

(i) When Ψ′ = 1 so that there is no concern for redistribution, a first-best outcome with full

insurance for all can be implemented. The minimal amount of social insurance to achieve this is

given by Dp = L− I∗p and Dr = 0. In other words, social insurance merely completes the market

coverage provided to the poor.

(ii) When Ψ′ is strictly convex so that redistribution matters, the solution is second-best and

we have

(a) The rich are always fully insured (be it private or public) while the poor may or may

not be fully insured.

(b) It is always desirable to provide some social insurance.

(c) Depending on the strength of the insurance and incentive effect, social insurance is

always redundant for one type of individuals. It is positive for the poor if the insurance effect

outweighs the incentive effect and it is positive for the rich otherwise.

5 Misperception and social insurance

We now introduce an additional source of imperfection in private insurance markets, namely

the fact that some high-risk individuals may be overconfident and misleadingly think that they

have a low health risk. As argued above this appears to be the case in reality, in particular

for the dependency risk associated with long-term care needs. One can expect this to further

strengthen the case for social insurance.

We assume that part of the high-risk individuals are overconfident concerning their health

risk. Formally, we then have three types of individuals indexed by r, o and p and in (strictly

positive) proportions νr, νo and νp. Types r and p are the same as before and we have wr > wp
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and πr ≡ πh > πp ≡ π`. Type o individuals are the same as type r except that they are

overconfident and think that their risk is π` while in reality it is πh. And it is this perceived risk

which determines their demand in the insurance market. Consequently, insurance companies

cannot screen between overconfident and low-risk agents. That is, individuals are separated on

the basis of their beliefs.

The insurance market equilibrium is then as follows.12 For high-risk individuals the presence

of overconfident individuals changes nothing; they get full insurance at an actuarial fair price.

Low-risk agents, by contrast, get a different contract which insures self-selection. We assume

that social insurance is uniform so that Dp = Dr = Do = D. The average probability of a

damage for overconfident and low-risk agents is given by

πpo ≡
νoπr + νpπp
νo + νp

Specifically, the coverage, Ipo, low-risk and overconfident agents get is determined by the follow-

ing self-selection constraint

yr − v
(
yr
wr

)
− Tr − πrIr + φ(πr)(−L+ Ir +D) ≥

yr − v
(
yr
wr

)
− Tr − πpoIpo + φ(πr)(−L+ Ipo +D), (30)

where I∗r = L−Dr. Formally, I∗po is then defined by

I∗po =
φ(πr)− πr
φ(πr)− πpo

(L−D). (31)

Note that I∗po is the same for overconfident and low-risk individuals. In the following analysis it

will be helpful to define

b ≡ φ(πr)− πr
φ(πr)− πpo

< 0. (32)

Turning to the incentive constraints in the governments problem, we consider the following three

12Existence may require some additional restriction, in particular on proportions which we neglect here for
simplicity.
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constraints

yr − v
(
yr
wr

)
− Tr − πrI∗r + φ(πr)(−L+ I∗r +D) ≥

yp − v
(
yp
wr

)
− Tp + πrI

∗
r + φ(πr)(−L+ I∗r +D), (33)

yr − v
(
yr
wr

)
− Tr − πrI∗r + φ(πr)(−L+ I∗r +D) ≥

yo + v

(
yo
wr

)
+ To + πrI

∗
r + φ(πr)(−L+ I∗r +D), (34)

yo − v
(
yo
wr

)
− To − πpoI∗po + φ(πp)(−L+ I∗po +D) ≥

yp − v
(
yp
wr

)
− Tp + πpoI

∗
po + φ(πp)(−L+ I∗po +D), (35)

The first of these constraints prevents r from mimicking p, the second r from mimicking o,

and the third o from mimicking p. Observe that these constraints assume that mimicking

individuals choose their “own” contract in the private market. With uniform social insurance

this is necessarily true and follows directly from (30).

Combining the incentive constraints shows that (34) and (35) together imply (33). In words,

when the constraints from r to o and from o to p are satisfied, the constraint from r to p is

necessarily also satisfied. There is thus no need to impose (33) as separate constraint.

The Lagrangean of the government is then given by

L = νrΨ

(
yr − v

(
yr
wr

)
− Tr − πrI∗r + φ(πr)(−L+ I∗r +D)

)
+ νpΨ

(
yp − v

(
yp
wp

)
− Tp − πpoI∗po + φ(πp)(−L+ I∗po +D)

)
+ νoΨ

(
yo − v

(
yo
wr

)
− To − πpoI∗po + φ(πr)(−L+ I∗po +D)

)
+ λ1

(
yr − v

(
yr
wr

)
− Tr − πrI∗r + φ(πr)(−L+ I∗r +D)

−yo + v

(
yo
wr

)
+ To + πrI

∗
r − φ(πr)(−L+ I∗r +D)

)
+ λ2

(
yo − v

(
yo
wr

)
− To − πpoI∗po + φ(πp)(−L+ I∗po +D)

−yp + v

(
yp
wr

)
+ Tp + πpoI

∗
po − φ(πp)(−L+ I∗po +D)

)
+ µ

(∑
i

νi(Ti − πiD)

)
(36)
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The FOCs are given by

∂L
∂D

=νrΨ
′
rπr + νpΨ

′
p

[
−πpo

∂I∗po
∂D

+ φ(πp)

(
1 +

∂I∗po
∂D

)]
+ νoΨ

′
o

[
−πpo

∂I∗po
∂D

+ φ(πr)

(
1 +

∂I∗po
∂D

)]
− µ(νrπr + νpπp + ν0πr) (37)

∂L
∂Tr

=− νrΨ′r − λ1 + µνr = 0 (38)

∂L
∂Tp

=− νpΨ′p + λ2 + µνp = 0 (39)

∂L
∂To

=− νoΨ′o + λ1 − λ2 + µνo = 0 (40)

Using (31) and (32), equation (37) can be rewritten as

∂L
∂D

=νrΨ
′
rπr + νpΨ

′
p [πpob+ φ(πp) (1− b)] + νoΨ

′
o[πpob+ φ(πr) (1− b)]

− µ(νrπr + νpπp + ν0πr) (41)

observe that πpob+ φ(πr) (1− b) = b[πpo − φ(πr)] + φ(πr) = πr. Substituting, we have

∂L
∂D

=νrΨ
′
rπr + νoΨ

′
oπr + νpΨ

′
pπp − µ(νrπr

+ νpπp + ν0πr) + νpΨ
′
p [πpob+ φ(πp) (1− b)− πp]

=− λ1πr + λ2πp + (λ1 − λ2)πr + νpΨ
′
p [πpob+ φ(πp) (1− b)− πp]

=νpΨ
′
p [πpob+ φ(πp) (1− b)− πp]− λ2(πr − πp) (42)

Equation (42) includes ones again an insurance term and an incentive term. The incentive term

is negative given πr > πp, and its interpretation is exactly the same as in Section 3. When the

mimicker has a higher risk than the mimicked individual, uniform social insurance reinforces

the incentive constraint. Interestingly, only individuals r and p matter for this term; all effects

pertaining to individuals o cancel out. This is because they appear both as mimicked and

mimicking individual in the incentive constraints.

Turning to the insurance term, it is positive because the first two terms in brackets represent

a convex combination of two terms which are both larger than πp. Recall that b = ∂I∗po/∂D

is defined by (32) and satisfies 0 < b < 1. To interpret this term first observe that given the

way we combined the FOCs, we are effectively considering a variation dD which is financed by

an increase in Ti so that dTi = πidD. In words, individuals face a tax increase which equals

the expected cost of the extra social insurance they receive. The first term in (42) measures

the impact of this variation on the contribution to social welfare of p. To see this note that the
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first term in brackets measures the premium savings in the private market. The second term

measures the benefit of the extra insurance protection; it accounts for the fact that when D

increases by 1, I∗po decreases by b. Individuals thus receive a net extra benefit of (1− b), which

is weighted by φ(πp) since it occurs in the bad state of nature. The third term represents the

cost of the “compensating” tax increase. Finally, the term in brackets is multiplied by νpΨ
′
p to

convert individual utility into contributions to social welfare.

It may be surprising at first, that only the impact on p appears in (42). However, this is also

easily understood. First, the counterpart of this term for r obviously vanishes because these

individuals are already fully insured. Consequently, public insurance only crowds out private

coverage at the same cost. Turning to individuals o, the corresponding bracketed term would

be [πpob + φ(πr) (1− b) − πr]. We have already shown above that πpob + φ(πr) (1− b) = πr so

that this expression also vanishes. Recall also that this equation is obtained by substituting for

b, that is effectively by making use of the private market incentive constraint. Intuitively, this

makes sense. Individuals r and o are alike as far as their real preferences are concerned and also

with the considered variation dTr = dT0 = πrdD. Consequently, if o would become better off

by the considered variation, r mimicking o would be better off too and this would violate the

IC constraint. In other words, the result arises because I∗po adjusts to satisfy the private market

IC constraint.

It thus turns out that individuals o are of no direct relevance when it comes to the desirability

of uniform social insurance. Overconfidence comes in indirectly though because it increases the

cost of private insurance for πp; they now pay insurance protection at a price of πpo > πp which

is larger than the fair rate (because they are pooled with individuals o).

To sum up, uniform social insurance is desirable if (and only if) the insurance term (evaluated

at D = 0) outweighs the incentive term. Observe that both terms are constant except for νpΨ
′
p

which will decrease with D as the poor become better off.13 Consequently, when the insurance

term is positive for D = 0, we may get an interior solution at some level D∗ for which (42)

vanishes or full insurance with D∗ = L. Clearly both the desirability of social insurance and

its level depend on πr − πp. When this term is small we can expect a sizeable level of social

insurance whereas little or no social insurance will be optimal as the difference in risks increases.

Proposition 3 Assume that some of the high-risk individuals are overconfident concerning their

health risk while there continues to be adverse selection in the private insurance market and

13Recall that we know from (31) that they will never be fully insured except when D = L.
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productivity and risk are positively correlated, then:

(i) Uniform social insurance continues to have a positive insurance and a negative incentive

effect. The incentive effect is the same as in the absence of overconfidence, while the insurance

term has a different structure.

(ii) Overconfident individuals have no direct relevance when it comes to the desirability of

uniform social insurance. Any attempt to redistribute towards this group would be undone by

the private market incentive constraints. However, overconfidence comes in indirectly, though

because it increases the cost of private insurance for the low-productivity individuals.

6 Conclusion

This paper has revisited the role of social insurance to supplement a general income tax. We

have assumed that neither public nor private insurers can observe risk. Instead, the private

insurance market suffers from asymmetric information, a Rothschild and Stiglitz equilibrium

emerges and low-risk individuals are only partly insured. We have concentrated on the case of

positive correlation between loss probability and productivity which is relevant for the old-age

dependency risk. This is the interesting case from our perspective, because it implies that social

insurance, whether uniform or not, is not desirable when private insurance markets are fair.

We have shown that with adverse selection in the insurance market social insurance does have

a role to play. When there is no concern for redistribution it can achieve a first-best outcome

by completing the market insurance coverage provided to the poor. In the general case, when

redistribution is accounted for by adopting a strictly concave welfare function, the solution is

second-best. Extending benefits to the poor (or a universal grant) does have adverse incentive

effects, but it also corrects a market failure and enhances insurance coverage of the previously

underinsured. Uniform coverage was shown to be desirable only when the insurance benefits

outweigh the incentive cost. A properly designed non-uniform insurance schedule, on the other

hand, is always desirable. Insurance benefits need to be targeted to one of the types only, and

quite surprisingly this may be the productive individuals.

Finally, we have examined how the desirability of social insurance and its design are affected

by overconfidence concerning the health risk of high-productivity agents. We have shown that

overconfidence does not affect the incentive term in the expression but makes the insurance term

more complex. Interestingly, the existence of overconfident individuals is of no direct relevance

when it comes to the desirability of uniform social insurance. Overconfidence comes in indirectly
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though, because it increases the cost of private insurance for the low-productivity individuals

which enhances the benefits they receive from social insurance.
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