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Abstract

Detailed information about subsurface structures (e.g. layering) and processes
(e.g. flow and solute transport) in the vadose zone is important for the character-
ization and protection of soil and groundwater. Unfortunately, such information
is not easily accessible due to the complexity of the soil system that exhibits
considerable spatial variation in subsurface structure, which introduces signifi-
cant uncertainty when attempting to improve system understanding. Because of
layering structures and macropores in the subsurface, significant changes in soil
properties appear in horizontal and vertical directions that introduce anisotropy
in soil properties such as the hydraulic conductivity and the electrical resistivity.
The premise of this thesis is that anisotropy in electrical resistivity can be used
to extract meaningful information about other soil characteristics and properties.
In particular, we investigate whether the anisotropy in electrical properties can
be used to obtain information about the heterogeneity of sediment structures and
macropore preferential flow processes using non-invasive geophysical techniques
because such information is hard to obtain in field applications using classical
destructive methods.

Synthetic modelling has shown that information on soil heterogeneity can be ob-
tained from the anisotropy in electrical resistivity. In particular, it was shown that
the correlation length ratio of bimodal facies distribution of two isotropic materi-
als with different complex resistivity can be inversely estimated from the effective
complex electrical resistivity in two directions (i.e. the anisotropy). In this thesis,
this result from a synthetic modelling study was experimentally validated using
complex electrical resistivity measurements on a measurement cell with two bi-
modal sediment distributions that differ in the fraction and spatial arrangement
of each material. The effective complex electrical resistivity in the mHz to kHz
frequency range of these two sediment distributions was determined using a novel
analysis approach. To estimate the correlation length ratio, we used a global op-
timization method that minimized the difference between measured and modelled
effective electrical resistivity. Effective complex electrical resistivity measurements
of heterogeneous distributions showed a good agreement with the results obtained
in the synthetic study for the same distributions, although measurement results
were very sensitive to the sample thickness that was difficult to control. It was
concluded that the electrical anisotropy in resistivity can indeed be used to ob-
tain information about the heterogeneity in sediments with a very high accuracy
in correlation length ratio, volume fraction, and the electrical parameters of the
Cole-Cole model.

Macropores play a major role in contaminant transport from the surface through
the vadose zone to the groundwater. Therefore, it is crucial to obtain information
about macropore preferential flow and to improve our ability to characterize flow
processes in macropores. In this thesis, we evaluated whether changes in electri-
cal anisotropy in resistivity can be used to identify the existence of macropore
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flow processes using direct measurements of resistivity in horizontal and vertical
direction and electrical imaging. In a first step, we performed simulations and
measurements to determine the electrical anisotropy in resistivity associated with
water infiltration in an artificial macropore within the middle of a soil column. In
the simulations, water content distributions were simulated using a 3D axisym-
metric water flow model and then converted to electrical resistivity distributions
to obtain the temporal development of effective electrical resistivity in horizontal
and vertical direction. Both simulations and measurements showed very strong
dynamic changes in electrical anisotropy due to water infiltration in the macropore
and clearly highlighted that electrical anisotropy can be used to identify macro-
pore preferential flow processes. The observed and modelled dynamical changes
in the electrical anisotropy agreed well with each other, but deviated from expec-
tations based on available simple conceptual models because the chosen electrode
arrangement does not allow a correct determination of the effective horizontal and
vertical electrical resistivity. Since this can only be overcome by the use of an
imaging framework, in a next step it was explored whether time-lapse anisotropic
electrical imaging can provide valuable information with high resolution in space
and time to analyze preferential flow processes. For this, an artificial 2D macro-
pore was created in a Hele-Shaw tank with electrodes. Electrical measurements
were made using a novel fast ERT system that provided 10 images per second.
An anisotropic inversion code was used to invert the electrical measurements us-
ing coarse cells that are bigger than the size of the macropore in correspondence
with field applications where macropore flow processes cannot be resolved either.
This resulted in images of macroscopic anisotropy in electrical resistivity with a
high temporal resolution, and these were used to analyze the temporal dynamics
of electrical anisotropy of inversion cells with and without water infiltration in
macropores. It was found that the anisotropy showed strong dynamical reactions
to water infiltration for cells with macropores that matched well with expected
behavior, whereas almost no response was observed for cells without macropores.
However, the size of the inversion cells affected the imaging results. Overall, this
study showed that electrical anisotropy is useful to characterize subsurface struc-
tures and processes.
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Zusammenfassung

Detaillierte Informationen über Untergrundstrukturen, Fliess- und Stofftransport-
prozesse in der ungesättigten Zone sind für die Charakterisierung des Bodens
und der Erhaltung der Grundwasserqualität unerlässlich. Jedoch sind solche In-
formationen nur schwer erfassbar. Dies liegt vor allem an der Komplexität des
Bodensystems, welches ein erhebliches Maß an räumlicher Variabilität der Un-
tergrundstruktur aufweist und damit das Erlangen von Systemverständnis stark
erschwert. Die heterogenen Untergrundstrukturen, z.B. aufgrund von Schichtun-
gen oder Makroporen, führen zu anisotropen Bodeneigenschaften, die erheblich
unterschiedliche hydraulische und elektrische Leitfähigkeiten in horizontaler und
vertikaler Richtung aufweisen können. In dieser Arbeit soll untersucht werden,
welche charakteristischen Bodeneigenschaften aus der messbaren Anisotropie des
elektrischen Widerstands gewonnen werden können. Im Besonderen soll unter-
sucht werden, ob die Messung der anisotropen elektrischen Eigenschaften mit-
tels nichtinvasiver geophysikalischer Methoden geeignet ist, um Information über
die Heterogenität von Sedimentstrukturen und präferentiellen Fliessprozessen in
Makroporen zu bestimmen. Diese Informationen können bislang nur schwer auf
der Feldskala und nur mit destruktiven Methoden gewonnen werden.

In Vorarbeiten wurde mittels numerischer Modellierung gezeigt, dass eine
Korrelation zwischen der Anisotropie des elektrischen Widerstands und der
Bodenheterogenität besteht. Insbesondere ergab sich, dass das Korrela-
tionslängenverhältnis bimodaler Verteilungen, bestehend aus zwei isotropen Mate-
rialien mit unterschiedlichen komplexen elektrischen Widerständen, mittels elek-
trischer Anisotropiemessungen bestimmt werden kann. Dazu wurde der effektive
komplexe elektrische Widerstand zwei orthogonaler Richtungen bestimmt. Das
oben erläuterte Ergebnis der numerischen Studie wurde in dieser Arbeit anhand
von Messungen des komplexen elektrischen Widerstands in einer Messzelle mit
zwei bimodalen Sedimentstrukturen, welche sich im Mischungsverhältnis und in
der räumlichen Anordnung der verwendeten Materialien unterschieden, experi-
mentell bestätigt. Der effektive komplexe elektrische Widerstand dieser zwei Sed-
imentverteilungen wurde mit einem neuartigen, speziell angepassten Verfahren im
Frequenzbereich von einigen mHz bis zu einigen kHz gemessen. Um das Kor-
relationslängenverhältnis zu bestimmen, wurde ein globaler Optimierungsansatz
verwendet, welcher die Differenz zwischen den gemessenen und den modellierten
frequenzabhängigen effektiven komplexen elektrischen Widerständen minimiert.
Die gemessenen effektiven komplexen elektrischen Widerstände dieser heteroge-
nen Strukturen zeigten eine gute Übereinstimmung mit den Ergebnissen der nu-
merischen Modellierung, wobei insbesondere die Probendicke, die in der verwen-
deten Messzelle nur schwer zu kontrollieren war, einen großen Einfluss auf die
Messdaten hatte. Diese Ergebnisse bestätigen die Annahme, dass die mess-
bare elektrische Anisotropie genutzt werden kann, um die Heterogenität von
Sedimentstrukturen mit einer hohen Genauigkeit im Hinblick auf das Korrela-
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tionslängenverhältnis, dem Volumenanteil, als auch die elektrischen Parameter
des Cole-Cole Modells zu bestimmen.

Zusätzlich zur Schichtung haben auch Makroporen einen nicht vernachlässigbaren
Einfluss beim Schadstofftransport von der Oberfläche durch die ungesättigte
Zone in das Grundwasser. Daher ist es wichtig, diese präferentiellen Flüsse zu
identifizieren und zu charakterisieren. In dieser Arbeit wurde folglich unter-
sucht, ob Fliessprozesse in Makroporen mittels kontinuierlicher Messung der elek-
trischen Anisotropie in horizontaler und vertikaler Richtung, sowie mittels elek-
trischer Widerstandstomographie erkannt werden können. In einem ersten Schritt
wurde eine Infiltration in eine künstliche Makropore im Zentrum einer Bodensäule
simuliert und experimentell durchgeführt. Die Wassergehaltsverteilungen in der
Säule wurden in einem dreidimensionalen achsensymmetrischen Wasserflussmodell
modelliert und in elektrische Widerstandsverteilungen konvertiert, um die zeitliche
Entwicklung des effektiven elektrischen Widerstands in horizontaler und vertikaler
Richtung zu erhalten. Simulation und Messung zeigten beide sehr starke dy-
namische Änderungen der elektrischen Anisotropie durch die Infiltration in die
Makropore, was demonstriert, dass die elektrische Anisotropie zur Identifikation
präferentieller Flüsse in Makroporen geeignet ist. Die beobachteten und model-
lierten dynamischen Änderungen der elektrischen Anisotropie stimmten sehr gut
überein, zeigten aber signifikante Abweichungen vom verfügbaren vereinfachten
konzeptionellen Modell, da die verwendete Elektrodenanordnung keine korrekte
Bestimmung der effektiven horizontalen und vertikalen Impedanz erlaubte. Um
diese Problematik zu umgehen, wurde in einem weiteren Schritt untersucht ob
kontinuierliche Messungen des anisotropen komplexen Widerstandes mittels elek-
trischer Widerstandstomographie eine räumlich und zeitlich hochauflösende De-
tektion von präferentiellen Fliessprozessen ermöglicht. Für diese Messungen wurde
eine künstliche Makropore in einer Hele-Shaw-Zelle mit seitlich angebrachten
Elektroden realisiert. Die elektrischen Messungen wurden mit einer neuartigen,
schnellen ERT-Datenerfassung durchgeführt, welche mit der gewählten Konfig-
uration 10 Bilder pro Sekunde speicherte. Zur Rekonstruktion der Anisotropie
wurde ein Inversionscode verwendet, welcher die intrinsische Anisotropie des elek-
trischen Widerstands berücksichtigt. Um Feldanwendungen zu simulieren, bei
dem Makroporen-Prozesse nicht im Einzelnen aufgelöst werden können, wurde
ein grobes Gitter verwendet, dessen Zellen deutlich größer waren als die Größe
der Makropore. Diese Untersuchungen lieferten zeitlich hochauflösende Bilder
der makroskopischen Anisotropie des elektrischen Widerstands, welche im Hin-
blick auf die zeitliche Dynamik der elektrischen Anisotropie der einzelnen Git-
terzellen analysiert wurden. Die Ergebnisse zeigten, dass wie erwartet die elek-
trische Anisotropie nur für Zellen mit Makroporenanteil starke dynamische Reak-
tionen auf die Infiltration bewirkten, während Zellen ohne Makroporenanteil kaum
Änderungen in der elektrischen Anisotropie aufwiesen. Jedoch sollte erwähnt wer-
den, dass die Größe der Zellen einen starken Einfluss auf die Ergebnisse der elek-
trischen Bildgebung hatte. Zusammenfassend zeigen die Ergebnisse dieser Studie,
dass die Messung der elektrische Anisotropie ein hilfreiches Werkzeug zur Bestim-
mung der Untergrundstrukturen und präferentiellen Fliessprozesse darstellt.
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Chapter 1

INTRODUCTION

1.1 General Introduction

Improved characterization of soil heterogeneity and macropore preferential flow is

important to better understand a range of key processes in the hydrologic cycle,

such as overland flow, infiltration into the soil, evaporation to the atmosphere,

and transpiration by plants. Accurate predictions of both flow and solute trans-

port processes in the vadose zone are required to appropriately address problems of

groundwater contamination and to predict the replenishment of limited groundwa-

ter resources. Therefore, it is of utmost importance to quantitatively characterize

heterogeneity in soil and sediment properties. Furthermore, water and solutes can

quickly bypass the vadose zone through macropores, although these macropores

occupy only a small volume fraction in the vadose zone. Many efforts have been

made to improve understanding of macropore preferential flow processes, but un-

fortunately most standard methods to investigate macropores are destructive and

thus do not allow in situ monitoring of flow processes associated with macrop-

ores. However, such detailed information of these processes is needed to better

understand, plan, and regulate hydrological and agricultural activities, especially

when dealing with potentially harmful chemicals that can be transported alongside

water.

1.2 Literature Background

1.2.1 Heterogeneity in Subsurface Structures

To properly describe flow and transport in soil and groundwater systems, it is

important to quantitatively characterize heterogeneity in soil and sediment prop-
1
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erties. A wide range of studies has dealt with this heterogeneity, and different

methods have been used to characterize heterogeneity (e.g. Alexander et al., 2011;

de Marsily et al., 2005; Illman et al., 2012; Teles et al., 2006). These methods

include genetic, geostatistical, and Boolean approaches. In genetic modelling, it

is attempted to obtain realistic descriptions of heterogeneity by modelling sedi-

mentation processes. For example, Jacod and Joathon (1971) developed a genetic

model to describe the evolution of sedimentary processes and considered a wide

range of factors determining sedimentation (e.g. depth, distance from the source,

subsidence, and nature of sediments). Teles et al. (2004) also characterized het-

erogeneity of alluvial media using genetic methods. In geostatistical analysis,

two-point or multi-point statistics are used to describe heterogeneity. In case of

the commonly used two-point statistics, heterogeneity is summarized by the spa-

tial covariance function calculated from continuous or categorical data (see e.g.

Ahmed and de Marsily, 1987; Dai et al., 2005; Goovaerts, 2001; Johnson, 1995;

Ritzi, 2000; Teles et al., 2004). Boolean or Markovian models are used to describe

discontinuous facies models where upscaling or averaging is required to describe

this discontinuity in space. It has commonly been applied to describe hetero-

geneity in permeability and hydraulic conductivity (Fogg et al., 1998; Renard and

de Marsily, 1997).

Stochastic modelling of soil and groundwater systems has developed into a large

research field in the past decades. In particular, hydrogeologists have been

strongly interested in stochastic descriptions of heterogeneous aquifers (Cacas

et al., 1990a,b; Carrera, 1993; Dagan, 1982, 1985). For instance, perturbation-

based spectral theory was used to relate aquifer heterogeneity of hydraulic con-

ductivity to head variance, effective conductivity tensors, and macrodispersivity

tensors. Although this approach proved to be robust for saturated flow prob-

lems, significant issues remain for more complicated systems or processes, such as

unsaturated media, strongly heterogeneous media, and multiphase flow (Gelhar,

1986). More recently, stochastic upscaling has been used together with geostatis-

tical simulations to describe hydraulic conductivity (Bierkens and van der Gaast,

1998; Wen and Gómez-Hernández, 1996; Yeh, 1992). Although stochastic hy-

drologists have been able to explain some key phenomena observed in the field,

the success of this type of analysis hinges on detailed measurements of relevant

aquifers properties to estimate the spatial covariance functions used to describe

heterogeneity.

In an attempt to directly characterize heterogeneity, geophysical methods are in-

creasingly being used. For instance, GPR data have been used to obtain informa-

tion on aquifer heterogeneity by direct estimation of the correlation length from
2
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radar images (Bayer et al., 2011; Comunian et al., 2011; Knight, 2001; Knight

et al., 2004; Rea and Knight, 1998). Recently, Klotzsche et al. (2012) obtained

high-resolution images of dielectric permittivity and electrical conductivity of a

gravel aquifer using cross-hole GPR data. Using their full-waveform inversion ap-

proach, they were able to identify connected sedimentary structures that caused

preferential flow. Time-lapse ERT has also been used to monitor flow and trans-

port in aquifers. For example, solute BTC across a control plane have been mea-

sured using ERT, and these BTC were used to estimate the mean and variance of

the hydraulic conductivity (Kemna et al., 2002; Müller et al., 2010; Vanderborght

et al., 2005).

Most geophysical applications have attempted to resolve aquifer heterogeneity and

have treated the geophysical properties as isotropic. However, it has long been

known that geophysical properties (e.g. electrical resistivity) show anisotropy

(e.g. Schlumberger et al., 1934). This anisotropy can be related to unresolved

subsurface structures at the microscopic scale (e.g. preferential electrical con-

duction in mineral grains) or to unresolved structures at the macroscopic scale

(e.g. fine layering). In particular, such unresolved subsurface structures affect

the electrical properties of the subsurface (Hill, 1972; Zisser and Nover, 2009).

Therefore, several studies have explored the electrical anisotropy associated with

horizontally isotropic layered media (Edwards et al., 1984; Kenkel et al., 2012),

gas hydrate-filled fractures (Cook et al., 2010), and hydraulic conductivity in bog

peats (Beckwith et al., 2003a,b).

Recently, Winchen et al. (2009) presented a synthetic modelling study that in-

vestigated whether information on subsurface structure can be obtained from the

anisotropy in effective complex electrical resistivity. For this, they simulated the

effective complex electrical resistivity in two perpendicular directions for bimodal

heterogeneous distributions of two isotropic materials that have different complex

resistivity that can be described by the Cole-Cole model (Cole and Cole, 1941;

Pelton et al., 1978). They found an empirical relationship between the mixing

parameter (α) of a power averaging model (McCarthy, 1991) to describe the ef-

fective complex electrical resistivity and the correlation length ratio of the two

semivariogram models that were used to generate the bimodal distribution. Fi-

nally, they showed that the correlation length ratio can be inversely estimated from

the effective complex electrical resistivity in two directions (i.e. the anisotropy).

Although these results were promising, they were obtained in a synthetic mod-

elling study and it is not evident that these findings also apply to laboratory or

field measurements of complex electrical properties.
3
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1.2.2 Macropore Preferential Flow

Accurate predictions of both flow and solute transport processes in the vadose

zone are required to appropriately address problems of groundwater contamina-

tion and to predict the replenishment of limited groundwater resources. In this

context, macropore preferential flow processes are of considerable importance be-

cause they can quickly transport water and contaminants from the surface to the

groundwater. The importance of water flow and solute transport in macropores

has been shown in a range of field studies (Beven and Germann, 1982; Flury et al.,

1994; Ghodrati and Jury, 1992), and the mechanisms of preferential macropore

flow have been elucidated in laboratory studies (Allaire et al., 2002a,b; Buttle

and Leigh, 1997). In his review paper, Jarvis (2007) extensively discussed the

causes and consequences of non-equilibrium flow in macropores, and he provided

an overview of natural and anthropogenic factors that control the potential for

non-equilibrium water flow in soils. To quantify the importance of preferential

flow processes, accompanying models are required to describe the dynamics of the

processes that occur during water movement (Castiglione et al., 2003; Feyen et al.,

1998; Gerke, 2006; Greco, 2002; Köhne et al., 2009a,b; Lamy et al., 2009; Šimůnek

et al., 2003).

Since macropore preferential flow is controlled by several factors such as the ge-

ometry of the pore structure, their size, and flow patterns, different methods have

been used to investigate preferential flow. Allaire et al. (2009) reviewed several

techniques to investigate preferential flow in the laboratory and field and differenti-

ated between destructive and non-destructive methods. The most commonly used

destructive method to investigate preferential flow paths is the use of dye tracers

in the field (Flühler et al., 1996; Flury et al., 1994). Destructive characterization

of macropore structure has also been achieved by filling the macropore with liq-

uids that harden after some time (i.e. skeletisation of macropores). Skeletisation

has been attempted with epoxy resin (Moran and McBratney, 1992a,b; Vervoort

et al., 2003), paraffin wax (Meadows et al., 2005; Zaher et al., 2005), plaster of Paris

(FitzPatrick et al., 1985), and latex (Abou Najm et al., 2010; Garner, 1953).

Laboratory investigations of macropore preferential flow have often used artifi-

cial macropores because such pores have some advantages over undisturbed field

soil columns when the focus is on the elucidation of non-equilibrium water flow

in macropores. For example, the well-known geometry of artificial macropores al-

lows studying the effect of soil surface sealing on macropore flow (Ela et al., 1992).

Furthermore, the easily constructed macropore-matrix profile allows performing

different types of flow experiments, such as drainage, upward flow, and infiltration
4
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experiments (Köhne and Mohanty, 2005). Luo et al. (2008) emphasized the im-

portance of pore connectivity for macropore flow and found that many macropores

are discontinuous from the top to the bottom of the soil profile, which means that

these dead-end macropores are not effective for flow processes. Flow experiments

with artificial macropores circumvent complications due to such dead-end macro-

pores, and allow investigating macropore flow processes with a guaranteed pore

connection between the surface and profile end.

Destructive methods are suitable to characterize structures of macropores, but

obviously they are of limited value for investigating dynamic flow processes as-

sociated with macropores. Non-invasive methods that have been used to investi-

gate and image macropore preferential flow processes are X-ray tomography (Luo

et al., 2008, 2010; Mooney and Morris, 2008; Vanderborght et al., 2002), photo-

emission scanning (Perret et al., 2000), neutron imaging (Kaestner et al., 2008),

and magnetic resonance imaging (Bechtold et al., 2011; Haber-Pohlmeier et al.,

2010; Simpson et al., 2007). Although promising, these methods are restricted

to investigations of dynamical flow processes associated with macropores in lab-

oratory soil columns only, and some limitations exist that hinder their usability.

For example, most of these methods rely on small sample sizes that may not be

representative of field-scale processes. In addition, most of these methods are very

costly, inaccessible, and difficult to transfer from the laboratory to the field.

Electrical resistivity measurements may provide a suitable alternative because they

are able to cover sample sizes ranging from laboratory columns to entire fields.

Recently, Moysey and Liu (2012) studied if macropore activation can be detected

using electrical resistivity measurements. They used saturated soil samples and

made electrical resistivity measurements using a Wenner array configuration with

30 mm electrode spacing. To create artificial macropores, they inserted 75 non-

conducting rods vertically into the soil samples. These rods were sequentially

removed and the apparent resistivity was measured after each rod removal. They

found that an increase of macropore porosity by 4 % decreased the apparent

resistivity by up to 30 %. They concluded that resistivity monitoring is a viable

approach for detecting the onset of macropore flow in field studies. Although the

study of Moysey and Liu (2012) presented first promising results, infiltration and

the exchange of water between the macropore and the matrix domain was not

considered in their fully saturated samples. In unsaturated soils, activation of

macropores is expected to create a dynamic change in the apparent resistivity. In

a series of recent publications, Greve et al. investigated preferential flow in cracked

soils using the anisotropy of electrical resistivity in the horizontal plane measured

with square-electrode configurations (Greve et al., 2010a,b, 2012b). The work of
5
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Greve et al. (2012b) nicely showed that electrical resistivity measurements may be

an appropriate tool to investigate flow processes in soils with dynamic changes in

soil cracking. However, they did not consider electrical anisotropy in the vertical

plane, which is also expected to vary because of the presence of time-stable resistive

(air-filled) or conductive (water-filled) macropores.

Interestingly, electrical resistivity distributions can be determined using ERT. The

principle of ERT is to use many different combinations of electrical current injec-

tion in two electrodes and electrical potential measurements in two other electrodes

to obtain information about the subsurface electrical resistivity distribution using

inversion. ERT has been used to monitor field-scale drainage and infiltration pro-

cesses (Daily et al., 1992; Garré et al., 2011; Glass et al., 2002; LaBrecque et al.,

2002; Michot et al., 2003), solute transport processes at different scales ranging

from laboratory soil columns (Binley et al., 1996a,b; Olsen et al., 1999; Slater

et al., 2002), lysimeters (Garré et al., 2010; Koestel et al., 2009a,b), up to the field

scale (Binley et al., 2002; Deiana et al., 2008; Garré et al., 2013; Oberdörster et al.,

2010). The reader is referred to the review paper of Samouëlian et al. (2005) for a

comprehensive description of the use of ERT in soil science and an overview of the

main advantages and limitations of ERT in 1D-, 2D-, and 3D surveys. The state-

of-the-art of ERT inversion also referred to as ERT imaging is nicely introduced

in the recent review of Loke et al. (2013).

ERT has also been used to study the importance of preferential flow in cracking

soils. For example, Jones et al. (2012) used ERT to map the crack network in

soil. In addition, ERT has been used to monitor seasonal changes in soil due to

swelling and shrinking on a flood embankment (Jones et al., 2014), and to investi-

gate the relationship between soil cracking and water irrigation events in the root

zone (Greve et al., 2012a). Furthermore, Slater et al. (1997) used cross-borehole

ERT measurements to map preferential flow pathways in limestone environment.

Finally, Nimmer et al. (2007) used both cross-borehole and surface ERT mea-

surements to monitor the dilution of a conductive potassium chloride plume in a

fractured rock environment.

However, researchers have typically applied isotropic ERT inversion (e.g. Bech-

told et al., 2012; Coscia et al., 2012; Doetsch et al., 2012; Günther et al., 2006;

Vanderborght et al., 2005; Wagner et al., 2013) to image dynamic changes in soil

properties so far, and very few attempts have been made to consider anisotropy

in soil electrical resistivity although this may provide information about lateral

and vertical variation in soil characteristics and preferential flow processes. Pain

et al. (2003) and Herwanger et al. (2004) presented anisotropic resistivity inver-

sion methods to estimate heterogeneous distributions of anisotropic electrical re-
6
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sistivity. Furthermore, Kenkel et al. (2012) developed 2D anisotropic complex

conductivity inversion and Schmoldt and Jones (2013) nicely illustrated how in-

terpretation of anisotropic 1D- and 2D inversion of magnetotelluric data can be

used to obtain orthogonal geological strike directions.

1.3 Thesis Objectives and Outline

The key question that this thesis addresses is: how to derive information from

the anisotropy of electrical properties for the characterization of heterogeneous

sediment structures and preferential flow processes? In order to answer this ques-

tion, we formulated the following sub-objectives that will be addressed in three

Chapters:

1. Experimentally validate the theoretical findings of the synthetic modelling

study by Winchen et al. (2009) that showed how information on soil hetero-

geneity can be obtained from the anisotropy in electrical resistivity.

2. Evaluate whether dynamical changes in the anisotropy of electrical resistivity

can be used to identify the existence of flow in macropores and to characterize

the exchange between macropores and bulk soil.

3. Explore whether time-lapse ERT imaging instead of direct measurement of

horizontal and vertical resistivity can provide valuable information with high

resolution in space and time that allows analyzing preferential flow processes

associated with macropores.

The remaining of the thesis is organized as follows. Chapter 2 experimentally val-

idates the modelling study of Winchen et al. (2009) that showed that information

on soil heterogeneity can be obtained from the anisotropy in electrical resistivity.

In particular, the anisotropy of heterogeneous bimodal facies distributions of two

isotropic materials packed in a measurement cell is determined in the mHz to

kHz frequency range. Subsequently, the ratio of correlation lengths that describe

the structure of the sediment is estimated directly from the complex electrical

resistivity measurement in two directions (i.e. the electrical anisotropy).

Chapter 3 addresses anisotropy in electrical resistivity during a water infiltration

experiment in artificial macropore. First, a synthetic modelling study is presented

that investigates the dynamical changes in the anisotropy of electrical resistivity.

For this, a coupled hydrological-electrical model to describe the effect of prefer-

ential flow on electrical properties is developed and validated by simulating water

content distributions in 2D using HYDRUS code and converting water distribu-
7
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tions to resistivity distributions to monitor the temporal developments of effective

complex electrical resistivity in horizontal and vertical direction in 3D using MAT-

LAB software. To evaluate the temporal development changes in the anisotropy of

electrical resistivity in the laboratory, an infiltration experiment for a soil column

with artificial macropore is performed and the electrical impedances in horizontal

and vertical direction is measured using the EIT system.

Chapter 4 deals with imaging of macro-anisotropy in electrical resistivity during

water infiltration in an artificial macropore in a Hele-Shaw tank. Time-lapse elec-

trical resistance measurements using a very fast ERT system are made during

water infiltration. The electrical resistance data are inverted for anisotropic elec-

trical resistivity using an inversion grid that is substantially coarser than the size

of the macropore. This results in resistivity images in two perpendicular (X- and

Z-) directions that are used to calculate macroscopic electrical anisotropy.

Finally, Chapter 5 summarizes the overall conclusions of this thesis. Recommen-

dations to address the drawbacks and limitations that have been identified here

will be made. Last but not least, an outlook is provided to guide future work

towards field applications that build on the laboratory investigations presented in

this thesis.

8



Chapter 2

USING ELECTRICAL

ANISOTROPY FOR

SUB-SCALE STRUCTURAL

CHARACTERIZATION OF

SEDIMENTS: AN

EXPERIMENTAL

VALIDATION STUDY1

In the previous Chapter 1, we presented a general introduction and literature

background of topics that are covered in this thesis. In particular, a synthetic

modelling study was discussed where information on soil heterogeneity was ob-

tained from the anisotropy in electrical resistivity. The objective of this Chapter

(2) is to experimentally validate the findings of this synthetic modelling study. In

order to do so, we develop a new measurement procedure to determine the effective

complex electrical resistivity from a set of current injections and potential mea-

surements on a heterogeneous distribution. A synthetic modelling study will be

presented that confirms that this new measurement procedure is able to reproduce

the results of the previous study that showed how the electrical properties and the

correlation length ratio of bimodal distributions of two materials can be obtained

1Adapted from Al-Hazaimay S., J.A. Huisman, E. Zimmermann, and H. Vereecken. Using
electrical anisotropy for structural characterization of sediments: An experimental validation
study. Manuscript submitted to Near Surface Geophysics.
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from the effective complex electrical resistivity measured in two perpendicular di-

rections. After validation of the new measurement approach, measurement results

will be presented for two bimodal distributions in a 2D measurement cell. It will

be shown that the newly developed measurement strategy is able to estimate the

electrical properties, the volume fraction, and the correlation length ratio with

good accuracy from complex resistivity measurements in two directions.

2.1 Measurements

2.1.1 Electrical Impedance Measurements

Figure 2.1 shows the EIT system and its components that were used in this study

(Zimmermann et al., 2008b). We used the principle of four-point electrode con-

figurations, where two electrodes were used for current injections and two other

electrodes were used for potential measurements. The EIT system consists of a

function generator (Agilent 33120A) that produces a sinusoidal input signal with

a frequency ranging from 10−2 Hz to 10+4 Hz and a peak-to-peak voltage of 10

V . Multiplexer cards select the two predefined active channels for current injec-

tion. For current measurement and correction, two shunt resistors are used that

are both connected to the ADC cards. Electrode modules with amplifiers and

relays are used to minimize the electrical load at the electrodes. Each electrode

module is connected to an ADC for potential measurements. The EIT measure-

ment system has 40 channels that can be used for current injections and potential

measurements. In each measurement step, two channels are used to inject current

and thirty-eight channels are used to measure the electrode voltages relative to

ground. Potential differences between electrodes are calculated for the four-point

electrode configurations of interest a posteriori. Electrode cables with a fixed

length of 5000 mm were used to connect the electrode modules to the EIT system

using electrode terminals (RJ45-Cat5e). A LabVIEW program is used to control

the function generator and the ADC cards and to acquire and store the output

voltage. A custom-made MATLAB library is responsible for post-processing of

the measurements.

10
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Frequency generator

Measurement PC with
ADC cards

Multiplexer cards and
twisted pair cables

Twisted pair cables
with electrode modules

Figure 2.1: Components of the EIT system (MEDUSA-2) of Zimmer-
mann et al. (2008b).

2.1.2 Experimental Setup

We used a square 2D measurement cell (Figure 2.2) with a side length of 480 mm

and a height of 50 mm. Ten electrodes were equally spaced along each side with

a separation of 45 mm from each other and with a separation of 37.5 mm from

the corners of the cell. The electrodes were made of silver wires with a diameter

of 1.5 mm and extended along the entire height of the measurement cell so that

2D electrical current flow can be assumed.
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Figure 2.2: 2D measurement cell showing dimensions and electrode po-
sitions (numbers 1 to 40).
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We used two different materials to create bimodal heterogeneous distributions in

the measurement cell. For material A, we selected a combination of sand (F36,

Quarzwerke Frechen GmbH, Frechen, Germany) with a mean grain size of 0.16

mm and 3 % by weight of activated charcoal (Merck KGaA, Darmstadt, Germany)

with particle sizes ranging from 0.3 mm to 0.5 mm. For material B, we used the

same sand and added 10 % by weight of bentonite (EDASIL Agrimont GmbH,

Abensberg, Germany) with a mean grain size of 63 μm. We selected these two

materials because they were expected to show a strong contrast in the frequency-

dependent complex resistivity. To determine the actual complex resistivity of

material A and B, we used the SIP system of Zimmermann et al. (2008a) with

a cylindrical measurement cell with porous bronze current electrodes and non-

polarizable potential electrodes with ceramic tips (more details in Breede et al.,

2011). The measured resistivity magnitude and phase angle are shown in Figure

2.3.

ρ
Ω

φ

Figure 2.3: Resistivity magnitude (left) and phase angle (right) spectra
showing the individual responses of the measured (dots) and
fitted (lines) complex resistivity of material A (blue) and B
(red).

The complex resistivity (ρ, Ω.m) of material A and B was described with a Cole-

Cole model:

ρ(ω) = ρ0

[
1−m

(
1− 1

1 + (iωτ)c

)]
(2.1)

where ω (rad s−1) is the angular frequency (2πf), f (Hz) is the frequency, ρ0

(Ω.m) is the DC resistivity, m is the chargeability, τ (s) is the relaxation time,

and c is the Cole-Cole exponent. The Cole-Cole parameters for each material
12
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were obtained by manually fitting Equation 2.1 to the measured spectra shown

in Figure 2.3. The fitted complex resistivity is also shown in Figure 2.3 and the

Cole-Cole parameters are provided in Table 2.1. It can be seen that material A

is more resistive with a relatively strong polarization peak in the mHz range,

and that material B is more conductive with a relatively weaker polarization peak

in the kHz range. Because of the use of a single Cole-Cole model, the high-

frequency increase in polarization associated with Maxwell-Wagner polarization

and the effect of the electrode contact impedance (see Breede et al., 2012) is not

well captured.

Table 2.1: Cole-Cole parameters obtained by fitting Equation 2.1 to SIP
spectra plotted in Figure 2.3.

Parameter Material A Material B

ρ (Ω.m) 74 40
m 0.34 0.29

10τ (s) 1 -3.50
c 0.50 0.30

Two bimodal distributions of material A and B were experimentally investigated in

the measurement cell (Figure 2.4). The first distribution (dist7030) had a volume

fraction (f) of 0.7 for material A and 0.3 for material B. We used the following

procedure to pack the measurement cell with material A and B. In a first step,

material A was prepared by mixing F36, charcoal, and NaCl solution with weights

that are presented in Table 2.2. The electrical conductivity of the NaCl solution

was 500 µS cm−1 at 20◦C. Material A was packed by adding eight spoons at a

time to the measurement cell, stirring the saturated material, and firm pressing

to avoid collecting air bubbles. Next, material B was prepared by mixing F36,

bentonite, and NaCl solution with the same electrical conductivity with weights

that are presented in Table 2.2. Material B was packed in the measurement cell by

removing 60x20x20 mm stripes from material A, adding four spoons of material

B to the cavities thus created, stirring the material, and applying light pressure to

remove air bubbles and to assure good contact at the interface between material

A and B.

The second distribution (dist5050) had equal volume fractions of 0.5 for material

A and B, which were prepared and packed in the same manner as material A in

dist7030 with the weights provided in Table 2.2. A thin plastic ruler with a length

of 480 mm was positioned at the interface between material A and B to ensure

material separation during the packing procedure. The ruler was removed after

packing, and both materials were slightly compressed to establish contact between

materials A and B.
13
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Table 2.2: Material weights used to prepare material A and B in distri-
bution dist5050 and dist7030.

Material A Material B
Distribution F36 (g) charcoal (g) NaCl (cm3) F36 (g) bentonite (g) NaCl (cm3)

dist5050 4975 154 1260 1978 220 540
dist7030 3620 112 900 3359 373 900

Figure 2.4: Top: Distribution dist7030 (left) and dist5050 (right) show-
ing the arrangement of material A (dark) and B (light) in
the measurement cell. Bottom: Distribution sim7030 (left)
and sim5050 (right) showing the arrangement of material A
(blue) and B (red). Black dots show the position of the elec-
trodes.
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2.1.3 Electrical Anisotropy Measurements

To determine the anisotropy in effective complex electrical resistivity for the bi-

modal distributions shown in Figure 2.4, we performed electrical measurements

in two directions. In a first step, we injected current in one direction through

one pair of electrodes (e.g. 1-30 in Figure 2.2) and measured potential differences

through all other pairs in the same direction (e.g. 2-29, 3-28, ..., 10-21). This

procedure resulted in nine potential difference values for one current injection. In

a second step, we injected current through a second pair of electrodes (e.g. 2-29).

Again, we measured potential differences in all other pairs of electrodes (e.g. 1-30,

3-28, ..., 10-21). We repeated this process by injecting current for the rest of all

electrode pairs in a particular direction (e.g. 3-28, 4-27, ..., 10-21). In total, this

resulted in 90 potential difference values in a particular direction. This procedure

was repeated for the perpendicular direction (e.g. current injection in electrodes

11-40, 12-39, etc.) to obtain a second set of 90 potential difference values. The

derivation of the effective complex electrical resistivity (section 2.2.3) in both di-

rections from these two sets of measurements is discussed after the introduction

of the simulation studies.

2.2 Simulations

2.2.1 Forward Problem

In the forward problem, we calculated electrical impedances associated with the

four-point electrode configurations described above using a FEM as described in

literature (Murai and Kagawa, 1985; Zimmermann, 2010). Poisson’s Equation was

solved for electrical potential distribution for a given current injection assuming

an isotropic 2D electrical resistivity distribution:

∂

∂x

(
1

ρ∗
∂ϕ

∂x

)
+

∂

∂y

(
1

ρ∗
∂ϕ

∂y

)
= Iδ(x− x0)δ(y − y0) (2.2)

where ϕ (V ) is the electrical potential distribution, I (A) are point current sources

with coordinates (x0, y0) in m, and δ is a Dirac-delta function. Equation 2.2

was solved for the electrical potential distribution using the FEM method and an

appropriate set of boundary conditions (Dirichlet and Neumann boundaries).
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2.2.2 Heterogeneous Distributions for Synthetic Mod-

elling

Bimodal heterogeneous distributions were created on a rectangular 100x100 grid

using the SISim algorithm from GSLib (Deutsch and Journel, 1998). The semi-

variograms used to create these heterogeneous distributions varied with respect

to the volume fraction of material A and B and also considered anisotropy in

the correlation lengths in x- and y- direction. In total, we created 247 bimodal

distributions with 13 correlation length ratios ranging from 1 to 7 in x-direction

while a value of 2 was considered in y-direction, and 19 volume fractions for ma-

terial A ranging from 0.05 to 0.95. In addition, we considered the two bimodal

distributions shown in Figure 2.4. Figure 2.5 shows a selection of the generated

bimodal distributions for three volume fractions of material A (0.05, 0.30, and

0.50) and selected correlation length ratios (1 [2-2], 2.5 [5-2], 4.5 [9-2], 6 [12-2],

and 7 [14-2]). The same set of current injections and potential measurements

described above was then simulated in two perpendicular directions for the 247

bimodal distributions. The derivation of the effective complex electrical resistivity

in both directions from these two sets of measurements is described next.

Figure 2.5: Exemplary bimodal distributions generated using the SISim
algorithm. The volume fraction of material A (blue) is 0.05
(top), 0.30 (middle), and 0.50 (bottom) row, respectively.
From left to right column, the correlation length ratio be-
tween x- and y-direction increases.
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2. Heterogeneity in Subsurface Structures

2.2.3 Derivation of Effective Complex Electrical Resis-

tivity

In their synthetic modelling study, Winchen et al. (2009) determined the effective

complex electrical resistivity by applying constant potentials at two sides of the

domain, and determining the amount of current flow across the bimodal distribu-

tion. Such a method is possible in simulation studies, but cannot be used in a

verification study with actual measurements. Therefore, we developed a new ap-

proach to estimate the effective complex electrical resistivity from a set of current

injections and associated potential measurements obtained using point electrodes.

The challenge here is to transform the original dataset in such a way that constant

potentials at the two opposite borders can be assumed.

sample
Iin Iout

U

Figure 2.6: Simple electrical circuit with current flow I and potentials U
across a sample.

Consider the electrical impedance (Z) of a simple circuit (Figure 2.6), which can

be calculated according to:

ZI = U (2.3)

where U (V ) is the voltage, and I (A) is the current. Equation 2.3 can be refor-

mulated for a set of n current injections and m potential measurements:

[∑
n

Zm,nIn

]
= Um (2.4)

in the next step, we want to reformulate Equation 2.4 to obtain a constant (ar-

bitrary) voltage U at the two opposite boundaries of the domain. For this, we

introduce the weighting vector wn and the unity matrix Em:

[∑
n

Zm,nInwn

]
=
[
Em

]
U (2.5)

using matrix notation and some manipulation, Equation 2.5 can be rewritten
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as:

[
Zm,n

][
diag

(
In
)][

wn
]

=
[
Em
]
U (2.6)

[
wn
]

=

([
Zm,n

][
diag

(
In
)])−1[

Em
]
U (2.7)

we now calculate the effective current across the domain using:

I =
[
In
]T [

wn
]

(2.8)

and the effective impedance can then be calculated using:

Z = U/I (2.9)

the effective complex electrical resistivity can be calculated from this impedance

using:

ρ∗eff =
ZA

l
(2.10)

where A (m2) is the cross-sectional area of the sample, and l (m) equals the side

length of the simulation or measurement domain.

In order to accurately calculate I and Z using the procedure outlined above, one

would need to know the voltage at all electrodes including the current electrodes.

Unfortunately, the voltages at the current electrodes cannot be determined accu-

rately because of the unknown contact impedance. To overcome this problem, we

introduce a constant correction factor k to compensate for the missing voltage at

the current electrodes:

Iest =
[
In
]T [

wn
]
k (2.11)

where Iest is the estimated current flow across a heterogeneous distribution for

a given constant voltage difference. Iest can be used to calculate the effective

impedance and complex resistivity using Equation 2.9 and 2.10, respectively. In

order to estimate k, we simulated 90 potential measurements following the pro-

cedure described above for homogeneous models of material A and B using the

parameters provided in Table 2.1. An almost perfect correspondence between pre-
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2. Heterogeneity in Subsurface Structures

scribed and estimated effective complex electrical resistivity was obtained when

the value of k was 0.744 (Figure 2.7).

ρ
Ω

φ

Figure 2.7: Resistivity magnitude (left) and phase angle (right) spectra
of the known (dots) and estimated (lines) complex resistivity
of a homogeneous model of material A (blue) and B (red).

2.2.4 Estimation of Correlation Length Ratio from Ef-

fective Complex Electrical Resistivity

To estimate the correlation length ratio from the effective complex electrical re-

sistivity in two directions, we applied the inversion approach of Winchen et al.

(2009). This inversion relies on a power averaging model to relate the resistivities

of the two materials, the volume fraction f, and the effective complex electrical

resistivity:

(
1

ρ∗eff

)α

= f.

(
1

ρA

)α

+ (1− f).

(
1

ρB

)α

(2.12)

where ρA and ρB (Ω.m) are the complex resistivity of material A and B de-

scribed using Cole-Cole parameters of Equation 2.1, and α is the mixing parame-

ter. Winchen et al. (2009) showed that the mixing parameter was related to the

correlation length ratio by:

α = a + b.

(
ξ‖
ξ⊥

)c

(2.13)

where a, b, and c are empirical constants whose values are -1.07, 0.86, and 0.32,
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2.3. Results and Discussion

respectively, and ξ‖ and ξ⊥ are correlation length in two perpendicular directions.

To estimate the correlation length ratio from effective complex electrical resistivity,

the power averaging model in combination with the empirical Equation for α was

fitted to the effective complex electrical resistivity determined in two directions.

This was achieved by varying the Cole-Cole parameters of the two materials, the

volume fraction, and the correlation length ratio using the SCE algorithm (Duan

et al., 1993), which is a global optimization algorithm that combines stochastic

and deterministic search approaches to minimize the following OF:

OF =
∑
ω

(
<(ρωTrue − ρeff (f, α, ρA, ρB))

<(ρωTrue)

)2

+
∑
ω

(
=(ρωTrue − ρeff (f, α, ρA, ρB))

=(ρωTrue)

)2

(2.14)

where ρωTrue (Ω.m) is the simulated or measured effective complex electrical resis-

tivity, and ρeff (Ω.m) is the effective complex electrical resistivity calculated by

the power averaging model using the resistivity of both materials, volume frac-

tion, and the mixing parameter estimated from the correlation length ratio. Table

2.3 shows the lower and upper bounds that were used in the SCE algorithm to

evaluate Equation 2.14:

Table 2.3: Lower and upper limits of Cole-Cole parameters, volume frac-
tion, and correlation length ratio used in the SCE algorithm
to evaluate the OF (Equation 2.14).

Parameter
ρ (Ω.m) m 10τ (s) c f (%) correlation length ratio

Lower 1 0.1 -3 0 0.01 1
Upper 1000 0.5 5 1 0.99 10

2.3 Results and Discussion

2.3.1 Validation of Approach to Estimate the Effective

Complex Electrical Resistivity

The approach to estimate the effective complex electrical resistivity from a set of

current injections and potential measurements relies on an empirical correction

factor k with a value of 0.744 that was derived from simulations for homogeneous

distributions of material A and B. To test whether this value of k is also valid

for heterogeneous distributions, we estimated the effective complex electrical re-
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2. Heterogeneity in Subsurface Structures

sistivity in two directions from a set of simulated current injections and potential

measurements for the sim5050 distribution because an analytical solution is known

for such a layered distribution (α = 1 and -1 in Equation 2.12). Figure 2.8 presents

the estimated effective complex electrical resistivity for the sim5050 distribution

and the complex resistivity of material A and B. As already discussed by Winchen

et al. (2009), the phase values are more influenced by material B when measure-

ments are made parallel to the layering than the phase values for a measurement

perpendicular (i.e. in series) to the layering at low frequencies. At high frequen-

cies, the phase values are more influenced by material A for the measurements that

are made perpendicular to the layering. It is important to realize that it is this

frequency-dependent behavior of the effective complex electrical resistivity that

allows estimating the Cole-Cole parameters, volume fraction, and the correlation

length ratio. In particular, the estimation of the correlation length ratio would not

be possible from the effective DC resistivity in two directions only (Winchen et al.,

2009). The comparison of the known and estimated effective complex electrical re-

sistivity for the sim5050 distribution in Figure 2.8 clearly shows that the correction

factor determined for a homogeneous material also provides accurate estimates of

the effective complex electrical resistivity of heterogeneous distributions. In series

direction, the estimated effective complex electrical resistivity matches the known

(analytical) solution very well. In parallel direction, the simplifying assumptions

made in the derivation of Equation 2.5 to 2.11 resulted in a minor deviations

from the expected effective complex electrical resistivity. However, we consider

these deviations to be small compared to other uncertainties in this study, such

as variability introduced by sample preparation.
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ρ
Ω

φ
Figure 2.8: Resistivity magnitude (left) and phase angle (right) spectra

of the known (dots) and estimated (lines) effective complex
electrical resistivity in series (blue) and parallel (red) for dis-
tribution sim5050. Material A (black) and B (green) showing
the individual responses of Cole-Cole model.

To investigate how the minor deviations between the known and estimated effective

complex electrical resistivity shown in Figure 2.8 affect the inverted parameters,

the estimated effective complex electrical resistivity in two directions was used

in the inversion approach using Equations 2.12 and 2.14. Figure 2.9 shows the

estimated and fitted resistivity magnitude and phase angle spectra in series and

parallel direction of distribution sim5050. Clearly, the power-average model fits

the estimated effective complex electrical resistivity almost perfectly in both direc-

tions across the entire frequency range. Table 2.4 provides the known and fitted

parameters (ρA, ρB, f) of both materials. The fitted resistivity magnitude deviates

less than 1.1 Ω.m from the prescribed values for material A and B. The other fitted

parameters are in even better agreement with the prescribed values. Therefore,

we conclude that the newly developed measurement and interpretation strategy

provides accurate estimates of the effective complex electrical resistivity.
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ρ
Ω

φ

Figure 2.9: Resistivity magnitude (left) and phase angle (right) spectra
of the estimated (dots) and fitted (lines) effective complex
electrical resistivity in series (blue) and parallel (red) for dis-
tribution sim5050. Material A (black) and B (green) showing
the individual responses of Cole-Cole model.

Table 2.4: Prescribed and fitted Cole-Cole parameters and volume frac-
tion for distribution sim5050.

sim5050
Material A Material B

Parameter Prescribed Fitted Prescribed Fitted

ρ (Ω.m) 74 75.06 40 39.35
m 0.34 0.34 0.29 0.29

10τ (s) 1 0.99 -3.50 -3.51
c 0.50 0.50 0.30 0.30

f (%) 0.50 0.49 0.50 0.51

2.3.2 Simulation and Inversion Results

After establishing the validity of the new approach to estimate the effective com-

plex electrical resistivity, we now aim to reproduce the main findings of Winchen

et al. (2009) using simulations and inversions for a set of 247 bimodal distribu-

tions generated with SISim using different volume fractions and correlation length

ratios. Figure 2.10 shows a scatter plot of the prescribed (input) and fitted corre-

lation length ratio for all distributions. In accordance with Winchen et al. (2009),

there is a clear positive correlation between prescribed and fitted correlation length

ratio (r = 0.87) and the root mean square error is 99.8 %. The deviation between

prescribed and fitted correlation length ratio increases with increasing correla-

tion length ratio. Overall, the deviation between prescribed and fitted correlation
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2.3. Results and Discussion

length ratio follows a normal distribution with a mean value of -0.07 and a standard

deviation of 0.997. This suggests an almost unbiased estimate of the correlation

length ratio, which is in contrast to the results of Winchen et al. (2009) who

found a significant underestimation for high values of the prescribed correlation

length ratio. We attribute this difference to the use of small correlation length in

y-direction (see Figure 2.5), which ensures that the semivariogram of the SISim

realization is close to that of the prescribed semivariogram. In Winchen et al.

(2009), a wider range of values was used for the correlation length in y-direction,

and the observed underestimation of the correlation length ratio was attributed

to discrepancies of the actual and prescribed semivariogram for the SISim realiza-

tion that occurred because of the limited size of the simulation domain (100 by

100).
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Figure 2.10: Scatter plot of the prescribed and fitted correlation length
ratio obtained by inversion of the effective complex elec-
trical resistivity in two directions by minimizing Equation
2.14 for 247 distributions with varying Cole-Cole parame-
ters, volume fraction, and the correlation length ratio for
material A and B.

Figure 2.11 shows a scatter plot of the prescribed (input) and fitted volume fraction

of all distributions. Some deviations between prescribed and fitted volume fraction

can be observed between 0.3 and 0.75, in particular for small correlation length

ratios. However, the overall agreement is excellent (r = 0.99) and the root mean

square error value is low with a value of 3 %. The deviation between prescribed

and fitted volume fraction followed a normal distribution with a mean of -0.02

and a standard deviation of 0.024. The underestimation of the volume fraction by
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2. Heterogeneity in Subsurface Structures

values up to 0.1 reported by Winchen et al. (2009) could not be reproduced here

for reasons that were discussed earlier.
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Figure 2.11: Scatter plot of the prescribed and fitted volume fraction
obtained by inversion of the effective complex electrical re-
sistivity in two directions by minimizing Equation 2.14 for
247 distributions with varying Cole-Cole parameters, vol-
ume fraction, and the correlation length ratio for material
A and B.

The fitted Cole-Cole parameters for all simulated distributions are summarized

in Figure 2.12 and Table 2.5. Figure 2.12 shows histograms of fitted Cole-Cole

parameters and the fit of a Gaussian distribution based on the mean and standard

deviation reported in Table 2.5. On average, the prescribed Cole-Cole parameters

are accurately estimated in the inversion. However, there seems to be considerable

uncertainty in the estimation of the DC resistivity for both materials.
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ρ τ

Figure 2.12: Histogram plots of the minimization function of Cole-Cole
parameters. The upper row shows the parameter of mate-
rial A (left to right; ρdc, m, τ , and c) and the lower row
shows the parameter of material B (left to right; ρdc, m, τ ,
and c). The red curves are the fitted Gaussian distribution
using the values from Table 2.5.

Table 2.5: Prescribed and mean fitted Cole-Cole parameters of the 247
distributions that were inverted using Equation 2.14. std.
indicates the standard deviation of each parameter.

Material A Material B
Parameter Prescribed Fitted std. Prescribed Fitted std.

ρ (Ω.m) 74 73.41 16.157 40 41 6.925
m 0.34 0.34 0.016 0.29 0.29 0.019

10τ (s) 1 0.97 0.020 -3.50 -3.52 0.044
c 0.50 0.50 0.003 0.30 0.30 0.004

In a next step, we analyze the distribution sim7030 shown in Figure 2.4. This

distribution was created for ease of realization in an actual laboratory experiment

and does not strictly corresponds to a stochastic realization from a bimodal dis-

tribution as shown in Figure 2.5. Determination of the indicator variograms in x-

and y-direction showed that the expected correlation length ratio for the sim7030

is 6. We calculated the effective complex electrical resistivity in two perpendicular

directions and inverted for the volume fraction, correlation length ratio, and the

Cole-Cole parameters again. The fitted parameters are presented in Table 2.6 and

these parameters are in reasonable agreement with prescribed values. The fitted

correlation length of 7.39 is somewhat higher than expected from the semivar-

iogram analysis, and this may be related to the fact that the parameterization

of Equation 2.13 was derived from second-order stationary bimodal distributions

generated with SISim. Clearly, sim7030 deviates considerably from such a realiza-
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tion, and this may have affected the inversion results. Nevertheless, this synthetic

study shows that an experimental validation of the numerical findings presented

so far should be feasible using an actual realization of sim7030 (i.e. dist7030 in

Figure 2.4).

Table 2.6: Prescribed and fitted Cole-Cole parameters, volume fraction,
and correlation length ratio for distribution sim7030.

sim7030
Material A Material B

Parameter Prescribed Fitted Prescribed Fitted

ρ (Ω.m) 74 78.82 40 35.81
m 0.34 0.34 0.29 0.29

10τ (s) 1 1.01 -3.50 -3.47
c 0.50 0.49 0.30 0.30

f (%) 0.70 0.63 0.30 0.37
correlation length ratio 6 7.39 - -

2.3.3 Experimental Validation

For the experimental validation, material A and B were packed into the measure-

ment cell (dist5050) and electrical impedance measurements were performed in

two perpendicular directions using the EIT system. The effective complex electri-

cal resistivity in both directions was then calculated using the methodology that

was described earlier. Figure 2.13 shows the estimated effective complex electrical

resistivity magnitude and phase angle spectra in series and parallel direction of the

distribution dist5050. We ignored measurements higher than 1 kHz because of

the electromagnetic coupling effects and Maxwell-Wagner effects in this frequency

range (see Figure 2.3). Clearly, there is a marked similarity between the general

shape of the resistivity magnitude and phase angle spectra for the simulation re-

sults (Figure 2.9) and the actual measurements (Figure 2.13). The best fitting

model obtained in the inversion of the effective complex electrical resistivity for

the volume fraction and Cole-Cole parameters for material A and B (with α =

1 or -1) is also presented in Figure 2.13. In general, the fit is excellent and the

best fitting parameters (ρA, ρB, f) are presented in Table 2.7. In general, the

fitted Cole-Cole parameters are in reasonable agreement with those independently

determined using SIP measurements. The variation in inverted relaxation times

is within the range of values expected for different packing methods. There is a

considerable deviation in the estimated volume fraction, which was not observed

in the synthetic modelling studies. We found that the measured effective complex

electrical resistivity is very sensitive to sediment thickness (see Equation 2.10),
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and we suspect that the observed deviation in known and fitted volume fraction

is a result of variations in sediment thickness across the measurement cell.

Finally, the effective complex electrical resistivity for the distribution dist7030

was determined in two directions (see Figure 2.13). Again, the inversion approach

fitted the magnitude and phase of the effective complex electrical resistivity well

and the inverted parameters are also reported in Table 2.7. The fitted Cole-Cole

parameters are reasonably close to the expected values from SIP measurements

and the inversion of dist5050. In particular, the relaxation times of dist5050 and

dist7030 are reasonably close, which supports the notion that the observed differ-

ences in relaxation time can be related to differences in packing between SIP soil

columns and the measurement cell shown in Figure 2.2. Most importantly, the

fitted correlation length ratio of 7.89 is in good correspondence with the value ex-

pected from semivariogram analysis (6), and in even better correspondence to the

value obtained from the inversion of the synthetic data for sim7030 (7.39).
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Figure 2.13: Left: Resistivity magnitude (top) and phase angle (bottom)
spectra of the measured (dots) and fitted (lines) effective
complex electrical resistivity in series (blue) and parallel
(red) obtained for distribution dist5050. Right: Resistivity
magnitude (top) and phase angle (bottom) spectra of the
measured (dots) and fitted (lines) effective complex electri-
cal resistivity in series (blue) and parallel (red) obtained for
distribution dist7030.
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Table 2.7: Prescribed and fitted Cole-Cole parameters, volume fraction,
and correlation length ratio obtained for the measured distri-
bution dist5050 and dist7030.

Material A Material B
dist5050 dist7030 dist5050 dist7030

Parameter Prescribed Fitted Fitted Prescribed Fitted Fitted

ρ (Ω.m) 74 75.02 70.73 40 39.04 40.37
m 0.34 0.28 0.34 0.29 0.39 0.47

10τ (s) 1 0.70 0.76 -3.50 -4.77 -4.53
c 0.50 0.61 0.52 0.30 0.19 0.17

f (%)
0.50 0.33 - 0.50 0.76 -
0.70 - 0.56 0.30 - 0.44

correlation length - - - - - -
ratio 6 - 7.89 - - -

2.4 Conclusions

In this study, we estimated structural parameters describing heterogeneity from

measurements of the anisotropic effective complex electrical resistivity. We re-

produced the main findings of the synthetic modelling study of Winchen et al.

(2009), who estimated the correlation length ratio of semivariograms in x- and y-

direction from the effective complex electrical resistivity. In addition, we experi-

mentally validated the findings of Winchen et al. (2009).

In a first step, we have developed a new measurement strategy to determine the

effective complex electrical resistivity from current and potential measurements

with point electrodes on a heterogeneous distribution. This was required because

Winchen et al. (2009) used a simulation approach that could not be applied in an

experimental validation study. The newly developed measurement strategy was

tested in a synthetic study on bimodal distributions with known electrical and

structural properties, and we confirmed that the correlation length ratio could be

accurately estimated with a root mean square error of 100 % from the effective

complex electrical resistivity in two perpendicular directions. In addition, it was

shown that the electrical properties of both materials and their volume fraction

could be accurately estimated.

In a next step, the new measurement strategy was applied to actual heterogeneous

bimodal sediment distributions in order to estimate the Cole-Cole parameters of

both materials in addition to the volume fraction and correlation length ratio

from broadband measurements of the effective complex electrical resistivity. The

estimated Cole-Cole parameters were compared with independent parameters de-
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termined directly from reference measurements on both materials independently.

Despite differences in the packing procedure, the inverted Cole-Cole parameters

were in good agreement with those of the reference measurements. In addition,

the estimated correlation length ratio of the bimodal distribution obtained in the

experimental validation matched very well with the value obtained in the syn-

thetic study for the same distribution. It was concluded that anisotropy in the

effective complex electrical resistivity can provide information on the structural

properties of bimodal distributions, which is useful to obtain improved stochastic

descriptions of soil and aquifers.

On a more general level, the results presented here show how structural organiza-

tion of material properties can lead to anisotropy in the effective complex electrical

resistivity. Since soils and aquifers are known to be structurally organized across

a range of scales, the results of this study also highlight that anisotropy should

perhaps not be ignored, as is currently done in many applications of electrical

resistivity and impedance tomography. The development of reliable procedures

to interpret measurements of the effective complex electrical resistivity in a to-

mographic inversion framework that considers anisotropy should therefore be pri-

oritized in future work. Such tomographic inversions will provide images of the

anisotropy in effective complex electrical resistivity that may be interpreted in

terms of unresolved geological structures using the interpretation methods devel-

oped and validated in this study.
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Chapter 3

INVESTIGATING

PREFERENTIAL FLOW

PROCESSES IN SOILS USING

ANISOTROPY IN

ELECTRICAL RESISTIVITY1

In the previous Chapter 2, we presented a study to experimentally validate a syn-

thetic modelling study that showed how useful information on soil heterogeneity

can be derived from electrical anisotropy measurements. As argued earlier, elec-

trical anisotropy appears not only because of soil heterogeneity but can also be

caused by flow processes in macropores that are present in horizontal and vertical

direction in the vadose zone. Therefore, the objective of this Chapter (3) is to

evaluate whether dynamic changes in the anisotropy of electrical resistivity can be

used to identify water flow in macropores. Simulations and experiments will be

performed for infiltration in a soil column with an artificial macropore. In a first

step, 3D water content distributions associated with infiltration into the artificial

macropore will be simulated and the simulated temporal development of the resis-

tivity anisotropy will be obtained by solving the Poisson Equation after converting

the simulated water content distributions to electrical resistivity distributions. It

will be shown that the horizontal and vertical resistivity react differently to the

presence of the macropore, and that this leads to electrical anisotropy in the resis-

tivity. To verify the simulation results, we will also present measurements of the

1Adapted from Al-Hazaimay S., J.A. Huisman, E. Zimmermann, and H. Vereecken. Inves-
tigating preferential flow processes in soils using anisotropy in electrical resistivity. Manuscript
submitted to Vadose Zone Journal.
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temporal dynamics of the anisotropy in resistivity during water infiltration in an

artificial macropore.

3.1 Measurements

3.1.1 Electrical Measurements

The electrical resistivity measurements were made using the EIT system of Zim-

mermann et al. (2008b). We used the principle of four-point electrode config-

urations, where two electrodes were used for current injections and two other

electrodes were used for potential measurements. The EIT system consists of a

function generator (Agilent 33120A) that produces the sinusoidal input signal with

a frequency of 1 Hz and a peak-to-peak voltage of 10 V . Multiplexer cards select

the two active channels for current injection using predefined electrode configura-

tions. For current measurement and correction two shunt resistors are used. The

end of each resistor is connected to ADC cards. Electrode modules with amplifiers

and relays are used to minimize the electrical load at the electrodes. Each electrode

modules is connected to an ADC card for simultaneous measurements of all elec-

trode potentials. A LabVIEW program is used to control the function generator

and the ADC cards and to acquire and store the output voltage. A custom-made

MATLAB library is responsible for post-processing of the measurements.

Different types of electrodes were used for current injections and potential mea-

surements. To inject current, we used brass electrodes with a length of 86 mm

and a diameter of 5 mm. Electrodes were inserted into the column for infiltration

experiments (see Figure 3.1) using cable glands. The end of the current electrodes

was plane with the inner wall of the column. We installed the current electrodes

before soil material was packed in the column to ensure good electrical contact

during the infiltration experiment. To measure the potential difference, we used

non-polarizable electrodes that were described in detail by Breede et al. (2011).

These non-polarizable electrodes consist of a small tube made of PMMA with a

length of 210 mm and a diameter of 5 mm, and they are closed from both sides

by a cone-shaped porous ceramic at one end and a plug at the other end. The

PMMA tube was filled with the same water that we used in the infiltration ex-

periment. A silver wire with a diameter of 1 mm is located in the middle of the

PMMA tube and is fixed by the plug at the end of the electrode. The ceramic

cone is made of aluminum oxide with a diameter of 5 mm. The structure of the

electrodes allows insertion of the ceramic cone inside the column which provides
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good material contact without introducing polarization by the presence of metal

in the current flow pathways (Breede et al., 2011).

Matrix 9 cm

Macropore 2 cm

Z (cm)

10

20

30

40

E1

T1

E2

E7

E8

T2

T3

E3

E4E5

E6

y (cm)

x (cm)

brass electrode

tensiometer

non-polarizable electrode

Figure 3.1: (left) 2D vertical cross-section of the artificial macropore sur-
rounded by soil matrix showing locations of the electrodes
in vertical direction (E1, E2, E7, and E8) and tensiometers
(T1, T2, and T3). (right) Horizontal cross-section of the in-
filtration column showing the location of the electrodes in
horizontal direction (E3, E4, E5, and E6).

3.1.2 Soil Column with Artificial Macropore

Following the work of Köhne and Mohanty (2005), we built a soil column with an

artificial macropore (see Figure 3.1). The soil column was 400 mm high and had

an inner diameter of 90 mm. We used two different materials to prepare the matrix

and macropore domains. For the matrix domain, we selected a mixture of fine sand

(F34, Quarzwerke Frechen GmbH, Frechen, Germany) with a mean grain size of

0.2 mm and 10 % of silt-clay mixture (Mahlton FT-202r, SIBELCO Deutschland

GmbH, Ransbach-Baumbach, Germany) with a particle size distribution between

0.63 µm - 63 µm. This material will hereafter be referred to as the sand-clay

mixture. For the macropore domain, we selected coarse sand (FH31, Quarzwerke

Frechen GmbH, Frechen, Germany) with a mean grain size of 0.35 mm.

The following procedure was used to prepare the soil column with an artificial

macropore. First, we positioned a PMMA tube with an outer diameter of 20 mm

in the middle of the column and fixed its position. The diameter of the PMMA

tube was selected to create a macropore with a volume of 5 % of the entire soil

volume of the column. The sand-clay mixture that makes up the matrix domain

was prepared by adding 411 cm3 of tap water to 3600 g of sand-clay mixture. The
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conductivity of the tap water was 460 µS cm−1 at 20◦C. The matrix domain was

packed in layer increments of approximately 30 mm thickness by firm pressing.

For the macropore domain, 400 g of coarse sand was mixed with 6 cm3 of the

same tap water. The macropore was packed by pouring six small spoons of sand

in the PMMA tube, pulling up the PMMA tube, and compressing the sand using a

metal stick with a diameter that matched the inner diameter of the tube (16 mm).

The packing procedure resulted in an average bulk density of 1.63 g cm−3 and

1.64 g cm−3 for the matrix and macropore domain, respectively. The associated

porosities are 0.39 cm3 cm−3 and 0.38 cm3 cm−3 for the matrix and macropore

domain, respectively. The resulting water content was calculated from the weight

of the added water and was 0.16 cm3 cm−3 in the matrix domain and 0.05 cm3

cm−3 in the macropore domain. To monitor the temporal development of the

pressure head during infiltration, we installed three tensiometers at 320 mm, 200

mm, and 80 mm depth below the top of the column (T1, T2, and T3 in Figure

3.1).

The two materials used to prepare the matrix and macropore domain were selected

because their soil hydraulic properties (see Table 3.1) were approximately known

from previous studies (Bechtold et al., 2011; Breede, 2013). However, the pre-

viously reported hydraulic properties were not consistent with the known initial

water content and the measured initial pressure head distribution in the column.

This resulted in a significant mismatch between simulated and measured electrical

resistivity. Therefore, we adapted the hydraulic properties of both domains manu-

ally (Table 3.1) to match the initial water content and pressure head of the packed

material and the temporal development of the measured electrical resistivity and

anisotropy.

Table 3.1: Original and adapted hydraulic properties of the material of
matrix and macropore domain.

Macropore Matrix
Hydraulic properties Original Adapted Original Adapted

θs (cm3 cm−3) 0.4 0.4 0.349 0.4
θr (cm3 cm−3) 0.05 0.05 0.145 0.05
α (cm−1) 0.035 0.05 0.017 0.08

n 8 8 4.91 4.91
Ks (cm day−1) 3888 5500 3.96 21.5
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3.1.3 Electrical Anisotropy Measurements

To determine the anisotropy in electrical resistivity, we made measurements in

two directions (horizontal and vertical), as illustrated in Figure 3.1. To determine

the resistivity in vertical direction, the current electrodes were located at 360 mm

and 40 mm depth below the top of the column (E1 and E8 in Figure 3.1) and the

potential electrodes were located at 280 mm and 120 mm depth below the top of

the column (E2 and E7 in Figure 3.1). To determine the resistivity in horizontal

direction, the current electrodes (E3 and E6 in Figure 3.1) and potential electrodes

(E4 and E5 in Figure 3.1) were located around the circumference in the middle

of the column at 200 mm depth below the top of the column. The geometry

factors for the horizontal and vertical electrode configurations that are required to

convert the measured electrical resistance into electrical resistivity were obtained

from a measurement where the entire column was filled with water with a known

electrical resistivity. In this study, we define anisotropy, A, as:

A =
ρhorizontal
ρvertical

(3.1)

We used the following procedure to infiltrate tap water into the macropore domain

during electrical measurements. First, we inserted a PMMA tube with a length of

50 mm and an outer diameter of 20 mm to a distance of 15 mm in the macropore

domain and fixed its position. This tube ensured that water infiltration occurred

in the macropore domain only and avoided that water redistributed on the entire

surface of the column. A syringe pipette (Thermo Scientific) with a volume of

10 cm3 was used to create a constant head of 2.5 cm within the tube. Although

water moved in the vertical direction initially, lateral flow was observed on the

outside of the column in the final stage of the experiment. In total, 200 cm3 of tap

water was infiltrated in the macropore domain within about 8 minutes. Resistivity

measurements in horizontal and vertical direction were performed with a tempo-

ral resolution of 11 s during infiltration using the EIT system described above.

Resistivity measurements started 2 minutes before infiltration and continued for

195 minutes.
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3.2 Simulations

3.2.1 Simulation of Infiltration in Artificial Macrop-

ore

We simulated infiltration in an artificial macropore using the HYDRUS 2D/3D

code (Šimůnek et al., 2008), which solves the pseudo-three-dimensional axisym-

metric Richards’ Equation (Richards, 1931) that describes the movement of water

in porous media. Richards’ Equation is a combination of the continuity Equation

for water flow with the flow Equation of Buckingham-Darcy for unsaturated soils

and can be written as follows:

∂θ(h)

∂t
=

∂

∂x

[
K(h)

(
∂h

∂x

)]
+

∂

∂z

[
K(h)

(
∂h

∂z
+ 1

)]
(3.2)

where θ is the volumetric water content (cm3 cm−3), t is the time (day), z is the

vertical space coordinate (cm, positive upward), x is the radial coordinate (cm), h

is the pressure head (cm), and K is the hydraulic conductivity (cm day−1). To solve

Richards’ Equation, the water retention function θ(h), the hydraulic conductivity

function K(h), and the initial and boundary conditions need to be defined. In this

study, we used the MvG model (Mualem, 1976; van Genuchten, 1980) to describe

the water retention function and hydraulic conductivity function for h ≤ 0:

Se(h) =
θ(h)− θr
θs − θr

= 1 +
1

[1 + |αh|n]m
(3.3)

and

K(h) = KsSe(h)0.5
[
1− (1− Se(h)1/m)m

]2
(3.4)

with

m = 1− 1

n
(3.5)

in these Equations, Se is the effective saturation (-), Ks is the saturated hydraulic

conductivity (cm day−1), θr and θs are the residual and saturated water contents

(cm3 cm−3), respectively, α is related to the inverse of the air-entry pressure

(cm−1), and n is a measure of the width of the pore-size distribution.
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The model domain was based on the dimensions of the experimental setup pre-

sented above. Because of the axisymmetric approach, the domain extended 45 mm

in x-direction and 400 mm in z-direction (i.e. one half of the vertical cross-section).

Two vertical regions (see Figure 3.5) were created to represent the macropore (10

mm width) and the matrix domain (35 mm width) and these two regions were

parameterized with different soil hydraulic properties (Table 3.1). The model do-

main was discretized into 15000 nodes over the entire flow domain with a regular

grid spacing of 4 mm in vertical and 0.3 mm in horizontal direction. The pressure

head was initialized to -26 cm for all nodes based on tensiometer measurements

in the actual experiment. We used a time-variable boundary condition at the top

of the column across the width of the macropore. A pressure head of 2.5 cm

was applied for 6.77 minutes, after which the boundary condition was switched to

a no-flow boundary condition. This infiltration duration was selected to achieve

the same infiltration amount as in the actual experiment (200 cm3). All other

boundaries of the model domain were no-flow boundaries. Water infiltration and

redistribution was simulated for 43.2 minutes, and 41 water content distributions

at regular time increments of 1.08 minutes were subsequently selected to simulate

electrical resistivity measurements.

3.2.2 Petrophysical Model

To link water content distributions to electrical resistivity distributions, we used

the petrophysical relationship of Archie (1942):

1

ρ
= σ = Fσw(

θ

φ
)n (3.6)

where F denotes the formation factor, σw is the electrical conductivity of water

(S−1 m), n is the saturation exponent, θ is the volumetric water content (cm3

cm−3), and φ is the porosity (cm3 cm−3). The parameters of this petrophysical

model were estimated using TDR conductivity measurements (Bechtold et al.,

2010; Huisman et al., 2008) in variably saturated sample cores of both materials

using the same tap water as in the macropore infiltration experiment. Conduc-

tivity measurements obtained using TDR and the associated fit of Equation 3.6

are presented in Figure 3.2, and the fitted model parameters are reported in Table

3.2.
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σ

Figure 3.2: Electrical conductivity measurements made with TDR (dots)
on soil sample cores and the fitted Archie’s model (lines) for
sand-clay (blue) mixture and sand (red) material.

Table 3.2: Petrophysical parameters of the matrix and macropore do-
main from TDR electrical conductivity measurements on in-
dependently packed soil sample cores.

Archie’s parameters Macropore Matrix

n 2.1643 1.3394
F 3.2065 3.3059

φ (cm3 cm−3) 0.378 0.387
σw (μS cm−1) 460 460

3.2.3 Simulation of Anisotropy in Resistivity

The simulated electrical transfer resistance is obtained by solving the Poisson

Equation in 3D assuming an isotropic 3D electrical resistivity distribution. The

electrical potential distribution within a sample for a given current injection can

be obtained from:

∂

∂x

(
1

ρ∗
∂ϕ

∂x

)
+

∂

∂y

(
1

ρ∗
∂ϕ

∂y

)
+

∂

∂z

(
1

ρ∗
∂ϕ

∂z

)
= Iδ(x− x0)δ(y − y0)δ(z − z0) (3.7)

where ρ∗ is the complex electrical resistivity (Ω.m), ϕ is the electrical potential

distribution (V ), I are point current (A) sources with coordinates (x0, y0, z0)

in m, and δ is a Dirac-delta function. This Equation can be solved for the 3D

electrical potential distribution using a FEM and an appropriate set of boundary
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3. Preferential Flow Processes in Soils

conditions. We used a custom-made FEM implementation that solves the Pois-

son Equation in 3D following the approach of Murai and Kagawa (1985) using

MATLAB (Zimmermann, 2010).

The model domain used to simulate electrical current flow in 3D was based on the

dimensions of the experimental setup presented above. The height of the cylin-

drical model domain was 400 mm with a radius of 45 mm. It was discretized

into 44880 tetrahedral elements and 8651 nodal points. The simulated temporal

development of the electrical anisotropy was then obtained by simulating the hor-

izontal and vertical transfer resistance for the electrode configurations described

earlier. The required electrical resistivity distributions were obtained by relating

the simulated water content distributions of the water flow model domain in 2D

to the electrical flow model domain in 3D. This was achieved by searching the

nearest nodal points of the hydrological model for each element midpoint of the

electrical model. The electrical resistivity of each element was then calculated

using Equation 3.6 and the parameters provided in Table 3.2.

3.2.4 Anisotropy Sensitivity to Resistivity Contrast and

Macropore Volume Fraction

To test the sensitivity of the electrical anisotropy to the resistivity contrast be-

tween matrix and macropore domain and the macropore volume fraction, we per-

formed the following simulations. First, we selected three representative values for

the resistivity of the matrix domain: one for dry soil (3800 Ω.m), one for moist soil

(235 Ω.m; similar to the resistivity of the column with artificial macropore that

we used in this study), and one for a fully saturated soil (72 Ω.m). For each of

these three matrix domain resistivity values, seven resistivity values ranging from

10 Ω.m to 70 Ω.m were assigned to the macropore domain to represent infiltration

of water with different resistivity in an empty macropore. In addition, the vol-

ume fraction of the macropore was varied from 0.01 cm3 cm−3 to 0.05 cm3 cm−3

for each combination of resistivity values for the matrix and macropore domain.

Finally, sensitivity of the anisotropy to the electrical resistivity of the macropore

and matrix was investigated in more detail for a macropore volume fraction of

0.05 cm3 cm−3 by varying the macropore resistivity from 10 Ω.m to 500 Ω.m in

steps of 10 Ω.m for the dry, moist, and fully saturated matrix domain.
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3.3 Results and Discussion

3.3.1 Anisotropy Sensitivity to Resistivity Contrast and

Macropore Volume Fraction

Figure 3.3 shows the simulated electrical anisotropy for three resistivity values for

the matrix domain and a range of resistivity values for the macropore domain as

a function of macropore volume fraction. A simple conceptual model would be

that the presence of a conductive vertical macropore in a resistive matrix leads

to a lower vertical resistivity as compared to the horizontal resistivity, and there-

fore an anisotropy value larger than 1.0. This is indeed what we found in this

simple model sensitivity test. For example, when the matrix domain was dry

(e.g. high resistivity of 3800 Ω.m; see Figure 3.3(a)) and more conductive water

was present in the macropore (e.g. 70 Ω.m), an electrical anisotropy of 2.87 was

obtained for a macropore volume fraction of 0.05 cm3 cm−3. When more conduc-

tive water was present in the macropore, the electrical anisotropy increased up

to 10.33. With decreasing macropore volume fraction, the electrical anisotropy

decreased but remained high enough (>1.45) even for low macropore volume frac-

tions when sufficient contrast in resistivity between matrix and macropore domain

was present. Similar results were obtained for the moist (Figure 3.3(b)) and fully

saturated case (Figure 3.3(c)). However, the change in anisotropy was not as large

for the dry soil matrix due to the reduced contrast between matrix and macropore

domain. The electrical anisotropy ranged from 1.02 to 1.80 for the moist matrix

and from 1.00 to 1.16 for the fully saturated case.
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Figure 3.3: Anisotropy sensitivity test for (a) dry (ρ = 3800 Ω.m), (b)
moist (ρ = 235 Ω.m), and (c) fully saturated (ρ = 72 Ω.m)
matrix domain and seven resistivity values (see legend) of the
macropore domain as a function of macropore volume frac-
tion. ρM indicates the resistivity of the macropore domain.

Figure 3.4 shows a more detailed analysis of the dependence of the simulated

horizontal and vertical resistivity and the associated anisotropy on the matrix

and macropore resistivity for a macropore volume fraction of 0.05 cm3 cm−3.

Figure 3.4(a) and 3.4(b) confirm that the anisotropy was indeed considerably

larger than 1 when the contrast in resistivity of the macropore and matrix domain

was sufficiently high as is the case for the dry matrix. In the case of the moist

matrix (Figure 3.4(c) and 3.4(d)), anisotropy larger than 1.2 only occurred when

the macropore resistivity was below 30 Ω.m. For higher macropore resistivities,

the anisotropy was close to 1 even when the macropore resistivity was larger than

the matrix resistivity. In the case of the fully saturated matrix (Figure 3.4(e) and

3.4(f)), the simulated anisotropy was always smaller than 1.2 and a minimum of the

anisotropy was observed when the macropore domain was slightly less resistive (40-
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60 Ω.m) than the matrix domain (72 Ω.m). These simulation results show that the

simple conceptual model used earlier is not valid for small contrasts in macropore

and matrix resistivity. This is associated with the sensitivity distributions of the

electrode configurations used to measure the horizontal and vertical resistivity, as

was also pointed out by Moysey and Liu (2012).

The results of this sensitivity analysis have implications for the interpretation of

the electrical anisotropy associated with infiltration in the artificial macropore

used in this study. In contrast to more realistic field conditions, the artificial

macropore is filled with soil material in our experimental setup. This reduces

the contrast between matrix and macropore domain and the resulting anisotropy

values. Therefore, the modeling and experimental results for the artificial macro-

pore presented hereafter should be considered as a conservative representation of

anisotropy signals that can potentially be observed in the field.

3.3.2 Numerical Results

Figure 3.5 shows the simulated water content distributions for infiltration into the

artificial macropore. At time1, water infiltration was started and water quickly

moved vertically in the macropore domain. Some lateral flow into the soil ma-

trix was also simulated. When infiltration into the macropore stopped at time6,

the entire macropore was almost saturated. From time7 to time23, water redis-

tributed from the macropore into the matrix. After time23, the macropore was

completely dry again in the simulation and water only redistributed in the matrix

domain.
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Figure 3.4: Simulated horizontal (red) and vertical (blue) resistivity (a,
c, and e) and the associated anisotropy (b, d, and f) from (a
and b) dry (ρ = 3800 Ω.m), (c and d) moist (ρ = 250 Ω.m),
and (e and f) fully saturated (ρ = 72 Ω.m) matrix domain
as a function of the macropore resistivity for a macropore
volume fraction of 0.05 cm3 cm−3. ρM indicates the resistivity
of the macropore domain.
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Figure 3.5: Simulated water content distributions for infiltration into the
artificial macropore obtained using HYDRUS code.

Figure 3.6(a) shows the simulated horizontal and vertical electrical resistivity and

the associated anisotropy is shown in Figure 3.6(b). It is evident that the simulated

horizontal and vertical resistivity reacted differently because of the presence of the

macropore, which led to a pronounced temporal development of the anisotropy in

the resistivity. At the beginning of the experiment, the resistivity is high and a

small positive anisotropy (1.081) is present because of the presence of the empty

(‘deactivated’) macropore in the moist matrix. This anisotropy value larger than

one for a resistive macropore in a less resistive matrix is consistent with the re-

sults presented in Figure 3.4(d). As soon as the infiltration process started, the

flow in the macropore is activated and both the horizontal and vertical resistivity

decreased strongly. The anisotropy also decreased, which contradicts the sim-

ple conceptual model that anisotropy is much larger than one when conductive

macropores are present. As discussed for the results of the sensitivity test in sec-
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3. Preferential Flow Processes in Soils

tion 3.3.1, this is related to the small contrast in macropore and matrix resistivity

when an artificial macropore is used and the effect of the sensitivity distribution

of the electrode configurations. The simulated minimum in the anisotropy is 0.89,

which is lower than the simulated values presented in Figure 3.4(d). We attribute

this to the water exchange between macropore and matrix that enlarges the con-

ductive region around the macropore (time5 and time6 in Figure 3.5). As soon

as infiltration into the macropore stopped, water re-distributed to the matrix do-

main and the anisotropy increased again towards similar values as observed at the

beginning of the simulation. Overall, these simulations show that water flow in

macropores leads to a distinct temporal change in the anisotropy of the electrical

resistivity that would not occur in soils without macropore flow.

ρ
Ω

(a) (b)

ρ
Ω

(c) (d)

Figure 3.6: Horizontal (red) and vertical (blue) electrical resistivity (a
and c) and the associated anisotropy (b and d) from (a and b)
simulations and (c and d) measurements of water infiltration
in an artificial macropore.
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3.3.3 Sensitivity of Anisotropy to Changes in Hydraulic

Properties

The sensitivity of the anisotropy to changes in hydraulic properties was analyzed

by varying the parameters provided in Table 3.1 for both the macropore and ma-

trix domain. Hydraulic properties were decreased and increased by 10 % relative

to the original values (see Table 3.1) and the hydrological and electrical resistivity

simulations were repeated. The simulated anisotropy response was generally not

sensitive to changes in the hydraulic properties of the macropore (Figure 3.7(a),

3.7(c), 3.7(e), 3.7(g) & 3.7(i)). In contrast, the anisotropy was more sensitive to

changes in hydraulic properties of the matrix (Figure 3.7(b), 3.7(d), 3.7(f), 3.7(h)

& 3.7(j)), especially towards changes in the air-entry value α (Figure 3.7(b)) and

the saturated water content θs (Figure 3.7(j)). This sensitivity further showed

that the simulated anisotropy in the initial phase and towards the end of the

experiment was not much affected by changes in the hydraulic properties. For

example, the minimum anisotropy was almost identical for all model runs. The

main differences in the simulated temporal development of the anisotropy where

observed in the phase where water redistributed in the matrix domain. In our

model setup, the water flux associated with this redistribution through unsatu-

rated flow is apparently mainly controlled by the α and θs parameters.
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Figure 3.7: This is a continued Figure (cont.)
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Figure 3.7: Sensitivity analysis of the anisotropy to changes in the hy-
draulic properties by increasing (black) and decreasing (red)
10 % of the following parameters: (a) α, (c) Ks, (e) n, (g)
θr, and (i) θs of the macropore domain and (b) α, (d) Ks,
(f) n, (h) θr, and (j) θs of the matrix domain. Blue lines
correspond with the original hydraulic parameters provided
in Table 3.1. The n parameter of the macropore domain (e)
could not be increased by 10 % because of numerical issues
with the HYDRUS model.
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3.3.4 Measurement Results

Figure 3.6(c) shows the horizontal and vertical electrical resistivity measured dur-

ing macropore infiltration and redistribution. The associated temporal develop-

ment of the anisotropy is shown in Figure 3.6(d). Clearly, the observed and mod-

eled resistivity in horizontal and vertical direction show similar behavior (Figure

3.6(a) & 3.6(c)). Both the measured and modeled horizontal resistivity was higher

than the vertical resistivity before infiltration was started, as expected from the

results presented in Figure 3.4. When water infiltrated in the macropore, a strong

decrease in both measured and modeled horizontal and vertical resistivity was

observed. The measured anisotropy also showed similar behavior as compared

with the simulation results: a quick decrease until the end of infiltration in the

macropore and a subsequent slower increase towards the initial anisotropy value

observed without water flow in the macropore. The consistency between mea-

sured and modeled data further increased our confidence that it is possible to

understand the temporal development of resistivity anisotropy associated with

macropore preferential flow processes. Clearly, these distinct temporal signatures

of anisotropy resistivity open up perspectives for the field characterization of such

processes using appropriate square-electrode configurations (Greve et al., 2012b)

or anisotropic inversion of ERT data (Kenkel et al., 2012).

Although the general behavior of measured and modeled resistivity and anisotropy

are similar in Figure 3.6, some discrepancies are also apparent. For example, there

is a considerable difference in the value of the simulated and measured resistivity

(i.e. the model predicted higher resistivity values). Such discrepancies can be

expected when soil hydraulic properties and petrophysical parameters are not

directly determined on the same sample, but instead are taken from previous

experiments on the same material. In addition, the packing of the column and

specifically the macropore was not straightforward and heterogeneity might have

been introduced due to inhomogeneous packing.

3.4 Conclusions

In this work, we showed that infiltration in an artificial macropore resulted in

distinct differences in the temporal development of electrical resistivity measure-

ments in two perpendicular directions and thus in the ‘macroscopic’ anisotropy in

electrical resistivity. The general behavior of the temporally varying anisotropy

was similar in our model simulations and measurements. We conclude that tem-

poral variations in anisotropy in electrical resistivity can be used to identify the
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existence of flow in macropores. Since changes in water redistribution in the soil

matrix led to distinctly different temporal changes in electrical resistivity in a

model sensitivity study, we also think that anisotropy can be used to quantify

exchange between macropore and soil matrix in future studies. This would be

an important contribution since this information is notoriously difficult to obtain

using traditional methods to investigate macropores.

In future work, it will be interesting to study macropore preferential flow in an

anisotropic ERT framework (e.g. Kenkel et al., 2012, 2013) instead of the direct

measurement of horizontal and vertical resistivity used in this study. For example,

the temporal development of the electrical resistivity can be imaged during water

infiltration in an artificial macropore.
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Chapter 4

IMAGING OF ELECTRICAL

ANISOTROPY ASSOCIATED

WITH MACROPORE

INFILTRATION PROCESSES:

A 2D LABORATORY

EXPERIMENT WITH AN

ARTIFICIAL MACROPORE1

In the previous Chapter 3, we presented flow experiments using an artificial

macropore to understand the effect of water flow in macropores on the electrical

anisotropy. The results showed that measurements of the horizontal and vertical

resistivity reacted differently when water flowed in the macropore, which led to

electrical anisotropy. The observed electrical anisotropy was in good agreement

with simulation results from 3D axisymmetric hydrological modelling using the

HYDRUS software package and electrical forward modelling using custom-made

MATLAB software. Overall, this first experiment confirmed that monitoring of

the electrical anisotropy can be used to identify macropore flow. However, the

observed changes in anisotropy were not in agreement with available conceptual

models (e.g. Moysey and Liu, 2012) because the chosen electrode arrangement does

1Adapted from Al-Hazaimay S., J. Kenkel, E. Zimmermann, A. Kemna, H. Vereecken, and
J.A. Huisman. Imaging of electrical anisotropy associated with macropore infiltration processes:
A 2D laboratory experiment with an artificial macropore. Manuscript will be submitted to
Vadose Zone Journal.
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not allow a correct determination of the effective horizontal and vertical electrical

resistivity, which can only be overcome by the use of an imaging framework. In a

next step, the objective of this Chapter (4) is therefore to use anisotropic electri-

cal imaging instead of direct measurement of horizontal and vertical resistivity to

investigate flow processes associated with macropores. To this end, we performed

time-lapse ERT measurements on a Hele-Shaw tank with an artificial macropore

using a novel fast ERT instrument that allows the acquisition of 10 ERT data sets

per second. These ERT data sets are inverted to obtain images of the anisotropic

electrical resistivity using a coarse inversion grid so that flow processes remain un-

resolved and appear in the electrical anisotropy. We interpret temporal dynamics

in electrical anisotropy in terms of preferential flow processes.

4.1 Measurements

4.1.1 Hele-Shaw Tank with Artificial Macropore

We built a Hele-Shaw tank with side lengths of 300 mm and a thickness of 20 mm

(see Figure 4.1) and filled it with two different materials to prepare a background

matrix with an artificial macropore. The top side of the tank was designed to

be removable so that the tank can be packed with soil material. For the matrix

domain, we used fine sand (F34, Quarzwerke Frechen GmbH, Frechen, Germany)

with a mean grain size of 0.2 mm. For the macropore domain, we used glass beads

with a diameter of 4 mm (Merck KGaA, Darmstadt, Germany). The following

procedure was used to prepare the tank. First, we inserted a rectangular metal

stick with side lengths of 20 mm and a height of 300 mm in the middle of the

tank and fixed its position. This metal stick was selected to create an artificial

macropore that occupied 6.7 % of the entire volume of the tank. Next, the sand

that makes up the matrix domain was prepared by adding 286 cm3 of tap water to

2671 g of fine sand. The electrical conductivity of the tap water was 463 µS cm−1

at 20◦C. The matrix domain was packed in layer increments of approximately 30

mm thickness by firm pressing. For the macropore domain, we mixed 191 g of glass

beads with 10 cm3 of the same tap water. The macropore was packed after pulling

out the metal stick completely by repeatedly adding six small spoons of glass beads

in the macropore cavity, and applying some pressure using the rectangular stick.

The packing procedure resulted in average bulk densities of 1.65 g cm−3 and 1.64 g

cm−3 for the macropore and matrix domain, respectively. The associated porosity

is 0.38 cm3 cm−3 for both the matrix and macropore domain. The resulting water

content was calculated from the weight of the added water and was 0.17 cm3 cm−3
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in the matrix domain and 0.09 cm3 cm−3 in the macropore domain.

The same tap water as used in the sample preparation was used to infiltrate water

in the macropore domain. For this, a hole with a diameter of 14 mm was made

in the middle of the top side of the tank directly above the macropore domain. A

funnel was placed in this hole to infiltrate water into macropore. In total, 100 cm3

of water was infiltrated in the macropore domain within 27 s. As expected, water

initially moved quicker in the vertical direction than in the lateral direction because

the funnel assured that water only infiltrated in the macropore domain.

The Hele-Shaw tank was equipped with forty electrodes for ERT measurements

that were numbered as shown in Figure 4.1. All electrodes were brass electrodes

and had a radius of 6 mm and a length of 57 mm. Fourteen electrodes were used

on the left and right side, and twelve electrodes were used on the top side. All

electrodes were equally separated with a distance of 20 mm from each other and

the corners of the tank and were located in the center of the top and side walls. In

addition, electrodes 17 and 18 were separated with a distance of 20 mm from the

artificial macropore. Electrodes on the left and right side of the tank were installed

before packing to ensure good material contact. These electrodes were placed in

plastic cable glands with an inner diameter of 7 mm so that the electrode tips

were flush with the inner wall of the tank. In contrast, the electrodes on the top

side were installed inside the plastic glands so that twice the diameter is inserted

in the sample when the top side of the Hele-Shaw tank is installed after sample

preparation.

4.1.2 Electrical Resistance Measurement Equipment

The electrical measurements were made using a similar EIT system (Zimmermann

et al., 2008b) as used in section 2.1.1 with some modifications (Zimmermann et al.,

2013) that enable fast electrical resistivity measurements in order to monitor quick

macropore flow processes. To reduce EIT measurement time, mathematically or-

thogonal signals were used to inject current simultaneously in all current electrodes

and inverse multiplexing was used to separate the contribution of each injection

to the measured potential at any potential electrode. This approach thus replaces

n current injections by one simultaneous injection at all current electrodes, which

reduces the measurement time by a factor of n. In order to create orthogonal

signals, we chose sine waves with frequencies of 250 Hz, 300 Hz, 350 Hz, 400

Hz, and 450 Hz at the electrodes I1, I2, I3, I4, and I5 in Figure 4.1, respectively.

The modified EIT system was equipped with ten multiplexer cards each with four

electrode modules. Three of these electrode modules were used for potential mea-
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Figure 4.1: Experimental setup with dimension of the tank filled with
sand in the matrix domain and glass beads in the macropore
domain. Numbers I0 to I5 indicate the position of the current
electrodes, whereas numbers 01 to 34 indicated positions of
voltage electrodes.

surements. The fourth electrode module was redesigned to inject current with

common function generators (Agilent 33120A) and integrated shunt resistors and

amplifiers were used to measure the strength of the injected current. It should

be noted that the potential measurements are made with respect to the system-

ground.

4.1.3 Electrical Resistance Measurements

Time-lapse ERT measurements were performed in the tank during water infiltra-

tion in the macropore domain. We used electrodes I0, I1, I2, I3, I4, and I5 for the

current injections and electrodes 01 to 34 for the voltage measurements (see Fig-

ure 4.1). Electrode I0 was the sink for all current injections and was connected to

ground potential. We used this low amount of current electrodes to quickly obtain

a coarse image of preferential flow processes as detailed above. In post-processing,

the measured electrical currents and voltages are converted to transfer resistances

for selected four-electrode configurations following Zimmermann et al. (2013). For

the current injection, skip-zero electrode configurations were selected (i.e. I1-I2 in

Figure 4.1, see Slater et al., 2000) and associated voltages were calculated for all

potential electrodes (01 to 34) relative to ground. In a next step, skip-zero elec-

trode configurations were selected for the potential measurements, which resulted
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in 204 combinations of current injection and potential measurements per data set

that were subsequently used in the anisotropic ERT inversion (see Table 4.1). ERT

measurements were started 40.5 s before the infiltration process and continued for

1200 s where 10 data sets (i.e. frames) were recorded per second. This resulted in

12000 data sets of transfer resistances which were inverted to image the temporal

development of the electrical anisotropy during infiltration.

Table 4.1: Electrode pairs used for current injections and potential mea-
surements.

Configuration Current Potential

I1-I2, I2-I3, I3-I4,
I4-I5, I5-I0, I0-I1

01-02, 02-03, 03-04, 04-05, 05-06,
06-07, 07-08, 08-09, 09-10, 10-11,
11-12, 12-13, 13-14, 14-15, 15-16,
16-17, 17-18, 18-19, 19-20, 20-21,
21-22, 22-23, 23-24, 24-25, 25-26,
26-27, 27-28, 28-29, 29-30, 30-31,

31-32, 32-33, 33-34, 34-01

4.2 Inversion Techniques

4.2.1 Imaging of Anisotropic Electrical Resistivity 2

In order to image the temporal dynamics of preferential flow processes during water

infiltration, we inverted the ERT data using CRTOMO. This is a finite-element

based, smoothness-constraint inversion code based on Kemna (2000) that uses

log-transformed impedances as data and log-transformed electrical conductivity

(i.e. reciprocal of resistivity) as model parameters. CRTOMO uses a standard

Gauss-Newton procedure for non-linear inverse problems to find the smoothest

electrical conductivity distribution that fits the measured resistance data to a

specific error level (ε). To account for anisotropic conductivity, the code of Kemna

(2000) was extended by assuming a diagonal conductivity tensor (see Equation 4.1)

in Cartesian coordinates, which corresponds to the following diagonal resistivity

tensor:

1

σ
= ρ =

ρx 0 0

0 ρy 0

0 0 ρz

 (4.1)

2The development and implementation of anisotropic electrical resistivity tomography is part
of the PhD thesis of Johannes Kenkel (University of Bonn). The approach is outlined here for
sake of completeness only.
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where σ is the electrical conductivity tensor, ρ is the electrical resistivity tensor

in which ρx, ρy, and ρz are the electrical resistivity in x-, y-, and z-direction,

respectively. This required the modification of the forward model (Kenkel et al.,

2012), the sensitivity computation, and the inverse procedure (Kenkel et al., 2013).

In this study, we define anisotropy, A, as:

A =
ρX
ρZ

(4.2)

it should be noted that the anisotropy factor A is presented in logarithmic scale in

the following (log10(A) = log10(ρX) - log10(ρZ)). Therefore, log10(A) = 0 indicates

an isotropic medium, and log10(A) values much higher or lower than zero indicate

anisotropy.

The objective function being minimized during ERT inversion consists of two

terms that represent the data misfit and the model roughness, which are balanced

by the regularization parameter (λ):

Ψ(m) = ‖W ε[d− f(m)]‖2 + λ‖Rm(m)‖2 (4.3)

where m is the model parameter vector (mj=log10σj) in which σ varies over a

discrete jth pixel parametersation of number of model parameters M (j=1, ...,

M ), d is the data vector, f(m) denotes the finite-element forward model operator

(Poisson Equation), R is a first-order matrix (roughness) operator for m, and W ε

is a data weighting matrix that represents the measurement error εi of each of the

N resistance measurement in a diagonal form according to:

W ε = diag(1/ε1, ..., 1/εN) (4.4)

To regularize the additional degrees of freedom associated with anisotropy, the

most isotropic model is sought by adding an anisotropy penalty term in the objec-

tive function similar to Pain et al. (2003). In the extended anisotropic inversion

scheme, a spatial smoothness constraint is imposed for each component of the resis-

tivity tensor. Accordingly, anisotropic smoothing of the model is required, which

can be achieved by separating the matrix W with respect to X- and Z-direction

and introducing two real smoothing parameters αx and αz (Kemna, 2000) where

αx and αz are chosen from the interval between (0, 1]. The ratio of αx and αz

should ideally follow the ratio of the correlation lengths of the subsurface structure

with respect to horizontal and vertical directions, respectively. Unfortunately, this
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information is not known and likely temporally variable in case of anisotropy asso-

ciated with flow processes. In this study, we arbitrarily fixed these two smoothing

parameters to 1. During the inversion, an optimum regularization parameter λ

has to be found for each iterative step so that the measured data are best recon-

structed without introducing artifacts or excessive smoothing. This is achieved

using a univariate search method (Kemna et al., 2014) in which the model is up-

dated by solving a linear system of Equations (see Equation 6 in Kemna et al.,

2002) with different trial values of the regularization parameter. The criterion to

stop the iterative process is that the data misfit reaches a value of N (i.e. num-

ber of resistances measurement) for a maximum possible value of λ. More details

about our approach to ERT inversion can be found in Kemna (2000), Kemna et al.

(2002), and Binley and Kemna (2005).

4.2.2 Mesh Discretization

The modelling domain was discretized into 60x60 (3600) square elements in the

X-Z plane (see Figure 4.2(a)) with a side length of 5 mm and 3721 nodes. We used

Neumann boundary conditions with no current flow for all domain boundaries. For

the sake of anisotropic inversion, we used the two coarse inversion meshes shown

in Figure 4.2(b) and 4.2(c) with the corresponding element numbering for proper

identification. The first mesh consisted of 9 elements (mesh9) with a side length of

100 mm and the second mesh consisted of 25 elements (mesh25) with a side length

of 60 mm. The idea behind this coarse discretization is to produce an inversion

grid that is coarser than the size of the macropore so that flow processes remain

unresolved and appear only in the anisotropy of the electrical resistivity. Although

the electrode configurations used in the ERT data acquisition in the Hele-Shaw

tank partly allow to resolve the electrical resistivity changes associated with in-

filtration in the macropore, we choose to use these coarse inversion grids because

we expect that this is more representative for field applications where macropore

flow processes likely cannot be resolved with typical electrode separations of 100

mm or more. The two different inversion grids were selected to investigate how

the anisotropic inversion results are affected by the extent to which the macropore

region is resolved.
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Figure 4.2: (a) Discretization used for ERT forward modelling, and dis-
cretization used for ERT inversion: mesh9 (b) and mesh25
(c). All elements have been numbered for proper identifi-
cation. The position of all electrodes is indicated with solid
black circles.

4.3 Data Error Assessment

Assessment of data errors is important in ERT inversion because it is commonly

used to determine the appropriate extent to which the measured transfer resis-

tances need to be described during model inversion (see Equation 4.3). Data error

quantification is often based on reciprocal measurements where current and poten-

tial electrodes are interchanged for any four-electrode configuration (Koestel et al.,

2008; LaBrecque et al., 2002; Slater et al., 2000) because such an interchanging

of current and potential electrodes should not affect the resistance measurement.

Therefore, the difference in measured resistance between forward (normal) and
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reciprocal measurements (Zn and Zr, respectively), also referred to as the recip-

rocal error (e), can be used to approximate errors in ERT data (Slater et al.,

2000):

e = Zn − Zr (4.5)

In this study, we used a fast data acquisition system that is not able to make

reciprocal measurements. Instead, we propose to use the symmetry of our exper-

imental setup (see Figure 4.1) for the data error quantification using resistance

measurements on the measurement tank filled with water of different electrical

conductivity (40, 159.3, and 439 µS cm−1). These water conductivities were se-

lected to cover the range of measured transfer resistances that we expect in the

macropore infiltration experiment. We performed the following steps for each

transfer resistance measurement. First, electrical current was injected through

one electrode pair (e.g. normal measurement I1-I2 in Figure 4.1). Due to the tank

symmetry, the symmetrical (reciprocal) current injection electrode pair for I1-I2

is I5-I0. Next, we calculated resistances using skip-zero (e.g. 01-02), skip-one

(e.g. 01-03), and skip-two (e.g. 01-04) electrode configurations for each normal

and reciprocal current injection pair. As a result, we obtained 102 symmetrical

(“reciprocal”) resistance measurements. This procedure was repeated for three

other pairs of current electrodes (i.e. I2-I3, I3-I4, and I1-I0) and their symmet-

rical counterparts (i.e. I4-I5, I4-I3, and I0-I1). This resulted in 408 symmetrical

resistance measurements for each selected electrical conductivity of the water.

Therefore, a total of 1224 symmetrical measurements were available for data error

quantification.

Slater et al. (2000) proposed to filter obvious outliers from the data before fitting

an error model to the envelope of reciprocal measurements (e.g. |e| > 0.1 ∗ |Z|,
where Z is the mean resistance of normal and reciprocal measurements). Koestel

et al. (2008) also removed obvious outliers and proposed to further process the

reciprocal measurements by dividing all resistance measurements into equally sized

bins (in logarithmic scale). For each bin, they proposed to calculate the mean

transfer resistance and the standard deviation of the reciprocal error. To obtain

the error model for our measurements, we followed a similar but slightly different

approach. This approach can be summarized as follows. First, we calculated the

mean value of resistances obtained from symmetrical electrode configurations and

the reciprocal error according to Equation 4.5. Resistance measurements with an

error of exactly zero were removed because these were measurements where the

symmetrical electrode configurations had identical potential electrodes. Next, the
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resistance data were separated into 15 equally sized bins and the mean resistance

of each bin was calculated. Finally, the data error ε for each bin was quantified

using:

ε =

√
1

2
∗mean(e2) (4.6)

LaBrecque et al. (1996) suggested the following simple model to describe data

errors:

ε = a ∗ |Z|+ b (4.7)

where a represents a relative (dimensionless) error contribution and b is the ab-

solute error contribution (Ω). This model was manually fitted to the binned data

(see Figure 4.3), and this resulted in a = 0.01, and b = 0.015 Ω. These values are

in reasonable agreement with previous studies (e.g. a = 0.01 and b = 0.1 Ω (Slater

et al., 2000); a = 0.003 and b = 0.026 Ω (Koestel et al., 2008); a = 0.028 and b

= 0.42 Ω (Bechtold et al., 2012)). The fitted data error model was used to define

the data weighting matrix W ε (Equation 4.4) for all subsequent anisotropic ERT

inversion results.

Ω

ε
Ω

Figure 4.3: Binning of the symmetrical measurement configurations into
15 equally sized bins (dots) in logarithmic scale and the fitted
error model (line).
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4.4 Results and Discussion

4.4.1 Inversion Results for mesh9

Figure 4.4 shows inversion results for ρX and ρZ and the associated log10(A) for

three stages of the water infiltration experiment. These three stages were selected

to evaluate in detail whether electrical resistivity and the associated anisotropy

behave as expected in response to fast water flow in the macropore domain. In

particular, we present results obtained before infiltration started (Stage I), dur-

ing infiltration (Stage II), and after infiltration in the macropore stopped (Stage

III).

ρ ρ

ρ
Ω

Figure 4.4: ERT inversion results for ρX (panel A, D, and G), ρZ (panel
B, E, and H), and log10(A) (panel C, F, and I) for Stage I
(panel A, B, and C), Stage II (panel D, E, and F), and Stage
III (panel G, H, and I) for mesh9.

The electrical resistivity distribution in Stage I should reflect the initial water

content distribution. Since the initial water content of the macropore was lower

than that of the matrix, we expect a higher electrical resistivity in the macro-

pore domain. The presence of a resistive macropore pathway in a less resistive

matrix in cells 2, 5, and 8 (see Figure 4.2(b) for cell numbering) presents a con-

siderable flow barrier for electrical current in X-direction and thus should lead

to a higher horizontal resistivity (ρX) as compared to the vertical resistivity (ρZ)

and a log10(A) that is larger than zero. This is indeed confirmed by the inversion

results presented in the top row of Figure 4.4. The observed anisotropy ranged

from log10(A2) = 0.41, log10(A5) = 0.59, to log10(A8) = 0.99. The situation is

different for cells without macropore. Here, ρX and ρZ are expected to be similar,
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which results in a log10(A) value close to zero. A general comparison of ρX and

ρZ for cells 1, 3, 4, 6, 7, and 9 showed that it ranged from 102.19 Ω.m to 102.88

Ω.m for ρX and from 102.58 Ω.m to 102.98 Ω.m for ρZ. Electrical resistivity gen-

erally decreased with depth in the flow cell, which suggests that significant water

distribution occurred between sample preparation and the start of the infiltration

experiment. The log10(A) factor was for these cells log10(A1) = -0.13, log10(A3)

= -0.05, log10(A4) = -0.20, log10(A6) = -0.17, log10(A7) = -0.41, and log10(A9) =

-0.39 with more negative anisotropy values near the bottom of the flow cell (cells 7

and 9) indicating lower electrical resistivity values in ρX than in ρZ. We attribute

this to a layer with higher water content at the bottom of the tank that occurred

due to downward water flow in the time period between sample preparation and

the start of the infiltration experiment.

In general, it is also important to realize that the electrical resistivity and thus the

anisotropy of cells 7, 8, and 9 are less well constrained because of the limited sen-

sitivity (see Figure 4.5) of the electrical resistance measurements towards changes

in the electrical resistivity of these cells due to lack of electrodes at the bottom of

the tank. In Figure 4.5, it is evident that cell 5, 7, 8, and 9 are less constrained

in both X- and Z-direction, although the lack of sensitivity is more evident in Z-

direction. This higher sensitivity in X-direction for these cells as compared to the

Z-direction is related to the cross-sample current injections (e.g. I0-I1, see Figure

4.1) that are much more influenced by ρX than ρZ.

ρ ρ
Ω

Figure 4.5: Cumulative sensitivity coverage for Stage I (panel A and B),
Stage II (panel C and D), and Stage III (panel E and F) for
ρX (left) and ρZ (right) for mesh9.

In Stage II, water was infiltrating in the macropore domain and this led to a

decrease in ρX for cell 2 and 5 (i.e. ρX2 = 102.95 Ω.m and ρX5 = 102.94 Ω.m) as
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compared to Stage I (i.e. ρX2 = 103.25 Ω.m and ρX5 = 103.27 Ω.m) for the same cells.

This is related to the water-filled macropore that does not present a barrier for

horizontal electric current flow anymore. The ρZ of cell 2 decreased more strongly

than ρX, which resulted in an increase in the anisotropy relative to Stage I. The

strong decrease in ρZ is attributed to a continuous electrically conductive pathway

from the top to the bottom of cell 2 that consists of the water-filled macropore

and a zone of wetted sand associated with flow from the macropore to the matrix

region. The ρZ of cell 5 did not decrease, which indicates that the macropore was

not wetted from top to bottom for this cell at this point in time. Overall, this

resulted in a strong change in the anisotropy of cell 5 with a log10(A) value as low

as -0.60. The amount of infiltrated water was not sufficient to reach cell 8 so that

no obvious changes relative to Stage I can be seen here. Moreover, no changes in

the ρX and ρZ are expected between Stage I and Stage II for cells 1, 3, 4, 6, 7,

and 9 because of the absence of flow, and this is confirmed by Figure 4.4D and

4.4E. The relative changes in electrical resistivity between Stage I and Stage II

were below 18 % for ρX and ρz for cells 1 and 3 with the highest sensitivity, and

increased with depth for reasons outlined above. The associated log10(A) ranged

from log10(A9) = -0.29 to log10(A6) = 0.05 as shown in Figure 4.4F.

In Stage III, infiltration in the macropore has stopped and it is expected that

water will move laterally from the macropore to the matrix domain (see simu-

lation results in section 3.3.2 of Chapter 3) so that the electrical resistivity in

the macropore domain will decrease. As in Stage I, the presence of the resistive

macropore in a conductive matrix is expected to lead to a higher ρX as compared

to ρZ. The results presented in Figure 4.4G and 4.4H for cells 2, 5, and 8 seem

to be consistent with this simple conceptual model. The associated log10(A) of

Stage III are shown in Figure 4.4I and were log10(A2) = 0.63, log10(A5) = 1.60,

and log10(A8) = 0.45. Again, ρX and ρZ of cells 1, 3, 4, 6, 7, and 9 are relatively

unaffected so that the log10(A) values of these cells remain close to isotropic (i.e.

ranged from log10(A9) = -0.40 to log10(A4) = 0.02).

4.4.2 Time-lapse ERT Results for mesh9

Figure 4.6 shows time-lapse ERT results for ρX and ρZ for each cell in mesh9.

Although 12000 data sets were available, we only inverted data until 120 seconds

from the beginning of the experiment because no changes in measured transfer

resistance were observed after this time. In addition, we only inverted every tenth

frame to obtain a 1 second resolution. As expected because of the absence of

water flow, ρX and ρZ of cells 1 to 9 are constant from time t = 1 s to t = 40 s
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(i.e. see shaded area I in Figure 4.6), which indicates the stability of the resistance

measurements obtained with the fast data acquisition system and the inversion

procedure. As discussed previously, ρX and ρZ are similar for cells that do not

contain the macropore, whereas ρX is higher than ρZ for cells with macropore.

Infiltration started at t = 41 s and continued until t = 67 s (i.e. see shaded area

II in Figure 4.6). The ρX and ρZ for cell 2 and 5 immediately decreased as soon

as the infiltration process was started in the macropore domain and continued

to decrease in at least one of the cells as long as water was being infiltrated,

although a small increased in ρZ appeared between t = 50 s to t = 59 s for cell 2

and between t = 40 s to t = 45 s for cell 5. We attribute this unexpected increase

to imaging issues related to appropriate error quantification, the estimation of the

regularization parameter, and the impact of the considered mesh size (e.g. fine or

coarse) with respect to the scale of the processes. Nevertheless, it is clear that ρX

and ρZ reacted differently as was already expected from measurements presented

in the previous Chapter 3 (Figure 3.6(c) in section 3.3.4). Although the expected

behavior for Stage I and Stage III was also observed for cell 8 (Figure 4.6), no

regular behavior of ρX nor ρZ was observed during Stage II for this cell because of

the lack of the sensitivity in this part of the measurement cell. As expected, ρX and

ρZ did not change strongly during infiltration for cells 4, 6, 7, and 9. Furthermore,

a small drop in electrical resistivity for cell 1 and 3 occurred 16 s after the start

of infiltration at t = 57 s, which indicates lateral flow from the macropore to the

matrix domain in the top 10 cm of the measurement cell (see time1 to time6 in

the simulated water content distribution in Figure 3.5).

After infiltration stopped from t = 68 s onwards (i.e. see shaded area III in

Figure 4.6), an increase in ρX towards the initial value is observed for cells 2 and

5. However, we notice that it took a few seconds to stabilize infiltration between

the end of Stage II and the beginning of Stage III which can be seen in ρX for

cell 5 in Figure 4.6. The ρZ did not increase for these two cells. We attribute this

to the saturation dynamics in the macropore. After infiltration stopped, water

redistributed from the macropore to the matrix and the decreased macropore

saturation caused an increase in ρX. The ρZ did not significantly increase because

the macropore only occupies a moderate part of the cell.

Figure 4.7 shows the temporal development of the electrical anisotropy of all cells

in mesh9. Overall, it is evident that the anisotropy in electrical resistivity is a clear

indicator of unresolved preferential flow processes. All cells with the unresolved

macropore showed strong temporal dynamics in electrical anisotropy (i.e. cells 2,

5, and 8), whereas cells without macropore did not show fast changes in electrical

anisotropy. As soon as the infiltration process started, the macropore domain is
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filled with water (activated) and both ρX and ρZ decreased as long as water is

present in the macropore. After infiltration stopped, the anisotropy returned to

values larger than prior to infiltration because of the presence of the resistive (de-

activated) macropore (high ρX) in a matrix that has now been wetted by exchange

with the macropore and thus has a lower ρZ than before infiltration.

ρ
Ω

ρ
Ω

ρ
Ω

Figure 4.6: Time-lapse ERT results for ρX (blue) and ρZ (red) for cell 1
to 9 of mesh9.

Figure 4.7: Time-lapse ERT results for the anisotropy of cells with
macropore (2, 5, and 8) and cells without macropore (1, 3,
4, 6, 7, and 9) for mesh9.

4.4.3 Time-lapse ERT Results for mesh25

To investigate to what extent the inversion results are affected by the size of

the inversion cells, the analysis was repeated for a second inversion grid with 25
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cells (see Figure 4.2(c) for corresponding cell numbering). Figure 4.8 presents the

temporal changes in electrical resistivity for this second mesh. We present results

in a similar manner as for the first coarse grid by considering cells that are part of

the matrix domain only (1, 5, 11, 15, 21, and 25), and cells that are combinations

of the matrix and macropore domain (3, 13, and 23). Again, ρX and ρZ of all

selected cells in mesh25 is constant from time t = 1 s to t = 40 s. For Stage I,

ρX and ρZ for cells without macropore show a good match between the results for

mesh25 and mesh9 as expressed by the relative changes between corresponding

inversion cells (see Table 4.2). These relative changes were calculated from the

mean value over all times in Stage I and were below 3 % for ρX and below 13 % for

ρZ for top cells with the highest sensitivity (Figure 4.5). The relative differences

increased with decreasing sensitivity, especially for ρZ. For cells with macropore,

the best correspondence between the inversion results of mesh25 and mesh9 is

observed for cells near the top of the measurement cell (e.g. cell 3 in Figure

4.8 with its corresponding cell 2 in Figure 4.6). For this cell 3, both ρX and ρZ

decreased strongly as soon as infiltration started, although an increase in ρZ was

obtained between t = 40 s and t = 43 s, which we attribute to imaging issues

as detailed above. Furthermore, ρZ for cell 13 and 23 is higher than ρX, which is

not the case for the corresponding cells in mesh9. Again, we attribute this to the

limited sensitivity near the bottom of the measurement cell, which leads to less

well-constrained inversion results that are more sensitive to measurement errors

and regularization artifacts.

Table 4.2: Relative changes for cells without macropore in mesh25 with
respect to their corresponding cells in mesh9 for ρX, ρZ, and
A for Stage I.

Relative changes (%)
mesh25 to mesh9

1 5 11 15 21 25

ρX 2.6 2.3 12.4 12.2 59.5 13
ρZ 13 13 54.4 42 68.8 160.4
A 11.9 17.6 27.2 38.2 5.5 56.6

Figure 4.9 presents the temporal changes in log10(A) for the same selected cells

in mesh25. Table 4.2 also provides the relative changes in anisotropy for cells

without macropore in mesh25 and their corresponding cells in mesh9. In gen-

eral, the results for the finer grid confirm that preferential flow in the macropore

leads to strong temporal dynamics in the anisotropy of the electrical resistivity,

which decreases with depth within the flow cell. It is evident that cell 3 shows

the strongest response to water infiltration. Before infiltration, a constant posi-

tive anisotropy was obtained (log10(A3) = 1.64) followed by a strong decrease in

anisotropy when infiltration started at time t = 41 s. As soon as water infiltration
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stopped, anisotropy increased because water redistributed to matrix domain. In

addition, the cells without macropore hardly showed temporal variability in the

electrical anisotropy independent of the chosen inversion grid.
ρ
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Figure 4.8: Time-lapse ERT results for ρX (blue) and ρZ (red) for the
selected cells of mesh25.

Figure 4.9: Time-lapse ERT results for the anisotropy for selected cells
with macropore (3, 13, and 23) and without macropore (1,
5, 11, 15, 21, and 25) for mesh25.

In general, the dynamical changes in anisotropy of electrical resistivity associated

with water infiltration into the macropore were larger for mesh9 than for mesh25.

Furthermore, higher anisotropy values for mesh9 were obtained with depth in

the flow cell. The key to interpreting this result is the size of the inversion cells

with respect to the scale of the processes. When inversion cells are used that

are small compared to the process scale, both ρX and ρZ decrease strongly due
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to the presence of infiltrating water because the conductive vertical pathway is

surrounded by narrower resistive area that belongs to the matrix domain. With

increasing size of the inversion cells, the surrounded resistive area that belongs to

the matrix domain becomes larger and therefore ρX decreases more than ρZ when

the macropore domain becomes wet. In the case of mesh9, the macropore occupied

about 20 % of the inversion cell, whereas this value was 33 % for mesh25. When

considering that there also is significant exchange of water between macropore

and matrix, it is not unreasonable to assume that mesh25 almost resolves the

relevant processes and thus resulted in lower electrical anisotropy values. In field

applications, it will not be straightforward to determine the optimum size of the

inversion cells, because of the limited and likely spatially variable scale of the

macropore flow processes. Clearly, the use of too small inversion cells will cause

the disappearance of the macroscopic anisotropy. Based on our limited testing, it

seems adequate when the scale of the processes occupies ∼ 20 % of the inversion

cells.

4.5 Conclusions

In the previous Chapter 3, we showed that a direct measurement of electrical resis-

tivity in horizontal and vertical direction leads to electrical anisotropy in preferen-

tial flow processes. However, the observed anisotropy was difficult to interpret in

the context of the simple conceptual model that was presented by Moysey and Liu

(2012) because of the chosen experimental setup and electrode configurations. To

overcome this limitation, we extended the previous work by performing time-lapse

ERT measurements during an infiltration experiment on a Hele-Shaw tank with

an artificial macropore. The ERT data sets were inverted to obtain images of the

anisotropic electrical resistivity using coarse inversion grids so that flow processes

remain unresolved and appear in the electrical anisotropy. As in the previous

experiments, we found that ρX and ρZ reacted differently to the water infiltration

and that preferential flow processes lead to strong temporal dynamics in the elec-

trical anisotropy. With the imaging framework used in this study, the observed

anisotropy was more straightforward to interpret and largely controlled by the elec-

trical resistivity of the macropore. Prior to infiltration, the empty macropore was

a barrier for electrical current flow leading to a much higher ρX as compared to ρZ

in cells with a macropore. When infiltration started, ρX decreased more strongly

than ρZ leading to temporal changes in the electrical anisotropy. After infiltration

stopped and water redistributed to the matrix domain, the macropore domain

presented a barrier to electrical current flow again, thus increasing the electrical
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resistivity and the associated anisotropy again. The imaging results showed that

strong temporal changes of macro-anisotropy occurred in cells with macropore al-

though the volume of the macropore was small as compared to the volume of the

tank and the inversion cells. In contrast, no changes in the anisotropy response

to water infiltration were observed in cells without macropore.

The results also showed that the size of the inversion cells relative to the pro-

cess scale (i.e. macropore dimensions) is an important issue when using electrical

anisotropy imaging to study macropore preferential flow processes. We found

stronger temporal changes in electrical anisotropy when the macropore occupied

20 % of the inversion cell as compared to the case where the macropore occu-

pied 33 % of the inversion cell. Overall, we conclude temporal dynamics in the

electrical anisotropy may be a good indication of preferential flow processes in

the subsurface. In a next step, it should be investigated whether anisotropic in-

version of ERT data can be used to identify and study preferential flow in field

applications.
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Chapter 5

CONCLUSIONS AND

OUTLOOK

In this Chapter (5), we will present the overall conclusions and outlook of this

thesis. First, the main findings of each Chapter will be summarized and the main

conclusions will be highlighted. Furthermore, we will present recommendations

to further improve the results and discuss limitations and drawbacks that were

found in each Chapter. In addition, we provide a short outlook where the next

important steps for this research direction will be provided.

5.1 Conclusions

Geophysical methods are increasingly used to study flow and transport processes in

heterogeneous porous media. In this thesis, it was investigated whether anisotropy

in electrical resistivity can provide information on heterogeneous soil and sediment

structures and preferential flow processes. This overall objective of this thesis

involved sub-goals that are summarized as follows: (1) to experimentally vali-

date an existing synthetic modelling study that showed how measurements of the

anisotropy of the complex resistivity can be used to obtain structural information

for heterogeneous bimodal facies distributions, (2) to examine whether measure-

ments of electrical resistivity anisotropy provide information on preferential flow

processes in a soil column with artificial macropore, and (3) to monitor the tem-

poral dynamics of macroscopic anisotropy in electrical resistivity associated with

water infiltration in artificial macropore using tomography techniques.

In Chapter 2, a new measurement strategy was developed to obtain the relation-

ship between electrical anisotropy of complex resistivity and Cole-Cole parameters,
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volume fraction, and correlation length ratio of bimodal heterogeneous soil distri-

butions. This new strategy was successfully tested using a synthetic modelling

study and spectral electrical anisotropy measurements on simple two-layer distri-

butions for which the effective complex electrical resistivity could be calculated

using analytical solutions. In the synthetic modelling study, a satisfying agreement

was found between the prescribed and fitted Cole-Cole parameters. In addition,

both the volume fraction and the correlation length ratio also showed an excellent

agreement between the prescribed and fitted values, although minor deviations in

volume fraction were observed for small correlation length ratios. The test mea-

surements on a two-layer sediment structure provided resistivity magnitude and

phase angle spectra that matched well with modelled spectra obtained using ana-

lytical solutions. In a final step, the spectral electrical anisotropy of the resistivity

was determined from measurements on a heterogeneous bimodal distribution, and

the Cole-Cole parameters, volume fraction, and the correlation length ratio was

inversely estimated from the spectral electrical anisotropy. The fitted Cole-Cole

parameters were reasonably close to the Cole-Cole parameters that were indepen-

dently measured using SIP. The estimated volume fraction showed an acceptable

match, and remaining deviations were attributed to variations in sediment thick-

ness. The fitted correlation length ratio (7.89) for this heterogeneous distribution

also matched well with the modelled correlation length ratio for this distribution

(7.39). It was concluded that a direct measurement of horizontal and vertical

effective complex electrical resistivity resulted in sufficient contrast so that the

spectral electrical anisotropy provided sufficient information to obtain relevant

information on the geometrical arrangement of subsurface properties (i.e. the

correlation length ratio). The results in this Chapter (2) illustrate that electri-

cal resistivity anisotropy may provide relevant information to better characterize

subsurface heterogeneity in soil and sediment.

In Chapter 3, we investigated the relationship between electrical resistivity

anisotropy and macropore preferential flow. A 3D synthetic modelling study of

water infiltration into an artificial macropore within a soil column showed strong

temporal changes in resistivity anisotropy because electrical resistivity in horizon-

tal and vertical direction reacted differently to the water infiltration process. How-

ever, modelled changes in anisotropy did not match available conceptual models

where the presence of a conductive macropore in a resistive matrix leads to a lower

vertical resistivity as compared to horizontal resistivity. This was attributed to

the relatively small resistivity contrast between the matrix and the macropore and

the effect of the sensitivity distribution of the electrode configurations. A model

sensitivity analysis was performed to investigate how the simulated dynamics of
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the electrical anisotropy were affected by the hydraulic properties of the macro-

pore and matrix domain. It was found that the electrical anisotropy was more

sensitive to the hydraulic properties of the matrix domain, and the air-entry value

α and the saturated water content θs in particular. Actual electrical resistivity

measurements on an identical soil column resulted in similar dynamical changes

in the electrical anisotropy as in the synthetic modelling study. A small positive

anisotropy at the beginning of the experiment was observed, which was followed

by a strong decrease as soon as water was infiltrated in the macropore domain.

After infiltration, water redistributed to the matrix domain and the anisotropy

increased towards its initial values. It was concluded that electrical resistivity

anisotropy is promising to study water infiltration and solute transport processes

in the vadose zone in general and in macropores in particular.

In Chapter 4, the temporal dynamics of the electrical resistivity anisotropy as-

sociated with water infiltration into macropores were imaged using ERT. Two-

dimensional anisotropic inversion was used to produce resistivity images using

inversion cells that were coarser than the size of the macropore. The imaging

results confirmed that the electrical resistivity anisotropy can be used to iden-

tify and localize macropore preferential flow. During water infiltration, strong

anisotropy changes were seen in inversion cells with macropore, whereas the cells

without macropore showed almost no anisotropic behavior. The results clearly

showed that unresolved macropore preferential flow processes appear in the elec-

trical anisotropy. It was concluded that electrical anisotropy should be considered

in inversion techniques especially in field applications where heterogeneity and

macro-anisotropy are obvious because of soil manipulation by human activity,

plants, or soil fauna.

5.2 Outlook

The experimental validation study performed in Chapter 2 would benefit from ad-

ditional investigations using more complex heterogeneous distributions. In order

to ensure better contact between different materials, the use of an improved pack-

ing methodology using frozen soil cubes should be explored. The use of a wide

range of materials with variable contrast in magnitude and phase angle spectra

of complex resistivity would provide deeper insights in the possibilities and limi-

tations of the structural characterization of aquifers using the spectral electrical

anisotropy. In addition, such an extended validation would offer the possibility

to evaluate the need for alternative mixing models to describe the effective spec-
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tral electrical resistivity and alternative relaxation models to describe the spectral

electrical resistivity of the individual materials. There is also scope to further

improve the synthetic modelling study by considering larger simulation domains

because the simulation results for large correlation length ratios presented here

were influenced by the relatively small size of the simulation domain. An impor-

tant next step is to move this type of work to a field application. Here, the use of

undisturbed soil in a controlled laboratory set-up is an obvious first step. If the

experiments are done in the laboratory, factors that influence the spectral electri-

cal resistivity like temperature and water content can be better controlled. The

more important next step is to perform field experiments where heterogeneity is

most likely appears in horizontal and vertical direction. In the field, much more

complicated heterogeneous distributions are present and a wide range of materials

are available.

In Chapter 3 and 4, it was shown that electrical anisotropy associated with macro-

pore flow processes was better investigated using imaging techniques than us-

ing direct measurements of electrical resistivity in two perpendicular directions.

Therefore, research to further improve electrical anisotropy imaging is essential

for this type of research. In particular, attention should be focused on data error

quantification analysis, appropriate selection of regularization parameters, and

the impact of mesh size on the anisotropic inversion results. In future labora-

tory experiments, the comparison of measured and modelled electrical anisotropy

associated with macropore flow processes can be improved by considering hy-

draulic properties and petrophysical parameters that are determined directly at

soil sample columns. The next important step is to move this type of research

to field applications. In a first step, experiments on laboratory columns with

disturbed soil could be performed. This would allow extending the analysis and

interpretation methods outlined in Chapter 4 from 2D to 3D. Such laboratory

experiments would also be useful to investigate the effect of macropore porosity,

macropore size, and macropore density on the imaged electrical anisotropy. In a

next step, undisturbed soil columns with macropores should be analyzed in con-

trolled laboratory conditions. Such investigations would require the development

of 3D anisotropic inversion codes. Evidently, anisotropic electrical imaging poses

additional constraints on the speed and geometrical arrangement of the electrical

resistivity measurements. The high-speed ERT data acquisition system that was

used in the laboratory in this study is available to be used in field experiments.

Appropriate field electrode arrangements that allow to image electrical anisotropy

ideally include both surface electrodes and electrodes buried in the soil in order to

obtain improved on the vertical component of the electrical resistivity tensor. This
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could be achieved using electrode strings (e.g. Greve et al., 2012b) or electrode

sticks (e.g. Oberdörster et al., 2010).
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