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The consistent underestimation of inequality of opportunity has led some scholars to call into 
question the usefulness of such estimates. In this paper we argue that neglecting 
heterogeneity in the influence of circumstances across types as well as neglecting 
heterogeneity in type-specific effort distributions are two important sources of the downward 
bias in inequality of opportunity measures. Compared to the standard parametric approach of 
ex ante measurement of inequality of opportunity, we calculate a 50% upwards correction 
when accounting for both sources of heterogeneity. Therefore, taking heterogeneity across 
types seriously is an important step towards strengthening the policy relevance of this 
concept. 
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1 Introduction

There is now a large theoretical and empirical literature in economics on inequality of

opportunity (IOp).1 In one prominent formulation (Roemer, 1993, 1998), outcomes that

individuals enjoy (such as income) are consequences of two sorts of factor: Circumstances,

those characteristics of a person and her environment that are beyond her control or for

which she should not be held responsible, and e�ort, which comprises those choices within

her realm of control. Equality of opportunity is said to hold when the chances that indi-

viduals face for achieving the outcome in question are independent of their circumstances,

and sensitive only to personal e�ort.

Following the work of Bourguignon et al. (2007) and Ferreira and Gignoux (2011)

many scholars have favored parametric estimations of IOp over the non-parametric ap-

proach, e.g. as used in Checchi and Peragine (2010). Somewhat surprisingly, however,

applied works using parametric estimations are reluctant to incorporate type dependent

heterogeneity in the in�uence of particular circumstances and e�orts. First, instead of

including interaction terms, circumstance variables are introduced linearly, which by ne-

cessity implies that researchers assume a homogeneous in�uence of circumstances across

the partition of Roemerian types. Second, it is recognized that the distribution of e�orts

is itself type-dependent. Therefore, leaving residuals from parametric IOp estimations

unstandardized must be based on the presumption that the obtained distribution of type-

speci�c error terms is indicative for an ethically non-objectionable e�ort distribution (Roe-

mer and Trannoy, 2015). It is well understood that IOp estimates are downward biased

in case of unobserved circumstances (Balcázar, 2015; Ferreira and Gignoux, 2011; Niehues

and Peichl, 2014), perhaps importantly so. In addition to constraints in data availability,

neglecting both sources of type-speci�c heterogeneity may be important sources for that

bias.

In what follows we outline how neglecting type-speci�c heterogeneity re-enforces the

underestimation of IOp in the context of imperfect information on the relevant set of

circumstances. Section 3 demonstrates the magnitude of this underestimation using data

from the Child & Young Adults Supplement of the National Longitudinal Survey of Youth

(NLSY79). Section 4 concludes.

1For recent surveys, see Ramos and Van de gaer (2016); Roemer and Trannoy (2015), or Ferreira and
Peragine (2015).
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2 Parametric IOp Estimation

The literature on IOp commonly assumes that a set of circumstances Ω and a scalar θ of

e�ort determine the outcome of interest p. The relation between these components can

be described by a function g : θ × Ω 7→ R+. As it appears reasonable to assume that the

distribution of e�orts is not orthogonal to circumstances the relation of interest can be

rewritten in the following form:

p = g(Ω, θ(Ω), ε) (1)

where circumstances Ω are considered as root causes of unfair inequality beyond individual

control, whereas di�erential e�ort θ net of circumstance in�uence yields fair inequality.

Based on the realizations xj of each circumstance Cj ∈ Ω we can partition the population

into a set of types T , where the number of types is given by K =
∏J

j=1 xj . According to

the ex ante approach of measuring IOp, perfect equality of opportunity would prevail if the

type speci�c mean advantage levels µk(p) were equal across all types T k ∈ T . Thus, the

degree of inequality in a smoothed distribution Φ, in which each individual income pi is

replaced by the mean income of the respective type µk(p) can be considered as a measure

of IOp. The share of unfair inequalities in the aggregate distribution of advantages F (p)

would be given by

IOR = I(Φ)/I(F (p)). (2)

According to the standard parametric approach the distribution of µk(p) would now be

constructed in two steps:

ln pi = β0 +
J∑

j=1

βjC
j
i + εi (3)

µk(p) = exp

 J∑
j=1

β̂jC
j
i

 (4)

By de�nition Ci = Cj , ∀i, j ∈ T k and thus the predicted values from (4) yield K type-

speci�c averages. Yet it is noteworthy that the coe�cients βj are independent of type T
k.

Thus, any heterogeneity in βj is implicitly attributed to the residual.

The non-parametric approach advanced by Checchi and Peragine (2010) would simply

average advantage levels within types. Note that the same operation can be executed

within the parametric framework outlined above by regressing the outcome of interest on
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the intercept and a set of K − 1 group dummies:

ln pi = β0 +

K−1∑
k=1

βk1(i ∈ T k) + εi (5)

µk(p) = exp

[
K−1∑
k=1

β̂k1(i ∈ T k)

]
(6)

The �rst approach described in equations (3) and (4) would only yield an unbiased estimate

µk(p) if the e�ect of each Cj was indeed homogeneous across all types T k. To illustrate

this fact in an intuitive manner, consider the simple case of two binary circumstances, say

sex and the high-school graduation status of the respondent's mothers, which in turn yields

the following type partition T :

Male Female

Non-Graduate Mother Type 1 Type 2
Graduate Mother Type 3 Type 4

The non-linear case would be estimated as follows:

ln pi = β1 + β2C
female
i + β3C

HS
i + β4[C

female
i × CHS

i ] + εi (7)

Note that equation (7) is equivalent to (5) as each parameter βk can be interpreted as

the natural logarithm of µk(p), i.e. the type-speci�c mean advantage level. The standard

approach in the literature, corresponding to equation (3), however, reads as follows:

ln pi = β1 + β2C
female
i + β3C

HS
i + ε̃i (8)

= β1 + β2C
female
i + β3C

HS
i + (εi + β4[C

female
i × CHS

i ]) (9)

Clearly, the two approaches do only coincide in case of β4 = 0; in our example if the

in�uence of maternal education was homogeneous across gender types (or vice versa).

Only then, the additive-linear introduction of circumstances would be warranted.

To put it in general terms, the standard approach (Equations (3), (4)) would deliver

unbiased estimates of µk(p) if the circumstance in�uence was driven by the coe�cients

of the non-interacted base levels Cj , only. To the contrary, if the coe�cients on the

interaction terms were non-zero we would underestimate IOp by attributing type-speci�c

heterogeneity in coe�cients to the error term.

Furthermore, it is reasonable to assume that the in�uence of e�ort is heterogeneous
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across types. The di�erence is partially taken into account by estimating the in�uence of

circumstances on outcomes in a reduced form akin to equation (1). Note, however, that

the reduced-form only nets out type-speci�c heterogeneity in e�ort levels. What is not

captured is di�erences in within-type e�ort variance. According to the Roemerian approach

to IOp, one may argue that it is beyond individual control in which circumstance group

individuals are born. Therefore, one shall not be held accountable for the type-dependent

set of potential e�orts. Conditional on accepting the underlying normative assumptions, it

follows that heteroskedasticity across circumstance must be modeled explicitly to yield

standardized residual (and therefore e�ort) distributions. A procedure to standardize

residuals has been suggested by Björklund et al. (2012), who found that the type-dependent

variance in e�ort levels provided a substantial source of IOp. To be precise, they calculated

standardized e�ort levels, ui, with type-independent variance as follows: ui = εiσ/σTk ,

where σ and σTk indicate the overall standard deviation of error terms and the type-speci�c

error standard deviation, respectively. In order to keep group-speci�c mean outcomes

una�ected, equation (6) has to be re-written as follows:

µk(p) = exp

 K∑
k=1

β̂k1(i ∈ T k) + εi − εiσ/σTk︸ ︷︷ ︸
=ui

 (10)

From equation (10) it follows intuitively, that (6) would yield biased estimates of IOp if

∃ σTk 6= σ. Only if all type-speci�c error distributions were homoskedastic both approaches

would coincide. In terms of the implementation, Björklund et al. (2012) suggest to regress

type-speci�c variances on the set of circumstance variables and to calculate ui based on

predicted values in order to smooth out the strong in�uence from types with extremely

small variances. We adhere to their advice in what follows. To investigate the empirical

relevance of neglecting both sources of heterogeneity we will now turn to the empirical

application.

3 Application

For the sake of this illustration, we use the Child & Young Adults Supplement of the Na-

tional Longitudinal Survey of Youth (NLSY79). The outcome of interest p is gross income

averaged over the age range 25 to 30 (see Table 1 for summary statistics). We consider

�ve circumstance variables, which are sequentially introduced to yield �ve circumstance

scenarios. First, we consider the respondent's sex, with female being the omitted category
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Table 1: Summary Statistics

(1) (2) (3) (4) (5)
N mean sd min max

Avrg. Prim. Income (25-30) 3,149 24,871 20,872 22.50 247,655
Male 3,149 0.493 0.500 0 1
Majority 3,149 0.430 0.495 0 1
Avrg. Net Fam. Inc. <P25 3,149 0.277 0.448 0 1
Avrg. Net Fam. Inc. <P50 3,149 0.287 0.453 0 1
Avrg. Net Fam. Inc. <P75 3,149 0.277 0.447 0 1
Secondary (16) 3,149 0.616 0.486 0 1
Intermediate (16) 3,149 0.0959 0.295 0 1
College (16) 3,149 0.109 0.312 0 1
SMSA, Not center (16) 3,149 0.508 0.500 0 1
SMSA, Center (16) 3,149 0.266 0.442 0 1

of the respective binary indicator. Second, we add the child's race by including a dummy

variable, which takes on value one if the respondent is neither hispanic nor black. Third,

we proxy for the respondent's residential environment at age 16 with a tripartite variable

indicating whether the respondent lived in a Metropolitan Statistical Area (MSA), and if

yes, whether she lived in the center of an MSA. The variable is dummi�ed, with �living in a

rural area� being the omitted category. Fourth, for all respondents we calculate the average

household income of their family from birth until the age of 16. Families are then grouped

into quartiles of this income distribution. We omit the highest income quartile from the

resulting set of family income dummies. Lastly, we consider the academic achievement of

respondent's mothers in four categories: high-school dropout, high-school graduate, inter-

mediate post-secondary education and college graduate. We again create dummy variables

and omit the high-school dropout category.

It follows that the sample can be partitioned in 192 non-overlapping types. Naturally,

the NLSY79 allows for much larger circumstance sets. However, for the sake of this expo-

sition we con�ne ourselves to a rather scant circumstance set in order to demonstrate the

importance of non-linearities in contexts of poor data availability.

To investigate the impact of non-linearities on the estimated share of IOp in observed

inequality, we contrast the results from the standard parametric approach to the results

from the alternative non-linear approach. As previously mentioned the latter are derived by

fully interacting the set of circumstances and thus account for type-speci�c heterogeneity

in the in�uence of all Cj . Furthermore we adopt the standardization procedure suggested

by (Björklund et al., 2012) to adjust our measure of IOp for heterogeneity in e�orts. For

the exposition of the results we will focus on the most extensive circumstance set unless

we indicate otherwise.
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Figure 1: Comparison linear vs. non-linear introduction of circumstances
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Note: The central spike yields the extent of outcome inequality IO. The adjacent black colored bars of each
each spike yield inequality attributed to circumstances, i.e. the lower bound absolute measure of in-
equality of opportunity IOp. On the leftmost side circumstances are introduced linearly, whereas on
the center-left, the model is fully interacted. The center-right shows a model with linear circumstances but
standardized efforts. The rightmost bar combines both sources of heterogeneity. The red whiskers indicate
95% confidence intervals, which are bootstrapped with 1000 repetitions. The residual area between the
central spike and the bars can be interpreted as an upper bound measure of inequality attributed to differ-
ential efforts. The white labels at the bottom of each bar indicate the share of IOp in IO, i.e. the relative
measure of inequality of opportunity IOR. The following circumstance sets are introduced sequentially:
First (Sex), Second (Race), Third (Rural/Urban), Fourth (Average Family Income), Fifth (Educational
Achievement Mother).

The results from Figure 1 show that heterogeneity across types is not negligible. The

central spike indicates total outcome inequality as measured by the mean log deviation

(MLD). As the sample is balanced on the last circumstance set, it is constant across the

di�erent scenarios. For the moment let's focus on the bars to the left of each spike, which

show the MLD in Φ, i.e. the inequality in mean outcomes across types, for the linear

(Equation (3)) and the non-linear (Equation (5)) case. The percentage �gures at the

bottom of each bar indicate the respective relative measures of IOp, IOR. Gradually

introducing the circumstance sets, the di�erence between the linear and the non-linear

case increases to more than 11 percentage points in the full-blown model. While the

most extensive circumstance set for the linear case yields an IOR of 14.9%, the non-linear

case yields a lower bound IOp measure of 26%. It is not surprising that the divergence

between the two approaches follows a convex path as the introduction of each circumstance

Cj adds (xj − 1) ∗
∏j−1

i xi new regressors to the estimation. Thus, the partition grows

exponentially.2 The exponential growth in parameters to be estimated serves as the main

2It is illustrative to compare the adjusted and the standard R2-measures for the linear and the non-linear
case, respectively (see Figure 2 in the Online Appendix). The penalization of the exponential growth in
coe�cients under the adjusted measure in�ates the di�erence between the two statistics as we sequentially
increase the number of circumstances under consideration. Yet it is apparent that the consideration of
heterogeneity provides a strong upwards correction of the explained variance in the outcome variable even
when considering the adjusted R2-measure.
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justi�cation for relying on the linear parametric approach. As can be inferred from Table

5 in the Online Appendix, 16 coe�cients are omitted from the full-blown model due to

multi-collinearity. The median of observations per type T k is 50, while 25% of all µk(p)

are estimated using group sizes of <19. Thus, many coe�cients may be measured very

imprecisely. Furthermore, it is noteworthy that 14 interaction terms are signi�cant at the

10%-level individually, however, a joint F-test on all interaction terms fails to reject the

H0 at the 10%-level. This contradictory �nding may be attributed to the large number

of highly collinear interaction terms that are introduced without yielding a corresponding

decrease in the residual sum of squares. To be sure that the increase in the point estimate

of IOR does not come at the cost of decreased precision we calculate con�dence intervals

for IOR using a bootstrap procedure with 1000 repetitions. In the largest circumstance set

the 95% con�dence band for the linear case is [12.0%, 17.7%], the corresponding interval for

the non-linear case is [22.9%, 29.0%]. We thus can conclude that the precision of the IOR

estimate is not deteriorated by the introduction of the full battery of interaction terms.

We now turn to heterogeneity in e�ort levels. The two bars to the right of the central

spike incorporate standardized e�ort distributions. The center-right bar presumes a ho-

mogeneous in�uence of circumstances, while the rightmost graph relaxes this assumption

by incorporating both sources of heterogeneity (Equation (10)).

Table 2: Di�erentials across sources of heterogeneity

Circ. Set Heterog. Circ. Heterog. E�ort Both

First Linear 0.0 (-) 1.2 (96.9) 1.2 (96.9)
First Heterog. Circ. - (-) 1.2 (96.9) 1.2 (96.9)
First Heterog. E�ort - (-) - (-) 0.0 (-)
Second Linear 0.3 (38.1) 2.1 (81.1) 2.5 (92.5)
Second Heterog. Circ. - (-) 1.8 (62.9) 2.2 (83.0)
Second Heterog. E�ort - (-) - (-) 0.4 (40.3)
Third Linear 0.8 (71.1) 2.3 (83.4) 3.1 (107.9)
Third Heterog. Circ. - (-) 1.4 (47.8) 2.3 (85.4)
Third Heterog. E�ort - (-) - (-) 0.9 (65.7)
Fourth Linear 3.7 (145.8) 2.6 (77.2) 6.0 (164.5)
Fourth Heterog. Circ. - (-) 1.1 (27.0) 2.3 (81.4)
Fourth Heterog. E�ort - (-) - (-) 3.4 (130.1)
Fifth Linear 11.2 (302.5) 3.3 (69.6) 13.0 (309.5)
Fifth Heterog. Circ. - (-) 7.9 (135.9) 1.9 (78.2)
Fifth Heterog. E�ort - (-) - (-) 9.8 (226.6)

Di�erences are given in percentage points. The associated t-values in parentheses are calculated

using 1000 bootstrap repetitions. The following circumstance sets are introduced sequentially: First

(Sex), Second (Race), Third (Rural/Urban), Fourth (Average Family Income), Fifth (Educational

Achievement Mother).

We note that the standardization of type-speci�c e�ort distributions increases the point

estimate of IOR by 3.2 percentage points in comparison with the standard estimation

approach when maintaining the linearity assumption with respect to circumstances. The
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increase amounts to 1.9 percentage points when introducing circumstances non-linearly.

Again the results are quite robust, with the 95-% con�dence bands hovering between 7 and

9 percentage points. Table 2 summarizes the di�erences across the outlined approaches to

heterogeneity for the di�erent circumstance sets. It is noteworthy that for all di�erences,

the H0 of equality in IOR can be rejected at the 1%-level.

4 Conclusion

In this note, we have shown that neglecting type-speci�c heterogeneity in the in�uence of

circumstances and e�orts may have important implications for IOp estimates. It is well-

known that the absence of data on all relevant circumstances renders estimates of IOp to be

lower bounds (see Niehues and Peichl, 2014, for an upper-bound estimate). Unfortunately,

applied researchers on IOp have little leverage to correct this shortcoming. However,

even in the presence of data limitations IOp estimates could be considerably improved

by taking type-speci�c heterogeneity seriously. Using the same limited circumstance set,

we have increased the share of IOp in the observed outcome distribution by almost 50%.

Furthermore, our calculations support the �nding of Björklund et al. (2012) that type-

speci�c variance in e�ort levels is another important determinant of IOp. Lastly, we want

to highlight the importance of establishing the provision of standard errors as a good

practice in applied works on IOp in order to a�ord a good sense for the precision of the

results to the interested research community.
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5 Online Appendix

Table 3: Average Gross Income (25-30)

(1) (2) (3) (4) (5)

Male 0.291∗∗∗ (0.038) 0.281∗∗∗ (0.038) 0.282∗∗∗ (0.038) 0.287∗∗∗ (0.037) 0.288∗∗∗ (0.037)

Majority 0.356∗∗∗ (0.038) 0.344∗∗∗ (0.040) 0.146∗∗∗ (0.042) 0.138∗∗ (0.042)

SMSA, Not center (16) 0.126∗∗ (0.048) -0.020 (0.049) -0.018 (0.048)

SMSA, Center (16) 0.026 (0.056) -0.029 (0.055) -0.029 (0.055)

Avrg. Net Fam. Inc. <P25 -0.708∗∗∗ (0.064) -0.576∗∗∗ (0.069)

Avrg. Net Fam. Inc. <P50 -0.347∗∗∗ (0.060) -0.289∗∗∗ (0.062)

Avrg. Net Fam. Inc. <P75 -0.129∗ (0.059) -0.108 (0.060)

Secondary (16) 0.307∗∗∗ (0.053)

Intermediate (16) 0.372∗∗∗ (0.077)

College (16) 0.371∗∗∗ (0.078)

Constant 9.574∗∗∗ (0.027) 9.425∗∗∗ (0.031) 9.359∗∗∗ (0.049) 9.862∗∗∗ (0.074) 9.540∗∗∗ (0.090)

N 3149 3149 3149 3149 3149

F-Stat. |p-Value|

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4: Average Gross Income (25-30)

(1) (2) (3) (4) (5)

Male 0.291∗∗∗ (0.038) 0.232∗∗∗ (0.050) 0.432∗∗∗ (0.120) 0.738 (0.847) -1.966 (2.812)

Majority 0.300∗∗∗ (0.054) 0.436∗∗∗ (0.114) 0.548 (0.634) -3.471 (2.861)

Male × Majority 0.113 (0.077) -0.039 (0.161) -0.766 (0.901) 3.923 (3.095)

SMSA, Not center (16) 0.250∗ (0.098) -0.009 (0.612) -5.879 (3.194)

SMSA, Center (16) 0.247∗ (0.101) 0.384 (0.653) -1.720 (2.584)

Male × SMSA, Not center (16) -0.146 (0.142) -0.036 (0.868) 2.461 (2.616)

Male × SMSA, Center (16) -0.348∗ (0.145) -1.590 (0.931) -0.238 (2.491)

Majority × SMSA, Not center (16) -0.130 (0.136) -0.057 (0.653) 3.193 (2.718)

Majority × SMSA, Center (16) -0.267 (0.174) -0.389 (0.732) 3.158 (2.613)

Male × Majority × SMSA, Not center (16) 0.075 (0.193) 0.368 (0.929) -3.106 (2.826)

Male × Majority × SMSA, Center (16) 0.304 (0.249) 1.629 (1.049) -0.642 (2.680)

Avrg. Net Fam. Inc. <P25 -0.563 (0.608) -6.225 (3.280)

Avrg. Net Fam. Inc. <P50 -0.079 (0.621) -6.404 (3.303)

Avrg. Net Fam. Inc. <P75 0.210 (0.642) -4.652 (3.110)

Male × Avrg. Net Fam. Inc. <P25 -0.280 (0.860) 2.497 (2.822)

Male × Avrg. Net Fam. Inc. <P50 -0.416 (0.880) 3.011 (2.874)

Male × Avrg. Net Fam. Inc. <P75 -0.233 (0.912) 1.689 (2.405)

Majority × Avrg. Net Fam. Inc. <P25 -0.283 (0.665) 3.710 (2.879)

Majority × Avrg. Net Fam. Inc. <P50 -0.589 (0.668) 4.668 (2.914)

Majority × Avrg. Net Fam. Inc. <P75 -0.424 (0.687) 2.395 (2.619)

Male × Majority × Avrg. Net Fam. Inc. <P25 0.539 (0.949) -4.638 (3.133)

Male × Majority × Avrg. Net Fam. Inc. <P50 1.092 (0.949) -4.960 (3.183)

Male × Majority × Avrg. Net Fam. Inc. <P75 0.579 (0.977) -3.139 (2.476)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 0.241 (0.629) 6.039 (3.202)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 0.030 (0.640) 6.595∗ (3.228)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 -0.115 (0.663) 4.928 (3.006)
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SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 -0.205 (0.666) 1.709 (2.592)

SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 -0.255 (0.680) 3.071 (2.630)

SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 -0.280 (0.706) 1.282 (2.313)

Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 -0.247 (0.892) -2.714 (2.636)

Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 -0.140 (0.909) -3.338 (2.698)

Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 -0.112 (0.942) -1.517 (2.113)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 1.239 (0.951) -0.141 (2.509)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 1.522 (0.971) -1.174 (2.586)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 0.987 (1.009) 0.652 (1.862)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 -0.301 (0.717) -3.458 (2.759)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 0.105 (0.700) -4.740 (2.794)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 0.129 (0.717) -1.925 (2.386)

Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 0.373 (0.923) -3.171 (2.734)

Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 0.013 (0.801) -5.779∗ (2.874)

Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 0.104 (0.807) -2.596 (2.169)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 0.355 (1.020) 3.842 (2.916)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 -0.457 (0.997) 5.143 (2.962)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 -0.304 (1.021) 2.136 (1.984)

Male × Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 -1.496 (1.262) 1.609 (2.872)

Male × Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 -1.468 (1.149) 1.145 (3.074)

Male × Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 -0.939 (1.159) -0.448 (1.434)

Secondary (16) -5.493 (3.194)

Intermediate (16) -5.441 (3.434)

College (16) -4.038 (2.215)

Male × Secondary (16) 2.734 (2.616)

Male × Intermediate (16) -2.174 (3.771)

Male × College (16) 1.243 (2.189)

Majority × Secondary (16) 4.152 (2.753)

Majority × Intermediate (16) 4.264 (3.210)
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Majority × College (16) 2.390 (1.846)

Male × Majority × Secondary (16) -5.047 (2.892)

Male × Majority × Intermediate (16) 0.593 (3.405)

Male × Majority × College (16) -3.253 (2.728)

SMSA, Not center (16) × Secondary (16) 5.649 (3.115)

SMSA, Not center (16) × Intermediate (16) 6.002 (3.378)

SMSA, Not center (16) × College (16) 4.821∗ (2.080)

SMSA, Center (16) × Secondary (16) 2.037 (2.458)

SMSA, Center (16) × Intermediate (16) 2.715 (2.875)

SMSA, Center (16) × College (16) 0.558 (1.417)

Male × SMSA, Not center (16) × Secondary (16) -2.359 (2.418)

Male × SMSA, Not center (16) × Intermediate (16) 1.785 (3.578)

Male × SMSA, Not center (16) × College (16) -1.076 (1.901)

Male × SMSA, Center (16) × Secondary (16) -0.822 (2.211)

Male × SMSA, Center (16) × Intermediate (16) -1.499 (3.502)

Male × SMSA, Center (16) × College (16) -0.849 (2.009)

Majority × SMSA, Not center (16) × Secondary (16) -3.173 (2.613)

Majority × SMSA, Not center (16) × Intermediate (16) -3.891 (3.120)

Majority × SMSA, Not center (16) × College (16) -1.785 (1.593)

Majority × SMSA, Center (16) × Secondary (16) -3.754 (2.451)

Majority × SMSA, Center (16) × Intermediate (16) -4.188 (3.246)

Majority × SMSA, Center (16) × College (16) -1.543 (1.770)

Male × Majority × SMSA, Not center (16) × Secondary (16) 3.635 (2.620)

Male × Majority × SMSA, Not center (16) × Intermediate (16) -0.688 (3.084)

Male × Majority × SMSA, Not center (16) × College (16) 1.833 (2.383)

Male × Majority × SMSA, Center (16) × Secondary (16) 2.238 (2.339)

Male × Majority × SMSA, Center (16) × Intermediate (16) -0.546 (2.252)

Male × Majority × SMSA, Center (16) × College (16) 1.899 (2.642)

Avrg. Net Fam. Inc. <P25 × Secondary (16) 5.833 (3.202)
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Avrg. Net Fam. Inc. <P25 × Intermediate (16) 5.729 (3.464)

Avrg. Net Fam. Inc. <P25 × College (16) 3.843 (2.280)

Avrg. Net Fam. Inc. <P50 × Secondary (16) 6.497∗ (3.227)

Avrg. Net Fam. Inc. <P50 × Intermediate (16) 7.398∗ (3.498)

Avrg. Net Fam. Inc. <P50 × College (16) 3.662 (2.332)

Avrg. Net Fam. Inc. <P75 × Secondary (16) 4.652 (3.010)

Avrg. Net Fam. Inc. <P75 × Intermediate (16) 5.287 (3.316)

Avrg. Net Fam. Inc. <P75 × College (16) 3.676∗ (1.821)

Male × Avrg. Net Fam. Inc. <P25 × Secondary (16) -2.898 (2.635)

Male × Avrg. Net Fam. Inc. <P25 × Intermediate (16) 2.352 (3.705)

Male × Avrg. Net Fam. Inc. <P25 × College (16) -0.923 (2.484)

Male × Avrg. Net Fam. Inc. <P50 × Secondary (16) -3.592 (2.699)

Male × Avrg. Net Fam. Inc. <P50 × Intermediate (16) 0.452 (3.880)

Male × Avrg. Net Fam. Inc. <P50 × College (16) -0.792 (2.400)

Male × Avrg. Net Fam. Inc. <P75 × Secondary (16) -1.705 (2.138)

Male × Avrg. Net Fam. Inc. <P75 × Intermediate (16) 1.314 (2.138)

Male × Avrg. Net Fam. Inc. <P75 × College (16) -0.774 (1.268)

Majority × Avrg. Net Fam. Inc. <P25 × Secondary (16) -4.174 (2.785)

Majority × Avrg. Net Fam. Inc. <P25 × Intermediate (16) -3.925 (3.334)

Majority × Avrg. Net Fam. Inc. <P25 × College (16) 0.909 (1.569)

Majority × Avrg. Net Fam. Inc. <P50 × Secondary (16) -5.712∗ (2.820)

Majority × Avrg. Net Fam. Inc. <P50 × Intermediate (16) -5.568 (3.331)

Majority × Avrg. Net Fam. Inc. <P50 × College (16) -2.774 (2.082)

Majority × Avrg. Net Fam. Inc. <P75 × Secondary (16) -2.803 (2.479)

Majority × Avrg. Net Fam. Inc. <P75 × Intermediate (16) -3.141 (3.056)

Majority × Avrg. Net Fam. Inc. <P75 × College (16) -1.160 (1.172)

Male × Majority × Avrg. Net Fam. Inc. <P25 × Secondary (16) 5.837∗ (2.958)

Male × Majority × Avrg. Net Fam. Inc. <P25 × Intermediate (16) -0.489 (3.139)

Male × Majority × Avrg. Net Fam. Inc. <P25 × College (16) 0.000 (.)
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Male × Majority × Avrg. Net Fam. Inc. <P50 × Secondary (16) 6.808∗ (3.009)

Male × Majority × Avrg. Net Fam. Inc. <P50 × Intermediate (16) 0.534 (3.620)

Male × Majority × Avrg. Net Fam. Inc. <P50 × College (16) 3.866 (2.996)

Male × Majority × Avrg. Net Fam. Inc. <P75 × Secondary (16) 3.881 (2.173)

Male × Majority × Avrg. Net Fam. Inc. <P75 × Intermediate (16) -0.179 (1.738)

Male × Majority × Avrg. Net Fam. Inc. <P75 × College (16) 2.399 (1.635)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × Secondary (16) -5.559 (3.129)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × Intermediate (16) -6.042 (3.428)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × College (16) -3.269 (2.389)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × Secondary (16) -6.521∗ (3.157)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × Intermediate (16) -7.477∗ (3.461)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × College (16) -3.977 (2.252)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × Secondary (16) -4.644 (2.910)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × Intermediate (16) -5.474 (3.260)

SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × College (16) -3.960∗ (1.598)

SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 × Secondary (16) -1.720 (2.473)

SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 × Intermediate (16) -2.122 (2.959)

SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 × College (16) 0.810 (2.047)

SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 × Secondary (16) -3.375 (2.516)

SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 × Intermediate (16) -5.438 (2.975)

SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 × College (16) -1.081 (1.659)

SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × Secondary (16) -1.219 (2.146)

SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × Intermediate (16) -2.930 (2.700)

SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × College (16) 0.000 (.)

Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × Secondary (16) 2.286 (2.456)

Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × Intermediate (16) -1.704 (3.546)

Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × College (16) 0.593 (2.677)

Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × Secondary (16) 3.225 (2.530)

Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × Intermediate (16) -0.186 (3.723)
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Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × College (16) 0.176 (2.235)

Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × Secondary (16) 1.041 (1.829)

Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × Intermediate (16) -1.291 (1.637)

Male × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × College (16) 0.000 (.)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 × Secondary (16) 0.920 (2.246)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 × Intermediate (16) 0.780 (3.369)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 × College (16) 0.000 (.)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 × Secondary (16) 2.270 (2.342)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 × Intermediate (16) 4.427 (3.659)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 × College (16) 1.704 (2.324)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × Secondary (16) -0.596 (1.391)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × Intermediate (16) 2.578 (2.578)

Male × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × College (16) 0.000 (.)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × Secondary (16) 3.068 (2.684)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × Intermediate (16) 3.853 (4.287)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × College (16) 0.000 (.)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × Secondary (16) 5.204 (2.709)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × Intermediate (16) 5.230 (3.285)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × College (16) 2.584 (1.991)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × Secondary (16) 1.913 (2.247)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × Intermediate (16) 2.744 (2.930)

Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × College (16) 0.000 (.)

Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 × Secondary (16) 3.387 (2.793)

Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 × Intermediate (16) 4.295 (3.636)

Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 × Secondary (16) 6.298∗ (2.755)

Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 × Intermediate (16) 6.993 (3.576)

Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 × College (16) 3.457 (2.529)

Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × Secondary (16) 2.763 (1.927)

Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × Intermediate (16) 4.630 (3.064)
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Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × College (16) 0.000 (.)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × Secondary (16) -3.798 (2.771)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × Intermediate (16) 0.000 (.)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P25 × College (16) 0.000 (.)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × Secondary (16) -6.268∗ (2.802)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × Intermediate (16) -1.808 (3.411)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P50 × College (16) -3.069 (2.873)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × Secondary (16) -2.464 (1.634)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × Intermediate (16) 0.000 (.)

Male × Majority × SMSA, Not center (16) × Avrg. Net Fam. Inc. <P75 × College (16) 0.000 (.)

Male × Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 × Secondary (16) -3.297 (2.835)

Male × Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P25 × Intermediate (16) 0.000 (.)

Male × Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 × Secondary (16) -2.629 (2.840)

Male × Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P50 × College (16) -2.033 (3.439)

Male × Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × Secondary (16) 0.000 (.)

Male × Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × Intermediate (16) 0.000 (.)

Male × Majority × SMSA, Center (16) × Avrg. Net Fam. Inc. <P75 × College (16) 0.000 (.)

Constant 9.574∗∗∗ (0.027) 9.449∗∗∗ (0.035) 9.244∗∗∗ (0.083) 9.581∗∗∗ (0.599) 15.057∗∗∗ (3.276)

N 3149 3149 3149 3149 3149

F-Stat. |p-Value| 2.159 |0.142| 1.478 |0.170| 1.265 |0.124| 1.125 |0.139|

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 2: (Adj.) R-Squared: Linear vs. non-linear case
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Note: The hollow bars yield the standard R-squared, while the solid bars indicate the value of the
adjusted R-squared measure. The black bars indicate yield the two measures for the linear model
respectively, whereas the bars in maroon are indicative for the fully interacted model. The following circum-
stance sets are introduced sequentially: First (Sex), Second (Race), Third (Rural/Urban), Fourth 
(Average Family Income), Fifth (Educational Achievement Mother).
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