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ABSTRACT 
 

New Evidence on Linear Regression 
and Treatment Effect Heterogeneity* 

 
It is standard practice in applied work to rely on linear least squares regression to estimate 
the effect of a binary variable (“treatment”) on some outcome of interest. In this paper I study 
the interpretation of the regression estimand when treatment effects are in fact 
heterogeneous. I show that the coefficient on treatment is identical to the outcome of the 
following three-step procedure: first, calculate the linear projection of treatment on the vector 
of other covariates (“propensity score”); second, calculate average partial effects for both 
groups of interest (“treated” and “controls”) from a regression of outcome on treatment, the 
propensity score, and their interaction; third, calculate a weighted average of these two 
effects, with weights being inversely related to the unconditional probability that a unit 
belongs to a given group. Each of these steps is potentially problematic, but this last property 
– the reliance on implicit weights which are inversely related to the proportion of each group – 
can have particularly severe consequences for applied work. To illustrate the importance of 
this result, I perform Monte Carlo simulations as well as replicate two applied papers: Berger, 
Easterly, Nunn and Satyanath (2013) on the effects of successful CIA interventions during 
the Cold War on imports from the US; and Martinez-Bravo (2014) on the effects of appointed 
officials on village-level electoral results in Indonesia. In both cases some of the conclusions 
change dramatically after allowing for heterogeneity in effects. 
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1 Introduction

Many applied researchers study the effect of a binary variable (“treatment”) on the ex-
pected value of some outcome of interest, holding fixed a vector of other covariates. As
noted by Imbens (2015), despite the availability of a large number of semi- and nonpara-
metric estimators for average treatment effects, applied researchers typically continue to
use conventional regression methods. In particular, it is standard practice in applied work
to use ordinary least squares (OLS) to estimate

yi = α + τdi + Xiβ + εi, (1)

where y denotes the outcome, d denotes the binary variable of interest, and X denotes
the row vector of other covariates (control variables); τ̂ is then usually interpreted as the
average treatment effect (ATE). This simple estimation strategy is used in a large number
of applied papers in leading economics journals, as well as in other disciplines.1

The great appeal of linear least squares regression comes from its simplicity. At the
same time, however, a large body of evidence demonstrates the empirical importance of
heterogeneity in effects (see, e.g., Heckman, 2001; Bitler, Gelbach and Hoynes, 2006, 2008)
which is explicitly ruled out by the model in (1). In this paper, therefore, I study the inter-
pretation of the least squares estimand in the homogeneous linear model when treatment
effects are in fact heterogeneous. I derive a new theoretical result which demonstrates that
τ̂ is identical to the outcome of the following three-step procedure: in the first step, calcu-
late the linear projection of d on X, i.e. the “propensity score” from the linear probability
model; in the second step, regress y on d, the propensity score, and their interaction—and
calculate average partial effects from this model for both groups of interest (“treated”
and “controls”); in the third step, calculate a weighted average of these two effects—with
weights being inversely related to the unconditional probability that a unit belongs to a
given group. In consequence, when the proportion of one group increases, the weight on
the effect on this group decreases. The limit of the regression estimand, as the proportion
of treated units approaches unity, is the average treatment effect on the controls. I also
establish conditions under which linear regression recovers

τ = P (d = 1) · τATC + P (d = 0) · τATT (2)

1See, e.g., Black, Smith, Berger and Noel (2003), Fryer and Levitt (2004), Gittleman and Wolff (2004),
Almond, Chay and Lee (2005), Elder, Goddeeris and Haider (2010), Fryer and Greenstone (2010), Fryer and
Levitt (2010), Lang and Manove (2011), Alesina, Giuliano and Nunn (2013), Berger, Easterly, Nunn and
Satyanath (2013), Bond and Lang (2013), Rothstein and Wozny (2013), and Martinez-Bravo (2014).
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instead of
τATE = P (d = 1) · τATT + P (d = 0) · τATC, (3)

where τATE denotes the average treatment effect, τATT denotes the average treatment ef-
fect on the treated, and τATC denotes the average treatment effect on the controls; also,
P (d = 1) and P (d = 0) denote population proportions of treated and control units, re-
spectively. As a consequence of the disparity between (2) and (3), in many empirical
applications the linear regression estimates might not be close to any of the average treat-
ment effects of interest.

This paper therefore contributes to a growing field of research in econometrics which
studies the interpretation of various estimation methods when their underlying assump-
tion of homogeneity in effects is violated. See, e.g., Wooldridge (2005), Løken, Mogstad
and Wiswall (2012), Chernozhukov, Fernández-Val, Hahn and Newey (2013), Imai and
Kim (2013), and Gibbons, Suárez Serrato and Urbancic (2014) for studies of fixed effects
(FE) methods as well as Imbens and Angrist (1994), Angrist, Graddy and Imbens (2000),
Løken et al. (2012), Kolesár (2013), and Dieterle and Snell (2014) for studies of instrumental
variables (IV) estimators.2 Also, the interpretation of the coefficient on a binary variable
in linear least squares regression is studied by Angrist (1998) and Humphreys (2009), and
both of these papers consider a saturated model for covariates, i.e. the estimating equation
includes a binary variable for each combination of covariate values (“stratum”).3 In this
restricted setting, Angrist (1998) demonstrates that the weights underlying linear regres-
sion are proportional to the variance of treatment in each stratum.4 Humphreys (2009)
extends this result and shows that the linear regression estimand is bounded by both
group-specific average treatment effects whenever treatment assignment probabilities are
monotonic in stratum-specific effects. In this paper I complement these previous results
by relaxing the saturated model restriction and still deriving a closed-form expression for
the regression estimand—in terms of group-specific average treatment effects (τATT and
τATC). This formulation is very attractive because each regression estimate can now be ex-
pressed as a weighted average of two estimates of τATT and τATC. Moreover, the weights

2This literature is also related to Heckman and Vytlacil (2005), Heckman, Urzua and Vytlacil (2006),
and Heckman and Vytlacil (2007) who provide an interpretation of various estimators, conditional on X, as
weighted averages of marginal treatment effects.

3Also, the interpretation of the coefficient on a continuous variable in linear regression is studied by
Yitzhaki (1996), Deaton (1997), Angrist and Krueger (1999), Løken et al. (2012), and Solon, Haider and
Wooldridge (2015).

4A similar result for nonsaturated models is derived by Rhodes (2010) and Aronow and Samii (2015).
In both of these papers the regression estimand is interpreted as a weighted average of individual-level
treatment effects. In this paper I provide an alternative formulation, in which this estimand is interpreted
as a weighted average of group-specific average treatment effects (τATT and τATC).
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are also easily computed—and they are always nonnegative and sum to one.
To illustrate the importance of this result, I perform Monte Carlo simulations and repli-

cate two influential applied papers: Berger et al. (2013) and Martinez-Bravo (2014). Both
of these papers study the effect of a binary variable (US interventions in foreign countries
and whether the local officials are appointed or elected, respectively) on the expected
value of some outcome of interest, and both rely on a model with homogeneous effects
which is estimated using OLS. Berger et al. (2013) conclude that CIA interventions dur-
ing the Cold War led to a dramatic increase in imports from the US, without affecting
exports to the US, aggregate imports, and aggregate exports. However, when I present
the implied estimates of the average effect of CIA interventions on intervened countries
and nonintervened countries, it becomes clear that this conclusion is driven by the large
discrepancy in the effect on nonintervened countries across specifications—while this pa-
rameter is arguably of little interest in this application.5 The implied estimates of the
average effect on intervened countries are all significantly positive and remarkably stable
across specifications—and suggest that CIA interventions led to an (unbelievably large)
increase in all measures of international trade in intervened countries. Surprisingly, when
I relax the linear relationship between potential outcomes and the propensity score, and
use a matching estimator, these effects often become significantly negative.

My second empirical application concentrates on the effects of appointed village heads
on electoral results. In a recent paper, Martinez-Bravo (2014) studies the outcome of the
first democratic election in Indonesia after the fall of the Soeharto regime. She concludes
that Golkar, i.e. Soeharto’s party, was more likely to win in kelurahan villages which had
appointed village heads, compared with desa villages which had elected village heads. In
this paper, however, I document that linear regression provides a very poor approxima-
tion to the average effect of appointed officials. Note that kelurahan villages constitute a
small fraction of this data set, while my theoretical result suggests that linear regression
will therefore attach nearly all of the weight to the average effect of appointed officials
in these villages, and not in desa. This is confirmed in my analysis, and I conclude that
the average treatment effect, i.e. the average difference in electoral results between similar
kelurahan and desa villages, is not significantly different from zero.

5Imagine, for example, estimating the effect of CIA interventions in Australia, Canada, and the UK
on their imports from the US. Note that the measure of CIA interventions equals one “if the CIA either
installed a foreign leader or provided covert support for the regime once in power” (Berger et al., 2013).
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2 Theoretical Results

As before, let y denote the outcome, let d denote the binary variable of interest (“treat-
ment”), and let X denote the row vector of other covariates. If L (· | ·) denotes the linear
projection, this paper is concerned with the interpretation of τ in

L (y | 1, d, X) = α + τd + Xβ, (4)

when the population linear model is possibly incorrect. Before giving my main theoretical
results, however, I introduce further definitions. In particular, let

ρ = P (d = 1) (5)

denote the unconditional probability of “treatment” and let

p (X) = L (d | 1, X) = αs + Xβs (6)

denote the “propensity score” from the linear probability model.6 Note that p (X) is the
best linear approximation to the true propensity score. It is also helpful to introduce two
linear projections of y on p (X), separately for d = 1 and d = 0, namely

L [y | 1, p (X)] = α1 + γ1 · p (X) if d = 1 (7)

and also
L [y | 1, p (X)] = α0 + γ0 · p (X) if d = 0. (8)

Note that equations (6) to (8) are definitional. I do not assume that these linear projections
correspond to well-specified population models and I do not put any restrictions on the
underlying data-generating process. Similarly, I define the average partial effect of d as

τAPE = (α1 − α0) + (γ1 − γ0) · E [p (X)] (9)

as well as the average partial effect of d on group j (j = 0, 1) as

τAPE|d=j = (α1 − α0) + (γ1 − γ0) · E [p (X) | d = j] . (10)

6Note that this “propensity score” does not need to have any behavioral interpretation. For example,
d can be an attribute, in the sense of Holland (1986), and therefore does not need to constitute a feasible
“treatment” in any “ideal experiment” (Angrist and Pischke, 2009). Although it might be difficult, for
example, to conceptualize the “propensity score” for gender or race, it does not matter for this definition.
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If d is unconfounded conditional on X and there is complete overlap in the conditional
distributions of X given d = 1 and d = 0, then the propensity score theorem of Rosen-
baum and Rubin (1983) implies that τAPE, τAPE|d=1, and τAPE|d=0 have a useful interpre-
tation as the average treatment effect, the average treatment effect on the treated, and the
average treatment effect on the controls, respectively. It should be stressed, however, that
the main result of this paper (Theorem 1) is more general and does not require uncon-
foundedness or overlap.

Theorem 1 (Decomposition of the Linear Regression Estimand) Define τ as in (4) and de-
fine τAPE|d=1 and τAPE|d=0 as in (10). Let V (· | ·) denote the conditional variance. Then,

τ =
ρ ·V [p (X) | d = 1]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· τAPE|d=0

+
(1− ρ) ·V [p (X) | d = 0]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· τAPE|d=1.

Theorem 1 shows that τ, the linear regression estimand, can be expressed as a weighted
average of τAPE|d=1 and τAPE|d=0, with nonnegative weights which always sum to one.7

The definition of τAPE|d=j makes it clear that the regression estimand is always identical to
the outcome of a particular three-step procedure. In the first step, we obtain p (X), i.e. the
“propensity score”. In applied work, however, it is quite rare to estimate propensity
scores using the linear probability model, probably because the estimated probabilities
are not ensured to be strictly between zero and one—and therefore it is important to note
that linear regression is implicitly based on this procedure. Next, in the second step,
we obtain τAPE|d=1 and τAPE|d=0 from a regression of y on d, p (X), and their interaction.
Again, similar procedures are rarely used in practice and are generally not recommended,
because it is difficult to motivate a linear relationship between potential outcomes and
the propensity score (see, e.g., Imbens and Wooldridge, 2009). According to Theorem 1,
however, linear regression is implicitly based on this restrictive model. Finally, in the
third step, we calculate a weighted average of τAPE|d=1 and τAPE|d=0. The weight which
is placed by linear regression on τAPE|d=1 is increasing in V [p (X) | d = 0] and 1− ρ and
the weight which is placed on τAPE|d=0 is increasing in V [p (X) | d = 1] and ρ.

At first, this weighting scheme might be seen as surprising: the more units belong
to group j (d = j, j = 0, 1), the less weight is placed on τAPE|d=j, i.e. the effect on this
group. To aid intuition, recall that the linear regression model is based on the assumption

7See Appendix A for the proof of Theorem 1.
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of homogeneity in effects; in particular, τAPE = τAPE|d=1 = τAPE|d=0. Notice also that
τAPE|d=1 (τAPE|d=0) is estimated, in general, using the data from units with d = 0 (d = 1).
This can be more easily seen from a particular reformulation of equation (10). Because the
regression line passes through the point of means of the data, the average partial effects
of d on both groups of interest can also be expressed as

τAPE|d=1 = E (y | d = 1)− {α0 + γ0 · E [p (X) | d = 1]} (11)

and also
τAPE|d=0 = {α1 + γ1 · E [p (X) | d = 0]} − E (y | d = 0) . (12)

What follows, we need to estimate α0 and γ0 (but not α1 or γ1) in order to obtain an
estimate of τAPE|d=1. Also, we have to estimate α1 and γ1 (but not α0 or γ0) in order
to estimate τAPE|d=0. Therefore, if effects are assumed to be homogeneous, we want to
place more (less) weight on τ̂APE|d=1 when the proportion of units with d = 1 decreases
(increases), as this will improve efficiency in estimating τAPE. However, the opposite
holds true if effects are allowed to be heterogeneous, and then using linear least squares
regression is likely to introduce bias.

There are several interesting corollaries of Theorem 1. Similar to the discussion above,
Corollary 1 clarifies the causal interpretability of the linear regression estimand.

Corollary 1 (Causal Interpretation of the Linear Regression Estimand) Suppose that d is
unconfounded conditional on X and that the population models for d and y are linear in X and
p (X), respectively. Let D (· | ·) denote the conditional distribution and suppose that the support
of D (X | d = 1) overlaps completely with that of D (X | d = 0). Then, Theorem 1 implies that

τ =
ρ ·V [p (X) | d = 1]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· τATC

+
(1− ρ) ·V [p (X) | d = 0]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· τATT.

In other words, if strong ignorability (unconfoundedness and overlap) holds and the pop-
ulation models for d and y are correctly specified as linear in X and p (X), respectively, the
weighting scheme from Theorem 1 will apply to τATT and τATC. In particular, the weight
which is placed on τATT is increasing in 1− ρ and the weight which is placed on τATC is
increasing in ρ. Corollary 2 shows that the relationship between τ and ρ is in fact mono-
tonic. The only case where τ is unrelated to ρ occurs when both group-specific average
partial effects are equal.
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Corollary 2 Theorem 1 implies that

dτ

dρ
=

V [p (X) | d = 1] ·V [p (X) | d = 0] ·
(

τAPE|d=0 − τAPE|d=1

)
{ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]}2 .

Therefore, if τAPE|d=1 > τAPE|d=0, then dτ
dρ < 0. With an increase in ρ, τ deviates from

τAPE|d=1 towards τAPE|d=0. Similarly, if τAPE|d=1 < τAPE|d=0, then dτ
dρ > 0. Again, with an

increase in ρ, τ deviates from τAPE|d=1 towards τAPE|d=0. In other words, when τAPE|d=1 6=
τAPE|d=0 and the proportion of one group changes, the weight on the effect on this group
always changes in the opposite direction.

Corollary 3 Theorem 1 implies that

lim
ρ→1

τ = τAPE|d=0 and lim
ρ→0

τ = τAPE|d=1.

According to Corollary 3, another consequence of Theorem 1 is that the linear regression
estimand approaches the average partial effect on group j whenever—in the limit—the
proportion of units with d = j goes to zero. Under a causal interpretation, when nearly
everyone is treated, we get very close to the average treatment effect on the controls; con-
versely, when nearly nobody gets treated, we approach the average treatment effect on
this (nearly nonexistent) group. Therefore, Corollary 3 provides the foundation for a sim-
ple rule of thumb: if nearly everyone belongs to group j, linear least squares regression
will approximately provide an estimate of the effect on the other group. As noted previ-
ously, this is a reasonable property under the assumption of homogeneity in effects: if
nearly everyone belongs to group j, then we can estimate the effect on the other group,
and not on group j, with relative precision. This argument arises from the fact that we use
the data from units with d = 0 (d = 1) to estimate the counterfactual for units with d = 1
(d = 0); therefore, the precision of the estimates for group j is increasing in the amount of
data from the other group. If we maintain the assumption of homogeneity in effects, then
we should indeed place little weight on the effect for the large group. This logic, however,
is no longer applicable when effects are allowed to be heterogeneous.

Another consequence of Theorem 1 is described by Corollary 4. We can start with
noting that the average partial effect of d can be written as

τAPE = ρ · τAPE|d=1 + (1− ρ) · τAPE|d=0. (13)

8



Then, Corollary 4 provides a condition under which linear regression reverses these “nat-
ural” weights on τAPE|d=1 and τAPE|d=0.

Corollary 4 Suppose that V [p (X) | d = 1] = V [p (X) | d = 0]. Then, Theorem 1 implies that

τ = ρ · τAPE|d=0 + (1− ρ) · τAPE|d=1.

Precisely, if the variance of the “propensity score” is equal in both groups of interest, then
the linear regression estimand is equal to a weighted average of both group-specific aver-
age partial effects, with reversed weights attached to these effects. Namely, the proportion
of units with d = 1 is used to weight the average partial effect of d on group zero and the
proportion of units with d = 0 is used to weight the average partial effect of d on group
one. Therefore, there is only one situation in which Corollary 4 allows the linear regres-
sion estimand to be equal to the average partial effect of d, and this occurs whenever not
only V [p (X) | d = 1] = V [p (X) | d = 0] but also ρ = 1− ρ = 1

2 . Moreover, Corollary 5
provides a more general condition under which we can recover the average partial effect
of d using linear regression.

Corollary 5 Suppose that τAPE|d=1 6= τAPE|d=0. Then, Theorem 1 implies that

τ = τAPE if and only if
V [p (X) | d = 1]
V [p (X) | d = 0]

=

(
1− ρ

ρ

)2

.

According to Corollary 5, the linear regression estimand is equal to the average partial ef-
fect of d only in a special case, where the ratio of the conditional variances of the “propen-
sity score” is equal to the square of the reversed ratio of population proportions of treated
and control units. Corollary 5 can therefore be seen as an example of the “knife-edge
special case” of consistency of OLS, similar to Solon et al. (2015).

It is also useful to discuss the relationship between this paper and the previous results
in Angrist (1998) and Humphreys (2009). On the one hand, there is limited overlap be-
tween Theorem 1 and these previous contributions, because they both restrict their atten-
tion to saturated models, in which the estimating equation includes a binary variable for
each combination of covariate values (“stratum”). In this paper I provide a more general
result which is not restricted to saturated models. On the other hand, some connections
between these contributions can nevertheless be made. First, note that the baseline result
in Angrist (1998) is derived for a model with only two strata. Appendix B demonstrates

9



that this result follows from a special case of Theorem 1, in which X is a single binary
variable. Second, note that the main result in Humphreys (2009) means that the linear re-
gression estimand is bounded by τATT and τATC if treatment assignment probabilities are
monotonic in stratum-specific effects. According to Corollary 1, the linear regression esti-
mand lies within these bounds if, among other things, the population model for y is linear
in p (X). In this case, however, treatment assignment probabilities are indeed monotonic
in the effects of treatment. Therefore, the main condition from Humphreys (2009) is satis-
fied, and this demonstrates the relationship between his result and Corollary 1.

Also, there are several constructive solutions to the problem described in this section.
First, it is sufficient to interact the variable of interest with other covariates, and then cal-
culate its average partial effect on a given group (similar to equations (9) and (10)). This
leads to an estimator which is sometimes referred to as “Oaxaca–Blinder” (Kline, 2011,
2014), “regression adjustment” (Wooldridge, 2010), “flexible OLS” (Khwaja, Picone, Salm
and Trogdon, 2011), or even simply “regression” (Imbens and Wooldridge, 2009). Sec-
ond, one can use any of the standard semi- and nonparametric estimators for average
treatment effects, such as inverse probability weighting, matching, and other methods
based on the propensity score (for a review, see Imbens and Wooldridge, 2009). Third,
it might also help to estimate a model with homogeneous effects using weighted least
squares (WLS). In particular, we might use the method of Lin (2013), in which equa-
tion (1) is estimated using WLS, with weights of 1−ρ

ρ for units with d = 1 and weights of
ρ

1−ρ for units with d = 0. However, note that—unlike in Lin (2013) who studies regression
adjustments to experimental data—this estimator is consistent for the average partial ef-
fect of d only in a special case, namely under the restrictive condition in Corollary 4,
V [p (X) | d = 1] = V [p (X) | d = 0], which is trivially true in an experimental setting,
but not in a nonexperimental study.8

3 Monte Carlo

This section illustrates some of the key ideas of this paper using two Monte Carlo studies.
The first study is similar to that in a recent paper by Busso, DiNardo and McCrary (2014),
and it also attempts to mimic some features of the National Supported Work (NSW) data
from LaLonde (1986). As in Busso et al. (2014), I focus on the subsample of African Amer-

8The crucial difference between regression adjustment in settings with experimental and with nonex-
perimental data comes from the fact that—under a causal interpretation—the average treatment effects on
the treated and on the controls are necessarily equal—in expectation—in a randomized experiment, but not
in a nonexperimental study. See Freedman (2008a,b), Deaton (2010), Schochet (2010), and Lin (2013) for
recent discussions of regression adjustments to experimental data.
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icans as well as the comparison sample from the Panel Study of Income Dynamics (PSID),
also restricted to African Americans. The outcome of interest is earnings in 1978, and the
vector of covariates includes age, years of education, an indicator for being a high school
dropout, marital status, earnings in 1974, earnings in 1975, employment status in 1974,
and employment status in 1975. There are 156 treated and 624 control units in the final
data set. In the first step, I estimate a probit model for treatment, and calculate a linear
prediction from this model (“propensity score”). For each treatment status, I also estimate
a regression model for outcome, and again calculate predicted values. In the second step,
I draw with replacement 780 vectors which consist of: a vector of covariates, predicted
values of both potential outcomes, and the estimated propensity score. In the third step,
I draw iid normal errors, and use them—together with the estimated propensity score—to
construct a treatment status for each unit. In the fourth step, separately for each treatment
status, I draw iid normal errors, and use them—together with predicted values from both
regression models—to construct potential outcomes for each unit. Finally, for each unit,
the treatment status is used to determine which potential outcome is observed.

This procedure is used to draw 10,000 samples. For each sample, I estimate the ef-
fect of treatment using linear least squares regression—and then calculate the estimates
of the average treatment effects on the treated and on the controls which are implied by
Theorem 1. I also calculate the implicit weights on these estimates. Moreover, I estimate
the average treatment effect, the average treatment effect on the treated, and the average
treatment effect on the controls using the “flexible OLS” estimator—which amounts to
regressing earnings in 1978 on the treatment status, all the covariates, and the full set of
interactions between these covariates and the treatment status, and then calculating ap-
propriate average partial effects. This estimator is equivalent to “regression adjustment”
(Wooldridge, 2010) and “Oaxaca–Blinder” (Kline, 2011, 2014), as mentioned in Section 2;
it is also expected to be unbiased, given the data-generating process described above. The
true values of τATE, τATT, and τATC are equal to –$5,022, $2,229, and –$6,835, respectively.

The main results of this Monte Carlo study are summarized in Figure 1. Each of the
“flexible OLS” estimators is unbiased for its respective parameter. At the same time, how-
ever, linear regression is very biased for each of τATE, τATT, and τATC, with the smallest
bias in estimating τATT (for more details, see Table C7 in Appendix C). Note that, on aver-
age, only 20% of the units are treated. Consequently, linear regression is usually closest to
the true effect on the treated, the smaller group, although it is still biased for this parameter.
Given Theorem 1, this result should not seem surprising.

Additional results are presented in Appendix C. In particular, Figure C3 and Table C7
provide evidence of poor finite-sample performance of both components of linear regres-
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Figure 1: Linear Regression and “Flexible OLS” Estimates of Average Treatment Effects

sion, i.e. the LPM-based estimators of the average treatment effect on the treated and the
average treatment effect on the controls, which are implied by Theorem 1. It is clear that
both of these estimators—unlike the “flexible OLS” estimators in Figure 1—are biased for
their respective parameters, given the data-generating process in this Monte Carlo study.
This is most easily visible in Figure C3. Moreover, Table C8 summarizes the empirical dis-
tribution of the implicit weights which are used by linear regression to reweight both of
these estimates. Even though, on average, 20% of the units are treated, the average weight
on τ̂ATT is 0.640, with the standard deviation of 0.038 (across 10,000 replications). In other
words, under partial effect heterogeneity linear least squares regression is equivalent to a
weighted average of two estimators, both of which are likely to perform poorly in finite
samples, with weights which are also poorly chosen. It would be difficult to motivate the
use of linear least squares regression under similar circumstances.

The second simulation study is based on the same sample of African Americans, and
it uses a variant of the nonparametric bootstrap. In each replication, I retain the original
sample of 156 treated units. I also draw a subsample of size N0, with replacement, from
the original sample of 624 control units—and append it to the sample of treated units.

12



Figure 2: Linear Regression Estimates for Different Values of N0

Importantly, I consider nine values of N0: 25, 100, 175, 250, 325, 400, 475, 550, and 624.
For each N0, I draw 2,500 hypothetical samples, and then examine the effects of N0 on the
finite-sample performance of linear least squares regression.

The results are summarized in Figure 2.9 An obvious conclusion is that the higher the
proportion of control units, the further we get from the average treatment effect on the
controls—and closer to the average treatment effect on the treated. This relationship is
monotonic, as previously noted in Corollary 2. Additional results from this simulation
study are presented, again, in Appendix C. In particular, Table C9 shows the mean and
median bias, the root-mean-square error (RMSE), the median-absolute error (MAE), and
the standard deviation of linear least squares regression—separately for each N0 and for
the estimation of τATT and τATC. The conclusions are the same: in terms of bias, RMSE,
and MAE, the performance of linear regression in estimating τATT improves with the pro-
portion of control units; similarly, when the proportion of treated units increases, we get
closer to τATC. Moreover, Table C10 summarizes the empirical distribution of the implicit

9For clarity, Figure 2 excludes 32 estimates (less than 0.15%) which are smaller than –12,500.

13



weights which are used by linear least squares regression to reweight the implied esti-
mates of τATT and τATC—again, separately for each N0. When the proportion of treated
units varies between 0.200 and 0.862, the average weight on τ̂ATT varies between 0.638
and 0.368; it is therefore useful to note that—at least in this particular simulation study—
the average weights on τ̂ATT and τ̂ATC vary somewhat less than the proportions of both
groups, but there is also significant variation in weights for each value of N0. However, as
evident in Table C10, the negative relationship between the proportion of treated (control)
units and the implicit weight on τ̂ATT (τ̂ATC) is generally very strong.

4 Empirical Applications

This section illustrates the importance of Theorem 1 by means of a replication of two
applied papers: Berger et al. (2013) on the effects of CIA interventions during the Cold
War on imports from the US; and Martinez-Bravo (2014) on the effects of local officials on
electoral results in Indonesia. As noted previously, however, a similar estimation strategy
is also used in recent papers by Black et al. (2003), Fryer and Levitt (2004), Gittleman and
Wolff (2004), Almond et al. (2005), Elder et al. (2010), Fryer and Greenstone (2010), Fryer
and Levitt (2010), Lang and Manove (2011), Alesina et al. (2013), Bond and Lang (2013),
Rothstein and Wozny (2013), and many others.

The Effects of US Influence on International Trade (Berger et al., 2013)

In a recent paper, Berger et al. (2013) provide evidence that successful CIA interventions
during the Cold War were used to create a larger foreign market for US-produced goods.
The authors use recently declassified CIA documents to construct country- and year-
specific measures of US political influence, and conclude that such influence had a posi-
tive effect on the share of total imports that intervened countries purchased from the US.
At the same time, however, Berger et al. (2013) find no evidence that CIA interventions
increased exports to the US, total imports, or total exports.

In this study, the treatment variable (“CIA intervention” or “US influence”) is binary,
and equals one whenever—in a given country and year—the CIA either installed a new
leader or provided support for the current regime. These activities took various forms,
and included “creation and dissemination of (often false) propaganda, . . . covert politi-
cal operations, . . . the destruction of physical infrastructure and capital, as well as covert
paramilitary operations” (Berger et al., 2013). Apart from the treatment variable, the au-
thors also control for year fixed effects, a Soviet intervention control, ln per capita income,
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Table 1: A Replication of Berger et al. (2013)

ln imports
(US)

ln imports
(US)

ln imports
(US)

ln imports
(world)

ln exports
(US)

ln exports
(world)

CIA intervention 0.283** 0.776*** 0.293*** –0.009 0.058 0.000
(0.110) (0.143) (0.109) (0.045) (0.122) (0.052)

Country fixed effects X X X X X
Trade costs and MR controls X X X X X

Observations 4,149 4,149 4,149 4,149 3,922 3,922

Notes: See also Berger et al. (2013) for more details on these data. The unit of observation is a country c in year t,
where c excludes the US and the Soviet Union and t ranges between 1947 and 1989. The dependent variables are
listed in the column headings. Exact definitions of these variables are given in Berger et al. (2013). All regressions
include year fixed effects, a Soviet intervention control, ln per capita income, an indicator for leader turnover, current
leader tenure, and a democracy indicator. Estimation is based on linear least squares regression. Newey–West
standard errors are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

an indicator for leader turnover, current leader tenure, as well as a democracy indicator.
The majority of their baseline specifications also include country fixed effects, trade costs,
and Baier–Bergstrand multilateral resistance (MR) terms. The final sample consists of 166
countries, excludes the US and the Soviet Union, and covers the period from 1947 to 1989.
Among the 166 countries, 51 experienced a CIA intervention during the Cold War. In a
typical year, successful CIA interventions were taking place in 25 countries.

Table 1 reproduces the baseline estimates from Berger et al. (2013). Columns 1–3 report
the estimated effects of CIA interventions on imports from the US. All of the coefficients
are positive and statistically significant. The estimates from columns 1 and 3 are also very
similar in magnitude; the estimate from column 2 is much larger, but this specification
excludes country fixed effects. Therefore, Berger et al. (2013) conclude that CIA interven-
tions increased US imports by almost 30 log points (as in columns 1 and 3), and then their
remaining specifications control for country fixed effects, trade costs, and MR controls.
Further estimates—for different dependent variables—are reported in columns 4–6. All
of these coefficients are insignificant and very close to zero. The authors conclude that
CIA interventions had no impact on exports to the US, total imports, or total exports.

Perhaps surprisingly, however, the authors interpret their main coefficient of interest
as “the average reduced-form impact of CIA interventions on the countries that expe-
rience an intervention” (Berger et al., 2013). Unfortunately, this is not a correct inter-
pretation, given their reliance on a model with homogeneous effects which is estimated
using ordinary least squares. An interpretation is given, however, in Theorem 1 in this
paper: the estimates in Table 1 are all weighted averages of the average effect of CIA in-
terventions on intervened countries (ATT) and the average effect of CIA interventions on
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Table 2: Berger et al. (2013) and Treatment Effect Heterogeneity

ln imports
(US)

ln imports
(US)

ln imports
(US)

ln imports
(world)

ln exports
(US)

ln exports
(world)

CIA intervention 0.283** 0.776*** 0.293*** –0.009 0.058 0.000
(0.110) (0.143) (0.109) (0.045) (0.122) (0.052)

Decomposition (Theorem 1)
a. ATT 0.648*** 0.794*** 0.717*** 0.691*** 0.665*** 0.863***

(0.138) (0.059) (0.142) (0.150) (0.169) (0.145)
b. wATT 0.676 0.832 0.677 0.678 0.689 0.691

c. ATC –0.478*** 0.691*** –0.595*** –1.484*** –1.288*** –1.928***
(0.144) (0.073) (0.145) (0.167) (0.192) (0.183)

d. wATC 0.324 0.168 0.323 0.322 0.311 0.309

OLS = a · b + c · d 0.283** 0.776*** 0.293*** –0.009 0.058 0.000
(0.110) (0.143) (0.109) (0.045) (0.122) (0.052)

Country fixed effects X X X X X
Trade costs and MR controls X X X X X

Observations 4,149 4,149 4,149 4,149 3,922 3,922
P (d = 1) 0.225 0.225 0.225 0.225 0.235 0.235

Notes: See also Berger et al. (2013) for more details on these data. The unit of observation is a country c in year t, where
c excludes the US and the Soviet Union and t ranges between 1947 and 1989. The dependent variables are listed in the
column headings. Exact definitions of these variables are given in Berger et al. (2013). All regressions and propensity
score specifications include year fixed effects, a Soviet intervention control, ln per capita income, an indicator for leader
turnover, current leader tenure, and a democracy indicator. Estimation of “CIA intervention” (=OLS) is based on linear
least squares regression. Estimation of ATT and ATC is described in Section 2 (in particular, see Theorem 1). Newey–West
standard errors (OLS) and Huber–White standard errors (ATT and ATC) are in parentheses. Huber–White standard errors
ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

nonintervened countries (ATC), with weights which are perhaps poorly chosen. At the
same time, it is certainly very convincing to follow the intention of the authors, and focus
on the average effect on intervened countries. This parameter can be used to answer the
question about the actual consequences of CIA interventions during the Cold War. It is
less useful to estimate the effect of CIA interventions on countries, in which interventions
were highly unlikely, such as Australia, Canada, or the United Kingdom. Therefore, the
average effect on nonintervened countries is arguably of little interest in this application,
and I focus on the average effect on the “treated”.

Table 2 decomposes the baseline estimates from Berger et al. (2013) into two compo-
nents, the average effect of CIA interventions on intervened countries (ATT) and the av-
erage effect of CIA interventions on nonintervened countries (ATC). It also reports the
implicit weights on these estimates. First, it is useful to note that about 23% of the units
are treated, but at the same time the weight on τ̂ATT varies between 0.676 and 0.832. Sec-
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ond, the implied estimates of the average effect of CIA interventions on intervened coun-
tries are all positive, statistically significant, and very similar in magnitude. These esti-
mates suggest that CIA interventions influenced all measures of international trade, and
increased US imports, US exports, total imports, and total exports by 65–86 log points.
Therefore, the large discrepancies in the estimates reported in Table 1—and the main
conclusion in Berger et al. (2013)—are driven by the large variation in the effect on non-
intervened countries across specifications. This is easily visible in Table 2, where τ̂ATC

varies between –1.928 and 0.691, and hence we get the reported variation in the OLS esti-
mate. Whenever τ̂ATC is negative and relatively large in absolute value (columns 4–6), the
weighted average of τ̂ATC and τ̂ATT is approximately zero. Whenever τ̂ATC is relatively
close to zero (columns 1–3), this weighted average becomes significantly positive.

Still, the following question arises: did CIA interventions really increase international
trade in intervened countries by 65–86 log points? The magnitude of this effect is arguably
difficult to believe, and we need to recall that these estimates are based on an estimator
which is likely to perform very poorly in finite samples (see Section 3). More precisely,
this method involves two steps: in the first step, calculate the “propensity score” from
the linear probability model; in the second step, calculate average partial effects from a
model which assumes a linear relationship between potential outcomes and this “propen-
sity score”. This second linearity assumption is particularly restrictive, and therefore we
might need an additional robustness check.

Table 3 reports further estimates of the effects of CIA interventions on various mea-
sures of international trade. Before estimating these effects, I improve overlap by dis-
carding observations whose propensity score is less than the minimum or greater than
the maximum propensity score for the other group (intervened or nonintervened coun-
tries). Then, I recalculate the OLS estimates as well as provide nearest-neighbor matching
estimates of the average effect of CIA interventions on intervened countries. I consider
two alternative models for the propensity score: a linear probability model and a probit
model (“ATT-LPM” and “ATT-probit”). In the first case, I simply retain the estimates of
the “propensity score” which are implied by OLS. In other words, I relax a restrictive
assumption from the second stage of the previous two-step procedure, but retain the first
stage. As evident in Table 3, improving overlap does not significantly alter the OLS es-
timates (compared with Table 1). At the same time, the OLS estimates are not robust to
relaxing the linearity assumption. The majority of the matching estimates (“ATT-LPM”)
become negative and statistically significant.

In the second case, I use a probit model for the propensity score, but also implement an
additional refinement of the matching procedure—namely, a requirement of exact match-
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Table 3: Further Estimates of the Effects of US Influence on International Trade (Overlap Sample)

ln imports
(US)

ln imports
(US)

ln imports
(US)

ln imports
(world)

ln exports
(US)

ln exports
(world)

OLS 0.307*** 0.761*** 0.315*** –0.023 0.064 –0.000
(0.106) (0.144) (0.106) (0.042) (0.124) (0.055)

Observations 3,154 4,105 3,111 2,669 2,455 2,505

ATT-LPM –0.535* 0.783*** –0.615** –0.664** –0.702* –0.690**
(0.308) (0.086) (0.290) (0.320) (0.377) (0.272)

Observations 3,154 4,105 3,111 2,669 2,455 2,505

ATT-probit 0.027 –0.084 0.007 –0.385* –0.126 –0.288
(0.197) (0.185) (0.197) (0.219) (0.261) (0.227)

Observations 1,182 1,398 1,102 1,085 978 982

Country fixed effects X X X X X
Trade costs and MR controls X X X X X

Notes: See also Berger et al. (2013) for more details on these data. The unit of observation is a country c in year t,
where c excludes the US and the Soviet Union and t ranges between 1947 and 1989. The dependent variables are
listed in the column headings. Exact definitions of these variables are given in Berger et al. (2013). All regressions
and propensity score specifications include year fixed effects, a Soviet intervention control, ln per capita income, an
indicator for leader turnover, current leader tenure, and a democracy indicator. For “OLS”, estimation is based on
linear least squares regression. For “ATT-LPM” and “ATT-probit”, estimation is based on nearest-neighbor matching
on the estimated propensity score (with a single match). For “ATT-probit”, exact matching on c is also required.
The propensity score is estimated using a linear probability model (“ATT-LPM”) or a probit model (“ATT-probit”).
Newey–West standard errors (OLS) and Abadie–Imbens standard errors (ATT) are in parentheses. Abadie–Imbens
standard errors ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

ing within each country. As evident in Table 3, again, the estimates are not robust to this
change in the procedure. Columns 1–3 report the estimated effects of CIA interventions
on US imports. All of these estimates are insignificant and close to zero. Similarly, the es-
timated effects on US exports and total exports—although larger in magnitude—are also
insignificant (columns 5 and 6). Only the estimated effect on total imports is negative,
statistically significant, and again larger in magnitude (column 4). These results lead to
an alternative interpretation of these data: CIA interventions either did not influence in-
ternational trade in intervened countries or might have had a small and negative effect,
perhaps by means of destabilizing these countries and their economies. At the same time,
the estimated effects on US imports are much smaller in magnitude than the effects on to-
tal imports. Presumably, successful CIA interventions during the Cold War were indeed
used to determine international trade in intervened countries—and counterbalance the
negative effects of these interventions on US imports—but the pattern of these effects is
likely to be different from the interpretation in Berger et al. (2013).
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The Effects of Local Officials on Electoral Results (Martinez-Bravo, 2014)

A recent paper by Martinez-Bravo (2014) examines the differences in behavior between
appointed and elected officials. In particular, the author focuses on the 1999 parliamen-
tary election in Indonesia, i.e. on the first democratic election in this country after the fall
of the Soeharto regime, and compares the electoral results in kelurahan and in desa vil-
lages (which have appointed and elected heads, respectively). She concludes that Golkar,
i.e. Soeharto’s party, was significantly more likely to win in kelurahan than in desa villages,
and hence that “the body of appointed officials . . . is a key determinant of the extent of
electoral fraud and clientelistic spending in new democracies” (Martinez-Bravo, 2014).

The treatment variable is again binary—and equals one for kelurahan villages. The
sample consists of 43,394 villages, of which 3,036 (7%) are kelurahan and 40,358 (93%) are
desa. The outcome variable is also binary, and equals one if Golkar was the most voted
party in the village; in some cases—though not in the baseline specifications—there is
an alternative outcome variable, which equals one if PDI-P (a competing party and the
winner of the 1999 election) was the most voted party in this village. The majority of
specifications also include district (kabupaten) fixed effects, and many specifications con-
trol for various geographical characteristics of the villages as well as for the availability
of religious, health, and educational facilities.

It is important to note that Martinez-Bravo (2014) does not specify whether her inten-
tion is to estimate the average effect of appointed officials (ATE) or the average effect of
appointed officials on kelurahan villages (ATT). Both of these parameters are potentially
interesting, although the former is presumably more in line with one of the main objec-
tives of Martinez-Bravo (2014), i.e. testing for (average) differences in behavior between
appointed and elected officials. The latter parameter would be more relevant if our in-
tention was to examine the actual impact of appointed officials on the electoral outcome.
Therefore, in this section, I focus on the average treatment effect, but discuss various esti-
mates of both this parameter and the average effect on the “treated”.

Recall, however, that neither of these parameters is recovered by linear least squares
regression, while this is the primary estimation method used by Martinez-Bravo (2014).
The author also uses a probit model and a particular method based on the propensity
score, and all these methods seem to give similar answers. However, quite unexpectedly,
this particular propensity-score method—used by Martinez-Bravo (2014)—is implicitly
based on the assumption of homogeneity in effects; it is in fact equivalent to a variant of
linear least squares regression with a different set of control variables. More precisely, this
method involves three steps: in the first step, the author estimates the propensity score
using an algorithm based on a probit model; in the second step, she imposes the over-
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Table 4: A Replication of Martinez-Bravo (2014)

Linear probability model Propensity score model
(1) (2) (3) (4) (5) (6) (7) (8)

Kelurahan indicator 0.074*** 0.006 0.057*** 0.057*** 0.055*** 0.023*** 0.030*** 0.033***
(0.028) (0.012) (0.012) (0.012) (0.012) (0.008) (0.009) (0.008)

Geographic controls X X X X X X
Religious controls X X X X
Facilities controls X X
District fixed effects X X X X X X X

Observations 43,394 43,394 43,394 43,394 43,394 21,502 20,565 19,206

Notes: See also Martinez-Bravo (2014) for more details on these data. The unit of observation is a village. The dependent
variable equals one if Golkar was the most voted party in the village in the 1999 parliamentary election and zero otherwise.
Geographic controls include population density, a quartic in the logarithm of the village population, a quartic in the
percentage of households whose main occupation is in agriculture, share of agricultural land in the village, distance to
the subdistrict office, distance to the district capital, and indicators for urban and high altitude. Religious controls include
the number of mosques, prayer houses, churches, and Buddhist temples per 1,000 people. Facilities controls include the
number of hospitals, maternity hospitals, polyclinics, puskesmas (primary care centers), kindergartens, primary schools,
high schools, and TVs per 1,000 people. Estimation is based on linear least squares regression, with controls for either
the variables listed in the table (columns 1–5) or the propensity-score strata, province fixed effects, and the full set of
interactions between the strata and the fixed effects (columns 6–8). In the latter case, the variables listed in the table
correspond to the propensity score specifications. Cluster-robust standard errors (columns 1–5) and bootstrap standard
errors (columns 6–8) are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

lap condition, calculates quintiles of the distribution of the estimated propensity score,
and uses them to generate five propensity-score strata; in the third step, she runs the re-
gression of the dependent variable on the kelurahan indicator, province fixed effects, five
indicator variables for the strata, and the full set of interactions between the strata and
the fixed effects. Because this last regression does not include interactions between the
control variables and the treatment variable, Martinez-Bravo (2014) implicitly makes the
assumption of treatment effect homogeneity (both within and between the strata).

Consequently, Table 4 reproduces the baseline estimates from Martinez-Bravo (2014),
both for the linear probability model and for the propensity score model. There are large
differences between the coefficients in column 1 and 2 as well as between column 2 and 3.
However, when geographic controls are included in column 3, the estimated effect stabi-
lizes, and suggests that appointed officials increased the probability of Golkar victory by
6 percentage points (columns 3–5) or 2–3 percentage points (columns 6–8). All of these
coefficients are statistically significant and also very similar in magnitude within each of
the estimation methods.

Table 5 applies the main theoretical result of this paper to these estimates, and decom-
poses all the baseline coefficients from Martinez-Bravo (2014) into two components, the
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Table 5: Martinez-Bravo (2014) and Treatment Effect Heterogeneity

Linear probability model Propensity score model
(1) (2) (3) (4) (5) (6) (7) (8)

Kelurahan indicator 0.074*** 0.006 0.057*** 0.057*** 0.055*** 0.023*** 0.030*** 0.033***
(0.028) (0.012) (0.012) (0.012) (0.012) (0.008) (0.009) (0.008)

Decomposition (Theorem 1)
a. ATT –0.064* –0.008 –0.008 –0.009 0.037** 0.045*** 0.045***

(0.037) (0.028) (0.028) (0.028) (0.016) (0.016) (0.016)
b. wATT 0.490 0.671 0.672 0.679 0.785 0.788 0.779

c. ATC 0.074*** 0.192*** 0.191*** 0.192*** –0.026 –0.029 –0.011
(0.027) (0.041) (0.041) (0.042) (0.032) (0.034) (0.032)

d. wATC 0.510 0.329 0.328 0.321 0.215 0.212 0.221

OLS = a · b + c · d 0.074*** 0.006 0.057*** 0.057*** 0.055*** 0.023*** 0.030*** 0.033***
(0.028) (0.012) (0.012) (0.012) (0.012) (0.008) (0.009) (0.008)

e. P (d = 1) 0.070 0.070 0.070 0.070 0.112 0.114 0.116
f . P (d = 0) 0.930 0.930 0.930 0.930 0.888 0.886 0.884
ATE = e · b + f · d 0.064*** 0.178*** 0.177*** 0.178*** –0.019 –0.020 –0.005

(0.025) (0.037) (0.037) (0.038) (0.029) (0.030) (0.028)

Geographic controls X X X X X X
Religious controls X X X X
Facilities controls X X
District fixed effects X X X X X X X

Observations 43,394 43,394 43,394 43,394 43,394 21,502 20,565 19,206

Notes: See also Martinez-Bravo (2014) for more details on these data. The unit of observation is a village. The dependent variable
equals one if Golkar was the most voted party in the village in the 1999 parliamentary election and zero otherwise. Geographic
controls include population density, a quartic in the logarithm of the village population, a quartic in the percentage of households
whose main occupation is in agriculture, share of agricultural land in the village, distance to the subdistrict office, distance
to the district capital, and indicators for urban and high altitude. Religious controls include the number of mosques, prayer
houses, churches, and Buddhist temples per 1,000 people. Facilities controls include the number of hospitals, maternity hospitals,
polyclinics, puskesmas (primary care centers), kindergartens, primary schools, high schools, and TVs per 1,000 people. Estimation
of “Kelurahan indicator” (=OLS) is based on linear least squares regression, with controls for either the variables listed in the
table (columns 1–5) or the propensity-score strata, province fixed effects, and the full set of interactions between the strata and
the fixed effects (columns 6–8). In the latter case, the variables listed in the table correspond to the propensity score specifications.
Estimation of ATT and ATC is described in Section 2 (in particular, see Theorem 1). Cluster-robust standard errors (columns 1–5,
OLS), bootstrap standard errors (columns 6–8, OLS), and Huber–White standard errors (ATT, ATC, and ATE) are in parentheses.
Huber–White standard errors ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

average effect of appointed officials on kelurahan villages (ATT) and the average effect of
appointed officials on desa villages (ATC). I also report the implicit weights which are
used by linear regression to reweight both of these estimates. While the proportion of
kelurahan villages varies between 7% and 12%, the weight on τ̂ATT varies between 0.490
and 0.788. Because—in this empirical context—we should arguably intend to estimate
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the average treatment effect, I also report a “properly reweighted” weighted average of
τ̂ATT and τ̂ATC, i.e. an estimate of the average effect of appointed officials (ATE). Since the
weights underlying linear regression are poorly chosen, we can expect large differences
between these estimates and the OLS estimates, and this is indeed the case. The results of
the decompositions in Table 5 are generally quite surprising, and they differ enormously
between the linear probability model and the propensity score model. In the case of the
linear probability model, all of the implied estimates of the average treatment effect are
positive and statistically significant. The estimates from columns 3–5 are also very sim-
ilar in magnitude, and they suggest that—on average—appointed officials increased the
probability of Golkar victory by 18 percentage points. At the same time, however, the
implied estimates of the average effect on kelurahan villages are close to zero and usually
insignificant. When we turn to the results from the propensity score model—which are
obtained for the overlap sample—this pattern is reversed. The average effect of appointed
officials on kelurahan villages seems to be relatively small in absolute value, but positive
and significant; the average treatment effect is indistinguishable from zero.

Which of these patterns is believable? Is the average effect of appointed officials posi-
tive, but the average effect on kelurahan villages close to zero? Or, maybe the appointed of-
ficials increased the probability of Golkar victory only in the “treated” villages? Again, we
might try to reconcile these conflicting findings using an alternative estimation method.
Therefore, Table 6 reports further OLS and nearest-neighbor matching estimates of the
effects of appointed officials on electoral results in Indonesia—all of which are obtained
for the overlap sample (as defined in Martinez-Bravo, 2014). The OLS estimates do not
change in a substantial way. The propensity score—used in matching—is estimated either
using a linear probability model (as, implicitly, in Table 5) or using a specific algorithm
based on a probit model (as, explicitly, in Martinez-Bravo, 2014). In the latter case, I also
impose a requirement of exact matching within each province. As evident in Table 6,
the average effect on the “treated” seems to be positive and statistically significant re-
gardless of the matching procedure; if we ignore column 2, the estimated effects vary
between 3 and 7 percentage points. However, when we turn to the average effect of ap-
pointed officials, these procedures lead to substantially different conclusions. In line with
the results in Martinez-Bravo (2014), the average effect of appointed officials is signifi-
cantly positive—but only if the propensity score is estimated using a linear probability
model. If, however, we prefer a probit model and—especially—exact matching within
each province, then all of the estimates are insignificant and very close to zero. Perhaps
the average difference in electoral results between similar kelurahan and desa villages is
indeed negligible. If this conclusion is correct, it casts doubt on one of the main results
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Table 6: Further Estimates of the Effects of Local Officials on Electoral Results (Overlap Sample)

Linear probability model Probit model
(1) (2) (3) (4) (5) (6) (7) (8)

OLS — 0.006 0.033*** 0.033*** 0.035*** 0.023*** 0.030*** 0.033***
(0.012) (0.011) (0.011) (0.011) (0.008) (0.009) (0.008)

ATT — 0.007 0.032* 0.069*** 0.036* 0.028* 0.030* 0.031*
(0.008) (0.019) (0.019) (0.020) (0.016) (0.016) (0.016)

ATE — 0.003 0.085*** 0.117*** 0.097*** –0.005 –0.007 –0.001
(0.010) (0.029) (0.029) (0.033) (0.030) (0.031) (0.031)

Geographic controls X X X X X X
Religious controls X X X X
Facilities controls X X
District fixed effects X X X X X X X

Observations 43,394 43,394 21,502 20,565 19,206 21,502 20,565 19,206

Notes: See also Martinez-Bravo (2014) for more details on these data. The unit of observation is a village. The dependent
variable equals one if Golkar was the most voted party in the village in the 1999 parliamentary election and zero otherwise.
Geographic controls include population density, a quartic in the logarithm of the village population, a quartic in the
percentage of households whose main occupation is in agriculture, share of agricultural land in the village, distance to
the subdistrict office, distance to the district capital, and indicators for urban and high altitude. Religious controls include
the number of mosques, prayer houses, churches, and Buddhist temples per 1,000 people. Facilities controls include the
number of hospitals, maternity hospitals, polyclinics, puskesmas (primary care centers), kindergartens, primary schools,
high schools, and TVs per 1,000 people. For “OLS”, estimation is based on linear least squares regression, with controls
for either the variables listed in the table (columns 1–5) or the propensity-score strata, province fixed effects, and the full
set of interactions between the strata and the fixed effects (columns 6–8). In the latter case, the variables listed in the
table correspond to the propensity score specifications. For “ATT” and “ATE”, estimation is based on nearest-neighbor
matching on the estimated propensity score (with a single match). For columns 6–8, exact matching on province fixed
effects is also required. The propensity score is estimated using a linear probability model (columns 1–5) or an algorithm
based on a probit model (columns 6–8). A description of this algorithm is given in Martinez-Bravo (2014). Cluster-robust
standard errors (columns 1–5, OLS), bootstrap standard errors (columns 6–8, OLS), and Abadie–Imbens standard errors
(ATT and ATE) are in parentheses. Abadie–Imbens standard errors ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

in Martinez-Bravo (2014)—that the behavior of appointed and elected officials is, on av-
erage, very different.10

10Another conclusion in Martinez-Bravo (2014) is that the effect of appointed officials should be stronger
in districts, in which Golkar was expected to win by a large margin, because such expectations incentivize
these officials to manifest their allegiance to the regime. Also, the effect should be reversed in districts, in
which PDI-P was expected to win by a large margin. These conclusions are tested in Appendix D, where
various models are estimated on subsamples of the original data—and these subsamples are defined on the
basis of district-level electoral results (PDI-P won large, PDI-P just won, Golkar just won, Golkar won large).
Table D11 and Table D12 replicate the estimates from Martinez-Bravo (2014). Table D13 and Table D14
apply the main theoretical result of this paper to these estimates, and decompose all the coefficients from
Table D11 and Table D12 into two components (ATT and ATC). Many of the results change. Table D15
and Table D16 present further OLS estimates as well as nearest-neighbor matching estimates of the average
effect of appointed officials and of the average effect of appointed officials on kelurahan villages (for the
overlap sample). If we prefer the probit-based estimates of the propensity score and exact matching within
each province, then this conclusion in Martinez-Bravo (2014) is correct for the effect of local officials on
Golkar victory—this effect is positive and significant only for districts, in which Golkar won by a large
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5 Summary

In this paper I study the interpretation of the least squares estimand in the homogeneous
linear model when treatment effects are in fact heterogeneous. This problem is highly
relevant for empirical economists, because many influential papers rely on linear least
squares regression to provide estimates of the effects of various treatments, while treat-
ment effect heterogeneity is often empirically important. How should we interpret the
estimates in these studies? I derive a new theoretical result which demonstrates that lin-
ear least squares regression is equivalent to a weighted average of two estimators, both of
which are likely to perform poorly in finite samples, with weights which are also poorly
chosen. In particular, the weight which is placed by linear regression on the average ef-
fect on each group (treated or controls) is inversely related to the proportion of this group.
The more units get treatment, the less weight is placed on the average treatment effect on
the treated. I also illustrate the importance of this result with two Monte Carlo studies, as
well as with a replication of two prominent applied papers: Berger et al. (2013) on the ef-
fects of CIA interventions on international trade; and Martinez-Bravo (2014) on the effects
of appointed officials on electoral outcomes. In both cases some important conclusions
are not robust to allowing for heterogeneity in effects.

There are several lessons to be learned from this paper. First, empirical economists
often believe that linear least squares regression provides a good approximation to the
average treatment effect. Some authors only give their attention to issues of heterogeneity
if this is motivated by a theoretical model or previous literature. However, linear least
squares regression might provide biased estimates of each of the relevant parameters of
interest whenever heterogeneity is empirically important. Sometimes, of course, this bias
might be small, but this should never be taken for granted.

Second, it is useful to test for treatment effect heterogeneity. The main result of this
paper (Theorem 1) provides a directly applicable decomposition for every least squares
estimate, which can now be represented as a weighted average of two particular esti-
mates: of the average treatment effect on the treated and of the average treatment effect
on the controls. This decomposition can be applied as an easy-to-use informal test for
treatment effect heterogeneity. However, more sophisticated procedures have also been
developed, and can be used (see, e.g., Crump, Hotz, Imbens and Mitnik, 2008).

Finally, it is essential to always define the parameter of interest. Many empirical pa-
pers lack a clear statement about the actual goal of the researcher—whether they are inter-

margin, and this includes the average treatment effect. However, when we turn to the effect on PDI-P
victory, neither of the estimated effects is significantly different from zero—and they are usually very small.
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ested in the average effect, the average effect on some clearly defined population, or some
other parameter. The linear regression estimand is seldom the most interesting parameter
per se, and it might not correspond to any of the relevant parameters, as this paper also
clarifies. Defining the parameter of interest is important, because it enables the researcher
to provide an interpretation of their result, and it also guarantees comparability between
estimation methods. In some cases a precise definition of the parameter of interest might
even allow the researcher to continue using linear least squares regression: as this paper
clarifies, if nearly nobody gets treatment and we are interested in the effect on the treated,
then we can maintain that we are approximately correct.
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A Proofs

Proof of Theorem 1. First, consider equation (4), L (y | 1, d, X) = α + τd + Xβ. By the
Frisch–Waugh theorem (Frisch and Waugh, 1933), τ = τa, where τa is defined by

L [y | 1, d, p (X)] = αa + τad + γa · p (X) . (14)

Second, notice that (14) is a linear projection of y on two variables: one binary and one
continuous. We can therefore use the following result from Elder et al. (2010):

Lemma 1 (Elder et al., 2010) Let L (y | 1, d, x) = αe + τed + βex denote the linear projection
of y on d (a binary variable) and x (a single, possibly continuous, control variable) and let V (·),
Cov (·), V (· | ·), and Cov (· | ·) denote the variance, the covariance, the conditional variance,
and the conditional covariance, respectively. Then,

τe =
ρ ·V (x | d = 1)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· w1

+
(1− ρ) ·V (x | d = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· w0,

where
w1 =

Cov (d, y)
V (d)

− Cov (d, x)
V (d)

· Cov (x, y | d = 1)
V (x | d = 1)

and
w0 =

Cov (d, y)
V (d)

− Cov (d, x)
V (d)

· Cov (x, y | d = 0)
V (x | d = 0)

.

Combining the two pieces gives

τ =
ρ ·V [p (X) | d = 1]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· w∗1

+
(1− ρ) ·V [p (X) | d = 0]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· w∗0 , (15)

where
w∗1 =

Cov (d, y)
V (d)

− Cov [d, p (X)]

V (d)
· Cov [p (X) , y | d = 1]

V [p (X) | d = 1]
(16)

and
w∗0 =

Cov (d, y)
V (d)

− Cov [d, p (X)]

V (d)
· Cov [p (X) , y | d = 0]

V [p (X) | d = 0]
. (17)
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Third, notice that w∗1 = τAPE|d=0 and w∗0 = τAPE|d=1, as defined in (10). Indeed,

Cov (d, y)
V (d)

= E (y | d = 1)− E (y | d = 0) (18)

and also
Cov [d, p (X)]

V (d)
= E [p (X) | d = 1]− E [p (X) | d = 0] . (19)

Moreover, for j = 0, 1,
Cov [p (X) , y | d = j]

V [p (X) | d = j]
= γj (20)

where γ1 and γ0 are defined in (7) and (8), respectively. Because

E (y | d = 1)− E (y | d = 0) = {E [p (X) | d = 1]− E [p (X) | d = 0]} · γ1

+ (α1 − α0) + (γ1 − γ0) · E [p (X) | d = 0] (21)

and also

E (y | d = 1)− E (y | d = 0) = {E [p (X) | d = 1]− E [p (X) | d = 0]} · γ0

+ (α1 − α0) + (γ1 − γ0) · E [p (X) | d = 1] , (22)

where again α1 and α0 are defined in (7) and (8), we get the result that w∗1 = τAPE|d=0

and w∗0 = τAPE|d=1. Interestingly, equations (21) and (22) are special cases of the Oaxaca–
Blinder decomposition (Blinder, 1973; Oaxaca, 1973; Fortin, Lemieux and Firpo, 2011).

Combining the three pieces gives

τ =
ρ ·V [p (X) | d = 1]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· τAPE|d=0

+
(1− ρ) ·V [p (X) | d = 0]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· τAPE|d=1, (23)

which completes the proof. �
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B The Relationship between Theorem 1 and Angrist (1998)

Note that Angrist (1998) considers a model with two strata, where x (a binary variable)
indicates stratum membership. His result is that if L (y | 1, d, x) = αn + τnd + βnx, then

τn =
P (x = 0) ·V (d | x = 0)

P (x = 0) ·V (d | x = 0) + P (x = 1) ·V (d | x = 1)
· τ0

+
P (x = 1) ·V (d | x = 1)

P (x = 0) ·V (d | x = 0) + P (x = 1) ·V (d | x = 1)
· τ1, (24)

where τ1 and τ0 denote the stratum-specific effects. Theorem 1 might appear at first sight
to be similar to this result. There are, however, at least two major differences between
these formulations: first, Theorem 1 conditions on d, while Angrist (1998) conditions on x,
and therefore does not specify his result in terms of group-specific average partial effects;
second, Angrist (1998) does not recover a pattern of “weight reversal”, whose manifes-
tation is the main result of this paper. In this appendix I show that equation (24), i.e. the
result in Angrist (1998), can be derived from a special case of Lemma 1 (and Theorem 1).

If we apply Lemma 1 to τn in L (y | 1, d, x) = αn + τnd + βnx, i.e. to the model in
Angrist (1998), we get

τn =
ρ ·V (x | d = 1) · [P (x = 0 | d = 0) · τ0 + P (x = 1 | d = 0) · τ1]

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)

+
(1− ρ) ·V (x | d = 0) · [P (x = 0 | d = 1) · τ0 + P (x = 1 | d = 1) · τ1]

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)

=
ρ ·V (x | d = 1) · P (x = 0 | d = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· τ0

+
(1− ρ) ·V (x | d = 0) · P (x = 0 | d = 1)
ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)

· τ0

+
ρ ·V (x | d = 1) · P (x = 1 | d = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· τ1

+
(1− ρ) ·V (x | d = 0) · P (x = 1 | d = 1)
ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)

· τ1, (25)

which can be further rearranged using Bayes’ theorem. Indeed,

τn =
P (x = 0) ·V (d | x = 0) · P (d = 1 | x = 1)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ0
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+
P (x = 0) ·V (d | x = 0) · P (d = 0 | x = 1)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ0

+
P (x = 1) ·V (d | x = 1) · P (d = 1 | x = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ1

+
P (x = 1) ·V (d | x = 1) · P (d = 0 | x = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ1

=
P (x = 0) ·V (d | x = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ0

+
P (x = 1) ·V (d | x = 1)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ1

=
P (x = 0) ·V (d | x = 0)

P (x = 0) ·V (d | x = 0) + P (x = 1) ·V (d | x = 1)
· τ0

+
P (x = 1) ·V (d | x = 1)

P (x = 0) ·V (d | x = 0) + P (x = 1) ·V (d | x = 1)
· τ1, (26)

where the last equality, again, follows from Bayes’ theorem. More precisely,

ρ · (1− ρ) · ρ ·V (x | d = 1)
P (x = 0) · P (x = 1)

= (1− ρ) · P (d = 1 | x = 1) · P (d = 1 | x = 0)

= P (x = 0) ·V (d | x = 0) · P (d = 1 | x = 1)

+ P (x = 1) ·V (d | x = 1) · P (d = 1 | x = 0)

= λ1 (27)

and also

ρ · (1− ρ) · (1− ρ) ·V (x | d = 0)
P (x = 0) · P (x = 1)

= ρ · P (d = 0 | x = 1) · P (d = 0 | x = 0)

= P (x = 0) ·V (d | x = 0) · P (d = 0 | x = 1)

+ P (x = 1) ·V (d | x = 1) · P (d = 0 | x = 0)

= λ0, (28)

which leads to

λ0 + λ1 = P (x = 0) ·V (d | x = 0) + P (x = 1) ·V (d | x = 1) . (29)

The equivalence between equations (24) and (26) confirms that the result in Angrist (1998)
can be derived from a special case of Lemma 1, in which both d and x are binary.
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C Further Monte Carlo Results

Figure C3: Linear Regression and LPM-Based Estimates of Average Treatment Effects

Table C7: Simulation Results of the First MC Study

Method Parameter Mean bias Median bias RMSE MAE SD
LR ATE 4,812 4,810 4,952 4,810 1,170
LR ATT –2,439 –2,441 2,705 2,441 1,170
LR ATC 6,625 6,623 6,727 6,623 1,170
Flex. ATE ATE 40 22 2,601 1,726 2,601
Flex. ATT ATT –125 –133 1,368 922 1,362
Flex. ATC ATC 76 42 3,188 2,114 3,187
Flex. ATT (LPM) ATT 3,093 3,047 3,454 3,047 1,537
Flex. ATC (LPM) ATC –3,193 –3,201 3,590 3,201 1,642

Notes: “Method” refers to the estimation method. “Parameter” refers to the parameter of interest, against which biases are
calculated. “LR” denotes linear least squares regression. “Flex. ATE”, “Flex. ATT”, and “Flex. ATC” denote various versions
of the “flexible OLS” estimator. “Flex. ATT (LPM)” and “Flex. ATC (LPM)” denote various versions of the LPM-based
“flexible OLS” estimator. See the text for details.



Table C8: Implicit Weights on τ̂ATT and τ̂ATC in the First MC Study

Mean SD Minimum Maximum
P (d = 1) 0.200 0.014 0.146 0.260
P (d = 0) 0.800 0.014 0.740 0.854
wATT 0.640 0.038 0.457 0.767
wATC 0.360 0.038 0.233 0.543

Notes: P (d = 1) denotes the proportion of treated units. P (d = 0) denotes the proportion
of control units. The implicit weights on τ̂ATT and τ̂ATC are denoted by wATT and wATC,
respectively.

Table C9: Simulation Results of the Second MC Study

P (d = 1) Mean bias Median bias RMSE MAE SD
Panel A: ATT

0.200 –2,304 –2,273 2,398 2,273 662
0.221 –2,485 –2,457 2,577 2,457 685
0.247 –2,638 –2,622 2,735 2,622 722
0.281 –2,881 –2,849 2,985 2,849 781
0.324 –3,100 –3,030 3,225 3,030 888
0.384 –3,399 –3,318 3,535 3,318 971
0.471 –3,761 –3,647 3,926 3,647 1,128
0.609 –4,380 –4,195 4,607 4,195 1,428
0.862 –5,962 –5,647 6,411 5,647 2,357

Panel B: ATC
0.200 6,759 6,791 6,791 6,791 662
0.221 6,579 6,606 6,614 6,606 685
0.247 6,426 6,442 6,466 6,442 722
0.281 6,182 6,214 6,232 6,214 781
0.324 5,963 6,034 6,029 6,034 888
0.384 5,665 5,745 5,747 5,745 971
0.471 5,303 5,416 5,421 5,416 1,128
0.609 4,683 4,869 4,896 4,869 1,428
0.862 3,101 3,416 3,895 3,528 2,357

Notes: P (d = 1) denotes the proportion of treated units. Simulation results are reported for linear least
squares regression. Biases are calculated against either the average treatment effect on the treated (Panel A)
or the average treatment effect on the controls (Panel B).



Table C10: Implicit Weights on τ̂ATT and τ̂ATC in the Second MC Study

wATT wATC
P (d = 1) Mean SD Minimum Maximum Mean SD Minimum Maximum

0.200 0.638 0.032 0.525 0.722 0.362 0.032 0.278 0.475
0.221 0.618 0.035 0.485 0.726 0.382 0.035 0.274 0.515
0.247 0.598 0.036 0.456 0.705 0.402 0.036 0.295 0.544
0.281 0.575 0.039 0.434 0.689 0.425 0.039 0.311 0.566
0.324 0.551 0.041 0.376 0.674 0.449 0.041 0.326 0.624
0.384 0.523 0.042 0.364 0.636 0.477 0.042 0.364 0.636
0.471 0.494 0.045 0.351 0.647 0.506 0.045 0.353 0.649
0.609 0.459 0.048 0.321 0.619 0.541 0.048 0.381 0.679
0.862 0.368 0.072 0.128 0.593 0.632 0.072 0.407 0.872

Notes: P (d = 1) denotes the proportion of treated units. The implicit weights on τ̂ATT and τ̂ATC are denoted by wATT and wATC,
respectively.



D Further Results on the Effects of Local Officials

Table D11: A Replication of Martinez-Bravo (2014)—The Effects on Golkar Victory

Whole
sample

PDI-P won
large 1999

PDI-P just
won 1999

Golkar just
won 1999

Golkar won
large 1999

Neither
won

Linear probability model
Kelurahan indicator 0.055*** 0.002 0.076** 0.128*** 0.044** 0.068*

(0.012) (0.016) (0.029) (0.037) (0.018) (0.038)
Observations 43,394 15,430 9,114 5,946 7,378 5,526

Propensity score model
Kelurahan indicator 0.033*** 0.001 0.034*** 0.136*** 0.047*** 0.028

(0.009) (0.006) (0.010) (0.050) (0.016) (0.025)
Observations 19,206 7,814 4,303 1,822 3,378 1,889

Notes: See also Martinez-Bravo (2014) for more details on these data. The unit of observation is a village. The
dependent variable equals one if Golkar was the most voted party in the village in the 1999 parliamentary election
and zero otherwise. All regressions include geographic controls, religious controls, facilities controls, and district
fixed effects. Estimation is based on linear least squares regression, with controls for either the variables listed in
the table (“Linear probability model”) or the propensity-score strata, province fixed effects, and the full set of in-
teractions between the strata and the fixed effects (“Propensity score model”). In the latter case, the variables listed
in the table correspond to the propensity score specifications. Cluster-robust standard errors (“Linear probability
model”) and bootstrap standard errors (“Propensity score model”) are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

Table D12: A Replication of Martinez-Bravo (2014)—The Effects on PDI-P Victory

Whole
sample

PDI-P won
large 1999

PDI-P just
won 1999

Golkar just
won 1999

Golkar won
large 1999

Neither
won

Linear probability model
Kelurahan indicator –0.021 0.037* –0.037 –0.087* –0.024 –0.004

(0.014) (0.021) (0.045) (0.043) (0.015) (0.045)
Observations 43,394 15,430 9,114 5,946 7,378 5,526

Propensity score model
Kelurahan indicator –0.003 0.033*** –0.008 –0.099*** –0.021* –0.023

(0.010) (0.009) (0.039) (0.036) (0.011) (0.045)
Observations 19,206 7,814 4,303 1,822 3,378 1,889

Notes: See also Martinez-Bravo (2014) for more details on these data. The unit of observation is a village. The
dependent variable equals one if PDI-P was the most voted party in the village in the 1999 parliamentary election
and zero otherwise. All regressions include geographic controls, religious controls, facilities controls, and district
fixed effects. Estimation is based on linear least squares regression, with controls for either the variables listed in
the table (“Linear probability model”) or the propensity-score strata, province fixed effects, and the full set of in-
teractions between the strata and the fixed effects (“Propensity score model”). In the latter case, the variables listed
in the table correspond to the propensity score specifications. Cluster-robust standard errors (“Linear probability
model”) and bootstrap standard errors (“Propensity score model”) are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.



Table D13: Martinez-Bravo (2014) and Treatment Effect Heterogeneity—The Effects on Golkar Victory

Whole
sample

PDI-P won
large 1999

PDI-P just
won 1999

Golkar just
won 1999

Golkar won
large 1999 Neither won

Linear probability model
Kelurahan indicator 0.055*** 0.002 0.076** 0.128*** 0.044** 0.068*

(0.012) (0.016) (0.029) (0.037) (0.018) (0.038)

Decomposition (Theorem 1)
a. ATT –0.009 0.016 0.107*** 0.094** 0.012 0.093*

(0.028) (0.032) (0.039) (0.047) (0.027) (0.051)
b. wATT 0.679 0.614 0.715 0.586 0.603 0.771

c. ATC 0.192*** –0.022 –0.001 0.175*** 0.093*** –0.017
(0.042) (0.017) (0.065) (0.063) (0.025) (0.054)

d. wATC 0.321 0.386 0.285 0.414 0.397 0.229

OLS = a · b + c · d 0.055*** 0.002 0.076** 0.128*** 0.044** 0.068*
(0.012) (0.016) (0.029) (0.037) (0.018) (0.038)

e. P (d = 1) 0.070 0.070 0.060 0.060 0.110 0.045
f . P (d = 0) 0.930 0.930 0.940 0.940 0.890 0.955
ATE = e · b + f · d 0.178*** –0.019 0.006 0.170*** 0.084*** –0.012

(0.038) (0.016) (0.061) (0.060) (0.022) (0.052)

Observations 43,394 15,430 9,114 5,946 7,378 5,526

Propensity score model
Kelurahan indicator 0.033*** 0.001 0.034*** 0.136*** 0.047*** 0.028

(0.009) (0.006) (0.010) (0.050) (0.016) (0.025)

Decomposition (Theorem 1)
a. ATT 0.045*** 0.004 0.064* 0.100 0.048** 0.034

(0.016) (0.011) (0.034) (0.061) (0.022) (0.028)
b. wATT 0.779 0.852 0.782 0.705 0.660 0.879

c. ATC –0.011 –0.011 –0.073 0.224*** 0.045* –0.019
(0.032) (0.019) (0.063) (0.071) (0.023) (0.032)

d. wATC 0.221 0.148 0.218 0.295 0.340 0.121

OLS = a · b + c · d 0.033*** 0.001 0.034*** 0.136*** 0.047*** 0.028
(0.009) (0.006) (0.010) (0.050) (0.016) (0.025)

e. P (d = 1) 0.116 0.099 0.104 0.110 0.181 0.100
f . P (d = 0) 0.884 0.901 0.896 0.890 0.819 0.900
ATE = e · b + f · d –0.005 –0.009 –0.059 0.210*** 0.046** –0.013

(0.028) (0.017) (0.058) (0.067) (0.021) (0.029)

Observations 19,206 7,814 4,303 1,822 3,378 1,889

Notes: See also Martinez-Bravo (2014) for more details on these data. The unit of observation is a village. The dependent variable
equals one if Golkar was the most voted party in the village in the 1999 parliamentary election and zero otherwise. All regressions
and propensity score specifications include geographic controls, religious controls, facilities controls, and district fixed effects.
Estimation of “Kelurahan indicator” (=OLS) is based on linear least squares regression, with controls for either the variables listed in
the table (“Linear probability model”) or the propensity-score strata, province fixed effects, and the full set of interactions between
the strata and the fixed effects (“Propensity score model”). In the latter case, the variables listed in the table correspond to the
propensity score specifications. Estimation of ATT and ATC is described in Section 2 (in particular, see Theorem 1). Cluster-robust
standard errors (“Linear probability model”, OLS), bootstrap standard errors (“Propensity score model”, OLS), and Huber–White
standard errors (ATT, ATC, and ATE) are in parentheses. Huber–White standard errors ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.



Table D14: Martinez-Bravo (2014) and Treatment Effect Heterogeneity—The Effects on PDI-P Victory

Whole
sample

PDI-P won
large 1999

PDI-P just
won 1999

Golkar just
won 1999

Golkar won
large 1999 Neither won

Linear probability model
Kelurahan indicator –0.021 0.037* –0.037 –0.087* –0.024 –0.004

(0.014) (0.021) (0.045) (0.043) (0.015) (0.045)

Decomposition (Theorem 1)
a. ATT 0.012 0.006 –0.069 –0.110 0.011 –0.024

(0.025) (0.040) (0.059) (0.074) (0.024) (0.051)
b. wATT 0.679 0.614 0.715 0.586 0.603 0.771

c. ATC –0.091** 0.086*** 0.043 –0.055 –0.078*** 0.065
(0.041) (0.025) (0.062) (0.047) (0.021) (0.057)

d. wATC 0.321 0.386 0.285 0.414 0.397 0.229

OLS = a · b + c · d –0.021 0.037* –0.037 –0.087* –0.024 –0.004
(0.014) (0.021) (0.045) (0.043) (0.015) (0.045)

e. P (d = 1) 0.070 0.070 0.060 0.060 0.110 0.045
f . P (d = 0) 0.930 0.930 0.940 0.940 0.890 0.955
ATE = e · b + f · d –0.084** 0.080*** 0.036 –0.058 –0.068*** 0.061

(0.037) (0.023) (0.059) (0.046) (0.019) (0.056)

Observations 43,394 15,430 9,114 5,946 7,378 5,526

Propensity score model
Kelurahan indicator –0.003 0.033*** –0.008 –0.099*** –0.021* –0.023

(0.010) (0.009) (0.039) (0.036) (0.011) (0.045)

Decomposition (Theorem 1)
a. ATT –0.025 0.029 –0.030 –0.098 –0.021 –0.030

(0.020) (0.021) (0.047) (0.061) (0.016) (0.055)
b. wATT 0.779 0.852 0.782 0.705 0.660 0.879

c. ATC 0.073** 0.054* 0.070 –0.102 –0.020 0.032
(0.032) (0.031) (0.066) (0.076) (0.021) (0.064)

d. wATC 0.221 0.148 0.218 0.295 0.340 0.121

OLS = a · b + c · d –0.003 0.033*** –0.008 –0.099*** –0.021* –0.023
(0.010) (0.009) (0.039) (0.036) (0.011) (0.045)

e. P (d = 1) 0.116 0.099 0.104 0.110 0.181 0.100
f . P (d = 0) 0.884 0.901 0.896 0.890 0.819 0.900
ATE = e · b + f · d 0.062** 0.052* 0.059 –0.102 –0.020 0.026

(0.029) (0.028) (0.062) (0.073) (0.019) (0.060)

Observations 19,206 7,814 4,303 1,822 3,378 1,889

Notes: See also Martinez-Bravo (2014) for more details on these data. The unit of observation is a village. The dependent variable
equals one if PDI-P was the most voted party in the village in the 1999 parliamentary election and zero otherwise. All regressions
and propensity score specifications include geographic controls, religious controls, facilities controls, and district fixed effects.
Estimation of “Kelurahan indicator” (=OLS) is based on linear least squares regression, with controls for either the variables listed in
the table (“Linear probability model”) or the propensity-score strata, province fixed effects, and the full set of interactions between
the strata and the fixed effects (“Propensity score model”). In the latter case, the variables listed in the table correspond to the
propensity score specifications. Estimation of ATT and ATC is described in Section 2 (in particular, see Theorem 1). Cluster-robust
standard errors (“Linear probability model”, OLS), bootstrap standard errors (“Propensity score model”, OLS), and Huber–White
standard errors (ATT, ATC, and ATE) are in parentheses. Huber–White standard errors ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.



Table D15: Further Estimates of the Effects of Local Officials on Golkar Victory (Overlap Sample)

Whole
sample

PDI-P won
large 1999

PDI-P just
won 1999

Golkar just
won 1999

Golkar won
large 1999 Neither won

OLS-LPM 0.035*** –0.001 0.050* 0.106*** 0.045** 0.032
(0.011) (0.014) (0.028) (0.038) (0.018) (0.029)

ATT-LPM 0.036* –0.044** 0.067** 0.070 0.069*** –0.016
(0.020) (0.022) (0.034) (0.069) (0.026) (0.049)

ATE-LPM 0.097*** –0.005 0.004 0.078 0.079*** 0.164*
(0.033) (0.032) (0.073) (0.109) (0.029) (0.094)

OLS-probit 0.033*** 0.001 0.034*** 0.136*** 0.047*** 0.028
(0.009) (0.006) (0.010) (0.050) (0.016) (0.025)

ATT-probit 0.031* –0.006 0.000 0.104 0.044* 0.016
(0.016) (0.022) (0.042) (0.081) (0.026) (0.049)

ATE-probit –0.001 –0.008 0.037 0.131 0.070** –0.037
(0.031) (0.044) (0.076) (0.142) (0.032) (0.069)

Observations 19,206 7,814 4,303 1,822 3,378 1,889

Notes: See also Martinez-Bravo (2014) for more details on these data. The unit of observation is a village. The de-
pendent variable equals one if Golkar was the most voted party in the village in the 1999 parliamentary election
and zero otherwise. All regressions and propensity score specifications include geographic controls, religious con-
trols, facilities controls, and district fixed effects. For “OLS-LPM” and “OLS-probit”, estimation is based on linear
least squares regression, with controls for either the variables listed above (“OLS-LPM”) or the propensity-score
strata, province fixed effects, and the full set of interactions between the strata and the fixed effects (“OLS-probit”).
In the latter case, the variables listed above correspond to the propensity score specifications. For “ATT-LPM”,
“ATE-LPM”, “ATT-probit”, and “ATE-probit”, estimation is based on nearest-neighbor matching on the estimated
propensity score (with a single match). For “ATT-probit” and “ATE-probit”, exact matching on province fixed effects
is also required. The propensity score is estimated using a linear probability model (“ATT-LPM” and “ATE-LPM”)
or an algorithm based on a probit model (“ATT-probit” and “ATE-probit”). A description of this algorithm is given
in Martinez-Bravo (2014). Cluster-robust standard errors (“OLS-LPM”), bootstrap standard errors (“OLS-probit”),
and Abadie–Imbens standard errors (“ATT-LPM”, “ATE-LPM”, “ATT-probit”, and “ATE-probit”) are in parentheses.
Abadie–Imbens standard errors ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.



Table D16: Further Estimates of the Effects of Local Officials on PDI-P Victory (Overlap Sample)

Whole
sample

PDI-P won
large 1999

PDI-P just
won 1999

Golkar just
won 1999

Golkar won
large 1999 Neither won

OLS-LPM –0.008 0.029 –0.007 –0.081 –0.015 –0.050
(0.014) (0.019) (0.043) (0.049) (0.016) (0.053)

ATT-LPM 0.008 0.081*** –0.045 0.010 –0.033 0.016
(0.021) (0.028) (0.044) (0.061) (0.020) (0.082)

ATE-LPM –0.040 0.010 0.101 –0.161* –0.035 –0.097
(0.035) (0.043) (0.094) (0.088) (0.023) (0.099)

OLS-probit –0.003 0.033*** –0.008 –0.099*** –0.021* –0.023
(0.010) (0.009) (0.039) (0.036) (0.011) (0.045)

ATT-probit –0.008 0.043 –0.034 –0.055 –0.015 –0.037
(0.020) (0.030) (0.053) (0.078) (0.020) (0.092)

ATE-probit 0.014 0.037 0.122 –0.087 –0.033 –0.107
(0.041) (0.058) (0.099) (0.123) (0.026) (0.122)

Observations 19,206 7,814 4,303 1,822 3,378 1,889

Notes: See also Martinez-Bravo (2014) for more details on these data. The unit of observation is a village. The
dependent variable equals one if PDI-P was the most voted party in the village in the 1999 parliamentary election and
zero otherwise. All regressions and propensity score specifications include geographic controls, religious controls,
facilities controls, and district fixed effects. For “OLS-LPM” and “OLS-probit”, estimation is based on linear least
squares regression, with controls for either the variables listed above (“OLS-LPM”) or the propensity-score strata,
province fixed effects, and the full set of interactions between the strata and the fixed effects (“OLS-probit”). In the
latter case, the variables listed above correspond to the propensity score specifications. For “ATT-LPM”, “ATE-LPM”,
“ATT-probit”, and “ATE-probit”, estimation is based on nearest-neighbor matching on the estimated propensity
score (with a single match). For “ATT-probit” and “ATE-probit”, exact matching on province fixed effects is also
required. The propensity score is estimated using a linear probability model (“ATT-LPM” and “ATE-LPM”) or an
algorithm based on a probit model (“ATT-probit” and “ATE-probit”). A description of this algorithm is given in
Martinez-Bravo (2014). Cluster-robust standard errors (“OLS-LPM”), bootstrap standard errors (“OLS-probit”), and
Abadie–Imbens standard errors (“ATT-LPM”, “ATE-LPM”, “ATT-probit”, and “ATE-probit”) are in parentheses.
Abadie–Imbens standard errors ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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