

DLR Magazin

DLR magazin141

Die Windmaschinen

Sie gehören zu den imposantesten Forschungsanlagen überhaupt. Groß, verschlossen, ein wenig geheimnisvoll. Nicht viele, die sie je von innen sahen. – Windkanäle. Der Niedergeschwindigkeits-Windkanal Braunschweig ist einer von ihnen. Wozu sie da sind, was sie voneinander unterscheidet und welche Rolle sie in der Forschung spielen, ist in einer Artikelserie zu erfahren, die in dieser Ausgabe des DLR-Magazins beginnt.

Editorial	3
EinBlick	2
Leitartikel Forschen für den Vorwärtsgang	6
Meldungen	8
Astronaut im Endspurt Alexander Gerst vor der Mission "Blue Dot"	10
Reportage Rosetta: Aufwachen vor Publikum	14

Rückenwind für die Karriere Förderung junger Wissenschaftler	2
Weltatlas mit Höhen und Tiefen Eine neue Topografie der Erde entsteht	2
THE PARTY OF THE P	

Kommentar Kooperationen – Schlüssel zum Erfolg	32
Luftfahrtmeldungen	34
Ausflug in die Zukunft Airport 2030 – der Flughafen von morgen	36

Interview

Magazinserie

Achtung: Rüttelgefahr! Narnsystem spürt Wirbelschleppen auf	42
	ķ

40

Dr. Caroline Forster erforscht Gewitter

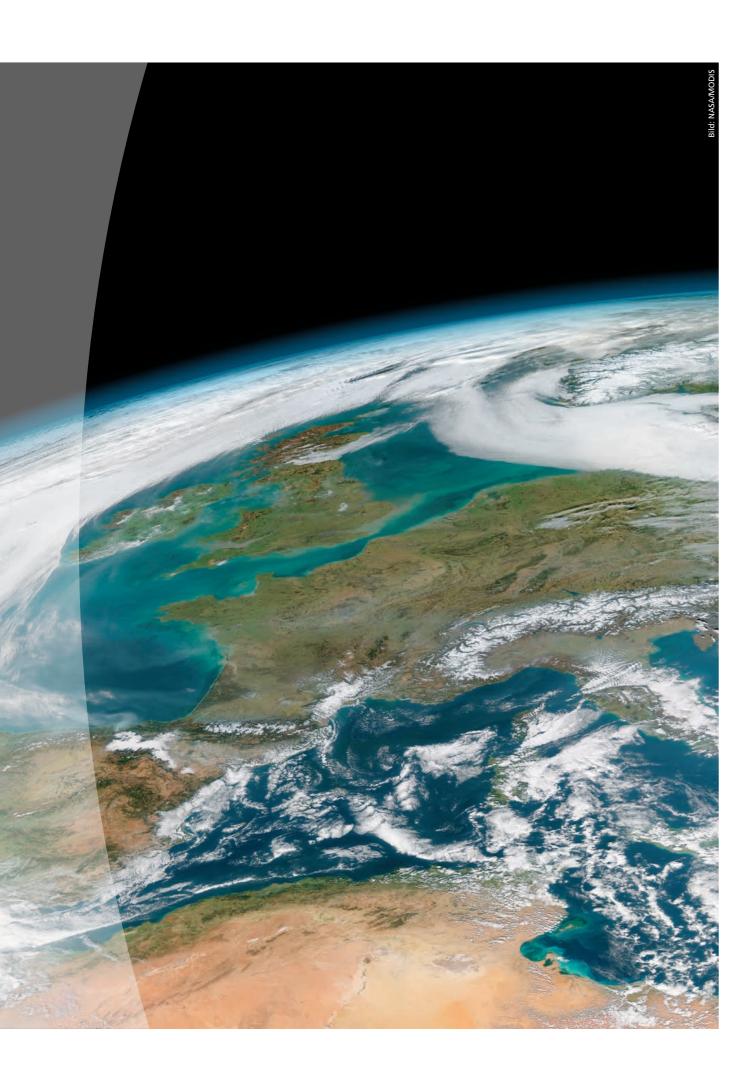
Die Windmaschinen	46
Betrachtung "X-Stoffe" – ein Ziel, das verbindet	52
In Museen gesehen "In Orbit" im K21	56
	9
	A

Liebe Leserinnen und Leser,

das Jahr 2014 steht ganz im Zeichen von Höchstleistungen. Den Auftakt machten die Olympischen Winterspiele in Sotschi. Sportlerinnen und Sportler aus der ganzen Welt gaben alles, um den Preis für jahrelanges hartes Training und körperliche Verausgabung zu ernten: einmal aufs Treppchen zu steigen und eine der begehrten Medaillen umgehängt zu bekommen. Und fast immer kommt es auf den einen angespannten Augenblick an, in dem alles passen muss und sich ein Bausteinchen zum anderen fügt – für den großen Erfolg des Einzelnen und des Teams, das hinter ihm steht.

Auch für das DLR geht es im Jahr 2014 um herausragende Leistungen.

Definitiv ohne Medaillenchance, aber auch nach intensiver Vorbereitung und hartem Training geht es im Mai für den deutschen ESA-Astronauten Alexander Gerst ganz nach oben: Er wird zur Internationalen Raumstation ISS fliegen und dort sechs Monate lang leben und arbeiten. Damit die Mission reibungslos funktioniert, werden von allen Beteiligten Höchstleistungen gefordert – nicht nur im All, auch am Boden.


Ein weiteres Resultat von Höchstleistungen wird es im November geben – in der unvorstellbaren Entfernung von weit mehr als 800 Millionen Kilometern soll die europäische Raumsonde Rosetta nach zehn Jahren Flugzeit ihren Lander Philae auf dem Kometen 67P/Churyumov-Gerasimenko absetzen. DLR-Ingenieure haben für das Aufsetzen des Landers auf unbekanntem Terrain nichts dem Zufall überlassen und die Mission bis ins kleinste Detail geplant. Sie wollen nun den Sieg einfahren, und doch muss dafür auch im richtigen Augenblick jeder Baustein passen.

Aber nicht nur die spektakulären Missionen verdienen es, ins Rampenlicht gerückt zu werden. Auch im Alltagsbetrieb großer Forschungsanlagen gibt es Rekordleistungen. In einem Windkanal zum Beispiel. Eine Magazin-Serie stellt die beeindruckenden Anlagen und die Forschung, die an ihnen betrieben wird, vor. Und da wir schon beim Thema "hoch hinaus" waren – auch die Frage, wie wir künftig fliegen, ist nur im Team und mit dem Vorstoß in rekordverdächtige Regionen zu beantworten. Airport 2030 heißt das Projekt, das uns angesichts seiner ambitionierten Ziele staunen lässt. – Doch auch Olympiasieger zu werden, ist beim Karrierestart noch Wunschtraum. Für die Hartnäckigsten, Diszipliniertesten, ja auch Kreativsten und ihre Teams ging er vor ein paar Wochen in Erfüllung.

In diesem sportlichen Sinne wünsche ich Ihnen, dass Sie die Lektüre des Magazins durchaus als Gewinn empfinden. Auch ohne Medaille.

Sabine Hoffmann Leiterin DLR-Kommunikation

Forschen für den Vorwärtsgang

Von Brigitte Zypries

Die neue Bundesregierung ist mit dem Ziel angetreten, den Wissenschafts- und Wirtschaftsstandort Deutschland voranzubringen. Forschung, technisches Know-how und ständige Innovationsbereitschaft sind hierfür das beste Rezept. Den im Mittelpunkt der Forschungsaktivitäten des DLR stehenden Schlüsseltechnologien Luft- und Raumfahrt kommt dabei eine große Bedeutung zu. Dies gilt aber auch für die anderen Forschungsbereiche des DLR: die Verkehrsforschung, die Energieforschung und die Sicherheitsforschung. Wichtige Ansprechpartner rund um die Projektförderung sind auch die Projektträger im DLR. Sie müssen sicherstellen, dass die Projekte auf einem hohen fachlichen Niveau durchgeführt und die rechtlichen Rahmenbedingungen der Projektförderung beachtet werden.

Nur wenn es uns gelingt, exzellente Forschungsergebnisse auch in die praktische Anwendung zu überführen, können wir Forschungs-, Entwicklungs- und Produktionskompetenzen sowie Systemfähigkeiten dauerhaft in Deutschland halten. Das DLR hat hierbei durch seine Brückenfunktion von der anwendungsorientierten Grundlagenforschung bis hin zu innovativen Anwendungen und Vorstufen marktfähiger Produkte eine national einzigartige Schlüsselposition. Die deutsche Wirtschaft profitiert seit vielen Jahren von der Kooperation mit dem DLR. Und zwar sowohl die Schwergewichte der Branchen als auch unsere mittelständisch geprägte Zuliefer- und Ausrüstungsindustrie.

Das DLR steht auch 2014 vor großen Herausforderungen: In ihrer Luftfahrtstrategie verfolgt die Bundesregierung das Ziel, Deutschland zum Vorreiter für ein leistungsfähiges und zugleich umweltverträgliches Luftverkehrssystem zu machen. Die Bundesregierung hat mit ihrem Luftfahrtforschungsprogramm (LuFo), das sich mit seinen Schwerpunkten konsequent an der Luftfahrtstrategie ausrichtet, ein effizientes Förderinstrument geschaffen. Mit seinem Fachausschuss Fluglärm zeigt das DLR, dass es die Zeichen der Zeit erkannt hat und durch weitere Lärmreduzierung die Akzeptanz für den Luftverkehr bei unseren Bürgerinnen und Bürgern steigert.

In der Raumfahrt soll die ESA-Ministerratskonferenz Ende dieses Jahres eine Entscheidung über die Trägerentwicklung treffen. Ein Höhepunkt in diesem Jahr ist sicherlich der in Kürze anstehende Flug unseres deutschen ESA-Astronauten Alexander Gerst zur ISS. Die bisher so erfolgreiche ESA-Mission "Rosetta" mit der unter deutscher Federführung konstruierten und vom DLR in Köln aus gesteuerten Landesonde "Philae" hat in der Presse und den Neuen Medien große Beachtung gefunden. Ich wünsche mir noch viele solch gute Pressemeldungen und öffentliche Reaktionen zur Arbeit des DLR.

Wer eine Wirtschaft im Vorwärtsgang will, der braucht leistungsfähige, innovative Infrastrukturen, vor allem auch im Verkehrsbereich. Das DLR hat seine Arbeitsschwerpunkte in der Verkehrsforschung richtig gesetzt: bodengebundene Straßenund Schienenfahrzeuge der nächsten Generation, verbunden mit einem innovativen Verkehrsmanagement, die übergreifende Betrachtung des Gesamtverkehrssystems und des Themas Elektromobilität. Mit der Energieforschung, beispielsweise im Bereich der Energiespeicher, bei hocheffizienten und schadstoffarmen Verbrennungstechnologien oder Materialentwicklungen für Spitzentechnologien im Energiebereich (zum Beispiel Solarenergie), erarbeitet das DLR substanzielle Beiträge zur Umsetzung der Energiewende. Zugleich profitiert der Wirtschaftsstandort Deutschland von hochinnovativen Energietechnologien "Made in Germany", die den Zugang zu wichtigen Märkten weltweit ermöglichen. Mit dem Forschungsverbund "Maritime Sicherheit" trägt das DLR mit seinen Projektpartnern zu mehr Sicherheit für die Schifffahrtswege und Häfen bei.

Dass das DLR für die nächsten Jahre fachlich gut aufgestellt ist, hat die von der Helmholtz-Gemeinschaft in 2013 durchgeführte Evaluation der Programme Luftfahrt, Raumfahrt und Verkehr gezeigt. Die große Herausforderung für alle Forschungseinrichtungen besteht weiterhin darin, die hervorragenden Forschungsergebnisse noch intensiver zur Stärkung des Wirtschaftsstandorts Deutschland einzusetzen: Das heißt vor allem, sie noch schneller umzusetzen und zu innovativen Produkten zu führen. Das vom DLR hierbei bereits erreichte hohe Niveau könnte insbesondere durch zusätzliche Industriekooperationen und verstärkte Mitfinanzierung durch die private Wirtschaft noch gesteigert werden.

Brigitte Zypries, Parlamentarische Staatssekretärin beim Bundesminister für Wirtschaft und Energie

www.bmwi.de

Meldungen

Laser-Kommunikation vom Flugzeug zum Boden

In Manching bei Ingolstadt demonstrierten DLR-Forscher erfolgreich eine Laser-Kommunikationsverbindung zu einem sehr schnell fliegenden Flugzeug.

Bei Aufnahmen von Luftbildern fällt eine große Menge Daten an. Doch die Übertragungsrate ist begrenzt. Sollen die Bilder bereits während des Fluges schnell an eine Bodenstation übertragen werden, könnten Laser-Datenübertragungssysteme helfen. Sie erreichen wesentlich höhere Datenraten als die Übertragung mit Funkwellen. Zudem sind sie kompakter und leistungsfähiger als klassische Funkgeräte und darüber hinaus nur schwer abzuhören.

Bei den DLR-Versuchen in Manching wurde eine Datenrate von 1,25 Gigabit pro Sekunde erzielt. Dies entspricht etwa der einhundertfachen Geschwindigkeit eines Standard-DSL-Anschlusses. Als Flugträger im Projekt DODfast (Demonstration of an Optical Data link fast) diente ein Panavia Tornado der Bundeswehr. Zum Empfang am Boden wurde die am DLR entwickelte

Die Transportable Optische Bodenstation TOGS des DLR-Instituts für Kommunikation und Navigation – aufgebaut neben dem Flughafen Ingolstadt/Manching

Transportable Optische Bodenstation TOGS (Transportable Optical Ground Station) nahe dem Flugplatz aufgestellt. Das Flugzeug war mit einem unter dem Rumpf angebrachten, etwa 2,5 Meter langen Behälter, einem sogenannten Pod, ausgerüstet, in dem die gesamte Hardware für das Experiment installiert war. Das Sendeterminal MLT (Micro Laser Terminal) wurde von der DLR-Ausgründung ViaLight Communications in Zusammenarbeit mit dem DLR entwickelt.

Die TOGS musste mit hoher Präzision die Bewegung des Flugzeugs verfolgen, um das Laser-Licht auf der winzigen Fotodiode fokussiert zu halten. Das MLT hatte dabei sowohl die schnellen Lageänderungen des Tornados als auch dessen starke Vibrationen auszugleichen. Die Ziel- und Ausrichtegenauigkeit reichte dabei bis zu einem tausendstel Grad.

Experimentaltechnik für die Forschung

Sie agieren eher im Hintergrund und doch ist ihre Arbeit unverzichtbar. Das Systemhaus Technik (SHT) des DLR feierte sein 50-jähriges Bestehen. Am 1. Oktober 1963 nahm es als Zentralwerkstatt im DLR Köln seine Arbeit auf. Heute entwickelt und baut die Einrichtung nicht nur Technische Systeme für die Institute. Zum SHT gehören auch die Ausbildungswerkstätten.

Was vor mehr als 50 Jahren mit einer Werkstatt begann, wird heute im DLR und darüber hinaus als Ausbildungsstätte, vor allem aber als Dienstleistungseinrichtung für die Forschung geschätzt. Ob Experimentaltechnik, Systeme oder Komponenten – die Ingenieure, Elektroniker und Industriemechaniker finden für jede Anforderung eine maßgeschneiderte Lösung. Dafür wurden konventionelle Maschinen nach und nach durch moderne CNC(Computerized Numerical Control)-Maschinen ersetzt. Die insgesamt 190 Mitarbeiterinnen und Mitarbeiter an sechs DLR-Standorten haben sich der Präzisionsfertigung nach Skizzen der Wissenschaftler aus den Instituten verschrieben. Seit Kurzem stehen auch zwei Anlagen für Rapid Prototyping, das sogenannte 3-D-Drucken, zur Verfügung.

Das Kölner Team des Systemhaus Technik: Spezialisten mit Gemeinschaftssinn

Doppelsieg für DLR-Idee zur Radarnavigation

Mit der Idee für ein hochpräzises Navigationssystem gewann der DLR-Wissenschaftler Hartmut Runge den Ideenwettbewerb "Copernicus Masters 2013". Er schlug vor, Koordinaten von Landmarken, also feststehenden markanten Objekten wie Straßenlaternen, Brückengeländern oder Gebäudekanten zu nutzen. Die genauen Koordinaten der Landmarken könnten aus hochauflösenden Radardaten beigesteuert und auf digitale Straßenkarten übertragen werden. Mit der Fahrzeugsensorik kann dann durch Triangulation die aktuelle Fahrzeugposition bestimmt werden. Runges Idee überzeugte gleich doppelt: So gewann der DLR-Wissenschaftler die Einzelausschreibung in der Kategorie "BMW Connected Drive Challenge", bevor er in der Runde der Finalisten zum Hauptgewinner gekürt wurde.

Einen Copernicus-Masters-Preis erhielt auch die Firma EOMAP, und zwar in der Kategorie "T-Systems Cloud Computing Challenge". Firmengründer Dr. Thomas Heege war zuvor über zehn Jahre im DLR-Institut für Methodik der Fernerkundung tätig. Er brillierte im Wettbewerb mit einer satellitengestützten Methode zur Kartierung schwer erreichbarer Küstenregionen.

Copernicus Masters prämiert jährlich die besten Ideen und Anwendungen zur innovativen Nutzung von Erdbeobachtungsdaten für kommerzielle Zwecke und gesellschaftlich relevante Projekte. Initiiert wurde der Wettbewerb 2011 von der ESA, dem Bayerischen Staatsministerium für Wirtschaft, dem Deutschen Zentrum für Luft- und Raumfahrt, dem Anwendungszentrum Oberpfaffenhofen sowie der T-Systems GmbH.

Mit der Projektidee "Landmark Navigation with Radar Fix Point from Satellites" gewann Hartmut Runge (im Bild links) vom DLR-Institut für Methodik der Fernerkundung des Earth Observation Centers (EOC) den Wettbewerb "Copernicus Masters 2013". Runges Innovation findet Anwendung in den Bereichen Sicherheit und Verkehr, dort besonders beim autonomen Fahren.

NUR EIN BLAUER PUNKT

bit.ly/1ePXfsU Bestens investierte 5:35 Minuten Lebenszeit! Ein Video über "The Pale Blue

Dot", das einprägsame Bild, das einst die

NASA-Raumsonde Voyager beim Verlassen des Sonnensystems von der Erde, unserem Blauen Planeten, zurückschickte.

77 ENERGIESPARTIPPS

画類画 bit.ly/19yPwiS

Auch für Nicht-Baden-Württemberger sicher hilfreich: 77 einfache Tipps, wie im Alltag Energie gespart werden kann, zu-

sammengestellt vom Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg.

ANONYME SUCHE

回記 duckduckgo.com

Erfolgreiche Internet-Recherche, ohne selbst Spuren zu hinterlassen? – Das geht. mit DuckDuckGo. Die Suchmaschine

begleitet seine Nutzer nicht auf ihrer Reise durchs Netz, sie legt weder ein Userprofil an noch bietet sie störende personalisierte Suchergebnisse, da die IP-Adresse des Nutzers nicht gespeichert wird.

ECHTE SCIENCE-FICTION!

Die bietet der DLR-Kurzfilm: "Mission ins Ungewisse". Sein Hauptdarsteller, der Kometenjäger Rosetta, fliegt seit zehn

Jahren durch die Tiefen des Weltalls. Im November 2014 soll der Lander "Philae", den die ESA-Raumsonde an Bord hat erstmals auf einem Kometen landen, Proben entnehmen und dabei dem Ursprung des Lebens näher kommen.

ÜBER DIE TROPOSPHÄRE

回語 www.tropos.de Die barrierefreie Website des Leibniz-

Instituts für Troposphärenforschung liefert aktuelle Messdaten beispielsweise zu Aerosolen und Wolken sowie Berichte zu Messkampagnen in Deutschland, Europa und Übersee. Studierende finden hier aktuelle Termine zu TROPOS-Vorlesungen oder Themen für Bachelor-

und Masterarbeiten. Fotos und Videos bieten Laien ebenso wie fachkundigen Besuchern Einblicke hinter Labortüren und in Messstationen.

FÜR STERNENGUCKER ■ s.DLR.de/ok6v

Nun gibt es DLR_next, das Jugendportal des DLR, auch zum Mitnehmen: als

mobile App für Smartphones. Ob über die neuesten Entwicklungen in Raumfahrt, Luftfahrt, Energie und Verkehr informieren, einfach mal den Lauf der Planeten und die Sterne verfolgen oder die ISS via 3-D-Globus beobachten – DLR_next bietet alles in einer App.

Ein Astronaut im Endspurt

Am 28. Mai 2014 wird Alexander Gerst seine Reise zur Internationalen Raumstation ISS antreten. Sechs Monate wird er dann in der fliegenden Forschungsstation leben und arbeiten. Nun beginnen die letzten Trainingseinheiten, der Start ins All rückt näher und der Abschied von der Erde steht bevor.

Alexander Gerst auf der letzten Etappe zur Mission "Blue Dot"

Von Manuela Braun

"In einem halben Jahr, da sitzt Du auf diesem Ding."
Alexander Gerst stand am Raketenstartplatz in Baikonur, als ihm dieser Gedanke kam. So real war ihm seine Mission ins Weltall noch nie erschienen. Monatelang simulierte Landungen in der Sojus-Kapsel, Tauchtraining für den Außenbordeinsatz, Überlebensübungen bei minus 20 Grad Celsius – und trotzdem war es ihm erst in diesem Moment am 7. November 2013 so richtig klar, als Kochi Wakata, Michail Tjurin und Richard Mastracchio zur Internationalen Raumstation ISS starteten und er als Ersatzmann am Boden blieb: Nicht mehr lange, und er selbst würde seine Reise in die Schwerelosigkeit antreten. "Hätten die noch einen Platz frei gehabt, ich wäre sofort eingestiegen und mitgeflogen."

Zwei Wochen lang hatte Gerst mit der Crew in Baikonur gemeinsam trainiert, mit ihnen gegessen, hatte die Quarantäne vor dem Start mit ihnen verbracht und ihnen kurz vor dem Start noch in die Raumanzüge geholfen. Als Mitglied der Back-Up-Crew jederzeit bereit, für einen ausgefallenen Astronauten einzuspringen und ins All zu fliegen. "Man hilft der Crew, ihre Ausrüstung zur Rakete zu bringen, sieht, wie sie in die Rakete steigt, und ist bis zum Schluss mit dabei." Ein wenig Sehnsucht schwingt in diesen Sätzen mit – nach dem Weltraum, nach dem Leben und Arbeiten in der Schwerelosigkeit, danach, dass auf das irdische Training endlich die überirdische Realität in der Raumstation folgt.

Landung in Echtzeit

Jetzt bereitet Alexander Gerst sich im Sternenstädtchen bei Moskau, dem russischen Ausbildungszentrum für Kosmonauten, weiterhin auf seine Mission "Blue Dot" vor, als nächstes folgen wieder Houston, Köln und Japan. Der sorgfältig geplante Trainingsalltag hat ihn wieder. "Im Moment ist meine Mission noch einmal in die Ferne gerückt – auch wenn ich mittlerweile die Tage bis zum Start schon zählen kann." Heute ist er mit seinen Crew-Kollegen Reid Wiseman und Maxim Surajew mal wieder mit der Sojus-Kapsel in der kasachischen Steppe gelandet, zumindest

Alexander Gerst – Geophysiker, Astronaut, Bordingenieur

Im Mai 2009 wurde Alexander Gerst für das europäische Astronautenkorps der ESA ausgewählt – und hielt am 22. November 2010 schließlich sein offizielles Astronauten zertifikat in den Händen. Der ausgebildete Astronaut wurd im August 2011 als Mitglied der Crew 40/41 für den Au enthalt auf der Internationalen Raumstation ISS benannt Er wird als Bordingenieur in einem sechsköpfigen Team eingesetzt.

Seitdem hat der studierte Geophysiker in Russland, Deutsch land, Kanada, Japan und den USA für seine Mission trainie Am 28. Mai 2014 startet er vom Weltraumbahnhof Baikon zur Raumstation und wird bis November an Bord der ISS lebe und arbeiten. In dieser Zeit ist er an rund 100 Experimente aller ISS-Partner beteiligt. Von den rund 40 ESA-Experimente finden 25 unter Führung deutscher Projektwissenschaftler od mit deutscher Industriebeteiligung statt

Training zwischen Hightech und Topfpflanzen: Im "Gagarin Cosmonaut Training Center" üben die Astronauten das Arbeiten in den originalgetreuen russischen Modulen der Raumstation

virtuell. 30, vielleicht 40 Mal hat er das in den vergangenen Monaten bereits getan. Nicht immer ist es gut gegangen, dieses Mal hat alles geklappt. Auch wenn die Trainer versucht haben, die Crew ziemlich unter Stress zu setzen und etliche Pannen in die mehrstündige Simulation eingebaut haben.

"Acht Fehler sind aufgetaucht, auf die wir reagieren mussten", erzählt Gerst. Das Triebwerk schaltete sich zu früh ab, in verschiedenen Bereichen gab es einen Druckabfall. Der Deutsche war für die Beobachtung der Lebenserhaltungssysteme zuständig, hat beispielsweise den Sauerstoffgehalt sorgfältig überwacht und reguliert. Die gemeinsamen Trainingsstunden haben das Team noch mehr zusammengeschweißt, die Absprache mit Wiseman und Surajew funktioniert auch ohne viele Worte. Einen lebensgefährlichen Feuerausbruch haben die Trainer ihnen allerdings erspart. "Die waren dieses Mal gnädig mit uns."

Leben und trainieren auf verschiedenen Kontinenten

Ein roter, von vielen Astronautenschuhen abgenutzter Teppich bedeckt die Stufen, die zur Sojus-Kapsel führen. Einzelne Topfpflanzen versuchen, ein wenig heimelige Atmosphäre in die Trainingshalle zu bringen, in der mehrere Sojus-Kapseln aufgebaut sind. Im Kontrollraum der Trainer blickt Juri Gagarin, Held der Sowjetunion und Idol der Raumfahrt, von der Wand auf die Steuerkonsolen. Der Mensch, der als Erster in einem Raumschiff die Erde umrundete, ist allgegenwärtig im Sternenstädtchen: In Gagarins Spind hängen noch dessen Sportsachen, Gerst nutzt das Schwimmbecken, in dem auch der Raumfahrt-Pionier schon seine Bahnen gezogen hat. In der Sauna trifft der 37-Jährige auf die russischen Kosmonauten, die schon in der MIR um die Erde gekreist sind oder den ersten Weltraumausstieg absolviert haben.

Alexander Gerst übt für den Außenbordeinsatz, hier in Houston

Tauchen für den Außenbordeinsatz: Sobald die Module ins Wasser abgesenkt werden, können die Astronauten trainieren, fast so schwerelos wie im All

Alexander Gerst wohnt immer auf dem Gelände des Sternenstädtchens, wenn er seine Trainingseinheiten in den russischen Modulen hat. In Houston lebt er im eigenen Apartment, in Köln hat er eine Wohnung. "Alle drei bis vier Wochen fliege ich zur nächsten Trainingseinheit." Er überlegt kurz. "Und egal, wo ich lande, ich fühle mich, als ob ich zu Hause ankomme." Weltweit hat er sich einen Freundeskreis aufgebaut: Ein gemeinsames Abendessen in den USA, Grillen in der Garage mit den russischen Trainern, Jogging mit Crew-Kollege Reid Wiseman. Seinen Haushalt hat Gerst auf verschiedenen Kontinenten eingerichtet: drei Mal Joggingschuhe, drei Mal Kleidung. Jetzt bringt er so langsam die ersten Dinge wieder nach Köln. Die Trainingsstunden in Moskau und Houston gehen dem Ende zu, die Mission rückt immer näher. Für Gerst gleich zwei Dinge, die er sich noch nicht so ganz vorstellen kann: die sechs Monate auf der Internationalen Raumstation, 400 Kilometer über der Erdkugel, und die Zeit danach, wenn das weltweite Pendeln zwischen den Trainingsstätten ein Ende hat.

Von Verantwortung und der Folge großer Fehler

Zurzeit arbeiten weltweit hunderte Menschen daran, dass die letzten Trainingseinheiten für Alexander Gerst ihn optimal auf seine Mission vorbereiten. Da sind die Teams, die den Start vom Weltraumbahnhof Baikonur organisieren. In den Kontrollzentren der NASA in Houston oder auch des DLR in Oberpfaffenhofen und in Köln werden Mannschaften an den Konsolen sitzen, wenn Gerst in der Raumstation arbeitet und lebt. "Ich bin als Astronaut ja nur der ausführende Arm für ein riesiges Team", sagt Gerst. "Und ich bin bereit, ihnen allen zu vertrauen." Ohne Vertrauen in Ingenieure, Techniker und Trainer funktioniert Raumfahrt nicht. Wenn er als Mitglied der Expeditionen 40 und 41 für

Bereit für die Zentrifugenfahrt mit mehrfacher Erdbeschleunigung

sechs Monate auf der Raumstation arbeitet, wird zudem ein großes Wissenschaftler-Team darauf angewiesen sein, dass der Geophysiker im All ihre Experimente gewissenhaft und erfolgreich durchführt. "Das ist eine große Verantwortung für mich. Wenn ich dabei einen Fehler mache, kann die Arbeit einer großen Forschergruppe über mehrere Jahre hinweg zunichte gemacht werden."

Gerst ist selbst Wissenschaftler. Das ist ihm wichtig, und seine Erfahrungen will er einbringen. "Am meisten freue ich mich auf den elektromagnetischen Levitator." Der Astronaut wird den Schmelzofen mit dem europäischen Automated Transfer Vehicle (ATV) in Empfang nehmen, ins Columbus-Forschungsmodul transportieren, dort aufbauen und zum ersten Mal in Betrieb nehmen. Mit dem Ofen wollen unter anderem die Wissenschaftler am DLR-Institut für Materialphysik im Weltraum neue Legierungen testen. Für Gerst ist eines dabei sehr wichtig: Mit den Daten, die er durch seine Arbeit im All ermöglicht, können die Wissenschaftler am Boden neue Materialien entwickeln. "Dann gibt es vielleicht einmal neue Flugzeugtriebwerke, die leichter sind und weniger Treibstoff verbrauchen. Mich freut das, wenn ich mit meinen Händen daran mitarbeiten kann, dass es uns besser geht auf der Erde."

Blick zurück zur Erde

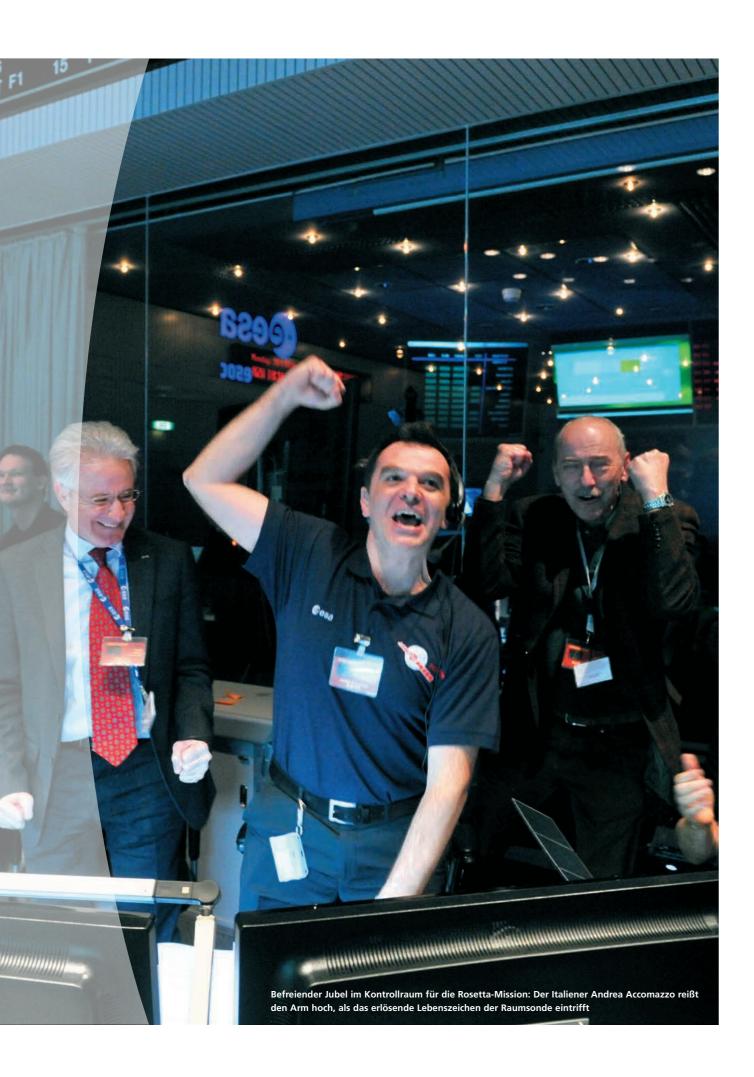
"Blue Dot" heißt seine Mission, das Logo zeigt Hände, die sich schützend um die Erdkugel wölben. Und auch der Augenblick, auf den er sich am meisten freut, ist der Blick zurück auf die Erde. Aus der Sojus-Kapsel beim Start wird dies noch kaum möglich sein, aus der Raumstation selbst dafür umso mehr. "Wenn die Luke aufgeht, ich die Kollegen an Bord der Raumstation begrüßt habe und dann aus der Aussichtskuppel auf die Erde blicke – das wird der Moment sein", sagt Gerst. Schon als er als Geophysiker in der Antarktis stand und über die einsame Landschaft blickte, hätte er das Gefühl und diesen Anblick am liebsten konserviert und mit allen geteilt, die nicht mit ihm dort stehen konnten. In der ISS, sagt er, wird er mit seinen fünf Kollegen zu den wenigen Menschen gehören, die diesen Blick auf die Erde genießen können. Fotos von Freunden und der Familie und Erinnerungsstücke aus seinem irdischen Alltag sollen dabei für ihn der Anker sein, der ihn auch in der Schwerelosigkeit des Weltalls an die Erde bindet.

"Wir dringen mit der Raumfahrt in eine vollkommen neue, unintuitive Umwelt vor, die lebensfeindlich ist – um zu entdecken, was es dort gibt." Gerst gerät nicht schnell ins Schwärmen – doch wenn es um den Weltraum und den Entdeckergeist geht, schon. "Wir gehören ja immer noch zu der ersten Welle von Entdeckern, die seit 50 Jahren in eine Umgebung vorstoßen, in der vorher noch niemand war." Im selben Trainingscenter wie Juri Gagarin, in Houston fast neben dem Büro von Neil Armstrong oder in Baikonur vor dem Baum, den Sigmund Jähn vor seinem Flug gepflanzt hat – für Gerst ist das alles ein Privileg, den Spuren der Raumfahrtpioniere so nah zu sein. Mit seiner Mission ins All wird er dazugehören.

Respekt statt Angst

Respekt hat er – vor Start und Landung, aber auch vor dem Leben in der Internationalen Raumstation, die mit 28.000 Kilometern in der Stunde um die Erde kreist. "Man muss ehrlich sein: Die bemannte Raumfahrt ist nicht ungefährlich, wir arbeiten an der Grenze der Technologie." Beim Start wird er auf 300 Tonnen Treibstoff sitzen, "unter mir sind dann 26 Millionen PS". Das

Fürs Familienalbum: Alexander Gerst, Maxim Surajew und Reid Wiseman posieren für das traditionelle Foto vor dem Lenin-Denkmal im Sternenstädtchen


Risiko geht er ganz bewusst ein. Angst? "Davon kann sich sicherlich kein Mensch freisprechen. "Jeder hat Angst, wenn er weiß, dass das eigene Leben in Gefahr ist." Aber Angst entstehe nur dann, wenn man befürchtet, die Kontrolle zu verlieren. Und dem könne man vorbeugen. "Wir versuchen, das zu vermeiden, indem wir unser Raumschiff in- und auswendig kennen lernen." Jedes Training, jede Notfallübung trage dazu bei. Das häufige Training versetzt einen in die Lage, die Angst zur Seite zu schieben, um seine Arbeit machen zu können." Angst empfindet er deshalb also nicht, Respekt auf jeden Fall.

An seinem Job hat der Astronaut noch in keiner Minute gezweifelt. Ein wenig wundert ihn das selbst, man denke nur an den anstrengenden Crash-Kurs in Russisch oder die vielen Stunden im Klassenzimmer, um Schaltpläne zu lernen. Aber alles hat sich gelohnt, sagt er. Im Weltall wird Gerst Tagebuch führen und seine Eindrücke konservieren – weil der Mensch nun einmal schnell vergisst und vieles in der Erinnerung verblasst. Dass ihn das Weltall unberührt und unverändert lassen könnte, das wird wohl nicht passieren. Da ist er sich sicher, ohne bisher geflogen zu sein. "Ich werde die Erde aus einer ganz anderen Perspektive sehen – nämlich als eine Kugel aus Stein, mit einer hauchdünnen Atmosphäre, verletzlich und einzigartig." Schon die Forschungsreisen in die Antarktis haben ihn verändert, der Weltraum wird es noch viel mehr. "Eine Reise ins All hat das Potenzial, einen einfach umzuhauen."

Weitere Informationen: s.DLR.de/z720

Aufwachen vor Publikum

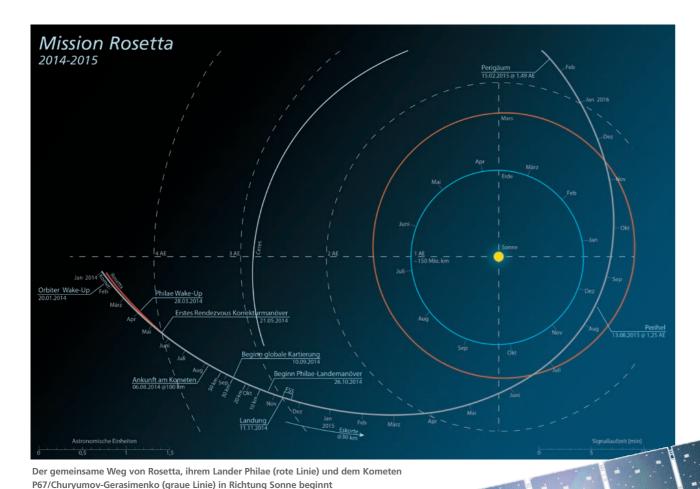
Seit fast zehn Jahren fliegt die europäische Raumsonde Rosetta durch das All – davon 31 Monate im Winterschlaf und ohne Kontakt zur Erde. Die Mission ist ehrgeizig – mit einem langen Flug durch das Sonnensystem, einer Ankunft am unbekannten Kometen 67P/Churyumov-Gerasimenko und einer Landung auf einer Oberfläche aus Pulverschnee, Eiszacken oder Staub. Am 20. Januar 2014 war es so weit: Der Wecker klingelte – und weltweit warteten Ingenieure und Wissenschaftler auf ein Lebenszeichen der Sonde.

Wie die Raumsonde Rosetta aus dem Winterschlaf erwachte

Von Manuela Braun

So dicht wie möglich am Geschehen: DLR-Wissenschaftler Dr. Stephan Ulamec, Projektleiter für den Lander Philae, informiert sich über den Stand der Dinge im Kontrollraum

Am 20. Januar 2014 im European Space Operations Centre (ESOC) verfolgen Journalisten, Wissenschaftler und Missionsmitarbeiter die Ereignisse im Kontrollraum


Kurz vor 11 Uhr am Morgen. Die Digitalanzeige im Kontrollraum des European Space Operations Centre (ESOC) der europäischen Raumfahrtorganisation ESA zählt die letzten Sekunden herunter. Dann ist es so weit: Über 800 Millionen Kilometer entfernt von der Erde klingelt im Weltall ein Wecker. Es ist der 20. Januar 2014 – und Raumsonde Rosetta soll jetzt, nach 957 Tagen, aus dem Winterschlaf erwachen. Über zweieinhalb Jahre lang war Rosetta im Blindflug unterwegs – mit ausgeschaltetem Zentralcomputer und ruhenden Instrumenten, gerade einmal noch mit der notwendigsten Heizwärme, einem Radioempfänger und mit einer "tickenden" On-Board-Uhr ausgestattet. Gleichmäßig rotierend, um nicht ins Trudeln zu geraten, und unerreichbar für die Ingenieure am Boden seit dem 8. Juni 2011. Denn das wenige Licht der Sonne hätte einfach nicht mehr gereicht, um Sonde. Lander und alle Instrumente mit Energie zu versorgen – die Leistung der 64 Quadratmeter Solarzellen des Orbiters war auf dem dunklen Wegstück der Reise nicht mehr stark genug. "Wir waren mit Rosetta in dieser Zeit schließlich bis zu 795 Millionen Kilometer von der Sonne entfernt", sagt DLR-Wissenschaftler Dr. Stephan Ulamec, Projektleiter für den Lander Philae.

Mitfiebern beim Lauschen ins All

Für die Wissenschaftler und Ingenieure der europäischen Rosetta-Mission beginnt ein Tag des Wartens und Hoffens. Darauf, dass Raumsonde Rosetta wie geplant wieder aufwacht und ein Signal sendet. Darauf, dass alles wie am Schnürchen klappt und die Mission zum Kometen 67P/Churyumov-Gerasimenko ohne Probleme weitergeht und die letzten neun Millionen Kilometer bis zum Ziel zurücklegt. Doch bis das Team im Kontrollraum des European Space Operations Centre (ESOC) weiß, ob die Sonde Rosetta pünktlich aus dem Schlaf aufgewacht ist, werden noch etliche Stunden vergehen. Weltweit werden Daumen gedrückt: im ESOC in Darmstadt, im Nutzerzentrum für Weltraumexperimente (MUSC) des DLR in Köln, bei der französischen Raumfahrtagentur CNES in Toulouse oder auch am Jet Propulsion Laboratory (JPL) der NASA.

Wer so ungeduldig auf den funktionierenden Wecker im All hofft, hat die Mission unter Umständen schon seit ihrem Beginn vor über 20 Jahren begleitet – ein halbes Wissenschaftlerleben. 1993 wählte die ESA die anspruchsvolle Rosetta-Mission als eine von vier sogenannten "Cornerstone-Missionen" aus, zu der auch das Herschel-Teleskop gehörte. Die Reise sollte mit zwei Landegeräten zum Kometen 46P/Wirtanen gehen – doch vieles entwickelte sich anders, als man sich das vorgestellt hatte. Aus dem Lander "Roland" und dem Lander "Champollion" wurde der gemeinsame Lander "Philae", der unter der Leitung des DLR

16 | DLR MAGAZIN 141 | REPORTAGE

von einem internationalen Konsortium entworfen und gebaut

wurde. Aus dem Ziel der Mission, dem Kometen 46P/Wirtanen, wurde der Komet 67P/Churyumov-Gerasimenko, weil der geplante Start nach einem Fehlstart einer Ariane-Rakete verschoben wurde. Wirtanen war somit außerhalb der Reichweite, Churyumov-Gerasimenko wurde als Ersatz ausgewählt.

Reise zu den Zeitzeugen der Vergangenheit

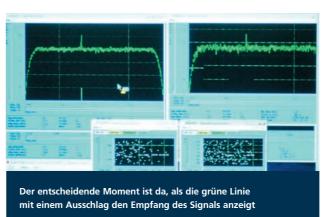
Der neue Komet hatte bisher lediglich einige nahe Vorbeiflüge an der Sonne – und somit noch sehr wenig von seinem gefrorenen Material verloren. Ein Komet im frischen, sehr ursprünglichen Zustand, kaum verändert seit der Geburt unseres Sonnensystems vor 4,6 Milliarden Jahren und damit für die Wissenschaftler ein spannender Zeitzeuge aus der Vergangenheit. Allerdings: Der Lander Philae war für einen Kometen ausgelegt, der einen Durchmesser von gerade einmal 700 Metern hatte. Das neue Ziel, auf dem er landen soll, ist aber ein Komet mit einem Durchmesser von drei mal fünf Kilometern – und hat somit eine größere Anziehungskraft. "Für uns bedeutete das, dass das Landegestell so gut wie möglich verstärkt und auch die Software an die neue Situation angepasst werden musste", erklärt Philae-Projektleiter Stephan Ulamec vom DLR-Nutzerzentrum für Weltraumexperimente. Im März 2004 schließlich starteten Rosetta und Philae zu ihrer zehnjährigen Reise ins All. Nach einer solch langen Zeit der Vorbereitung, Planung und Reise verliert man ungern für 31 Monate den Kontakt zu seiner Sonde. Gerade einmal neun Millionen Kilometer trennen die Sonde nun noch von ihrem Ziel – ein Klacks für himmlische Verhältnisse.

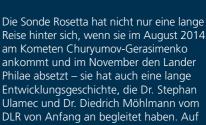
Warten, warten und nochmals warten

14 Uhr. Niemand erwartet das entscheidende Signal aus dem All vor dem Abend. Im Kontrollraum des ESOC sind deshalb nur wenige Plätze an den Konsolen besetzt. Auf dem Podium im großen Saal folgt hingegen ein Redebeitrag dem anderen. Jeder

erläutert noch einmal, warum es so einmalig ist, dass Rosetta dem Kometen auf dessen Flugbahn folgen und Philae auf ihm landen wird. Eigentlich ist es noch zu früh, um nervös zu sein. Alle glauben fest daran, dass der Weckruf erfolgreich sein wird. Und dennoch: Die Anspannung ist spürbar. Das Ende des Winterschlafs ist ein wichtiger Meilenstein der Mission. Wacht Rosetta nicht auf, ist die Wahrscheinlichkeit groß, dass bei der Sonde vielleicht etwas nicht mehr in Ordnung ist.

Im Weltall sollte Rosetta sich jetzt nach und nach aktivieren. Zunächst einmal muss die Sonde die "Star Tracker", die Sternsensoren für die Lageregelung, wieder auf Betriebstemperatur aufheizen, um sich orientieren zu können. Auch die gleichmäßige Rotation, mit der die Ingenieure Rosetta für den Flug im Schlaf stabilisiert haben, sollte jetzt langsam wieder eingestellt werden. Schließlich muss die Sonde dann noch ihre 2,2-Meter-Parabol-Antenne in Richtung Erde ausrichten und ihr erstes Lebenszeichen nach dem Winterschlaf senden. 800 Millionen Kilometer hat das Signal dann zurückzulegen, um nach 45 Minuten im Kontrollraum für Begeisterung und Erleichterung zugleich zu sorgen. Ob das alles so geschieht, kann um 14 Uhr noch niemand sagen. Um den Kommunikationsversuch von Rosetta zu empfangen, horcht zunächst die Empfangsstation Goldstone der NASA in den Weltraum. Irgendwann zwischen 18:30 Uhr und 19:30 Uhr könnte es so weit sein. Bis dahin ist das Wissenschaftler-Team darauf angewiesen, dass Rosetta ganz automatisch alles richtig macht. Auf der Erde heißt es deshalb: Warten. Warten. Und noch ein wenig mehr warten und hoffen.


Tauwetter auf Churyumov-Gerasimenko


Elf Instrumente fliegen an Bord von Rosetta mit, zehn weitere trägt Lander Philae. Kometen halten sich in den kalten Außenbezirken des Sonnensystems auf und können so in gefrorenem Zustand durch das Weltall reisen – bis sie der Sonne nahe kommen und Gas und Staub sich mit bis zu einigen hundert Metern pro Sekunde vom auftauenden Kometen lösen. Mit den Instrumenten wollen die Planetenforscher unter anderem herausfinden, ob sich auf Churyumov-Gerasimenko auch organisches Material wie Aminosäuren finden lässt. Dies wäre dann ein Beleg dafür, dass diese Moleküle durch Kollisionen mit Kometen als Voraussetzung für die Entstehung von Leben auf die Erde gelangt sein könnten. Und überhaupt: Die Relikte aus der Entstehungsphase des Sonnensystems sind bei Weitem noch nicht so eingehend erforscht, wie es sich die Wissenschaftler wünschen. "Vieles haben wir noch gar nicht verstanden", sagt Dr. Ekkehard Kührt vom DLR-Institut für Planetenforschung. Und deshalb wird mit der Rosetta-Mission eine Premiere nach der nächsten anvisiert: Das erste Mal, dass eine Sonde einen Kometen begleitet, während dieser auf dem Weg zur Sonne aktiv wird. Das erste Mal, dass ein Lander mit seinen Instrumenten auf einem Kometen aufsetzt. Das erste Mal also wissenschaftliche Untersuchungen direkt vor Ort.

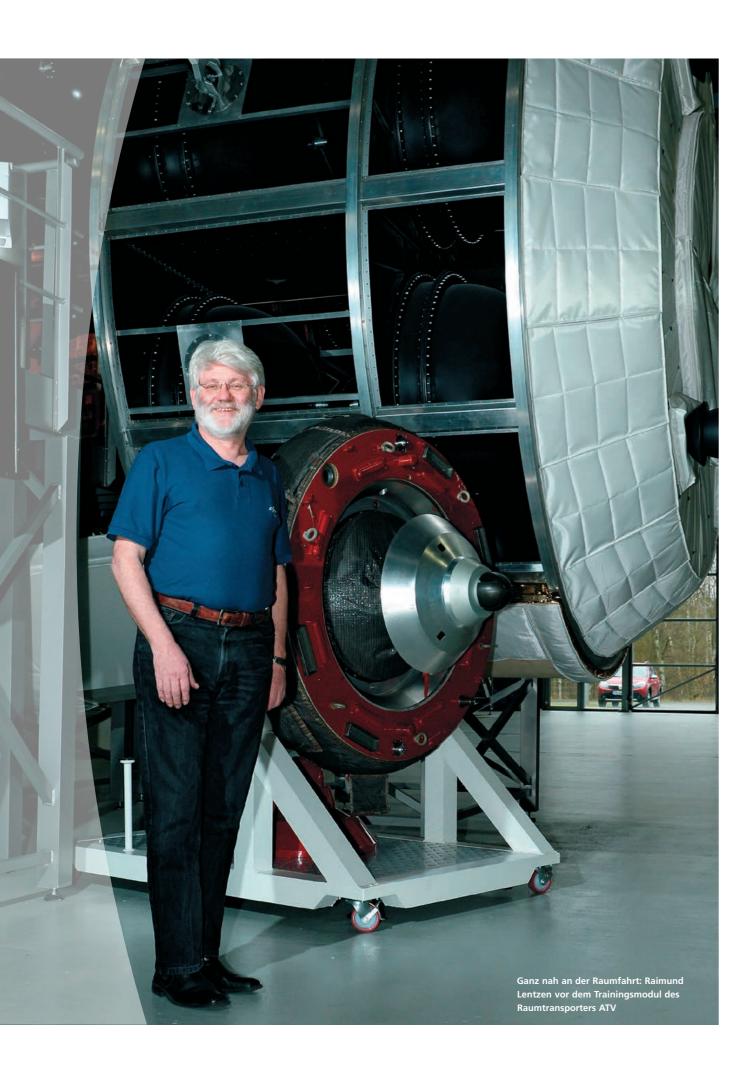
Im April,
nachdem Lander Philae
wieder durch das Nutzerzentrum für
Weltraumexperimente im DLR in Betrieb genommen wurde, werden alle Experimente auf dem Landegefährt
getestet. Im Mai ist Rosetta dann bereit für das Rendezvous mit
Komet Churyumov-Gerasimenko und die ersten Aufnahmen aus
200.000 Kilometer Entfernung werden zeigen, was Rosetta und
Philae erwartet. Ab August umkreist die Sonde dann den Kometen, im Oktober wird die Landestelle für Philae ausgewählt – bis
dann im November 2014 die Landung auf der Kometenoberfläche ansteht. Wenn denn Rosetta bis dahin sicher aus dem
Winterschlaf aufwacht ...

Ein Ausschlag mit Folgen

18:30 Uhr. Im Kontrollraum des ESOC gehen die Blicke alle nach oben. Dorthin, wo eine grüne, gezackte Linie anzeigt, ob das Antennensignal angekommen ist. Jeden Moment könnte sich Rosetta melden und damit mitteilen, dass die Sonde im All alle Programmpunkte abgearbeitet hat und für Kommandos von der Erde bereit ist. 18:43 Uhr. Stille an den Konsolen. Ein Ingenieur dreht sich leise auf seinem Stuhl von links nach rechts und wieder zurück. Die Kollegin neben ihm steht auf. Die grüne Linie leuchtet

256 Seiten berichten sie in ihrem Buch Raumsonde Rosetta. Die spektakuläre Landung auf einem Kometen (Kosmos Verlag) von der ersten Idee für die ehrgeizige Mission bis zum entscheidenden Jahr 2014. Die beiden Autoren erläutern detailliert, warum Kometen für die Planetenforscher so interessant sind, schildern die Berühmtheiten von Hale-Bopp bis zum Halleyschen Kometen und stellen die bisherigen Missionen dar.

Der Flug zum Kometen mit der Rosetta-Mission bedeutet Neuland in mehrfacher Hinsicht: Als Sonde begleitet Rosetta den Kometen auf seiner Reise in Richtung Sonne, als Lander wird Philae erstmals wissenschaftliche Experimente direkt auf einer Kometenoberfläche durchführen. Gut nachvollziehbar und dennoch nah an der Wissenschaft schildern die Autoren unter anderem, welche Erkenntnisse sich die Planetenforscher von den über 20 Experimenten erhoffen und wie die spektakuläre Landung auf dem Kometen ablaufen wird. Zahlreiche Fotos, Zeichnungen und Tabellen zeigen dabei exakt, welche Experimente Raumsonde und Lander mit sich führen.


unverändert auf dem großen Bildschirm. 18:53 Uhr. Noch immer kein Pieps von Rosetta. Es gibt einiges, was dort oben im Weltall passiert sein könnte und für eine Verzögerung des Signals hätte sorgen können. Doch all das wäre Plan B. Im Kontrollraum sitzt kaum noch jemand auf seinem Stuhl. Die Unruhe geht in die Beine, entspannt sitzen und warten kann jetzt niemand mehr. Um 19:30 Uhr wird sich das Empfangsfenster der kalifornischen Satellitenschüssel schließen, dann muss auf die nächste Empfangsmöglichkeit gewartet werden.

19:17 Uhr. Die gleichmäßig gezackte grüne Linie bekommt einen größeren Zacken hinzu. Fast alle halten den Atem an. An den Konsolen im Kontrollraum jubelt noch niemand. Eine Störung oder eine Sonde, die sich aus dem All meldet? Keiner will voreilig sein. Der Ausschlag wird höher. Andrea Accomazzo und Paolo Ferri reißen im Kontrollraum die Arme in die Luft. Rosetta ist zurück! Es ist 19:18 Uhr, und die Sonde hat alle zappeln lassen. Vor den Bildschirmen fallen sich Menschen in die Arme. Im großen Saal, in dem Wissenschaftler, Teammitglieder und Journalisten alles mitverfolgt haben, wird gejubelt. Ein Glas fällt vom Tisch, die Kameraleute drücken auf Aufnahme. An diesem Abend bündeln sich Freude und Erleichterung in einem einzigen Moment. "Das war die anstrengendste Stunde meines Lebens und die lohnenswerteste", ruft Andrea Accomazzo, ESA Rosetta spacecraft operations manager.

Jetzt können die ersten Kommandos wieder an Rosetta geschickt werden. Dennoch: Nach dem Stress ist vor dem Stress. Spätestens im November, wenn Lander Philae auf die Kometenoberfläche sinken soll, steht der nächste harte Test für die Nerven des Rosetta-Teams bevor ...

Weitere Informationen:

Vertrauensperson für die Reise ins All

Wenn ein Astronaut ins All startet, sind alle Blicke auf ihn gerichtet. Doch zur erfolgreichen Mission gehört die Mitarbeit von hunderten Menschen weltweit hinter den Kulissen. Sie trainieren den Astronauten für den Aufenthalt im Weltraum, sitzen in den Kontrollzentren und sorgen dafür, dass die ISS ein sicheres Zuhause im All bleibt, oder kümmern sich um die Gesundheit der Astronauten. Raimund Lentzen gehört zu ihnen: Er unterstützt mit dem "Crew Support Team" die Astronauten bei ihrer Arbeit, nimmt ihnen Organisatorisches ab und begleitet sie von Anfang an bis zu Start und Landung.

Seit drei Jahrzehnten betreut und unterstützt Raimund Lentzen Astronauten bei ihren Missionen

Von Manuela Braun

15, 16 Missionen werden es schon gewesen sein. Vielleicht auch 17. So ganz genau weiß Raimund Lentzen das gerade auch nicht mehr. "Für uns ist das ja die tägliche Arbeit, da vergisst man auch schon mal was", sagt er und zuckt fast schon ein wenig entschuldigend mit den Schultern. Lentzen ist der Leiter der Abteilung Astronautentraining und arbeitet im Crew Support Team. Er hat Hans Schlegel und Ulrich Walter bei der D2-Mission betreut, er war dabei, als Reinhold Ewald von seiner Mission zur MIR zurückkehrte, begleitete Luca Parmitano zum Start nach Baikonur und wird auch Alexander Gerst bei seinem Flug im Mai 2014 unterstützen.

Wenn die europäischen Astronauten vor dem Start in ihre 14-tägige Quarantäne gehen, ist Lentzen meist mit dabei. Wenn sie sich für ihren Aufenthalt in der Internationalen Raumstation ISS spezielle Ausrüstung wünschen, kümmert sich der DLR-Mitarbeiter um die Zulassung und den Transport ins All. Und wenn die europäischen Astronauten in der kasachischen Steppe in einer

Sojus-Kapsel landen, gehört der 63-Jährige meist zu den ersten, den die Astronauten nach ihrer Weltraummission sehen.

Dann hat Raimund Lentzen eine Tasche in der Hand, in der alles steckt, was der Rückkehrer zur Erde benötigt. Personalausweis, Visum, Führerschein, Portemonnaie, Handy, Duschgel und natürlich Kleidung. "Die Astronauten tragen in der Sojus-Kapsel ja nur ihren Druckanzug und nichts anderes". Jedes Gramm zählt in der engen Kapsel und für die persönlichen Dinge des Erdenalltags ist darin nun einmal kein Platz. Lentzen sorgt deshalb bereits vor dem Start dafür, dass die Familie des Astronauten sorgfältig eine Tasche packt, die zumindest für die Zeit zwischen der Landung in der Steppe und der Ankunft in Houston für die dreiwöchige Rehabilitation nach dem Weltraumaufenthalt reicht. "Wir vom Crew Support kümmern uns um alles, was der Astronaut braucht, um effektiv arbeiten zu können", sagt Lentzen. "Die Zeit eines Astronauten ist kostbar und soll für seine Mission genutzt werden – und nicht für Organisatorisches."

Was die Beteiligten der Mission MIR 97 wie eine Trophäe in ihren Händen hielten, hat heute einen festen Platz in Raimund Lentzens Büro – die Sojus-Antenne, mit der die Kapsel in der kasachischen Steppe landete

20 | DLR MAGAZIN 141 | PORTRÄT PORTRÄT | DLR MAGAZIN 141 | 21

Von der Universität zur Astronautenbetreuung

Eigentlich hat Raimund Lentzen Gießereikunde studiert und anschließend als wissenschaftlicher Assistent an der RWTH Aachen gearbeitet. Vielleicht würde er noch heute in diesem Bereich forschen, wenn nicht ein ehemaliger Kollege ihm einen Vorschlag gemacht hätte, den er nicht ablehnen wollte. Der Kollege arbeitete nämlich mittlerweile bei der wissenschaftlichen Projektführung für die D1-Spacelab-Mission im DLR – und die Stelle als Crew Interface Coordinator, als demienigen, der mit den Nutzlastspezialisten bei den Astronauten kommuniziert, war zu vergeben. Lentzen machte damals gerade seinen Flugschein. "Das alles ging ohne aufwändiges Bewerbungsverfahren", erinnert er sich. "Das war schon praktisch." Für ein Jahr ließ er sich 1985 von seiner Universität beurlauben, ging nach seinem Ausflug in die Raumfahrt wieder zur RWTH Aachen zurück – und kam doch nicht von der Raumfahrt los. Schon ein Jahr später war er wieder im DLR und blieb auch dort: Nach vier Jahren als Crew Training Engineer wurde er stellvertretender Leiter des DLR-Astronautenbüros und schließlich Leiter dieses Büros. 1998 wurde das DLR-Astronautenbüro dann in die europäische Raumfahrtagentur ESA integriert und Lentzen als DLR-Vertreter am European Astronaut Centre (EAC) eingesetzt.

Für alles eine Lösung, ob Videoanlage oder Schokoriegel

Seine Arbeit heute beginnt, sobald ein europäischer Astronaut für eine Mission ausgewählt wird. Ein wenig respektlos gesagt ist er so etwas wie der Butler der Astronauten, doch zu diesem Job gehört sehr viel. "Die meiste Zeit verbringe ich mit den Start- und Landekampagnen und der anschließenden Postflight-Phase", sagt Lentzen. Die gesamte Organisation für den Aufenthalt der Astronauten im russischen Star City, der anschließende Flug nach Baikonur, die Unterkünfte, die Abläufe vor Ort, die Quarantäne vor dem Start – die Fäden laufen alle bei Raimund Lentzen zusammen, der bei der Abstimmung auch schon mal mit über 30 Partnern in einer Telefonkonferenz verhandeln muss. "Man bekommt diese Dinge ja nicht auf dem freien Markt, sondern nur über die Kooperation mit der NASA und der russischen Raumfahrtagentur Roskosmos."

nern der Astronauten eine Anlage für die wöchentlichen Videokonferenzen mit der Raumstation installiert wird. "Bei den italienischen Astronauten kommt da noch eine Anlage bei den Eltern hinzu – da geht ja die Familie über alles." Später, wenn der Astronaut auf der ISS lebt und arbeitet, planen die Mitarbeiter des Crew Support Teams die Uhrzeiten, zu denen die Videokonferenzen stattfinden. Auch das "Crew Care Package", das Überraschungspaket, in dem die Familie kleine Geburtstagsgeschenke, Filme, Bilder oder auch Süßigkeiten zum Ehemann oder der Ehefrau ins All schicken können, liegt in der Verantwortung von Raimund Lentzen. "Für alles muss ja eine Transportgelegenheit gefunden und organisiert werden." Das sogenannte "Bonusfood", die zusätzlichen Essen, die sich die Astronauten für ihren Mittagstisch in der ISS auswählen dürfen, wird ebenfalls von Lentzen besorgt und zur Raumstation geschickt. Es gibt kaum eine Mission, bei der der DLR-Mitarbeiter nicht dafür gesorgt hat, dass der Astronaut oder die Astronautin möglichst entspannt in Richtung All abreisen konnte

Zuvor muss dafür gesorgt werden, dass bei den Ehepart-

Kisten voller Anstecker, Dias und Fotos

Im Laufe der Zeit ist sein Büro so auch zur wahren Fundgrube geworden. Lentzen zieht die Schreibtischschublade auf und holt einen dicken Packen Fotos heraus. "Das hier ist das offizielle Foto der D2-Crew", erläutert er. Sieben Männer im orangefarbenen Astronautenanzug blicken seriös und optimistisch in die Kamera. "Das ist das inoffizielle ..." Sieben Männer im orangefarbenen Astronautenanzug blicken seriös in die Kamera, auf dem Kopf die unterschiedlichsten Hütchen. Oder damals, als er Reinhold Ewald bei seiner Mission begleitete. Raimund Lentzen steht mit Sonnenbrille und Bart in der zweiten Reihe, vorne sitzen unter anderem Sigmund Jähn und Reinhold Ewald im grünen Astronauten-Overall. Im Schrank schlummern Kisten voll mit Dias. "Müsste man alles mal sortieren", murmelt Lentzen. In seinem Keller zu Hause gibt es davon noch viel mehr.

Zumindest einige Aufnäher und Anstecknadeln von den verschiedenen Missionen hat er in seinem Büro in einer Vitrine ausgestellt. Dicht an dicht liegen die historischen Souvenirs. Die

Mit jeder Mission ist die Sammlung an mittlerweile historischen Fotos

und Aufnähern stetig gewachsen

Unterschrift auf einer offiziellen Karte? "Da weiß ich beim besten Willen nicht mehr, wer da unterschrieben hat ... Lentzen guckt nachdenklich auf das etwas pompöse Dokument. Bei mehreren Jahrzehnten Raumfahrtgeschichte gibt es etliche Momente, die schneller in Vergessenheit geraten als gedacht – aber auch viele Augenblicke, die man nie vergisst. Wie beispielsweise der Moment, der mit einem eher unscheinbaren Souvenir in Lentzens Büro verbunden ist: eine Metallstange mit einem kleinen Lappen am Ende. "Das ist eine Antenne, die an der Sojus-Kapsel aus dem Weltall in der kasachischen Steppe gelandet ist." Raimund Lentzen grinst. Damals stand er nach der Landung in der Steppe, die fast mannshohe Antenne in der Hand und hinter ihm die Sojus-Kapsel, mit der Reinhold Ewald von seiner MIR97-Mission zurückgekehrt war. Ganz einfach war es nicht, das Raumfahrt-Relikt im Handgepäck mit nach Deutschland zu bringen, geklappt hat es dennoch. Jetzt steht die Antenne zwischen Vitrine und Büroschrank – ein unauffälliges Exponat der besonderen Art

Blick hinter die Kulissen

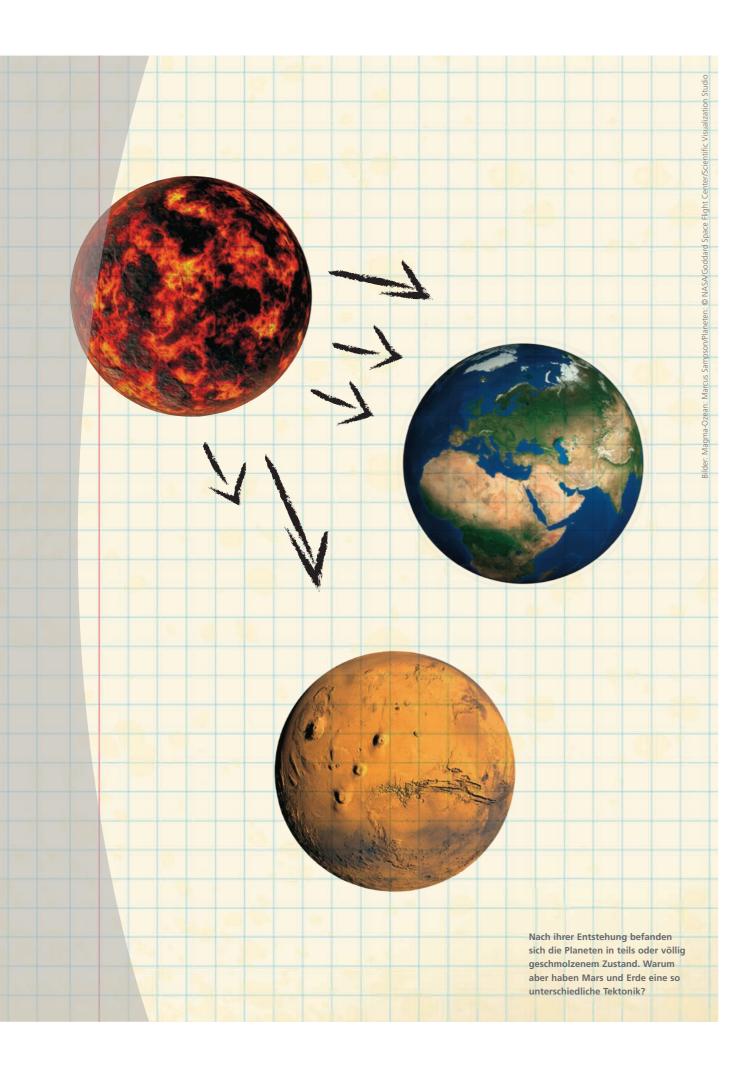
Raimund Lentzen weiß: Auch wenn vieles für ihn alltäglich geworden ist, ist seine Arbeit mit und für die Astronauten etwas Besonderes. Zum Beispiel Baikonur: "Ich habe da schon Zugang zu Dingen, die dem normalen Bürger komplett verschlossen bleiben." Mit der Familie des Astronauten steht Lentzen dann in fast greifbarer Nähe zur Sojus-Rakete, die kurz darauf ins Weltall starten wird. Er steht daneben, wenn die Astronauten als eines ihrer Rituale vor dem Start ihre Unterschrift auf ihrer Zimmertür hinterlassen. Und er ist mit dabei, wenn sie in Baikonur vor dem Flug ins All einen Baum in der Allee der Kosmonauten pflanzen. "Das sehen wir vom Crew Support nicht nur aus nächster Nähe, sondern wir gestalten es mit – das ist schon einzigartig." Und so kennt Lentzen auch die kasachische Schönheitskönigin und den Bürgermeister von Star City, die beim zeremoniellen Flaggenhissen in Star City den Astronauten zusahen. Teezeremonien nach der Rückkehr der Astronauten, dutzende Besuche im leicht angestaubten Raumfahrtmuseum in Baikonur, eine

Quarantäne bei minus dreißig Grad Celsius oder auch gemeinsame Grillabende mit Kasachen, Russen und Amerikanern in der Steppe – in den vergangenen dreißig Jahren hat Raimund Lentzen bei seiner Arbeit hinter die Kulissen der Raumfahrt blicken können.

Bei all dem ist vor allem eines wichtig: "Man muss eine Vertrauensperson sein", betont Lentzen. "Durch die Nähe zu den Astronauten und ihren Familien weiß man eine ganze Menge, aber man spricht natürlich nicht darüber." Die Privatsphäre wird hoch gehalten. Anekdoten aus dem Astronautenleben wird man bei Raimund Lentzen nicht hören. Mit drei, vier Astronauten sei er in unterschiedlichem Ausmaß befreundet, formuliert er vorsichtig. Mit manchen sei die Chemie besser, mit anderen weniger. "Die Astronauten sind in ihren Charakteren absolut unterschiedlich – und man muss sich bei allen auf diese Persönlichkeit einlassen "Und auch die kulturellen Unterschiede bei den Astronauten aus ganz Europa seien groß. "Das muss man wissen und darauf eingehen." Schon zu Beginn der Mission wird deshalb für die wichtigsten Situationen im gemeinsamen Gespräch festgelegt, welche Rahmenbedingungen das Crew Support Team schaffen soll. "Der Astronaut hat aber natürlich auch nicht beliebige Freiheit in seinen Wünschen." Das Ziel von Lentzen: So viel wie möglich umzusetzen, damit die Astronauten optimale Bedingungen für ihre Arbeit haben.

Weitere Informationen:

Auch bei den Ritualen der Astronauten vor dem Start ist Lentzen dabei hier pflanzen Luca Parmitano und seine Crew-Kollegen traditionell ihre


Nicht nur bei der täglichen Arbeit, sondern auch auf diesem Gruppenbild aus dem Jahr 1997 ist Lentzen (4. v. l.) der Mann hinter den Astronauten. In der vorderen Reihe unter anderem Sigmund Jähn (4. v. l.) und Reinhold Ewald (ganz rechts).

Rückenwind für die Karriere

Drei von neunzehn. – Nachwuchswissenschaftler des DLR sind gut vertreten, wenn die Helmholtz-Gemeinschaft Deutscher Forschungszentren zum elften Mal Wissenschaftler beim Aufbau einer eigenen Nachwuchsgruppe unterstützt. 66 junge Forscherinnen und Forscher aus aller Welt hatten sich 2013 beworben. 19 von ihnen wurden in einem strengen Wettbewerbsverfahren von internationalen Gutachtern ausgewählt und bauen nun ihre eigene Nachwuchswissenschaftlergruppe auf. Zu ihnen gehören Dr. Nicola Tosi, Dr. Hella Garny und Dr. Xiaoxiang Zhu aus dem DLR. Vier Gruppen aus vorangegangenen Wettbewerben arbeiten bereits. Zu ihnen zählt die von Dr. Hannah Böhrk.

Nachwuchswissenschaftler gründen eigene Forschungsgruppen

Von Melanie-Konstanze Wiese und Miriam Kamin

Wissen, wie sich Planeten entwickeln

Der gebürtige Mailänder Dr. Nicola Tosi promovierte nach seinem Physikstudium in Mailand als Geophysiker am Deutschen Geoforschungszentrum in Potsdam und forschte danach als Post-Doktorand zwei Jahre lang an der Karls-Universität in Prag. "Die Förderung durch die Helmholtz-Gemeinschaft ist für mich ein absoluter Glücksfall und kam genau zum richtigen Zeitpunkt. Momentan wird meine Forschungsarbeit noch durch die Deutsche Forschungsgemeinschaft gefördert, endet aber 2014", sagt Dr. Nicola Tosi und freut sich, seine Arbeit weiterhin unter besten Bedingungen fortführen und sogar mit einer Gruppe sein Forschungsthema intensivieren zu können.

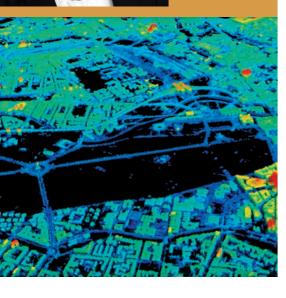
Seit mehr als drei Jahren arbeitet der Italiener im Institut für Planetenforschung am Berliner Standort des DLR. Sein Spezialgebiet ist die Planetenphysik. Dr. Nicola Tosi untersucht, wie terrestrische, also erdähnliche Planeten entstehen und sich entwickeln. Besonders interessiert ihn, wie sich die Oberflächen herausbilden und wie sich die Planeten thermisch entwickeln. Dazu kann er Methoden und Verfahren nutzen, die er während seines Studiums bereits auf den "Blauen Planeten" angewandt hat. "Die Methoden, die wir hier nutzen, sind zwar ähnlich, doch es gibt viele wesentliche Unterschiede, zum Beispiel in der Plattentektonik", erläutert Tosi. So hat die Erde sieben sogenannte Lithosphärenplatten, die sich bewegen. Im Gegensatz dazu besitzen beispielsweise Mars und Merkur jeweils nur eine Platte, die sich auch nicht bewegt. "Die Frage, die ich untersuche, ist, welche Bedingungen während und nach der Entstehung der Planeten vorgeherrscht haben müssen", erklärt Tosi.

Diese Bedingungen simuliert er mittels einer Software, um schließlich das Herausbilden planetarer Oberflächen und Mäntel zu modellieren. So bestehen die Oberfläche und möglicherweise auch ein großer Anteil vom Inneren eines Planeten während des Entstehungsprozesses aus flüssigem Gestein, dem Magma. Die gesamte Oberfläche der Planeten gestaltet sich als einziger Magma-Ozean. Wie diese Oberflächen und Mäntel dann auskühlen und welche chemischen und physischen Prozesse damit verbunden sind, soll nun von Tosi und seinem Team untersucht werden. Zudem geht es bei dem Abkühlungsprozess der Oberflächen auch um die Rolle der Atmosphäre, denn die Magma-Ozeane setzen flüchtige Verbindungen wie Wasser und Kohlendioxid frei.

Hierbei stellen sich die Wissenschaftler der Nachwuchsgruppe vor allem die Frage, welchen Einfluss die Atmosphäre selbst auf die Kristallisation beim Erkalten der Gesteinsschmelze hat.

Diese Forschungen wiederum sind durch die grundlegende Frage motiviert, wie die Bedingungen für Leben entstehen können. Das Team um Tosi wird dem Zusammenhang zwischen Plattentektonik und Biosphäre nachgehen und schließlich klären, wie die Biosphäre den Wasserhaushalt im Inneren des Planeten beeinflusst und ob wiederum auch die Biosphäre zur Bewegung der Platten beiträgt.

In der Förderung durch die Helmholtz-Gemeinschaft sieht Tosi nicht nur eine sehr gute Perspektive für sein Forschungsthema, sondern auch für seine persönliche Lebensplanung, denn als dreifacher Familienvater ist ihm eine klare berufliche Aussicht wichtig. Bis zum Start des Projekts gilt es noch viel vorzubereiten. Dazu gehört neben der anstehenden Lehrtätigkeit an der Technischen Universität Berlin auch der Aufbau seiner Nachwuchsgruppe. Dabei weiß der begeisterte Sportkletterer, wie wichtig ein kompetentes und verlässliches Team ist. Mitte 2014 wird es dann so weit sein: Gemeinsam mit zwei Doktoranden und einem Post-Doktoranden wird er sich den vielfältigen Fragen rund um die Entwicklung von Planeten widmen.


24 | DLR MAGAZIN 141 | WISSENSCHAFTSNACHWUCHS WISSENSCHAFTSNACHWUCHS

Dr. Hella Garny

Dr. Xiaoxiang Zhu

Dem Klimawandel auf der Spur

Der Klimawandel ist ihr Thema. – Die dreißigjährige Wissenschaftlerin Hella Garny geht ihm auf den Grund. Seit sechs Jahren ist die Wissenschaftlerin am DLR-Institut für Physik der Atmosphäre. Mit ihrem Projekt MACClim (Middle Atmosphere in a Changing Climate) will sie zu einem besseren Verständnis der Rolle der mittleren Atmosphäre (zehn bis 100 Kilometer über dem Erdboden) im Klimawandel gelangen. Dabei wird es vor allem um die Fragen gehen, ob und warum es eine Änderung in der globalen Zirkulation der mittleren Atmosphäre gibt, und welchen Einfluss diese auf die Zusammensetzung der Atmosphäre und auf den Klimawandel in bodennahen Schichten hat. Um diese zu beantworten, werden die Wissenschaftlerin und ihre Nachwuchsgruppe ein globales Klima-Chemie-Modell, ein regionales hochauflösendes Modell und ein idealisiertes Modell erstellen und mit Beobachtungsdaten kombinieren. Die Gruppe – neben der Nachwuchsleitung bestehend aus einem Post-Doc und drei Doktoranden – wird am DLR-Institut für Physik der Atmosphäre und am Meteorologischen Institut der Ludwig-Maximilians-Universität in München angesiedelt sein.

Die Erde im Blick

SiPEO lautet der Name des Projekts der 28-jährigen Wissenschaftlerin Xiaoxiang Zhu aus dem DLR-Institut für Methodik der Fernerkundung. SiPEO steht für "Modern Signal Processing Methods for the Next Generation of Earth Observation Satellite Missions", zu deutsch: Moderne Signalverarbeitungsverfahren für die nächste Generation von Erdbeobachtungs-Satellitenmissionen. SiPEO ist eine gemeinsame Nachwuchsgruppe des Instituts für Methodik der Fernerkundung des DLR und des Lehrstuhls für Methodik der Fernerkundung an der Technischen Universität München. Xiaoxiang Zhu hat als Gruppenleiterin zwei Post-Docs und sechs Doktorandinnen und Doktoranden in ihrem Team. In den nächsten fünf bis zehn Jahren werden mehrere deutsche und europäische Erdbeobachtungssatelliten mit innovativen Sensortechnologien und Missionskonzepten entwickelt und gestartet, beispielsweise TerraSAR-X HD, EnMAP, TanDEM-L oder die Sentinel-Reihe der ESA. Im Rahmen dieser Helmholtz-Nachwuchsgruppe sollen neue Algorithmen entwickelt werden, um Geo-Information aus den Daten der Satelliten dieser neuen Generation abzuleiten.

Die dann noch bessere Qualität der Datenauswertung soll unter anderem zu deutlich höher aufgelösten Bildern und genauer abgeleiteten geophysikalischen Variablen führen, als dies bei der ursprünglichen Konzeption dieser Satelliten vorgesehen war. So wird zum einen die wertvolle Weltrauminfrastruktur – die Satelliten – besser genutzt, zum anderen werden neue Anwendungen erschlossen, beispielsweise für die Erfassung von Naturgefahren oder zur Kartierung von Städten. Technologisch liegt der Schwerpunkt auf der mehrdimensionalen SAR(Synthetisches Apertur Radar)-Bildgebung und der Hyperspektraltechnik. Mit den neuen Methoden sollen aktuelle und zukünftige Entwicklungen in der Signalverarbeitung für die Erdbeobachtung nutzbar werden.

Berlin als 3-D-Punktwolke, berechnet aus SAR-Tomografie mit TerraSAR-X-Daten. Die Farben kodieren verschiedene Höhen.

Raketen für die Raumfahrt kennt man bisher nur rund. Doch große, gekrümmte faserkeramische Strukturen benötigen aufwändige Fertigungshilfsmittel und für jedes Einzelbauteil entsprechende Formen. Einsparpotenzial liegt in der Vereinfachung der Außenkontur. Eine möglichst geringe Zahl unterschiedlicher ebener Oberflächen würde die Produktion preiswerter machen. Das DLR arbeitet daran, plattenförmige Paneele aus einer Grundform herzustellen und durch Beschneiden anzupassen. Am Verhalten dieser Strukturen bei großer Hitze forscht Dr.-Ing. Hannah Böhrk, deren Thema das DLR-Magazin hier exemplarisch für bereits arbeitende Helmholtz-Nachwuchsgruppen vorstellt.

Kühlung für die heiße Kante

Hitzeschilde für die Raumfahrt sind das Thema von Dr.-Ing. Hannah Böhrk. Solche Hochtemperaturstrukturen sind in der Raumfahrt, wo Teile des Fluggeräts Temperaturen von über 2.000 Grad Celsius ausgesetzt sind, von essenzieller Bedeutung. Die 38-jährige Ingenieurin leitet nun die Helmholtz-Nachwuchsgruppe "High Temperature Management for Hypersonic Flight" (Hochtemperaturmanagement für den Hyperschallflug) am DLR Stuttgart in Kooperation mit der Universität Stuttgart, wo sie über die Leistungssteigerung von elektrischen Antrieben mit Hybridplasmageneratoren promoviert hat. Seit 2007 forscht sie am Institut für Bauweisen- und Konstruktionsforschung des DLR Stuttgart. "Die Nachwuchsgruppe bietet eine hervorragende Möglichkeit, fünf Jahre lang eine Forschergruppe an der Universität und im DLR zu leiten und zugleich Lehrerfahrung zu sammeln", freut sich Hannah Böhrk.

Der Eintritt in die Atmosphäre gehört zu den heikelsten Phasen einer Weltraummission: Beim Abbremsen des Flugkörpers wird viel kinetische Energie in Wärme umgewandelt. Damit das Raumfahrzeug keinen Schaden nimmt, ist es durch ein Hitzeschild geschützt. Während die Ingenieure bei früheren Raumfahrzeugen auf eine abgerundete Außenhaut setzten, sollen künftig scharfe Ecken und Kanten den Wiedereintritt in die Erdatmosphäre billiger, sicherer und flexibler machen.

Im Rahmen der Wiedereintrittsexperimente SHEFEX I und II (SHEFEX steht für Sharp Edge Flight Experiment, scharfkantiger Flugversuch) hat das DLR dieses Prinzip bereits erfolgreich getestet. Doch werden die Hitzeschilde derzeit noch mit sehr hohen Sicherheitsfaktoren ausgelegt, weil die Wissenschaftler das Thermalverhalten vor allem im Wechselspiel mit der Anströmung noch nicht ausreichend gut verstehen. Deshalb wird die neue Forschungsgruppe unterschiedliche Kühlmechanismen wie Strahlungs-, Transpirations- oder Ablationskühlung weiter untersuchen, um die Sicherheitsfaktoren reduzieren zu können.

Weitere Informationen:

DLR.de/PF DLR.de/PA DLR.de/IMF DLR.de/BK

Anschub für die wissenschaftliche Karriere

Mit dem Aufbau einer eigenen Forschungsgruppe bietet die Helmholtz-Gemeinschaft jüngeren Wissenschaftlerinnen und Wissenschaftlern sehr gute Karriereaussichten. Mit dem Geld aus dem Nachwuchsprogramm eröffnen sich Wege, selbstständig zu forschen, eigene Ideen umzusetzen und von den guten Arbeitsbedingungen in einem Forschungszentrum zu profitieren. Die jährliche Förderung von 250.000 Euro über fünf Jahre und die Option auf eine unbefristete Stelle erleichtern den Nachwuchsforschern den Einstieg in eine wissenschaftliche Karriere. Darüber hinaus verstärkt das Programm die Vernetzung mit den Hochschulen, denn die Nachwuchswissenschaftler halten auch Vorlesungen oder Seminare an der jeweiligen Partnerhochschule. Damit qualifizieren sie sich für eine Universitätskarriere.

Derzeit schon arbeitende Nachwuchsgruppen mit Helmholtz-Förderung

High Temperature Management in Hypersonic Flight

Nachwuchsgruppenleiterin: Dr. Hannah Bohrk Partneruniversität: Universität Stuttgar

ufzeit: 2013-201

AerCARE-Impacts of Aerosol layers on atmosphere and climate

artneruniversität:

Dr. Bernadett Weinzierl

universität München

2010-2015

Multi-scale Modeling and In-situ Diagnostics of Solid Oxide Fuel Cells

Nachwuchsgruppenleiter: PD Dr. Wolfgang G. Bessler Partneruniversität: Universität Stuttgart

ufzeit: 2010-2015

Dynamische Regelung Humanoider Laufmaschinen

Nachwuchsgruppenleiter: Dr.-Ing. Christian Ott
Partneruniversität: TU München

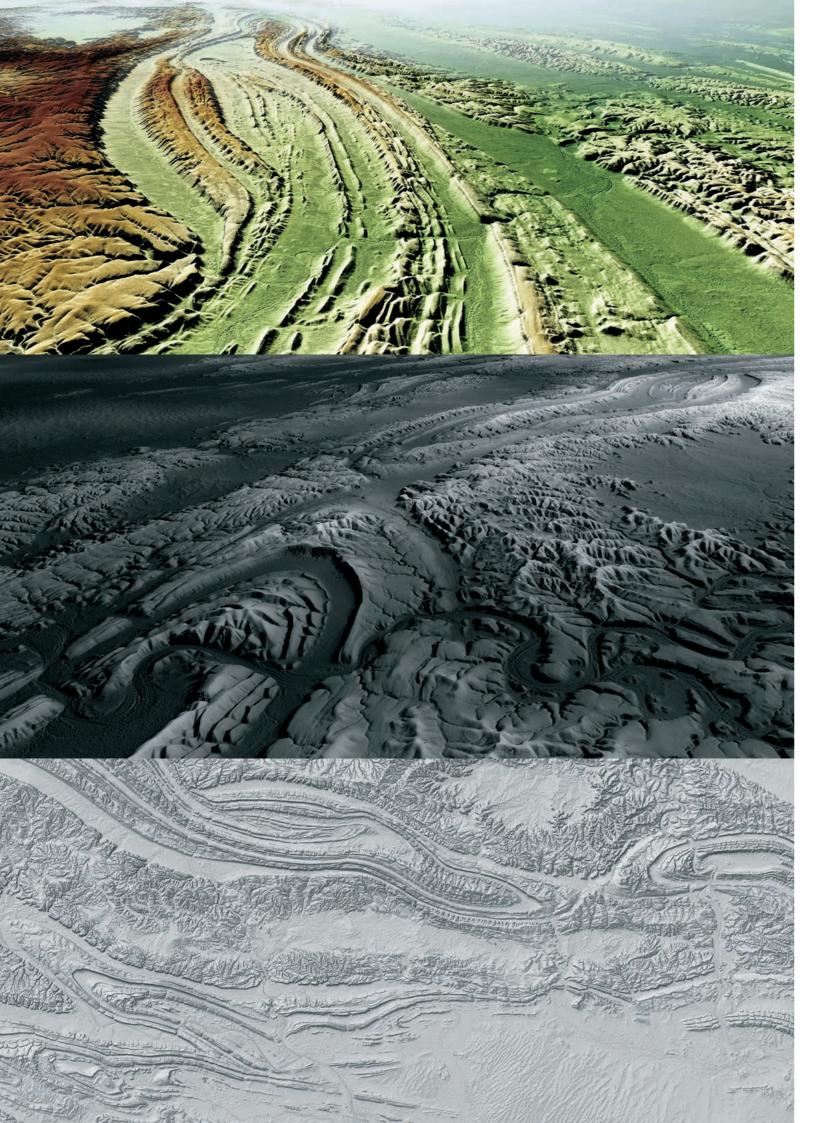
Weltatlas mit Höhen und Tiefen

Seit Juni 2007 kreist der Radarsatellit TerraSAR-X um die Erde, im Juni 2010 folgte ihm sein Zwilling TanDEM-X ins All. Gemeinsam erfassen sie seitdem die Erdoberfläche mit ihren Radarstrahlen. Das Ziel: ein dreidimensionales Höhenmodell der Erde. Würde TanDEM-X wie ein Auto über die Erdoberfläche fahren, hätte er bereits über 800 Millionen Kilometer auf dem Tacho. Nun werden die ersten Höhenmodelle den Nutzern zur Verfügung gestellt. Damit ist ein Meilenstein erreicht – auf dem Weg zu einer hochgenauen dreidimensionalen Weltkarte mit Daten aus dem All.

Erste dreidimensionale Höhenmodelle der TanDEM-X-Mission für die Wissenschaft – eine neue Topografie der Erde entsteht

Von Manuela Braun

Man kann es Christoph Kolumbus nicht übel nehmen – als er 1492 auf Amerika stieß und sein Leben lang felsenfest davon überzeugt blieb, den westlichen Seeweg nach Asien hinter sich gebracht zu haben, hatte er sich auf Ptolemäus verlassen. Oder vielmehr auf das, was der griechische Gelehrte, Mathematiker, Astronom und Bibliothekar in Alexandria im zweiten Jahrhundert für die Nachwelt erstellt hatte: eine der ersten Weltkarten. Doch auch wenn diese erstmals den Planeten in Breiten- und Längenkreise einteilte und tausende von bekannten Stätten verortete, so stimmten leider oftmals die


Entfernungen nicht. Heute hätte Kolumbus mit einer Weltkarte von Radarsatellit TanDEM-X nicht nur gewusst, wo genau er sich befindet, er hätte auch noch die dritte Dimension – die Höhe – geliefert bekommen. Amerika von Alaska bis Florida in 3-D. Kolumbus hätte gestaunt.

Gemeinsam im Formationsflug mit seinem baugleichen Zwilling TerraSAR-X umkreist TanDEM-X seit seinem Start am 21. Juni 2010 die Erde. Bereits zweieinhalb Mal haben die zwei die Landmasse der Erde aus 514 Kilometer Höhe mit ihrem

Über die Mission TanDEM-X

TanDEM-X wird im Auftrag des DLR mit Mitteln des Bundesministeriums für Wirtschaft und Energie als Projekt in öffentlich-privater Partnerschaft (Public Private Partnership, PPP) mit Airbus Defence and Space (vormals Astrium) durchgeführt. Das DLR ist verantwortlich für die wissenschaftliche Nutzung der TanDEM-X-Daten, die Planung und Durchführung der Mission, die Steuerung der beiden Satelliten und die Erzeugung des digitalen Höhenmodells. Dazu entwickelt es auch die notwendigen Anlagen am Boden, das sogenannte Bodensegment. Die wissenschaftliche Leitung obliegt dem DLR-Institut für Hochfrequenztechnik und Radarsysteme in Oberpfaffenhofen. Airbus Defence and Space hat den Satelliten gebaut und ist an den Kosten für Entwicklung und Nutzung beteiligt. Das Unternehmen ist auch für die kommerzielle Vermarktung der TanDEM-X-Daten zuständig.

Radar abgetastet: 380 Millionen Quadratkilometer sind so zu einer riesigen Datenmenge von mehr als 350 Terabyte – etwa 435.000 DVDs – geworden. Und in den nächsten Monaten und Jahren werden es stetig mehr. "Wir liefern damit die neue Topografie der Erde", sagt Prof. Alberto Moreira. Der Leiter des Instituts für Hochfrequenztechnik und Radarsysteme stapelt bewusst nicht tief, wenn er von der Radarmission spricht. Auch wenn die Erde bis heute deutlich genauer vermessen wurde als zu Zeiten von Ptolemäus oder späteren berühmten Kartografen – die Genauigkeit von TanDEM-X setzt dem Ganzen ein Sahnehäubchen auf. "Wie viel genauer? – Bestimmt dreißig Mal besser, als alles, was bisher global verfügbar ist", sagt Moreira. Alle zwölf Meter wird eine Höheninformation mit einer Genauigkeit von zwei Metern vorliegen – für den gesamten Erdball.

Mosaik aus hunderttausenden einzelnen Höhenmodellen

Jetzt stecken die Wissenschaftler mittendrin in der akribischen Arbeit, aus den Informationen die bisher genaueste Topografie der Erde zusammenzusetzen. Schon während der ersten Jahre der Mission sind die Aufnahmen zu kleinen Höhenmodellen in einem vollautomatisierten Prozess verarbeitet worden – mehr als 350.000 einzelne 3-D-Modelle von jeweils dreißig mal fünfzig Kilometer Größe. "Alle schon extrem genau, aber jetzt kommt noch der Feinschliff, bei dem wir die letzten ein, zwei Meter korrigieren", sagt Dr. Manfred Zink, Projektleiter des TanDEM-X-Bodensegments. "Wir drehen an ganz kleinen Schrauben, um diese nahezu automatisch erstellten Modelle zu optimieren." Kontinuierlich werden die sogenannten "Raw-DEMS", die ersten Höhenmodelle, analysiert, korrigiert und der Verarbeitungsprozess angepasst. Selbst kleinste Fehler, die beispielsweise durch den unterschiedlichen Weg der Radarimpulse von TanDEM-X und TerraSAR-X durch die Atmosphäre entstehen, werden sorgfältig korrigiert, um solche Störungen nicht ins Höhenmodell einfließen zu lassen.

Diese ersten, zu hochpräzisen Höhenmodellen aufbereiteten TanDEM-X-Daten gehen nun weltweit an die rund 800 Wissenschaftler aus 31 Ländern, die mit den Informationen ihre Forschung vorantreiben. Zehn Prozent der Erdoberfläche sind schon verfügbar. Fast ganz Australien zum Beispiel. "Das ist überwiegend schön flach und kann schon mit zwei Überflügen von den Radarsatelliten optimal abgetastet werden." Weitgehend flach ist auch die Osthälfte des nordamerikanischen Kontinents von der Arktis bis zur Spitze Floridas. Oder Sibirien. Südafrika steht als Nächstes an. Große Weiten, überschaubarer Bewuchs. Eine Topografie, die trotzdem spannend ist – wie die Flinders Range, eine Gebirgskette im Süden Australiens.

Neue Blickrichtung für die Problemzonen

Und dann gibt es noch die schwierigen Kandidaten, die es der Satellitenformation im All schwer machen: Die Alpen. Die Rocky Mountains oder der Himalaya. Da reichen zwei Überflüge nicht, um die Topografie präzise zu erfassen. Im August 2013 führten die Ingenieure des DLR deshalb ein ungewöhnliches Manöver durch: Sie änderten die bisherige Helix-Formation, in der TanDEM-X sich im Flug gegen den Uhrzeigersinn um den Satelliten TerraSAR-X "herumschraubte". Nun fliegt TanDEM-X für rund ein Jahr auf einer Bahn im Uhrzeigersinn um seinen Zwilling. Die neue Blickrichtung auf die Erde ermöglicht es, schwierige Gebiete wie hohe Gebirge oder Canyons aus einem anderen Winkel erneut zu erfassen. "Wir brauchen diesen dritten oder

auch vierten Überflug, bis uns alle Daten für das neue Höhenmodell vorliegen". Und auch die letzten kleinen Lücken und Flecken, die im ersten und zweiten Überflug noch nicht erfasst wurden, werden geschlossen. "Eine mühsame, aber notwendige Arbeit. Schließlich ist eine vollständige globale Abdeckung ein wesentliches Ziel der Mission", sagt Zink.

Für das Team der TanDEM-X-Mission bedeutet das: Während die Höhenmodelle erstellt und an die Wissenschaftler ausgeliefert werden, müssen zeitgleich die aktuellen Überflüge des Satelliten geplant und durchgeführt werden. Vier Institute im DLR arbeiten dafür zusammen: Das Institut für Hochfrequenztechnik und Radarsysteme leitet und plant die Mission, das Institut für Methodik der Fernerkundung hat die vollautomatische Prozessierung der Daten entwickelt, das Deutsche Fernerkundungsdatenzentrum (DFD) ist für Datenempfang und Archivierung zuständig, die Satelliten werden vom Deutschen Raumfahrt-Kontrollzentrum (GSOC) gesteuert und überwacht. Empfangen werden die Radardaten aus dem All von Antennen der DLR-Bodenstationen im kanadischen Inuvik und von der DLR-Station O'Higgins in der Antarktis sowie von der schwedischen Partnerstation in Kiruna. Die Kommandierung der Satelliten und die Überwachung ihres "Gesundheitszustands" erfolgt über die Antennen in Weilheim und Neustrelitz.

Wie ein extrem genaues Uhrwerk ohne Abweichungen

Über 20.000 Mal ist TanDEM-X mittlerweile mit einer Geschwindigkeit von 27.000 Kilometern in der Stunde um die Erde geflogen. Hatte er zu Beginn seiner Mission noch einen Abstand von etwa 15.000 Kilometern von seinem Zwilling TerraSAR-X, so fliegen die beiden Radarsatelliten inzwischen in einer Entfernung von teilweise nur noch 120 Metern um die Erde. "Dieser Formationsflug über Jahre hinweg ist einzigartig", betont Institutsleiter Prof. Alberto Moreira. "Aber für unser Ziel, dem globalen Höhenmodell der Erde, ist er unerlässlich." Auf den Millimeter genau bestimmen die Ingenieure dabei den Abstand zwischen den beiden Satelliten, der für die Berechnung der Höhen entscheidend ist. Die Laufzeiten der Radarsignale zur Erde und zurück zum Satelliten müssen hochpräzise erfasst werden. "Die dafür notwendige Abstimmung der Radarelektronik ist extrem genau – so genau wie zwei Uhren, die nach etwa 100.000 Jahren lediglich eine einzige Sekunde voneinander abweichen."

Die dritte Dimension

Wer die Landschaft nicht nur in zwei Dimensionen sieht, weiß mehr. Gletscher, Wald, Agrarflächen, Flüsse – die Radarsatelliten erfassen mit ihren Höhenmodellen Veränderungen. "Unter den 800 Wissenschaftlern weltweit sind zum Beispiel viele Glaziologen", führt Institutsleiter Prof. Moreira aus. Wie groß sind die Eismassen? Über welches Gebiet erstreckt sich der Gletscher und mit welcher Fließgeschwindigkeit bewegt er sich? Solche Analysen sind auch für Ozeanografen interessant: Mit den Radarsatelliten können auch Wasserströmungen erfasst und so Rückschlüsse auf den Meeresgrund oder das Flussbett gezogen werden – und das selbst für sehr entlegene, unzugängliche Gebiete. Auch die Veränderungen, zum Beispiel die der Bodenfeuchtigkeit, werden mit den Radarsignalen der Satelliten erfasst. Agrarforscher könnten die Erträge eines Feldes oder einer Plantage untersuchen und auswerten, indem sie eine ganze Zeitfolge von TanDEM-X-Höhenmodellen vergleichen. "Dafür müssen die Höhenmodelle, die wir erstellen, sehr genau sein", sagt Moreira.

Mitten im Nirgendwo – über 180 Kilometer entfernt von der nächsten Stadt Alice Springs – liegt der australische Finke Gorge National Park. Die Daten der TanDEM-X-Mission ermöglichen es, die Topografie der Landschaft hochpräzise in unterschiedlichen Ansichtsformen darzustellen. Der australische Kontinent gehört zu den ersten Regionen der Erde, für die komplette dreidimensionale Höhenmodelle berechnet und den Wissenschaftlern zur Verfügung gestellt wurden.

30 | DLR MAGAZIN 141 | ERDFERNERKUNDUNG

Wichtig sind die Daten der Radarsatelliten auch in Katastrophenfällen. Schon jetzt werden Karten des Radarsatelliten TerraSAR-X eingesetzt: Als im Juni 2013 die Elbe über die Ufer trat und ganze Städte und Gebiete unter Wasser setzte, arbeiteten Helfer beispielsweise des Technischen Hilfswerks THW mit den Satellitenbildern aus dem All. "Bei Hochwassern könnten wir die Auswirkungen in 3-D sehen und auch besser abschätzen, wo Gefahrensituationen noch entstehen können", betont Prof. Alberto Moreira. Mit solchen Gefährdungskarten sind Helfer in der Lage, vorausschauend zu planen. Nach Erdbeben könnte mit dreidimensionalen Höhenmodellen analysiert werden, wie viele Gebäude und in welchem Umfang sie zerstört sind. Gefährdungskarten könnten auch für Lawinengebiete erstellt werden, Hangneigungen abzuschätzen, ist den Wissenschaftlern dank der Höhenmodelle möglich.

Für die Wissenschaft im Orbit

Das gesamte Bild der Erde soll Ende 2015 vorliegen – einheitlich, ganz genau und in 3-D. "Dafür planen wir zurzeit mit Vorrang unsere Aufnahmen", erläutert Dr. Manfred Zink. Ist die Abdeckung der Erdoberfläche komplett abgeschlossen, folgt die nächste Phase der Mission: Dann können die Ingenieure mehr auf die speziellen Anforderungen der Wissenschaftler eingehen.

"Wir wollen dann die Formation, die bisher innerhalb weniger hundert Meter stabil bleibt, deutlich verändern und zum Beispiel den Abstand zwischen den beiden Satelliten auf mehrere Kilometer ausweiten." So sollen noch exaktere Höhenmodelle von genau spezifizierten Regionen entstehen.

Die Aufgaben für TanDEM-X werden sich noch erweitern, darin ist sich Institutsleiter Prof. Alberto Moreira sicher. "Die Erde ist so dynamisch – wir brauchen einfach kontinuierliche Aufnahmen von Radarsatelliten, um diese Veränderungen erkennen und analysieren zu können.

Tandem-L – weil die Erde sich verändert

Drei Fragen an den Institutsleiter, Professor Dr. Alberto Moreira

Radartechnologie hat in Deutschland und hier vor allem im DLR eine lange Tradition. Bei welchen Missionen war das DLR schon beteiligt?

Das DLR war bereits bei den ersten Experimenten 1983 auf dem Spaceshuttle dabei. Wir haben damals das erste Radar in das Spaceshuttle gebracht. In Kooperation mit der NASA hatten wir danach mit X-SAR und SRTM zwei weitere Radarmissionen. Radarsatelliten sind dafür prädestiniert, eine globale Ansicht der Erde zu gewinnen, weil sie in der Lage sind, hochauflösende Bilder von der Erdoberfläche unabhängig von Wetter und Tageslicht aufzunehmen. Dies ist ein Alleinstellungsmerkmal von Radar.

Welche Neuerungen brachten die Radarsatelliten Terra-SAR-X

Mit TerraSAR-X hat eine neue Ära begonnen: Es war der erste deutsche und zugleich der modernste Satellit, mit dem wir Aufnahmen mit einer Auflösung sogar unter einem Meter erstellen können – für wissenschaftliche und kommerzielle Aufgaben, aber auch beispielsweise für das Zentrum für Satellitengestützte Kriseninformation, kurz ZKI, im DLR. Die Mission war auf fünf Jahre ausgelegt, doch der Satellit funktioniert so gut, dass wir mit weiteren fünf Jahren rechnen. Mit TanDEM-X haben wir etwas ganz Besonderes geschafft: Zwei Radarsatelliten im Formationsflug sind eine Premiere im Weltall und ermöglichen es, eine neue Topografie der Erde in 3-D zu erstellen.

Gemeinsam mit der japanischen Raumfahrtagentur JAXA läuft bereits die Studie für eine nächste mögliche Mission, für Tandem-L. Welchen zusätzlichen Nutzen könnte diese Radarmission bieten?

Bei Tandem-L verwenden wir mit der digitalen Antenne in Kombination mit einem riesigen entfaltbaren Reflektor eine ganz neue Technologie. Unser Ziel ist es, eine deutlich höhere Aufnahmefähigkeit zu erreichen, die TanDEM-X um den Faktor 100 überschreitet. Damit können wir dann zweimal pro Woche die gesamten Landmassen der Erde mit einer hohen Auflösung abbilden und die Zeit als ganz neue Dimension ins Spiel bringen. Die brauchen wir, weil die Erde dynamisch ist. Jede Stunde, jede Minute geschieht etwas auf der Erde. Im Katastrophenfall wollen wir ja zum Beispiel möglichst Bilder in Echtzeit – und das dann auch noch in 3-D. Bisher gibt es das noch nicht. Wir können mit Tandem-L vor allem einen einmaligen Beitrag zur Umweltbeobachtung und Klimaforschung leisten, sei es zum Beispiel bei der Bestimmung der globalen Waldbiomasse zum besseren Verständnis des Kohlenstoff-Kreislaufs oder beim Erfassen des Abschmelzens der Polkappen. Derartige Daten werden dringend benötigt, um den Planeten Erde und seine Dynamik besser zu verstehen. Der Start für eine solche Mission könnte bereits 2020 erfolgen.

Kooperationen – Schlüssel zum Erfolg

Von Michael Eggenschwiler

Obwohl die zivile Luftfahrt bereits auf eine Geschichte von mehr als 100 Jahren zurückblicken kann, übt sie auf die Menschen immer noch eine nicht nachlassende Faszination aus. Wer schon einmal den Start eines Airbus A380 beobachtet hat, stellt sich unweigerlich die Frage: "Wieso hebt dieser Koloss bloß ab?" Allein dieses Beispiel verdeutlicht: Kaum eine andere Branche hängt wirtschaftlich so stark von Innovationen aus der Wissenschaft ab wie der Luftverkehr. Denn je mehr Passagiere pro Flug transportiert werden können, desto profitabler ist eine Flugverbindung für die Airline und desto günstiger sind die Preise für die Fluggäste.

Dabei ist die finanzielle Seite nur ein Aspekt, der einen Wirtschaftszweig wie die Luftfahrt langfristig erfolgreich bleiben lässt. Als stadtnaher Flughafen haben wir am Hamburg Airport beispielsweise eine besondere Verantwortung gegenüber unserer Nachbarschaft. Diese Situation erfordert große Flexibilität und verlangt Innovationen, die wir im Rahmen des Betriebs zeigen müssen. Zu nennen sind hier die Lärmvorschriften oder die Ziele zur Verringerung von Emissionen und Energieverbrauch. Vor diesen Aufgaben stehen neben anderen Flughäfen auch die Fluggesellschaften sowie Produktionsstätten und Zulieferer.

Immer mehr wird deutlich, dass Lösungen nur im Schulterschluss zwischen unternehmerischem Know-how und Forschung entwickelt werden können. Dies setzt eine intensive Zusammenarbeit zwischen Wirtschaft und Wissenschaft voraus.

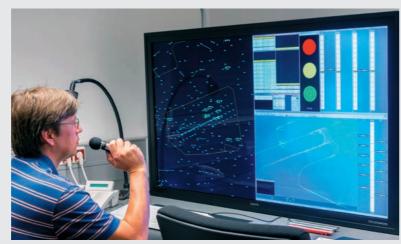
Vor diesem Hintergrund wurde für die Metropolregion Hamburg bereits 2001 ein Luftfahrtcluster (heute: Hamburg Aviation) gegründet, dem neben den drei Kernunternehmen Airbus, Lufthansa Technik und Hamburg Airport über 300 kleine und mittelständische Unternehmen sowie vielfältige technologisch-wissenschaftliche Institutionen angehören. 2008 wurde dieser Zusammenschluss vom Bundesministerium für Bildung und Forschung als Spitzencluster ausgezeichnet. Mit dieser Auszeichnung wurde uns allen aber zusammen mit den Fördergeldern auch die Verantwortung übertragen, den zukunftsweisenden Fragen unserer Branche auf den Grund zu gehen.

Eines der Leuchtturmprojekte, das wir uns in enger Zusammenarbeit mit dem DLR vorgenommen haben, war der Blick auf den "Airport 2030". Dabei ging es nicht um Wunschdenken, sondern um konkrete Prozesse: Alle Aspekte des Flughafens und seine Einbindung in das Lufttransportsystem sollten auf Verbesserungspotenziale hin analysiert und die Prozesse nachhaltig aufgestellt werden. Der "Airport 2030" muss vielen Anforderungen gerecht werden. Sein Betrieb soll effizienter und wirtschaftlicher sein, soll jedoch auch ökologischer, komfortabler, zuverlässiger und flexibler gestaltet sein und dies unter ausgewogener Berücksichtigung der Interessen aller am System Luftverkehr Beteiligten.

Die Zeit dieser engen Forschungszusammenarbeit hat uns eines gezeigt: Kooperationen sind notwendig, um erfolgreiche Innovationen zu erarbeiten. Eine Zusammenarbeit in der Forschung bringt sowohl für die Wirtschaft als auch die Wissenschaft große Vorteile. Unternehmen erhalten Zugang zu den neuesten wissenschaftlichen Erkenntnissen und können diese in innovative Produkte und Prozesse umsetzen. Der Nutzen für die Forschung besteht vor allem in einem starken Praxisbezug ihrer Arbeit, die damit eine noch größere Bedeutung erhält.

Ich bin davon überzeugt, dass strategische Partnerschaften zwischen Wirtschaft und Wissenschaft zukünftig weiter an Bedeutung gewinnen werden. So bilden effektive Forschungskooperationen eine entscheidende Grundlage für die Sicherung und Steigerung der Innovationsleistung und damit für die Wettbewerbsfähigkeit – gerade für eine sich ständig weiterentwickelnde Branche wie den Luftverkehr.

Michael Eggenschwiler, Vorsitzender der Geschäftsführung Hamburg Airport


Luftfahrtmeldungen

Schneller reagieren mit Spracherkenner

Schnelle Reaktion bedeutet mehr Sicherheit, vor allem in der Luftfahrt. Ob und wie rasch ein Luftfahrt-Assistenzsystem durch die Sprechfunkauswertung zwischen Lotse und Pilot auf die Absichten eines Lotsen reagieren kann, wurde vom DLR untersucht.

Fluglotsen stehen einem immer komplexer werdenden Geflecht aus startenden und landenden Maschinen gegenüber. Lotsenassistenzsysteme zeigen ihnen, in welcher Reihenfolge die landenden Maschinen effizient aufgereiht und verteilt werden können. Weicht der Lotse aber vom Plan des Systems ab, erkennt das System dies erst eine halbe Minute später über die eingehenden Radardaten. In der Zwischenzeit kann es den Lotsen nicht optimal unterstützen. Abhilfe könnte die Nutzung des Sprechfunks zwischen Fluglotse und Cockpit schaffen. Zusammen mit der DFS Deutsche Flugsicherung GmbH und der Universität des Saarlandes untersuchte das DLR die Zuverlässigkeit eines solchen Spracherkennungssystems.

Im Projekt AcListant® (Active Listening Assistant) waren dazu unter anderem Lotsen des Flughafens Düsseldorf im Braunschweiger DLR-Institut für Flugführung zu Gast. An typischen Flugsituationen für den Düsseldorfer Luftraum stellten die Forscher mit Hilfe der Lotsen die neue Kombination aus Spracherkenner und Assistenzsystem auf die Probe. Das Besondere an dem Projekt ist, dass sich Assistenzsystem und Spracherkenner gegenseitig verbessern sollen. Beispielsweise erwartet der Computer für ein landendes Flugzeug vor allem Manöver, bei denen die Maschine absinkt und langsamer wird. So muss der Spracherkenner nur noch aus einer kleinen Anzahl von aktuell möglichen Wörtern das entsprechende Signalwort erkennen. Auf Grundlage der schneller erfassten Verkehrssituation können dem Lotsen dann schneller weitere empfohlene Manöver angezeigt werden

Weicht der Lotse vom Plan des Assistenzsystems ab, erkennt das System dies erst zeitverzögert über die eingehenden Radardaten. Den Sprechfunk zwischen Fluglotse und Cockpit im Assistenzsystem zu verarbeiten, könnte Abhilfe schaffen.

Alternative Treibstoffe: NASA und DLR planen gemeinsame Forschungsflüge

Die Falcon des DLR wird im Mai 2014 bei gemeinsamen Versuchsflügen mit der NASA zum Einsatz kommen. Geplant ist, Emissionen und die Veränderung von Kondensstreifen bei der Verwendung alternativer Treibstoffe im Flug zu vermessen.

Umweltfreundliche und nachhaltige Brennstoffe in der Luftfahrt: Dafür arbeiten DLR-Forscher der Institute für Verbrennungstechnik, Physik der Atmosphäre und Antriebstechnik an synthetischen Alternativen zum herkömmlichen Luftfahrttreibstoff Kerosin. Im Rahmen des internationalen Netzwerks für Luftfahrtforschung IFAR (International Forum of Aviation Research) planen die US-amerikanische Luft- und Raumfahrtbehörde NASA und das DLR erstmals gemeinsame Forschungsflüge zu alternativen Treibstoffen. In einer zweiwöchigen Flugkampagne von der Edwards Air Force Base in Kalifornien wollen die Wissenschaftler im Mai 2014 den Triebwerksbetrieb mit verschiedenen Biotreibstoff-Zusammensetzungen testen.

Alternative Treibstoffe können aus erneuerbaren Rohstoffen gewonnen werden und führen damit zu einem geringen Eintrag von Kohlendioxid in die Atmosphäre. Ihre Verbrennung setzt deutlich weniger Ruß- und Schwefelpartikel frei. Vonseiten des DLR wird das Forschungsflugzeug Falcon an dem deutsch-amerikanischen Vorhaben teilnehmen, um Veränderungen der Emissionen und Kondensstreifen-Eigenschaften bei Verwendung alternativer Treibstoffe im Flug zu vermessen. Die NASA modifiziert eine DC-8, sodass eines der vier Triebwerke alternative synthetische Treibstoffe im Flugversuch verbrennt. Für die kommenden Jahre sind in dem neuen DLR-Projekt ECLIF (Emissions and CLimate Impact of alternative Fuels) weitere Kooperationen mit der NASA im Bereich "Alternative Treibstoffe" geplant. (Lesen Sie dazu auch die Betrachtung "X-Stoffe" auf Seite 52 in diesem Heft.)

Prüfstand für Turbinen der nächsten Generation

Zur Erforschung und Entwicklung innovativer Triebwerkstechniken bedarf es erstklassiger Hochleistungsprüfstände: Die Luftfahrtindustrie hat einen dringenden Bedarf an geeigneten Versuchseinrichtungen. Am Standort Göttingen baut das DLR derzeit einen Prüfstand für die Triebwerke der nächsten Generation: NG-Turb (Next Generation Turbine). An der weltweit einzigartigen Anlage werden Wissenschaftler unter anderem neu entwickelte Turbinenschaufeln, Kühlsysteme und Werkstoffe untersuchen. Der Prüfstand wird in der Lage sein, Flugzeugturbinen in Originalgröße bei realistischen Lufteigenschaften und Machzahlen zu untersuchen – von den Antriebsmaschinen kleiner Geschäftsflieger bis hin zu Turbinen für ein A380-Großraumflugzeug. Gemeinsam mit der Industrie analysierte das DLR zukünftige Schwerpunkte in der Turbinenforschung für eine kundengerechte Auslegung der Anlage.

Im DLR Göttingen entsteht ein neuer Trieb werksprüfstand

Ursache von Hubschrauberlärm erstmals sichtbar

Mit Flugexperimenten in einem Steinbruch im Harz sorgten DLR-Piloten Anfang 2014 für Schlagzeilen. Forscher aus dem DLR Göttingen und Braunschweig machten erstmals die Hauptursache für den Lärm eines fliegenden Hubschraubers sichtbar. Sie nutzten dafür die von Prof. Dr.-Ing. habil. Markus Raffel entwickelte Hintergrund-Schlierenmethode (Background Oriented Schlieren Method, kurz BOS). Schwankungen in der Luftdichte sorgen für unterschiedliche Lichtbrechungen. Vor einem geeigneten Hintergrund, wie einer Steinbruchwand, kann man diese sichtbar machen. Hubschrauberlärm entsteht dadurch, dass der Wirbel eines Rotorblatts mit einem anderen Rotorblatt kollidiert. Die Luft wird dadurch beschleunigt und hinter der Rotorblattspitze entsteht ein konzentrierter Wirbel. Diese Wirbel verursachen nicht nur das typische "Teppichklopfer-Geräusch", sondern führen auch zu Vibrationen im Hubschrauber und verringern den Komfort der Passagiere.

In den jüngsten Experimenten flog die BO 105 in einen Steinbruch im Harz. Zehn Kameras lieferten so gute Bilder, dass erstmals ein Großteil der Rotorwirbel eines fliegenden Hubschraubers sogar dreidimensional sichtbar gemacht werden konnten. Mit den gewonnenen Erkenntnissen eröffnen sich Möglichkeiten, Hubschrauber künftig deutlich leiser und komfortabler zu machen.

Die von den Rotorblattspitzen verursachten Luftwirbel sind vor passendem Hintergrund als dunkle Linien gut erkennbar. Versteht man die Lärm verursachenden Wirbel, kann man den Lärm mindern.

Tragflächen mit neuartigen Landeklappen

Fortschritt für den Laminarflügel: Damit die Luft möglichst ohne Turbulenzen (laminar) den Flügel umströmen kann, müssen sich auch Startund Landeklappen perfekt in die Aerodynamik eines solchen Flügels einfügen. Das vom DLR koordinierte EU-Projekt DeSiReH (Design, Simulation and Flight Reynolds Number Testing for Advanced High Lift Solutions) hat dafür ein Konzept gefunden. Dazu wurde das Leitblech, das von der Unterseite des Flügels ausklappt, die sogenannte Krügerklappe, in ihrer Form modifiziert. Um Testzeit und Kosten zu sparen, kehrten die Ingenieure den Entwurfsprozess einfach um: Statt ein Modell zu entwickeln, es im Windkanal zu messen und die Ergebnisse anschließend mit den am Computer durchgeführten Rechnungen abzugleichen, bauten sie die neuen Klappensysteme direkt anhand der Simulationsrechnungen und überprüften sie dann im Windkanal bei realen Strömungsbedingungen. Der Entwurf war so gut, dass die Proiektbeteiligten nun sicher sind, dass der Laminarflügel machbar ist und zudem damit vier bis sieben Prozent Treibstoff gespart werden können.

sogenanntes Konzept neu Interpretiert: Die sogenannte Krügerklappe, bei der ein Leitblech von der Unterseite des Flügels ausklappt, wurde in ihrer Form modernisiert und für Flugleistungen ähnlich denen von heutigen Vorflügeln ausgelegt

Ausflug in die Zukunft

Riesentragflächen, die zugleich Passagierraum sind, Landen ohne Fahrwerk, vernetzte Abläufe und schnelle Wege: Forscher, die sich in Hamburg seit dem Jahr 2009 zum Leuchtturmprojekt Airport 2030 zusammenfanden, gehen neue Wege. Am drittgrößten Luftfahrtstandort der Welt – nach Seattle und Toulouse – wurden in einer vielfältigen Forschungskooperation zwischen Wissenschaft und Wirtschaft faszinierende Zukunftsbilder mit Weitblick auf das gesamte Lufttransportsystem entwickelt. Optimale Abläufe am Flughafen spielen eine Schlüsselrolle.

Airport 2030 – Gemeinschaftsprojekt für den Flughafen von morgen

Von Falk Dambowsky

Irgendwann Mitte des 21. Jahrhunderts: Ein weiterentwickelter Airbus A380 setzt zum Landeflug an. Die Landeklappen fahren aus. Dort, wo vor einigen Jahren noch jedes Flugzeug ein Fahrwerk hatte, öffnen sich einfache Vertiefungen unter dem Rumpf. Direkt vorne an der Landebahn steht ein schlittenartiges System bereit. Über einen elektromagnetischen Antrieb beschleunigt es rasant unter der herabgleitenden Interkontinentalmaschine. Der Schlitten ist jetzt so schnell wie der Mega-Airliner. Bei starkem Seitenwind driftet das Flugzeug etwas, der Pilot hält aber mit einer schrägen, gegen den Wind gerichteten Fluglage dagegen. Für den Schlitten auf Verfolgungsjagd kein Problem. Er folgt der seitlichen Bewegung im Vorwärtsgang über die Bahn. Automatisch bewegen sich seine Pylonen passgenau unter die Vertiefungen im Rumpf des Fliegers. Wie bei einem Andockmanöver im Weltall fügen sich die gro-Ben Stifte des Fahrwerksschlittens in die Andockstellen des Flugzeugs – Touchdown. Der Schlitten bremst – und mit ihm knapp 400 Tonnen geerdetes Luftfahrtgewicht. Die frei werdende Bremsenergie wird zwischengespeichert – Strom, der zur Unterstützung des nächsten Starts bereitsteht.

An der Abzweigung von der Landebahn zum Taxiway wird das soeben angekoppelte Fahrwerk vom Schlitten gelöst. Der A380 rollt wie in seinen ersten Jahren, nun aber auf geliehenem Fahrwerk zum Gate. Es geht vorbei an den Fahrgastbrücken entlang des Terminals. Dort ist ein ungewöhnlicher Flieger zu bestaunen: Zwischen zwei Gates breitet sich ein Blended Wing Body, kurz BWB, wie ein riesiger Rochen mit fast 80 Meter Spannweite aus. Zugänge führen von beiden Seiten zu diesem ungewöhnlichen Fluggerät. Immerhin passen in seinen ausgedehnten Rumpf bis zu 750 Passagiere, die in 20 langen Reihen nebeneinander Platz finden. Mitte des 21. Jahrhunderts sind diese BWB-Flugzeuge, deren breite Kabine fließend in die angrenzenden Flügel übergeht, noch ein ungewohnter Anblick auf der Langstrecke. Im Terminal sind viele Passagiere gespannt auf ihren allerersten Blended-Wing-Body-Flug. Direkt und ohne Umwege leitet sie ihr Smartphone zur gerade freien Security-Line und weiter auf dem kürzesten Weg zum speziell eingerichteten BWB-Gate, immer versorgt mit allen Hintergrundinformationen zu eventuell kurzfristig geänderten Abläufen.

Die Passagierwege, die Beladung des Blended Wing Body, die Rollführung des gerade gelandeten A380 und das gesamte Geschehen am Flughafen steuern Operateure zentral aus einem Leitstand. Bis zur Mitte des Jahrhunderts wurden die Informationsflüsse am Flughafen immer weiter gebündelt und laufen nun in einem Raum zusammen. Seien es die Positionen einzelner Vorfeldfahrzeuge, Angaben über die Wege des Gepäcks der Passagiere, Wetter- und Statusinformationen der Airlines zu ihren Flugzeugen in Europa und der Welt oder Verkehrsinformationen aus der Flug-

Perspektiven für den Flughafen 2030

Das Verbundprojekt Airport 2030 bündelte unter der Leitung der DLR-Lufttransportsysteme Hamburg Entwicklungsarbeiten zum Flughafenmanagement und zur Flugzeuggestaltung. Es ist Teil des Spitzenclusters Hamburg Aviation und hat das Ziel, Flughäfen effizienter zu gestalten. Die Forschung unterteilte sich in vier Arbeitsfelder: Optimierung des Passagierflusses, Prozesssteuerung des Flugbetriebs, Flugzeug und Rollfeldgestaltung für verbesserte Bodenoperationen und eine optimierte Erreichbarkeit des Flughafens. Anfang 2014 endete das Projekt nach fünfjähriger Laufzeit. Es war mit zehn Millionen Euro ausgestattet, je zur Hälfte finanziert vom Bundesministerium für Bildung und Forschung (BMBF) und den teilnehmenden industriellen und wissenschaftlichen Akteuren. Acht Projektpartner arbeiteten gemeinsam am Flughafen der Zukunft: DLR, TU Hamburg-Harburg, Universität Hamburg, Hochschule für Angewandte Wissenschaften Hamburg, Airbus, Flughafen Hamburg, mb+Partner sowie Siemens.

Am Testleitstand des DLR wird untersucht, wie sich zukünftig alle Flughafenakteure zusammenbringen lassen

38 | DLR MAGAZIN 141 | FLUGHAFENPERSPEKTIVEN | DLR MAGAZIN 141 | 39

Fahrwerkloses Landen könnte zukünftig möglich sein. Eine Art rollender Schlitten koppelt an das um ein Fahrwerk erleichterte Flugzeug an (Ausschnitt aus einer Landesimulation).

hafenumgebung. Die Operateure haben direkten Zugriff auf die für sie relevanten Informationen. Damit ist es ihnen möglich, alle Abläufe und Ressourcen am Flughafen koordiniert zu steuern: Diese neue Art des Managements eines Flughafens ermöglicht den Betrieb in Richtung verschiedener Parameter wie Emmissionsreduktion, Effizienz oder Pünktlichkeit zu lenken.

Klaus Lütjens Gesicht hellt sich auf angesichts dieser Zukunftsbilder. Er leitet das Leuchtturmprojekt "Effizienter Flughafen 2030" und ist stolz auf das Ergebnis der vergangenen fünf Jahre: "Revolutionäre Flugzeugkonzepte im Zusammenhang mit dem Flughafen zu denken, das fahrwerklose Landen konkret anzugehen, das Flughafenmanagement zu einem engmaschig verbundenen System weiterzuentwickeln, kurzum den Flughafen der Zukunft als eine effiziente Einheit zu denken – das haben wir in Zusammenarbeit mit zahlreichen Partnern aus Wissenschaft und Wirtschaft am Luftfahrtstandort Hamburg gewagt", berichtet der Forscher der DLR-Lufttransportsysteme.

Das fahrwerklose Landen ist ein Beitrag des noch jungen Start-up-Unternehmens mb+Partner. Die revolutionäre Idee ist zu einem konkreten Konzept gereift: "Bis hin zu kleineren Notfall-Schlittensystemen auf notwendigen Ausweichflughäfen und der Energieversorgung solch eines Landesystems gehen die Details in der Planung", sagt Jan Binnebesel von mb+Partner. Den ökonomischen Vorteilen der reduzierten Trägermasse, die eine Airline durch das fahrwerklose Fliegen nutzen kann, stehen hohe Investitionen an Flughäfen gegenüber. "Ein Interessensausgleich müsste über entsprechende Landegebühren erfolgen und könnte je nach angenommenem Szenario zu einer Amortisation solch eines Systems innerhalb von zehn bis fünfundzwanzig Jahren führen." Das DLR hat in seiner Projektleitung die visionären Jungunternehmer stets bestärkt, ihre Idee voranzubringen.

Für die operativen Entscheidungsträger ist die Nutzung der Start- und Landebahn nur ein Stück im großen Puzzle Flughafen.

Für den Bereich Terminal hat das DLR-Institut für Flughafenwesen und Luftverkehr in Zusammenarbeit mit dem Institut für Telematik der Technischen Universität Hamburg-Harburg neue Passagierführungstechnologien und -konzepte entwickelt und überprüft. So untersuchten die wissenschaftlichen Partner beispielsweise, wie sich Smartphone-Technologien auf Passagierprozesse auswirken. Smartphone-Technologien und andere digitale Bording-Assistenten erleichtern es den Fluggästen, sich auf ihrem Weg vom Check-in über die Sicherheitskontrolle bis zum Gate problemlos und schnell zurechtzufinden.

Zukünftig gilt es, die Steuerung der Bodenverkehrsdienste, des Vorfeldverkehrs und des gesamten Flughafenbetriebs effizienter und sicherer zu gestalten. Schon heute wird in einer Testumgebung am Hamburger Flughafen, der "Airport Research and Innovation Facility Hamburg", unter realen Bedingungen erforscht, wie die verschiedenen Player am Flughafen enger zusammenarbeiten können. Die vorhandene Testumgebung ist im Projekt Airport 2030 umfangreich genutzt worden, um die Steuerung der Vorfeldprozesse und der Bodenabfertigung zu optimieren und diese Funktionen in einen Flughafenleitstand zu integrieren. Steffen Loth vom DLR-Institut für Flugführung freut sich über die guten Forschungsbedingungen, die der Flughafen Hamburg und die DFS Deutsche Flugsicherung GmbH den Wissenschaftlern ermöglichen: "Für uns ist es die ideale Gelegenheit, unser zukunftsweisendes Konzept eines Leitstands für den gesamten Flughafen zu testen. Dazu hat unser Institut zusätzlich eigene Mittel in die Testumgebung investiert. Somit können wir auch in Zukunft am Flughafen Hamburg forschen." Loth führt durch den Kontrollraum mit Bildschirmen an den Arbeitsplätzen und großen Überblicksmonitoren an der Wand: "Groundhandling – also der Transport von Gepäck, Treibstoff und Versorgungsgütern – der öffentliche Nahverkehr, die Passagierflüsse im Terminal, Wetter- und Fluginformationen der Airlines und der Flugsicherung – all das soll zukünftig einmal in einem Flughafenleitstand am Airport zusammenfließen. Und wir bereiten diesem organisatorischen Wandel den Weg". Die Vorteile

liegen auf der Hand: Bei einem zusehends wachsenden Flugverkehr gibt es nur zwei Möglichkeiten: immer neue Terminals und Runways aus dem Boden stampfen oder die vorhandenen Infrastrukturen noch effizienter nutzen. Im Testleitstand am Flughafen Hamburg arbeiten die Wissenschaftler daran, Flughafenbetreiber, Airlines und Flugsicherung optimal zu verzahnen. "Solch eine zentrale Steuerung wird einmal ganz neue Vorhersage- und Planungsmöglichkeiten beim Airport-Management eröffnen", blickt Loth in die Zukunft.

Läuft ein Flughafen noch nicht an der Kapazitätsgrenze, lässt sich das Management sogar noch stärker nach "grünen" Gesichtspunkten steuern. Unter dem Titel "Green Airport" haben Forscher von Siemens, dem DLR und dem Zentralbereich Umwelt des Hamburger Flughafens gemeinsam unter dem Dach von Airport 2030 untersucht, welche Stellschrauben sich besonders in die Richtung eines "grünen" Flughafenbetriebs drehen lassen. "Wir haben ein Computermodell entwickelt, das im laufenden Betrieb Handlungsempfehlungen geben kann, wie die Schadstoffemissionen am Flughafen oder die Lärmbelastung für die umliegende Bevölkerung möglichst gering gehalten werden können", sagt Niclas Dzikus von den DLR-Lufttransportsystemen. "Möglichkeiten, Schadstoffemissionen zu verringern, ergeben sich etwa bei der Wegeführung der Flugzeuge. Beim Lärm könnten zukünftig aktuelle Berechnungen der am Boden bei bestimmten Wetterverhältnissen unterschiedlich laut wahrgenommenen Lärmteppiche genutzt werden, um die Flugzeuge so auf die verschiedenen Start- und Landebahnen zu verteilen, dass möglichst wenig Wohnhäuser im Bereich des Lärms liegen."

Das symbolträchtigste Bild zum Leuchtturmprojekt Airport 2030 liefert allerdings der weit ausladende dickbauchige Blended Wing Body. Kann sich so ein radikal verändertes Passagierflugzeug überhaupt in die Abläufe eines klassischen Flughafens einfügen? Diese Frage haben sich Till Pfeiffer und seine Kollegen der DLR-Lufttransportsysteme gestellt: "Der BWB-Flieger kann. Auch wenn sich durch die höhere Flügellage und größere Spannweite einige Änderungen beim Betanken, Enteisen und den Triebwerks-Checks ergeben", berichtet der DLR-Forscher. "Auch die Anbindung an

heutige Flughäfen ist durchaus möglich, Start- und Landebahnen sind stabil genug, um auch solch ein Schwergewicht zu verkraften." Zudem lassen sich die Gates von beiden Seiten mit den Fluggastbrücken nutzen: "So, als ob man zwei kleinere Flugzeuge mit einem Mal abfertigen würde."

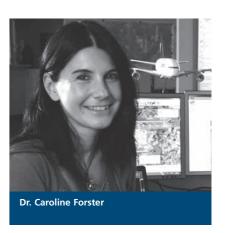
Zudem erforschte die Hochschule für Angewandte Wissenschaften Hamburg, ob kaum weniger futuristisch anmutende Boxwing-Flugzeuge den zukünftigen Luftverkehr prägen könnten. Ein Fluggerät in Boxwing-Konfiguration besitzt einen konventionellen Zigarren-Rumpf, von dem filigrane Tragflächen an ihren Spitzen direkt über jeweils eine weitere Tragfläche mit dem Leitwerk am Heck verbunden sind. Von vorn betrachtet sieht diese Konstruktion aus, als ob das Flugzeug eine riesige offene Box anstelle der gewöhnlichen Tragflächen mit sich tragen würde. Bei diesem Zukunftsmodell stehen allerdings der deutlich günstigeren Aerodynamik viel aufwändiger zu konstruierende Flügel gegenüber. Etwas weniger futuristisch und damit näher am heutigen Bild eines Flughafens waren Untersuchungen, wie kleinere Propellermaschinen Abläufe und Umweltverträglichkeit im Kurzstrecken-Passagierverkehr verbessern können.

Die Klammer für alle Aktivitäten im Leuchtturmprojekt Airport 2030 ist der Flughafen Hamburg, der die Forschungsarbeiten an vielen Stellen mit den Abläufen eines Flughafens der Gegenwart zusammenbrachte. So konnten die Forscher Flughafenprozesse direkt analysieren und sehr konkrete Lösungen entwickeln. Der Sprecher des Projekts sowie Leiter der DLR-Lufttransportsysteme, Prof. Dr. Volker Gollnick, ist stolz auf das Erreichte: "Airport 2030 hat uns allen im Verbund gezeigt, wie interdisziplinäre Zusammenarbeit von der Komponententechnologie bis zu integrierten Transportsystemen funktioniert und kreativ zusammenwirken kann", resümiert er.

Wir dürfen also gespannt darauf sein, ob wir Mitte des Jahrhunderts auf eine vielleicht etwas andere Flugreise gehen, bei der wir uns ohne Fahrwerk in die Luft erheben und auch wieder landen oder uns gar in einem völlig neuen Flugzeugtyp, dem Blended Wing Body, auf den Weg zur anderen Seite der Erde begeben.

Den Flughafen als Einheit denken: Total Airport Management (TAM)

Heutige Flughäfen sind vielschichtige Systeme: Airlines, Terminal-Abläufe, Vorfeldverkehr, Gepäckverladung, Flugsicherung, Verkehrsanbindung zum Umland – viele Akteure bestimmen die Abläufe und bedürfen einer optimalen Koordinierung. Daran forscht das DLR im Rahmen des Total Airport Management (TAM). Durch eine langfristige Kooperation der DFS Deutsche Flugsicherung GmbH, der Flughafen Hamburg GmbH und des DLR-Instituts für Flugführung wurde eine einmalige Testumgebung aufgebaut, die "Airport Research and Innovation Facility Hamburg". Der Testleitstand am Hamburger Flughafen berücksichtigt die realen Abläufe des Flugverkehrs vor Ort. Damit können Flughafenprozesse, die zuvor im DLR Braunschweig simuliert wurden, unter realen Bedingungen getestet werden. Auch über das Projekt Airport 2030 hinaus wird in den kommenden Jahren weiter in der Testumgebung geforscht. Zahlreiche Airlines, die am Hamburger Flughafen vertreten sind, haben bereits ihr Interesse für eine engere Zusammenarbeit bekundet.



Gefahr erkannt, Gefahr gebannt

Gewitter können Flugzeuge in erhebliche Schwierigkeiten bringen. Wegen Begleiterscheinungen wie Hagel, Turbulenz, Vereisung und Blitzschlag schätzen Piloten Gewitter als die gefährlichsten Phänomene im Luftverkehr ein. Ein Thema für die DLR-Atmosphärenforschung. Sie startete das Projekt WxFUSION (Weather Fusion of User Specific Information for Operational Nowcasting). Um die am DLR-Institut für Physik der Atmosphäre entwickelten Verfahren zur Kurzfristvorhersage von Gewittern auf dem Markt anbieten zu können, wurde die WxFUSION GmbH ausgegründet. Inzwischen sind zwei von drei entwickelten Verfahren an einigen Stellen in Echtzeit im Einsatz und liefern für die Luftfahrt Erste Hilfe bei der Vorhersage von Gewit-

Im Interview erklärt Dr. Caroline Forster, was die WxFUSION GmbH mit den Verfahren Cb-TRAM, Rad-TRAM und AutoAlert erreichen möchte.

WxFUSION - sicher fliegen mit aktuellen Gewitterinformationen

Von Alisa Wilken

Ihre Vorhersagetechniken machen die Luftfahrt sicherer - inwiefern?

Bevor der Pilot ins Flugzeug steigt, nutzt er für die Flugplanung Karten aus Wettervorhersagemodellen. Diese zeigen ihm, in welchen Gebieten mit Gewittern zu rechnen ist. Er hat aber keinerlei Information über den genauen Ort und die exakte Zeit des Auftretens von Gewittern. Kommt er nun in diese Gebiete, kann er sich nur auf sein On-Board-Radar verlassen. Damit erkennt er zwar, was direkt vor dem Flugzeug passiert, kann aber nicht die tatsächlichen Ausmaße der Gewitterfront sehen. Daher weiß er nicht, welche Ausweichroute am sinnvollsten ist. Hier kann unser Cb-TRAM-Verfahren helfen, da es dem Piloten immer einen Überblick über die Größe und Ausbreitung der Gewitter und deren unmittelbare Entwicklung verschafft.

Wenn die Informationen aus Cb-TRAM, Rad-TRAM und AutoAlert allen Beteiligten, also sowohl den Piloten in der Luft als auch der Flugsicherung und dem Flughafenbetreiber am Boden, zeitgleich zur Verfügung gestellt werden, können gemeinsam schneller Entscheidungen getroffen werden. Weiß die Flugsicherung, dass ein Flughafen durch ein Gewitter blockiert wird, kann sie zum Beispiel dafür sorgen, dass Flugzeuge bei Langstrecken langsamer fliegen oder bei kürzeren Strecken später starten. Andernfalls muss der Pilot entweder Warteschleifen

fliegen, was in einer halben Stunde etwa eine Tonne Kerosin verbraucht, oder das Flugzeug muss an einem anderen Flughafen landen. Dann befinden sich Crew, Passagiere, Gepäck und Flugzeug am falschen Flughafen, was wiederum einen riesigen logistischen Aufwand bedeutet. Die Gewitter können wir zwar nicht verhindern. Wir können aber die Abläufe optimieren.

Die Gründung der WxFUSION GmbH Ende 2012 sollte dazu dienen, die Technologie in ein marktfähiges Produkt zu überführen. Ist das gelungen?

Das Verfahren AutoAlert war von Juni bis September 2013 am Flughafen München operationell im Einsatz. Das war auch unser erster Auftrag als Firma WxFUSION. Das Rad-TRAM-Verfahren läuft seit Juli 2013 operationell beim Deutschen Wetterdienst. Dieser beliefert die Deutsche Flugsicherung und die Flughafen München GmbH mit den Daten. Wir haben dazu den Algorithmus an den Deutschen Wetterdienst lizensiert. Im Falle von AutoAlert beliefern wir den Flughafen direkt. Wir haben auch Kontakte zu Kunden in Singapur, Malaysia und Thailand geknüpft, die Interesse bekundet haben.

Wann werden die Verfahren flächendeckend im Flugverkehr zum Einsatz kommen?

Die Luftfahrt ist eine sehr sensible Industrie. Möchte man ein neues Produkt einführen, muss das natürlich erst mal überprüft und zertifiziert werden. Die Deutsche Flugsicherung legt zum Beispiel Wert darauf, dass das Informationsprodukt vom Deutschen Wetterdienst geliefert wird. Deswegen haben wir das Rad-TRAM-Produkt an den Deutschen Wetterdienst lizensiert. Das ist auch unser Ziel für das Cb-TRAM-Verfahren. Dazu sind wir aktuell miteinander im Gespräch. Um alle drei Verfahren einzuführen, müssen noch viele regulative Hürden genommen werden. Wir sind bereits auf gutem Wege, aber es wird noch einige Zeit dauern, bis die innovativen Gewitterinformationen regulär in jedem Flugzeug und auf jedem Flughafen verfügbar sind.

Verfahren zur Gewittervorhersage

Cb-TRAM: Thunderstorm Tracking and Monitoring – Detektion von Gewitterwolken im oberen Luftraum durch Daten vom Satelliten METEOSAT

Rad-TRAM: Radar Tracking and Monitoring – Detektion der Gewitter-

AutoAlert: Versendet automatisch Warnungen per E-Mail an alle Entscheidungsträger des Flughafens, wenn sich ein

Achtung Rüttelgefahr!

Jedes Flugzeug hinterlässt Spuren am Himmel, die sogenannten Wirbelschleppen. In ihrer schönsten Form zeigen sie sich als beinahe herzförmige Doppelspiral-Muster in den Wolken, meist jedoch sind sie nicht sichtbar. Für nachfolgende Flugzeuge kann es ungemütlich werden, wenn sie auf die Luftstrudel treffen. Wissenschaftler des DLR-Instituts für Flugsystemtechnik entwickeln daher in Zusammenarbeit mit dem DLR-Institut für Physik der Atmosphäre ein Warnsystem, das den Piloten die Wirbelschleppen auf den Bildschirm bringt. Dank eines cleveren Modellierungstools werden die Wirbel allein aus den Positions- und Wetterdaten vorausfliegender Flugzeuge vorhergesagt. Die zwei DLR-Forschungsflugzeuge Falcon und ATRA haben das neue System bereits im Tandemflug erprobt. Im Lauf des Jahres 2014 sind weitere Flugtests geplant.

Warnsystem spürt verborgene Wirbelschleppen auf

Von Falk Dambowsky

DLR-Testpilot Hans-Jürgen Berns konzentriert sich im Cockpit auf das nächste Flugmanöver. Er sitzt am Steuer des Airbus A320 ATRA (Advanced Technology Research Aircraft), des größten Flugzeugs in der DLR-Forschungsflotte. Neben ihm sein Copilot Jens Heider. Auf einem Display sehen sie eine symbolisierte Wirbelstruktur auf sich zukommen. Ein Blick aus dem Cockpitfenster zeigt die nahen Wirbel auch am Himmel, denn es herrscht günstiges Wetter für Kondensstreifen. Die Wirbel formen die mit kondensiertem Wasser aufgefüllten Abgasfahnen der vorausfliegenden Falcon zu sich scheinbar endlos ausdehnenden Korkenziehern. Immer dichter kommen sie. Dann folgt ein leichtes Schütteln und schon haben die beiden ATRA-Piloten in ihrer geräumigen Forschungsmaschine die Wirbelformation passiert.

"Getroffen – die Wirbelschleppe zeigt sich da, wo sie unser System vorhergesagt hat", freut sich Dr. Fethi Abdelmoula vom DLR-Institut für Flugsystemtechnik und zeigt begeistert auf das Display, wo immer noch der Wirbel zu sehen ist. "Mit unserem neu entwickelten System wollen wir den Piloten eine Hilfe an die Hand geben, damit sie bald nicht mehr von den oft unsichtbaren Wirbeln vorausfliegender Flugzeuge überrascht werden", erklärt der DLR-Forscher. "Dafür nutzen wir die Flugdaten der vorausfliegenden Maschinen, wie etwa Flugrichtung, Wind und Außentemperatur." Bisher sorgen Sicherheitsabstände von einigen Kilometern dafür, dass Wirbelschleppen hinter einem Flugzeug genügend Zeit haben, abzusinken, zu verdriften und sich aufzulösen, bevor die nächste Maschine etwa beim Landeanflug die Stelle erneut passiert.

Wirbelschleppen ...

... die auch Wirbelzöpfe oder Randwirbel genannt werden, sind spiralförmig gegenläufig drehende Luftverwirbelungen hinter fliegenden Flugzeugen. Ihre Intensität ist von Größe und Gewicht eines Flugzeugs abhängig. Besonders kräftig fallen die Wirbelschleppen der Jumbojets wie etwa des Airbus A380 oder der Boeing 747 aus. Hinter diesen Giganten der Lüfte müssen kleinere Maschinen einen erweiterten Sicherheitsabstand von bis zu fünfzehn Kilometern einhalten. Die Lebensdauer von Wirbelschleppen wird von Windverhältnissen und der Temperaturschichtung in der Atmosphäre beeinflusst. In der Regel sinken die Wirbel langsam ab, bevor sie sich auflösen. Wirbelschleppen rühren von der Aerodynamik der Tragflächenspitzen her. Dort treffen der Unterdruck der Tragflächenoberseite und der Überdruck der Tragflächenunterseite zusammen, was zu einem Aufrollen der Wirbel führt.

Jäger" und "Gejagte" in trauter Zweisamkeit am Boden: Die große ATRA wird später in die Wirbel der kleinen Falcon einfliegen, um das Wirbelwarnsystem zu testen

44 | DLR magazin 141 | WIRBELSCHLEPPEN WIRBELSCHLEPPEN | DLR magazin 141 | 45

Die speziellen Arbeitsplätze zur Betreuung der Flugversuche in der Flugzeugkabine bieten Zugriff auf alle wichtigen Parameter und Flugzeugdaten, ähnlich wie im Cockpit für die Piloten

Manchmal gibt es allerdings ungünstige Windverhältnisse und Temperaturschichtungen, die die Wirbel sogar aufsteigen lassen oder länger in einer Höhe stabilisieren. "Fliegt dann ein Flugzeug unerwartet hinein, kann es zu einer ungünstigen Fluglage kommen: Die Flugzeugnase senkt sich unverhofft ab oder hebt sich an. Ebenso ist es möglich, dass das Flugzeug in eine Rollbewegung hineingerät, bei der sich eine Tragfläche hebt, während sich die andere senkt. Ähnlich wie bei Turbulenzen, ist das wenig komfortabel für die Passagiere und auch das Personal, man kann leicht stürzen", sagt Abdelmoula. "Zukünftig soll unser System solche Situationen vermeiden und langfristig sogar helfen, engere Staffelungsabstände der Flugzeuge ohne Abstriche bei der Sicherheit zu ermöglichen."

Die DLR-Testpiloten bereiten sich erneut darauf vor, in eine herannahende Wirbelschleppe einzufliegen. Wieder sind die parallel gegeneinander drehenden Wirbel voraus in einem Kondensstreifen erkennbar, ebenso auf dem Vorhersagemonitor. Leicht korrigiert Pilot Berns die Flugrichtung, dann das leichte, schon vertraute Rütteln. "Wir fliegen direkt in die Wirbelschleppen hinein. So können wir die tatsächliche Position der Wirbel mit der im Vorhersagesystem vorausberechneten abgleichen", erklärt Berns, während er auf dem Display und in den Kondensstreifen am Himmel bereits nach der nächsten Möglichkeit sucht, die Wirbelschleppen zu passieren. "Zum Glück haben wir keinen

Jumbo voraus, sondern die gegenüber unserem ATRA deutlich kleinere Falcon", ergänzt Copilot Heider. "So spüren wir nur dieses leichte Schütteln in der Wirbelschleppe und können das Vorhersagesystem optimal in der Luft testen."

An Bord der vorausfliegenden Falcon merken die Piloten Philipp Weber und Roland Welser nichts von den Wirbelschleppen, die sie ihren nahen Verfolgern im ATRA hinterlassen. Der DLR-Forschungsflieger mit seinen Lufteinlässen und Spurengasdetektoren ist sonst eher im Dienste der Atmosphärenforschung unterwegs. Im Jahr 2010 hatte die Falcon als Ash Hunter die Vulkanaschewolke über Deutschland vermessen, während der gesamte Luftraum gesperrt war. Jetzt spielt sie im Dienst der DLR-Forschungsflugabteilung den passenden "Wirbelerzeuger" für ATRA. Über Sprechfunk erhalten die Testpiloten Anweisungen der Flugsicherung, auf welchem Flightlevel und in welcher Richtung das nächste Manöver geflogen werden kann. Pilot Weber hat sichtlich Freude, an der Spitze des Falcon-ATRA-Duos zu fliegen. Er schwenkt den Forschungsflieger mit der Kennung D-CMET in eine steile Linkskurve.

An einem der Monitorplätze in der Kabine des ATRA erklärt Tobias Bauer vom DLR-Institut für Flugsystemtechnik, wie weit die Entwicklungsreise des Warn- und Ausweichsystems für Wirbelschleppen noch gehen soll: "Wir arbeiten im Rahmen des DLR-Projekts Wetteroptimierter Luftverkehr an einem mehrstufigen System, das Wirbelschleppen allein aus den Positions- und Wetterdaten der Flugzeuge heraus vorhersagt und selbstständig Konflikte mit der geplanten Flugbahn erkennt. Darauf folgt eine Warnung an die Piloten und wenn möglich ein Ausweichvorschlag oder sogar ein automatisches Ausweichmanöver." Das Vorhersagesystem zeigt im Flugversuch sein Können. Konflikterkenner und Ausweichalgorithmen sind derzeit noch auf den Rechnern der Braunschweiger DLR-Forscher zu finden. "Bald wollen wir ein erweitertes System testen, das neben der Vorhersage auch Ausweichempfehlungen erzeugt", blickt Bauer nach vorn.

An insgesamt vier Tagen sind die Forscher um Ostern 2013 vom Braunschweiger Forschungsflughafen aus über Norddeutschland mit dem Warnsystem auf Erprobungsflug unterwegs. Derweil sitzt der Wirbelschleppenexperte Dr. Frank Holzäpfel an seinem Schreibtisch im DLR-Institut für Physik der Atmosphäre in Oberpfaffenhofen bei München. Er und seine Kollegen haben das Vorhersagetool entwickelt, das im neuen Wirbelschleppenwarnsystem steckt: Die Software berechnet, wie sich dahinter die Wirbelschleppen ausbreiten – ohne eine direkte Wirbelmessung zu benötigen, allein aus den Positionsdaten und Wetterinformationen der vorausfliegenden Flugzeuge. "Es gibt typische Driftund Sinkbewegungen, die eine Wirbelschleppe durchläuft, bevor sie sich langsam aufzulösen beginnt", erklärt Holzäpfel und zeichnet die schon vertraute Doppelspiralstruktur an eine Tafel neben seinem Schreibtisch. "Mit unserer Software können wir anhand der Flugzeugparameter, der vorherrschenden Windrichtung und der Umgebungstemperaturen vorausberechnen, wie die Wirbel absinken und verdriften. Mit Messungen der Turbulenz und der thermischen Schichtung können wir auch den Zerfall der Wirbel gut prognostizieren", fügt er nicht ohne Stolz hinzu, um sogleich noch eine Prognose zu wagen: "In einigen Jahren werden wir nicht mehr so konservative statische Staffelungsabstände wie heute zwischen den Flugzeugen haben. Die Wirbelschleppenprognose am Himmel wie am Boden wird ebenso sichere wie kompakte Flugstaffelungen erlauben und den Komfort der Passagiere erhöhen." Holzäpfel stellt aber auch klar: "Es wird immer wieder Wettersituationen geben, bei denen größere Abstände zwischen den Maschinen nur schwer zu umgehen sind."

Am Horizont ist bereits die nahende Abenddämmerung zu erkennen. ATRA wie Falcon setzen zu einem letzten Tandem-Manöver an. Groß und rund drehen sich zwei parallele Wirbel in den Kondensstreifen der Falcon. Den Blick vor sich auf den Bildschirm

gerichtet, sehen die Piloten, wie die Wirbel ihre digitalen Kreise ziehen. Erste Schritte zum neuen Wirbelschleppenwarnsystem gingen die Wissenschaftler bereits von 2008 bis 2011 im DLR-Projekt "Wetter und Fliegen". Darin erforschten sie zunächst das grundlegende Verhalten der Wirbelschleppen in Flugversuchen ebenso wie in numerischen Simulationen und Wasser-

Mittlerweile ist die Grundlagenforschung zur konkreten Anwendung gereift. Neben dem Wirbelschleppenwarnsystem für den fliegenden Einsatz, das federführend im DLR-Institut für Flugsystemtechnik in Braunschweig entwickelt wird, gibt es auch ein bodengebundenes System. Das am DLR-Institut für Physik der Atmosphäre entwickelte Warnsystem für den Einsatz in der Nähe von Flughäfen verwendet Messergebnisse und Kurzfristvorhersagen der meteorologischen Parameter in der Flughafenumgebung und nutzt zum Monitoring der Wirbel eine Lasermesstechnik, das sogenannte LIDAR (Light Detection And Ranging).

Nach einigen Dutzend durchflogenen Wirbelschleppen hat das neue System gezeigt: Das Prinzip funktioniert. ATRA und Falcon setzen im vorgeschriebenen Abstand zur Landung auf dem Forschungsflughafen Braunschweig an. Für ATRA ist es ein Heimspiel. Seit 2008 ist der vielseitige Forschungsflieger mit den Ausmaßen eines echten Airliners dort stationiert. Für die Falcon ist Braunschweig eine nahe liegende Station nicht weit vom Heimatflugplatz im oberbayerischen Oberpfaffenhofen. War sie doch in ihrer bisher über dreißigjährigen Dienstzeit schon beinahe auf der ganzen Welt unterwegs. Für das Frühjahr 2014 sind weitere Testflüge im Gespann Falcon-ATRA geplant. Dann wollen die Wissenschaftler das neue Wirbelschleppenwarnsystem auf Genauigkeit trimmen. "Die Tragfähigkeit des Konzepts zur Wirbelwarnung haben wir im Flugversuch erfolgreich demonstriert. Nun gilt es, die Präzision der Vorhersagen noch genauer zu untersuchen", blickt Entwickler Dr. Fethi Abdelmoula auf den nächsten Schritt. Denn je präziser das System die Wirbelschleppen vorhersagt, desto sicherer können die Piloten später einmal den unliebsamen Luftwirbeln ausweichen.

Weitere Informationen:
DLR.de/FT
DLR.de/PA

Das DLR-Projekt Wetteroptimierter Luftverkehr: WOLV

2012 mit den Basisfunktionalitäten des DLR-Warn- und Ausweichsystems für Wirbelschleppen, genannt WEAA (Wake

Unter der Leitung des DLR-Instituts für Flugsystemtechnik pen auf der Flugbahn vorhersagt, in ihrer Wirkung einschätzt und passende Ausweichmanöver vorschlägt oder nach Be-Atmosphäre hat die Software zur Wirbelschleppenvorhersage beigesteuert. Erste Flugversuche konnten 2013 zeigen, dass das Konzept zur Wirbelwarnung funktioniert. 2014 folgen Warnsystems zur Verfügung stehen.

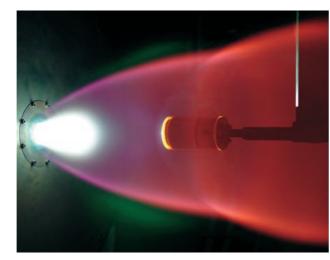
Blick aus dem ATRA-Cockpit auf die Kondensstreifen der vorausfliegenden Falcon

Piloten im Cockpit des DLR-Forschungsflugzeugs ATRA sehen auf einem Experimentaldisplay anhand der roten Markierung (Bild unten), wo sie mit Wirbelschleppen zu rechnen haben. Gezieltes Einfliegen in die Wirbel, welches sich beim Durchflug durch leichtes Rütteln des Flugzeugs bemerkbar macht, zeigt ihnen dann mit einem Blick auf den Vorhersagebildschirm: Das Warnsystem hat die Wirbel korrekt vorhergesagt.

48 | DLR MAGAZIN 141 | SERIE WINDKANÄLE | DLR MAGAZIN 141 | 49

Alles, was gut fliegen soll, muss eine bestimmte aerodynamische Form haben. Das wussten bereits die Gebrüder Wright vor dem Erstflug ihres Motorflugzeugs im Jahr 1903. Anfangs haben die amerikanischen Luftfahrtpioniere deshalb Modelle ihres Fluggeräts getestet, indem sie es auf einem Fahrrad hochhielten und kräftig in die Pedale traten – eine eher holperige Angelegenheit und nicht reproduzierbar. Schon 1872 waren Forscher in England auf eine andere Idee gekommen: Anstatt das Modell in der Luft zu bewegen, bewegten sie mittels Gebläse die Luft am fixierten Modell vorbei, eine Umkehr der Wirklichkeit: Der Windkanal war geboren.

Heute werden in Windkanälen auch Raumgleiter, Autos, Züge und selbst Hochhäuser auf Luftwiderstand und das Wirken von Kräften untersucht. Grundsätzlich werden zwei Windkanal-Arten unterschieden: Beim "Eiffel-Windkanal" erfolgt die Rückströmung der Luft über die Umgebung, meist der Halle, in der der Windkanal aufgebaut ist. Allerdings hat der Eiffel-Windkanal entscheidende Nachteile bei der Strömungsqualität, dem Energieverbrauch und der Schallabstrahlung. Beim von Ludwig Prandtl entwickelten "Göttinger Windkanal" erfolgt die Rückströmung über einen geschlossenen Kreislauf. Dies verbessert die Strömungsqualität und reduziert die Schallabstrahlung. Die meisten Windkanäle weltweit nutzen diese "Göttinger Bauart".


Heute führt beim größten Teil der europäischen Luftund Raumfahrt-Projekte kein Weg am DLR und der DLR-Tochter Deutsch-Niederländische Windkanäle (DNW) vorbei. Sie betreiben insgesamt mehr als 20 Windkanäle verschiedenster Größe und Bauart. Wie viele genau, ist gar nicht so leicht zu sagen, denn neben den großen und oft Millionen Euro teuren Windkanälen gibt es eine ganze Reihe kleiner und kleinster Anlagen, die beispielsweise in DLR_School_Labs eingesetzt werden. Die Vielzahl an Windkanälen ist notwendig, da jeder nur einen bestimmten Bereich der Wirklichkeit realistisch abbilden kann. Beispielsweise sind Niedriggeschwindigkeitskanäle für Strömungsgeschwindigkeiten bis etwa 500 Kilometer pro Stunde aussagekräftig, transsonische Windkanäle für Geschwindigkeiten nahe der Schallmauer und jenseits davon. Und Hyperschallkanäle reproduzieren Geschwindigkeiten bis zu 30.000 Kilometer pro Stunde, wie sie beispielsweise beim Wiedereintritt eines Raumfahrzeugs in die Erdatmosphäre eine Rolle spielen.

Wenn es um experimentelle Forschungsprojekte oder die Überprüfung neuer Simulations- und Messtechnik geht, werden diese vor allem in Göttingen, Braunschweig und Köln bearbeitet,

Im Verbund stärker

Die Stiftung Deutsch-Niederländische Windkanäle (DNW) wurde vom DLR und der niederländischen Partnerorganisation NLR als Non-profit-Organisation eingerichtet. Ihre Aufgabe besteht im Betrieb, im Unterhalt und in der Weiterentwicklung von zehn Windkanälen in den beiden Ländern.

Vier der Windkanäle befinden sich in Göttingen. Schwerpunkt ist hier die Forschung. Großmodelle werden in den Niederlanden getestet. So wurde dort beispielsweise die Gesamtform des Eurofighters untersucht, während in Göttingen Spezialuntersuchungen an den Triebwerkseinläufen vorgenommen wurden. Neben staatlichen Aufträgen nehmen die DNW auch Aufträge aus der Industrie an, so die Verbesserung der Aerodynamik von Lastkraftwagen. Der DNW-Verbund gilt zudem als ein Vorreiter einer gesamteuropäischen Luft- und Raumfahrtforschung auf dem Gebiet der Windkanaltechnik.

Experiment zum Wiedereintritt von Raumfahrzeugen in die Erdatmosphäre im lichtbogenbeheizten Windkanal des DLR Köln

während in dem viel größeren Large Low-Speed Facility, kurz LLF, in den Niederlanden in fortgeschrittenem Entwicklungsstadium Untersuchungen an deutlich größeren, oft das ganze Flugzeug darstellenden Modellen durchgeführt werden. Lediglich in den größten Windkanälen der Welt, wie am NASA Ames Research Center, können ganze Flugzeuge, bis hin zu einer Boeing 737, getestet werden. Dafür sind allerdings gigantische Windkanaldimensionen und Motorleistungen von sechs mal 22.500 PS notwendig. Verständlich, dass die Kosten dafür sehr hoch sind und Untersuchungen auf ein Mindestmaß beschränkt werden. In kleineren Windkanälen werden eher Detailuntersuchungen an Flugzeugen und Raumfahrzeugen, zum Beispiel an Steuerungsflächen, durchgeführt. Hier können eher mal Experimente und Theorien überprüft werden. Ein Spezialfall ist der Braunschweiger Niedergeschwindigkeits-Windkanal: Er gilt als der leistungsfähigste aeroakustische Windkanal der Welt und hilft, Lärmquellen zu erkennen und Wege zur Lärmminderung zu finden. – So hat jeder Windkanal seine Stärken auf einem bestimmten Gebiet.

Nur selten können Objekte in Originalgröße im Windkanal untersucht werden; Autos bilden hier eine Ausnahme, da sie nicht zu groß sind und sie dank der relativ niedrigen Luftgeschwindigkeiten, um die es hier geht, gut in großen Windkanälen untersucht werden können. Für Flugzeuge oder Gebäude müssen maßstabsgerechte Modelle gebaut werden. Ein Problem besteht jedoch darin, dass die Luftströmung sich bei kleinen Modellen anders verhält als bei den Objekten in ihrer tatsächlichen Größe. Hier bedienen sich die Windkanalexperten eines Tricks: Indem sie den Luftdruck erhöhen oder die Temperatur im Windkanal verringern, passen sie die Lufteigenschaften dem Maßstab des Modells an. Im Göttinger Hochdruckwindkanal beispielsweise wird die Luft auf 100 bar komprimiert, das entspricht dem Druck in 1.000 Meter Meerestiefe. So können platzsparend beispielsweise kleine Eisenbahn-Modelle im Maßstab 1:100 getestet werden.

Windkanalexperimente sind stets mit hohen Kosten verbunden. Daher werden die Versuche durch numerische Strömungssimulation am Computer (CFD, Computational Fluid Dynamics) begleitet. Zusammen mit Experimenten an "echten" Flugzeugen sind diese drei Methoden Basis jeder Flugzeugentwicklung. In der Anfangszeit der Computerära glaubten einige Entwickler, eines Tages ganz auf Windkanalexperimente verzichten zu können. Heute weiß man, aufgrund der Komplexität von Strömungen wird man auf Untersuchungen in Windkanälen in naher Zukunft nicht verzichten können.

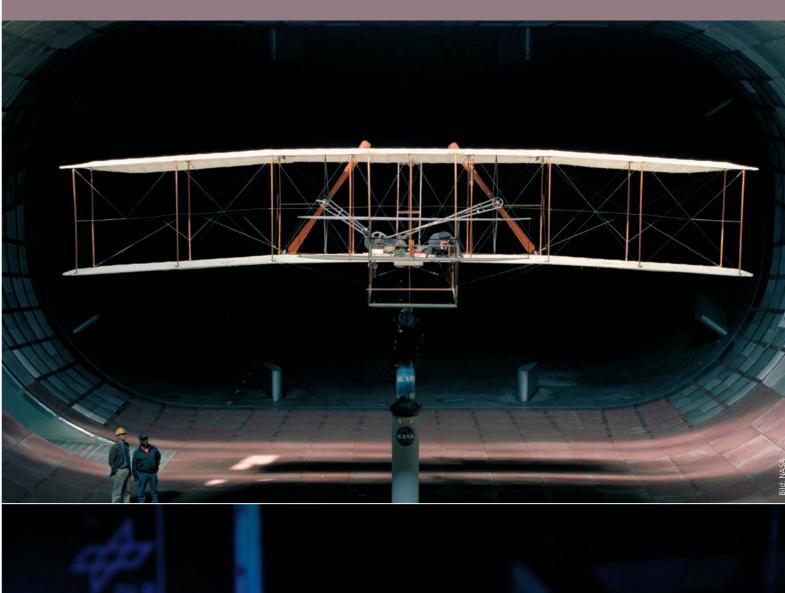


Bild oben: Einer der größten Windkanäle der Welt steht am NASA Ames Research Center. 1999 wurde ein Nachbau des Flugzeugs untersucht, mit dem die Brüder Wright 1903 zum ersten Motorflug der Welt abhoben. Bild unten: Im Seitenwindkanal Göttingen werden drucksensitive Farben an einem Zugmodell getestet

Die wesentlichen Windkanaltypen

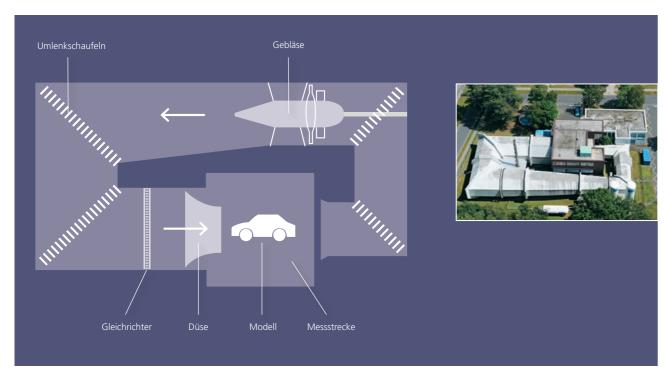
Göttinger Bauart

Bei diesem Typ handelt es sich um einen Kanal mit geschlossener Luftrückführung. Das Axialgebläse fördert die Luft im geschlossenen Kreislauf. Man benötigt dafür eine relativ aufwändige Kanalröhre, die rechteckig angeordnet ist und besonders in der Rückführung relativ große Strömungsquerschnitte erfordert. Die komplizierte Konstruktion, der enorme Platzaufwand und die hohen Baukosten sind die Nachteile gegenüber der offenen Bauart ohne Rückführung.

Da die vom Gebläse erzeugte Luftströmung nach einem Umlauf wieder zum Gebläse gelangt, hat dieser Kanaltyp nur geringe Energieverluste und erlaubt hohe Windgeschwindigkeiten. Da vom Gebläse nur die entstehenden Strömungsverluste wieder aufgebracht werden müssen, ist die Antriebsleistung entsprechend geringer als bei der offenen Bauart ohne Rückführung. Das hält die Betriebskosten niedrig. Denn zum einen ist es der geringere Energieverbrauch selbst, der sich hier auswirkt, zum anderen sind es die geringeren Stromanschlusskosten, die bei größeren Windkanälen zu Buche schlagen. Die Investitionen für die Antriebseinheit sind geringer, für die Röhre des Kanals jedoch wesentlich höher als bei der Eiffelbauart.

Ein weiterer Kostenfaktor ist die Tatsache, dass Windkanäle gekühlt werden müssen: Bis zu 100 Grad werden die Wände heiß – wohlgemerkt: trotz Kühlung. Grund dafür ist, dass die gesamte in den Windkanal hineingesteckte Energie in Wärme umgewandelt wird. Durch den Strömungswiderstand der Luft entsteht Reibung, die Wärme produziert. Diese muss durch eine Kühlung abgeführt werden.

Für klimatisierte Windkanäle kommt wegen der Energiekosten nur eine Bauart mit Rückführung in Betracht; Klimakanäle wurden bisher ebenfalls nur in der Göttinger Bauweise ausgeführt. Die geschlossene Messstrecke hat im Gegensatz zur offenen Bauart den Vorteil, dass in ihr der Druck je nach Bedarf verändert werden kann


Eiffeltyp

Das Hauptmerkmal des Eiffelkanals besteht darin, dass er die Versuchsluft aus der Umgebung ansaugt und sie wiederum ins Freie ausbläst. Man unterscheidet hier zwei Ausführungen, je nach Lage des Gebläses in der Kanalröhre. In dem einen Fall ist das Gebläse hinter der Messstrecke (blast type) angebracht, im anderen Fall vor der Messstrecke (blow type). Die Messstrecke kann als geschlossene oder als offene (Freistrahlmessstrecke) ausgeführt werden. Am einfachsten ist eine Messstrecke aufzubauen, deren leicht divergierende Wände allseitig geschlossen sind. Bei etwas höherem Bauaufwand ist auch eine offene Bauweise möglich. Hierbei ist aber eine druckdichte Ummantelung nötig, da in der Messstrecke eines Eiffelkanals stets Unterdruck herrscht.

Dieser im Freien aufgestellte Kanaltyp, also ein Kanal ohne Rückführung, hat den wesentlichen Nachteil, dass der Messbetrieb vom Wetter abhängig ist. Er ist deshalb nur in Ländern mit gemäßigtem Klima brauchbar.

Weitere Informationen:

So funktioniert ein Windkanal Göttinger Bauart: Ein Gebläse beschleunigt die Luft, die in einem geschlossenen Kreislauf um das zu untersuchende Modell geführt wird. Umlenkschaufeln und Gleichrichter sorgen für eine möglichst gleichmäßige Strömung. Eine Düse reguliert die Geschwindigkeit, mit der die Luft auf das Modell trifft. Die Konstruktion ist auf dem Luftbild des Kryokanals Köln (KKK) gut erkennbar.

So wichtig wie eh und je

Interview mit Professor Georg Eitelberg, Direktor der Deutsch-Niederländischen Windkanäle

Windkanäle sind im Unterhalt teuer. Brauchen wir sie unbedingt?

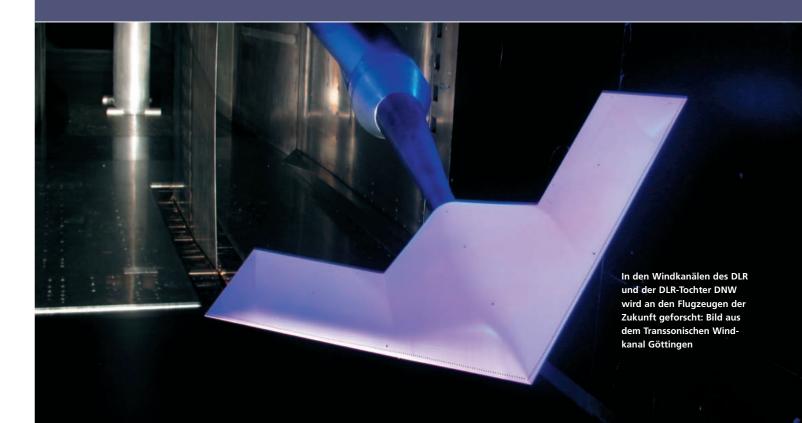

Teuer ist ein relativer Begriff; Windkanäle zu nutzen, ist günstiger, als Flugzeuge als Versuchsträger einzusetzen. Im Allgemeinen bindet die experimentelle Forschung natürlich mehr Ressourcen als theoretisches Einzelgängertum, weil man für ein kompliziertes Experiment stets mehrere Fachrichtungen miteinander verbinden muss. Daher die sichtbaren Kosten. Aber die fallen überall an, wo man auf technisch-wissenschaftliche Infrastruktur angewiesen ist, auch bei großen Rechenzentren übrigens. Wir brauchen Windkanäle so lange, bis die rechnerischen Methoden die absolute Sicherheit in Sachen Aerodynamik künftiger Flugzeugentwicklungen bieten. Bisher ist dies nicht der Fall. Auch die kompliziertesten Rechenverfahren machen Gebrauch von der Modellbildung; diese Modelle müssen experimentell verifiziert werden.

Warum werden so viele unterschiedliche Windkanäle benötigt?

Weil ein Windkanal immer für nur einen beschränkten Bereich des Fluges eine gute experimentelle Simulation bietet. Auch hier ist die Spezialisierung die Basis des Fortschritts. Auch für die Variation von Aufwand und Detaillierungsgrad, die notwendig ist, um die wissenschaftliche Fragestellung ausreichend zu beantworten, brauchen wir die verschiedenen Windkanäle.

In den Siebziger- und Achtzigerjahren glaubten manche, Supercomputer könnten eines Tages Windkanalexperimente komplett ersetzen. Was ist aus dieser Vorstellung geworden?

Dies glauben immer noch manche. Der Leiter vom DLR-Institut für Aerodynamik und Strömungstechnik, Prof. Andreas Dillmann, hat ausgerechnet, dass es noch circa zwei Generationen dauern wird, bis wir annähernd so weit sind. Allerdings haben die Rechner die Art der Windkanalnutzung jetzt schon verändert.


Prof. Dr.-Ing. Georg Eitelberg

Windkanäle sind teilweise seit Jahrzehnten in Betrieb – was in der schnell getakteten Wissenschaft überrascht ...

Mag sein. Einerseits ist die immerwährende Nutzung zurückzuführen auf die gestiegenen Anforderungen der Luftfahrtforschung, anderseits spielt hier auch die Weiterentwicklung der Messtechniken und Datenakquisition eine wichtige Rolle. Was in der Tat konstant geblieben ist, ist, dass die Flugzeugmodelle immer noch von Luft umströmt werden.

Welche Rolle werden Windkanäle neben Supercomputern und Flugexperimenten in Zukunft spielen?

Sie wird die gleiche sein wie heute, zwischen Supercomputern und Flugversuchen. Aber nicht alle Windkanäle werden diese Stellung auch einnehmen können. Nur die, die eine ausreichende Qualität bei der Verifizierung der aerodynamischen und aeroakustischen Modellbildung gewährleisten oder diejenigen, die eine Qualifizierung zur Simulation der Flugeigenschaften der Flugzeugentwürfe mitbringen, werden gebraucht.

"X-Stoffe" ein Ziel, das verbindet

Wie kommen eigentlich Forschungsprojekte zustande? Oft sind es Folgeprojekte, weil sich in einem bereits bearbeiteten Thema neue Fragen ergeben. Bekanntes weiterzuentwickeln, ist eine wichtige Vorgehensweise der Forschung. Verkehrsund Energieforscher im DLR haben nun ganz anders gedacht und gezielt gefragt: Gibt es Themen, zu denen wir alle mit unserem Fachwissen beitragen können, um die Forschung zu wichtigen Fragen, wie zur Energiewende oder zur Mobilität der Zukunft, voranzubringen? Entstanden ist daraus das Metaprojekt "X-Stoffe". Wissenschaftlerinnen und Wissenschaftler verschiedener Institute aus allen DLR-Forschungsbereichen arbeiten dabei an flüssigen Kohlenwasserstoffen. Diese sind Treibstoffe und Energieträger für eine sichere Energieversorgung und für die Mobilität von morgen, am Boden, in der Luft und sogar im All. Der Vorteil des interdisziplinären Projekts: Die Forscher gehen mit ähnlichen Methoden, aber unterschiedlichen Blickwinkeln an die Themen heran und kommen so schneller ans Ziel.

DLR startet Metaprojekt zu neuen und besseren chemischen Energieträgern

Von Dorothee Bürkle

Quartalstreffen, im März 2012. Die Institutsleiter der DLR-Verkehrs- und Energieinstitute sitzen bei einer ungewöhnlichen Aufgabe zusammen: Sie suchen nach Forschungsthemen. Nicht, dass sie davon nicht bereits genügend hätten oder dass es an Ideen mangeln würde. Sie überlegen vielmehr, zu welchen gemeinsamen Themen jeder Einzelne mit dem Fachwissen seines Instituts viel beitragen kann. Das Resultat soll mehr sein als die Summe aller Einzelteile. Und es soll Lösungen anbieten für Probleme, die uns unter den Nägeln brennen.

Mehrere Themen stehen zur Auswahl, aber schnell wird klar, zum Thema "flüssige Kohlenwasserstoffe als Energieträger für eine emissionsarme Mobilität" können viele DLR-Forschungsinstitute – auch aus den Bereichen Luft- und Raumfahrt – wichtige Beiträge leisten. Chemische Energieträger haben ganz unterschiedliche Bezeichnungen: Energieforscher sprechen von Brennstoffen, Verkehrsforscher von Kraftstoffen und die Luft- und Raumfahrer von Treibstoffen. Deshalb hat Prof. Dr. Manfred Aigner, Leiter des Instituts für Verbrennungstechnik, das Thema unter der Bezeichnung "X-Stoffe" vorgeschlagen. Er hatte es

zuvor schon ein paar Monate in seinem Kopf hin und her gewälzt und erinnert sich: "Erst als die Kollegen über die Idee lebhaft diskutierten, hatte ich das Gefühl, dass ein solches Projekt etwas werden könnte." Angetrieben zu diesem Metaprojekt haben Manfred Aigner zwei Herausforderungen: "Was können DLR-Forscher zur Energiewende beitragen? Und was kann mein Institut tun, damit Fliegen nachhaltiger wird und in Zukunft bezahlbar bleibt?"

Für Aigner steht fest: Durch ihre hohe Energiedichte werden chemische Energieträger zukünftig für unsere Mobilität am Boden und in der Luft und auch für eine sichere Energieversorgung eine große Bedeutung haben. Das gemeinsame Ziel der Forschung an den X-Stoffen sind möglichst klimaneutral hergestellte Treibstoffe, die schadstoffarm verbrennen. Noch steht das Projekt ganz am Anfang und wird derzeit von Prof. Dr. Uwe Riedel, dem Leiter der Abteilung Chemische Kinetik des Instituts für Verbrennungstechnik, in allen vier DLR-Forschungsbereichen vorangebracht.

Prof. Dr. Manfred Aigner:
Wir können hier voneinander lernen

Nichts schlägt die Energiedichte von Kohlenwasserstoffen

54 | DLR MAGAZIN 141 | ENERGIE

Luftfahrt: In der Luftfahrt konzentriert sich das Metaprojekt auf sogenannte Designer-Treibstoffe, als mittel- und langfristigen Ersatz für Kerosin auf Rohölbasis. "Auch auf diesem Gebiet haben wir in den vergangenen Jahren mit verschiedenen Luftfahrtinstituten schon mehrere gemeinsame Forschungsprojekte erfolgreich durchgeführt und können auf viel Erfahrung zurückgreifen", sagt Riedel. Die Erwartungen an die Treibstoffe in der Luftfahrt sind groß: Sie müssen extremen Anforderungen standhalten und werden auf Herz und Nieren geprüft, bevor sie eingeführt werden.

Raumfahrt: Auch in der Raumfahrt stießen die Forscher auf eine hochaktuelle Fragestellung zu ihrem Thema: Satelliten verfeuern für Bahnkorrekturen und Lageregelung derzeit den hochgiftigen Treibstoff Hydrazin, dessen Nutzung die EU auf lange Sicht einschränken will. Auch hier können, so Riedel, flüssige Kohlenwasserstoffe eingesetzt werden. Gemeinsam mit dem DLR-Institut für Raumfahrtantriebe wollen die Forscher Treibstoffe für Satelliten entwickeln und ihre Verbrennungseigenschaften in den Prüfständen für Raketentriebwerke in Lampoldshausen testen.

Verkehr: "Nichts schlägt die Energiedichte von flüssigen Kohlenwasserstoffen", sagt Riedel. Und genau das ist im Verkehr gefragt, wo es darauf ankommt, mit einem möglichst kleinen Tank eine hohe Reichweite zu haben. Hier sieht der Forscher für langkettige Alkohole, zum Beispiel Butanol, gute Anwendungs-

möglichkeiten. "Langkettige Alkohole haben eine höhere Energiedichte als Ethanol im derzeit verwendeten Ethanol E10 und wirken weniger korrosiv." Ein weiterer Vorteil: Bio-Butanol wird nicht aus Ackerpflanzen wie Mais hergestellt, sondern kann aus Biomasse-Abfallprodukten produziert werden. Untersuchen wollen die Forscher nun, ob die Verbrennung von langkettigen Alkoholen in konventionellen Motoren möglich ist.

Energie: Für eine stabile Energieversorgung sind Speicher gefragt, die Solar- und Windstrom in Überschusszeiten zum Beispiel in chemischen Energieträgern speichern können. Hier kann Riedel auf laufende Projekte aufbauen: In einem durch das Helmholtz-Energieforschungsprogramm geförderten Projekt werden am Institut für Verbrennungstechnik synthetische flüssige Kohlenwasserstoffe entwickelt. Der Vorteil: Die flüssigen Kohlenwasserstoffe sind wahre Alleskönner. Sie haben eine hohe Energiedichte und sind – wichtig im Verkehrs- und Luftfahrtbereich – leicht zu handhaben. Zudem können diese Brennstoffe extrem schadstoffarm verbrennen.

Synergieeffekte durch ähnliche Methoden

Warum glauben Aigner und Riedel, dass sie die verschiedenen Treibstoffe und Energieträger in einem Metaprojekt besser und schneller entwickeln können? – "Die Methoden und Werkzeuge, die wir für die verschiedenen Forschungsansätze brauchen, gleichen sich. Zum Beispiel brauchen wir für die

Diagnose der Flammen bei der Verbrennung die gleichen Anlagen. Außerdem simulieren und modellieren Forscher bei der Entwicklung von neuen Treibstoffen ihre Verbrennung zunächst am Computer. Auch hier können wir fachübergreifend mit gleichen oder ähnlichen Computerprogrammen arbeiten", erläutert Manfred Aigner. Auch Uwe Riedel sieht große Chancen in dem interdisziplinären Projekt: "Wir können hier voneinander lernen und unsere bisher erarbeiteten Erfahrungen austauschen. Wir kommen so weiter, als wenn jeder in seinen eigenen Denkansätzen haften bleibt."

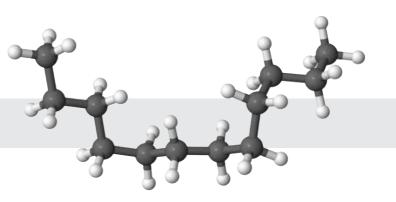
Mehr Ideen, mehr Mittel, aber auch mehr Überzeugungsarbeit

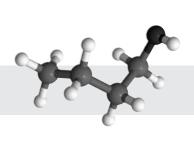
Im DLR hat sich eine gewisse Vielfalt entwickelt, sagt Manfred Aigner. Mit dem Metaprojekt wollen er und Riedel die Expertise, die in den verschiedenen Bereichen entstanden ist, zusammenführen. Ein wichtiger Vorteil: So stehen Ideen, Fachwissen und Mittel aus unterschiedlichen Forschungsbereichen zur Verfügung. "Allerdings wissen die beiden Forscher aus Erfahrung, dass die Herangehensweise an Forschungsprojekte in den verschiedenen Bereichen im DLR unterschiedlich ist. In der Vergangenheit haben sie bereits mehrere Projekte aus den Bereichen Luftfahrt und Energie erfolgreich durchgeführt. "Die Herausforderung ist nun, dass wir nicht nur mit zwei, sondern mit vier Bereichen sprechen müssen, die jeweils eine unterschiedliche Fachsprache und Herangehensweise haben." Diese Erfahrung hat auch Riedel gemacht: "Wir müssen einander sehr gut zuhö-

ren, damit wir die Arbeitsabläufe und die Expertise der anderen Fachbereiche verstehen und einordnen können." Außerdem müssen Riedel und Aigner überzeugen können, schließlich sollen alle bereit sein, Forschungsgelder in das Gemeinschaftsprojekt zu stecken. Auch wenn die Gespräche nicht immer einfach verlaufen, ist Aigner davon überzeugt, dass ein solches Projekt für alle ein Gewinn ist: "Letzten Endes sind unsere Mittel so äußerst effizient eingesetzt und wir stärken mit solchen Projekten die Wettbewerbsfähigkeit des DLR."

Faible für Verknüpfungen

"Ich denke, dass ich mich für den Überblick interessiere und versuche, aus den unterschiedlichen Bereichen Synergieeffekte herzustellen", sagt Aigner und liefert damit eine mögliche Erklärung, warum er es ist, der ein solches Projekt in
Angriff nimmt. Den Blick über den Tellerrand des DLR hinaus
hat der 59-jährige Ingenieur auch als Sprecher des HelmholtzProgramms für Energieeffizienz. "Ich freue mich, dass das
Projekt so weit gekommen ist und glaube, dass wir es zum
Erfolg bringen werden. Damit können wir einen effektiven,
effizienten und eleganten Beitrag zu derzeit wichtigen Fragen
leisten."


Weitere Informationen: DLR.de/VT


Zuverlässigkeit, Betriebssicherheit und niedrige Gefriertemperatur: Langfristig kann fossiles Kerosin durch Designer-Treibstoffe teilweise oder ganz ersetzt werden. Die synthetischen Kerosine müssen dabei den enorm hohen Anforderungen der Luftfahrt gerecht werden.

Raumfahrt mit grünem Treibstoff: Lachgas/Kohlenwasserstoff-Mischungen haben einen hohen spezifischen Impuls und sind eine mögliche Alternative zum hochgiftigen Hydrazin

Speichermöglichkeit bei überschüssigem Strom aus erneuerbaren Quellen: Flüssige Kohlenwasserstoffe können ohne Kohlendioxid-Emissionen hergestellt werden und sind einfach in der Handhabung

s.DLR.de/moc3

Sichere Handhabung, eine hohe Energiedichte und damit eine hohe Reichweite: Langkettige Alkohole sind optimale Energieträger für den Verkehrsbereich

Im Reich der Spinne

Manchmal fügen sich die Dinge leicht. Der argentinische Performance- und Installationskünstler Tomás Saraceno nimmt Spinnen zum Vorbild für ein Netzwerk, das uns fast in die Schwerelosigkeit zu führen scheint. Gleichzeitig lernen wir dabei von einem Astronauten, von Raketen, aber auch von einem Ball und von einer Feder etwas über die Schwerkraft. Das DLR-Magazin war mit ESA-Astronaut Reinhold Ewald zu Gast in einem Kunstwerk, in der Welt der Opuntienspinnen – und "in orbit".

Das Düsseldorfer Kunstmuseum K21 zeigt noch bis Ende des Jahres die Rauminstallation "in orbit"

Von Peter Zarth

Als wir vor dem Düsseldorfer Kunstmuseum K21 auf Gäste für ein ungewöhnliches Experiment warten, sind wir zu früh. Die Türen sind noch verschlossen. Eine Vogelfeder kommt wie aus dem Nichts angeflogen und schwebt zu Boden. Genau genommen fällt sie ja. Die Schwerkraft, die sie zur Erde zieht, ist kaum messbar, jeder kann leicht gegen die Gravitation "anarbeiten", wie dies später ESA-Astronaut Reinhold Ewald nennen wird. Ein Kind kann das, wenn es beispielsweise einen Ball in die Luft wirft. Heute geht nicht einmal ein leichter Wind, der diese Feder hinwegpusten könnte; sie spiegelt sich in den Scheiben des K21. Drinnen wollen wir mit Reinhold Ewald "in orbit" gehen: So nennt der Künstler Tomás Saraceno seine grandiose Rauminstallation

Doch blicken wir zunächst einmal zurück.

Mit Sojus TM 25 zur MIR

Mehr als 17 Jahre früher. 10. Februar 1997, 14:09:30 Uhr UTC: Sieben Tonnen an Masse werden durch einen 51 Meter hohen Träger, der 313 Tonnen wiegt, auf einem Feuerstrahl vom Boden gehoben. An Bord des kleineren Teils dieses technischen Kunstwerks befinden sich drei Menschen. Das Ziel ist 350 Kilometer entfernt. Es liegt außerhalb der Erdatmosphäre. Für Reinhold Ewald sind sechs Jahre Vorbereitungszeit vergangen, um nun mit Sojus TM 25 zur Mission MIR '97 ins All zu starten. Es ist alles andere als leicht, die Schwerkraft zu überwinden, wenn man in einer Raumstation die Erde umkreisen, also in einen Orbit will. Das ist eine Meisterleistung menschlich-technischen Könnens.

Funkelnd wie das All

Die Raumstation MIR ist lange schon verglüht. Heute nimmt der nun im Düsseldorfer Kunstmuseum K21 eingetroffene Reinhold Ewald den Fahrstuhl, um "in orbit" zu gelangen. Den Aufzugknopf drückt eine junge Frau in weißem Overall, die Türen schließen sich. Wieder muss "gegen die Schwerkraft angearbeitet" werden. Drei Stockwerke Fahrt nach oben. Die Türen öffnen sich. Der Astronaut geht eine Galerie entlang und kommt zu einem Wanddurchbruch. Ein schwarzer Vorhang wird beiseitegeschoben. Ewald tritt in den Raum ein. Der Raum ist schwarz wie das All. Darin sind zwei Objekte. Ruhig, funkelnd, hell. Wie Sterne. Der Physiker Dr. Ewald ist im Kosmos der Opuntienspinne.

Die Lebenswelt der Opuntienspinne als Kunstinspiration

Diese Spinne ist klein und giftig. Sie stammt aus einer israelischen Bananenplantage, frisst Fliegen und baut Netze von großer Schönheit. Die Cyrtophora citricola, so ihr wissenschaftlicher Name, ist schwindelfrei. Ihre Netze sind vorbildlich, im Wortsinn, und architektonische Meisterwerke. Den Astronauten erinnern ihre Gewebe an die Luftstrukturen im Film "Avatar". Würde ein Mensch auf einem – im Maßstab angepassten – Nachbau solcher Netze balancieren, er müsste sich in einem Gespinst von wohl mehreren hundert Metern Umfang zurechtfinden, das sehr hoch in die Luft reichte.

Durch dick und dünn im All

Vierzig Jahre früher, am 8. August 1973, schüttelt Owen Garriott "Anita"; am 29. August 1973 macht er das mit "Arabella". Genau: Er entlässt zwei europäische Kreuzspinnen mit diesen Namen in einen Spezialbehälter. Diese Box schwebt 435 Kilometer über der Erde in einem Orbit an Bord der Raumstation Skylab. Dort wird untersucht, wie Spinnen ihr Netz in Schwerelosigkeit bauen. Zur Internationalen Raumstation fliegen per Spaceshuttle Jahrzehnte später Goldene Seidenspinnen für weitere Experimente. In der Mikrogravitation beginnen die Tiere schnell mit ihrem Netzbau. Sie blicken aber nicht, wie auf der Erde, in ihren Geweben

Ewald und seine Frau erleben die Leichtigkeit des Seins

nach unten; ein "Unten" gibt es im Skylab und auf der ISS nicht. Spinnen sitzen im orbitalen Netz an beliebigen Stellen. Der wesentliche Unterschied zur Erde ist ein anderer: Sie bauen deutlich symmetrischer, feiner, vor allem: Mal weben sie dünnere, mal dickere Fäden. Das ist auf der Erde die Ausnahme.

Dem Künstler Tomás Saraceno ist die Opuntienspinne Vorbild für seine Installation "in orbit" im Düsseldorfer K21. Ein Kletternetz aus Materialien, die in den Alpen gegen Steinschlag genutzt werden, überspannt im Dach des K21 eine Piazza. Die Piazza liegt 28 Meter tiefer. Bezogen auf die Maßstäbe eines Netzes der Opuntienspinne und deren Größe ist das wenig. Aber sind Sie schon einmal in fünf Stockwerken Höhe auf einem filigranen Nichts über die Leere gelaufen?

Im Kunstwerk

Das Gehen auf diesem Nichts fühlt sich an wie Sand, sagt Reinhold Ewald, der jetzt mit einer kleinen Gruppe in dem Geflecht ist. Die junge Julia wird später auf einer Insel aus weißen Kissen sagen: "Ich bin noch nie vom Zehnmeterturm gesprungen, und heute liege ich hier ... in 28 Meter Höhe! "Frau Ewald wird, nach kurzem Zögern, mutig die gesamte Netzstruktur durchmessen und irgendwann ihren Mann lachend mit solchen Kissen bewerfen. Die sind locker verteilt und laden zur Muße auf Wolkenstrukturen ein. "In orbit" strengt nämlich an: "Jede Bewegung eines anderen überträgt sich auf das Netz. Das muss man permanent ausgleichen", sagt sie.

Kunstvoll ist das. Was aber ist das für Kunst? Oder ist es Design? Reinhold Ewald stellt die Frage rhetorisch. Lorin, ein junger Mann, der selbst Skulpturen aus Sandstein haut, sagt: "Normalerweise geht man im Museum um ein Kunstwerk herum und schaut es an. Hier ist man im Kunstwerk selbst und blickt aus ihm heraus." Ewald beschreibt das Gefühl "in orbit": "Ich gehe wie auf Sand, aber es ist, als gehe es nur aufwärts; oder als ginge ich auf einer Hängebrücke über die Via Mala-Schlucht." Die geschlossene Netzoberfläche der Rauminstallation erinnert ihn an mathematisch-topologische Strukturen. Im British Museum sei er angetan davon gewesen, wie ein Künstler Gleichungslösungen in Glas geblasen und damit dreidimensional dargestellt habe: "Dieser 'orbit' hier ist futuristisch, hat hohe ästhetische Qualität und erweitert in der Tat meine Raumerfahrung. Die Anlehnung an die Lebenswelt einer Spinne trägt zu einer kreativen Schöpfung bei."

Wolkenzauber

Für die Gruppe scheint sich sogar die Zeit zu verlangsamen. Irgendwann liegen die jungen Leute im (N)Irgendwo auf Kisseninseln und tun gar nichts. Große, spiegelnde Kugeln schaffen ein fast poetisches Gefühl von Wolkenzauber. Reinhold Ewald hat die gesamte Fläche abgeschritten und hängt sich, gelassen wie ein Faultier, mit dem Kopf nach unten in Maschen, die an eine Reuse erinnern. Seine Frau steht hoch oben unter dem Glasdach des K21. Man meint, dass sie nie etwas anderes tun würde, als in mehr als 30 Meter Höhe auf einem fragil wirkenden Netz über dem Abgrund das Sonnenlicht zu genießen. In die Tiefe schaut die Gruppe selten. Dort wirken die Menschen klein. Hier oben ist Anspannung schon lange einem Lächeln gewichen.

"in orbit"? – "Exorbitant!"

Zehn bis zwanzig Minuten Zeit haben Besucher für einen Aufenthalt "in orbit". Der Andrang auf das K21 ist groß, der Zugang wird kontingentiert. Als die Gruppe die Installation verlässt, sagt der Pressesprecher der Kunstsammlung Nordrhein-Westfalen: "Auch wir haben einen Shuttle" – er meint einen Pendelbus. Damit lädt er ins nicht allzu weit entfernte K20 ein, in die Sammlung klassischer Moderne der Kunstsammlung Nordrhein-Westfalen. Dort schließt sich ein Kreis: Reinhold Ewald berichtet, wie das ist. alleine im Orbit. Er spricht jetzt vom Weltraum. Durch das Visier des Helms könne man wegen des engen Gesichtsfelds wenig sehen, aber: "...vielleicht die Erde zur Rechten, den Mond zur Linken". Ewald steht vor einem Werk von Yves Klein, als er diese Episode erzählt. "Der Blick in den Kosmos hat die Samtigkeit dieses Bildes. Der Kosmos ist aber aus schwarzem Samt, nicht

Irgendwann geht die Gruppe unserer Gäste auseinander. Der junge Mann bringt den Eindruck der Rauminstallation "in orbit" auf den Punkt: "Exorbitant!" Der Luftdruck, der bei seinem Ausruf entsteht, könnte tatsächlich die Vogelfeder, die noch immer vor den Fenstern des K21 liegt, wieder in die Schwebe bringen. Scheinbar so leicht bewegen sich auch die Opuntienspinnen und bauen dabei wundersame Netze ... •

Weitere Informationen: http://bit.ly/KBAEEF

Die Kunstsammlung Nordrhein-Westfalen

1961 erwarb das Land Nordrhein-Westfalen 88 Werke Paul Klees, die das Fundament der Museumssammlung bilden. Gründungsdirektor Werner Schmalenbach baute eine Sammlung der klassischen Moderne auf und schuf damit die einzige auf moderne Kunst spezialisierte Landessammlung in Deutschland. Direktor Armin Zweite erweiterte die Kunstsammlung Nordrhein-Westfalen um Werke der Gegenwartskunst sowie plastische Arbeiten. Seit September 2009 ist Marion Ackermann Direktorin der Kunstsammlung. Der Bau der Kunstsammlung K20 am Düsseldorfer Grabbeplatz feierte 1986 Eröffnung.

Als zweites Standbein der Kunstsammlung wurde 2002 das Ständehaus am Kaiserteich, bis 1988 Sitz des nordrhein-westfälischen Landtags, für die moderne Kunst als K21 eröffnet. Das Schmela Haus bereichert als Dependance in der Düsseldorfer Mutter-Ey-Straße 3 das Gebäudeensemble der Landessammlung. Für die Kunstsammlung als experimentelle Probebühne konzipiert, reagiert der Ort mit einem lebendigen Programm auf aktuelle Kunstentwicklungen.

K20

Grabbeplatz 5 40213 Düsseldorf K21

Ständehausstraße 1 40217 Düsseldorf

Öffnungszeiten

Di bis Fr: 10 – 18 Uhr, Sa, So und an Feiertagen: 11 – 18 Uhr, Mo geschlossen

Eintritt: Erwachsene K20 oder K21 Kombiticket K20/K21 21,00 Euro 12,00 Euro 16,00 Euro 9,50 Euro

Ermäßigt: Kinder und Jugendl. 6 bis 18 Jahre:

2,50 Euro

4,00 Euro

Weitere Infos: www.kunstsammlung.de

F3 Schmela Haus röffnungszeiten zu Veranstaltungen **KPMG-Kunstabend** Jeden 1. Mittwoch im Monat: 18 bis 22 Uhr

Rezensionen

Monumental und bizarr

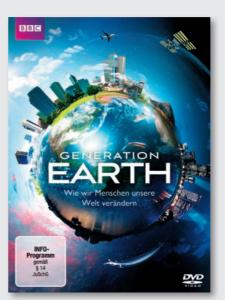
Die ganz spezielle Schönheit russischer Raumfahrtarchitektur

Bloß nicht vor dem sperrigen Titel in die Knie gehen: Architektur für die russische Raumfahrt. Vom Konstruktivismus zur Kosmonautik: Pläne, Projekte und Bauten (DOM publishers). Nicht zurückschrecken, sondern lieber den dicken, von einer Pergamenthülle geschützten Einband aufschlagen und entdecken, dass Raumfahrt und die damit verbundenen Städte, Montagehallen und Raumstationen eine ganz eigene Schönheit besitzen. Herausgeber Philipp Meuser verzichtet dabei auf Altbewährtes wie Aufnahmen von der Erdkugel oder von schwebenden Astronauten. Stattdessen schwelgt er im nostalgischen Charme russischer Architektur an Weltraumbahnhöfen und Museen, der Ästhetik im Inneren von Landekapseln oder der stilisierten Aufmachung von Emblemen, Postern und Briefmarken

In den Kapiteln Raumtheorie und Architekturgeschichte, Pioniere und Zeitzeugen, Weltraumstation Erde sowie Fundstücke und Archivalien hat er Geschichten versammelt, die dem Besonderen Raum geben. Zum Beispiel die Geschichte von Galina Balaschowa, die als Architektin die Inneneinrichtung von Raumstationen und Landekapseln entworfen hat. Bis ins letzte Detail sorgfältig handgemalte Entwürfe zeigen großformatig, wie die Kosmonauten der Anfangszeiten ins All fliegen sollten. Passende Materialien, zarte Farben, ein Unten und Oben, damit die Kosmonauten ihre Orientierung behielten, all das hat Balaschowa bei ihren Visionen für den Weltraum berücksichtigt. Ein anderes Beispiel: Architekt Viktor Asse berichtet selbst über seine Ideen, wie Swosdny Gorodok, die "Stadt der Sterne" für die Kosmonautenausbildung, aussehen sollte. Und wie die Militärs irgendwann dann doch befanden, dass sie die Pläne des Architekten einfach

nach Belieben abändern konnten. "Es war kaum möglich, alle diese Baukatastrophen zu verhindern", bedauert Asse. Die historischen und aktuellen Aufnahmen zeigen dann aber: Den Charme des Sternenstädtchens zwischen Kunst, Architektur, funktionalen Trainingshallen und Technik für den Weltraum gibt es doch.

Dabei will der dicke Wälzer zu keiner Zeit ein reines Nachschlagewerk sein, keine Enzyklopädie mit Text und Fotos. Gerade die abwegigen Fotos, der ungewöhnliche Blickwinkel und die Themen am Rande rücken in den Mittelpunkt. Ausgemusterte Raumfahrtanzüge auf Regalbrettern übereinander angeordnet, die mickrige Topfpflanze, die in der Trainingshalle ihr Dasein fristet, oder auch ein aus Kabeln und Lämpchen bestehendes Schaubild im Museum von Baikonur gehören dazu. 411 Seiten dick ist das Werk, das seine Nische irgendwo zwischen Bildband und Erzählband findet. Für den Beginn und zur Einstimmung reicht das Durchblättern und Betrachten der vielen Fotos – für den Text dazu sollte und muss man sich mehr Zeit nehmen, da nicht alle Beiträge sehr leicht zugänglich geschrieben sind.


Manuela Braun

Der Rückstoß des eingestrichenen Fis'

Wer in Klängen denkt, kommt der Schwerelosigkeit ausgesprochen nahe. Manchmal, im Hörspiel. Sicher, in der Poesie. In ihrem ausgezeichneten (Hörspiel des Monats) Feature Radio Élysée – Aus Geschichte und Zukunft zweier Raumfahrernationen im Überblick aus 384 Metern über Normalnull schaffen die Saarbrücker Autorin, Performerin und Regisseurin Katharina Bihler und der Komponist Stefan Scheib eine Neue Welt. Aus Anlass des 50. Jahrestags des Élyséevertrags hatten sie sich in Gedanken in die Schwerelosigkeit begeben: Durch eine Recherche über das Parabelfliegen in Bordeaux. Voller Erfindungsgeist, Poesie und mit Esprit (er)schufen sie eine Geschichte der deutsch-französischen Freundschaft, bei der man fast im Minutentakt die Frage stellt: Ist das nun wirklich? Oder haben "die" das erfunden? Oder: Gibt es Sternschnuppenkommunikation? Hm. Eine geisteswissenschaftliche Abteilung der ESA? Kann der Rückstoß eines eingestrichenen Fis' einen Astronauten/Posaunisten auf der Internationalen Raumstation ISS tatsächlich sieben Meter weit ins japanische Modul befördern?

Vergnüglicher jedenfalls sind wir selten durchs All gereist – und das "in ... 384 Metern über Normalnull". Das DLR freut sich, die Autoren bei der Produktion unterstützt zu haben. Weitere Informationen und Bezugsguelle: www.liquidpenguin.de

Großbaustelle Erde

Die Fakten sind beeindruckend: Vier Millionen Quadratkilometer der Erdoberfläche sind mittlerweile versiegelt. Die Hälfte der Erdbevölkerung lebt auf gerade einmal einem Prozent der Erdoberfläche. In Hongkong leben drei Millionen Menschen oberhalb des 14. Stockwerks – mehr als in ganz Chicago, der drittgrößten Stadt der USA, wohnen. Oder der Verkehr: Rund eine Million Menschen sind in diesem Moment – also zur selben Zeit – in Flugzeugen unterwegs, über eine Milliarde Fahrzeuge bewegen sich weltweit auf den Straßen und würden einen Parkplatz von der Größe des Grand Canyons zuparken können. Die BBC-Produktion Generation Earth – Wie wir Menschen unsere Welt verändern (polyband) zeigt, wie sehr die Menschen ihren Planeten in den vergangenen Jahrzehnten umgeformt und an ihre Bedürfnisse angepasst haben. Die dreiteilige Doku hätte also sehr kritisch ausfallen können. Das tut sie aber dann doch nicht.

Stattdessen setzen die Macher auf die Rekordleistungen der Menschen, zum Beispiel auf den gigantischen Hoover-Staudamm, der Las Vegas Trinkwasser und Strom liefert und diese Stadt "in einer der trockensten Landschaften der Erde" ermöglicht. Oder auf den Bau der höchsten Brücke der Welt in China oder der größten Containerschiffe. Dazu sind tolle Zeitrafferaufnahmen zu sehen, die zeigen, wie aus einem Wüstenort die futuristische Stadt Dubai in den Himmel wächst, oder wie ein Schiff eine der größten Ölplattformen der Welt transportiert. Solche Aufnahmen und auch die anschaulich dargestellten Fakten sind unterhaltsam und vermitteln auch durchaus Wissen – doch ein paar Erläuterungen zu dem, was der menschliche Umgestaltungswille mit der Erde anrichtet, hätten der Dokumentation sehr gut getan. Selbst wenn erwähnt wird, dass durch riesige Dämme so viel Wasser gestaut wird, dass sich die Erdrotation verändert hat, klingt das eher stolz. Der Frage nach den Grenzen dieser Entwicklung geht die Dokumentation leider nicht nach.

M. B.

Wissen zum Hören

Geräusche, Originaltöne, professionelle Sprecher und Musik – auf insgesamt 23 CDs versammelt die Box **Die ganze Welt des Wissens (Hörverlag)** über 60 Beiträge, die der Bayerische Rundfunk seit 2001 gesendet hat. Nun gut, die "ganze Welt" des Wissens ist es nicht, was die Box bietet, und es ist auch nicht der werbewirksam versprochene "große Bildungskanon" zum Hören. Doch Vielfalt kann den Themen, die aus den Bereichen Alte Kulturen, Geschichte, Naturwissenschaften, Philosophie, Religion, Psychologie, Mensch und Gesellschaft sowie Alltagskultur stammen, bescheinigt werden.

In den Naturwissenschaften reicht das Spektrum von Isaac Newton und das Gravitationsgesetz über Edwin Hubble und das Rätsel des gestirnten Himmels oder über den Vulkanismus bis hin zur Intelligenz der Natur, den Golfstrom und das lebenslange Lernen des Gehirns. In den anderen Themenbereichen geht es unter anderem um die Persönlichkeitsforschung, Immanuel Kant, die Erfolgsgeschichte der Jeans, um Thomas Cook, den Pionier des Pauschaltourismus, oder auch den Glauben der Inkas. Innerhalb von jeweils gut 20 Minuten werden Sokrates, die Pyramiden und die Lehre des Buddhas nicht im trockenen Vortrag nahegebracht, sondern mit allen Mitteln, die das Radio bietet.

So unterschiedlich wie die Themen sind auch die Radiofeatures ausgefallen, die von verschiedenen Autoren umgesetzt wurden. Nicht jedes Feature mag einem dabei zusagen, nicht jedes Thema unbedingt gefallen, aber in den insgesamt 23 Stunden und zehn Minuten sind viele spannende Beiträge zu finden. Fündig wird da jeder, und so sind es gerade diese Vielfalt und die Unterschiedlichkeit, die der Hörbox das Prädikat "gut" geben.

Peter Zarth M. B.

Kosmos-Häppchen

Weltraum – so umfassend wie der Titel ist der Inhalt dieses im Ravensburger Verlag erschienenen Kinderbuchs von Stefan Greschik und Jochen Windecker. Von Raketen und Satelliten bis hin zu fernen Galaxien, von der Internationalen Raumstation ISS bis zur Suche nach Planeten jenseits unseres Sonnensystems – auf 56 Seiten wird so gut wie alles behandelt, was Raumfahrt und Astrophysik spannend und faszinierend macht. Die vielfältigen Inhalte sind für die jungen Leser verständlich formuliert und altersgerecht aufbereitet: statt langer Texte meist mit vielen Kästen in kleine "Häppchen" unterteilt und äußerst ansprechend illustriert. Hier wurden die attraktivsten Fotos aus der Weltraumforschung zusammengetragen und um viele anschauliche Grafiken sowie Comic-Elemente ergänzt. Mit Hilfe solcher "Erklärbilder" blicken die Leserinnen und Leser ins Innere der Sonne oder lernen die einzelnen Elemente eines Raumanzugs kennen, wie ihn Astronauten beim Spacewalk tragen. Interviews – auch mit DLR-Experten und ESA-Astronauten – vertiefen einzelne Kapitel und stellen so eine ganze Reihe von Berufsbildern vor.

Auch an wirklich komplizierte Sachverhalte wagt sich das Buch heran – dann meist mit dem Etikett "Spezial-Wissen" gekennzeichnet, sodass die Leser je nach Alter entscheiden können, ob sie einen solchen Absatz etwa über das Zwillingsparadoxon oder über Dunkle Materie lesen oder lieber erst einmal überspringen wollen. Das Buch ist für Acht- bis Zwölfjährige gedacht – doch es dürfte zu den Büchern gehören, die man auch mit 15 oder 16 noch nicht aus dem Bücherregal aussortiert.

Andreas Schütz

Böse, böse

Eltern aufgepasst! Dieses Buch hat Fettflecken. Und die sind nicht von Ihren Kindern. Die sind von ... MR GUM! Der ist böse. Ein Ekelpaket. Hässlich. Ein Faulenzer und ein Messi. Mr Gum isst Popel! Das ist also genau das falsche Buch für Ihre Kinder. Die werden es deshalb lieben. Um alles noch schlimmer zu machen: Harry Rowohlt hat **Sie sind ein schlechter Mensch, Mr Gum (Sauerländer Verlag)** von Andy Stanton/David Tazzyman übersetzt. Damit ist sichergestellt: Die deutsche Ausgabe dieses, wir möchten sagen, natürlich britischen Pamphlets ist noch besser, also übler, als das Original.

Mr Gum ist Kult. Es gibt Fortsetzungen. Verblüffenderweise besitzt der grauenvolle Typ einen wunderbaren Garten. Und ein paar Kinder nerven ihn. Wie im wahren Leben also. Wir verstehen's nicht. Kommen im wirklichen Leben Feen vor? Oder ein Mädchen, das "Jammy Grammy F'Huppa Berlin Stereo Eo Eo Lebb C'Yepp Nermonica le Straypek de Grespin de Crespin de Spespin de Vespin die Schwupp die Wupp de Brönckel Frohe Weihnachten Lenoir" heißt, aber einfach "Polly" genannt wird? Und warum empfehlen wir so ein Buch? Kommen denn da Raumfahrt, Luftfahrt oder Forschung drin vor? Nichts von allem! Nur dieser eine Satz: "Die Wahrheit ist ein Zitronenbaiser". (Ihr, liebe Eltern, seid ja früher noch per Anhalter durch die Galaxis gereist, vermutlich seid ihr heute schon 42 – und dann so ein Satz: Die Wahrheit ist ein Zitronenbaiser!). Also: Lasst das Buch liegen. Wir mussten hier nur noch einen Platz füllen. Der Fettfleck am Rand ist von Mr Gum. Böse. Schluss. Aus.

za.

Die Erde ist (k)eine Scheibe. Wissen für Morgen.

Erleben Sie DLR-Forschung multimedial mit der kostenlosen Magazin-App für iPads® und Android-Tablets.

Wissen für Morgen. Zum Anfassen.

im iTunes Store

im Google Play Store

Das DLR im Überblick

Das DLR ist das nationale Forschungszentrum der Bundesrepublik Deutschland für Luft- und Raumfahrt. Seine umfangreichen Forschungs- und Entwicklungsarbeiten in Luftfahrt, Raumfahrt, Energie, Verkehr und Sicherheit sind in nationale und internationale Kooperationen eingebunden. Über die eigene Forschung hinaus ist das DLR als Raumfahrt-Agentur im Auftrag der Bundesregierung für die Planung und Umsetzung der deutschen Raumfahrtaktivitäten zuständig. Zudem fungiert das DLR als Dachorganisation für den national größten Projektträger.

In den 16 Standorten Köln (Sitz des Vorstands), Augsburg, Berlin, Bonn, Braunschweig, Bremen, Göttingen, Hamburg, Jülich, Lampoldshausen, Neustrelitz, Oberpfaffenhofen, Stade, Stuttgart, Trauen und Weilheim beschäftigt das DLR circa 7.700 Mitarbeiterinnen und Mitarbeiter. Das DLR unterhält Büros in Brüssel, Paris, Tokio und Washington D.C.

Impressum

DLR-Magazin – Das Magazin des Deutschen Zentrums für Luft- und Raumfahrt

Herausgeber: Deutsches Zentrum für Luftund Raumfahrt e.V. (DLR)

Redaktion: Sabine Hoffmann (ViSdP) Cordula Tegen (Redaktionsleitung) An dieser Ausgabe haben mitgewirkt: Manuela Braun, Falk Dambowsky, Dorothee Bürkle, Miriam Kamin, Melanie-Konstanze Wiese, Andreas Schütz, Jens Wucherpfennig sowie Peter Zarth

DLR-Kommunikation Linder Höhe 51147 Köln

Telefon: 02203 601-2116 Telefax: 02203 601-3249 E-Mail: kommunikation@dlr.de **DLR.de/dlr-magazin**

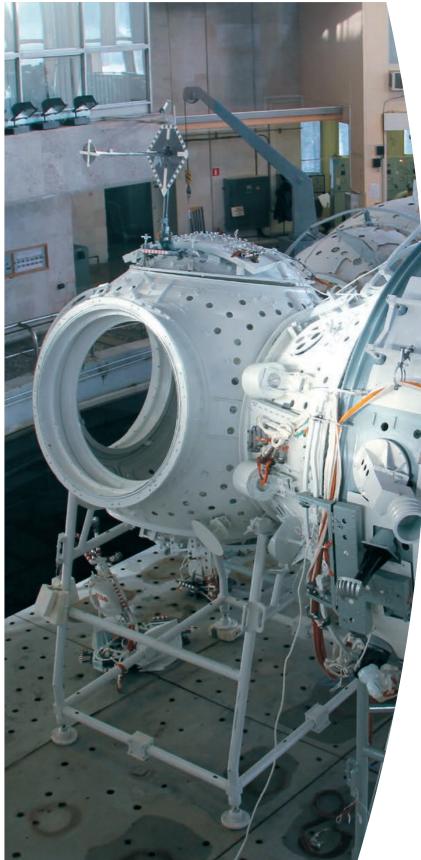
Druck: AZ Druck und Datentechnik GmbH, 87437 Kempten

Gestaltung: CD Werbeagentur GmbH, 53842 Troisdorf, www.cdonline.de

ISSN 2190-0094

Onlinebestellung: DLR.de/magazin-abo

Das DLR-Magazin erhalten Sie auch als interaktive App für iPad und Android-Tablets im iTunes- und GooglePlay-Store oder als PDF zum Download.


Nachdruck nur mit Zustimmung des Herausgebers und Quellenangabe. Die fachliche Richtigkeit der Namensbeiträge verantworten die Autoren. Hinweis gemäß § 33 Bundesdatenschutzgesetz: Die Anschriften der Postbezieher des DLR-Magazins sind in einer Adressdatei gespeichert, die mit Hilfe der automatischen Datenverarbeitung geführt wird. Gedruckt auf umweltfreundlichem, chlorfrei gebleichtem Papier.

Bilder DLR, CC-BY 3.0, soweit nicht anders angegeben.

