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ABSTRACT 
 

Strive to be First or Avoid Being Last: 
An Experiment on Relative Performance Incentives 

 
We utilize a laboratory experiment to compare effort provision under optimal tournament 
contracts with different distributions of prizes which motivate agents to compete to be first, 
avoid being last, or both. We find that the combined tournament contract incorporating both 
incentives at the top and at the bottom induces the highest effort, especially in larger groups. 
Avoiding being last produces the lowest variance of effort and is more effective at motivating 
employees compared to competing for the top. 
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1 Introduction

Managers in organizations have many motivational tools at their disposal. One popular

such tool is the use of incentive schemes based on ordinal relative performance evaluations,

or rank-order tournaments. A recent Wall Street Journal (WSJ) article states that at least

60% of Fortune 500 companies currently use some kind of a ranking system – both for

top and bottom performing employees – for incentive provision.1 The popularity of such

mechanisms is largely due to an inherent structure present in most organizations, where

only a limited number of promotions (or bonuses) or demotions exist. With this natural

limitation, managers must be selective in who receives the top and bottom prizes.2 This

selectivity motivates the employees to work harder to be the best or to avoid being the

worst.

Given the prevalence of tournament-based incentive systems in organizations, it is no

wonder that this topic has generated a magnitude of research (see for example, surveys

by Konrad 2009 and Dechenaux, Kovenock and Sheremeta 2012). However, most of the

literature on rank-order tournaments focuses on understanding how participants compete

for the top prize(s) and relatively little research has been done on the incentive schemes

motivating participants to avoid being last. Given the presence of last place incentives in

the workplace, the lack of research on this topic constitutes a gap in our understanding

of organizations. For instance, the aforementioned WSJ article states that in addition to

using a tournament mechanism to reward top performers, when Country Wide had to lay

off employees, they first selected those who were ranked the lowest from prior evaluations.

Though termination is the most severe consequence of being ranked last, it need not be

the only one. It is often the case that lower ranked employees are demoted, assigned to less

desirable tasks, have bonuses withheld, etc. Additionally, little research has been directed

at understanding how participants behave in a tournament with more than two distinct

prizes.3 As evidenced by the multiple exchanges and heated discussions on the topic in

the popular press, understanding these two key elements of organizational tournaments

is paramount to the discussion of rank-order tournaments.

A clean identification of the incentive effects of tournaments is quite difficult, since

1The article titled “’Rank and Yank’ Retains Vocal Fans”was published on January 31, 2012 and can
be accessed at http://online.wsj.com/article/SB10001424052970203363504577186970064375222.html.

2As pointed out by Lazear and Rosen (1981), further reasons for the popularity of rank-order tour-
naments have to do with complications inherent in many organizations, which inhibit a manager from
forming contracts on effort directly due to the difficulties in measuring actual output in a quantifiable
way; the manager may also be willing to insure workers against common productivity shocks.

3This is the hallmark of Jack Welch’s “differentiation“ management strategy which has been
widely adopted. For his defense of such a mechanism, see a recent piece by him at
http://online.wsj.com/news/articles/SB10001424052702303789604579198281053673534.
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data collected in the field usually allow one to observe only outcomes (e.g., total output).

This is problematic since in most instances outcomes are a function of luck, noise, ability

and endogenous selection as well as effort. Due to the difficulties in isolating the incentive

effects, laboratory experiments have often been utilized as a way of giving more control

to the researcher. A brief review of these experiments is given in Section 2. As already

noted, the focus of experimental research has been mainly on competition for the top

prize(s) or two distinct prizes.

The main contribution of this paper is in providing a detailed empirical comparison

of tournament mechanisms involving competition for the top, competition to avoid the

bottom, or both in a setting with efficient principal-agent contracts. Using the prominent

framework of Lazear and Rosen (1981) we define three tournament mechanisms that differ

in how rank-based prizes are allocated. A winner tournament is a mechanism where the

agents compete to be first and one top prize is awarded to the agent with the highest

output. Likewise, in a loser tournament the agents compete to avoid being last and one

bottom prize is given to the agent with the lowest output. Finally, a winner&loser tour-

nament is a combination of the two. For each of these mechanisms, we compute optimal

principal-agent contracts that generate the same efficient levels of effort. We then param-

eterize the theoretical model and directly use the optimal contracts derived from it in a

laboratory experiment, in which subjects in the role of employees choose effort levels (tied

to a convex cost structure) and compete in one of the three mechanisms defined above.4

Previous contest experiments documented substantial between- and within-subject het-

erogeneity and off-equilibrium behavior (for a review, see Sheremeta 2013); therefore, we

also introduce an alternative set of predictions using a Quantal Response Equilibrium

(QRE; McKelvey and Palfrey 1995) model in the Lazear-Rosen framework.

We also vary the size of the tournament, considering tournaments in groups of three

and six agents. Varying the size of the tournament serves two primary purposes. First,

tournaments in organizations vary in size. Understanding how the different mechanisms

interact with the size of the tournament is relevant to forming generalizable recommen-

dations. Second, varying the number of contestants in the tournament will help us to

disentangle the underlying causes of the differences observed between mechanisms, and

will also provide robustness to our results.

Our findings show that, in line with QRE predictions but not the Nash equilibrium

predictions, the winner tournament is inferior to the other two in terms of effort. The

existence of a top prize in the winner tournament encourages stiff competition for the top

prize which, in turn, leads to a large number of subjects responding by choosing very low

4Note that the chosen effort design element was selected to better test the base theory.
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efforts – a finding which is consistent with the prior literature. In contrast, the mechanism

which only includes a single bottom prize practically eliminates effort choices in the lowest

range while simultaneously discouraging subjects from providing very high effort. These

two findings lead naturally to our result that the mechanism which combines both a top

prize and a bottom prize brings out the best of both effects and no other mechanism

generates higher effort. Under this scheme, competition away from the bottom reduces

the number of subjects who choose low effort, while the competition for the top provides

continuous encouragement for some subjects to choose very high effort. Overall, the

QRE model does better than the Nash equilibrium as it correctly predicts that the lowest

effort and highest effort variance will occur in the winner tournament. The superiority of

the winner&loser tournament, however, is not predicted by the basic model or the QRE

model.

Given that some of the treatment differences are not predicted by the two models,

we computed subjects’ best responses and measured how far away each subject was from

their best response and whether they improved over time. We find that in the winner

tournaments, subjects were the furthest from their best response and, quite surprisingly,

in contests of both sizes, they got worse over time. Even though subjects still did not

best respond in the loser and winner&loser tournaments, there is no difference in the

deviations from best response between these two mechanisms.

In terms of a direct comparison of winner and loser tournaments, we find that the loser

tournament is overall a better motivator than the winner tournament. We also find that

round-by-round adjustment is in line with the predictions generated by a basic learning

theory. Thus, since avoiding being last is such a strong motivator, and the probability

of being last is greater in smaller tournaments, the outcome in the loser tournament

approaches that of the winner&loser tournament in contests of size three. The strong

learning effect we find also suggests that a manager using a rank-order pay scheme must

use the mechanism regularly as the increases in work effort will decline if the incentives

are absent.

2 Brief review of the related literature

Extensive theoretical work has been undertaken to understand rank-order tournaments in

an organizational setting. This literature has mainly focused on winner tournaments (see

reviews by McLaughlin 1988; Lazear 1995 and Konrad 2009).5 Loser tournaments were

5Our main interest is in the static principal-agent models of tournaments á la Lazear and Rosen (1981).
Dynamic tournaments which involve sequential elimination of employees have also been explored (see,
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first mentioned by Mirrlees (1975), while Nalebuff and Stiglitz (1983) prove the equivalence

of the two schemes in the more general symmetric setting. Loser tournaments have more

recently started to attract theoretical examinations by authors looking at heterogeneity

in some aspect (e.g. Kräkel 2000, Gürtler and Kräkel 2011, Moldovanu, Sela and Shi 2012

and Balafoutas et al. 2012) or the effects of risk-aversion (Akerlof and Holden 2012).

Many tournament and contest experiments have also been conducted (see a review

by Dechenaux, Kovenock and Sheremeta 2012). The first study to examine rank-order

tournaments, conducted by Bull, Schotter and Weigelt (1987), found that tournament

and piece-rate pay schemes generated the same mean effort, though the tournament pay

scheme induced a higher variance in effort. With this very basic tenant of tournament

theory established, subsequent papers focused on other topics such as affirmative action

(Schotter and Weigelt 1992), tournament size and prize structure (Harbring and Irlen-

busch 2003, Orrison, Schotter and Weigelt 2004), sabotage (Harbring and Irlenbusch 2008,

Falk, Fehr and Huffman 2008, Carpenter, Matthews and Schirm 2010, Harbring and Irlen-

busch 2012), selection (Camerer and Lovallo 1999, Eriksson, Teyssier and Villeval 2009,

Cason, Masters and Sheremeta 2010, Müller and Schotter 2010), dynamic tournaments

(Sheremeta 2010), and gender effects (Gneezy, Niederle and Rustichini 2003) among oth-

ers. In what follows we focus on the studies that vary the number of winner prizes and/or

the number of contestants in rank-order tournaments.

The two prior studies that are most relevant to our study (Orrison, Schotter and

Weigelt 2004, Harbring and Irlenbusch 2008) vary the fraction of winner and loser prizes

in tournaments of different sizes. The overall finding in these papers is that the highest

effort is observed when there is an equal distribution of winner and loser prizes. This is

counter to Harbring and Irlenbusch (2003) who show that in a capped all-pay auction

setting, effort increases with the number of winner prizes. Both Orrison, Schotter and

Weigelt (2004) and Harbring and Irlenbusch (2008) find no discernible trend that relates

effort to the size of the contest. Using non-uniform distributions of noise, List et al.

(2010) support this result for risk-neutral subjects, but find that risk-averse subjects’

effort declines as the number of contestants increases.

Although these papers have treatments that are similar in concept to our design, key

differences remain between them and our study due to the disparate research questions.

First, the above studies only implement two levels of prizes. In our design, we will imple-

ment a treatment with a top, middle and bottom prize (the winner&loser tournament).

e.g., Rosen 1986, O’Flaherety and Siow 1995, Gradstein and Konrad 1999, Ryvkin and Ortmann 2008,
Casas-Arce and Martinez-Jerez 2009, Sunde 2009, Höchtl et al. 2014). Even though the elimination
mechanism can be thought of as a loser tournament, the focus of these papers is not on this aspect, but
on the effect elimination has on the remaining agents.
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This is an important variation for several reasons. Since most organizations typically use

incentive schemes which have consequences for the best and the worst workers (see the

above references from the WSJ), it is important to understand how effort and efficiency

may differ under this very common pay scheme which uses three distinct levels of prizes.

We will show that including three distinct prizes is essential since managers who choose

this pay scheme can typically expect higher effort. Second, and more importantly, since

the above papers were not intended to test the differences between competition for the

top or away from the bottom, they do not use optimal contracts – a feature which would

be necessary for a meaningful comparison, and is a potential cause of the seemingly con-

tradictory results of the papers mentioned above. More specifically, optimal contracts are

important since they fix the amount of money paid per worker to be equal in every setting

while holding constant the predicted efficient level of effort. Thus, differences between

the pay schemes that we observe can be attributed to the underlying behavioral response

to winner and/or loser incentives, and the relative efficiency of the three schemes can be

cleanly examined.

3 The model

3.1 Three tournament mechanisms

We model tournament mechanisms following the approach of Lazear and Rosen (1981).

There are n ≥ 2 identical risk-neutral agents indexed by i = 1, . . . , n.6 Each agent

participates in the tournament by exerting effort ei ≥ 0. The cost of effort ei to agent

i is cg(ei), where c > 0 is the agents’ homogeneous cost parameter, and function g(·) is

strictly increasing and strictly convex.

Agent i’s output is yi = ei + ui, where ui is a zero-mean idiosyncratic random shock.

It is assumed that shocks u1, . . . , un are i.i.d. across agents and drawn from a distribution

with support [ul, uh], pdf f(u) and cdf F (u).

In tournament mechanisms, agents are evaluated on the basis of their relative perfor-

mance. Effort is not observable and cannot be used for contracting. Moreover, cardinal

output is also not observable. Tournament contracts are profiles of fixed prizes based on

6Considering risk-averse agents would complicate the analysis substantially (see Akerlof and Holden
2012). The optimal allocation of prizes would depend on the shape of the agents’ utility functions, which
implies that the experiment cannot be calibrated ex ante. We, therefore, have chosen to formulate our
theoretical predictions in a simpler risk-neutral setting and control for risk aversion econometrically in
a reduced form. To assuage some concerns, the effect of risk aversion is minimized in our experiment
because we pay subjects for 4 randomly selected rounds. We find that neither risk nor loss aversion
parameters are statistically significant in subjects’ choices of effort (see Table 2 below).
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ordinal comparisons of agents’ output levels. Let wr denote the prize of the agent whose

output is ranked r, with w1 ≥ w2 ≥ . . . ≥ wn. The expected payoff of agent i can then

be written as

πi(e) =
n∑

r=1

p(i,r)(e)wr − cg(ei), i = 1, . . . , n. (1)

Here, e = (e1, . . . , en) is the vector of all agents’ effort levels; p(i,r)(e) denotes the prob-

ability, given e, that player i’s output is ranked r, with
∑

r p
(i,r)(e) = 1.7 Assuming all

agents participate in the tournament with positive efforts,8 the vector of equilibrium effort

levels, e∗ = (e∗1, . . . , e
∗
n), solves the system of first-order conditions9

n∑
r=1

∂p(i,r)(e)

∂ei
wr = cg′(ei), i = 1, . . . , n. (2)

We consider three tournament mechanisms: winner tournaments, loser tournaments,

and winner&loser tournaments. In winner tournaments, the agent with the highest output

receives a prize w1 = V1, while all other agents receive a prize w2 = . . . = wn = V2 < V1.

Using the restriction
∑

r p
(i,r) = 1, Eq. (2) simplifies to

(V1 − V2)
∂p(i,1)(e)

∂ei
= cg′(ei), i = 1, . . . , n. (3)

In loser tournaments, the agent with the lowest output receives a prize wn = W2, while

all other agents receive a prize w1 = . . . = wn−1 = W1 > W2. Eq. (2) then gives

−(W1 −W2)
∂p(i,n)(e)

∂ei
= cg′(ei), i = 1, . . . , n. (4)

In winner&loser tournaments, the agent with the highest output receives a prize w1 = S1,

the agent with the lowest output receives a prize wn = S3, and all other agents receive a

prize w2 = . . . = wn−1 = S2, with S3 < S2 < S1. Eq. (2) gives

(S1 − S2)
∂p(i,1)(e)

∂ei
− (S2 − S3)

∂p(i,n)(e)

∂ei
= cg′(ei), i = 1, . . . , n. (5)

In order to derive optimal contracts, suppose there is a risk-neutral principal, whose

7For simplicity, we assume that the probability of ties is zero. This is justified if the pdf of the
distribution of noise is continuous.

8Note that participation in the tournament with zero effort is not equivalent to non participation.
Because of noise, the probability of winning the tournament with zero effort is still positive.

9The first-order conditions are necessary but not sufficient for the equilibrium in pure strategies to
exist. In the experiment, we choose parameters so that the equilibrium exists, cf. Section 4.3.
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expected payoff (firm’s profit) is defined as the difference between aggregate effort and

total prize payments: Π =
∑

i ei−V1−(n−1)V2 for winner tournaments, Π =
∑

i ei−(n−
1)W1 −W2 for loser tournaments, and Π =

∑
i ei − S1 − (n− 2)S2 − S3 for winner&loser

tournaments. In the derivation of optimal contracts, we follow the approach of Lazear

and Rosen (1981) and assume that the principal operates in a (buyer-side) competitive

labor market under the zero-profit condition Π = 0.

3.2 Symmetric optimal contracts

We restrict the analysis to the symmetric case in which all agents exert the same effort

in equilibrium. Let βr = [∂p(i,r)/∂ei]sym denote the derivatives of p(i,r) evaluated for

symmetric efforts. As shown by Akerlof and Holden (2012), coefficients βr are independent

of effort and given by

βr =

(
n− 1

r − 1

) ˆ
F (t)n−r−1[1− F (t)]r−2[n− r − (n− 1)F (t)]f(t)2dt. (6)

For winner tournaments, the symmetrized first-order condition (3) for agents’ equilibrium

effort, ē, becomes

(V1 − V2)β1 = cg′(ē), β1 = (n− 1)

ˆ
F (t)n−2f(t)2dt. (7)

Equation (7) has a unique solution ē > 0 provided (V1 − V2)β1 > cg′(0). The principal’s

profit is Π̄ = nē − V1 − (n − 1)V2, which implies, under the zero-profit condition, ē =

V1/n + (n − 1)V2/n, and the agents’ expected payoffs are π̄ = ē − cg(ē). As in Lazear

and Rosen (1981), we assume that the principal chooses prizes V1 and V2 to maximize π̄,

implying (1 − cg′(ē))∂ē/∂Vk = 0, k = 1, 2. This gives the following system of equations

for the optimal contract:

(V1 − V2)β1 = cg′(ē), nē = V1 + (n− 1)V2, cg′(ē) = 1. (8)

For loser tournaments, the symmetric first-order condition for agents’ equilibrium

effort, ẽ, is

−(W1 −W2)βn = cg′(ẽ), βn = −(n− 1)

ˆ
[1− F (t)]n−2f(t)2dt. (9)

Equation. (9) has a unique solution ẽ > 0 provided (W1−W2)|βn| > cg′(0). The principal’s

profit is Π̃ = nẽ−(n−1)W1−W2. Similar to winner tournaments, the zero-profit condition

8



and maximization of agents’ expected payoff leads to the system of equations for optimal

contracts (W1,W2):

(W1 −W2)|βn| = cg′(ẽ), nẽ = (n− 1)W1 +W2, cg′(ẽ) = 1. (10)

For winner&loser tournaments, the symmetric first-order condition for agents’ equi-

librium effort, ê, is

(S1 − S2)β1 − (S2 − S3)βn = cg′(ê). (11)

The principal’s profit is Π̂ = nê− S1− (n− 2)S2− S3. Similar to the other two incentive

schemes, the zero-profit condition and maximization of agents’ expected payoff leads to

the system of equations for optimal contract (S1, S2, S3):

(S1 − S2)β1 + (S2 − S3)|βn| = cg′(ê), nê = S1 + (n− 2)S2 + S3, cg′(ê) = 1. (12)

Comparing Eqs. (8), (10) and (12), it is seen that the equilibrium effort is the same

under the optimal contracts for all three mechanisms: ē = ẽ = ê. All three optimal

contracts are socially efficient. Individual effort ē is determined by condition cg′(ē) = 1,

and the optimal prizes can be expressed in terms of ē.

For winner tournaments, the optimal contract is

V̄1 = ē+
n− 1

nβ1
, V̄2 = ē− 1

nβ1
. (13)

For loser tournaments, the optimal contract is

W̄1 = ē+
1

n|βn|
, W̄2 = ē− n− 1

n|βn|
. (14)

For winner&loser tournaments, the number of independent equations for the optimal

contract is the same as for the other two mechanisms, but there are three prizes to be

determined. This is a manifestation of the more general result, mentioned by Lazear and

Rosen (1981), that a tournament mechanism involving any number of prizes between 2 and

n can be implemented with only two distinct prizes under symmetry and risk neutrality.

Any S2 between S3 and S1 can be implemented as the intermediate prize. For convenience,

we choose S2 = (S1 + S3)/2. Equations in (12) then give the following optimal contract:

S̄1 = ē+
1

2β̂
, S̄2 = ē, S̄3 = ē− 1

2β̂
; β̂ =

β1 + |βn|
2

. (15)
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4 Experimental design and predictions

4.1 Basics

All experiments were conducted at the University of Innsbruck lab using z-Tree (Fis-

chbacher, 2007). We recruited 216 subjects (50% female) from the standard student

subject pool using the online announcement system ORSEE (Greiner, 2004). We con-

ducted 12 sessions with 18 subjects in each session. Sessions lasted approximately one

hour, and subjects earned e9.36 on average (without a show-up fee).

4.2 Treatments

The experiment follows a 3×2 between-subject design covering three tournament mecha-

nisms: winner (WIN), loser (LOS) and winner&loser (W&L); and two group sizes: n = 3

and n = 6. The resulting six treatments will be referred to as WIN3, LOS3, W&L3,

WIN6, LOS6 and W&L6. The procedure used for all six treatments was the same. Once

subjects were seated in the lab, they were handed printed instructions which were also

read aloud to ensure common knowledge of the rules of the game.10 The first part of

the experiment consisted of 20 rounds, and in each round subjects were randomly and

anonymously matched in a group with other participants in the session.11 Each round the

subjects participated in a chosen effort task. Effort choices had a convex cost structure

associated with them.12

A uniform discrete zero-mean random number was added to each agent’s chosen effort

number, resulting in their “total number.”13 Their total number was then compared to

the total number of the other agents in their group to determine their rank within the

group. In WIN3 and WIN6, the agent with the highest rank received the top prize while

all others received the bottom prize. In LOS3 and LOS6, the agent with the lowest rank

received the bottom prize while all others received the top prize. In W&L3 and W&L6

the agent with the highest rank received the top prize, the agent with the lowest rank

received the bottom prize, and all others received the middle prize. The total payoff

in a round was calculated by subtracting the cost of the chosen effort number from the

10Sample instructions for WIN6 are given in the Appendix.
11Random rematching was implemented to reduce reputation effects and mimic the one-shot setting

as closely as possible. Since our main interest lies in understanding how people compete to avoid being
last compared to how they compete to be first, including reputation in this design would cloud the main
interest of the paper.

12At the end of the instruction sheet there was a table showing the cost associated with each effort
level. The cost table is given in the Appendix.

13The random number was drawn randomly and independently for every agent in each round.
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prize gained. Effort costs and prizes were denominated in tokens, with 2000 tokens = e1.

Once all subjects in the session had chosen their effort number, they were informed of

their random number, their total number and whether their total number was the highest

(in WIN3, WIN6, W&L3 and W&L6) or the lowest (in LOS3, LOS6, W&L3 and W&L6).

Additionally, they were informed of their payment for that round if it would be randomly

selected for payment. Four rounds were chosen at random for payment at the conclusion

of the experiment.14 After the last round, we elicited, in an incentivized manner, subjects’

beliefs about each of the other group members’ effort choices in that round.

Before receiving feedback at the end of the experiment, subjects were administered

a risk-aversion task (Holt and Laury 2002) and a loss-aversion task (Gächter, Johnson

and Herrmann 2010), both of them incentivized. The experiment concluded with a short

demographic questionnaire.

4.3 Parameters of the experiment

For comparability between the tournament mechanisms, we chose the parameters of the

experiment in accordance with the optimal contracts derived in Section 3.2. In all treat-

ments, we used the uniform distribution of noise on the interval [−b, b]. In this case,

β1 = |βn| = β̂ = 1/(2b). The optimal contracts for the winner, loser and winner&loser

tournaments are

V̄1 = ē+
2b(n− 1)

n
, V̄2 = ē− 2b

n
,

W̄1 = ē+
2b

n
, W̄2 = ē− 2b(n− 1)

n
,

S̄1 = ē+ b, S̄2 = ē, S̄3 = ē− b.

For the cost function of effort, we used g(e) = (A−e)−d−A−d, with A, d > 0, which gives

the optimal effort ē = A− (dc)1/(d+1). We used different cost functions (parameters A, c

and d) for n = 3 and n = 6, as it was difficult to find a parameterization that generated

a symmetric pure-strategy equilibrium in all treatments simultaneously. This is not an

issue for comparability because our main focus is on the comparison between different

tournament mechanisms for a given n, and not on a direct comparison between the n = 3

and n = 6 cases. We ensured, however, that the optimal effort ē was the same in all six

treatments. The parameters of the experiment are summarized in Table 1.15

14Note that it was possible for a subject to lose money in a given round. By the end of the experiments,
no subjects had negative total earnings.

15There are minor discrepancies in Table 1 due to rounding. In the experiment, all the prizes and costs
have been multiplied by 100 to avoid the decimals.
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Treatment n b c A d Prizes ē π̄

WIN3 3 44 3074 106 1.4 V1 = 132, V2 = 44 73.33 54.49

LOS3 3 44 3074 106 1.4 W1 = 102.67,W2 = 14.67 73.33 54.49

W&L3 3 44 3074 106 1.4 S1 = 117.33, S2 = 73.33, S3 = 29.33 73.33 54.49

WIN6 6 44 2100 96.72 1.57 V1 = 146.67, V2 = 58.67 73.33 60.04

LOS6 6 44 2100 96.72 1.57 W1 = 88,W2 = 0 73.33 60.04

W&L6 6 44 2100 96.72 1.57 S1 = 117.33, S2 = 73.33, S3 = 29.33 73.33 60.04

Table 1: Treatments and parameters of the experiment.
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Figure 1: Expected payoff of a player as a function of her effort, with all other players’
efforts fixed at ē.
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Figure 1 shows the expected payoff of a player, π(e|ē), as function of her effort, with

the efforts of all other players in the group fixed at ē. The left panel in Figure 1 shows

π(e|ē) for each of the three mechanisms for n = 3, while the right panel shows the same

for n = 6. Figure 1 confirms that ē is indeed the symmetric equilibrium effort level in all

treatments.16

4.4 Quantal Response Equilibrium predictions

It is evident from Figure 1 that for effort levels below ē, the payoff function is very flat

in the winner tournaments, especially for n = 6, and much steeper in the loser tourna-

ments, with the winner&loser tournaments in between. This implies that subjects’ errors,

i.e., deviations from equilibrium or best response, are penalized differently in the three

mechanisms. Given that the learning environment is somewhat complex and noisy in

Lazear-Rosen contests, the flatness of the payoff function can help explain off-equilibrium

behavior. Prior contest experiments (primarily with the prize structure of the WIN treat-

ment) have shown that subjects exhibit substantial heterogeneity in effort choices, both

between subjects and over time (for a review, see Sheremeta 2013). One widely used

approach to organizing data with a large amount of off-equilibrium behavior, dispersion

and experimentation is the Quantal Response Equilibrium (QRE) framework introduced

by McKelvey and Palfrey (1995).17 Given that downward deviations from equilibrium are

penalized the most in the loser tournaments and the least in the winner tournaments, we

expect QRE distributions of effort choices to be different in the three mechanisms, with

the highest expected effort in LOSn and the lowest in WINn.

Formally, let B denote the (finite) set of available effort levels. In the QRE framework,

the symmetric equilibrium is a probability distribution p(b) over B, with
∑

b∈B p(b) = 1.

Following McKelvey and Palfrey (1995), p(b) satisfies the system of equations

p(b) =
exp[λπe(b)]∑

b′∈B exp[λπe(b′)]
, πe(b) =

∑
b2,...,bn∈B

π(b, b−1)p(b2) . . . p(bn). (16)

Here, πe(b) is the expected payoff of a player choosing effort b; π(b, b−1) is the expected

payoff of a player choosing effort b given the effort choices b−1 of other players in the

group; λ > 0 is the QRE noise parameter, with larger λ corresponding to lower noise in

subjects’ decision making. As λ→∞, QRE converges to the Nash equilibrium.

16Notice that while all payoff functions π(e|ē) reach global maximum at e = ē, a local maximum at 0
is present in the WINn tournaments.

17For example, Anderson et al. (1998) and Goeree et al. (2002) discuss QRE as an explanation of
overbidding in auctions, while Sheremeta (2011), Chowdhury et al. (2012), Lim et al. (2012) and Brookins
and Ryvkin (2014), among others, use QRE to explain overbidding and bid dispersion in lottery contests.
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Figure 2: QRE distributions of effort, by treatment, for n = 3, λ = 0.2.

Figure 2 shows the QRE distributions of effort using λ = 0.2 and the parameters of the

experiment for n = 3. As seen from the figure, the QRE distributions are indeed different

between treatments and ordered from the highest effort in LOS3 to the lowest in WIN3.

The expected QRE efforts, calculated as ēQRE =
∑

b∈B p(b)b, are ranked accordingly:

63.77 for WIN3, 66.45 for W&L3 and 67.82 for LOS3. The standard deviations of effort

are 16.04, 9.69 and 11.83, respectively.18

We conclude that although the baseline model predicts the same level of effort in all

treatments, the QRE model predicts differences in average effort levels, with the highest

effort in LOS and lowest in WIN, and differences in the variance of effort, with the highest

variance in WIN and lowest in LOS. Besides, the QRE model predicts underbidding, as

compared to the Nash equilibrium effort level ē = 73.33. This is because the profit

functions decline sharply for efforts above equilibrium but are relatively flat for efforts

below equilibrium (cf. Figure 1), and in contrast to lottery contests where payoff functions

are flat to the right of the equilibrium and QRE predicts overbidding. Thus, the QRE

model provides a unifying explanation for why overbidding is observed overwhelmingly

in lottery contests, while average efforts at or below equilibrium are often observed in

Lazear-Rosen contest experiments (for a review, see Dechenaux et al. 2012).

18The results for n = 6 are qualitatively similar, with the expected QRE efforts 54.76, 68.22 and 65.31,
and the standard deviations of effort 23.40, 5.89 and 10.41 in WIN6, LOS6 and W&L6, respectively.
We also experimented with different values of λ and found that the expected QRE efforts converge to ē
monotonically from below as λ increases.
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Figure 3: Mean effort over time. Panel (a): Effort in contests of size three. Panel (b):
Effort in contests of size six.

5 Experimental results

5.1 Effort

We begin our analysis with an overview of the data. Figure 3 displays the average effort

in each round by treatment, in contests of size three (panel a) and size six (panel b). Each

point in the figure represents the average of 36 observations. Looking first at panel (a),

we can see that the average effort in WIN3 is much lower than that in LOS3 or W&L3,

especially from round 10 onward, while average effort in LOS3 seems to be only slightly

lower than in W&L3. The picture is to a certain extent very similar for contests of size

six: panel (b) shows that the average effort is highest in W&L6, intermediate in LOS6,

and lowest in WIN6. The mean effort in all treatments except W&L6 is below the Nash

equilibrium prediction value of 73.19

It is already evident that the QRE model does better than the basic model, although

it does not predict the exact ordering of treatments by average effort. Table 2 reports the

results of OLS regressions with standard errors clustered at the session level and adjusted

for the small number of clusters using the Biased-Reducing Linearization procedure (BRL)

of Bell and McCaffrey (2002). The dependent variable is individual effort, while the main

explanatory variables are dummies for the LOS and the W&L treatments (which implies

19The hypothesis of average effort being equal to 73 is rejected in all treatments with n = 3 (p < 0.01).
The hypothesis is also rejected for WIN6 and LOS6 (p < 0.01), but not for W&L6 (p = 0.017). The
p-values are obtained via Wald tests based on OLS regressions of chosen effort on treatment dummies
with standard errors clustered at the session level and adjusted using the Biased-Reducing Linearization
(BRL) procedure (Bell and McCaffrey, 2002).
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Effort (1)
n = 3

(2)
n = 6

Constant 49.4∗∗∗
(12.47)

67.64∗∗∗
(21.89)

LOS 7.77∗∗∗
(2.82)

11.38∗∗∗
(3.87)

W&L 9.59∗∗∗
(2.88)

20.47∗∗∗
(2.45)

Age 0.31
(0.48)

−0.53
(0.70)

Risk Aversion 0.76
(0.78)

0.63
(0.53)

Loss Aversion 0.21
(0.99)

−1.26
(0.87)

Female −1.44
(3.22)

−3.53
(2.75)

Round −0.02
(0.23)

−0.05
(0.27)

# of observations 2160 2160
# of clusters 6 6

Table 2: OLS regression results. Standard errors, clustered by session and BRL adjusted,
are shown in parentheses. Significance levels: *** - 1%.

that the reference group for the regressions is the WIN treatment). Additionally, controls

for gender, age, round, a subject’s risk preferences (the number of risky choices made in

the gains domain) and the degree of aversion to losses (the number of risky choices made

in the loss domain) are also included. Columns (1) and (2) show the results for contests

of size three and six, respectively.

The model in column (1) of Table 2 confirms that for n = 3, average effort in LOS3

and in W&L3 contests is significantly higher than in the baseline WIN3 contest. A Wald

test also confirms that there is no difference between average effort in LOS3 and W&L3

(p = 0.40). Column (2) shows that, in contests of size six, there is a sizable difference

between WIN6 and W&L6 and between WIN6 and LOS6; hence, the combination of a

separate top and bottom prize gives rise to the highest output. Additionally, a Wald test

confirms the difference between LOS6 and W&L6 (p = 0.02). The results from columns

(1) and (2) thus support what is observed in Figure 3. This leads to our first two results.20

Result 1: In contests of size three, there is no difference in average effort between the LOS

and W&L treatments, but effort in both of these treatments is higher than in the WIN

treatment.

20We also explored in more detail the effect of risk preferences. First, we verified randomization across
treatments and found no difference in risk preferences by treatment in contests with n = 3 and n = 6.
In contests of size three, the mean number of risky choices made (out of 10) was 5.2, 4.7, and 5.0 for
the WIN, LOS and W&L contests respectively. In contests of size six, the mean number of risky choices
made was 4.7, 4.5 and 4.4 for the WIN, LOS and W&L contests respectively.
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Figure 4: Histograms of effort choices: (a) n = 3; (b) n = 6.

Result 2: In contests of size six, average effort is highest in the W&L treatment, lowest

in the WIN treatment and intermediate in the LOS treatment.

From the principal’s perspective, the preferred mechanism is, of course, the one that

generates the highest total effort. The above analysis shows that the mechanism which

provides a combination of winner and loser prizes is at least as effective as the other two

with respect to total agent effort, and is strictly superior to the other two in contests of

size six. Another metric of interest is social efficiency – the total combined net benefits

to both the principal and the agents. Since compensation is merely a transfer from the

principal to the agents, social efficiency can be calculated at the individual level by taking

the difference between effort and the cost of effort, si = ei − cg(ei).

Figure 4 presents the histograms of chosen effort for all 20 rounds in contests of size

three (panel a) and size six (panel b). Focusing first on panel (b), we see that how

the means are arrived at is quite different. In the WIN6 treatment, the distribution of

effort appears bimodal. There are many subjects who contribute between 1-10 (the lowest

category) and many who contribute 81-90 (the penultimate category). This is in line with

the “bifurcation” often observed in experiments on winner contests (see Dechenaux et al.

2012). The variance of effort is quite high, as subjects either compete too much or not

enough. In the LOS6 treatment, the opposite is true. There are very few subjects who

choose effort at the lower or upper end, with the majority concentrated in the 61-70 range,

close to the mean of 60.8. The threat of being last drives up the lower efforts, while the

lack of a top prize almost eliminates the higher ones. The W&L6 mechanism combines

both motivations, resulting in a higher overall mean. More specifically, the possibility of

being last in the W&L6 mechanism reduces the incentive to choose a low effort, and at the

same time the existence of a top prize gives rise to some higher effort choices. The same
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basic pattern can be observed for contests of size three in panel (a). The distribution of

effort in the WIN3 treatment is bimodal, while in the LOS3 and the W&L3 treatments

it appears closer to a normal distribution (if somewhat right-skewed). This is a strong

indication that the underlying mechanisms driving effort are the same in contests of size

three and of size six.

The differences in distributions of effort lead naturally to differences in social efficiency.

Given that we have solved for optimal contracts in the basic model, we can also compute

the optimal per capita social efficiency, defined as s̄ = ē−cg(ē).21 For contests of size three,

it is 54.79 and for contests of size six, it is 60.37. The observed average social efficiency in

contests of size three is 30.8, 43.3 and 45.2 for the WIN3, LOS3 and W&L3 treatments,

respectively. In contests of size six, average social efficiency is 14.1, 37.4 and 30.7 in the

WIN6, LOS6 and W&L6 treatments respectively. In regressions (not reported here) with

individual social efficiency si as the dependent variable, we find that there is no difference

in social efficiency between LOS and W&L for contests of both sizes (p = 0.63 for n = 3

and p = 0.54 for n = 6). In contests of size three, social efficiency is lower in WIN3 than

in the other two mechanisms (p < 0.01 for both LOS3 and W&L3), while in contests of

size six there is only a marginal statistical difference between the social efficiency of WIN6

vs. LOS6 (p = 0.08) and no differcernce between WIN6 vs. W&L6 (p = 0.38 ). In all

treatments, average social efficiency is below the optimal level (p < 0.027 across all six

comparisons).

5.2 Best response

Given the finding that subjects are not playing the equilibrium strategy, we now explore

if subjects are at least best-responding to the off-equilibrium behavior of others. This will

relax the assumption that individuals believe all other players are playing the symmetric

equilibrium. To do so, we calculate a subject’s best response to the effort of others in

their group. We then take the absolute difference between what their best response is

and what they actually choose. Figure 5 presents the mean of absolute difference between

effort and best response by round in each treatment. In this figure, the closer the number

is to 0, the closer the observed effort choices are to a best response.

A couple of things stand out in Figure 5. First, the contests of size three and six

look very similar in that the WIN treatment produces efforts furthest from the best

response while there doesn’t appear to be much difference between the LOS and the

W&L treatments. Interestingly, while there is a slight downward trend in the LOSn and

21Social efficiency s̄ is equal to the agents’ equilibrium payoff π̄ because the firm operates at zero profit.
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Figure 5: The mean absolute difference between the subject’s effort choice and the best
response, by treatment and round.

W&Ln treatments, indicating that subjects become better at best-responding over time,

in the WINn treatments subjects do not seem to be learning to best-respond over time

and, if anything, appear to be getting worse.

For more rigorous statistical comparisons, we ran regressions (reported in Table 5 in

the Appendix) of the mean absolute distance to best response as the dependent variable.

The basic results, shown in columns (1) and (2) of Table 5, confirm what is shown in

Figure 5 – subjects are not particularly good at best-responding and they are worse in

the WIN than in the LOS or W&L treatments.

One possible reason the subjects are not doing that well at best-responding – especially

in the WIN treatment – is that they are forming incorrect beliefs. Following the final

round, we used an incentivized belief elicitation method to gather beliefs about what the

subject thought each of their group members chose in the final round. In columns (3)

and (4) of Table 5 we present regressions based on the absolute value of the difference

between chosen effort and best response to beliefs in the last period. The findings from

these regressions are very similar to the results reported in columns (1) and (2). This

implies that in the final round, subjects were still not best-responding to their stated

(incentivized) beliefs.

5.3 Analysis of dynamics

Results 1 and 2 reveal that the mechanisms considered produce differences in effort choices

that are not predicted by the basic model and are only partially explained by the QRE

framework. The next step is to try and find a suitable explanation which fits our data. Be-
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havior adjustments observed over time in mechanisms such as ours have been traditionally

modeled using reinforcement learning and/or directional learning.

The most fundamental property of reinforcement learning is that strategies which

have led to bad outcomes are less likely to be used in the future (Roth and Erev 1995).

The key feature of the directional learning theory (Selten and Stoecker 1986) is that

subjects respond to feedback by updating their actions in the direction of higher expected

profits.22 If directional learning is applicable in our setting, then we should observe the

following patterns: after receiving negative reinforcement (i.e., after being last in the loser

tournament or after not winning a winner tournament), a subject should not choose an

effort less than or equal to what led to that outcome, implying that a higher effort will be

chosen. Likewise, if an agent wins the contest or is not last, this conveys the signal that a

lower effort could have potentially led to higher profits; thus, a lower effort will be chosen.

A more formal description of the learning model using a combination of reinforcement

and directional learning (cf. Grosskopf 2003) is presented in the Appendix. Below we

outline the general conjectures of reinforcement and directional learning applied to our

setting.

Conjecture 1 : Following being last or not being first, subjects will increase their effort.

Conjecture 2 : Following being first or not being last, subjects will decrease their effort.

Conjecture 3 : These effects will be lessened over time.

A graphical analysis of Conjectures 1 and 2 is presented in Figure 6. Panel (a)

examines behavior before and after being last in treatments LOSn and W&Ln. Panel (a)

shows that, consistent with Conjecture 1, subjects increase their effort after being last.

The differences are statistically significant both in the LOS and in the W&L treatment

for both tournament sizes (p < 0.01).23

Panel (b) in Figure 6 examines behavior before and after subjects learn that they

were not last. We see here that, upon learning that they were not last in the previous

round, subjects decrease their effort. Again, this result is statistically significant for all

cases, regardless of treatment and tournament size (p < 0.01).

In order to check for the robustness of these findings, we present in columns (1)

and (2) of Table 3 the results from two regressions, where the dependent variable is the

difference in chosen effort between rounds t and t− 1. The main explanatory variable is

22Köszegi and Rabin (2006) provide an alternative theory whereby subjects update their reference
points. Our paper was not designed to test the various updating mechanisms, and we cannot distinguish
between the models (see, e.g., Götte, Hams and Sprenger, 2014, and Andersen, Brandon, Gneezy and
List, 2014, for explicit tests of the Köszegi and Rabin model). The simpler learning model we outline
appears to be sufficient for explaining our results.

23Unless otherwise mentioned, all the p-values reported here are a result of a regression where errors
are clustered at the subject level.
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Figure 6: The reaction of subjects in tournaments before and after being reinforced. Panel
(a) shows the reaction of subjects before and after being last. Panel (b) shows the reaction
of subjects before and after not being last. Panel (c) shows the reaction of subjects before
and after winning. Panel (d) shows the reaction of subjects before and after not winning.
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Difference in Effort (1)
n=3

(2)
n=6

(3)
n=3

(4)
n=6

Constant −2.23
(1.89)

−1.58
(2.87)

6.42∗
(3.39)

7.91∗∗∗
(2.14)

LagLast 13.77∗∗∗
(2.51)

11.38∗∗∗
(2.94)

LagFirst −13.29∗∗∗
(2.32)

−18.53∗∗∗
(3.73)

W&L −0.37
(0.52)

0.44
(0.45)

1.03∗
(0.53)

1.33∗∗∗
(0.51)

Number of Times Last −1.00∗∗∗
(0.39)

0.85
(0.81)

Number of Times First 1.10∗∗∗
(0.36)

2.27∗∗
(1.06)

Age 0.01
(0.05)

−0.03
(0.09)

−0.07
(0.10)

−0.16∗∗∗
(0.05)

Risk Aversion 0.14∗
(0.08)

−0.16
(0.11)

0.14
(0.13)

0.01
(0.170)

Loss Aversion −0.03
(0.09)

0.12
(0.12)

−0.39∗
(0.24)

0.09
(0.18)

Female −0.50
(0.34)

0.01
(0.46)

−0.17
(0.16)

−1.09∗∗
(0.53)

Round 0.020
(0.06)

−0.07∗
(0.04)

−0.27∗∗∗
(0.07)

−0.16∗∗
(0.07)

# of observations 1368 1368 1368 1368
# of clusters 72 72 72 72
R-squared 0.07 0.11 0.03 0.04

Table 3: Individual random effects panel regressions on the difference in effort from round
t − 1 to round t where the main explanatory variable is whether the subject was last or
first in round t − 1. Because of this, round 1 is not included in the analysis. Robust
standard errors clustered at the individual level are in parentheses. Significance levels:
*** - 1%, ** - 5%, * - 10%.

LagLast, which is a dummy variable equal to 1 if the subject was last in round t − 1.

Additionally, there is a variable accounting for the number of times a subject had already

been last at the start of a given round, which is meant to capture the decreasing effect

of reinforcement over time (see Conjecture 3), as well as a control variable, W&L, for the

type of the contest. Column (1) examines treatments LOS3 and W&L3 and column (2)

examines LOS6 and W&L6.

In line with Conjecture 1, we see that being last in round t − 1 causes subjects to

increase their chosen effort by a sizable amount, compared to a subject who was not last

(see the large and strongly significant coefficient of LagLast in both specifications). In

contests of size three, we also observe an inverse relationship between the difference in

effort and the number of times a subject was last, as Conjecture 3 predicts. Thus, these

results are largely in line with the learning theory.

Turning now to the effect of a single winner prize in treatments WINn and W&Ln,
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panel (c) of Figure 6 shows the response of agents upon winning the contest, and panel

(d) shows the response upon not winning the contest. It is evident from panel (c) that,

following a win, a subject decreased their effort as predicted by Conjecture 2. The decrease

after winning the contest is statistically significant in the WIN as well as in the W&L

contests (p < 0.02). Panel (d) of Figure 6 shows that subjects increase their effort upon

not winning the contest. This is consistent with Conjecture 1. Again, the difference is

highly significant for both tournament mechanisms (p < 0.01), although the magnitude

is somewhat smaller than what we saw with loser mechanisms.

Columns (3) and (4) in Table 3 report results concerned with how subjects change

their behavior in contests involving a single winner prize. The dependent variable is once

again the difference in chosen effort from round t− 1 to round t. The main explanatory

variable is the dummy LagFirst, which is equal to one if the subject was first in round

t − 1 and zero otherwise. Column (3) examines treatments WIN3 and W&L3, while

column (4) examines treatments WIN6 and W&L6. Consistent with Conjecture 2 and

Figure 6, we document a strong and significant negative impact of winning the contest

on effort in the subsequent round. Moreover, this effect is declining with each subsequent

reinforcement, as Conjecture 3 suggests.

Result 3: (a) In contests involving single loser prizes, the evolution of play is consistent

with basic learning predictions where subjects increase their effort after losing and decrease

their effort following not losing.

(b) In contests involving single winner prizes, the evolution of play is consistent with the

basic learning predictions where subjects decrease their effort after winning and increase

their effort if they do not win.

Taken together, the results so far give us an indication of why winner&loser con-

tests are generally more effective than the winner-only or loser-only contests. The W&L

mechanism combines the reinforcing features of both contests. These reinforcing features

are found to be important regardless of the contest size. To explore this further, we use

data from the W&L contests in order to compare winning and losing, in a setting where

both are possible, in terms of the strength of their reinforcing effects. Table 4 presents

the results of a regression that includes lags of winning and losing, along with the usual

control variables.24 The results for contests of size three and six are presented in columns

(1) and (2), respectively.

As seen in Table 4, the effect of being last has a larger impact on a subject’s subsequent

chosen effort, compared to the effect of being first. As a reminder, the variables LagFirst

24Because we want to isolate the effect of being first or being last, we do not include here the number
of times that a subject has won or lost.
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Difference in Effort (1)
n=3

(2)
n=6

Constant 6.06
(4.25)

3.89
(3.10)

LagFirst −2.69∗
(1.62)

−2.61
(1.78)

LagLast 5.83∗∗∗
(2.17)

16.21∗∗∗
(2.84)

Age −0.18
(0.12)

−0.16
(0.12)

Risk Aversion 0.12
(0.16)

−0.25∗
(0.14)

Loss Aversion −0.10
(0.21)

0.23
(0.20)

Female −1.06
(0.67)

−0.35
(0.58)

Round −0.13∗
(0.07)

−0.09∗
(0.05)

# of Observations 684 684
# of Clusters 36 36
R-squared 0.04 0.12

Table 4: Individual random effects panel regressions on the difference in effort from round
t−1 to round t in the treatment with both winners and losers where the main explanatory
variables are whether the subject won or lost in round t− 1. Because of this, round one
is not included in the analysis. Robust standard errors clustered at the individual level
are in parentheses. Significance levels: *** - 1%, ** - 5%, * - 10%.

and LagLast are looking at the relative increase or decrease in effort from a subject who

was previously first or last. Not only is avoiding being last statistically more significant

than trying to be first, but the coefficient on LagLast is more than six times greater

in magnitude than the coefficient on LagFirst for contests of size six.25 The relatively

more effective motivation of avoiding being last indicates why average effort in the LOS

treatment is close to that of the W&L treatments, especially for n = 3 where negative

reinforcement occurs more frequently.

6 Discussion and conclusion

In organizations, managers employ incentive schemes which encourage their employees to

compete to be best and/or to avoid being the worst of their cohort. The literature up

to now has mainly focused on understanding how workers compete for the top prize(s)

or behave in tournaments with only two distinct prizes. The goal of this paper is to

complement the literature by providing an empirical comparison of how agents compete

25We also ran these regressions with only LagFirst included, in which case both models give a highly
significant effect (p < 0.01).
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for the top, avoid being last, or both. We do so using a laboratory experiment with

three incentive mechanisms: winner tournament, loser tournament, and winner&loser

tournament. We have also varied the size of the tournaments. Although the contracts are

calibrated to produce the same efficient employee effort in all treatments, our empirical

results have indicated that there are substantial differences in the levels of effort provided

in the three mechanisms.

In general, no mechanism extracts higher effort levels from the agents than the one

with three distinct prizes, while the commonly studied winner tournament produces the

lowest effort. These basic findings are more in line with a QRE model than with the

basic equilibrium model, but the comparative statics are not perfectly predicted by QRE.

To further explore deviations from those predictions, we examined how far subjects were

from best-responding to the behavior of others and found that subjects are furthest from

their best response in the winner tournament and, if anything, are getting worse over

time. We found no difference in the average distance to best response between the other

two mechanisms.

We identify two main drivers of these results. First, we have found that the dynamics

of behavior in all mechanisms are consistent with reinforcement and direction learning

(Roth and Erev 1995, Selten and Stoecker 1986). Those subjects who had previously been

last (or not first) increase their effort in subsequent rounds, while those subjects who were

first (or not last) decrease their effort. Second, we have found that competition away from

the bottom is more effective than competition for the top at increasing subsequent effort.

Taken together these two findings explain why, as the size of the tournament decreases,

the outcome in smaller contests which only incorporate a single loser prize will begin to

mimic contests which incorporate a winner and a loser prize.

We also find, consistent with the QRE predictions, the highest variance in effort in

the winner contests. Because of this high variance, the winner tournament is the least

efficient one from an aggregate point of view, while the efficiency achieved in the other

two mechanisms is very similar.

Our results show that the static Nash equilibrium and QRE models do not do a

great job of predicting our outcomes, although the QRE model does predict many of the

observed treatment differences in average effort and effort variance. The dynamics we

observed have broader implications to similar environments. More specifically, we find

that accounting for initial beliefs and how these beliefs are updated through feedback

received does a better job of predicting our results. It can be argued that both the QRE

predictions and the equilibrium model are the result of a steady state and that effort in

our three treatments would eventually converge to the predicted equilibrium. To that
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end, we do see that in the loser and winner&loser contests, effort is rising over time and

could potentially reach the equilibrium prediction of the Lazear-Rosen model. However,

we do not observe the same upward trend in the winner contests. We believe a fruitful

direction to extend our study would be to fix initial beliefs and alter the feedback received.

With the appropriate control on these two factors, our results imply that the equilibrium

predictions may be reached, at least on average.

This paper was designed using a very simple decision environment – a chosen-effort

instead of a real-effort task – to give the theory its best chance to succeed. We made this

design choice in order to better inform what may need to be changed in the base theory.

The simplicity of our design, and the intuitive deviations from theory, also give rise to

very practical recommendations. We believe the basic drivers of our results – identified

in the dynamics section – to be robust, and additional work can be directed towards

understanding how the inclusion of further complications either solidifies or confounds the

results. For instance, once real-effort, and the inherent heterogeneity that accompanies it,

are tested, the differences between treatments we found may be even stronger given that

high-ability subjects will be motivated more by top prizes while lower ability subjects will

be motivated more to avoid being last. This is, of course, speculative and we leave it as

a future exercise.

Our results inform managers and policy makers on several key issues. Negative and

positive incentives are often used to reinforce good or (absence of) bad behavior, and our

findings indicate that this goal can be achieved in a tournament setting. In order to elicit

the highest amount of effort from their employees, managers should continue to use both

mechanisms. Additionally, the reinforcing effect works such that the temporary use of

these mechanisms will only lead to the desired outcome in the short term (cf. Conjecture

3). Our results indicate that continuous reinforcement is needed in order to maintain

high effort.26 Finally, our results can better inform principals who are concerned about

the high variance in performance obtained from tournaments. There are several reasons

beyond efficiency why a high variance may be troubling to a principal. First, if workers

exerting high effort were able to more easily observe the low effort of their co-worker(s),

their best response may be to lower their effort in the long term which would result in a

drastic decline in a winner tournament. Second, if having predictable quality is desirable,

as is the case in many industries, a high variance in effort which results in a high variance

in quality (assuming effort and quality are positively related) would be very problematic.

In these settings, our results suggest principals should strongly consider using the loser

tournament, as this mechanism generates the lowest variance in effort.

26A similar result is found by Mulligan and Schaffer (2011) using simulations.
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Lastly, the focus of the prior literature has been on two distinct prizes due to the

theoretical finding that two prizes are sufficient for optimality under a variety of assump-

tions. We find that effort may be different, for quite intuitive reasons, when three distinct

prizes are used. Thus, our results suggest that there is promise in mechanisms using more

than two distinct prizes.
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Gächter, S., E. Johnson, A. Herrmann. 2010. Individual-level loss aversion in riskless

and risky choices. University of Nottingham Centre for Decision Research and

Experimental Economics Discussion Paper, No. 2010-20.

Götte, L., A. Harms, and C. Sprenger. 2014. Randomizing Endowments: An Experi-

mental Study of Rational Expectations and Reference-Dependent Preferences. IZA

Discussion Paper No. 8639

28



Gneezy, U., M. Niederle, A. Rustichini. 2003. Performance in competitive environments:

Gender differences. Quarterly Journal of Economics 118(3): 1049-1074.

Goeree, J., C. Holt, T. Palfrey. 2002. Quantal response equilibrium and overbidding in

private-value auctions. Journal of Economic Theory 104: 247-272.

Gradstein, M., K. Konrad. 1999. Orchestrating rent-seeking contests. Economic Journal

109: 536–545.

Greiner, B. 2004. An online recruitment system for economic experiments. In: Forschung

und wissenschaftliches Rechnen, ed. Kremer and Macho, 79-93. Göttingen: GWD

Grosskopf, B. 2003. Reinforcement and directional learning in the ultimatum game with

responder competition. Experimental Economics 6(2): 141-158.
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9 Appendix

9.1 Analysis of best response

In the regression analysis in Table 5, the dependent variable is the absolute value of the

difference between a subject’s choice and their best response. The independent variables

are the same as those used in Table 2 except we add an interaction of treatment with
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Effort (1)
n = 3

(2)
n = 6

(3)
n = 3

(4)
n = 6

Constant 22.09∗∗
(5.44)

15.58
(14.16)

27.52
(37.57)

48.22∗∗∗
(11.28)

LOS −4.48∗
(2.54)

−15.44∗∗∗
(2.44)

−24.55∗∗∗
(2.48)

−26.69∗∗∗
(2.84)

W&L −5.96∗∗∗
(2.18)

−12.63∗∗∗
(2.72)

−21.65∗∗∗
(3.68)

−25.79∗∗∗
(1.93)

Age −0.02
(0.29)

0.40
(0.51)

0.28
(1.06)

−0.14
(0.30)

Risk Aversion −0.42
(0.61)

−0.13
(0.34)

−0.79
(1.19)

−1.81
(1.11)

Loss Aversion −0.17
(0.87)

−0.03
(0.36)

0.76
(1.92)

−1.71
(1.68)

Female 1.41
(1.60)

3.89
(2.39)

−0.09
(5.10)

2.27
(1.68)

Round 0.55∗∗
(0.25)

0.24∗∗∗
(0.01)

Round*LOS −0.89∗∗∗
(0.27)

−0.47∗∗∗
(0.04)

Round*W&L −0.74∗∗∗
(0.26)

−0.60∗∗∗
(0.18)

# of observations 2160 2160 108 108
# of clusters 6 6 6 6

Table 5: OLS regression results. Standard errors, clustered by session and BRL adjusted,
are in parentheses. In columns (1) and (2), the dependent variable is the absolute differ-
ence between effort and best response. In columns (3) and (4), the dependent variable
is the absolute difference between effort and best response to beliefs in the last period.
Significance levels: *** - 1%, ** - 5%, * - 10%.
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round to account for the diverging time trends. Columns (1) and (2) report the basic

results for contests of size three and six respectively.

Looking first at the results for contests of size three, we see that subjects in LOS and

W&L are better at best responding than subjects in the WIN treatment. We also see

from the positive sign on the coefficient for round that in the WIN treatment, they are

getting worse at best responding over time. Wald tests confirm that in the LOS and W&L

treatments, subjects are actually improving over time (p < 0.01 for both). Turning to

the results for contests of size six, we also see that subjects are better at best responding

in the LOS and W&L than in the WIN treatment. The same dynamics seen in contests

of size three are also apparent in contests of size six. Over time, subjects do appear to

be getting better at best responding in the LOS and the W&L treatment (p < 0.01 and

p = 0.05 respectively).

9.2 Learning dynamics

In this section, we describe the reinforcement and directional learning mechanisms more

formally. Suppose that in round t subject i has some propensity q
(i)
j (t) to choose effort

j which results in payoff π
(i)a
j (t).27 The subject chooses effort j if they believe that the

expected payoff from doing so, π
(i)e
j (t), is greater than the payoff from choosing any other

effort, i.e., π
(i)e
j (t) > π

(i)e
−j (t). With the expected payoff in round t as a reference point, the

outcome, π
(i)a
j (t), will be viewed as positive (negative) reinforcement if π

(i)a
j (t) > π

(i)e
j (t)

(π
(i)a
j (t) > π

(i)e
j (t)). We assume that, having observed the outcome of round t, subjects

update their propensities so that q
(i)
j (t+ 1) = q

(i)
j (t) + π

(i)a
j (t)− π(i)e

j (t) and q
(i)
−j(t+ 1) =

q
(i)
−j(t). The probability, p

(i)
j (t), of subject i choosing effort j in round t is given by

p
(i)
j (t) =

q
(i)
j (t)∑J

h=1 q
(i)
h (t)

(17)

Here, J is the highest possible effort.

There are two main implications to this simple model. The first is that strategies

which lead to payoffs which are lower than expected will have a lower probability of

being played in the future. The second implication can be seen by noticing that because

probabilities p
(i)
j (t) are concave in propensities, reinforcement has a diminishing effect

over time.

The above model does a nice job of explaining the dynamics that could lead to the

27We will assume the initial propensities qij(1) are fixed and will not explore what may cause subjects
to develop initial propensities.
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behavior we observe in the loser treatments when a subject is ranked last. It dictates

that a subject will update their probabilities based solely on the wrong expectations of

payoff from choosing effort j, i.e., the information they receive informs them that a higher

effort could have potentially led to a higher payoff. More specifically, we can think that

subjects are updating expectations such that π
(i)e
j (t+ 1) = π

(i)a
j (t). What is missing from

this analysis is the behavior when a subject realizes they are not last (or are first). Figure

3 hints that the reaction in the two scenarios is not symmetric since average effort is not

declining over time in all of the treatments. If the round-to-round updating in the two

scenarios were symmetric, a downward time trend in effort would be observed since there

are more people who are not last (n-1) than who are last (1). The direction of updating,

however, is different in this scenario. If a subject realizes they are not last, this does not

mean they had wrong expectations about the payoff they would receive from choosing

effort j; it means they had the wrong expectations about the payoffs from the other

strategies, i.e., the outcome informs them that a lower effort could have potentially led to

a higher payoff. More formally, we can say that a subject’s expected payoff from choosing

any effort is a function of their beliefs about the payoffs they can receive from any other

effort j. For example, π
(i)e
j′ (t) = αjj′(t)π

(i)e
j (t) where αjj′ is a parameter accounting for

the distance between j and another effort j′. As j′ gets closer to j, αjj′ approaches 1

from above or below. Notice that if a player thinks that choosing effort j is optimal, then

αjj′ < 1.28 In each round then, a subject updates their expected payoff from choosing

any effort and they update how this payoff relates to similarly chosen efforts.

The implication of a structure where there exists a correlation in profits as defined

is obvious and results in the asymmetries observed. This can be explained by noticing

that by choosing a higher effort in round t after losing in round t− 1 results in a higher

cost, but these costs are offset by the much larger gain attainable if the subject is not

last. This is in contrast to a subject who finds they are not last. The gain from choosing

a lower effort is small since it is only a cost savings, but the potential loss if the subject

is last is quite large. Or, put more simply, the potential payoff gain in round t from large

deviations from the effort chosen in round t− 1 is much greater if the subject was last in

round t− 1 than if they were not last.

9.3 Experimental instructions

Instructions for WIN6:

Welcome to an experiment on decision making. We thank you for your participation!

28This is similar in spirit to the “experimentation” parameter in the Roth-Erev Model.
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The experiment will be conducted on the computer. All decisions and answers will

remain confidential and anonymous. Please do not talk to each other during the experi-

ment. If you have any questions, please raise your hand and we will come by and answer

it.

During the experiment, you and the other participants will be asked to make a series

of decisions. Your payment will be determined by your decisions as well as the decisions

of the other participants according to the following rules.

During the experiment you will be earning tokens. At the end of the experiment,

tokens will converted to Euros at a rate of 2000 tokens = 1 Euro. Today’s experiment

consists of several parts. The instructions for the first part are given below.

Rounds and Groups:

The first part consists of 20 rounds. The computer will choose 4 rounds at random

for which to pay you. You will not be told which rounds will be paid until the conclusion

of all parts of the experiment.

At the beginning of each round you will be randomly matched in a Group with 5 other

participants. This means that in each round the groups are re-matched, so that they will

not be the same (unless by chance). You will never be told the identity of those in your

Group and they will never be told your identity.

Tasks:

Your task in today’s experiment is to choose a number between 1 and 96. You will

enter your chosen number in the blank box on your computer screen labeled “Number

Chosen” and then hit “Continue.” The sheet labeled “Decision Costs” shows you the

cost in tokens associated with each number. Notice that higher the number chosen, the

higher the associated cost. Each member in your Group has the same cost sheet as you.

In each round, all Group members choose his/her numbers simultaneously. You will not

know the number chosen by any of your Group members when you make your choice and

likewise, they will not know the number you chose when they make their choice.

After all group members have made their choice, the computer will draw a random

number between -44 and 44, independently for each member of your group. All numbers

in this range are equally likely and each number drawn does not affect the number drawn

for someone else in your Group. This number will be added (or subtracted) from your

chosen number to make your total number.

Payoffs:

The computer will compare your total number with the total number of those in

your Group. The person with the highest total number will receive 14,667 tokens while
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the remaining 5 members of the group will receive 5867 tokens. The cost of each chosen

number will be subtracted from this amount to give you the total payment for each round

should that round be chosen for payment.

At the end of each round you will be shown the random number chosen for you, your

resulting total number, and whether your total number is higher than anyone’s in your

Group.

Example:

Let’s go through an example. Suppose you chose the number 50 and the other mem-

bers of your group chose 32, 65, 80, 46 and 18. Also suppose that the random number

drawn for you was 26 and the random number drawn for the other members of your

Group were -12, 41, -32, 13 and 7 respectively. This would mean your total number is

50+26=76. The total numbers of the other group members would be 20, 106, 48, 59 and

25. In this example, you have the second highest number and thus would receive 5867 -

342 = 5534 tokens if this round were randomly chosen for payment. Notice that the 633

tokens corresponds to the cost associated with a chosen number of 50.

If on the other hand, you had chosen 85 and all other chosen numbers and random

draws remained the same, you would have a total number of 85+26=111. This would

mean you would have the highest total number and would receive 14667-4247=10420

tokens if this round were randomly chosen for payment.

As a final point, once you have made your decisions or are finished viewing the results

please hit the continue button. No one can move to the next round until everyone in the

experiment has clicked on this button so make sure to pay attention to the screen to keep

the experiment moving along.

Are there any questions?
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Decision costs

Chosen Token Chosen Token Chosen Token Chosen Token

Number Cost Number Cost Number Cost Number Cost

1 3 29 120 57 488 85 4247

2 5 30 127 58 515 86 4909

3 8 31 134 59 543 87 5752

4 11 32 141 60 573 88 6851

5 14 33 148 61 606 89 8328

6 17 34 156 62 641 90 10395

7 20 35 164 63 678 91 13434

8 23 36 173 64 719 92 18223

9 27 37 181 65 763 93 26561

10 30 38 191 66 810 94 43539

11 33 39 200 67 862 95 89639

12 37 40 210 68 918 96 353185

13 41 41 221 69 980

14 45 42 232 70 1048

15 49 43 243 71 1122

16 53 44 255 72 1205

17 57 45 268 73 1296

18 61 46 281 74 1398

19 66 47 295 75 1512

20 70 48 310 76 1641

21 75 49 326 77 1786

22 80 50 342 78 1952

23 85 51 360 79 2142

24 91 52 378 80 2362

25 96 53 397 81 2619

26 102 54 418 82 2921

27 108 55 440 83 3281

28 114 56 463 84 3715
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