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Abstract

Many real world problems are high-dimensional in that their solution is a func-
tion which depends on many variables or parameters. This presents a computational
challenge since traditional numerical techniques are built on model classes for func-
tions based solely on smoothness. It is known that the approximation of smoothness
classes of functions suffers from the so-called ‘curse of dimensionality’. Avoiding this
curse requires new model classes for real world functions that match applications.
This has led to the introduction of notions such as sparsity, variable reduction, and
reduced modeling. One theme that is particularly common is to assume a tensor struc-
ture for the target function. This paper investigates how well a rank one function
f(z1, ..., mq) = fi(z1) - fa(zq), defined on Q = [0,1]%, can be captured through point
queries. It is shown that such a rank one function with component functions f; in
W2 ([0,1]), can be captured (in L) to accuracy O(C(d,r)N~") from N well chosen
point evaluations. The constant C(d,r) scales like d¥". The queries in our algorithms
have two ingredients, a set of points built on the results from discrepancy theory and
a second adaptive set of queries dependent on the information drawn from the first
set. Under the assumption that a point z € Q with non-vanishing f(z) is known, the
accuracy improves to O(dN™").
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1 Introduction

A recurring model in certain high-dimensional application domains is that the target function
is a low rank tensor, or can be approximated well by a linear combination of such tensors.
For an overview of numerical methods based on this concept and their applications, we
refer to [3] and the references therein. We consider a fundamental question concerning the
computational complexity of such low rank tensors: If we know that a given function has
such a tensor structure, to what accuracy can we approximate it using only a certain number
of deterministically chosen point queries? In this paper, we treat this problem in the simplest
setting where the tensors are of rank one.

Given an integer r, we denote by W/ [0,1] the set of all univariate functions on [0, 1]
which have r weak derivatives in L., with the semi-norm

flwzon = 17l (1.1)

We shall study the following classes of rank one tensor functions defined on Q := [0, 1]¢. If
r is a positive integer and M > 0, we consider the class of functions

d

Note that we could equally well replace the bound 1 appearing in the definition by an
arbitrary positive value and arrive at the above class by simple rescaling. Note also that
whenever || f|| 1) < 1, we can achieve the restriction on the || f;||z.j0,1) in this definition by
choosing a scaling of the individual factors so that || fil[z_ 01 < 1 for all 4.

Let us note at the outset that F” is closely related to a class of functions with bounded
mixed derivatives. We use the notation D” = D}! --- D} for multivariate derivatives. Then,

the class of functions MW7 (L) consists of all functions f(zy,...,z4) for which
[l oy = Y. D" flliw@ < oo, (1.2)
veA\{0}

where A, = {v = (v1,...,vq) : 0<uy <r, i=1,...,d}. We define the norm on this
space by adding || f| () to the above semi-norm. This is a well studied class of functions,
especially for the analysis of cubature formulae. Clearly, we have that F"(M) is contained
in a finite ball of MW" (L (£2)) (see Chapters III and V of [7]). It is known that [1, Lemma
4.9] one can sample functions in MW7 (L (€2)) on a set of points (called sparse grids) with
cardinality N and use these point values to construct an approximation to f with accuracy
O, )| lasw o) N flog NJ+HDED iy L ().

The main result of the present paper is to present a query algorithm for functions f € F.
The query algorithm works without knowledge of M, but would require a bound on r. We
show that we can query such a function f at O(N) suitably chosen points and from these
queries we can construct an approximation fN that approximates f to accuracy C(r,d)N~".
Thus, for rank one tensors, the [log N] (r+1(d=1) appearing for mixed norm classes can be
removed. Moreover, fN is again separable, that is, the algorithm preserves this structural
property of the original function f.



Given a budget N, our queries of f will have two stages. The first queries of f occur
at a set of O(N) points built from discrepancy theory. If f(z) # 0 for one of the points z
of the initial query then we continue and sample f at O(N) points built from z. We then
show how to build an approximation fN to f from these query values which will provide the
required accuracy.

2 Univariate approximation

Our construction of approximations of multivariate functions in F"(M) is based on the
approximation of univariate functions. It is well known that for ¢ € WZ[0,1], given the
values g(i/N), we can construct an approximation Zy((g(i/N))X ) that satisfies

lg = Zn (/NN E Do) < Cor) min{llgloous lolweon N7 N =1,2.... (2.1)

There are many ways to construct such an approximation operator Zy. One is to use a
quasi-interpolation operator built on univariate splines of order r. Another is to simply
take for each interval I = [j — 1/N,j/N), j =1,...,N, a set S; of r consecutive integers
t+1,...,i+r that contain j —1 and 7, and then define g on the interval I as the polynomial
of order r that interpolates g at the points in S;.

In going further, we use any such construction of an operator Zy. We note that Zy needs
as input any vector y = (yo,...,yn). The y; are usually taken as function values such as
y; = g(i/N) above.

We need a second result about univariate functions summarized in the following lemma.

Lemma 2.1 Suppose g € W2 [0, 1] is a univariate function that vanishes at r pointsty, . .., t,
[0,1]. If J is the smallest interval that contains all of the t;, j=1,...,r, then

9] < 119" 2o (1] + dist(¢, 7)), ¢ € [0,1]. (2.2)

Proof: Note that each weak derivative ¢ for k =0,...,r —1isin W1[0,1], and can thus
be identified with a continuous function. From Rolle’s theorem, for each £ = 0,...,r — 1,
there is a point & in .J such that g*)(&;) = 0. This gives the bound

19" O] < N9 N wolt = &1l < N9 o (|| + dist(t, J)), ¢ € [0,1]. (2.3)
From this, we obtain the bound

1972 @] < 197 oy (1] + dist(t, J)) |t — &
<N N pony (1] + dist (¢, 1))%, ¢ e [0,1]. (2.4)

Continuing in this way, we arrive at (2.2). ]



3 Low-discrepancy point sequences

The first set of query points that we shall employ is a low-discrepancy sequence that is
commonly used in quasi-Monte Carlo methods for high-dimensional integration. Roughly
speaking, stopping at any place in the sequence gives a well scattered set of points in 2. The
particular property we are interested in here is that no d-dimensional rectangle contained in
() can have large measure without containing at least one of these points. We shall adopt
a method for constructing such a sequence given in [4, 5] which rests on base ¢ expansions.
For any prime number ¢ and any positive integer n, we have a unique base ¢ representation

n = ijqj, b; = b;(q,n) €{0,...,q—1}.
7=0

The b; are the ‘bits’ of n in base ¢. For any n < ¢™, this sequence has all zero entries in
positions j > m.
With the bit sequence (b;) = (bj(n)) in hand, we define

Ye(n) = Z big .
j=0

If ¢ is fixed, the set of points [';(m) := {v,(n) : 1 < n < m} are in (0,1), and any point
x € (0,1) satisfies

dist(z,I'y(m)) < q/m. (3.1)
Indeed, if m = ¢* for some positive integer k, then I';,(m) contains all points j/m, j =
1,...,m — 1 and so the distance in (3.1) does not exceed 1/m. The general result for
arbitrary m follows from this.

Definition 3.1 (Halton sequence) Given the space dimension d > 1, we choose the first
d prime numbers py, . ..,pq. The sequence of points (Z)ren in [0, 1] is then defined by

B = (Y (K), - 70a(R)) - (3:2)

The following theorem (see [6] and [2]) shows that this sequence of points is well scattered
in the sense that we need.

Theorem 3.2 Let Ty, k =1,2,..., be defined as in (3.2). For any d-dimensional rectangle
R = (a1,01) x...x (ag, Ba) with 0 < a; < B; < 1 that does not contain any of the points iy,
k=1,...,N, we have the following bound for the measure |R| of R:

Cr(d)
Rl < —— (3.3)

where Cy(d) == 27 T[L, pi.

Proof: For completeness, we give the short proof of this lemma. We first consider any
d-dimensional rectangle Ry C €2 of the form

Ry:=1y x - x Iy, Li:==p"[t;,(t; +1)), i=1,....4d, (3.4)
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where the v; € N and satisfy p{* - - - p* < N and the ¢; are positive integers. Such a rectangle
obviously has volume > 1/N. We shall show that such a rectangle always contains a point
Iy for some 1 < k£ < N and thus obtain the theorem for rectangles of this special type.

Since Ry C Q, each ¢; is in {0,...,p;* — 1} and therefore has a unique expansion
l/i—l
b = Z @i jP;
§=0

with a; ; € {0,...,p; — 1}. We introduce the integers

l/i—l

m; ‘= Z Qg —j—1 pg, 1= 1, ey d, (35)
j=0

which satisfy
Vpi(mi):tip;w, 1=1,...,d.

From the Chinese remainder theorem, there is an integer k < p7* - - - p;* < N such that
k=m; modp/, i=1,...,d (3.6)

It follows that
Voo (k) = tip; " e, i=1,....d,

where 0 < ¢ < p; ", i=1,...,d. Therefore &}, = (v, (k),...,7,(k)) is in Ry and we have
proven the theorem in this special case.

We now consider the general rectangle R in the statement of the theorem. We claim
that R contains a special rectangle Ry of the form (3.4) of volume larger than Cy(d)~!|R).
Indeed, for the given «; < 3;, we define v; to be the smallest integer such that there exists
an integer t; with [t;p™, (t; + 1)p™) C (ay, ;). Then, B; — a; < 2p~**1 since otherwise
v; would not be minimal. This means that R contains a special rectangle Ry with volume
|Ro| > Cy(d)~YR|. Since R does not contain any of the &3, k = 0,..., N, the same is true
of Ry. Hence |Ry| < N~' and so |R| < Cy(d)N~1. [

4 Query points and the approximation

We now describe our query points. These will depend on r. If » = 1, then given our budget N
of queries, it would be sufficient to simply query f at the points 1, Zs, ..., Zxy in succession.
However, when r > 1, we will occasionally have to query f at a cloud of points near each
in order to take advantage of the higher smoothness of f. We fix r > 1 in what follows. We
next describe the cloud of points where we might query f. We define for each k =1,2,...,
and each n > k,

T, (&) == {ik—kzrﬁ e : jz-6{—7"—1—1,...,0,...,7"—1}}OQ, (4.1)



where e;, i = 1,...,d, is the usual coordinate basis for R?. For each k,n, this set contains
at most (2r — 1)¢ points and contains at least r¢ points. When asked to query f at one of
the sets I', (), we traverse these points in lexicographic order.

Our query algorithm given below will first sample f at point clouds I',, (Zx), k =1,....
If we stipulate the budget N in advance, we can then fix the n,. However, we would like
this part of the sampling to be progressive where if the budget N changes, one still utilizes
the previous samples. For this reason, we will occassionally update the assignment of ny.

Given a function f and a budget index N, we proceed to query f as follows.

Query 1:

Step 1: We ask for the value of f at the points in I'y(Z;).

Step k: We sample f at the points in I'y(#;). We also return to each j < k where we have
already sampled f at the point cloud I',,(#;) for certain n. If the largest value n = n; where
we have done this sampling satisfies 2™ < k, then we sample f at the additional points in
L ().

Stopping criteria: If in the process of doing this sampling, we arrive at a point z for which
f(2) # 0, then the querying stops and we go directly to Query 2. If it has not stopped
earlier, we stop the querying when £k = N.

Note that the updated queries in Query 1 occur very infrequently.

Query 2: If f(z) # 0 for the stopping point z of Query 1, then for this z, we define 2/
as the vector which agrees with z in all but the j-th coordinate and is zero in the j-the
coordinate. We ask for the value of f at the points

7

& i=L..N, j=1...d. (4.2)

Zji = 2! +

We define Ay(f) as the set of points where we have sampled f. We want next to bound
the cardinality of Ax(f). Since #(T',(21)) < (2r — 1)%, for all choices n, k, the only issue in
bounding the number of samples in Query 1 will be how many times we have resampled
f near ;. Now, for a given Z;, we originally sample f at the points I';(#;). This sampling
will be updated to a sampling I'y; (Z;) if 2/ < N. It will be updated again if 22 < N and so
on. It follows that the only #; whose sampling is updated are those with j <log, NV and the
maximum number of times it is updated is bounded by log, N. Thus, the total number of
samples taken in Query 1 does not exceed (2r — 1)4[N + (logy N)?] < 2- (2r — 1)4N. This
gives that the total number of samples taken is

#(An(f)) < Ci(d,r) N, Ci(d,r) ==2(2r —1)* +d. (4.3)

We now describe how we define the approximation fN to f constructed from these query
values.

Case 1: If f vanishes at each of the query points in Query 1 then we define fy to be
identically zero on ).

Case 2: If f(z) # 0 for the stopping point z of Query 1, then we define
Fy=In(f(Z0)L), j=1,....4d

6



where Zy is the operator of §2. Then, with A := f(z), we define our approximation to f as

fn(z) = A" (1) - Fy(ag). (4.4)

5 Error of approximation

We now analyze how well fy approximates f.

Theorem 5.1 If f € F'(M), then for each N =1,2,..., we have
1f = Fillie) < [Cu(@)] (2M)INT, (5.1)

with Cy(d) as in Theorem 3.2. If, however, Query 1 stops at a point z where f(z) # 0,
and N satisfies C1(r) M N7 < 1/(2d), then

If = Fllow@ < 2Ci(r)d M N (5.2)

The remainder of this section is devoted to the proof of this theorem. We will consider
the two cases used for the definition of fy.

5.1 Proof of Theorem 5.1 in Case 1
We fix an arbitrary N. We begin with

Remark 5.2 For each k = 1,...,N, there is a j € {1,...,d} such that f; vanishes at r
distinct points in [0,1] of the form (Zy);j+tij, i € {—r+1,...,0,...r =1} with |t;;] < N1

Proof of Remark 5.2 We know that f vanishes at all points in I, (Z;) where ny is the
last update associated to Z. We also know that 27" < 1/N. We now prove the remark for
tij = 7,2+k Suppose that the statement does not hold, then for this value of k£ and for each
j=1,...,dthereisani; € {—r—+1,...,0,...r—1} such that z; :== (&);+ (r2")"'i; € [0,1]
and f;(z;) # 0. But then z := (21,...,24) € I, (2) and f(z) # 0, which is the desired
contradiction. U

For each k, we let Cj, be the set of all such integers j € {1,...,d} that satisfy the Remark.
We refer to the integers j in Cy as the colors of .

In the case we are considering, we know that f vanishes at each of the points of Query
1 and that fy = 0. Let x = (xy,...,24) € Q. Our goal is to bound the value f(z). We
define

§; = 0;(x) == inf{|(2); — xj]: k€ {l,...,N} such that j € Cx}, j=1,....,d. (5.3)

In other words, d,(z) tells us how well we can approximate z; by the numbers (), using
those k for which j is in Cy.

It follows that the rectangle R := Qﬂnjzl(x]- —9;, x;+9;) does not contain any points Zy,
which have color j and this is true for each 7 = 1,...,d. Since, as we have already observed
in the Remark, every z; has some colors, it follows that R does not contain any of the points

7



Ty, k=1,...,N. From Theorem 3.2, we have that |R| < Cy(d)/N. Since |R| > H;.lzl 05,
we obtain

[1 0 < Cuta)/N. (5.4)

Now fix any 1 < 7 < d. We know from the definition of coloring and the definition of 9,
that there exist r points t1,...,t,. € [0, 1] contained in an interval J of length 1/N such that
dist(x;, J) < J; and f; vanishes at each of these points. Hence, from Lemma 2.1, we obtain

1Fi @) < 0N o (171 +6;)" < M(N'+65)" < 2M max{N"",87}. (5.5)

It follows that

@) =TT o)l < 2°M [ [max{N 7,8} < 2MUCu@I N7 (5.6)

i=1 j=1
Here in the derivation of the last inequality we used (5.4) and the fact that all the §;,

j=1,...,d are no greater than one. This completes the proof of the theorem in this case.

5.2 Proof of Theorem 5.1 in Case 2

We now consider the second possibility where f(z) =: A # 0 for some z = (21, ..., 2zq4) used
in Query 1. Let A; =[], fi(z) for j = 1,...,d. Sampling f at the points Z;; of (4.2)
thus yields the values f(Z;;) = A;f;(i/N), i =1,2,..., N. Hence, from (2.1) we obtain

1A fi(x) = Fj(x)||poion) S Ci(r) A;MNT", j=1,...,N.

In other words,
1f; = A7 Fill oy S Ci(r) MNT", j=1,...,N. (5.7)

Since H?Zl A; = A% we can write our approximation in the form fy(z) = H;l:1 A;lﬂ(xj).
Hence, the approximation error can be rewritten as

fz) = fn(x) = Hfj(%‘) - HAflﬂ(xj)~ (5.8)

Now, for any numbers y;,y; € [-L, L], j = 1,...,d, we have

<dL*' max |y; —yil. (5.9)

1<j<d

d
i ya—y Yl = ‘th..-yj—ly}ﬂ--'y&(yj — )
j=1
We use this inequality with y; = f;(z;) and y; = A;le(:cj), in which case we can take
L:=1+Cy(r)M N~" to obtain
1f = PNl < d (14 Co(r) M N C(r) MNTT, (5.10)

where we have used (5.7).



For ¢ := Cy(r) M N~" we have ¢ < 1/(2d) by our assumption, and hence

d—1 d—1

(1+e)t = y <d21>g"§ 1+(d—1)5+2((d—1)5)£§ 14+2(d—1)e.

=2

Using this in (5.10), we obtain || f — fx|lro@ < de + 2d(d — 1)e* < 2ds, completing the
proof of the theorem. O

6 Optimality of the Algorithm

It is quite easy to see that our algorithm has asymptotically optimal performance, in terms
of N, on the class F"(M).

Theorem 6.1 Given positive integers r and d, there is an absolute constant c(d,r) such that
the following holds: Given any algorithm which uses N point queries to approzimate f by
An(f), there is a function f € F"(M) such that

1f = An ()i = c(r, ) MINT". (6.1)

Proof: We can assume without loss of generality that N = m? — 1 for some positive integer
m. We divide Q into N + 1 cubes of sidelength 1/m. To the proposed query algorithm
we return the value zero to each of the N query points. Now we can choose a cube ) of
sidelength 1/m which contains none of the N query points. There is a function g € F"(M)
which is supported in Q and has maximum value [¢(r)Mm~"]%. Since the proposed algorithm
gives An(g) = An(0), for one of the two functions f =0 or f = g, (6.1) follows. O

Let us finally note that our estimate for the computational work in our algorithm is
dominated by Query 1. Under additional assumptions on f, Query 1 can have much lower
complexity. For example, if each component function f; is a polynomial of a fixed degree p,
or more generally if each component has at most a fixed number p of zeros, then Query 1
will terminate after at most p steps. Indeed, the Halton sequence never repeats a coordinate
value.
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