

Approximation of High-Dimensional Rank One Tensors *

Markus Bachmayr, Wolfgang Dahmen, Ronald DeVore, Lars Grasedyck

Institut für Geometrie und Praktische Mathematik Templergraben 55, 52056 Aachen, Germany

^{*} This research was supported by the Office of Naval Research Contracts ONR-N00014-08-1-1113, ONR N00014-09-1-0107, and ONR N00014-11-1-0712; the AFOSR Contract FA95500910500; the NSF Grants DMS-0810869, and DMS 0915231 and the DFG Special Priority Program SPP-1324. This research was done when R. D. was a visiting Professor at RWTH and the AICES Graduate Program. This publication is based in part on work supported by Award No. KUS-C1-016-04 made by King Abdullah University of Science and Technology (KAUST)

Approximation of High-Dimensional Rank One Tensors *

Markus Bachmayr, Wolfgang Dahmen, Ronald DeVore, and Lars Grasedyck

March 14, 2013

Abstract

Many real world problems are high-dimensional in that their solution is a function which depends on many variables or parameters. This presents a computational challenge since traditional numerical techniques are built on model classes for functions based solely on smoothness. It is known that the approximation of smoothness classes of functions suffers from the so-called 'curse of dimensionality'. Avoiding this curse requires new model classes for real world functions that match applications. This has led to the introduction of notions such as sparsity, variable reduction, and reduced modeling. One theme that is particularly common is to assume a tensor structure for the target function. This paper investigates how well a rank one function $f(x_1,\ldots,x_d)=f_1(x_1)\cdots f_d(x_d)$, defined on $\Omega=[0,1]^d$, can be captured through point queries. It is shown that such a rank one function with component functions f_j in $W^r_{\infty}([0,1])$, can be captured (in L_{∞}) to accuracy $O(C(d,r)N^{-r})$ from N well chosen point evaluations. The constant C(d,r) scales like d^{dr} . The queries in our algorithms have two ingredients, a set of points built on the results from discrepancy theory and a second adaptive set of queries dependent on the information drawn from the first set. Under the assumption that a point $z \in \Omega$ with non-vanishing f(z) is known, the accuracy improves to $O(dN^{-r})$.

Key words and phrases: query algorithms, high-dimensional approximation, separable functions, rate of approximation

AMS Subject Classification: 41A25, 65D15

^{*}This research was supported by the Office of Naval Research Contracts ONR-N00014-08-1-1113, ONR N00014-09-1-0107, and ONR N00014-11-1-0712; the AFOSR Contract FA95500910500; the NSF Grants DMS-0810869, and DMS 0915231 and the DFG Special Priority Program SPP-1324. This research was done when R. D. was a visiting Professor at RWTH and the AICES Graduate Program. This publication is based in part on work supported by Award No. KUS-C1-016-04 made by King Abdullah University of Science and Technology (KAUST)

1 Introduction

A recurring model in certain high-dimensional application domains is that the target function is a low rank tensor, or can be approximated well by a linear combination of such tensors. For an overview of numerical methods based on this concept and their applications, we refer to [3] and the references therein. We consider a fundamental question concerning the computational complexity of such low rank tensors: If we know that a given function has such a tensor structure, to what accuracy can we approximate it using only a certain number of deterministically chosen point queries? In this paper, we treat this problem in the simplest setting where the tensors are of rank one.

Given an integer r, we denote by $W^r_{\infty}[0,1]$ the set of all univariate functions on [0,1] which have r weak derivatives in L_{∞} , with the semi-norm

$$|f|_{W_{\infty}^{r}[0,1]} := ||f^{(r)}||_{L_{\infty}}.$$
 (1.1)

We shall study the following classes of rank one tensor functions defined on $\Omega := [0,1]^d$. If r is a positive integer and M > 0, we consider the class of functions

$$\mathcal{F}^r(M) := \left\{ f \in C(\Omega) \colon f(x) = \prod_{i=1}^d f_i(x_i) \text{ with } ||f_i||_{L_{\infty}[0,1]} \le 1, ||f_i||_{W_{\infty}^r[0,1]} \le M, \ i = 1, \dots, d \right\}.$$

Note that we could equally well replace the bound 1 appearing in the definition by an arbitrary positive value and arrive at the above class by simple rescaling. Note also that whenever $||f||_{L_{\infty}(\Omega)} \leq 1$, we can achieve the restriction on the $||f_i||_{L_{\infty}[0,1]}$ in this definition by choosing a scaling of the individual factors so that $||f_i||_{L_{\infty}[0,1]} \leq 1$ for all i.

Let us note at the outset that \mathcal{F}^r is closely related to a class of functions with bounded mixed derivatives. We use the notation $D^{\nu} = D^{\nu_1}_{x_1} \cdots D^{\nu_d}_{x_d}$ for multivariate derivatives. Then, the class of functions $MW^r(L_{\infty})$ consists of all functions $f(x_1, \ldots, x_d)$ for which

$$|f|_{MW^r(L_{\infty}(\Omega))} := \sum_{\nu \in \Lambda_r \setminus \{0\}} ||D^{\nu} f||_{L_{\infty}(\Omega)} < \infty, \tag{1.2}$$

where $\Lambda_r := \{ \nu = (\nu_1, \dots, \nu_d) : 0 \leq \nu_i \leq r, i = 1, \dots, d \}$. We define the norm on this space by adding $||f||_{C(\Omega)}$ to the above semi-norm. This is a well studied class of functions, especially for the analysis of cubature formulae. Clearly, we have that $\mathcal{F}^r(M)$ is contained in a finite ball of $MW^r(L_{\infty}(\Omega))$ (see Chapters III and V of [7]). It is known that [1, Lemma 4.9] one can sample functions in $MW^r(L_{\infty}(\Omega))$ on a set of points (called sparse grids) with cardinality N and use these point values to construct an approximation to f with accuracy $C(d,r)||f||_{MW^r(L_{\infty})}N^{-r}[\log N]^{(r+1)(d-1)}$ in $L_{\infty}(\Omega)$.

The main result of the present paper is to present a query algorithm for functions $f \in \mathcal{F}^r$. The query algorithm works without knowledge of M, but would require a bound on r. We show that we can query such a function f at O(N) suitably chosen points and from these queries we can construct an approximation \tilde{f}_N that approximates f to accuracy $C(r,d)N^{-r}$. Thus, for rank one tensors, the $[\log N]^{(r+1)(d-1)}$ appearing for mixed norm classes can be removed. Moreover, \tilde{f}_N is again separable, that is, the algorithm preserves this structural property of the original function f.

Given a budget N, our queries of f will have two stages. The first queries of f occur at a set of O(N) points built from discrepancy theory. If $f(z) \neq 0$ for one of the points z of the initial query then we continue and sample f at O(N) points built from z. We then show how to build an approximation \tilde{f}_N to f from these query values which will provide the required accuracy.

2 Univariate approximation

Our construction of approximations of multivariate functions in $\mathcal{F}^r(M)$ is based on the approximation of univariate functions. It is well known that for $g \in W^r_{\infty}[0,1]$, given the values g(i/N), we can construct an approximation $\mathcal{I}_N((g(i/N))_{i=1}^N)$ that satisfies

$$||g - \mathcal{I}_N((g(i/N))_{i=1}^N)||_{L_{\infty}[0,1]} \le C_1(r) \min\{||g||_{L_{\infty}[0,1]}, |g||_{W_{\infty}^r[0,1]} N^{-r}\}, \quad N = 1, 2 \dots$$
 (2.1)

There are many ways to construct such an approximation operator \mathcal{I}_N . One is to use a quasi-interpolation operator built on univariate splines of order r. Another is to simply take for each interval I = [j - 1/N, j/N), j = 1, ..., N, a set S_j of r consecutive integers i+1, ..., i+r that contain j-1 and j, and then define g on the interval I as the polynomial of order r that interpolates g at the points in S_j .

In going further, we use any such construction of an operator \mathcal{I}_N . We note that \mathcal{I}_N needs as input any vector $y = (y_0, \dots, y_N)$. The y_i are usually taken as function values such as $y_i = g(i/N)$ above.

We need a second result about univariate functions summarized in the following lemma.

Lemma 2.1 Suppose $g \in W^r_{\infty}[0,1]$ is a univariate function that vanishes at r points $t_1, \ldots, t_r \in [0,1]$. If J is the smallest interval that contains all of the t_i , $j = 1, \ldots, r$, then

$$|g(t)| \le ||g^{(r)}||_{L_{\infty}[0,1]} (|J| + \operatorname{dist}(t,J))^r, \quad t \in [0,1].$$
 (2.2)

Proof: Note that each weak derivative $g^{(k)}$ for k = 0, ..., r - 1 is in $W^1_{\infty}[0, 1]$, and can thus be identified with a continuous function. From Rolle's theorem, for each k = 0, ..., r - 1, there is a point ξ_k in J such that $g^{(k)}(\xi_k) = 0$. This gives the bound

$$|g^{(r-1)}(t)| \le ||g^{(r)}||_{L_{\infty}[0,1]}|t - \xi_{r-1}| \le ||g^{(r)}||_{L_{\infty}[0,1]}(|J| + \operatorname{dist}(t,J)), \quad t \in [0,1].$$
 (2.3)

From this, we obtain the bound

$$|g^{(r-2)}(t)| \le ||g^{(r)}||_{L_{\infty}[0,1]} (|J| + \operatorname{dist}(t,J)) |t - \xi_{r-2}|$$

$$\le ||g^{(r)}||_{L_{\infty}[0,1]} (|J| + \operatorname{dist}(t,J))^{2}, \quad t \in [0,1].$$
(2.4)

Continuing in this way, we arrive at (2.2).

3 Low-discrepancy point sequences

The first set of query points that we shall employ is a low-discrepancy sequence that is commonly used in quasi-Monte Carlo methods for high-dimensional integration. Roughly speaking, stopping at any place in the sequence gives a well scattered set of points in Ω . The particular property we are interested in here is that no d-dimensional rectangle contained in Ω can have large measure without containing at least one of these points. We shall adopt a method for constructing such a sequence given in [4, 5] which rests on base q expansions. For any prime number q and any positive integer n, we have a unique base q representation

$$n = \sum_{j>0} b_j q^j$$
, $b_j = b_j(q, n) \in \{0, \dots, q-1\}$.

The b_j are the 'bits' of n in base q. For any $n < q^m$, this sequence has all zero entries in positions $j \ge m$.

With the bit sequence $(b_i) = (b_i(n))$ in hand, we define

$$\gamma_q(n) := \sum_{j \ge 0} b_j q^{-j-1} .$$

If q is fixed, the set of points $\Gamma_q(m) := \{\gamma_q(n) : 1 \le n < m\}$ are in (0,1), and any point $x \in (0,1)$ satisfies

$$\operatorname{dist}(x, \Gamma_q(m)) \le q/m. \tag{3.1}$$

Indeed, if $m = q^k$ for some positive integer k, then $\Gamma_q(m)$ contains all points j/m, $j = 1, \ldots, m-1$ and so the distance in (3.1) does not exceed 1/m. The general result for arbitrary m follows from this.

Definition 3.1 (Halton sequence) Given the space dimension $d \ge 1$, we choose the first d prime numbers p_1, \ldots, p_d . The sequence of points $(\hat{x}_k)_{k \in \mathbb{N}}$ in $[0, 1]^d$ is then defined by

$$\hat{x}_k := \left(\gamma_{p_1}(k), \dots, \gamma_{p_d}(k)\right). \tag{3.2}$$

The following theorem (see [6] and [2]) shows that this sequence of points is well scattered in the sense that we need.

Theorem 3.2 Let \hat{x}_k , k = 1, 2, ..., be defined as in (3.2). For any d-dimensional rectangle $R = (\alpha_1, \beta_1) \times ... \times (\alpha_d, \beta_d)$ with $0 \le \alpha_i < \beta_i \le 1$ that does not contain any of the points \hat{x}_k , k = 1, ..., N, we have the following bound for the measure |R| of R:

$$|R| \le \frac{C_H(d)}{N},\tag{3.3}$$

where $C_H(d) := 2^d \prod_{i=1}^d p_i$.

Proof: For completeness, we give the short proof of this lemma. We first consider any d-dimensional rectangle $R_0 \subset \Omega$ of the form

$$R_0 := I_1 \times \dots \times I_d, \quad I_i := p_i^{-\nu_i} [t_i, (t_i + 1)), \ i = 1, \dots, d,$$
 (3.4)

where the $\nu_i \in \mathbb{N}$ and satisfy $p_1^{\nu_1} \cdots p_d^{\nu_d} \leq N$ and the t_i are positive integers. Such a rectangle obviously has volume $\geq 1/N$. We shall show that such a rectangle always contains a point \hat{x}_k for some $1 \leq k \leq N$ and thus obtain the theorem for rectangles of this special type.

Since $R_0 \subset \Omega$, each t_i is in $\{0, \ldots, p_i^{\nu_1} - 1\}$ and therefore has a unique expansion

$$t_i = \sum_{i=0}^{\nu_i - 1} a_{i,j} p_i^j$$

with $a_{i,j} \in \{0, \dots, p_i - 1\}$. We introduce the integers

$$m_i := \sum_{j=0}^{\nu_i - 1} a_{i,\nu_i - j - 1} p_i^j, \quad i = 1, \dots, d,$$
 (3.5)

which satisfy

$$\gamma_{p_i}(m_i) = t_i p_i^{-\nu_i}, \quad i = 1, \dots, d.$$

From the Chinese remainder theorem, there is an integer $k < p_1^{\nu_1} \cdots p_d^{\nu_d} \leq N$ such that

$$k \equiv m_i \mod p_i^{\nu_i}, \quad i = 1, \dots, d. \tag{3.6}$$

It follows that

$$\gamma_{p_i}(k) = t_i p_i^{-\nu_i} + \epsilon_i, \quad i = 1, \dots, d,$$

where $0 \le \epsilon_i < p_i^{-\nu_i}$, i = 1, ..., d. Therefore $\hat{x}_k = (\gamma_{p_1}(k), ..., \gamma_{p_d}(k))$ is in R_0 and we have proven the theorem in this special case.

We now consider the general rectangle R in the statement of the theorem. We claim that R contains a special rectangle R_0 of the form (3.4) of volume larger than $C_H(d)^{-1}|R|$. Indeed, for the given $\alpha_i < \beta_i$, we define ν_i to be the smallest integer such that there exists an integer t_i with $[t_i p^{-\nu_i}, (t_i+1)p^{-\nu_i}) \subset (\alpha_i, \beta_i)$. Then, $\beta_i - \alpha_i < 2p^{-\nu_i+1}$, since otherwise ν_i would not be minimal. This means that R contains a special rectangle R_0 with volume $|R_0| \ge C_H(d)^{-1}|R|$. Since R does not contain any of the \hat{x}_k , $k = 0, \ldots, N$, the same is true of R_0 . Hence $|R_0| \le N^{-1}$ and so $|R| \le C_H(d)N^{-1}$.

4 Query points and the approximation

We now describe our query points. These will depend on r. If r=1, then given our budget N of queries, it would be sufficient to simply query f at the points $\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_N$ in succession. However, when r>1, we will occasionally have to query f at a cloud of points near each \hat{x}_k in order to take advantage of the higher smoothness of f. We fix $r\geq 1$ in what follows. We next describe the cloud of points where we might query f. We define for each $k=1,2,\ldots$, and each $n\geq k$,

$$\Gamma_n(\hat{x}_k) := \left\{ \hat{x}_k + \sum_{i=1}^d \frac{j_i}{r2^n} e_i : \ j_i \in \{-r+1, \dots, 0, \dots, r-1\} \right\} \cap \Omega, \tag{4.1}$$

where e_i , i = 1, ..., d, is the usual coordinate basis for \mathbb{R}^d . For each k, n, this set contains at most $(2r-1)^d$ points and contains at least r^d points. When asked to query f at one of the sets $\Gamma_n(\hat{x}_k)$, we traverse these points in lexicographic order.

Our query algorithm given below will first sample f at point clouds $\Gamma_{n_k}(\hat{x}_k)$, $k = 1, \ldots$ If we stipulate the budget N in advance, we can then fix the n_k . However, we would like this part of the sampling to be progressive where if the budget N changes, one still utilizes the previous samples. For this reason, we will occassionally update the assignment of n_k .

Given a function f and a budget index N, we proceed to query f as follows.

Query 1:

Step 1: We ask for the value of f at the points in $\Gamma_1(\hat{x}_1)$.

Step k: We sample f at the points in $\Gamma_k(\hat{x}_k)$. We also return to each j < k where we have already sampled f at the point cloud $\Gamma_n(\hat{x}_j)$ for certain n. If the largest value $n = n_j$ where we have done this sampling satisfies $2^{n_j} < k$, then we sample f at the additional points in $\Gamma_k(\hat{x}_j)$.

Stopping criteria: If in the process of doing this sampling, we arrive at a point z for which $f(z) \neq 0$, then the querying stops and we go directly to **Query 2**. If it has not stopped earlier, we stop the querying when k = N.

Note that the updated queries in Query 1 occur very infrequently.

Query 2: If $f(z) \neq 0$ for the stopping point z of Query 1, then for this z, we define z^j as the vector which agrees with z in all but the j-th coordinate and is zero in the j-the coordinate. We ask for the value of f at the points

$$\tilde{z}_{j,i} := z^j + \frac{i}{N} e_j, \qquad i = 1, \dots, N, \quad j = 1, \dots, d.$$
 (4.2)

We define $\Lambda_N(f)$ as the set of points where we have sampled f. We want next to bound the cardinality of $\Lambda_N(f)$. Since $\#(\Gamma_n(\hat{x}_k)) \leq (2r-1)^d$, for all choices n, k, the only issue in bounding the number of samples in **Query 1** will be how many times we have resampled f near \hat{x}_j . Now, for a given \hat{x}_j , we originally sample f at the points $\Gamma_j(\hat{x}_j)$. This sampling will be updated to a sampling $\Gamma_{2^j}(\hat{x}_j)$ if $2^j < N$. It will be updated again if $2^{2^j} < N$ and so on. It follows that the only \hat{x}_j whose sampling is updated are those with $j \leq \log_2 N$ and the maximum number of times it is updated is bounded by $\log_2 N$. Thus, the total number of samples taken in **Query 1** does not exceed $(2r-1)^d[N+(\log_2 N)^2] \leq 2 \cdot (2r-1)^d N$. This gives that the total number of samples taken is

$$\#(\Lambda_N(f)) \le C_1(d,r) N, \quad C_1(d,r) := 2(2r-1)^d + d.$$
 (4.3)

We now describe how we define the approximation \tilde{f}_N to f constructed from these query values.

Case 1: If f vanishes at each of the query points in Query 1 then we define \tilde{f}_N to be identically zero on Ω .

Case 2: If $f(z) \neq 0$ for the stopping point z of Query 1, then we define

$$F_j := \mathcal{I}_N(f(\tilde{z}_{j,i})_{i=1}^N), \quad j = 1, \dots, d,$$

where \mathcal{I}_N is the operator of §2. Then, with A := f(z), we define our approximation to f as

$$\tilde{f}_N(x) := A^{-d+1} F_1(x_1) \cdots F_d(x_d).$$
 (4.4)

5 Error of approximation

We now analyze how well \tilde{f}_N approximates f.

Theorem 5.1 If $f \in \mathcal{F}^r(M)$, then for each N = 1, 2, ..., we have

$$||f - \tilde{f}_N||_{L_{\infty}(\Omega)} \le [C_H(d)]^r (2M)^d N^{-r},$$
 (5.1)

with $C_H(d)$ as in Theorem 3.2. If, however, Query 1 stops at a point z where $f(z) \neq 0$, and N satisfies $C_1(r) M N^{-r} < 1/(2d)$, then

$$||f - \tilde{f}_N||_{L_{\infty}(\Omega)} \le 2C_1(r) d M N^{-r}.$$
 (5.2)

The remainder of this section is devoted to the proof of this theorem. We will consider the two cases used for the definition of \tilde{f}_N .

5.1 Proof of Theorem 5.1 in Case 1

We fix an arbitrary N. We begin with

Remark 5.2 For each k = 1, ..., N, there is a $j \in \{1, ..., d\}$ such that f_j vanishes at r distinct points in [0, 1] of the form $(\hat{x}_k)_j + t_{i,j}$, $i \in \{-r + 1, ..., 0, ..., r - 1\}$ with $|t_{i,j}| \leq N^{-1}$.

Proof of Remark 5.2 We know that f vanishes at all points in $\Gamma_{n_k}(\hat{x}_k)$ where n_k is the last update associated to \hat{x}_k . We also know that $2^{-n_k} \leq 1/N$. We now prove the remark for $t_{i,j} = \frac{i}{r2^{n_k}}$. Suppose that the statement does not hold, then for this value of k and for each $j = 1, \ldots, d$ there is an $i_j \in \{-r+1, \ldots, 0, \ldots r-1\}$ such that $z_j := (\hat{x}_k)_j + (r2^{n_k})^{-1}i_j \in [0, 1]$ and $f_j(z_j) \neq 0$. But then $z := (z_1, \ldots, z_d) \in \Gamma_{n_k}(\hat{x}_k)$ and $f(z) \neq 0$, which is the desired contradiction.

For each k, we let C_k be the set of all such integers $j \in \{1, \ldots, d\}$ that satisfy the Remark. We refer to the integers j in C_k as the colors of \hat{x}_k .

In the case we are considering, we know that f vanishes at each of the points of **Query** 1 and that $\tilde{f}_N = 0$. Let $x = (x_1, \dots, x_d) \in \Omega$. Our goal is to bound the value f(x). We define

$$\delta_j := \delta_j(x) := \inf\{|(\hat{x}_k)_j - x_j| : k \in \{1, \dots, N\} \text{ such that } j \in \mathcal{C}_k\}, \quad j = 1, \dots, d.$$
 (5.3)

In other words, $\delta_j(x)$ tells us how well we can approximate x_j by the numbers $(\hat{x}_k)_j$ using those k for which j is in \mathcal{C}_k .

It follows that the rectangle $R := \Omega \cap \prod_{j=1}^d (x_j - \delta_j, x_j + \delta_j)$ does not contain any points \hat{x}_k which have color j and this is true for each $j = 1, \ldots, d$. Since, as we have already observed in the Remark, every \hat{x}_k has some colors, it follows that R does not contain any of the points

 \hat{x}_k , k = 1, ..., N. From Theorem 3.2, we have that $|R| \leq C_H(d)/N$. Since $|R| \geq \prod_{j=1}^d \delta_j$, we obtain

$$\prod_{j=1}^{d} \delta_j(x) \le C_H(d)/N. \tag{5.4}$$

Now fix any $1 \leq j \leq d$. We know from the definition of coloring and the definition of δ_j that there exist r points $t_1, \ldots, t_r \in [0, 1]$ contained in an interval J of length 1/N such that $\operatorname{dist}(x_j, J) \leq \delta_j$ and f_j vanishes at each of these points. Hence, from Lemma 2.1, we obtain

$$|f_j(x_j)| \le ||f^{(r)}||_{L_{\infty}[0,1]} (|J| + \delta_j)^r \le M (N^{-1} + \delta_j)^r \le 2M \max\{N^{-r}, \delta_j^r\}.$$
 (5.5)

It follows that

$$|f(x)| = \prod_{j=1}^{d} |f_j(x_j)| \le 2^d M^d \prod_{j=1}^{d} \max\{N^{-r}, \delta_j^r\} \le 2^d M^d [C_H(d)]^r N^{-r}.$$
 (5.6)

Here in the derivation of the last inequality we used (5.4) and the fact that all the δ_j , $j = 1, \ldots, d$ are no greater than one. This completes the proof of the theorem in this case.

5.2 Proof of Theorem 5.1 in Case 2

We now consider the second possibility where $f(z) =: A \neq 0$ for some $z = (z_1, \ldots, z_d)$ used in **Query 1**. Let $A_j := \prod_{i \neq j} f_i(z_i)$ for $j = 1, \ldots, d$. Sampling f at the points $\tilde{z}_{j,i}$ of (4.2) thus yields the values $f(\tilde{z}_{j,i}) = A_j f_j(i/N)$, $i = 1, 2, \ldots, N$. Hence, from (2.1) we obtain

$$||A_j f_j(x) - F_j(x)||_{L_{\infty}[0,1]} \le C_1(r) A_j M N^{-r}, \quad j = 1, \dots, N.$$

In other words,

$$||f_j - A_j^{-1} F_j||_{L_{\infty}[0,1]} \le C_1(r) M N^{-r}, \quad j = 1, \dots, N.$$
 (5.7)

Since $\prod_{j=1}^d A_j = A^{d-1}$, we can write our approximation in the form $\tilde{f}_N(x) = \prod_{j=1}^d A_j^{-1} F_j(x_j)$. Hence, the approximation error can be rewritten as

$$f(x) - \tilde{f}_N(x) = \prod_{j=1}^d f_j(x_j) - \prod_{j=1}^d A_j^{-1} F_j(x_j).$$
 (5.8)

Now, for any numbers $y_j, y_j' \in [-L, L], j = 1, ..., d$, we have

$$|y_1 \cdots y_d - y_1' \cdots y_d'| = \left| \sum_{j=1}^d y_1, \dots y_{j-1} y_{j+1}' \dots y_d' (y_j - y_j') \right| \le dL^{d-1} \max_{1 \le j \le d} |y_j - y_j'|.$$
 (5.9)

We use this inequality with $y_j := f_j(x_j)$ and $y'_j := A_j^{-1}F_j(x_j)$, in which case we can take $L := 1 + C_1(r) M N^{-r}$ to obtain

$$||f - \tilde{f}_N||_{L_{\infty}(\Omega)} \le d (1 + C_1(r) M N^{-r})^{d-1} C_1(r) M N^{-r}, \tag{5.10}$$

where we have used (5.7).

For $\varepsilon := C_1(r) M N^{-r}$ we have $\varepsilon < 1/(2d)$ by our assumption, and hence

$$(1+\varepsilon)^{d-1} = \sum_{\ell=0}^{d-1} \binom{d-1}{\ell} \varepsilon^{\ell} \le 1 + (d-1)\varepsilon + \sum_{\ell=2}^{d-1} ((d-1)\varepsilon)^{\ell} \le 1 + 2(d-1)\varepsilon.$$

Using this in (5.10), we obtain $||f - \tilde{f}_N||_{L_{\infty}(\Omega)} \le d\varepsilon + 2d(d-1)\varepsilon^2 \le 2d\varepsilon$, completing the proof of the theorem.

6 Optimality of the Algorithm

It is quite easy to see that our algorithm has asymptotically optimal performance, in terms of N, on the class $\mathcal{F}^r(M)$.

Theorem 6.1 Given positive integers r and d, there is an absolute constant c(d, r) such that the following holds: Given any algorithm which uses N point queries to approximate f by $A_N(f)$, there is a function $f \in \mathcal{F}^r(M)$ such that

$$||f - A_N(f)||_{L_{\infty}(\Omega)} \ge c(r, d)M^dN^{-r}.$$
 (6.1)

Proof: We can assume without loss of generality that $N = m^d - 1$ for some positive integer m. We divide Ω into N+1 cubes of sidelength 1/m. To the proposed query algorithm we return the value zero to each of the N query points. Now we can choose a cube Q of sidelength 1/m which contains none of the N query points. There is a function $g \in \mathcal{F}^r(M)$ which is supported in Q and has maximum value $[c(r)Mm^{-r}]^d$. Since the proposed algorithm gives $A_N(g) = A_N(0)$, for one of the two functions f = 0 or f = g, (6.1) follows. \square

Let us finally note that our estimate for the computational work in our algorithm is dominated by **Query 1**. Under additional assumptions on f, **Query 1** can have much lower complexity. For example, if each component function f_j is a polynomial of a fixed degree p, or more generally if each component has at most a fixed number p of zeros, then **Query 1** will terminate after at most p steps. Indeed, the Halton sequence never repeats a coordinate value.

References

- [1] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numerica 13(2004), 147–269.
- [2] A. Dumitrescu and M. Jiang, On the largest empty axis-parallel box amidst n points, Algorithmica, doi:10.1007/s00453-012-9635-5 (2012).
- [3] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series in Computational Mathematics 42, Springer-Verlag Berlin Heidelberg (2012).
- [4] J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math., 2(1960), 84–90.

- [5] J.M. Hammersley, Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci., 86(1960), 844–874.
- [6] G. Rote and R.F. Tichy, Quasi-Monte-Carlo methods and the dispersion of point sequences, Mathl. Comput. Modelling, 23(1996), 9–23.
- [7] V. Temlyakov, Approximation of Periodic Functions, Nova Science Publishers, Inc. (1993).

Markus Bachmayr,

Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, D-52056 Aachen Germany

bachmayr@igpm.rwth-aachen.de

Wolfgang Dahmen

Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, D-52056 Aachen Germany

dahmen@igpm.rwth-aachen.de

Ronald DeVore

Department of Mathematics, Texas A&M University, College Station, TX rdevore@math.tamu.edu

Lars Grasedyck,

Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, D-52056 Aachen Germany

lgr@igpm.rwth-aachen.de

Preprint Series DFG-SPP 1324

http://www.dfg-spp1324.de

Reports

- [1] R. Ramlau, G. Teschke, and M. Zhariy. A Compressive Landweber Iteration for Solving Ill-Posed Inverse Problems. Preprint 1, DFG-SPP 1324, September 2008.
- [2] G. Plonka. The Easy Path Wavelet Transform: A New Adaptive Wavelet Transform for Sparse Representation of Two-dimensional Data. Preprint 2, DFG-SPP 1324, September 2008.
- [3] E. Novak and H. Woźniakowski. Optimal Order of Convergence and (In-) Tractability of Multivariate Approximation of Smooth Functions. Preprint 3, DFG-SPP 1324, October 2008.
- [4] M. Espig, L. Grasedyck, and W. Hackbusch. Black Box Low Tensor Rank Approximation Using Fibre-Crosses. Preprint 4, DFG-SPP 1324, October 2008.
- [5] T. Bonesky, S. Dahlke, P. Maass, and T. Raasch. Adaptive Wavelet Methods and Sparsity Reconstruction for Inverse Heat Conduction Problems. Preprint 5, DFG-SPP 1324, January 2009.
- [6] E. Novak and H. Woźniakowski. Approximation of Infinitely Differentiable Multivariate Functions Is Intractable. Preprint 6, DFG-SPP 1324, January 2009.
- [7] J. Ma and G. Plonka. A Review of Curvelets and Recent Applications. Preprint 7, DFG-SPP 1324, February 2009.
- [8] L. Denis, D. A. Lorenz, and D. Trede. Greedy Solution of Ill-Posed Problems: Error Bounds and Exact Inversion. Preprint 8, DFG-SPP 1324, April 2009.
- [9] U. Friedrich. A Two Parameter Generalization of Lions' Nonoverlapping Domain Decomposition Method for Linear Elliptic PDEs. Preprint 9, DFG-SPP 1324, April 2009.
- [10] K. Bredies and D. A. Lorenz. Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding. Preprint 10, DFG-SPP 1324, April 2009.
- [11] K. Bredies and D. A. Lorenz. Regularization with Non-convex Separable Constraints. Preprint 11, DFG-SPP 1324, April 2009.

- [12] M. Döhler, S. Kunis, and D. Potts. Nonequispaced Hyperbolic Cross Fast Fourier Transform. Preprint 12, DFG-SPP 1324, April 2009.
- [13] C. Bender. Dual Pricing of Multi-Exercise Options under Volume Constraints. Preprint 13, DFG-SPP 1324, April 2009.
- [14] T. Müller-Gronbach and K. Ritter. Variable Subspace Sampling and Multi-level Algorithms. Preprint 14, DFG-SPP 1324, May 2009.
- [15] G. Plonka, S. Tenorth, and A. Iske. Optimally Sparse Image Representation by the Easy Path Wavelet Transform. Preprint 15, DFG-SPP 1324, May 2009.
- [16] S. Dahlke, E. Novak, and W. Sickel. Optimal Approximation of Elliptic Problems by Linear and Nonlinear Mappings IV: Errors in L_2 and Other Norms. Preprint 16, DFG-SPP 1324, June 2009.
- [17] B. Jin, T. Khan, P. Maass, and M. Pidcock. Function Spaces and Optimal Currents in Impedance Tomography. Preprint 17, DFG-SPP 1324, June 2009.
- [18] G. Plonka and J. Ma. Curvelet-Wavelet Regularized Split Bregman Iteration for Compressed Sensing. Preprint 18, DFG-SPP 1324, June 2009.
- [19] G. Teschke and C. Borries. Accelerated Projected Steepest Descent Method for Nonlinear Inverse Problems with Sparsity Constraints. Preprint 19, DFG-SPP 1324, July 2009.
- [20] L. Grasedyck. Hierarchical Singular Value Decomposition of Tensors. Preprint 20, DFG-SPP 1324, July 2009.
- [21] D. Rudolf. Error Bounds for Computing the Expectation by Markov Chain Monte Carlo. Preprint 21, DFG-SPP 1324, July 2009.
- [22] M. Hansen and W. Sickel. Best m-term Approximation and Lizorkin-Triebel Spaces. Preprint 22, DFG-SPP 1324, August 2009.
- [23] F.J. Hickernell, T. Müller-Gronbach, B. Niu, and K. Ritter. Multi-level Monte Carlo Algorithms for Infinite-dimensional Integration on ℝ^N. Preprint 23, DFG-SPP 1324, August 2009.
- [24] S. Dereich and F. Heidenreich. A Multilevel Monte Carlo Algorithm for Lévy Driven Stochastic Differential Equations. Preprint 24, DFG-SPP 1324, August 2009.
- [25] S. Dahlke, M. Fornasier, and T. Raasch. Multilevel Preconditioning for Adaptive Sparse Optimization. Preprint 25, DFG-SPP 1324, August 2009.

- [26] S. Dereich. Multilevel Monte Carlo Algorithms for Lévy-driven SDEs with Gaussian Correction. Preprint 26, DFG-SPP 1324, August 2009.
- [27] G. Plonka, S. Tenorth, and D. Roşca. A New Hybrid Method for Image Approximation using the Easy Path Wavelet Transform. Preprint 27, DFG-SPP 1324, October 2009.
- [28] O. Koch and C. Lubich. Dynamical Low-rank Approximation of Tensors. Preprint 28, DFG-SPP 1324, November 2009.
- [29] E. Faou, V. Gradinaru, and C. Lubich. Computing Semi-classical Quantum Dynamics with Hagedorn Wavepackets. Preprint 29, DFG-SPP 1324, November 2009.
- [30] D. Conte and C. Lubich. An Error Analysis of the Multi-configuration Timedependent Hartree Method of Quantum Dynamics. Preprint 30, DFG-SPP 1324, November 2009.
- [31] C. E. Powell and E. Ullmann. Preconditioning Stochastic Galerkin Saddle Point Problems. Preprint 31, DFG-SPP 1324, November 2009.
- [32] O. G. Ernst and E. Ullmann. Stochastic Galerkin Matrices. Preprint 32, DFG-SPP 1324, November 2009.
- [33] F. Lindner and R. L. Schilling. Weak Order for the Discretization of the Stochastic Heat Equation Driven by Impulsive Noise. Preprint 33, DFG-SPP 1324, November 2009.
- [34] L. Kämmerer and S. Kunis. On the Stability of the Hyperbolic Cross Discrete Fourier Transform. Preprint 34, DFG-SPP 1324, December 2009.
- [35] P. Cerejeiras, M. Ferreira, U. Kähler, and G. Teschke. Inversion of the noisy Radon transform on SO(3) by Gabor frames and sparse recovery principles. Preprint 35, DFG-SPP 1324, January 2010.
- [36] T. Jahnke and T. Udrescu. Solving Chemical Master Equations by Adaptive Wavelet Compression. Preprint 36, DFG-SPP 1324, January 2010.
- [37] P. Kittipoom, G. Kutyniok, and W.-Q Lim. Irregular Shearlet Frames: Geometry and Approximation Properties. Preprint 37, DFG-SPP 1324, February 2010.
- [38] G. Kutyniok and W.-Q Lim. Compactly Supported Shearlets are Optimally Sparse. Preprint 38, DFG-SPP 1324, February 2010.

- [39] M. Hansen and W. Sickel. Best *m*-Term Approximation and Tensor Products of Sobolev and Besov Spaces the Case of Non-compact Embeddings. Preprint 39, DFG-SPP 1324, March 2010.
- [40] B. Niu, F.J. Hickernell, T. Müller-Gronbach, and K. Ritter. Deterministic Multilevel Algorithms for Infinite-dimensional Integration on ℝ^N. Preprint 40, DFG-SPP 1324, March 2010.
- [41] P. Kittipoom, G. Kutyniok, and W.-Q Lim. Construction of Compactly Supported Shearlet Frames. Preprint 41, DFG-SPP 1324, March 2010.
- [42] C. Bender and J. Steiner. Error Criteria for Numerical Solutions of Backward SDEs. Preprint 42, DFG-SPP 1324, April 2010.
- [43] L. Grasedyck. Polynomial Approximation in Hierarchical Tucker Format by Vector-Tensorization. Preprint 43, DFG-SPP 1324, April 2010.
- [44] M. Hansen und W. Sickel. Best *m*-Term Approximation and Sobolev-Besov Spaces of Dominating Mixed Smoothness the Case of Compact Embeddings. Preprint 44, DFG-SPP 1324, April 2010.
- [45] P. Binev, W. Dahmen, and P. Lamby. Fast High-Dimensional Approximation with Sparse Occupancy Trees. Preprint 45, DFG-SPP 1324, May 2010.
- [46] J. Ballani and L. Grasedyck. A Projection Method to Solve Linear Systems in Tensor Format. Preprint 46, DFG-SPP 1324, May 2010.
- [47] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk. Convergence Rates for Greedy Algorithms in Reduced Basis Methods. Preprint 47, DFG-SPP 1324, May 2010.
- [48] S. Kestler and K. Urban. Adaptive Wavelet Methods on Unbounded Domains. Preprint 48, DFG-SPP 1324, June 2010.
- [49] H. Yserentant. The Mixed Regularity of Electronic Wave Functions Multiplied by Explicit Correlation Factors. Preprint 49, DFG-SPP 1324, June 2010.
- [50] H. Yserentant. On the Complexity of the Electronic Schrödinger Equation. Preprint 50, DFG-SPP 1324, June 2010.
- [51] M. Guillemard and A. Iske. Curvature Analysis of Frequency Modulated Manifolds in Dimensionality Reduction. Preprint 51, DFG-SPP 1324, June 2010.
- [52] E. Herrholz and G. Teschke. Compressive Sensing Principles and Iterative Sparse Recovery for Inverse and Ill-Posed Problems. Preprint 52, DFG-SPP 1324, July 2010.

- [53] L. Kämmerer, S. Kunis, and D. Potts. Interpolation Lattices for Hyperbolic Cross Trigonometric Polynomials. Preprint 53, DFG-SPP 1324, July 2010.
- [54] G. Kutyniok and W.-Q Lim. Shearlets on Bounded Domains. Preprint 54, DFG-SPP 1324, July 2010.
- [55] A. Zeiser. Wavelet Approximation in Weighted Sobolev Spaces of Mixed Order with Applications to the Electronic Schrödinger Equation. Preprint 55, DFG-SPP 1324, July 2010.
- [56] G. Kutyniok, J. Lemvig, and W.-Q Lim. Compactly Supported Shearlets. Preprint 56, DFG-SPP 1324, July 2010.
- [57] A. Zeiser. On the Optimality of the Inexact Inverse Iteration Coupled with Adaptive Finite Element Methods. Preprint 57, DFG-SPP 1324, July 2010.
- [58] S. Jokar. Sparse Recovery and Kronecker Products. Preprint 58, DFG-SPP 1324, August 2010.
- [59] T. Aboiyar, E. H. Georgoulis, and A. Iske. Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction. Preprint 59, DFG-SPP 1324, August 2010.
- [60] O. G. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann. On the Convergence of Generalized Polynomial Chaos Expansions. Preprint 60, DFG-SPP 1324, August 2010.
- [61] S. Holtz, T. Rohwedder, and R. Schneider. On Manifolds of Tensors of Fixed TT-Rank. Preprint 61, DFG-SPP 1324, September 2010.
- [62] J. Ballani, L. Grasedyck, and M. Kluge. Black Box Approximation of Tensors in Hierarchical Tucker Format. Preprint 62, DFG-SPP 1324, October 2010.
- [63] M. Hansen. On Tensor Products of Quasi-Banach Spaces. Preprint 63, DFG-SPP 1324, October 2010.
- [64] S. Dahlke, G. Steidl, and G. Teschke. Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings. Preprint 64, DFG-SPP 1324, October 2010.
- [65] W. Hackbusch. Tensorisation of Vectors and their Efficient Convolution. Preprint 65, DFG-SPP 1324, November 2010.
- [66] P. A. Cioica, S. Dahlke, S. Kinzel, F. Lindner, T. Raasch, K. Ritter, and R. L. Schilling. Spatial Besov Regularity for Stochastic Partial Differential Equations on Lipschitz Domains. Preprint 66, DFG-SPP 1324, November 2010.

- [67] E. Novak and H. Woźniakowski. On the Power of Function Values for the Approximation Problem in Various Settings. Preprint 67, DFG-SPP 1324, November 2010.
- [68] A. Hinrichs, E. Novak, and H. Woźniakowski. The Curse of Dimensionality for Monotone and Convex Functions of Many Variables. Preprint 68, DFG-SPP 1324, November 2010.
- [69] G. Kutyniok and W.-Q Lim. Image Separation Using Shearlets. Preprint 69, DFG-SPP 1324, November 2010.
- [70] B. Jin and P. Maass. An Analysis of Electrical Impedance Tomography with Applications to Tikhonov Regularization. Preprint 70, DFG-SPP 1324, December 2010.
- [71] S. Holtz, T. Rohwedder, and R. Schneider. The Alternating Linear Scheme for Tensor Optimisation in the TT Format. Preprint 71, DFG-SPP 1324, December 2010.
- [72] T. Müller-Gronbach and K. Ritter. A Local Refinement Strategy for Constructive Quantization of Scalar SDEs. Preprint 72, DFG-SPP 1324, December 2010.
- [73] T. Rohwedder and R. Schneider. An Analysis for the DIIS Acceleration Method used in Quantum Chemistry Calculations. Preprint 73, DFG-SPP 1324, December 2010.
- [74] C. Bender and J. Steiner. Least-Squares Monte Carlo for Backward SDEs. Preprint 74, DFG-SPP 1324, December 2010.
- [75] C. Bender. Primal and Dual Pricing of Multiple Exercise Options in Continuous Time. Preprint 75, DFG-SPP 1324, December 2010.
- [76] H. Harbrecht, M. Peters, and R. Schneider. On the Low-rank Approximation by the Pivoted Cholesky Decomposition. Preprint 76, DFG-SPP 1324, December 2010.
- [77] P. A. Cioica, S. Dahlke, N. Döhring, S. Kinzel, F. Lindner, T. Raasch, K. Ritter, and R. L. Schilling. Adaptive Wavelet Methods for Elliptic Stochastic Partial Differential Equations. Preprint 77, DFG-SPP 1324, January 2011.
- [78] G. Plonka, S. Tenorth, and A. Iske. Optimal Representation of Piecewise Hölder Smooth Bivariate Functions by the Easy Path Wavelet Transform. Preprint 78, DFG-SPP 1324, January 2011.

- [79] A. Mugler and H.-J. Starkloff. On Elliptic Partial Differential Equations with Random Coefficients. Preprint 79, DFG-SPP 1324, January 2011.
- [80] T. Müller-Gronbach, K. Ritter, and L. Yaroslavtseva. A Derandomization of the Euler Scheme for Scalar Stochastic Differential Equations. Preprint 80, DFG-SPP 1324, January 2011.
- [81] W. Dahmen, C. Huang, C. Schwab, and G. Welper. Adaptive Petrov-Galerkin methods for first order transport equations. Preprint 81, DFG-SPP 1324, January 2011.
- [82] K. Grella and C. Schwab. Sparse Tensor Spherical Harmonics Approximation in Radiative Transfer. Preprint 82, DFG-SPP 1324, January 2011.
- [83] D.A. Lorenz, S. Schiffler, and D. Trede. Beyond Convergence Rates: Exact Inversion With Tikhonov Regularization With Sparsity Constraints. Preprint 83, DFG-SPP 1324, January 2011.
- [84] S. Dereich, M. Scheutzow, and R. Schottstedt. Constructive quantization: Approximation by empirical measures. Preprint 84, DFG-SPP 1324, January 2011.
- [85] S. Dahlke and W. Sickel. On Besov Regularity of Solutions to Nonlinear Elliptic Partial Differential Equations. Preprint 85, DFG-SPP 1324, January 2011.
- [86] S. Dahlke, U. Friedrich, P. Maass, T. Raasch, and R.A. Ressel. An adaptive wavelet method for parameter identification problems in parabolic partial differential equations. Preprint 86, DFG-SPP 1324, January 2011.
- [87] A. Cohen, W. Dahmen, and G. Welper. Adaptivity and Variational Stabilization for Convection-Diffusion Equations. Preprint 87, DFG-SPP 1324, January 2011.
- [88] T. Jahnke. On Reduced Models for the Chemical Master Equation. Preprint 88, DFG-SPP 1324, January 2011.
- [89] P. Binev, W. Dahmen, R. DeVore, P. Lamby, D. Savu, and R. Sharpley. Compressed Sensing and Electron Microscopy. Preprint 89, DFG-SPP 1324, March 2011.
- [90] P. Binev, F. Blanco-Silva, D. Blom, W. Dahmen, P. Lamby, R. Sharpley, and T. Vogt. High Quality Image Formation by Nonlocal Means Applied to High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM). Preprint 90, DFG-SPP 1324, March 2011.
- [91] R. A. Ressel. A Parameter Identification Problem for a Nonlinear Parabolic Differential Equation. Preprint 91, DFG-SPP 1324, May 2011.

- [92] G. Kutyniok. Data Separation by Sparse Representations. Preprint 92, DFG-SPP 1324, May 2011.
- [93] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok. Introduction to Compressed Sensing. Preprint 93, DFG-SPP 1324, May 2011.
- [94] H.-C. Kreusler and H. Yserentant. The Mixed Regularity of Electronic Wave Functions in Fractional Order and Weighted Sobolev Spaces. Preprint 94, DFG-SPP 1324, June 2011.
- [95] E. Ullmann, H. C. Elman, and O. G. Ernst. Efficient Iterative Solvers for Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Problems. Preprint 95, DFG-SPP 1324, June 2011.
- [96] S. Kunis and I. Melzer. On the Butterfly Sparse Fourier Transform. Preprint 96, DFG-SPP 1324, June 2011.
- [97] T. Rohwedder. The Continuous Coupled Cluster Formulation for the Electronic Schrödinger Equation. Preprint 97, DFG-SPP 1324, June 2011.
- [98] T. Rohwedder and R. Schneider. Error Estimates for the Coupled Cluster Method. Preprint 98, DFG-SPP 1324, June 2011.
- [99] P. A. Cioica and S. Dahlke. Spatial Besov Regularity for Semilinear Stochastic Partial Differential Equations on Bounded Lipschitz Domains. Preprint 99, DFG-SPP 1324, July 2011.
- [100] L. Grasedyck and W. Hackbusch. An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples. Preprint 100, DFG-SPP 1324, August 2011.
- [101] N. Chegini, S. Dahlke, U. Friedrich, and R. Stevenson. Piecewise Tensor Product Wavelet Bases by Extensions and Approximation Rates. Preprint 101, DFG-SPP 1324, September 2011.
- [102] S. Dahlke, P. Oswald, and T. Raasch. A Note on Quarkonial Systems and Multilevel Partition of Unity Methods. Preprint 102, DFG-SPP 1324, September 2011.
- [103] A. Uschmajew. Local Convergence of the Alternating Least Squares Algorithm For Canonical Tensor Approximation. Preprint 103, DFG-SPP 1324, September 2011.
- [104] S. Kvaal. Multiconfigurational time-dependent Hartree method for describing particle loss due to absorbing boundary conditions. Preprint 104, DFG-SPP 1324, September 2011.

- [105] M. Guillemard and A. Iske. On Groupoid C*-Algebras, Persistent Homology and Time-Frequency Analysis. Preprint 105, DFG-SPP 1324, September 2011.
- [106] A. Hinrichs, E. Novak, and H. Woźniakowski. Discontinuous information in the worst case and randomized settings. Preprint 106, DFG-SPP 1324, September 2011.
- [107] M. Espig, W. Hackbusch, A. Litvinenko, H. Matthies, and E. Zander. Efficient Analysis of High Dimensional Data in Tensor Formats. Preprint 107, DFG-SPP 1324, September 2011.
- [108] M. Espig, W. Hackbusch, S. Handschuh, and R. Schneider. Optimization Problems in Contracted Tensor Networks. Preprint 108, DFG-SPP 1324, October 2011.
- [109] S. Dereich, T. Müller-Gronbach, and K. Ritter. On the Complexity of Computing Quadrature Formulas for SDEs. Preprint 109, DFG-SPP 1324, October 2011.
- [110] D. Belomestny. Solving optimal stopping problems by empirical dual optimization and penalization. Preprint 110, DFG-SPP 1324, November 2011.
- [111] D. Belomestny and J. Schoenmakers. Multilevel dual approach for pricing American style derivatives. Preprint 111, DFG-SPP 1324, November 2011.
- [112] T. Rohwedder and A. Uschmajew. Local convergence of alternating schemes for optimization of convex problems in the TT format. Preprint 112, DFG-SPP 1324, December 2011.
- [113] T. Görner, R. Hielscher, and S. Kunis. Efficient and accurate computation of spherical mean values at scattered center points. Preprint 113, DFG-SPP 1324, December 2011.
- [114] Y. Dong, T. Görner, and S. Kunis. An iterative reconstruction scheme for photoacoustic imaging. Preprint 114, DFG-SPP 1324, December 2011.
- [115] L. Kämmerer. Reconstructing hyperbolic cross trigonometric polynomials by sampling along generated sets. Preprint 115, DFG-SPP 1324, February 2012.
- [116] H. Chen and R. Schneider. Numerical analysis of augmented plane waves methods for full-potential electronic structure calculations. Preprint 116, DFG-SPP 1324, February 2012.
- [117] J. Ma, G. Plonka, and M.Y. Hussaini. Compressive Video Sampling with Approximate Message Passing Decoding. Preprint 117, DFG-SPP 1324, February 2012.

- [118] D. Heinen and G. Plonka. Wavelet shrinkage on paths for scattered data denoising. Preprint 118, DFG-SPP 1324, February 2012.
- [119] T. Jahnke and M. Kreim. Error bound for piecewise deterministic processes modeling stochastic reaction systems. Preprint 119, DFG-SPP 1324, March 2012.
- [120] C. Bender and J. Steiner. A-posteriori estimates for backward SDEs. Preprint 120, DFG-SPP 1324, April 2012.
- [121] M. Espig, W. Hackbusch, A. Litvinenkoy, H.G. Matthiesy, and P. Wähnert. Effcient low-rank approximation of the stochastic Galerkin matrix in tensor formats. Preprint 121, DFG-SPP 1324, May 2012.
- [122] O. Bokanowski, J. Garcke, M. Griebel, and I. Klompmaker. An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. Preprint 122, DFG-SPP 1324, June 2012.
- [123] A. Mugler and H.-J. Starkloff. On the convergence of the stochastic Galerkin method for random elliptic partial differential equations. Preprint 123, DFG-SPP 1324, June 2012.
- [124] P.A. Cioica, S. Dahlke, N. Döhring, U. Friedrich, S. Kinzel, F. Lindner, T. Raasch, K. Ritter, and R.L. Schilling. On the convergence analysis of Rothe's method. Preprint 124, DFG-SPP 1324, July 2012.
- [125] P. Binev, A. Cohen, W. Dahmen, and R. DeVore. Classification Algorithms using Adaptive Partitioning. Preprint 125, DFG-SPP 1324, July 2012.
- [126] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken. Dynamical approximation of hierarchical Tucker and Tensor-Train tensors. Preprint 126, DFG-SPP 1324, July 2012.
- [127] M. Kovács, S. Larsson, and K. Urban. On Wavelet-Galerkin methods for semilinear parabolic equations with additive noise. Preprint 127, DFG-SPP 1324, August 2012.
- [128] M. Bachmayr, H. Chen, and R. Schneider. Numerical analysis of Gaussian approximations in quantum chemistry. Preprint 128, DFG-SPP 1324, August 2012.
- [129] D. Rudolf. Explicit error bounds for Markov chain Monte Carlo. Preprint 129, DFG-SPP 1324, August 2012.
- [130] P.A. Cioica, K.-H. Kim, K. Lee, and F. Lindner. On the $L_q(L_p)$ -regularity and Besov smoothness of stochastic parabolic equations on bounded Lipschitz domains. Preprint 130, DFG-SPP 1324, December 2012.

- [131] M. Hansen. *n*—term Approximation Rates and Besov Regularity for Elliptic PDEs on Polyhedral Domains. Preprint 131, DFG-SPP 1324, December 2012.
- [132] R. E. Bank and H. Yserentant. On the H^1 -stability of the L_2 -projection onto finite element spaces. Preprint 132, DFG-SPP 1324, December 2012.
- [133] M. Gnewuch, S. Mayer, and K. Ritter. On Weighted Hilbert Spaces and Integration of Functions of Infinitely Many Variables. Preprint 133, DFG-SPP 1324, December 2012.
- [134] D. Crisan, J. Diehl, P.K. Friz, and H. Oberhauser. Robust Filtering: Correlated Noise and Multidimensional Observation. Preprint 134, DFG-SPP 1324, January 2013.
- [135] Wolfgang Dahmen, Christian Plesken, and Gerrit Welper. Double Greedy Algorithms: Reduced Basis Methods for Transport Dominated Problems. Preprint 135, DFG-SPP 1324, February 2013.
- [136] Aicke Hinrichs, Erich Novak, Mario Ullrich, and Henryk Wozniakowski. The Curse of Dimensionality for Numerical Integration of Smooth Functions. Preprint 136, DFG-SPP 1324, February 2013.
- [137] Markus Bachmayr, Wolfgang Dahmen, Ronald DeVore, and Lars Grasedyck. Approximation of High-Dimensional Rank One Tensors. Preprint 137, DFG-SPP 1324, March 2013.